id
stringlengths
13
17
image_filename
stringlengths
34
34
original_image
stringlengths
22
22
question
stringclasses
1 value
answer
stringlengths
1.25k
1.4k
answer_letter
stringclasses
5 values
answer_type
stringclasses
1 value
num_points
int64
3
5
point_labels
listlengths
3
5
depth_token
stringlengths
970
1.05k
point_A_x
int64
10
324
point_A_y
int64
95
224
point_B_x
int64
10
324
point_B_y
int64
95
224
point_C_x
int64
10
324
point_C_y
int64
95
224
point_D_x
int64
10
324
point_D_y
int64
95
224
point_E_x
int64
10
324
point_E_y
int64
95
224
point_A_depth
float64
1
254
point_B_depth
float64
1
254
point_C_depth
float64
1
254
point_D_depth
float64
1
254
point_E_depth
float64
1
254
image
dict
depth_point_0
images/5pts_ADE_train_00001585.jpg
ADE_train_00001585.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 190 y = 212),Point B is located at (x = 142 y = 199),Point C is located at (x = 14 y = 224),Point D is located at (x = 108 y = 176),Point E is located at (x = 71 y = 104).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_36><DEPTH_64><DEPTH_15><DEPTH_64><DEPTH_94><DEPTH_55><DEPTH_81><DEPTH_38><DEPTH_44><DEPTH_74><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_30><DEPTH_23><DEPTH_14><DEPTH_60><DEPTH_60><DEPTH_31><DEPTH_3><DEPTH_5><DEPTH_67><DEPTH_17><DEPTH_67><DEPTH_56><DEPTH_69><DEPTH_75><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_70><DEPTH_3><DEPTH_3><DEPTH_70><DEPTH_22><DEPTH_17><DEPTH_30><DEPTH_3><DEPTH_59><DEPTH_70><DEPTH_59><DEPTH_3><DEPTH_3><DEPTH_31><DEPTH_59><DEPTH_60><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_59><DEPTH_31><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_38><DEPTH_29><DEPTH_29><DEPTH_49><DEPTH_31><DEPTH_64><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_64><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_41><DEPTH_2><DEPTH_41><DEPTH_2><DEPTH_94><DEPTH_32><DEPTH_32><DEPTH_57><DEPTH_94><DEPTH_94><DEPTH_1><DEPTH_0><DEPTH_32><DEPTH_57><DEPTH_14><DEPTH_55><DEPTH_14><DEPTH_14><DEPTH_1><DEPTH_0><DEPTH_55><DEPTH_14><DEPTH_14><DEPTH_14><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
5
[ "E", "D", "B", "A", "C" ]
<DEPTH_START><DEPTH_36><DEPTH_64><DEPTH_15><DEPTH_64><DEPTH_94><DEPTH_55><DEPTH_81><DEPTH_38><DEPTH_44><DEPTH_74><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_30><DEPTH_23><DEPTH_14><DEPTH_60><DEPTH_60><DEPTH_31><DEPTH_3><DEPTH_5><DEPTH_67><DEPTH_17><DEPTH_67><DEPTH_56><DEPTH_69><DEPTH_75><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_70><DEPTH_3><DEPTH_3><DEPTH_70><DEPTH_22><DEPTH_17><DEPTH_30><DEPTH_3><DEPTH_59><DEPTH_70><DEPTH_59><DEPTH_3><DEPTH_3><DEPTH_31><DEPTH_59><DEPTH_60><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_59><DEPTH_31><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_38><DEPTH_29><DEPTH_29><DEPTH_49><DEPTH_31><DEPTH_64><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_64><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_41><DEPTH_2><DEPTH_41><DEPTH_2><DEPTH_94><DEPTH_32><DEPTH_32><DEPTH_57><DEPTH_94><DEPTH_94><DEPTH_1><DEPTH_0><DEPTH_32><DEPTH_57><DEPTH_14><DEPTH_55><DEPTH_14><DEPTH_14><DEPTH_1><DEPTH_0><DEPTH_55><DEPTH_14><DEPTH_14><DEPTH_14><DEPTH_END>
190
212
142
199
14
224
108
176
71
104
87
65
108
32
3
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDwQZyKT3pQeR9aCeaAAHgj1o6D3oHr2FIT60ATpKGURyHA7N6U10ZWAOCOvHeouMVLFKo+WQboz1Hp7igCPqc460n4VNJEAAwbcp6N/jURPOMUAC/eBoH3gaB1FA69OtAC+vek9RRkbqU8HJFADetLnI+lGQeeKMgdKAENWYm8y2aL+IDK1XOO1Phk8uVW4oAaqksqqpZj/COSa2F8M6n9ga8uYTbwKBzJwxHsPxqxoFxDp988kqSOTkRrEu52JHGK3NWu9YmsppfIjtYtm5luHDyuoIzx2Gcdqlt3sikk02zm7LRY7u4MSzSAAElto9QPy5rYHgi1YZGsLyM4Mf8A9es63S9kv1iF40BKEhogB6ccVtRabqLgY1y5GOmVzj9aHGb2I9rTj8ZTuPBH2dcm/wCCM7mjwP51VtfCP2p9qalDnsNuc/rXQto2r3UYSTxBO6joGjz/AFpqeG9Vs382DWyrZzkRChQqEuvS7mT/AMIRJuZf7SiUqf4025/Wqd94Vkso/Ma+hkUEAhOo5xW/Pb6+W3PrSucYy8IPH5Vj6lJqtrEPOu4ZkLhSoiAzzxmjlqdSlVpSWj1MZtLucObcGcIMvsHK/hVElsnIPHXjpXW6Ze3trczeXp/neWBvaHkrz1A79DTdcudO1WxM8McS3ik7gqlHx6kUNu9rFJaXOZi/doZT24FQ7j3IqWYgbYweF/nUR69c/hTEGeOgo79BR+NL0HB5pgJkAYx+tKuM/Sk5A7fnThkA/TFACDG4c0mR70ozmkwevagAwPWlHIK5HtTaUZ7dR37UASJ8vzcZHSkSMseoyOpzwKcEG3exKqenHJ+lMeUsAowEH8IFADiwVSsZznqT/SoyPm7cUvAGc/Sm9u1AC44PSkI+lHY9KPxoATPNKRlyO9S4D/dPPp3pCCoPAz0zQAxjjCjtTc0u055/nRtz60AHQYopdo9+aTbznBoAekhjz0IPUetPaNXTdHyB27iowvfBpVLI4YAg0ANHDDIoOBkj1xVjYJhwNrjtUTxsp2lcYoAip3HIo2Hpijax7DmgBMj3pTgetO2N6Cl2NjoKAI+1GOKfsal2NjoKAOg8MMk2sQ5yrurrkdvkb/61dCNLeLTpJpbh5ZLiwlWVTyA+Nwx+HH4Vy3hVmj8QWmenmqPz4/rXd2enaxcxwtPCyQQxTI24jDKVKrgewrKbldWenUat1OE0N3bUl3sW/dHFdpbZPrXEaCMaihySfLP4V20DCOMueijOK6Yo8/E7mtHJDAgknmjhQ9DI2Kl+02lwm23u4JXA+6rjP5Va8H6VYXnl6jqLebNJE0iqy5BIOAoPYDnOOTg1Nrvh3SpdRa1a5nubpSrAQnKA88AAfLnpitHNRsiFhpSV7nNXQIyNuDXLeIiRaKc/xiulnSS2nuLOWQytCV2ykcujAEZxxnnH4Vy/iIH7Moz/AB4rOb6odBNTsybQ0uruyn8qRY7hrmOMOOigBixpuumZNPjnugn2lZZY94ABZVKjn1znNWvDvn2+kxToheM3r+c4XOF2Ben41R8Uzm5sLCRk2PIHlKD+Hc54/wDHaw5pc9uh6FlY5c5zngmk7dB+dKV9jxQFHvVjEA5/+vRgselLx0NAAHOaAA854pBwaMds80bT7UAL0am5p+CVB+op8cJIJbAA6k9BQBGoJ5weemKkJWPjALenYUFwOEBHq3c/4VFj8aAHGRmJyc03mjHtSUAOBzx+VNye9HenMM/MPxoATPy0maUj5RQFJHTj1oAU8GpQ+3gncaYuOOeR0rb1nwdrWgadYajqNuqWd+oe3nSRXVwQD1BODg9D70AZqQiYExuY2PZuhqCWGaFtsikc1ueH/C+q+LXex0a2gnuoVMzAuFdl4GBk4OP6msuVrqymls7kAPExR4nGdrA4IoAp/Q0oz/eNSvGuAyjaD93ng1FjnqKAFxx96nYJHB+taGg6DeeI9Xg0vT/LN3OSI1kbaCQM4yfpSavo154f1i40vU4xFd27bZEB3Y4yCCPqDQBTVJFIILBuvFWI3jmAiuGwT0kA5Wu70/4eJqvw1uvFMF23n28hUwBflKjGTn8a4C3tBcXkVuJFQyOE3P8AdGTjJNIAu7CezYebzG/KSr91h7VWIw2Mmu28Q6JqPgO5j0XWZLW/tLqMTp5DbgvJGVJHB4+hFcdLGqvvQgx/w98egoAdFE8hAjBY+nFSzWssTbZ08lsZAAH9DVjQbKK81i1tpiRHLIqMcYwCcE12HxS8EWXg3WYLaxneS3nhEimRgWzkg9O3FFwOE8qQBmVNyKDycdPzqHkdDXc+DPBC+KtJ1e+W+it5tOh8xY5VBEnysTkHtxjPYkVxJiAlxg9ewoEXtEk8rWLV93SRT+RB/pXs8097K7QQ2JJxjznfCYx+Z+grzjXPBT+FbXRNT/ta1vF1Bd4jgOWj4B5/P9K9Gn1uSJUhtbMs7puD4LZ68D3GCeayqtK1zehFzbUTyPR48a28WMbA69PRq7eCDfGVPcEVy1mnl+LbleweYD/vs12VqAMetd1FXPIxjtIw9K1u90uGW2hdWt5AVeKQZXng47j8K0L/AMYX00Cx2cVtp7kATSWalGm/3j1/Cq+paHOJ2mtEEkbHJjBwVPt7VQj0u/lfb9leMd2k4ArKUZXszeFWPLo9HuaFvNPqEb3VzJ5khITOAOFGAOK57xImy3jJ6eZzXWR262lokK5bb1Pqa5rxJytvz/y1HWrkrRRhRlerdHQeEriOw8L28koKxSu53gE45OMj04rnPHE8c9/CYGj8vbj5OmeSf512Phq8tbLw1p8Vwj4eInKjPuc+3Nc1418P6nPC/iGO1C6OJBCspcD5iB261yxtzM9NxaVziQQD85+X2NAwTwK0dA0rUNZ1i20/SyDeTPtjGeB707WtLu9G1i403UQPtMD7JQp+nTIrQkzTt4wMnvkDimED+7XZS+D9ah8Br4hdLP8As5pNifuk83rjOducZ964tg2eQaAA/wC7Tkj8xtqxkn+VWNPso72bZJcx28ajLu/YZ7Dv9KuX91awhrbSoZEthwZ5F+eQ+p9PpQBR8qOI/M43fQmopSCcFhtHQL0qeytrm9uY4be2a6ldsLEqFix+g5p17FPaztbT25t3Rv3kRUgofTnkUAUyF9aTC/3jSlupyD+FN3ewP4UALtHZqMZ5zSqM8kcH0HNTJatKMgbcdS3AFAEG0Z5OKfEWVwyLkj16Gp2+zRKBvErgY4GAP8agMjOTt4A7UAGAo+b8AKYXz0GPekbGeO/SkPHFAC5NW5tRvJrOO0eeVraM5WJnJVT6gdO9VKKANDStWv8AR7oXNhcy28wUr5kbFTg9RVa6uZru6kuJmLyyMXdz1YnqT71Cc0lADlXPO7GfapHPmMCyoMADCrj8aj58oUJkkigCe3mkt5VlhkdHXkHoR+NOmuZru4aaaZnkbq7klj+JqshBOCcCtBYUWGUs8QIUkDIJoEaun+Jr/TtGudNguHFvc4EiZ4YVgnIk3K/Hb2qNXORk8VGWOTg0rBYuXE01y2ZZWYgYBbnAqfTp4l1Fpb3dInkyY6DL7CFz+OKzNzepo3H3pjLdozRTI+SNvNausazcayytdzySGNQqliTgelYAduRk808Odj5596TQrGha309jFILaWRDINrYPUVUO0tvdyD9ar7s96fHH5iEZIwe1AWLjXPmBA0rsE6AnpXtthqUT6LBOssC4jwgYHJYDGPboa8JEIUHDnnFeg2N9qC2FmkGhQjfiOOa6ucCRjnkADvyeamceZDi3HYzAMeOL0rypeQqT1OcHn0611NucAetcLqtzqGma3LNIsEd3nDCEfIMqvABoTxjq0f8AHF7ZiFdFOairM5a9CVR3R6SjjAxRISa4vTvEfiC/RpEksILdPvTXICL9B3J9hWlLf65sZoL3TLsgAqEt5F8wHupK4IrV147mKwVRq6RqTniuS8TFljgKA7g5IA69Kju/FesW07291aQRypwyNHgisy71ibVmjjmjjTaSRsGMnB9aylNS2NKVCUJanqGjpBP4ctQ8SyQxxgEZ+YY45H4VwvibW7+eW70g3ci6fHcMwty3yhgcZxW/FqDW8K/atE1G1CDb5ltieMe/FedX8huNQuJlbh5CRnOawSs2zru3oanh3W7vw5rdvqNnKEniPysR0zwcjv1qPV9QutZ1efUbqRZrid97sw6msjcVjI3ZOR0p6l/ldeQAc5phY7fUvHF/deBbbw0wjFpAc/KME85AP51w+N7ohIALAZpCJgOckfWkAcsCwNAJFzULdbS7lsyhaWCRkLK4KsB0Ix3rob/xnNeeBrLwwthbQw2zbzPHHiSQ5J5P4/pXJh5XlLybizHLE96uvbIumR3QuladpCrQY5UDoc570Npbjs2dT8M9dsPDfiePU7+GSSOJGxzjDY4NYvi7VjrvifUNTKeULmZnCjkAHpyayGcgYfqOoWmvIdq7h8pHGeaBHTeIdQ0GfwtpFnp2gixu0TM96zbmucDB+nzZrksAngAj6U7cpB3MSc5pyNu4BHFAzV8P2Fnca9Z21/OIbWSRRM6nO1T1P4Ct34iW/hu01yO08M7pLKKIBndidz5JPPfqOa4+OUh9qsRjNNkk8zqTn1oA6xfD3h0+Af7V/tK4m8QNIcafEBtSMHlm4zjAJznvVXwh4d0nXb27TWdcj0i2t4S4kI3tI2fuqPpmsnSNRTTr9ZpY/Oi2PG8Z/iDKRj6c1RdxvYj5QckAdqYtR0yokrLGGKhjtZuuKi2H3FIf8mk4HGM0DHFdpIOQfQikI/2hVy+cXV40qcBscN9KrGM/7OPrTkkm0hJ3VxuOOopMe4/OnBDzkjA96PLYnp+opDBRuUg49qF3L82cc9aPLIycfqK7HwBDok17dJrrWSRLHmM3R4ZsgYHv1/OrhHmkkJuyuccAOo6/Wr9pfLbJcZRmdoikTAj5WPGT6/KXH/Aq9J8Qad4MeyQafe6TFIHyzQgM2ApOMH16fXFZLWPhiPT/ADWn09pTHuKIcndjoOPXtXR9Vd90Z+1TWx56Bg8dqApydw/WtdorVd5ma3SIJtBX5mycc4HpTYpdLa5jU7Ah8snKnrghh09SDWLp2e6L5vIyduR2/Ojae5H51K8D7jtQYzx8w/xpPIl7Kv8A30KyKI9pHcD8aCD6jB96l8iX+6o/4EKTynJx8mfTdQBHggZyKfG2MjI/Out8BT6ZYa80mtvClmYjy8fmfPyAMAe5/Ku313VvAt5phht7u3jkLrlorQqwAIPHHrW8KSlG9zOVTldrHju/nqPzr0zzL+TS9IWxtJpTBHFJvEYZdxye5GRwtQQ3nhWOyQvcRvOEwwNucnjv78DmuXk17VYo1t4dTlECqAqRsQFHp+HSprUeRKzuOE7vYk8ZOW8QTlwVkOwsp/hJRfw65qHwjPYweJrQamsb2Eu6O4DjjYQc/j6VmzzPPKZJXaRz1ZzkmosDH3RzWSZSvuekw6NonjW1a+kkt9MkDFmZJwBDES4RSrHaFUKucdc+prQnuNT0vT44bfxJAYorISQIyQ8ojFVHXvz9ePSvKFJztztDYB+nvSy/60qW8xU+VTzggentW6qU7LmjcS507qRa15Io9duxDM80e/IkcglsgEnjjqT0qtYHF3H8wHOM/hUZUHqKeFCEMoAYcgisbq49banbgxzeIIrRLqWGSKdoXWNypK72f+oH4muJvJEN5NuiGd55HHeul0rxHrd5eJGJbJ5D83mXiRqBjuXOD+tatn4S0mZZftF1ZyujA7459ofIBPGfr09fatKVKVXSJDko7nnbndkgYB7DtT0fagB4x7Vv6rpNrFfyw2UJkQHaGEmQvAJOc89f0qs+lW6vlncKZ1j2huzLxz9aJUZRdhqSauZfnAjG79KTzh/eqS+t1tHhVWc74Vds9ifSqu73rJpp2LJvMB/iFL5i9jVfd7ijd7j8qQFjePwoyKdp9m+o30NnFsV5mCKSO56V2N38LdVtIJZze2jrEpY43AkAZrSNKc/hRLkloziyR6/pQCM+mfatOHwvqNwm6FUK52kksuD6EHpVOXTLi3naGXYJAwXAfucf4im6U0rtDUkykD85OaZk9auDTpjjEZ5ZlBLcEgZIqKa3kg8vzF2703rz1BqHFrcLohozkUv8qTj0pDE5pD9adx/dFGfYflQBNiRedhx7VGwOSSMVYFx+6ZOTkGoSCy4HrmgCSF5YpI5ocCRCGHA6/Q0wb8OWBBPSkHyjBGDSqT7cUAXl1KUT2k8dlbLLboFyIciXHRnUkgnHHQdPXmqSF8MrLgN/eHTHp6VZW6Ty1BJBAwcVDPKJJSRnFAEQJVTzyDSbnx3zUjxIiZD78njAwR9akS4jWFk2nfnhuKewio5Yoc5xXV/EDy4PE+o2dtPpRhh1CdI7exsRC8Cq5AVmES7sDjhm6fjXO3MqzoqIuCBgk96mutb1bUXj/tLVb28RJBJtuLh5OfUbiefekMqMJAnzBh9aHZmC4ABxj5Rip7iYTj92rcccnNQgFSpKnAFAFi38sSW5ls5JUWTMqrIVMqcfL7dDz71PqT2893PLZ2K2MLn5LZZC/lgAD7zHJzyefWmpfxBVBiOQMZ3VBLOskhcKQDjikA2KORJAZLd5E5+XJGePUfnVlrpJLRLZ9PhMyKFSePIfO8sS2DhjglfYAelOOpIWz5TDnON1VHLyXHmBcKST16U7iI1R2Pyqee/TNXJPINjBGlk63SuWlmaYkOvZQvYe/uarxtsI81SydMA9qsG6t/L2i3bgcfOeKBhcvFcNM0VksTSPuRInO2Ic5UA5yPqc8VV8mbacowxUsF0IJVkKkgA8A49qmW+hRZQquS6kZJpAVhGRGW2t6Zx3/wAajUSNyA5+gNTDJXjcOc4zxUlvPHCGSUOQR2PvQwIoX2pIsltvZsBZHLApz1HIHtznrUsaqt1ulhmltwDuWNtp6cc4PfFS3OoRSw7FVs5B5NQwzwo2ZC/HGF7/AFoEVt8qsSVbGDjORUsE8SyRyXETTRBjvRZNhI9jg4/Kprm4hkQCMyZ77jmqsjO+XYHJPPFO9g0JZJgY4/KSRHAO8s24HnjAxxxSI0rcOzDIyKmjaEplpirehBOP1pssi7gI3yAOoz1ouBJdXNk0yi1S5iiEI3LLIJGMu3kg4Hyk9uoFUvtLtxwPwrRjWykiBlcb8DOc+lUrtY0lIiI2A8H8KAGNMwYjCsB7UnnKTzGn5Ui4MrZwR70owSN0a/lQMntrybT7uC9tSI54nDxsFGVI5BrpJPib4mmt5IZb4PHIpRt0KE4PXtXMrGJCqnGBUj2sQjJ2SAgf3hjNXGpKPwslxT3NuPx3rKLL81u/mMWctApJJ98VlnUpbm7WaVYPMkfJkcH5ST1wP84rP2MAwAPrj0FPiRZMKysQBnjrVOtN6NiUIrY0Wu5JHmH2i1/cSmQHkebxj5eOmB0OOtUbmfz5V8wYZECDafTpSG1UZOZPyqMqpbLA5781Dk2UklsTX1ibG9mtHaOSSI7WeKTch+h71WxH/dP50/CqGKg9PXNMVd2c54qRkqwB84XO1dx56ChoFWMOTHhui7snv27dKjK88k/nQVHbOfrQBHxnt+dKoHPP61cV3YZ87cByeM4pBcOOFMbD/rkv+FAFM4zj+tA4P/16tm7dW2tFA4HYxKP5VVY7nJ2gZ7AYoATtS8c8mk6UuOPxoAcr4FJuJ/8A1Ug+ho5x3oAuWlp58bzzTiCBCFLspJJPYAdabd2j2rIyyrLFKNySLwCM/wA/UdqmsbmH7O9pdI7QM4kUoQCjYxx6596ddXFtP5MKbkhhBVEbkkk8kn1PHFYpz9p5f1+J6Uo4X6rdW5red731TW3LbZ73+aVAEg560pc44yM96kMahtqksOuD2qN1y+APyrY80blsdWpdxxjLUBfY/hShfZqAEOemWpQxx0/Gk2jHRvwp6oNw4+uaAEJYjsPxpPm/vfrUpEIba7FT6AcGlkSJHKqTkjJUDigCLc2By1JuP+1inSLyML+VRgHPQ0ASCYgYxSMxJzmmgeu4fSjbwPvflQAZIP3xTm3+oJNIOMAFvy9qkZV6E7Bjk0CI1Lbs4FSeY3pjj1pzwRoinzVU9eh+amOq4B9+p5FAxhzuJ2g/WkDAc4X8qOPVfy9qNw/ugfhQITII6LTlZQTlRjt3pmR+H0oyPagZIzDHv9Ki46c/nUu3oRzntTvJkAyfxHGPzoAi49D+dJn1LU512nJ+lM4NAEm4bSeeRg800SFQNu4YGKbnPrR2NAD/ADXOfmOPTNJu46c0zijIFADt/IyDQWC8AYqVbSdgp8rhsYJYCnPby8DYMf74/wAaAINxpC/apfssvHyr9TIP8ad9ml2g7VP0Zf8AGgCAEjufwqW3Uu7AAnjPFRuRkHGMjkVPZld4zwMHJzQA2dMMDjGeOahx3zWhdLu2YwOc8+lVfJb/AGR+P+e1AiH608rwOmeuDUiQFnAyvJ9fypzRHO3g8UAQbfoPxpyxlvugZ+tS+U3YDn3pwiYhh8uD60AIkRjiLMOvTnNV8MzkLz39K0LkotrtX1HSqUSlw2BxnvQBYjjKLlsYA6jmoDyxKjJ+tX3CLbFVYbz1xVcIOMxoenc80AVz1I6e2adtBzgH/vqpdgGMohxjueaAo4yiHGM8mgCEqecDC+57ZxUsK7nyAO/BPWkCYIztYDsTU0JRPvYGVA4oAp3ORORjpxS2yFn4Ax7nFFzzPnBOfSpLb5SGONu38etAxZkbzBhfyNRhGyPlODjoasS/M4Pl5475HrxUYTpmIdu5Hb/JoERcccnt3oXkjOfwNSCMcfIPrupCmF+5zxzmgBoxxkt271LLGxhzt7VGVbPQVPLtMBXPzY9fagCgWJ4yauBWe3BVTke2elVHwH5OPWr8ZT7PtOBx6+1AFfkHqcj1GO9IRxjccfSnsrE4Iz07+1Co2cYYA+nNAEe0Z5bFB6dQfbFSBMDIDE9xj2oIfkFW70ALGN0XT7tXi0cNuZkgYLgA8nBPrmq1ouZCpXHfmrE8Z/s8liud2PepkjWlKzbKABeIgZzUPU9qtWeCxB6YzSTKFd1OMYyPlxTMirjPpQoycAVJx60gwDnNMZH+VJzjJxT3XDfrTenFADkyWXPP409zsI6ZPrRAAWx7U64UcYB/E0AI0q7VAUE9wRxQvIzxUIBJwBz9atRoPKGCTxSAsWMMUsBMkYJDdSKivoljlARFVdvbireljMco6fNUepr+8iPHQjJoF1Kk7l2BPP7sCmbjycgnJNOkHyxsSvKflimjbn+H3+nU0wJbcDzgScBOc/TpSljk8Lnr1qS3QeTI5x0x7Z/zikAAxyvtx600JjMY7px2z6UoHrsOfenHHXI/L0pRj1X/AL5piL+jwlpnk2Z2rjjpk0as4aYJggpyVI4/P8q0dMgEVgHeNgX+c4PasidvMeSYSsQT0I7elJasLlUhAMggtx1x6c/rQAhPzEDkZwB070uR03L7/LRkE43KCf8AZpgM4HUof85oCkngKc+1Oznoy9PSnBm5KnIXngdO2aAIgjHHyjB9j3pxRcEqG6HGR15wKkUMGGQ2Aewx0H9KAH4VS3QA8Hr1/wDr0DNDT0b7NyuOT1rOu0Y3Uh2DH0rf0+PNmjHdluTz1zWRcH9/LkyAe445b+X9albgU8S88Hv1z+NKVB4LNjPIP0/z+FSFkOQZG/ixn1/z1oPlO5Jcnk8kZPSmBCI1z8xPYHAoMY28E5wOMce9WUWR0DeaoG4KOM8gcVGdyEqWXK8cexoAi5x8xYYHGPrSnHzDex4PUe+f/r1IXO3G9OhHX3zRuyx3OvOenfNAF23hjkh3NGHPPz7OtUJCyOyhsbcgLjpzkCtnTvngJ8wkg8nHSs66QLcupbHJ4x2IpLewFXexzgZzn09c0FSSW3buT93ipThl+ZxjIJ49sH/PekK7iCxAIwOPy/lTAiwx6bqXn/byaf5YAxnp/Q/4c0GMDOHGRnjPp0/OnYBmWODlwfpTlILrvDFD1HTIpSvPDZ6459KXYxJC7iR3BH1osIt3WmwWtu0sDEMMZG7PFZ5ZieW/Sukt0FzpoVtoJUoc8n9K58grkEtkcHAqV2GQnIHJH5Uhx/sn8KmOeo3flTcdOSRn+7VWC42YkKp4wRUJb/ZHfHH5VZZd1tk84PpjGardux/D8KkaY6JsSLgKATg4FIQ87qABvIIHOKWPmRQQDyMip7Fd90g44B6UgK72s8KFnAwO4NTI+EZQM7FBq7qS7bM9/mFZ4X9zK/owFCA0dJGGnX5eD1zRqyj9yePvYyRWhpkaC7uAUUbeBx71Nq6AWysBnDjmmTc5mdBHMYlOVUcAAnjvSBXIOAevXHc//WrWu5C9yxDnOABgY5qtKMxZ+faeT9OgoHcTy3W0QqG5G4/LnIPSo8t/tYP+xVuZdrkDeuBjbmmFYwPmz6dfzpoVyD5uP9Zu9Nn5VLbwvcTpCC3zHGGGOPrVhlBncgkc5q9p8KJeRyuFZCjBNx9Mf40PYLlu9KWNgzmMY4UANn/PGaxpltl04SRxuDIw25JOOv8Ah+tX/EMw2pCAo2ruIB79v8+9Vp4JGhtkVJNvlhvlUkc//qFShmXzgDMnuNlAY9cv+KVoiCQjcRcZI/uGnpBg/wCqmJ7ZU1ZNzKLkHq302U03CxthpCpwOClbSpt52SBvXaf8Kks3WFdfu/Iglmg0pJIvtNukwRjdwKSFcEZ2swzjuaGNamALkSk4lLHr9w9+tS7mz99+54Q1q3sUcd9p1yIEtri701Z7mKJAqq5kYAhRwu5FR8AAfPxgYp8BLzKMvliAePU0gejNC3XyrVBh+FHT6VzLSIzk4kwSOMH8e1dtcAx2rttP3c4ArmywHJlYH1xUxBsyS6cYYjjnK570m8Z/1nc/w1ptJEOHkJxjjFMM0I43YHPaqC5XjlhW3UyMRmTj5fYcVFOQJ5RvXhj1X3pdUZDbwiMk4dj+PFXpvIM0h3EkknCrnvSTH0M3eOTvTv2o8xSfvpz7VoqYt+7cAQeMjp+FSqQyk7lYHGcgUxDtEYPHIu5Tgj7oqvq37m74YAMAefUGtjRdsk8iRgNx0Vak1eBN0bFRk5U5QHrU/aBbHKF+26M4yBz+NKJDggGPByOvY1pbIdwTEOeONgp2y3yAVgDY6FBVhcyeMjIjH409HZF+UR8HPXv0/lWkba2Q4McIz2K0G2g4Zo4QBigLmf5j4AxHxjv6f/WNT2I8y42Hy0AXqQDwKtGzhK58uH6/SmrZrHKrhY9oOD9O/wChoYrl3S1SJpYPtEUjfeygyKzdTg8m9Yqd4f5hjjnvT7LFl4hkx8qkgH2z/nNa2uwCS2DhtzxuONvqcGoW5RzGDjo+R05/KjBH9/AHr+VWjarxtjHtk8j0phtwMMI1wByN3Uf/AK6sm4yMFkePDksOM9jVLBJ6kH3H4itKFGQ58vLHg/NVee32u4K4Iz3/AB/+tSZSKyOVkDBvXBx61c0tCLwg4yic8dKWO0jNwmXYDeOOtaljZltTun8wseB93FSwuUtWG22UerCssk+RtxjdJ/St/XLRzDEA4J39+1ZkumzQSKCrNGAWLJyQcf8A6qENGvYXNqt5O7vEuOMLkk+/FWNQukktlWFZWYsOPJJyPyrq4rWxhwVjhj78ACrSParyCmT7UXZLiefSx3MjN5NveMmAFJi5zwP/AK1SCz1F3C/YLvG/ODgfL6V3E5vVlYQvEsY5A79OnT1zT7ea4UyrIxnkChgm0gdcdaV2Vy6HBNpeolgwsrk4PHTmlXStQIPmafcnC+3Br0RbqVlyLdlx2K0twxjTzN0gJHPzkKKOYm1zz9dOv0kVRp9w3PIOACPrWy8UsVhIps0iQFcM8nB5+nNdWrYhVgXJYjG/5jUaXTyNGhiIZsbh5fCnuD+tDbYWR5Rq12k1zN+8By2PyraTxJZQIlu1hIzKilmDLggKPUZruFmZkQvp0KucbwWU45IIz9MGud8ZyQSabZTzxGDMroAhAPT/AA7UD0M7/hJLJsltGuWDENkMv+FMfxLpeSTpF2MnPVa63RriGTR7NYrBXQQrtZyPmHTk461emeKC3nuJdPiVIoy4xg7sDpgCl7xV4nBnxHphJxpt6vO7gLxWPf63dJqn2vRZb/Ty0IicxyNGzDduxlTyOFOPUV3p1qLgm00og99r/wDxNWYLmOa0W6bRYvL2kuVQAD6AjOOnP19Kmc3DVnRh8NPENqmtvNLfZa21fRbs800nUGh1Wa91I3VxJKhzJks5YkHJJ69DW3/b+kjGLe+46fKOD+ddXqJSKe08uOC3EysQgjUiTpzuxxTA0QC4t4duDk+Qn4Z4/wA5qryMGl1OY/4SPSuB9nvuOgCjj9acdd0pFybXUFA6EoOD+ddUITIyPFa2awqN0hMCsZR6D0Pp9K4m28RWdhL5ptmlPK7Jdsq9u3FHvdhe6y0viLRcgGO9GOxUck/jT31nRYSoc3QwOm0ZB9+avaHr+ja5qUdlNpEH2iUny2W1RVGFJOTkntXQXem6bHKpOn2IU5aSSSIHjjj6kn9KG7Ba55lr13Z3X2c2jyMqhs+YMEHI961P7R0mDHkTyxT4ALGHeMdx19f5V27aX4cZgrW1hnsNmD604aP4dkYKtnZOzdAsfJ+lNMOU4qS90yPbLNeSG7Zd6zGAkHtnr9RSf2lpk5D3V5JLMv3G+zMAMdO9d4fDGhuq7tMtjjgfKaqwaVZSXhVtKs0tOUUFTv3DvnpgjFDbCy6nHf2nYXPF7fl9v3dtu3GevelbVLO4AhudRj8hTlQIWyMdP0rvj4c0YnnTYPyP+NQS6HokLbTp8WcZAAP+NK8gtHucOL+wx9m+324tMY/1Tbsdu3XNKt9p8X7qG+tPIb72+Ny3PXHFdn/Y+iEEjT4w3JAOefxqvHpemOzCTT7bI6EllH9fWjmkFodGcqt5p9rxaX9mwblvNRjg+3HpS/atMtsta39o7Nw3nKxHtgYrrhoulAD/AIk3m5Gd0DEjrzyfSnwaFo88nlHSZIn25O4/L9OtHNLt+IWj3OPF1pcTefFfWjzN95XVtvPJwCKcLjTNwuPtVoZjyVyQme/GK6VNL8PSaq1l9lh27Tsbc252BwR+efyqw/gPw/JljayAk54lahSfVBaPQ87vpTLrEkpMZLKpzEPlPA6V0cTRXixtcu6hoi/OcErznj3Fbdz4J0CEeYYZAeAN07Y6e1T2ejaPpcDXMSTspwrR+aWHJx0JwKL32Bo4a7gt0mIW4RsjcMNjAqr5aIOZU64xvHevSzaaTcxrMdPDhlBXdEp4PNQPYaOr+W2n23APSMdPfj2olVjD4iVC+x518pPbvnDU+dYnAYJjK7sB+mOMV2k8GkJOYvsOlgAjIlyHH5Clh0rSLuQJNpliI2UsrwsTwPbHHWrUrq6JtZ2OM8lSQgWTOQoxg9a1dMj23F0CZN4Ybgw6fjXQv4V0FiAiBP8AdcrWe+naLY3MwW5v4nB2s6MWTOOKlyXUpQb2MrWF3GAFlxuydxxUbAsJkWMFXwCB35/wH6GtC70+yvwiQ69wp3Ymj/8ArVEdG1PB8i+sLhFbdkEA/Qe1Cku4+SSOjgtbp8LFYx/Vm4rRi03UmUbmtoz32oTWqmV+6nH5VOpkI6AfhUcj6srmXRGX/Y94V+a8H0WOlXR7g8G5n+m0VrruPVuh9aDNKoP7hvZi2RS9kv6bFzMyho03GZ7nnj7opx0Odhj7VMR6FBV9bmTJ/e4A7KQp/LvUy3sgBLKTx1I2mj2Uf6/4cfMzL/sS5A/4/Jj9I6UaNOSP9NuOuP8AVVrx34fG3c/1H9an+0AJuzhcZzR7Nf1cXMzG/sC5VSx1NwPUoKgk0FLlAs2pxSqMkBogce/Naj6sm4qsJdfU96jOrx7ebdR+NL2S8/vDmZRGiyRKI4tWiREGAojAC/hQdJuskf2zBkdQU/8Ar1c/tiNSCbVDnuTzSDWLaY/vLUZByOe9P2S8/vHzP+kUjo14MY1WE56Zj61Sl8M30cWz7fGLZVOcbhjvjHf8TXT20kNwRKLRoyDhSxzmnFvtdyF2nyIjz/tt/gKmVCL3b+86KGMq0L8luj1Seq2evVXZx1r4Ou12zS3qSSZJUsh+VT2xn0q43h2+Aw17bj03LiutkliiUsyttHGBVKb7LLJvczqSMYHTH5VTgn1f3nO6knq9znh4fugyMb20zH90helZMvh+DSvEfhW4iS1DNr1ohMKYP38/0rsgtmcAtcDJ4B9aw/FHhy08R6bFarfTWxSbzN7Q+ZnCkYxkevXPamoJO9394udnNJBevqvheKW/v5b8y3pLaxbGK4RfLXGQXYmP723n72+unn0TVZoyry2bhhz1FZHh74cx6B4gttROsmfyM/ILbZncpXruOOueld5bpDGDsckvzhutE482txqVjjLnw7qKxxKkdicOo+YE8AY/PAHNWIfDuoQOjxraBk+6SzHHXj9TXUXrKI0JHRx3qfCnnFT7Pzf3le0duhz32DWgOtn+ZqBdI1ZblpR9mLsO8jY/AV05QnGxsfhmuN+IeqajoWhQXNhdmOZ7pYydit8pVjjnPcCjkfd/eLm8jSWw1sZwtofq5pj6Xq0zBnt7NiBjO6uV0nVPFNp48sdF1bU4543VnbyY12nCNkZ2g5V1Kn3U9R19HlUSfd3I3rjOR+dP2bXV/eHMuxz0mi6pJG6m2tMMpBKvgj8apWmk6ulzNE6RB15T98fmT1+tdWABIHEgBB5AHX261JN++USRpiROUYn9KfK+7FddjAXTNWHW2gY92aU5NSDTtYBJW0gB9RNXQRXKzRhlO09GU9j6U45ZSPXuKlwl3HzLscmnh6+jkWRNMtg6gYYOuf5VeFvreQPsURH/AF1HP6VqhJlJ+Qkg/eB4q1FLKTtkjOB0bPWlyS7/ANfcHMuyOcuNP1W4AElhH1zxKKil0m/ktjbvpUbQsQSgk44rrCx7A4pSQR3/ADo5Jd/6+4XMuxyK2WoRqijSwBGAEAbpjpVVtIvnLFrBjnJI3etdsZVUgYJJ7CkMjgcYHpmpnR5/ibKjPl2R5xfeF9SvLsTSR/KCcIUB4P8AOptL0O9026km+y7wybMKAvce/tXoBdz3T8BTMuOu0/QVoozSspMn3b3sco4kHMmn3A915rn7hr+C4nMdmjRvLvHmKQwHp9a9JbOOV4qvJtbO5T+VJwn3/AuNRR6Hll7cS3EIVLCVOc5G0jHtjnvTHbTJRteKWFgoxvyoz6DA/wD116PcWcDKWMKt6gAZrLk02xuFYIgzjoOD+VZtVI62TNVVi1Y3FEiH96B+K1X1TWdO0W1W61C48iJnEanYzfMQTjCgnoDWiWIH3ty+jD+tcz4ps4r6KwjngjmT7Q8iQbT++kS3meOM9zuZVXA65rrOMfD428NXl3DbW2qFp5XWONRBINzE4AyVwOTXS7TkfN09q8N0+5uL3WPDd3Pp1tAzaiEW4ghSETAPGduxAB8pJ+bHO7H8Ne6/MewFIbI3t45B86CT6imrawxHIjGQeCxyRUwBHXn6U4Hg7VHNAhm3zMjG0dznk00yojlAACO78flUhH95wpPYt1pGjQcMAf6UmMrC7LDhQCe/QUCaRnIWRSB947R+QFOY2StlmjP0Gf5UxWsHfaix7vcYpWfcBFuHL4/dNn2xgVZgYSbh5YGON3Y/SiNY1+4q4HQgU+WYRxs5HA9e9NICO4JVfKiYCRu/oPWiOPyogq44FJBE5Bkl++5zz2HpTgVd9qHdjqQelACo8vPmCMem3NOZw33Vz+NNYbQO7H2qNlcLkKzEdhQAkhm2jygEOedxrPmvdRmvZLWxW33Qqpld87QT0GAM9Oc1bZ7hgdoSNO7PWRewr5zXFvqLrcPgOUQFSB6j19/Ss6ik17p24OVFTftbbaXu1e63S12v87GjZX1xexOyARujtG8ZbdtYHpnGD/8AXq3uuzGd0ieZnj2FZNnK9pbeXbpkZLF3+Z3JPUnjNK2oXoGQGU/7o/wqoKXKubcxxEqTqydFe7fT+v8APXuaconKjzGiI7krU+2U4CFV9WPP5VhNd3ki481yD1BFSjUbtDzI/ToRmqszHmubRScpwyBv73Y1xfj66Sxs9LudQXzYLfUY5WiQAl9qOQOccEjB9jXQR6jdkEnLL/u1Feta6jGsOoWcc0YbcokjDru5GcMMZ5NFgueceGPEZ1fxRoMt6qG/tnulZ0gSONomQsowgHzb2lJ453DmvXo7iOZFfYwz7Vh2WlaVb3KzWdlp6TL90i3SN1yMHBA9DWvvdSPMhZfcc/yoYXHyJG/dlxTE3iTZg+X/AHtwNS9euSO3tTuEXcwH1NIdytKDC3nJ8y/8tFHp61MqxsVkHcZGDTh5bPgOAfTFRxp9nm2H/VufkJ/hPpTEOkjiBXdKyD0ZuGFNEKoFBvGUHlST2qy8CygK+R7ComsYmXaS/HQA0ANMaoRm7wG6HPWpIUVJMC73HoUY96jNhGNqmR8DplulEtnAwIeVj7GSgCx5e1y+DyMEZp6qpPHNRxIIxgSs2eAHfNSYXkkZP60AI0ag8E57imMHyNo4z61NuPbafrShh/dI9cc0AVj5pk2iPj+9n+lGw5K7eanJXBwfw9apO0sjFSHJ7qOAKLBcWSFP4iv51SuLaCRTuQkj2zV0WhON2APQU820SoSIxnBwTTC5SW9RiFzuPoBz9evFc740spfEOmW1ppt3FHcw3Kz+Y7FQNqsOCoJzkiup8uNc4RRnrjvWZcTpHctbWmnC5mVQzgMqqoOeCT39vSlKSirs0o0Z1pcsPxaS+bdkjz+28H+JJfEVhqGoatBfyW08blpLiSV9qsGwCy/XjNeroJCgMu0P7dKrafc29xbiSCMRfMVZGADqQcEEdjVktzjj6GhSUldEVIShNwmrNC49Tj15qBpi+Nu5Yh/EDhnPtUN1Mu4J5qgg5K57e9RGcSuflO8jCOOiimQK0YkyzHITk4GSPqTTowoDFWJLfdQtyR7mmjyxtTJBXnIbgn3p26Jj8zDC9Bk80DCNJgxA2JkZCqOP5UkrSrERISxPcDgc+uKsLuIPkR4J75OB+dSrbO5/fyF/9noBSALJ1khjwSy46kUuz7Tchif3Mf3R6tSznaFt4xhm4OP4RUoKW0IGQFXjpnmgQ27lEEWTnc3AwOaS0jRIFYE/PySRUUQ+0T75XV9uONuMVc69TmmBEVLNjdx7CmSyJBG0j8gdvWpjkdB+tUdSUta8DgNlselIDMuruWc5fheyg8AVWZ1A6cHpjmn4XCgdPpTo4S11EHOV3A4qgC52+c452qQvXHQYpw066dM+YqDsCarlsS+Zu+bduwRmrH2qGRQJEbJPzEMelRJy+yUkupLHbphAyRh0JD5Iw3vUclk7KEgEe9mLF/QfWpmtrV4GeJlO3DEE80qx28UCFyVyAeOprFSe5VisbC9gXzC4KjqVJ/rWZKsUt3PDqE21FjV4VMm1W55PXr1Fawv9q/IH3jvu4/KoI4oJ5088Iy56SKGH61coSnGzOnB4lYeblrqrXTs1qndfdb0bK2lylrcs5LoHYI7cllz1P61t2momP5HkLJ0GRyv41nSoysUznacY+lC7gOI9q+1XCPLFIxxFVVqsqiVrvb+v+B6HTjDYO0MDyDTtnPbnrmqljuFpEH4O317VaHP8WfQUzIryxeW2S52jtuPT1qZo0mjMbZz6nv6GiYAjgAnH5imxuy4QBTt+7k8svpQA63lEhaB/9an/AI8PWm3PyhY1J3Oe3WlniMmyWIESJypHcelPUx3cAYrtbPIBwVNAFE2vlHc7OGI4wO/vUe+M8OpJ9auSRtA2RudW4PGSPeodzumYUUr6r1HsaAK5gXe/lyFgeoGCceoq3byuqKm9ZCRwG6n8fX60xIpF3CWI4UZVum0/WkWUPGxRRLI33mHb3xQBejeOVcgfUHsafgAen0NZ6zEKJG3LIOjBCN31qz5kskQdEAJGfXFICYkc/NwPWo8o+cOh+lVJIriRcuGPqB2pkZdNp3hFHUMBk0wLJaJHKndnrgjimtPGEIKvyOuP/r0rFJBiVcY6E0jW8WxgFyACcUxMhWQYIxkg4yazJ7a/jvJbqxaBGmVVkR8nJGcNn1xxjpV+P5FIPU8mngqTyazqR5jehXlRk3G2ujT1TW+vzSZnWcUlhA6s29mdpJHK43se/t2q8t0pA3qVJ9BkVIVDLjIPseaha2VuAWTIxxUq0Va1iatSdWbnPVsnjaN+QO/X1p5hjbOVB/Cs5kMDYLjPbFKJXVlLyEkD7qnJP4Vpd7mdi79ltwM7FH4U9UiTgKoJ9BUMcrMuWRl9mNTg5A3DApc6DlJFKqPQUTXCxR72+gHvTQVHTAA71VVjd3JdhiOPheepqkIswJszJJy79T6e1MuBLI2AAVHK4bBB96l3KKbkk8mlcdhYV8uIKSCe5B6mnhxntmmEAZ6Uoxii4WIpkbJZWw3Yjiqyzsh2zKQDxnORVzbk+lNdAy7SufrRcLGbPYnPmW7hh/c/wNUsywzbj1GeG/KtqO2WIkAFQeeDTnhRxhkVvqKfMKxhcDBaBcexIpkjA42wqPX5jWtJpkDcruQ+xqu2lMc7ZyfqtPmQWKKuF/5Ygn13E0pkUkMYwfcsTU02mTxozlk2jsB1p0GnTSRh1kQA+oNGgWIDIp5CD6ZNKJE2gGHPH94irq6QQfmn/JakGmQIpYhpT/dJwKLodih5pnlLAMWJ+6vNXrazZSJLs7VHRe/403cVIjij2Z/gQYz9TU8ds8gBnc4HRPSk5D5S/HPG/CMOKk/z1quIo0YMqYbGMipFx35qbgSbsDqBUTRMzAgjg5HFOwOozS9TTuBIh2k8BV6gA1C4EM3nr9wj94B/OngHrSkAggjg0xEwIdQVIKnkH1FRPawPIHKfN6jjNVo3NrN5L8xt91vSrZbHWgZCbNd2RI4Ufw7uKelvFFjag9jTt2fWkJ2jJIx6mgQ8njk4+lIOOO1V3uljGcEj1xgVA99ngbiD3AKj86m6GaGDj1+tMdFkGDjPtWat3Kj56DsoH3vxq5FeRyDox/DkU7iFNuezgDvxTCgy2CcKCM+tWA6sOCP61Aw2mTPRhkZ9cdKdwMj7cxz5UBb3PNOh1AH/AFij6r2qBLnejDCpk9Wywz/SnmPeod2DrjqoAwfY8CnYRpxMrjKOrfSndOvNYkazKWeEiTHUockVbg1MnAmTcP7w6ilYLl50DDBAx9KhW1SJi0agE1YidJV3ROG9u9LgE9alxuO5B85BG/n/AHadFC/3pCT6AnOKl2gnt+VR3d0tpAW/iPCj3qVT7jciG5kaSRbWHhj94jsKvRwrHEEUYAqrYx+VEZ5id7jLE9hT/wC0oGI2pIR6itLW0RKEuLoQybBA7t9DinNMUtvMZShI4U84oOoQDIO4Gl+1wMoYnKnvxU2ZWhnpeuWxuGPUrzUkV07MRkEDoSuKuCe1PJKj8uamBt9u44C/3ivFJpjujOku5EcD5Tn1FMN83oOe+K1hHBJyAD77aQ20X91fyprRag2r6GSl/IOAV9TxSjUZiQDs56cVpG1iPWNT+FJ9khB4jWmF0UFvpMHcq+gqVbyQ4ChfrVw2kWMeWtAtYR/AKnoCsQTZezYk9VzxTbNf9HHPc9KnuV22rhV7cVFYjNueeh9KaDoT7QaQLyCOlSbBk9x60oHfFAhhQbunNQ3L3MIQ26By33gRmrXtzTZ5BBbvKf4Rx9aAMltTuFJDCIEcEFc4obVLhUX5UBIznZ1FUTtZslsknmtG6nsJbRUXzA8YwrYpgNbU7oIhBjJbP8FW7G5muQ5lK/LgYUYrHhl+fyuPnOM+h9aILt7WUSK3Thh1z7UAdIzBELFSQBnAHNQw3sM8mwBlb0NToAwDDIyOM08Rgc9D64pAQzQrLGVP4H0NMtpd+YnP71OvvVggDoapXcL8Tx8Onp1Iql2AndmBx93+tUppJAD8hU+pOcj+lXIJ0uoQ6/Rh6GkeDIIGMHsaloDPVI51bcSH9STxTY18xfLYbwvQ8gGriWnzD5DuAxuapRbf3zn+Qpa9BmekJ27XHmD0Hb8atRQ7FwAFHoKs7ccAYHtQBg8daaXcQ0AKPkwKSTBjYNk8UOyKcnGagM0b7l3YIBp3QJXMybThIS8R2N6Y4NUWMttIA6FfTcMitWG3u3hDCOYjGS3amum5SkhJB6gmrM7leO9heMeYSGHXzMlW+mOlSvGJgqvGI3b7hdgCPYAdarS6PIcPBLFg87HkxjFQRz3cB8pN49sZA+lFhKSLJt7mACZWPl5+9jaR+BqxBrDLhZ08z/aHBFQQaffX7nddRQ98zyGplsYoZSryrMw6sDwTQPmRpx3UEsTPHICi8t7VRhY390Zm/wBUhwoqpd3DzOLOAgKD82BgVft3aCJY1C7QPTrRsHMW54WuI9m9kGcnHeojphYECUhT/CFGBSSX0sURdURiMcY96tLdtsztVj6c1I7oqf2cUkBjfZxj5RjNRtp7nCq2FHOOeT61cN4cZ8tR+dJ9rPeNfzNAXIBZSiQujhCy7SMZ/n0qRdPkGzYAoXsTkH35FSpd9D5Y/wC+v/rVPDqUbSPD5LB1AP3+Dn8KB3QWtt9njKndnOTk5qUsvrimm7VNxZMYHdv/AK1Y0+sEXm1ZB5OepHGKht30BW6mxuU/xCmll9RWG+tkyO0YzCvQYB+mTTG1hwEZZVdm/wCWap90e9K8/IfunQBh6incbdx6Vzp1ppZD5bpDGoz8y5JqqmpSB3uRgnPRj0J9qa53uF4nSXZ/0aQKcnacAVBpbHyWBzu3d6xk1t23bnLbQSymP+opDqztbsGlVd3GwL29c0ve7FXjY6g4HBIH4UoKjkMK5eHU2gWOKNsmQ5O4Zzmrk+pyJeLBFwpwDlRmhuSdrC903QV/vCmTwQ3EflyYYZzgHvVY3cSKWZZNoGTwP8aa+pQJGGAfLDK5A5/Wsvay6IpRTIf7GOSBPGMngeXViHR7dU/fIsj54O3FR2uoRkbHD+YvIzjkfnV/7bCOcOPy/wAa0hJy3CSUdCv/AGXZqci3APrk0xdLso2DJbKCDmrBvY+yP+lRtqKCZYhExYgkZYDFWRdFpVx2p6rnJAqst6vH7sk9xu/+tU63uF/1fP8Avf8A1qYXQPkdqjyaZJfHODFj6tVa41B4oi6QoxGOOTQF0RSg6fdeegPkyHDqOxrUUblDodykZB9apPcedEUeNNrDBHNVLTUJLGY2soXaT8rGnuhXRsFfWmEEDnj3phuXYZ/d/l0qnJNJKGZGGR1Uik7jTTLEk6JnnP8AKqct2zZER59qqh5ZVDTYD88YpA05yqMiAcAY5NRqy9EPLSscyPsSoiuR8kRzzh5BgfnQr4IKy7mP8MgyD7H0qZp/3ZPzA7duGOdvsR3HvVcmmoufsRpIxiXLEjHQmgN/nNZA10xoA9iwxkZL/wD1qbL4mjgcJ/Z0jg8blfgH/JFXzIx5TaLFRgD5j0p6scAnk+tc/wD8JHGXAktHDMf71SL4rtdxjNjcfKPvA8GndC5WbMjFWABGWHBPb3qvdzG1hwmN5GBn+dZf/CSWjz5e3mBwSckcVAmvWVzeb5IZ9qH7oTOaLoVmbVlbmNN0h/eN19hV3HfBx61kDxFpYDOWuAB1/d1RbXLJr1ZUuJlgYg4YH8eKL3Y7M6U8g1ejB2EsGUAdV5z9awTr+kpCZPtRK9OUPJq3aeIbCWF3utWW2VfuxohIb68fypaBZlvqOOaaeDWY2pWjOWTXY1ySQpXHH0NR2uqpLIxn1C3WEdCzgZNAWNeMnjrV6FSwO0bjjnHWubXVPNuWit7u2SMdHYg5FX/tjJHu+22UrDoPMC59e9KwWLlypEPGPmOOTULWCW4O1E5/GqqX8V2/+shjZexlGOfTmtK4cbVBntzgfwSLx+tJxuNMpmE7SAi4PUAVGIQnAjQZ9OKtZBHDp/32KjaNuoK/gwpezQ7+RXFumeIo8/QUG2UrgwoR9Kn2MvVhj1JFOaRPLBTc4/2Rn9aXs13BPyKZhSJGPlqq45xUVsltPzFCpI9UFTTvIYX/AHEnKnkkVT0nzFZtsTvkDoRQo26lrYtSaeWl3hmQ4wACMCo10s795mkLepbmr8jsp+aKVR6gZ/lQjB/usM+h4P5VVrbMgIoWWLYTkYIyxyTTktwhztGcdTyasRbkydoIwetKFOcsAfbNR7JXHzMikjZgCYxx3NTgFYwOGPUnFNfcxBDqB7sBj2qlJeSkAIsSr0LM3H501BRDWRPETsC85Xj8O1L1fPGQOtUUugJgJJLcA8ZEqj+tMh1KNrjZNc2yrj7wcVYuVmmTkjHWrEKsQcjpyOaxbnU7ePHlXttgdWLjH51LBrViYWD6laowH/PSi6HysvStudeO9Rt0xnvWVJq8Acf8Te3z2wKi/ty1VW87UVUEfI4GcH8KLofKbqgk4zzRe2fmQDnD9VP9KwIPEun+UfMvS277jBD/AIVNB4n02Fcz3Ujb+A3lnr+PQe9Fw5GatlO0kXlyECROx6mm7zncOo/l6Vj3XiDTTIJrdpg+eT5fB/Go28VaeuI3guXcjqq8A07onlZuALJAuV6j8Qaryo0Q3ryRzzWUPEtjCVPlXBVsZAx/nNPk8T2W3H2a5Bbgbtoz+tS7MpXWhcDqX3xrscHJIPPNPKO4JYHocE9axP8AhJbQT4jtLksBkMMYqwPE9nKrAW84IBzlhxS9WP0KQltVxnxIgBHCho+KjlnsmjbZrbOQDyGj/oKwlUA8LinTYMLfSpdKD3Qcz7mx5tqfma+Zh3+deP0qGPU7d5dqW8ewA4MknzHnrgCseNskHHaqsxMN0JkXhFyR6jPP880OlEOZ9zoba9SW9laeC1hjAxuLFiw9hUov7dhI8UCgD7g29fUmsFZA90I1Ocpx+J/+tV8NhGUDohxUzgpWSHFtals3KD/l1tz3ztP+NQQ3kSK6m2iKk9PmGB+dQiUlOnaqrDrg85qvYxDmLst8N2IYkjQjkZ3c/jUkd0kkbLcW/mHOVIfGOMenvWchO457VY3gIBT9mrWFzalm3nszAFa2d+vzLIPX6UrHT2UKYLjHOPnXvWXYsfLI6ASMAPQZpbiW6RV+zRROT97zMjH5VPsrvdj5/I0S+nGIrFbyxsMhSNvGDT0WweOMSrKWXOMqDyevesuylmeA/aFCyBjnA4q0GyhPej2T6N/18g5l2Jxa6fPMojMgYt8vyD/Glays7eWZ0d/N6ZxxxUemyQLJ5k8yRrGuQG/iPtTfMByQQQTkGoUZOduZ2/ryHzK235k/k2vLC5dSwwfkPGaZHZabFvP2h9zNno3FQsOnzdqp/b7TdIpuow0ZwwY4wav2cv5n/XyBSXY2ktrd23Q3LBu4wxqdbBXnEzzMSM4A3Cs/RmjvpnC3BVAm5WTvzjvW8lkmOL6YfTH+FDpy/m/IFJdiuLVVYMJmCjHBBNMWyTzzK88vIxgZAzVwWSkEfb7j9P8ACk/s9c5/tCf9P8Kapvqwcl0RALbbIGE52joCpNRpp6CVpJJnZmHT5se9XfsK4/4/7j9P8KPsS/8AP/P+n+FL2c/5vyDmXYovbbWO2XpnAKn0qOHToV3nezbjyDnAq41nH5pH2249Qcj/AApfscRH/H5cf99f/Wo9nL+b8g5l2Kn2FVDDfw3B+U9KhTTI42ESucMSWBzgmtD7FB/z93P/AH3/APWqlqKR2axzxzSsFcBt7Z4P/wBelKlO2kn/AF8gUl2K8thatuRmcdQfkFJHFpkcQQRyADPOwcfjmrMsVuziQ7iHGR81Z52h3ABwCcfnUwg5RTcmDlZ7f195I4sTIEeKZ42H3cge9Sl9OChVs5RjphwP6VjXc10t1CLZUPBLbhx2qxFJK0YM6qsg4OzpV+yv1Yc3kaBubBDtNoxLDADS8kD8KYslqu4m135JxmU8fpWazf8AEwi46RMfocirPmZj/Gj2K7/iHMXRewCPy1sY1UDGC5prXURTaLOEEjg/Nx+tVAwOOKaGGD9KPYx/q4czNFLpAkaPbQkDj7pz/Om3N08MwECQ7JPusVxn1BNV1k3SpxUqyCWN7eQYUnKk/wAJqJ0lF8yGpX0EkkvGwZIodoIwTgAUPdXkQBZLcKzYBwpGfrVT7TMlwYHwUVQSrDI71HBqLzTswhRVVgUPPI5560/Z82rDmS2L5ub5AMi2UN90naM49PWpLeTU5IW2RwHdnnYp9e9Z7XJ3k+TFnOT8v6/X3qaG8cwf6qMlh83H3vr61Loq2g1NX3M5dRRTzJb/AIyH/CmvqBZSBLaZI/vt/wDE1hQQ3UsSSLA7A/xDFO8qSKRBLGU3E4zXSZWNRLqQKD5lt0/vH/CmFriWYBHhZz8oUPyc9ulUhbDOAx4HrVqymexnEyosjYIXfzt9xQ7paBobkEIsbdIOGcDMjep9PoKfGWbecHpWNJqN4zq28KOcrjIb605NXnXKsYQfyxUwg4rXccndl0TMEHFCtubtWR9ruwCRcDH+6tKl7eDGHRiB/dFWSbRAxnpUe7nH86y/7TvmGAsWR1+Sk/tK735eKI+wUigDQtGw0/PIlOf6fpVjisldQmVmIiRdzZPBpw1SbvGn1FIDSjI+fj+I1IrYjrJGqlCd1vncc5DYpf7WU4xbt/31QFzesm2aZM399gv1/wA81VkYK59KgGsWg0+CBVl3Aln44z/k1Ul1JGlO2JyPXOKzpp6t9ypdEaRkBA9cdq4e8bde3J9ZG/nXSHU0wNsUmc+orK/0d1JltNzlid2cZya1EmXfDWv22jLMbqKaUPhUEZHy9+9dAfHVjHyLCQIxOCXHNcPLEWZhFb4U8qM9KSRI/JRXZlYe2aBnbf8ACf2Qz/oT+v36T/hYFp2sD/33XBhIT1d/++aXbB/ff/viiwWO5PxBt+1h/wCP00/EGPPGnr/32a4nbb9N8n/fI/xpMQf35fyFFgO0Pjv5tzafH07Me9CePUEuJtPXyxwRG2G/DNcz5KNs/cMQyg534yAPpUUlmZFDxKy55+ZgaA0OwPj2xB406f8AGUf4VVvfGdpe2ssA06Rd6lQ3m9D2PSuXFlMo5CH8aX7JMQOEHfNAaHbpfMdCS4Ch2hxkdODVeOfzIg5GN4zj0qnpuorBBJb3MRaN49mE69O/61El6yRKgi5UYBz1rKEXFtdBtppM0FINwDjov9RUhbOc5rK+3zA5REGRj5gTR/aN2fuon/fFak3LuQdQfaekQB/M4qUP8v1rLF5c7nbYhYgAnb6U77dchQMRg4/u0CNJX5GaR5MDrWab26Ucsg98Co3vLknmYDHI6UgNyGQtIOOgp7SYkbK1hQ3tzGxYTozEYIYg1L/aszHLXEAP4UWGas8BvAQCRIq/MB/GmRx+lVYnYzSkIQAQBx6AVAupXIZXSRc9QQopkl7dO7SFyCx5wOKiMXF26DbTRdbdgnDdPSpo8iEDaenXFY7XVwcgyN+VasIna0ikdidyljhv6A1Yluc5pen/AG3zwHkUow4U4GD+FayeFppNpMkqKp3DMZYk/l0rAiupbeMyW80io7bWI4Ykf05pW1W/bGbq4bH/AE0NMbRpTSRwNtkdVJ7Y5qP7Xb8/vk4HHBxWb57XBPmySF8YBxu/OozIVPAYMOuTQKxa+3XGAS8fPqOlRO5dmdhGST2P9KhV8ZxkD2ODSiTjdl//AK9A7IkD9cLGcjpuIpSQQPlU5/2qiEhBJ5znoKXzATw3JHQqKAsTHLFcoOR1D9cfjQGKllCNkjGA/wCtRK43ZLLye68VICpOxWgY567MZ/E0wsP3ylek2BnABpxmdixj8/IAzg5/QVWjfnOxeCRhulPLNuBAUY7A0gJhKwVwzSk+vYGmm4c/8tH4HQ1DvIJyOemN1PDHoE6+khH9aAsiY3PIwzjjn5R1oW6xnexIIOMAZzVfew+9llJ7tQJB/dY/8CHH6UBYnFyw5Eqk4xgp0oacHGHCtj5spnmq5kD4BGfTtTvMGD8rZ+o/woCyLEEryzhNysCCfu4qG9ESkhxL949COtOsSTeqMEk5A7c1NqESKnmOisTIVwr+3XNAupmAW2MsJifZh/hS5tuwn/77H+FP2xY/492b/gZoKRDn7K34uaZQz/RuuyX/AL7H+FLm3xnyJT9ZP/rVIhhz/wAey592NPUoZAv2cHPHJNAjRQAJFtX5RETjcfaqxvFeMIipCV4yMkn2rQVY5cCJo96oV2E8EcdPesq6aRGIltvKkXo2Dkj696QtyU3DbUCv82Du+WljmbcMyM2f4QtVVkZj8xc8d2NKX/2R+ZoGWPMlBX55CemQpoaUugHmS8Ak4A5/Wq4yuQUB+poJxklVH60BYnWV1bcTKdvH3sCm7nbhRI2PVxk1Cp+8cKBnALUrBtmf3Q57YyaAsSOxAUFMADp5maYOuAq5x1L1FHIcnlRzjkZ4qR9u3InRiT90Ien5UAISoIG1Af8Aez+tBZcAkRZxjuaiDELkt36gU8scY3uc/wCzx/OgBS4LbMLtxzxSlu5K/wDfNNRiFCKXJ/LNEuMlVeR+OT0H9aAJ47268lQjhQOFAXsKs2127M32mYBAM8r3rL3Aj7hwPVqcwj2fMXLE8Kv9aYWNkXVpuwXOe3ympI9N+3K0lvcMyr18vPHfnIrALjP3R+dSQzyRl1jmkhDLhyrdR6UrBY//2Q==", "path": "images/5pts_ADE_train_00001585.jpg" }
depth_point_1
images/4pts_ADE_train_00000170.jpg
ADE_train_00000170.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 244 y = 114),Point B is located at (x = 32 y = 167),Point C is located at (x = 55 y = 124),Point D is located at (x = 125 y = 133).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_119><DEPTH_39><DEPTH_41><DEPTH_25><DEPTH_76><DEPTH_25><DEPTH_78><DEPTH_2><DEPTH_33><DEPTH_23><DEPTH_27><DEPTH_0><DEPTH_2><DEPTH_44><DEPTH_36><DEPTH_63><DEPTH_61><DEPTH_63><DEPTH_14><DEPTH_47><DEPTH_18><DEPTH_66><DEPTH_64><DEPTH_64><DEPTH_74><DEPTH_33><DEPTH_85><DEPTH_42><DEPTH_54><DEPTH_34><DEPTH_18><DEPTH_66><DEPTH_64><DEPTH_44><DEPTH_29><DEPTH_41><DEPTH_53><DEPTH_32><DEPTH_41><DEPTH_52><DEPTH_18><DEPTH_66><DEPTH_36><DEPTH_64><DEPTH_74><DEPTH_78><DEPTH_11><DEPTH_1><DEPTH_54><DEPTH_34><DEPTH_18><DEPTH_66><DEPTH_76><DEPTH_64><DEPTH_38><DEPTH_14><DEPTH_9><DEPTH_1><DEPTH_57><DEPTH_18><DEPTH_18><DEPTH_66><DEPTH_76><DEPTH_64><DEPTH_15><DEPTH_32><DEPTH_19><DEPTH_1><DEPTH_16><DEPTH_98><DEPTH_18><DEPTH_50><DEPTH_76><DEPTH_74><DEPTH_85><DEPTH_1><DEPTH_25><DEPTH_1><DEPTH_1><DEPTH_42><DEPTH_4><DEPTH_78><DEPTH_40><DEPTH_38><DEPTH_11><DEPTH_82><DEPTH_94><DEPTH_9><DEPTH_1><DEPTH_94><DEPTH_68><DEPTH_82><DEPTH_11><DEPTH_3><DEPTH_15><DEPTH_27><DEPTH_82><DEPTH_36><DEPTH_19><DEPTH_55><DEPTH_END><DEPTH_END>. Since point B has a higher pixel value on the depth map, the answer is that point B is closer to the camera.
B
long
4
[ "D", "C", "A", "B" ]
<DEPTH_START><DEPTH_119><DEPTH_39><DEPTH_41><DEPTH_25><DEPTH_76><DEPTH_25><DEPTH_78><DEPTH_2><DEPTH_33><DEPTH_23><DEPTH_27><DEPTH_0><DEPTH_2><DEPTH_44><DEPTH_36><DEPTH_63><DEPTH_61><DEPTH_63><DEPTH_14><DEPTH_47><DEPTH_18><DEPTH_66><DEPTH_64><DEPTH_64><DEPTH_74><DEPTH_33><DEPTH_85><DEPTH_42><DEPTH_54><DEPTH_34><DEPTH_18><DEPTH_66><DEPTH_64><DEPTH_44><DEPTH_29><DEPTH_41><DEPTH_53><DEPTH_32><DEPTH_41><DEPTH_52><DEPTH_18><DEPTH_66><DEPTH_36><DEPTH_64><DEPTH_74><DEPTH_78><DEPTH_11><DEPTH_1><DEPTH_54><DEPTH_34><DEPTH_18><DEPTH_66><DEPTH_76><DEPTH_64><DEPTH_38><DEPTH_14><DEPTH_9><DEPTH_1><DEPTH_57><DEPTH_18><DEPTH_18><DEPTH_66><DEPTH_76><DEPTH_64><DEPTH_15><DEPTH_32><DEPTH_19><DEPTH_1><DEPTH_16><DEPTH_98><DEPTH_18><DEPTH_50><DEPTH_76><DEPTH_74><DEPTH_85><DEPTH_1><DEPTH_25><DEPTH_1><DEPTH_1><DEPTH_42><DEPTH_4><DEPTH_78><DEPTH_40><DEPTH_38><DEPTH_11><DEPTH_82><DEPTH_94><DEPTH_9><DEPTH_1><DEPTH_94><DEPTH_68><DEPTH_82><DEPTH_11><DEPTH_3><DEPTH_15><DEPTH_27><DEPTH_82><DEPTH_36><DEPTH_19><DEPTH_55><DEPTH_END>
244
114
32
167
55
124
125
133
null
null
141
172
107
84
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDibW8WcccN3FWxgj2rnmieIh0b6EVfs9SDERzfK/r60gNPGaVRikU5GRUnFIApwptOFABS0oooGKtOpoFOpAFGPainUDIiKr3Q/cN+dWytVrsHyGoAyjtJG4YOOoqNwCwAPv0qWQc/hTCuD+FSMiCEg4ppJwBzUwHy03JwAcH8KEIjbO3qR+NKGbAG4jj1pec8gflThksRxx7UxCO7hThj+dL5sobG84pSP9kGlIUMTtGRTABNL/fNK08mSN36UZzxtFB25OV70AKJ5Mj5u/pQbiTPUflTeNwAUY+tNO3GdmfbNICT7Q+eQKT7UeOB+dMDDcBsIH1pojVhkbh+NMLEn2vJ+5+tKbodwfzqPavTJ6UwxgAHefyouInF0rdAaQ3Df3R+NRKgyee3pTwFBAwT9adwBpGLEZ/KgAk5GelLu5PyjOabySTk9D3pXAAjZ5wPqaUopB+b8qcoAUYpduVOOtICLYq+p9ycU7J2n5QPSnqmBSuvyGgBACB1oC8Mfalx8vtTgOSPagCNhlV5pu3OamYcD2pmOuOlMDPQSW/+p/eR94mPI/3T/SgtDcJvhPThlPBBqYrzxyKqTorS7+VkHAkXr+PrTTAuWWptCQkhLJ69xW7FKsoVkIIPeuThBI5wT6gda6LTeLaMfWgDQIpw6UlKKAFoooHWgBw6U4UlKKADFLRRQMKrXuRbnFWagu/9QaQXMn7wHqaay8ipsLkZBHFMYZbAI49akoiI4FNIyBUojYjp0NRO23APWhCEAOaUD52+tJkt3pwHK9M0wAdzT2XqR1o2kDkUFgGI75oARVO4ZoZTk59aMscGpCAWI96AIiMOPwpPLUHHXFSsMFceopCAWJ96BDdvFMUYQVMB29aYBjIoAaFz9cU0jHGKkAxz6CkbFADFAwxoHX8aAeDxxSgZP40CAjn8aQg7uPSpQAWPsaTblxgZwD0oAaB8v0qRR1+lKiEg5yOe9OKYB+Yc0ARhT60pGVPtS5VTySfYClDIwJwR0oAYAduKXpu47VIpVBhc596ZvYg5I/KgBN25flHejacfdp25sDB4zTWYsCOtAFLrVaYfO1Wc8VXk5JNNCZHAP3YroNPH+jx/jWDbj92v0rf0/wD1Ef40xl2njpTetOHpmgBaO9FL+FFwHZp1NpaAFooooAWq95nyDVmq17kQHHrSAzXHP4Cozw+PapDlgPXFMYYdTUlDG6delGWAAJzSuAetN6oKYMMtnrmn55PA46GowMEHNSHkHFAhQz55IpTgMcqp/CkGQw5pW6n60XGJn5wAAPbFOVicnA6+lNY8gilU8GlcB3BcfKPrTVIYAlRSq3T3pqH5OKdxD+CcbRTBtUZC9exNOU9PekPHSgBCQc/L29ahYKOgbr61MoyGB9KbtA5oBjF2t/eFO3DcAoGPehhwT7UAcrxQIcGOeg60mT8xyfzp2MH8aRgdxx6UAOXAWgj5ePXmj+GnD+L6UANC+tKwwpNHNL1U0XGMHBpqgEkH0z+tP25OaRciRv8AdouFhOwxTc9R3qQgBRxSbcDkj8aLjKZgz/EaqSd6uG4jHXP5VTk70RJYlv8A6pfpW/YD9xH+NYNv/ql+ldBYD/R4/wAasC30pvmpuII6U/FVWT94x96TAshlPtTh7GqoBFODMO9IC0Cadk5qqJGFO85hQBZ3UZqt9px1Wj7VGBlgaALeRUF2f3Jpq3cDHAfB9KdM263fByNpoAzwEOOoIFMYBmxu6e1L1UfSkIw/4UmUQSo+AWGR7Go8kKAFJ/Cp5AShHbHSq2SEAA/KkDHKruCQG9xUqrIBjYaWx4V8nv3q4MGpbGiqI2Pr+VSFck8H8qsinDHc0rjsUnQnGAevpSbSCeD+VXty9c0b0xnPHrTuxaFAKcjIP5UgBBPBrR3Kf4h+dOC56Yo1DQzBkY4PT0ppc9gfyrZEBPVkH1NPFpGesyj6Lmq1FoYSu27kYpePpW49rAq8OWPuMVTkity2WK5/3qaTC6M8nIIpwGMfUVc/0YdNp+gJpC8eRtVsegXFOxJAAS2QDS4+fJ44qQMrDIhJH+0RR8xIxGg/H/61AEWOMbhSAYB5Jz/s1ZEMh/jQfRc/1py2kjHhnP8AupS0HqUxx2Y/hRlsEBevvWrDot3Ofkt53+vA/pVtPDOoE/8AHrGP9+Zf6tRoOzOfyw9qYd2TyOa6pfCt/wBxaJ9XB/lmph4WvAPmvbZB7Fv/AImi6CzOOKuRnDYHtVcvnBA+9zXb3fhpoNPuZZNSjbZEzbVQnOB71w4HCf7tUtSWrCtGpFU5P4hWgelZ8vVvxqYgxbf/AFY+ldDp4/0aM/Wueg/1a/Sul04f6HGfrVoCxjNV2wGOfWrhXimpZCeRfmxlgPzNKQEAGByrAe4o+U9xXov/AArHVRHE1vqNufMXIB3r2z2zVWX4eeJkB2rbTj2kU/8AoQo5WM4TaPWkKA11s3gzxFF9/RBIPWNVP/oJrOn0DUYc+dot3H7iNx/jRysDn2TFROnyGtOez2dY5Yz6P/8AqFU5Yii84/ClYClFGBOPpWm4xbMP9mqcS/vx9Kvyj9w3+6aBMzVX5Bj0pGX94v41MEGOD2phGZMZAxSHcZtyCMVUPHvyavYAGNwJ+tVWRs9KXUbK6qzyEAkd8CrCwMP4j+dESkSnI7VaxikxrY0dEWMX1usiK4MighhnuKqThFkkKLk7j1PvVzQv+Q5p47faI/8A0IVSuOZZj/tHH504IUiPeQPuqKkT5rdt2OuOBUOwMB6A4qdABbOB2qiSvplobq9OHCLuCk4z1rrY9Bs0HzTyOfqB/Ss3wNAs2t2iugZHvI1KkdRkV9DNoelMedPt/wDv2Kdho8Q/suxTpHu+rmkms7Z1AW3jXHdc5Ne2Hw5ozddOg/75rkvG+k2GnW1s1papCzlwxXvgUWC55LfwJC+FH8Of1rKl3EjngVr6vxODn+H+prIZs9KkQiqSppy9efXFNQndUd20kds7IDu9qYDHlkTawRhFkpu9W9P1qf5sccHAx+dQWQL2qg9ThiKuBcZyD0oAfGxwCSSR6mun05POWFQcEoOR+NcxGpYDHQGuq0YAPbj/AKZ/41LQ0zXttLvZ13QWtxKvqq5FXo/D+rt0024/Hiu78HDHh9D6sT+grfquUdzyweGtZP8AzDj+LVKvhTWm/wCXSNfqwr06inyoVzyfW/Cmr2+gahPKIVSO3dmwecBTXixGFH+7X1N4xbb4L1o/9Ocn/oJr5ZkOIz/u/wBKrlSQmx5HWqEvVvxrRNZ0vVqziEhYf9WPpXTaaP8AQYvxrmof9WK6fTh/oEVaLcC0RxUsP+tj/wCui/zpmfWpIv8AWJ/10X+dNgj3tDh9IAOAQcjkZ/dmtNenDf8Aj2azEPz6Pg8bT0b/AKZ1qDOO/wCQpsAwff8AIGk5Hp+RpBg9h/3zS8DuPzIpAc94sCNo7BwrfMTgv7HsRXg99GqzyhQAMnpXvfilj/ZLYc9Tx5g9D614RqHNxKevJ75pS2BblGBcz/hV6Zf3Tf7pqpbj9/8AhV6cfu3+h/lUrYCiU4qJlO/gVbABjB9RURGJV/GlYCs0eeoFVioDkelX3BFUX/131pFCRf68/SrJ7/Wq0GPOb6VaPf61LGi/on/IbsD/ANPCfzFVJOXf0Jq1o3GsWR9Jl/nVds4ztOfpVR2FIgUfuhj1PWp1GLVyepqII+wfKe56VIwdbNjg9+KZJu/D5Q2uaf8A9fy/zFfRdfPXw3QtrGmk/wDP7n8hX0LVrYArifiKf9Gsh/10/kK7auH+Ix/cWX/bT+QoA8f1Un7T2I2f1rMbbj7g/KtPVeZv+Aisw/eqGBGDxk4/KlLSHBJG36VjNoya34wgtZobuW3jtGmnWzXdKVXccKMHknC9D1pNE02TSdY1vTZs+ZaziFjjGdpcZ/HFO2gG1GMqDk81KA20/MfzqNB8nTFSjoR7VIASWyM9q6fQxg2+P+eX9DXMdzXT6Jw8I9Iv/ZTQB7J4QGPD0P1/oK3aw/CX/Iu230/oK3K0AKKKKAOf8dNt8C60f+nVxXy9MP3L+yH+VfTnxBbb4B1k/wDTvj9RXzHccQSH/YP8qp/ChMlPes6Xq1aJ71ny9WrJDYsP+rWuo04f6DDXMRf6tfpXUaZ/x4w1cdwZbPSpIP8AWL/vr/OmMKktx+9X/fH86pgj074japq2j+BYL7Q5Gj1NTEluwiVzudkTADAg5DEdO9eMal8S/iHp9s86+LrG8SKYQTC2tYSYpCCQDuiGQdrcrkcdemfXfinqEmkeALTUYkVpLSW2uEUjAJSWJgD+VfMuptoQgddLW9klkm3hrlFTyUwfkG1jvySMscfdHHJpMD7bCqG4GD6hCKmU5X73/jx/rVPzCGAOD+DCrcZO3j9G/wAaBIw/FGf7Jb5m6n+JfQ14Tf8AM8pJzye9e7eKMnSW+U9T2U9jXhF9/rpf971zRLYFuVrYfv8A8KvzD9230P8ASqNr/r/wq9N91h7H+lQthldV+QD0qEjM2AeRU38I+lZGpXGprqNraaXDbyzTJNIRO4RQsab2JZmUABQx5PamBoSLtGScAVmyL+8ByCPXNUY9S1ldVtbS/t7VIrhGdJYHEiuAD911ZlPIwcdKvuDu46VLQwhAEzYIPFWD3+tVbdcTN9Ktnv8AWoZS2LmlHGqWp9JQapkF+QxxVvTji/tyegfP6VFxxx2qorQUivjLAN2H9asZxZtj1NQt/rfwqU5+xvn1P8qaJOp+Gvza1pn/AF8t/I179XgnwtGdbsM8/v3I/wC+TXvdX0EFcN8Rj+6sh7Sf0rua4X4jH5LMf7L/ANKBnkGp/wDHycD+EVnEcVpalkTnk9BWe2SeCalgcvr73wnuYLS0aWO6t0jlkWNmICvv2gjjkhSfoKu6FLfXV1dXF9atBIYoIsmNl3iNNmeepIAJ9zWyrBSVZ6kcnB57UlJPRM0qUalNJzi1fa6tf0I1BbIHNSAEFuO1VkBxkysKcNyv/rGORjrSMycYxXTaMR5qf9cf/ZTXNZIB5P510mkcSg/9Mf8A2WqA9m8J/wDIu230rbrE8J/8i7b/AI1t1QBRRRQByvxIbb8PdX94lH/j6181Xgxat/1zNfSHxPbb8PNU9xGP/H1r5wvv+PUj/Y/rVP4UDHsKzZP4vxrSes6T+L8ayQMdD/q1+ldPpp/0OKuYh/1a/Sum03/j0iq1uBfP3afAf3i/7w/nUZPFSQH94P8AeH86pge23lnZ6lb6VaahaW91bSRnfDOodGwgIypGDggH6iqZ8D+FHTdH4X0EAE53WSf/ABNY3iEWt3r2g2OuzCHQ5LF2Ba48tZZgBlXIPQAIRnHJ6npVrwfMvnavbWl202i29ysdnK9yWIIQb0Uk/cX5ccY56msPbe/y2/r0PQlgLYb29+l9tLXtpK+r7q3fXRnUBzsxuTPtIwGauW0m9eu7jsc/zqsGZhlHLAdSJB/hU9sTuYHJ/wCBBq2Wx5tjJ8Uj/iVE7CeT/Ap7GvCb3maQ+9e6+KRnSj+77tz5YPY+9eFXv+sk+tEvhGtyta/8fB+lX5/ut9D/AEqha/68/Sr0/R/p/hULYZBgbRjrisXULm1tNctHvLlLaGWyv4PNdWZVaS2aNchQTjcw6A1tBSRwazr7S7PU5UW7iEnl52/Mwxnr0x6CmBz9hc2kc2iaRa3S3htpbmeS4jVlTdIijYu4BiAIwckDlj9TsH256/zpYNB0yxnSe3gCTLna29jjIx0J96VlC/xCpYDLfPnPmrfb8aqW5BmfBzwKudvxqGWtia0bZPG3of6UzAHIoh+8n1/pSuFQdSc8cCqiKRC/3lNSuf8AQj+NRPj5SG4A6EVJKoex3I2Ac1RJ1Pw1u4LLU7K4uH2RI8hLYzj5SK9mPivRQu5r5QvqVb/CvDvBFgb97e1E0cbOXO5+gwM13Ungm5kGBqVof+BH/CtFG6IcknudwnivQpBlNShIzjv/AIVyHjzU7O/FqbS4SYIrbtp6ZIqj/wAIHe5+W+tD/wADrB13SZ9Fu47eaVJCyh8ocjGT/hSaaKTT6nNX5zOf90VQJq7eljLnHaqmD0wakZBghSm0knv61IeE/DGadg8cd6SQFVJI7VlCnydTtxWNliFZxS1be+rf5ei/ytXyBjnHFOxkjFMO1gBnp3xUiupzg9BVHGS9QK6TSTlz/wBcsfoK5pQWUY5FakU8sToYjgEYP5CrEe8eFGUeH7cFlzluM+9be5fUfnXgiQam8SyLHKVPQqDimgalFLvBlDdeW4/KqEe/UV4GbzU1P+ukH/A6T+1NXXpcT/g5pDPSfis234fX3+08Q/8AHxXzrff6jH+yP511/iDUtSuNHkiupp2iLLw7EjOa5C+P7sf8A/mKd9BMkes1+rVpPWa/VqzQMdD/AKpfpXTaZ/x5xVzUX+qX6Vv2062ukm4cEpEjOwXrgAnirW4zTI4qSEfvB9RXK/8ACdaZ/wA8Lv8A74X/AOKrqofvj6iqYke2y2sF6uj291BHPC0Tbo5Y1dWwgPIPB5FaUWnBIFjhLxRoNqRooVVHYAY4A6VnwiRm0mRYmKRwncRH0ygArYRG25B2jJyAvWs1uW5O3LfQRI/LTYQW/wBpgKkihUD/ABUUq8r8yk/VaSLPp36baokxPFMQXSiQqn5m/wCWZ9DXhN5/rJPrXu/ir/kEtwOrfwH0NeEXv+sk/wB6nLYlbla1/wBefpVy5Pyv9P8ACqdqP35+lW7v7j/T/CpWxRAarnLyPlyuDwKn+8AR3FROiGUEqDWdWLklY7cFXp0ZSc+q0aSbWvZ6a7f002Bt0YLA5xVWVfn4OBirrlVGOnFUnO5simk0kmc9acZ1JTgrJt2XbyI7ZQJ3+gq52H1qnbZ8+TPtV0/dH1qWSth0P3l+p/lSP93PvToeq/jSP9z0qo7EyIW3E8YqZ+LH6ZqM/KqZ/u1LKMWBPrk1QjpPh/EXu7UA87XP6V6YIZBgHNcV8I1U6tBkDiCQ8/UV7TsQnO1fyrrpYj2cbWMJ0nN3ucaYpRg5IXOO1cX4vz/acOf+eY/ma9hktIJSS8Sknqa8s+IkUcPiCFI1CgQrx+LU6uIVSFrCp0nCVzz28/12QewqsxYgirV0MyH6CqxGc1yHQMT7o69fWnZOTzTR3Ge9Ge31oAUOcY60wEgcE8nFKvBH0ppznHvSAlyQODWhGOU/3h/Ks3OcehrUh5aL/e/pTQmesaPf3FvpFvHHIQqg4GPc1f8A7YugPmkH4qKi0zTN2h2kiN8zLkhgcDmnT6e8CEswfHp2r06bpOKVjjm2mxzarMRkrG2fWMVE1/u+9aWzH3hBqvtGN2HCjrx3pg/eAMqnH4itfZ0+xHtPM5f4kXEMnhYKlpbRO1ynzRxBW7968mvuij3j/pXqHxHQpoEAORm5Xv7GvML4fPGP9qOuDEpKdonVSd43HOeKzm6tWi/3azm6tXIjVj4v9Uv0rWkP/FMXX/XvL/6CayYv9Uv0rct4PtejPbbtnmxvHuxnGQRnFWtxh4iS4HhK6ae81L7OdG0vyILq2P2Xd5dvnyJC+PM+8ThRx5n1rah+/wDiK4f/AIQH/qJ/+QP/ALKu3i/1g+op2A9801EeytWYDIiTHzH0FaSYK4yDz/erO03cum2pJI/cr/EPQVbSbg89+5rNSSeo2WMDH/1zTEGW6D8jTt+QMHr/ALVIqgOTxz7mrEYXipf+JS3Tq3ZvQ14Ref6yT617x4qA/sdj7t3b0NeDXv8ArH+ppvYXUr2v+vNW7ojZJn0qpaf64/SrV1yslSthkCcqOR06UxsO+NwBAqMcZ/KlH3yCeooACgB+aTPsBVRlXk7jj6VbYgcYNVZOD6jFSBDbY8+TB9Ku/wAI+tUrbmeTj0q6eg+tS9ylsPh/h+h/lRKQENEJxtPsabK+7GMDnuM047CZGT8qg9lFSXDgWPPpUbuc42rn6VLcbDYAsvO096oR3Hwo3HUIivUW7n9RXry+bk/MwPtXkvwrH+mJtXpbN/6EK9WIYfwmuiC0OebtIsh5AeWNeXfEFi3iRc54hT+telYbGcH868x8dknxF82ciJP5GlNWQU3dnDXA/eNgjt3qEqcdM/jT7r/Wk/T+VRnGKyOgj2NnkYyTSMjKemetPPAX6moZT8pIPalYB68DkYqMkZY9qj+1WrS20UckkbEESscEZzxj2p5ZuATzuwaLAPGSAe1bEPM0X+//AIVkhio4Na8P/HzEP9v+opoTPe/DxX/hH7IZH+qFX2t4XOWjUn1xWFojsuiWWRgeUMe9aAlY9MfjWqg90Zc6ejRO2m2rHPlAH2po0u2GflPNMEzkfeH50GeQZxuGPen7/cn3Ox538YrCC28OWckYIZrsDGf9lq8Vv/8AXoP9tf5V7F8ZrqRtH0qJieblmx9F/wDr145enN0g/wCmn9DUTb6msbW0JH6VnN1NaDdKzm6msUWySLmFPoK3dPkK2sSqAWJOM1gxf6lPoK3NPXfbx4YqQTgjtRLmt7u50YV0lVXtvh1++2l7a2va9uhoxyNvMcgUOBkEdCKsQ/f/ABFV449hLM5diMZx0qeI/P8AlThzcvvDxbpOr+6202va/W19bX7/AIbHu1nLJHpto3zFRCnoAOKvJJ5kZZBhh1AcVR01RJpNuGXI8lf4M9quW0WwuzEqN3A2gDGKi120cxeizsBOc/UVJn3/AFpkQxGAB09qcTgf/XxWi2AwfFZ/4kr/ADDqf4j6GvBL7/WSf71e+eKv+QM3Pc/xn0PpXgd7/rJP941T+EXUgtD+/P0qzc/deqtr/rz9KtXPKSCoWwyn/M4qOWXypU+RmJ44qXaw6EdPWq8kW58luRwTzQBM7gAmqjtnk1MMKOrMccVXdUY5+bp60gI7VszScY6VfzwKoWmBNIBnt1q/2qGWth8fRfoajf7q/XNPj6L9DTJfkj5qlsS9yNlBOfoaluCP7PI9FNVXlGRg9hT5p1kgEanHGDxTuFj0f4VnZPuHH+jH/wBCFepCY9sk/Wvm7T7ua2QIlyVx2J4rYh1O8bHzFh6hj/St4VIpWMZU23e5739ofPOcfSvMfHT7/EjnGMRp/KucXVLpf+Wsw+krD+tRTXvnEvKZWf8AvM27+dOUk1oEIOL1My6IZs+mP5VCW6U+cqc4YZPrmoxs2jLrn61kzUQtnH41XuHIibH901ME+YZYEc1HKmQQMMCMUgMzUBHa2aSKWzIR8mP61eSTeM47jPPtUNwrzIkQtg4C4+fsc5yPyxUiJ5cW1uueSe9NsViyG5FbVu2bmH/fP8xWGmSyn3FbMUipcRuxwFckn8RQhs9z0Z1XRbEHP+oX+VXTKh6AmuV0rxPo/wDZtrD/AGjAsiRKrKzYwQPeteLU7GfHl3kDg/3ZF/xrqUUcjuaDOpPMf60obJ+6wz6Gq6yIeVbP0NHmHA2t+dVyiuea/GhwINEj55llPP0WvJLw/wCmj/rof5GvTfjPcFr3w/Ee/nH/ANBryy6f/TCfRn/lXNU0kdEPhRbbpWe33jUpifcAZTj6mouhIrI0Y6L/AFKfQVu6Yf3CfU1hQ/6lPoK3NL/1Kf7xprcDV7U6P735Uynx9atiR9A6RBG2j2RYE/uVPLe1XVSNgchTg+pNVNEB/sWzOCAYEx+VWYkCzSNu6n+9U6DJldeQpHHUAUEnjqPyFQQqFmlGByc/d61YHQcY+goTAwvE7t/Y0g3fxH+P2NeCXv8ArZP94/zr3vxXn+w5l3bS24Alv9k14Fef6yTvzTl8IluQ2v8Ax8H6VZuvuSVUtT/pB+lWrv8A1cn0qVsMpHhj9BRuJZlHOR3pfvHI79KAAsnTkqaQAI/3Y+bk9u4qtKME4qyOmc1VlcBsUmBDa58+TPtV4ms6KZYpWLggHGCBmrP22A8B/wBDUspF63OFz3AqOWQkqvc5pbd1dDtPQf41Ajbp3Ofu8CoZa2IprnywzZ4FG23lAZtytjkg1TvCfJyf4m/rRGxPGaRRZaOLkrP7/MtU0uwx+RuQexps7fKw/CqNsV3Dggk9quLM5I3VvLgH5Z3H/AqkOo3KrneD9VFZ6Nk9akOSO351ZBcN+5+8inIoF5GfvRsPoapOrA5wenpSDOORQBoC4t2/ix9RQGVs7ZRnPGG7VmMdoBPA5phfcflpXYGvsfs+fwFJvkUgEBh+NZCs4YckcjpUwuplPEjfjzTuwNQXIBGUIAPbB/wq/FqFqfvM6knPKf4VzwvZR12t9RT1vgSd0Qx7HFPmA6Vbm1ccXEf/AAI4/nUiojHKbG91IP8AKuYF5ARgh1/DNOE1uekoB9wRT5gsdUsk8P8Aq5Zk/wB1yKsR61q8H+r1K5GOxfP865FbqRf9VcEf7r1IuoXygHzN3+8AapTFYk8W6rfapq+ki+nMxjWTYSAMZx6fSucmbMzn/fP6CtC+e7v9TtJ3AJiUoABjrVf+yb83dxB9llaWLesiKuSpzz0+hobvqJKxM2Dt9M1TP3z9aunBZaot98/WoGx8P+pT6VtaYf3S/wC8axYf9Sv0rZ0w/u1/3qa3Ga2eKfF1NRZ44FPi+8fpVsD6J0YZ0GxI/wCeCdB7Vc2AAnpz9Ko6Cc+HrA/9ME757Vo468fpik9wK6KBLnA7juamC4z/AIU0Lh8k/makOPT9KlIDC8WHborc4yT/ABY7H0r5/vT+9k/3j/OvoDxa2NEbnHJ/ix2NfP16f30n+8f51T+EnqV7Y/6QT7Vau+Uk+lU7Y/vzVm7P7uT8KlbFEMSHjkAAdM0jEbmJJ4GOBUa+3oKVjgsPXpSAkGAM7efrVWUJ5rbkHQVZznHpVebmQn6UMCEqC4AVcemKI4UbJ2Dn608/fU/QU6L7pxSAsW4CRyYGOKqQn97L6cmrsHMTd8ms5LqKO7ljMqqwyMHvWb3NY7FXUzsWFT1JzREw3Co9TmSeeIIwcKDlhT4R39KkohnOf++qqWnJB96sTH5hVazPCVUSJmjGcLUg5NQpnHNSKcD3zVmYws3myYcjnjinb5hzuVh9ajbhnIz940KSOc/hSuOw7eXJWRQSD24pSinnkY6d6YOJPbNSE96Yhu3JGGHWmlT/AAkH8acBzmmJgrmgBdrDrSfMFbIpSSOnFIZD5eTg845FADN2BS5zS9eSooJUeooAQH5SfegMRypI+hpSF2cMBk00AjgEH6GgCRbiVGDBzkHIzzVm21u8t7uS4VkMjhtx24HP0x61ROR1B/KmDqSKabWwGidm4HLfSqL/AOsb61cHXj1qnJ/rW+ppiY6L/VL9K19N/wBWP96seL/VCtbTT+7H+9TQzXHQ06P7x+lMB4pYz8x+lWwPorw8d3hvTyf+eC9TWnjg8Vk+Gj/xS+nHp+4X2rVJBBxz+tJ7gK2AOtIw9s/hQx46f0oYE46flmkBh+LDjRH5xye+Oxr57vT+/k/3j/OvoPxYcaG+W7nvjsfSvnq9P+kS/wC8f5038KEtyvbn9+atXZ/dyfSqluf35qzdH5JPpULYZWj+6PoOaVh8/wCFESEAfMAAPWlLDc33jgfQUAAPAqGTBlx9KshiqYAFQSM3mEZ9KAI2xuXHXNKh+Y45pys24c96VZCOy5+lICxb5C8+v9K5ziTUJHPYMf0roUciCRiegY/Tiueh/wBbM3on9RWUtzaOw1UGavRLiJzVRetXUOLZ6QzNm+/+BqG0GAlPkOZW9kpLVvlUEdqqJEy2vU05fSmpjrzipNoJGD+FWZkTZJbH94mm7snjpTwyDO7IJJ68UoVeoOaQ7jf4z7ZpzdKZ/e/3jTmOcYpiFJ5wD2pifd/pS85/CkXg8elABnJ9qR+U49aM/Maaxyg/3u1ADwcikPNA5WmjGDnrQAP8oUfWoyQ31qVhlAT1qPaKAGfMOFJp4dtpzyR6ilpjg4465FAGjwDVJv8AWNn1q7uPtn6VUk/1rfWqEJB/qh9T/OtbTvu/8CrKg/1X4n+damn/AHP+BU0M1h0pUPzde1NXGKAfnH0qmB9D+EznwnppA/5YjnHvWyTx2rC8HEnwhpp6/uvTPc1uMeDk/rQ9wFbgdcfpSNgj1/WlbAXOPxpG5X1/WkBieK+NCk5xz647H0r54vv+PiX/AHj/ADr6H8VH/iRS9ufXHY+lfO99/wAfEv8AvH+dN/CJble3/wBcasXfMUn0qrAf3xqzc8xyfSoWwysnTj2px4LD1psY+Qe4FOP3vwoAfk8VFJy+fpT1BKjAqGXeJCNh7fypAKnDjnigDAH1pqo2RkN1qRQ2clTQA+Y7NOmb1GKwYT8kx+g/nW1fts0wDkbmrEh/1Eh9XH8qylubR2HJnNWycWjH3qouc1akP+hj3NIZmOcmY+i4/SltfuD6Uxj8k5+tOtz8q/SqiRMuJ90U4cmo06YzUiHkc9aszBcnJz3pGROu0fhxSp04pSc/SgCPYigKCwJ59akCgjqM0wn97+FKelACFGUknpimDluDzTwSMnJ6UgcEZYDNADMHmg/cz705nAwCpP0ppwVG1gBnvxQA1envQOhpVRiOR/WhlIHrQAf8sh9aZnFOY/KvrTaAAdKX+E0nvSg/uz7mmBcHeq0vMr/WpvnA+6agcYkb60xBB/qz9T/OtOw+6f8AeFZkH3G/3j/OtGwPyn6imM11PzUZ/efhSA00EeYPpTA+hfBeW8G6dnB/d/Xua3iOCcn+Vc/4HOfBWn/7h6/U10PRCenH0pvcAP3f8/1pGYFeOfwzSnHl574/z1prkFQB82fbNIDG8Ut/xIZRnHPTP9BXztfH/Spv98/zr6H8TsDoc655B6A/0FfO1+cXc3++f505fCJbleD/AF1Wbg/JJ9KqQH9+anuT+6f6VC2GMjAAGXHTpRuG5uAfcmol9vanD75HtmgB2S/AYhfQcVG/DYJ9KkDdKjkILGgAQfOMGjtgnFNVlDgj9Kd97A9aQDNTyLO3XsQTWXHxan3c/wBK0NUlPm+X/Ci4Aqgpzbrx3NYvVm60QinnNWp+LaMfjVUdR9auSRNOyQp125oQMx2P+jyH1zToDtx9OtaI0pRGUbLfpSHTlx8pK1olYzk7kCNwakQnIqM2VxFkqA49qYHKuAwKn0PFMgsrwcYoJ61CkuW54NPJ45oACfn9sCg5zjtTW7elBPIoAfnAYe1MJ4oBzu+lIT0oARuMc0h/hFDdjTM520ASjilLsPQ/Wm5pM+tMBXZflG38jSYUnqfyprf6wfSlpALt4x1ppyseO+aDQWYbefrTAtsRtzVd/wDWGpiflxUL8OaYBAflb/eNaFicBvqKzoOj/wC8av2Zxv8AwpgbCnkU3OJaarYPamlv3opgfQvgFt3gew7cMPTvXS5/dZ/+tXI/Dufd4GtB3BYZzjvXSCc4ZCQMeg/qapq4Ms5/c56/rUZdTGP4v1/+tUO4svAJHqef58VVuHOB8272Hzf/AFqaiIq+JXzot0ox1HHX9BXztqBxeTf75/nXv+uys2h3IPPzL0OfTsK+fdQOL2f/AHz/ADomrREtyvC376rE5zG/0qnG2JvwqzIcxPj0rJbFEUf3B9KfnD/gaZHtXq3OOgo3kMxH8qAJAcDn5R6moJfvk7xjHpTwu5txFRuv7w844FIAQqWA3DP0NPi++pLAqCPWmqBSxnEYzQBUvAzSuxB5PWohhIYwRzgmr8rYj5HB9ao3A+ZQoOAorOUbamsZXGo4MgG3rWpptxBba7bNP80WQGx2FZMQPnD2p0yNJOqJjzGBAJ7Uo7jlsdFfPB9tmEODFuOxl9Kq5RujCq7BlRefmwM1Wd2B5H5VsY3NEoMVE8SsMMoI96oi4K9HIp/2uTH3gaQxJbKJVLKSn0PH5VQSfPDVPdXLFTuOe+BWZE+45Pc5pCL7HLcN+Bp+3vVdGy7VLn0NADgcBs9qTrzRvwpJANAKnpkfWgBG6GmH7oOO1PYNg4GfpTDwAD6UAO/hpM/LR/DR2oAR2+fHYAUueKa/fFLnimADpk01xkhu2DS5+WlP3BQBZIBHBH41DJ981cVBjhfxqpP/AK49OnamA2E/f/3qvWZ5es+I8v8AX+lXbQ8t9KYGpuphbEgNJuqKRsMKYHqPhfxJPpvha2t4XRc72zsy2cgYyeP/ANVeoaYJZtPhuH2gvEjFjyeRXiXhq93aXaxLGQ0G9i+OoJ4GTXo9t40sbXTLZbq4jWUQpmIHewOOQAM/yq48z6aCO08qMYLsXPfvVa9nj8tVRVwD1xn/AOtXmWr/ABRjjLLboB6GZuf++Vyf1WuJ1Px3qmo7h58rKe27y1/JeT+JNPRbsD1Dxb4gsI9LntWuovtBkUhFO5sDr8orxC7lWW4kdWJBYnpio5bq4myHk2qeSqDaD+XWohgLionK+wJAh/eVZZswt9KqKf3lTu2IG+lQhsQH+lPwQ544xVaG7V1CsNpHAIq1zjPb1ByKQAGPXFRSEeZ17Cpwu4c4FQyphidmV9RQOwinBAoQ4yKYrjeAAMfWnqVHOD9M0CGyn92BVSQAnnpVuVgyjAxzVV+o+tAEEQ8tw69R2PeprZvMv4mxjk/ypmPlxnpUlpgXSUWQ7s0JKqvVp6rsM0xEDComUelTNUTUmBWnAEbY9DVGE/KKu3R/dt/umqUXQZpAWlPzn61KCc4qEcN+NSg5agB7nKfjSg5FMYkqMetLk44oAU5zxQ7EttIB470gOBmkJ/ee3SgB64AxjA/OgjPQ/lSUmOcimAjnB+YYFIRlfanliGI7Uu5ewoAZjilb7gHakLKxI5B9xSsG4x0pAPd5HJLEn0yajPBwcUjMT1NNNUIdEfmf6/0q7an5m+lUIv8AWPVy1Pzn6UDNImq8zHIqTPFQy9RTYEkOoTxQCJMhR23ED8hTWuLiQFTIVU9VQbQfrioRTh1ouA5VA7U+m0uaQC0hPFGaaWABoGIp/eVJcNi1fntVQTKZgoPNSXLZgYe1IGVoyOnf1q3FK8PKtx+hqhG3I+lWUbAJpoRoRXEbgBjsb9KnxgjcRj1HesvKngcH9KmSWSJ8qePQ8g0WAvlYyRhR9aUIOwB/Cq6XMTjBHlsPyNWPMKgZ4B6Ed6WwyreYQL8o79OKpH52GDnn8at3z7wnPTNUiMc96YmN7GpLb/j5SmBiFyTn60+3x9oUj8qEBeeoWqVjUTmgCFqhepWqF+tICpdH92/0qtEeACKnuz+7f6VXh7UgLAzu4IP86lAxVdO/1rZGnp5agMQ+OT70AUP4c+9APy1LcW0kK5PIz1H+FQD5l6g/SgAzxQc7yaQgihuv40APPT2pemKYTkUoPIoAU/eNJ60v8RoGMYoAZ/EQelKSTJgHGMUjcEnNBH7wmgA+8F+lJ64pmx26mnAYX607gLH/AK1voKuW3+sP0qlGf3rfQVbtz8/4UwL+eBUUnUU/PAqKXtQAlLmo9wFMM46Llj7UAWQcU1pVQfMQKrlpG6kKPbrQEGc9/U0ASGdm4RSfc8Uwjd/rGLew4FO29uaTGDigCMgdAMD2okdmXb2xUhXJpAmfpSGVgxQjIyKmjcNnHNOMYz60xsK2QMUBYlDZOKerct9agWRTwevrTwSM/WmIlONpIPOehqRJpIeQ3HcHkVAT0+tO3YGOo9KAJLiUSFSqhSOtQ5JUjvViG0a4YkHaueSf6VeW3jh4QZPr3oAy1t5mXhDj34o8ieIhlQkg9ua1StCrh+tA7FES7hyCD3BqMvWhJGr/AHgDWdc27RAugLKOoHUUCGM1QsaZ56MeGH0o3A96QFW6PyP9KgiONtSXDZJUdTUa8ECkBNDgyLkd+9a6XePvZHv2rFXg9alWdl9xQBc1G9XdEgYHPSs+Fm3NkinytFKVkb7y8ge9RpwKYFkOc4PIoOCxw2DnvTFNC8s31pAS7elA4cU3OOlOVxnkUAOzk4oxikUBjlTz6GnkFRk0wIn96aWBLMrAjNPeMyq+0gbVJJNV0TamO55oAnAOeRxQ4xipduR1xUcmOAKYEaf64/7oq3B/rKqKcTfhVqE/vBQCLoPyiq9yzbV2469TU2eBUFz90fWgCDbu5Yk1JwBxxUfUCnDrQAucHpUgB6nigJj0p4XaM5qgFB46Y96U9en40cnp+tLjrmkAmMn2pOlIW5wBmnsABntSGMJqMgH735U8gHkdKaE+akCIzDjkZxTQWQ8cirGMD71NYAigLEYYMAQcH0NT28ZmuFj9evsKrOhwat6U+2dzIeAuB+dMRshVChQMAdqQjBpQQRkHIpDQNDTSZwaD1pjukYLOwCjuTSGxx6VWuZkt49zHk8AdyaqzasrEpaIZX/vdFH41nyO+4ySv5k3TPZfpTEVrqUyydACO4qBiwXgkU801uhoENA/OpFPPIpg4HFPFIByjJ4ORSkEU1OlP3H60gGkcAinAYFDDpg/gaUKcUwHDqKEPJoH3hSDqKAHk0o5PAyabnJAHWl80wTYwp9x/SgC1HEI0JcjaOWJ7VcntktbRZLycxeYuY7ePlyOxb+79OtLCindcuoNtb42qRxJIRkD3AHJ/+vWaHa+1BnlYt/Ec96pWSuxMnt47W4BjG+NyPl+blvp2P0qu9vJG4TKsDyrf3h/jUlxaOxUo5+UcZPuT/Wo1ExRo2yXUhh9aHYD/2Q==", "path": "images/4pts_ADE_train_00000170.jpg" }
depth_point_2
images/3pts_ADE_train_00005306.jpg
ADE_train_00005306.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 266 y = 133),Point B is located at (x = 324 y = 174),Point C is located at (x = 222 y = 95).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_29><DEPTH_31><DEPTH_49><DEPTH_59><DEPTH_5><DEPTH_67><DEPTH_31><DEPTH_49><DEPTH_29><DEPTH_74><DEPTH_31><DEPTH_29><DEPTH_59><DEPTH_59><DEPTH_36><DEPTH_49><DEPTH_70><DEPTH_49><DEPTH_49><DEPTH_74><DEPTH_31><DEPTH_49><DEPTH_35><DEPTH_67><DEPTH_64><DEPTH_60><DEPTH_67><DEPTH_31><DEPTH_49><DEPTH_29><DEPTH_49><DEPTH_49><DEPTH_3><DEPTH_31><DEPTH_74><DEPTH_29><DEPTH_3><DEPTH_31><DEPTH_29><DEPTH_29><DEPTH_49><DEPTH_29><DEPTH_31><DEPTH_31><DEPTH_59><DEPTH_31><DEPTH_31><DEPTH_49><DEPTH_29><DEPTH_74><DEPTH_31><DEPTH_31><DEPTH_70><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_67><DEPTH_70><DEPTH_31><DEPTH_40><DEPTH_22><DEPTH_11><DEPTH_59><DEPTH_3><DEPTH_67><DEPTH_70><DEPTH_59><DEPTH_11><DEPTH_30><DEPTH_70><DEPTH_33><DEPTH_81><DEPTH_19><DEPTH_40><DEPTH_67><DEPTH_59><DEPTH_78><DEPTH_78><DEPTH_57><DEPTH_42><DEPTH_1><DEPTH_14><DEPTH_82><DEPTH_31><DEPTH_72><DEPTH_40><DEPTH_69><DEPTH_94><DEPTH_66><DEPTH_98><DEPTH_23><DEPTH_76><DEPTH_76><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_76><DEPTH_44><DEPTH_64><DEPTH_55><DEPTH_END><DEPTH_END>. Since point B has a higher pixel value on the depth map, the answer is that point B is closer to the camera.
B
long
3
[ "C", "A", "B" ]
<DEPTH_START><DEPTH_29><DEPTH_31><DEPTH_49><DEPTH_59><DEPTH_5><DEPTH_67><DEPTH_31><DEPTH_49><DEPTH_29><DEPTH_74><DEPTH_31><DEPTH_29><DEPTH_59><DEPTH_59><DEPTH_36><DEPTH_49><DEPTH_70><DEPTH_49><DEPTH_49><DEPTH_74><DEPTH_31><DEPTH_49><DEPTH_35><DEPTH_67><DEPTH_64><DEPTH_60><DEPTH_67><DEPTH_31><DEPTH_49><DEPTH_29><DEPTH_49><DEPTH_49><DEPTH_3><DEPTH_31><DEPTH_74><DEPTH_29><DEPTH_3><DEPTH_31><DEPTH_29><DEPTH_29><DEPTH_49><DEPTH_29><DEPTH_31><DEPTH_31><DEPTH_59><DEPTH_31><DEPTH_31><DEPTH_49><DEPTH_29><DEPTH_74><DEPTH_31><DEPTH_31><DEPTH_70><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_67><DEPTH_70><DEPTH_31><DEPTH_40><DEPTH_22><DEPTH_11><DEPTH_59><DEPTH_3><DEPTH_67><DEPTH_70><DEPTH_59><DEPTH_11><DEPTH_30><DEPTH_70><DEPTH_33><DEPTH_81><DEPTH_19><DEPTH_40><DEPTH_67><DEPTH_59><DEPTH_78><DEPTH_78><DEPTH_57><DEPTH_42><DEPTH_1><DEPTH_14><DEPTH_82><DEPTH_31><DEPTH_72><DEPTH_40><DEPTH_69><DEPTH_94><DEPTH_66><DEPTH_98><DEPTH_23><DEPTH_76><DEPTH_76><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_76><DEPTH_44><DEPTH_64><DEPTH_55><DEPTH_END>
266
133
324
174
222
95
null
null
null
null
29
50
9
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDzmWO7sleG8gO0/wAWKpKVG7y5CTx81epyJbXS7biNcH1Fc/qPg1ZAXsmADfwZrx4VT01K5yazEH5wPZqlB3fN1NJdafc2MpjmhOB3xVbcU+dcj2PNbp82xZPI527D+lLp8ypKQwyOnvVQ3O9vu4Yd6SBgGJP3ieaU4u2pN9TVuYcSGSPI6EZq7Z3bOjI/JHX3qpI/mWp+boOKgt5D5q9iw5rjcbovZlhUW2keBXxAx3Bfer2mwE+Yoc5GKyElXz1V+obitvTiI45TznNa87UdTNrUthmWMR56DmoJpiB5SHDH7ze1LJKIoixyewBqqVPIZuW5J9q45PmdzaOg4u0iZ6IvU1AtyGVhwqjp70kl5EsMrlW8hO471jJ5l7c7gr7cfKAcCuinRTXvETm1sW5ro8iL5VPX3qmXOeTmot7qWSXG5c9KZvweMH3r0qcYqGhxzbbJifXpSbx2qEt70mcCqEix5/Y1Vmv3iJAjyKRnFIHU8GmmEkWIp2ljUsMU4nFQJIBxnineYGouBJuFKGycVAWA+tHmgMBnmmmBbSQo25O1SxzIzsxwjbelUBJlQScZNNf5n2bly1ROKloXBtammj7zsfhuzDvUuxpXA6OvIPrWZYXTrMICgcJke9aqSbyVOA3bFcU4OJ1RlcsxASR7iORwakvJ5hZxqFGYyd59qrxsVkVh34YVc2qwAPKPmudNKWpcldGbbI0t385MpA5A7Ur3hhkZIgeO3pUllts7+ReRxgGmXdo67nibKHk+tatxb1COiHi9M0W1mKvt61b0yUhwsgLZHDGscqnlhhIQwHStHTpj5S55x61FSMeQcZXZrgqr+W+QDmufmmWC4k2A9a1zdIoLOcEDiucnl3ys/qeM1nh4dypSSQks+5iWztPXFV3lJOEOfrVy1027v3xFEcep4FdJY+HrazAkuDvl/u9q63OMNDnbuzm7LRbu/OQhCHqa6qw0K0sVDPh3x19Kvq4VQkKhR7ClKhQWlYY61hOrJ+hI9nARVRRx0pywMfnnl8sf3m5NVzeFiBAmF6FqlidCMopd88luai7YEi3rLlJk696uwShwTE/IqJCkw5Ct9aY1kCQ0LlSKGmI0JI4LlBHcwK2RySOa53UvBsU0bvYyYJP3WrWinnt1Kzrv54NWoriKRhsfae4zQpuLKTZ5ZfaPeacxE8TBR3AqiGG/ivZ5EimQx3EAkjYfePNc1qfgu1vCZLF9kh/g6AV0xrXWoaM4+ymWRDE5wx6ZohR4r0IecetOutFv9LuQJoiMH71E90nmLtOZMcmk7dC73HOgEhRlG9TnNbVtH5cQGc7qxLd1luQGJLNxW6zLFEx9FwKxqtpWKsmRTPvm/wBlenvVC5uFjQlmwq8sf6VYdyiZPIxkfU1zGs3W4mIN/vfWnh6XPIVSXKiy+qNLAqRsMSHlOwX396ZbXzW0uRLuQ5xWJvMTHAwWH5VYtSi7OC3bmvRdJJHNGbZZkxK7zpJhj1X1p/2eUoJFQnjkioJYwoLRk7c/Nx0rRsdQW0PlyHzIWX5hRJtJcpXLfcz3cqSpPTrS5c/Spr9I4HR4SDFIu5T1yaoeY574qo6oxkrMsFc/xCkCAd6gDHsaNx9aaTFdExA9aTc3aoCx9aTJHQmmosG0WDIeSQeKlEBZUcsDk9B1qosrdSelXLcs7KX4QfNUyui4WZLbwlN4kwVXnmq8rpu/dLlhyGPTFPIa6nlKlhGO3rUMwVZMLkLjoPpUrfU2s0JBMIyZgDkj5quWN8GbY5CyE5Vu1ZDyEEKnGevFIdy7WzwDx9a0lTUlqZOfK9DsozuVW6dnBq5ASUMZ6pzmsjTrjzo1Ockja+fX1rVhfZIp7H5TXlVE4ysdkJcy0HSwrJdQbejHBNU55Ftrl4Gfd6VpqgOUJ24IKmue1VXkvyEBzgZaqpJS3HsOKbx8uOvINWLWY+WNyBVXgkVFp2mX123l28TN/tnpXV2HhWC1QSX0plk67B0FVNpKxDdtjBMVzfSBbeI7em7HFadp4dgt8Pdv5jjt6V0B2Qr5cCLGuKpSOm7LHNY+0toiXqOWQIgjgQBR2A60OuxcyHg9u9NWSQ8RKAPU0jRjdumfe3pmpuyRPtDS/LEnHTNNMGCGlfd/sigyY4Hyr6CmscDJYKvv1oUddRMkZwq4AAHoKSNpo0wn7tc5yar/AGqMZ8pMn1NQyyySjDZI9AatCubKTRlsyoyN6r0q7G0gUMGWRfUVQt1aaMEoVXuDU3lCM7klaL3PSm072A0kkRxhgQfQ1HJZxyD5QEb1FV7RpJw7XBAw2AR3HrU8MqyfJFMCwPIas3roGpHi7tuh3IO1SRX8Uh2uGib1qcS7W2yKVPfd0pr2sMyknqe4pNWGyVts8eyVUmiPBJGTXPal4Ms71TNYv5Mmfu54rQa3ubL54HJQc465p9tqazIHliMZzgsBgfjTjNoEcKNIvNKvlN5GwjHRwMj86tvIJIwyEFc9q7zck8W3AmiPUdRWReeGbW43NYubeUnJX+HP41Upc+5cZWOH1O7Fvau+duPuj3rj2YvKHc7i3OPeup8W6LqVlGHmhzCrfM69K5bGGJXnvmvUwsEoXRzVpvmLrwiUc8YqURDaAPwNQJcBlYNwTxVy3TMe3uG6e1VO6HCwmfLGSST/ABVsWmjvLpjX6BWRg21fpnNVpYrZ0xDu5AyTXaeHII/+EZwx4jlIwBng8H+dVhFGo2mPENwSseXOwMgAY7cZVR29RUe7JqzeWTw6lJEgBDSNswc9zVdkZHKsGXGeo61ckk7I5veauwyaB1qeK3lcgFNobpmtKPT7XGG3MR941lOoobmkKTlsYxUmmncDyauXNr5TAp8yk1W8pzIIwhLHHFXGV9UTKLiNU7nUcgZ5NdHo2nnVNwBURRlUye5x/wDWrAFtKisWBRlIPNdl8P4o5YrhWcb2mztPoAa1hGM5ag24ow5pPLvJYUUlkYqMdOtQ7VTdvBz61pXMiWt/IibCrOxZiORzVO4njkyscZ2HoT9K45a1LLY7E/c1MqZFa4XaeAOTUE+d4xyuOlTZUd8EA8VWdi5Bxj0rohe5yztcuadcmK5AdsK3yiusRiUz04zk+tcTDG8txHHGMu7AKPevVdN8LJGiSahMTlQyxr61xYxRTub0G0jNiSW5lCW0TTN3OOAfc1uWHhdFk+0ahICzf8sk6fjWzGIbSILAiQRgfnVaW/GT5ILOfXoK85T6I2k2y0RFaxBII0hjFZs9/EGIXLvVVnuLuR/ObaFPb0pyrHCpyAT6moabENxNOckYB9e1HlxRsMsGPpSPMWAwDjpzxUUs8MSgO2X9FFWosVySSUk/3QOwqIyxpuMrBfY1ELqRrhcxiOP3pl2oWZJGXc56Z6VrGBLFe8LDEMZB/vGoXBk++249/SrIkj4BZS3otMubXzI227lYDoK0VOVr2JvrYqvPFFwTkjsKqzXjtwqhR6mocFSQePUnrS8bcjn60RjZ6mb3sew6B4Jm1a2NzcTeSjfdA6n8Kp+MdCsvC9rbveXJdLhwi4Bzmuw8Gatqd/afvrVRbxLhCBtJ/HvXLfGaYTWmjRlHCi4DPuX7o9a9r2NNytYwcp3Md9LurdMJEyMyh49/8QqmLYuB5se2VfvFeK9nSxs9T0K3TKyoIh5ci/T1rgtX0aW1nWOYYLDKOvRhiuWvhE17pUarTszlY2niBTeJR/dk61IlzGSAd0LjqG+7Rdq8KMwAJB5qql5b3IC5CkdQ3NeRJOD5WdV00aLSukTEruQg/MvPaq2lyA2Z3jG5zgEcGonRoopJYZSg2njqD+FRaXNc/wBnqw2yKSSYjwMeoNTcaNF7NCwkhYxue4PFNa4mhX/SB5iDnzF6imR3UQYKS8DjnDcg1TuNQ85hEw8tx7ff/Ch76AN1aSLVbGW1WUSxSKdrEc5968cmjaCVomGGjYgivSY5jaX7x9Ff5k+vpXG+KbcRaq06j5Zhn2zXo4GTi2mZVVoY64DDuc1twcIjY4ViTjr9Kw04mB963I/9VnHBJOR9a6qm5FPYs3AQWxmtpN0m7JSpYteu4dLlsIH8pJh87Yyw+lRQvEoZZ1Owg4IHfNMigDEqrDd3NYQm6bdjpcedIgtG/diHZ0JJY9WqnfXUtxIY8KAv3QOtXQsn2sknKrVmxs7NdWWLUQy2rSKzsvJK8ZANdEF9tmNRv4ESanbMNN0q5gwHmiySPYmmpb7VfDMSRlsGtTxNrel6i1rp2g6Y1nY2YIWR23M/qfasld6xFQNp5z6EVnXak7o0o3irMqSQSRXUS5DJu5qDVI3g1ZwrhXGDwwGParU7NbsJVRmww4NdNr154d1jw9YXljarb6pGSl4jn5nPGCPataUkoNGVRc0kcqA4tzHLkS9cv3qTTTJYsLqCYxT9+eCKJreSGKCSdflZcjJ55psUTycuuFHRScGspJwVzWCTVhzOLi5d5siNgST6tUZAJUZO0dv0qSZQsiiLGccjtTcfL+X86m9xTfQybniQe2RUHcH8KnugQP8AgR5/Gq44B9K6oLQ5Zr3jovCVitxqf2iQfu7cZOf73avRLfUypWJRmQ/eZuiCuS0RRp2kAnAJG9yf0rS0+RvKmmm/i5bPHHavIxTc5HbTXLE6UxBwXncu3XGeBVaebChY1H4CqkF8zrtnU7cYRR1NNnu5GXCqIk7Y6/jXJGNi7jELrcyEttz6mka5hViMtJJ+lZrg/wBoFS5YEcgnrT3uIocjuOwrRRIcrFl5JJm+Ztqj+EU6CAN8zj5T3rOE8k8yoPlUmtSRhDEEUksOa0jGUpWI59COdt21UwWzgCrF/oN5B4fu9VmkIaJNyxnnirun2EMGmSareuI1jYMN3Axnmptb8Tx6x4du7TRbOS9jMJNxMwKiBf6161HDxSvLc5p1G2rGj8L7K11Twut1cW8ck/nspYjpwKt+LrGwiM1xbyIlyjhfIVhyuBz/ADrD+GGqaPZaA1nquseRvuP3cAYAsMDr6Crfi+XQhrZh0jUYZGdBuiibzOfXdW83H2TSIhzKq7nG6nA0c5bgE9sVQGTKFzwa0NSiK3C7y33fXNUHyGUnp7V5F7ps6Z6M9Hudc+JHhmzlE9osll/yzlWPIiH1HT8a4bVvGet+ITbR6vdtNFE4by1TBPqD6ivp4Twvp+3Kj5MbWFcp458HaBfeG728l06JbiGEukyDBBr2uaz5jmjNX1PMrzxjbW+ny3nh7VJLAWsymCw6+apB3cHng4Fd3L4uTXfDOmTC1e5mnwTJbDKwuOof0715R4O8BX3i6zuprO4RJLcjasgzuJHr2pyWHi3wPqMjLBcRxJgTiMbo5AfehzfN7xc1Fo7vU4FCrJgYbqK4m4XybiRenPH51rw+J49djYQxtG8R+aNu3FZ2pT28h2LHicgbmrx8Wk6l0XT0iWbY7dLd2Jzg8k9al0kf8SuInBJz0PQZqvFtGjMuTjac4qewsIm0+CSB3ilwcbeQw+lcXKbJXJb0n7JJnBbse9YUsz+VIjPmSMCRD3I7iti8S9jgkV0SZepkQ4YD6Vg3VwUCzQNkIPmBHJFOCd7FLRFXVJ90Md1H1X5hXPa/PFOiN5gL9UH86dq+q+QrwW7giTk+w9KwJJGlI3fw8CvVoUrWZhUqboIW/wBITIyc1vxj9xj13f8AoVYEH+tTvW9AJGtAQpzg84/2hWtZaipPQl+UMC6nYG59+elPhkjSaUrERGzHaD1U0kiEHDRuuT3HWq5OY27jcenXrXO430Nk7Dp557ad96Lude3TFQs0hVWcMWboaVWZYz8vzKeM9a2bi0mttOgkcCQMhb5f4frTlPlSiXCKd5GT50iuFAVWK4I9RW/Z6alzaQzJGdzOUO4/Sud3bpFLnPHX3rso4EhttNALbWfdz61jXfKlYI6nL6gWFxKoIXa5ABqlMGWYbhuDDnbVvUyTdyFQdokPWrunaZLdXSRqAFbHzk5xWifLC4t3YxmuZ2g+zBvlB/iHIq1IzrD5bYMpAAI9Kdcq1veSROo3RE4BGAarLlsySHJbnrwKu/Okwdo7FmRo3SBPLIZQdzetQkYXA9v5ipkjkkMaopbOcbRmnvazrw8OwgDO44/iFJLUi3VmBek4I/6aNVZZFjcM6kruGQKt6gNkki5BIfqDkVb8LCJvElsJfLL7ZfI83G3z/Kbyc54x5mzrxXZHVHLUbuTxa7BMYLWNJVDyKp3AY6/WunMm4R2+MkcyEelcprr6/HFpza/5v2pZZGj+17vtW3Kff3c7M5257760rG++0x4BYu+N30rhxNFJXRvRqt6M2vO3XscjAqNw2qO1Xjwu5+Fx1NZNury3UccTgFWwS3auii0uINuuHaTHZj8tefKF2jd6mG0yveoAxY/Sm3cJW4bIxnmta88pNQj+TagGMY5rO1G5D3BZRxjHNOKaZMkrD9Pt3Fx5nlNtA4JqPVJmKMfMCEjG5uAp9afY3Mk5Fu7HgcEelYupw3dxrJs4mOHGVrqoL3yHblG6tqr3OnW1j9pecRffk6KwouPEt/MZYrcrbJdRJBLHbj5ZAuAPxOBWnYeEkF2q3b79yZKD61X8Q2MGleIbIQKscSlCQB33V6FnuZKUVoWdO+Hms30UUlxGtrCzqAz/AHhk9q9HuPhhpvhfw9canG0k92oHzt71vNcGbT0+yW8kxHltuHyp26Gr/iS6luNFu7S5v7SO4SISfYoz85HvzzXRKnFRuc6qTlPyPF9WGJlz3HArOcADPWtHVGDFCp6E596zT97IFeNJaux2S8z3vwp8QdJ8dfbre0tnieBQR5nBZT39q1/GEBi8Gao0crAC3PynkflXg+iaU2g3D3WlX1xbTnqUbhl9CK6vUvGniO+8PXulXMVteCaLYJF+Vh9RXpuvTklbQ53TaZp/A8vBo9+4hZlaUA7euQD2r0y2ubSe5uY5DgkgNHIOvHpXlvwn1/TfD+lTadq032O5eUsu/ow+tep2ElnfNM8ckM6MwIKkGt6k4t6E1Frc8T1G0gg8aa+bdFVFmVQEHHIFcxfANey8nriunuQq+KPEAjyALsD8AK5a65upzn+LvXk4n47m8XoLd6jLZW9tBGq7ZeGY84Gea2Eur2xjJjSKeyXGADtZc96yLy2Vm09mIKnOc1qHKTPHAo8kjLP17dB71z6GsWaF1fQrbYkYRtIONx4PtmuY1JFhcuqhN6lWXtWyz26RMJoQ0ZOAp5wfX2rN1l9kZS5MX2cKFicdT14oUfeTKk1Y81vji5PAPNRev51LegLPtHQUwYB/CvZp/CjjluLAD5y4Haty0Km0VpJnGQwwD0wwrEQ7QMHFXoHRY1/edO3rWdQ0projY+1SbMLMXBOAHFViQse1oxu3EnB96hndgiujLjOc1n3F1M759+cfWskrmr0NOEPLdYtseYxwA54FdTqN1ZDQ44A4eaIbXKnuf51xNrJKykt68Eda39FSA2N000XK/wCsY9OemKzqx6l07oypdgkjCnB6MSOBXYm6t2g0/wA2aOPyD0LfePaubcHTpHuVhEqKv8fp2Na2kWdnq2jz3Mjo97B+9Ydwg6jFY1LcvMXHRmNqhkW+k84qzFtwCelaGgarBo+rLdS7lhYZJ6ismK5a7lltkRWhALr6gD3rd+wiCzfdEs4aHcGfgAetXKytFite5U8QTi5vXlt5oprZySGH3h6isiKVI1yqrtHBDc5qvhFdz8o5OAKlPlbY8YOeSa1ilFWRHKyz9paEK0bsm7P3e1QtMuwE78sPvf8AAqgNxH5qHcSBkbR9aWa4idcIx2jjFVYTTKVyCzSv0+bOKqOu4frVmZxn5cgnqTVuK1tktUuL1pcSEhFiAyQO+T+WK2UlFakQoSrScY7LVt6JLb82kZPlbSDn9K3NHk8pmY5ztwMd/es/ULX7LKqK3mI6B0fGNwPfHar2kMqybyCW6DFTWalTuiXSlSqOnJWaOntJBBHHLtJOcsSOTWjcahPKqfZ9o3nB3fw/hVC1YQRPIzl97/LnoKlIeQthPmHO4dBXmONtTob0Kt/I8duI2lkeVXB8wcZ9qV33iNj0K55qW4ZBpvkyKTMcYPvUUqbI4o/RKLohk+mki8UAdRzTjuXxfbGOMszRkhabp5xermkv7kWXiSxuGJG0HcfQVrQajPUhx906a4S7S9ty7pCHjKkJ8xHOevauV8Woses2LK7M2FJJOc4atK61O61C4jmtrc4jJ+eX5R/9eoJtKbUZUl1C4LhQcKnQfjXXUxEERCm7nsuoeI9I03w7Gl3qEELNChWMn5s4B6V4HKusX/iK51GKV5pJSdsxyMjt+FdJb2NnAQ0cCsx43MNxFXBvZlAIXHoetRUx7kuRIcKCi7mTPaTxabEbllMo5bHrVIDKDjk9q1tTTNqW755NZhGOnBxXFd3NJo6YiOT7rfhQVIxgbR3xVcxjoMgmq9zdtZRiTeMA4weapcrEXd0jAhlDrnA4pbWQ2c5ksria0fuYHK81Cl0zopCBkxuLehqWO5tpeBwT1BFVGbWiY+VEttE8VxcSy3TzyTvucy9ScVhX8EsM7mRNqsTjmt9Ywy7kboelYN473EzeYflB4HpUzbbIZNdQ+Zp1vgAbW+8T0rRiUWrIPMDqwHI7GqWooo0MYB4AxWZEZI40YSyKxHGGOBUQi2Ujcv3+UuIg/wDEY+oPvzVSZJLmOUnaI3XbHkfdFU5tTdIHSYh1OBuHWpY50usLbEiMg5DdquKeg+h59rEQh1B4xu+Xjn+dVwB61oeIpPP1iXDbgp25rPK/eweBXq037upyydmMxlsE8VZhABUYyPeq6gk46e9SmMYQZJPqamVmaQl2JZnXYqqm3nnmno6CPacgk9cVWMRAyTkfWnYMYBJY+2aixre4+Rk2kKxODXQeF0E4uhkkGMZX3zXOeZ0LKB7etdl4MEM0lwyxkErg4qZK6sPmtqUNTVY7CRCT57EdP7vpVy21GDT1C2Fs0QEY3MOfN9RVnXtNjgudysSWAI56e1XbGwVYkkbaoUcAD171zSi0uWxqmmrmHLJZnXxcWtn5MZiIZD0LV0M4aPQponwS6lww7L6VR1SzBv4d0YCk5Kpxkev1rZurZY9JlGDjyj1pqLqO/YmUuXY8wcr5kjAEHJFGYx5eck4pJ51LkBTwec96ic5IBGPQg10pEOTQo5YMFAGalLqpwFUZqAwnI+bj0JpPKGM55z61VhczG3GC+Ackd6s21+iwC3uLdbiJSWXLlSpPofT2qo4+Y56+1IgGelWoKSsyYV50p80PyTXzTumS3lxJdT+Y4VeAoVeFUDsB2FbHh+1EygklWU5HvWIw55BPtXQeHJlEot2LgjJzis6ytC0SfaSqVHOWrZuzBhtww3Ocj6VLGyRwt8wDZ/irNurxLdFQfO5OdzdRULXIkbeWLMe3pXDySZvJ2NK6lt2tFUupmL9R2pbw58sYyQp61k4PmxMQBlu1RTahrN4dSltbOCS100kSv0KqWwOC3J47DoCegNKNGUpWRnKaW5v6fGksu5pCHXotabQIZPN8pS/qRzXN6Fcy3a21y4AZyQdvTgkf0rqJ5hF0UsfrWTvGVmXBpojKuSCzD8eopwEQJJdTjqCaoTXE3BOFHoOtUJ9RtGb7MAgmPG7NHK2aJLc3BeQodo/eH2oW6keRQsYUZrFsphACsvJ9RWtFtbawIwe9E77GexPqI/0H1rF9D14rfvubEjdn6Vghfm9sU0xSN68k+zQO5Kl8HaKwH1CTzggAYjBIYA0+4nkKrJJ+9OTwPSsi71OBJpJoFWR5CAi+laU4J9CrWJYNZu31We3YKY2Y8ZwVArqbTy3RcDntnvXGR3aCZ5rm2X5yR5kZ6Z9a6HSrtQAqAsq+p/zmrqU7O6Fe6Ogtl2xtxzzXNu3798nPJrpYGBiZu+DXNMAZGPqxrNamctDV1RwNBx7Cs9FUxoF67R171d1f5dDH/ARVRAMpjkFR0q6aBMo3SARYAOQfTioNP+0wyTbYg4YEZz0q7fZWEc8ZqfS7ffvccfN0rZtWC5y934d1W4uJGSEFWOQSRUX/AAimsPgLbjrg8967CfU0tdZt7Py3JnyOvTFRf8JKptb6cQsPsjbAM/e96tVKlvdQnGLObXwTrYIPkrg9PmpR4S1LeBIY0A45auzHiAG9063MbAXkW8nd93isa51/zY7iQQAGOcRA5/WsZVavYtKK2DT/AAPbXMWJr5vMXqFXip7zwJZQWzP9slZh0AUV1GkDMBYY5I7VZ1JFGnvjHbOfrWDrT3LVjmdN8J6TFbBpYjK+M5c4FO0i2t7TXL1LWPaPLHyocioridoy255WVlx8vWsOPUzazyy20jbmAVuDkc1dGUnLmbBq6NnXiXuYDLGVzge/WthH/cII4Ay4G7d2FcZe6k93KweRt6KAuQetTC7v2UGETuCvZTiun2iUm2Q6basb+rGLzoWjVi4OCc9vSrt09y2lztJA3l+WeVYf41ydxdMkgafzY8qSNwPJqZ9YuHtXictHEykbmU8ipT3aHynRaToukXelxme0t3dhkHPzVUuvBOkSagqBZkVl3DDZH86raRMnkBFimLJkBmU8j144rprNgz2uASMcE5rjqTnF6MqyMRvAWjKM7piaxrrwVC5P2S62gHkOK9LaMYYj1rjddvJbC6tvKxiaXYQRWcatZysmPQ5z/hAb2Y4S6h5oPw8vkXcLyD6Z71rr4guEtdXbZHvsyoXjryKdJ4hma40iJok23ce5yPXJ710qpiehDUTnn8F3pIH2iLjqc1YtPD9xYPJKLiMuQR1NSya9cta6lIQheCTCEDjFa1lM13YRTOBlhzgVcp1eX3hJR6HKXFu6zsZXDPnPBqdEKSHKjHFWNTjVbiTAAPFRhVUl8knvmtIybVhS3ElIWRMdA1O0/XdM0mZrC4jhkS9vpxfzMsu63iYGIFQpAZgrytyG+8MYNQO5llHGBuq9faDpjDzzb5kkYs53tyT+NKNWNObbM5xcloV/Dp22FmAQQGbkd/mNdZegYHbjOc1z9nBDaeTFEAkangZz3z3rS1G8jkTaGyMY4rln7020b01oZl9M+4OrHg9qyHtSb4zyhYYWOQzDG4+gqa9uPlXy2GR0UHOazbi6cqtsW8xAdx39ifSumjBpBKVjYtsm5YNIpQjjByK07C8MMhRhujHPtXLJLJFbny5EZSwwvetWzuBNmONvmByVqatN7lQknodg8yT6fIUPA7GsX6dcVBE8pdhuKqw4HrU3TI9q5noRLcxb/UZVlFvC4QFMsTVEFUQJHGAcY3nqafqy+XqkiAggAVFGWkyX4VccV6Cjyw0Fe8tRVbyMgrlXGHUdCK0LC4ltvJRZFeJs+S/p7Gs+XaVYhsDsBS2qKVkSQFk2l1wcYoS5lqJ7nd2l+0cC5YumMOxXoaokHOT1LE8VU0/cbGJhIcMuSDVwnpj2rltYmo9S9qx26Sm7puXj8qzLecxkbcAnsfStTWkJ02HH99f6VibeST9K1pK4EupS5s0IOPmHT61e0udUUkq7fNWNchzEqt0BrX0s4TIHGaqSsgXmOk02O51qLUHeQGIkqopkfh6A2d5bF5Nt1IHdgBlT6VtRYIHHOau2gXf90daxdVpblcqM3+xLZb2zugzk2cQjRSvBGOtZEuh20KtAN7iWXzckd67fAC5xWTdsPOzjGM1yVMRJLcuMVcl0tJktiwC4z37VJqS3T2MgUIcgcVJps+61K8dalvJttrnIyeKmNT3dSmlzGVb2wNursBuxyK5DUPOs9clYLGqswYZXtiu6tnUDBGQRTpLGzn5khDk+op0aur7A2kzzebz7gvOVjRgenTdVmO6uYVMctw0fA+Veq10+v6VZR2X7qHy3A4bBOK5VLSWS6dzIrB0xuwa6oyUg5ie+E90qs8uABnzHHemtPcfZpLbAdF5T5c8/Wt/RLSKaYRXIEoC4AwcfjXUR2NnEG8u3QZ/GonPlDmKGg27x6RAs/GBwAM8GrLwOdQjKNtjRelXVKooCgBR2qGWRN+TXNOom9RbkjLKVwsg5Nc9qNks06+cpkKPuUn1roBKMDFZ80g85iCK551uXVFpIzI9Js2W6YwHN0NsmDwfenyaLZ/Z7QC3P+icR5PJGc1qQSAD5sVKWBGeMU4YqXcfIjk20e0AuV8khZvvDNOhj+yQeTEoKLwAWrQuJF3t93rVCaQBj92u2FVtai5UjA1hm8xtygcjpVW4kBceWCBjkHvU+tvlufSqRy0YJ6YGK7YfDcwm9SW1VZbhVb5eeh71vXCf6Mrbyc9ia5+IfvgV7V0s8SLZqyr8xxk1y4i/MehhcTSp0nCa116J3urJNvVWeun+TM/b8w4Bxk1WvpFjs2kAO0H5vr2q5jk+4rO1F2Fk6KwGByMdaKfxanDHQxppTFFwu2WT5z6iq6RGYbwMkfeJq40LTTKAo5jGc/SmiWKFJISCrHvXoJ9CXHqUuA4K8uD17VqaQztfuUVWcx8H0rNKgLtJ+7z9a0NFYLqyhm2q0Z6UTV4sIvU6MPl899oBI6E0oyOTSBdhZSARnin8/xDkV525UtZHMamzHUZzsxwP61CrAx4B5PU1f11CdWm+RUyBwjZqpFAQ4DDJ7KK74yTpXIfxCeWcBgevFOs1xLOCw4hPf3FTyqslwsZIiwM4Pc1Batua6xtyIjzjryKIvQLWZ0Nhj7Jb7WzhBmrycsM9yBVLTwsdlFuG3K8k1cilSR12HOGGa52t2S02zS1lW+xQgf3hWIF+U856dPrW9rCbreEZ75rAHycgEA+n1q6LHIZckPGn1rRsc/Zsg4+as27ASOLHdq0bM4tyP9qqqbCNSDOMkmr9p/rODVGDOwHFX7JMuT3HpXn1djRbFxshetZV3kuOa12UsOBms65RRJl+1cM7lpE2mAfZ8Y/i7U+9jJtmJGOcYpLW6igtBukRBnnnmqWo6xZeUYhKWbP3scVvGF4BbUt2iooAZu3arimNVHyuwzXHnxAE4RgD0BAzUB8QzzO0aGQ47LVwg10Hy3O3uEgniaORF2sMfMelcBrWlCwu0itWlZWbOQc4NSm+vXKgQSkk9zUU97eQjfJAyrnqa2g2tkJxOv0XT7XTocoxkklXdIZH5zWwHU8iMAexrzlbm9cB1t5GDd89qempXsYDeVMAfxpSuw5T0PKNnhgfSoZ4uhUqT6d64iLxLcK5w7jHUYrRh8TI6gTKCc9RwawnTv0Gos6XY2Bx+lZ06gyso6ilh1yykAIlZPrUhdLgb1xIp6MtclWm1sUokaBgORin84p6Ql/unP40YweeMdQa5LtAzm7rh2+tZ87HNad6P3z/Ws2ccV69D4UQzG1MluT6VHHtEK9SAKl1EdM9NtQQpviGR0HrXq09jKRJbqZZsglSeg9a6q6GNPT22/wAqwtPjBvFQkZxxXR3ibNOAPByOtcWJl+8SKijGJ9TVS/iD2M7ZxgZzT5rgRlSw+UnGRUkxSSxnUDO5PlxVxWzHsc877DEQCS0Y5/Sm4R1ztO7OOaW5G1bQA4yh/wDQqcGBIyPlB5NdbelwjqVJUKSEH8Ku6Tb+dehzMkexCcOcZouI43IKEFjVjRA66rCFgjkZ/kxKPlHvTcvcZLVmaEt5dyao1rp2lXOpMkfmsLZWZlXO3JAU8ZI59xVaHUbiSe4t5rOW1uomCPHMx3AnPBBAIxirtuLRtR162vGjIn0lUWM3kdr5jC7hbCvICoOFJxg5CmmTyWd34l1FrTfcwJDapGzSq5j2QqpTeoAfaRt3D723Peo9nBUee2pMG3V5WQ+IUUaxcFBsBAwKoRkxy7v4sda6DxhbC31aRMbnJ61hlWYZPVayoz5qSNFvcifMjtI5BIPenWygrdgp0hyCP94U+RGUL3VufxpbQYF4GH/LMf8AoQrZPSyCbRcu2ZLS2iJJYgYA+lT2k1wlxADBsjJUE/jVa2LTPNMfvIoRc0W3n2OpRo5+SRgGPY5qHo+UFHS52WoL5iQxrzyTn8KxCpLkoMgZFbkCNcERkfcjfJ9sHFY4ySeeBxU4d+87mckZ98vyxZ6hjWlZj/Rc+9Z+oNjyx/tGtGzDfYwRyxzx6VtUQkaUJxF7+laligVtzkj/AGR3rOhGAQvD55PpVS41xoX+x6fGZp2OCw9a45Q7miR0t5fw2Ue6eQRg9FHU1zF1q8t5MVsrcsegJqrZ2U82uvbahiSTPzqT3rqpYZYmt44bSOMbsZXvxWDijX4UcdqOn6jb2ZubmQIGP3atado1tJaRTzB3ZuevFaXiOOddPXzY0VNw5HU0/S/NGnwqtusgwcE9etEp6Kw+lyrZ6dD5P7uBM7j9761V8L6O2o+JZraMhWAY/wA62IHuRDkR45PAPvVHwtcy23iGeSEhXKuCD9DTw7d25Ceq0Ld7YNFdrEXB2kgsPWsnxBCVsApIPzjnNbU4meePzIkJLE/WszXvMa25jVAHxxS5nz6Cj5k1jAzWcKjH3exqe2tnMKD+E9jTLBXFoirEu3b1NXIre6igQeQm4r2apcpc1h31sc9pEGNduAYlkX5sqfrW1NplneXcIW2RdwYsOlZem+YutXAVcPk5H41uq1yt3E3lRkgGnKTHI5zWtMh0+OGS2aRC7EHPIq5HpOsWcCXNu6yRsm/Geal8TtI9tCzQiM7utbtqt9/ZcZVI2QxjkfShtNaj2VzDg13Ydt5C6Mf4umK3Le8iuYg0bpMnqOop/wBme708RzW0MgCE5PUVxdjYanNLPJpjYeDJMeecZrF0Yz2BO6uaOpRAyyNGcjPPtWPP0xVldUa7lZJ4jDdJwwJ5Y1HONxx0b0rphT5FYiSMTUFJT6LTLfHkL64qa/GYxnggNxUVtGDCO5NehGyiYs0tIj83VbcMp+Y44rqNUt3a2jiiGZGOAprJ8LwCXxJZITySRXaaxataTvKFIMMTEMPevKxU7VkbQjd2PObq0FvM8ElyjS7jmEfdB9CaispBtCSDbhSpA6Z9q1V0GaTSxdFHzI25nPqRmsgQPBqcKnP74FT79q6qdaErxvsaVYWVzKukUJa/KSPnH/jxqNEJUqTnJ6VevINgiRh9yV1/nUIQHqcGunmTRikLPCqwxYxn2qXRo3/tGHbk4em7CUC5Ga1PDMAk1yBRkAOMmspTtBsJJj38LWmqpdXly1yGgTCrEygHknnINbPhbwahguE08zMbhFJ80g4Iz0wB61p2Wn3l1peo3trIiWwR5PKdPvoCep6g4B6V6D4Q0SQaXHNEuIriBWG7rgjI/nXkYjF1eTki7+R31sGsOuaVr3s7dH2f/A0PLPiTbC317GSMgkYFcyljcTrlIiq45LcV6h4w0S+vdZkvIvs7gAgLITx+lcnf2F5LCftbpFFGPmWM9a68LXj7OKvqcNr7HMeRIsQBQOAeSpzSWabp7pB/GiqD6EkVsHwteKsd3pUuQeDGx6itnTfAmsX97FLDaLCGdWk54wCCa6vb01fXUzl2aMzQ9EmLzRFM+XIVYEeveum1nwoJLezW3t2Bi2/P685r1m08I2cOoSXaxjE8aiRfcADP6Vt/2dbldrIpUYAGOlcboV6k/aLY1jiIQXLY8ds9HeO31G5dcKsZAIH+zXBuHXPy4z719C6vp9va6LqARQoaJz+lfP0/yucnODjmtsBJuUoyMZy5tUZl8QWhDeta9iS0KKowzHGaybhRJNCuQSTxWxa/6HYyzH733fx9q9Sb0Ijqx0801zcppdjkzSEl2x90e9dFoOj2+mWRKgPcbvmlYZ59qveH/BV9aaJDqplZbq8HmOcZ2jsKW2tLnyQTdlV3E8LXmV5NuxvFrZHM2gWTxtMzMAFduTya6S6ciSARDHznk9+DXMWSvL4unAl+bcx3Y966SWCczQ/6TkbvT2rBuysOWxi+KATp655+frU+mp/xKoCTklTVfxQkqafFvkyC/p7VasIrhdLgKzLtZeARStdWL+yhgeKG03OVQE8HPvXPWFzBbanLLM+xGJAJrb8P+FLrxHezrNdlYY2xg/XtVLSfDY1jxANK3bVEpQOeehrsp4WTsu5nGotbE0+p2RMbCdSFPJFZupX8V1D5Ucisd2civT5vg/ZwRKsmphUY/NlK5LxZ4FsfDFpFc2195zO+0jbXV/Z6Ubpmca13oY1tqltFEFeYYVcEe9XrTVrMQgGcbl45HUV1Ol/CvSLywhupdSZJZYw+3HAzU+q/CSxtNJnv0v2YwRlhgcHFH1BON7j9taWp53ps8S61NLvBVycH8a6YbHuoCDwQ3Tn6VgeHNEj1fU57R5SvlxFwwGO4H9a0IdNuNN8SPZLcsUQHa304rgqYeSXN0NpNXsJ4uT/QLZuR82MGt3T4yNKhKnH7ocDp0rC8VwypY27SSl/nxj8K3tNhnfS4Ct0UUx/dC+1Y9BvYntER7MLIMMVOHxXOeDuNYv16gA/N34Y10tpaytaLm5YgAgDHvXNeEoi2uX0PmsmQwzjvk04qxMfhL/ijw1FrEiyW2yC+VC25VxvwM4riIWllL286GO4i4Ibv7165Fpdzc3sCLcyM/IGF7YrL+IvgsadZ2uuREmYMEuQOmPWuiF5LYlyS0PKbxdyjI6Ag1XttxhAA+b1rWurUS3OB90qW4rPsYjsz+Arq05SGtTs/BFqr+JLB+CN+DnmvYtX8NJfxuFyNy4OK8s8DRJHrlkRz84r36MDH4V5X1Z4qq1e1hyquL0OAufCk8WkfZYxuG5WxjsK4m98MfaPHWn2UUOFhjMsp9OeP517sfp07VkxaVBa3lzfMoaef7zHsB0FKeAeFTnF3BYlyVmfMHiq2Ntr11ZqrM6XJICj1FUikdtKInQy3XUxr/CPevYPE/haxutWub6OZ45pjyQOlcFqGmadpNpKkO43Hm72nY/M/HSumjiozio9bF67ox7e3tb5SG3QSAZwTWh4Pga38SxCWVWRjkZOOlXIILa5aFp40YuOh5rq9JstOtnjMNnChH8QUdaxr4rli4W3Bp7nZw+BNKvbh55HuhDOxea1SdhFKx53MOuc4PBA4Fd4kaIuAowBXNaPqUf2U7mGUBNXn8QW8SLJI22N+AO4rLA4qjSv7XVixFWvXSUpNpbHm2oajhWZm4J5NcDrWrQKkiRs8hYnPOB+damsX7RWh7hj3rhprrzpihChRk5FXhMNrr0Ki0jq/D2vI2Y5iYygJXJ4xnpmvUPDmsCNAzvlT718+Wb5nKZyOo+temadqJ+xQknbkDP5VeJw9neIptONz2p9ctYbI3BkBAHTNZh8WWsqK6Pgk8r3FeV6jqUs9m0aO33eg+tZ2kXNylypMhw3BB61zwjXlZXsiFGFrs9W13xBDJo1yQdweNgPyrxO4lVmzgc810+r38iWixjJUq3B/GuOf5yQOM16GBpO8rkTt0KzAG9tmXg7ua35IPPuLK0VcrNdKrfpXPTKVnjbdgpk02bWJ5FVlm8p4nDpIOua9Ga90mmm2fUeqX8GladHEY+DHtVccDivNHuAbUMQFUZY4ry0eMNfvABPqskqBeNxzUf8AbmpMuxrzCkY2+tcFaHNI1hGx0ej3Ct4nlnGCpLD9a6yVh58CgHJOf0rzC3u3hkLwuobqSDV5dcvyMm6O7tXPOGps4XR0fi4YsYVP/PT+hrR05B/ZNqCpPyCuDu9SurpAk85fnOGqZNd1GOMILnYoGAKpRBxfKeneCGMUlwiRM7+Yen1rjdMvZrPxg0sJVHF23H41j2fibVbBn+z3bJu6lcVnjU7iK5aZZR5hbcTxnNet9Yi/ZpdDGFJpu57tqGq3tzcWy3DIV3HABIyMCuQ8fzu+hwFo1UGfjk+1cR/wlOqmRXN2SU5XpxUF9r+oajGsF3ch4wdwHAroniouNokRoWZ7FYzM2h2pZVAEC8imanq18PB92qy7kELA/pXlMPivWILdYo7weSgAClQeKik8Sam9s8L3OIGByuKPrcFBK2oSoXZ0fw9eVtduiq72NqSQP95a2NRQL4ykJjdWKt16dRXnlhq93p9yZ7G4EMjDYWC5JHX+lSya/qM92Lua5ZpTkFulefKqnSlB9zb2TcuY6zxgSNLgOP8Alp/Q1v6KC2kWxx/yzry+41W7u0WO5naRQcjPapotc1CKMRR3Toi8ACvPcDXkdrHrNmpNqo2/3v5muQ8MIT4j1BF+8c49uTXLjXtUXAW9lUA9B0qoup3ltJJNBK4lY8uucmhU7goWie4WWomzntJwPmVirCtrxne2t14Av5pyESSIhM/3u36185HXNXLgedcnHORmq1/r2rz24t7u7ujbZ/1bMcZrqpRcdDGUFozbs2EtsHIz+7PPrWPavsi+Xrk9aqC+lGxBIVGMDHpToDhfXk81vGNkyWztvCupeRrVkc4G8bq93udWVEJUjydpLketfMlhM8d5A6kja4NenNr0hsnwxxg5FeRjIzhO8Ha41FPc6K48fC31GKOUjaDg4PWta68URSwMEHUcHNeJ3L/aL9JlQ5PrWlHqzmPaT044rkqUp8urZbUOiOk13VXjspZUY7scYrx/Ur641G4JlbYqv8pXqa7TVrsz6NOgdgdvavO3kZJETBAUdTXo5bRUYt2C+htaXqctjII3HmxFsYJ5Fd5Y3Z67uB0A7CvLGdtu9Fz7112j3m6yB3HKjbVYyjzJSBSurHokGq+VDgd+vNVNS1yUwFYiDjoDXNNekRnkkkdqiN1gkswUY5Jrz44W71EnroZuv3DDTl6434rkPMCSyZzgHGa7DUIGuLCSIfePKk881yBtmnyEB89OHQnHTvzXvYeKSMk7k2mgHUhtyVAJPsK7G1laO1iXPp/Kub0uzMTnnMz/AHvRVrolwE/2QeKVVXYpOysMv9RaztmlGWduB7UaDfy3MqtN95T1FMu4I7mAxvnB7ipNGtks7hIoySOpJqbLlFdWLuvzuCijkkHFc+JSWwTg1reIMi5jbJ6dKxyOOBkmt8MtBNkc8h81c8defXisdyDcAYz83fpWpL811EjHjmqFyoF4qAfxVtUWgqb1LVldw2+8NGjt2yOlXWulli+WGNZOxwDWjZQWH9kSPJHEZQpxzzmudjchQcgHB4zXJUprmTN4SuzZgWM2kUjKm5jgkCugj0ixW1gmkukdpXwY1XkVzMLgWEXAAHJzWtY6jaStAqN86nPPTpXFKm5J2ZrOVibVtOtLRI2hV2VjyWFRppcDQxs6nJFWtbuVexRFZWw/Y+1OtnjWzQMwztHBPtRTTTsyZSfKYf2Gaa5dLeNWWMMSSB2FQ2tpbzTIZYwSZQrFfwq/aTrFPdrt+8rc59qoRP5cEci8jzv8K9GkoJpmd5PqdaugWHmRKqYVs5zioNf8OWljpfnRgNz3A4pLC9mlljWKMs5OEXPUmt7XmtptMisvnW/GTKh6D8a7nSjJXiiG5JlS38OWQ8P2d58haSMBhtHWqEmmpNZOIoFeaTIRSBW5aywT+E4rX5mu4yMRqecVlrcfYJ7dplMaK+XLHkCsnFW+ESm76mXofhwal4mj0q8LWrlSGdAMqRVa80iOx1OexZ2mEc7xiRgAWANdDpupQ3PxGS/VlWGQuUOe2R1rH1S7jl8SXgD5b7U5yOnU1zOK5ZaGicr6FXUbS2t4V8sDeTj8KuWdpp8lnG0uzeOoPBrO1iQPcQ9BhOR3JroPC8sGntFOxjkLjLJIoYGuLluzSU5JEljBoXlbpkjkOSNu/n+dcT4ileGIixOwPcbVAHOPrXoWt6xpGoaW9ktnBGQSxeJNrdfWvONQdfKtCVPlrcj5SeccVVOlyzTfchVJOLMqCfWzvVZSxHOOO1MkfUTcol8c5UkZA/pXUtfWS6hbyafaGNlB3iQ7s1k+IJ3u9QhkdUU7SPlGK65TiqvLFE04S5PeMlJZJGU8ErkDjFW4SUBHTJNUoOZDj7wzxVuIF9x7559q0aRNy3BMYnTJ/irrbe5MlpIST1NcSSQwY/hXTaY5ktJAe5NceKpptFxZi3GpXMWpj58IrYUCtszDAK8AjOKzJLeGWYsyfMD1qzuPrxWc4poLlmSRpLaRV6la5G8XEquOpXH0IrqA3y4zgetZd3bHDEpmPtjr71VB2dh8xhhi2GydoHPPeul0dmSwUt1bmsdLIzOIoYXSMHLMw61uoojiVE4A4ravJNcpNy0JSzDJpuoBpNPljQ8v0pitzjHSlZsg5P0rlSsFy0ZBx2ZfTvVOezguZDLJH8x6spxWp5enA83K/nWVrd3FY2yzWRil5w2W5xXVGMjKzJokiRNqALgYqRHARQOg61Tj13R47BJ38wyHgoo71oxTaXLAkvmqocZwxwRVuMhO5H5gztP4VNZH/S1IHSsjVtThsLi3+zqk0TN8xByRWpb3+jtLGyXUa5GSpPINJwdrgkyHxJOVv4VxkbOfastXYn5QeenvW/carZbmZ7q2O3kAcnisWz8WRy3Ti8jhSEnEbBelKjUmtLGrplVh5l9CgPJ71SuV26uyZ5344rcvvEtn9pjhhMboOs6rwPasDUr22bU2EQDIvIZT1rpjKUtGieVLU6yytpLiwkgWCIZU/vC3NUIPDlzJCrpLEeDw3B/CsnTPE8+nxPD9mDLJ/Ex6fStu08X6fDZojh96qMgdKVWnd3CLsynGHWJIhC0snK7EGSfwpbIGwuIp7yxmhVjgb1IzWZD4surDVhe2gQeW5ZFYdc1b8Q+OdQ8Q2UENzFFG6S79yDHHNRGhaJc53ZvauyNAmxQFY5GKsQiL7Mvyk4UZ/KuJfxBeXaxwjaq8AGupivY1to0cjzAvzVyTo8j1LTuiqJkF5P8AKcBT/Koc402GQEndNjHpwKglErNN5Y5k6GpBDLPYRwAbmSTPB9hXRRt1Bpm5cWmoWEFvcyIYlYjY4OM1JDqpWXfKTKDlSXPIz3qXVb6+1XSbW0e1CLb/AMW6sO5hmitAA6n5hx3rqlUcdEJK51+mavFp/k3SwAyxEFT2P1rF8R+JP7T1V7h0jSSVcNGo+UVSSK6eBFVdw+tZ02h6h9pW42KFOOM10U6i5dTGcXdWOt8NQoNa0mRlB3q45HHGO1ZmpMq+Kb/oNtww4GB1NJpl+dPvLCSdvkh3dPfFUb65Nxr1xehh9nkkLYPXNcNVx1NFexd1eFTEl0G5B24FaGkTyLaxOBHhRjpz1rn9RvlutPMcDEODxXODX9RhCxLMQFPJA61zQo83wlOTtqeiQWQmuWuUfMhYqFxwa5PWVMFysTgqVuAWBHTpWS3iPUt5eK6ZBuGFx+tVrjUpryBhcSsZi+d571r7CV1cIVIo6m18j+0UwcAjnNV/EARLuDleFbgnFcqsjhjmRmPsaUysrCT52bvk5xVLDtVOe5VXEKb0Vi+siyTLhNuEI4qW2EwVysb7cnnHWqYu1iUvGfmP96tex1u3itk8yQ+YOoVaqq5LZGMYoqgSOQSrdeOK6TSmZLFtykHJwDWFHr8j3zfvdtv6bOa121y3FusrNMyLwQFrmq+0bSsaWS6kYdGLlzjHTFIkxIHpVe51OG5sphZQujju4qvZ6xDDGkd1GXk9fShUpWINHz+flpwk6DOc9jWfJ4htlGI7TJDc1R1DVxeBFhQwoDye9CoyEbxbBAOQD2FNLjJxgY981DHrmnRQpGySO4HXFOOt6ekalreQK3tS9lMZN5h2Zx9TSbzis+/1m3ktJI7aEJu439Tio9E1C0R2t5Fkd2OAHORVexly3AykG8bncD2zULFVJIJ596qkFSck1P5iGNdoJbvxXoOK6GabJAwUbznIFRiQMCVLH1yaHfoSM+wNRnLONox3xQtht6lmOUxsCCCKheTMpk24yeDUxjM+G2jI9OKh2MWKt2pKwMfI5IyT1HWokdyyjrnv61NsGCMZ46UyIAsPYHg9qpJdELUjZiXIGQx6+9DA7gQvPfFSEETHjgUOpClgcU3ZCtcaxBySGzxTlQE5A4z0p0cUbKuWJJ53dhU0g3W/7lcgNy4OaSkk9S+XQidOihQPqaTy8Mq5yD6dqlTzPMPyLjHVhilFwiKNoGR1A9aXNroCXcbbRlJ0yrbRzmtCW/xLldp3etZDSPuYhiAT0zTSmXHXA9amVNVNx8zWxtW+pNOSqxd8cdq0op9kZUr1fqfpWFp0nlyPEDktyMdq0U37AQMgMSfyrmqR5JaG0JOS1NT7aUDJtB9geKiuZSX2lAGIyMVTcsZG44PQinSZLocEgDnnpUOTZSsW45yELKQpXPBqaO9aQ7flGAMEms5DIyP8mQemKWNZYnGUPTp1qlNiaJZLkskZKgvnHHSsu8vJYJGD7c9varUrvEEBxnJ9qyNQczTZYgZGOlaU4KT1InJotRXU7Ek7XXHAXtVB4mYnAIbOQO1R7WjOUYj3FTW0zpJtLfI/UmtuS2xm5c2411wwAIOF5GKe8SeSMHkjr6VYdy0gRSgUAjkdfxqOBJ9rOpj2qfunmmn3FaxTZVGVzn/gVBAOACeKvy3ZEJzaQcnG7bzVNWUtx196aYmkDxHaH6ik2kgMM7v4QKlyHjApqnjAU8cVVrgRncrqTjJHSiSRiqoGJB5I7U5sYHH1JpMDjngUtOorsekjLCxeY5wMKDTHZlAYj5euDSqi84INMkUE7uevek11C44StuPyfKacHPOByPWkIckZ4HqKcoIJx39aQ9SSWW3kgXAbzO+ajV2QhWbKDkDsKYImQnf1pduVPqaejKHl8PyFAPTipfMnaIJ5WQDkELUImwAssecdGU4qQ3jAYHmgezVNtBXIsrhuKFA+hpDgMyn1p6kc1okSIVCAkAE0iYyHI59Kec5AHJJ4prZDZx06ilJ6jSJm4brgVBhQxZc7u+aeGZM53H2IpF8sonZcnd6mlYL6gSSuQfm9aWRdhQPgsR2q4NPhmtfOhuCq45U0w2U3leaUymMBj3pc3Nohoh8uXymYxnZ7VI0EJdV8ySNT94sOBUMcohdvMQsRyAeKsXWqTXY8vyESIjJX+uaOVseiFjiG51EkMiIMgscVE9zFFh44wxK468IaqwosjEkkjtmgrsyADx2qku5LkPlmkuHDO2AOq9qYyAA4x16DtT08tlJZmU88Ee9NkQE8ZbI7U2kK44Oo+UqCCM5qJ2JOOeB0q1ZRqGZpcYC4ANPhtTPccdewFOKvoJuyI9OilkmQRrmRuBXUQeHdVhUtcokaydAx68Vr6Ho9ppFi15cyrJKTu2n+QqvdahJf3BlkyM8KgPQVbw8b3ZVCM56ohbQJweGi4/2qa3h69Kkh4drdfmq0iKVG7GfrU6hMcAZ9M1X1amzf2cjOj0G4hVV82NMd91Sro84U4uoMYzy1XWRCM9fxqpLGgGQO2DzR9WpgqcmzPvPCup+V9rSSN4scEHNczqFtNCuX4boRXrfhiT7VpUtrtXfEScE9qwPFmhJv8/O0nggCmsPFK6OKpOSnys86jOWRVO3jJzQ2zbkk7j/d7VZlhWG8AY70xwRUUsYCBl6Z61g007MuO1x4lYQiMtuBOTkc9KkFzcwo6jyyjDnjkCowis65PAHNG1mVgvNHKXcfL9mkkULO6ofvBhwDiow0QBWPk5wGPeo1RTHIWX5wfyp0V1NEWMQVR0ORRy2Fcma1ngw0yhCTkA0xvL25DMXPOB2qyiPdZmluAEjwGyeT64ouTp6NILUs6lwys3XA6ik00UinIQY1JPWmL1wRWglrfPZtdJYlrdG+aTHC1UZN8jsFww7UbK4rXY3I5wAMd6QNgjPIPrU0trIiLKzpgjOAarI37wEZ+lP7IralhUfduLDb6U4fewwpnIUN2JpwOBlqlLQ0ZG/EhI4+tSrHuX7pP0qLBMisOcnpVvgOxB/CiwiIxFU+6QPemLweTkVNISVBzUIUhSO9Q7sehGRnzGweDxnrTC3Poa7Pwj4b0/xHrtnZXMrJFIhaZw3cVja7p0Wla1c2kJDQxyMFzzxWmtuYzv71jH810dCOg709i/nHGGK88DqaRZjFMZEVGBGMMMio/OfzMruBJz8vGaTdykrK5PO8rM285Zl6HqK2NLTRprG8e+DJLFCPK293zWKbe5eVZjDIATyWXHepiV826X1VcD34rWEbbkSlfYgaWQYAJ45I7UrXV5LCUMzlF52g8CnlXTeWXGVFJagtDNs+8Vxj1zxSSs9BrVELlmLZ5OBzVl1DuseVAxk5qCYMkpUgBgBxmpmaD7SqzBivqtNJ9SXIiQASksRxxk85q0GhgJIfkrzkdKhfyhcM0CYTtv60TnzLgF1Kr0OBUS0ZpDVETbpUYrkqvU4rStI7dIVbaxYjuKijkQQzIVID1YgvI0gjUg7h2ArNyZ0QoU5P3pWKhik3b9hPPAx1rX0a1MMq3MqkfNgDNLaPJdsQm0Af3qsnT5lh8wyrhckENWbruJssFSnKyqIn1aRjKqKdqryBnvVBZ3znJz61EzO+Czlj60mKxlXm2evRw0KUVEtrcSDkOKX7Y/8AeqptApNuelL200b+wgWxdt/epj3LsMA1BsIppQf3qXt5sXsY9Dd8Mamlhq+65f5JF28H+da2uX8c8bIGRgeMhu1cSwA4H546VPbWv2lG2SY9cmuinippWPMxOAot88nYpX9i6SHZtZT6GqhhkSNgY8ritaWExdW46cVRuLgopUg/MMDNUqspM4pUKCi3GZmoj4bCkqvUmnQyLGSZGJU8YHUVLBMFglQg5bjiqmGxjB5PpW8G+pyTjCK0ZcaS0YFYopAerZOc1VO3dtGQCe9LHKYmLAdsZNPDkRsu0E9d5puVyEluhBGzXCpnOTwTTTHtl2MeM4qZFPnrIZFJNNbaHGTk7j+JouM3bPxPd2vh+50oIWhuQHPPHH/66wfMLy4IwSM0+L7pzx8u3OelRlCpQ5U+9Nq6JW5HvzgHHvVqQL5QZQc/WqYTfLgnavqalaERgEShlB6ZrOWxpGpbQfID8qjjPOKQljjv9KJXIOVB4HepbeRNuVA3Yyc0orQu0ebUjjDeYMfLz3qeRxHIx/Oo5mDTArg8jpSyk+cT1J7UJdAm1HYcJVdDg80yRyCvDKSOpFVgkgJIBBOelWoJ2kuIzP8ANGo5BqWiL3JtNnnhFw0M7xSbMhlOCDTCks5WV5ss4wd7ck0lqE3yBs5KHrT/ALOGA3SR524Az2ra96diWtblWRDGyrkHAOcVKzhbaBlwCTyaZLEI1VvMU9iooJAtolPckiouU9UXvLuzbq73mUPO3fnPNUkbdJcEA8j+tVwTuBOAB6GpklID478EetaJkJWGM7bl3FjkVZshE0ZU5AZgOvvUUsSxbQsm/K5OO3tUiFFjEYAHOSD3o5rCSuaEV9pUDsj2JlbpvLVl3Lq1x5iDYGPyp6Ckdd0iKoCjPapYo18xSwJx2onO4lGwLGI51JJ2t3Parmp+VH5LJJubJ4FQ3rxug8pSGXrVdx5zbgTzkfSs0rlN2QDLPlmODVu2tfOlRFbHPzE1AqCRwBzniui020hig/egl+nFKcrIcVd6lq2tYIo/LQjPc+tRalNGka2yONoGWqedra1tzJyXH3R71hth8tk5Jz+PpXDN3Z62Ao3ldkgCnHzcAdBRwBTEXtUmBnbWR7iFyKT6UpC9O9JgdjSsVqJn1NB2+lOAXvQdooE0yJgD9Kks5Y4btSThW4IpjYPpUR74C57ZrSJhVipRaZ0Nxb2jIAVJzzxWTf21sLctGCWHTNadlcQT2IEgy6cHFRTmJkfbH2rSMrM+bq0+WTRyQj8ssD164pgbawkB7ng1q3UKMWZF2yY61mSYYqccgc12wldHK00ARWAzyWbOKRwwWQZAA6CkVjHNG6jJHOKfIGmDhQNxwTmhoaGLIWwMLgnsOakjnWGbJjVgMgbh696fDbMIXkBVSpxTracW12J3hjmx1SXpTi7Mp7EESIQpJGFzn3prBfN+XG3FXr2/triYvHaJGWP3VziqMylCp2bdw7VctyVqRwhPMPmqWGKkcIShVQBTrSMtKpEZkOOmaSVSlyysgTvgHNZtjjoMlUv/ABc0piTahAKtjDHdTXy0ihe5q/5Bxt+ygnHUtTi0lYU9WU8Kp+T5cEe9TSkbsjriocgzlguMHGBUz4J6k59azluaLYmsx+9QHksjAfWqygGJx144qe2JWe3bsHAqFVP74Dv0q0vduKyJLOMyXDoCPunrUiAIkfzKPlxyKreYqYYKynGODUkECSyojyhB05oj8NhNDJ/9UV3KfoKSU5tYAvUUs0KwTPtzIinG4d6GILoowCOQKdrDJ5bTGlpJ5arg8sDyfwqpAu5t3GFPWrt4sEVmpR5DIxyQTVMDauORnrRqZtj1AcOVAAzUTIWkTA6VPDEvnFG+6Rk4qzdRpF5RjQEBh1pXKtoJDAnnRu2enakSWGMSs24kcKKuPILdMgrnHArMO923HGcc00riuOAUuDvI3DpSNGijG73oVTkDPNWbeBp3K7M/3j6UPRCXvMsabbJu81gT7VuRmLZwMD+I57VTgtJFwenHQU68P2eHyhxI/X6VyVJNs6qFPndkQX0sUtwViYmNemarFBjim7SO+adGcdawkfR0oKEUuooTjjNKENP3jFKHFQboZsIoyelSb1NNLqKLDsiM5oOTT/MX0oLg+lOwtCPbjnvTdpJyRwKlyKZuOOlNENXLOmN5dwE7PWy1uqZywzjpXNbmBBHBXkYrftgbqzEhb5h1NXZvY8jHU7O6KbxxuSxUYHFYV/CkDkKnynkHNbk1lIJc7hg9aqT2DOMFlxmtqM7bnlz12MYRhugZiBngdKRTskyOmBzWtYKLQ3qsc5gYDP0NZhGIVHdq6YtsyeiJIJlNm52guc8VD5QlnVT025pqqY0Y8Aipo2RdobjgfNSldDTTRXkj8tlD8Lu5qW6YFT6Y4p92is2QdwI4xUVxHsiUbs57elO92IS0kWKWMuSFz1FF06POzqSVz3FJEhfaQAQDU1wAT2AHGKbsFysgG8Mc7AecVdZ7bymZZJN2KrwKUfOOO1XZSwgI2KpbjOKnQXUzl6Fvep5D0NQfdBQ+tSyMBj0qdWzVCxsUdOPl3A0PInmzAYwxOOaiYFiCrYwa0be704wbLi2Bkzyy9a3pR5lYiTsZwHryfSrcQMaN+7DjvntUEOXASNNz+tbMDRWliyTR7pGzzWTdmO5kt+9RsJtXd0zUKErMzqQccDNPLnZJjKjfTVjZ2Cqu3PeqFcWZ2ZOWDsTjkYqUWu2PBYknnmle3TEfO4q3JFWGhJHRssMg0m7EdSIKscqgEggc8VHdOoQLyXzng9KmJQZBOZCu3FQeUChGfnPH0pxVypOw0tuznliOM05W2oR3J4oCYXGOR3p+0KpJG4npV2siL3FVDK6oOp71rRL9jYLEdwYfNUVhaRgCRn+c9FrUjt8nhevWuapJ3NIDlvTGjOQOBwKyJbhriQyMc57elXL8J5ghAwV5NUhErAlRiuWTPewVBJc7G89AOKdtPcGnqCMc04sRUXPTWrGeXxRsNPLZIo4xxSY+Vkeyl2Cn545pu6lcdl1E2UbKcGozRcLLoRlDQUPanknFMywGadyWhm0+taejzeXcGJm+V6zcZPNKuVYEHbzwaqNznr01Om0dBPBuB5x6VVazBQndnkU6P99D5hYNgdM1C42/Nkhc8gGhJ3PnpLldiCeyMkLgYBxgHNYDq6kIwxsPOa6MABnUhiDyKo39ujHz1bDr/Ca6qU7OzMpq6MdhlDzn6VIwCNtPUqKfGm+RMDhjg06WLEjZ+8OK6nYxWiGxnzFxkKwqUtmN1KqeODUHlbh1wakQKWIY/MBUSXYadyukbCAlScg5NKzEqCCCfSrkSEtIq8ZXJqCSLJUKmD/Oiw2Mjjjk5JOTxx61Y+zXBiwHyQc4zxiqsZ2MVkBAB7VpW85t4yQQUPrSbsJbmZKpyTjvQ/OOlTTJifchznnFRSfeyFqo26jbG7QXXnqRUauN7cd+DUqsTJGCMDcOaZuwCAmVyeaaVtgep//Z", "path": "images/3pts_ADE_train_00005306.jpg" }
depth_point_3
images/5pts_ADE_train_00007387.jpg
ADE_train_00007387.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 257 y = 189),Point B is located at (x = 208 y = 119),Point C is located at (x = 324 y = 205),Point D is located at (x = 59 y = 179),Point E is located at (x = 307 y = 162).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_57><DEPTH_42><DEPTH_50><DEPTH_11><DEPTH_29><DEPTH_11><DEPTH_11><DEPTH_74><DEPTH_33><DEPTH_121><DEPTH_0><DEPTH_1><DEPTH_71><DEPTH_62><DEPTH_84><DEPTH_62><DEPTH_73><DEPTH_74><DEPTH_66><DEPTH_47><DEPTH_41><DEPTH_57><DEPTH_50><DEPTH_11><DEPTH_70><DEPTH_67><DEPTH_22><DEPTH_29><DEPTH_66><DEPTH_47><DEPTH_2><DEPTH_41><DEPTH_50><DEPTH_72><DEPTH_81><DEPTH_84><DEPTH_73><DEPTH_29><DEPTH_66><DEPTH_47><DEPTH_19><DEPTH_1><DEPTH_62><DEPTH_17><DEPTH_5><DEPTH_17><DEPTH_17><DEPTH_29><DEPTH_78><DEPTH_55><DEPTH_19><DEPTH_41><DEPTH_81><DEPTH_22><DEPTH_40><DEPTH_3><DEPTH_70><DEPTH_69><DEPTH_19><DEPTH_14><DEPTH_19><DEPTH_41><DEPTH_50><DEPTH_30><DEPTH_64><DEPTH_80><DEPTH_35><DEPTH_31><DEPTH_19><DEPTH_55><DEPTH_19><DEPTH_2><DEPTH_71><DEPTH_22><DEPTH_82><DEPTH_74><DEPTH_35><DEPTH_30><DEPTH_78><DEPTH_14><DEPTH_44><DEPTH_25><DEPTH_82><DEPTH_11><DEPTH_74><DEPTH_82><DEPTH_74><DEPTH_40><DEPTH_69><DEPTH_94><DEPTH_49><DEPTH_60><DEPTH_3><DEPTH_2><DEPTH_63><DEPTH_19><DEPTH_25><DEPTH_9><DEPTH_29><DEPTH_9><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
5
[ "B", "A", "D", "E", "C" ]
<DEPTH_START><DEPTH_57><DEPTH_42><DEPTH_50><DEPTH_11><DEPTH_29><DEPTH_11><DEPTH_11><DEPTH_74><DEPTH_33><DEPTH_121><DEPTH_0><DEPTH_1><DEPTH_71><DEPTH_62><DEPTH_84><DEPTH_62><DEPTH_73><DEPTH_74><DEPTH_66><DEPTH_47><DEPTH_41><DEPTH_57><DEPTH_50><DEPTH_11><DEPTH_70><DEPTH_67><DEPTH_22><DEPTH_29><DEPTH_66><DEPTH_47><DEPTH_2><DEPTH_41><DEPTH_50><DEPTH_72><DEPTH_81><DEPTH_84><DEPTH_73><DEPTH_29><DEPTH_66><DEPTH_47><DEPTH_19><DEPTH_1><DEPTH_62><DEPTH_17><DEPTH_5><DEPTH_17><DEPTH_17><DEPTH_29><DEPTH_78><DEPTH_55><DEPTH_19><DEPTH_41><DEPTH_81><DEPTH_22><DEPTH_40><DEPTH_3><DEPTH_70><DEPTH_69><DEPTH_19><DEPTH_14><DEPTH_19><DEPTH_41><DEPTH_50><DEPTH_30><DEPTH_64><DEPTH_80><DEPTH_35><DEPTH_31><DEPTH_19><DEPTH_55><DEPTH_19><DEPTH_2><DEPTH_71><DEPTH_22><DEPTH_82><DEPTH_74><DEPTH_35><DEPTH_30><DEPTH_78><DEPTH_14><DEPTH_44><DEPTH_25><DEPTH_82><DEPTH_11><DEPTH_74><DEPTH_82><DEPTH_74><DEPTH_40><DEPTH_69><DEPTH_94><DEPTH_49><DEPTH_60><DEPTH_3><DEPTH_2><DEPTH_63><DEPTH_19><DEPTH_25><DEPTH_9><DEPTH_29><DEPTH_9><DEPTH_END>
257
189
208
119
324
205
59
179
307
162
48
24
197
127
163
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDx9Fw4ParcajGahRasICGxWJsOC9qbtAqUjnFJjFAEQHandFNO2EcinGMHrSGQMOaYF569+anIG7FMYANx60rgJLlQBVy4l22MEWfvKG/nVSb5lUinTvvSFMYKLtPPUU92LoR6fxdRnP8Ay1H869Q0Y5uZB/0zNeZWaYeNv+mo/mK9M0QZu3H/AEzNWQedTrDJrLQZ2ks25s9Mc1LpWz+0EgDSLMCdwLcHFY8rL/ajtKGZQ53YODV2dlsdYtjC7FwF3kjrk/4VTvsCSa5me4W+TAn0rz/xdZxS69fxzZCSW0MpYdQFfBP5GvQrUZt0+lcf4ugP9v2xA4uLKaI/hzVxM2c/ceBbFiTZ6jIRgcsARz05FQ3Gi6kW/s9LuOTbErB2BU46Y/DFathexrpl+vnfcRW3YHoMcfWppZLi5u0wQ2+2IjYcZ5B/qaFe9kS5K12cVeW2r6FJG88xCl8Aq+c4wa96tZfPtYZQfvxq35ivJ/FOntJoMs7MT9mkUL7g8GvRvC0/2nwxpk2c5t1B/AY/pTbbWvQceXePU2MGjmnVXku4I5CjyAMOoxUFpXJqaQai+3W3/PUflTRf2rsVEoyDii5XK+xIw96jNSt0rlfGmvXWhWEEtrs8ySQqdwzxigk6M0015cfE/iiZwM7BgHhVHB6UTaj4hvImkjupIkjO1i0mM/lT07i17HceKePD119B/MV5a5qHU7vUxmO6u3lUtjhyQcVV+0Pjk1Lt0K16mppy7tUtAP8AnoK9ITpXmuhN5usWgP8Az0Felr+lJjROnSplHFRR1Mo5AoGPQZOKnAzTEFTKKBAMg08ZpozUgAxQMUVIM44poXpUijrQAo9qfzkcmkA54pwHIzTA+eY0y/1q2sXAJFLFH7CrSqMYxWZZV28+9KY89qtLFkU4Rd8UCKvl4A4prrhTVwx+1Qyp2x1pWC5VWPJ/CoWXDnPTNXY06n0qNog4IpdSiuQMYzQygvkelSmPai5FNKYb2xTWrJeiFtv9UD6TL/MV6PoXN+R6oa87tx/ornjiRT+or0DQZU/tLl1wVOOa0M2eca5ppsNWC7t6yHdn3zzWpqeiTXWru1uV3RJG209+BVrWre3vIrcRy7Z1YkgjqM81Y1OdItRlmhmO7bFtUDrjGc0+ty4tcrR6baL/AKLH9K5zxgGjvNGmUcG4aI/RlrpLWSM2qHevT1Fc948YLoEVyjAtbXUcvByetWjBnmmt272wguI93lXKZ49QcEfpW9N5Y0fSJLlWYjggHHBBx/Ski8S6FcaebPUbK4lVZmdCoxgE5qpq/iDT7yBFgjkTY67UKdAP/rUO4rIpauVW2uIw8qLgfu/MJG7rznrXpPw5uPtHgy1GeYneP9c/1rgNXvdN1C1iFoC1zKNjjaQRXZfDJJbXRru0uAFdJ9wGQeCP/rU3fZj06I7vFcP42mktoneKRo2MiqCpx1FdwCMdRXFeOY0ezl38gOhHPes2bQdr+hzmhX0z6vLaSzySFVP3mzmuqIjEcbK2ZM8qO1cfoyLBqzTFD57glD7bc/0rbmuppggt0bc/DFR0rmqv3lqbQxEacWpHeHlQfUVwHxLBeHS4QQC8zdfwrvFB8tOv3R/KvPPia377Skzjlzz+FdZylC6L2zSiaQ7wFTaeMkDgj25qaFUuEW2t3blsMWPB4yf61m2UtlKX+1nJYArKTnacdKumGxt5cDUVIKl87sf5NZ2tsbKSe5g+Jbdbb7IijG5S2fXmsTdWx4kmt5rmAW7qwVSDg571id6a2Ik1fQ2vDhzrNr/10FeooORXl/hZd2t22B0kFepqvIpiRKo4qdRwPeo1HrUyCkMlUc1KP0qNRzUqgUCADNSAcUg46U8A44FMBQKkApgH5U8dPwoAegOSKd0x601OtPHBGBQB4TGmOoqyFHPFWo4+elWVgJUkLUWNLmeic9KmWLI6VoC2IiztFIsfHSiwikY/l6VWuYSGHHStdo/l+7UE0RYZxTYjIVSEbimBSNvFXTGBn0xTSgABrOxZQlXAU4oiQO54/hP8qtyICvToaZBHmdlHoelUlqS3oJp0KeVMSOj1fihBI61WssIkoKsfnyAB14reh028Kq40+6KsMg7B/jWiRm2U0skYdDVpNPV8ZTPatCKwul/5h93/AN8D/GtG2tXQrv0+72j/AGB/jRYdzF+yMi42txUEtuHTDZx6E11TWgAUpZXhzncCo/xqnLptw4wthcj6gf407ME0cubKEAnaKqyW8eegrqH0O9YHbZXAJ9QP8aqSeG9SJJWxmP5VDRaZz72yqMhar73jzsdlz6Gukbw7q2MCwm/T/Gq0nhjViP8AjwlHPtRqg0Zh/a7lT/rpP++jVeW4mlBDyO2fU1vv4U1nr/Z8v6VH/wAIrrHewm/Ki7YrJHPK8iNuDsD6g1IlxOn3ZpB9GNbLeFtXB50+b/vmm/8ACM6uv/MPn/75pD0KS6vqAAAvJ+P9s1Xu7me9Km6leUr93ec4rT/4R3VV66fcf98GmtoGq/8APhcf98GneXUXLExgpUkqAPwpsgLgB+QOla7aJqa/8uNx/wB+zULaPqIzmyn/AO/Zo1HoZJgT0FN8iP8Auir9xZXFsm+aCWNc4yyECqm5P7wo1FoX9Bxb6vbtGACXr1BFyoNeYaNtbVrYDn5xxXqaLhAKfQnqOUfLU6D5RnrUagYqcdKAFX1NSr3qNPpUqjFACiudPikW/ieTTJU3RFlRSOoJAronYJGzk4ABJrx26umuNXkuT1eZnz7VUd7DtoewT6hZ23+suYkx6uKz5fFOkQ5X7TvI7IpNeVfaZJZnDN8mDgZqwIG+y+duySc1fLFK9wSud9ceOrOH/VW8jk8jcwUVkad42v4pJ3uIlJllyC+cKPQe1cicfb4S+SmOhq5IUnJ2ZCR/Kij9TRZKduhaimrs1oIAa0I7cbDxyRRbwMzgY4rSgjO7AGcdqzIKTWzLHwCRj0qH7KAvQiulERS1LbB9CKg+y7jwOcdBRYVznZIdpxTXg4wQa2bqyPJUGqZhkXk5FJoEzAmg+YgVXeMBcVrzx/MR7ms+dPnxUtFplRlHlH2NFigN4CKV84dfWpLBN9wPbI470IUti9YwR4mOBkOMH8K9JtWRbG13MoJjAGT14rzqzhK205z0ZKt+L9YMZj0oMI/JAdHB5xirUlexDTtc9DFPVa8ej8Va1pUzW0t5LGygER3CcgHkdR6Vp2njrVnGWu7Qc4AZP8K15TNSPUcUoFeS6n4w1udTCt0FDDloPlx7ZxXRfD3XZ7qFtKuQ0jwqZFlZskjPQ/nSsO53QFOApKdUjEwKTFOpDQMaaaRxTjSGgBCKbgU40lADCoppUVIaaaBERUUwqPSpTTDQByvjoAaBjHWVa8vZBu6V6j46/wCQEP8Arqv9a8yI5pFGj4ZiH9v22QD1P6GvSwMAV534VXOvwn0Vj+lei0mND1+lTelRpgDJqSkAq1ODUSCpRxQBU1aYQaRdS/3Ym/lXkWGcKoA6E5+teuatj+ybrcAR5TZB+leXi2EWZt3yMMbf7tVFFLawybTfs9vbTuwDSnhfUetXIBsgmgc5HD8dwao3d55iQKSCY8Io9getWLVlMiMTxv2P9DVqPuWGnbQo3MRAjYjr0qaMi38iMnOXy3tmr+rWsV1fNDaYWKCM7iT361m2qrtQvyoOefXNC96SSB3ilpueiWMLO6gDtnNaFpGY7h08vLGm6VhpU5xgVrafEz+ICwUMvTnoaggtx6e8luQRkccelLJo5SZSnB212CWwEI2heR1FVJ7d9jNgGmScRcWoQMD16VlTIuzBHPNdNewtuYqvGeTWBeIFU4IznBoA5+8g2uGHfqKybqIRykmt+5RiAMZwawr8Dec/hUyRUWZrKS/TAHNWdJAN8i56tTFAyw74Oan0nCXo7EPSQ3sadtH/AKFdn/cqj4ihif4j6fHMpaN1QFcZzWzBbldPu3PTCH+dR6vbQv8AE3TXmYqiRK4wpO5uw4oUbzQm/dOVH7/xbeCUNKqrtG7rgcCowyNaXcP2eIlJQFbygCPm/vda2NQsRY/EPUYUVyvUAqQRnFW9G0Q6romur92SCQyAk4CkMvJ74xmtWm2zGNrmRpFuhgiM9tlTIylwSD0PGRXoXhDT7SKw+1QrJ5hJjLyNkkA9q4vS1aKwtYXHPmMwbnn5a7rQYnj+F+rYOH80FW5BGWHOaUI8zNasuU3wKXFV9J0VbXRra/M0kjSZXaWOByc8Vb9qGrEp3GYNJipcUbRUjK7uiH5mAz603zov+ei/nUeoZRQVGTjgVRaRljVtuSTg+1FwsailXGVYED0oIqOzGY2+tT4oAiIppFSkUxhRcLEJqsZx9u+z5X7ucd6tEc1zb3Eaa4922cJKFx7bSCadwsZPjW6klspYVAYJKu0KMn3rgHJU/MMH0Ir0rTVaXULuaQqsZdmG76ZrhPE6mPW5kYgng5Ws+bWxpy+7cs+EiDr8f+438q9E7+1ec+Dwf7fT/cb+VejDk55psSJE6VLUS9KlHBoAkjzUoFRx9KkHSgDm/GVxcW+kKkL7EkbZIe+K4aO4VoXic/KY8D1zmu88aRF/D0rD+B1b9a8/tIGa9UMMjrx9KcdyuzKMiD7ZhCcIAee+K1byFIlSQKyoV3OB0LdqzriJY75yWIw35itC/mVo1gjJZCFYk+wotJ1FbYaspCQyxpZXEg3biAGc9QahtovMijHPSq17BPAhBJCSAP7GrthLsEWF3cAYrajG02Ocr2R6Po5G9cjJzjrXU2Hlrerjp6iuL0uUqy5PNdDDdbLlWGcEYx6VkYnoFndIYs9Qo6nvU1y0X2MMo5xXM2F8FtpUI69DT77WFjiCjtxQIqX7BbVmx64rlph5hlI5wc81s3t2klqcNzisTcVRtvc5NMCux/cuSODXM6iMO2fXArduJyI2X0Nc9fyB3cg89al6lIqEhQwOMkVZ05Hd3ljTdsIrOeQEkZ5xitfw/N5YuUIJDjH+fyoWjB6o6RUUabd46+ShI/FqZqd41h8SdNnUbh5CAruK5ywHUVStdWVra9bblvJKY9SM1y+veKP7S1mzv0iMTRQqjgHuD1H5VUZRi02CozqJqKPQPFKNN8W7tNuQYIwcdRwDRYafe22ha+La3ZzfO0cZRhwdw6+nAP6etcSPEtxq/jh9TkK7pEUkDkcAcV6DoN21xY3KkXG8vI8Xl/x85A9MYz17CtFrUujG3LCz3OOgtp7byLedCHjkcMc9SFGa7DS9SEfgVbYSqGnuIQExnd865/pXLyyeckMrtuZpZSTn6Cq1o0sNtbxFioMsZIB4wXUipjpJM0qLmVj2RHC+F7eMldyyspwc9M1Q3c1w2r+MZ/DlpBAlqLvzCWwpICnjJP1qGD4iLIMtEB7NC64/HJpyTJj5HoDSoiM7kBVGSTVKW5vnjLWttGP7vnuVz+AHFcXP8QBJNHElujrvViMOM8+pHFdFpPiy01RzG0UlvIOMPgg/jUWsVqY2tXnioXqhrREtQv3rUhif++qqrf8AiGPTpGigeeQMoUTRquQc5xg/Su7niabG1gPqM1CbJv8AnoP++aOYOUZpEsk1gkkq7JWUF1HZscirxqlZI8BniYg7XyCBjIPP+NWyaTGIaY1P61T1K8j03Tbq+mV2itoXmcIMsQoJOM9+KAJD1FcNfzODPepPEAkoTYTnqDz+VVD8ZPD3az1T/v1H/wDF1SmQyaNqMhYgrcqAB3zuyT+VJlwVzotG33s8MoK7Y928Y+8MEf1rj/F9hcJq0t1s3RMwUY5Oceldd4PIKEZGAP1xT57O71HU7mGCJCEVnBd8Z45x+VQk3OyLlK0NTjPBxL64CR0javRFrz/wlGya/IrAhlV8j0rv15qmZokXpUoqIdakXrSGSoalBqJfSpAe1MRkeKCv9gXO7pgfzrz21kdYZyG+YKvzCu98WH/in5gTjJA/WvNrWcrmE4w+4D8s1US/shcBDtOM7ep9c062XDA475wR6VWiDPjLAZyOv860tNtheyBWk2qA27346U5X5bocWrala61JNT3QJGytFxuPTHSnWciwzQqOnBJHcUXtvHZXcKoQI3Klvrio7KPfOBgk5/StKDHa2p21nKVIx171rQzyM33yDjArnoLuEEblP4VoLdQhgyK351kmYtHSQPPFGMPweKdJ5sifMxPfrWNDfr5fMeQPU1IupJuzsx+NMRPdrKYi3RQOeazg7DPzHGO1SXOoh1KADk1TN6dm0KOOOlICrdOfmwcA1h3RZWJPetK7uxk/KM1iz3bS4Ujk1NyrFWFGeY5PHJrV0qUpJMoPBA5xWXD8rFee9WtOmCSOMjnGaLhY0dPlCQXjLzKFYgEcd655LCO4txM0oVi+GX09a6ax0xS0xa5USPCWEfc5rJk0S788LZzrtYZbzCAQT1rOcW1odeGqxg3d2MvTglvr5TeSijAIrvF1D7Hoy/Z45CxBBZmPckEjHbmsfS/Amp/2gbgXFoQegdz7deK9RvNPF14ehsLWCztrlNqiQS7sD+In5c+taxi1Y46kk5Sfc8r012a6YFyUXfgH8K1btPL0cSMwyBBjHfoa24fhprEBaaDUdMMZDfeL5wfoKg1DwXrTW0dtJc2PlRheVkODj2xmq5X3EpLUyIxJc3EYtVimkRckN8w61e+y6vkEWNoMf9O4/wAKSTSr6wu3uYxZIWQKVgyo471BLqGoI+0yqfoxrOonJ3LhJwVkP+yay125+z2ykIoyIAO5PpT2jvEt76G5NtHkeaZfMEbI3I4znjmsi51XUA5dJEUkAHOTWPqBN+ys7kMBhm6lvrmlFWd2OUpSVjXXxpqob7NPuumiyGCsQpA/iyuCfrVvT/GEqxrutmS4Mu2O4WR2jb/ZwxNcqYANoUtlQVDZ7elNMcsVukK3Enkht6x7vlVh3x61ftFsS6T6HWal43vdNv5rffI7bvmbCjnHQcdKig+JF39oQSIxQnkHHT8qw7y9W9k866tYJJsYZsMM+/BqukturhhYW+Qc/wAX+NSpIHBnudjN9ssorgDG8VneLY/+KN1w/wDUPn/9FtXnkXi+8jjCCFcD0ciq+peJru/025s2RFW4heItuJwGBGf1p8yDlZV8RJcDwldNPeal9nOjaX5EF1bH7Lu8u3z5EhfHmfeJwo48z61pyxyyaJqLoP3cd0oY+53V5u3h3b/y9j/v3/8AXrpV1OYW8kAc+XI+9lDHGee34miTTLp3i9Tt/BNy1xZs1pHkM2HL9Bgc1v6LcTw6teriIRujoSw5Xjt6V5lpOv3eiQtFZlVVjkgrmhvEGoPdNc7/AN4ylTxxg+1EXafMKV3DlRs6LEYPGN0hYN98kjpzg12i9a4DwtcO+ssXClpAck9a9AQUmSh4608UgFSYpFDl7VIKYg4zipAOKYjC8WuE0NiQCN69a8ztdj6sCn0Cj1IxXoHj66ig0NIi482SQbUzya80sJhHdO0oZTuGSvUc1cbPQq2gjTm1vPLIDeWTkVo6ddCKecy4XOMBDVGSzjMzSIzNvbPPpVueLGqrHB96RdoCjJBp6ppClHmTJbtUn1KHOWARTj8BVq0gKTpMrAAg/KKzLiJ7XUo/nImT5XRuGBzg1ds7j/TFGSRnGK2olOVmX0kXO4GrsNwGQc8islogUGxqWLf05rlTIaOigu02lWanGRT0IxWPsCDrmpFkPrVEmg0qgdeaheZdnUZzVVmPrUUjD7uetK47EdxMCzHris2XHmZqxIQgwOeapTnKbh+NTcpIdG/7w+tPsyUkf3qtHJl1GO2DSrIQ7Ee1Ie5t2ksn24tvUHyTjntmp47ti2CRke9Y7q1usd2gUllxhhXR+GdC/tq2uJZbh4yjhQEUY5+tVzIXKy7Z6jMV2rJt9ea1Le+mHPmgZ9TWva+BrAWrSLfXW7ByAFx/KvMtR1K+stTuraO43JFIUXcozgGqdiUnex6NFqkrxqvnbnYYwAeKz7rUTny2nPPB4rjNM1TULnUbW2lumVZZVRtqgEAmvQx4RBkAe8Z+TgkUX7A1Z6nM3F6cFfNJGeOKyp5jn1JPOK9A/wCELtmHzTE/h/8AXqnf+FLO0CHG8NnJOR/WpabGpJHnk0pKnPX61UeTGB6e9egf2BYkf6lT+f8AjTToOnj/AJdYj9Qf8alwbKVRHn+WKkqP1qJicAnNei/2PYr0tIOP9mmnTLMf8uluf+2YpezY/ao863ZpM88EV6KNPtV4Wztv+/QqSKwSSVY47KEsTgYhH+FHs2HtUecYyKaIA2SzEKOuK9u/4RrTlQZiUHvhF/wrgfHFnDp+qwW0CDy3jDkFR1zj+lKcZKPum+FnSdVe1Wmv5aXtra9r26HGSRKqb0O5c4+bqKh8xVHTFdjZRWNnYzJqKRrLMm9FIHQZwPx/wrF1aJCY3VRub7wC/d46U405KPvCxNWjKr+5tbTa9r21tfW3r9y2MfzFJwpGaeLe4f7qSH/gJqa2QC/tuAP3q9vevRdgAGBVRic8nZ2OW8J2dxHqe+SB0UKfmZTXoK1Rt0wd1W4zimxIsqvFS4496jj6VOBk0gBR0p4BxSKtPXpTA4L4hWnmXdhPtyMMvHtzXC3Nwi3K7RgkZbA716T4+OLKyIHPmnn2xXmWoRZl8xFIXgURi9WbJ2jctqvyhdx+Vh075qTULlbSSIwnEvB3A85oEO1YpC+Qw3FQe49aclnEA89wm5h0DHgDvWqelyH3Rnbbpkku2ZzGHALe5rY06AtfRFcYJBqnLciHT3tSnySkOg/u1v6RFG1xalW3Ftu4ehzWtLdkSRkR3BXvViGc5PNYwk4BzU0dySM1xotm55pPQ0ebg9c1mR3XHJp4n3Ec8VVybGg84xx6VBLL1b0FQu4GeaiaT5Rz1FJsLCtcbo92ME8YqAyEs3pURbLAdec00k5PPapuuhSWmo+NhxntSB8Occ1CWwcA9eaRSTk+4obBG7cAHRYG6/L/AFru/hrj7JdE9PM7/SvOJr2E6ZFbgN5ir82a6Xwx4jstGs54LuKZ977gY/oKXVDtdNHr1hOhiuY2xjcQMHtXhWq28l14hv1t0aQ+c/A9M12o8e6REcxRXByOdyj/ABrltOmS61y+nhDbHYsuRzgtWqtJ2ZMYyW25Dpuha484ns9Ond4WDAgZwRzWq/jvXrWVopigkU4IeMZFdVYX0sflxKqruySADkCvPPEoz4gu8f3v6UaKN0VyvmtI2f8AhYet/wB+Ef8AbMUj+PdalXa8kJHoYlrlFHSngZqOdlezj2OiPjLVQP8AWQ5/64L/AIUn/CY6wRxNGP8Atin+FYPAo3DFHMw5I9jePi/Wf+flR/2yT/CkPi/W8f8AH5j6Rr/hWAWNISTS5mPkj2N0+L9c7X7j6Kv+FNPi7Xc/8hGX9Kw8+9ITRzMOSPY6aw1/WtRuRbvqdwAQTw1Mks/t14GuLieV+itIwOKztAdV1VWYfKFOea6hUhWZlRU3phtoUZFd9CKlBNo4MRJxm1E5q9ud/wDo2YvlfknO4n3qzp73Wn3xgZ1dhKPMXaDjsBWVMu/WyoHWfGPxraEqR+IL0rgubgnLDOfm6D8K5ZvVo2jTtZjfETeZrOksVUM2CdqgfxmukVMmuZ1pSNf0iM9lX/0M11ka8VK0RclqSJxjHarC8moVHSpk4YUgLUY4qwKgjyT7VYFADgOaUDik4pwHcdKBGB4q0qXU9OUQLvkjbcFHcV5td2ckRMU8bxn0YYr2gVDPaQXKlJ4UkU9Qy5rWE+VWHc8ZtmWG4g+0LuhQjIHcUrb9U1OWG0J2ucBcdEHUmp9f8L2k+u+I5odK1O+azubOKO209wpVZYXZmb925wDGo7ferO8KeHtTvNNn1HSw6eVdPF5Zf5xhVODwM9fb6UOzsHPpZIW8tpHkfIChflx6Y4rc8NMP7Xtos5+dR9eapz2txC7rdwyROc8MvWtXwlp8s+twOqn5Tlm9hXTFKK0CWsdDjd3ahdwQuOgOKhyFXPJpFb5up5rzkWy3G/ycmp1kAHBrPL4UinrIcCqJLwmZlOaYsjEEY+lQxt19KQSlRkckUrj2JSdrfhTA25vwqIsZST6jFRrYwSW2paheapeWkFrcW9uqW0AlLGRJGzzIgAHlH160lG7sDlZXJDkAeopc4Q896rizuNN1K6tJ7j7QFWOSOUEkOjrvRhnkZVlOPepHLFDgdKb0dhLuaHkp/Z6S4+cg5roPDVnbXt3cLdR70WIMBnHpXOtIfsKr2ANbvh4ybbzyT+8MaqPp3q4bobvZnWLoGlPFkWgPvuPNczDOuk6tqDwKAsbBVGe2a6e0upWt44wct05HNcpMUXVdQErIr78qGOBkGrg1LToTOMoq5rjXryHzTuJzjIJ5TpnH51z2rzGbUpJWOS2CfyFXCYwUPmQc/exJyQRg/wCNZl8VF44Rw6jADDocCpnFRjoFOTlPUjBpc8UwHnrT+prE6Rw5AowKWjtQAhx+NNxUlIRSAjNNNSGmGgZe0T/kJqPVTXY5mUttcIcckEfzxXARyyQvvjYq3TIqY312wwZ3I+tdlKvGELM462HlOfMid5Fh1/zZMlEuAzY5yAc10H2fR7m6lmS91AEsZSvkcDnNcirFp1YnJLDJrb0iQLbTuWdT5jDCt1Gaw5k22VNNWSHalMlz4p09omd4l2IHZNpYjrx+NdknNcHEwfXbHByPPOM/hXoCL/IUdBJ3HqvSpFHzA0iCn7eR6Uhk8WCcVOCM1BEOcVN0oAkzzTgePamZpwxnimA4Cil20Yp3A8f8YRayvifXLeHww+qWF3Nazbnt5yu+KEqCrRsv/PRwev6V1Hwssbuy8N3iXljLZO987rDLGyYUomMBuccEZ56V1MWuaXLdm1jvYWmOMYPDHjADdCeegNaHWhTUloXUoVKT/eRav3ViKa1inQpLErqeMMM1HY6baWLM1vCkZYc4GMirYFOHrVXZmfNqNtTB5NJuwCR2qIMcfWkQkkgmskWyYMSufenKTu68VETgDBpV+9xQwLannk96AcHp7UxO/FDHkj2qUMU/IQR65NV01iyhtdS07ULG4uIrq4t7gNBciEqY0kXHKPkESn06VIz+ZkAe2aQxyIqsysEHAbHFOMuV6jcHNe70IDqcuq6ldXbRrFvEaJGmcRoi7EUZ5wFUD8K1ba3aRJuceWgJGOuTiqUZDS5HPNatkSRelSMeWOD9RTbuQlYYU/4lob6iug8IqZLmYA4PlggVyjSP5e3J288Vfs55Y1zC7KxAHymmraXKu+h69pNlGIlaUYlPoOleaeIoxH4ivUBz+8PNRRX+o7SPOnGD6mqk7ySTb5WYuepbqauVuWyFFPmu2MFHelB4+tGM1kbCinimgU+kMXJpc0lFIB+6mk0ZzRQMTHvSEZpSaaTQA3ig0E4pjNxTAchHmp/vCtnQ2YGULF5oLOjZXIQHvWEHxIpPQEGrEUqwySNFKCXJwQjZFFrpowm7TTsacKgeIrJR/DMc8Y7CvQUHI+lea6DbTNq8UmWZI2LszLjrxXpUPzKp9q0StFGV9bbE6L6U4cn2pVHFLjDZpFHlEXxH8WHR5NVTTNNNlHMIGl2tw5GcY8zPpzjAyM9RXqWjXcmo6Jp97MqCS4to5nCdAWUE49ua8Stdc0yHQF0Jkg8mawlM13tl3rcFvMVQM7cZihQnaeh5xXtHhYf8Uno3/XjB/wCi1q5KxMWawzTwKABinKuagoUDFRXMLz2s0SSmJ3Qqsi9UJGMj6VN2op7ji3Fpo5Lyru40m20ZdLntriIx7rjC7IsEEyKwPLd8Dnk88V1mAMH0pcZoxyamEOXqdWKxbxFlypK7fXd2vvftsL9elKooxSrWhyHzGGyCaQNtbPagHjHpTcfMc96yRbJd4OMVIjdarqMfSpVNDEidW60pOXH5VED/ADp/AxSKJUCIU3glQwyB3FaDecLmSWWUNaMGGA4wwx0A9f8ACssuPMx1wMmkZstkdDWM6fM7noYPG/Vk1a+qe9tV301Wu347jRlHG0/lV20uERbktn548Lgd8iqIUg4NPHRgPSt7nm2L1vC81g8ijOwnituDTptMnspJsHzBnHoQOlV/Dyr9mYnkb8EGuu1KzW7SCXJDRMcD1reEVa5zyrcs+V7GdNc2KxuJrlY3JCtGjnOevSsPUVRIoAk7TA7jvY89elas/hqO41FZ55XkjGMxnvj1NOuPDguZCQ/lpvLBFXgA9qSha+r1K9tFu5zSmnBiK66Dw3aAKTGWI4wT1rTXTLUhR9nj4H90UvZlPEx6HDW9vPcE+TEz467RTWDoxVlIYHkEdK9EitFhXCIE74AwKRbWEztIYkMg4JI5NL2YvrXkeeA+tLzjPavQmsrdhkwRZPfaKcIIgpj8tNnptGKXsx/Wl0R53upN2a72TTbJnybaIn/dFPFhbQjKQovrhRR7Mr6yux55u9KsixvGiEgt5Ch6HFdrFpNpFOWihTLd8VeEKJtGOBxTVMl4pLY89OmX/l7zayBR6jFJFpF/PGXS3YKDjLcc16C6CRwOwJyaHVMIq9AKfs0S8SzibfwzeyKkkm2PLfcPJrdj0WBI40KiRx95znn8Ogrdj2+XubgAdTUaBex4qlBIzliJvS+hnWmnJbTnyVwj/eFb1plkHtxVYIfbFWLM8sKGtCYTbnqaCjK5pwXPAoQHy/aqGsXM1rYoYH8ppJkjacgEQqTyxzxjtzjrWMpKKuzvoUpVqkacd2ZI+G3hM/8AMJ/8mJf/AIquotLaKxtYLW3TZBCixxrknCqMAZPJ4FZNss2m63b2S3dxdwzxuzrMwZoiMYYnGcHpjgZzW8vJ5pRnzblYih7FqzupK6fldr80OA4p4GB6UAfnTsdKswAg0nWnfSjv0oAaO9AHIPelPtTh1pgcD4x8V+INI8Qpp+j2mnywrZrcyy3bbFTLsvLl1UDgAZ6k0zwV4z17W/FV3o2sWdnbGC2M37lWyTuTHJYgqQ+QR14INZHxQuLOXVZ9JurtLJri0tbiKeRHZMxvcAo2wFhkSE5weVH1qh8Kzb/8LAvltbma6hTTdizSg5baYgcA8hcg7QeQuKq2hF3c4RTxmnDnPrTR9acOprE2HcYHFPxio/X0p2cnihgiVcbc048jFMwQvWjPB/OkMSIAKc9c1OQM8DjFRDrjpxmn/wAIHfmk2NKxHIxOCOCKVTkt9KR/mUGkj+43rT6E9TodBY/YJsf367oElEU9OvNcL4d5tJgD/FXdMDhfpXZS+E8vE/GOTGScjmpVGAaiVTxzmrES59KpmcZdCQYAApZFOVYHGOtNcYTg96A2QB6ipsVzE5YFB7VCrgzq398YP4UqMA2PXmoXYKMjja9Fg5i0VycelMbKAep5pJH+XcDTgwYZZhnHFIbfYbucc0MBMRg4HegMd2OpPSmncCcRtu9AKLoEpdBwUBtoJqTHvnPNMSGcrkpyfWpFtZWAycH6VLnFdS40aj6ECHK8n7xJNPGCzEelWorAIys2WA7Hoa0zFbtaNthRTtPQVDrLobLDS6sw3TMIB6GmomMVKw/dpSooJNanOKvAp1n/AKw++RTTxwaS0+WcZ6E0nsVB+8jYQfu8UrQxzRmKaNJI26q6gg/gaco+QU9BWDO+La1RWsNJsdO3fZLVI2PVuSxHpk844HFXQMt1zSgcdaFHJxSSSVkaVKs6sueo233epKBT6ao4p/cUzMbQKcfypMU0AgFKq4oAOfwpfpTAwda8G6B4ivUu9UsPtE6RiJW86RMKCTjCsB1Jp2ieDNA8O3j3elWH2ed4zEzedI+VJBxhmI6gVmebeXWj3Wtvq1xa3MJk22+V8uLBIEbqRy3bJ55HHFdZayvPZwTvE0TyIrNG3VCRkj8KiFXnOzFYJ4dXbT1afk1+fqv8r/LoOaeo+aokPFSA4wc0jmHA/Kach/nTeOfegHB4oAmJ4pBjFIDkUDjmpGSDqxPpSg/dpm/gD1pwPAoGDDCsBTU5FPcZJ+tImBkexo6Csbfh1wttP6bhXeK5ZVPYivP9AOYbgHpkV3kZAVfTArspbHmYn4i1Hzx61chiDMiA4BOKqxkAZFWYmKsrDsc1UtjGnZPU0hYwxgFhubHJPpUiaREE81lILH5VzwKmiPnXIAHAGT9auzttj/DiuBzl3PYVOO1jEk02L+HI5wKcLCLcfkBHTpWj5YGOc08IO1Lnl3GqcVsjP+xxgcIPypjW2eFXnsBWr5eTQiABjjkmlcdigLVI8NtDOowDThCOCBwTVwp6gAD8zSFOV4xRcCIRD0pfKHpU22lxSGVjGMU6PGxgzBWA5z3qZlyKrOhJBx04qkJmNMcBaWNvlyabcH986nsTRH90Cu5ao8h6NokbB5oj4kB96axxT1OcUAtzYU5UCpV4OagQ8D6VYQ5Fc7PRiOx3oGOcdaOnFKox2pDJ1p3XoOaYvYU8ZxTAQ/Sk7U48fjTSMA96YCjOaUdxik70oPvTAzpNA0me9+1y2ELTc5JHDE5ySvQnnqRWkOcYpvOc07ODSUUtkaVK1Sokpybttd3t6HyovUCpOvFMUjNPU81LJHZ6GlB/WmLxkUoPIpASr0pQDn60xehp3YUih+AGHsM0qn5VFRrn5ieuKlQYUUmCJGyYyfekRTyw6YqQAYYUL9wLjsRSTGy7oBP+kAegrvEPypn0rgNBO17j/drvUJZY/wDdFdtLY8zFLUvQmrqtgcjis+M8irqOdoPpVyOaG50unxBUVv4jyamuPuL6ZNQabJncD161Pd/6r8a8xnuohj+bJPrU6iq8PPAq6i8UihoWlKbQBUmKMc5PbpQIhK44HU0mzMn0FTAYyxoC4U56mmIi2Zo24qTFIRQMiIqJuAasEVC6ZPNCEzm707b1x60KccU7VIzHqCt2aowea74axR5FVWm15iseetSxtlRk1C3NSRgBfxpkrc1oj8i/SrUZyCapwf6pPpVlDiud7nox2JieDzQnPNNPIpy8ikWTqafnqKhU81Jk0xCjk5/Kg/1pKT880AOHBzThxxTRz+VKOBTAO+aO3XrSj0pOB19aYHysgwTTlNIOlA4qChWOORSjoBTThsU/OCKAHrTmxwRTFOaU0hkpOFNSKflFQbgUqXsKkonB+YHtinoMufaoGPTFTxn5s0hdSzoR/fTjA+7Xeryqf7orgdBOLqYf7H9a9AHMaY/uiuyjsedityePk1etlLyIvqQKoxcc1q6Yu66j/wB7NXN2TZz0o3kka9sfJ1DZ2ORV28P7o/WqF2DHPHMOx5q5cSCSH5eeN1eaz20R2+SMnvWgg4rPswWFasacVJQgWlK1MI6XZTAr7fWkI5qwUppQUCICtJsqcJzS7RQBWMZqN046Vd20xkoA5vV4CYt+MkHNZij5M966m9txJCw9RXMrY3AYjeq4rqpVEo2ZwYii5S5kMAJxUjjaqgGo5rC4yGWQEj1NK6usPzqQRWqmnszndOUVqjVtjmFPpVpDxVGxffaqfSridKxlud1N3imShiBxUiHHNQj8qmTgc4zUlkmM/wCNOyNtNFL1GKYC5zxS96Tik5yaYDxTsU0U/sKaEB68cUhxQR6U4j/GmB8qZoz8uaaOAaUH5KkYq/dp2TTU+7Tj1pMFsOU07tTFp2aTKQvIQj3qbPyiq7N2qVTlBmk0CJWI2g1Oj9DVNjhfarCtjBHIxSsMuaKcXU//AFzNd/ZkvY2zHqYlP6VwGikf2i4PdSK9BjYJawgYG1AMfhXVR2PPxW9iygyuQa1dGkU6gqZGcE1iW5kuJGWLIwcdK2rHT2hfzWLM+P4R0pVZqzQsPRfMmb91tePAIznio1Yra7e44H0NVAxDAlDmpfN4Ocg1wnqGjYRdVznHWtdEAAqhpcRW33uMFuce1aORSGGMUGgmo2cDvTEKaYT2rL1PWIrO1mkEiBkUnk9K8vk8a6zHqjzQXTtGx+WN1yuPpTSu7Dtpc9kHNO4rj9F8bW97bKLiJo7kEK6Dp1xkZ7e3WuljvoJE3mVQp9TQwcWtWi3TSOOKg+2Qk8uAO3vTWvos8ZIHoKRIkqvg4AxWJLtWdhjPvWpNfoykKsnsdtZszRlflQ7/AO8WppiaIGwTwKiYcVKR6YppU00RYW1KorKOOc4q4p+lZxDqc4NW4pQ6e/cVadwtYtjp71KvSoEPHPPNTrjFUA8frTgec9KaPWnDrQId7Ypo6mlHHcml6mmA7GKcPam96cOB1qgF+lL6CkxilPYUxHyjjrQoOKQninE7VFIYKcDFLzk1GTyCDT80guOHGKdnrTQaWkMUgswqTOABUajGKduAJzSYx4BPHFKjkMVpnOMjtSDO8HtRYTZqaW4j1LLHA5zXoFlcxXFtBOAGVQMg+vpXm9qf9N/Ouv0VncSRhjg7QB7k1rCVomFWClJM7PT0BBkxyxJOO5res5jCD93BPesy1jEcSoOcCrijsfyFcknd3OiK5UaTXMbDBVD+NNR4dwxCWPuc1XRWXogHuamVnzwc/wC6Kku5ox3ZAx5bfXFPN4eyP+VVkE5H3CfqaH81eqH8KNQuTfa3PSJ/xFVbu6lWF2VCCB3NIZT6GonbdwePrRqO5wXia7I0qQMx3M4H1rG8JCCfViJ13PsJjz0zW748tGNnBNGBsVjuwKwfC+n3TXqXsajy43wST147VcVaDKcm2jZ8VW0cFmLqP93OHADJxnNa/gvUTe6Y3n/vJI327iM5FYniqC8vIoxEgMS5J2nJJ+laXgvT57LTHMyMrSvkKRzjHWiCvC7JqytKx2Jl9ABTTIx7/lTo7aVlGU2/73FTC1wPmcL+FSTcqEZ6mmFauGGAHmUn6UuLVBwm4+9AigQPUUeVu6ZP0FXvtEa/diAppumPQAUAUmhI/v8A5VVljkUEoGB+labXDHoBUTTMwwRx7HFMBluzKAjNk4zgnmr44FZsMcUUpaNW3P8AeZmzitBTjGa0i9CWTClGelNHTP6U49M1Qh3Q57Uo57cU0CnLzTAdjilA9KO2OlKOv070wFHIFHfI7UA96KoR8n44pSRTQaXIB96QCdacvPJ9ab3p1DEKDTg1Rjg04Gkyh+7GQTS5Cio2GSDTlHOTSsF2P5xxTkzu5pgOAaVXGfoKBluA/wCmDH+eK7jwvFuEcp7sT/QVwMDf6Wh6Z/wr03wTCJUti3KLHvYe+TRLSDJ3kjsoLeV0GFIB/iNXYrNyuFc59hU0bqMbjgdhUhucfLGOD61y3NrEYsmUf65focmnLCQcCVR9Aaf5jnq/6Uea5/jamIcImHSaQ/RTSlHxzLJ+KUzc395vzpN7A8M2frTAeYARyz/98U02qHq0h/4DTd7Zzvf86C7/AN9vzoAzNatozbKpDMCcEMvBrI06wlheSK3GA3zBccCujuIjOu1mJ5yKgisxHJuySfWptrqWpWj5nP2+mm0L2zbshy5JbOSa6fTpAlsg2kkDtxSfZo2bcyAn1NTqoUdMVS3JbuiRppG6HaPaoyp70u4DpyaBuPOKZJHikx7VIQTTCPagBpppFSYppFAEZFMIqbFNIoAgZSOlWYJtwAfqKiK5puNpBzVJ2EaSH0p/Wq0Mm4e461ODnvWgh49KcOuKZ3p47UxDu2O9KOh5pO9BPpTAdnA+lHHembqU9aYj5PzxThyM03tS9jTEAGfwpc80i9TSdDmgB+aXNNzRmkMkB4pc9KYDxRnFKw7j2OaVRzUanjmng/PQIkVv3ytjGMdK9U+HrF9JkYqNiyBSe/A6V5YVwEOetev+BIvI8IIw4Mjs5/P/AOtU1H7g4L3jpo5zJlj3q5ECQKy9MDSRBq2UTjk1zGrHqPWlwPSlCoKNq5piE4xSEVIFT0pwC5ximBAFpduelSkCjIoAjCUhXmpc9h1o2560wIgPWgipQmAaFiLUCIlXHNOLY4qVo8Coio55/KgBhPqaTGeafs74oxQBGaaRTyM00jHFADCMUmKeQKQrQBHikK8U80lAEasUbI61cjkDrkcHvVRhxQkhjbcPxFVFisaKmng5HvUCMGGQeKlVhWpJIenFBPPNJngil/wpgITmkzzSH2pCcA0wPlOlHemUuTVEIcDzQelIKCaBi55pc802jPNAh4PFGaQHAozzSGLninA/NTB0pwHNAFgsTHHk9K9k8HkDwfa5PSMn+deLlvlUCvZtBmig8J2qowIaMKuPXGTWNX4S6e50WlALaIPatQGsvSRm1U+1aqLWJqPBp6kY5pAoxzThx05FAg24NOApwYY5pN2elMQbQRyKNi/5NIc0vPrQABF6jrTgoA6c03dgetG8UAPAXqTSmQAcdKhLYHWm7qAHk00sB0puWJ6UbGPWgAJ9qaeR7U/Z6nBpCKYEeMUFc1JTORQIjIplSMKYaAGHpxSdqf2ppH40ANprDuKcRSUAEMvlnB6fyq6r5A4rPZe4NTQSkfIxz6VcWKxfU9OacT7VCh45p5PFaIAJxx3pmaGOOaYT2piP/9k=", "path": "images/5pts_ADE_train_00007387.jpg" }
depth_point_4
images/4pts_ADE_train_00019267.jpg
ADE_train_00019267.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 235 y = 205),Point B is located at (x = 21 y = 124),Point C is located at (x = 169 y = 214),Point D is located at (x = 122 y = 125).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_70><DEPTH_11><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_49><DEPTH_78><DEPTH_77><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_17><DEPTH_70><DEPTH_17><DEPTH_11><DEPTH_74><DEPTH_69><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_32><DEPTH_17><DEPTH_67><DEPTH_11><DEPTH_72><DEPTH_69><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_57><DEPTH_50><DEPTH_6><DEPTH_38><DEPTH_74><DEPTH_72><DEPTH_6><DEPTH_3><DEPTH_17><DEPTH_17><DEPTH_23><DEPTH_51><DEPTH_17><DEPTH_11><DEPTH_64><DEPTH_40><DEPTH_11><DEPTH_42><DEPTH_61><DEPTH_20><DEPTH_66><DEPTH_59><DEPTH_26><DEPTH_15><DEPTH_25><DEPTH_29><DEPTH_57><DEPTH_45><DEPTH_14><DEPTH_62><DEPTH_81><DEPTH_84><DEPTH_29><DEPTH_35><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_81><DEPTH_77><DEPTH_72><DEPTH_29><DEPTH_64><DEPTH_69><DEPTH_45><DEPTH_72><DEPTH_40><DEPTH_29><DEPTH_72><DEPTH_44><DEPTH_29><DEPTH_16><DEPTH_14><DEPTH_1><DEPTH_42><DEPTH_14><DEPTH_14><DEPTH_14><DEPTH_39><DEPTH_14><DEPTH_39><DEPTH_END><DEPTH_END>. Since point B has a higher pixel value on the depth map, the answer is that point B is closer to the camera.
B
long
4
[ "D", "C", "A", "B" ]
<DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_70><DEPTH_11><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_49><DEPTH_78><DEPTH_77><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_17><DEPTH_70><DEPTH_17><DEPTH_11><DEPTH_74><DEPTH_69><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_32><DEPTH_17><DEPTH_67><DEPTH_11><DEPTH_72><DEPTH_69><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_57><DEPTH_50><DEPTH_6><DEPTH_38><DEPTH_74><DEPTH_72><DEPTH_6><DEPTH_3><DEPTH_17><DEPTH_17><DEPTH_23><DEPTH_51><DEPTH_17><DEPTH_11><DEPTH_64><DEPTH_40><DEPTH_11><DEPTH_42><DEPTH_61><DEPTH_20><DEPTH_66><DEPTH_59><DEPTH_26><DEPTH_15><DEPTH_25><DEPTH_29><DEPTH_57><DEPTH_45><DEPTH_14><DEPTH_62><DEPTH_81><DEPTH_84><DEPTH_29><DEPTH_35><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_81><DEPTH_77><DEPTH_72><DEPTH_29><DEPTH_64><DEPTH_69><DEPTH_45><DEPTH_72><DEPTH_40><DEPTH_29><DEPTH_72><DEPTH_44><DEPTH_29><DEPTH_16><DEPTH_14><DEPTH_1><DEPTH_42><DEPTH_14><DEPTH_14><DEPTH_14><DEPTH_39><DEPTH_14><DEPTH_39><DEPTH_END>
235
205
21
124
169
214
122
125
null
null
97
122
57
32
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD1T7RscfNgUralGp9qy7m6iGdxwOxFZkl1D5mN529zmvXVNM89zsdSL6MqTkdKWO7iBAPUjNcHNetHMGic8cdetaFpqg2ZZuRjim6GhKqnTXN3FGNztgZ7VVuZlaPcj8EdTWFf35nh/dsFOefeqH22ZomV2J9KqNITqCNek3R9AeTTrhxOVVhuz3zWawwTzQWOMdq6eVdDHmGyxhJWUcgGmYp2MmjFWSJRUgQnpTxFmi4yIVIoBp/l7eopCcdqm4xwijAz1o6niomY0gY+tFguXFygpfLEg96qiY05ZmBqbMdycJsIzke9WGK7R9Khhk3fe5qYlSRioZRCAMmp4WGcYzSBAXIA7VatrfDZxn8KTY0XrZymMKa04pzgEiq1vF09KurEK55NGyJ0lLVYXkVBHERVpErGVjRDDHml8viptuKUDNTcZXK0AVMVpCuKLgRFaaV4qYio2p3ArvHmoWjGauEZqNl61SYik6ZOKBFU5XmmnjiquSMZcDimYxUpPYU0rTTAYB7UYpQBnFO20XAjCimuOKlximOM0XAyLvyXOMkHNZF1F5bHD5BrdkhCDBANZ1xZySkmNSfauqDRzyRkDk0q5yQKvLpV0x/1LVftdDkJ3SAqPXGat1IolQbMpYyAO+akMQx0rp7fRYjwyK+P4gcGp38Ooy/IcGsXXijT2TOLlgHGKgMLDjFdZN4buAcBkxVb/hHLjd94n6CrVaNtyHTl2Oc8hs9KDCR1rsF8MzJCcPuJ9R0qhJ4duE3b2G7tTVeL6g6TRiRQkkVbghDNgirH2OSCQxuOfatCzsSzA7TSlPqOMWUvsG7jFVJrIq+MdK7FLYKv3eRTDp6FtzDJrJVrGnszk10l5Iywqtcac0ak88Cu4NoiptAwKytStwIXO9EUAklqca12S6Zx+zaMe1Koz6VbuLYRBC2WMh2ptIAZiOOTwB71zuoaneafM3+hCePewUxt2BxgHoeQeaqeLpQfLJjhhqk1eKNsAhqsoQcVxFp4xlnZy9nGijIUeYSSc/TAFXZvFV7b/Kumx7uOWkJxkcdqyeMo9GUsLV6o7W3AZ8e1attD0zXnGjeN5IZm/te3Ypj5XgTpg4OQTXd6T4n0XUgVt76NZACTHKdjAD2NSq0J7MfspR3RvRJgdKsRxsT1pIQpjVgQQwBBFW4k5qJSKSHRxGrCx4pUXAqUCsHI0SIitIBipWFNxSuMYRSEU8009KBEZFMIqTBzSEYqwISKjYVORTCuaaYiBlxUZB9KslaYUqriINuO1Rv+tWSlN8sZzTuIrqh64p+Pap9oFG0UXCxXKU3ZVgqKY3FFwHf2cjdRk1LHYqowVH5VOJVLDApHn2n2pc0g0HpCg/hFSbQvQCqxuAR1pn2j3qbNjujQRVJ+6BUm1V6Vmi5460NcsBwankYcyLzutAdfas3zyeppvnsW60+QOY1fNTuar3BLRsVC5PrVPzqVJG35PSmoWC5HDp8KMZJCJHPr2qfYAcj8KsHDKMY5pu0Zp8ze4WQwKaceF6VICB2qKadEBFJXYDDEZB97Fcl458yHRJ4YHiVpIXZmk6AD+VbVzcyL/qmOPU1zPiHyr1mjlBdgq8Y+8M5IH59qnEJxp+ppQs5mQSE0q1IdWKRII0dchAV/IDjIzk4wT1rm7mGW8tXUXJZCSo68f3iOcZ5PcVryRiS0f5RGqHKxuPvrjpn1J5/nXNahHfGWGKC4+z25ctMJZgoPHUA/SuGpPmlc7YR5YkbxWhcRwqVIOxOeBx3JJ9f0qnd6raMWWAHAwGKSNjIPPU9D2q2ktvHPJ5c8UgTK+YsmQ2fT/D3rBvI1WaQxkkE5fkZzUx0HLUtjUV2MN0oBDDBbI+nNPlngcAkhxuI6YbnHNYqsSpG4kE9MVMhCquMjnnitLkWPX/h54tjQ22hXmCjHZazj1/uMD9eDXqyx4r5i8P3ZtfEumOysxS6jbjr94V9TBOa3hNtanNUgk9Biin04CgincmxGabTyKZ3poQU007tTTTASkIopaYhhFNK080hppgRkUwipGpmKpCI8Ubak20hFFwGYppFPNMNMQxqhc1KxqFqpCY4ykVG0xPBNQmXPem4LNV2JJfMoDjNN8h+TQkLHtRoBMDkcU4ZxSRRnvUgUg4FSMaATQMA04qc05YxxmkAgHFSooagquMLSxod2KVxomGAMClzzShQq89aVQC3fFTcoXazjigWiYy65NTxkdMYqfaB1rNzaGo3KDWULKQYxXB+LDb2F1cM+2FI0U75MYzwc8/gPwr0or6V5F8WJVitLxXVC8jogIHVflIz7+4rKrJyjZm1FWlcw7a8S7spNQim2xEnazLjIHXjrjjPbiuK1i+h1GC0ljVvm3jcwxkAgDGO3Bru4FkGmwwNGBBk429T65x2+uK5PxNZP/a0cFnbh444sDyU755yBwOaxikqtmdDbdO5W02XMBiCr8nQjgknPJPfGKytS8yMz8psAwrrxu9f51saRaPElw1zCdrqAFJ6888Ag9KztXiE5naMDOOmevT8zTm17TQmKfIYVqd1wqliAT1FavzRxNhlO0biDxnrWXDbzJKj+WwAPJ9K05xvidsAkLjPTmrnZyViYXs7ktpeebIkkXysjBgG6Aj0r64hYvBG7Y3MoJx0zivjvTpH8uWJSP7wBFfX2myCbS7OX+/BG35qKpKzaM56pMtUhpTTaohjWph6080yqRIlNIqTFJigBmKTFPxzSGmA3FNIp/Smk0CGkUwink0w1SASmGnE0wmqEIajY0rNTDzTQhjGomqQ9ajIJNWiWQCI9QKnEWB0oVqeGzTbYiWP7uDTguOgqINUqNUMoRgVpFBZuKl4brSZ289DRcYCJm9qesQXvmmmak833pagS7AtIOGyKbvz3pwNIB4OT0JNTpGzc4xUce4npVtDgcmok7FIci7ecU44Jpm7PQ0g65rOxVyXAryX4n6c+s3y2VoiM3mqZHY4CALz9e1ergMR1xXD+J5Ylvrp7hlVIlDbicYAFY1dEbUfiOYWyiWDaHO2M/LhQAOncmsu6MLrN5YRGHACxkj1x07f0rUnASxZtuFACg4GQevfjvXO3B1IXEDx4eM53gsQCNuPbgD+Vc7u3qdS02KcziGRoY0JkQEyhlYEggcAZx61zE1sjajcTREoGYbgO2CP610VyJTG9w0kK7vlBABLceuPUDnrWPPbPG8kZYABiqgHjJ/z1q1oS0Z12ApwrhTIOVX6d6Rgu1I1Yl2TnjofTFSyIwLAFN2BhR94fTj/PNNdRgHlXxwSeAatEiWtsiz5Vfvdc/wBK+pfC8vm+E9IfPWzi/RQK+YYmZsBtoxjp2r6P+H85uPAulMWyVjKZ/wB1iB+laQd9zGorHSZpCaU0hFaGI00mKcBQeKdwG0UoFKeKYDDTGNOY1GTTEBamE0ppMU0IQ000400iqAYaYTUhppFMRCVyaNtSYop3ERbKQpUpNMLYp3AoKakBOKrBuOtSq1aMgsKaXeRUatUgxUFDw9I2SKQEUpk5oAQBjRtIpxfHNLvDJzQAKCOpqZACfvVEq5GBVuNVXtUtjRMicDmpRUYYDpS781kyh+RSqRURoywosMn38159rUhvJJ/tloEZ8pLEeQB9a7suR2ya47U4llu7hpJFXJZvvbdqj1zxXPXWiN6D1ZzkzySQyFVMkCYBx2PXAP07ZrEvJzJDJICNwG3jGB6Zx171oa0lxFZyWlo482Ji4BAA9xgnPYY4HXFZlxE8215Zjgrv8rBHzZyckjHGe3rXPc6rFNrcMqgpsiGTIzKTuJHp36H8q5nW/NillLZVYnIJAABJ7ccV02oXEWn6XJIY/N3KEWNQPlJA5OMHA5/rXJa48T2CtGUA8z7qk5BPrnrVxV5JEN2TZVtkN3A0ykjYeQOoPanSgqq/vfMHcDt3pmlLK1pPibEW4ZTcOvrj8qsi3TeFDuDnHQc/X2q5Rs7ERd1cZBIwcbgrD6V7/wDCWWaTwaVkZDHHcuseM5A4Jz+J4rwMRc7AcPuxz6V7j8HSW8J3KPkOt2SVPbKLVQ3IqbHoho7UbBSFcdK1MQyc0hpuTnrSk44p2EGcU1jRmmmmIaeaSlJppNMAzTSaU0w1SEBNNJpaQ0xDSaaTTjTSKYDc0UE1E74p2EOZgKhdxUbuTUDt71aiS2UknVuhB+lTCYA15r4Y8RKb6O0uJ1iZyWKKNwdj057Ada2rnWrifWoIdOQvs+WRyMpg9OR2yP0pKrFq43Fp2IPH+t69Z6hpFpoeqQ6eZ4byaeWaIOmyGMSEn5GPChug5Jqh4B8R+Jb7xT9k1fWYNRsZ9Na7t5IIlRWxKI8/cVhghxgjt9DUHxD1e30jXNAvLvf5X2bUISY4VlIMkAjB2OQrAFwSCcEZrN+H2sW+reOw9tGqi30YwNILWO384iZTuMcZKrwwXg87c96wk37a1zVJezuezedg9acZgaohs96kRsGuqxhcuCTtTllAOKqBjmnqcnNKw7mijg8g1Mrj1qkgIAwDUwXJGTUNFIuBqerVV3be9Sq4I61DQywGpwNQgj1p4NS0Me7KqFmcKoGST2FfPuqeN/F17qmo/wBm2uky2BvrixtjJOqPPsYHaqmUMxw6fdHO4D2r6BHUA18p61Lpd/JPb3WrRWMltr9/cSxmKRpDHJ5IBTapUnMbjBYcgduaxqrY2pu1ztvCfiK71zTZ729tLe2njumiYwow2gKpxgk85POfyqWe5jnv3tIt89ymGCRRFiAR13fxDHaqHgq5Ou22taii+ULjVZ7sQBd2d2whfTjdWhMi2Oo3d8rPFcSqEzBgljjuAcDqD+PtXI0kzsi20U9lwFWN7e+Qxq2ecDbyOn41zmpW0f2ufzIUSNg3loDux0wf84610rW7M0bvmSHDYQM2XOOCflPHft3rnjcQF5WZPJGAgVmOT1JIwD7D8qqL1JZRQKsIjgWMByMhOMkHvzTXU7mACBs9N2MewqQTW8oLLHIJfvBg3Xn6elVy7NKdxAAYE59eozVkFmJkeMLkE435K859BXr/AMGrgPbavbj7ySRvjPYgj+leLriRhx39MYNerfBy8EOsalbuQGmgVlUnurc4/wC+quO5FTY9l2sR6UFcdTURnpjS5/irVRZhdD2xmoy2KQvio2kq0ibkhakzUYPc0Fx607CHE0hIqMyKOc1G03HANNILk2c0maqNctjofyqM3FVysVy9uHrTTIv94VSEoY8nFRlgGzinyiuXy4qNpAO9VGnOOOKryXH41SgJyLck6jvVOW7UVQuLph3xWbNcNk4at40jKVQ1Zb4D+KqE1/jvWc0r+tRHLGt40kjJzZ43ojSk3CQKPOEbMrZxgAHODWr4V8RTaXfGRm2wuQrRM/3uOvNc3HdNHOGjXG4bcAVp2enz61eEadAhlwPvNyCMnk9uAa+fjfmTW56kkranqP8AaWk6vpsN9q2l288e9kgE0Sy/7xGRx0H5V0WmaTo1mRc6dpllayOmN8MCRsVODg4GccA4rx431489lFKZGigVYz5fRdpwwGfu9OuOa7vwbqc19cSbpS5jBRy5Ykn1B6Z6dfTPet8PivaVOVr+l37HVi8teHoqrzdullqrrld/eVt3p07o7fpUsTHNQKc1IpweK7zySxwTUqACqytzzUgapYy35gHSno+RzVIMc1OjYFJoaZa3A05W5quG96kVqmwy0r4qRJMc1VD04PipsO5aaTNeNah8PtBvLzU7yTTUIZ/M8xZpPvEkuSN3TJHQY+lek+I9RuNO8O313axs88cR2bRkrnjd0P3c7vwrzxmurC9szDqE92LtwsiuQyyZGSyjHCjIPH51wYupySUUetgMC61Nzule6Xm0rv00fX/NqDw/bWVrpdxDoNpFGjSFZAZC2CQo3bmzjoOM0ya+uJHmtdkcQhxgOwkBbknpuBHSr39lWmni6cygyyOSYwMhT36Hjr+lUrsxsEWSBo38oFVLAZPrnI4xk1je5Nisl2LdhDM8Vy+D0HljG3jsMfXrXJX8krXLbG2gLgZ9vrXSzny4yFSBgd3GQTx+Bz1x9c+lc/dQgoTDhmI5CkgYxnqQM1cSWjMZlDDYWZgBuJGMnuB7Uro5lLNkF+enWpmhJXLPtIA2pjqe3IqARuWJwVcNjLHAqyCTAj5U/Kp9a7z4VeW/i0GRQWFu7Jnqrccj8Ca4NpZA3zAnvjtXX/DyUjxpp7YK5EigdvuGtIfEiJ/Cz3dj/tYpoI/vc1EzZ6ikyO3WuyxxlnPcmgsAKrgt607dxyaVgJN4pjMDUZcU3d6U7CuK3XpTGHvimlyKjeTIIzg1STFcUkjo9N3HvzVYzuo5HPrSfbMDnr9KvkZPMiwzDu1MZ1HU1Se7zkgr9cVCbsHr19qtU2S5o0HBYcNTDECuGINUDqWwHuagfVHK4C496pU5CdSJfaKFUKlQc+9ZFykanEZDZ9uaja4kfOXP1qHJrWMGuplKafQY2c9aYSaeRSEVtYzPAnPkmM5LcAkHsfSurtdctvI023toCJRv84Kg/eFuwI5HFc1PJH9i8tAPMJy+RyPxqsjiOEbAd+QM9h/9evmotrY9hq5u6rdyGQLbupjXq0a4Lk8nd6kZx+FdrpOoR6fNo+m2ShJ2AluWYdSRjHvxxiuCg1W4tzmKYwTFBGxCg5Xr+fStDSZ4Fv42vpI3eXH7+TJMfr9auM7O/VhK7iot6I933BVLMQoHJJ7VHZ30N8JDASyodpbGAT7V5z4j8ZrcQtb2Sj7OQNkjfKc4x37U/wAEa1LYwS2s0ZO+Vpi4GW2dME+5rqWITnyrY5/Zu12enqafuqBW4Bp26ukzJg+KkD1WBp4NKwy0HqQPVUNTg1Kw7lsScUokqqHpwelYZNN5clvKkqh42QhlYZBGOQRXCRWFrZ6naGz0wGWecl5QgdY1G7PBztHbgY7e1dsz5jYEZBHSspokt4y2MsTkhV+Ufj0455wa8/GRTlHQ9DB1pwpyjGTSe6vuc5qdxPcW7SJCfkRnaNEyXGTgAfdxXLO0t+InDywTYAcJkbSfTGc+nA6V315sYbpZ4oxynzEuR346+vasS/uIySRf3GFGOIyV56DJ/wAK5krGt/IyxaliXmhWMB8FGjOT8pzjjj6e9czrMd9DfLsIEYO4KoAZW78Zz2711oaJ4p5FglcKcK3CjHbJIIxwK5XU3gkmlUKMliSpU7VYn8hxVxSJdypIESMM0peQcKHXAP0/Oq0kc0wDPwR90AD8uKrPblLUs7ozAj7vXrSWlwkcTEo5Ldgx6VrYzuLI0gYHaynPJPBrovCFwYPF2lSGTOblVOevPGf1rClvkhnWFdxD8jacCtjQGVNb06UkfJcxvwME/MKcdGiZapn0JzinDHpVd7hVOM0n2hT0PWvQ5WcPMidmweKYXx3qMt6nmmkE9/zppCuPeTg+tVmuAMEtj156UphjI+Yk/jTHMUS5VFz0qkkS7kUl228hMsKqyXUoP/16tfaQVIOAfaqrQeYxO/I9Sa2jZbozlfoR/bJfaonuZGq+YIxbeWOT1LD1qsbYR43uATVJxJcZFNpGbqaYwJ53E/WrThGOFXcagZCDyMVaZDICKaVqYikWMucAVVxEJFNxWh9gdwOVXikfT5B90g1PPHuVyS7GfikIq79gnxnbTGsph/yzNPnXcnlfY+bWyWwCQPfmjk4x0FWrXCkqCvmSjZl+AMn17US2kULFUm3sCQVwOx9Rwa+eSPYuMUKse8Hcc8+1XLdo5SDK+NvKrtOD7cVnySdFxgDjmpoJmyVQ4JGMVElcDbkmtbkKjyMDu4B4CjHTPPFdZ4d8JtqLrc3Exjs0ZTC6H/XDuCDz1rz22u5IS0YbG75TkZ4rpfBsl7c+JbKKWeSS3iYYBYlRgEgegrWgkpWaImnbQ9rTCqFGcAYGTTw1Vg9OD16ljkuWQ9PD1VD04PRYLloPTw/FVA9PD0h3LQenBqqh6eHpWC5JcXJtraSZYzKUGdgOM1gX17cOFmRCVbdtVWwpzgdD1/I/WtDVY557BltpAkoZWGejYPQ/WuROu3c+oxNORa2X2aWV4+oLK5VefwzXnYz40j0MIvdbLE8dym020hBUAlWkbBLHOcnB5wRgDHFYeo3l/pZWeWL7VBMFjCuhwrhh83zDpzWxdTJZ6b9tt0lm/dLLFk9eMhTx15Hr7VVtCb2xSe9jWOR0DM3G7kdME8Yx+lca0OtmS8YYCKZ2LyNjJRVXjPGc8dBWNd7WLBpDvRhuzxuPI4H0A61uahptxNcx3K3f2cqzMVO4s4AB5wMevTNc9fvsclkDNn7xIPr3/wA9q0iZy1Kt4Wa2lyeRggdMc9MVQh5wu0n5scdTV+Mlkf5lUk5O48EfhVWRgz/MMYOMjvW19DJLUWW3Qt5jLhlHAzirFrJ5E0UisRtIZee+c1UEnACuc5xk1PgL3AJGQDQhtH0XI6OocfxDPFRgkHjIqLSw1zpVnN2kgRvzUVpJbqOtevzJI8nlbZV8yUjjpTcz543EVeZFXoKjJI6A1PP5D5fMqGGeQ8lh+NP+z4XDsx+hqUsfemlvanzNhypCLDEmfkB+vNI7RqMBQPwprAt2NMaM+hppX3Fe2xFLIScAkKPeog53E7cmp/IdugNPFrJ1A5q7pEWbIFV24ACintbgg5I59qkKSrgYqMpM3TH5VN2VoirLbqn8RP4UiKgI4A/GrBt5m6nio2t8E5arvpuRaz0RMJUHAp4cjtVTO09fyFSCQkdcVm42NVInMx7YFRNJ681GXyeKid2zgCpsO58yb3Yhoz098GmhyhJJ/CnOQY128P6UzazdOT6AV5B3j874yeS3epIl2KuMc9/SogAhwRjv0qxFMyXCSKQNmCCRQBJFayyfvGUqhOMswUfma7LwBGkusq++RGiUkRouVIwep/EfnWH9mutZnF5fvDHbQkCW44GAedox1PoK9D8KPpUCSW+mSGRWRZSzfe57HHAxxXTRgnNMxqS906wPSh6r76UNXoWOQs76UPVcNTgaLDLIenh6rBjUimlYCwGp4aolqVBmkMWR9sRY445571kX9pZOnlJDFLbEYZNvAA5PrznPYVqzptQOzFVU/h+NZ9yYZBIsyO0a9GDHBz0/zx1PFeTjHepY9TCK0DMlMJgZSg2RgvgEsgxwBwfTA7Vzy3Rkvrm2uZQUE2cxoTlSThueT06cda3zPseRppHYk4VDjCYPCjOcjFZn2kozxxCb5QVKL0HBHLAD1PH1rmRuzDvRdn7PKss6QgiTaFzg9M/hhR71n3UcMqz3EhlKZGDngNzw3X0FbNxf+W4KspWNdvliRj8o7HdxxkflWPqd8ryNDHHEUb5vMChTnHfjtzWsWRJMxxZNKzup+X647UhSTzSM5Azggg4qyXQOzMwwDztA571E0sisqn5vlIVcAgA+gqyCAqPIZSSCSD/n86ajKwG4c549qmkPmKCGw3UjnH0pnmKZQwA3AjGKaEe/+Cb+C/8AB2muGbMUQhbcuPmXg/UV0HmwqODmvP8A4fX8k3hWOJoHRLeRo0ckYcZzx9M11Hnn6V6UI3imefN2kzVN4o4C1G1yG7Vnebk/dJp4IHLHH41XKkTzF1UD85qZY41HzVTjulAxgcCoNRv1R4Cm7G7a+egBB/qBUybQ4q5qeZAJlhPDt0z3pC9ms6xNIPMbOB9K5tb5hMxLsdiZDHqMsePyFZ17czlnu7ZVLx5Vsnkg9sf561i526mihc7ZJoC7ohUke9GS3TaPoa4n+0ZA0sjfKQ28kHJ2njp64GcVtabdB7NW80sWO4sRg81cZXFKNjbMYP3qaUABwKqtqCR/IHBboCec1KLppIwi4BP8ZqlchoZMpC56VRcZOS35VdkZpE2nYSPQcmoPKOceXj8K0UrEuNyqUXsKUFVH3eauxQHOWCge9EuxBxsJ9hQ53BRKQV25VMUhVskZHvVnexB4/WohFnJzz6UX7g12PlUjn5vz9angGzJboec1DtLAnHyipk3NjgbQPyryjuEl+c7g2TnBUDnFNfIKqSNoGR+NTIkiPE4JRSSNxXIPr9av21gurGGG3hbz1JDbVyNpPDH88VSjfYTdiHT7e5vblLS2DSSSHhM8H3r2DRNEtdHsoUjhjW4EYWWRernvVfRdEs9It0jjRHmX70pUbs/0rZDV6FChyavc5KlXm0RJmnA1GDTxXQZEgqRRUIanh6QEw4p4JqIPUqt70hkik1Yjdh0AqsHqZHPtUsaJpyJoTHKQiH7xyf6VhT3e2J4ZXkmDNnEa4BHPvjqR1Fa9xmSHG4AAgnjOR6VgBlOGYK6tkKpyVGPYAgd/xxXkYv8AinqYXWmUTKoiG22EZI8xzkBuRwAOmT1zjqaz5J8wMYiMSFiWYKT1yOin09e9aTxb9PaJUeKJuWHAV8cgnpnp6VnPGlqFjaQSsSuMFSAMHH8Ppj8jXOjdmZJdSK4UM6qEIDE7SQc56gd8VkXgWaEtuDnJ+ZZerfiK0Zg07bEQbY8jcpGAR15xWW1qZLzcXIQDqy5OM/lzVppbktqwyOBHjWSU7c8bQeWPSlhgjnjDW8zhk/ik6qPTNF0R9iPyKFDgKQTxzjJx1rDe/wBUl0k3ltpN1FpyNzOisYh2I3bcdT3PeknKWqMHLU07kCHAM4kI64Gf1qI7C4fbnBzjH6VRsJTcxmcR7FI+6p4BHGeasgFpOhC9uOa3j5ju7HqXw+u400M2zzKsr3DssRGD0HT16V15PPQn3rkfhrbK2iyXLvKXW4YAec+3oOq5wfyrtZWRImbHIHH1r06b9xHn1F77IQ3+0fwFQ3cwihOTg4yD9Ket+hzhBnaGHHtmodTZDGrsoMeDkhScce1OU7IUYajbWdijFCTsd0OSemcj+dcD4i8b+JR4u1LSdIsbG6SyhE2+RTvCBFZjneATk4AHJyAASa6rQr1Wnntrl0G0CWPHOd2c/XG3H+RXnPiHXoPDPjLWLoW0N1qD3NriGfzAEjRFkJypXOXEeASR8pyOlctao3E3hFJnVeBvE8/iSwnudQFvFOJDDGsQYLgBTnknuxrVuv3PmKJGJX5cL8pJ5wxBPSuH8JfYbS11CWxJnsl1GVYpCpBaLC7TgjIOP611tzcXKWKoxVzId/BDYVT1Az6Vhz6amti0gM+nTvcIsT4G8sQBjbn+VX7Dz7f7M74EbqBu5BGOeO3PrWKNU3aeNyxuFQuC/wAwJJK/jjpWrfTiC3S3icyTOGb2UHv9PpVp9SfI1ra8R75nIRUACfLjp1OD6dPyrZk1VY9Knns7MTTxoWRCeGPbmvOzcTCYIZEjdTuYjDFiRk8c47/nU8l/czW0kCS7YZFUMehOOOP8+lJVO4OJsz+L11ext7jTliaQMRLASVdGAOMeoyDVjwx4hg1DQreYuY5JHZCJT8zOD82PbJrhilpp9yjSRXALndIkIKEg9Fz255znvWpHf2Z8QJL9mlS0tm8xAjYTccAkj606dR3vImUdLI79lZjyxP0pYrcnO4ce9Vk1O2NwsCTKZGUsAO4HWrQuOOtdl+xiOa33DGAKiMLg/KT+NOa4AGScD3pDLSVw0PlNSFBA5PBLYqIuxbGeOuKDKyoyLgg9Timqdo5/CvNOsum8mETRKx2FeVB4p9jHdLE9xC7xqgwZOQOnTNXfDVgl3qsAkYBTJ0zgnAJ/pW9eSQ2+uSwpI5hDjdbuoCDnJ/P+tacr5VKTIvryo0PDOpxNPCsZciVRGUUHAYc7j1967ENWZpdpZwQBrKJUUjB2nvnn9asQXcU17NaK2JYsZBOMkjPHrxj869KjH2cbN3OOo+aV0i8Gp4ehLdj1pwixWt0RqAanhqURHsKcIWJpXHYA1SB6FgJp/k7RyaV0FgD1Mr1XKkUoz60aDK/iDUl0/Qrq4eBp41TDKsuw4Jx6HPWuZsfFtlNp0dxczhWhJXY/O7dnCgA8kYH5itbWby2uC2jtGs8kyNvjcEDAXOcgHHUGsfQNNttOtbeSeS2YC7F3GDgNJtXAVS2BwwB/KvJxTTqaHpYZNQF1XW47aIZVFIGDuTABGMdAcZJOBnoKoahqfm2l0kaRP5fyrk52qOQRkAjv/Ws3V7hYE+1rawi4UlchOdxPJPfPOB7dKzUkUtKxl3E43lj6jPb64rjfZGk5PYksr6W5miZgm3y2IKrnJ6njtSS30yGVAuZGZiAc8Af5/Oq1pF5LCNMGaInKr3Bxjn2FSX9tcApKhYtGdy4bPHHHrTcVcj1HRyJaW3mESSbjlSWGMdh6+tUrxjcR2+p2er2ttaR6QtqYvOQyq4h2SReVnd877m3AY+fdnINSkrPathcSOwKkscj/ADzWImio7ceYFByckA4HXtW0Vy3FYs6Q7S2KR8HywcD2yf61ZeRi4DRMncAnrUEKJbR+TEWbZnBI61JaTtLII5ACOoBGR/8Aqp3KT0serfDqYweHpxL8mLgtzxwVWtkeJrGW4aEyqmBhhL8oOTgYNYunQRw21n5gZVCLtZWO3PYjt3/SsbV45vsr/uVkMB+Uht2eud3+ccV0RxMrJWMZUI3vc1JdaisdUlVZIpFeI+WUcHJz0I9tx/KnLrF7pWlxosrSqkhw5JkYhgePXjFcisL3lk0cjuz4LeWFLHcDwc8/4VcF8bi1aKe4MUgRTtZsJIykdM98cHPpUuo2h8iRebzDfJfWjsjykukQTq2Msh+uMj3o/wCEc0nXbqfUdVtGmuZlVt5kcFjtGBgEdAMfhUjSRtbJMGVXjHmqAw+cADg49icH3xWXa3N1bSKYy7I7g7FBwxJzx6HjrwecVzzq8mlvM78LgniFdSS1SW+rf5er/wA7bmnaXp2mWDf2ZFttwzPLEWJ3/KAc7gTzgYwcU2yikMs7PmVSCIgF+ZAR1PPQgenBxzzVsWe+Im1dWRyY5CG2sDj+L246+1Z2sXiR7PIBFxDIFVwP9WABk+/OPoTWhwkIEbaUlqIv35xHEFxtBzkk/wCecj0p9tczT7Ir2SVJUJ+aNgpGe+T68VLZyILaEShBOMyL5TZY9ixHQZ5GeKrXl41ytvtiEq52I7MXx2xxjA496EM0ZpooUCbmklbGHHLOPw9h+PpV+CBLiKV4mZ3IwFPyBj3A9/8ACsfyWFqmI4lYHayPuyMn8T04+prShMUkLIZVt1XhlZctkd8d/WmIdIWSRCY/J2j5s8hz+P8AnioZLowQAyRmR2JYjd8qjtj+frzRKomVPLkVyRjcp+UY64B59fpUXkOokG+VUTJIk+Ylfb1FAGz4cvjeaoLZLfIWEy7z1TkqcexI7Vb1LxTHpl6kTwM8LIG8xT0Jbb/SuUutevtPvYmtXS3RYTEDJGN8iZzgDtgmsY3txqE8YhVI2SMgRsAM7e59+c571pLEOMbR3MvZXd2dH461m4g1eKwE5jgMav0xhif17V1mg6o+p6Ys8kRjKsYyD1yvB47c155b6rFNemXWAt3KI41hRULMZFPGPT1NelaewksIpEMjowyJHXaX98Vrh/fbnfczqOySsfMxi+VSueeDn1pUjzgvgqOMntSABSHBO3vUZkDSc8jtjtXKdB2Hg9RcaxCI4WWOMMQ4Xqcc5PvXY6tp0UlrcT+UplEe4Nt+Y45xmuUsr5dJs9thfzchXCso2lsEMwJGcZrprbxFFfafcGXCkKSrL0AxwD3HPfpXXTqxUXB7mE4ty5kVdHu7mzsZbE2spu33yRMrDD8Zzz932zSaGGXxF9rufnllhZo0VtzIc8g4GM4P61QsNRvLecbLZWZg0YP9/wBOT0wTmpIL7UmSGy022S4uPOMqsr/MFBH3uemeCfapp1VK1+g3C17HoSvmpQrdxTljAVd2N+OcetTblC9M1283Y57EIftTw59KkiiWQ4A5qeSDYQvtzSclsPlZV8zsKCW7ircVoCQzEAemeabqdzbaVpkt1MdwTGVXG4/SolVjHVlRpuWiK2CTxzSMCDjHNRaBqtt4gspbm1R0WOTyyHxnOAe31rWSzG7cSCaaqpq6B02nZnH3ur24v57eO4gEse2NjyDliAQCOWOM8DAHrk1y3iO806y1D5p/7Uu4gu0n92kQD5KAc5JyOc9q6PXrC0j8Tutw6sBEtwr8KIGyfv8AUtnORxxiuWZ7W71tL+xiYMiGNIbeIO5C8F2BzyeTnHpXk1JXkz0oRtFC31udW0WIQaS9ojlpYjGcqFJO3J/AnnrmstY4dP3QiFtoOTKz+nQ/z4rQtY7k6SvnXNyjMXiQPwgUE/lWJrEj29y0axllkVQX28kjOef89Kxa96yJluSwXca3skibZomJCORtx1JqF7idb6RHwCDhBnoOv402NYLS0t43UStKSW7YX09D0qbmZ8xqnkgZPGMAZwcn+dFtbkkNtuNzISpVQrO2OScccZ70+YpOrXMQxKu0yDdkc+/rmovOkgZpA3Rj7kH/AD3qC4ujc7o1RI4t2doXHPqSKJKTkmv67npUa2Hjh3Ga97Xone691qW6s911876Mn2qmFT5SAc5yenNX/D1slzfspHyBc/PjpWbuYuoKgocDk9K6jwxa28qtIEJUHDO5wMdOmf8AEVuedsd1o5RdNW3kmRSwK7+Nox0OBWarfvXs5JXZiJEUlCPM9ARnqPUY/GrtpcR6ZaxTx7J13lPmVsnPQDseeh25+tZ2rXMVxeW0civG8zEs5kAYqSTz349T1pLRlS1RiLJd2rpbTkx7SfK+Q4cDnkjrxjrSp5F1Eq3AEW4sFaRAVOQdo3D1IA6cZrYVjc2gsHlinjZWkDysCd3PzBvqOue9YTyrJbKktwBPbjAcKpEi5+XJzwQTziqexBd0dZNO1gWN2mFEbGMDDHOOMeo5/HNapsdPillYLudDwqtnB/Ptg9Pasue5uZjC8f714FL24PRdo+ZOOehJ69qltbiHzIDc3JUzYUSMC245HAAJ9R1qbKTV1c0hVqU01CTV97O1/Uv3G6O0u7mUNGiARwqBjJ65JPJ4rILQXSJNcSZCqvzbuN5GTk5HfH5iqtygud8pYgZIZ5MqAOOuCPU/lSL9iu4jpkTEw48xZUTAODkHHJHOfwqmZokVJmsbl7kM7hhII4yEAXkDI9M8kdsVLpsiieO1EUZlVDIJvvBSORtHBz7GrJuvJQBJo2YxiNywAQn0546dutM+wSbI7iCzLT3KBC1uxBXAB3EAfLxtx060xFVZLufy4rmR1Z/mVwuBjPJ9QfatiZJTJF506308bbpSCSqcDhyQCT+n8qqzW9zFdqkUMrRxuN5CF/nzkn04/T8KLbUd0ckZWRyziOT+HcoPUepHHPvQhMvxyl18yKbyihOY3YsqkZHBHqO1RXepPazIfsPnRLk+WDk8c5B+mfwqlNqcVuJEZS8YBXcrEAE5xxj6c1Thka7tv41uFIK5+UAAccnj25xTAnkv4byKSVFYBeBIx3MhJ6HJ47VlOy2iNKq7nVy3zdWBPT3qS009reYyRqokmyZEmcDac9l6/wAqpXvySiJnQqwI3qBg9CRkd+lZTTvuNbm5pwmVoL+1CwQmTerNgsQDhljORzyffsK9Xs491tC9m4eA/NgKFDD8utcN4e0qDWtChs4pxBar/wAfEPBckHIZT2yc59a9AjdbeMRQgJGvCqBwor0KUWo6HLNq+p8pgk56n1qRTtwTx3pqqVGOzU/bnljkA1xHSWoZ2wWy20cAj+EV0mhX8cNo4lmDNcAqYyOAAcgdfr+lcqp67See1W7e7uEKKjMgU5G0dMmmnZiaudRIPMW4eQbWOGIRyBGfQj6Vr+CZpZL/ABmNIo4SW3INxDHON3Xg81yaakSzeaY27YCjnHr+dNn1WWeeNpHkYCPyiy8Nt9KdKXLK7JnG6se1+YqjJIAAzkmnRypKgdGDKehHSuCl8RzS6cse5NkkQAJ446f59at2N/c2lhDbxysFRAAABxXpxvKVkcj0V2dujlWzVoSBhnvXCHUbpsn7TL7c4pjXl35bP9pnGP4txOP84oqxUIub6Dpvmkorqd3d3iWljLO6Btgz1xXkfiLxFcarezDzf3asUIBwpwTggDtWlr2szixiBlAe83Z35OBjkrx9Pp+tclBGZZvs6gtlGI25J6Z5H+eteTUq+01PSp0uQ9J+G06R6LdKXRf9Iz1x1UV232yED5pox9WFeN+Gw3l3C4wVcZB4wcc1u+XJvGCPmIAzXp4ekpUk2zgrTaqMl8UXts2o3rPaSXJnURKY1KsAueQecjkc+wqppehpa2UpguJYtVjjcSEp8qIcckAZJHHQnBxWtqOkzB/Mn1E+aIvLZQQAgPX3Ix24rHk1C4srG9voby2aMExqqIS6gt8pORtBOPrwTXjyd5NXPTirJMztThki0XTC98JAEfHmJt4LHI/XpWVcSuJ4VDeYMHlTnB5Of1NaUOnHU57dZXgt7Z5AXcSFnzjlz16+1UtStf7OZ1jljZ26NkN8pPr+FRazuZS3KN9awJHbruyQcYUc/Ug8iobS8VbaZDtkKkbd2QxHoKleKNFBaTmTnLdhz7/Q1nbvmBVQFByMDtWtrqwrFq3k+zrI20tvXAQ8qO/NVX2qGZBlDzjPIq1eRFCowcFQwO7PHr7fSs8K+8/wjPNNdxDnkCwcHIxxntWnoOoyxXAjiBVJCCyk8Njpmrt/pK3WmwMGjjBiHliPBMjk4JJ/DOPyrt7HQNB0NUCkCRkUGcy5YjhiR2HT0zjIp3SRaTbI3NtHpNtNdSP5sTMdsZHORzkY9xWDc6kn9pb7h5AqxblGcmMAdPcmt++vxIf9Im0yWNm/c28K5YjkZ6ck+n1rhNYntL+68y1IUl8MSD+ePTmiLuwktDZtNQsrm4cIrQkRALOTlQvTDdPwNZ89nIZHCJsjU7fNGQrZJ5weafLKvkOwBaCD5yhPU8DA/n3rMtL1jK7FvkLAsGJ59T+opvUnY6zw7El3H5Jfyr+Fwiqeh4PbHuauw6fDZqjPKIjEMRoTuI3Ek8Y5I5A+lcxDq0a6rDqEeODtdB6A8Efp+VbmrIzKl1aTea1yPNRlJJClWJHPow/8dpJg0Pt4ofLuLWKGQrCqbCxywdsk/UnC/wCRWbJo9zPaRQ2ThTMyhgueGz1B/u5/lWrDO4dQ+PNUrLKCCBuxgcdzwePUn0q5YzRRLZxIokaQ5YbSNiY+Y88jI/n61Vu5PQxtcto7QNYW7h5LkAYZfmVuATnPdgSD71c02Y20s1s86xxRRkMXjLh1+6f+BD5TWTqE/naveX5jLEkbGJ/1aYAG3654pZdVik8ORgpI8xnYMQoOMrzg49cd+1F9R20NmTWZ45YJ7K++0TBP3xJyfkzkYPBU4H41Kj214PPa3iS4kUMYw5Az1IGTgZU9a5GC3uSYr2MSEsTtIOS3Yg/XP61omE3DQ/e+YMWJ4Kkofw4x+tMRPqVvdRRsxvCYGO5FZwOQOOO+KoaY5jt2kk8x4Q3ykZKnHP4f/XqaeaaLygZZJAp24kG4dOTg/wCeayYtdaKKS1KJjlVUKAD9cY596LgbOo37WtsLh3Ly7xneclh06jvj+lYUrNc6miQlRF1YscgevNWCiM32e5TcfMCq3JwcdOOvJ/StPTZ4reIwssPkPxnbyfw78+tTJ2Q0aug6kfD8c88yxumQg2v8zZ5H4dea67S/Eg1qJfIxFsY+c3UKAeAPc15Pq5FmskaTNiXBKBdu73z/AJ61e8KTXiy3EyEJGwCYHAJ64Ppx6V1UKjuo9Dmq01a5xKj5cetWZIEgHlkkvjqvIH+RUq29v5aPM+2TIIXruXNW7byjehZYQ6yr8m45x+A/GsVHp3NrmYYXiA3cFhuX/aHrU0DmCUHA4GGB7iretqIbiOHCiOJAFUcH3rNWXGOQQoOQeKUo2bQJ3Vy0Jo33MERCOw5BzUvzzBIRGxlX7wX0qvZ28txl44TIAOeM4qVGuRc7YlcPgLjPOKaSSu9hX1sjdsrk2SfZhb+c0ny7ZB8wNdFbXImgjMitFKynMZHTBAz/ADrmoUu5ZJMZCLn5mOX3Afw5rThmJ0+FzKfM+aNUk4cnj36961nW5YtwYqdNSlaSNa4u7O0QM8kjqQDlI/XvjPT3qzbSTTRBUtW/fADIkxgEeuOPSufutUsrd5IkjW4YfJvlk7gYHHIIH+FUpvE95JcyNF9nhVm3BEiXjHTnHP41hOvVqR5WzeNKnTd0ix4pjBayKttPk42gDK4OMn64zXOQXs9rcrcQsm9Tgblz+laU2pQy6dFBJEHuHLtPO4+8T90D6DFY+3CBlYBmNZqKSsVKTubmj6pLb3WJFR1upPmYHBVs/wAua7OFJLqaOBcFmIAz2ry+KZop42DnrzXoFrqcqC5a2dYplQqjkZxnj8D2z2zXdSr8lNrqtjkqU05pv5mlpkVrY3uoS6+0ErTyGOBs7lCkEHBI+Xg4ycVJqr6VLo0VxJClxEXYQ29sP3UaqpJJAOCQxHJ9Onrzl5rMC6VDZR6Qoe42xTXEm4hiD/Cc8HJz2/lVvxjZ2mm6Va2ljcNEEjOyJctHIDwXJJ4J5Pfk9q8yz0O9tMwor64vb+K3WbdH5RZURQgjHUhQOgGMc+lTppE93CWAc7HA2OCDyOw9OetXbDRj4e1WCC7mLNPFuUQp+9Jw2B67epyPbpWlDHPpshkmgvWu3tmlEhffkZ4DHoBgLwOab3I5Va5yeoLLFbqPIk8g5RXZMBsYPB7/AP6qpPaSOisykBgVVRztI/l19Klv9d1C7niuLiZH+zuGSMDgYPSqlzqbXcrzhWVmxu55b3z+FWkToSpdxNZtG8IMxUAPk9Bn/wCt+VVlYZyCueNrAUxnwAdwDMOfanrJ53myHaWOCF6Z/wA9apENg00y7VGN0bZGBnnrz61JK97cb5ZXUliWYkDJNV1SV5GKjKxrkjPSq6XU0jhXf5T2pW7Fpl+xu5bPUYZfM2mKZJAFA6g5BroPFmotdeKp7iOKIQRoIgI0UDGOenGeTXKqm1TywwMDA61r2unwanfWFlZCVZXXM7yZxuGSSBznihpIEzc/0WPT3aLy4YpIxsD8liSeTnpnCj0rDeylFt9liVvMd8ckDPOP59a6XxZpVrpVlColujJKqkGUL8pHPOAPWsrT7ZJ7IS3Dj533ocnO31z6ZH6Uc6tclqxSaHyLdElRYm+8cDnI7fy/Otnw/cTR6nZ20rqUk4QZyMMOQP8APrUN6tsd0juAzoUEqDPPp9elILK7WPTpFREaO4WND0yTgg9cnnNTB3EmVdQ1aSa8uGE7FZOXwMNnJ45+tXNH1LBvr1VB2wbAu4ZG7AHH+etZOp2IstRu0Jzuw44xweak060jsbc3lwEYS/6nJ7DIJOOnPPPpWmyHYdfSPCPsm87kQB3/AKH6VBp8bzxSWcwYmNSY1x0IyT+YZvxAqlJNJc3bKrqN5ABY9quNFPZX0Losrh4w8RjBy46cDnPPaiIpGlb+ZbWV3CJCMMigZPGR/wDXAp0s/mvPhjJFHyRGSDtXgtzwDyPrT3mJ06cx+VLLM3CD+EkZ68fMMDj2rn7O5uPMa4YguG2FcYBGMYI75piNLUpN0zGKQsn3lbGBjt16Vmmz8yc3CsJGZt21eNta9nBFHMoZfOgb54mVuQoGfm9ux+lPcQ+ZFJG20svV3DbTjoMAA0NgQWko2s6s2wrgu5zjtg/lSXEj5jjKEKGDKFHAH1pk6/Z7QyKnExHUcZHXFFnKs9ypHDgfKueMj2pX01A0LjT2u9PUTZ/dlQFznCjrxVBbe6s7p4rebZhd0bt0YHHStS2vIp45Qk6x5VmBlxkEenvkcfWoU3LuWUl2Iyze5x0pe1sttSTjoI/MuUByFJ61eTMjYgjferlvlHXnt3rP8xtmM8LWjp90iPG024Nu3l92Mgdhj6VtCKbsKTsrhervKyyktO/AGCMc47/54qxa6RFc2Us7y4KBjtUYIIHQk1q2UcV9bPcyQyAtIZMP9O3tio9RulSwxAodJRyVYA46V1RoRgnOTujB1W3yozNKuLe10y4aSV1lbK4AyD07etQabdn7epVtiMvz4GfwqhiVUMfVXPAJ7+tXFmjs7JrPYv2l5AZXyTgDov51x1KnNFRN1GzbNyQI1tHexM+0yFSi4+Xp2PXOa2LIszlorNyI7eR5JHUNg7T8xI6DkDp7VyNhvkcWqyojS/MS33R6cjpXY2dqbe0trdp1ha4En2mdXBUkqVVcDk4zn8TXPy2R0Qt0MHTdDvNSja4nlWO3jb55COORn9PX3FS67e2sWmw6daQ25jgIIlVfnkJ6kn/69S63q5jjNhbQt/Z9s7LEyxlQ4B4Y+p6k/WsOyt5L2+iQRMY3kG9s4wKpMcrEtxaTQwW4lnRY3IJiU7mQEA5PbJ9M/WqbQf6QUBOASSpPbrXSppNpf3It4pRDg5bzHP4EevNU9T8OPDKWtneQOSAqjJwTwfpimppmbaMeyS3kn3NwytwM5H/162vtGxAQoyflIzxjjj27VLaeG7ePO4gngnc3fvTn8Nm3E03nLKoAIVTz7/yqfaK+5ldMs2dzbtbJBcFvLkbarqQ2G46r1PU8/THpUur6dp2oXYij1AfaHuxEIQzGOFCduBx2wOawJopUZJRC8aFDjIwAcE8fTNZW+aZzvlJL9eclifelGNtTdS0sz0VPDl8muC+1TUt5sT5UQQHLYHqfu8dPep5r5AZIhL5aR5wu7P4ZPWs+3uWi0hLYElwNxBYvuY98nkn/AAqUWEEjtcM8gljxwxyGz2x2qOZSJlIz49Htb1RKIfLRcq0WfvccGuauLM2ku0qAhJ2c54rrrnUYkSSE7QrqUU55BGK57Uo1ChY98sjIHBRSRgcEn8a0g9Sbi2mmQ3WiSTuJvNSUJHsQlTnHBPbrmpNO023jnlS5h8zIxycbfpXYfDrU20vQblnwu6c7g0Z5AXHX6n9K5xGRNSkdVUh1OwnGFbPX9KL6tFStYhnsbc2zQJL5QZ1ABX9M+3rXJzIkV6yR/dRsA5zmuz1C2NtEC0jvFt3OQwwM/wD165CeAJdOI2Z1B+8Rgmqgibj4cbwGyE/iI5r0vwl9g8NaRdarqyNDdSt+4SVMtJEFzhfTJPXjgVw2iaHe6zOYrUDEalncjgegz6muoneO202LTWlguHwEecA/IM+4GeOOv5UTfQuPmSeJNS0vU9Ds/LUGRUTzMyuSGIydik4wMYNc9p8MAndZGdBtZ2b2Az+HetbXtSUO1vCqLDgeWq8qMdMelY2jyG71e1WTBHnruBAIOT39qlR0YnLmOhmthe6dDhDJC43YAP3j0GRUN/ePbQWkE9s8Rt3WWN5GyXwQMAY9uv1qhe6rfzyyCS/uGTJAUOQuPpVeNpLi3vGkLyOFVgzHJGMj+tKO5Xs+VGz4kngbxK1w6CePaodM9ck8e3BFYOtXkNz5xiiWBEwUjUYGM/rUDXAuDc3bMd5B28daqxW0t3qCwQgSO2MdwT1PWtbXJvYm0+0fas5hEqscBC3O0Ebv8PzrqHne6nSJj5SxEMoU+p6E9hnsKp6PIdOSXzYeYyY92CCM9uenr+NEt4yzSBEzMcDjqy+n86VzNs0p4rI2k7RFFk38gDAUgf8A6/zqrY6KkAtnkeFmJycH73f8OKyLt1gZ0fcgeMHaD+IBq5ol5ISI5ZA0YIJBPA6YprYSLF7o84njNtyCu7PTA7g1mXcL2909qY2fBJwPX1FdjFOzHIHP3sDgH86l2GaISKoyr8Efw0uYowX0uyvRplnLN5QYATNH1AYZPB7jGK0NM8JaZYWdxrF1cXEsUeY7eNlCl255ODyKtajJGmtaW3yNuXcH65+Ug0mq3V0UuT5kkUCDKxbBiRjlQc/U/pQtSna9mcpaWLTMsrQMsB/eCdshEXPrT7m7W13OsiOocgFWzx/hVeez1GGzWzmuplgDHC72KA/hx2xWT5ZXIVsovbPXim4pk26lUoFlaKN1mHPzdjx71seGNQt4J5La6t5pIZGGHiwSjHjODx+NYO8o24celOjnMb7ozsbpkU9Ro7/Wr630qCGKBop5GRiZMhuvTPPUCuJL55IAG4theMCq4uCRhwp7ZxSeZyOPl9QKLt7u4rK90ib5ZCFbjJ6+ldDpPgm/1tPPF1Zwo7ADzHw5HqBj69cdK5hpdrAqTVgahdGBoRIxiP3lIzmk/Iat1On1jwcdCmQi9iZ2ziNpAWwMc8e/asyHULixv4J1cnynzw3X6Vm299NGxwo6EfMOn0phllkaONxhVP3sep5PvRr1DroelXEGq+IYpr+HSY0sJYx++e5DEdskuc1X03wVrEEwmLWrQocnEoDEEenNWtO8Y2unWcWnW0IuIbVtqSzZxIp6nGPlq1beL4WmkE1qPJcEMm4Z79Dnp2xWdnbY1srmTqWi6rZ/vLXTnuJJGwHiIfA9OKnTTtXtHR7uwnh8xOjMCFHbODx0zzXS2fi7R44FijLIo4VFiIxnt6CrlrrGg6grG5jkEpXIadQOOmDnqMe9Ty9LByI89v8Aw/4gSGXyrf7QHIKNGcketV7DR/EUJkNxptwoCgqduTn0x3r1q3uLSVjJbQtEg6ZiKlh+IFLNqcSRh1I27sHjkUXQnTR4++j+KNQl8p9OnWPoQ4CjJ78+tall8LZrhQ1zeJbsedq/NivSbTU4pi28qGUdKJ761wzNgbffH0p89loCjE562+HkFrarHBqErsvIMqggH8KzbnwVrcUzMjR3UbIwO2Xack9cEenFdvb6hBJHvjcEdxnmpzex5x5iDjceewrNxi3dofKu55TN4L8SSFlWwiSFh0a4Td+dX7fwrrMNnIkotxuhaJUWUEk9uegwBXo0d9FIgcSoVPpTma3nQq4RlPUEdarlVrIEknc86uIW0jRI7WZZYzDGVaRIxsdx2HQnn+KuRtQ2p3n2SLyt7gnLnAx6n9TXsGqeHV1O2MH2yVID/wAs8AiuGf4Z6na3XnQXkMijONowSPQgkfzqoxIkrsNM8MaxbxK8hsru3fI2xvktjOO3etSHwhdSTtcSwWMW/GRJCHI/A8VVbRdbtVJjW4VmH7wRFsNj6Gsq5s9eSXe8EzDHGY3qrO90Vodta6PbaNayMbiC2jc5k2KsSse2e1eZ+Jbu3NzLHbqNyNgkYIcexHWpZ7W8bPnQyknqGQgH86h/sh5WIeOdiMY2KSaajrdkys9jAeaTGx1IcHLZrZ8NRpJJFOctIk6EZHB5rTTwdcmDz542ghB5aUck9q1dN0u3skTaBIxO4sB3xxU1Jq1kS9DmLyCeKWUyRlfmJ5HvV7QLdrjTtZlC7vKgXj3J/wDrV015BbyqgkjB4yvH3iOlQWsMcEWoQ27DNzGFYY9un8/zqINGkqt0efwkJECVDDGSvrVvSri9uNQuJLYiKedf9YOBGuQTjHToBxXSR6LYW0B89N0iJ8+TgfWrnhqzt9NgmaIxsZnzuI/h7CtHNdDNNN6mMFhBnTzdxI3OSjLhj16/e9c9azY702kjuys7DKx+oPpXod9DFPa5dQNvOFHWubv9Ot3Tc0SBxJu47YxWaqJaMU0kzlp3kuQ87oxwoGFHC4OM5+tVLO/e2LkbTxgbh0P+RXT65pUfkRQWy+W4K5/2s9RnPvWXb+GZpJGBXCZCEtxtPf8Aoa1jONrk3R1Ph6/XVbNpJ0CLEcMw4Dd8VY8+GOLEcjbXmGU65yf8K5MWF5o80UJXfAxLSMfudOfy/wAKv6dNJ5D3QTbCgDxZ55B9+tTJ9VsOOpt3VlbqDMZZN1nDvgLMFQFsk7uOmMe9VI/Emn30lvHc2Uv9mxAFtgPzv6kkjgdv5Vma3rk99bwSmBR5sis6AfeIGPy4qGzP2ppFeBvMTlAzEAHIP0zVcxpJaG7e6XpM2o2zWV2Zba5bayK2GjTByCp74BwfWuYitPK1DzdilEc53dvQH1robd10201bUJcLP5YhjIwdpc8/U96w4Y3cI25CXPzYH60OT6Epe6dSvw20UBSbm6bGAckYP6VMfhto+zYbi6B6gfLx+ma65W8sIygrg544wfanO4YF2LGYnI3Hj3z6mp5mbciONHw20jeMT3ZUdjj+eKc/w40l5CEurhFPQMAcfjiuwjdS2WB4/hzxTy5MZBBWMnkBv1o52HIjjV+G2mLtCXN1u6NlV4PasW/0XTNGufs0izSRE/MwG0nJxwce1elD5WYLI4BPI3cHFRvapMhSSJXQnLBjnP4VLm31B00edf2PaTQJ/ZulyXJU/vMSF2HB5+XjHTtW3beCdLnhj8x9Qgdv+WbqB+pGfz5rq9PU6PHJFpcUNvG5OY9gAJOPmJAyTwO+BWfY2OpxzyXV3JFdSliywRDy0XjqTzz9arnbBQtuUYvAejxn/WXbH0ZwP6VpLoGkhTm2Y/LtGWJ4qWGXVPPAuLaCC3/vByW61eUsUBaF1I6KxyfrxUuT7lqKKVtoel2x3Q2qxserb2z/ADrQjjCDaqgKKbCskhCYySeMjAH1oUswLRlCmSMgZGQal6jsiK9uTDFhSG449zXLvJMJJWwTzxnvzW1rSTRxiXGV9PSuZNwIEbMgd+XxUSZhUu2U9Q1Se0uEuEysZO1h+tSnVDdbQ3V1ycfXj/PvWTqF3b3UKpO5BiYs208E+nuarade7FQbP3YGHHfjJyfartpczaOoi1b7NOqcZ/hEmQX6g4/CpL+Zri0AgLZYZxnGM1ySyGWYyLGROrgIjAYwTx9D1rZXVmijMtxAdpbaueMen8qVnYRvaNqBAFvKzeYqDl26n2rYWchuvBNcHYXN1d6urwxqpIBCsTwPUeldugPB/PHpXRDbUpXLMd3L935xtPSrcWqYUCTB9+9ZgUrnGOeBzTxHngfniqaTGm0bsd/C45yv1FT5jZMqwGRwQelYCYXJJOKu27NIwRR9S3AqHEtSL0cEkaFWuC5zkFlA/lSrHJ1Lru7kUlwJbOIyyA+V/e/+t/Wi3uFmQMCrAjgqc5qGkUijqsFzPYsiIrjPzKSDkVxG2eC7kgERjIXg7Dg+9elEryc4+tMeCOUfvIw+OORmocE9hSjd3Z5Xc3RtoZVd03IcoG6kd6hsNbSdkUgA5xhRye3Fek3OgaVcyB5rGJ3AwDjpWcvgnQ4pjNFa7HPQhzxRyWRPKcnJOZriSJk2B1IycECoIbeRX8qOUCIqBx1yDzW/qXg68k1RpbK5SK1xlRL8zZ7jiqL6DqFiHedVdc/fQ/5xUJSt7xDgMN6Y/kLN8gxkDOc/1qneakIikYzJIWOU7kVBNeg43LiU8eUv5Z5rH1USRW3nzSDzPuBByNvb601FNmep0095bRRLKFEsinJyeQT+NVl1eFreR42Ef7zLcYz7/wCfSuPsLgzzpDIJCg5wmOefStcXcct8I3mkzkhE6q2ev0HHTmhws7A0XNWE1x+6QK8BX5wenX19auWVnHp9lHbqiktzIrk8nHb3pI32bpFyVzyCOlOW6ilmdjINoUkKBzx3q1tYSbRbgTTZNiGzRXUbhgt8uavOlukGYfKWTvuHOKxbu9nigjntUwxOcsM8dOfaqUpuXtXlmmk2ucrswoJ/z2FPlOiM01qblzb6XNblbnLqMspMu0M2OOAK5LygVDws2DkKGIH6U5bVUgLyhfMYZUNJ8x/DFZ5vgsxZgE2DgEZ59KtRYOSPbEKt1kiXPGGbn8qj3oJNnmKdpySMVn2d5b6jA0tqxlTO1m6Yq3tHTv3zUs0JvOVcpv4PU560LJEw5/DtUICA425IPr/jTyRnbk57YPIpDJAo/vkA9AKcD3zgjjBHWo1CNtHO7scU0ptXCsWA7k5NKw7lpQ5wcDA754qQOxBGApOKqR7hGVwqgH7245qSTeXLAAY7bsUgLDTYXaG2/N1AGTRh8kiYkHjA6VXSTc3zjr7052O4BPlGAOR1Pr9KAHtdRrNHAZkEsgO1S2GIHpU6Nvfbz6DnNUGRWbftAlXhWI59/pUzOVXAyD0x/WgZLKiXcTRSkFOnPU1wviHQNRtmd9MtjJFtyDkFs9CMV3Ec7xP5wwHx1I3YqGaYzoscqoUBLbCOGJ6kjvS06icbniLWl7Y3J+2WVxFKORuBBrY0tVN8JEEgQxZYOucN3xXqQgEsoYkFFXCoFAC89hjipUW2XLtCHOCAeP8ACrck1Yz9meQy2d+15IYbWVMkDJTJwe5x0qjLLcWkgMhLhSWjD+nqQa9oRIN3mLHHv6E7cHH1qb7DDdsqywwMufmaRAQPfOOlJNA6bPJtC1iA3LS6nHNJgEo8eCVJ7H2rv7DWtIvDHBGZUlc4CvEQT/OtRtP05GYfZbUsGyCqg4+lW0EKnC4U4O0L1+lDa6FRi0VFton4UZ4zn0Poad9jyoIOD9KuL8hUbSuMgL60/KEAkjrnrinzMfKjNNs524BBqZRLEVUMWXIYDtkd6tFSScYz39QaeIzv/hPTOOwp87FyCNPOwLyu5aQFDhuoHUfzpkSrEgSP5YwNvljpgdKsNCIThkXJOeDnP/16jwuTwevAUVLGhBKEB3cDrxTluAwBB5+lICrDOwZ7bj0oQGPAZdx7sBikPQlMqgEH/wCtSlhwMEU3O0Hp9MUisQOBgc+1O4rEwjYx7gDg8ZxUEsIlUq4yDx1qRZ5YpVkSU7s5weQe3Smb2JXe7EAkjPvVXRNmYEnhKxa5FwrOsgJOWwa5bV/h7ez3/mwTRyW/A2MxBz616QXVfvAnj0pEYOT2HbNCtuS4nlh+G+qIkcttcwwSqSDvY8j1yBVWHwFr9tqqzyrDLtO52SUDk+mQK9fxz26cUwqM52gkdD6VRLijyu50/VbKzkRbOdiJSQApbg/SsO2sNSe+kxp1yyd9kJBH6V7YysT0HTtTQrZ+YEjvmhKwuRHlUem61Mw8tJMH5SJImXA/Kr0vhXVpbQJNOQqncPLGcH6V6QQRxjJqNkUYAP55osh8p5NceHNRgRpHkkYDgIoOfY5xRL4Oinl/cXDoxXcyS9Qf6ivVmRS5JwR6GoHt4ZTkxxlge46CquFjntKC2dsluLlpdoIZpDyfTitE3caoNz5xjJB/Cuci1qwS2BKgc4AQ96h1LVRLbhrWXARgxJHyn0BzUWZqzqPtseN8hWMZP3utSrLE5UrJknnPevOU1m7uJ1uXJIj+UYXCA56k4retdVnm3LCN7ZO5iBj6c0ONhJo6sTRNyz5HOPWrAlYLhXJXPPPH41z8bXNy/DEInDPuXaD34Helt9qu8Zvptyn73Y/QilYZ0BAdfunjmmbgpypIJGDxj9a506vGJXDXMiKBy/mAj0/Cq13r+FRba8ZyV5OF28e5FHKFzqQW4GM+54xUgKnCs2QT2zXDWet3E0ImurxgNxDYwAvp0GTVu01tS4RRez7iAGOcH6YFNxBSOvOS3UfT+tOXJYAgDjAAI59f8+1ZC3U5Xd9mZR05Vs4z7n6VKb2Q/N5ch5IO3aOPbvU8o+Y1JBtUqflB6jB596RQEALNk4FUUvpAyF4ZfQOPmOPzqZZtwZljcEn73GDSsFy2HAZ+AR1O7j8aUSMCuE5b2GarLLJISHQqSOcCpQVVfmwAeOo4osO5IBhSByeh4NDBdpDEHPXJxTTsIQKAFHUE85oBR3Pl7c5/i6UrBckXaBxGAPXFTYWP5igB6DA6VWEnlqcEkHjPv60Fy6hFHyj1pDuWCc9QeeR7CkC9ePlHBz6VET8wBBPHHtTcfKFmBbOd2cfN+FAEyoru22TcRnPcfTinBFXo2C3Oc1XjwpISPcTwdq9akaUDG9+QMBe4+lAEgCIDzuz7ZpYm2q2GbLHOCM4+lRurGNXVsDnFLJJKqnC9OOmPzFMRYDKASWXgcgjGKDJnrnB6HNVcbpPQEflTjnZhgeeBz1/CgCwdodl5LAfiaa+3gE4J96i2DAx0A6ZxSMy7doDcrwSaAJMg8cAjvR83PJIHqKp7pmB25Kj0NSLJcAq5649MUrjsSndk4IBoYyj7oBz6mohNI4IOQQOalSQ7884HbPNOwhGllHYH6Uw3DA/NG273FSeaQP73pxTRKT9/cx9hRYVxFuSDgoV96lE0Z5OQevNIrKyYbDZ7EUgwSxbGAcD3q02S0h4dQRg/Sm5Gd3FRgAZYHg84FGVJJJ4xxVcwrDnjQnB/HBqu0K8lGce5qTzAM5AIFNaTIx93C84qroVj/9k=", "path": "images/4pts_ADE_train_00019267.jpg" }
depth_point_5
images/3pts_ADE_train_00015567.jpg
ADE_train_00015567.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 273 y = 168),Point B is located at (x = 292 y = 127),Point C is located at (x = 205 y = 190).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_57><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_16><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_57><DEPTH_44><DEPTH_44><DEPTH_25><DEPTH_19><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_19><DEPTH_25><DEPTH_45><DEPTH_49><DEPTH_44><DEPTH_15><DEPTH_74><DEPTH_69><DEPTH_36><DEPTH_74><DEPTH_40><DEPTH_49><DEPTH_31><DEPTH_67><DEPTH_35><DEPTH_5><DEPTH_35><DEPTH_70><DEPTH_40><DEPTH_70><DEPTH_70><DEPTH_67><DEPTH_49><DEPTH_3><DEPTH_67><DEPTH_82><DEPTH_5><DEPTH_70><DEPTH_17><DEPTH_22><DEPTH_63><DEPTH_21><DEPTH_22><DEPTH_67><DEPTH_76><DEPTH_81><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_70><DEPTH_70><DEPTH_94><DEPTH_60><DEPTH_67><DEPTH_64><DEPTH_81><DEPTH_5><DEPTH_5><DEPTH_30><DEPTH_40><DEPTH_35><DEPTH_32><DEPTH_50><DEPTH_70><DEPTH_38><DEPTH_3><DEPTH_43><DEPTH_15><DEPTH_3><DEPTH_20><DEPTH_20><DEPTH_9><DEPTH_73><DEPTH_59><DEPTH_31><DEPTH_94><DEPTH_78><DEPTH_81><DEPTH_50><DEPTH_2><DEPTH_43><DEPTH_70><DEPTH_56><DEPTH_5><DEPTH_13><DEPTH_50><DEPTH_47><DEPTH_1><DEPTH_0><DEPTH_9><DEPTH_16><DEPTH_55><DEPTH_63><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
3
[ "C", "B", "A" ]
<DEPTH_START><DEPTH_57><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_16><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_57><DEPTH_44><DEPTH_44><DEPTH_25><DEPTH_19><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_19><DEPTH_25><DEPTH_45><DEPTH_49><DEPTH_44><DEPTH_15><DEPTH_74><DEPTH_69><DEPTH_36><DEPTH_74><DEPTH_40><DEPTH_49><DEPTH_31><DEPTH_67><DEPTH_35><DEPTH_5><DEPTH_35><DEPTH_70><DEPTH_40><DEPTH_70><DEPTH_70><DEPTH_67><DEPTH_49><DEPTH_3><DEPTH_67><DEPTH_82><DEPTH_5><DEPTH_70><DEPTH_17><DEPTH_22><DEPTH_63><DEPTH_21><DEPTH_22><DEPTH_67><DEPTH_76><DEPTH_81><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_70><DEPTH_70><DEPTH_94><DEPTH_60><DEPTH_67><DEPTH_64><DEPTH_81><DEPTH_5><DEPTH_5><DEPTH_30><DEPTH_40><DEPTH_35><DEPTH_32><DEPTH_50><DEPTH_70><DEPTH_38><DEPTH_3><DEPTH_43><DEPTH_15><DEPTH_3><DEPTH_20><DEPTH_20><DEPTH_9><DEPTH_73><DEPTH_59><DEPTH_31><DEPTH_94><DEPTH_78><DEPTH_81><DEPTH_50><DEPTH_2><DEPTH_43><DEPTH_70><DEPTH_56><DEPTH_5><DEPTH_13><DEPTH_50><DEPTH_47><DEPTH_1><DEPTH_0><DEPTH_9><DEPTH_16><DEPTH_55><DEPTH_63><DEPTH_END>
273
168
292
127
205
190
null
null
null
null
102
31
2
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDNQ1ZjI5yDntVSM55FWE/PFdiMEW0IxUwPSoDs8w+WcqOhPcVIvFMotJ61OvtVVD6VYRj0oAtIcDip1PHvVZTU6n8KBllGFTK2KqoeO1SKeaTQ7lxGH41Mj81VQ+uKmU1Fh3LSvUgcVWHsaXJ5pWHcsbqeHqsCaeGxRYLlgOKCQRggEehqDdml3ZpWHcsRzSw8RSso/unlfyNFzqN48GyJEEpOFfd8qerYPf2qDOKUHpS5UF2FvEltEEXJ5yzMeWJ6k+9SFqjzxSck4A+lOwXH76aTSgRH5TKof0NK0TqPu5HtzTFcjJFMOKUnHpUZNMQE0wtmjqRTTTEITTGIpW4FRtTAaxzUTGnk1GwxTEMJB61E4XoOfpUjH1rA8TW2oXmnrDYOQC371VbaWX0z6U+mgM0pGG8gEZHOAeagc8f/AFq5HQNIuZtSW+d1jhtm2IF6tj+lde5A61NOTkrsHoV261C/AqVz6VA/NaEkbsKgb3qdhg9aiKZ9KQEB70wr1OM1OUH4U0pRYRUjNWYzVRCMDirCZP4VmmMtKeKmjPFVlOOlTIaaYy0lWUPHNVENWUNO47FpT3zUinJ71XVuKkDUXAsK/wBKnjNVFbPpU6HFAFxHzipQaqq1PVvSpGWt2D1qRXbPrVZTzUyEUgJt2BzSg571ESevalV9pGAD7GgZIM08NUQc9KcDQBJmlB9qjozSGSZ7CkLkzR20WDNIcDPQe59qFSQnbEhaTH5D3qGV2gfZEpe5POe4/wAKaRLZxjeG9Wi1l7rWtbHmCYSRR2+WLKGyFK9AOB+ddrp9pbq8co1O7iUjmGRcITnqNw4pli8ql7e1INwzZnusZKj+6K11aa3iKxlpmB6TpgNyecjpT9EJIg1ErZRLK5E8bHGQOfzqik1pc/6qbYf7riop43kunfbJbbz/AKscpn2pgljs3DXMcUpzgbRgk+g9adtALTwyKCwAYeqnNV2bH1qLfLLK00mI93SJOi/X1NBOaQxxamHpR9abmgBrVGxp7HH1qEnNMBjEnpULg4YLgHHBNStioHPPWmmFjO0+0eyt5I5HR2eQv8i4AzUrdalc4OeTUDnjpTVlsJ6jHNQtk/SpG61CxouKxGxx24p2zI4puMmriQkqOO1NCKvle1PEBPatCKzLMFClmPRQMmta20RuGnIjX+6vLf8A1qrQk87XrVhT75quvvU6Hkf0rmRZOpqyhqolW4wapFFhP84qdTUKjgevrUy0wJQ1OBzwKZmlA5pgToTxmp0fHWqympA34UAWg+OlSq9U1bpUyfWkMuK1SBttVQ5Wl83tikBaD5p6k1WEmakVsigCwDTgxqANQZDQBPu98UFu1Q7j3NO3UgJInlt2Z4Z5I2YYOD1/Oo1Z03ZVZA3U5waN1G7PemA63u/sk5liwgbBKSLxke4rQk1WSeInKgtwdpz+tZu7FRuiHnbg+o4pabgOnnKsqoS0hHCj09fYe9RBDwz4MgGNwHT6UDC5IyWPJPc0ZPQ1QrCk0hPeg8DtTS3NAxxNRluaUmmmkA0mo2JxTyfSoyf8mgCJye5qBz+VTOc1WlkAHvTuBG5FQsfelZtxphGKdxDCcmmHHr3pXIA6fWoXYmlcB4dF+9XXWOis0aPO2xSAQi9fxPauJbpXqUQ/cRD/AGB/KlzO4W0IobeK3TbDGFHc9zSlc1KQAMk4HqahE4lYpbRtcP8A7A+UfU0OVtWNK546lTLVZTnvU6MPesrisWUJwPWtGBCUU9qzYyMVu2cJa2TjtWkNQYwIcgVIqdz1q0sPHSnCH2qrAVVX1p4XvVkQj0oMOO1AyALilGc1IUPoacsX5UAMH6GpFJAoZQBjFIM0gJAxp4bjp+NRj3pwAOKQyRSM5qUEge1Qde9O3GmBP5h6dqdv9eKgDcUvmYHIpAWQ4OBmgn3qr5gzR5nfOKALBYk04NVcSkd6cso70xFjcO9NLCmbg3ejPvxSGKTSFh+FNY4FR5NAWHlqTPoaYWA60m+i4EmcdeaaXyKbkCms3FFx2EJzzmo2P1oLmmE9aVwGOSarsvOTUrPxVd3J4HSncTQ1iAMdKiZvShmAOTUZcEHii4hG4qF26gU9mNQt7mlcLDCcnNegpr9pM0cFrLGzbQC7nhePTrXnjPiomcZyal+Q0eu2unQ3OJbi4+1egU/IPwFbcKRxoEjUKo6ADArxO01q+smBhuHAHZjn/wCvXU6f4+uIwq3cYcf3hzXDUhO927m0XF7HnSt6VMnIqspweOlTxmum5iXIRuOPzr03QbC0n0GzZ4RuKZLA4PU15oh2RnB5PWvTfDN5bSaHaxrPGZI0w655U5PWtYOyYmrstNoUDfcdl9iM1XfQJB90q344rdXkZBBHtUgFXzMLHLSaTNH1iYe+M1XNmw4Irsxmho45PvorfUUcwWOK+zEdqT7PXYNp9s/8GPoarvo8bfcfH1FHMgscdcx+WAarhs1seIbP7BHCXIw7EDb3rCWQdqTZSLCn8qdkdP5VAHHY0vmfQ0XAlznipUFVleplbii4WJT+lRn6UM1NJouADnnvS/UUgYDvRnNFwAvjgcZpyk9+aZShuKLgTg4oL9gajzS4HrSuOwu49TTDIMdOtIx7VGSaLhYeXHrTd/PNREntTATuouBa3ZpCaaDxTWOam47Cl8dKiY5oZuKjJouFhrnjrVaRj2qZjVdjjp1o5hWIz05NNJGOaGPOc1GxA4FFxCO1RPx15FK3P1qJs4ouFiNiSOlRMQTmnuecd6hbk0riEZ8daa020cdqa1RPSC5CpyO1WYTlhk/nVRTVmIhVLZ6CoQy3v3NjPSvYfAukrY6Asz4Z7tvNJx/D/D/n3ryPQrCTVtVtrJDzNIAT6L1J/KvoSCFIYUijG1EUKo9AOBUTelhoY1lbNyYUB9VGD+lNNgn8Eki/jn+dWhS0k2hlE2ky/dkRv94EUwxTp1hJ90INaIFLiqU5AZe9V+/lP95SP509cMMqQR7GtA9Kxtf1LTtFsGurtELHiNAMM7egxTdW24KNzm/HTbbey93f+Qrjlk70X+s3uquGupSUViY4uyZqunIxmq5h2Lpk4oVs1WYhNoyXJPCj/PFXjaKIUmiuFeNjjI5APoelWlJ6oltLQaJPf8KnSTiqktu6AOXTaT1z/nFTxqwjDEgr6gg0PmW41Zk4NRyS4/8A1UwsT0qCZtoyaXMNotq4PepN4C9aoxSgj/CpQSeelPmFYmMnzdc1InJyaqhsHirEW5iM0cwWLKmlA9qFX61PDHknjPFCAqspB4qIrzWk1v7VE9ucVVgRnMOtRfx4zV6S2aq/2dlbJqQAH05pCT3ozxxTGPvWfMaWAkVGxOfSlY1GeR1oTFYjYjFQtn1qZl96iancmxEVqJgBnNTNj8KibHai4iJsnoKhbjuanNRMhNMRXc1C3NaCWNxLjZG2PU8VYTRif9a4HsKYWMMgk0iQSSnCIzfQV0iafbRD/V7j/tU9sKMBQB6AUXQuU41VPapRkJgelWzpl4nW3Y/TmmNbSocPE4+qms7MaPQfhZpCZn1Z+q5hjyO/ViP0FeojpXg2meKNY0mBYLW5UQrnCNGpFdBa/ErV48Ca3tpR7Aqf51lLmvcpJWPW6K88g+J8bYE+mup9Y5Af5itS3+IujS4Ei3MR/wBqPI/Q0XDlZ2FFYUHjDQp/u6hEp9Hyv86XUvFOmafp73ZuI5gOESJwxY9hxQ5pIOVlrWtatNDsHurp+OiIOrn0FeN6xrNzrmoNd3bc9I4x91F9BTNa1e912+N1dn/cjH3UHoKzgrA80o3buy7W0RYjO7nOKsqcVTRyvapA5PJrS4i8LiQWzW6sPKZssMDn8etT2dzDaxeXJD5idcbiMH6dKzw4H/1qPM4POKpTa2YnFMnnuHkk+TCds9cCrMRwi5yT6nk1mFwCMGp3R5vKKSyJhvm2OVyPelKTe41FLY0N47VVuskDnFTZAFVbxgFXAxzU3KaJbLBJGc4HWrwiJFUdMYM7LySBWwiksEVWeT+4gyf/AK341pFXJI4rcelWVVEYAn5j91Ryx+gFXbfSp5ADcSCBP7kRyx+rdB+H51r2trb2ikQRKpPVurH6nqa1Ue5DfYz7XTJpcNIohX/a5Y/h2/Gtqy0+2jZv3e87fvPz/wDqpYleY7YkaQjrtGcfU9K0rfT5ly0jomR90DP60OaQrFV7C2b+DH0NVpNIhb7rkfUVsNaSjoUP4kVGbeYf8sifoQaXOgsYEmjPztZT+lUbjSp40Y+WSAOo5rp3Vl5ZWH1U1WnYNBLgg4Q9/aqTTDU4AkDuD9KjJ+lRhvlGaCQen61yXNxSajLU4g8U9LWaX7sZx6ngVSEyuzc0xgTWmmlsf9Y4HstWUsreMD5Nx/2uaqxJgrBJIdqoW+gzU6aVO4y21AfU1u4CjAAA9BTTTuFjhdf8SaN4W1COy1CO+mleISgwIm3BJHdgc/Kav+GPEmk+JBc/2daTxfZtm/z0UZ3ZxjBP901Q19bl/FusLaS6hDP/AMI7HtfTojJOP9OjztUMpPGc8jjNP8Kgf8JZ4kAnMx8qxDSPH5bs3knd5i5OJM538n5t1O5PWx1bdKgc81OwzULCgogeoGz2qw4qBqBMeHPFSrIevNQLUnahsEODxvw6I31UGlW3s3zut4/wGP5VWAwamXipuMk/s2xfojL/ALrUv9jWrfdmkB98GlUn1qZWOKWgyq+hj+C4H4rUZ0GfHyvG344rUDHvT1cg96LIZhtot6vSLP0INRNptzGPmgkH4V1KuT3qRXbHWlyoDjTAynlSPbFIYyO1druz1AP1pjQwP96CM/8AARRygcWY+KChHGa69tPsm6wAfQkVA2jWbHIMi/jS5WM5MxEnJNW0kIQDpW02hRfwTkf7y1A+hSj7kqN9ciizEZ3nY6mql5LlQc4Faj6NdL0QH6MKoXmj3bpjypOPalYC54WCXN/KjEkLHnj6iu4hWOBAqKsY9AOv+NeZae19oV09xDErMy7SsgPTOf6V1un/ABINgAJNBi3d3jmO4/iQT+taKpyqxHK2djb6feXGCsPlr/fl4/TrWrBosKYM7tM3oeF/L/GuUg+K+kuQJ7K8iJ7gKw/nWza+PNAu8bbqRM/34mFJ1L7is+h0aIqKFRQqjoAMCnVjXPijTLdMrI8zf3YkJNc5qHjy65WzsPKHZ5sk/kKlzQKDZ3Z45NZOoeJtI03ImvEZx/BH85/SvMb/AFnV9VYpNdTOp/gU7VH4CqaaazffcKD2HJpczZXIup12ofEd23Jp1oFHaSY5P5D/ABrmLnVdT1eYNc3UspByEXhR+Ap8dnbRAErvP+1Tv7RtIZo4POiWR22qgPJNKy6lLTYWKynbGQEHvVtNPjHLuzH24qyvapAtUmh2I44Yo/uRqP51JzTgtLtp3CwzFJtzUu2kxTuFiLbTSKlI4pjCi4jhvGHgD/hKtWivv7T+y+XAIdn2ffnDMc53D+9+lTeD/Bv/AAiX23/T/tX2nZ/yx2bdu7/aOfvfpWk2rahLbSajbWtu+nx78BpCJJFUkbhxgD2PPB9q1kkSeFJozlHUMpxjIIyKmNRS2Oivg6lDWa8t72fZ9n/XRjGqBz2qw4qu9WcxA55qu/ep361C2PSncmw4AZ4qQDg1GASanVQeKTGiEJg5I4qRV9qft5IFOC81NyrCqmKkVaFWnqtK4xyrXKeLPEl7oV/bx24jKSR7mDjPINdcorjPFtpFd+I7OKZQyfZ2OD/vULVpEy0i2Urf4kXK4EtjC/8AusRWnB8SbVsCbT5V/wB1wayR4a05+sZH0Y0n/CJ2ZzteRfxFXyGSnI6mDx9o0uAwnjPuma0I/FmiSDIuyv8AvIRXAnwgh+5dMv1FNHg+5xmO6XHYFaOVlc76o9ITX9Ik+5qNv+L4/nVlL+yk+5dwN9JBXlbeFNSRTiSJv+BYqOTw9rEHP2ab6joalpoan5HrodG5V1P0OaU+1eJs9/a3CRz+ZHz34zXr+lD/AIk9rzk7OpPuaNepUZJlvJ965fxt4iu/D+n20lk0YmlkK/vF3cAf/qrqPxrzr4qn/R9LX/bkP6LTCTsjQ0/xjNPpdvJdu4nkXcxis2kQDJA6H2pJ/F1snMxs2/662skf8xVjwL4hsNK8Lpa3MAe4dS0bbhgc+lauqanYtdx3cUkbjy87GAIDe46daI0763M5VLHLXHiHT7lEkhi05SDgss4GT+IqxZXy3bfJjCkchgQc+hFYVtY2Or6jqklxHE6l0YY+UBiDnGK1tOs4bK5kgt12xAoQM5681ErJ2Li21c7yTmQnAXJ7UCQjvmpJE5NQleaDUrXTtulMaZIA4BxWJc3eqLxHaFR6j5v5VuuPnm/CoM88daS1JZwNxqd5dCffcuwj+8qHp19PpRpEBHiHTSwOJGEitnrxmprG6gsnvp5VVztAkhOMEfNwD61m+HvFM93rmj2AtYViS4VVZsswBG0gHt61u4xjFnMpNyVz2NEqXZz70qLUmK5rnbYjCil208DNGKEwaI8U0iku7mCxtJbq5kWOGJS7uewFeO+I/iPquou0WllrG0zgMv8ArX+p7fQfnWkU2ZykonsDDmmNXiHh74k3+lXai9u5L2zY/vElyzD3Unn8K9os7yDUbKC8tZBJBOgeN8YyCPTtQ7rRijJSMmTQWxJbxahPFYSli9uqrxk5IVsfKvtj19a0giRoqIoVVGAoGAB6AVOaiYYpRhGOx0VsTVrJKo9vJL5u2783qQviq8mKsMKgcZNWczKzc1EcA9KsMMdetQMM0xD1Hep415zUQ+lWIuucUhoaF5zTwtP2Hr2p6qAOallDQtSKKUDpUirSGAXNcn4iGfFdoPS0b/0KuxAzXIeIMf8ACXW/taH/ANCpx+Jf10In8LCNfTFcPN4j1tdQeRCnkK5AiKjGP510+uXx0+wEoONzhfoK5+5gub7RzexWzsuTjaOCPWonOSn5BGKcfM7HSb+HVbRZkXawGHQ9jWpbomdrMEGeSRnFcP8ADu21C71GeCKBigj3MCcd+Otd7LaTWr7ZVCt6bga1Uul9SEr6m3Ypo9uoZpxJIP4nU8fQVflvLJ4ZAt1EDtPVuelcoASOgFVpBycj9Kh0uZ3bNFO3Q5HxIoFzCMcnv+Vei6YMaTa/7n9TXnnif/j+twO//wBavRdO/wCQXa/9c/61ctyIdSc15v8AFRvn0pfaU/8AoNejmvNPio2LnTCchdknPvlaFuOfwmVpkiiO1BHSEfzNbMrIbNyRyelc5ZXVv9ngP2y1QhApWUPkH6itIaimzat1pWf9qWQfptp8ytYw5He5zVwv7mTcMfvsfT5a7HwgM2K85+cdfrWDc2Qumkke/wBO3SSmRkhm2gcDpkV0/hKAx2oTzEk2uBujbcp+h/Gs5SuawjZnpUq8moCvOauyp8xquy/NxUnQU5F+eY+wqqUGDxz2rQkTLTdegqm4KK7dgCc4pxJkcBDDcPY6jEXMeUDR+WNgY4bjjHoetch4R58XaR/19J/OutmukfTb5keZuADtiCgDDdyT3J7VyfhDP/CXaP8A9fUf863m/dZyRXvI+ilFOxSqKftriuegR0U7FJirTEzkfH1rNfaVa2iki3knHnY7gDIH5/yrhNV8MRPp6/YkGIuSAeteqeIo9+jy4QsQVIx25xn9a5bRo2AljblQe/em5tWZUKSmmmeZ2elWL+BJIHa0/tWeKTUYUMbeeUjYLgNtwF2JOxG4Z+U44Br0D4V3rT+GTbOSfIYbfoRXF/8ACt/E6yrKNVtBIkRjVhcS5VNpG0Hb0wSMdMHFdZ8LIGt7a9icDcm0HHTjirlOMrWZzKEoP3kegMKiYVM2KiaqKIHHWoH46VZYVA3WgRWYc1Ewqww5zUTZpiJFHNTRgHtTFGRUsYoGiVacB7UgANPHSkxigU9RQtSKKQwUVx2vjPjCP2tP/Zq7RRzxXF6/uPjEBQDizXqcfxGhbr+uhM/hGzWsF5BJbXO0RyKUyw7np+NV9J26PpkNnMpYNkVsR6ZciyN3PFsh6Jnqx/w96z5riLylLgZQ96wnL95Y6qEfcuQ2FyU110s2aKNYz5mzjdyMA1uoCzHJJJ9e9YejKHkurlRhZGCr746/zrZVyh4xW8FZHLN3ky2EAAqnIPnb608yyHgt+VMPoRyaolnI+JF3araADqcfqK9HsABplt/1z/rXnfiMKNVs8DBz/UV6JZn/AIl1sP8ApmKUtwh1EuoPtEDRCWWLOPnibaw+hrzX4iWSwXWli5vLmWFy4YvhmQZXJXpk/WvTzXk/iu+uL/x/bWHn7Y7e4jSL5AdhYLk89eexpxCpscxdW2nJE7Wb30uB96SFVX8cE1p6L4NuNesVubW6iUdHDqflOTxx1OAD/wACrv7zRNYeBoxr+Y3ZVKNZx45YelN0zStctIMW2pWCwszME+xbR1xn5WHpQ5Eqnrqchc/Du8tdm+7gbcDyAcV1Ph3T7qwjht5poZIYwFUJGVOc+pPNTXU+ppqtvZX8tnKHheRTBGykYIHOSfWtKyjPmIPcVlKT6mkYq+h18q/MarsvNXZAMn61AVGaRqUpSFMpJx0rkPFXiqbQJ7C2tdKk1Ga+8xUjicq2V29AFJbO79K7GVR5zVwfxDkiBt7YzxW9xd2F1BbTSuEVX3wMQWPC7kV0ySB8/PFEJe/Ymovduc1o2t3l9ro8PyaG9rd3MZR0nkKfdjdgWUqOowf1rW8O/DTV9P1yxvrq4tVSCVZSqsWYgHoOK5vwSksPxG8O2s1/FdvBbSpiJ1dYcpK3lh1JDfezkE43Y7V70B86/Q/0p1qkk+VEUqcWrsnUd6dikUU6udM6BpFMIqSmEVaYivdQ/aLaSHdt3jGa4eG/isWnMquxV9mxB8zNnGAD1rvjXKeI/D895KLixC+YWDsM4IYdx6053cdNzowk6caqVX4epRttRa4naC4tzbyspZAXDK2OoB9fb0q14dhgiu74xrtkfazAdD2z+lZthbytdQ3F5JETGGWNIwRgnqST36jFbVjCLeR5xgPJwPoP8/pWVGE3NWOjMXRSTjbzte1/K+u1jWaom61ICWUEio2rt2PJInHNQsKmaoWxRcRA/WomqZqiagB65HBFWIiM4olUK2MUKM84x9KYFhQCKeBUIOOhqUMaQyQDtUiiogalWkMeOtVYfD0U3iB9YuWDoIVjjhx1IJOT/hU08nlRF+/T86rNqDMpVDteI9z1q4wctiZSS3NHV/8ASLeSIMDgcgdq8/exlbUUimjJt3YiQg9sHkHtziu0im8yF5AMFyTWPOv74nFaewjLfoT7aSWhWNvHZSG0h+7GBtHqD3p4GT3pk53ahCe7xMD+GMf1qTBCliQFGBye5/8A1Vk1yuwk76igDPelI4pvUUuBSuUcx4gQnVLU8/5NegWgxYW3tGK43VrfeFuMHCXESZ+u8/0rtbMZsLf/AK5inIIdRcc15TLo97f/ABLupwvlxQXaylpAQGUEfd45NesEc00A7+9TzWKceYqXK7Y1I/vr/Ols0AtIP+ua/wAqmnXJiU95B/I060XdZwgj+AAj6cVI7HF6i0reP4InaNkWyYrsHQFuh568V0Fqn7xceoqa+s7aCVGigijZgcsiAE0luMSp9RWcmVGJ1m4xy7wqkjPDDINVsFiQFwepX/D1FTyfeaomGRz+HtRqUUph+9aud8TeDNO8W/ZPt811F9m37PIZVzu25zlT/dFdQ4SSQq5CSdpD91v970PvXPLNquo3l59iuobaOznaERvFuMrKBkMc8LnoV5waxlNxd1udFHD+2Tu0kt2728tkzN8P/DHRfD+tW+qWl1fvPBu2rLIhU7lKnOEB6E967jHzrWbot/8A2npVteFdrSL8wxgbgcHHXjIOPatIffT8aTm5asidJ0pum1Zp2fyJhTqaBTqaIENMI5p56U01aERt61G3FSGoZXCozHoBmtEJnHalDNF4hliiRvJfEgcDhSRz+vP41oE/ugO4AxS8zTPIw5JyaVhk16VGioa9WcNWrKWnRGjayL5IGenGTRcBY139FPeqFtIA0qe2a0LeTcojYA5FFSmghNlYkHvxULH3pdgt5DbDJAyyE+men4U1q4no7HTuiNjULGpWqI5piLjMGAJ65oBAIxTIwOCRzUg+8BjiqYIcOvWpF5NIME9KkA/CoY0PU1KvSolqZTQMrX7gQoh/ibJ+g5rAuZvLZnzycc1r6vIFVV7niuevHZjHGuMn19q7MOvductZ6mza3YK7VHy4/OmzAEZH1qtZxiMbzkk8ZPerbKSWPpWslZ6Ep3RlSS+bdWzA8fOMjvxVa8mc6xYwBjtbc5GeuOnFTTgR3ESqMlZQvHuDVSX954rgGPuWxP5k1xVNJamy8jZH07elJTgDnPNNPX/61ZlmbqV0i2bWpxue8hcfQK4/rXZ2Y/0C39PLFec6zKRqkEXQFlb9TXpNkP8AQLf/AK5L/KnN7BT6ilOaXbUhHNGKyubWKkynzIB/tk/+OmltRhHX+7Iw/XP9adL/AMfUC/7x/Qf40sAxcXC/7Qb81H+FFxWKepDMkf0NQwr+8T6irWpD5o/oarwf6xR7is5blI6Z/vH61GalfO4/WozVAU5h+8NZVxoFndXpnd7tBLgTpBMUEwAwAR6Y4wMdTWvN/rDTBWM0m9TejWqUXzU3ZksVolpbRJbkNbIoRGH8IAwAc8g/WpP4lNNidon3IcHoQeQw9CO4qfy1nIMC7X6mEn9VPf6UrdjNtt3YCndqYp//AFU7NNCENNNONNNWhDD061WuhutpQP7pqy1QyDcrD1FaRdmTJaWOejPB570zzQJdnQetLHzwQRjg1DCo+0SEvkluMfyr2NjzopO9yUOsVyQf4hgcd6uxsSY+cZWs6bG4dcg5FXIWBMQPQjHNOaJiybUSpgW5/ihOTjup6/4/hVduelXgAylHGUbg+lZy7keSFhgxtgZ7r2/z7VwVY2dzrg+gjVE1SsRUbYrEssLhaevJqENyOakQ81owROlSrUKNmpAahjJV61KvWok6VIp5zSGcpqevwDUp4vJlm8s7CoXjI9DmqsdybqZZDZvb4XABbdn8qx9Ud7HWrtGJR/NZhkdQTkGnQatO5CodxPQDmlHEVlbkSLdCi/ibOqhcHC7WI9KtxE9SQMmsG0jvpP3rz+SPRQCauQQtd6hbWBuVZrglSWT5QAM+vWqdPFVPidkKM8NTfuq7MzW7p7HVIhFGHh3eYyZ5DAYzn8arLdCK4a7kLNOqhNwj+8OTgDp3xmoNSgvrjWZ4Fkhf7OAhfkA5yajga6utUltZvICwMjOwHJ4BxU2nsxOdK7aOqVyU7jI6Gg88/wBKredkEZGfqKYZwF+8PzFXYyuc7qzn/hI4c/7OPzNer2Y/0C2/65L/ACrx+/l83xHCwIx8vP4mu48U+Lh4X0axEMKz3txGBEjZ2qABljj69KUld2HTaV2dcRRiuU8E+MT4mglhuoRBfwAM6qCFdT/EM/kRXV1m00zaLTV0VnH+nx+0TH9VpUH+nP7xL/M/40mc6g3+zEP1J/wp0fzXkrdlVU/Hk/1FICvqY+aP6GqsPEqn3FWtTPzR/Q1Uhb94v+8KzluUdPJ94/WmE0rn5j9aj3VYiCf/AFhpij8qLmQIXY9FGf0ry3XbfxFqF8+oxX8sMQ5ijjlKhF+g6mstOazdirO10rnqqGnHHy/XPHauV8D+IJ9c0Ym8IN3A/lyMBjf6GunLfd+tJqzsCd1cvCVZv9edr9BMB/6EO/1pHR4m2uuCeQR0YeoPeoAcVLHM0SFCvmQnrGe3up7GmmAE00ms6TWbOG5mSWURRLMIlaQ7TkgEbh2ycgHocdavE+tWK6ENMY0pNRsaaEYLjbczKOzGlA28npUcjZvLgHpvzTsjv26V7NN3ijzZaNjJ0BycYpbeTOxT/DwQaR2yxxnHWqkkxhkLKN3HTNa2uZ3sbycLksMdST2rHvdUtft9ukTlyzeWzKPlwenPfn+dc7qN9cXt7FbmZxEFy8anCnniq1/OI48htrDBH+zjpXlYqtyy9nFanpUKXNDnZ2TCoyOtR2tz9ps4ZwMeYganM1Zp3VxAGqWN6p+Zk4qVHIrRslF0Mc1KG9aqo35VMrVBSLavwKkBqupqRWoGSPBDNzLDHJxj5lBri5okjv5UxtG44AFdnvAHWuRnngmvpQflG8lJOxrowqtJmOI+FFmEh49v4ECpdPjsn17El5Ej29uzNFvAcZ9M9yOKqIQXGADjqc4qO80yy1FCbmBX3dXHDY9Miu1nKjFn0nW9Q1K5uraOUJKwJIOMnGT/ADqjpvhrW7y9vzFu3Ry+W534+YCvSdDKqk0SDCqy4HttA/pVTwkS/wDa83/PTUZsfgcV5EpS5nqd8YRaRzcfgjXHH7yYL/20z/WpP+Ff6m2c3cQHu1eiZ4o3VOvcvkj2PP4Ph7dxTxzPewkKwbHPaofG1rMNc0meNVk8i1KKD0LA16DM+1DXE+MJAtzYyK5Mke4tGvPynHNDulcair2Dwo0tz4oe6aBY1S0KEjuSV/wrvMivOdIvZYYkurYMEeTaXKkBlz835cV2un6ra6gZ1gkDSW7hJVH8LYz+NRB9DScUtb7llTm9uCegVF/mf60605i8zvIS/wCB6fpiqjtuNxGp5llEefbaM/pmry8AAcVZmU9VOGi+hqnCcyL9RU+rNho/901ShceYn+8Kh7jOqc8n61xfjrXrrTIra3sp2ilkJd2Q/NtHQfif5V17Nyee9eR+Lbv7Z4nuctlYiI1Hpj/6+aoT2Fg8aa4ZkimmSVXIQ+ZGM4PHUVtM1x5RhMgaNQQxPauUh029udstvayOgOd4Xj862pL9DbtGr7pGHzAdqzkru6NsPJJNSKmkeI38KtPafZYp3lYSk7yCARwOldJbfEXTntWe6t5opVYYjQh93v2ryqU3DX0k0u472J3EdR2p/JZmzwMce9bukupx+1aeh77pWrW2r2S3do5MbcEHgqfQ1fzXB/Df5NAlkyd0k56nsAMV24bjOawas7HRF3VynrOi2et23lXSFXH3Jk4dD7eo9jxXHQaprHgi5Sy1cNeaSx2w3K/we2e3+6fwNd9uqO5hgurd4LiJJYZBhkcZBFVGVlYTjrcZaX1tqFstxaTLLE3Qqf5+lSMa4G80DUfCdzJqGgvJLZHmS2PzFPw/iX9RXQ6N4ktdXXym/cXgGWhY9fdfUVVuoXC9g8m6LA5WTnHoaYHwCT2qzqpx5TehNU0OTyOO9erh5NwTZ59ZWm0gZSI+c5xk81RuzsXk4981dlYFgO3U1jajIzIVGQ0nC+w9a3clFOT6GSi5NRRm2jbnnuiOpwv0qisL6vqyWyZ8sHLn0FWb2VbGwKL1xWp4Y082tibqUYln5+i9q8G7nJye7PWnaEVBdDcRVhiWOMYRRgAU1uM0E0wtW6MCqGy1TxMOlUlbB61PGfemIvqeOKnjPvVNG7VYRv1pFItq1SA1XB5HrUhfaKBkWo3aW1jO5kjVxGxUO4XJxXJaTOb2zju12DzBlkbqD3wa53xE7T+IdRd5CwjVtgJ6AHtWbpetXmmt+5cMhOWR+Qf8K3w00r3OfE7o9HQh1PzED/PWpgGJGcZHp0rnrLxbYSgfaFkgfv8AxLWrDqenykPFewH1BfFdrd1oc8Wh1l4nttJ8QzadeqI0k2MJ93CnbwCP6+9aPgZ/M8PvNnPm3Ur5+rV5f4hmFxrt1MjrIpfhlORwtemeBB5fhCyHqCc/jXlT3ud8HqkdQ0gUE+leYar441W7E0dri1WN9v7vlj+P+FehXch8tgO4NeW6PapLrE3mkbd+9VJ64rKcuVXNormdjqdN/tCfT0fU7yWUkbijHge3vVR7eNZpHXqc4J5q09yJiY4ZFVYiMnrk+lUp55oVctESQcbk5GPpXE5SctWdqUYx0OfuLO7N4wW5eNdxKjJ2jPoK7Dw1J/ZmnwRHkIuJgOSQTnP1BzWddtG+nvdJgqvJx1qawdI7iGdJA0M67SM/iK29pJr0MfZxT9TndU8T6vJrF3Gl80KxzSKqREDAz6jr0FJbapqshyb25c+nnH/GqfiXTV0/WyyD91cfOPY9x/n1qCAhHjI34PXYQDXq0WpRUkePXUoTcWX5dW1VX+e+uOOgaTNbvhjXrq7u/s90yyFSCHUYPXoa5BoJZzK0cMzqnJOM4+uK1vB423zkf3k/nUVYxaY6Tkmj2R327mPQZNedWulWckbanfKzzSyM/llvl5JxkfrXY63ctDAsaHBmfaT7d64K91mKKZ4JW2hOMA9MHOf8+tc1K0qjgdta8aan5nU2sr39qkUUWYSCTtIB+g9B0H4msV9GlfUpoWdlgdj+7AAIHpuHaum0tI9P0a32/O7oCMdWzyP51MIlR2kkO6QLukbsPQCt1y320MNe+pSuLC0XTBY+SnlsuzG3px1rynVbA6Ze3VnI2WR+CP4h1B/KvVZXMlwoydwHT681wXjtFGrpJ0MsWOPUEj/CqcLEt3Oh8ETGLRIowesjH+Vd5E+5Ac9q868JnbpcQ/2mP613tq+YxXPUjbU3pO6Lm6kLVDJNHEu+SRUX1Y4FcXrXxFgs7ma2062+0vC215GbCfhjrWcYt7Fymo7nc5rjfFHhB9RZL7SZzbX0OSqBsI3OT/unP4VkD4mXFvsa80+F1b/njKQ2foa0oviVocm3zBcwk9d0ef5GrUZLYhzg9zK0/wAYTs40zXIjDdwty7jH5/4108UgZAykEEZBHSqGsR6D4ntExNGbkDMUinbIB369R7VnaYJ9F05rO4Pm+W5YSqfvIenHY110q3s4Xa0MXS9pOyZq3l2sFtJMwZvZRkkew9T0qjLvaZ2mRomXgo3BX2PvQY/mEglkIxlcMeK521mmstROhz+Y6zyb1lzk7TknP+fWsquJ+sLkhobwofVpc89TQisf7TukuJc/ZxMFA9R3P58V1pIUbQMADAFZzW+ywlijTb+7IUDtxxVpJRLDG+fvKDTnSVNoyVRzu2PLe9NJppakLZFQUY/9o2ked9zGP+BUjeItKi4a7Tj0ry0seck0ma05EY87PT38aaRF0kkc/wCytVZPiJZJ/qrOaT6kCvOqTtT5UL2kj0qz8ftdTKi2ax5PBZs11UN8t3EssbZDDNeOQKVCgZ4A6V2fh7VzsKOcY++CcfiKlpIqMm9GYmsSb9bvMfxh8/5/CsVDlOOc9q2JovOu7i8MqBd7YyeTWQi/N+OKmltYVfoyYEbevSoHwT/OrkVpPOuY4WYDvjiqMrqHZSQCPStUYJE0a5iY9cBj/wCOmvW/BDFfCljGww6ocj8TXk9vAJreVo5lBKldpBzz6V09nr72ltEixMGjUKGD46VjNT6K50QrUl8UrWPR7pspJjGdpx+VeWaNLHdzSpIW82MYXDYIJzk1pnxldguSYiCOA3OKwlv0imkljKI7/eKr1onRlKNhLG0oyve/yLunXc2mxSW7OJGVi25uvPNa8GuRhSJVBz3rlnvVZ2clyx68AZrTggkvNGmvy5BjBCJjjA9f1/Koq0YpXn1NaGKnVbjRi3ZN/JGubnT7zKSJ167eKmtbLSrMYjv3jiGCYy2QMemaraD4S1DX/DN/rMM8cS2+4RxspJlKjJ57VyQuLl+QT+C0RwsW2lIynmFSKUuRa+Z1+ojRr14zc3FxMYQSqqNobPqawL8WNnAbmKWUYO1ICuSeP73TFZ5+0uOWb86hmspZ0wZAMc8810U6Sp7NnHUxkqsvfSRv6J40+yrDYrpw8st8zh/m+p4roY7bToNTFxZTw/vWBkRDwD6j/CvPY7Oe3KurDcPT0q5DfPGw3A5Hcdaz+rR5ueOjf4mzx0rKO8V96PXNddXitpFYFRNjIPqDXkGuQtLr10xUsBJjA78V0Ft4hZwEchwCDjpyO+KltBYvqzX0oZ8sHwpAKsO+Dwe1ZKnKFRya6HV9bpVqSgnrc7mwUrEjvG0T7AdrchRj9PpTriVvsu7n9+/H0/8A1VmXOsx3NjLHBdBmCFsONjOff/61Ms9VbUrS0upFCDy8qi9PrWqrQjuy1RnLSKLdtLG800hxlXPX9K4nxyT51ju64fP5iulVEhd3cb9wxjOMVyfjC8hubi2RCweIkEHng4wa0VanUvyMzqUalNLnRt+GTt0u39Dk/qa7WzkwvXiuI8PtjTbbH93+tbOs6idP8PXUqH94yeXHj+83H/1/wrOor2KpysrnJeLtZl1V3mjkItQ7RQKTwcdW/H1rlHgdJpvl3KiZJ6YUjjNTalMxeCzTcVgTbgep5P61JHDcQpcXLRkq+YyMZB46n8CKlOyJlqyq88UrrIIycR/MH5yc9qrsQ2WbG8nofStGWD/RSS4dFVcMF5A4/oarWYjdnOcuBtRcdj3q01bQzsO0++ay1C2mMeGSVWyc8LnpXo9+iqvntLJtJG4dQewry6WQ+YTjPGBntXqWmSLf6LbmVQwkiAYfhW9OKmnF9RKbg00VnvWiiCCFpCv3sHIQehqS0jtI7pJ5JITdS8LJnrnsPSra2yQoIolCjuBWNr2gvdx+ZZyeXInzeWeFb/A0QwjpNTjq+ppUxXtVyy26HUZwAAMt71nWl7brLNZmdPOhkZShOCBnI/nXM6J4uuNPn+wawkjBeBIR8yfX1FZnjJYTraXdtOkiXEYfMbfhVVLTXoZRlynogcE8Gk3ZFeSW+pXUDh0uZlZTxhuK63RvFpndYb9NueBMOmfeudxsaKd9zhu1LSVsw+Hbm4sFuYpIySM7DVSkoq7IUW3ZGN2pVGWA96klt5YZGjkjKOOoNIqMrA44FUSXwwRC3YCrmg3MgnuH3c7R17VmSv8AuCPWr+hqDHdOf4V/xqZbMqO5FcBl6H73OD61XBKjPerLHzLcN6VVYYkII+bPSpgOfwo7Cz1yIaNFJ5O+dgQUXhVA4z71lXV19s+/DEEPOFQD9ax7S/eECFjhA2QfQ1pviaBpYFO8DLJj9RTtGL2J1aIntGiVjAeD1Gelek64dCT4RWFvF5P2lxGY9oG8ydXJ7+ufwrzG1umBZScbhyKsII5vmXBYU3Hnsn0OeXNSvKOqZAIPU04W6jGc1Pijitjg52R+UvYVPa6gVsJ7XeyI7bYxtyGIPzD24IP50z86rR2uy6MxIxkkD0JqJwUlZm1DESp8zTs2rHWaP4s1HR/D95pNukZiuN2HYnMeRg4rnwuKUHHIpRVWRzSnJqzewmKUUUH0osQJimPEr9RUnSkosNO2qKr2205WhZ5YuDlh6GrWOKayhuDRqac6fxD47/eNrH8Gq0l5JHDtglKEDGM8D6VlyQhjkfrUYMsZ4JFRKnGR1UsRUh8EvvNN7nVSm9XaQDqA2TWRdSPcs08qMsgwCSKlnu5BZuY3KSDuKrWsdxdjzHuMgHGH5zUey5XodccTzQvPQ3rHxFDZaaqrGzSRjGCQPxx1xUF54invktpriLfbRSb2Rezen0pDo9hcJ+6laOXbjDcjPrVCfRr60jlON6kDDRc/pUOSejNou6vF3Gaagub9GllVd75YHqScgAfjWleGeG03Fv3xcrKoPyleSAfTtWHarJFeR7F3FCrEHjHeta7vpmvJZEBit5GTzTgHc2ep/LtUTj76KjL3bDraHfpzIJGDoGDIU+8COPyNZkaLDY7iNsxYAnuFrRubmWARSXEuHZ35xyUz/wDXNZF0w8wJGGCoNuD3p002Kdk9AljBRyhyseCfQ5rvPDNxNDpkVtMmHI3Lz0B5Fcfplmt1eWaMQI5GPmLnqBzWx4hleJo2ikZMsynacZAAxXRTlyyREldNm1q2vpYbljkEs5GNq9F+tYTeJdRPAaNV68LmscDnnkmmklflJ+layryb00Ofl7kt/qNxqDo0uwSIcpIq4YVAttLfXoEnlxGQEhguFJA68eppjkE8du9al0hXQUx95QGBHbmsm3JmsdDDljeOZo3X5k4OKvWd21vDJEUVo5B8w71SWV8SNuJLYBJ7im7yB+lSUG0VoprF1Dp62kUmxMnJA5NZe40ZNNq4Jk5lLEsxJJ6kmjzB36VBmimImZgYzjpWnpB22F63+z/SscH5OO9a2ncaVdH1P9KmWxUdytI+LNcH7zdqiHP1qUIXtRj+Fs0kMDTMRkDHPNJWQSTaKTfeP1q/p9+0P7s9TwjE9KpzoY5mQ4yDUYFU7NC1R0NzAtzF5sPyyL8zRj+dU4pSsmCfxptheFZAGYiRR8pz19q1NS08SKZ4OHXiSMfzFRezsyrXQmVc4XPsT3ppGOtUftJSMqAGJHAPrU9vOz2waYqHJIFbQd9GediKHL70SfPNKBRjFFWcTFBpRSCj2oEOopvalHWgQtGOKAaPrQAe9J707tTT3oAaRTTzT/xpppFJlee3WaMr93PpUEdu1spw5OeavEU0ig2jUaXK9iKO5dfvDIq7b6k0WQr8HjDc/wD6qSbS54rUXDKNh5ODyv1qg0eBUqUKi7m86NShJXTi3qa7zWt0D9ohXcf4l/xqndaQ06Oba63KTuEbnofrVMSOnCnitfw9ZS65q8VjG/llssz9dqjrWNSEKcXO9kjelXqykoNXuYc1rPDLC90rsB1DdAfTPpUaws5M0gJCks6dzXc+JNGu9AkSJiLi2cZEu3n6NXPFIJWLgmNyMZHSsqVVVIKcNUzqlaM3B6MxLUyNfRm33Aq2VGeg71ra1IZoYWJ+bJOPrj/CkhgisY5TuDSv0YdhVzV4Ek0S1uUKlo9oYD3rSLbZTSjDfVmEDz15pW6cc/WmhvmDD1oml3yNIEVcknaOgrQ5yNuoHrW3eRslqUXBjZcMvt6isEknnvmt2a5WfSvMPB24/Gs5tppo6KSi4yTMBVCwvzz0/WmHhYwec/MaQk4PoalVWebbGN3G0GrMyvS/WkFHOcVQhaO9GM0ooAUdK0rf5dHn5xk1mVppxobcdW/rSew0QwviLGTgnmrVmc7j+FUojiLHA571ctD1we/aoZomUr8YvGI781XzxVi/5uag28VS2IluIPUfpW1p9+5wCcyIOh/jH+NY6r6U9SVYMDgjoRQ0mrAtDoLuzFxF9stgOc+ZGOxHes5LjCFCOCMYNaOm38bwyh/lnVcgD+I5HP5ZqO+sRIDcwLtI+/Hjp7is02nZjaTV0V7SZzL5DAuD0IGTVx12kHtWSrzQHzFZkbpuU4PNXra4yozyp7elbxn3OGvhub3obk9KKNv8Sn5aMVoecxRk9TSZ5paMUyRKXvRijvQAZPtSUtIaQCYoPFLSGgY04IpOAeaUimlc0i0zp5Lu0l0h9zbQyNznqcfKPzrlCOmab5WG4JxnOM8Z+lSY4rChQ9kmr7nrZnmDx04ytaysRlQe30rU8MarHoevxXcp/dFSjn0B7/pWbTSueKutTjVg4S2ZxUarpyUl0Pa7y6s9V8MyGTYySxMS2euRnPtivDluyFKtySMKfQ+pq6uqajFYPYx3JFs3G3HIHcA1lSx4Hyg5HNcWAwksNzKTumejisRTxDjZbFoNlzFKSJF4OeCD6Yp4jURSqzSHI4C9Cfes/fJLM0kpYuepPUmpBM6c5yK9BqN9DlfPF+6xCpRuMn26Goyw/H0NWROki4cfnSNDG4+Uj8eamxaqr7SsVurdOKlltruKIgJuiPICnOBTxBBGm6SRs1oW19APl3hvTms58y2RvBxfUx4XSNnLAFdvIxUalowHRgpzkDNa2rG3e18yIYl3DoMZFY+SPnIyO+aIu6uU1bQZml57VoJbQJy2T9TThNbxdNv4CquSUVtpn+7GxH0qwmnSseSo/HNPbUVxgKxPuajbUZf4Qq0tR6FhNLQDLyk/QYp1zsitDAhyMgj196z2uJ34Ltz2FPhikkYfKxHrRbuAxCdu30NXbQkKQOKrSL5TspHoc1atRgkEe9Jloq3WDP1NMAGKnnhfcJT9xmwPwqPHHFNbEvcYOmBQDz1pwpMce9AhUdkYMhwwOQa3bG8Ew3BsMOGU9v8A61YHH+BqSGRoJVkQ4I/WplG6GnY3r2xDq08KnA5kj9Pce1ZqcDKj6itmwvI54QyEh8gAdf8AgJ/pUGqaTLArXNv/AKosRImOY271Clrystx0uiK3KiGWUzIpXGIiDlvp24qQbXXfGcis/ccg+o5pd720glTlG+8ua2hK2jOLEYZVPejuX8UClRknj3xn6g0YrY8tqzswpOKdigimIaen1pKcaTFAhPail71aXTrt7U3KwsYR/FUyko7s1p051LqCuUzTDUhXvTSP1piQzHvSYOafgUnQ0ikRmkIFPYen60hApFIjNMIBqUgU0rz/AEpFohZQPpUbIPx71bETH+HH1phjRfvOPoKDSLfQoOgBoVJB9wEg+laMKwyMw3pGQuVMmfmPpxVKSVyeWOPbilc6Yxk9xskLsoX5QSecmj+y7gjICn6GoyATkVZgvJITwSVx0NS22axjyqwkEN5C20xllPY9Kty6dGyNsBQnqB0rTsF/tKJ3t1YlMb19PepJoY7fJnmRPbPNZc+tjTl0uf/Z", "path": "images/3pts_ADE_train_00015567.jpg" }
depth_point_6
images/5pts_ADE_train_00019159.jpg
ADE_train_00019159.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 174 y = 201),Point B is located at (x = 180 y = 111),Point C is located at (x = 50 y = 172),Point D is located at (x = 319 y = 224),Point E is located at (x = 274 y = 151).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_74><DEPTH_15><DEPTH_15><DEPTH_15><DEPTH_15><DEPTH_15><DEPTH_38><DEPTH_74><DEPTH_29><DEPTH_49><DEPTH_15><DEPTH_40><DEPTH_60><DEPTH_60><DEPTH_60><DEPTH_35><DEPTH_60><DEPTH_31><DEPTH_31><DEPTH_29><DEPTH_15><DEPTH_60><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_67><DEPTH_3><DEPTH_11><DEPTH_29><DEPTH_15><DEPTH_60><DEPTH_67><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_70><DEPTH_70><DEPTH_59><DEPTH_40><DEPTH_74><DEPTH_40><DEPTH_49><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_69><DEPTH_31><DEPTH_49><DEPTH_59><DEPTH_59><DEPTH_69><DEPTH_36><DEPTH_76><DEPTH_76><DEPTH_76><DEPTH_76><DEPTH_36><DEPTH_3><DEPTH_15><DEPTH_74><DEPTH_11><DEPTH_11><DEPTH_72><DEPTH_69><DEPTH_31><DEPTH_3><DEPTH_11><DEPTH_38><DEPTH_72><DEPTH_25><DEPTH_19><DEPTH_0><DEPTH_77><DEPTH_44><DEPTH_82><DEPTH_58><DEPTH_78><DEPTH_25><DEPTH_19><DEPTH_33><DEPTH_0><DEPTH_78><DEPTH_29><DEPTH_41><DEPTH_39><DEPTH_19><DEPTH_66><DEPTH_19><DEPTH_41><DEPTH_121><DEPTH_121><DEPTH_44><DEPTH_76><DEPTH_72><DEPTH_41><DEPTH_47><DEPTH_55><DEPTH_16><DEPTH_42><DEPTH_END><DEPTH_END>. Since point D has a higher pixel value on the depth map, the answer is that point D is closer to the camera.
D
long
5
[ "B", "E", "C", "A", "D" ]
<DEPTH_START><DEPTH_74><DEPTH_15><DEPTH_15><DEPTH_15><DEPTH_15><DEPTH_15><DEPTH_38><DEPTH_74><DEPTH_29><DEPTH_49><DEPTH_15><DEPTH_40><DEPTH_60><DEPTH_60><DEPTH_60><DEPTH_35><DEPTH_60><DEPTH_31><DEPTH_31><DEPTH_29><DEPTH_15><DEPTH_60><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_67><DEPTH_3><DEPTH_11><DEPTH_29><DEPTH_15><DEPTH_60><DEPTH_67><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_70><DEPTH_70><DEPTH_59><DEPTH_40><DEPTH_74><DEPTH_40><DEPTH_49><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_69><DEPTH_31><DEPTH_49><DEPTH_59><DEPTH_59><DEPTH_69><DEPTH_36><DEPTH_76><DEPTH_76><DEPTH_76><DEPTH_76><DEPTH_36><DEPTH_3><DEPTH_15><DEPTH_74><DEPTH_11><DEPTH_11><DEPTH_72><DEPTH_69><DEPTH_31><DEPTH_3><DEPTH_11><DEPTH_38><DEPTH_72><DEPTH_25><DEPTH_19><DEPTH_0><DEPTH_77><DEPTH_44><DEPTH_82><DEPTH_58><DEPTH_78><DEPTH_25><DEPTH_19><DEPTH_33><DEPTH_0><DEPTH_78><DEPTH_29><DEPTH_41><DEPTH_39><DEPTH_19><DEPTH_66><DEPTH_19><DEPTH_41><DEPTH_121><DEPTH_121><DEPTH_44><DEPTH_76><DEPTH_72><DEPTH_41><DEPTH_47><DEPTH_55><DEPTH_16><DEPTH_42><DEPTH_END>
174
201
180
111
50
172
319
224
274
151
61
1
41
81
21
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDw1hjNMqZ15oRvKdX8tXwc7WGQfrQAxMeYv1q7NGF4FRxwrInmH5TknA6VO/zLk0FxRGiEqDinqmSKfEcKR2qSJMuKTNIxuSJYyyLuA4qRdLmYZFbVlDiIVoxRDFTc7I0Is5b+yZsdqVdKmausMS4pIo13UXK+rxMjSLGS1mct0IrYj4z9amEa9qRUAY0XNowstBCAVqrJBHPGyOoIq/5YxUPl4c/WlctpM5S+0trdyyjKVnmL2runt1kXDDNYl9pYUlkFLmOedBbxOdMeKa8WVNX3gIPIphh9RT5jndJmY8PGaQRGtE24YcdaPsrcH3quZGTou+hWWL2qUx+1WBCc9KkaEnoKlyNY0imY/wB3ULxfLWn9nYr0phtHI7UlJDlRfYzmtgx5UVJ9mVpvMIy/XNXltmyOMVKLfac0+cSoeRWEdSLHVyC0edwkaEkmuw0XwonE10M9wtCuzeNI5bTNAutSkG1CsfdiK73SfDdpp0YIjDynq7DNa8dvHCAkahQPSpwpArRKxrGCjsc/f6Da3N3EWhXaAc4Fcz4k0e10q3Wa2yjscfhXoD53Vx/jOGSZYVUE4pMqSumcAUqNo60mtJQfuH8qhe2kHVD+VRc4nSZnNHUDrWi8LAfdNVnjxnIqkzGcLFCReDTJRjaKsTL0FMZN84XsOtUc7RVYY4p8KBnAJ4p8gDMSBxTok4Bx1oETLaZUtuPWlECgd6tpgRDNM2k+woNeUruvFRkfLW2kETdUBpz2luEP7oUrmnsG+pkKcRotT4zHU3kJuxjinNEAhxSuEabRBGvFW7ZcuKgjWr1so8wZpNmtOF2b1qmIwPar0SVXgGEFXI6k74oUpxTUT5qlpF4ancqw4IMUgQb6lHSkPUGlcdhQgIqN0+bip1prik2VYjCVFLEGHSrK9aGXIpBYw7nTBKcgc1WfSiBXQEUx14qQcEznhphpw05gK2NnzUpSgFTRkDTyaX+zn9K2Ej5qYRGkP2aMVdNc8YqUaXJ2WtuOI5qwIyAKLJjUEc02lTZ4WnwaLNLKAy4HrXSJGasopWrjFEtEGmaTDaYOAW9TXQR8LWfEGGKthiFrZE2JVOWJqXPFV4yalZjimCRGx5qpd2kdzguOlWc801zxSuVYyDpNuW+6PyqOfR7bb9wVp5+c8U2UjbRoOxzR0aFpsbRis3V9Gt4rZ3RMMBXU8CQ8Vl6sVa2kHtSJlBNanmc8f71V/wBoVDcq0VwPcdqvXAxdqP8AaqC7ikefIRiMdhTTPEnDexW2RNBxv83d3xtx/jVu2t/3ZY/QVFFEwxkHk+laoi8uIJ7UNlUqV9WRxwgIOKHT2qzswBTXUYoubKBPGnQ0TjCVLGOBTLj7tQzotoUQtPZcoaVRTyPkP0qWyUtCCJev1q1Cvzis970W0uzyyxIzkGpDrAtWRntidw4w4ptNkxq046NnXW4OwZq4gNckni3aPlsD/wB/P/rUo8bsOmnj8Zf/AK1FpG6xVFdTsNpxSheRXHnxxN2sI/xkP+FA8c3II/0CEj/roaXLLsP65R7/AIHbKnFL5dcV/wAJ7dDpp8H/AH8NIfHl8eljbj/gTUcsg+uUe/4HcqlBjODXCf8ACe6j2s7X/wAe/wAab/wnmqEn/R7Xn2b/ABo5ZC+u0e53flnNKYziuB/4TrVc/wCotP8Avk/40h8d6vj/AFVp/wB8H/GjkkH16idw6kUwqTXDN411Z+q2w/4Af8ab/wAJlqv922/74P8AjS9nIf1+j5nblTRtJriP+Ex1U/w23/fB/wAaB4w1Ufw23/fB/wAaXs5B9fo+Z30aZGasIntXnqeNdWQYCWp/4Af8akHjnVx0jtP++D/jS9nIf1+j5no0ceO1ShM15v8A8J9rA/5ZWn/fB/xpf+FgawMfurT/AL4P+NNQkH1+j5npQj9qkC9q8zHxE1gf8sLP/vg/404fEbV1621mf+At/jVpMX16ieqRp0qbZxXmkPxF1gRrK1jZOhGQAWH9aU/FS+U/NpVsfpI1VqJYyj3PTUQ4pzqcV5ovxaue+jwn6TH/AAp//C2nJ+bR1xjtP/8AWo17FLGUe56FtpjqcVwI+K8f8Wjt+E//ANapF+KdvID/AMSibjriUcfpS1GsXQ7nZ7TuNJIvtXFf8LQsw3/ILn/7+Cl/4Whp7fe065H0daNSvrdH+Y6pk+fpWZqMQaFx7Vi/8LH0pmybS6X8FP8AWm3PjnRZkIX7QCR3j/8Ar07sf1ii/tHMXUJGooD0LH+VadjtEhGBWYb63v8AUlMBbABPzDFX4f8AWCobZzUlFybj3LtyiH+FfyrNkHzYq9Mny9az3U+YBk9aq5pUJJcAADrUW3PJqw6AYqE8E0zItIOKdJHvXFMU1OhFSzRIz/KZTjFOK/Kc+lae1SMkVXmVeQBUsrlOcvh/pSH/AGahv/uQH6/0qzqIxcRn1FVr7mGA+5/pW0djyK2k2Rx9D9DUIFTx9aiC8GmZiAUoHFKBS4NACYoxxTsGjFADAKKdtoxQAykpxFJigBMUUtLigBKXFKFpwQkdKAGgUoFSCM8UoiJoAixzSYqYRH2pDGfagCDb8wpXGD+FSKpEop0q8j6UAXoR/oEX+7WfOnPFaaDFlD/u1RnHWgCkB1pDUoXIb60wigCOrNoP3U/+6P51XIq3Zr/o9yf93+ZoAquOaiIqaTrURoAbSUtFAGnoS5vWPohrfRsOPrWL4eXNxO3og/nWwT8wNYTfvHp4VfuzQkbK/hVFv9av1qzuyn4VX6yiqR0TZI55FVnqdzz+FV5DngUzJllFNWEWoUHNWUpFxQ8D5arS8GrTHC1TfkmpZZi6mP3kR+tVLvm3i/3j/Kr+prxCcdzVK5GbVPZ/6VrHY8mvpUZBH96mrT0GHpgHJqjEcKKQU6gAzRRiigApKWkoATtTadRigBAMmlC804ClAoAUDinCgDinAcUAKOxpwHH4UAYx9KcoyDQA0dBTTTx2pCKAIgMuKVx834Uqg+atOcfP+FAFtf8Aj0iH+zVOYe1XR/x7xj/ZFVJhxQNlYL8jf71RMOtW0TdCx/2v6VA6nk0CICOKu2S/6DeH0Kf1qoR0q/ZD/iXXf++n8jQNGdJ3qE1YkHNQkUCGUlKRSUAb3htcrdN6BR/OtF+tVfDK/wCh3bf7Sj9DVmQ81zz+I9bDq1FE6NlKap/efhUSsdtCHMvXtVI0buhzsSxAph4pzYDmmE80zNlyM8irCkVWjqwlM0Q6RvlqoWyanlPFVu9QxlPU1zDEcfxVRuEP2IHHSQfyNat8m+2THZ6rXUBGlEn/AJ6r/I1pD4TzcUv3jMsf6yo/4jU5GJiKiI+dvrVnMIKUUlLQAUUelGeKACijvQKAE9aUCloHSgBRSgUClFACin9qTtS9s0APHb6Uq9DSDjH0py/dY0AVpruO3YI4YkjPApYLlLkNsDDbjOa6Pwmty9zr62k2oQznSF2vp0RknH+lwZ2qGUnjOeRxmqniQD/hLL8CYzERW26R4/Ldm8ld3mLk4kznfz97dQBloP3q0sg+c/QUIP3qfWlf77fSgC1/yxT/AHRVWXpVv/lmv+7VaTvQDLFjB5llKcdH/pVGaPaxFbWjoDp8vH/LQ/yFUb2LBbigtx91MymHStTTIDNpt17SL/I1nuuCK6Lw7Dv0u5OOsoH6CgIK7MK5snSQjFVZbZ1bGK6rUrZRO2B0x/Ksi9j2yEemKdhSVjEdCtREVcnFVSKRJ1PhtMaPcN6y/wBBSydal0Bdvh0sf4pGP8qikIJ4Oa55fEexT0oxEQ9afGPmaolPNTRHlqpAD1EyqewzT2ZTxkVGTxTJdmXozxU69KrKwwKmD8Uy0NlbtUI606R81W81g3ap3BySLcq5tv8AgQqO9TOkP7SL/WpR81mx9wafeIP7DlPfcp/WqhscmKj71/I5yVcXB+n9KrsPnb61clXNwPdR/Kqzj9431rQ4SPFHelxR3oASijtQOtAAKcKQDmnAUAJQBxSgcUq0AApQOfxpQKco5oAXHFKBxS44pwHy0AKByPpSqvyGlAGfwpwHyGgClc2P2mQP5m3C4xtzTrW0Frv+fdux2xWuLSFWWGSRxMwHIHyrnt71UkQq5VhgqcEVEKkZ7HViMHVoK8/TR3s10fZ/10ZEgBkT60SD53+lOHEiE/3qc4+aQ1Zyk+3Ea/7tVX6VpmL9wD/sCs5l4oKaNfRVH2B/+uh/kKhvohhjVnR1xpzD/bP8hRermI1PU1t7iOekQblFdV4YiP8AZMvvcH+Qrm5k+dR9K7LwnFnRl952/pTZNJe8VdWhxcv9a5/UFxcMPeuo1hT9scY/irmdRGbiQ/7RqkEzFnHWqZHNXpxxVJutIyOv0kbfDUY9Sx/Wqpxk1esV2+G7YeqZ/U1RPesHuz2ErU4+gwH5qniPysfeqxPNWIj+7J96aJjuIcFeRmomVc9KkJ4FMPHNBLsW1zT+1NWnk4FUWiFjzUOBk5qVjzUIPzEe9STI0YRmzb6CrV6oOgzY/wBn+dVoM/Yn/wB2ppmLaNOv+yD+opw2M8Stfkc865mT/dFVpUxK1X1XLxH2FLJZl5GIPB9K1PPt2Msjk0mK0zYADOTT00wEdCc0XHysxzSgVuLpAI+4fxp66WmcbOfrSuh+zkYIWnBcmtw6aEY/u+R2py6c+3cIxj60XQezkYe054GaVY2PRTXRQ2Jz/qgPc4q0lr8uAABScilSZyywSE8IfyqVbSbPCH8q7BdNjYgFhnHbPNSDSsjguB7Clzov2DOO+yTY+4c/SnrZTsMbCK7JNJjYHKvn3FXYtDjkHEfT3pe0GsOcOumTkA8U9dOnwQcfXIrvY9FQHHlKeKmGho2colL2hSw6OJS2k4d442lXA35J/MdzUH9mMSS8uT3PXNegx6Ii53JHj2GanTR4QMEI30FRG0djprTqVklUd7eSXzdrXfm9TzOXSwIspvZu3HFQG1kywaNhnuK9VGmRICUUD1GKq3Gjwy/fjZM9HBq1UOd4dbo4lof9DU4xhMViOOK79/D0+1lDL5ZJwec81ztx4emhcq549qpTRnUpPoM0pcaaT/tn+lF0uYm4q/Z2Yt7Ap1+8cmq90mEOPyoKS92xg3CESDj/ADiuz8KRn+x7b/alY/rXK3SYm+n+Fdx4Vj/4lNln1Y/+PGmyaatMzdWXN82e7/1rlb5f3rn1JrrtRXdfZ/2q5S9B3H8apBURiXAwKoMOTVi4vI97JtbKnHSq24OCwoOc7eJdug2q/wDTJf5Vmt3rWkGzTbdPSNR+grJfgGuc9uatFIhNTxn90KrtU8X+rWqOeO4tMP1pxphoHJF1aVjxTVpHPFUWtiPOaiJw54p9Rn7/ABSIkzVtubST/dNOxu0ub/d/rTbMf6O49jUqIf7Nm/65k0R6k4jp6GbFCzLEwwcDpnmteGzzHnZknueKdokJeIHcBzjBGa6KK1YDIBJ/3RTnLoYU6atcxI7Ikg+WpxUv2YhwfLXH0rcW2bqUBHsKcLU4P7k5/Goua8plR2pK8jGfYU5dPDZOFGK2l08lRvYj2C4qb+zwgBw7Z9aVy7HPNYKcMck9xjrSCyB58vA+tdEbSVSRHGNp9TR9mmwcqoPfmldhymDHapu2hM4q2lohPEBBrTSzYjcduPyp/wBlAJ5OfYUXBIopAAwG1cj1FWVTe/8Aq+asJANwHyn1JFXIo9o5I/KkUkZ625DZCrircNsGfDoNpH41ejt0LccMfbirMcQUcx/lSCxSGmRkZQEAd8mpk075RyOPXrWjFGpG0KMZ55rRh0qKZd+OnvmmDSMIWAfAAcDpxxUv9lhFGOMdQcnNdImmeUM/MRjP3AP1phTjDQqPrQLRmB/ZW4bgv5GmNpXHCv8ATHFdOkEe1RgY65U1YEIZQV3Y75oFdHIDS5QuFXA9OtULnw+sqlZQSDzx2r0BrdGUEjOO6mqk0BxgLx64pjTTPLpvC1wEZYShHOCTisufwzebSCEJHo1estZjDZyT/u81Tl01HBDbAccHPIp8zJ5EeKX+i3EMm5ozj17V1XhuIxaZaqy42qTj8TW3rOhyojPGFkXqQOo/Cs+xaKK3wWVAqngnGOtUpXJcFF3RgXQzfH2yf0rkr3qfoa6q8kVbmVs9mxj6VzF2oYn5hWqMKha0+PUpPAK/2fca7FjVb7eumW7SK/7q2wJSHXaOuOD1PpzwsQzGB61oSaLJNI8qyjDMTyOlNgsGSWNN6kbgM/jTZz2dzr7wERxoCB8uOax5D1rX1AZbAx071jy8cfyrnWx7dXQgbpU8fCAe1V36Gp14xVHLHcUmmGnE000DZbU01zRnimOaobeg2m/x0Zo/iBpC3Naw5VhWlZRCS1dCOGQis2w7itfSmXftPuKS6l1lpE5+GPXY7h4rfVrO08+5kis4LhRvuCrbflOwgDPy5YqCc88HHW/D+9vNa0G4ub6cSSJctGDtC8BVOMAD1NcVq2paLdagI9UjuzLptxcRJDAilLiMzPIFZiwKHc7AkBuCOhHPefByNX8K3eQCftz/APoEdVP4bnFRbdSx1cdoHHJx+FWo7ErtIQEfWtZIc4wFFTLCyE/6vPvzXPzHfymWlmz8hB16U9rI7fmA55xWqkaAfMVJHpTxHEOdx/KlcfKjEFltBJGAO9Rm2XGdoB9Twa3sxEjLj6VC1vDI5y7flxRcOUxfs6EHjB7nFNa0LEFT9QBwa2Gt49xjH3h06dKY0KKAGVsj1NFxWMn+zneTCnjqcVMLUr95uPQA1bCLvyVBPbBq2GDx7ScgcfSi4WKMcY2A7eR0yatoIiByue9PCFU4AYdMBaljy2MAKR7Ci47EkPlqcKRkc4UVejmk/hj59dpquF44J47ZqdCwAO3I9utNMlonSdi2GDZ9MCpVjEhyI1yPXBpsbYAO0jPtVkOrKBtB/SrRhLTYVFZExtVTn+6Kk8wIuGUn8M0ixcbkJVvzFPw4HODVq5i2iPfCRjYAT2xULhFOQowPappI45Bhgfpmo3tQy/KWGPekylYozy5XaUB7+lZjSSu5UBV+prYktHzksB9arzWzJ83mKHHXGKg2TXQyZIGJ+Y4PqBVGXSbYSGV7eMynq+wZP41s7gVJa5wR2IqnK65J3l27dMUXKMO50i0dctCvNcrreg2dtay3ATaF5ORnJ7CuyuZ9u4FevTJrEvZIZ7aS2mAKOME9ce4zTblZ23LpcnPH2i926v6dTz640jyiBJGYgx7VmNpIivIysuQGBwR713Q0y9uzmLz72OI/LhBheP4j3Puay7rS5lk/0k2ttg8GS5jXH4ZzRTnKzUi8XCg5xdNLztdLfz123/pvBvWzIfpWTLya2dVjtbVQ/wDadpOxONkDFyPc8Y/WsCW6iycbjVRiyK1aHca/NTZ6VTa7TtET7k0qXm7kpx7Gr5WcntY3LlNJqH7Sh9RTvOQj7wosX7SL6lzPFRseacTxUTGgpsUGpEUM3OaiFSxdaTHDfU1LMBCMEn61p6ZB8+/eRyeMVlW56Vft5WiSQI3zHP4VDdk2dPs/aShBaXdvvOjs9E0qR3km0uzmdzuZpLdSWJ6nJFdJpkFtp8Xl2VlDbxltxSGMIpPTJx34H5VyFpJFFcWrWshMrv8AvFLk7lwclvcV1kN0MjlcelYqbka18MqDi117qz3ttqbQuX3DaFz9amje4fBMmxfaqduNyq4bg84Iq+mwDqPzpGRKu4k5kJB745p3lK3UsR3phu41wQ6gj0NMkvo2O1pTyf4BRZhdFnyIl4wQT/tUrhY4/kY7u2eaqCeLgMSx7nmhpc/dUn2YUWFceZAxDlsMOD8vFSIcglTn8BVTMv8Ac2D0PSoy9wrEEgdxgVVguaBiz1B6+gFK9vlQVABHU1VRpn6zgYHQ4FNO/dtM3A9D1pWFcuhSoBIXI6/SpmEZAZSgPU9OapAI2Msd3T1qdIHbpHIf+AmiwXLUc5DHkgVZS5yA3FUBBOpH7kgercfzpbrUrPSoVn1G8sbOIsEVrmdIwW5OMnvwfyp2Jk0aX2guw5LfhiplmJHAzj0xXOWnibQr2+EFt4i0yaV87IoLgSMcDOAB7A1qC7t/+fh3H+zH/wDXqtURaL2NRbpgCQuBR9tfoVUfWsw6jDGmSJiDx1Cj9M0f2nFkFbfd7kk/yp8z7kezXY0WupOqlMZ5wOv50hmds5cj6VUa8nbiKGNf99f/AK9QNdX4PLxqP9lQDS5hqn5FqQSN90yN+ORVVopcn9y2fVsCqs1zdHiS6fA/2qpSX0UbEySbj6DnNJstIuy2zlTkwj3LD/GsyeIqSDOgx7VVu9VJJEcbhD0OMCsm6vpnU7Rj8c0JjLGoXFssRDTO2fRMVzM1xbGOaaTzEjjGSS3U9gOOpqwTJK+yQ5U9cmuQ1e9+23KWNs4W3TLO+eD6ufw6f/Xq1qyJOyuaK3mreKPI0nS7WNkt0aQxiUKGYnlySeW6DHoKoXfgXxCjE3cAth/tROR+eMVHpumQ61I7W17ZWMUeFhjnlEbSD+9zwffnvW4nhrxlp436ZfXMijobS5Lj/wAdJq722Zi05b6nMN4TkVsSXoOOoRMVzt/bR2928McruE4JPr3r0C71/wAaaejjUIkuFA5+2WqOR+JGa84dy7lmPLEk1cG3uY1VFLRWIii+5o2gdqfgtwBk9am+xXJiWQQuUYZUgZyKsxSvsQKrH7pY/TmprW2ubycQwqGc+vGKfYzfZNQgkk3qgcb8cEr3FdpZRhdSKlpGMq+dGWQYVCeBnvXPWrOnsj0svwMcS7ylaz1RzZbioyeaja9z92FR+NQNdOT0UfhW1jmdZdC3U0Z5rM+0Pn7wH0FTW17c28m+CaRHxjcvWjlBYhX2Oit4ZXX5IpGPYKhNaMGm34lH+hTc85ZSP51zK6hqM33rm7f/AIG3+NTR/aWYF43b3Zh/jSUbGksRz6WPQLOwu4xuSyDN1YRFZG/FVJNXYrwI23lWHVSu0j8K4e/sNW0zT7bVLjT5YbV2CRy7gCx68DgkcdRxU1l4uuJ5I4p9Rd415CXB3bfpuqOTsX7a795noSaixA3kn6mrMVw0xAjRj74rz3/hLryKZ1gmjeIH+EAE/iK0YvFyTBRcTXUJPoxZf8alwZSqRfU7tUucHMLkf7uKnjk2gBjEnf53Uf1riItUhuCRDcRu3oWw35GrH2qcJu8vH4VPKXc7RRHu+e9jVfQEn+VP+12UZw14WPX5Y/8AGuKGoyngx4Pq3FD3byJw+D6Zo5Qudn9us88NMxznkhf8aibUrVM/uGfnvJ/9auOE7xj5mOPrU324HAXGfXrRyhc6U64oY7LaH8Szf1pTrVw+CPJA9oxXNi5ZsHvVmKVD1K59KLAjeXV7ogkTsuP7g2/ypx1e7bAact65zWbEUK4BI/SrcSKxwBkjtmkMsC+LDJBJxziuF+Km/VtC0zTrdMzz6lFGgJ6syuo/U13YQg42/pXLePdL1m/0e0/sKDffQ3YlGWQbV2OpI3YGfmHv3pwa5kRVTcHY4nTtKtNK+JmiT6OkIs7iObyxFcrOoZFkQ5cMwyVCuRnjfjjpXrcd45CiY4I7eleTeDvCfirS9e03+0bLytNtZZpf9bE2xni2E/Kxbnag/CvUdmSdo6etVVabM8OnGDuaS3K8DcT71LHdNvxwPQmsxUfsq592qxH5m3BCfrWJvdmi1+A2GkwfTFPdmcDBJBGetVEYDJbB+gqQyZ+6cEei0hlG5tXLEqMZ/wBqqYjeIHPHPXdV+4V5lILEEe+KyLuDavzuSPUmmSyK5u1T5Ad3t1NZlzcp1BAHv2pbq4tIFO+dEx7gVh6jrWlW9qzJKs0uMhA2cmqSuJu25W8Saulpb/ZYGPmyD52B+6v/ANf+VcnLEFt0iLEXFwu98H7kXYfj1/KmGQ3slzeXUjbF5Zh1Zz0Uf56CkTzDJJPOSZpjub2HYV0RjZWOWU+dm5ZaPpV/apu1uztroDb5E5ZNo7fNtIPrWingTVVAk0u+hnPUG1uVY/8Ajpz+lZo0zw7eKnka9DHKQNy3Ubx4P1AYVYHgS7kbdpmoWlyOzQXCE/kDn9Khy8ylFvpf0Y3WpfGmkaVPb6jeX4spR5brMzFSD2+asSxs9Hkto2uHnSbblsplc57Y5q5r9h4j0y2gsdVubr7NK+5IpZGKkr3APpn9azkcqAMDjiqW2hOnN7y+82YdJ047jbvaylQeN+Dx14bFbUWmRTWcU6t5YeMFV25AAGOo+lcnFAk6OWGAOBXpHhmJbvQ41DAGNQOfbj+lc1aUoK9ztoxhJ8tjhfEFmkOnOxCOQQRtPNS2sgjstImZ50Qu0R2DIlPYH0FdpqWlNLE6FIyCp+b0rkWQ2cuk6UlzLDODvOFyJV7/AE/+vWMqvtIpPf8A4B34Sm4VJSW1kvndWOFKHu5NN8sd8mpDTDXqHzAzc0bfKcVZhvsECRcj1Xg1VfrTaBp2O60K3sNRgmml1G2sbaDHmyTk7uc4CqOWPHarjeJNN0uTy/Dunefcjpf3yB2z6pH91fqcmuF08wC4AuHZIz3AzXfW+n6LY6fDfX+pxwQTJvjgtsSXEw+nRB7sfwqWu50Qk5LTQzZoNY166E15dTXV5IQEV90jt7ADp9BVLVdKvND1EWl7CIroKr7AQxTPTPofbrW5/wAJXemJ7Tw5arpduww8sZ3TuP8AblPI+i4FUNP8Malqty7WjecyqXmlc7Uj92c8D6mhCaT+ExJ79GnYTQxyHj5x8rfmKVZ4XH7u4eM/3ZRkfmKSZElYiVVfHG4f41VazTkxyFfZuRVGbuWpZ5I2USKrBhkMjZyKt2+tS26DyLuWMj+HJ/8A1Vk+TKnl9zzyhzilGoyH5Zkjm/315/Mc0AptHSx+JbksBMsUwP8AEOD+lXoPEdmxxKs0Xv8AerjRJZvz+9gb1B3D+hpJHeKQIsqyqQCCKXKjRVpI79NQtrgnyrtHx0XdgmpopwrfOhH1Jrz15JYhmSBl/wBodKnh1WaJP3d06/7JPH60uUtV11R6LHchWyAhX0NaEV2uBhRXmsXiG4TBdUkA9OP5VqQeK4iuWgfcO2RUOLNY1ovqeiw3KsegP4VejmPBPH44rzL/AITEqPkts/70n+Apr+NL/H7pIUH0J/majkkV7aHc9W8+TaChUj3as++1hbSURFZZpiu/y4YyxC9M+mMivL28Zao+4G7Ud+FAqufEEku8y6g8UrHLOozuA6ZxUThNLQ6cLUoTk1N9NE2km+13t1Z6suoQ3MAnjnBRs4PTocd6gOrWdsxL3cKk/wB5xXkVzqjzyfuvOZcd85PqT71Ra9fft2ENnGD1qoU5NJyOfEV6UKko09Y30PaJvF2jwYxqG/1AUn+VVJPiHpUSkJDcyt2Iwo/WvJGe4/iMaf7zio2fH3ryMeygn+lWqS6mLxL7Hp0vxOkjbNvp4z6ySZ/QCs25+JutSZCNbwj/AGUz/OvPGcmUDzWZT3pS9qpPyyv9SBVezijN4ibOouvHOtXH+s1OUeyYX+VZU2t3VyTvuriQk93JrM+0xj7lsg/3iTTUaUSSmLcDj+HtVKKXQzdST6l0tcSc+TIfduKhleZMbggB9GBNV/KupOSGP+8aetq4iO50BPvmmTuXxKswhhRcQQgMwP8AHIep/wA9hVpQZJCM9smqcO0RJt4AH5mtO3hxHuPVual6G1NcxAdOif7u4H61abwtdqFeKZSSM46EVqaVaCaUysfljIOPU1oXc80dxaRwttMspUnGTjaT/Ss5VHsjeNGD+I5+HQ9WkdFnEku3/VguWCj2zVpdGAKmYnPdQK0tRTyrO4mLyNIkTEMzcg4qOF2W0gBPSNf5VClK12auFJWUbv1KotUhXYikj0610Ph+/t9G0i+udRfyLaJlO5lJPzEDoAT1x271zqXs73F1Gr7EjcAFQN3Iz1pviVI7bwPKrbXuZp0LOTllGcge3TNZVLyai+rNqcYqMpx1aTfkbV9498PMNsV6zhxhsQuMD8RWDqV9c2V5K1pdC7kkO2BQm7yM/ewe/wD9eq/iaOG4vvGkD2NlBb6XeMtlJb2scGxvtGwRZRRuBj3nByf3eR3zHps149zNbQyFLeHA+Uc5I9fzNOeHjT1WvqGGx8pxcGrdmt+vn/wxTvvD15DKTBH5sR6FT0+tVRot6eqKPq1JZ65e6fFiOQvEwwUYnj6HtWzbeKbOVsXVqsMh4EgBZM+pXg10c1SO6uc3ssJWd6cuV9n/AJ/5mLPol3FbPcsE8lByxbAz6DPU+wrLrq7y1u74PO0wvFAwCjA7V6j5R0FYTWQbodp9CKuE+bqc2Iw8qT1TRS963dCt7S9mit5Jf9IkYIkZ+UMSeOTxWRJayxclePUdKiUFXGaswi7O7R6TNNonh75LmVdSvF/5dLR8Qof9uQdfov51n32r614iiEU8q2mmqcpbQL5cK/8AAR94+5yfeq+gaPHqUoW0MdzIql3LMESJR1ZiegHqa2b3W9F0RQtn5OtaljHmshFtCfYHBkP1wPrUnQ3dXlojDufD1/baU2qeX/oAYIsrkJvJ7KDy34ZxWMHz/Wta6fVvENybzUbp5HAwnmHAA9FHRR9KoTafcQkkxkj1HIqjKS6paFdmIIwaG2yffUP9Rz+dNfIIzSCgga1vGfullP5imm2bcoDKePXH86lzk0nR/wAKBFXfPbk4Lp/I0G6Lj97Gj++MH9KtFjg1C8YK7jHwejAYzQPUhzCwOwvGwBIB5FNilkZ9gkCg9SRT/JXJIYj60kVu24klQBkZzQIl3Qj7107f7q0nm2oPAmb6kCmC19ZB+Ap4tIxglnP6UhjFbbP0BAzw30oN7N/CET/dQVYVI/PYhR07mpAFXoij6KKAVyiZ7qT/AJaSH2FPaKXzlBRs8E5FXNx9aYx+cfQ0BYpm1lLHgDnuacLJu8ij6CrWaM0BZEJgUSoN5IA549KPs8ef4j+NPPMw/wB00/FAWGLFEDwg/nUqt1xxnrjim0J3+tA0OPamP90/SnfgaXyZJAQqEk+1A7XLFjFv2Z+6AM1rgccfgKhtbVoolGO3P1rW0y2ZrneygqnrWE5nZTg0jSsLf7NahT95vmaqWoOY7+wJH8bt/wCOkf1rUY5OB39KpXJ36zYx4yFjlIGP90VkmbNaWRS1W7D6VdfL1jIyKsKyNCoBGNoFSarYedaNA7LDJIpKM/CYBBOT2/GrXhqLTdR1v7KG+0rEhkcp9wY6Anvz6VPtI8t10NJYerF3krX7mJplzHb3t4ZbVZlE56nBGFFYni2+Go3/AJEOVG0Fy4xyMkDj0z+tb98Q+uao4AAa6k2gccA7f6Vht4futUvTLFJE0cjEny23MoHGCO34+tKMoKo5zOmVOvPDKhQV777L8f8AMoGLxF4nkSO51K6vlV+GubiSRUYjOcnODxXUabKmmpLthEwknkBYnDYB2j+VbukQ2lsv2WGExOvLofUADJrnR/x6WbDq8bSH/gTsf60qlb2qfYzw+Dlhqtpr3jBCaPfso3yaex6g/On4HqKp3Wj3ttEXaEvEP+WkR3Lj1yKZcWN3bKxntpYwp2ksvGaitbqe3fMM0iEdCrEcV2JPeLujzJzg3atCz7rT71t91hlvNNbOskTvG4+6ykg1sxeII5iF1GySds8yodjkfyzTF1qOZ0GqWcV0ijaHxtdR+FI0Oh3bqYp7iyYnkSL5iY9iOaUrN+9H5r+rmtLmgv3NRNdnp+D0/E07dtNu5THZ3YBLYVLldpI+vQ0260Ivn93znG6M5GfwrPTwxfXEXm2kttcL28uYZqBNN1hL7ylt7lboguduQSPXNCmukvvLnTfKnUotX6rb9fwZOukXcE+1MlWG04OOPcV0GnaEkOJJ/nk9OwqlomuSrsjvp4p90vleXIv7xOPvbh2zxW9q2pxWNpJLaLHI6gMS5O3r0HrSlW5ZcrWpVLBQnTdWMtF33Xy1HGzB+6cfWoWtpVBO3j1FZkfjONsedp2OOTFLj+Yq8vibTWtxN++VS+0ptBZTjPPPStFN9UTywl8Mk/w/OxXns4Zj+8jXPrjBqnJoqMMxybc9A1ao13R7jg3IX/rpGR/SpnNovl4uoVEo3R7nADj2NHOupH1fm1Wvpr+Rytxplxb8ldw9V5qmVYNyD0Nd3cWU9s+yWEhj2JGazpLm1lhuLc6ajvAPNklXh9uDke2MUnVja61J+oy5rS931TMS102G609pjqEEU4k2rBJkZGOue1VJNWu2sU05nU28ZIVdo4zyefqKlvLOIvM0TEKIwwB+pqlLayRysMZwwHH0p8t372plKo4LlgrdG09yKnJ0P1pCpHUEUqDg/WrOYkBpc00KT0qVIJXOEjZvoKRSVyMH963+6KePerEel3TOW8vAx3OKtJo0pHLqDUucV1LVKb6Gdx60xvvj6VuLo0a/fkLH2qUaZaKQSpOP9rrU+1iaewmc9T1jdvuqTXSR2ltHysKgj1GanjRV5CqPYCpdbsi1hr7s5lLG5eQFYmIIx0qyuk3J+8Ao9zXQk8f4UmRipdVlrDxRjRaIGYb5gPYCrsWkWkZBZS3YjPWrqqcgBTk+1Ti2cKGcLEv96Rgo/Ws5VX1ZvDDLpG5TFpbRjKwrn1IzR8g4yo9hU7TWCRSyzahbhIsbxG2889OlZkviHRof9Ta3Fy2erkRr/U1KblsmzWVJQSc2kn/Wy1LgXJAUZPQe9blrbm3twpwCeSWOOfxrjL7xldSIkVjDDaAD5yiAkn2JrEku768lyZZ55nyvUscHrVqlOSu9DKVbDwlaLcvTT8/8jvp/Emj2eS1wbhx/BAM/+PHisS88bMZQdPtEhcKVMknzEc9u1Yx0DUYWVbmJbYHHM0gUfzzT0tNK06WRL24e8lXIMdt8qg/75/oKap0+/MV7bEpaRUF3e/3vX7iteaheajcAXFxJLnlgT/SvRvA6poGj3d7eBYpZ3UL5rBBsAznP41xJ8TtaxPHp9lbWgZdqlF3P9Sx5NZU15cXJ33M7yt6u2aqVOdSPLblRiqtGlL2kpOpL7l971/BHWS6potneXM87HUrmViy+XkImWLYGenJrPl8SNcziMQfZUZcKbU7WQc/nmsbT9Kv74Fra0lkXuwXj8624/D9tp9y0uq6rBDGANqRHdI34dvxqJU6S+J3Z1UMTjH71GKjH8Pm3v/XU6nw+I4fC93fhX+4+1SdzkDPJ+pNZsWkzzQ6ZcXk/2O3FsI0Uew6se3frVGXxlb2ESW2l2xkjRdoNx298D1rnNU1rUNWcfarhmXqEHCj8KzhQm27aJ99yq2LoRkpVJc8l0Wi+/svIfBrmpWbhfPZwh/1cw3gH8a3Jb2wv9Ha+k02F3jIEwQ7GXPcEfhUNzHpmuzhzqiW0n3Y4mg2qB6ZzyaguPCeoWqO0LJcoV58o8/ka1bptq/uv7iaaxcIy5P3kPk7edtfuJLa88PLZmJLVluD0kul3qP8Avn/Co4/C8lzF5llqNpcqP7pK/wD6qgvfDl1p1jDNcMonmYBbZQS4z61HA914d1FTcx/eXLxhxyp+nQ0+jdKWpimuZRxdK0V1Wlr+mhb0rRNYh1kJEghkjG5i74Vl/DrmuwvLiVLcW5jMWV+fJySfr6Vx/iTVf7RuLd44xEIlKKFPQdevrVWDXNStowiXchTrsc7x+RrOVGdW03a50UsdQwnNQhdxvvo/w0FsNXudIYfZhbucfeaIEjPUbutWm161uU8u+0xWUjBMMrKR+eahXVLKeMtc6ZbvcKQQUyiuO4IB60Pc6HOQH0+5tvVoZw/6MK2cU3dxd/68zkVWcY8sKqt2af6pr8SWW20BpF8u8vIkdAwJjVxz24IPFVk0lZZP9H1SyYH+F3MZP/fQqVNJs7wsNM1DeyqXMVyvltgdcEZBpsWhvdInkX1g8jkAR+ftYZ+uKFJJfE/mKVOUnf2Ss+z/AC1t+BdsfCGpXd49vIYbcJEZTJI4Kke2M5zVW603VdMMJkj3JExaGSM7gDnP4c1tX/hi9tZIobfVIJ5II9mRleDnjPPqa5yObU0n+yxT3AlDeWqI5ySeMCpp1JVNVJNGlejToK3JJX2d0+zsW7vxPqV7BLFcusgmGGLjkcdQfWrthfyz6VfxuhD/AGZUZyMFgN2P5j8qi0u9S4FvpuqKJI4542RSPmKc5UHrjpWvfs91e6gQv/LsoVFHCqA3ArObivc5bHRQU5L2rqcyatZ77P8AIybm3XE2OMWynH4mkaE/a8Yz+8X/ANANXbu2kjM4ZGH+h9xj1pjxMLvJB/1qf+gGt+Y8/ksxDbwnJdQT6EUxbO0Q/wCpB9Mmrr7eM4/GgxKwz6dMVHMzTlW9iaysLaa0vriRhDHawmTIXO49hWemo6Zx/p4Xd13RMMfkKv6ssVj4ZjL3EsP2yQpJsXduUZ4xx/OuQMWmFv8Aj9uMf9e4/wDiqmn7922zWv8AuuWMUr2u7u2/zR1VrJa30ssdreJK0MTSkbWXKjrjIqFdS0zaC2oxhv7vluf6VlWNmFtdQvtM1Bx9mgAlEkO0srna3c9qprHopAzc34bv+4Qj/wBCqlFNvVkubUU+Va+eny1Opt7mxu5lhgv43lIJC7GGcdeSPTmqv9saPGzBridyDj93DkH6EkVj20Vk0wXTru8+2srLEGhUBiQeMhj1GRVaBdJjj23DXrSrwxi2bc+2aFBX3Y3VagmlH1vp+e50sGr6deXMNtALkSSNtDSKoVR68Emqk3iOzhmkSO2knCkhXMgQN74wazFk0SMFlXUw+DtIdBg/lRJb2WkXBt7yI3koUFlSUoqE9icZJoUI36idSbhdOO+r6Lsra+fQ07bxJFcXcMc1nDDbglpHDsWwATjJ4/SqDeKNRJbyGigjJ+VViUkD6kE1H/aenx8x6JbHj/lrK7/1FPuNStLeC1FnYWizsm+Z2XzMEk4ADE44p8iT+En2snB/vUrdUmn6bIW38S6uJ3kN1cTv5TKig5CkjGcD0rOhtL29kISGaZyeTgnn3NX7bVdZnYrZNKrEci1iC8f8BFWp7TxDqNrb2hs7sRRbmYygqHYkkkk4zTuoPohJOtC0nKVttN/ndlH+xbkRkXF1aWq7hlJZhk/guelPfTbCyiglutR80S5Kx2yZJAOM5bGOlNbw/qK7/MhSNI8b5GlXamfU56+1O/s2xjkR73WoXUYG22RnYL6AkAU3K/2vu/piVLlWtK3bmdv8hRf6XDEsdtpKyMrFvNunLMc9iFwMVFc+ILycqsDLaxKu0rbqI9x7k4q5bWnh+SeVmuL828SNIxZVUnGMDvyc1Vi1S0tsG00m2Uq2VeYtI3t3x+lJKLekW/X/AIJUnUjD3qiin28vRfmzNLTTOSu+SQ9OrEmtKz8NajOwM8RtISCTNcfIo/OnjxLqMU3nrMqENu2xoqAn3wOay5Lie5kaS4leR2OSWbNX+8emi/E5/wDZoq7bk/u/zNmDStFgYHUdV8xgCTHaLkD6uePypf7Z0yCB4LHR42VmDb7tvMPHoKyEs7q7AW3tppeediE10Fj4Ku5oY557mG3t2XLO+QVPdcHHNZz5I61JX/ryOmj7eouXD0kvO36sy77xHqt2nkPdFYsY8uIBFA9gKpWtpdX0vl20Ek0nogzXU3GmeFNOTNxdz3TklR5TDnHoB2p//CZLZ2iW2m2oAUAGWfG446ZC4FSqjt+5h+hdTC2lfGVvknd/8Ayk8GauipLPAFUsAyqwZwD3x/8AXrWh0Pw7pDmTUr5buXPyxL2HuB3/ABrntR17UtSlKTXLbM5Kp8o/Sqa+vpVezqzXvyt6EfWMJRlehT5vOX+SJLrSr+3BaWzmQDuUOPzrpfDfiAi1a3aPNxGuFlY5GPp61XtvGdwsO6WJHlUjKglQ69/oasjxFo10JS9i9pNKu1po1V+P0rOp7ScbTh9x14b6tQmp0K2+6a/Xa5QvNf1Kz1CXyL2QqTu2sAwz9DUL+IxOxa90uxuGb7z+XtY/iK1P7M8OaiQIdYdJcY/eADP5gfzqvc+CrnJFndw3DYyEPysR7djTU6K0krP0sROjj3edJ80fJqS+5le6uNBu7eOTyLm3d/veUwcKR7H6+tQ3Fvo1w8Ysr8wAKA32lG+ZvXIBAqK68OalYvbxvCXmnQsIYwWZcetVJ9L1C2/11lcIPVozWsVHTll+JyVp1W37Siul9GvyLr+Hb1ojcW0ltdQocs8MwOB75xiny+HNVhtftBtiyZx+7Ic/X5c8VmWdxPBI8USs/nqYmjUctnpx65qSaHUNKmAkS5tJe2QyGq9+9roy/wBmcebkfnrovw/Ui3TWcgkCsjoejDH4Vt6N4autY027v45o4YrfhS4PztjoP0/OqcXiTUuEuJ/tcPeO4UOCPx5rol+wm/gNqhhtrqzdhHDIeHBHPt/9as6s5xW1n33OjCYehVd+a6XR6PXr1OVuHvIJtszSRyqAvXBwBxXWeHdWS6umuJ1Et7DbCNHYfdO4jP5Gud1DVft9pFDNGPOib/WY5K88GrnhbA1O4HrH/WlVjek3JWaKwlXkxKhTleL7/wBboz7bC65bknnzgD+ddl9kvnub64srdZhDADLmTaQpWTt3/wDrVzyeH9Sku11CGANarc4L7xwd+On1r0DRLe7nstaFtZSS3Elt5aooJ3HdKoP0wKzrSV00Vhk4wlGWmtzVlimvEnSK382V9KKbF+fB9OKjtrG9tS0iwXcPmYJQKyqvHQDtSjRbkTJcHTbiJxGqYEbYVQBgfpUgjvIiSFuU+m4VglY3fvA73I/1gLZ/vwq38xUTlXUg21sSRj/j1jB/PbVgXd7GMfarpf8Atq/+NZmv63c2ujzPNqNwiNhAzMXwT7UpbadTSlBSld7LVnA+INYsby+ktbuC7MVtIyRrFKqqvYkDb/WscjQGC7ZdSjbuCiMB+oqR9Ns5izjXLbcTkmWORST/AN8mov7FjIOzV9Nb6yMufzWu6CjFJJv8Tzq0qtSbk4xf3foy0LGOLRLi8s9TkFnLKtvOjQ4Yj73Iz6iqgg0bvqF3n2tR/wDF1fuNDvbKyt7OW/tIrW8UXJLvhQRwBnv17VTOhfNgarpZHr9o/wDrURkn9r+vuHVpTVkqey6t7+Wuw+2XR4riN01DUEkDfK6wKNvv96lms9L0m6a1vxdXM6Y3iFljVT6ZIJNOt/DySTIsus6ZECcbhNvP5AUl9pN0NQnk1W/t4JXkb5pSSXwcZ2qCQOO9HNHmtzAoVFTv7NXv8l3vd+m4n27Q1Py6NM//AF0vD/QCnkWGopd6g9sbaO3UEokjOZXY8AlunQ81Vay02PrrCuf+mdu5/nipo7LTrmIW1reXUt3I6hB5WyP33ck8c0PltdX/ABFB1G7SUX5e7v028xo1sBAqaXpq49YNx/U0g1272tGkdpGjn5glrGM/pTzHo1jcy21ytzeSRsVMkMgjTI9Mgk0G70JT8ukXLf793/gtO0XtG/8AXmS5VYu0qqT7a/oifWfEV1cX7xWVw0NrFhFWA7FbHU8e9Y0k8szZkldz/tMTXTade6Awu7qTQ440giDKplZwTnAGD3OajXxrcRpttdM063HbbDnFRBuPuwhsbV4xqfva1b4tkk3/AJWMISXUmnNBHFIbZJA8rqCRuIwATVi10DVr0AwWEzKejFdo/M1abxXqxLmKWKDzDl/JgRdx9+Oah1TxBd6ha2tr9plZYk/eMWOXcnv646Vf73okjBLCyTc5Sdlpsr+m5P8A8IvqEU0SXjw20DsBIxnTKj1xmrln4b0t70wTa3DISxCLbjcWUc5J6CuXAZ3AALMTgDqTVhkvLG4aHyZI7hgUKFTuAI9PpRKM2viswpVcOpJ+yur9W3+VjoJ28G25aIRXt06n7yvgE/Xio28Q6crRG30KBpIkEayTnOR6kAAE1nWnhnWboAxadPg92XaP1rVh8ISizujfXMVldR48pZXXY4/3getZtUo/FK/z/wAjpjLFzd6VJRX+FL8WRX/jLUpWSKzmWCNVAYxKBubHOPQVjSXN3fzAzzzTuem5i1dFa6D4ctIna81b7U0abnEHyqPx70q6z4bs2STT9NufPjYMkpk2kEfnShOEdKcH9xVelXqe/iaqSfS9/wAEcrFDPdXBWOOSR84CqpJH4VuWvhLWJl3taGNRz+8YKT+FXLjxtebpWs7S1tPMJZ2RMsT65rD1DXb/AFWYNLcSCMDCqGwPqfetL15PRJficyjgaablJzflovxudTFoPh3SyJ7278xnG4QyuNyexC9aiv8AxTpdnEYdPsopAeADGFBHv3rkAc1JY6ZeareNFawNJIFL7eAcD61Dw8fiqSubxzOcVyYamo37K7NbUvB9/DdhNPhmuogoJlwACe4HNZ8+j6naAmexnQeuwkfnUMF/d2wHkXM0eORtcgVr2Hi7UbeZRczGaEnDZ6j3zWn76K6Mwj9Rqys+aF/Rpfqc82ehyD6VZlvpnghhkLrJBnY2SDtPaugPilWm/wBN0u0ujHJlJNu1uDxzTJ73w/rGoPd6gt/BI4x8jKyr+maOeX2o/qJUKaTjSrLXTVNGRBruq22PJ1C4UDsZCR+talv441mLAkkimXvvjAJ/EVYj8P6DfnbYa04kPRJU5P8AKoovBrtqMdudRtDGT+8IfDqP9096zlOhL4l96OiFHMaaUqUm15SuvzNBPGEEN7Zaj/ZtrKwB++vzI4OOCPrU1741t76/nFxD5sLN3wQR9D2rn9V8LX1i15PHG5sICCJZMAt05A70+38G61ctAUtQUn27WDggA9zzUezw9lJv8TWWJzDna5Neuny+5li9bwxPPEVili8w4ZoDgJ9VP9Kv6dpcejeIbWSOUzQSxy7GZcHIA4/WoNd8AXujT+TFdQ3blQzKo2kZ7c9a0JbO+srjQY7y6ilwkgREXBTgE5Pf/wCtUylFxtCd07mlGMuZzq0kmnFprRb+upy0mlyuJrgMuFUyMPQCQp/OtjRdIv7O7F3JB+4ltWmRgw5QYJP6ipo491nqS7TxbXP6TKf6109hLE1v4cSQZP8AZznZjIY/LgN7ZGcd8VdSpJx5TipUowqc63RJpNvPceBrxorWWSQzM3lBTx8wc579KvjT1S7lujE6zSnL8EA9e3tk0mnwy6csogurgb3LtiUjk/THpWhFqGoxp8uo3eTzhpS3881hazZ1au1yujbJMrJIv0cj+tWFvbtfuXt0PpO3+NTnVdR283Zb/fijP/stJ/al2Rlvsr/71sn9KPkPUZ/ad+BgX1wfq2f51514/wBWvLm4WymZXQkSb8YY4HQ/nXoj6pLwGtdOb/t2x/I15l4+mE+sxSGOKM7cbYgQvb3NaUYpzV0ZV5SjRlbTT9UZ3h3w83iGe4jFyIBDHvLFd2eelZi6RqEyeZDY3MkZ6OsTEH6cV0/g7U7LS7DVpbmQK7IojXueD/UiuZi1G9i/1d5cJ2G2VhgfnXRGVRzklsrHLOnh4UKcpXu73t66Fy+h1m9sbG2fSrpUs4zGreS3zZbOelZ8Gk6hcyvFFZzNIil2TYQQo6nmrranrsCJI17fojfdZnYA/Q1p+HvEl+NftBe6hK9tIxSXznyu0g+tF5xi3FILUK1VKbld2XT0RzkFjd3Azb2s0o9UjJrV1LT9e1fUHvZdJukZwBt8o8ADFI3ibV0kZbbUJY4VJWNYzhQo4GB9KQ+JtdI/5Ctz/wB9U2qrfMkvxEnhYp025NeVuhVGg6mYLqY2UqpbAGXeNpUfQ9fwqzp2j68Jo7qw0+cyLyjFMDpjv9aktvEWpvewC61KdoDIolDuSu0nnI9MZqTWvEd9c6pMLa+mW3jOyPy3KhgO/HrSbqt8tkXCGEUPaqUrp7aX73CPwP4hb5mswrHk7pF6/nT4vBmpmxvLidRbyW5AWOTjzf8AdOcViyXl3OcyXU7n/akJ/rTd7bPndiBycnNPlq9193/BMufCX0g36v8A4B0reDIrWJDqWu29qr8lFGd35kZpsuieFoFwfETs3+xDu/lWLqupf2tqT3CbhCgCRK3ZRVQRO/3UZvoM1MadRpOcrfcbVa+GjNwo0k0urbf6nQGDwolhGhu7yS5RiXliiwHHphjx9at3UvhrQZUgi0r7ZMVDsZnzjPTPbP4Vz1lp15fXDW9rbtJOqlvLPBwPrTYLDUtVuHmW1mmldiWKocA+lJ04t+9LT1Kp4mSg+SkuZ7PlvtvvfXY2brxRDIoW30LTYgDkFo9xB/SgeMtUe5jkmmjRFYF/LjVSQO2etNg8F65KAfsqxg/35BWhYeCJBLPBrEZjjaPMVwkoCo3vnk1Enhkuj/E2prMpyT1X4L8DnLzXtR1K4eaW6lCseEVyFA9MCqLEs2SSfrXZWvhbRbVyl7qi3EqIXeOFgFAHqaYuq+EYCVTSpJdvAYjOfzNVGtFaU4t/IzqYGtJe0xNVK/d3/I5Fba6uI5WghkeGIBpWVSQvpmrFhpV9fY+y2sso9VXj8+ldFD4m0/TrqafTdI8ppl2urynYR/ujinL42uSRuiggtokJ8uJfvHHA/OnKpWteMSaeFwfMlUq/cv1ZTHgrWp4iPKiQns8gz+ma1NN8HWDWEcuom4tJ4mKypI6qsnoVPYVzk3iTVrt2Zr2WNT/BG20D8qpSXEk3MkjufVmJo9nXkvelb0H7fAUpXp03L1aPRVufD+lBktRafu13MyjeQPrWRd+LNKnnimWznmlhOUbd5YB/CuIkkYv5YJC4ywq5Z6de3ny21rLL7qvH51CwkI+9N3+ZtLOK9RKnQgl6K5OfD2r7c/2fMR7Cqk+m3tuD51pPGPVoyK24/GWrR43NDKP9qMZ/StXTvGDX0ot5olhlb7pU/K3tVyqV46uKaM6OFy+vJQhUlFvukcTaxTXLrDFG0kpOAqjJNOlikglaKVCkinDKw5FdbB4ut4bgyz6RH567k82NgG/lVa1v/DPnTS3dreSyytuJmw+Ppgiq9rUW8DB4PDvSNZXv1ujmASpypIPUEdqnubw304nb/WFVDk9yBjNdZu8Fz8bWiPrtdf8AGo5vCulywtPYXzqGGV3YdT+I5pfWIp3kmvkbRyyvKDjRnGa3smcwFuZbaXyxM8ajL7ckAe9aFl4j1XTmQw31wFQYVd/T6Z6V2Y0r+wPBVxA4BurmNvM9yR/ICvNn+59VH8qdOca19NEYYilVwfI1J3a1/wAjudL1TU/EuoybbmMyxwqztOOJD36dKr/bje3OlXW3b+9kTGc9qwtEt7qa+220UzkBWfylJwPfHatOOKe1sLXEEhlju5QqFSCeDjisZ04xlZHbSxVSpSTlfz+TVrGtDBKZbqO2OZLo3UG18bVBETZ5+tdJ4c1A/wDCOWEcmn6fM8CEKzxsGB+7yQw7DFZ1miXHilLVLi3RjI8u5pAFG6GPjPrkV0OleF9QtLGOAyW0rqzHMUuRgsSO3vUSa5dSElztlxb+1Kjfo1vnv5dw6/zzTjdabjnTJ1H+xcBv54px0TUFUAwj1++v+NMfTLsceQTj0IP9az0NFYdv0rnMV+v/AHyf60hOkH/l4u0/3oSf5Cm/YLsf8u0x+iE1HJa3KA5t5QPeM0adx/MSaPTShMN7PJJjKxi2bcx9BXBeMvD+p6jPbzWWnykLEBKCVBD9+/8AnFdq4kjIbDoVOQcYINXpZ/tdus6gBicSezf4HqPxHak6kqbUlqP2UasXCT3PFW0fUNLsLp7+2aEPtCFiOcHnpWd2Neg+PN409UOOfm/lXnInUdf0ruw9R1IczPMxtKNGagu36s9H8UxQ/wDCK6IlwzpAPLLsgy2PL7CsOFfBpiHmx6m5/wBogfyNQa74iuNW0yws2hWOKOIEEdW4ArGAwuKijRlyWk2vQ68XjIe2vCKlot0dQr+CMbfs94vuQ3+NNCeEIr6CeOe5MSHLwyQllb8eorH07QtR1aKWWyg81Ijh/mAweves6T7jD2NNUottKb+8zli5xSlKlG3T3bHVX+h6DaX9y+oXcsUEkmYIYF5KEAg9+Oakjj8DQRjCXknsd2f6Vy95qsur3Mc0iKohhSJQPYYz+lM3YFEaMnFc0nf1HUxtJTfsqcbeaudS1z4KwVFheD3Gf/iqlhvdA1CGy0ZbO5lWJyyyMFUsMEkHHOMfyrkSrlC4Rio6tjgUyO+m0+dLm3YLKuQCRnqCD+hoeHTWknf1FDMHGac4Rt1suh1z+I9I0y8kt7HQrV44227z1JHXHBqRviBMBiHTLdB2+c/0xXERk7ASck8mpA2Kf1Wl1VxSzTEXfI+VdkkdE/jK7N79sSxsUuQNol8slgPqTU58Z3yaPI7vH9pkl2RBFACjAJOPxrKk8OamLe0uEt/Oju/9X5R3Hpnn0q1beBNWnk33EkFsnYO+4/kKzlHDJa2OihVzLmfKm21+fUoN4h1eRSG1K4weoD4/lVKW5mnbM0skh9XYn+ddfH4CQY8zVOf9iH/69Gn+DoovEH2W8iuLmyePKzopQI3+1TWJoL4fyJnl2YSt7W+vd3/zOLe4eNWiQ481drY9M0xRtFehReBdMspfMv5pJ2yQqBgqkfzNXkfw1pr7DHYwMP767m/Wk8bC9oJs0hkldx5q01FI8zRWkkVFwWYgDtzVy+8P6rBqMdk9lK0pXeBGNwI+o4rstX1nwxd2rW0rvIMgg28IBBHoTVU+PIbe3igtrGWRYl2q9xL8xHvin7etKzjD7zOWBwdNtVK1/T8ramZaeCNVnUGcw2wP99sn8hWj/wAIAwjY/bmZ8cBYeM/nWZeeNb2a3IjVIpnc8oPuL/jWS2tanc/66/uGX08wgUlHEz1bSNJVMropKMHN+v8AX5Hf29np02mQS63Y2ljfWw2LvZQsg9SAf50lx4j02IpBb3aOApLeWmEUAetebzOWbcxJPqTmq8sjEhAeCOfpS+pJ6yYRzt0tKcF89391iUnmo2LIwdThlOQa7weFNIbqbpT/ALw/wqOXwXpzr+6v5k9mUN/hWn1ykZPI8YtUk/mcWJTKC7H5mJJppNdJP4LvII2Nrcw3AHO37jfrxRqnhKTSNDt725ucXU5AFrs5Ge2c9q0Vem7WZyVMvxULucLW1OcBroPC2sWmnXarqG5rcPvAHOG/zj8qjh8IavKgYxRJns8oB/KnN4N1pWUiCNwCD8sq1NSpRnFxcjXDYfG4eaqwpv7mddq2orqpkmjJ8gxkRg+mOteZyEBUGeqCvRYdOuorJElgcELtOOf5Vz+i+E49b3Bp5I3jkaMqFB4HNYYecKcXrodeZUa1acFbV3Oy+Hd7pOlaI8j3kX9oXHzGHncVUfKB+pqjJ4jgaaRzdSbt5ydrcHP0rjtHgubvVbS1t5wj7Ds3k7QeQa0p7YWenana3L/NHeR5ZASMlT3/ABqZ4eLqNyd7hRx06dFckbW0+5G6ogm1bS75MMZnkRnA+8NvFdGsMbSA+XGcf7NY3hPSbLUPD2kXM2twWksEjMYpImOeCPvdO9dhFo0BJMOs2Mn/AAPrRK0fd7CU3Nub66/gUE+U5VnT/dcj+tTC5uAflu7ofSdv8a0P7Cnb7s8Lj0UOf5LTX0K7XBDIB7hh/NazuiuZFYXV5/z+T/8AAiG/mKeL/UEIC3rD/tlGf/ZakOnTJ1ltx9ZQP5002cp6S23/AIEJ/jReI/dHDV9WX7uoNj/rin+FNbXdZ2EC9Ug+tvH/APE0fYLg9PJb6Tof6006XeN92EHPpIp/rRdCtEzdY8Pade6YsszXFx5hLF3c5yeo44BHT9a5b/hC9EbP7mYAd/NOa9BtNMvsNay2knkS9xg7G7H6dj/9asrUNMvLFC9xbyQxAhd7jAJ+tZOU4O0XobKFKp8STPKPEEEVnqcdtBkRRx7VzzwDWfnPpVzxQ+3WJGBPykqPzrGF0wPY16tLWCueJimlWkkemfDhs2mpJjPzx/qDWNY6JoskRfVNS8iR3fEQYLgAke9J4J8QwaRbX811G7I5QDZ6gE1ztxcm7u2n24D8gema5lSm6s7Oy0PTeJowwtLmipPXR/mdnHo/gu2yn26Nj6tcE/yFMmt/BCqf9L5/6Zs5P8q4yOGS5njgiG6SRgqjOMk1Z1bQtR0Xyvt8HlebnZhg2cden1q/Y2dnUd/Uy+vNwco0I2XWx1unX+gW+lXOhR6hLcLfMRGWhKhGIwMn6gVWkuPDWixQRy6X9pnZckP8x+pzwK4yC5NpdwXIUMYZFkCnvg5p11fPqN9LdyAAu2Qo7D0o+re9u7dRxzOKo/AudaLTZfM7dfG2jxJiLQ8H0AQf0qtdeNLO7heFtCiaNxgh5B/QVxmfepbeGa4mEUETyyHoqKST+VV9VpLW34mX9q4qXupr7kdVF4zmhggsLPToIYdwVVDsxGT2P40/VfF9xa37W1iIyY+Hd13c+grkLgzWk3IaOaNuhGCrCm20M9xlkjkldzn5VJNL6rSvzWLjmuKVN0k3dv7l2Oik8ba6y4W6RP8AciArNn17Vbk/vtRuWHp5hA/SnR+HtYmGU064x/tLt/nUd7oWqafB591ZyRxDq/BA+uKuKoJ2VvwMJyx0o80ua3zGW2pPbXiXUsju8asU3MT82MCqPmvLI0sjFnY5JPrXU3ngv7Tp1he6Tc/aI5v9aZMKEP8Anirlr4Ft4lDX1+WPdIF4/M/4VDxFGPvX1N45djqqVNLRa3vpr5nGbjTWPBr0238I6KFG2zkl95JTz/KpLjwlp0lu8aaXGhIwHEmCPfOaz/tCne1mdC4fxFtZL8f8jzEabffYP7Ra1m+yM20TbTtzn1pIUZ2CorMfQDJr0vwrZ3Ok2NxpWuPaSadIDtRpgSp+noauXF7pGlQMYLqxhA4VYgMn8qTxjTaUb+gqWTRlFSnPl737nnaeHdXugDFYS49XG0frTLrwvq9nC9xLbgooydjhiB9K7K+8TWtjJtuZHZzz5cfJA9/SqUnjXTNhC6fPLkYId8A0o18RLVR0N6uXZbSvGdV839dEilH411RMBxDIB1yuM0o8ZySOPtVqmzuUPIrms1Gw610vDUn9k8uGa4yDvz39dTtF8TWtldBZbVriNlV0cNjj6VPqHiXQtXmguL23vTJD9zaQAP1rgo5WYqjHOwYH0qYNUrCU9+pvUznETbvZrs0d4vifQickXq/UVMviPQyuRdXK+zJXAE80dqj6lTfc0WfYpdvu/wCCegRa7Y3Mnl2l2xlPRXGM/Suh8LRtci61GVVQbtg4646n+QrxsO0UySKcFTnNelaX4zs7nRU0u3gkjuCpDNxgknJrnr4ZwXuanoYXNvrMXCrZM5DQJY4PF1o7BjGsrjCdSNx4FdIY11DxDrq3UaMWVJAgHC/JgYHtXM6ZGq+KbRSrnN1IhCLlj83YdzzXtM9lZ2OmvJ9nj3+Xy7xjec9MmtcRVVNp23R5mEoOsnG9rM4TwSW/4RuMDB2u3BrosRMMMgHfpVO0t0s4BFbRwxxn5iqgjn8K0oI7aaAGTUbWBzn5JN4I/ELisfaqbbOt4aVGCu7kRghOPkT8qkWNVwVLp9HI/rU62cIxt1PT2/7b4/mBUq2Lt925sn+l3H/jTujO6K8ck6n5Ly7UD+7cOP61Kbi9BH/ExvvfNw3+NTrpN633Ikkz/clRv5GpDo2p8f6BcH1whP8AKgV4lUXd8Mf8TK9x/wBd2o+2X3/QQvSfTz2qU6ZfofnsrlfrEw/pUbW1wo+aCVfqhFGg7xGNe3oH/IQu/wDv+1RgpeXCR6rJNc24YECSRmCHs2O/uPQmlKlTyCPYjFRsPfr2o0Y9i9f6PYidg1lbNnkN5SnP6VmSaXZjJ+w2+P8Arkv+Fa+n3JngNm2DNGP3R/vL1K/UdR+I9KRgG6ncD2rkmpQfkdcOWau9zz7xjBHbaadkMceQT8igdj6V59G3yL9K9C+IsgVIoFGN0Zb9cV5sJtgxXqYNP2d2eJmTXtUl0Ret5DHdQSIfmWRSPqDXqXjTTo9X0izlLFFSZGZ8ZwrDBx+leS2cpe/t165kUfrXscki3PhOZHP3YiB9VPH9KyxsnGcJI78mhGpTnCWzsYtt4a0GIBUsmum/vSMWz+A4rSj06zgXbHo0Cj2gH+FefX3iG/N06211JDCnCiM4z7moD4k1phg6ncgYxw+Kj6pWkruX5nW82wVGTjTpbeSPTDaK3TS4fxgX/CsR9IvLTxVaajY2kEEajEyiRUBHQ8Z9P5VwkupX02fMvLh89d0rH+tV97E7i7E+pNaQwco/a/r7zmxGdUqqSVPZ337fI9S1S20Ftde4MNvc3Mq5YMd21hx92mS+JNL02QwSyrGw/wCWcS8D8q860u9isLyW5kJ3LE3lgfxMcVQ8x5HaRyS7kkk96SwV5Wk20iv7bjToqVKCUm3f/g7bnqUnjLQQuTLO59EU/wBaz7rxpockTxHTridHGGWTAB/WvPt1LurSOBpLuck89xUlbRfI7NfHwtIvIsNIgggHRN39AKg/4Sy4lsbq+uI4g4cRwogwC2M/pXIlqiMjOQhY7FJIHbNaPC0uiMoZviotty6eX9aGm+vapK5Zr6cE9lbAqCW/u5v9ZdTv/vSE1Upc1soRWyOCVerPWUm/mOLE8kk/U00ybCGxnBzilUMxCqCSegAqOVWWTY4KsDyCMEVRnruOeR5naWRiXc5JNGeKI4pJXCRozt2CjJrSh8OaxOMpYTAHuw2/zqXOMd3Y0hSq1XeEW/lc/9k=", "path": "images/5pts_ADE_train_00019159.jpg" }
depth_point_7
images/5pts_ADE_train_00000290.jpg
ADE_train_00000290.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 163 y = 123),Point B is located at (x = 238 y = 224),Point C is located at (x = 261 y = 186),Point D is located at (x = 210 y = 198),Point E is located at (x = 47 y = 211).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_19><DEPTH_25><DEPTH_64><DEPTH_74><DEPTH_74><DEPTH_59><DEPTH_59><DEPTH_29><DEPTH_36><DEPTH_44><DEPTH_44><DEPTH_64><DEPTH_36><DEPTH_29><DEPTH_74><DEPTH_59><DEPTH_59><DEPTH_29><DEPTH_74><DEPTH_64><DEPTH_64><DEPTH_36><DEPTH_49><DEPTH_3><DEPTH_74><DEPTH_59><DEPTH_70><DEPTH_49><DEPTH_74><DEPTH_36><DEPTH_64><DEPTH_49><DEPTH_38><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_67><DEPTH_31><DEPTH_29><DEPTH_36><DEPTH_74><DEPTH_36><DEPTH_44><DEPTH_64><DEPTH_67><DEPTH_5><DEPTH_67><DEPTH_49><DEPTH_59><DEPTH_69><DEPTH_69><DEPTH_36><DEPTH_74><DEPTH_33><DEPTH_72><DEPTH_70><DEPTH_17><DEPTH_73><DEPTH_63><DEPTH_74><DEPTH_31><DEPTH_64><DEPTH_41><DEPTH_36><DEPTH_44><DEPTH_33><DEPTH_41><DEPTH_85><DEPTH_5><DEPTH_43><DEPTH_67><DEPTH_74><DEPTH_19><DEPTH_57><DEPTH_0><DEPTH_19><DEPTH_2><DEPTH_23><DEPTH_42><DEPTH_43><DEPTH_84><DEPTH_35><DEPTH_44><DEPTH_19><DEPTH_57><DEPTH_16><DEPTH_16><DEPTH_1><DEPTH_39><DEPTH_77><DEPTH_65><DEPTH_81><DEPTH_60><DEPTH_36><DEPTH_44><DEPTH_57><DEPTH_98><DEPTH_0><DEPTH_40><DEPTH_74><DEPTH_END><DEPTH_END>. Since point B has a higher pixel value on the depth map, the answer is that point B is closer to the camera.
B
long
5
[ "D", "A", "C", "E", "B" ]
<DEPTH_START><DEPTH_19><DEPTH_25><DEPTH_64><DEPTH_74><DEPTH_74><DEPTH_59><DEPTH_59><DEPTH_29><DEPTH_36><DEPTH_44><DEPTH_44><DEPTH_64><DEPTH_36><DEPTH_29><DEPTH_74><DEPTH_59><DEPTH_59><DEPTH_29><DEPTH_74><DEPTH_64><DEPTH_64><DEPTH_36><DEPTH_49><DEPTH_3><DEPTH_74><DEPTH_59><DEPTH_70><DEPTH_49><DEPTH_74><DEPTH_36><DEPTH_64><DEPTH_49><DEPTH_38><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_67><DEPTH_31><DEPTH_29><DEPTH_36><DEPTH_74><DEPTH_36><DEPTH_44><DEPTH_64><DEPTH_67><DEPTH_5><DEPTH_67><DEPTH_49><DEPTH_59><DEPTH_69><DEPTH_69><DEPTH_36><DEPTH_74><DEPTH_33><DEPTH_72><DEPTH_70><DEPTH_17><DEPTH_73><DEPTH_63><DEPTH_74><DEPTH_31><DEPTH_64><DEPTH_41><DEPTH_36><DEPTH_44><DEPTH_33><DEPTH_41><DEPTH_85><DEPTH_5><DEPTH_43><DEPTH_67><DEPTH_74><DEPTH_19><DEPTH_57><DEPTH_0><DEPTH_19><DEPTH_2><DEPTH_23><DEPTH_42><DEPTH_43><DEPTH_84><DEPTH_35><DEPTH_44><DEPTH_19><DEPTH_57><DEPTH_16><DEPTH_16><DEPTH_1><DEPTH_39><DEPTH_77><DEPTH_65><DEPTH_81><DEPTH_60><DEPTH_36><DEPTH_44><DEPTH_57><DEPTH_98><DEPTH_0><DEPTH_40><DEPTH_74><DEPTH_END>
163
123
238
224
261
186
210
198
47
211
21
117
49
1
74
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDzh7WaNJJrSPL5CyoByQevFN8QTbbm3vIfm3QqHx2wK2rfULLz2QTIrg85OOaj1Lw8LyOS5t50VQC7K/3fcg9q2xFPmalE2wmKVOMovS+zMq0fVobaHV4bV2toZAxlxkDHr6Cor5ydSmuLVHtoJZCwiGCEz2/P+dUYdS1LTIpUtZWEE6FZEI4kU9sVLY3hliMU+4twq7uw9K5Zqysjsw9V1at6rs+jHz3UbosO+QF3Akdl+6PavTofD9i/h/8As2Nx8w3LL/eb1rgtW0uQ2K3sKlogVVnHQMe1dZY6hcLYrqM+I7cRgLGP4jjtXPOryRt3O2VOVSq23taxhy6Vcadc+TNGVI/I+4q/ZbhdRMFxiRST+IrqIL2z1i2ggugFeYfuieoNYT2MlvMQ6DdGw5PXqOlcMpJyv0OxVG4cklZnrgUelLt5pyjKg+tGK9k+SYzbTSoxUuKQikK5Dt9qYy5qYimMKBkG0ZrxfxsuPFmsD/phn/x1a9rIrxbx1g+MNV5/5Yf+yrUT2NaPxHHxR4kGRnipfKBtnYqOtSonRvapUTNpIewGaycj0oxMiZBtVSgILCq6IFnUZYKR0Bq+yZXPoxFQgD7SoIx8n9afN0JcOpGVY3awqflYgZI6Uwh14KofwIqzZgtfnIGAc5/Gr2Ac5p81nYhwurmHuwTmPI9jQGjGCyOM9wK0r1EWHzcD5fQdRVRjiMbDwwHT61alcycdbDEaMn5Wf8Qa0NHsJdS1W3tIZQhlbG7+6Byf0FUPKIcZz1Heuk8GRD/hKbQj1fP/AHyadxTg1Fs9W0ywi06xito2dgg+85ySfU1fwCBxzTUHyjvUgFWcVwCinhaQCpAKAuJtHSlCD0p2KeF4zigRGEGOlGwelSYp23FAXIdntRs9ql20YoFci2D0oKYqXbRigdyArTSnNTlaQrSHcrlKjeOrJWmlMigD5uaTLs2eSc10O+aDR4bTzJA11+9kGeiD7o/Hr+VZFtZma+iiI+Rm+Y+g712FjapfXzXUg/dqPlHoB0FdVOnzNtjlLlRzzGUTyE/8s0ChT056DFSx2DTRTXewJFHgFgMZNLeuDNdyDoZBj8M1WXUrkW32Fm/0ffuAA6mssSkl5nVhXzOz2NpNSkPhy609cBHIfPfII/wrrfD1i1/4Ug8sC4MDlGjY9weP6VwscL/ZXAByVOD610ngzVbjSombOY5ZCWXPHavJqtcj5u573spcy9ktbfkUrqS7GqyC4DQuh+RRxitzTtTa8yl8qtsGDLnBAyPz5xW14k/szU7GKZVAuXzhh1H1rjFSS3WaN2QBlwd3UjI6e/Fcy9nUfKjps6tG7Vnf9T3iLBiQjoVFPxUVid1hbH1iQ/oKmIr2UfHSVpMYaQjvTiKSmSRkZpjDipOlNYUhkJFeL+PEx4y1AY4NuCf++RXtLCvHPHoCeMr7/aswfx2j/ConsbUPjRy0IB6ehqby8afJ7rUKDjI7A1bbiwYe1c0meqkZGzcmQcfOTVZxi5Bzn5P61dKkQ8dyarToVuRx/wAsx/OrW5L2JLNcXKHHO7r+FWSOM1DbH/iYxrjq44rs77w7reo2iJbQQ2iKpG2AH58+pK+1CV2RUnyrY4i+ANhJ+H86juLcxSyKccScYHTmutT4dX9zC3m3M8DYzsaMMD+RqzoHhOyl1OGDWJ/tJa4KO0RKgjKg5PsWFaxS2b/A5nUs72OMaPn6Yre8Fp/xVFscY4c/+Oms7WrQ6brN9ZEFRbzvFtPUYOK1PAp3+JIe+1X/AJUuVxlY1nJSp38j1lR8tSAcU1fu1IvNbHmjgKkApoFSgcUEsaBTwOKQCpMcUBcaBS4pwFKBQA3bSbakxQBQBHto21JikxQBERxTStSkUhFAERWkK1LikxQNHz1anbLK4OGCYH48V1Ud3FZ6UDuwxWuPtZGe4aPbywyBVplkuHCSswi6CvRptKBM4uTsRX8yq3yNuBO4kHg+lNtVEsZLDJzVprO3dJFIYnHyFDgZH8xVW3V45cYIrzKsuZvU9jDw5Wm1ZM37VBGgVvnVhx7VowoIlCqAFHTAqrbxrHAjMDub8qvovyZByPSvIqs+pw9lE0Y4X8pXPK449qSe0W4UAhc+pPt2pltctGmwn5T2qzDKpYh8YwcZ+n+NccIyjO5FdS5Xoep6cMabaj0hQf8Ajoq1VXSyG0u0bsYV/lVs19HHVI+HqfG/UYaYakNMNMzGHrTTTj1NN7UDImrxz4hD/is7g/8ATl/7LXsjV458RD/xWc+P+fLn/vk1Etjaj8aOYC4Qj/YqaVf9EcDsoqAtiLdnt/hVmQ5tm9xXNJ6nrom0REMUjPGrgMvBHua6Lxz4dt7Dw7p81lD80k4ZzjkBl5H0zisbwzJHFFcNMhdVZcr+f+fwr0TxRtbwdCZQm4xjDEZwdgIx+Ix+NazquHsrbNtP7mYVknRbt1X5I8UgDLfrKQPkPGa6yP4mXZABglGOMCRv8Kz9esE0sIflYyurqy/3WGQK5uOMbWbkHcTg9qcoJb6mSkqq+87NviTNKSAk59vPb/CsvT/F8Ol+UPsa7Efeo3t16jPrXKj5JB9asXEaCP5kyc4B9KqL5dF1IdJS1fQn1zVTrms3uoeYEa6naZkA+7uOcZroPh3GV8QKC+7COc/gK5XyYlwAo3E967H4foBr/A/5ZMf5U+ZNjlBxg/Q9YXtUi1GvQGpF6VocBIKkFMWpFoEKBTqAKUUCADjFOFJThQAtGKd2pAOKAExSYp1JigBhHNNxUmKQigBmKawp+KMUDRzSfCnw4rBz9sLDofPx/IVcPw28PuR5iXchHAL3BNdcBThRctTktmctH8OvDif8uch+szf41L/wr/w1v3HTgx95G/xrphTscUrIr21T+ZmAng/QY02Lpse30LMf61PH4Z0eMELp0AH0zWvSilyrsP29X+Z/eZqaDpa/d0+2H/bMVMulWCniytx/2zFXKOtHKuxLqze7YiKEUKoAUDAAGAKceaBQaZA1qjNPammgQw02nmmGgZG1eNfEjKeMJTjObP8A9lNeyt1rxz4lg/8ACWZ45sj/ACaplsa0viRyY5gI/wA9qttxDjPGKqR8xEe4/kKuN80YGO2K5ZbnsRL2ir/xLb89cGM5/E13vi8ed8NjIDnYkL/lj/CuE0V1/s3UoufMKxso7YB5/pXoGrxGf4YXAOSfsQb8t3+FKq/cpN/zmVWzoVF2a/L/AIB53ro+2aTprdT5MfI9V3r/AErlFaRIcMhbPO5R1ro7GX7XolnvziNipPtu/wDsq0NUJn+yWsdq89pFC6OFIQg8bWXPcc11TTaivL8mzjpNRUpef6I4PkyK5Q7SRnP1rSu4wVIHI38VKdGv1t97QqNvUbhkCo1nhysMkqRBgWV3PGRjiokndG8ZxSbuVJP9apHtXX/D4Z11j/0xf+YrlmhEmp21pDIk0lxt2mM5A5I6/hXbeDdNn0rxNNaXICypASQDkclSOfoaSdpKL3FUkpQk0z0hR8oqReBTF+7UgHHNdB5pIKlU1EvapR0FAh4oFIKeO1ABinDikpwHFAhccZo7Uvak7UAApDS0GgBtJSiigYhptOzSUAaYpwNNFOFADxS00U6kAUo60neloADSU4ikAoGHag0uKQ0CGGmmlPFIaBjD0NNNPNMNAER614/8Tv8AkbIznANk3/oLV7A1eOfE4EeL4s9DZkfo1TLY1pfEctCQYh9R/IVaJG0fjVVHwoHYY/kKlMmUA9q5Wj2UauizW9r9okuJURfKB2scFvmHA9ehrtv+El0WfwdLYnULcStZmNYw2WzzxiuQ8P6BY+IYb2K73LNHF/o5DkYcg4z69BTNI0dVSd3s4o57Vd8qSgPkAds9+/FLlVSHK/su5y1pJTdNfat+C/4Jh2eowW+ixQyv+9jL/JjqCQR/I1Z/4SW2VVCQFCBgDcOldFb+EtK1fTDqFyqpNuGTEoUMDnBI6A1gXvh3T7LVWtWeQW4XPm7QOMZ/St/apL+vUyjhNWuqKx8Ss8UkQhQFsjIfOM/hVHS7BZ77SZ5yjodQjt3jZcqwYjr7e1bEXhBLtDc6Xd+bEM/fGRkcdfr7UuiwN/YiSBAWg1CGQnGcBXUnFR7ZOVkaKilBs6XUPCmlaFryX23FwLqSP92u2McDGE7cGrVgd/xC1I/3YFH6JW74ltxNq7KybkW8cnjpmNSKwNIO7x5qx9EA/wDQahQfto1G91b7n/wTnjO8Zw7fqdmo+UVIBTVHAqQCu05Byiph0qIVKOlAC4p1NFPA5oEKKcKQcUtAhaKM0gFAB3opTSUDG0UppKAENHalNNOcUAjTFPFMFOFADhThTRTgaQC0tJSg0DF70lLSE0AGaaadTCaAGnmkNOx+VIelADDTGqQ1G1AyJuleP/FJf+Kntj62v/xVewmvIvip8viK0Pb7Kf8A2apkaUviRw4bMzLnoR/IVOxwufWq0bhpyfUL/KrD84Hp/hWDPVR1Xgfcb2WQH5di/mHU/wAt1dRG2+9WBoY8yxmJ3xzu5/qTXMeBBvWc5AHmrH/30kg/niumnbyr5J84xNuP0b5j+jCnF7L1ODEXVbm9DN8N3EiafqFtPvARDgn1XjH4AVh6sztq9vEWJVouAemckf0FdFaKU1zV7WTJYybx7hlIz+orn9YZBqOlzIODHg/XPP8AOsY/DJeZ6cn/ALa3b4lc2NAtobGK/trfcIlto3G45I4UkH8ea5bTSy+FbnaeRLuPOP7tbenia21XWXLqYJNPVgM8qwROPpXPWxDeBr9geVkz+qVNKP72/dr9TGpdRkmtv+Adh4f1y7161u7u5VFc3zJtQkgYUDuSewpNB+bxrrJ/D9RWb4GdRpWoqeNupt19CBV/wuxk8Wa0/wDtEf8Aj5rrcbSXz/Q8ym/4nojvI+1PFRp2qRa1Mh4609aYOtPXrTEPFPHQUwdakoAKWk707vQAUUvemmgAPAo6UGigQhpKU00HigYE0hPFKaaelAzUFOBpgpwoEOFKDim06gBwpwpgp+cCkMD0pDSUCgBxNRtSmmk0ABNJmg000gENMNOY0wmgYxjXknxVU/27ZN2a3I/9Cr1ljXlHxX41SwbHPkH+ZpSNKfxHn0K7ZAfUD+VWj99vpVZDhVPsKfvyCe9ZPVnpqyOz8Av/AKPqmFy0f2ecH0CyjP6NXX3CEXksW0coFGRwOGTP/ji149a6pfabHN9klKCePy5NpwSuQcZ/AUy68Sa06CSaeUr0BaQnvn+tNQbRx4lqU1Z6nQajFqGtePdSS01i4sAttB5bRO2HkZI1jjGGH3nYc9uTg4rJ0e+M2jwTXl48k0d3IB5rliF2pjr2zmsyDxPqGlQzpp9xPa3U00Ur3MExUlUQhUwO3zEnnnA44qCa9W+1G9ureH7NDcTvKsCtuEYY52g4GQOlaTinEKE5Krfc9K1PVtC8m5vYdTdrq4s2ia3aPo20Acj1xXHadq1rB4YvNNnz58wYLjoMlCDn/gJrPhsh9ttGkjHl+ahkL9CuRnPtSi2laG6eKFjCsp3Mq8KO3NZRpxjqjZ1JydmamleKI9IW4iSAy+fdCcEtjHy4x0rqfh/cPd6rqty4AMpD4HbLE15ts/eoue+a9H+HC7Zr76IP51pzbIwlRUIyktz0lT0NSqfWqwapgeK0OQmFOXrUampFNAiVTTh6UwHFPFADuBQD+VJxS96AFoopKBMDSUd6WgBtFKetIaBjaQ0tNb3oGjUHSlFMB4pwNIQ8U6o804GgY+jNNzSZoAfSZ5puaM0ALmkBGeelIWpM8UAObbk46UwmgtxTCwGSfzpADGo2NQteweZtL7fRmGA30Peon1GzU4N1Dn/fFF0VZk7HmvKvivg39h/1xb+Zr1ASK4DKwIPIIORXlvxXP+maef8Apm386TKp/Eee7vkUegFPiOd2e1VS5AGf7opqzbXYe1RbQ9G+ptaZpT6tMkSXUNsgPzyPywH+yPWuiXwjoNv81zqFzNJu/wBYQAfxHI/GqfgqwhvvtPm20kxQIylJdhXrzXTzaAGjYxR6ir4O3ddkgHtnnpWMqjWmonSUp37nL6roOiQx7rS4VNuSWkcksfbFcgtuEc/vFPPQV117GsAl+0LJEAuHRz1G307Gsa6i0xLVnt5pHckFBs29+cmqw8/aJ3OvMMIsI4qL3vvvpbX0fQ6DS4tRW1i+ZJ4HUFI/lJA/GrUyywKGa1aNSwLBVC/y4xVnSdEiudLtJ5XbDRqQJHwBx2AqfUoY9LsZpYZGaTYdoGQjH0oU3tY8yStJvY5HXNK05YZdQ028U7SN9qRlkB6kewrpPh0cm+cd/L/rXGJr0dxdotzFFCq5jLrk4B4JOc54zxXY/Dc/uL4g5G5ACO/BrZLVXFKblB3PQ88VKp4qAE1KhzWhyk61Ip5qJaepoETA1IDUK9qkBoESUd6aD70tADzTc0ZooAKO9GaKBBSGikNA7himt0pw6UyU4Rj6CgaNAHinA1GDTxSAfmlzUeeaXNADyaTPrTSaazqilmIAHJJoGSZ5oLYGScD3rAvfEkUQKWy+Y/Zj92sC41G7u3/fSMwPRRwPpj1rOVRIuNKTOtutasrbIaYO391OTWbL4pX/AJZWxPoWb/CucMe4ZPTrkenrTQHQ+pBP5/8A16xdZ30N1QVtTpP7X1CaETIkUcRz8wGapT6nMylZLhyvftxUEsu63tooiAhQNx+VZmotcJEBFF5hLjIzjAzyfemptk8iXQ1JdTa6s3tDtk4yhPBUjpzWb5ZYYOQfQ1a1XSL+KW0Oli3NuWC3SuuJNp6srZxkemKbPEYpMMSSOC3r71DaaujSOj1HabqEmnSCNjut2YAgn7ue4rnfioCZ7A9R5bfzrXm2srD1HT/P1rF+IeZLDSZDnJt2yD16CtKUm1ZkzilJNHmk7fd7fIKr7syn3FPnblf9wVChzL+FbW0N29TvfAGpPY3V0fOliRkQnZFvDYzgHAJB5ruf7duZDnF847AW3lj83xXmPhbxLa6B55uLNrmWZVWJQ2AMZznn3FdnYap4r8QM40bRY7dRwZJAE2/icGo5V1M56y0KnjPUftllFHPayq/zFCWBK8c9CeK4CWzuhaNObeVIRzuKkDrXrkfw+8R6rMX1XXI4pQPlWCPewHpuOMVyfjnwJd+GrWyu5bqW4jllMTtMwznGVwMnsDWkKqirJEOPNZNl7w9eTHSrYxpysYG7J/pj+dP1TU4pIGg1PU08ocmIsM/gBk5pNES3j0e2EOlzSttBZtqYJ7kEiqPimb7NpTeVo8UKyMFaRghK59gMj61yOE5S+LQ2Uo/ynJ6nPpCyodNgdlAO/eDg56YBruvhtxZXZxgF04/A15eBk4x1NeofDn/kHXR/6ar/AOg10xjayManwtnfjipFqEGpVNaHKTqeKevbmo1NPHWgROvFPHSolNPoEOBpwPFNFOoAdRmkoNMQtHam0uaACkNGaQ0ALmq17KI7Od842oTz9KsYrL8QSeToV6/pEaRUdWkdAvSn1GucU6kApNIHHTIz6Up4HNcBqMsyavdyCZxKkh2tnkDtisqtVU1dm1Kk6krI7q4u4LWMyTzJEnq7Yrm9T1UX5WK3lZYOu7bjd+fauQlea9uFaaV5HYgbmOcVvoNpY5Dqq8rjtWDxHPsdX1VQs5MaEzGQVAbOHA/mKe0PyEDlxz/wIU/aViBHLqMj/aHpTnIILjuAwrFs1sQ4BAKn5Tz+BqJgVbJ9AfxBwakBxDwPX9DTHYksuPugj8zSAYshVdqgAKSDUqsTgsAUHUVVkkRLjDN94njPenfO+QpUAdyPu1vF3RhJWZ01vdwTW4+Ybk+8CcVjagTNIxjGQc8iqCj+FSWAzvJOOaswLtJQJuXqC3r3pRjZibuZMcz3U4hiVmZztAH+f84qt8SggtdM2ghQjqAwwegrcsBHo95NL5HmLMclwcsnsPasP4mOlxZ6ZLE4ZSZMEfQVvBK2hnJtyR5VKPnHsoqFf9b+FOlkBbI6YFRxnLmtVsbN+8aelnZqVu3GVkQg/jXv/hTUJv7La8a1EpZmdhGwBJITHXjHPrXg+l6deag22wtZZ5hj5YlLEe/Fez/DLUvM0S8tri2PnwyBGXGcYz+VZS1FUR6fJKrQxXPk7GeLkEcjjPavK/jPFK+h6LLv/di4wy+5Q4P6H869TD+bo5LIV2hlAP6fzrzP42SrB4c0SAYLSXO4/wDAUP8A8VULcin8SOV0vQ7u4062ka4Xy2jVlQISAMfXFVPFWiMuikQTbpRIMxIo+Yc9lHb3q/YWUsmj2jzXBWLylwC+ABj61dstPhYrcW1x5gHHyqQB68nr+FKLdxuWp4+1vPbuBNEyfUda9N+HX/IJuD6zf+yisnxHrdnLfeS8qYjBTyx1Hrn39q1/h7g6NMwGA05IH/ARXT2YVVaG524PNSr1qECpVqjkJlJqRTUKmpRQIivtUs9MiEl3OsYPQdS30Hesm08daNcTFGleDn5WlXCsPXI6fjWJ48uGjltBlAuP4s981x115SW0qwxjYWyHZjnr6eldtHDxlBOXU5p1ZKVke3xTJMiyRuGRhkMpyCPrUwrznwdrRtYxZl2mt2kVIjnlCQM9e2a9EU8VhVpOnKxpTmpK5IKDSDpSkVkaB2pvelNIaBADSHrRSUCFJ4rD8ViWTw/cxQqzSONoCits00qDQy4uzuXhTh16UxakFSMG6Vw2rR41m8HqwP5gV3T/AHRXGa0u3W5R/eRT+lcmL/hnThHaoRW/hieO1F7LcRkBfMVFBOeMgE0AkgZ25IwpXoPY10cB8zQ4wQSDDg4+mK5u4ga2k8tkHlkZyOQV9QfWolTUUuU2jVlKTUibG4YAKkcj61HKwEY7YbGPrTBO5jYHJwM5bqPSqBke6IZW2jA/E96zsa3LaPv5Ugck8/WmOzYOzuoyx9c5pFUAADJOOB0//UKcVyMsRj6cD6DvUiM+SEMCepJ+8av2n2l7YiFQ8iHGDjOPWkKc55BP4sf8KgbzFYxxkop+8c+ta09TOeiJkcSq4JQsH529Aavpyoz0x1qjaWyW8TLH8xJ3ZAq4pEYxjg81oZj9oLDuPUVi6voMOrW/leYQwJ2sBkq3uK2idmAAMdselVZJJFuMf3uQR6002gPGtU8MatpbuJbV3jT/AJaxjcpHr7VkRnBNe6G5lZGjOGbI+U88d81xOq/Dybdc3dncx7WLOkBQj3wDWsal9w63LXwu1JdJ1C7vZA5ijhBkWMZJXnp/ntWo3jfTNB8ZXNzbR3cNpelZXEsG3GeG4z+ORXN+CYTJbapGV48lAc+vNZFtol/rUep3m5cWSs0mFxkgE4AHA4U+1aRgpasirO0rH0xo+vaZr2nI1hqNtOCg3bXGV+o6ivM/jpqFtcNo0VrdQymAyGRFkBKkgYyB9DXjcCy21yDHI8TdCUJBrQh0ae4AJRmZuRvPWoUEncautTuNP1Pw5/YltPPqJlmijCG3kOdrAdAo5Iq0viYXFuTZwuVbaFaU7Rg/7I/xrhEsJVdVK7WQEcDPYit7TIykcMB7FcfQA81jXl7OF4m1GKnP3ibVPDFp/wAI/qOsO8pu1bevOB1HGPTmtr4eKv8AYjbvu+e3T6CnaqufBOpg5yo/+JpPAAx4f+sz/wBKwy6rOpGTm76/5GmOhGCXKjsRUi1w03jbVlub1bPwne3ltaXEkDXMTMyZQ85IjIBxg4zxkVt+E/Ef/CT6XLe/ZPs2ycxbPM35wqnOcD+9+lelY8w6NetPpsZqRuBQJnB+M/Ol1i1gt4/MldNipnG7Ib/9dchIJbVWtrtZ0lb5ShG3AyOcH8a7vUyknjvS48fMDk8eiE1saxPo3k+VqXky/wDTNl3N+GORXoQq+zjFWucsoKTbbPKr/S7a5gE93JI9nYxXFxL5LAPIvmRRqqkggZZ15wcDJwelJ4FXTh8RtFfTWnEUkcrPFOQzRP5cgK7gAG4AOQB97HarGv3T2V9CdH09p7IxywyW8yM6yRttJVtpyBkZGCCCAQeKytNudVbxJYXiae1ilrGYoUijdEjXDHGWyeSzHJJJJrCsnKo2bUmlTPopSBJsJGalkiKgHsRkVxGnavPe2eJZITeKPkKuVbBIyp7gH1HtXRReIIxbMt7C0RT7iqdxxXHz2dma8ul0Xm4pmea5HxP4mntrq3hsbu3gUqHdpRySc/Lk8DpVjwrrt5rElwlysREWAHQEZJJ/wqlITi0rnTg0gPNFNJ5qiRxNITikPSkJpgi+tSA8VGKeBUFjj92uR8QKRrKn+9CP5muvI+WuX8RLtv7Zu5Rh+tc2KX7tm+Gf71BZ6rbJpq2xl/fLG2VweMZ6n6Vz8epxtK37l9pY4JbOB64poime4kMeQQQRnjODzj1rnfFCy2nhu9ubedonUrtaMkMMuo69utc8ZVKiSSOxwp03Jt6nS304htZGQj5yFj54J9aig3IfLdCrDGVP6fzrzu8jGleNIdKi17Urya11L7LMZ4diYWTaSP3j5BI6EDivSJzP5yyTEO20BZk+6cDABHY/zraVFx0Ip1IzLSxEcfeJP/fR/wAKk24G4kDsWI/QCkt5VlQsfl9fYVZRSSDj5sfKD0Qf41zyVma2KjIcd0B7fxN/hUXkLIqqcqBnPNX9oKkg4Hd26n6VSmBSXbGpKOOpPfNXT3M6i0JUU+QUiHzn+76UrFvNUKOAvXHFdBouhpcWoubjcoViqhTgkd6p6pprae4CMxQj5S38vfjmtLq5jaxSdQ8eV4KnkZpBHDKdk4+Q9PY1JFECCrNjuD61DPCdwGON2c/SmIalpHFv8rcQfvMxyatQ2W+z1GTaxVbdhGrdMsDz7UyEKI2LNnPJyKuPcJH4YmaNt8txuRRnJbt/LJo3aQN2R5b4Fsry2k1SGaFkdYoyd3sT09aveCAP+Ev1jSnxsvbduD04OD+jNRDf2s08NtF9oS6kLfutpVkx68+gzz2qK50m7t9TXUdOu3tb9UZdxXPUYPHY813qnfZnJUre8uZHHXkBj1CONwBIcBtvXcDg/jkV28ehSRJAtvbzPu4RpXCjGe4Gf51hz6RPDpFnPdAtewXZVmVt3mRMd249+G3fnXpUOs2FxCPs0hJB+YAcA1jNOLsdKnGUU0ZEXhxYmVjMiSMMHyY85/Fqq3OlyWt23lgsgYbstuOcdT6Vo3t/cBzO0zxJ0whwSPqa5y88TWdtfPLGoTK7SA2Wce5rnrQdSDijWjU5Zo1dWwvgvVckcrx/47SeARjw5GfWV/51y2qeMBfaRcWEVnsEy4eRn57dBj2rrPAY/wCKYtz6s5/8eNZZfRnSg1NWuzTHVIztynJalC12qi21Kys57TxFqE0jy3ccTwq32fbIFJDNyjY2gnKnvXY+BLq2vrfW7yzj8u1n1eeWFMY2owUqMewIqpe/DXRr+/uLyW5vxJcStKwSRMAscnHy9Oa3/D+g2XhnTpLW1lmaJ5TKWnZSQSAOoA4+UV6J55trxWbqWvwWSskameYDOxeAB65/wouNb0+2BD3AY9MR8muLmtYreFrixnugpYkCchiRnp9KipzRjzI0w9NVZ8m/zsPvbyW+vvtr/JKPu7cjbxjj8KqsCxz3qyBdeWGxHcqwBDQ4Yj149aRYLiRtwQIP7rdR/WumnjVC0aqscksN7Rv2N2+1v12K4wjckVOEBGcj8ac0EkDODEzhjwy8g+x9KWNNkaq33hV0MR7adun5a9e9/I7Mfl8MJRUtb6dU1K6u2kldWelnff1SZ5fzZzyOhHapLi/v5IPJF3IqDoR1/PrTsAfWg49K6JUoy3R5MarWzMa5hNypW8E8pzkSKRuHHTnt1/OtrwzrkukSXDyWwkjlfON2GwM/40mF9BTPJQjODmsfqq5ro2eIbjZnb2nivTLnAeRoGPaQcfn0rXjljnQPFIjqe6nNeVvC2cLUaSXdmweGWSJvVGIoeGfQSrLqes7qM5rkPDXiKe4ufsd7J5jOP3bkYOfQ11ZauecXF2ZtCSlqjVFSLUa9alArE1Hfw1zfiJf39m3+0wP5V0nG2uf8RofKtn9JgPzBrGur02a0HaojGhuEVI4SyrIJGYcjOMCuf+IFvGfB1/PjD/u+VHB/eL1rTgu7Wa4aGaNRvbgSDIatCSBrWHzIrtFiX+G4b5B/wLqPxzWdB+5Fs3qwbqNLqeS6h4oXxT4usrkrqaNLqYmEVzqPnxxB5ASsa7F2gcAc9BXpJiliB4LJ3+Xn8R3rQS5iYBZAIvMHAfBR/o3Q/wA6e9sIwTEGBxxG2Sv1z1HFbylzGaXLozMtzHAfMX7ufu54rWyNnXKk9f7x9KzLm6tHfYCBMP4lxgfUjrVOZzLCIsLIo7g8j6VUcFKr7z0CWMUPdSuzWnuljcZAds4/2V/+vWTLqsIvY1aTec8nsOappZO7lVkkI6BTzQ+nF4xHtVT7U6eAs7uX3F1czpQp8vLZvq/0PYNGeObS4SpGAuDj1qlr8QksWz1TBX2rmfDOtNpsYgnyxA2kE4LY6Eep7Vc1rxJBLYBVhmUySBB8u4k9cADPp+lcsqTjOxCqRlDmRnC7hiTMrADkcGq6ahLcNmC2d1BOG4FXrbSrSAL50XmSYyS5J/SrywK4/djb7BeK6lRXU4JYzX3Tm5Li43yKLC4dl7YAU59DnB+lTafPqaqXGnxLGsg2QzttkK/xEEEgZ963vJVBl8A9l7/Wq13c29nFvuHSGPOCzf1PamqUUQ8VNmXp+lvbNPNcJD58s7ygqu7ywxzt3d6uz20VxGUMauexYYx+VKlxZ3kJRbiKSM8fJKAR+tZ1zbX1lmW21CSS2C7v3r52/ietbRj0OaU3fm6mdfWr2s6rNblEYcSBtwFV/JhLb4GUyA9Rwf8AP1q8NUvZFMYuom3EBmcBtozz+NZi2JnvHlMYEfmblBXBc8YfHbvxira+zua0pSfvS0/Axte03V7x2niuvMGPuEbWx7dv5VyH2C688xtBIjDgtIMf/rr2m30hvsxnupPKhA4BGWP4VVutFIgWSaACJvu+Zjn8KiVNX0Oini1Fdzzi88O2tnoEl6t8Z7hWXIUbVAJweOprsfC1wbHwPBcgZKq2B7lyB+Gar6l4ainglSJmiR+ncD/CrGmRz6RpiWDL9otghViD1Bznpz3rGUJ8rsdlGvS9pH2mqTTa6tdUbXn39jPbtdzpLHPKI2RY8GMnONpzyM+vPFaV3ClzaSI5YDbnKnHTmsrTV04zJJ505kTiJJpDiLIxhfbHH4Cte5G21lZTwEY/pUUVJb/5m+OqUqjj7Ptq0lFPXTRdl16/i/PDMs6tIifvR1VOM1VvNZW2tUW4kEUQbbypLZ5OOPxrovC9jbXdhdJcxB8SjBHBU46g9RVbVPD6W/iXwys5iu7O41m2iZJlBJUvyrDowIz/AIV34hU9abPLw7qL3ove6PP9J1Ewyv8AZriSK4kZmGzPTryOhrp7fxPcIudRthcA8CWHhx+Hf86hTTF1KXw40L6TeTXM13G09jCbZSERCEdfLTldxO7HO/H8NdnZ+DIYkDXU/AHMcIwD9SeT+lTCUOX3impRl7hTsr/T7+Ara3g88feglXY4/Dr+lTvApGJMRuR1ZcD86oeF9Hsdbkvvt9us+3bsY5DJyeVYcisPQr3WrvxZf6Tp90ksMDSiNbwlvkVsAbhz6dc1z1sJCMmotpnbTzGrOK50mvx/y+9HUSadKBmNd4HdSCKqbGAyVI+oxU0+pXFhKP7X0+fTTjBniHmQt+K8D8QKjnvIJkE6XYmiYEb4m3fhWdOvjKMOepZr8RVaeBqStfl+Vv8AgfkR4p6xMxquPnlEVgXurjAxAg7f7Xp9TitBLy2NgLncI1+6yv8AeV+hXHrnivSw2LjWV7WPMxOFdFqzuhogVRzSGze9b7Pbxl5PQdvcntVHxGdSsfDNxqa5tFBVYw6/vG3HGcfw8fj9K6bwFGT4Yt5HYtJIAzsTkk4HU/jRVxij7sNbkQwzfvSF0rwylhKtzcP5k68qF+6p/rXQg4FLJwcU0CuJycndnZGKjsbq9akWoh7VKtZljiuBWF4h/wCPBG/uzIf1reJyKxtfXdpM3HI2n9RUVFeDLpu0kzz+aNXeRGGRuPH41EswhvInvf8ASIEB2713BScdfWrV7C0c7OoyrHcfaq+75ua85P3VY9qhVVKpzNd12evZ9DZ0OWIte7EC2csgMcRTA6fMcHseMfyFT6iqovlWxaKNh8yqxx+XasKOaWA5hYAnnBHBrWeQvFESMEjOPSvRwVm/Q4Mym6k+fa9l9ytr3emr6shttKV2xFCCwGdx7D1qWWzijA2szt34wB/jUiXBVQCencdatQiOfOcsAMnaOR/jXotN63PHlN05PnXu+X69SFLRp2EULRgt0U8ZJHQ/jVyy0ZZpBJcXlrBsyjQO2GWUcKrYP3T1z15FVmWWKQSlfcEHpV63ksTcMZ7GCSV8HzHjBYn0yetRVUnszKjOMYptaN6aly5tZ0tJP7RuNOtI0ICIQskRGOd2Qrc84wR0FVzrtnHa2Ph3SJbO4JhYNcbRLsIHUqDwTk4yfapY9K0lJ2vYbCAS8/MvUH6HgGqg13RLW6MFz5llMx5EsO3P/AhwR71yqnrqdEq+lki9aWy2tnFA7yzsgx50p+Zql/d4I3MSDg8ZomjgvYB5F1IAfuyQyD8+P/r1zVwfEunXR2XMV3ajq7wgHH4YrVJs5HbdlvUNbOlSKt7YzmJzhZYSHUn0PQg1INU0ydCsjgIwwyyx4H0J6VmnXpbmBFe2jmVyfvLgcHnI/GqL4N2ZUCrM6jEWDtXn73U9jiqUVswtN2cUJcW+lQo8unyxyjfjy1YYXjPOegqpE73MzER71SPbsDEorevIGTW5ZeHrsW8YhttsWABuwM1csL3SLTzLZMX2o7zH5EKFmVh1BHp7072W5fJBSfKrsz9J0e8ubdGuVESKo3SZ4PvWzBFHChFnArjHzXM44XHpV2aB9ypcFpZQoItowAqf7xFEsYVo1mzcT/w28a4Vfr/9ejmMZylJ+9/X9fecrrel6le3kd9bXVwY4Ez5qkrg8kkegxjoCak07TNXlUX0eoXH2uP7qXZMsbrgHqQMdfY108jYfbdhpJSMrbR/dH1qaa5LSILxfPl2kLbov3c+pqbO+hoqzUeVpfP+v+CZsVkJrf8A0kRzag5zI8THyoxnsePyqnJpHnSmG0b7QE5Z0GFB+ta8yoVC3cgj7Lawd6sQ6fdXmINjWNmOCq/fandJaslTm5e6v6/Q42TTCHdPL3up+YjnH4ikkgv4LWVIpPMRkZdrc4zx1r05LW1020VGEUduvQyMFzWDrupaB5QLOJXPyqyNsA/4EcZ/KoUud6ROpS9nrUlr2/rU4Hw3LHpdrPFfE27GTKmQYBGPWsjxtqi6pa2i6TdNFcWc/wBpEwLJsKg4Kkcg55BrqZbzSbm4e0ibfKoLPE+GAH1HHfvXO6po9rPJNBYQusrJhtpG1c/U9fbirrtNOb3Z1ZXBVaqpu3Kk29baertbWxzXhm5v18V6bq2s6nJcpGhIaeV5HVXRgBz7tXrzXUMtlJNE6unlsQynI6V5/pXh60ayeO8Mi7VVEmTqjKMHctZz3lxo1zPBbX6yREFWMZyrAjuPWtI06c7cjMJupCTjNbNr7jrvAQxZ3Up/vqPyB/xrlfhgPtPjDVbojP7tz/304rf8LXcNn4fuJWk2l3O0E8k7RjFYvwyWPSr7UBeTwJLKqKgEgOcEk9OnbrUYl/vJDoJ+zR6xgEYPQ9RXM+ILKysdLu2t7eO3ad0DtDGBvPP3sdOvXrXRLMGA5BHYisjXg0lpGg83bJcqpKYAPA4NeVmErUl6r/M1S0foXbC1itLRRFEibwGYgYLH1PqaiXRNNTU31JbOP7W/WTHf1A6A+/Wr6jCKPQYpwFddNWgkD3OC+K03l+FYYs8y3Sj8gTXReCYBB4Usl9ULfrXIfFuTMWj2v9+Z2x9No/rXoOgw+ToNjHjBEC5/EZq3uiJbonblqQjBpW++aj82NpWiDjeoBZc8gHpTQ0b6jPSpgMDmo0FOJxmoKHd6zdZTdpV0P+mZq+G4qpfr5lnOvrGw/SlJaMa3OX0zZLfCNwHR4iGUjg1Q1nRJLAtc24aS16sOrR/4j37VFo+oxRaqjSMwRUIJK+3Srl7ez6gjKszIjjKbDgY7fWuShBOnaR21nJVbx7GACCMg5FacChigdzu6DnH0rLkgkjY7FCyKMmIdGHqtMS43EMrkMD07g1tQqrDN8yumTVpvEJKLs0b7Q4cgSZ+o70iq6MQdy85rMiv5klDMd/rnvWnbX0M4IYhW4AVu9elSxNGs7RdmcNShXpK8ldE63L5+Zt3vUu5ZhkNtb6cVW8lipeLGD/CRTo2w3Ix/MVs01ucboQn71PR/h9xeS+ks1BldQc8Nnn/69RXj2etqElEbzL9wq+MflSbldCkihlbhg3Q1Bb6IIr1JY2zGMttPUemPWo9nG1zFtqTVTT8vkynHbSW1x5azGFdx+eOEqfwOfrU7zGZ1kJkuUGQvmSZB/D8K19kTgJINy9ueRV2ytLCzTPkGaQn5BjjNZt2epcYw5b8rv2ZzsOl3F9JvgCwlsIREmBxz1PTrXTwaNAzQRQ28dxcxxnzSzduwzWg9rkj7ZcJAGAbyoeM46+/5Via74pOhNa2OnWch+0hhu2EO2MD5R65PU1Dl0C0pu34f8D/M0HWV5St2PL2DaLa2bLH6mo4bSLThNOIobF7lsyFMtK/oM9vwrJs/FNwbX7PHpE0EYbM0scyyygdyRx/Oty2nivYmbTMXK8eZcv1jPoQeQfUVLsw5Z090/wCv68hgWRY2ZM2kH8Tty7+9Vpr+3tVjWFTEsrbPOK5Z/UgfzNTTJClyUlaS9uFPyxr0H9MVh+Jo7u2ns9SuiiwhHiMacmIHBBPtxgntTJpxUpWf9f5G9HIHPkWBGBzJO/U/n1qr9vt45msrSeKOX/lpPO2CT7A8muOgg1HxHqb2Wnq0VlEcT3Y4HTkbu3866mFbbRoFstJVYwB+9ugPnlbv83XFLm1sjq+q+Z0EaWGjWonvbiKMkbmmnYAufoefyrNn8VyS/PZW0Ii7OTvz+uBU0/hu0nsVmmvUkRj+8eTDKR6D3rAuvD+hwFm0+do3BypijKN+Y/8A1UqdpO8lcivBU4qMJqI26nuL2QyzyM59xgD6VTubeO5tZIJN22RdrFcA4rL1DUtS0oreTCaeFv3ao5VAvbLhc5PcGr4bUbqKOW1i05I3GQ5laQH8sV1qpC1rHnfVK1+dST87mZD4WsY7qN1V3hVCnkSEso9wf6dKuy6fNbyGSzMCBwFaNwcHGcEEdPTFWFs9UIYTapDGp6CKBBj88mle0nUgRalK74wN8KEZ9egNS4U56WZvCtiMM+Z1Iu6s09U1e9mvVJ+qQ2zt3s4iud7MxZ228MT7duMVFdaXY3+fPtULf3lGDV5VkCKsmC2OSowD+FLt3Dg5FaxowSSjoctTMcROpKVV3bd30/K1vTZbHG694P1O7j2aVeIsIGDAQVP5iudsPh5rU0E0m4Wl3C+EjkOBIMdVYV6pg5z6fmKTeTxjPv0IrCdCR3Uswi4pLfzPLo9e8VeEpli1GGby+3mDhvo3Q10reKptY0iHKCFHmEpYdQOmP5mul1Kzk1TS5bQXGwP1G0MSPTB/pXIy+GruO2isGdR5pMfnKp2pnuR1rzsVRTsmtmddWrOdNOOl9+9j0m0vILlA0MquuP4TVrIxmvEJ9H8XeEH82ISTWyc+ZCS6Y+nVa29F+KX3YtThx/tittUdPKnsSfEdxceMtCtTyETeR9W/+xr0a81W00aziW4LbtgwqDJ9K8rv7+HxB8S7Ce3JeBYkCkjr1z/6FXfeJ9JkvYxcxHIVNsi79pAByGHuOaW8vkTKy3Keoa5ezxMIDFag+pLSY+g6Gucu0aKUMrSNJKozvfLsPamRm402WR7mL7Zbtk+Yo+cemR3FTRrB5cd7JIm1vmQRL1HvihTUti4SjJXiezr0prMKgaX1NRGYUzMsmUAVWml3I47EEVBPdxxLl5FUVj3OuRruCIzEdM8A0MdjjXkaK4R1OCh3D061txOl3Ebm2UkjmaAdQf7y/wCHf61zt1IS27oSW/nRaXstpOssTYYH8686E+Rnq1Ic6XodG8SXMSkN15SRazJ7QvLtdfLuMfeA4ceta0JTUYWurEATdZrbONx9R6H9D39aRVjvE2tn5TjJ+VkI7HuDXWmmvI5LOL7MwuUbbIpVv0P0p+Mcir8tsxIilUEMcB8cN7j0P/16qSwPbDLfNHn747H0Pp9ehrirUHH3oHZSrqXuy3LNvfyRoqNyoPUda14Zo7lcHJPGCO1YCrkZH41q6Bai71q2t2GVdiCAcdjXRhsynFqFXVfiY4jAQmnKGjL8lu6HJ5X1FPS5ZFVAcqOxrc1DQbqxYzwB502gsu3lcfzFZQt4pWJU7WJ6ds17NOcKq5qbPImmvcqomiaO4ySBlcbj3H+NWBEkUh8uUlD0JXg/hWbJBJCwzyufvCrkUobah6kcnsabics6bjZptxX3o1be4MQeRBE8pAUFzkqe2D/SmXNhYTRxSXZlvrhs/uwPunvgdhVWSP8AdgLk7TlgRyP/AK1TW108TLhjkdx1H+NYuGgubnl7idu/+aGWmiW2igXrokTtlCqKpdlJzhsYBH4VeEVzfRFQv2CxQEnZ8rNx3Hp71PAlot1Jc3BaeZOV2crx2x2q0mn3GrkT33yW/wDBAp/Vj3rN2Wv9fIH7R6bp/wBav9EZtuUlBs9Hi2Kf9ZcMucf7ueprTstDt4j5sxaSXvJI2Sf8K17e0jgjCKoTA42jg1z/AItubiNIoI3KxSAliP4iOxrNTdSXJE1dNUYe0nrboY2uyncLXRfIjhQkuhXCSOSDu4645+uaxXhhgLAaYl87ffnu5AXJ9kI2qPQCq2qahPplrG0ESSTTSiGMMCRk8kn8BWp9qgWPdPOsAUZYyDKj8etdKo017phGvi5x9pBJoox2yxZkiiMQbnZnOPyOKsRlgfkbn0PSqb6r9onZNMspLtFODNu8uPOOxbk/lU0cl58xksxEOwjk8z/CuiMoLRM4qmGxE25uLFvrOG/sp7SVChlQrx/PFZvhZCmltYyE+fayNE6n65B+hFakcod8hgJFwdrKQR6cGoLm3El/9st5o475RhgvOQeQGX09KVSPNqty8JWdFuFRaMlmTBwRgj261jeI5LmHRJTaK+9mCM69VTkk+3QD8ak1nXWtJzY2Ef2u9bouMrET6j19vzoudB1K70tl1HVZnMgUiBFVVyCCR6eoz0zilUqq3LHcvC4RpqtU0S7mJpeoagmmRWemWIkRM/vp2x8x5OB6Zq+jeIesgsDjttbn8c1vGyS0toIra4shKVUJay3GJW45527c57ZrR0vUdJltTZajpNzBcIS4kCAiTHbeD+ma541JpWVz06lLDv35panKNqN/Bg3VgGT+9bSbiP8AgJ6/nVi11Ozu1YxTICgJZXO0p65B6V0zXGjRRzKmmyv5vG55BlR7dcVzuoaVpl7IS1sADwpJBYfjiuiM6vVHm1aeCesZW9NSQSRm3+0GVDABu80MNuPXNVLHXbTUbr7NCszqRxMY/lP4/wCNZmo+HJ5NOZYZ2kMJ3RwyOxUqB0HYH88+1b2jT2Z0a2mtYvLDKAVGMKeh/rWc3JtK1jooRoxpyk58yK11NeaUfOt5fNgzhom52f8A1q5zXLfRtRdLuXTIopwdzsvG8+4HB/GuziCtLJGwGPLOM+vWuH1yymt7ouvMEn3W9P8AZrKUUtTspylfkkQ6BdQ3nii0gjUAo4bCjoAM/wBK9L1VyNLlHPzLj8zXknh60uNL1+S/WRR1K8eueK7ufX2vrI25ixLkHI6HFYXSu5F1erijKt2v7m5uxBAlxFbuFZA2H5H8PY/SqsEMMt3/AKOHjukPzow2t9WQ/wA62PCADWd9PuyZLpvyAArn/F8rS+IkWGQrImyNHQ4IJ9D+NZeyi4rl0OZLkiprc9JuNZhiLKp3n/Z6fnWdNq9xIMRgJ79TWci+tPIz9fWtbHaSM7SkmRix9TUbpuWnBux6/SpBzQM527tXDv3GSQapDKkhuorpZ4PMyAD17Vk3NmBk5AI9Oa5ZUFq0dkMQ1ZS2IrO8ms51mhfaw/X2Ndbbyw6xA13bgLfxY8yInAkX0P8AQ9q4kcHng1as7uexuFmgco69D/Q+1c8ZuDOqVNVEdaFS6iKzB0JOCCMMjD+RqII0ExjcZdsgEj5ZB6H3qe2uI9YT7TaALeoo8+2JwJQPQ+vofwNWIlguY+VLRNx8w5UjqD3BBrqjJNXWxxyi07Mw59OdGMlpGxUD5os5K/7vqPb8vSmWV2Y5ori3lw6nKshxyK2/KmtpFBDEZ2xy+voG/wA81S1HRd5lu7UpDdEjfbk/LN7+ze49Oa562HUvejubUsQ4+7PVHpGgaxDrNooaUCZOXizyMfzrO1W2tr/XgtuyR4ADOgwCw6kjua85tbhhMyhpIriE/MjfK6f4j3rorDXzCY47iFWVeBIv3l9/etsLi4U3yyXK/wABf2fGbvzXRvazp11pimZgskBGEdPw6/rWSAr7SgwzDIXsRn+ddB9sfUooVR1kiCkbweAAf5/4Vc1jwsgjFzpmAyJ88WeG9SPQ16yrxhCKqvfqeXWw06U3yo5iOVkyDzg4weMVei2MySAZJPQcMPw71SeVHXEoKkEgnHK0qy7FQswK8YYGtpQ0OZxjJ3Xuy/rc01idTvjkIz/EP61q2d81qm5nAAI4I4P+FZUVxlgSw543dvxq4yrJEVYMr5zgYINYThzb7GMZfV7xtaXTXRnQQ6hBcAbWCN/dbofoa5fxLdG6v/s68LBwCe5PWokn8iQhd+CcYbv+FWZLe1vVBRvLmPBDD+tZ06Uac+bcrESq1aPK1yv8Gcfq1m9xao8W1ZbaUTqWOF4yGBPbgn8qz7Cxn8QS/b7pWSwRswxY++P7xrrrmxeAssi5UjGccEVlxW0ttaG2LC5sYFUWuntIY1Y9zK4G5uScDpWtWLb5o63M8FiFSTpVdLGhpsely3C2s19DboVwgDKMn0rbj0fS9MDHUblJHI+WMZ6euBz/AErgY7qKS+Ww1TwzplqZuIpYbZdrH0zz1+tbAQoihAFVRtVQMYA7fSpp0ZT3djXFZgqWkFfz6E+oW+lzQNCPOlQjDLKgw3v147VzEmlXEGoSvp05iiuEKtO53SQ4HAU8E5IA6/hTPEviBtLaO3tYw95IA+XGVjX6dycVsWFzHeQxySDyJZFBMTMCVP0rb2dNvlvqcksTi1BVWtH5HO6TI3ha6kF7ZJLHMcG/TLbR/tA9Pr/OuwSS3vIPOhmDbujA7lb8arXFq4GGT5TxnGQfasVtGNvcCXTbhrJs5ZFG6Jvqvb8KHRcdYChjadZcmIXzNme3SbaHQNsYMN4yAR0NV3ljW5W2eZfPdd6xk8kDuKgj1a7g+TUNPlZR/wAtrYeYp98feH5VWv5bf7baa1bSeYlu3kzjBBRHONxB5GDR7SyulqT9UTmo814vZrozQMbDgHn0pnkk8niqes65eRai2n6XZR3c6KGldwSFzzgYI7etN03W11ESwTRfZtQg/wBbAehHque38q0hXjJ2MsRl9SknLdFw5V8dvasrw8UGnXcY2uqXThWU5B+bPH51a1u7bTtNnnABcLhB/tHgD86zvDNtJZ6Tdwy8st0Vz9ACf1qKrvOMTTCK1Cc31sjXjjLXj4OeM/Tjmq1xbJd2Rjk6MOvoe1aFoVW0vpnB3BcRn3PB/Q/yqrcYjDxg42uVzWaV1qewpJ1Gl0RxsUTRTyI4wynBq7buqNJIwyEQntVjUYQLgyjq68/WqcXyWlzI4wACP0/+vXJUXK2rXCtK9O/c5mLV7m1t9tvK0TMxLMpwTk1VhlaSQmVid3Qk5Oa1p9ImSRZBb+ap5GOQRz379KqQxJ9tDkgKCflI71nGSktDLWWh6MoH4U8DbyetRo6OoZWBHYg5zUqN6ZqjtBk6HtTlXsDSYPJGCadgj6daQxkmSDzx6Diq0kO4ZC/WrZGT7Ypdqtx3pFGDc2e7lRyKpoDkqQQwrppbf0XFZtzZ72DIPm7cdawrUuZXW50UK3I7S2KdvcS2k6TQyGORDlWHb/61dhZXv9qBrm3QLegA3FqDgTAfxp/tfz6Hsa451IbBGCDyKlgmkgmSSN2R0OVdTyprjhUcGd06aqI7qORLq3++XhJwQ3BUg9COxFVp7U237xMvASPnY/Mh9fUj+VO028i1w8OlrqoHJA+S4A9R3/mO3pVuOR0laKSMxzpy8TckD1U919x+OK7IyTV4nBOLi7S3M27srfVViZjsuE4jugMcelY0qzWEwt75Qj9EkX7j/T0+ldNJYuWMltyGOWhJ4PqR6H9KQLBdQNBdRieE/K8TjlD7/wCfpUVaMKqKpVpUndbGXp+o3WnTCS3lKMDnHY/hXTaZ4gmdXQyMUc5kQnnryRXJ3Oj3emoZrTfeWA/gHMsQ/wDZh+v1pbScOglgkyD0ZTXJTrVMK+WavE9KLp1/eW56TJp+n67KUiJicRcOo5z7jvXNazpV5pMkAnj/AHJJAkXlW46e3ToagsNXZXQO7RuowJF4/Ou+aV9R0ryLuKOQ5KsB/EMcH2617eExF9YSvHt2PGzHDxj75x9tA4t0lQFkx93v+FW4ZmUBV+Zc/dPamPb3GkuTgy2oONwPK89x2q5JHHOytE2HK549PevQceb3onmN3Tp1FdDxFFcIcoSQOT3Wo5okhH/LQoOAwUHH68VGBJFIA2VbqrDv/n0q1DOysBIeT/EB+hrO2vZnPUouMdPeh26orrfRghJy7IeNxUZH61Hd6Yjq7W7B1BwcdvqO1XriwinUlVEbY6j7p/D/AAqtJHJZyLJ5gRuoIOcilGLT7GdaVKpBKKcvzRisksb7GXB96XB24ZOcYreLW16NrFEl9uAf8KoXFpNAxUqSD1BFbRqJuz0Zw1cHOK5o6r8fuPK/GEf2fxG0wlDM8aMAOqYGAP0z+NXdL8NW8kST6juklk+faWPH19TXT3ekC61FLxktIyqBZZbiEy7VU5G1F+8xzjnsBTWtIrwTTaNrCXskagtDNb+V35HByvHqO1ckk1N3R7uFrQlQTT2Wo2LwtJa2Y1Cya6s4d3MsUh2t9VOcj8Kz7vU7zTpg9/GtzanrPbx7XT3ZehHuK73S/FK3uhfZNY0yWKRSYZApXDAYwwx/T0pl7oek3mnPLpckrzphjC55K9+MU4yqR1aJn9VrvkbTf4nN2rw3cCz2syTRN0ZeRU0lqbmzntWlIS4jMTAnjB7/AJ/yrIjtl0bWYJIPlhvGMcqD7u7GVbHrwRWvf+b/AGfc+UuZTC+xR3OK64tTi2zw6+Hnh66invsYnheHbp9xcklpJ5mw57qvyj+VZ3iW2Nnd22twLh4SBMAPvoeDXW6NostpHp+lTfI21FYgg/e5J/U03xFoEselSJPvWKVGDtjlBzj6nAzXnppWPqZWcWpbHFrdv4g1KGJBus7dzPM3rg/Iv1xg/jW4tqbRJFPWWV5yP985H6Yqtodv9k0mW1CnzYpzG7f38ABfwxitOUfZwXch2XAAPIPHArog9OeW55FSDdRUaatFWZBMRGrR46MoP16moJAGZ1PO5geaVm3srbh+8YuV9P8AJNRu371T/tCtXb3UjbCxkvaSlu2Zt7HvfAGBz1rHvY5BZS2yHIcj5s8Y9613kaVndsKoPArPuW3gjGF9K4cR8bR1RipQSZRhuZrNQLaQAD/lm4yp9/8AOKrm3/tC5cyFYZWbdhmwCSecH+lWGg9P1qBlKgrgMMdCKwcE/h0YSpxkRafqs9k4MbZTujciut03Vbe/UBTsl7of6etefo1WYpnRwVYqwOQRWrNz0wDgGnrzjd0zXLaZ4jZcRXfK9PMHUfWurtws8QkRw0ZGQ2eKhqwxrLtPApgB3ED1qdwCNgYsMden5VGqAKFX7oGBzUFEiqGX1/GoposA7fyFTpwMVIFBOTQMwLqz3HcvDD9apbcHBrp5YlOdvSs26sy+XH3vT1rmr0eZc0dzpoV3B8stjOikaKRXVirKcqynBBruNL1S216KO01BvKvU5hnTgk+qnsfUdDXFFKVGKHvXFCpKD0O+dONSNmd7Is9jMIboBWJxHKowkv8A8S3t+XpRLbx3LbgTFOBgOvX6Edx7VX0PxDDfQf2bqwSQONqySAbX9mz3rSuNFntf3liWmiH/ACwkbLD/AHGP8j+YruhUUldHnTg4O0iihlgmCSnynb7rg5R//r+3WorzTLe9bzLbba3p6kD5Jf8AeHf69RVyKaG6jaOVdy52sjjBU+hB6GmSwS2yny901v1x1dP/AIofr9aqUYzVpEpuLvEwSkkU5t7iMxTjnaTkEeqnuP8AJrW0/XLqxKIzGSJeApPIHsf6VaZbe+tlS5xPD1SVT8yH1BHP41lXdlNp43yN59r2uFH3f98Dp9Rx9K4JUquHlz0Wd9OvCsuSqjtYtUt72JZIiGduGBH8xUNxpEsTfaNNOCF+eFjwfp6fSuStpZLeQSwuA2PwNdZo2vQT4iuGWFxjBZuGPt+lepg8xVR2lozkx2BgqLlTWq+fy9At5Vuw8VxG0boMspHIpWt5IzkDK9h3FbV3b2WrSeQjvFcJ8u9RgnHb39ay55ZdOl+z36gZ4SUfdf8AwPtXqQqxqPlas/62PEtKHvRd0QwzlRtUjHTaemasrLDKBEwXJ6o3r7VWmt2a7JjZFG3I+vvVZnZXZJkwQM//AF6vlsRUpQre8tJdyW60ltxe2JJ6+WTz+HrTnE6Oy4LK3zbCOmefwqxa3qldsx+jnv8AWrsyefCFaRhx8rg9P8RU2S8zkrTq3UKr5WtmYz2yTeiueg9axLjSoYdTivjDi4iP3kJUsOmG9R9a35FuLZjFIx9eefyqzH5dzCrSoDLyCf7wGP1pcyXS6NZ4SVubmSl3Wl/U56OHzDnpn1qysj20iyISrryMVLdIIJWRfXg+1Z63puJruFtgeBwo29SrICCfx3flXTdNep4nJJN90YviiaOBrecfLFHdxszDnapPP86ratrztb6X/ZkZkur3BihdQSVyeo6Yz+ma0fENkZtInDOqOIt6lmwARyDntXM6DatfeJbu+vXbfZnyxGex5HGOABz+dcc3KLcY9T6Cn7PEQjXqbx3/AK/E6qzMmieJdOuLnVf7VW7VjczowZVuUBOFI7Y4H+7V3X9Wk1S4VXQCMAARjkH61g+H4GttJtLZQWLFnAx6k4/Q1sm3eK7Jm+TA5JwcDHNEKUYLmlqzCtXqYir7OGkerKdtGLbzmk24eQSFehzjGBVS9ka6hhVmRNhJwTgKDzk1duCLmWQoQiRn+JgOPX65/nWDfq166xpMjWW4lgBgsw9/SiK7nUnfRarSy7+bG2sqTM8kT+ZGuE3AcZPOBT3dRMu77uST+VMttkUZRBgcgAetMnOwGTafuH/CtVZyNlFxg77sgWEzx+av3CTt+lVJrclioXmtmzTbbKrgA4yR9ajmgBPHXtXBUd5tmsVaKMN7c4yKqtAwzkdfSteSMhucg0zA6EfWpKOCUnHsKmjbk5PtVZScEZ6U9Cd1WMvIx7VpaXq8+nyAoxaIn5oyeDWSjA+uBTwSOefekM7ufxPYRW8DqXkeQ42KOV+tbcYDKHXowBz9a8ryTXpGgXq3WlwEDO1AjgnrgYqJLsVHUvj5QQOacoOMn8qcI8YPY9DSnqPSoKF2DHPSopIfl3EcVYVcjr+FTBAV4HHc55pXHYwrmy3ZdRhv51nMh/EV07wYJAGQfes+5s9/zKMPj865K9Dm96O500MRye7LYxgSvuD1FdRoHiaaxZILgma2JwNx5T8a5x4s54P0pEyjdOtcMKjg7o9CUI1I2Z6jc6fa6tGLm3kEdwBgSqOf91x3H+RWdG8tvMba5Ty5gM7c5DD1U9x+o71haHrj2UiJJIRGOA552j0Yd1/Udq7pltNatBFIvzDDja3zIezKw/mP/rV6EKkZxutvxR51SlKm7Mw5bPczT2rKjtyyH7r/AF9D7j8c022n2swVCrqcSQv/AJ/XoankiuNLnEV1ho3OIrgDCv6Bv7rfoe3pUk1tHdgNkxzp9yReq/4j2rW/cysZVxowYNcaWAMcvaMcDP8As/3T7dD7day4ZI7gMFyGQ7XRxhkPoR2NdCkksc6RzDypzwjr92T6f/Enn+dMvdLt9WZXLm01JBhLhB94ehH8S+x5Hb1rkr4SMvejudNHFSp+7LVFnQdeNmHhuG5b7jt0GBjB/TmupjuoryKSC98qSN2wq/gDjPf615q32izn+zanD5MpOElTmKX/AHW7H/ZPP1q/b3lzaIY0kJhbrG3K1VHH8n7rEL5kV8Cqn7yg7eXQ373TzYXsV3bSPLalirbjny26YPt9aazwagHU/fGRnoVq5ol5bmzaSSQuXU+bFtzuI68ep/pVHV9HmsJDeadG3lEbmibOVHt/hX0FGrFqzd10Z40qM7uys1uiuYZYNqS4OB8rdj6VLaXzQsiS5Ebev8JqRdStZT5BGSCMhh7VRkhMUm3fuUnjPatnFrYj3aseSojflhE8PlkAsOUb/PY1QVjHArD7yyH+QqXTpS8ZgP8AAMp9PSm3wH2fzF6MzZx2bArNL3kcFWU6VKVGXSzXpcoaiQZVYdMf5/nXmniK81FPGUllpMpSe7jijkaPlo+c/gcevY16JqX2mewY2nlCcKRH5pwgPqf8K8rsZ9R03xDNB9jFzqKXSTTzxgyFlKkMpPYESfgQKmpLlgommHp89WVXTVbfd+p39zapdWD2ckjbGhEZfqSMAZrB0hAura2R903AXH/ARXSurJPKjKQUG3aRjmuf8P25e51SdshXvWHPfGB/jV1LJJmOCUpucPJ/ezcsY0Fz5pwsa8cDoPSp7yeOWVo0G2NyRvbqcdPoM1AswLhVOIzlsj+I0yWJ5NrN8qg5J7AVEtVzdTsw8Pip7QW/mzMuEVsJKDjOSvTP1qhcOEGFAwM4AFW7qZjMZGJOW3c9TWXLuZlHAbPGfWkm3q9kdVKMYJOK1ZJbs6oJCu6P/Y5xSzsjRyHOeAAvc0scd2ICsIQxoSvJwX96Y5keVQYmV24Y7cjBNXTqUpLmixVFUj7skWlT92ozyAOKR1/DFTBflqI8HBrzm9ToIXAbqMn3qvJApPy9asSbhmoeSfemM8uVtq59qevEYOe9V93TFSbs9BzVgW4nwR/KrIORntVFG5/CrkLEp0pAOBGfaus8GXwWaWyf+Ib0+vcVycnH0xUmn3jWd5FOpwY2B+o70nqiketggNtOcd8dqfsA59Kht2WWJGQ5RwGBHvUwADexrJlDlOecCplICnrUYwAAOeacCM8DrSKuSbcioTEcEgYFTxgjvwamZQy8mkBh3VluO5AN386zniwcEYI4I9K6Z4sDtmqlxZCZcpxKP1rlxFDn96O51Yeu4e7LYwkBVuOtbOkavJZOqEsYgcgA/NGfVf6joazniwxBGGHUGmLlSDXnKcoSutGek1GpGz1R6jaXttqlt5M4jkWVSMEZSUd8Z7+o6isy6sZ9Iy6F5rAfxHl4P97+8vv1Hf1rltO1GS1fgb42OXjJxu9wezehrvNK1mG6jXdLuBO0SHg5/ut6H36GvQo1lUWm/b/I82vQlSd+hQ/c3cPlyqrxuM8ng+hH+NVZIZbUHzQ01sOfMxl0/wB71HuOfX1rUvdHe1ZrjTkBTO6S1HAPqU9D7dD7Gora8jmUmM5VWKkHhkI7EHkGt0+xja5DuhntDDcot3Zyrzkbsj+o9+tZM+kT2MfnWTve2X/PMndLGPY/xj2PzfWtmXT9paaydY3J3Mjf6tz7jsfcfrUUNxtuGXJt7nGWifkMB3HZh7jn6VFSlCqrMunOVN3iZFheGGaO7s5BuXOD19iCP6V0llra3F0ol8xmdj+5ONpJ6AH+hrMvdOgvpTNCy2d+3VsZjmPo3v78H61mB5Irj7LdxmC5AyFJyGHqp7j/ACcVzU6lbBvTWJ0SjSxWr0kjo9S0u2eeC+SNobgnfLAj5AQnuO3UdKbdWgdN4RvNHXGTx9KbYX4nYw3jEiRBEXXgsvox/rWubeSBFjlHzhcr3yPT8K+hwuLhVjeLPBxOHnRl7yOdiuGjcSLkMpyMir08vyHYf3bkMB6giq2rCOHa6kAvkY96iil8ywhb+6xTH0//AFitpqxlNKThN9Hb79Bt2nlW0fzfK+WHr1xiuc0jTxZte3YG2a6upGL99oIAH6Gt67b70bHIjwp/CqUrEQIAoyM4A9ev9aqEbrU8nETSk401o9PxBQ0zPIz5HPU5J7U2722URjVFjlYksirjaD3PuafBcmzUMkcZbP32XPTt6VUuEZzNcrtWMgdecew96zk+Z6nbSpulBci3dm/8h2nymJgu8IzEE57Cp76QyY86ZpFxwuTjNZcZLZYtyTwc1buHZ7YNx05qeblWh2/VI1Hz1N+3Qxr07ZFbBbjgCobaFjI0s4XrwB6VM4WWbcOSvGakVeecYrnqVJW5Oh0qMb8w7rgIvTp7U9AXzkfiKdtUrkDHtTxj05rGxRGY+OKryDIHQVYckemagYk/eH4igRXK46jIqM8sOelWnGOc8darMdxzjFIZ/9k=", "path": "images/5pts_ADE_train_00000290.jpg" }
depth_point_8
images/5pts_ADE_train_00009582.jpg
ADE_train_00009582.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 297 y = 186),Point B is located at (x = 304 y = 211),Point C is located at (x = 130 y = 168),Point D is located at (x = 265 y = 216),Point E is located at (x = 260 y = 149).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_70><DEPTH_3><DEPTH_59><DEPTH_5><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_70><DEPTH_70><DEPTH_3><DEPTH_59><DEPTH_67><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_3><DEPTH_3><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_67><DEPTH_70><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_3><DEPTH_70><DEPTH_70><DEPTH_3><DEPTH_67><DEPTH_5><DEPTH_59><DEPTH_70><DEPTH_59><DEPTH_70><DEPTH_70><DEPTH_59><DEPTH_31><DEPTH_59><DEPTH_3><DEPTH_36><DEPTH_38><DEPTH_38><DEPTH_49><DEPTH_60><DEPTH_67><DEPTH_5><DEPTH_74><DEPTH_60><DEPTH_22><DEPTH_40><DEPTH_49><DEPTH_31><DEPTH_76><DEPTH_35><DEPTH_80><DEPTH_75><DEPTH_67><DEPTH_38><DEPTH_29><DEPTH_83><DEPTH_67><DEPTH_49><DEPTH_81><DEPTH_58><DEPTH_41><DEPTH_56><DEPTH_15><DEPTH_78><DEPTH_19><DEPTH_66><DEPTH_11><DEPTH_24><DEPTH_64><DEPTH_69><DEPTH_15><DEPTH_81><DEPTH_25><DEPTH_63><DEPTH_2><DEPTH_5><DEPTH_9><DEPTH_1><DEPTH_39><DEPTH_58><DEPTH_23><DEPTH_8><DEPTH_44><DEPTH_78><DEPTH_5><DEPTH_67><DEPTH_80><DEPTH_36><DEPTH_72><DEPTH_72><DEPTH_42><DEPTH_16><DEPTH_END><DEPTH_END>. Since point B has a higher pixel value on the depth map, the answer is that point B is closer to the camera.
B
long
5
[ "E", "C", "A", "D", "B" ]
<DEPTH_START><DEPTH_70><DEPTH_3><DEPTH_59><DEPTH_5><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_70><DEPTH_70><DEPTH_3><DEPTH_59><DEPTH_67><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_3><DEPTH_3><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_67><DEPTH_70><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_3><DEPTH_70><DEPTH_70><DEPTH_3><DEPTH_67><DEPTH_5><DEPTH_59><DEPTH_70><DEPTH_59><DEPTH_70><DEPTH_70><DEPTH_59><DEPTH_31><DEPTH_59><DEPTH_3><DEPTH_36><DEPTH_38><DEPTH_38><DEPTH_49><DEPTH_60><DEPTH_67><DEPTH_5><DEPTH_74><DEPTH_60><DEPTH_22><DEPTH_40><DEPTH_49><DEPTH_31><DEPTH_76><DEPTH_35><DEPTH_80><DEPTH_75><DEPTH_67><DEPTH_38><DEPTH_29><DEPTH_83><DEPTH_67><DEPTH_49><DEPTH_81><DEPTH_58><DEPTH_41><DEPTH_56><DEPTH_15><DEPTH_78><DEPTH_19><DEPTH_66><DEPTH_11><DEPTH_24><DEPTH_64><DEPTH_69><DEPTH_15><DEPTH_81><DEPTH_25><DEPTH_63><DEPTH_2><DEPTH_5><DEPTH_9><DEPTH_1><DEPTH_39><DEPTH_58><DEPTH_23><DEPTH_8><DEPTH_44><DEPTH_78><DEPTH_5><DEPTH_67><DEPTH_80><DEPTH_36><DEPTH_72><DEPTH_72><DEPTH_42><DEPTH_16><DEPTH_END>
297
186
304
211
130
168
265
216
260
149
52
95
28
73
8
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDxI8Z+tIcA5pW7/hSHqfwpFCqMkj3pP+WRpyffP0pAAYXpDHdTGfXinEAPIv8As0h4WL609xm7kH+z/SkUho4tJPY0qnD259gKRf8Aj0m+opc8231/rQBLBj7ZID0qxoB26/EPXI/Sq8A/09/ripdHO3xDB/v0hy2+Z6AwqIip2FRsK4W9TZPQiLEjBwR71FsAqbFJipcmWkrBGvFWkXpUMYq1GvFK4xyrUqrQqVKFpANC0u2pAtLtoFci20bam20hWgCErTStTFaQrTC5AVpCtTFaaVp3Ai203bU22mkUBch20m0VKRTSKYEW2kK1KRTSKAIitNK1LimkUgIivtTCKmIphFO4yEimFamIphFFwISKYVqZhTCKdxEJWmkVMRimEU7gcK4+99Ka3c+wNOfo30pGHBP+yK9A4hV+/wDgKUD9y/rQv3x9KUD5JRSKQMP3cR96mIH20+6/0qI8wxHvuqYj/Thn+7/SkUv8iFObOb6j+dBHy2/1P86E/wCPWcD1H86Ug7Lf0yf50C/r8SaLi/f/AHqdp3y+IID284fzpqcai/s9La/Lr0P/AF2H86RUtvmejtjODTGwRVHVmdLiEqxU7T0PvVZNQmUgNhwfwNcTg3qi1JLQ1MU3FPHSkrJ7my2HRircS1XjFW4hQBMq1KFpFFSqtAhoWnbakC0u2gRFtpCtTbaQrQMgK00rU5WmFaAIStNIqUikxTAhIppFTEU0rQIhIppFTYppFAEJFNIqUikK0DISKaRUpFMIoCxGRTStSEU0igZERTCKmIqMii4ERFMIqYimEUwISKaR7VKRTSKLgcA/U/SkPT/gFK/3j9DTRnj3UivTOEUH5kPtTgeZaYDhYzTx9+T6UhoUH/R0P+3U7f8AH/H6Faqj/j3XHZ6tSDF9AfUCky1/kQp/x73I+n86Vv8AUQf7xoXiK6H+etDf8ekB77j/AEoDp/XclJ26gx/2qEONaQ+ko/nRLxqDH3FI/wAurD/fH86SHLb5ncaz/rYP901m4+YfWugu7NbsISxUqOMVmy6XKpyjqwB78VyqSWjHyt6mkB8tNp4Hy0mK53udC2JIquxCqkQ5q9CKAZOi1Mq0iDip1FMQ3bS7al20baQEW2kK1NimMRQBCVphFSsRTGZfUUAREU3FPLp6j86YZEH8Y/OnYBpFNIpTPF/z0X86ja4h/wCeqf8AfQosGgpFMIpDdQf89o/++hTPtVvnHnR/99CizFccRTSKk4IyDmkIoGREUwipSKaRQMiIppFSEU0igCIimEVMRTCKQERFMIqUimEUxkRWmkVKRTdtAHnTff8AwNNX+D6Glc5cU1f+Wf416hwCD/Vp9amXiY+6/wBKhH+qHs1TL/rhnutJjQ0Z+zH/AH6szf8AH1bHPpVdRm2f/fFWbgYmtT9KT3NFsR4GLwd//r0xv+PKP2c/yFSlcS3oHYH+dRkf8S9faT+lCBr+vmSznF/n6GkueNTJPqDT7oYvFJ9F/lTb3jUTj2pLoOWz9T09eUU+wprCnxj9zGfVB/KgiuCW7NI7EDcUzFSlaTbWbNVsOhHNX4RzVSFea0IFoEyyi1Oi8U1F4qwi1RI0LS7al20uykBUuQRazEcEIxGPpXksz6gIYpfttw3mdAHbk/nXr92v+hT/APXNv5V5JIwWOBHk+5GGBYY5Oc/0rqwyvcxqlS9knjVJYbydo2Ubg0h+U1FYPPe3aQGaUhj94OaqSLI8jnnDc4B4IrR0O0uXlNwkIMUY3gE7R9c11KJi5JvQ177TIoJlSLzH+UAhn6H61XnsIhsKISFBB+Y81rtHe6jJFAE8zy/mPlrx+eOa3LHwlftCrCxnYnqAh4/SqUGxOSOCFsv2dk2qWJ+9zkYqvDaSPOVC7gMk5PavTx4Iv5SpOlXjeo8s5P44rNHg/URqklmljcmb7xi2HIHvV8jM3JHKW+mCSPfJEo5GOtVryx8pOIgAD97v1r1W1+HeuPt3WDj/AHiAP50zxL8PtQ07wze386QosIDEB8n7wH9aXIPnTMewX/RlqyVpLJMWy1OVrynuegtisVphWrJWmlKQysVppSrJSmFKTArlKaUqyVphSkMrMtMK1aKUwpQMrFaQLkipytCp84+tMDytj8601OfL+tOJ5XPrTU4VD/tV6h54Y/cv7NUy/wCtj/3ajH+rkB9akTh4j7Ui0Kg/0eX/AHhVi5x/orfSoF5gmHuKsXQxBbHHpUvctfC/66iOMXF77p/UVDz/AGfnt5n9KszLi8vMf888/wAqgUZ0skdpB/KhFNav5kl3/wAfUf8Aur/IUX4/4mB7ZA/lTrwYngOeqL/Ki/H+nD/dH8qS6DktH6nptuM2kB9YlP6U4im2jAaZaOehhX+VPLqa45/Exx2ItuTRtqRMMxx6U7bWT3NVsLCvNaEC81UhXmtGBeaQMsIvAqwi01F4qwi0yRuzNKEqYLS7fakBRvV/0G4/65N/I14rdhJWRGLIDGAACTuwO9e4X640+5/65P8AyNeN3ulXttpyajKiJDKmIwpywHqR712YXZmFbdFOztVfGwbwGxxzXTW0xt9P+xxlQ4OyQKeSp5AOenesqK7tPsMD2tmonhjCfKx3SHHU+1WdFidpmlvNqtIRIityWJyBiuyxjoejeC7dnlkeKMqmVjCnknnrXuNeL+CpVjlge4KjEyh9pyAQRmvTpPEMAZhGhcDoScZq1BySsYyqRjJ8zNquetIlPjK8mA58nB/8dqvd6rNMc+YY0PRVOK5Cz1m5fXroJK2EBC84yCf16VapNbvcyddS1S2PVq5X4kHHw/1X3VB/4+tUl129jB23BYD3z/OsPxx4inufCN1auobzXiGfT51NT7NrUpVlLSxylon+jrUxSltU/wBHWpWWvIe56qKpSmlKslPamlaRRVK00rVkpTClICuVppSpytIVpDKxSmlasFaaVoArFaVE/eL9alK06NP3i0A2eOMDkD3p0MEkigIjOQ/QDNLJ988D71e5/A7w4qaXea1cRAmZvKi3DPyjqfz/AJV6iVzgbseHPbyoZd0bD6imxn/V+xr6f8U6ZaSxMTawk+vlivnXxTp/9ma46ou2KQ70AHA9RQwjK+pnxj91P7EVLd/8esJqBCcS1Pc82UWexqOpuvhZJKCbucZ5MOf5VFGP+JXJ7OKnkwLt/eD+lRwgHTJ89mHFLoW1q/mOvBmS3P8A0zX+VLqPN3H7oP5U67BUWvvGtGo8zwH1QUl0HJaP5Hdygv4c05ufuJ0/3aqSqVgg5PQ9/ernXwnpp/2V/kapT/8AHvCeOjfzrnl8TM0bkA6f7o/kKk7022Gcf7g/kKlIOehP4VhJam0XoSQD5q0oF5rLtplY52sMEjkY6HFa9uQQCKVrFFtF6VYRaij5FWUFIkULS7actPxTAglhWaJ43GVdSpHsa5ybwRpcwVZGuXVBhQ0pO0egzXVYpCKqM5R2ZLinucevgLSI2DIJ0I6ESYpT4I04FSJLkFeh8zpXWEU0iq9rPuLkj2Obj8NJACIr++QE7iFmI59an/sicY26tqIx/wBNzWyRSYpqvUWzJdGm90YzaZeZz/bOo8esv/1qqjQpUkaRdTvA7dW3DJ/SugK0wrT9vU7h7Gn2Mb+zb4DA1m8A9Pl/wqC40e6ukEdxqlzLFuDFGC4ODkdq3ytMK1Xt6ncPY0+xVjh8pAuc4pWWp8UxhWRoVytNK1MVpCtAyuy0wrVhl4qMigCArTSvtUxFMIpDIStMK1ORTSKLAQFafEv7wUpFPhX5/wAKFuD2PHYLSS+1GK0hUtLNKEUD1JFfYHh/R4tC8OWenxAAQxBT7nufzr5G03Vp9D1yHUrVUM1u+9A65XP0r01fj/rRtyH0uyZl4JywzXqRascE029D1XXU3RsK8T+IWlmay+0ovzwNu/DvVi9+MurXOAdNsxu92/xrmtQ8e6hqUMiPaWqq3ykYJ/rSlqKCaOYhO4SfSrM/NkpqCGPEkg/2asyD/iX569Kh7nRFe6yU/wDHwGx1t/6Uy25065+o/rUmCZYveA/yptp/x43A7cVPQ1W/3/kPugDFaHn/AFYo1Afvbb/cHSnXQ/c2npsFGo4zan/ZwaF0Kls/kdxDz4P08/T+tVLji2hPH8XUe9XLTnwZY+zY/Vqq3AJtYcerf0rCXxMxRs2nLL/uL/IV0+lwjyVyo9a5ywjy6D1Rf5CuwsIdsQp046tiqS91Ih1iBP7KchRwR2965vTpGQyx5+6/6V2Wow+Zps64/gJ/KuMh+S9z2kGPxFRXWqZVB6NHQWkm8c1oKKyLJtr4rYj5rA1Z5hqniTVLPXp/LvJPLS4ZBGfu7RnjFXo/iBeouGs4XPruIrnfEAzrV5jtcuf1NZImcAYI5GeRXcqUZJaGDmovU7wfEW476fF/38P+FSD4iPn5tOX8Jf8A61cAZGzgkH8Oab5z5wNtP6vHsHtonoi/EEHrpx/CX/61TJ45ifrYuP8AgYrzcXMi4+VT+NSLqDg48sHPHWn9Xh2F7Vdz0lPGNvJkfZpB/wACFTp4otm/5YyfmK83t70yypGIyNxxnNW7m7NkUyC+7PANNYeHYXtX3PQP+Eitj/yykH5Uf29an+GQfhXni6+qkZgfH4VOPElt0MUufoP8aPq1Mn2zO9OuWnH3x+FA1i0PRm/KuB/t+0c8pKPfaP8AGnr4gsRwWlH/AAA0fVodw9tI706nbH+I/wDfNNOpWp/5a8/Q1xA8R2B/5auD7oaems2U7qqTjcxwOCKf1WHcPbSOnudbjgYlIzJGoyzBsfkKvR3KSqGHcZ5rj7hiYH9OldHbjESfQVhWpRhaxrTm5bl50ZhlcY96qrBIjyN5md7ZwT04A4/KtTZtt0HfGTVRx81NU421JdSV9CgbnbO0TdRUpcY61n6iPL1FG7OtTBsqK55K0mjoTvFMs5FNqHcRTg3NIdx+BUkI+c/Sowc1NByx+lCWonseH3XEp+lRqf3T/WpbnmTPqKbDBLMjiONnPooJr0Vscb3JpODCR3FQx/df61fexuikI+yzZ5z+7NQx6fesZQLSc88fuzRdFJMVR+/Yeq1NIP8AiXN3wamj0u/aRiLSXGzqVwM1P/ZN8dPaMW7biehIFQ2bRW5VQHzLcjp5J/lTbPm3uvp/WrgsLqEQmSEjZGVbBHBqjZsNl2h646fjSKWjX9dCzcD/AEW0PtS6gCYbZhSTZFnan0HSl1D/AI97b0zSW6Lez9Edrpp3eCrU+khH/jxqKUZtoen3m6fhT9I+bwXGPScj9f8A69DqTbQ4H8Tf0rKW7Oc3LAlWQrjPlr/IVoNq93bDPmwhR3daz7Icxj/pmv8AKqniIL/ZTF03qJYyVAzkbxxis+aXNZMuy5btGvY+Lrm6V45EtXO90wCRkAkVWjs5HmDtIMA5AFcbpzW39pw7LZ42+0SjJjxxjgfh6V39oM7KdS/UKdraFmGMqwNa0PQVWjj4q3EMAVgWeN6+f+J3ef8AXy4/U1lIrSMoRSzY6DPp/KtTX/8AkO3Y/wCnqT+Zq34b0m7mEuoiLFpAoR3PHLdAPU16dPSNzlrbo54kq/3tpx94/wA6YW5/pn9K624tIwGPlofcrWZMkKqXMaE9htqlUM+QxC3Gc59/600kZ5z17enpXVeGtDt/EE08d1LJFFGBs8rAy1dTF8NNGB2yX15nGWbcuFPr0qk7ktWPNLI/6ZET2b0q1qzbnhOezf0qjNLbW+rPHZz+fAjEJIy7SRXdaV8P7vxPoMWp29/AjEsFiZT1Bxye3Si+pSXunBOTx29RzUbMdw55/ka1Z9CuomZS8QZSRjJ59TUbaLJ5Iczwg45TnP8AKjmQlFlFGOBg/r+tIX/edfqfb1qRrWVB8xT1+9+lVWk2yDIz3AP8qE0KzHgkseme+QOKktDnULYYxmVf51XWRSc9RzU9m3/Eztc/89Bz6+9MDsbo4gI9WA/WuotRu8sHsBmvPdQudVm1CW206GzeOC3F1M9zMsQRfMCZLO6j7zIMdea2/Cmu6jqtxf2959kRrYxgG1cOpzu/iDMD0HQ1hWV3c3pu2h3JfNQuMmqEziAKZb4RBjxvYDP51maff3F1Gc3yM3mOABjoGIH6Vlzq1x+zZd1uL9xHOB/q2wfoagt5N8YqxItxJE0byKyMMEFaiit/JGAaym03dG8E0rMdS07FGKgoAasW3LN9KrgYNWLX77fShbilseUaFocniPXbPTYnWMzE5dugUDJP5CvY9TsLXw2iaZpUSxQQqAWCjc57kmvNfhpJ5fjvSm9S6/8Ajhr1HxRj7dKe5Oa6qjeiM4Lqc3JePuLM5zVSW9O1ueTUNw5DVUlb5ahI0uPa8bpnioTOTwelQc5pDVWFcZcOWUjNc3dJ5N1K/Teh/PIroJmrH1Jcwlx6YNVEhsgEvmWUGTnaMfrT7tt1vFz0NUbd/wDRgOvNWZzm3HPQ1VtRqV4/I7nQmB8IMP7tyf6VOx/0aP8A32/kKp+HGz4VuBnpcf0FWnP+jJ/vn+QrGW7I6m1ZH5o/+uY/lUGvf8gxj6SRn/x8U+xb54uf+WYpmv8A/IImOejIf/HxWVvfLT90xrfjUIv+v6b/ANBrsrT/AJZ/WuLicDUU5/5f5P8A0Cu0tCNsZ96JoImzEMircUbO4RASxOAB3rjH+Inhi0u5LafUCskTlHxA5AIOCMgc12PhTXNN1yxk1DS7j7RGspgLeWy7SACeGAPRhShRlKVmhSqJK4ml/DvTYL2XUNQjW7upJWkCvyiZPAx3Pual8aiOy0GO3iRYxLMPlUYGFB/xFdSlymAWcL7Yrz/4gatHPqMNlHyII8s/Ys2Dx+GK9B2jGyORNyldnETsSpXt3rnNSDYKg9a394dyoI5rJ1WIqTx061mjXodH4As9lo0oPJYk+9dPqk7x2/lqcNOfLz7HrWb4IjVdEVuueuOoq9rixq9hIWOBI2G7dP8A69bJaGP2iCDw1YLEuLWBjjnMYrsPDVhDYWH2eCBY4/ML4X1NZ9rtljTZ83Haumt9lvbFv4VXOadib3PF9ajEeo3SjoJWH6msKfJ59K1tTuDJcSvjJZi351kMWYHcMVh1OnoZcgaR8epx9K9DtLK3NjDC8KOiqFwyg8dK4DaftUY9XA/WvSbcbYEPoM/lTRJwHi7w89nqbzaXZkWSqN4Q5w3fj0rn7F839uc4w+ef5V7c9oJrMMoDbl3fnXn+v6Chk+220YWeE7nVR99e/wCIrS9tyFqZS3+nwalqsWoSWirdaUsMQuxMYmcXUb4Pk/OPlRiMdwKt+ABCuo60IGt2i3RFTbeZ5ePn4XzPnx9eazBYWWpXtubiLzCxC/eI4/A12+laLp+jGX7Bb+V5uN/zs2cZx1J9TWVWStY1gtbhrs1rHd6ebxQ0P7wkFNwzgdqw9LfTXuNOECoLgSSGTC4OMNj+lb982dXs/QQyn/0GsyxC/wDEm4H+qkbp7D/GsNo/15mvU6dAPLFRtTlPyCmE8VlY0AUu2kFPFAxu2p7VfvGo8VYthhTRHcmexzfww8A67fanp/iGKFEsIZid0j7S45B2jvW94knvYvEk9rfWrW7NzGCchl9Qe9eu+DVhTwbpC24AjFsgGPXHP65rP8aRaFqWmTWupXMMTxDcspOGgbHBDdj7HrXZON9TBT5XZnh15GUlOeM1nyyKBjvVbVL+ayvZba4lSR0OBIhyrr2YexFZT6iG53VCRo5I1/NFMaQetZB1EdA1J9vJ6ZP0quUXMXrp8LkVY0XwxLrNobqZ32Pnaq+lZEl0xX51YKR6GvVfAvlHR7aMgcIKNkLdnmGreFr3RwzoDLCOfcVi+cHiK++a9S8W6qH1CW0tyBFGdrMOrHvXmmq26293ujGFkGSPenFt7hLTY67wvMDoF6mekyn+VW5p0S2BJwA5/lWD4ZmI06+XPdDU15AbyEKodpA2FVT1JHp3qHH3iWzettWiRoiCW+T+H8axfEmrahcOsMXmJblcsidznvW5oHgW8SJbjWbloRjIt4z83/Aj2+grpvItLOPbbwIoXjdjJ/Enmko2lcHJONjzW20rxBdfvYoZ4zu3hpGCjdjGea9C0PTmbR/susaykErKVLQxs7jPvjGam3B85YCq7xqzZBP1FU2nuiFdLc4DULSLSNSsLHStMt9Ugvbu5SQ3EKNJOVuHjEYkIzHiNUbK4I8zJ7Y9C+BZH/CE3o3DP9ovxnn/AFcdcFdeFvEv2rURZaulvZ3k7yPAlzIiuGJ+8oGDwcd62/CeiXWg6bJbXEsbStMZAYWJGCqjuB6GtXNIXLfQ9uaJipHIB9K5nUPBNpf3b3EtzdB3OSAwx/KuZXUL6D/V3M6+wkIqyniHVkA/0yQ/72D/AEpc6e5PI1sXv+FdWaMGjvblSOfmANVrj4dNKGUahkEfxR8/oaQ+K9YTGZkb6oKd/wAJjqg5PkE+6f8A16OaA7TNHQ/Ccmj2wiN6JMd9nStC/wBFjvYYo5ZjtjbfgL1NYK+N7lX/AHtvAT6DIqYeM1JBexP4P/8AWq+dE8sr3Nywsxpzlo5GbIwA1VvEmqXNvpE3kxSyvJ8gEalsA9TgVQXxjYscPbTqfbBpf+Es00n7k4H+6P8AGjmQcrPNJ0vmkJayuVHb903+FVnMgP7yN1/3lIr1UeKNKbq8o+qUh8Q6S/BuOP8AajP+FTaPcq7PH532TxOFJAYHI9jXoulziS0UvGTx0I7VsDUNCkOfNtT9Y/8A61WBqOnucRXUDemGFNWE7mNYzT2sIjlyyDoMdBVbURFcgyxZWUckevv9a2L66UAqMfUHrXOzyYbIPOciplLSw4rW5xj5ttSi8uGONHLODjJVhnj27V2VvN5kSsRgkAkelc5qrLHdRPGAFZvmwOvB/rV231COMDzHCg+prlUJJ6/15nrYzFUa0Uqatq+iVl/Krbpd3r+N57+TGrRn+7aSH9R/hVOxbE2kj+7aMf8A0GsS88T28+oSOqOF8kwgn1z1pLTxBapc2pbzAIrfyj8vfI/wrVwdjz1JHoCkbB9KQ9Kq215HLErK2RiszWPEA01d4iSSMMEc+YAQev3ev41lGDloi3JR1Zug808Gua0jxNFqZI8sxsOxOa6BZQVBBqWmtGUmnqicGrUH3aoB6uWrZAFEVqE3oci/xB8RmIQpqDxxr0WMbR+lYOqa5qeruov76e4VTkK7kgH6dKqkYWtjwX4fh8UeKrfSZ55II5lc+ZGASCFJHX6V1K7djjRQ0nQJPEmsRWcTSbyuAqDJP0rvV+EMdoitcwyn/fY10dp8F7/RtXt9R0rX03wOGUSwlSfbIJrS8S2fxDutwjNm0P8AdhbH8xUzjLobxnFbnHf8IVplqP8AURDHqKY2k6fD0EYx7Vl6rpfjWJj9osbkqP8AnmQw/Q1y13c6laybLpZ4m9JAR/Oo5H1Zp7WPQ7SeHTVUhzGR6GodO1Sz0m4/cSfue6en0riGvHb7zk/jSC4/2qpRD2lzSvblZ72eVG3K0jEH15rmNVuVnuwgPEYwfrWrbtjeOMAmubf/AI+5v94/zrSKMpM6Xw2f3F8v+yp/Wu+8H6TLcMpVAstxuMUrDPlqmMnHuTj8DXAeFo2mluIEGXkRVUe+4f419E+C9NtxC7qo2WcYhHue/wDLP404pOWpnNtLQzZvC2q3YIaaHBP94j+lVbnwdrMDgpHFMrLghX6/nXozAKAwOAR2p7fNbMRnKHP4Vr7OJj7SVrHkcvh7W4WybCYjPOBn+VZ99FeWMDzT2ssSoMkuhAr2gSBmYZ71Q1rTIda0e606ZsJOm0NjO1uqtwRnBAOM84qZ0vdfLua0KkPax9r8N1f06niwuLqN1F1aywhzhGYYyfQ+hqVpyOOQfavSV0TWb+9szrl5Yy2lhMJolt4mV53AIV3OcKQcHC5ByR0xW89pbScvbwsfdAazpUpNPm/E6cdUoqUfZWvbXlba30tfW9t/+HS8VacnqcmoZbjy+uefSvam06wIO6xtz/2zWq8vh/Rpx+80y2P/AGzArR0exxqsr6o8eMuPWmm4x2B+tesSeFdCkUg2KAexI/rVSTwRoT9IpF/3ZDR7Fh7ZHl5mLGk89QcZGa9Hk8AaS33Zrlc/7QP9Koy/DSxL7o76dT6MAal0ZFRqx6nCtdA8cUnnpt5bmuxf4bcnZqX5xf8A16hf4cXAGV1CMn3Q/wCNHspB7WJx5mUHj+VMa6VewNdU/wAO9RH3Lq3Y++R/SqM3w813z9ytblO2JP8A61J0pdhxqR7nOPc55Ax9BVOe4cDIrdvPCWuWrYNi7r/ejIYfpWNqOl3lna+dLbyxnOCSpAFJwaGppkFnrd1ayDLM0YPzRk8fhXSvcLJGJVPysMiuGdu/HpXQ6ZcGTTIgf4MrUMtFfV5cRRH/AGj/AD/+vVDzkmAO8EAcc1JrD5tYj/tkVzl6xjZAvy8c4rTlJ5iWfTlSRwrnAXP1pIrBjOqhyRgNUC3UygYkb86lW8myPnH4iqs+4tDo4zJGoCuw+hrEtvCrT+BbnXfKvPNjkLqwT9z5KsiHJx94tJxz0RuPSEajOOjCqsetXsUsDLbx7YbJ7JYyjbTG4cMTz1zIzZ9eamMbDk7mp4cZoo/MHHT8RXdWl+rxgVwGlSymFEGFVQAwI56V0dq5GOaxqLW5rB6HULcA960LKYNXNxTEjrWppU2QVzyCaiKHNnCMflrR8KeII/C/iyy1aVGeOJiHVeuCCP61RkTBrLv8qmfTmt1ozlR9SWvxO0K4VG+0KAwzycYrXg8YaPcpuS7jwf8AaFfLlqweFDntV2ORl+6xH41fMK77nuPinxppdpA/kyJK5H3VrxLX/EM+okqUAjJ4Q81IsbTZLEmsW+G2cAnpmpkrhEyLoyRuNiHDDOM9Ki23cgwpC+9W7snylx13VCgY4ywpmq1LdqGiTYxBYdSO9YsnF9KP9o1rxkq5Gayph/p0vP8AFQhs7D4dxmXxLGoGSVwB/tZAH68/hX0lokEdloc6x8BpSM9zXhnwY0z7br1zc7fls4xIWPcn5QP1J/CveIj5ejxL3d2b9a0gjKoy0GzYqw6q2Kntjv3IT94YqpEc2Mo9GBqayfDr061q1oYrdFVXKzyL6MalByT0qtKcXkx/6aH+dSRtn1p9CSRjx0phI96GPA5NNzx1pgIxGOtKpz3qNifSnoNwx3FAhp78Uh6dKcygLk+tMJHTNACHr0phPSnHnoab+NMQnFNNONGKAEHX2FRyycfXiiV9vHc1HLxLGv4mgCN3+YisvWreN9KlaRQVYhDkdcnFWnky5qHxE3l+GC/pIvP40DSufP8AfW/2W9u7cdI5mQfQGtHQ3/4l757Of5U/xbp8ttqM14qnyJ5Sd3o3UiqujPiwl/3z/KuOpGzOyD0I9WObZMf3ya5u/f8AeL/u1t6vKQIEBxnJNc3dXMcsmUbIx6GqQiREd4w2OMZqRIpWGQucdRU1oytbx4PAXJ/CrVtG8l8saEkAAsOw470rgURb3DuVWFmb0AzS3FndWoBmhZR/e6j8xXSxRRwSE92H3vSquolE0u5jyjEqSAvbA6/WsHWlzpJHp0cJRnh3UlLXXqtLLRNbvm2TX462o6XyjH3regOBWHe6JDp1hO8GtXJu4LK1vJIXg8tGE6xttRxISzDzRwVGQrHtWypwBVzjqcEWacT8VPpU5F8U7Nms6OTAqbSXzek+gqEipMzJSHOQaztQjDwH1xUKzyA8j6c0xvNY8yHHpWpzJFrTLndbKD1HBrTWb3rDtrWTcxjfBJyRV1IL0HChW9OcZpsGjoLOcFSO9Yl+f9JPHc02K+ktZ9s8bxkHnIpt7Isk+5WBU8gincEtTOupMuFHYUxG5qvczKlzICeQajF2B0BNFjRM0ww3/hWddAfa3PvT4pzNn+HFJtLsWY0LQbZ778FdMWy8G3F+cF7+4PTskYwP1LV6JKdkFsnpGD+fNfPvw88bXXhiZbOeNp9LuJOUH3o2PG5R39xXv9+4FyEHRVA/StY6swnoizbtm1uPbaaWB9sqnPeoLZ/3NwP9gfzoR+AfStDIbO/+lS+7n+dPifA5qpO+Lp/9405H/Kq6E9S2ZF45/Gm71OOagLdBimlyAAMZoC5IWBPpVmLjofzrLkdg33s+9WVkIjBDEsKGgTJ7jexXngt/So89gefpUUpkWBCT85Y/yphlETBAcsB8xoC5O3AxxmjGBjAqBXOA7dc0LN5jsecDpQK5KecHBHNZGseK9J0NhFcyu02OY4l3EfX0qzqd40FjNKh2lUwpPYngH9a8U1iZpLl8uW+YnJOc1nUny7GkI33O7m+Jeltcbvs11tHsv+NTH4laFLdeYy3SLswMxg8/ga8kfNRmsvayNfZxPWY/G2hyMSbspk/xRtVjXPE+i3vhOWG31GB59wIjzg9fQ144aaaPbPsCpq5319JZ6j4TvImmhaTG9BuGQwHBrhtIP+iSKePnz+lV+aTcR0JqJz5rFQSiZGvXCy3qojZEa4OPWui0uOGVvCGlyWNk9nf2bteyG1j8wL9quFaXzdu8FEQHOcAJ6Zqg0UbnLRoT7qKoj+3l04acNWnFiAVFsLl/KwTuI29OpJ+ppqRRmWMNxcyxwQMcscdeldrDarZwCNTlsfM56sah8OaSLSz8+RV85sruHpmtCdetZzlcaM+Q8/jWbfcWk/8AuN/KtKUVTlBLkAZJPAFStB7vQbqXjmW+0CTS0jvVjls7W0eOW98yBRCsYDxxbBsYmMHOT95h3zRNqkFvMYpNwYegqL5o32sCpHY8Vn6umZIpR/EuPyrW6kDvF2e5uRaxZt8vm4J45BrR0uTFwxz2rgRnIrrtEuN8SuTzjBpONgvc15vC09u22SMgj2qBtHVOo5r23xzp0FpA1x8oI6jua8V1LWI/NZV/AUNGKdyq1ukJyKhlu0QdeapTXkkp64FVywpJFFq4u3uVCtyF6E9fpVZwFUEdc1GZKQvmPHoapIZQuoy13IfU5pqR9MitQW0b4kkYAHtVy20lni8xUJXsx45pOoo7msKcp7GMqED5RTxEz9efatj+z3VsbCCB3FPNt5QwqBqXtF0K9jJbknhTSpL7xTpVuUOJLuMH6bhmvpPUZg2oSEH+KvF/hy7N4y08NEoWItKTjnhScfnivV72RhdncME84reldrU5q9k7I1IH/dz/APXP+ooikyKzBq1haQXBur2CHEfR5AD1rkL74p6JprGOAS3jg9YhhfzNa7bmCTex280gFw/+8aFmArn28Y+HbiVmj1i1AY5G58fzoXxPojsoXVrTk/8APZapEtM6QyZ701pvmFVIru3mj3wzxuCOCpDfypWxgkMDxknOKYEskueMDrVmGUFef51QKscEo4z6c0+NwG28j2YUCsXbibZDEc8ksRkfSq0bAkszAk9aZfvlIApBAJH8qjiO3A28dc0LYGWZpOMDt70+DITNUXdfugHJ6mrKuqxDkigRm+I7kQaXk9Gbofoa8jugJZmKgAZ7V6H48uDDpMGD952/lXmX2kCuep8RvD4RGhqFoqkN0KabhPWpsi7siMdRmOpWmTNN85fWlZBchMVNMdT+YtG5TRyhchWFnbAIHck9qd9k3EeW+8EgdMEGpEkCMTjIIwRV7TVSS4winaMEk1zz51LTb+rnp0FhXh2525te97292y2ab3vr6aX1EgEVukajhRiq00XXitZY9y9Kilh4JpnAc3cJjNVIyczBG2ysoCEnH1H1rVvo9qMaxJV5pShzKxvhsQ6FVVLX3/FW0fR9n0Yl3uW2jSZt0wYkfNkqvoazL3Elnz/A2auMlU7tcRMPUVdOHKrDxWI9vU57W0S1d3oravS7+RlAAGtjRbjZK0eevzCscq2M4OKmtpTDMkndTWrV0c52+q69f69bvf3M7bpJGIGeQCeAT3rm3kAOBU0EhGjqM4+c1RZ8c9vel1ISJC9MZ8dTURkLnCAn3NS29nLcOFRGkb0A6UFDAxc/KPxq1a2U9y+IlLDux4Aq9DpojwZvmI/hHQfU1bF28KhFKqg7ColLsawgn8WxLFBDBapEY42lU5LleTU32yTgS5UetQK6ygFuPx5p5Kpy3I9Oprneu56EEkvd0JAxb7nI9Ka6jrIcDsBULuycw/kTUbXLMcSCizLco2szQs9YutOP+hybGByDjkfj1rRufFmr6iNs126cYLRgKT+NYUKbuV71cUKo+bitFUa0RzyoRk+ZoiazWVzI0u4nqXzk/jzWbPo0gJaKQMD2zWqxY52dPSoyzFgFyPU0e0ZEqMTnJbeaLO+Nseu01Dk+prrQdvr9aRljf5XiSTPqoqvakOh5nLx3EsRzFKyH/ZYitKDxNrduu2LU7oL6GQsP1q1NY2BUs0SpjqQSMVi3DQBituhKjjLHrWsKl9jCdPl3Ons/iL4htDzcxzD/AKaJ/UYroNP+LlxG4N9p4cYxmKTp+B/xrzAk8fLjFM3n0/KtFORm4R7Htv8Aws/RLyCMzCeF1Jypjz1+lWrf4g+HJTj7YYz0G5GA/lXhgk7812HhvQILjTW1K7ywLFYoyOOO5p+1sQ6SPV7TxFo92R5Wowt34cf1rSXVbOVVWO7hJ9C4rxq6wpKrwB0AqkxPrS+seQvZLuen/ERlOi2zhkYB2GVPtXkskgXvVlpXK7S7FfTPFQtGh6op/Cs5T5ncuMbKxTafnrTGuD61Za1gP/LMfhUTWMJ6Fh+NTzIqxXNwfWm/aT61K2nr2kb8ahfT5P4XFPmQrCi7PrTxdn1qq1ncL2zULLJH95D+VVcLGmLvI611WgwEWiyMOZDn8K4W0Vrm7ihXq7AV6bYxrGigcBRgVE30BIvABF5qGQqyk1XvLxUGA1UY7/cdueDUjINQ+Y7ax5Y+a17k7nNUZQDVpaE3M10rPvhtiatl1HNY2qfJHx60WGjIZmxjtSbvagt7UhIqyi/FPO0Hk8CPcSPWnxWjSyKqq0kh6KBnNdxovw21O8iW51EGwtSMhXH7xx7L2/GukTR7LR4/Ls7cIcYLty7fU0iOZbHD6f4YbKvqBMa/88kPzfie1dEscFtb+VaRRxIOuBz+PrTrl8llQEnv7fWs8sYmyzbj6dqiSNoOxHc2/mDCDB7uax57doTwM/7RreW7Vzhxz2qKdY3HzAE/3RWN2jrUYtXuc0S6n5Tj3NWILrZnuf7x5NTXNtglgB9KoGJgeeB6VWjRNnBmgXEw+XlvapEiwMyLVCKQxHIOKtpe+ZhTx71LXY0U113LA+TiP8qkD55k4+tQ7Ao3K2Pxozv4kB9qhlrzLAG77nC+vrUgZcYIwBVYFlGFOT6Uqs5fDt+GKRVyVlwMrzUMsghQvJ8ijvmpZpIrSEzO4AHrXK6jqMl7KSeEHRaqnFyZlVmoLzLbSzatc+TD8sQ5Y+3rVs6WkZMagnHU4qn4efbcSk/3Bx261vs67xgfL1xnpXRtojgk23dmO+nENt7etMewCg5PA9q2T3AyR2zVC6yx2KwJPWmmyShbaaLwuBKkar69TXoRuI7LSLSxiQkQxBS3QZ61wcUP72MYGCwBx9a6ia985gSeAOBTaCSsVpyWYmqzKasPcJntVd509afKiLkbDFMNOMqH+KmkqehFLlHcZSGnH60nelyhcbTaeRTce1LlHcaaTmnleM00rilYLjV+Rw6gBh0YdatJql5GuBO2PequDSd6LDuTyXs8v3n5qBLmaKQHduGehpKaaAuawv4pQTuwfRutQvcKehrMIpnllvug/hTTFY0HmB71jas+RirDQTryCfxNU7uG4cZMZOPSqTQ0jOwfSkxU20qMHI9iKVnUptFO4z6y1lxGduN0h7Dk1wupxO5JlO0H+EdTXompRJFGy2ybmP3nbkn6muB1RSZSuGkkPYdapnPDc5e6GMhRhR6VlSAtyvTux6VuXtuIlLTkZPRF/r61g3dxv4AIHTFQ0dCZTllCEhCc9yaiS6Ke+e5pkgYkk1WdjnANQ1c2hJo1EkQjcSCfSopoUkHIx6VlicocgkmrUN6p4kHas3G2qOiNRS0ZDLCyk9MVBkg46e9aShZvmHC+3eoJoBj5elCfcHHqhkM5U884q39pST5cDJ71mNnO0ZpynYOOtDjcSk1oaiAx8g5JplxdxQRF5fvdh61TN+LdMtyewrHubiS4kLueew9KUabb1HOuoq0Rby9kupNzsdo6L6VUOTWhpWk3OsXyW1uvJ+85+6g9TV3xNpMGjamlnbsXUQqzOf4mOcmt00nyo5Gm1zMg0OIvJKckYUdPrWsYiCNpK4POec1W8LWkt2lz5YJKhScfjW7JYPEEJySyHIx3xUyqRi7NlxpuUdEZ7CTYrAknoT2NWtO0v7RI804It4+v+03pVpLTIiKoAxYMw9Pwrbv7cadbJbs7MwXLJxtDHripjUUthVI+z+ZgXJjRiIo0RR0CiqDs2etWZeWJFV2FMxuQsSeoqJ4Vb1H0NWCtNK0wKTWh/hlYfWojBcL92RT9eKvle9NI4o5mGhRJuk6rn6Gk+1yp95GH4VdIppFVzMVkVRf+tPF4pNSNGjD5kU/UVG1rCf4MfSnzByolW5RhT/NQ9DVM2afwu4phtJF5WUfiKOZByl3euetKMEdazzHcr0w30NJ5s6dUb8qegWZoEUhGRVD7YR14rR0+Nrkea4/djp70nZahYdHbGT5m4X+dSttQbVGBViT07VVkNZN3LWhC55/CoWYg1JJ2+lV3NNAI5DjDKGHuKz7q2Rfmj49qtMaic5XBq0I+urq1lnTAJhhPVyPmb/dH9TXJ6yILNWitkC56tnJP1Peu11S6CRsSa861aRpnLNwv92tDlW5yWoN5jtg5Pqa5+5VRk/rXQah8oIAwBXOXUm5yqjLfy+tSzoiZ9w4xknAqkzbmI7DtVuYKBljlv5VnsSWJXp3qDRA7AcDlqiVWJ3MeKXAHOaRn47YoLuW4rkoRn7tWROs3TgelZAYscY4+tSq209ahxNYVDSEBfhAMmqd4y2vBOX7AUjar9nj2oAX7VlSSvNIZHbLHqaIxfUKlSNrR3Fd2clmOTVzSNIudZvltrcYzy7nog9TTdL0yfVbsQQg46u+OEHqa9V0nRLPTYFhtH+bHLHq7epq5S5dEcxJpmjQaJYfZ4Yvlz88n8Tt71wPjrnXUIXbmBePxNektKVIEjHYnA9z9fWvPPH5RtcgKHg2y5+u41lD4rlc7asT/AA5d0fUNgP3Uzj6mukv3luH+TCIv3iV5zXF+DZjG15GHC7lGc+mTXqU3iXT7fQ3tLa03NJFtKMvAJ9T3qpU05XauVGc47bHK6WjjVYpriQeWpyNxAHHP9KXVLk3dw7AkgnrWpqc+lLa2I05MlbdvPL9WckDn9ayY4xIucVcYrZGVWbk7szTFUbRkdq1Wt6ha39qrlM7mYY6YUrQaHHaomipWHcoFPSmlKutFURipWC5UK03bVpo/aoyhosFyvjtSEVMUppWkO5Fimkd6l200rQFyPFJipNtNIoHcW3tTdTBMDaOWJ9K2CixIERcKowAKfZWv2e2GR8zcmiWpY0U5KqSVbkqnJQBBKflFV3qxIfk+lVW5qkBG3eoHqVjULVaA+sdQcsCScn9K4vVpljB5/Gum1K4wuBn2A6muUv4dpaS5wSORH2H19atnNE5W8EtwpYHy4e7Hq30rDupY4x5cS4/z1ra1C535xnaOgrAmXLE1DN4mfLliSeaqyD9KvyrxwfrVGUjO0cmpNCu3B5NR7S3J61KygHOQT60wkDJ7UDQ0EKP5mq81xt4XrUc9xztX/wDVVYHJyapIHLoiTOSSTzUkSNK4VfxPpUaAuwAxzV6OLYuFY59aZNrm1pl0dPwsDEKfve9blp4guIiVYrIncGuQQybgpYD1qaGd0PIPHXipcbi1PQ7bWYrkbCcA9mrhfFshfXXXduRI1C+3GaljmZXyTwO2azNUdpr8vIQWKjpUqNmOJP4cKrqLjoDGf5iuwb5Igd+76dq5Tw3AHu5nJwFi49ySMV1Udlch9yHIwDjPrVOSWrOilFy0RXaT5jwVJAyDV2CQBQKpagGinUN12/1NRpPtHWlCSeqOavHlm0bG8Y6imcGs0XXvTxcg8ZrW5jYuMin0qB0HNRi4GOtJ54xQIQx57VG0dS+cDzmmlwTRYZA0fHSozFVostJwaVh3KLR1GY6vsqk1GUFLlHcpNHTCntV0xjFRlKVguVCtTWVv5t0CR8q8mnMmK0LCLZFu7tzUspFlhxVSXj6VcfpVOXpUFFKXvVOSrkveqclAFd/uH86rNVo9x7VVY9apAQt0qBqneoGq0B9QXUiQqzAbn7tXI6oskzHeeOwFdNdNgAsQcjgL0P09frXOag+0Fmxj0qzmic1dwquT2rDuQFc1u3jEgswx/dWucuSXJ3DCjoPWoZujPnkJYgdPWqjDHOOatzYJPQfSqkjBVJY8dak0ImIUEnpWZcXJZiF6UXV2ZW2pwvr61UzVJCbF71LFE0rYUfU+lNhiaeQIg57n0rbgtlhi2L+PvTbsCRnmAxnAB+tXLSWDJS4yB2YdvrU7RB+mc1BJZSjJVegycUubuPY2E0qO4jDW8yvz0P8AjStpdzFkGPeMZ+XnArJs7uazjLqx4bO0ng12ukarb30rL8qsUCsrDnIrOpPkV0XCPM7GClhK0pEaudqhiCOgzVbVNIl+yfbIvm8v5ZAO3uK7Ka1O25lGUcjaoA5xnr+dQhIlWVGKholDHB6tj0NYxrOWxrKlynHaBqkViXjuEbEjgl15K49vxrutOvLeeMvbzJIvpuOVH0rmtQ8OxPia0JV9u5lI4J9vwrA86eymBjZo5FPUcEVU4KrdJipylTtJo7vxND5c1lIAu2aHcCvIIz1rAYsDTINTl1KJTNwYuOOnPPTtTpZVz1q6cOWPKc1WTlJtiGQ+tN88ioWlXPWojJ71ZBcFyR3pftVZ5akL0wNL7T704XOeKyhJg0ol96dxWNb7QPWnC45rI8/3pRcY707hY1/PBpPNrLFx6GnC4zRcLGl5me9BYVQWfPOad53HWi4F1AJJAg7mtVAAuKzNNXeWlI9hWqtRJlIa44qnKauP0qpLUDKMoqnJVyXqaqSdaAKx4cVWfgkVYcdagl++apAV2qFqmYVC9Whm3p/jDWtOI8q9kZcY2yHcP1rcg8fmfAvrUFh/HGcfpXFBlYc4NBTPKnFHMU4pneya9Y3oxFLj138ZqjcFWBKkEetcZ+9U5AOPUVagvpIjgk49M09yeWxqXLrGhdiAo9e9c9eXhncheE/nVjV5llaMxySMGXLK+PlP9azDQlYA60+KNpXCqP8A61JEjSyKijJY4ratbQR4ROW7mhsTZJZWyRKqKOT1JrftNKWdDhhux0qilqyrknjoMVdt3aF1ZTg1nLUcZWNODRYYCJG+Zh1zUzW0YUssY4PHaizvBPIqbst15NN1S6jggZzKA2OMetZuF9GX7Vp+6cnrJtoJiijDZ5UdKzlvSjgpkHselMuxcTEzyKxGfvEVU71tGCSsLnbdzpYPFV4qBJNjqO5HP51ft9ZtroYlyh7k85NcWGYVetjtXk+9S6UUtEbRrz66noEcsPlqIZFYdMZrLvNNS6mjhRFZ5MnJ/hUdWP8AnvWDBJI8qxxZLscADvXXRQDTrXYzb7hgA7k/pWNOk4O9yqte8bGPNplvaDZEWyepB61mz2Y5KySA/wC9WvcSZYnOTVCRq2uchjyRXMR+WQMPeoftMyfeQ1rMuc5qCSBXHSqT7iKQvQeCcfWpPtAPcUyW156VXaHb6j6Ux2Lnm0eYKolXHRjQGkHoadgsXt4o38VSEzjqv5UvnjvkfhSsKxb3+9KJD61UEwboaXfTAuCY+tSLKWYKOSTgVRD8Vo6RF592GPRP50mFjprOIQ26L6DmrQqJOlSqazAR6qyirTHtVaSkMoyCqcvFXpBVOQUAU3FV5eoPqKtOOtVpOVBqkBXaoWFTtULdatDP/9k=", "path": "images/5pts_ADE_train_00009582.jpg" }
depth_point_9
images/4pts_ADE_train_00019243.jpg
ADE_train_00019243.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 279 y = 147),Point B is located at (x = 30 y = 149),Point C is located at (x = 295 y = 210),Point D is located at (x = 153 y = 170).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_17><DEPTH_70><DEPTH_3><DEPTH_11><DEPTH_31><DEPTH_49><DEPTH_29><DEPTH_74><DEPTH_64><DEPTH_72><DEPTH_17><DEPTH_49><DEPTH_29><DEPTH_74><DEPTH_64><DEPTH_64><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_78><DEPTH_17><DEPTH_82><DEPTH_29><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_25><DEPTH_2><DEPTH_25><DEPTH_66><DEPTH_5><DEPTH_81><DEPTH_36><DEPTH_44><DEPTH_44><DEPTH_19><DEPTH_2><DEPTH_2><DEPTH_19><DEPTH_41><DEPTH_26><DEPTH_81><DEPTH_36><DEPTH_25><DEPTH_19><DEPTH_2><DEPTH_2><DEPTH_19><DEPTH_41><DEPTH_41><DEPTH_34><DEPTH_78><DEPTH_74><DEPTH_19><DEPTH_25><DEPTH_19><DEPTH_2><DEPTH_41><DEPTH_0><DEPTH_1><DEPTH_52><DEPTH_61><DEPTH_19><DEPTH_69><DEPTH_58><DEPTH_41><DEPTH_0><DEPTH_0><DEPTH_57><DEPTH_57><DEPTH_80><DEPTH_61><DEPTH_65><DEPTH_42><DEPTH_41><DEPTH_2><DEPTH_1><DEPTH_57><DEPTH_16><DEPTH_16><DEPTH_25><DEPTH_58><DEPTH_24><DEPTH_42><DEPTH_121><DEPTH_9><DEPTH_1><DEPTH_57><DEPTH_16><DEPTH_42><DEPTH_25><DEPTH_58><DEPTH_76><DEPTH_80><DEPTH_45><DEPTH_9><DEPTH_0><DEPTH_0><DEPTH_16><DEPTH_42><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
4
[ "B", "D", "A", "C" ]
<DEPTH_START><DEPTH_17><DEPTH_70><DEPTH_3><DEPTH_11><DEPTH_31><DEPTH_49><DEPTH_29><DEPTH_74><DEPTH_64><DEPTH_72><DEPTH_17><DEPTH_49><DEPTH_29><DEPTH_74><DEPTH_64><DEPTH_64><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_78><DEPTH_17><DEPTH_82><DEPTH_29><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_25><DEPTH_2><DEPTH_25><DEPTH_66><DEPTH_5><DEPTH_81><DEPTH_36><DEPTH_44><DEPTH_44><DEPTH_19><DEPTH_2><DEPTH_2><DEPTH_19><DEPTH_41><DEPTH_26><DEPTH_81><DEPTH_36><DEPTH_25><DEPTH_19><DEPTH_2><DEPTH_2><DEPTH_19><DEPTH_41><DEPTH_41><DEPTH_34><DEPTH_78><DEPTH_74><DEPTH_19><DEPTH_25><DEPTH_19><DEPTH_2><DEPTH_41><DEPTH_0><DEPTH_1><DEPTH_52><DEPTH_61><DEPTH_19><DEPTH_69><DEPTH_58><DEPTH_41><DEPTH_0><DEPTH_0><DEPTH_57><DEPTH_57><DEPTH_80><DEPTH_61><DEPTH_65><DEPTH_42><DEPTH_41><DEPTH_2><DEPTH_1><DEPTH_57><DEPTH_16><DEPTH_16><DEPTH_25><DEPTH_58><DEPTH_24><DEPTH_42><DEPTH_121><DEPTH_9><DEPTH_1><DEPTH_57><DEPTH_16><DEPTH_42><DEPTH_25><DEPTH_58><DEPTH_76><DEPTH_80><DEPTH_45><DEPTH_9><DEPTH_0><DEPTH_0><DEPTH_16><DEPTH_42><DEPTH_END>
279
147
30
149
295
210
153
170
null
null
147
67
187
117
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDzCiilr1zzBKKWimAUwxgnGOD+hp9FY1qSqRsy6c3B3I4rAMXEETeaw2tkBufYda0ovCWtTpFbiGaRIiCvOAhq/wCFLYXniOxU/wAD7j7gDNewheoxivI5ZJtM9KLUldHktv8ADrU5XLzCJCR95m3E1sW/w1UBTNedOojTivQwmaXywBT5R6Hk/jLwzY6JpMBtnc3U86ojO3GO/wDSp4/CXhmxRf7U8QmRwPmRZlUZ+gyaj+K9zv1CztAeIoS5+rHH8hXmVu000hG4hB6cUcpLdmep+f8AD7T/APV2pu2HdlZ8/wDfRAroPC+saXq088WmaZHbJAoZmCqM5OAOP8a8YW2B+8c/U5r1j4V2Ig0i8uQvMs4UHHUKP/sjRyjUrsq+OvG+oeHtSjs7EQjMQd2ZNxBJP4Vyv/CTeK9TiWQ37xxuMjDBOPooqt8RpzeeL7tV5w6xD8AP61fhtjDDHGcKAoUZNDFfUoNb30777q/Z2/Fj+Zr17wzaiz8K2SEk/uy5ZuvJJ/rXm/2C6kwsFvLIx/uIT/KvVLgJb6IbZJYlkW38tAzAc7cUkuo0eA61m4vrm5H3nlZs/jWOruzAZwM4rvJvCiKmLzWbGA9wpLn+lVo/D3he1kVp9YvLplOdsEAQH8TmhNCaNXwRDLp2tWsNtHG7zOFlkKZbb3wewrvfHMwi8JXh6bgEB9ckVx9l4j0/SJGl0zSLlpWGPNnft7cYFLeeO9Tuxs8myiXOQrfvMH9aSdlqUc94e8MXmq2U1xbd5AmGBGcDsce9bMXgO93D7XdQQIMZO4ZqN9V8RXq/LNeMn/TGAqv5nFU5LS8k5upQv/XxeD+S80N6iSsd3pE2g+GIigvIicYY7ssx96zPEuv+H9eiit5nupEjfcFgwNxxj0NciV06D/XalZqfSKAyH82xUkUttMdttDq177RLsU/goP8AOi4y0X0OHBh8NiUjo95If6nFPHia5t/ks49NsR2EEYz/AOOin2+h6tcc23hZU777uT+jN/StW38KeJ3ABu9PsFPaBOf/AB0D+dGoGMb7XL/JMt/KD/zzh2r+ZqCSxuCc3Dxp/wBfN6D+ic11SfD6SZg2oa7dyk9o1C/qc1o2/wAPtAibLwS3JH/PaZj+gwKLMDzwrp9uf3upWqn0hty5/N8VLHJBdfJbwavfj0QbV/JVP869VttB0mzAFtptrGfVYhn8+taQUqoAAAHYU+ULHk1vomrzn/RfC8cf+3dvn/0Jj/Kte38K+KXUBtQsrFD1W3U5H/fIAr0MD6UbM8dvanygcPF8O1lbdfazeTn/AGAE/U5NaEHgLw9BhpLV5yO80rNn9cV1OCAPpRsB4AzT5UBS0/SbDT42FnaRQK2AfLQLmroXB5609QfKyT3o4zzTWgDBnGcUAcelKTg4oAPfvVCMrxQ2zwvqZ5H+jtz+FfP10mCH7dG+le/+LiF8I6mc4PkHmvCHUMpBHBqoq6ZlUdmi7RQaO1eseeFFLSUAFFORGkdURSzMcADqTWvH4X1Z/wDWW6wD1mkVP5nNTKcY7uxSi5bI3PhxaeZq1zdEcQxBQfdj/gDXp23A4HXpXC+GJtO8MafOl9qFv58r7iIm3YAHAz+dXZ/iBo8ZIi86c9gq15laalNtHfSjywSZ1lNE8RmaESKZVwWTPIz04rhZ/iJKAfs+mMo9ZTtrFuPGWpXdyJUis0nAwrqm9wPYgGseZGhm+OI7vVfE+oG0tZ5yhESiOMt90Y7e9Y+n+DNdKFnsGgB7zuqfzNdK954ovFyZL0Ie4i8tfzYiqMllcuSbu9hX18683fomaXOJxuQr4S8o5vdY0+3HcK5c/oK6/RvFGieG9Ii0+GeS7ZCzFlTG4k56f56Vx7R6RAf3uqwlv7sFuXP5uRViD7NNxZ6drF7/ALo2Kf8Avlf60uZjSS2Jrq60Oe/e+GhTXE7OZN9xMwG7OegwKe3ie4V/9GtNOtm7EIGb9M1Yt9D1qfBt/DFrAP793JuP5En+Vatv4U8TSYD6nZWK+lrFyPyApasdjCa+8R36586+ZD/zyhKr+ZxVV9Ou35urmNPX7ReL/JcmuwX4fLMc3+t39ye4UhAf5mtG28A+HYfvWLTkfxTys36ZxRysLHmzQaTAf3+qW5P92CBpD+bEVYg+xyYW0sdYvT2EaeWp/wC+VP8AOvV7XRdMswPs1hbRf7kSg/nir4UL9KfKB5Xb6NrFwQbXwpDF6PeSZP5M39K07fwv4okbab7T7Be4t4uR+QH869C2H1p2M9afKB51f+CxaWM97qut39wkSF2EQC5/PNadl4D8PeVHLJZzTFlDYuJWJH1AOK6bU7ZLuxktCMiZWUj2wf64pukv52k2cp6tAhP1wM01FAQ2mg6RZAfZtMtYyO4iGfzq+YwybSi7SMYI4qTHagjinYLjP6dqVTlM4wO1OAG6jB+ntTAQoDjPPpSFcNxwKkzgfTim+rH8qAEC/Nj3px6fWgY6AU5WHcdPWgBu3PNP21DNf21vkyzwwqOpdgP51jXXjPQbbIfU4nYH7seWP6UXQjeKFiBSsuDXLjxlDMubHTNSuyehW3KqfxNSDV/ElyP3GhJCD3ubkD9BzS5kB0RY4CY+lGBjH51n6YmrlJH1VrUEkbFt84Hrknr2rQ6DNFxhwO1ITg0vVeOtMJAb3pgZXiZFfwzqSuCV+zufxA4rwmvePEp/4pnU8f8APs/8q8HrSn1MKvQuGiiivVOAKKWkoAVWKMGUkEcgg9KmUPcSjfOcMeWldtqfgOahq7pFu13q1rbAZ86VUI9s81z4ikqkfNGtGbjI1LTw+s+DGLuf/r2084/76kIrYg8JXbgY0ycj/p6vlQf98xg/zr0QIFUL0x05p6jPNeXynonFW/gu4ByV0q3Pqlu07fm5/pSeINGbRvDN7ef2reGSOP5BGVhUMTgcKB/Ou47VxnxInb/hH4bNfvXdwqAeoH/18U+VCbsjE0TwCdU0u0vtT1a+eS4QSGNWAAB6cnPbFdDbfD7w9b43WbTsO88jN+mcV01tAtvbQwjGIkVB+AxU2BtNHKhmdaaLpljj7Lp9tF7rEoP51eVAKd3xil6dadguNKjtSlcU3dk9fwpwAJG7r3oEJigDGaU9RQTnsPwpjEC7RmlPCn0NL+OT70xii/eI5PUnFIB/UnpQB+NVp9QtLWJpp7qGOMcFmcACqepeItM0qyNzc3SFOCFjYM7Z9Fzmi4ixqN01lG9wEDCJVyCezMAfyAzUtrapZWqwIxKJnbu64JJx+tcjL430O/0u982S6hMqHCNAdwUqAremOeOa1PD8viS4tHk1SycO7AxBBGAqY7/NnNLmQHQZP4Um3gk9BWLFpniie7nN7OkNqeIVtpFD4z/ESp7elUH8FavPq/m3eo3U2nBf9T9sO9m9yFAA+lLnHZnUqVPRgcHnmngDBPpWNY6Zd6RdrBYaSFsJDumla53y7sdgT9O9V9R8UJp+vQ6T9gu5ZpFDAoFyPcjPQetNSQWHeIfE0egy2cH2Oe6uLtisUcRA549frVZ9S8V3IHkaTZWinvcXG8/ktZ3iaMXfjTw2I5Ek/eEkRtuIwQenUU7x5d3dpZ6dDbXUlo09yEd0ODt/yaPQXqXDYeKpubnXbe1TuLe3H82qncadpkRP9qeKbub1VrsIPyWr0fgvTXAF1Jd3Z7ma5c/oCBWnbeG9GtMCHTbVT6+UCfzNKzGcop8DxN+7ha+k9Vjkm/nWjDqwiUDS/CV1jsWiWEfrXVpDHEoVECgdgMVIAPSnygcytx4suf8AVadp9mp7zTFyPwWtXSbfVYlmOq3UM7MRsEUe1V9fc9q0xxUjD5F9KLANkJEa/jURbtyTUshOEA+7jIFMAqkBGA5JHAA9aXZx79zUgFNJ9uKQGZ4gXd4a1Lt/o0n/AKCa8FNe9+IufDuogH/l2k/9BNeCVrT6mFXoXaKKK9U88KKKKACuo8BWgufEyORkQxs/49B/OuXr0T4Z2GFvdQbocQqP1J/lWNd2ps1oq80d3jvjmlGT2+tKW7Y5NB4Bx1rzD0QbPJz9Kwdc8OvrWpabcfaFjt7KTzGQjJc5B/DpW4WJ7Vz8/i+1GpXOn2llfXtzbHEqwQ5Cn3JNK9gOhOB0oD5JFc6dV8Qz82+gLCPW5uVH6LmmPD4qusCS+0+yXPPlRNIfzbFK4HS53cio3eNPvuAB6muVn0+NCTqXiy5A7qsyR/yqgf8AhDI22tPPfyem+SXP4Dii4HWXGuaTZjNxqNsh9PMBNUf+Ex0l2K2oubtv+mEDNn9KyIbjTovm03wlcMByHa2WMfXLVa0rxZHdCWe4FlZ2UOVY+fvk3dgFA579KXMM2dP1a51C52f2VdW0AUnzZ8Lz2AHWpoNZ02a5ubaO9hMtsMzBmxs+pPFcePGOs3IW7t1sLfSpLlbYSE+ZKu44EhXIx9Dj6UmiWdlF4uubDxRZxTarK+6C7lGUmHYBfujpxx7daOYRa1HW9T1XWv7P0VZrrTio3XOnjDq3p5jfL2/I1ZbwJdalPaXF7dNamBt4Ama4kY8feZsKOnZa76COOKMJGqqo6KowBUV7J5Nu0gcKVwRk9cckflU6lWMz/hG9PmjCXqyXqqchbl9yA/7gwv6V5lrWmQWPjqTQbe6SDTtTkiNwiY+QE52e2Tx9DXoGp+PPD2nqwN8ssnYRDd+vSvL77xJ4cMcuLK5u7uS4Nw15LJtcv2+70UdhmloJlfVNl347ubOFAIpLyO3VV6BQ23H6V74mF/pXgDeM4LTUDd2uh2Udzv8AMEzAu27rkEmrkvxV8SIVJWGPcNy5iHI9elNMV7Huuec0vDHrxXg6/FrxEp+Y27D3jFXbb4y6mhAnsLeQf7ORRcfMj0vxN4i/seOO0s4vtOq3R2W1uvJz/eb0AqLwz4b/ALH82+vZftWr3XzXFwe3+yvoB+tcVo3xD8M/2vNqV3Y3NvfTgK87OZAB6D+6PpXo+l61pmrxiSwvIpx6K3I/CgC+9tDPgzRI5HQsuSKxr7wrYXeow3zIZZYRtRLhjJGvfhSeD71uh/emtIqnHVj0UdaLIo5iWx1n+2Dc3F3DY6bDyI4xvEoxzvYj5aNM16z1a5njsxNIkX/LcxkRv/ut3qxr/i/SdGBguJzNcY/49bf5nP8AvdlH1rgxrniDxXMthpMf9n2G/DNbIXES98vwPwWmm0S7Ho3Oc/0pRkDrXlVlrbeCNcu7K7u31SFiAJY5s7fqDnDe2a7fw94qt9ejuHRFgETcB5QWK/3iO1X0uTza2Z0Q4qQ8qgPvVeOZHjV0dWVujKcg/SpifkU80FCSdV9AM1GOpNTNtKIeMYqFj2FAClqYeDQeFz6U0d/WgDP1z5tC1BfW2k5/4Ca8Gr3nXgD4e1HJOPs0nT/dNeDGtKfUwq9C8aSlor1zzxKKWikAAV7B4Js/snha2zw0+6Y/ieP0AryFEaR1RRlmIA+te82VutpZQW69Io1T8hiuTFy0SOrCrVsk6dOaOp4FOB+b/PFJySCPTNcB2jThcsTwBk1xXw/BuZNa1I8tc3eAx9Bk/wBa6fXbkWWg31x3WBsH3IwP51heC0/s/wAERXJTG4SzsfXrj+Qpkvco6dNq/iTXNXi/tme1s7WXZGluignJPfHtW0vgqxcg3d3f3Z6nzrlsfkMVS+HcLDRbq8Yc3V0zZ9QOP8a7Lbx1qWkNbGLF4W0OAfu9Mts/3mTcfzOavrFb2sTCNI444+pUABR7+lQavren6KIReyOrTtsjWOMuzH0AFUrHwZZfbZNQuI5kE/zGzMzNHnrl+fmPt0FJ2WwyOy1XUtX1G4ttMsoRZRkKupO5ZD67V43H8cetbWn+HdO02SS4it0e7lOZbh1Bdz/QewwK0Y1EYCqoVRwABgCkvL22sbRri6lSKJRksxxU+ozj/GHg/TrnR72/tLQRX0UZkUwjG8jnBA4NYmredJpNunim/tQyRpNBcRArdRMQCVKdPzIqr4p+Kckm+00ZTGnQzH7x/wAK85RNT16/EcaTXVxIeFUFjS9BXO91T4tXaW6WumpyqhTcSYLuR39B+VcbL4p1e71O3up7qaaSOVXVSSc4OcYro9H+HKy+bJqF2sksCgvZ2jAv9C3QY7gZIrsdN0W10xFNnbQWoI+9Cu+Q/WRufyApN23FZnnOqeE9XN/fz21lJ9hR2dJXIUFDyMZ6nB6Crdh8Ppb2BJm1e02ON2IEeYgfgMZ/GvSmhjedXKeZIVHzP8zZHHU/QfnVXRY2tnv7R8JFbTkKWIUDeNwHPfk0lK+wWOUX4b6cI99xqd84VcnZbKoPty2fb8ajPg6y1bWr5Z7m9iWARqojjRgp28r16DgCuz1a+jtVHzxscgqokX53PCDOcdQTntgUaNpslpYZmIeRg087RESMzHkgAdT2FK7GcfcfDCxWFpY9daIBgo+022ASegBB5P0rYsPhTpJto/Ou5biXaN7QyALn2GM4robaGW5uFu7uPy2UEQWx/wCWKn19XPc/gK0CoJ3dG7MOCPxqg0Md/BegRRpB/ZkDBAF3MvzHHcn1qufBGjwyiazjns5l5V7eZlIrqYpiRtuQXT/np0Zfr61lapr1lo2oJaaiHgSVd0M5GY5B9R0NHLcd0ZWmeLLpddv9GvpJmhsUz9tUDfg45cY5xnPFVvELeMb7Ul03ShFDZzoGW6hfHmr6lzz36CqfhcRXvjPxBcLMsgYAKw5DKT1/QVraTfsniq58MRnZCIRcWjgf6mQDJ/A56f40K99QvdDtC+GNlaAS6tMb2Y8mIZWPPv3b8fyruYreG2hWKGNI41GFRBgAewFQafefbbRJdux8lZE/uODhh+YNXQtWByfjDw5LrGktZ2FpZl5pd7yynYY2/vDA5J6fjXhMiT2lzLbzgxzRMY3Xpgg4Ir6curYXVrLAzOqyKVJRtrDPoR0NfO3jCHTbbxFINLlle3ZRky7i28cNy3J5HX3pwdnYiorq502g+NdRaGz0m1trGNwdiySfKuPoOAf516su8W0IlZfM2/OVGAT3xXzZFJtOc9K9o8A3Nxd+HFdwhjEjBW3kux77s1pLuRBvY67OYIyeMjpUeSSSAKc2QF6fd6UmQPw61JqIFyDzz0NJ5eBwTmn564ppccc9aAM7XF/4p/UPm/5dpP8A0E14Ia9514htA1BASP8AR5On+6a8FatKfUwq9C+aKWivXPPCkpaKANbwxafbfElhDjjzQx+i8/0r20qBk8V5f8OLQy61cXRHEEOAfQsf8Aa9NPXk15uKledux34aNoXBeBgUueeBx0pKF6c1zG5ynxEufJ8LSRKfnnlVAPXvUusD+x/h+8I4MVqsX4kAH+tUfGZF1r/h7TxzvuQ7D2BH+BqT4jTMdFt7JM77q4VAPXH/ANc0yX1NfwlafYfCunRYGWi8xserfN/WrHiPVJdG0K4vYUR5hhYkc43MegA7n2qG61LRtOt00q91FLU+QE2hyHC4xkY6dKPD/hq3sXN65uXZjm3juZTIYFxjv0Y9/TpUtlJHG6Z4rvxPDqWsW73tyMoLVLV18gf3kONpY9/0NddD480iWXyIoNSabGTEtoxYD6V1CjFZfiJtLtNPN/qESloOY3B2vu7AMOazKK83ii3h01rpra4jdsrDFcR+Wzke2cgepNeMeK/Fd/rt2fOkxEPuRoflH0qPxH4nvNbupZJXOxjwB/d7D6VP4V8MpqZbUdS3jTYGAKL96dz0RfrS3Fcg8P8AhSXVYxfXjta6cG2+bty0h/uxr/Ea9H0/SobW1+z20H2K1I+aNG/ey+8jjk/7o4+tXILdmZJpkRWRdsUSfcgT+6o/me9WJZI7aHzpgxUttRE+9I3ZV/qew5qiG+wkMaWse+LZbxxc7+FVPxoadpn3WtuMEZLSZWPd3Kr97B9DimJBJO6zXe0upzHEv3Ivp6n/AGjz9KtUWFzWK7RSMF864kbJwRH+7Xp0wvbjuTWbPDFY6raKI1WC5LOcDq8an8yQ/wClO1zxFp+iRhbp2MrDcsaDJwD1PoKyJfFlnq9ss1qGjlsFMhSUgbtzrwPwFFrBfS7NqSBL3UI0dQUtmEsmOhkI+UfgP6VpGND1UflVWxiMFqoZg0j/ADyN6seTVxAz/dUt9BmmQPWd1UK+ZUH8LHkfQ9R/KpkmSN1Q/MXUvG543AcHjsQeoqs48v8A1rJGP+mjhf5mo5nh+yW0wuYgI7wYK5fdlDuUbQcnofwpNGkW+poMxbqayvFOmprHhC+hKgzWa/aIG7jHUfTGaufboB9yC7l+iBR/48QaJrsJoOsXMkBhjS1YfM4bJII7D6dzUlnielaveaTeG5spjHIeD3DD0I7ius8M+IYrrx22pXzpbvNCI1x93dx37dK4NThzWnolo9/rtnaoMmWdF/DIz+laNXM1dM9cuvFuk+Gde1a0v5XTfIk8aIhYncg3fqP1qlP8WtMXP2WwuJPQyusY/Lk0y78G2fjDxFq2o3F1PFDHcC2jEQGGCKATz75FXrX4W+G7c5dLqY/7U23/ANBxUmmpgy/FHVLgkWtpawL/AHirSEfntFcZ461DVr6/s5dVtI4HEJ8orj50z944JxzXtVv4M8NWKGRNItcqM7phvx/30TXhvjueZvFE9tJfNei1AiWUqFxxkqAOMAnFNbiexhIeOa7j4e6hY2t832+eVNvMCqzbS54OVHXiuDQ11ngq5v7XVw+nWYu52jZfLPYcc/hWvQxW57lLk7R04o9aZC8rQRmeNY5igLqrbgD6ZqXb8o/WpNxCOKbjJHSgscdgKMY60AZ2uAf2Ff5J/wCPeTp/umvAm6V79rOH0PUF6f6PJ/6Ca8Bf7taU+pjV6Gj3oopeteueaJS0UUDPT/h1amLQp7nGDNMcfRRj+ZNdhjj3rH8LWzWnhqxhxgmPe31bn+ta/OevFeRVfNNs9SmrRSHEcUgGaTGTUmMYrMo4K8kN18WbCEcrawk4/wCAk/1pfFrm58YaHarG8hiJnaNRknHOB7/LUPhU/wBp+P8AW9SxlIgY1P1OB+impPMS6+JN/KZ47dLS0KCaTGEYgAHkgdzSJN2xu5da1pbK60ZrMwot1MZijM4z8i8dORn/AIDXWlSK838L+J7PSYL3VNbuLqSa+nylw1udrRL8qYxx69K2Lr4i2EsRbSNPv9TI/iihYIPqcVBojsOB1rxz4meIWvdV/s6F/wBxb8Nju3f/AA/Cu003XdTvnmuby4treOGFpPsUMT7+nBZ2A/IV4neztdX007tlnckk0nroJsLCxk1LULezi+/NIEHtnvXsMFpBBMlpbqBaaePJjH96T+Nz79vz9a4T4cwpJ4ytd2PlV2GfXGP6131g089qszTGIyFnKQxqoBLHPJBP607E9NS8iF2AUZJ4qs8bSarPPOPKhtyYLcSkKMD7z8/3j39AKsQosdxFM8k77HDfPKxHB9M4rIayW2vbqGSNTIsztvIyWViWU5+hFJtoIxT0NFr6zQ83UTeyHf8A+g5pp1GD+BLiT/dix/6ERVUDA46UksghgeVvuopY/gM1PMy/ZxOE8dajZ3l0BDBLHdwHZI7EEMvpgdwTXCyyyQ3Ec0RKPgjcDWnf3eWlnlOXlYnHqSas+HNPt9V121tb1cwsxOBxkgEgVotDNmx4U8Q65c6raWbak5hcgMrBfugdjjNeoG1SQfvXmk/66Ssw/LNeOQI+ieIlVuDbT4/AH/CvaYyHTeCNu3cWJwAPUnsKqSW5EW9hkVnAjARW8YYnjaozUMji71BRGQ1vZ7lDDo8p4Yj2UfL9c0j3T3YMVkzJAeHuhwWHcR//ABX5etTxRJBEscahUUYCjoBUlDxXLfEnWl07R4dDhb/SbkiSfB+6vYVva5rtp4W0/wC13e1rth/o9v3J/vH2rxG91C51fU5b66cvLKxYk0nroNaIYvLn613ngayeyiuvELQmSSP/AEewixzLOwxx9P8AH0rl9A0d9Vum3yCCzgXzLm5YfLEnr9fQV2Ft40sbPVoXi05302yjMVjH5gQjP3pSD1Zv0BqmwS6npuiWI0vSbe0Lh5EXMr/3nPLH8ya0tw9a46z+I+jyqPNtL+L3EO8D8VJrXtPFmi6lvjsbkXFwELCDYUdsdvmAAqTQq+M9f0jTtJuLTUf3rywl0t/m/eY6AkdMketfObu0jlm6nriuv8d+M5/Es0FsI1t4LYndEkgcNJ0zuHBAHA+prjlppESZKgr0H4a6beT30t5b3AgjhCrITHuLgnJUenTrXAovGa9k+Hui2UGk22oRztLdOp8wLJlEJ7bfUDH51p0M46s7iRvnHqAKYSSeelOYZlPpgUnfFJGwhx6dKQk5GKU96buBOOpoEUtYx/Yt/jj/AEeT/wBBNeAP92vf9YBOjXuOvkPj/vk14Aw+WtKfUyq9DSooor1zzQqeztzdXsFuvWWRU/M4qHFSWt3f2eq6a2l20NzfS3SRQRTfdZ24UHkY5x1IFRUlyxbLgrySPd44hFGsan5VAAqQAEY9K838P+NfE154l0yx1Sz0pbO+80LPZyCUEohYgMsjLkHbkHnBHqK9HQ7vr/KvHPUFzyMdqq6jdfY9Nurlj/q4mb8hVkHrxxXM+PLz7H4Su8femxEPxPP8qBMofDi1a38PTXkgw13Mz5PdRx/PNc1a3Wl3kXiWTUFnlnmJeKOFGP3QxBJHQZI6+ldxaKdF8CRZ4eCy3H2Yj/E1g+ELPXZfDJt7G3s1gv1kZ7mdyT82VxtHsKlgkLpPw5vTa28zXlgmY1ZWa2M7AEZ/jOB+Arp4vBjsgW+17VbhB/yzjlEKfkorW8OTmfw9p7v98QKj+zKNp/UGtIuC2Bz9Kkuxh/8ACNadp+mXqafbFJ54GQyM7OzcHAySe9fPLAq7KRgg4NfR+ra/pWiRFtQvooDjhM5c/wDARzXivjbRhp+rfb7TD6df/voJF6DPJX+v0o6kyKfhjURpPiC0vT9yNvnx/dPB/nXr6wLHO6RkGGYmeBhyCrHJA+hJ/AivDrX75Ne56K8Vx4b0/cu6PyF+6cFWAxkHsabdiUuZWJVRR1qKdYp9olVsqMLIn3lHpjuPbtVh7WQ/6phKB1AGGH1FVwvJ3kRqoLOz8BQOpPoKHZoSvFlU2Mh3GF0lAGTtOCPqDzXI+KtbitrWfTo2P2tvkkXBGwd81ua3fltGubwKVsoF3QxuMGd+gdx6Z6L+J9vJ9Q1KW6Z7m8cOSMcADPtxUqOppzuxY8OaR/bni+ytpYi9qkqtPz8oQHJye3/16tX+/SPGqXO1EjNwJwqYwiFunHTA7VZ+Hml2d7NNLPp5kMfzLKznap7DHQ1d+IlvaxGwMTRrOoKtGo529QfzzVPchO5U8bxY1n7XBBJ5MyjEjjaGYDng8+ld5pNxFr+h2d2EIEMYWWzDZQFeN4H8X45Irn9RkGu+B1u5IHh8kJseXA81uh2jOSKoeG/FVh4Y0uT7SJZrsS74o1YKq8Dqev4UN+7qJL3j0mGNpv8AVjIxnPYD1zXO+IPHGm+H42is2S9v+gI5jjP9T+lcBrXj/VtXia2icW1qST5UQ2g/X1/GudtrS4vrlYoY5JpnOAiKWYn6Cp1ZWiJ9R1O81q+e6vJnlkc5yxrX8P8Ahu41bfMzrbWEIzPdy8JGP6n2FbmieB1iulTU1e5vOo0y1YFx/wBdX6Rj9a9R0/w2E8iTUBC3kc29nCMW9v8AQfxN/tH9Kew7XOcg8INquiixtHl0zSgQ0aumZbpv+eko7D0Wsm6+G+uWg/0SWG5T0jlMbH8GyK9XHHWqesa1Z6BpkmoXxkEKYzsXcf8APuaLFWPIB4b1SG5jhuNMljd2CK0lt8pJ/wCmkZFZGuapc6TqE+nWWru6tDsnWCRiik/eTcxyT9K0/H/xCj8RGKy0yFktIm8wzy5DOcdAueB7nn6V527FvrQkS32FyCcAYHpUsac1Gik9auRJWiRm2SwRbmAPSvffDdnFZ+H7CGKNUHkqx2jqSBk/WvCriGW30e7nMNyjqiGKVAVCkuvJPoRkfjWvZPrml654VVvEWoXEF3cQJNAZ3CxPmNmiI3EEBJEzwOSRjjmmhw7nukhAcn6UzIHNPdQZGPPHemtgDpxUFjc9cA03qO9OBOCRigAkcmmBR1bI0a9I4PkPjH+6a8BbpX0FqQ/4ld3xkeQ/B/3TXz8elaU+pjV6GiaKKK9g84KvWT2+nXGj6zeP5dtaa5ZmSTaTtQFmY4HJ4XtVKvRPDnhjTtY8GxQ6rafaIpbg3Cr5jJyAVBypB6Z/OubFStTN8PG8zlPCt9pcvi3wvZWC2YkgkvHl+wm48kh4QFOJ/m3/ACnJHGAnpXsg4BwK5vS/Afh3R9Riv7HTvJuos7JPPkbGQQeCxHQmukHFeaeggAwOTXC/ESXz10nTV+9cXQyPbgf1ruT6964PV8aj8UNMtQMpZxea3scFv8KQmaXj26Fp4SnRDjzGWIfz/pUw0e3h8MafBc3tzbWtrAHnEUmzfxk7sc4znpWR48zd3ui6UuSZ7ncQPTIH+NdswG3aQCOmKljW5ylt4q03w9Yz/Y9Pv5NLeTNmxQqhYj51DMemRnJ9T6Vx+t/ErXdTZobN1sYGOMW/LH/gX+FeheJdGk1vS0slvDaQLIHkwoYED6+lcNFoFklw1vp0dzq94ZDGjw/uoAPVpOp46gECpTG0ciLV5JjJqF2LcnljLl5T/wAB6/mVFeh+ErBtU0uTT20ieXQXXJuLpwJWfsYgBwBz7e55rY0H4dWdpKt5q4hurkcrCibYIvov8R9z+Vd0saqAAMAdAKHqCR4Zrnge/wBEL3NnuvrAHPmIvzx+zr1H1rt/A9/bXfhyGGJ900BIkQ9VySR+Fdw9tE8m8ArJjG9Dg/8A165bxENF8NFdWuYokuCcKYP3csvqCBww+oovpqFrO6NOWJWO4jJ9c8j8ax9YbWli3WEtvcpgh7a7UMGHsf8AGm2fjHRbzT5L1pLi2t42CPJPF8obGcZGcmqN3Jq91fO9lrWk2+nyANE8kbeZjHowArNxtsVc5TxJ4s1C506bS9Q0aKyc4JkXcOAc8Doa4PfbvcJJcxySRqcmIHaMema9ZuvCa6tNFJqfieK4aMYHlmNcD6c1WuPhzockQKatJGRnLLIrg/gBVKTRLjc52D4ijT7UW2maBZW0Y5x8zc+pyeayNa8Y6pr8aw3bRJEpyEijCj9Oa0bnwbpUYaWHxALi3RwsjxWjv5eemT0/Wul0T4W6dqFpHdLJfywypujlk2QqwPQ4G5v5U0KzPLpZ5cBPMIHt3qJImkPCs3ua9K8E+FoW8S6zpWopG0luhTLRKx+9glS3TII5xWT4p8KyeG9UMeGktJSTBI3PHofcVSSbJeiuS6L4CS5hjubieS8DDIg09d2fZpWwi/hk1s3y3PhR7eOewGl6VOdsh0+TdM3+y0zDOe+BgVufC2cy6Ze2rHIikVlB7Bhz/Ku11nQrbXtGn0+5UbJF+VsfcbswpSVmVHVXK3hefQ59MA0RovJHLqvDg/7Wec+5rbkKIhdmVVAySxwBXjOotaeG9MgnmS807xFCzRh7XAScKcbz2wf8isrxj8Spdc05dLt7XES7TLPKcO7eyrwP1oXkO9j0vxt4ztfDOnOIbq3bUnx5UDZY4PcgdPxrxfxL4y1fxO6LfXIFsmCtvCCqE/3j6n61zrSGWUs33j1PU0xATiqsQ3ckLFzk9TT0jJp0cXNXIoCWAqkiWyOKKu58L+CtQu5bW/ntohabwSk5OXX1wO1begfDm2+yxT6jM7zNtcJC2FUdcZ716EE2qFzwBgU722Go9Wcp8RDHH4Cv/MiLQqYN0attyomTgHtx7V5dpniu91zxJp8GoNNP5mtW9zbl5iwthvIaNAeincvTGNgr3kzRW+ZZ5UjjXq7sFA/E1ZUpKVkRwyP8yspyCD0waV+ho4O3N0GnKs4OOvAqIMrHmpHGJHB6ZxTVGAaAELcYwR7UqjC5I5oJ5+lAHNAirqI3aZdKf+eDjj/dr59I4r6E1HjTLokE/uX4/wCAmvnw9K0p9TGr0NDvS0UV7B5wAEnivVLG0muJl0lry5soLS1hKJAwRpSR8zg4zgE4I5Ga860W1+261ZW/USTKD9M5NexXuj6fqSr9stUkZejchgOeMjBxyeOlebmF5KMUevlFWFGcpz6qydk2npqk7Ly+ZX0G7nu7CRrh/NMU7xLcAACZQeGAHGO3GelaeTTYoI7eERQxpHGvRUUKB34Ap/OK44JqKTN8RUhUqynBWTe39fpp2EPYVwXhn/iY+PNd1HkrEPJU/jj+S13F5OtpYT3DHAijZ/yFcf8ADe3I0O5vW/1l3cM2fYcfzzVHP1I7nGofFS0j6pY2xc/XB/qwrt8ZrifCQ+3eMPEWoHnawhU+2T/8SK7fFIaI5oY5oXilRXjcEMrDIIPasK+0y+tbH7HoJgtopDiQHhUHqowcH3roG46U0ck1DRRmJ4ptdNnstLu3uJb2QqhRgpf/AHiwwCD+BrqNwZguQD1x3Nc/dWFncPvmtYZXK7dzICcema5TUPC19Fqkepaffkrb/PHbz5ZVI5Cg5+7ntU83cZ23iPxHZeGtO8+5O+Z+IYV+9If8PevD76/vfE+rNfalJJtL7FSMZPtHGO7H9Op97niTVr++10XGrWMkOxRHL5CNnaDyVLdKsJr/AIctFVdLE8DToYvtV2ATaIeoRVz1Gcnqc1SZLJvDWmT+KvEUdpcRLDpWnfM9vGcooB+VM92Y8k9+a9mLJFHkrx0CivO9D8UeFPCmhRW9nem+kd908kaFWZiPvHdjA7AV0tz428NRW7zrq1pM0a7hHFKGc/QetD1BHQ20IQDIBbqTjvXzTY6BpF0nh2xYXq6hrUBZLgTJ5UchuJYUBj2ZK/u1yd/8RPbFe6WfxB8My2qTSarBAzf8spW+cc9wM18/xeJLy0tLGFdMtVurCB4La8ZJPOjVnd8gb9mQZGwduRx3ANXDQUmdPoENw3gew020GZ9Ruprpx6RRAj+YavWfhze/a/BtshPzWzvAfwOR+hFeM+DfF8fh6W286za5dYjbYPBjjZ2ZtvI5Oe9XW+IbaTYS2Xhu2uLLzJvMlkuJVkY8YwBtwOg/Kpe4Jns8fh6ztvEt1rySOs88QjdMjZxjn68CqniW203VPDt0LqeIQKpZZgwOxl9D69sV4xqXxM8SapZtazXMMcLpsdY4R8475JyefbFcnPcyTqFkYlR91STgfQUrA5HeeDfHWn+GpNQluIp5gyhESID52B65J4FU9e+J+satqAubOSbT0jXEcUcxIHUEnjGefSuHOTVuz0y5vnCW8Ekrn+GNSx/SreurITsrEE11c3U7zzzyyyuctJI5Zj+NIIiUJPUmun8NeELjX714EcQrGu53ZSQOenHf/CtXxD4MTS9V07S7KYzz3IyTJhRuzgfSmBxMUBAJ9jU0NuzMFVSSTgADk13ereEItB8JG4u0B1GSUICrkqo64+v510dt8NdOYWkyXdzEwVWccHcep57UaCszktP+H+t3McMzWyxo7AFZH2sF9SO38/avVdM8O6ZpdosFvaR4BBLOu5mYdyTWoEAI9KkGMZPAouWopDcUHtSZOMgYFIAxbLEY7UDMHWBbw63a3Wpw+bpqQsoJiLrFISOXAHQjAHXnt3q54bjAn1Ga1iMOmzTK9sjRlM/KNzgEfdbjH06CtdANw5qwcBj9ay9l7/MehLH3w3sLdLb6WvfRW0fd376asryk+Y/FMGcVK4zK+f1qJielanniAcHmlC+goAAFOHHFAFbUFzp1yPWJx/46a+ejX0Pfjdp1wvQmJ/5Gvng9BWlPqZVeho0UpFAFeweadV8P7UT+JRKRkQRM/wCJ4H869VPPTrXB/Di02W15eHgu4iU+wGT/ADFd7nIry8TK9Rno4dWghMfypp64pT7CjjHOK5zY53xvd/ZPCN82cF1EY/E1H4dQaV4FtZHwpS1Mp/HLf1rK+JMrzWunaXEfnurgcfoP51p+LnXT/BtxErYCxrCvv2/pQLqyn8NIWGhXN433rm5Zs+w4/nmuxPWsnwnaLZeFdOiVcZhVzn1bk/zrWbJIwaBrYaTSAHJNAGW3ZPHQU/BHWlYZEQT1oEZ8tjwOKlxinFMx/jUuNwuUfs4ZWYjJUYGfeuSufh7o9xe3NzcLK7TchFYKEPqMD+dd0U+T6modmXbNTydh3PANU8JanY2t7fSW0lvZwthfOYbm5wBx1+vSs2XQNVttMi1SS2ZLSUArKHHfp3zXrfxObHhyG3Vsefcqpx3AB/8ArVq6hZw2HhK4hKK8dtZlV3KD0XANPVE2R8+xrLPLiNGZyei8k1YubG7tiDcQsuf4uo/Md+K9I8HeHIn8JxahDarNeNchyrEDzEU42ZPAHU/hWzaeFrHUNYa4/suWCwILPBcRqi7wMAKg5HXOe+MVnKpJTsl/X/APRoYSjPDOpKWuvVaWWia3fNsmvx1t4uN+cgc+pFKwkkfc3Xv717lffDzRL3yvIi+ybDlhCPv+xzVifwLoE9s8KWMcBbgSx/eX6ZzWlzzeVng4gc9qmh02e4YLHG7seyjNe/6f4V0jT7dIY7KGQp/y0ljVnb6nFbUFvFFhYo0QeiqB/KmHKeVad8J55Nhvb6OLIyVjQsR7ZOK9F0Hw/Y+HrI2lmGIJy7ucljjH9OlakQBmz6nNC8k+pNUh2sULXQ9O029nu7aDy5rkZkwxIPOenQVy+pRi4+KGlp1EVuzn24au3kHPB4FcXCxl+KUuBkR2OD7dP8aYmRfEgk6TZQqP9ZcDv7f/AF67WBNsManqqgVxXj1GuLjQ7desl1j9RXcLzjA4o6Atx2KC2eOaDlfenAfLyKBiAe3NH86Xmhht56k0AKn3/wAalLZcj3qOP74qRR+8P1oAY4/fPznFRgZJqTgM+Dnk1GMfjQAvWkPX1pCcE0ZGcd6AIb3iwuC3/PNhj14r54NfQuoqZNPuFU4zEwz6cGvno1pT3MavQ0qUUU+ONpZVjUZZ2Cge5r2Dzj1nwdbfZfDFoCMGXMp/E/4YrfBJbknAqC1iW1tYYEH+rRUA+gxU6rhck/WvEk+aTZ60VZJDs89qOxOaZ0OOaVmIXGKQzgdcLah8TNHtFBK24Ejfhliam+I777GwslPNxcAYI69B/Wo9CT7f8SNXvWzi1j8sZPQkgfyBqTxAft3xB0Ky7Q/vmH0y39KCeh20aCKFI1AAVQoA6AClBpeSe9IeuKChAmGyT1p59qTqQKCcZJoAQcH2qU8RqO5BqINmrDKCV+goAjk4AA9KhPLHaeKml++R1wKixlx2HekBwPxDPn3+hWQGTJcZx68gVueNphbeDtQwcF1CD8SKw9fH234naNbDkQASH8Mt/SrfxNn8rwssXeWdR+QJosTfc0vB9uIvCOmKFKgwhiPckn+tbnTpiq2jwfZ9FsYe8cCL/wCOirmPmwBRYpDMfL157mlCqFxinEEnHSjHtQMXp3pUPBOeMU3gnaSPWnqCQ7/wgGgQtuOpOPWmqOhHrT7fuB3yaUplee1MCOQgN9a4fSG8/wCJWtSAkhIAn6rXckKW46Vw/hECbxR4kmx/y2C/q3+FCE+hJ4n+bxN4bgP/AD9bsflXaKDt6Vw3imUJ428OAAcSZI+rYrug3HAoBbsMgde1IWyMZ60pH0pMc0DHKvAyc0hbJ2gd+tL0FNzhvu/iaAJI0II9SafFkuWPrRHhiCTSxjPfpQMjxy2OtMGRnNc/47sJNV8JXGnRMFlvLi2t0ZugLzxqM+3NfP8AqS6EbdzpjXqTRzBAtyyuJo8H5xtUbCCB8pLfe68GmkK59P46+tJjPNLnAGTzSAdaQEN4f9BnGcDy2/lXz0a+g9QG7TLodP3TDP4GvnutKe5jV6GnWz4WtftfiWyTGQr+YfoozWPXY/Dy1MmrXNyR8sUO3Pux/wAAa9StLlg2cNJXmkejxjP0qRjwKQEDgUDnPpXjnqCDAYGormURo8jZCoC5+g5qRuvA/GsbxXdfZPDd/LnB8kqPqeKAZz/w5geZNW1NutxcbQT6DJP/AKFTtNU33xS1C4IOy1g2rkfReP1rT8FW32XwVZ5yvmI0rEdeSefyxWL4As/tGo6prE8k8lwz+UJJHyXB5JP6Une5KWh6BzjimYNOyewpQD+NMoTAP3u1IcU5VHU80cntQAiLlsd6nYHzAPwpijDj8zUi8uGPPc0AQu2WPuaZjJ5pz9KYSQvHWgDhbEG8+LN9KcYtrcgfkF/qai+JBa6vNG06Nd0ks2ceuSAKk8If6T4y8RXe7OG2A/Vj/hS6sovvidpUB58iEyH2IBI/pTI6HcrhVAA4HFYt1ryWktwJmSKOKfyA7AsWbYG4A9j3PatsLhea8y8ZzgaYhB/115cSD8GCD9BUlN2Oik8Y6fH1unYj+6qj+pp+k6/Brd/9jgeViFMjEzEYX8FHrXj+SxJya7v4YRFtWvpT/DAF/Nv/AK1OxKld2PS0hVVAGQAcAZqwMCFw3fj9aiQdSeTuyKmBHlPnnoKRYxeEZsdBUMkx24A61KwPkE+pqDHPagA39CO1cZ8Pj5kmuXB/5aXeP5/412Mnyxux7KTXJfDpP+JJeS4/1l45+uAKYnuitrG2b4o6PGxJEce7HofmNd7xjpXAysZvi7BgnEUH/sh/xrvV5PNHRAuo4mgnBoyMjHNKx4oGBye1A680gzSjAbNAEkQyadDxREck9gKI+o5/CgDlvHa30vgq9/syOeS9RoJIVgQs+5ZUbIA54xn8K8X1Oy8SajA8KeEZ7NJZvPmFtYTDzZACATuJxjc2AuB8x46V9B3mpWWlwLJeXCRK3TPJP0A5PUdKLS7t76ATWsySxnupzg4zg+h56GkpK/LfU0dCpye1cXy97afeTY5oAwTSjA96CO9MzIL4brC4H/TNv5V88EYr6JuP+PWY9Pkb+VfO7da0p7mNXoafevSvh7beVo1xcEYM0uM+yj/EmvNsV7D4ctzbeGtPjVdpMQc/VjnP613YuVoW7nNhVedzWVvpz3xTtwC+vFMBJOWPFKRkEDrXmneKOeT+VcT8Rrxv7Ejs4wS9xMqgV224CuA8ayfafFWg2MfXzVkI/wCBf/WoFLY6pobaz0W1srpd1uixxyDOBtUZOfbiqHgywjt9La7SMRm8labYOgXOFAFT+J7hrbw/dSgZLARAH1c4/lmuS0vVNV0hTbrIcQMY2jYblBBxiiwN6npucUoIx0rmLTxfGwC31s8RP8acr+XUfrW9bXttdxb7adJQOu08j8KBlkdKQ9etGcjmgDJ+lAD1+8fpTl43ew4pUH7onHtSPny/qaAIW+tQzOFhkfH3VJ/SpTjPaszxHci28O6hKD0hYfmMUAcr8Noy1pql4clprnbnPoM/+zVLow+3/ErVbvqtrEIh9Tgf0NWvh5CYPCUTsu0yyvJ9RnGf0qn4D3T6pr94xyHuAo/8eP8AWn1IXQ7dmwuc8DrXk/i9XktdLiRHY/ZhIQBk5dmb+leoahL5OnXTjgrC5z+FePePJ5R4whsknlSGGCKJlRyoIC55x9aQ5bGcmnXRXP2aQD1Zdo/WvQvhraeRBqMrPGZN6DajqxAAPXB4615qy2inmEMfVuf516b8NI4/7Ivp0jVA8wTgYzhf/r0NsmKVztl+5nB6VMV/0bJzy1M2gjHQCnu2Y024IPeg0GP/AKkDnrVcZ8zAFWmXMS9hUBHzfLx70gK9+fLsrh+yxMT+ANc18OVx4TEh/iuHI/StbxROYPDeoOvXyWH58VX8FwfZfB9gvGXQyHHqxJ/lT6C6mJo4Fz8U9SlJz5MLBefoP613RPfPGa4Dwe4uPHOuzrynIBx6sK75cgYx0oCJIOBTXORxwBS8Z56UhGV6d6Bj1PGacDzyRUanoKcCM4BoAnjHB47GiMY602FydwHYHmpEIxkikBzuqxz2ur2+prazXlukDRGOIBmhYkfOoJ5J6HHYU/RIJ/tF/eSQPbR3UivHbtj5QF5cgdGbuOvHetkkgAL0PJqPJBxk9KhU1zc1ztljW6PsuVXta+uyd9tt+v8Awbuxjr0pMtnAxikz3PNNGSea0OIZcEGB1POVI/Svnhxh2HoelfQ0vMbeuDXz3PnzpOP4jx+NaU92ZVehr28LXNzFAnLSOEH1JxXuSRLFGsY+6ihQPYDFeTeD7Q3fie0GMrGTK3tgf44r1th8uK6MbK8kjLCxtFsMA0h4GaQHBz2pT0zXGdQzk1wC/wDEy+LH95LOMke2Fx/M16AXCIT2AJJrz7wJuvfEWtam2TlggP8AvEn+goRL3R0Xiog2+l2Xe5vkYj/ZXj+prD1tRZeJbpWBENyqykAdOME/mP1rV1NWvviLZWoY+XYWvmOP9sjP/s4qHxdbj7ZYzAfM0ckefXGGH9aED7mPvKNtc5X+FhyDRgK4kjYo46Mhwf0rPn+0LbyeVIEdFLqWXIOOcEe9c/o+vXtxqE0c1rJN52HVY+NgAxxk9OlJuzsXGLkro9AtvEupWmBI63MY7ScN+Y/rW7ZeLNOuCFuC9rIe0g+X/vof1rhyGHUkezUwkjqv5UEnriuksKNEysh5DKcg/jRKMIoJry3T9RnsJ1a3upIVz8yryD/wE8GuxsPEv2nYl4iIx4WVD8r/AIHkGi4zYY9q5Xx7c+R4TuVBwZCqfXn/AOtXTffG4YweQfWuN8dqZ7fS7UsAJ71FPHX/ADmmJ7G9Yw/2b4cggT5jDagA46nb/jWN8O4PL0CeZuTcXLt+A4H8jW9rMy2+j3smcKkLY46cVneBoinhGyJBBbc5455Y/wBKA6mtqQ36W6HrK6R/UFwP5V4n4rn+1eONQkHRZGA/ABa9s1AgJbBUkkCzq7LGmeACfw5xXDw+BVn1G7vr2C5naeQsqh1iCgknnkk0k9Qkmzzg5JzXsfw4h8rwjC5/5bTyNj8Qv9KZB4K05MbdJtDgdZZ5H/Tit+zsZbOKGGJoYIIzkRQRYGO45Jpt3JjGzNHkue+afJwFCgYCjgdqYmcnPWnuAWwO+M0FiyfcQ9sVBke9STtjC9MCoBkYPbNAHP8AjqTy/CV8QcEhV/Mir2gKP+Ec01VI2/Z4+n+6Kw/iRMY/C5UH/WTKpHtya3dKUweH7JSw2x2qZ/75FHQXU5b4fsX1PX2XoZ1x+bV3YXPOf0rgfht89rqj4+/cD+RrvhJkA459KGEdheRjrmnEZA4pAMnJFKcgigY7jOcDPtScfWkbHGOTSj3oAfGcA9aepypJGBg1CvGT7VIpIU59D/KgCMthabjIpSOOaB0oAT2ApOpzincdKQHNADWXKnivnq5/4+pv99un1r6Hk+UE9eOlfO9wd1zK3TLk/rWlPcyq7I9L+HVqPtV5dn+FRGv48n+Qrvz972Peuc8E2QtvDsUpGGnZpD9Og/lXRHk9KqvLmqNjoxtBIMDOc59qTqMml4xSAHOBisTQz9cuvsWhX1wDgpC20n1IxWF8M7PGgRyHrdXLMfpkD+hp3xDvPs3hWVA3zzyLGPp1P8qv6IDovghZiPmtrAycDHzMOP1ajoT1M/w441PxZr+rE5zJ5SewJJ/kFq14wU/ZtOYDlbsfiCrVU8Bx+Xokznlppd5GO3QfXpVrxfMsdtp27/n6BI/4A1PqHQ5ibb5zBW46jHaiO0iu5YrhgBNECoYcH3H070hIZzkZBqzpsQlmliDENw4/rQ1oCepWkU5II5B5qErWjeQFG3DnHBrNuZ47aFpZDwOg7k+g96kdg256jNJtZR8kjqPQHj8qxG8VWwIRLWd5W+6gxzVC48U37TPFb2Cq6csGy5H5YpXQ+Vnc2Ou6nYDaHjmTP3ZAQPzHSpb64vNd1XSLlrNoYrOcSSKrB93PbH0rg7bxJfC3N1cwwSQA4YR5Vl/Otq317Sp4VLXKKp/hk+Vh9D/hST7Da7neeKLtZPC9/wCWsnmFMBShDdfStDwxF5XhfTVIw32ZCfyrjLAG9Vf7L8Qs+TzH5uWH4ZrUtotctrhU/tJjGDypXPFPmDl6na/h1oHSshb+7RkUxCYHqfu4rXQM0e8rxjnnpTvcVgBOKXk9KAOB/Ol6CmAAnfgcmnycSEAYpsY+b3pHIMx6nmgBZcFyOtMPygZp7cu3bmoyQx49KAOF+J0oGlWUGeXn3Y+g/wDr11d3iLR5ePlS3P6LXJePUM2taDbbdwacZ44PzDiun8Rv5Xh3UW/6Ytx9RR0JW7Ob+GCf8SS7fb965PPr8oruFUDpXKfDuHyvCUTMNvmyu/15x/SusxgAA03uOOwvSkz8wFOx8uaQ4BpDFyAaQmnEEiigBF4Uk9cU4ZZWHsaUAeWWPrSKSQ30oAa3KimnOakAz/SkAAz/ADoAbjn0zTsAcCk7+tGd2aAGzDdG6rwSCM187TDErjPRjX0OSBExODgGvniY/vnPT5j/ADrSnuZVeh9B2FqLLTba1H/LKNV/ECp8HFPbgU2obu7momOetAACk80v4/jQ4zEygnNIDzz4gsbzUtH0uNcvJIGK+uSB/Suh8aXS6f4KmVcAzyrEAP7qjcf6Vg7V1T4rd2jsYs/QgY/mal+JFwJ7jR9HQ/M2GYe7sAP0FPsR0bOi8NWhtNAtIWzlYkyPcqCf1NY3jiUNPpVsBlvMeUj2Ax/WurQpDHLkhUQnJPAAAHP6V4v4r8WS3/iN7iyl2xRL5URxwVHU49zzUuVtTWFN1Hyo6AKHUujbcdBnirunsIVkdjl2+XA9MH/GuGg8USj/AI+IFbPVoztP5Vv6XqNvqbbbe6WOUf8ALOU7WP09aamn1CVCpDdHQMkyoFZdyucf4Vxniy3u4mPmgNaKRsVeGDe//wBau2KSWcUau8jq7qgCjkHBOfwxWXq2s2sF79lvBJb3CHaTIuFYdiD6VLRPMo6s85C272J3FpL1mDAIpLp7flTYC0WoSq1vcSo64cOCHA9a7K41zS7VnMbxvcMeVUbSx9SfT3rC8+4vrmVbNWnlkbMskQ4HtuPAA6VDVtEaxlfVlS7W4ljksLceYsZDO56gdQvua2Ps8LQrE6IVxgAisi6XUdDuwJYEZJwNoQkjjtn1p14l/e6WLtbZVgU/Myy/MuDggis3GV7GinG1yrbwQLq80SSuoQHyyh6kV6f4Y1qdPstrqNwJo5z5cM7cOjf3H+vY1wKbIIottqUI5SADLsfUntTQ00FzHJcFjczzKIrdGJ2jI9O9CbuFly6nvsdhLkEBSPpitCKJo1xtx9avQ22EHXp3qcW+fQ1tYwMeaIRxNKxVFXkk9Kg6gc5q74gtGk0iWOMMXYjhfTrXO6Ra3cUSF51MBGVTbk/TPaqQmbMWAwPpUcZDNnpzzTx0cdOKSIfOOOM0xDC27OBjNBHIozntR1oA4HxxI7eK/DsUbEMJQwx2+cD+ldB4yfy/CWosP+ee3P1Irn/EX774laFEQTsVTj8Sf6VrePpPK8H3YH8bIv60dET3J/BUWzwfpo65Qt+bGuhArK8OR+V4a01FHH2ZP1Ga1FJpvca2HZwOaQnPQUMOMA0KoNIYuTRuC5J/Kjbk+v4UpVcZxQAq/wCp/EU6PKhjjtSqMRcjv0pQflb1xQBCWxSkALTSrcH1pxPNAEYUsOSVFNKtnA4X608k54+lN5I9PagCKSLcmN5GOeP5fSvn6Zds0i56MR+tfQrDMZHsa+e7kYuZR6Ow/WtKe5lV2R9FMM96TAxjmgkmmgE9qzNh2B3XinM4CndgKOTSY5FZ3iC7FjoF/cZxshbB9yMD+dAmcj8P0bUdf1zUcZ8yUIp+pJ/oKi1pk1X4rxRDLRWsnb0iX/Gtr4X2y2fhoXjjHmSSXDk+ijA/lXP+CgdQ8Uanfyckrtz/AL7bj+gNUR0SO1m0e1vrSRbtZnW5+aRDO+OeeADgVw2rfCqNg0ukXTAj/ljcd/o3+I/GvS9xKnIxj9aM1DSZtTqSg7xPnrUtAv8ASJfLvraWA54LDKn6EcGqsUYTkHJr6LkhiuFaKaNJImGCjgMD+BrldU+Hej3pL2hksnPaP5kP/AT/AEIrGVJ9GepQx9K/7yNvQ4nR/E8saR2moyO8KtmKcZLwt0B/2hz0rV1e7tJ7WIXwjuFBKl0APyhQQR+v5VVv/hzrVoC1qYbxOwVtjfkeP1rDGk+JrWQ2raPdsrZzG0JdTnjgjj15Bog5rSSJxdLDVVz0ZK/Ymm0LTZ5PKjlaKUjKo/PH0P0qq2g6laYNvJ06GN9prVm0zXZIlkufDF0FjXG6LKkAc9KyotSlhjWKxuHV0ZyYZ8KfugBeeOCM1tzI8mWGf/DEN5aa3c2wjnS4dVORtbNNfUbm10oWKWoGcFzIDuLZyT75xW7LrDW0UZlRCzTsDkbcRjHP15FbUkSNGd6hlAzgjI/WhohKS2ZxGnXMckj/ANp3UqbjkrCuCfq3XH0pNRgtLXzL2xuEnikG0RuGLIfY/wCNbYGkXmwi0YM5CgKhB+7u7HHSo203SmlMK+bu3bMAkZOcdx61PKh89W+up6v4B8QXOr+GbWQyu1xEoSVXXdnHQ+vausTUZQcSxAehBwP1ryXwdY6Rt2wWl+8hdcuLpY8bto4A5/jH6+ldXqV02o6gthMJYbK1PJaXe8pGR0HfIwPqPWh6bFwbe50t7q8MmnTIlxC0xUqERxnOKpQqERQq7QB0rlrG5C+Jhp8UbfZ/LLuA2QHwOp746H8K6rPFEJXVzSpTlBrm66jh/q2b8KdABu/WmN/qcZxkjn/P0qSEfK/+6aszIiATQCPamke3WlAOelAHAXGb34uQYUkW0WWP0U8/mRWh8SCF8JkDq06D69ap6ZmT4s6gc8LAwP8A47UnxQkVdCtos/M04OPXAP8AjT7EdGdVpuF0mxC/88I8Z/3RT572O3eONwxeUkRqqlixAz2pLJQNPtABgCFMA/7oqpfsVvLRgPmWOd8+gCAf1pMvoWmvZAMm2lXjq5VQPzNRHVFUbd9uD/tTg/oM14xda/qFvMYY7ggIAM7RnoO+M1Sk13U5Rhr64I9PNNFmS5o99s55bli4kiKLwQqN/M4/lVvae5rnfAJd/Bti7kszGRiSck/Ma6QmgpPS47nyuvemr9x++Fpx4QDvmlQDZIfakAxhhRn04qPt0qWXlQRzUTdqYCAdKTg9PWl9KQgg80AMJ2g/yr57uv8Aj6mx03t/OvoVhuPJ4NfPl4Nt7OMYxIwx+JrSnuZVdkfRBB7EUhIHfFITzSdWrM2HquTnJ/OuQ+JF2IPCzR5wZpVXHt1rrzkRnk5NeefEJjeapoulx8tJJkj6kAf1pomWxvwZ0X4YyfwyfY0hH+9Jyf61h/DSP/RdRu2GFecKp9cD/wCvWp8RLoWfhWztl4M8zSkf7KjA/Wp/BNh9h8J2Wc75QZj/AMCOf5Yo6C+0dArl8nGFBxTugyTVDUbpoHiCtsjWKSaVgATtUDpn3NclJ4/sduc3AP8Ac34I/JR/OkVc7wUucHn9a8zk+IFuxwltI/8Avs7Z/N/6V6PZWscUCt5caysBvZUA/CgLpkwAPJqc8Ac9qjABOcZp7ndLj0oAbJwQPauV8S+DtN8Qo0joLe8x8txGvJ/3h3H611EvDHJqs55AoauVGTi7o8O1fRdd8LNidt1s5Kq6tuRvbB6fiKij8V36LsdIXGMcqR/Ku+8ebZ9R0PT85824DMPbIH+NbPi7TdMfQ766msbZpUjO2QoAwP1HNQ4PozZV4t+/G55CmsRx7Nliq7GDLtfgELt6EHsKedfJVglnGjNJ5pcMd27Oetdhonw8sNa8N2l6bmeC5lUklcMv3iBwfYetRT/CnUE5t9RtpB/tqyH+tS1NHRB4SXS33lXQPE08do9vbWVmo4DGbfJnp0Gcfwj8q15ta1uaAoboBT/BFGEA7duT+dUtM8Aa7p975jx2skeCDib8uoro18GXd2oF7qAt4z1jtVyT9WP+Fc8oVZO3Q7qdXBUo82l/vKngFEl1XUJDIHeJFT72ScnJP6V6AQFXgVl6JoOn6BbGGxi27jl5GOXc+5rTY8V1U4ckUjysXWVaq5rYftzCPYjFCtiNgMdMU8nEAB9aiHCEetWcxE2eCDgDtTwQFz+lJIMFR2zS/wAS/WgDhPDCh/iH4glySyAqD9WH+FR/Ewhk0tMZLSnjPXpTvA7CTxJ4juCRzKB/483+FQ/EE+bq+hRkZzL0/wCBAU+qI+yzvwAFUY7dKydVbbcZHHl2Nw3/AKDWxgljisLXX2/b26CPS5Dn6sf8Kllnh19zey+zYqDHNXp47WS4kf8AtC25cnCh2PX2U0LDaZ5uJ2H/AEztmP8A6ERV3RjZntvgddvgvS8jrEx/8fNdBxnI6Vh+DZI5fCGniNZFRIio8xQGOGIzgE1uCpNlsSf8sfxpo/1T9hilf/VjnvR/yyfHWgBm7KY9KjPvTgMg/rTTjFACZ+akbnmgEE4oz1zQA0ckeor5/wBS/wCQnd8Y/fPx/wACNfQQ4FfPupDGqXY6nzn/APQjWlPcyq7H0IRQaaxO7I4prOV7cVBsSDnqeBXnk5/tb4rxBTmOyXcf+Aj/ABNehF1WIueABk1wvw4g/tPxJq1+43GSVU/Aksf5ChEvdFb4ozGfW7TTEPMUMcWP9pjk13tvCtraQwIPliRUH0AxXmWpznWviahByr3xI/3UP/2Jr1Hvmhijq2znPE1xssNVfOAtskAPvI/P6AV4xI252b1Oa9U8a3OzQZ+xmvG/ERrt/wDQq8s2FjhefpTiRPcuaDbfbdf0+2IyJLhFP03DP6V9BsQAOPvEmvG/AGmzS+LLWZ4JBHCrybihAztIHP1NeyP1x6CiRUNh0fLYxxRFzMM9zmkjOQT3waVON3PapNCGQjOetRMueac7Y6DJoI4HtzQBwmuKLn4naRAeREocj6Zb+laXj6fy/Cc4zy7qo/z+FZtgp1D4o39yc7bSIqM+uAv9TUvxEYyWOm2SnBnuRnH4D+tPsR0Z03h+1+x6BYQEYKwJke+MmtM59aaoCqFHRRgUpPNIpC9KUdcHFN3HIOO9IASSSck0DJMflSZxSZyec0cdqAJmOYxkc5NMkYLGOuSfSpcfIg9qbNnC46c0CK3zO4OCAKczbAzdMDNOPBNV7o7LWVj0WNmP4CgDhfhshkuNauSOGlUA++WNJ4xX7R410GBWzhk/D56l+GIJ0rUHzgNc/wBKi187/iZoyAH5Qp/Umq6kfZPQQcNXM+KcrZ67KDwumKn/AH0z10RfPQYFcr4tl2aDr4zz5cEf5/8A66lls8f06QRQSZ7yGra3PPOKzbc/u2/3z/Op06mnZGVz3jwh8vhLTjjrFu492Nbi5HWsfw4uzwvpaDg/Zoz/ACNa2PmyRSNVsSMfkU/1pVYGNsjimuP3K/Wmg/uXIPOcUDGuxJOOBTCfekdskeg4o9O2aBC5APFBPPPPoKaOtDHHPoetACjk/jXgGq/8he9z189//QjXvwPP414FrAxrV8OeLiT/ANCNaU9zKrsfQDgZBphyeSOPepG7gdfamMdoyfwrNmpm+IbsWXh2+nZtpEJC/U8D+dZfw3jGleC7vVXGDsluMn2GB/6Cai+IV0IPCrQgfPPIqAfrV3WidH+FX2cYWScRWwAGM9M/yNMl73OJ8DRLd+MTNKpY28DOD2DEgZ/U16mxCkFsYByfwrz/AOGUG6TVrsjq6RA/mf8ACu31FitjOR94oUX6t8o/nQ9wjseZfEbVbm1TR7W2cRyPAZXyobmRwe9YpZlGGv71vXExUfkuKk+Ik4ufGzQp9y32RKPQKuf51l+YzMB60rXJk7HcfD63SXxC0w8xmihJ3PIzdSB3NenSsNzDvXB/DCDEN/dEdXVB+AJ/qK7k/ePOc0WsVHYkU7YyT36Cmu+2JjnqcUuPlH1qObhEHTmgsj5JFPxmmrlhmmXEoit5JCcBFLE/QUAcV4NPn+I/EV1nOZgoP/Am/wAKTxOftvjXw/YgZCuJD+ef5LU3w6gxo13eNy1zdMfwH/6zURBu/iupx8trbEn2+XH82p9SOh3i/dyfXOKRsdSenvSA4T8KTAIOc80ixwwSOOKQZPpSj0Ao6MQeKBD+i/WkXJakyaeo+brQA9+Dz6ClPCrTZCWcjp2FLIAfpigZC3LE9s1R1uQxaHfyD+G3fp9K0Dj/APVWL4rl8nwpqbcf6gj8+KBGL8NINnhhpCD+8uHb8gBx+VZ18puPi3aKSAI0B69ghNbXw8j8vwdbn++7t/49j+lYdmhvPi1cSdRbqx/Jdv8AWn1I+yj0LZkYIx9a5fxBYzapZ6lZxCVWuJoyreSxAVAB1x6g11R4btjFG3I60rFnn+n+A9It7SJZtNv7mbHzsZlRWPcgbsgVqQeEtJQZTw5bj0M90zH9M11wAUZpAAOKLsXKijBHeoIY1W2gt48L5cQJ+UDAAzjHar5bAz3pAfShmxx2oGSFsog+pqNv9Uf95cD8f/10/wCUCMfWmspERPuKBkbc54Oeppeg/lS468GkIwMk9KYhOAfemsORyDzmpAO1McfNtXr1oAVFweM9a8F1zjXtQ/6+JP8A0I171G2cDvXg2vDGv6gP+nmT/wBCNXT3Mqux/9k=", "path": "images/4pts_ADE_train_00019243.jpg" }
depth_point_10
images/4pts_ADE_train_00010603.jpg
ADE_train_00010603.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 213 y = 165),Point B is located at (x = 132 y = 134),Point C is located at (x = 257 y = 134),Point D is located at (x = 40 y = 156).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_50><DEPTH_15><DEPTH_60><DEPTH_60><DEPTH_38><DEPTH_74><DEPTH_72><DEPTH_64><DEPTH_69><DEPTH_64><DEPTH_66><DEPTH_30><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_53><DEPTH_67><DEPTH_67><DEPTH_74><DEPTH_76><DEPTH_81><DEPTH_11><DEPTH_5><DEPTH_5><DEPTH_59><DEPTH_31><DEPTH_76><DEPTH_72><DEPTH_59><DEPTH_72><DEPTH_50><DEPTH_43><DEPTH_67><DEPTH_67><DEPTH_59><DEPTH_17><DEPTH_61><DEPTH_8><DEPTH_59><DEPTH_44><DEPTH_3><DEPTH_11><DEPTH_5><DEPTH_43><DEPTH_35><DEPTH_30><DEPTH_84><DEPTH_51><DEPTH_30><DEPTH_69><DEPTH_36><DEPTH_35><DEPTH_22><DEPTH_2><DEPTH_75><DEPTH_52><DEPTH_46><DEPTH_44><DEPTH_83><DEPTH_15><DEPTH_57><DEPTH_75><DEPTH_30><DEPTH_66><DEPTH_33><DEPTH_64><DEPTH_98><DEPTH_24><DEPTH_17><DEPTH_81><DEPTH_98><DEPTH_67><DEPTH_3><DEPTH_78><DEPTH_14><DEPTH_55><DEPTH_0><DEPTH_23><DEPTH_14><DEPTH_15><DEPTH_8><DEPTH_11><DEPTH_31><DEPTH_36><DEPTH_2><DEPTH_12><DEPTH_8><DEPTH_119><DEPTH_10><DEPTH_37><DEPTH_32><DEPTH_22><DEPTH_69><DEPTH_3><DEPTH_45><DEPTH_9><DEPTH_29><DEPTH_55><DEPTH_56><DEPTH_26><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
4
[ "B", "D", "C", "A" ]
<DEPTH_START><DEPTH_50><DEPTH_15><DEPTH_60><DEPTH_60><DEPTH_38><DEPTH_74><DEPTH_72><DEPTH_64><DEPTH_69><DEPTH_64><DEPTH_66><DEPTH_30><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_53><DEPTH_67><DEPTH_67><DEPTH_74><DEPTH_76><DEPTH_81><DEPTH_11><DEPTH_5><DEPTH_5><DEPTH_59><DEPTH_31><DEPTH_76><DEPTH_72><DEPTH_59><DEPTH_72><DEPTH_50><DEPTH_43><DEPTH_67><DEPTH_67><DEPTH_59><DEPTH_17><DEPTH_61><DEPTH_8><DEPTH_59><DEPTH_44><DEPTH_3><DEPTH_11><DEPTH_5><DEPTH_43><DEPTH_35><DEPTH_30><DEPTH_84><DEPTH_51><DEPTH_30><DEPTH_69><DEPTH_36><DEPTH_35><DEPTH_22><DEPTH_2><DEPTH_75><DEPTH_52><DEPTH_46><DEPTH_44><DEPTH_83><DEPTH_15><DEPTH_57><DEPTH_75><DEPTH_30><DEPTH_66><DEPTH_33><DEPTH_64><DEPTH_98><DEPTH_24><DEPTH_17><DEPTH_81><DEPTH_98><DEPTH_67><DEPTH_3><DEPTH_78><DEPTH_14><DEPTH_55><DEPTH_0><DEPTH_23><DEPTH_14><DEPTH_15><DEPTH_8><DEPTH_11><DEPTH_31><DEPTH_36><DEPTH_2><DEPTH_12><DEPTH_8><DEPTH_119><DEPTH_10><DEPTH_37><DEPTH_32><DEPTH_22><DEPTH_69><DEPTH_3><DEPTH_45><DEPTH_9><DEPTH_29><DEPTH_55><DEPTH_56><DEPTH_26><DEPTH_END>
213
165
132
134
257
134
40
156
null
null
96
2
44
23
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD0bxV/yLN//wBcmrlbwYth/wBd5v8A0WBXV+KXMfhy9ZTgiM4yK5e+dVjhViAXuZlHudv/AOuuE6UYWt2zi8vrgkeW86DGec7f/rVjFcdK6TxJxaXTY6XSfyNc/byQJcxtcxyPAD86xnBriqu2qOqBFjDc1GeRjNat++jmLNhJc+YT9yRMAD61lNz3rOnLmV7WG1YcMeuau2vIwR1b/P8AOs5WA7CtGyO5o+PU/wCfyrUlmlO+2EmsaRskk9B+VaF7JiPbjgnrWSzZByf60r6jjsMYjHYComzkZzg9sVLtyO/8sUqRlidqsT3xTuMhCgnaep7dKXkDGD+Iq0LOZs/uXP8AvCka3mTlomVQPTj86TkFitgdMAjuDnIpyk47DPTjrU2CxHzfrTSp28Zxn1zii+oDARnOV9iR0p6j5jtQHI5we9MORz+BBFOXr93g9SD0NFwHKw4OCCOCKkC5BIOT6HtUY+Y5DgkjgGnOxXB2kMeKQEpYg7lBDEdBUykbUaQfN0yDUKE+UpfB9/SnH5ImBGUz2PSgCbDRq+QGUdPpUcSs06sAAF6fSnxFiXJwVx0zTx82x0GMcEe1FykmycssgaM/eFPCrsSN+oXIP41EFHmFwfmxg1NzIUCj+Hlv8KSblsVpBXZKJcHC8k9j2qeKP+OQ5PT6VCmyJfelMnylnYIg6kmtYJRMJzcty152flQe1RNOqOUCmaYj7gPA/wB49hVOS7wuAzRRkdcfvHHsOwqm91lDHGoSPOSo5z9T3rRakF2a4XeXeRZph04+RPoO/wBTVJ5Gkcs78nqTyTUIkycEkfQUm7JyFNWBKkLyHCgnJ4xUstvcWoHmRmPcMru4JHtU2m65eaP5gtVgzIclpI9x/PPSo77UrzUpBNeXHmFfugDAX6AVCc+bbQCqzEmlDEHOTUfmbj90EepJp645I5P1rVBcC4PGwn8KQEZ+4fehpjnn8gap3OoRQDMjBT1A7n8KpE3LhkXHQCq1xeQW67pJAo7Anr+HesG51yaUlYBsX1PJ/wDrVmsXlcu7FiepJzVWZDkbFxr244t4+f7zj+lZ7zTXD75WZm9WNQBcHPFSocGmTufQ/iz/AJFq9/3MfqK5q+RZY4Qw+7dTOPqHGK6Txb/yLd3x2A/UVgXY/wBSMf8ALafP/f3FR0GjN8RKWsb1e/nD+TVyKsWiUn0rrtflVFm3HhrpU/MPXG3EFxYyLDOiruXehVs5Uk4P6VySi2zpi7Dt5HT9ajZz61F5lJv59alRK5iYECtXTx0z2WscOTWzZj5XPXoKGJhevlwPQVVihed8KucfkKtpAbu4YnhQf0rQWNY1wi4X0qGykVIbBEGZMO3pjirIXHAGAOwp+KUj2qN9wuNA7U8LihVIzxTxn8qTFchltIJeGjGf7w4NZ9zp7QKWX54+5xyPrWwKdjIpXaHc5hkYdTx+dMIUnkc+3NbF7Yj5pYFPA5Qf0rKYEHPc9xWidxjMApkDIHIIHNSIXKEnDDIOD1FRrnIIwozxUo+b+LY/T61TAeowrhMMDg4/nT0GMt1O3oe9NVSMgkhyODUsZLsueGA/OobsXGLYqK3m+YvRhyKlQiMAjjnpTc7Xwgy2OlPSML88hBb+VKMXLfYcpqGi3JI0Mh3MNq+nrUzyBdqp1wKrGUkZPyqOpNNnuBHhRkfKM4+8eP0roitLI5m23dkxkVCSfmfHIzwPqe1VJrvneTuYdCRwv+6P6mq8kxcAAYA5x2/+vSRxSXDbY0d2xnCrmrtbckRpWkyfXuaAjADpk+9LNbT277Z1MbYzhhgkVGpOewFUtdgJAwBOQDTg7t2GPeodwB5IJpfMAXGRV2FckK85BI/GjY2M7+fU1UkvUTPPTue1VW1ORxiAbz/ePC//AF/wqkribNN9+P8AWZ9ao3Opx2gxJLucfwLyarTsxspZLi5dpGXEaodqg5/XjNYgUdsfWq5LbkORduNZuZ/ljAiX1HLfnVAhi2WJJ7knJNP6Ue/WmidxFHtTu3tRmkyeOaYB36UL1oPXFA680wPovxapbw7cgDJO3A9TuGBXOGVbiOzmX7skkrAH3mrqPEgB0kgnAMkY/wDHhXNsu1bT08yT/wBKMVn0GivcQq1xdnbu3XCEg8jIJFct4sBF/bkcYi2/qa7Jhm4uB/02X/0I1x/iuBjdCbfwFjXbj/eOa53vY2RmtqkTWX2dtJsN+3aJlUq49+D1rOJOacFIpNpx71EYqOxVxyElwPfFbtp/qBjqzVhxL+9XjvW/Zr80SjsMn/P1pTGjQjRY0VQOB+tPxSge1KBzWBbY3jFKOaXaCelKBgdKZIu2lA56U4DvSgc1ICAdKeF460qrx607bnpUsCPHP5VkanZqrGVBhW647GtnbkkUyWNXVkYfKRgijbUpM5TG089PT1qQDID9RkfhSTxNDO0bfwnj/GpYMAZYfh61o3poaRVyVFz97kZ4NSRxlhiPgDq1PjgL/NINq/3f8aV5gFITAUfxdBRGPVinV6RA7IeF5c/nUTyAEliGYdugX6/5zUMk3l5xkHv6n/D+dVGkLn2HQKK1SMCw9xyCDyP4vT6DtUczEsBgY2r1+lLLZXcMQmltZ0jPR3jIX8yKimYggZP3V/kK0i1bQTDJx3qW2vbqzkZrW6lgLD5jG5UmqhY+v61GzHGMVdk1YRZmuZJpC80ryO3VnYkn86gM23/Gq0kqINzOFH86arySrlF2L/ebr+VVGPREtkr3IUElsD34qAzSuMqpwTjc3FL5axndI3Pq3JpJJRJHuXOMjrW8afclsYY8nMh3fXp+VOJVRnP0z1qO5fEzovCqxAxVd5SqkZwe1XoiRLiYyn2TgD3quq1I+0YRecDk+ppmecVLYAw4pg4pxORjPNN70hCmjmkzxTS3btQAuSDTlPNNFKn3qBn0h4kGdLAz/wAtov8A0MVzM8ojXTVKH95Ky59D54PP5V0/iIE6cg7meL/0MVzzqSLADjkn/wAjrU9BIUjF3MP+my/+htXOeJLd51cJ1URkD1610RcC9kB4zMoH/fTVlaiu+bGe0fT6ZrnktWbJ6I5uKK7gtmhNjbSg/wATxBmH4g5qi1nOnDQyD/gBrrXiG4Uzbg1grJ6F3ZysFtI04AVs+mK6mGzENuoIHm/xY/lUo456Zqpq7FdKnIJBwOQcdxTeoX1LO3HUfnSgVy6/ak4W4kGP+mhqVJ9QB+W5l/Fs/wA6jl8ytTowhp+3mudF/qSDmXP1RT/SlGs364ykbfWM/wBDRyiOixkYxT9vHPFc8viCdR80EZP0YVKPEhH3rQH6Sf8A1qlwkBvKPzpRWKniSHI3W0o+jA/4VMviGxYcrMv/AAEf41LjLsBo5+c/hQyselUV1iwLEmVhn1Q1KuraeePtcY+uR/ShXC5laim+8BxgrweOtOjWOBQxIJ7Y6/hWvqNn58CyQ4LqOw+8KwJBJEGAVt2eSRVofM2iae5BHzYAH8Pb8aozXLMflzx3H9PSmsm45Y5/pUkcdsY2815lf+EIikfmSKq6SFYqEE9aNrcYNO3rvKRgyyDqq9vqeg/GpY7PzOZzuGeI1+7+Pc/y9qv1EC3N9qMqwiWe725xvmJVSB6k4z9K1/8AhHLqSNHLRfMi8bjxwPak09At1GoUABWwAMY4NdYuPJTH90fyrSMVbQhtpnIP4buh2jP/AAP/AOtXOXwnhnkt1VVKEgnOTmvUSvFeaa5/yFboY4MrfzraMUQ2zM2IpySWc9SeT+dWXYxWyBernn24qvgfKB696nuRhYM+h/pW62EVm5/GplXFtwMfNTHGRz681KSfIUE/xCmgK8p/fP65NUZHzJx61cuWzK59zjH1qgOST2zSYmP52ntUeKkPTrUffGKkBR2opBjqaDQAE8U2jNKP60wJYk3Mo7mmD71XbCEyXMAHdwP1qtLEUuXUjBViD+dQpe9YuUfdTPpDXhmxjGOs8f8A6EKwFXIsPXH/ALWFb3iA4tIPe5iH/j4rCRspp57bF/8ARq0r6GRnXMJXUDIGYEXqPjqOSykfTvVe7UfaicckRjPr8pq/dAfaT6m6X9Gaqt2v+kHHX5P/AECs52saRY3AzUDICelWQDk1Eww9cVzYTZ0qpqShrKRWUMOOD9avEAVXuUDwsD3xVN6CMEREnp1qZIuM45q4tscipltTzgVm2WjPMXPSmtASe1agtT3FH2MntSVxmDPEcGqTw+1dBcWZDHrVCW0bpirUrCMiSEsmA5Q5znn+lZFzeyxXDKZJSQeSDwfwrpXgIHSucmtnk1RoguWZhgV0UmnuRJaDf7RfC4klH1QH+lbFvcxXtsrx24jdPlkILEOfXB6fnSHwtfqFJtZPwIP8qs2+m3GnxtHPE8bM2QHGMinKULaErc7eNsQxjvtH8qaxyaVRiNB7D+VB64rlLIyoPUA/hQ0CNE2UU/KewqQClcYic/7J/lQBzjW/lnYqqqjso4qVUAtB3+c/yFSyrumwacUAtxjpvP8AIU4vUprQk0yzuLu/jhtiBKythiMheOp9q7G70yaxtrcuYmQRqhKDHzDqT9ah0DTms7YuyHzpMEkdR6CukaMz2pjm5LDBx/SumnLSxlNHKEV5lrn/ACFbgesjf+hGvUp4WglaNxyD6frXlutAnVJz/tv/AOhGt4kFDGQOO9S3ahRB9D/So16DjuKnvDzDj0P9K1WwFfaCwz0749Ke4Pkr/vjrSr7gmnPxCB6NmrQGZdNmR/qarD2q5JH+4Mh7nANVMgVLJA8JUfX61YaM+Xux2BqACpG1YT86QnrQfSmGTHagQ78KUHkVCZW9hTWYkcn9adhHQaXdW1tJBLPMiKr5bJ/pUGuXlnPrl5NZvvgklLIwUjgnPesGp4/nX3X+VQqSU+e5o6rlHlsfS/igSnTohCyiX7RFsLDIzvHX2rDRjs0wZ6xJ/wCjFroPEX/Hvacf8vcP/oQrmsuG0YDbsMKbic5+8pGPxpdDJDrjBnDYH/H0P5mqc5zdFe6+X/6BVubmVf8Ar6/xqpOf9Mb0yn/oFZz2LjuLnkg1EetSH7596ibg1xWNxxHtTCNxwakPShFLNgDPsKYhI4RVuKAU6OMj+Bv++TVlF5HBHttNPlC5ALYYxjFPFsPStBYwccU8w+1HLYLmLNZh+cVSksR1xXSNBwage3GBxQ4iucvJp4OeP0rnoLEN4wgjbIBkUZ6Y6V6C9tz061zItiPGGQOjA/oKI+6PdHczRw2UHlR4mCFcZ67sjP1HFcd4rhEV3blUKh4y2Oe7H1rrPOEbIViRjuUn94cAjHUYrmfGM8lxqUDSqAwixwcjqanroYU17xYXGxfpUQkVpmXGQuFLZGN2M49enNPZlVBkgVqi5tm0swCI525DY7+tRzpOzOyNOUldGWOBxRJ/qX5/hP8AKnD36imS/wCok/3T/Knci1jJkOJDUqOY4UdSNyyEjIzzgVBKS0p24OT1NKZdsCrIVUKTyDjP5/SlHct7GzZ61dTXCxFIxkE7lyDwPrWuXlYZMjE+uTXJ2N1FHdIwDMORlR6j1NdX/CPpXVCKa1M5VJIa7u+3e7NjgZrzDVxm/mOerv8Azr088mvMtVUG6kOerP8AzrojZGV76lNVBx9RTr0YMX+7TrdFkUgABsggn0HX/PtVmSLzoUIXJRipAxnHc1TqpaMhzUdzPThQelLteULHGu52OFHqakWINcCFHyM4yB374qxaWxGt2luhPzTqqlh/tVpGSbsO6ZYv/ButWGkxTXtutrGOvmOCxPpgZ/XFczLbCM8sT+GK93+IT48NqCeS4x+VeIXPJNazilG4k7oplm27cnA4xUeAaewOaZjB+tYjGtgCoG9asEcckVWY4JpoRE31pxHy01uOvFOMkYj+8OfQ5piIsVNb5ElV2lXHGfyqS2kLy4UAZ/vHH+NUyUfT/iH/AFFn/wBfUX8655BzpPr9ni/mtdB4i+5Y4/5+k/rXPKSDpP8A17w/zWsHsNDJF/eqck7rpm5PTg8VXuFH2tv99f8A0CpycmLPe4b+RqvNk37gj+Ncc/7NRLZlrcQj5jUZBzUp+8ajzzxXEbC9asWUZlu1VTtJzzjNQVb0xA9+isARg8H6VcF7yTE9jYSxcY/eL/3x/wDXoCvHdJC2wgqWyBg8Ef41cW2iGMRKP0qqP+PqDOf9Uf8A0IV0ygkjNMsJGCfephF7U2NuasKRisrAQPGOmKrugHXA96uuRivMvHPiuJpJdKiYoqMPMlJKgsM5HuOn4inYcVdndtGOhrmpUSHxHPK5AC45PbgVZ8L+IYdW0hpZG2fZ9sbSO+Q3HB3HqSc/pWFr99Mmozi32GTIx8obB6dPyrOqnay3KjJRlaR16vpinbbuTNKwLs5J3HOfw/8A1Cue8VKRqEIP/PL+prjdR8U6/aav/Z1npcuqSLCJ2W3h5VCcAkKmeCQMg45HeptN8UXniW+uYr7TmsbizKI8bE5yd3UEAg8VnTw1WEeaeq7lSdPntA7Pb91uCR0yAf51N58wGA+B7ACmHGKTqazsi1JpaMdksSWJJPrUcuBE+WCggjJ7VIBVLVl3WJQgEOyqwPcEiiwrmFJdRrIFe6+bP3U4P6c0u/nMNrK5/vMuP1arNuqW7ssVsFPsAP5VKxmb+FV/U/0qotXH0EsLe6uZomYwpFu+deS3XGB2rr+1c5pIb5A3JLdf+BV0ZHyivRcVGKsjnbbYzjIrzXUBvuJWAztLEgd+TXpTcEcV5ffuVneRcgBjnjlTn9fwqL2E2VmmaOaFlwsYYA7W5BHfJ9qsecrTq4J80ITwuVxngj8Kyo7pWWXdtYn5QAoPOeoOfeoraaSV/MaQcZQR92x/D7cdPpUum2ccrtnX2qt9r80+SoyQMnBIz19utSWFhHb63b3plVPLuEcIw4cbs5yOB/n61TtgZIDb2+I3CsuVb+HOCMdj7e9TNI50+NZbnzXBMTqBjYoAC5Y8k49OOB61MG4sISaeh13xH8R6U1nHaJqds0itlkSQMR+VeP3Or2G44m3f7oNZzarqU9k2pjRbk2S/K1yFby8jjltuM9BUlnOt5apOYlG8ng4bHJHp7V6EnK3vHTF9EP8A7RtnPEqD6tTvtMLH5ZU/Mf41p2GnwXN3CrW0TKeoKDn5TVjUNDs0bixhH+7x/WueVSKdjWMJNXRillYAhy34iqs6/Oc5AABxk1ak0q0JIW3Kkemay7uyEU5SMttA5AbNaRsyXddBrsucBR+VGCRU8Vm5Aztwe+6rFxZva4SRV3MARtYHqM1XMibMz2XoO9LDlXyKluCqYGOcVA0wXhetUiT6p8QdLL/r4B/IE1z5/wBbpQ/6d4P/AGWt/wAQci0/66k/+ONWXHZpKmnzfaFDpBD+779FNc0mkikZoPyw/wDXd/8A0E1DN/x/Sf8AXUf+g1Ymge1FtHLje0rnAOf4DUU6/wCluf8Apr/Sok9LopbkZJ3Goh97mpCPmIqPbz71yWNiQcir+kr/AMTFPo38qoqK0NI/5CC5/utWlP4kS9jpV7VQH/H1D/1x/wDZhV9aoAgXUX/XD+orrnsZIlzii2mea/aHjy1UZ9c1Qu9QhtVJZqm0N/Pmefn5yCKypWlOxUk7GpqcS29g8yORgdzXjaeF/wC2nGoXF8sEL3XkZVd7Fj0GO2Tjk4r2nWoPtWhXcI5YxMR9RyP5V4tpupmwl1GxnsZbiCXy9wikCMrqdysCQexrSqlGdwpvQxrNJbZ3tMkIl2H2lsc9Pzr03S/DyN4hvJrkCWKTaYwh2kZJH4dK87hSTVNZubgbIVedpGVhwpByV/8Ar13+h6xHd3skDA+WF+fkjgZ7/jWEpJPUdVrQ43xlDpcfifU7IlfIm8PRxxxSXcdo7sL5G2+ZICu4BCehyFP1qjoU1rc+KtXazlaW3WKyjQtIshXZDtKb1AD7SCu4fe25711Pi74c6d4gv/7QlvJk8mNIQsbY4JLHO5Tz8x78/wA8fQ/DFl4bu5EtJp5fP2lvNIOMZxjAHrVuvCVLkW5jSvz6nY96Dx3oPHOaQ8+1cB2C5yeKranzbxDHWVP/AEIVaFVNSOI4R6zJ/OmhFNBmeT0yasbMjpUUPM8n1/rVwLlelOEdSmyOwGJYx/tf+zGug6rxWHaYW4T6/wBTW2P9WM+ncV6M9o+hyv4iPcC30NeX3Sq7uWUuQxKqDjJycfhXpynAOQeprzC8jWZghKjceM9M5rO2jE37piiWSAvayoAFG4bsDGeck/T881IbJbiSJ0mWRWQswUgBSGwMAYyMEZA96dcWvnMsZkw4znkLj0/keKq6Uhiu4xJkRs+3Lcrgjrn2PP51olpdHO4PdHS6POs7QeZHuUH7sZ8sYxg4A6ev+c1M9kLqQpNN5YdzhghOG9Dk5wP5YqnZCO3vQ+4OrE+afNGAQMcHjqMenatSfdKkZlR13YVT/eIAbJPcY/HOKjl10FFNSsjz68Y3Edvqdnq9rbWkekLamLzkMquIdkkXlZ3fO+5twGPn3ZyDUmkWjroFlOSpWXftweQQ5BB9O350g8JaeXx51zjp99c/+g1ftrUWVpHaozFI843EZ5JP9a65yTWhvGDTOi0G0LXcRx7/APjpqxrcZjkORgCr3hiNXu4+nyj/ANlp/jC32WplHHNc1Wmm7nVCVtDiobF7u9dI2VGJbBI9KyLlFWb5R1XJ9667SEVNUMoUZZuG9B37VxmtStb3QESbsg5GORVU3d2M5s0rG3jMsW6V1TdyQO2R1pdXtlhm3x/cYKQdxPX61Fahn2E7c443Dgcd88e39ata5EY7YuCQ8cW0bUJyevPpwPcf01Ubkt6HO3r/ADL7VFEEL5bGcVVLXczAFXY9hsqzbpKDtlVlbOcMMcVotDG59ZaseEArDljUsspAL9mxyMVU8TeNLKxSFo4Jpt5IB4UDjPeuQn8bahdFVt7eCFNoxkF2/Pp+lec6ikrx1R0qnKOjR1EsQXy0UkCPcV56HGKZdFlvpPmZQJOg71xst5qV8wEl3Kc9kOwfpitKxtjCfMkd5JT1d2LH9ayc9LF8li7rd1LaaHqV1A+2aG1kkjbAOGCkg4PHWvObjVvF9vCxTxFZT3K2cd69pHCPMWJ41kz80QUkK4JCsSOfQ13evyZ8L6tx1spv/QDXltzr+kiVtRtTevqD6VFp4ilhRI4yLVbeR94clvlD4G0feB7YPZhIxlF3VzCs2mrM9f0S4lu9B066nffNNaxyO2AMsUBJwPet7R/+P5T/ALJrm/Dh/wCKX0j/AK8of/QBXS6P/wAf4x/dNc8f4nzNX8J0YNZUr7JkP/TAfzFanUZrPjhM92q/9MV/nW1V6GcTj9RaWcsdrc8dK63Q5YUUKJFB7DNatpo1uvMg3U/W5oNH0s3McI4cL6da5qPPTvMuUoytFFwzwlCjyLyORXFt4ZswXcqQ7E5I7+ldXpl3HrOmrdooHO3p6VDcxbSR0NdFSTmk2RH3XY4r+xLW3QRrAoLZLnHUn1p/hzw80eo37vLkNhYuM4yuckeozV3U51gJZjxis/RfEG+4nSFwrbskFd+OAO5Hoa501ezFOwye91+/0Ftdt7iH7Cm4x2rW+TJGjH5pG/vcdAccfWqc0pnuLKXDbZIVkXcMEBsn+tXJdKt765nZbi6MMzmW4tEVvKkcnO5lEvXODwR0FN1a4nudXja45cIAP3RTjJ7Fj/Okqbij0cTVw9S3sV36JWXRO3xPzf8AwFZxwKSlORR24rGxzAvAxVTUgdtvkf8ALZf51cHpVLUM5tuf+Wy01uBXtf8AXyVooMoazrMfvpK1EHymtKaCRBACJ14yew9etbOMRqOmBj6ViKf9KRcIcnAD9O/WtS4mEUG5uABzXdPp6HNfURCDEOCOuQQR39K8zmJZsI6qTwT7elR+KPGmr2+o2ul6OEMkj+VwvzSPkAAc8cmue07Ur6HxBNpmtgReUxWUxkMUOQMhskMOeozkdDSUHyc3QmMk3Y3JbcTQOzFZBH/y23HaOQME46c1VnnlWMqZHfy/lVlGcZ6E59vTAFdJc6LH5JjW4bG0jBUYb6+tcc9x9mmubN1WRGLIoyw284OPy6VlRqQqJ8ppUw06XxHQaTeCG5MzAsq4K+apk24YA9ccEnHr/KtLWLwTXMMsbAsSF3MoAJ6ZOO3+ArFj+z2lt5eoRtKkkfDR9yPu7Wx0H+etVZfECOgWW04xgr5n/wBb2rd7Pl3Hg/ZxrRqVFeKev9fp1L32dxMqllbdkA/SmSWwV0aVgIyw3lTyB3rNXxDbRjeYJmbpkygn6dKd/wAJTa9DbzA+5Bp04tLU68XVozmnT7au1k3rrZbaWXyud34fls01gxW8ryRgnGV+YjH+eaveN4pRozH7NOuWAyyFR+ZrzKHxMttqRvbeKTdt2hSwH+NdVqfxattV0iXT59GkRmUDeJwwBHfG2tVGLjZnFzamPa6k1rdB5LSQx5HKSIDj8/pWFe7prhHjtzGAOcuCTz7GpG1WK4IWOJmYnAAPJJ/CoriaW3RZJ7K5iR/uMyYDfQ1koqLDVontrkwbw8OcnPznIP5GrmsX9rcxH7LFKvmwqrDj5WGSc57ZOOPTOTWUJxLavcLC5jVgjNjoT0H6GmGXFuJfLfyycZxVq6FcorE63IcjABPRqmaPzbkN5gChQOW60x50YnhvypqzIGGc/lVq5Gh6d4sk8tbAhQ371uD3+U1i2OJJkjCkHYDj07V0XifTri8OnpbxeawkZmXI6bSO/uRXNxPNpF04ngdZkXb5bDGDnvXjYdL2XJ1PSxDfPzdDqYLZYVGRzVhSAelc/a6rMtssflMX+/uwWyPzq7a6j59y7sHSOT/VqzAgY7/jRySRnc12WOWJopEWSN1KsjDIYHggj0qqnh7RD/zBtPP/AG6p/hVfUX5tUlcpau5ErBsduAfY85/pUmmGNNQmgs5N9osak/OWCPk8L9Rkn3oUmnZHb9R5qHtr9L7aWvbfv5W/NGzEiRRpFEixxooVFUYCgdAB2rV0X/j/AP8AgJrLHBrU0Q/6eP8AcP8AStYfEjzpbHTAAIc+lULJ/wDT+vSJP51cZ8I30Nc3f6uujRT3zQmbZHH+7VsE5POP5/hWtVmaR2cUuCPSq+vCGfw9qCTIrp9nc4bpkDI/XFeen4qW8eM6NdHPpMv+FX7bxxZeIreXT57K5s4Z4yjTSOCq5/3QTmojzoVrs7Pw+scHhuwSGIRKIFO0epHJ/E8/jXm9j8R9T1XUbq0ms7KNYbaaUOobOUGQOT0JrY1bxza+Go4tOisbi9jSIbJ0mUBx+IBzXiD6tJFcTTQxyBpVkXCnBXd/Ot7SndWBJK7Z3mn+ItV155P7QsTHbNGPLlhiYAsTjqTjGAelXbO3j0vw5fXHP2nDJgOOAeM8HP51zcevXM2n2cTSyJ58YiIOAi7R6Aeox0qlLcXbW8jCQXCxqWZFZc/yrLl1taxpGF4uTN7wjf3DeJYom27XDA7SOQAa6rWD/wATtP8Armv8zXH6X9v8N21rrs9h9ogkQIFinXcCwyCR24FbVvqkmuyLqYspbeEOISHYH5uvUVrWhyx2M6W50AHNLSDluKXviuBm4dM8VT1Hrbf9dlq5jmqOpkL9mY9BMD+hoQEFhzLJx6VrKPlrJ00MZJGx+takgDRbCdjH7vODn2rWnsTMzDIf7WWMRmTBHycc9fXiodda5tYUWSXzfNkHyquAAOTwPXvT1WQeIF243eucdiPQ1X8TyGVNpkUtFkYQEgk+vofaumq1ZHM9zzSXUYbTW7bWLtomNukzwwlGG6ZVAQHbjHzFWJyPunnNUrrUbXVNStr63jjilewSO5gj37YmjOxQCxJIKJGc5PJNX9btLCRrdbmRo2IaUr5TE5JA9R2UGqeiaXaz63FBkpbswWWWNWf5SfTqM9PaumElyWM1F3sep29u8mh2Ur/6xrdCw99orzYwNda7Oi4A85s56da9imCpFsUBVAwAOwryS3Zf+EguCTgGdui5/iPauHDRs5NHpVp3UUy9rr2uk2umWtxLesstqJQq7Sqku4wB+Hr3rAlfRpiSL68jOMYa2BH6NXU/ENoz4jS1WKGNbWCOIpEPlVsbm/VjXImGM9UXn2rsUVvc5eZpWsrCtDpjINmrDjs1u4P+FMMFpIV2ala8eu5f6U5bWExS/J/DxzVc2cRHT9apLzE35L8SZrHDu8N1byxr3WTkD3FVHYFiMg5re0O3j8h0QYy25j1Jx0qjrMAhuo9oAAB4FOLfUJJJXRX05/8AiY2qdzKo/Wux1e6kbwXDt3ZtZ2QsF3bQcEE549a42yfydQtZB1WVT+Rr2rwE4nttatDhkZQygjOQc/41nOkp1Ivtqa0p8tNo81aJrjTpGJiicGN3txbupwQQDuPAyT07/lVKTUrX+wBp6wuJhc7zJu+UjbjGM9c89K6PU4TLblleUCUqkyBuMp93ArP1HwxcR2iT3DgyAABVULx2zjvWsI3XoZ1ItM5kw853E0giPmIPVhV/7P5YwU4HekEQLKR2INO5lY9VudXt49WVix2bMDcpXnJz1ArIn02fxLq9xLaybEjjC7zkBm69qTXH0ZNVMdraok6kyOylhjLccg9az9J1tdNu2itrppjcHaFLYIJ9D/8AWrxJ0JQbnS+I9b6wpQUJbGnq+gtpulR6hNJ50i7Ucru3Kc9sk5HbFQ2phZB5e14QSIgwwecZOcY9vwqWbxAZ1ntr26RXhPmhYo2Yoc8ZPGOSKzIr23GP9HlYluHEJIPHfJx6c/pVUFW5f3m5z1OXmutjr1RWVkYAqeCCMgip4Y44o1SNFRR0VRgVi6bf3E12sUhVlIPO0DH5VvDtzVNWEpO1r6CitPRzi9/4Af6VmdGrQ0kn7Zn/AGD/AEqofEiXsb8smI2+hrgfETGa6g2E4Xg4rrr+58uFsHqK469bMgPv/WqrOxETl9ctZtHs0uhciRWlC7WgXv8ATFc/H4o1KKQFEthjnAhGD9ea7Dx3j+wbLHeVT+hrg3ACFuGPSuqkk43kZzbT0Oh/4SnUtRheWVbPCnacWiEj6Zak0/UfteowWv7omWQR4NinBPvuOPyrHiuFNqYthU54IPX8Kv8Ag8+Z4v0zcDzdKefoa0tpoTzPqdelkq5WR13q7KAsCDGD9Kypy8WoXFkSN6nIBjQHHpjGOCD146V31hBBe/azLYW0rJcOm+SWQEjPHC8d64nxkIo9eknjntXlcKsgjcnyCuBtPc/jUzmnFJbmiE/te6toZILi6laN7dlSCRR8mcbeMY7Cta1u4rbQ7W0kkAlNy88jFQgAwFHTjsayLnWLGS8lWRIp5GQK8sALedtOckE4GMdgOD7VVikh8QXsimUW8CRtKrMpYEAruXjnknispNy0BWR6AG7g08nIyDWZYJIHleWZndtpC4wqqRkYH6fhV8H0rjkrOzNSQc9KoanhjbK3QygfoauVS1L79p/12H8jSSGQab5gkkVZDjjhhmtcxtLEY5Y4pEPUHK/j3rL0w/vJPqK2UPFb09iJbnNuZJte2wybCu352+boORnPt+tWL+yS5LyW9zs85CxKYOTwcj0BxmqlyssmszRwohffjD8Agjn+RrStZGWKOBo7fK5A8mYN+GO38q1kkjme55n4jdlulhlgjnk3lCrrztAAJU9j0rpfh5HBZjVoYpB5nnKdoPITHH6kj8Kj8QafZKlxu1lLW7ZS+J4zj/dDDoT9DWp4Mtre28NwTRiNprgb5pEyWZsnhiT1FEYtQPWr4mjUhGFNaq3RK1lZpPd3et3/AJs2p/umvH1y+rXGOcytx/wI16/O4CkkGvPLDTNMWK5ubi/zfmQeVbqdoGW7kjk47VVO0bnHO8rFLxLHKdduUjidgshVQik8AYHT6VjSK8b7JEZGU4KsMEH6GvQ7M2Kaxdy3V2DM87lE3AbNrHhvqf0rD1TVrPU9akuDFA6p8ieYmS2PUH8fw+lTCtLm5OXRLcU4JR5mzmlb91J9KjLHHatO80u4TTm1OO32WUmAp3DhvYZzjPSsrIweldUWnsYu63NPSXKqAvdsH9ar+IR+/gIz3/pU2jqZDlRnDDP61FruTLCxU4GcfpVpaCk/dMu3XN5EAf41AFew/DK4/wCJlJGTy8BXH0Ix+leP2v8Ax/RHoN4r1D4fyiPxNbgHhw3H4U18SHD4WaUeitHq149woEEcp2A/xMDkfgKw9evPPk2rnA7V3Wu3ghvZreThmXchHr6V5rqkoM7P2bmtH7qLbujGm5JqDvj8qklYHOKhU81jczZ2OszLPqGbRvs7qojZpRjJ3FlUgdff2NcukdxBqUSsrI8bFW9QefX6V02ty3L3624ddiNuWYsoZjjrnHrVS2ci5gac5MZ27nx847ZPIGM+9cam1qzocU9iOOO3mkZpyCCpTG/bjB68Dk9OD6UslsIBErcjllbqGHqKs7XguWmgkV/VH+7/AOOnn16VV+eQopLAqPmZhnnNQncpqxv6AuZ5GPJC4H4n/wCtXR+hrF0CEraSSZHzuRj2GP8A69bXaspkrcXNXNOfbcMf9g/0qjiprZ9jsc/w0ofEN7Euo3BZ9tc9et84/D+daM0u5yc1k3j/ALwc+n86Kmoomd4+LPoViqnDGRcH8DXG6Vame9ZZroJGq/PyWI/z+ldb4+fbo1hxn5wcD6GuIgkKXJdYmDfeB3ciu6lf2ehhP4j02H4e2csIuYNemljPORbjAPcfe4xTLDwjb6LqdvqS6hLN9nfzAjRgBuD3yfWqmg+JNR8NTbY3V7aYbWWRcoR9O2P07ZHFRT65chDEwAwMdRyPUexrFzlayK5UbVz4gGnWd2q28UzTS708w/KrMQBkdwM5rkG0J7281G/xNIsOZZCv7sDAG4nHvngUs2pxS2heSMlQAMepzx+taGgySTw3015uW0aJhKwfCjhgBknGc7R+fFOCkh6XORfUbm4xGkUYjfgQxgj8Sep/HNb9lCYLVpJpFjBXYVzxn+6Mck9OB+JFVPtGl2FpKLWSKSUArl3wzH1zjgfTn6dTWhmnniVbjc0itgbV+Xb224HA/SrkrrRWQ4vWzO98OXM97HHLM1qiwxtAkMS4f73O76Y4+p6V0A6157pyyQw7nYeZI7Sko33SewIrdttdnhIWYCZPXOGH4965akW5Fp6HTZqjqJ/eWn/XX+hp1pqNtdjEUg3f3G4YfhUeon57XH/PX+hrNaDI9NbDyfUVrtH5yICzABgSFONwHb6Vi6a37yT6itKe+htIg00gTdwue5xW0HaJMjGv9LuxfLHbGOIXIJVj8wGcgH26EfjVJRHpvmQzi5eZB/q40BYj/ZxgEHHWtaaxn+e7jtzIbnHlNC+Cpzzxn9P1p1pJc+fay3UewICUjnibl8fd4Ockd6Ob3by/A5pWvY4nxXcW141v5Wj3GnyqMM8+R5g7fL0/GrEFrpWlSCKy1tLwTxI5OzydrHPGCeTjFd1rn9iTW1pNcxj7LcRhxDJkjJHUDn8xWFc+EPDurwO+nLPBgBEcTb1GOvynsc+2MVtGpzRi9Uv63KhdGRNyn3mwf9o1ymmzG412zhOBmZVbPfnrW9feENV0dPMtr1Ghzjhin6HiobLTP7PMN6I3mOVkZiMLgHkD37+9XeMbhOpqkyjDLFe63e5j3vvldQFJBAJOSRyOnXmqz3LGb5QhHbHQ1vWugWjrcSCB5HlBH3iWIIJJ479/6VgXOkajpKO8ocQEnYXQEke+Dmqg4yZEamrJWuLm6QWy7CAM+WzAD9Tiq1tpM810EuG8iIgkuSCMD0OcVWhlllU7S7AnkFR/ImnJNJGBjABOMBwP61rytbGilF/EaOixiO5ljw+08oWGCyjvUevZM0Lc5AI/lVYX86zibI3oMbmcE8/596ZdXUt7KollQOMnp/PAq1flsxSknoimihbuFv8AbGa73wPceX4msST0lx+dcQls/mKSTkN/dNdHoN9DYanb3E7lFjcFjtyQKuCXMiYvQ9L+IcJjkt50IAIK5A715fcMWzuOSDXpHjDxBousaIn2LUbaeVGzsDYYcf3TzXmFxNzn1pTVy76FV2qNTzRIw3EDmmK3NZ2JuddrVuBOt2yrNG7kE5JIx+HA/CsuC9ZJkwofBG3JOcenWu0W0ga4+dWkiyXZX5U8H19/WsrXGs/tdsIbGGLBOdgUbuPYDuK4YyT0Op6GfcXpnu5mj2BAME4Of51HGy7iQo56kd6rJcNHOQkzI6sCuf55zVmJppZZPNP7wttPPf8AyRQlbQTaO00hBFpduATllLHg4Gferp6gdqd5XkwwxY+4uPyqM9RWUlqJMcSRSBwobcCcjtSOdoOKzNS1SDTrcTXG8IW2DYhY5+n4URWpT2LbyJ/dP51kXjEuOPSqMni3T+gS6P0g/wDr1Tk121u8sjPGQwAEq7SaqVOXYhSRb8aBprLS40+80gx/3ya5pLK6Rgdw546Vt+JNVs/L0t2mO2N8vtU5HykVk/2/pZYYnnP0j/8Ar12UEvZ6mM/iOjkgD25VhWPcJ5QENwC0GTsYDlPXA/mv4it5DlTxTJ7ZLiHZIu4HGfXp2rzoVOV6nXKN0YFhEltdiK5gFxE4+ULJ8vqGBq0bTHhvymaKOVZ281WJAAwSMHv0HrVeRZ9JuF5JjDbkcDn6j39RV8GTV9MuyjRmSImdl9UwFJX19x1FdsJXd+hztdDlxpE0rmOLE5xkbOf5CtPSNNmdnjZpsxKzhQpYEr/Dg1seGREmqMFTyGeL70ZP3gQevbOP1q54euJbcFvIeVkABfnEZ3Lknj05rVPm3JSsVrTS71YiiaZf8MTtNvKTyfXZTnsNTA40nUC2fu/ZZP57a9+knjktcpKr54BVs5NZcVpeQzPKYvl7c1TpQYc7PBrm7uLA4u9NvoMHq0LD+YFW7bxLJcmAh/PiRiSH4ccV1Hjyx1Oe+nmSzuXhPO5ELDOwDt715RLEUZmdWjlVuDyrCsnRiyuZo9I0jUILh3CvtY4+RuD/APXqbxErCySR1bygeGwflPTPT3/SvO7e+uIBmRTOhPJH3hXST67cHRy00srRGPygCuCFOO3HoOtZOly6ClLmResUvb97LT/P8qObMvmJLyACRgDI/wAffAradvJdY5bm1fTreQ8rIBkbT0HXGckn1HBriktry9eJzJLIkQLryHVU4bJGPeunGh3D27B4fMlOSsokwrA9mznOB2x6VLT6ERhJ7FNJdIN46XCyyXBIWCRZXATAOFIPb8egrSjhk8N7tMulQXbuZDvOEUEls5Bz0brx+NZzaLeCNlWO2mcDaFBIPv1GDj1FTaCHuNGfUI5GS5d2iTJL4GSAOewHars2inFx3M+71aG4aRhLlGJXyhIcEA9c5yPpTLa6kme5tQ6xocyhmZivTjPt/n1rm9X+02lx5Co0k3mAA56Z9ugOaWC9mFt5TxuGUlSHdht5OT3wRx0xQqWlzmkru51VhixjZTPvmKgp5UvA4Hy49c+mOlb1m9rLYyC9WJoZHwjSglj3PJ5HUjr2rg/Me2soSsyhi7EyK4KuvHODznI54q7carapp+8bvObLOGYAsCMgqv8An6VSjJO6Js07lnXvD2mI7GK3eEHkBWzwfrz+tchcaNGrkxsVX3GSfap5Nanv7hAkpQkhd4Yjt3GcdsVo6nDFBceVa3aXRA+cAg4PoGXg11q9tdzoWq1OdktmiUEwK2OOvt6UiIjZzEkZGeHY8YGTV55MHlWU+o5H5imbu/yt9RmlzMLIiEe0E5QAH5uTxQVOSokGQM49vapra4W2k3NBBMpOdsy7h+hFdPorabqkzR+RotrIFyFuUKqx9AT3qlJAo3OTchUB+9kdAf8APNRef8uVifrtAz+tdpPfQ2EzxtpGnsycFo7dHU/jVVvEdvkFdOtFPtbIKd4jcLHPJazTQzSxxSYiIXGOXJ/u+tOlsZYHcFh8q7vY9On6/lW//wAJKCDi2tlwenkr/hTX8RyyIyful46rGo/pV+4Kx0t9qSfa4oEwpLhAN+TknBqa58NzX9xGsVxHG0IDDKlgQa5+1t1m1S3j3gBZBz6gf5FdzrMyRusqyYAjVR5bY4/CvET5VoenOCvY8+vLEWtw8f2sseu4RDH6nPate32ahr8PlQpEksysEXsABn+QNX7PSbe51Ge5mG5IYXkYMSfujgY+uBTfDMRbXYHUkGMHH48fyxVwmpS9DCasjo7gMr4YkkknnHHNQGpZ9oZcAAEE4HuTVaVgFxRLczQ2V8jA4rE1xQ9nGrcgPn9DWrk5OazNZBNsgU/xdqlK0i0c6YYwCdp/OqV5bhslcgfnWkyOAev51UnikZuh59zW6lqHLczdY8y9tooWaNdpHzDPPFYiWEYcZu1HP9w10NzYurxhgTn3/wDr1ELEB8lB+JH+NbQmlGyMpU7vY6+I9asDleucn+lVYup5q2uNv415UtzrRFcWkdzbmOVcqT+I9xXL3lvPpkpQkmNslSvAPuPf1FdinO31BptxYxXsDQyrlTyMdVPqKulW5HZ7GdSFzE8OzLLq8GCoOG24HDcHoP6VJovlyQahuP8Ay7M5GSu7kdcH3rEu7O40q8KlcqfmRl7gdx6GrFhqYiS4LjJliKKccE5BAP5V6MX1WxzepoF7klirBGDfwnb+VXLPxhqUcyNPqdyTGcK8uXGPYjnH1qj5LuViudqiWISAxN1BJ6+nSmPYGH5gQcHIR/8AGoWjswd+h6JbeLZ5bUTHU9MYY5Z8g/oc/pXJa9rFxrF1EJZIXRNxRhFgnj1JJx7fpWYs0sahPs0LcdN4wP1qpI0olUERjhsKrbsce3FbTd46Cje5YiVeSzYPsKkeNZLaVEkB3KflP0qlEzAHgZ+gqZZnQEZ59CKxRZa8Hatq+nSSCzmhQSHZIsuQJDg9cD6118t/qcUQhks7cpKnAjmII6jOdtcp4YzFb3koVWdEIVcZLHsMfWuhsp3ZoIlmluGHLeaQSjE9FHQDAqmhxdnqZ+oapcwyPPDbwW7RoIuJC564JHAFJo8bQ+AJ3cMjxyMw7Ec1b1DRfs8dxPfRtm5jJgZH3YIPJ7YxXN2Z1VdIv4be6aSzVvKlWZRtyeuw+vTp61XJZcpLkpO/QfH4XuNWFq9neWb4jIdEcxtyeQcjt698U+b4dXqNchb1JpI1LxxMhVpsdcYyM+xPfPGag0l+dob51OCM8g11+n3tzE6lJmDAYBzyKxeLVN8sonTHBKSvFmHaeH59Ts1Dxi1ktnYy2smSzLgAr93kjHHPGefWtPVPhvpl6HexgvI51Xfs4xx1ABPzfTj68iupS9nuohFcMJUDBgrgEAjoauRytuZhgFzlyABuPvVLGU1HSJn9UlF6s8Qv/Bt/pdwpniZLN8FbgIdq55G7uPfdiq9p9r8OSTxXdsoMsOI2xvUk/wASkHB47jNek6td6ld+IL2xtI7a5REH7lnMbnKjOG5U9ehFecapC1tcvbzW81o2f9TIuzH4fdP4V2xd6al3MJxUZNIj0QQ6hfJBeymJGBIZV6Y6jA57VSJhmZ2i+7uIHrikZNvCjGO68H/P5UAjofvH1GM1DZCGMGHRs/WmljyGU++OQKcwABA4rU8MXNpaanC19FHJBsyVc4AOCOe//wCoU0rh1M1JHQYRyvqAf6Uvms64cA+5601ijyNgfLk4+lEaNJkRtvwMkKc0rBqIyZ6E/wCf8+tIsZB+ZTj2NSkFTgipI2GeuKdwsjtraGxs9TX/AImtkybflKyEjOPUDArXl1SzuRGbadHkHDqAc4Hf0/KuA33DuqiGXcemB/8AWq9YrcQzyLLE6tMnlgNkHJI7GuKVOKVzpVac3qdeJJrXwtNfbiguZPK244dcbifbkL+dWPCkapPNcs6qEZVBY4zj/wDVUfipjbWul6arq0cMAdgoxySSf0UfnV7wxbynw65CrguZC/ccf/rrDDq8ebuVVld2JbhisignLbe/Hc1A0bsc/L/30KbesWkVSSz+WDuJJ7k0+NjgZbnHNW1qZpjBAxblk/76FUdZtjHY+cZF+VxwDknPFawP+0az9XINg4JzyP50NJMpSOVklUdGbp6VSmly3G81cnCKOhzjsKpSMgbI61aRpzDLlifLJV/yqPYTg4Yj6VJdSAsn9aNwKpkgevy1S2E3dm/Cx3Ee1W0PyfjWfAfnI9jVyNv3Z56YrhmjRFqM8VZi5IqnG3yMc1ZgbkVixjL2yhvIDFOm5DyCOCp9RXEX+nyaXe7JV3o3Kk/dlX+hr0QjNUtS0+G9tGhnXch5BHVT6j3rehXcHZ7GU4KSOSS9aTE4kLJkLvbG6PsFb+h7/WrLXYkUBtwI6fMT+lZd7aT6bd+TIRuK4jkP3Zl9G/z/AENWrN7cR73yYgcMrfeiPofUe/boa7mov3kYK5bUmZPlfkfXiqk7ssy5JPB71uxWcQiy8kKgnhS1Q3WkQSEOJo0A9XPP6UkwMVCzcg/kRWlpdlJqUk8ULJ5sUZkEZPzSY7L702bTYoV8yB3kJ/hUH+fFZN0Zo03wxuJV6NkgrVJXHex0vhoRJJcTSMFhZjgFuR+JHqK39EsrjV72Q2TBFjO9ZW+6McFT19QRkfyrzm08S3iki9ihuCTlmePDN7kqQSfc5r0T4bXkF1dXPkxeWOMqHZv581oou6E5pqw25tdXfS5rRiky2aFFCHGzDHIz3J2j8KwkafT9M+w4Ba5/eMAOEz6D39fSvco7G0aNgbaLDtvYBfvNjGT74ArxD4j3iQeNryGIGOOFI4wEGFGEHGB9aucb6kKWljnUXGoyxyDDbs9MV1WnRuNoW5mXPo2f55rl7W3GoSmaCYLKPvLJnDe+e34/nXT2EV7BjzLWUqP4kG8fmM15+J30PUw3w6nR263CdLx/xjQ/0qaea4htJpnupAkUbOSNq9BnsKr206FRnKn0YYqTUYXvdNltI0kPnDZlF4UHqSewrmjdtXNpqybR5tZ+J57O+W6vLYmXP/HxHgOf97s348+9aOs3w8TSLPaGGdgm1oQcOT67D/QmsHVNNux5EunuWePOVY8sM8cHg/1rJn1RZJAt3ZLaXSfeeBdgP1ToPqMfSvfi2lboeI3rqTTRCGRo8PDIDyjDp+B6VHuxkOmR6ryPy6/zrRt9dklhEd4kWo24GP3vLKPZvvCnGx02+OdPvDbTH/lhdng/Rxx+YFTZC9DLwrLlG6enIFNLcEMv4jn/AD+tW49KvLi8e38gGRASzhwBgdfmzz+GaJbJoiVZhkDIz34zS5Xa4FRAGBXO44P1rU8KXy6brNlNNHG0X8aydBz1IrJYgAFhjHr/AI085Cj5ic+vIoTsBbu5EkvLh41ARpGZQPQk4qDcqYJG4ZxwaZuwMHI/Uf404oZU+Ug88Gl1A6CPTLuEC5CYhU7t20knn6Vqw3SyarBfSxsyo4ZlVOT/AE6is3KM5CzSsi8D5Qc/QYqwscnybPtjsfvbYzx9K5nTurM29o1sbOu6kNb1Oa7WGSOJlEcat24Cjn2ANbVlJ5WkQqox1wAT02k9PxFc7b6TcOUjhs9RmkP3SkTYU9s8Yx0rrZ/M0aRofIilKgkB84wPlyPyoUFCNkK93c47xFq9/Za15UaRqohjwXUnPy89/XP5VnnXdVkx+/jX/djH9aj8TzzzeIrpZd37orGm4c7cA9/ck1mhyMAilyq2qGjV/tbUTyb5/oFUf0p8V7dzSiOW5kdD1Vjx+VZJlPTIx9atWTsZScjgeuKTjYtWNG5X5SQf0rMlJEnXmr0ztsPIz9azpWJHJ5z60olNjpgWZckflUkgZfL5GNoPApjFfl3An8cVYYoUT91j8TVrYkuQNmRx6KatxN+4f6is+3bLyH/ZNXIifsz59R/WuOaNky5AcwSGrNsx3Liqduf9Gl+gqzan96n1/rWEkM0SfmpxAZSPaoyf3jCnp8zAe1ZdQ6GbqNjDewvbTKdrHKsOqt6iuMmt7rT9QMUxBkA+Vz92Va9CdAzng9e1Z19p0V/D5Mo90cdUb1/+tXXRquGj2Mpw5tjnYLweXwhMQPzJ3j+g9P5Vo/Z0ZBnYQecqeDWPe2d5pGoGCddtwn3WX7sq+tX7S+i2swUgDh4SMlD6qPT2rs03RiTGCVX3RlSvvxUU9vO6liqA46qQT+VXI/3qkpNGysMruYDj8f5US20JQmWMHI7dqEI59LYXBfd5ZOeOMH9K6LwFfxaNr3lTqYknGAScjNFnZ2pUr5YJHXPNX4tPtJJkTaOu7gkVsmKyPY4ruAQCQyoEAyWLDAFfPXii6j1nxFqF4oLRzTEoeh25wP0xXqMVtNJp5tXmZo3XaQ2TkVw94kEc8sUiAtGxU5Hp9a1miEji4IpLW4DxuSP9kkMv4V2Wj6jdnaYrhJD/ALS5P44waoLBFI+7ZGOeRtFIzW6ctEFz0JjrkrUlNHZQquno9ju4NW1FUw2w/wDA2FUNY8QX8NuU3RozgjuSB68n+lcslyu1Nt0+w8cTkH8QDxVa6X7R/qFMhJ6K2WP49/xrnp4e005ao2qV4uL5VqPES/xFTx/eIpt1aWV2ix3Eccg/hzwR9D1FRKGgjWRV3EjBTr+PFIjLLcc+SzY+ZVPB98//AF69XnPOuUJ/AN69i2o6RL5iJktE7AOo9j0auejadZ2trmMpKMnJGDXoltc3z2D2cUh8o9sZweeDjtWPe20h3RXUeGHzKSM/kRTlYTS6GFa6hPZMCoDYzySc88YrcsJrCc+fqELuyYCE5eNRj+JQQc5PXn6GsmaxycW5Zm/55sOR+NSQO1rqRV1ZUKgsCMdFzSi3cdzU1fTnmia80+FJocfMbY7go9wACv4gVy42kkAlPp0/LpWo91JY3zPbSNGQ2UeMkEVY/tmyv/l1iwSRj1uYP3co9zjg/iPxpyabFuYhDqcEBx6p1/KpIWDPkH5vyNbP/COLd5k0S+jvBj/USYjlH4HhvwP4VmSwy28/k3lu8ci8bZFwRUtBsfUaadEn3VA+gxUws0xUmZcdIx+JNSRMXhRiBkqCcVirDuZOqxvb2u6CTy3wecZz7frXM31tJcSxzG5jSXyc4PUncTwPwrrNYQyQxIpAye/4Vy+qWyxX9nMxUsEYHHOAqk/1/SokkmXHY8f1q9k1HXLu4k5PmGMEDGVU7R/KqW07ulIp8xnkOAWZm5PqTUmFB+Z1HtwaNtEXFDOOOmfer1gRvb5R+VU2aNePNXNWbOSME/P6dFJqZbGiNOUrsPHb1qi0RkVsZ69MVZe5i2kBWPvioknJ3bIyST1IrJXQ9B0NnJMyhY2P4gVau7G4tYRI8W1cgbjIp/SpLI3MkqhcqMjJ4q5rFgy2Rlkvs9wpxjP4UlJ3CyMeFvlJ77SKuRH/AEZ/95f61m27buh+8OD9elX4Tm1ft8w4/OomhovWx/0Wb8KsWfM8f1H86qWp/wBDn57irNj/AMfUI/2x/OueS3KNF+JX9jT4T+8H+e1MkP7yT6mn2wzMB7H+VZJB0EbPmg8Y70xVzIox1p7/AHjSR/61PqKoDW1bRbbWrF7ecbXU5ilA+aNsdvb1FeUarY3mlX721yCkyjCsD8si9iD6V7WicN9ay9c0K112za3n+V1GYpQOY2/qPUVvQrcmj2MJRueRR3DiQ4XleWjb+Yq7NqkjwARybUJxwKhvtLn0y/ezvEMdwhyjjlWHYj1FVyjzZXG2YfeXs3uPevQ0epi7mrp2qiJyJHyD3xyK6HS7u2muh5b5KgHD8H9a5C1sXeMyeV5qAfN/sDOMnjjtW9aWpskiulYDkptI4OMZ9+9aR3JuenWpxEo4Ue9efa8Gi1+8wzYMmcL0PGa0bfxcsMDD7KGK4AGeDWLqkkl7dTXiQAGTDHb0A6VrJ3QIZCy7zvJVsZBHXNTK7xHA8uUHlsHB/ADINYbOUbIfy3GRk1KhkPO8N3JDnJrnmjWLN5Lqyd2MltuJGQUHOfTkYzTru7MVlK1tF5IK4V3UYX6kd/rWdBPIMlF2KRkhR1NLcXSSRvlCWKkfMAaytqbX0MB4DFNiS4kw/VlYcn86mtlsoXLMwlJPJZQfyJqrLMQxcr8x6k46UzzjI26Qk+nJwPwrqRxnU21wPJcW7Rk44PA5rI1C9lkuELFwEP3WAxUEO0qTG5GRnBOMU0TvGwB2uueRnOfWk9yuhfgjFxpF7fNM4a3ZBt7NuOKoGVZ0OJCwxjax5GRj8K3NPu4m8OXsbBF3yxqVPQ9SKxprNZpB5cgRu2OK0eiQipNphZA0UnzY5Vv6Gs28gltLVpZEKkOFCsOv0rfgtLmW5jt1KebI4Qc8ZPH4VSl+0srxSQtKoJBGzcvH4UNCMa3vUOCrGJh7/wBa6S28Q3BiSC/iiv7cdFnGSv0bqPwNYMmhzSj9zC6E8gMOD9M1WMd3p1wYZVKMMHaeQQaLNbCTPsE8UQ/6hP8AdFIxwpoh/wBSn+6P5ViWUdXfYIAEDksQAa5jUFm1G8REjSI/Zm+YdF3qQPyJrqNSG6a19ix/8drz/wAUXElrb3NxGxVotO3qR1DHAB+oyazkrsqOx5MYBDmJ1BZPlPuQaUbQR8opg5ALHk9ST1pflGPmA/GmaIcduSQB9KngcAdQPpVUOmPvD8qswyLjHv8A3aTKRZMxIPPb0pqSYycn86QyLgja35UzccH5Tj3NZ2GbeiYuNSiiztyepGa7rWdCt30YtJdgAKzABR2Gcda870qRhexhVUHOOTXoGowK+guJDKrCNjiJcjp7VKWo7nlumyb7cIfvJx+HatuMgwP7sCf1rl9Pl8u7UM3D8fj2ro4cmJkHX7w/ClWjZhB3Retv+PKf6rVvT+b2Ef7Y/nVK3P8AoMv+8v8AWrmmHN/AB/fX+dczWpdy+x/fP/vVPZ83B/3T/KqjN+9f61bsDmdvZG/lWSWoPYY/JNLEMzxD/aFIepP86WDm6hx/fH86QHWqMbvrTcfMc1KB8z/Wm45Jp2MzE17QrfXLIxS/JMnMMwHKH+oPcV5deWs9ncvZX4MVxF91uuR2I9RXtDDOaw/EHh+316zMUmEnQfuZscofQ+oPpXRSquGj2JlG+x5dBK5BRW2SHhl/hkHbP41prqLywLuHEQ2gDHHNY97Z3NleyWV5F5c8Zx06+49Qa1NI84l2Esduy4jLsu7IPPAx7fhXpQ1ehzsuCOUwo5i3KV3K23j8cd/8aqCzufIWYJLnJB2KQRz9Olbv2tpFy1/Ow6MqREDGO/tWe0s5nTD3M0fVl3BfoBnGea25UIZHpurSKf8ARZXXt5hHT8TQNLuRGN9uITjBKNj+ZrQkuI5bMKtndGbBBZpMlc9D17e1Z8N99pjFv9gQz8hshzz7cfWotEfOOTS5S2w3qJgZGXXB/XrSf2Xbs22XVrZQRk5f9OM086ffi381LeBB1D+WowD/AL1T20OpyybV1CCFmwwYyxpj6bSavkgPnZTbQbSRy0eo71Y8LFBLJx/3zU6+F7XflhqbLjg/Yyv8+1WpEmnO658Tj5TtKrJIR/6DVfydPQoZNYmk5IGyJjnHuWFVZEi22m6dE3lPbXbOSQRJIij881G9naqdosQYnyyl5+PzHWoJn0mKQFJ5mk6/OAMEfiaYJbGSJDtdyWKupZcDPQjik2kIm+ywLbScW0ag5ZS+dxA64x1xmtCydoisBNoiIcrIiBj09fTtWXJLYRpEVQow+/mXr9Of85qCS+04u3zsOSxTcSVHf9OaFNMLnUzKVQoL0ZAABWIgEenSsK+soVlDQXbmJuoO1Qp9OSKqx67pNvC+PnbsCh54pkHiewink2wvskULjbxmjnQ73FNvbhVDSOTnjLZH6E1J9itZY9sqQyIemd5P4ccfpVO88TLAgLWUjqRw67SufqKzl8W72G21KjPZgM/pVcyEfU7H5T9KIv8AUx/7o/lQ3Q/Q0R/6pP8AdFcpZTvlBuIjjoj/ANK4bxRZw3WkXqzTLGDp/Y4b5QWH4ZGK7u8/1g/65P8A0ryv4lSGPw+nJBkMCcHthjWbTvoVHY8x2g4+UYPrTuh+6Ki3dzgfWnbsngr+FWUh4J5GFqaMnHOPoRVcZznJ+gXNTR5xUsss7sLwePbimA8k5/Wm/iabjnrmpGaNlciC5SRGKEHqOTXWXevwz6PLE8k7P5bewPH1riYsBhyOvU1ryz2/9myLui3FCO5NZtWZSZyIYBwQeQc101nOJEjlXHPP0PpXLNgPxWvo82UeLPK8j/P+etaVo3jczg9TpY8LaTgHgupH61a0k/8AEwg/3x/OqMRP2aRe+VP4c1e0j/kJQf7wriNi2Tl2+tW9OOZ3/wCubVRzyx96u6ZzJKf+mTGsrag9hrmn2v8Ax+wj/pov86iY+lS2POowf9dV/mKSWoHabOWPvTBGcmrvl9eO9IsXWteTUx5iiYqjMZzWi0dQmPk8VXsx3Oc8Q+GYPEFkFbEV1H/qZsfdPofVa5XTLWTTbWW11CwuvtYkwQmSHX2x1+tenqgx0pSp7E1vSqSgTJJnmwsJi5ePRZ3GPlDRHn8xxVhdL1mRVMWlrCwwdzMikHv34rvnTkZpqp1q3ipk8iOPj0TxFJHgNaRMTklpM/UcCsm48A6xbZvHvYJ2DbmCqxYe/bNemxJS3UebSYf7B/lS9rNoOVJnlP2CeSHy5LjcuMEeX/8AXqxaeH1ury1iZpAnmr908jkV23iGx060sY7yRvKnchQqjPmepx7etVNJjRr61K4ZTIpBB680KU72bKtG10jTi+GmgK5eSCeZickyXDHJ+gxWjD4G8PQjjSrds9d+Xz+ZNdNtp2ABXWomHMYsPhrR7f8A1Wl2ae4gX/CvO/jNZwxabpIhWOImWTGEwp4HBx0r144xXlXxoI+y6MvGPNkPzdOi9aLAnc8PkXa5Rk2v6HuPUHvVxv8Aj/uP+ubf+g0lzGEG1lyhP3Cc491NJZRyXN40akvI8bgFjyfl7mmhtFM9KF557UH2pD92iwiaGZ4mOxsKeqnofwqT7La3RDKBbS+33G/wquvTNTRdelA0fWrYKt9DSx/6pP8AdFNf7p+hp0f+qX/dFZjKt6cMf+uL14/8UZP9A02HPLMrfkn/ANevXr84LH/pg9eJ/FCXdf6ZDnpAG/QVPUpbHEAH+7n3NPyxNRoFB/8ArVLlabNEKFYj0p6Eg8H8qjDKM+tIZVGOOaQ7os7h3bim7gT/APXqISE8AZPtShiTgZLfWpsO5YU4Iz1+tOlk/csAR06VD/EC3H1OKbJjy27++aVgdyg557VPYT+RdI5PGdp57GoGVQTk5+lJhfU/ia1aurGex2ts4WQbj8p4b6VpaYhj1WJW6q9c/p0/n2kbdwNrfUV0OnNvv7V+/Q/gK8+Ssze90SFvvY7Gr+l53Tn/AKYt/Sssn72PWtLSj/x88c+SxH5israg9iNjzU+nfNqduB3lX+Yqqxq1pIzq9r/11X+YpRWqB7HogXIP1pQnXipVUc/WnBa7FE57lcpUfl/NVwrmoivOarlC5DsHPFBTip9tIV4pcoXKzpgio1Xk8VYkXkUwDrWbWo7j4l4p80f+iy/7hpYhxUsi5tpf901tGOhJyuvWTatqzW+4hbeNVUdskZP8x+VGg6Nd2N1GxG6NHDFPoe1aOPL8TXYI4baR/wB8iumtY1wDTjT5ncqUrKxMk7ueIWA/2jSyGcp8gRT7gmrCAChsV1cnmYXPGfFfjrxfoetT6e01pGEO5HS3HzoeQfmJ/wA5rgtc8Wavr7R/2tci4WLOxQiptzjOMD2HWvSPjLZrv0y8A5ZXibHfGCP5mvIJRgn9KT0Za2uRy5MY2vuj7e3+FJa5EkpHBEL/APoNMJZDkHBp9u6GSTPys0bKB2JI4poTKpXcSw+Rj/Fjgn3FM3EEI42t27g/Q1Oh25Q8HPIbpSGPduQLlepVv6U7iGLxU8R5qvtaP7uZF/un7y/41NAyscqcikNH1tJ9xvoacn+rX/dFNk/1bfQ05B+7X6CsxlHUDw5/6YSV4V8SG3+IbRQM4skP6V7pqPR+n/HvJ/Kvn/x3MJvFUkQ48i3SP8cZ/rS6lI5oEjnBNPBbIycD3GaWNeaeRjr1/AUXLSE3dCFGPXFLlscscdu1CjPAGfbOaVlCkAkKew6mgoTGTyc/jT8naFyQPQcClCHGTuA9ScUx1UAADJxnA61I9R4ZVbPA/GnNIuwnBPHWqpcknHGKZIXwcsTTsTcRm5+6TTMnPCgD60hBB5z9e1IxUDOask19EuCJ3hbA3DcOe4/z+ldbpcix3sLMeAefyrgLWfyp45h/A2eua7SF+FdG6gEGuWvHW5cHdWLwPU1p6UeLo+kB/mKoS4YLKvSQZPse9X9K/wBXd/8AXH/2YVyo0exC561b0XnWrP8A67L/ADFU26mr2hDOu2f/AF2X+YoiveQPY9MUdaVRT1WnKvFdyRykZFRkVYIppUZp2GRBeOaRl4qYDIpWXinyiKci9/aogvNWpF4qHBrKS1KJI1wKnZcWsn+6aZGp4qy6/wCjP9K1itCWYmrwG21eC7x+7lXYx/2h/wDWratJAUX6VkeLbye20sR29sszyNkls4jA78d6i0XUXaFC4OMdfSjmUZ2HZuNzq1NKx4qtFOrgEMKkMgxya6FJWMrHmfxklA07S4iRkyuw9eAP8a8XlRhnqc967z4n+I4tX8QLBauslvZoYwwyQzk/MR7dB+FcIZS2RhT7YrO+tzVLQrsCelQNgVcMTFf3at9KqspJ5qkJoTzN4xJzjgMOo/xpQChy3zKejA/yqMj1pyMyHjkHqD0NO5NiY/PtJI5P36PJPmbwdr/3x0P1oXaw3IcEc4NTxckgDB7j/CgD/9k=", "path": "images/4pts_ADE_train_00010603.jpg" }
depth_point_11
images/3pts_ADE_train_00003624.jpg
ADE_train_00003624.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 81 y = 185),Point B is located at (x = 128 y = 128),Point C is located at (x = 280 y = 132).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_31><DEPTH_40><DEPTH_73><DEPTH_60><DEPTH_49><DEPTH_74><DEPTH_36><DEPTH_44><DEPTH_19><DEPTH_41><DEPTH_3><DEPTH_59><DEPTH_5><DEPTH_67><DEPTH_49><DEPTH_74><DEPTH_36><DEPTH_44><DEPTH_25><DEPTH_2><DEPTH_3><DEPTH_31><DEPTH_67><DEPTH_59><DEPTH_31><DEPTH_29><DEPTH_36><DEPTH_64><DEPTH_44><DEPTH_2><DEPTH_3><DEPTH_59><DEPTH_67><DEPTH_85><DEPTH_82><DEPTH_3><DEPTH_31><DEPTH_29><DEPTH_44><DEPTH_25><DEPTH_70><DEPTH_59><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_36><DEPTH_76><DEPTH_76><DEPTH_72><DEPTH_27><DEPTH_5><DEPTH_13><DEPTH_70><DEPTH_30><DEPTH_49><DEPTH_49><DEPTH_72><DEPTH_41><DEPTH_44><DEPTH_4><DEPTH_53><DEPTH_32><DEPTH_66><DEPTH_66><DEPTH_25><DEPTH_25><DEPTH_44><DEPTH_45><DEPTH_63><DEPTH_68><DEPTH_61><DEPTH_39><DEPTH_1><DEPTH_1><DEPTH_57><DEPTH_94><DEPTH_94><DEPTH_0><DEPTH_76><DEPTH_4><DEPTH_58><DEPTH_1><DEPTH_121><DEPTH_98><DEPTH_16><DEPTH_1><DEPTH_2><DEPTH_45><DEPTH_49><DEPTH_68><DEPTH_29><DEPTH_82><DEPTH_121><DEPTH_94><DEPTH_2><DEPTH_25><DEPTH_64><DEPTH_74><DEPTH_11><DEPTH_4><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
3
[ "A", "B", "C" ]
<DEPTH_START><DEPTH_31><DEPTH_40><DEPTH_73><DEPTH_60><DEPTH_49><DEPTH_74><DEPTH_36><DEPTH_44><DEPTH_19><DEPTH_41><DEPTH_3><DEPTH_59><DEPTH_5><DEPTH_67><DEPTH_49><DEPTH_74><DEPTH_36><DEPTH_44><DEPTH_25><DEPTH_2><DEPTH_3><DEPTH_31><DEPTH_67><DEPTH_59><DEPTH_31><DEPTH_29><DEPTH_36><DEPTH_64><DEPTH_44><DEPTH_2><DEPTH_3><DEPTH_59><DEPTH_67><DEPTH_85><DEPTH_82><DEPTH_3><DEPTH_31><DEPTH_29><DEPTH_44><DEPTH_25><DEPTH_70><DEPTH_59><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_36><DEPTH_76><DEPTH_76><DEPTH_72><DEPTH_27><DEPTH_5><DEPTH_13><DEPTH_70><DEPTH_30><DEPTH_49><DEPTH_49><DEPTH_72><DEPTH_41><DEPTH_44><DEPTH_4><DEPTH_53><DEPTH_32><DEPTH_66><DEPTH_66><DEPTH_25><DEPTH_25><DEPTH_44><DEPTH_45><DEPTH_63><DEPTH_68><DEPTH_61><DEPTH_39><DEPTH_1><DEPTH_1><DEPTH_57><DEPTH_94><DEPTH_94><DEPTH_0><DEPTH_76><DEPTH_4><DEPTH_58><DEPTH_1><DEPTH_121><DEPTH_98><DEPTH_16><DEPTH_1><DEPTH_2><DEPTH_45><DEPTH_49><DEPTH_68><DEPTH_29><DEPTH_82><DEPTH_121><DEPTH_94><DEPTH_2><DEPTH_25><DEPTH_64><DEPTH_74><DEPTH_11><DEPTH_4><DEPTH_END>
81
185
128
128
280
132
null
null
null
null
11
34
92
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDZSMY7D8KnVKxLW/vWmMbtEwX7+0HK+nFakd6mMNjPcg/0rDmNLFvywVOQCB0PcGq99ZzXt5aSy3UjLEjKfcds+1SC6jIOPvenepPtKMSVOc9qTVxjobdIeQTI44y3UVJwOhz71EZ0PU9P1pDMoxyMEcGmhWJxzSHAGepqEzc4Bx6e9NMwzy3NFwJwQe1Gccg1X8z3/KgSg9KALG49aM+w4qt5v04o80E9KQFoMx9BQG596qmb04oEwz15osBbDdyaXeO5qkZSWyentSmTng8UWEy2X/vGozOPc1X5J6k1KqE+wosA4szHrilEWeepp6KvpmpR7UwGJB/eAqVY0X7opeKd0HXmgBQKkUYpg45P5ZqUUyRQtOHpTRTwKBi4pwpBTu9MQtLRS9aAHDpSik6UooQCmlA5oopiH0mKUGjrTEIRxTCKkxTSKAIWFRMKsMKjIzTAqsNrAjqORXDJodjpPj6eS3kmD3Nk9zMj9JHaQDj2HP513zrweKxLmxjGtyagF/fG3W3GT0XJY/rilJ2RS7HPpEbR4pNrMMESsAOSfU9fWkYNtW+eIJzhFbqFz1IpbYbpoY2LNCpIg3/eYgc/lnj2qbfJC32cSBg5BMpbaIx6H39DXOzVWIpisvmTxZEVuc7txy5wBU1xmVhHayHcF3sU6BeuPxqVnktiUwJFkOIvVT6n26UvyWSsXiU2zLjzE6lvTHfPSgNBkzkQRtCf3rjcqMf50NKy2izA7mbgL/eYnGB+INLEiWbpNJCqqysDKFwsQ9MenrSRJHHcxSlZMMWEYJyAT3I7ZxRcLDjK7W3nt8ygEsq/yFCyMtv5xQhQu4g9QPemRrGJ4yZmNvvPlgnO9vc+lIIts6xPOqweaSMpt3E84Hr/APWouFh/njyfO5EeN2fanC4Xy1fOFboT3qNYpDN9lJUQq5JAbDYH8P681GIpJV+yOiiLJ81yc5TstPmCxZFxnjr70hmIP0OKq7HuIhbGIgpu3EDOMdAPrTWkMsYWIskkSbpCBjAH8NHMFi75mQSDS7wcDqaro8c037tshUG8qflBPQfXGasKMCqTEyRdzdTipUUd+ajTk1MopkslAwOKkXnPemKM9P5U6RlgUyzusKAZ3SttA/HtTAlWn5A61zd9448O6exQ35u5B/BbLvx+OawLr4nSMCNO0pUHaW4fP/juKlysCTZ6KAx6A1HdX1lYRmS9vYLdQcEu4/pXj1/4u1y/JWXVJ1Vv+WVr+6UVztxMGfzGgEkmcF5vnP1pKVyuVnuOn+L9C1PVV07T7sz3LAkFE+VscnrW+vSvIvhoWbxXKXZGP2RyuB92vXhVEtDhTx1pq04daYhw60tIOtLQIdSik704UALS0gp1MBaKBRTuIcKWkFLQAtIRS0tMRGRUZFTGmH6UwIGFZjjdceuXxj06f4VrMMKxPpWbaITcxE8nO4is6j0LieBw+J9dQJs1SRhEMKGx0/KrMXjXxBHEYy9tLuO4mRDu/nUx+H3iFOcWjjGRhjzVSfwn4iiJSTSJTt5O11Of1qdDRRLw+IOrsZzPp1nO0qbMcjavX19a6jwr4kuvFN5MlxYRwQ20QBZW/jbpx3zXCTeGfEFvAk02mSFHJGEIJGOeea6PwDFLDc6jYzxyWmoMqSRhxhlTufQ//XoewWO3iSaXZBIqeVGGDbWyZMdqULNIBZNGSm4+Y7SA5T+7x7cGg7HggMIK3RJWIAjIb1Pb3/GjagtkcMRJHIVHP3myRz7dKzGNV32/YxExbccMRwq/X6UxSqwi0WMtIrYjO04XA4bn8efapApa389piJkk+cjoW9MfpQpkaE3O9UkVzvGOCOmz8jQBDiMRJa4ZriOQrGe4b+9SblMMSK/+lq5VPmBJbuW9B3qZWcxC5CqG3ZdG4IHpn+9SK2B9t2KBzvXAyif1NAEW5vJSSGTM5LJtx989yfbvmld3gjjljYMJFAKkdT3b8KchEOLt4sRuDuOfuAjI/PFNRYbcmR4yqyoQrZJAyeF59aAJI42ikK5Uoyhs9yfX6VKoqvboI5ZFYuZNo+8OAB2H51ZWrjsSyRRip16VCKmToKoTEuIZLi0nhiuJLaV0ISaP7yHHUV4Tdy3N1JI95czXDBiN0jH5iDjPHQV72zhBuxkdAK5Ky+HOkrfCaeW6vfmZmhYBUOc4GRzwTScrDUbnlw8hP41GOevrWrYaNqupzLFZadcMzn5WlQooHruPFev2XhbSbY4ttIgXn+IFsenWthrOcLzxnsvHHpgcVk6kUa2seR6f4E1u9yJ2hsUV9jF/mP1GO1XLn4Y3BhkeLVlduFiUxHDfWvVl05jFvdixAHT0PaqIgLdWYZI47ZpRmmxNnlnw6jmtfHV1aeZETDC8czgcOo/u/jXsSk4rx/4cF28f6jJIAHeObPHAOcV6+nK8V0GDWpIKcOtNFKOtADx1pabTqBDqd3puaXvQA8UopBSjimA4UUgpaBDhS0gpc0wFopKUUxCUhFPptAEE/EMh9FNVNPQteKe3FXLv5bWT8vzpmnJiTPYA1lU2LiWH8K2Rj/doytkH73X6VFLoFtFgKCF6/eyTXY+VyfQ1BPaK/b0rB0po1U0cLeaE9tBujYru6jpiuMjeWHxhqdxcIssaWsLCRuWRORhfqQa9k1Gz8y2cDuc15pc2Kx61FO7Y2oU2H+IgkjH5mlHmWjKumrohEZhZbjyF+fJc4wY1I6/WmKqb472O3LI5JXaMbFI+/j1PX6GnJG5dbdmTyFkOQDy56hR9PWgpKJWttyLG0pLNuweedo/z0rQkiAid1uxG0sJfK4Pf+9imsImm88l5IvNxw5wWPGT7dPyqUiVZXtowFDODvLZ2qewHr6UmZYmktYVXYW+VtwOxD1GPwNICNvLMwkaZjAZs4ByrOaQKouFVpT5Jm+UGMAM3p9PengSRE2UMLbC21D1VI8d/SmAER/Y1jO3dgNsOBH6/XrQAkUebhYnkUxBmZFIwXPXj2GTTY0kmAildSiKdhz95um4n0FOCiSNbQREOpb95t4CDuPTI6/Q0wlbiKOJEZZ44zubbgr/s/j/KmgJIHmlIaQqFjQLgHO4/3v0qdcdqhR45Zw8SAERDzGHRf9n/AD6VMOOMcdjVrYlkq1MnaoVqZOgpiZJgsVUetdBptuELMqg9PzrFtk8ydfpXY2NvthDBcksSfpiuepqzRbFS1td0ROPvE1JLb7Y0OMCTkE/StBYkjtGXOAWIH4mnXUQBtwScKtZqAORR8hWgnOCNq/yFZYtf3Zfb8omXH5Ct64G2xuCQAGYD9RWbIubdmI5+0jH/AHytXGNhHiXgiLyfiRqKdttx/OvVY+leZeFl2/E/UMelxn869MWulMiW5KKXvTBTgaZI4GnCmjrThQIdTqaDTgaYDqX0ptOoAdQDSCjNMRJRSdqKAHdqcOlNFLTELSYpR0paAK13/qCD3Ip9gFVXY/dCE0y8zsiUd2z+VTwYWCYjgbSD+VZzLijsMUmKWit2iSORcoRXmviG23XCKF+bzWRX7x5/iFemGuG8Sr5SSSKOVlBYeoPauastTSmcnvha1jiKBrhXKRjODuHRj+ppgMSWvky/vJklwpJ+Z367uOmeT+lWtrsv2pFjDk5ZXA4TpjNQgNcf6XHEgfPRwAdvfOPXOag0ZCPLW2eO4dnkRwAcjdI3bGOg+tISvkSfapP30cgOQRlj2AA7dufWn5a4zdxwoWB+USAKcDqTimkfaGN1DCrMGwocAE46n/PoKBDOsLm6kIuVk+Yqep7Yx2waN58gzSy4uVk52fxN2XHpThidjdwwhwrZCnjI7n9f0pqFZHS+ih3IHyCTg47tigBMyCITFv8ASA5V1/hkbgFcdcdKQyPHEk0Mm9nU5Uj759fbFCtGjLeiM+SSSHLH5Bj75H5/nTQYrc+fIknlOhO4t9wZ6H60ASL+7lQBsxyICExz9anHYVWtlEMrL5bBmjXaScgDso/OrA6+9XHYlkq1MnAqBamTpTEaOnKTMWAzjiu2slK2sRyeC2fpiuR0gck+rCuyRd2nfKeWUgEe/FYtXZb2K8W46fFKf4n3Hd9avzKrSIp9Kgmh+z20EQyQpCnNWpV/eq3HAq4xIbKdwiG0lDkAGUDn6iqN0nlWRYj/AJeAT7cD/CtC+XZa4xu/fKefqKoSEvpEjEghZhz6gUW1C54t4eTy/irqQOM4uMAV6KhrzzRhj4s6jjPInr0FeCaqGw5bkopfemZpc8VZBIDS0wGlBoAkFOHWowacDzTESA07NR5p2aAH5opoNGaAJQeKWmg8UUxDweKcDTM0oNADs04c0wU/PFAitON08a9whNTxAfY5T15x+fFRS/Ndt22qBmrS4W0YDuR/Os5bmiOrpDmloroIGn7prkNfjElrcPJyiyKQP8/5zXXeormtdUyWF0i9dhP61hWNKZwk0YWZkeZFtjLubKcFvQn8s1FOm2V1MypCzq8vyZ5xjGfptzU3mLBbm2VA8gfEeYzg57n1qLKWqS25UyNuGzKE53dye+D6dqxNGR3EeyWQecqROV83C8Aem71pLhCjyKJkjicoZTjr2AJ9wcfjSqRaCW3MbSOxBRWUnex65PtTMraLLAyeaz42fKcMzdif84xTEE6FLh1EyRxOwMmUx2xjPvj9RTZE2zmMyrHA8gLgDDdMhc+9GVtVltyhkZ2GwFD8xPJJPoDSY8lXtNm9y/yEofxYn2oAXaRciFnjETTFmTuzddn0zimRRszrbyyoYwCQP4nPY/hQAoT7EqsX3lQ+0/KuOWz/AHhioxieFbYLtdQwZwp+RfUe54oAkt/MkZRK6Hy1+VV/iOeSf896sr24xmq0MizyoUjKtGg3ttIx/s/pmrA65HeqjsSyZamQY71AtTJj3NUI3dIBMePU110O90tYgONu5vwNcppfEKc/ePH6V2VoucNnooWs4q8ipbElwodo0LYyelSH7w49qeVBwccjoaj3gzsncCtpR5TK5TvHItmYLljIOvtVe5tgulTr2Dhxj8KsXwxaAAZzKP51DcAtpEwAAYOOB+FSijxHR2J+LN7kdRcfyrvh1rz/AEcFfi1dnPU3Ix+FegfxGlHYqW46nDpTRzS96sgcOtLSDrS0AOp1IKUUwHU7uKbThQIUdKUdaQUooAf2p1NFLTELS0dqUUAKOlKKBTlGTQBAvM8rdedv5VZ3FLMYOSzgfrVa3OXkPqxOatYIt0VecsOayb1NEjq6KKK6jMYSAR71z2qL8l36GFmHPp2roJCBgn1rmtQcG5mXaCAjCuaq9TSBxIaW4ha4MggmBB5/5Zgc4PbpmoQxuY5ZGfyHQ8cf6tRypPrnk/jTrhY90sjPKYAV80J0JB6fkOfWorzZI8siF2RQu9Uc468AD6AfkRWRoIGa7Ezu/lSjABGflXqG/GkDPciWSSQROANrAfdXn5vxxRceXNI7xFzGqjcqtj6DHtUdx5Nw7vGryIFXzI1YjdzkKR+efwpiBXa4WWSSXyZFAOR/CvY89z1pm9pYpJpJjFOhByv8IHQYPXNE+y5dpY1kmVNoZV/iI7Ee2PzpkjLcSm4ijaZFYDAf7x78e1AClneN5y+y4EmCi5wTgYX9f1pu+QRRzxODcMWGzszdwfpzRuR5ReRqXi3ZL7uBjOW/D/Gmq0cZN75W6JsktuzsB/iH1oAljIDQskpO9MFf73P3j+PH41MOvtVeFPKmDCHiReSeqei/j1qYH3qlsSydakmkFtZT3ckiRwQI0krMCcKoyTgc9BUSdqi1z/kTdb/68Z//AEW1MEVLX4reHLZVX+1LVtpyM20//wARXpEHiHUFIQ2tqB3wzV86a1ZWv/CPXwjOjsbfR9NnW3itfKuYXdLfdIZBGA+S7ZG8/wCsz/DXu8bZf71FSKhZocXzbndWc73NssrKqsewp2B5pfGCeOah0viwjGc1ZcA8+laPWFzPZlC9P+hgqwU+YMFvrUbbV065+9tDd+vQUuqD/Q0yRgPk/rVWSRv7HvJC2Tu/wrK+pR4vpXHxfvATnBuf/Qa77PzZJ4PeuA0sY+Md+D/dmb81rrdY1q00GxW8vEkdJJVgVYVyWJBbJ+m1vypx2HLc1Qe1OHWoRIGPykEdiO9SA1RI8U6mA04GmIeKcKYDTgaYD6dmmZpwoAcDSimilBoESClrK8RXc9h4Y1a8tn8u4gsppYnwDtZUJBweDyO9eLXvjLx7Y207yeJrNrm2VXubRLePzYAxA+bMQUkFlBCsSCeRwcUlcD6AB4pRWT4bu57/AML6TeXL+ZcXFlDLK+ANzMgJOBwOSelaUk8NvE0txLHDAv3nkOFH1pCJh6d6fHy6/WokdXUMrhkPKuOhHtTwcKT6KT+lICtaf6sZ6HNXSdqwr7jpVKz4t1J5G3NXnAPkdsGsmaHVUUUV1mY1huUiuZ1BNt62MbmJBHqK6fFc9rUYju4pMcmuestEzSm+h5+xexaW3giYqW/dbR0ycEn86ifzrJ5I4YyzNzGRwQ5OGb9at3UaNdXqSyEAHO4HG1fb8f6VRUiVZxdvgGPIYnG1OcH/AHu5/CsjQR/NspGWJd29cqS4xv7timzCWzYpARmROGZwNrDq+Px6/SmpIuZBcOVjaLKFiOEHb1zUQkSJJVuiRG0Y2hjkhP7oxznv+NAh84ltXdI22h1HzN1TszH65qOZWhdoopI44pAoLH+EdCfxFRK6QmVJ1ZlkQMFOTwScIPpWXca5BZGW3WH7U7Y3HPyqf7ufb2ouK5ruuLtoRKiQPIpOT8w44X8cD/JpFx9pWF5FEXmMyps+83XBPoOa5mPXr4q0Ijh2MSxGCTkn19qcuvXK2wt5oYpIxwc5z9c1NwudJbcTKjShgFIiCrgHnkn6dKs7uBjpjisix1S3vGhgx5MqgnLdPYD8M1oh/UY46VpBiZaQ8ipb60k1Dw7qFlCyrLc20sKFzgAspAz7c1WjYGrM2oLZW8QWJp55nKRRIRljjOeeg9T2zRKVldmlGnKrNQitWea3Hw38a3llHZ3Ov281rEFEcEt5MyIFGFAUrgYHA9BXtEDZlFYun6k11O9tcWzWt1GocxswYFTnlSOo9fQnFbNuf3lS6nOrlzoSozcJLX7/AMVozvdM/wCPGOrEq7kIziq2mf8AHhH9KtsPlroirwOWXxGZfH/RYz1BkAJPfmq0kYGj3iN8xXt26Cl1DeIIxgsrOCM9uaWU7tEuyo74GPbFYrcZ4nZfL8Zb0Z/5Yycf8Ap3xP1F7bSdPs9gWG4ujI87LkRtGuVH/Aix/BaWJNnxque26Bz/AOQzUfxSuJF0vS4C6iCW5d2XAzuRMrz9WP51cS3udZpN7JqFhbXssHkSTxK7REY2EjpWoKxNBuprzR7C5uCGmlgR2IGMkjrWyKozJBTqYDTgeaAH08VGD9KdmgB9OpgNKDnrQA8UopBSigRk+Lf+RL13/sHXH/otq+ctc1LRtUn1DU0jvDqV+/mtE6KsUEjMGkZWDEuCcgAqMBu5Ar6jliiuIJIZo0likUo6OoZWU8EEHqCKyf8AhEfDX/Qu6T/4BR//ABNUnYQ7wh/yJmg9f+Qdb9P+ua1j/FOSOHwG8suw7buFljcfLMw3Arj0711kMMUEMcEMaxQxqFVIxtCKOwA6ADtXnXxet7yGLSNZiUPbWzNDLHuyN7cqdvcYJ6dMUFw+I7fwuiw+FdJjSTzV+zKQwORnkn/D8K1ZDttZT/0zIrk/h7p91p3hG2F3xJcs1wib92yNug/ma6q4OLOT3AFStiFuxLcbbdAMc9a0ACbiFfQbvy//AF1StlXYA3TFacC7rpTxwB1rJmh0NFFFdZmFYfiAExx4HQkk+lbdY+sSb4JlVh8gwRWVVe6VDc851OJZ72YrEZMAEjefnPYAfhVKXy74sY4gTEMMr8YbghT+HX61ZvpJIZnMO3cylfnb5VPXdVadXtmR4XXJjILk5OOTu/WuexsRSsL1iDCqtGMMGUdf7v0FQtI147KyJFIg/uhhu9iew/nTp08oRvBKMiMqzhMnHc5qrMqtHGbaUnMTDKddvr+JA/WnYRjeI9SnMKQoTEwU5dD97tkHsODzWHC2Yxxx1x0yT1NXvErRtcAwn5PJXA7gYPX3rNtD+5UnkBRg1LM29SyTswFH408fTk9ah+ZkIPrxT9x3VIDGlaRsKSrKDg+hrtYn/dISSflHJ+grh1P7+RjxgYxXaI2EUf7I/lVwWoJ6FxH4q1LYyXdva3NvIkd1buzRs6kqQRgqfY8c9R2qghzgevStCDUrWCFIpZCrr94kcdaqaurG2HrSpT547/56P70P0+yuUvZL6/kie5aMRBYlIWNQScDPXPB5rbtjmQYrLj1GzHPnrtXgnHetGw3zur28E0inoVizmoUUlZGtatKrLml/wEv6/q56DpX/AB4R/Srp5FUNKDrZqJEZD6Mu01frrgvdszik9TG1khIrePdg+YMe9RWsgOiXIBChXK5P4U/xG222gxgMZAAaq2Mf/EjuwDyzYPt0rFq0i+lzyNx/xe11J/5cyf8Axw1D8U4o5vCtsXZUdb5cMegzG+f5D9KlvCsPxtOWVFFkxLs2RxGeT6Csj4karYajpumW0N6pj8+aRmxnlIzt59CWwPrVLQq/vHf2ipHHEkQxGiBVHoMcVeBrC0C5a40bTp34Z7aNiPqorbiDOdkYLnGSqnB+uadmZ9SUHvT1yThVJY9K5nXfG+geHMpcXf2m5/597YZOfRm7V5nr3xN17WQ0FmTpdkwwRb/fb/ebjNOwNHtZv7KO+Sxa+gN654gDZY8E9vYH8qtKQRnIA9ScCvDvhTbJP4oubp43kaCBmEhbOHYhQfyJr0TxzcWq+E5IrmaQNPcQmJYzhn2tuY/QLz+VFhbux2CgswUdScdaeylTyPasu8tYNa0uWzFyyQXEQWOeFsFeBtYH8s+teW6H8R9U8OX0uka4wuo7aVoGkDZwVJU4b0yKLD32PZgecd6dyKzdK1mw1m2WewuEcEZMZOCPwrQX5cgjFAjD8TSAS6bBdTNBpk0zJcyLIUz8p2oSD91uc/TqKi0A28OvXdppM3naXHbozASl1ilJPypk9CMk4zz3HSuidUljaORFdGBVlYZBB6giiCGG2hWGCJIol+6kahVHfoKydJ8/MehHHRWF9hZ7W303vzNfzLZeXzTmGcjHXOBmvL/i3My6loEJkxb+XK/lE7V3ZIySO/b8K9O6jA6njPpXnfxetTcWOiTRRCScTTIE9V2Bj/WtehxU/iN34dPLJ4Lsmlk3csFU8lVzwCetdPdH/RSB/Eyj9azfDVpHYeGtLt4v9WtupB92GTWhettto1x1kA/nSXwma3LEe3ag/vcCtey2CVjIVVeMEkDNcRr/AIy07wskSXMUlzdTAvHbwn+HOAWPauA8R+PD4pijtbmyNraQyCREilw5fBGS2OmD0rK66m8ac2rn0jmmGQBSx7de9fN1x8ZvGk2fLayth/sqW/mKxLr4k+NLlWWTxAyoBltkSA/yrocuxnyH09e6nBbRo0sjRBiMMwwMfU1zGp+INPunuoba+t5ZTjbHHICzY61803+v6xqHF9rN1MM/dMmAPwFaXgK/stP8UrNcvIuYHjik2swEh6ZrGUW2Wkkj1SS7j8+SOdgE2FuSOfw71VjdLVzJIjCJ4yUXrsA6KPr1pwTzZHQqvQsSQDlj0H0+lNV5LiYQTbQ8YI3LyGPT5fpznNSMr7vs0omMR2SqfkVTkf3QPrULF7V/OMJLTDLIODuH3QfoM1PukkuFillDqoOyQcb2A5x9KrRsPNVZJC0AVgjMev8AeJP44H40COd8TRPFIksnLzQnf7MpOR+RA/Csuy4tIgc7cdDWt4giBsoiC5iXcIs8/Lt/qRmsm2AW3jU9lHFQzN7ljJVsD86VQMZ6+1Uv7SsSP+P23GP+mq/41bV0YBkYMjD5SDkH3qbNARM2Xb1I/rXZhv0GK4twfOz22/1Fdh0J571rT3H0LCP71ajYEAHB/CqCmrcR6ZNaNai2NiOUvbi3GFDkMz7c4xXdWmqWti8VvPfwQ4wUR3VNyf3hnqPWuFtJRGArDkkflXP/ABbug3h/QbiIhbmO7kijlwA3l7CSp9s4qYq7Lb0PeLW7gvYEmtbiKeJxlZYnDK3UHBH0qSeR4oiyqWPpXyhpnjzxBo8BtreaKS2YfNCQUUey7enXtXQ2Xxau0fN7ZXCybcB7SXdj8HOK15tCeQ9s8USFlt06fKXGRnkEf41HZ3KDQrtWBEwUszZ+mP515HbfFK1mBN/e32VYE/aY0BC55A2/hXd/a92mySp80UkYZWB+8pwR/Sstb6ltWRyep6ZDc+Jr3UpovMcW8McB7HHLA/XpTGthcQSJqqwOLknCSY24JwSVHIx2P0qzfSTve4iUvj5jt7L/AI96p3hgt4g96Y5d37qMq2WHI2g/8CIJzwAKht3BK8i1FcJpkK2sO24EEe2BQduQOArE8A1w/ifWPHd/E9u9i9nZ7trRWQzu+p5rtrWYW+nyyRwR+fu8oRk7gWHAxnkjgnPtVYXskEkqRu03kJ5S7iR5kzEbfw3Ee/4VSqNCcbM8msvDWtXbOYNHvJHU4dmQjBIzg5rUm+HviSKDzHtIc43GLzl3Y/Pk+1eu3d6mlLaaVHcPJcXZZY2yfmYAs8rEduuB/tDHAqrcBdRihkky9tayK+8MVdmx29foafOwZyfwtt5LG51u1uFEVyhhLKxHA55z+Iq78Sb3S73SLGJLp3uobxhmHpHGVAkyenQDH0NXUsbW7S4tEBkdnVCUJWR3Y5C7uMgbSeT2NQz+Draxs/NmnuJFw26OJUJfucbvxqucz13R2enG2TTLT7E2bPyU+zsR1THf365rxH4iQJb+PdWSIDy3dJsDuXjVj+pNehafdwaZpsdzbatOtooG2OVFKx/7Jx/SqGreA4/FOq3OqvqktvcS4eRXQbVQKApHtgE0+buODseZaXq99o1wJ7Cdo2H8BPWvXvCvxPstS2WerH7PcdPMKnBPrXDXHw9uEkd4dYtDbAlVkdGDPj0GKfP8O2jjb/icRvceWGhgVG3S5OBg4459cUcyG0me8IweNZI3WRGGQynIpQ4I6149aXnjD4fTLHeQ/btOPAljbIOMdAeR19K9D0PxbpfiSJvsUpF1GN0tuykMo9fTrVLUh6HQg5749683+K16ReaNaI5RhDPOw9M/KB+S/rXoYYYwTz2968u+Id99m8dr50aMo0sRr5nbd1P6VMtjSj8R6N4cm8/w3pcmRzaRjj2q9fOAkAPOZM/p/wDXrF8Foy+DtIVxg/ZwSPxOK1r0/PAO/wA5H5ChfCQlqYninw/pWsaLeX15aCW9tbRjbSDO5QBnFeFWkySxbgzMCvJVhxjmvoCS6nZ9v3Y1TaVI++PQ15/8Q7awt9U0lYbCG2jkRjMkI25+ZeuPbNYykmdlFv4CKDwBaM6xFb2STcQzMxUKo7jmrh8EaXbytGtkrMcYknmLEDuTxXSApLamaWRkkWQl2QYJb+6PXpimpKnlXH28jeMGTI2rz0xT5mY3MmTw1pljIRb6ZaklMJ5kYbb2JJ/GppdPjsCPskNtH8mzhR26n8Ksrsj81bkna8fmbi2SiqOEx7DnPvUSMkEgZ2xHKn7rcfuIB933zS5mAwK6rHJFIu5lO1lQEnHUj0pMRSwWy28rNJyAwOGY4+Y/nRGfKlS4ELJHKOAEJCKORx2zSfPGy3ZTaZOChXGEx8oPvyaBEbeVNDDBH5iug5ycFQO5+tV2CzBLV7dYmiUsVfkKOQMH36/hU8gkCR3JXc7nJUNkYPQVVbeFt5Ulie48w5AXPJGCv4CmBl65K7aY0EkQRoyASBgA4PArCiBaFOOozmtnWnhXR4gJC7gncWGCT0JP48fhWSiBY89x39aiRD3MO18O203gOe+aOH+0SGuomNyokMKOsZURbskEmVi2048rr1rW0wbdMsyf+eKH/wAdFc6lv4iWeKVEw8Vs1qnMeBEysrLjpyHbnrznrXS2Efl6fBDIMMkSqwz0IHNbVpJpWZKHuczr6Ff6iurJ+dv96uVVf9JUs2TgYH4iunz8zfWogUTRsM1diIJGKoIeauQt8wxWomX3uobVUeeYQxsdoZu5qLXNL0zxRZWsNwTPFb7mBikK4Zuv6Zpl9ZNqNkLeEKZg4aLccDI4/kTWjY6RJoSf2fMpWQMZGOc7wenPpmsLvn0NdOU4+f4XWrAGy1S5hPUI67gP1rLufhtrsOWt5rS6Hudrfyr1ZOnSp1CkdK2ZNzwq98Na9YKTcaTPtHBZVytdf4B8TXV1bXXh++WRnhUTQySDBSMADYfpxivRdpHTj61naliGCSYhA2NoYj1/z+lJ7BuzndWuxDp1/cQswfAjyOuP4vyHFNs/sP8AYpZFimkKvFcxEZO4ADcf7oABPuSKj1n7Y+n20WnwI00jeeyuvyuueF9+ec1VvbBRbOLe3SKXULqO1klznh8Ft31xj8azQnW95RsaOm29rFJHKm6XyIjL5zuQztjaoH90DaenrVmxiWGe2M2+TbDJezZHJZvkRfyYkfQVXYJHeTWSN9puElVVZ2x5KKNp/wCA5zj8K09GiW3uNSfzHmVHSASSclgoJI/8eFSyt7so6ilxbWTXUpEK2e54967iowSQfw4/Gi1uIo7JJ1cqZAbtnPzqGx8oCnoBVfxE07W4REMxcGIRsfvlvlx+v61PLCkFvbW0LKiZWNAo/wCWcY/lVp6BJbF2wMEOoQgjjAhi+UAtI4DMWHoqgDPbeazpLm5N9LK9uxAuPKeN/n2RsvIUdz03VPHb/Z7RZL66h8i6Rysrt8yeZyFUe6haR9RttNtLdrac3VtFBkQxrv8AM44Lkfd9TmnoT7N1HbYS0SKZti2lvtm/1VoYwqKBxub37VfvIN08dpLI4HlNdXuzjECcBB7MeMeikVW0i7k89DPPFNujDxXH3UQHqmajmnTzLzUpGklhLiKBk/i8s7NxPcbyxA75qbtjdNU20RkNBdTaoJWkhiLRi1kj4cscIiegHA4rai0uex08pGhmvpVxPJu5zj7qnso5FVdLEt5faVb3Ezztaq13O8nAdySsY9gOTirlxqUct/Jp8FxG09sPNnMbj92p4BJ/vEnp6Ubhocpq2jaisgkVri9WCRWuYfNIGSCfl9SM8juAKsaXqUGh68bW8gjhhvyiR3flBW6co59RV/xLZ32oiy1DSZ4I1tVleWSVsKRgYyPTgn6gV5pe6jNqlwdQvMAkBIos4AX0H161rA5JuSep7yokjVWZSM8+ox2/MV5f8U9QtZtf0+wNkjy2MHnTSueZEYhgg9gM/ma5C28aa7oGsRvb3001ugXdazNuUr/dqfxPr1t4o8QT6nYQSJFJaxxPFMc7WAAwvp61bfunRSve57zps0NzYWs9vGI4JIlaND/CuOAKS/3G5tgPvbW/pRpUQh020hzvEcCLk9uBxTb1wZupDrGOB3z1FT9kS3Yl/FJ5L+WrS7cDAHIrzvxqouNa04SKQUhyQe+XFem2cvySMmRzgqeetea+MmabxZbZwQsa4x/v5/pXPV92DZ24PWqkzbMW+RpkgaVVlzjdgM/OT/8AqodkvJXkiVWMY27ieC3pj2rkv+ERkV1jk13VHVXUph9ibffB4J5qTQ1k07Wtf0yOd2ihddnmMWYIR1B7nPrWttDmR00kj3rMjIoaNTkDoznHTuVHSk817mYRSRhWT5nAIPOOAKZLtjjgkt5Q0ixuFbGARj5j6jkU1o18uDypcyLwrr1Yn7x9sVAxUkkkuUhmPmIjffAI3t6fgKiRtlwi+bvgDFVd2H3+eP8AdFIrwSRR26CQSK52qzEH/aY4pm4Yjs2hCHO5cgEFM/e57nmmBDJJDC/njcbVXK45xu7sP5Vky63HDcmVLfBwVIP909/qa07kO8YsHKxh/lDqOAOyn3rl9ZjNsWEpG8n5sd8UmS2ynquoNfkySqEAAwqdhnNTKwkUFPukdKoxWV5f7/IgcI3RmFaUGm3MC4ZhgcGom7LTc0w0YTqxjVdot6/1+vQRcKmB19aVVw/JAHenG1lQEsCM96SGPe5QnOKzg29zbGU6VOaVPtqrppO70TW+ln87CeWiv5rP0IHFdHkbjXLH5r6KNuIjKox+NdQSN5x3J4rogcZIh56GrcRIYYxnOapIyeb5TTorkZ2k881vWGjJdSBHvIoRx97vWjY7XHRq0iLGFUhsZLZHA9MevWtS8ubiVoEkESpEh2bSSxHbOa57Ur6HSdVFkr3ZLkIksMQkDZOOcngZ/Stcaoup3dtodvplw19FMUlvWTamMcsfb/CslL3jRx0LSSngDrU6zAiqc0E9u2JEDgdGQ8EVGLqKPG+QR7um6tG0Zmn5gI5OOcZrL12RvsAiQjdI3GBkADqfbvWVd+K2t7toE0y+dAGUTpGpU4GQV59aoRa0mp3eyC486SYiN4lGx1GRk44A6N+dTLYa3NnULNLy0uLaOTyZ5IAqzZ4TI9ulJomnwWKJaQzSzoZRNJJOASWI4xjjjAP51BfXq2t7e+ajBYArWwxj7Rx0OO2cVS0m7vmjVI7eZVkcgqCD5WEwAefr+dQinFXTY1bqMahYx3IMUNwTK0kYyzeYxYZPpxWzpZvY9HaeFUd5XkmC/wB4lsD/ANBFZ0VxC8UW2VVMdodkTRgklEwxB+v860Xujp3h+CWOdEktoFdkI7kZAx7kiiwrtJ3MmG6/tDU4nUKHtm3XcfeKRUO0++4jt6VfuJkaGO3R8F4BDCGHcnDNWdbpCL25vVmczwQCKdFQBZtzCQNke2BWpaorzxCWQ3BiZrqdtgHbChfx7U3oKL5tzI8STxyaxZNApEQ4hVhjcVIJbB9FTA+tb2lvaf2Ta39pLGkHmGe6UAN5u4EFCOvp09K5bVNVuV1WK/ewVtODGNUfl4VJUs5/75xj0JqxBp1ro5v9SVp0WI+bLEeI1Y8KFA6jcR+FNLS5Eq6lNFqO3sYHmvHikdUJkt7LdhVfBxkdc8itU6W80+naKs+xYI0MvQq7Ly2MdDknJPFYujwzR2lvd6gBi8JupNxzIcHgKPc4FaJku49HlvrRxGrxfZVEy4ldnO1GX2LPkn/YFD0NPibZesGjaxuNSWTypby4P2ZVGT5K/KgHtgfrTL0RtqEepvZ7IHgaOY42k+rt67Qox361ti0h0+0hjjhVltoliQn+EAYH41geIpDqujX1hHMsDyofKdicKV559qlFRjbVnH+JNfW/soNMtfMtoguy4t9pUGMcg5PPP9DXKzFZk8w9AMDFT3U5uJjJ5pmSQeUkpYksqjG78Tk/jVa2GbMqTwDit4Kxx1Z80zNh0u41fxHFpdp889wyopY8Lxkk+wGT+FamoaG3hrX7nSJLyG7aLyi0sYIUFsHHPcZrR+H0Rk+JEb/xRwyuD6Hy9v8AWn+MLWb/AIWJqloBulvJ4nh2jjawBA/I9fanJe6dFNnulsP3MQznCKMj/dFZs8jyzzMBx835VoWqNDFFHkbo1Vc+pAxWfKr+e6PwVyceoJpPYUdzmfFvjR/CcMUNiVe/mdZEjkU7HjHBOa5JPEDeJ9SGom2W1ZSI2QHIBwTke3NbXxSRTodu2yNn+0LErEfMAOSAfSuM8JJi2dj185u+f4a58T/BO3CL96j2+LwbalXN5ePL5gAOF24xVG68HWWm3s+o6XcO81wgS4gklyHA5yPQ+1ePzfE7xTfkxwsAOwiQtisx7/xZrV40BlvHuETfs5UhRznHWq9lO+5hzxR6sv8Ao8yXLII1k++u37qj7v0OevrUYGwpdiHCP8hjCciPr09c8+9cx4Eubm60eVLsuYTdEI7gklinTPbBH610xkdZlhmk3xBsFgOhzwpqmrEiyNcGMXhGJs5GX2/IOin6+lRMPMgaQyo0vm7sqmcHoFPtjFNkKxzNJG5MKSDeNwxvz/SmSEPK91DHgRykDP8AGf4j7+g+lArkE93b26KJzcM7SFnK9cjpj2qq17p5mE0lsHlHRnTJB+tQeInlktradEyqyMqRs4UlfWsBLibAQWcsjHoEbPNZyuI6aTVInbAlww61G95buCfMyaw0j1CVv3elXjsen7s4x7nFXE0vWpmAXSZFGerSAZqeW+4i99qiPBc+2KgMdv5zPHKwc9c9Ktw+EtZ3qlwbe3c/wu4OPxBq7F4PJi3zamHGcbYkIJPpzQlrYbOXHz6pbEgANMv/AKEK6Qkb2HOM/lU8WgaLb3CyXMbS+Xhld5BlSOTn8a1JUs5DEYIMADogyDnufpWsdCTznxdZzHVLSe1t5mllhKuUGclTgVf0fSfHPyGKJ4Yl+Zftj8Y+hruYoxHAwEZlTlmeR1AHue+Km8mWdEUSwqmARhiVI9uaq5a2sRaYNSgtgdUuoA3/AEwXKVrNrN3NCI1uZEifPEbbQQOmPrWY0SwwuWuZ5GReI417/lUEc1rGsPn2LNIw+YMSD+AqElcrUsS3cbyeZHcM+04IVumOx96he6uJ8hoW3LwjMuzr70PAL59ls6xo2C0L/ex05PoaU2cljOTbRxyRyJukM0oCRkcYAPNMhbh+9hxG935ZwFOyPdnPfOaz7mzs7sNJcWs7yRsFyvLsvb6jrU6pPc7pD/o8jrtOeVzng1bE5ZcW6I7Nn5lUkAetIqy6GXJp19FC403ULhYx1juE81T7YyMVUie80qR3uNMfMePLurB8Bs9S6Ac/nW59mnnRYmYW4yG3lvun/Gq8UljGpLTShoztKg5PHBpLQTu0YA1ONwsVpcxzsITAEb93jBGPXHFajzOVv49sV1dzMiyQb92ABxtPt1z2xT7rT7C8/dW9wkRH3GaMgqfaoLuy160tonLpqUEJCBI12TMrHkFun146VaIlLWxOLSe3s3jgtdg8nEflybnbaACDxyRkDPck1u6cZZYrz92LWRo4Y+Rjyxsyc++a5n+2baGGa3uIrmzu5AkJiMLS+WgYkvvXjktz9KsWniKwkuLqCHUoiJAAFkjZGygxuyexFJocdDU1e1u7K1h/seFLqWd44WaRMhFwzF89s4xmiw02+n0u70zXFQzXTBD5LbhGCB85H8POR+tINYzG0UM9s5wgV45lYMM/PwD2FT22ri1OLq3mgnlLjc4O0DPynPfk0X0sTyR5yhqcsBcuquzgiG1kPzKEQbWOO+Sa15zLLq2nW124OyeS/YB9x8tAFjX2G9849qy2gg1HSrKKOOZ1W2ZWng+YgMTnHvmtTRbeKW8vpTL50FpFFYxyyHG/Zl3P1yyg/wC6fSk3cuCabsad5cQtC7o5eVELbO5Ujv7Vx3i3V4B4ckit4gJJyIFkXqjt/D/3yD+VafieJLOGPUrO8SCaIb2Y/MNg64x3rivFt/HeT2MVqYxbon2rKHhnfjJ/DdxVRjqDqNRZy8BIhjhAwsRfB+uKlt1CyvGehAIqu4dGeQAmPccgdz6CpROIyWlDKqjG7+H6Z9a1RxJOW5s/DT5/H1yey203Ppyorb1tTP8AFyKVgDHBLaQE/wC15eaxfhIvneLr1z/FaN+OZF/xqZ9WW58Rag2T58uurKh/2FO0fzpy+E7Kabue1KSMluxNMvI2eJJFXfsJzjqRT1yGYjqGJxUqHHSh6ohOyOI8beGNT8TabBb6Z9n8+2mM0qzPsyMYxnvzXn2g2Vxp6S213H5c8ckgkT/gNe6rCI2nlHRl4Hv3ryK8z/bN+wPA3/8AoNcuM/h2O/Aa1PQ1EiXTyv2WG2QlChJjGS397gVk24dfiJL9mldpn04YaMjLHHOM1inxhqcRYxJY2gK7EEz7ygHrkck1zt/rFzdaot4b4JcJFhZLeMR4I/hGO3vXQos42df4CnL6Rd20mTIl3vQluASMMcD6fTmupiXzIVtkhmZw5DFh1Oc7ia5vwDo0ttaNf3ayKJ0URxIm3KBuGY+hJ6V3YvXlby7RXkjkXcGU4UAd29qme47mcLKZYXgKRogfb8vJwepOasJZ2axnzZpWVsfIcDnPK/jUT3S3Vx5MW65kyQwRsKvrg96lMMVpBuuIXzHJtkLneNx6A56VI/e2KL2dpMzSBZFlDkYkXdj6DkVZ+zwmMRJE0u0j/VoFYd8npU++TziYmYiLG9E+U8/TrULx3SSXVwJZZHkjAELEpgZ659aLEtOLsyyZL7hLcSJHjpkce1MYXMMe+dowhOPnchvwxT44blrQRA7ijFTIDyQfT1xUgt4njYyeVOIcKVl5bHcn8KWhTK0dsjMqNfE5G/Gc4/E81Bf74GLIjTkL8kzMVTPuF5/SrLadZCDzo3MuSGUyfKQmOAPao4b6OwZyr7o1G7MseMDt/WgmT6FWUTwGOWZ0ihIyy7A24d9ueT+NTvdpJG/2G5E7jG1NuwFcjjtVuSe4uPJls7dJGwWjd4gV568+nFRQRRicwqtqNzHewOSx6nHHbFF7lJWI7b/SllYMI4zJtJZTg+owev8AKpGNrEQiOpMfZM8g96RJ4XEzPcTO6NhiybUA9F54NP22axiRFkKjJGG54/z1pWHvqDzW0UqqkchlfHz54OPp0qRbxm+cQEqWKglcnOOgJ/nUcguhNvshbQx5XfvHI7Yp2dXhSVpkVYi2FyvQHjB+tAuhWnkSKKOVtluikEu55HHA45NJDMt2HjNyLgBwV8tO5HQ5FWhpkUk4F3C0TrkBXbfx689Ov6io5rT7Pdb7fUVtInTDKibnd++fbFMi76DZZFiC+RCh8tVwrucnnkjsaBc3DzuFcxxOoIVUA2nv07VCkSO0STv5pj3CH5dpKnB4x05/OrsDz+WILCGQgDIkI6jJoKsnsNjjuJAkckiq5yQ4HGO3WllS0TfGwRt4yRGASfbPUU14NQcKJZIxLG3KbvmC+o9/amyw6fp6jczsZfl3L8m0ehI6k1I0rkby2MEOIrVsKdiqfm/Ekc0pNxAY5GuI7a23DBd8g+owPmz2qddTtYUcxKVHrAmN568nvVC3023urlrprjdcJ86CSIAJk9ueaaFOyC0aB0EjgzB8jC5JyeOfbjvSTGBpMrbWjPgkL5WGx0wMirx0i7tH/wCJOyxNI5+0SSNj6EDv3qtNbFrkrd6hFdbRuXyh8ygfypsFbqUU0W0l+RLQK6DCuvyhQeccflTE0PULWF4LHVZQhwxguh5itjtuOSBWv55sbcJH8uVDFWkLso6gj8+lJNZ3UpVpJXKkqxeUlMj0wM5/+vSuJRRgNfT2d/D5iCzm3iT7RauxgCjna69vfArW0jVrWZ7WK3uorq3t0mebyMhpS7lsYbHdwOat+RYCzklunQpHnegXYrDt061XuNF0rUZo7iyhNmZVLiWNfLcrx6f56UXBJ2shxhk09Gu7+4gljcE3G8gr5fcADv0GBXMJY6fq11ealdQSW32g5hSLBGwD5QAOhwP1qPVPCkdjcRh7ie5t4pwJIvPO9C3KyY963dD0p/MuFs3hSexlKFJDhZAwzuY+/OD2Iq07IyvGTs1qc1LpEZtZLqCd/saYLtIoDhSeeB36fnXRW2mae2m/ZEiVUXCsXGQ5I9e2e1WXSE7NRCCaWNmt5oCoDbT1DDvj19Bmmp9mgdNP2TJBPb4xJyGBPXP+ye/pRq9TRRVOdjO8C6UNA8Y3jBVjgnh2W65z8wdWKjPfANZVj4fY/EufS0nhkiivGlMgbjaMOV/3huA/A1vazcSaXBaaiId89pMDGu49VBJXPbcEwa890G7FjfWmpPKrtDdebKM5fHc59wT+tVe8TSN7M+i0O7J9zUyjioIXSWJZYzmNwGX2BGR+lTKa06GKHSHEMvspNeNXpP2vUHB6l/8A0GvY7g4tpT/smvGrk5e+f/f/AJ4rixztBep6GXr336HnEWm31xxFZSsO3yGtTR9Dd/ENraaiY4k4kcM33vRfxPFdT58jDOQOMgDitrRksys6T20Ulzs3h3ByMjse4H6V1p3OGUlHcsR3SzW2Ii21pGO08b9mcj6AZx9BU1+NRniS0gmCYKvcMpwu88sGPsPlA9qivQ1xNGSwjMRyUK43kjDYx3JNWrnT5rzUIJ47kQ2kQ3SqeszEkmoW5LcpRRDLILXUomghuHv/ACywggPyrEOSx444BPNXVilu0/08Ao53Mg7fh25wanuVH2iVIN0dzfFHccbio+7HnsoGSfwqW1htriNfNLLbSH7qctdY7seyD2wTj0ouVBe7ZkFuRaw7LKSScltxcfOT+XQVKP7RkmCOry4+6XbYv0OauRXKzwsYo9kSnKbRsB/Pmo1kmkJjKyruOF6HI7nP41Jpa2hXMDGRcOIZYujhuEX+IA988VItkGjZluflZtw/hY+oHqaiGhGUb7EDDnbMZWIHHXGfpTl0aWJpGDiNkcGMs2Ub/A0idOhRvXnR0WCzQzySZ23fQgAjcelRtNdwyRJfTeXbOPmWJdmT/unJxW7BLbKHjnZWl6KF+Ynpkj8/1qpe3GnLdm6bS3uZnAi3ySbenbGad+hPvRYy4d4YpkgmmknSMvCGGd3rx2HSorcHULtYhGBKsQAJXlXx/wDXp4itEeXyoUR8rwm84Oc4B/HntV1YNVuQFji8mNSRGzYGT796VzW7tyscllFHHiW7QLk7w69fw7VHHcpAJZLeEXcgwqsBtRhjr/T8qS50xWuoxczE4BGYz0J6/hTLhbGz03fdx+YicJGGO1cYx93nqAfwoJ5UthkWpzzv5yQrGMbTFD87A574qeRNRmi3RkwKfmczSDdt7fLUUevo1qskSZ52v5Ue3+YzUV1fRaltVJpoScETAfMw9MHikD0RDLLpoBJuHmeRseVCpLr6knt/9altleWAGxEq2okLROV3ce5qW10Rbd5XLr85G9kB3sfft6/rRFpWqw3E62NvDa2YOFaRyd4PsDxTM02xZLkpmK2FrA8nz+UI8GUjv15H0pDPLK9u5u5BnOUUfI3Hf86YbeSUhdQmjV4HypQZwuM/KR+WDVqDybMCKNjKSDkS4XBzng0mataEKrcQhsiNosbV5+ep0s5xHvV0BOHAkHamNfXryeXAFLd1RMn8W6Un2C4vYtjxom0YPmuSV9cbT1pE83Rkqpp7z+fMscsi/wCrEa5KjuD71XnubMMY7e2SeRQceY3K57D9KujS7VYo/PnMgX/VqWAx7cc/nVe6uJbZDs0+L7O6ldhOcN2II5oQScUtrkUkmpN8vkNIqpuKhtikenP3iOuBUVnZwTOIvLeJHXdJPAuwSAfw85yPasZ9V1C/ui9qFtYYSyyJklo3GMnHpzWnZzbbe3N0Zri1ZfMW4CN8snXPy/wkVVgunazNKO706KSQWmUmGAVKcNjgc+tNGrF0VpP3HzbZRnAVuoOO+c9apSWxgVLmzQwQpMJZR95dvOCDzkE/yNEcMNvc3VxBcxNbzYlmSU8LIfQ/3D+lChuK8ozs9jS3yRkI2xw6na46EnoD71gWus6gbfzLvSjtt59mxYySyYO50PoAM1qMzywQSqq202AssQOVdAeSPb3qC/htpIYpGbYomKKI2IwxGT17FQw/Op6WNnPlkuxBqds1yf7ZtI0hvbcAThDuFzEOoz6gYp0cYtZmuXt9sN7AYZADgtGRlSfcdPxp+l28sHnrGRGkWGETfMAPTP04rM17V9Sl1zdYpIlrbIscpeP5Xc84HHpgcepqlsczUebmLTrEuuXM2nq7yOVWIYwCPLQAn/PerscMFw1urQOblSUZyeMdSB9TTdLtWtb66uWUBFRJ1kdsAhh8wBPGAVp0uoyTySPotuJlWP5rmdSkSnudpwx/Dikka1GptOJHrSPF4b1K8lYZZXyrDC/h75z/AN9V41Y/6if1IAx6ZPSvVdZ0m2bQ9UvdQuzd3gjk+ZXKoCVJG1fTnvzXlenZdCOpZ4x+oqoLQafus+l7FdthbKf4YYx/46KtKarxDEaKOyKPyAqZelb9DAbeNiynP+xXjdwR5N0w4JJ/9Cr2DUGxptwf9ivHrhc2Mx65bGfxrixz92Pqenl699+hJBbF5kVYy7cDaPSujaz05IzA0khltYC5kIwNvcZ+vbvWWt3LZajHaWgjillH+sk+6pbO1cd+hrbzq2pWJZp7axgaQRxho+bhxwWB/hGeg5rovfY5lFJ2kVL+VDb2tzAfNDNIyMxwyEEEcfmKlgnU3tsrt+7fJQnp9T+BrKmuftAlR43inV/NkSUfc6AgeucE/hTobWSTU0igfy5EjWKNJDlNvVf+BY5H0pImcEnaLNm7hku/EBZLhIxJ+6dc8qhBBbPoFyfwpl/fQXGtaf5EMkce13jMRIVUUYGfbH8qW3fyftsggYyW9tIx/i3sflB/In86XT7yRrWGHeBApcyEpj5Qcc/qapIwlKxZ0jOqbZlWXyrncAJD1CnGQvQCtCeaC0mRLWV5rhF/1aDII5454zn+VQXF6+n200qWohUR+XHJt6R9gP8AGm6fbS6o8IgdlmaNZbmZRhYkPKKB3bA3Z7DBqGaKd9x1zqNxC6B0KtMx2wAAsnQZx065olsbmeB5ZW2RqB5jSybcfRRxmi7v49MiuYNIs4JMqc3Lt5rS+uR3OcjNYnlXOo2Ud3OjLd7Dss14TJ6cU1FkOpG9i+IbUTQpbX6z8YdNuzaSBj5hz1x+VXbfzrYs0tlBNPwiCRywx3IPrUGnQWZ0dfOtmS6QZdZFyqSDPP8AKmXWWuLWS2+1GJRvlUfxHsQOwpdDRWbv0LA1G4a4+zyxxwIORsQDP0NV1mvtt1JNLJPEcbVjY7gPTHrVvTbT7XFKshcKTvMbjyyqk9fxq4w0+AJI7lSpbAjbK4/2jSQnG0tHdGdbSSSQqvlMjOMoH6ge9PFtIgUTADefmygAU/hVmK4jRnlskaVCNqEjIB9j6VVfUru4Z7aaRLYqRmOH5zJ+FA79y3LpCPIrXDiHYx2lDgOPfFQzwWEO/wA3c8TEELkjYR05HODTY7a6lXzXtmCqCd1zLsCg8ZxipY9KuolVxN56N914jgkem/uKVhN6FX+1Et1fyIyF65duP8eP8ajme41Bd0M1wTgAPEAFyfYkUT6jpFlcFJbdjHg+a80e5vfB70W4t7i2WaOH7ZPERsWY7cLnjK+lUhyhJJFmDTLvYEAggcAkBf3jEn7xIYY6A1LHp9ikoFySZzyomJ5/DpVTU59S+0f6Qz2togLgr99QB84H6/hVLVbqUaXb3gNxKzSlTIflEGSCC/8Asc8DvStqRKfLob8ht1XCwkKg+cRtsx74HWoIFi8qaNZ3XcCXJUc02GKb7cfs80P7xsFD8pZgOeO4HWlnkRL9oyqQXwJ8tD92dODx+HX60ranR7q3MuyudNgspII76EyMTN5py+QfUkfL9K0dQWafSzHaXlol26CSFyMoNvJPTp2/Gsr+wYdOea6t7eQyXiMrIk2YmX+9jHHpj3qGwK2FwkctkYLYHdCxP7yOP1Legb+dJqzIXvU2+pHauk897LcRfZ9STEV6mMCQAH7o+rZ9/wAK1tAmvLPSJ9KSZGuogfsUjj5JUP3dw6YHQir8Nnb6lqkN+ZT9pjh8qdE6OTypb1IVv1rnjrGlXOoXkMMk1vMm6JdvZlPX6Vpuc9Ol7y8yzcRXWnX95bRzf6FGsMjwv91g5w4X0AJ4Hoalis7W7a5s7eKPO2SErIOPbj0B/Ss8eZcaw+9iCoj3uzY85VU5I+hP6VuXGnrGqtbghog0mQcnOMkn681KbTOit70I26GfaWb2MEUM05n+zLtZx0PGMD/ZGf0q0LaOWARXkJkW1dG+T/lo6gn+tNvruw0vSQtxcCEzAt5Ybc7E+i96ZHeaxqLhtMsfsNuTxdX64I9/LPXPTr3qLak/ZsxllA1jNJc3MwS3aBN5Y/KvygDOf6UyfVG1m3S10i0a4WJg8s037uAYOc5+8QcelVxDbJM1xqHmazcbQbZ5WzE4J/u/wnP1qETXl6BdTAGWBSmwHJdN3zKPQDv9KuxKSWhem0iGG3E2p30lzKUBUj5YYFYnog4bBx1FVr/Uby4NtagRAruCqhIDoF+9+XOKbc2LRW1vd3F3bwWTMSqNJ8oU8rtP54FME15fLG2k2qJAoEX2y7TD57lE7/XNAWW5V1C0YeHtQS8u4VNrE429GlYxnace/H0xXmWigyXFuoHDXEY/8eWvWL3RrC2tL+O4Vrq+a2Jjvrg7myVIAH936V5d4Xj36rYR9c3cY/Uf4Vcdi2rI+kOmR0wcVIhzjHeo84du+WNNnuYrZVMrBmkIUL/e4ya16GC2I9WbbpNyf9mvIrgn+zn7ZfH616rqga806aKBlMpUkKJNvavKLksunAOoDbwr/rzXBjdVFeZ6uAVm35GjqlrMviGycJJcGUt5hRCRGUXHOOw7Vq6d4nt7QjSNdt5I5VO4OejjPDfX6dKzbzRdS1G/Gow6lPBPcyusXRUAHsOMduauwLdeQBdi0mmQgPKPn5z6nt3rtily6HjTrSk1ce0qMzrO8b3E0fm7zyXQE8n8Dx+FR2VkJ7+1PLCWNA7A/wCrIQAH8xUcVm8Hi/U4pAD9ltUuQh6NGwCsB+J/8dq1pLxwSWjRlizKQiN3UcfnUM6FyP4VYbE90smop9mEoZRHK6/7y8fiM1bgsUF0vlE3EUzBHJYYCLnOB+X6VAl21jbXk8YlkM1xGqBQM7iTgc8Y4pLbUIv7YilgWWG2QfuMrxKpJy/0LY/SnzaFQpKSuzf1ZvLuo7VohNb7F+993aBnB+pq7YxRQ6JaQuhVrxjIUBxx12nvgLsX8KxdXlmi1a43yriVG3KRwUAwoXHQ565rTurpYrmFWcn7PDEiRqvO6Tofodp/KoB6boytcudVt9TuI9N06SawhC+aoT774B4HXAGMe+a0NQt7+DSIjawebq946xRfL/qQ/dvTA55q7DqE7zSpb/wysoLNjlWAb8M7q1Bt0yznnZ2csSw3nkk/07/Sq5mlYy5IvU5m48Jm3tXkuNXM9424oJThWbIC56YGAc/WrEc9jEpNmokgKgmQHcyEdgB2pgK6ncyXkMDyRRLtleVsDcTnzOuNq9SPbpV21gn1ZC9sFstMcYMqRgS3YHcLj5U9OhpMuKVtCnPdea++W7SFzjy1jQyTEdMMo6fiKij0qadi4jEKsOXunDO/0UYI/GumgsLDS9kSQpCz8jjc7Y/2jz+Zqi8dtcsmYWjZyp37yWwefWpGoyexUs9MiubTzruWSVEGGR+FUDuAMGprK/0to5VsFM3lPtIhjIAz0+Y5z0qzPp1t/Z8hSViueJGfaAfzqvYWqQ6fPp8bQ2FzyWQSA46Ybr3AB/Oixbg7eY9oZL4NIrzW6gbdgGR6Y/GuK8RWF5Y6Qby1SaBEkKxsZQdg/i/nk+lei2MNzbwg3Tgy7cGVOQSSdpx09DXAWq3+na/eaTr0iyNfMzqM7om9SPTcODinBXdkc1ZtIq3FrY2lnHf2dmoF7JGPJZiTGSAMnnoTk11f9karaXS6nbJa3ZVGjkiPyuUB6Ic49TjmsLXtOW70m5to51Sa2xNCkYOSuBhSfQDOO+a69pL6/wBJ086dNHDdu8ZmJ5GwcuB2BqpJJk0XJq7exmQwxahZXBhu/O06aIyICpEkIGdynPWs2C8RLOawkswY42+zSxk/K6j5eD9AOfemXlvPDrGvS2FzNawwSgohUFJQSC4PoMk9K0nuYBdPb7fkWNX3BRtQONwJ79xUxkrnZiqdoxl3M+U2LX8WkRm4tTaxia3nY5JVeWVfTIHer88ondXZUR4XIDMMYVgCr/jz/wB80t7o8BvYtQluS900PlxQjoD657kj1qaaySSRbacNtuf3TMeoC5Zf5sPxok7kQm2lzGfq08tlpCXa2pMv2lEKqjMSH6gY6d6plkhlieZSsnnlGDDcMBd2eO+0dPaumtknjikaU5zL8gPOFHA9s4rJvYLeC2a61G4it2+1mUFjygxtyF6ng+lSiJwad4s0ZY5HYy2sqRMRIVcrn5iuAxA7Dj8q5E+EFsfsqK7XTlcSSngNIvOPYY55rXi16a9Ah0TTJr3A2G7n/dw9hns3XnAFUZYm1FJ5db1aaeW1LBtPtF2KCODhgAT+dVFtIclpoOk1GxtNRt5DuvtRRWhe1sh5u5SM5yuQME4/Op7U6vrULZurfR7DcUcKwafHXr0Ax7VNNdaPpsPkWMaWdq6MJPLBEmCuVO772fxrNW6bUppJWi8q4RFf5Bw4ZTjjueMGhiS5Y7hby6bpZt7vTIo28x3jknuPneTsrg9Bz7VYuNXuoIfKZhcyI/mbl5IIcbQw9ufrxVK2WHT9Ojm1ZEjedW8+LOWAH3VRR0zU1m2p3kDxQQ/YrCSRmN7Mi+dsBLKqj2AHWh7lX0IY1hsbdn1O6EKzDKqVPmMSPm2r16mpbR9SmghTTNKS1RYvJ+1XxyWUZxhBgin6Da2UEczTRvNexIplnufnJZufl6heo6YrXErSXFyEY741QOz52qSe1DBGSLG0s5DNqF019dRYCvKuFhQDJ2r6cd81NeTXN7bznT3TzUG795wCp9KNRtbWbTHcGR7mbFuW9icEfSquqahHZ6fd/aIGVYlS1iReC5IwOaEElZanMHWrrVYoLWeOR2DO0sxPy4j+UAfmDXNeC0MuvaUAOt4uPwB5rq7KzjhddNM3/HtZyzSFenzNhP1J/Kuf+H6F/E2kEjpcM2B2wGrTYmnJyg7nvIJ3EgZOTiorqws9RgEF7EJYgdyknG1sYyKenKg9DT+MHjtWhK2PFNT1/wAT+Fbu50W/njudgBxJ82EbkYI74NSXBIsI88g4bHp8pqp8TXMnjnU+d22SOIn0woqxfkrbxL3JA/QCvOxmjj6nr4Oyv6HqUM1vf27wyRxCNlMagcAggjj0Hb61ytv4HSzXdLrU0bQjO2GMGMjPAxnt39aqQ6zq6pBFJpqzW0I3O+nSgecvdgvJx1z6GoLrxhZNdzS4niaYhEt7iIgRqO4PrXWrp6HjuCav2Oyv5IVtZLuW2QtKEiiZfvSxrmQL/n1rDtHVJoMKJGUAIqt0O3P5YNK/i3S7qKGb7XZhrOZJQrTKDICdjYHrhyfoKSDamvSwQwx/ZF+aGdOkoCgYB+vehItNIr6g5W2wwdEW8jDYfgjy3PNamstNFZwTxD/VGNbdE5JQphlx/dDKpFYd/PYwi3ivDK8ZuGZ3Q7gjlSFJHcZbFWLSW6s7OOK+eVWsZT5Mj/xqx+X8gB+Bp8ugc3NLlRoaks73xMjZumgJuAowoY4wB6cVq3k8drq15c+d5hktUeOLH3JIy2B9Mn9apzbru5imcfNL5SF8YLBn+bNM8WXA0/Tb7UooY28u5Xy2YZ24ZWOfbII+rUmVTevvEeh6v5t1LdiF9+wAwMPusfmLfmc10uqSG7sWCuEV7YCMkYzvPz/oDiuYtLaK8YWks7QTOd1u4XG3BxsPr8o2/Va3NUiVr+PT5pXRo0VzM/EYBBUDPtmlYmTV3bYj0nTbu5C6PqK7Yd7Xt3CrkqYS2IY/ox3M3qF9629QkvdM+aFS0xI3zE8KoHC4/So/D4CT6lOwLKs6xgueqxwg4z9Wb86x/EFxHrllC00FxBJNcGOxeI/vvNIzjb1IHVjT3kEnyRN8s8t3bIqN2abzn2P64x6k4H4iprvT82xurVAHYeYsbnGDgk/596qTaZdXdzHNHdQG8it445mdN0crLtI289dwAz7mrN9qMmi3YFwA+nNEoeMIXYMzMTtA6k8ZqbG3P7OKZh+IrKfUvDggtoWN0o3rAvzCbAyR7n37Vzei6PetoVxFNp08eo3E4jimu02yKApJw3JKryfoK7iSxsZ32yXk8PPnBB8rIOuMev8AKsm9invJvtEmqXHm7t8Oxw3kso6jHUkEg+1HQUZr6zz/ANXGaTNeX0OmsL6X7RCrxG3j4w44YH19vpU/iLS01CHS7rTbQvdWl1GhA6lWbDFvXaeT7Vk2lgkdwF02ZmjUrcQO3AkDgEMfp0x9a66M3GnuxkIaEKoQKcMzk5cn0zwPpQnyq6M6qjVqyiUJ9NFosLSNALjAjbnb5jc/p2rOiF3pdvax2U8ZQnY6lRu3CsnxuLnxD4sXStNilefT4kYGNT8ks3cn0CYP1zUGkRy2+55JibVk4H99zxn6cZqnrqTRlCE3GXYtQyyagbqaCSaRLi8Xcsnynb8yEH2znH0rpH0y3kS7aMu7SIwy3Qg7QB+AUfrWcmlNa61HekqmnXAMaSltqxs0ZYhvbMf5mh/EsAlmt9GtJ9YkkwsbRnbAMfeHmYIIFZtG7qyqU0p9C1ZWifbhbMmXgIljLPyABVbV/EOmWmoQRB3vLtJDIbazHmN909emKp6hpeoyQx3HifUlt7eXEa2en/IcdcM3Ocd6sWN5b6LqDabpdlaQW7Mv2d4/9YflyVb1AxnPcN7U7dTO6vZCb/FOqQ7I7aDRrQnl5j5kn1wRx+dUho1naXq3Qzqk0E6RzyXh3sSSMlAc4GDVi41ee20k2t06z5DNI45Y9MZ96zYBe6heC4hAWVJEKYPyoi/Nlj23bcfjRYE76FrVtWvb5rSC3RYIUnYpEjfMHBwuR6BeT9aijglhjbUYJhL5FuRcBTuG7qPL/rST32lQanC8Msl3d2s0kiQWa+Y2WGCjEdsgfpViCy1y8t1Et5b6Tbjpb2ibpcHsXzgH8KYoxsV76LS7JYJ9Ru3lupWLKqoGdgR0256470WyatPBts7eLTrQnHm3R3XBPchccdD3q5a21hos80en2Wy+KbVmc5eUnvu6cVPFdxSkmzUzwwSG3aYDC+YPvY9eaASsytDpWl6VMkrq011K21bq4be+4DORnpWdBqZvtQj0ty7rLJKpvA3IJBBGPbPX2qp4ugit7mMfaJ5Lp5E2OowAzccj0xUGh2Vpp2pxeZPcBI7swNcSDsAQF/2SS6gsf7uO9U43KpVItuMjTa7nneC3tm8uQOzXEW3ahAO1TnvnHPFPttSlk1GZ5m484YEfKuyDlT9CD+lJqW+71C3RlVBG75OcBip2jB789aqQJc21jNp02w+VCyuwHCSbz/F6ZYZpva5mouM2JrfmyXFq4LCztpZWuCkpBLkfIuPqKry/bdQ8ONbvKLi4k2vGIxuOQe59qvXmkSSXqQXkfmWiWnmmUHB8wqx2e5+Uf99Vf0lI/wCxVntoxbtEu0SdCTnP5CpdipTctDGuY/sd1d3EiK6m38nMajGeW/SuX+HCf8VLpvpiV8/StQ6Nc6VfJM92JLe4VpZxtITkkNn/AL6/SsjwBqFlp/iC2e/nS3iWGQLJJ93Jxge3eq3CCtBo9vQ5UfSpBUMLLNCssMiSwsMh0+YfmP5U8NgZ7+9amdmtzxz4tQInjC1eNNjXEETt/tnON1Rap8ogB6jdn8MU34l/vfiE6E8III//AB0Gl1WRQ8QBPRj+Rrz8XrOK9T18Hs/kdKA8NvA8Nyhnt4ApaLj+LAI7cjrVS6a51Rz9lghImXdJJgZIU/ONp5H1rR8i0sNNRQ6LG53DHLbTjA/X8KihEMOpy3cZZJEBSQAcKW6gnuPWus8yS1sira2dheWdtBJp1tkOu0FCo8tgep78kU7w4Zbee50y0VYBG8kdszksHABywz35qzGZo7ONZmV1XAjcjlgrZyB6Z6fQVFFCba2URsRNG5mR3/hPXb+NMi12XJbC2vdAg+2P9ntkjZpp9v3CDxn1zg49zVW9hkmtbOOEtcbr2NGOdw+63Uj/AGl/yK3VtF17w49itwbeK5VXLooZhgksMHjrxVzSdFtNPsJtNhmlNvezxyH5QDDzng9R0HP1oT01JcPfuU5hc22pQ28kgmma5USTYwF5zyO3tV3WIbVmlsLlA8BY/JJnAc4YZx6Gql65k1BbpgyJe3CNBF3KI2DuPbPUVsanaxXGrXSkkKMEgnOeOCPpUeZvDltZmNHb3dzqSbkDQ3UDO0i4HlzBgy/QYJNW/E8q3E0tpPmQzSxGYHgMFHygEe/Wnadc27nzbTcYt6xyFzw2MquP0P40/wAUtIkyJIihDKjb8DJ5+7+lO99DNJRjdkaax/Z+l6jIQyvdSXjAY3eWcBAeODjp+VVrjT7ibT9F1OC3nmWzcR+QrgFgTuZy3qc9vpVaC0misU+0Fpl+13MNqI+u4uwZCP4hgEjNddpV3dqkqWyCWGOPGwL8sWc/MR3x1rSNO6buZVJ3kULl7q2vbU2Eks8DSlGteAcnLNIO+0DC/XFal9Nb6lDHuZ7hRcJHKjIQY5FJcrn0wcfhXM6Hq+oTRanHd3P2qVXVYbyKBUYA5LgY6A4XPviuohtwtxqEcEjRQzIpthIx+aYA7mB+uOtZT30OtyjOMUwt2leS2YxeYIXXyty/MyHqCe9cxMdRk1zXoMSi1tJQY7goAGyocAcfQfhXUxxXlnaWlowLyu5lMmeUX+7VvVUuJ7OSG1wZZMADHHv/AJ9KlPuZVqSlscndzGLWrVUii2y2UV0sQOAW3NkA/XPtXWKiXP8Ar7c/vUJkjY4PI6f/AKqyNfGk6PY27X81vF9nTy1VjmR1H8IAyRyWNVINR8Q61geH7L+zrNUCre6kN0rDPVV5GPrVNdhQjbRm5d3trph+131zb2aMcvK4CszcjPqeO1cXbX8t/NcxeG9Ge5ia5WW3uboGOKIBdvQ4YnviluNFtLe0g1MXw1bUhOQzaiSbc/Kc8c7eDkYHataTUZtWtllgnW1+w3TYeMDaCoAyV6etD0Q7J6pFU+FkkmhPiXVJdRmkLeRaR5SIEAkjjB5PrTIpYbZrZ9PkSxvgSJ7VMGIFk5QD/ZwD+Jpmo6tqF7d7rZHeNrkIjoo+XK4A9iSwP41TstL+1s09xceWkE32k3IUKBJnIx6qVJH4CjoJO90QalJLMNMeSWQ3TTG3W4cZXc3Vio9emMVfGnWq3strfXEgWCZHmvJMJghFChTxxgHjrjrUJ1X+0Y510LTZbyQzBheyLtgjccBh34+lW/8AhHWuLsTa7qD6qyAssKqI4g2DzgfePHcd6TehailJ3Myw1aIRzQWuktqN992R4D+6AJODuPH68ZqvcwXb3ksHiC9NjZMEJs7IcEnPys3JPGScGtU6nDY24tXlg09jKFRYU2qynkkgD86bKsM9/eyXaRYRPNgWSQqjD7inI5GWbH40RFUTWtrGrb29paW6Q2sMNtGAGCoOUXGeT1OMDmoYZy9uHQb1yW3nuPX3rJGqXItL29uLZ1ItH8oKuVTaMov1JDqfr3q/p837yCBpPlS1UMmMBd4zx9OlNq2oU5KRaWK1uIJA48+4SNuem3jgg+gOPzqlp4ljs7CK3hSKBmPnqDkIx6n8aydZa+OgXkFgrSXjyhVWBsExgnI7djn8Kg0ueeFruC3vBGPOVWjHzlowijHPQ5PX1zSN52TaSHXF1LrmrXPnwNHBp10ojhJAbO0ruJ9OcitM6ja2Xg2NHiadr2GTzSwHysQSPfJZhjv37Vk67J/YV4s11AzrqL+bhDmRAnCgjock0FhdWcEllE3lm4RWjlO4ggYGM98sK0bOSnGLblIlt92oGzk1LfCsajcUGSS3bjvWzZWcEcoijhJjDvlXySwGD8x9yM5pupXdlpemLDdyfZ+NiAplmYAYAx/Oud1PWImiie/lurNGKJb20JxNKp++z4PA44571F21Y1lpNyL8+r2kSmyhuGnvd58uNFJjZiCDl/u9zwDUFxd6hFIuly3ljpbREMEtQWYnGSGLZGPaorSGbW7Hy7RU0y0RmWKJUXeDnO8+9cvFbXcV7MJL83DJIQzyxKWYjuTVKBDlqW7vVIYrcXuq30l1IEfyIGAChvcAew68cVwqEB1DYYnOQeldHd+GGuXEtrPsfAXy5iWB555pYPB6vCzX1yyvwAIRkIaLWNYtWMvTtY1TR5vM03UJoGHO0Hcp/A5Fd1pPxVmQCPXLASED/XWx+Y+5B/pXE3vh7U7BGlRFurcdWi+8o9xWYJgTjkMDzxgindidmbvifUrbXPHct9Zuz201wgjLDBIAq3qrZuof7pQn9a5mxUNqtkCSczHIBx+Vb+psftSkc4VRj865MRrUj6M9HCfC/kdG+oXMOoG4SCOSXyyvPRiSCfw4z9ale5uZzhk2pgk5+Ykn1pqKrNuKng/nT8FmIB5zk119TzNRqlkcOHLMF2IfRcdAKkaV8sS5bnoetLtZeQKNg2/Mcd+PaqEtDU8NXbLfJatIiohaVUkOAeDkA/0961tAvY3klRgRIsCFpGP+sBJIPselcfd20N3EYZ4vMiPIySDn1GKo2lhe6VMG0zUWEedxtrsFlY9hkY74+lJxHfQ7OZ44L+2tJGZpLy3iKMP4QG+bb6N71oahcTz37iO2Mk0OZdgX7y7CSPY4BP1rntL1aDUDZxN+7vbB/wB5BNwQhPVD3A6Z5rV8Q3dkTb6g88zNp4jfCsAqlXAy69WxkcD2qbEt2Vyw0VpD9lcSRwN5qt5QHUkDOffnH4Vb8QrGdQjWRVki3RySJnny/X8DWWXs2m3xSGae93RxhfmR1QKWP+ztGPxNXL9II2jZnAia324f7w74x+X50noy5x5moo09Pt4T9qe5SFVivrlbfeMgF25I9MDAz6E1u28QupBPBMojVeXibGzHH5dvpismy0m6vdPs7eVW2o09zLIy4G9gVRR61ZutMnXUN4aSKU2wysPRjwCCPc80ubTQxqRUajQn2LTbC2/svThIheT7Uzn5/Mbncc/jWhq0CpZCcE4WTzRk9O3T8ag82yh0s39x9ntvsyGJpy3ES55DHPBye9UJ9Y1LxIjW3h+0e2sVID6ldxlSQP8Anmhwfo3Ipuz2LUbI1tV1jTNFgiuNSuI4XdcJH1lf2Ve+aw/P8ReJJglhC2hWDN8s8ybrmTjsvBj+uTV3TNE0TRdSKTSi71SWLz5Lu6cNI2TjGfu9emBVnVdU8iWBorlVEUrfaApztIXIGO5Gc/QVKWpV9NTnBolvpayanptvDqjKQ0l7PNvuHcMRIuccjpz2FX9Q1y6vVvrGyVLV5YgsMsvAK4y7BfQDIH51hXV/JNc3A0mXyYWXyoFjQqkjnnbz3yGzW5HbPfC0ur23MBMQW7ik+VQp+VgM88gniqE422e5z+lRxpEt887jTYZVWJ04S4bDqMj/AHiF/wCB+1atzpAOmXmpW0UcNxKYiYZpfLQIOXGO319qoaRqUelxDQtCtjrt2r7ppl+WGN8jHzHjIAUYznINXIPCb6nvu/E9213cFx/oMBK28Y/mT+NS2OD5YlZfEkbSR2Xha1W9nd8tKibLdGz98vz3pP8AhH7nUbtj4gvTfLBhjaQL5cCk9iMndxW7fzyadaW621vEtsj4dUXA2+1Yd9rVxbxu1nGZry9uk27oyUiRj95sei/qRRfQaXvbGxJLDDbN5IVbdYz5aKMJkdhXH6pq+rNqVn5VmyM6Ja/P8o3OQUJ9MsFAP1rr0tjBdAi4EpiBK5HyA+gHrXE+I0mutY02eG9abzLtpjInYxNyMeo5/MURV2ZV5tR9TGie+1crqt6kkSIpl45ZCvAAHuQOfeu2vLS1vrWd7y1j837MnmR7sKEOCVJ7cn88VU0nTLXWLrWWe5lCRt9nikBGRt7njGQxNNleK7tZ3STz7tYTbSKJQOUB2k+hJ25Jqram8Kkqsff6IqtLdv4ctz9uZHn1CFpR0Eke3CK3sOCfoauzyRXUd68cE0N1CWgbdyxI7Z9PSpI7LXLnSTJA8IUqoYzAAEDB3AdfmCsv4VabT4AhVgY1uVULjgREc5HqSaJ6GVLlcWjJ1QTmC1zYrHLeMYhMgyVYR7uR6HkVa0iKxttSuI4oI1d1UsyruKFkD8+nDD8a2lM6WUzTyIpxu3PgCJQMAk9jjBrAiuZ57mSXRbGO4CRiF76U7YVboWAPLYHOQakqSmnubOoaTpiG2v7x1EsNsYknnb92nO4sR2biuUsmlubbytKgkMQG4XFxHtiCqQ24f3jwPyrP1TW9Pk1K1luJX1ecLtuJ1RjGNudu0DjrxzmjUb24161SymMsFmHMjRodrs2eA3sB0qkriahe5ZvdXvIJLv8A0hbzUp0A+0scJCh5yqfwnHHWsRY2EhkeR5JnxulJyx9j6VehskiRUjjXC8AZ4FXIrYBSpJ4Oc461SsidWUIGuoGLRSGPJIYeop0dqyZ5xk5+prRFuCAAAc85+tO8ooCD2OT707jsVFjUNhjUqgKWIbPbn1qXy+5+tIBuByPmH60iiJgEJJ/d7cYYHrWXqOj2N8S9zbJ5vUSRHDH/ABNa7hduR096rvIkCFnmjRA2A8nygnPv/ng0Aefixax8VLaBzKtu2Qx6kVpXxJv/AMF4qmj28vi6WW3ZmhZmaNj39fwq3cHdfOe4A/lXHiH+8XoelhNYNnXKC6ZY49AKkCjhiDupgJOAeDUoDAhT98dPpXaeaKFJO1TkHk0p2gn5cHtTsrjCnr6f59qUopPB+b+GmIix69e57UwIEU5HIzg9SOvPP+elT7AGxyR3peAeBlscj0H+TQIo3FuZWikXAnh+aGTHKnt9R2weK101G0vxdzTQq0bWySTWx4EZDYky3rwCADzxVAk+WcHjP8PUiq1zb3KlZ7IwCUOskkNwMxSsPulvoCfr+FFiZq6sdpa2enSXtrDaW6wh43YTbz+7ZwxbA6Hnr+FRWs8Wv6yLZ90fymCJ9ufNKDJLemQDzWDol7eXF8to1s8N7lvLtmG4KMH54z/dwcHp2ru5k0vRpNK1WO9WK4Bijlgz/rEJw/H4mlNXsEJThaS7nSW06RmK2USAEhY0PPuT+mPxqpqHiG0066FrCHvtUPCWluAWY+jN91R+OaydUu9T1BoiYbrTNPLtsEa/6TM4QsQTn92pAPIJ6VZ0m/0TTNLtF0+IG4vGKhersR95pG6nHrWaVkaymm2URpLRiC88TTwrC026Oxj/ANTG5PLPnlyBnhsj9KNV1W9sNV1KS31Jo7OLISyEQLFwu3CnGAnR+uc57VW8Szz3erq0rQtZ71hs4WGWkLHDNt6Edat6O7QSLFeo813dOJZ4SeYImUglfXlQpPHQ+tVbQzhK8rDHuLaV7a6aKO6uhFGI0XOVIXPOOPfFRyeHLq/je48wwEXBliWQY38Y3H6htvPpVfVZLHSbu0t9PmlGoLK0n2SyjDvc7uD3GOOM9qsXGn6zr0kk/iO/fSrQt/yDrRzvK4yS0nB554qb2KqQXcyH1fTLW9istKSXV9QyVhjjXbEJA5O4txyO5Fa48M3eqX8dz4uvvtUmSVsbaUpHET3JGGb8cil1CKCy/s2x0y2S0S1tjIphiAHzgqMn69aqaTqSaFMrazIfMcAhMeY+1enJ6LmqauQp2drHQS2dtpti1pYQx2sSEMFRcbhn+Ijk/XrzUDXRFmro28SSY3AcEA9fpWc+pO+gzvfCd7hYvOZYnKs0Zcng+ojAfHoaZZah5lpp8MckAtkCsvzczRdu33s9ajlNYSTsjTt54ob0C6IkjlViU7AY4A96q6zJsv4HLwRxw7RKNwU4bkAj3OPyqS9X7JPazIoZPMy+f4Qc/wCfzrgrmzu28bTXNxYzS2LsfJmmXdHKCPkRie65HP8As01qjdyUXG3U7iygFu97dfaRNHcMGXkZU4xnH+RXH6Lb/wBn6bHDK2ZYbx0J6iQbiSwzyM9D+HpVrw2oMULtI880J8gop+Xaz4AHtmovE0c+jx6cumypLPfNczTJImSXX0/3SQAO9OLOSum3Z7EOmJb6foCQTGZXFw0+0kgsWOFB7kgc+9bOjaDA32pmIBiZgHxjzDg4c+v3s+5FZdjDeajvtr5t08bKsbOuNjjIHP1yBWlZ6p/ZEP2O4gvp79GKywQIJDx0yxIx97ilJM0hUjbkjsaKaer3zWc0kv2eVmIG7hSDuAB7cD8PxqDWNXtrW6tIdr306kutpbkE4A43N0A/HNZWoyXFxHFca5qI062lbzFsoDhsZAO6Qc89T6dKyv7U+zzXVrodlbxWEr/8fR/1hX8vmP1oUW9xcqjsaGpTTCES+I72PaYy8emxZCnoQGI+YnBHXisi9u7jUUa2WaS20vfuW2QBWfIAIbHQcdvU0n2Yy3BnlLS3DEbppW3Mfoe3TpVlLYhwcEnnO45PWrUQbuUYbZY+FiEUZG3CDHFXIoGYAtlsnaSf55q0kQVskZA6g1MUxGSn3TyR6U7isV1ixtIUHHf2qUxH5gmCABUuxck5xzjGM5pwJKggj3AGKlsdiExgHbg4Ydu1Co3zHGRjFS4yCBk59Kb86qoyx9FPegCHYuAqksCfvf0qFgcbuQCfxq0CpXyz1znj+E1A2WUszfeA+SmBAedx3dOM46e9Z19bNLNFMtvHctCzBreQna27GdvbII4+prRfgsoOVA7dc1VaRYlEjHCxjc5HcAZx9OKAOAslUeJLlViaNU3hYj/AM9DVu4ci8l57/wBKradMJtdu5ShAlYuFb+6aknIa7lb3/wDrVyVlep8j08LpD5n/2Q==", "path": "images/3pts_ADE_train_00003624.jpg" }
depth_point_12
images/4pts_ADE_train_00008124.jpg
ADE_train_00008124.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 296 y = 209),Point B is located at (x = 296 y = 128),Point C is located at (x = 318 y = 95),Point D is located at (x = 34 y = 133).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_67><DEPTH_49><DEPTH_3><DEPTH_22><DEPTH_5><DEPTH_69><DEPTH_22><DEPTH_11><DEPTH_35><DEPTH_5><DEPTH_70><DEPTH_60><DEPTH_82><DEPTH_31><DEPTH_77><DEPTH_29><DEPTH_74><DEPTH_82><DEPTH_77><DEPTH_30><DEPTH_45><DEPTH_19><DEPTH_32><DEPTH_39><DEPTH_32><DEPTH_11><DEPTH_29><DEPTH_44><DEPTH_72><DEPTH_31><DEPTH_44><DEPTH_2><DEPTH_19><DEPTH_25><DEPTH_19><DEPTH_25><DEPTH_25><DEPTH_2><DEPTH_29><DEPTH_36><DEPTH_44><DEPTH_25><DEPTH_19><DEPTH_19><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_36><DEPTH_64><DEPTH_64><DEPTH_25><DEPTH_19><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_44><DEPTH_64><DEPTH_25><DEPTH_44><DEPTH_19><DEPTH_19><DEPTH_25><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_64><DEPTH_64><DEPTH_19><DEPTH_29><DEPTH_64><DEPTH_64><DEPTH_72><DEPTH_74><DEPTH_29><DEPTH_74><DEPTH_74><DEPTH_29><DEPTH_69><DEPTH_29><DEPTH_74><DEPTH_29><DEPTH_49><DEPTH_49><DEPTH_29><DEPTH_49><DEPTH_49><DEPTH_49><DEPTH_31><DEPTH_42><DEPTH_55><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_16><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_57><DEPTH_END><DEPTH_END>. Since point D has a higher pixel value on the depth map, the answer is that point D is closer to the camera.
D
long
4
[ "C", "B", "A", "D" ]
<DEPTH_START><DEPTH_67><DEPTH_49><DEPTH_3><DEPTH_22><DEPTH_5><DEPTH_69><DEPTH_22><DEPTH_11><DEPTH_35><DEPTH_5><DEPTH_70><DEPTH_60><DEPTH_82><DEPTH_31><DEPTH_77><DEPTH_29><DEPTH_74><DEPTH_82><DEPTH_77><DEPTH_30><DEPTH_45><DEPTH_19><DEPTH_32><DEPTH_39><DEPTH_32><DEPTH_11><DEPTH_29><DEPTH_44><DEPTH_72><DEPTH_31><DEPTH_44><DEPTH_2><DEPTH_19><DEPTH_25><DEPTH_19><DEPTH_25><DEPTH_25><DEPTH_2><DEPTH_29><DEPTH_36><DEPTH_44><DEPTH_25><DEPTH_19><DEPTH_19><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_36><DEPTH_64><DEPTH_64><DEPTH_25><DEPTH_19><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_44><DEPTH_64><DEPTH_25><DEPTH_44><DEPTH_19><DEPTH_19><DEPTH_25><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_64><DEPTH_64><DEPTH_19><DEPTH_29><DEPTH_64><DEPTH_64><DEPTH_72><DEPTH_74><DEPTH_29><DEPTH_74><DEPTH_74><DEPTH_29><DEPTH_69><DEPTH_29><DEPTH_74><DEPTH_29><DEPTH_49><DEPTH_49><DEPTH_29><DEPTH_49><DEPTH_49><DEPTH_49><DEPTH_31><DEPTH_42><DEPTH_55><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_16><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_57><DEPTH_END>
296
209
296
128
318
95
34
133
null
null
86
64
44
106
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDw+4jATcBmq6dauq4e3ZMciq6RZz61tbUxjJ2sPA464zSgYOByKaGG0qw6UsY7frVMlol2g5aoymZgOijgnHr/ADpykkEZ4NSRvtdXb59hBC+mKluwloyF2H2osEIUYUjb+uK24FjFiXuW3B4mICjHrTX1Nb6WFoFxc7suzDtjipbrd5PlyHzBwQWGO/c9q5pyZqiO2WJYDcFlh81dkay8nj0/OtG0jj8xXtw3mYySx4rMf7LbXAIAeQR5YOfl56YqxbpcyhJXZRDJ0KjODSQGq0xaQ4dUPo3INNjty1xukYD/AGkbpWZLM6PtMZUHgCnwrHNN8uQR29auwGpJNBbRMSwCdgOSTUMGorcyHJ3qoA2E4JXuBUItlKsBkMe+KmtYW8ny5GJEf3Wz3oZRZvdPdI4dZtpVa0Xgp1eAY4DDvx3pv22TaoTady7gUXgj1pRqCaaUvJIzMnK7MZzkEHPr3rOhvLKSTFmHSFicK3Ud8fSmridja8wi3XcV39gOlZuqrBPCsbM7T9S0fC1NHbkx7kByeME0wwPvCvtyOijmqQijbafdXTbbdMKgyzHgAetOjtjvZuG29x3rTmm3W4t45H25y6kYGajBELR7wGZmCIvpmlJgWdOhFoIpo1+cNk7+lXZLhbqJZgWaQfdUjhfwqK8Do7I4KKFA555qtLfRxCTDlTnDMo5AHvWEmWijqMs02ftDl0cb3kHVSO1ZAuiFSCSNntZjtk29evWp7hpo7KeXduRiWBAx+NVrHUZM/Z4JhFPOArORgADnHt0rJLqK51LXbTwi1il220AEYTG1gAMDPr0qxHbRyWe+8kaBeiKDkv8AWqtvrk1+fs941tLOTsV0+8oHHpWsLdoV/wBJkl28FFB4Ip6jRjx6Pawmaa3nkW8jG4Ddww//AFUyW9knAJQC4VcSZHX0/TFalx5BdWWEfKcYVd/FVfssmRjIGc7en51Q7FfT55p1O2PaM4OTxmrLhknAeUg/7A4p7W4kgzwsinjaeD9akW42OIHZRKFzheaAHA3CqpgKP2bcMH8KsRO8VyvlOUYA5Lc1XluNgyRnHTHOKDc7Z32MrIQfm6E0FF+PTLaZQJ5JHlHII6ZqveBdHbzQ6tDO56JyvPaiC+WNwzPn0C9aztdEurvEIdyC3zhlAxz7ZpbCubf26MqSVKx4yv8Ate9VL7UmgtcQMRJj5Cp+7WZYXZSx8mYsWtzgs44PtSXc1kYm+Ztz9x0BqrJiuc+91HDfCdJikjkiSSTkA966u31mex0mNLVIthBKyBd2T7elclNpN/PG1yqx+X0Rh1bmnvbz2toxaHKMpGff3q3AzUmXtP1H/ibL9pgdoCc3G4ZyDWvK1pA96yRXCAoXi2SYBbHAxis/w8Ghs2O8kAcRkdT/AIVNq881jps0oTG7KZB5BIpKJdzFtZYtYnkS8jeS4YgJtbGAPWuxkmt9LKpab44mwcBsndXnemmP7ZGxd1lLAowGST6GvTQ6TRqyICx+bb908/8A6qqcbImOrPHC7DJBxmnRuVYcmtiXT7d7cbSFkjX5Xz9/8Kw/bGCOtaRk3uGjLA4LZwc02LO7aSce1MWTGMjOKN2H3g4rTmJcWT/dkAB61JyvQ4z1qIjeQwqeBgJEMgyA2SKbZmxnlsrEgkDglhVy1W9kjCiNpVL7Tzkn61akgtnR1SR0WTDMAOcfSnSq1lCi2e4pJljIn3sAdx0rnnJFxK1xaBHgM+YGyVG75gfr6UfaktZRLBK7W6/K4X7h/D1pI7a+bajLI8btnngjHf2rNCoEJJOS20gHJqYjubSXzY8yQosjnIQnOB2p4vFLKeQSecViRHjAQhexNX1hb7D9oU5ycYx0rZWJcmman29ASVB6dzUL6hIrIVGFGSwHc1nhyAPWpk5OD3quUfM2QvfXDHa8hw7HIHaui8NW2iyzzR3F6IQlszIXyQXAzXNmFpJWVA3pkdhV23tRJeiC2RpGRCeBnPHNS2kJX6nQWEqXEYkWTzARjj2rRe3GwsB83Ygc1h6TvRtjKVwN2D0ro4Jg6hG4zQWUEhxlnXPHNVrewW6k+0vIwKNmNO2afe3SlpY4mzt+9g9qrQXjiHgbEf8Ai9AOtZydxo0rrUBHb/vuW34OeaxNQyQjx8qeJNvetJlhjiiCuHVOjNzkmql7FFbK0cT5R2+YmspDMS6YpaSW0jvvChgccEelQPHbtaCdZ134G2McEkdqs3MkdvcTRGQurRjcO+PapNINo84uZ4laOJG2xsMgnsDUxZPUn0BXfUUv59sU0rbIUAxk966aW7AdlueJFYr8zYP4DpXLw3jHWoriRXkEIJARThn9PpUl/qw1O1mkliVrgODsx9zPpVrUq50CXoDf6P5ajGXGKdPeDCSABWkcKVHBX3NUPtUGn2llc3UO93G1VH8XsarS3kDalEsiqq7w/wAxPA6//WqZaDubUjxqw8oiR+6jgkdyKxA5h16S4WGTD7sAck8DioW1FLwPHExjcMwPlE5QeoqhJeT7HkW4JkLKd5A3KAev40gbOziRZHVXjeMsu4Y70+w8uKQJNCDJ3A5z9KwodclTVofNIeM7UUt1x6n862PtCm8UqyggYJFNDTLF5cxWsLMiRZB+6wrndRni8xZ/P8rzAS6J90Yq5qd5azFofLYAnBc8HNcuDdbZoHIKqcAtjpUt3E2aVq8D3RbzJZXYARJk7XP0rT1bw1qLQpLHKsS7eEbqx7jA79qwtKE1tqlhJ5p2CTJ3DO3HAr0uLULa7mnDyATw/MVHbNUKOpyWgWWs2WLe6iP2dl3fOBlPpV65tFdgsxGwKzAZ4J7VuPe26B5JMjAydoyXFVG8uS1M0YWdWG5AFAZvaq5mUkkYk2ox6ZHGscatt+Z34/SsvWbqbVtNiktF8yMEtNs/hPvmujudDsXiE8lq4cjOxTWXc2dtpGm3ADOBcxsFjbgZpp3ZLRzdqG0+9jkKrIyEOBmuxuWurXTZZgfMk4OPVT6VyWjpDql95Msn2cEHIRd3T612WqBFs1jMjLheE4GcduPrVVXoTHRnl/nNGc7txIqIKWHv1qaSAW8rRsysR0ZeRQuFZSrZ45rVJD2IOcUtOY4Y8Y5ppGG56U7Be49ZSqgVq6chZ0Z48rICFJHWshVLsFCsxJ4Ard0+4MemNC4b92+ApHQVnOTSE4gHukmlCjeiY3M3BAz2pZbpY4lVCyLJkDc3C+tWVu7OS1aFotyluQXIP1zWZelQkMlucKw3FCQduDjv9Kx+IEiX7S6fvLm4dlbC/KSB/wDXrLBwxUMMDkHFWxPHdqkBPlDq5JyGx6elQIA8LRqN0m7IU46eueua0joFi9aHzo5Ts3lUyuT91vWpWkLW8pUEQh8FlPA96LW2FvEAsoE8in5lIKkeh9CKgmlltoo7eGLYyZJc8hvzpSk29Bco2SNpJv3fJ4Ax3qykUtxcbDlCo/WobH96wufN2uGJYYrdiJNi86NmXthcnmtea0RKJVvoVhhgdDsQHa7KeTV7Trv7BrVvLafO2BGQicKGPI/ImsrUY5jDggOu0HJONh75+vvUFnNNbz2LSqwj3jOCQfvfe9wBWO7uWdTJufUpPLQLCrNtGcY9RVsSLbw+ZISqjgH69KzdJBe51AxuZrbzjsZ+zE5P861boxxwFXALMOnbNW37ojmrlhbXskgYbZTxjuPetYvDG7RHYwABKn0HNZGrSbWVCFGAclRkOSOntTrKcz/vbiArOoCj0Pr/AErKDGadyUETTxhQgXJRe57/ANKoTcxiWVgYZPmWTGRx7daS/e5imVrdAUxlsdfwFRmQRKRG4TKYZDzj1xmlMdzMuk84uVJWXgAYHI7EVVkeZY1j2NEVAKlD/D6nFWLoqJzdRHGw7WRuG/AVSN5OGYxHbuTyzx1Hp+lVEk1tF1CZkFhvWOLzvMcgnd0PRu30rf8AtVvDcMsUUOSvLFPmribRbiJ1nVHVBn58Hn3561t2Er3bW7yMHAyJGxgjsKJq2wzSE0E4fzoHMQGNzn7pz1FZ97vMk4MQBYgIc/dGAK2b+GKCKJlUsgPzZOflI6j1Oe1Yd1JH56yK7FpPuvjj0H41ldsNiy3kxJAbdVSQZ3MRgMQOhrPcia4adkWKN0KkKuRu9vpU0Lu4a2MgYrl923rx05quSVgXadjK+5gfWmmJO4ibbO+Es8hdY8c47+la6ai4MrtEUWM8EfzrKtE+23INy8aW3mbSXPQ+tdZJBYzoYI2ijIUgDdnOKuwWZj/aoNTjBjlBYnLjvj8aqO6ux3xYBU4z61PPZQWU4JHkynOAvIA9azL8zJdxtv8AtCt/CoI49DiosmxjIo3lhkmWSUBT8xV+Qa73SINN0PSzc3l0xlmjUzNMCeuOPWuIgaazuJIoNsaz4wcAhcc9/pWqL+Odj/aNwl0smGKgY3EdMYqhx0O0vo1n0mR7OSMkoGjHIyvpzXF6Tq1xYa6IrsSJFuEZxyFz/wDrrq4r7TFtldpNzBRxknaOw/Cpp4be4t3fZHIhZWjZU68Dkn2PH4VSsUPu5YYniZLl2XrWVrM8Z0y6kbbJ+6YjfzjirbIuATGxbHHHFZmrp5yG1t4181+NrZ59qFuD2OLS2ubKaEqCkhHmJzjIrbu72S8kcMGXLbsYztHerPkReepuo2SZY9isDkY7D+dUblmuHYswgeMEE9OPSlUmmrGaVmcmAQeQR6jFOV9ucCr92Fa5Z1RYkdM7XbBqgkbOSqKzEDJA5xW8WUIzZOTQctyOaNpIPB6ZqxaQRSPidiq46j1p67hsNtTKLpDG2JP4c9K2o4Z1SSJ7V5JyDmQNgGoYdNt4Z4XkkSSFhllkOCPpWovmrG62zRrHjIIySR6DJrCpPoI565Dx7IfKXzF5JU549DQLNpgjK+RIOQB/q+e9a720JdZw8ocDJQryT9KqxOBeXW5jGMblyMYOOlCloBQW3g8uVnm3BOmFI5qMpceWs2xlUfKCBXQxxxGBjI0TIRuIBGSar3JmupIrKG1lW48wKVZSCnpx/jQpgQRW89ppxnaLeDhgDxtH+NNv5BPawgoUD8qSa2o9M1BZQsmyWRmMTSSNiIt6Z6cf1rAuYY1bIn8woSu1jjH0pRkmwLNsHsWYysGCKAI48ZPvzW44a1tkucYOMsinJ59cVz+mtJJc/fVHddm+QZ2sP4v8+tdUIZTDHHIBIirh/LHLVp0AxtXmx5cqPHhl2yLnj1yRWbau91qFs0jcKwVeeAM5/Kr12EjWRJFXAkIOB8209Mj64pllp++8itlkVW8pi2eMkZOM9iQMVnF23Edas0EFufsZQmQsRtHBZRk/4Vn3MskzST7CUlwUAYcEAZFWdDht7G2kvrpyrRqdlkOSpPANZl1LJHK8nlyLC53KQOEb39KU6l9ARR1GNxeouCJAw4XnGe9Gm3Rub1oZmO6JTtcnjHfNPW5kkheSVi1wozzxx65qC3g24eZkdZShypwOpzzRAZtq1vLbs8Tk/wAO4HlT7VkXsluYgPKYSKw2kHJx71ctbEJDNBCSVD7gzVm6pELcI0fyxA7W5zketEtWBUkgMuoEvKrMx+eTHAqCYhoGcbDGsnRT8zdealeWBX8m0Z8PjdkjqRzVFXkiOM4IOBxmriBfvZZ47C0j+3pNG8Z/dIuDGM9GqXTcxW+A+1pmxGxHBwP8abZx2twyh4gGY/NhvQck+nNacyLM0imPbDboMKo7dciplLoBM1wskKJK7kY2nB4VvUfjWS6y3IxG4VEJLYHA96Id0W2V1ZI5WIUH0HSralfml8wbHUhEA7+nvzUPQRWlVo7aCeSVst8uQMYx0NV5DG925kcom3gnue1XJis8SxMSZWP3VGduPashoZMTZ5RTgu3aqigRdgaKS0uI3VhEduSpGSwzzzVvTJxG6+Sn2i7bJJJ4UHoPrWbDbxMgcXJQqc4YYyKs2E4tlkSBfNfzBjA+Y1Uthmnd3BmRXuSFcE5BHUelUIr4faNpcpzwCvGasJvk3C4RjzgEryapztHPIyMVhJfIzwayS1E2SLbB5G8yclQxZY1UjJ+vpVgSWt1ZG0it1t7iM7zMxyFHoKzn+1gmWR2McOcHoT7Vbt001rP7ZLJIrjIOOec961sNHSw2Mem+HI5LrEqlhIHTgnJ6EmprLxHYppk62yYZWPlwlshCR1HtVjT7zz43s5XingaFBEFGQpwCc+h68VnXnh3S5yW06QxyqDvRDw5oSGyC28SzRX5S5YvHIQrY4wPWuiu1E0gVCuxBuSQdcY5/SuAu7WYEx+VhhkfQYrQS9u1+xQu4AiI3c/e9qHoJSu7GxqN0MGCGMMp+Ytj5ge9YLtJH+/mCTSZ4X0PvV2WZri4kzIsSg/LzggDvWbeNtJdIj5TfKFVsgN/ezWF7sGYErvM6mVsnGM1reHofPuphyP3LFhjoMjmsjLZ5yADwTzXS6NLcrcRG3lbJG1MDBzjpjvXRUlyxGynfaNLZ28E/mRTpKWCqv3v896bpunPqMwSAGZugjXlm4yePQYrrbkK0CWkcSvcxQHa8p2tKzEcbfQc4NUjAszhY/Na9ijETgfLgggZqFXaRBnw28EUzRkGSQDgHotOurz7OyouwOMZYDjFTy2syRzcKsfALds+mfWoXEuCy+UVbABJ5AxWTlzO5ViJb4Sne3BJ2h1HWnS20LvOlxDIQzA71OOwq3pNhHdpeJdlVSCFpECtjLDOM1Heae9/h7O4Ece0eYhf5UOOMv3z9KFKzAXSY7KEvLf2c8sHHlfMF2gnHHHOcVpf6Q0UM6MJGAEZkjT5oySdhZv4T1wT6VWl8q1ltlxIGKJ5yZyrtk8L7VbhsJorWK/ka3eCRC4/e4LY6fL2IrOUrsCpc3IiRI2R0nichbdm3DP8AeyOp9TXPPZ+ZLdPdSfZ3Ub1jfqxPQD3rqba9sbgvcalCDtO/yQcGYHrn1AwKqWtpHdSQalOuNO8wgEcvKw6bvTvV05ct2Iz9H0uJQkt1IxlDFp7eQbAqjplj3JxWhJdS3O+JJWAJOUX5vLOfUdqm1WayvJFWASbI1G0EYCIepf8AHFJplhDHBPPIyFLZd2yR8BskAY/v9fan7V7jMm9s57gpbqzllGfN253/AOFaunTW2m2JeS2E1witmUtnGVI247nvmrsAEtldXd0rrLCPLtinCqSfm478Z+lZ7/ZMF7dZnCD5v4hn6+nvUOo5AVVs5pt8lrNKqsisTIp/T1Ge9SSyj7LFaRjdLLGRJtbIL5I6/TBqW+l09LixlmJikKq0/lnzARnjjjHGOPxpHiiuALu3i2ozmRpQP4RwBj8KHpZiuJdWbabGFkuLee4eEBo4uWTJIAPrjrxjrVAwTT2MELqQsYIkQjn14rTRTLK9xp0TS3VyTJJaquVWJAPmP154rDediWZ43xJgRh/lXGa2i7gadxcMiQxRyMtxn54wcbl9fx/pVa78xozPlJY8DenpUVlYRXZZ3uMmMhR5fX2OfzqEo1tKSYmxgrgH7zHp/Wm0rgQRzwmdlW18xpDhU6bfen3Pm2dspcK0vKggfd9qYHj8ozSoqgSHIA5Den0qW0cX8jF13vEpKZ6Y9TVWAs6QrpH5ixlS53MWH3h7Ut48pvgULZXDA9ivpTFluY9PZCgK4GxlOSfYe1V5ZWkSMhd00jZK9TgVD1kBFIZbx5N8gVU5GR1yccVZtYA8clwrDjC+UB0I7ipQ5toytzBGkB5Cg5bJqCC/y6RQR/MH+RSMce9U7gSNa5SLMuJDli69c+lV70EWrPG6BCy5U/eJ+lSzSJFG7qMSO27aOcVVMpluBIyINp6Lxn2NKPcCnI8kz75Sdx444FaNrZNbPHLIx3ZyAh+Y0xrGXzhbk7AzZZeoX2zUlvpUnmwtPIBGBuJB5GO1W5qwzWebYzNJuMfoByPrWZqUiyKsjwhmXjI7jsa0pQYy7RHzIvvAdwD0rIluI44Gtpl5UYVk/rWUFrcCiZ2aAIXbb3G6ligMkUkgcxxDqSep9KiYDb8uODyKfB5cjRpM7CMH58dh9K6LAdtpN5p9rp0KwDDqoMu45Oeuf6VNBqluLh5rd1iRxhcpxknmuRt7VZwwWQYLERjd296vzqiwR2yHBT5ygGOByeaz6hc0NSaZr1ERlmV+Wde1ULy7S0ieSQbiTtTaMkHHX9KZZ36MXG0oiAkZOc1Z0gxSeIrUyvDuPmG2R8FBN5T+TnPGPM2dePWpteVhJGPHqUU5WKTzCWIAIUDr+NaMsqWCxkxZ38jngVHrH9vZ0seIDJ9q899n2zd9pC5T7+7nZnO3PffVOS2iSJppHJjIIHqD9PSnKCTsNqxHZ2FzPavc+WzWcGPNZe2a6XS7MwGe5S5RoSNsPmHDgf3sdvrWNoGoRabqiyz3EkMJRlLxR+YefQEjJraNwixRiMO6bfMCL8209zjseams3sBJKk1xcr57xMsIHlnG15PTaatfaSzzXdxGQDthPPKjHcd/rVidIY7OC48uGeKa2QhFGGjHGS3ufWqt20gvg5BCgZg9MdPxxXK29hEUfli3OZUWNGYfOd4HBIwvc9s1mq11d3MdtDHt3AncR2AyTmtd9UldbcZAmAMe/bt75bJ/OnwXn2BD5LRRyHMfmg4aRW6k+2Dj6U07DKa2ypEgF4yLI486UPwVB6Aeo61ZU6cuiSx28ztcyzKyLs6IDzg9u5/GmJ9nSCcBpM3LGJLeNeN23AY+nPemfYGsrW0gkCpuRmdmfIDAnJHtjH45o1sApaTzZpZmjkMKrv8AOjyYh6Kc/rTluFhBi8iS5nIJdF+6B/CQfzzRBtt5LdlmljWUklIVyVX8+SaSW8jGqW32Vg6iIgS3Ayc+pHtSWoGPqF7K9ojgJ9mkYjAGGDdx9BWvNHHp1skCWy3EyDzJpB88QHfaOOaUQPrJKaParAHj8qVmbcsjD7zg44B9O2Kq31xJZyxQwxneY9sQI3ZB6nPrwK0drWQgluGTRLhYJwr3OI5wo+YKOgPscfoKsaHbwXSEPOEABQbl3PM2cbR6D39qp6hcrp2m3MMBlEl3GEnEkeCGH3x16Z6Vdsd9hp1leIyOoiZ5A/zhc8AkH2NNq0RljVC39mw29w1rGIZimVH7xSDtPPdf51UESWiSrbIXhPEk38BHfb9aguLOS2tl1ZoGW1YAKf4xz97Hv/Wsy7VpnkmZ1mdzkMW+fGOMj6UQp3ExNjalO/lugwNpMh5Hpj9K27GF4rK3gnn2QMCmUODnJ5+lYFrDJI+bLcQ5xGMZYt/Fn9auQz3JWIT3EYEWUEXdgeD+NXODtYkvToEtlgiBVPMLNMi4Zlb5cE9+nSku7x9UZDceXLBZReRDbsMKmfu49Oc1HE16CmoMIt/mGOHJwRgDqPT/AOvVXVre8mt7i9eMMvnDzLhTwxPTBqY3vYroWoAiwhoiqx4+YhcDdWddXEKW42ykuXAceg9qtwztqZjgjs7eLyogGaMYGBnJJ9TWTcWD2gSV3Uq/Y96uMfe1ERNaq0KtG7YeUooPTHrmtGLTp7O6Q274jZSssrcqfwrIldYplNuSMDhlPQ1pWaztBDMuXZgwbceGXvW0rpFFlAyM8GBFtzyvH4j2NRkRpNHIQ6SYwAnG73zViCGS7klsomywiUqG+8ygjIX3xz+FacOu6TpSLZJY/b7dMsFuY8EvnJz12gc+uaxV7iOXeOZj5m0MQzKq4/WntePbW8IUqSyNuyvIPPerc1ywuJpvKC+aTLHGOiA9h7VlypM1sjO6hQSAD1PetY6gidJJlCTy4UOOGA5Fa2jWUCxy6vqVu8lsHDRjON+OorItvO1Ge3toSFcsFTPT6/SuqsJraG2m0dFW4mEymKU/dDZ5OfSom7CGJqBktorRYY0S5lMsihMkIMYwfz4qjPFPYxxsqblkTeM84FWTo099dvbW4aOFUMpeTu3cZ9D2rLtbj/R9iYiUyBfnP3lP/wCqskr6hcoSXkqurjcGxyynj6U+9mjkSP5EYHlivBJ+tTTMLC5MSgeVjfhuTzWS775SwTdg5wOK3jEpA6ARsWBzkAeopgPPyrnjnIzVllEbgTxsjOwP4elauj2lu+rmGOWWAMpOSoPH51psMzNNlK3oPycg5LjgfStJbj7fMY484A2lz3+lS/YbaFZLmGTOJGUMh55J6/hTLNIIdQidRJvibcquN26ok0xNE8Yjtv3cEUm1Rh+azbmKXUZWiiUJGGDHIwR2ra1zUhqEsspDptxlY+in3qlawLPbLNPuRZWwvlIAxx3J9Pasubl1ZvQoTrNqOltW3okttfm0jNk03+z54547lZPLYN93ByOcYzVpr+BpUVYjsVdxMnXd9fSrV5GscnlFGk2p5gZzhSPWsOS5mklYnhjxgDjFXB+0VzOrTnSm6c1Zo1rKHTrzR3jJZdTEmYyWIiCdxx/F0rQ026uoDJMVht4kBhZlQbiD1J9enWnafHPaTXN3AI3MkY3LtGGJ9PSrrTRw2QtWtkaaJw0kpjBYHsmfz/KsalRPQzI1kS18tkuSkIT5MZ+fjuO1VYJUluYViHkb2ADucqFP3mNaCIGVLiWMSk5IV2O1EPQe3Y/hWYbeCG2YB3maUsnlscAEH+HHUcd8VnFXESTO8sl2ouoZI4W2RzMMK43dQPemRRPPPGAy7UIaVV5BGeg9Kq29nrOpxpdQ2Ni8Jla0ijluI42lkQLlVUuGZgHToOpGKueH5JJbZ3dII5BceWUxhwQB2b8jzWs6birjtYt298vn/LCDGr7W43bY88En1zU0FwsKXAtpYTKww4mjzsXPJz6YrMF2llNfPGpmkmLRSLkhcdQcDrg/hVi0dbclZQfsgULOqH5iOv588Vk4juTKl5Lbz6rKsIA+80SgbW6AEHHHfA9akimt7iSN5YJBDBbPHCiAbt56ZJwcep681Snus2i3TL5iBv8AUs5+QLyMGmGWfUXN9NgDcVaRRw3AzRbqK5qO+pWFqt7btLDYZEc0kYULvOeAuelVNLSO3ltrq8ndI1kyJVQOIj67SRWNPNLc3aB5Cib+FzwMdDjpmnwPE4T7e03MoZ1QZLe/1q+WyC5v61tvtaaS7uI5LKOR5FlIxvyc5x6n0qnqWqpd/ZomYG3CsiRAFF25Hyj1FQ6/c2sm4aczeSkfmMGUBlfI4/nWYryX9sUnuisafdDYwuecL6CqjBvVhcL/AFW9myJLgtEmYkhJ4jAPAx07VQnSUos3nby3XB6cVZSS3+2mO5AWDZgugyRgcfmcA/WqDu4527Vk5H0z2roSCxd067ktra6EbujKoZdvOCeCfyqSyS2aRXedncruIC9Oeeay0lkhV1ViAxwwB6itG38tbiOeIqGYY8th/D0IPueaJIGjRuLja4trWN5GIwckydfQdvrVfWLu5EY01CEghGDGvG4jnL+rc9ajh1H7LNLdrNPHMTgNHxgDoM0R6ilxYz2NxCA8j+dLcLhpDjtk1EY6iRQtL+ezZvLfarDawq46T6jb8v8ANGBgHpWcQivwu8Ak5ORkelaMkpm0wFXAXcocKMEdeAO9VJa3GyklqjzRRlx833jW5aadDbxKTckliTt/u1FCtpAstvHE0olcLFI8YDAeoNaMawwTzwwyyTqCAJCvUY5P54rKpJ7IVymIJor5tknRfldRtIz05FSz2U00e+5xE0RKqpf5n4yefrTIbt4buQsxYDChOgP4ip7tUm1OOKKQyqV3lzxsz1HvzWabuFyhc2ax2Imup1S42ZSBeWX0yffrWCRJJLhhl2wMdSfpWpOyT3oiLGOLdhpBzlR1P/1qns9PtxfSy2tw7/Z2R4MLzK2R+WK6YuyuNM6LQbZdGa2mt5Fl1EodiMu0wsf72fzrLu40aW6EVxE1yWByq4VznJKnsPar9mst9q96t7HvaZAS00pGD/Ec9CcVmXGnx2RkkuVOHbEeTjOPQDjBrnerEW7y5/0KSW6eWYOoWNR8iEjrkA89qxpLjfaHeVMjZjVQeVHsOgq5eSw3AEqRySxI3yqTwuetZoMKXL7YyYtpwCcFfergA6SznjEa3LxxSKg2Kw5we3HelW2ksydoO5j+6cj7w7g1LNLa/YYp/tRkn83Jt3Tqv94mtGa9spEmaNgzMiqoydqt/jVttD2OcuGuGmYtGFZjnb/dFMiEzP5mZAp43jqKdcGSO6bzWLP0O09KfZvcS3EaxIZiAQEPTFarYomhWSF8zwuy4LBieCAM5xTP7WJuRKNqgEHAX/PatS7dpdNmTytkkaHJJzgAcgelbetWVr/wj18Izo7G30fTZ1t4rXyrmF3S33SGQRgPku2RvP8ArM/w1MUpAtTCuISlpIQNzO24k0zSbyTYltIFkhbPJYqy57Aj+XHWlmlMw2nPAyWTnH4VX0+VmkWFUPkBvmYdT7j3rJpOOppRrzoy5ofik1807pm/dWguzuMiRJjYxJ59x9Oa5ia38u42SuVRD8pA6Cuwuby3t7UTyWomUR7VtyNoLHqzHuRxx0rLvWaWC2kmjkjtpUb7PgAsemWODUUnyqyIqVJVJOc3dsniinlZSiyF4GPn2y/KQvZqdDHctcqqLgzfMpkfKuw789+e9JG6wsvmeaJgSspRyxkHfJH6Y96fK7S3DXCRmeFB5mHIjB98cfkKzepAt7fSWd7HFuGyNSksaD+PHOfXJ5rFS4u4HjuNqFcfJnGMD2+tWLkqCz+bILiYkzAj5ck5GP8AEVTYh/3cQIAJJZ1+9jqfQVrCJLLkcum3+hWdve6xFZT22qXVxMhilZ2SRYACm1SucxvwWXt0HNNubsajc3uvRp5RutUlkMRXcqKxDAfqR+FZ9vaRSwyXLQpLswzKXILAnGeD79qsm22xoloWWOWTKp5hwre/P61tKSasU5XRtWrvcSJEYo1VFYqYh5bgH+InjijT7YOs3nPt2q0wVV/1oXqOOOg61U0zzPtUjXbkSohAUNu3g8bfpV1LyF9sEqOqRBlEkXDnPRSvTbnr3rlluBlzzNdTu4ZGlTBjgRflUd934V0enS2cLQafdIPJt8zOynG7P8JP4dq5m+ge1mcROEIJIdBgYI55PWnxzre20kkseHVwNy7tu09R7E4/GtHG6EWjs1XW1eK0SJGYt5Mfzcjt9Peor6GzstSmS3leezIwsjnDKT247irCXbWpQ+V/pJUNmEFDGOycfrVBL5oJrgQwRW8RYHymG8A9h83Pr1oSAoyxwpKziZ3Voshj3buDSWSyrE14bZJraNsSZGBk9Aauag63f2ua3ghWLeWDLkd+gHSoojbLpjRTF1eWVTiN8qygHOR61tfQCq62zxsyvIszuSVxn5etNt7K41GQW1oPNlVHk27sBVUFj19gTj+tWJQLidFsopH2ZWNFUF2xyeByfWp9Lsg/nTy+YAjHcyPtOCOhHXHY1SZSMn92EjxHk9SxP3quWMH2iO6uHaMRxKW2E4JbHGMVSnYbtqnCgkADoOf1/Gkil8o/7wK4z1yOtVbQbLkqxz/Z0ilJIwm3bznrk/nW9dRi20q0SGOBreIMPOMCgl265bGW7YB6VHpIs47Qj5Fu4kaYSu69QOnuDjGKydQ1a6vYI4ydlqrEiNMbd/c49elZPmk7ISQanbyWU8UMoXIQPsDhs+/Bx+FVbeXy5GQvtQ85I5z7elVypBUN/vZpuSRk9O+a0tpqNo1be8c27pvdip5bPKqP89qlSUmSNI5JYkxtldWyT3/L2qp5VvbSjMu5fLWQEHkk/wANOmuBJcebHF5Z4yFzycdfrWbjqQ0WYJY3v5HlGCoIUAcMff8ADJq9G4ht/N2K+f4ySCf7v9KqWGprYXI8uFGfO5pZRng9aHuzJqhkiw8aneEYkL64H8qzlC4hWSAxNczsd0koXYowfXJ9u31q1ZovnXVuUeGUrlIlPQkdz2GOaguJYbgCW4HlDIYLEc7iT0OfStb93BdtKnltC8AR5S2S3r+OOOKOgInsrtXuFiuBHvSERrFIobzCSRkZ4/Gs27tJJXuXeSQLAmcb8/PzwOfpyKka2S3juGeUfeQRyj5u+QB3GM96klM6aXLBbxeb5yqJDtBcjJwFHoe5FZLcozNJhn+zq7KrW5Z+CcZxjJPtzVQCK5uJ5Jx5MaREqGzye2fWtPxCVgmsLazcvutE8xBGyBGycpyAT7mqDNBHpBDyrLOWHytklVrpXcRktLIXLE/NjnjoKs28jC25K7DIC+ev51VZQ8mFJwccueaTLBMcbWOa1srFNaFm4gja4meOVXX7w2k8c9KmsU1CAhrVOc4yMHP+FMsoY7mdonyC4429c5rQispbaeX7Pd7RHncuec9ORUt2AhkluJI5raVXBIJPHQn3HvUd7Lrc1nFZ3Wq3Fxaoq+XC9w7ogUYUBTwMDgelOgS7a8ldpwiRrmSVxxtP06n0FSXTmO3ieF0ntXO1nRSDnOTkdqz50nyo6Vha3svbJe76q+9r23tfS9rDIhI4SNAziUYOzgit6RrS1tbG2jljODukDRgEfUjrWfbeVDma3DFui46AVcj06Sdg4YG1QF5mGCy/7WOtYyd3Y5SvOzyJII7gSq3RXJyB6qD0qe4uwLGaeWEC6dQkUaFQkan73HY9KjIiCoiuGEgChhjPJNF5Fbn96YY1G5QFJ5Ye9JOzAmga0gIkmJGGxHFgg5Hr+dWYTeRWhBaIQksuXCsQR6A80huWvLlJbiSOdnYISE6jn071G0tq5KzowUdVDYdMdOelZ31Ezn7p5ZJvnbcSMA46L2q9Z3lu0trbxw+XvQpMZTnceox9f60XpWS9NpZqghMaruLhiB6k9qzZ4lhD4LedGwZXU/lXStVY0oTjCpGc1dJq67rt8zQt7mO5E5ltEt1toyFYE5XttPqfrUaT26tJ8pfKr908le/+NVrq5vJ9sLTs0aqDycZ6Hn16d6t2FtbGykuLkCaUEAIrgHk46daUY8q1OrHYinXlFw6LVtJN69lppt/wLJGl21xI0tzbEfISEVm5c9f5VetUjiJvmGFjUv5bNyx7gHvV3SJrVSILzT0W2aXK4l27SRty4zkD06ZNVtQtzIs8yfPbpLs80KQ3oAR0x74qZN32OKxXvbOW5jb7RexmBQJBjqc9lHc1DYXVvpkU8VzvltpyuY4zhjjOCSfTPamRxrDbKb2YtjcsKq6q8ZAzkg9Qc8VSgjiuPLVmZZAHfOc5xjHFaJdGI0rTVrBIJt8UiXBkLRyltxA9D7e9QXEsmoqiyiMNFHu+Xq59zVa0sZJLyESl4Ld2AeZ0wAf61t3LWVrLLa6SPtGIAZJn6HH3tv6Yp8tndDMNIvts8dtGwgEjnYC3yqcdarvCY4cAP5iHIAwQAev45p9wEjcCMCIA4wDmoBeuj70wJNwcMeSCO2KtagdBHLLb3Nulv5NnfCEASxuANu3POedx74rEvAYLh1N0HZhl/LyOTziq9zcTXM8kspLSP8zMRiolRm6DtyaaRSQ3/ZA/E044GGLbieox0pGGCQ38PApVGTtUHDenPFadBkq2cssDzQxs8SfeI7VH5rtF5Y5RTnGBT3Nzal4T5kW8fMpBGR9KhBAOQTg8CpAe8hcrn7qqAPfFNLKXxzsznHqKbjJqWFPMfaD82PlHvTYEixpJMqxOcfw5HP0q1bgb4So/fAksXbA44qokckE370+U6+1WLZ4x5iMvmSE5DE4H0qGSy3asspuYRaqzN83zH7nP+RVaOItcyStGREhO5FbOB7e2aZazzW07zpHvTBVwclTn3/WmoZHTHm4GCIwO5pWFYSRi0xDSBRj06Cr1rLMI2MA328BDEkdCeM1AJIfNUMm4MoWQtzg+2Kty6bLaNGYHMsDsMpuwx79KmVrElyGaP7WX4e0Yhdq9GP8AEMnvTXu0tLtmgM6OGAZA2Sq9wv4U63kkjkVGj8kGTdD5i4H61Gmo26a8Z5IFeMNgqD1HesUtQKGo3kn21pI53cYAXeclR6VXS1I02W7V0ZQ4TBOGBPt3qxcHeHUCNdzk9Rn6VDLcwJpf2QW7faS+53J/LFdEdikRxWwMZuJXBixjHdz6e1VflO7g5z8h7YpxcrFs5HzZxUljCJbhRJxGv3/pV7FCWxJuVIzyeu7B6etaCyzWsEkh2yh1Kk9SvPc1Dcw2cML+W5aVnPlkEHCj1ojtSbdj52yMgFVcY3+uPxqXZgTW2pwrGYntyYXAEnz4PByCPp6VO91C+bS0idItxkbPJY8c+1ZKBNjblQEng55WtPSyYy8kTrvKsu1uc8VlOnFe8dP1yqqXsVta2yva97X3tfX7+jZehhaO2DSY2Lwvvn6VOJvLilQSOokiMbJ0JP19OaUwXEUWdvmsdpwvQVBdtGzDaArNnczH5QcVzXuziKcMJAWAug3sUB/55j1960L2wjaNblGOyRQTHIeVH+e3WmWtv9nVp0WN5FBCMOQpqFGlugzhsQIcBepB9a0YXNQwGIhorctKIw4O7ADd+PWlvnkMRLxxmYSb3uAQFb1Uf3vwolnVjzJE9xJyTuwFHfJ9T3o1O6WSztI7dmKxAifBBQk9gOw9fwrJblMoNYXEjCxtIC7XG1wyISSDyCKyL+Ge1uZLckb4XIZcYOQccitq1a6uEIhkeKUkJGC+08DoT6VVzqNn5k6eT56tzKGBcZ7c9a6ICMq3jN1cOjFvOb7igZJI5qdbUgXJmDLLEu4YGBn0/Kq7nyrxftC7QW3uR1IPPWtHWFiV8WcMsQCqWVuMgjI4P1zWrGVpZZ45QPtEicLv3YfA7HjrT4cmAxNcS4lnC8ttB6dQec0ySxkNvDKkboM7C7fdY9cA9zjtVqCyuZXW5tZlEqwPLcAD7oXJ59yBQ2hkgWxENzELkYlKBomQluCeh7VNqsR0+zgtzaMBASr3OMqc/wAIPrWdaC2eSb+0S0U2wtGPLLbmI4Bx0HvTtQmurUSaVcTBvKcEKjZjRu5z37VPK7iK13JKLRIWdyQxYqemOxzSWV0kIu3mXcZoGWMg/dYkf4VKksQ04h/nkZ+jHgAf7PU/nVN51fYH24HGMdB2q12Ghbh0mk3pC8ahQrKDnJ7nNRO7SZVAdhOFBGT+dTqglmMcUhcnoAMZH0q/p8dzZXUs8UMZMBxLHnIOf4cenrVXSAxshQ3B54696RZGQEceh5q7qjxz3Uk0dvHbKePJXop9FHpVQtujCeWoI5DU0UhrtvcAjkDj3pMn73p+lKvykMr4Ye1IGbdxg5600AryPJtLtuI7k5NNA6DPGacQgXKnOevtTfunBHIPNMBSvy5z3xVuH90m2UiM7g5O35vwqnjCjHJzUn7yXBySQABn0pNgXL68F1drOqqQgAyR94e9U5XZpHbaAHO7C9BT5raSGMSEqUzxhs5qAnn360kIuFGWPaJPNMgwFTpn3/CkjhlkdIlA3p0qsjlDlW56jHbtVmGc/IobywMgsOSaTEy8mlBmYtdBB33Dv6Z/WrFvcLbwNA0gk3Nu3KwPyjt7VXVnjjZILlxGo3ENyCTwTVi0KyT2rKBIuMSIvyl+f8isZEC3k8k85eRiF2bVwwYYPGBVe/tYoYB+72yIFBYnBJz19+1aISAarIgD2qS48pMZHJx+HNNnlfU9TtrO2aC2YHYrenuSahaMDGst85ZPLV1JAOev0pmp2osrwwCdZmQAMyDofSrGnxsNRCHc+GIby+d2P89aileNJpGLkHB2qF/nW63KRQ4Pc4+lSRsQhAYDceaYyghefmIyTnihUBjZiRgcdat7FGtbwWilVkkWVZQCSq42H0qXWPscqReSRCY1IEY+Ysc9vSqNmLjAji2l5OFB7e9bNvpMcqbZ9peWM4ZkO4Ed+vFYt8ru2K5zABJyevc/41radBDJCrLvE4k4LOArD0H41YuLKwhUxxRu5IVXlcZCnjJU+54q1aaQI/MlgdXXGdrL2HJ+lOpNcugmyR2lSDzpmw3Tjtz+tQzNE8TEbHUrlWbqR3rTjjC2xVwSpHyDHzfiOy+9Z0ggfKMYxLFymF4Yf3evT/GuSOrJYn+k2trLbzyLEFYZJ569/eoNOuGkvJYhEV3DJUdBjt9OaZdyC6DSwRrgAb2YEbfw9KuRLDYaRK8kYa8kfBuFbO1e4x7+vtW7SsCReQXQZ52ijPmID5gHygN0H14qrDY3UdxLAG8uRTt3ZwCK1vsTyJFcbRZiNBGoi5BYe/8AerPui/2fzLOUMioCWkXa7g+3NYJ6juZp1KSC4MMsKlkc/d4Gc8kCq2r6rLqj+Y42BcBFUY4x396ZcRebatdBUC8KwDZZcd6hWMhYJZGVhKCBjrgcfnXVGK3AiuLoXcnmSKS21UyzcAAY/pWnbKk9p9onEhRI2QNuxluQMnvjj8KzlspJYJ54xhISNwP3hz0+vep5I72wuIo5AAJFBRRzkN/XmtHZoo1dI1hNPWCK4cy23mBzb44Ru7fiBWsk0N/PfrbukCPCTyv31GSEJ9T0/GuZe7ks8xG2i8xWIy3LhiOv0xUupXRuNTkSJy8jsgDLwfujgfjmsZRb2EdHZ6PpM0d3LBPcxNDApbcc+YWyCq+nSspLK10q8e6VvLkiBMcF0m8M3+1061aguZ0ivJbiF4PLUIqxd5Ow+h4zUtpJa3iSrcyGVJFyxQYZcdBnt3rNSknqBnaboVxq2lPci4tYFjdgI5jtXI64rn5kALKr5jU7dxPX6e1ei2enyahpryPZEyWVughuC20RoueSP4s5rlp9EjWWFiHMYP8ApGxc7fUKO+O/4VcKqbGYVvIyTBUHRsZHWul1XWbK5sgtnpxRURUmkxhmfHOT+GcVn3dnZ2V9ujjkni80tHHIMO8Zzgk9qqT3EMUStbWkkTFt6sz5yuMcfnWuktUBUnRo5GYhMkBht6AHmq/X5jk5q9f2TWksavNG8kyLJ8jbhhgDyfWq0ztNMWdl3fdG0dhxWiKRHgk4UVPZ2st3cGOJScIzEIM8Ac1e0+yt7hnfcqlVwsch5J9qtJ4imsIBawW8cO0/vAv/AC0+tS5dgM14J9KvNl5A6SBQQHHY9DTJZIjaBI+W3FmBHNaFvNHqsssLwwRiQhgT1jA5OPrVW5t4Il+0JKFJIZIe4Gccn8KdxXKHlMcbEYhvStG4NmkTGPcszHbIB0298VQ82Te2x2AJycVeOxLVri3R4g3yEk9R3/pQxjJCDBtwjpCc9eo7VSkYPIzKgXdyAO1ObkbVyM4H1Nb2k6TCl266lCDlNwVmwuP97HFK6ihXMeWZGgjwE3BcHb1qttO0gDgc1v3GlQWcF3dvCVQnNtE5zhSeDnucVlM0awxggDfljimpJ7BcjtyzOkYY5PTPqa04XnmulgjCKYRuDqPugckn9ayVONpRiG9600tJLi/VT5cS7NxcH5cAZP44qZJEk1xeym4DEIGkXG5l6DsR/Ot3Rf7Kjt4Wvzgs4cJDHukIH95s9PbH41mKIbyKOG42wpD0kB+Zx6/lV6ytNt5aERny5GCxAj+BjgEj3Oawk77EmV4gmki8RT3MXlRs5DEQn5RnsKxF2lByQ277p/izWzrU8b6vO3leY0bEZfoUHT+tVtKt03m6k+cLkBAeQex+lbRdkWine2b2TRo7IWdA/wAnIANQKjO2xVySeK0NTuGa4OVjy65bZ2B6D8KoxxySO2zAYDn6VondDL9iqrNlkfKHBAPHvzWnf6wYEjFsgQMmAXGePQVzyxSu4VeCemTU5tpLWRZLlHKZ6jms3BN3YrC3N3M6CIjy16kAfrWxptw1vZRTyxyMXfCMD8rAdQa5+WYzyEuxODx9K1dD3292zsUCsjLh229jilOK5RNGzPefbYmLKqOPlzn5vYVDf20cUcbRym4l2B14x35FXdFjL2d5PKyMVUMF7HB4Dev+FXIQL24SxFmyXbyAyOrfJnjoPTGPpXHezFYzoNOE9pLcSCL98u5olbDL/tfQU66uInu57qOPcYlCuC3DeuBVi8azWyMs9ztRZSvlgfOR64/OsiW4EscKRxLECd+8HG5u34VSvIDXini1DRrmKOSczg5RUUYH1bPP5VWSOKOERrcBZJVMborkk9MHpxWbYukbK6hyFGSoH36sTB73yYw+GBJdSuBGB3/WnazFczbuNbW8MKqzN91h/e/Gqj28lpcr5rAMgEg7j1rcnmtxAJIxHN5HyRyEbSVHAyB3rBuZVuCrbm3nGa6IAaWn33715bhFIkJbGOHOcnPvSzala3F0MRMGJ2rKG5QHtt9qyobjy1kthtMUh6t1U+v1rVgs45khlcmOFOFIUAu3oD3okknqNkssUMSMsvzTN8qShRls8c1lSm40/UJFkwJ0IGw9c4yDV+9tjIpmto2EkbDeoYnHp+NStod1qbNeT3UYdxlyeSOMYpwaGh+kahdyzxrLKVVmHlySLlFJ7kUptLi1nKOMShDc7g+QFHQ4/OlEM2lWP2ee6VIbj5Jdo6AdPp1q8LcXVq1vqVyLKeFwokk+aV93Y+i8Dv3rNq8gLOpXl68cV15s5t3QwJcdNxXGQOfes6HxLfmKQbXlhBK5br83bHviseS7upnAY5G4qFQevcDp2qBFZWHLLK4BXIwGHr9fSiNJLUC1qF45mmaWJIi8YwqLhTnkcVRBub2EIzbo7cEqp7AnnFW2sY9qtd3DRZCjA+YtkE/pVeK3nOnzTKwXa67geGPHGB3FbxshlLO1zj5Tk8HnHtUlsXEyONy7WBOOmM96jfcGy2Qc8nuTUsE8qJJFC+BNhWUd+aspHT3l/owtZFsodkj7cOZyRv6kkY6Yrno5rEwzi5iZpzu2MjYGccfXmo7mUSAK8YSdTtYrwCB61DI+9gwUDA4IqUrCGAkAjgZxSmRmyCeD1pFUtkjn1oAJUtjI6VTHYs28xhVk8vczjAOafcX0lxtVwgUdlXAqop2YIJBHSniJVcKzqT6ipEW4JofJC3KZQEldpxk+5rZtdTjWyvLW3mkQT7Y/L+8Suckj0OQOK52GISSFTu2g5JFWZZt8qm0QReWOic7ffNRKFyTd1240+U21ras5UKEnbHJK8fd7e/rWJcJbtOu1Wa2U7Nx+Xv8A5NQj7QVkutpO5sNLnkE0LJIYJInIKsRnuRjjiiMeUZMNNkYy7UJ252jPRfX8qnsDcW7RjajRu4AUjOR0JFW7e4b7MhO/ezBC2MHaB/hxVuK332rywBdxfOCoZYwOwz69fxrOVToyGyKe9VVW2BiZUyUkK5LZ/hJ74PSo5tSUk7o9sLIC42YYnnlR/DUtxe3FvAWewiAziOX/AGhzx/PFZh1JZrueW4gUrOoLc8gjuPf2ojHqEStJPE87NtZoiDtVmyfz71XEqpKGQFFzgnPIq5e3EVxEmIBFsUbQvU+9UzGoVZVAYZwQe5rZItCNy+yM/K2Bx3pJEkgIWRWR/T1FIWAlZtg2tnAzikZnducs3Yk5qkUiQKJFLvIo2jgd6ct5N5DR+Z8jdQeahGAW3Dn0xT1jVskE5+lAhAwdvmIzjHTtW5pNxZm0dLmWNZNw2MZdvArDKMhYjDnae2R0ro9T8O21r4Js72OOEX8fly3JW5VnZJtxTMe7KBVEXJAyZe/FTKHMrBa5tT20FnGWsV8tZAFm81twTPGc1Elu/mXDCeRnB4lU/K+AOfWp7y4hntozKWDpwGRieex+n0qBLeGW5na8vFhdFBLREsJWI4x/jXnpdyUYmoOBeEqhHlHaW6D61VmZjaCXAbJIRmHGB1ArVuLOwuonMU80UryBBbqoPmD+8Tnisq7tJrVpILpWjSMHaAc/Ma6oWsBd0/cPKaWQpC+U3luB9BTUn2RhjOwPKsx5Lqf/ANVY32t96bs7VGMGrP2sTPGrr5YPBIOQ2PUU/Z2JtYlnPl7I4iFVxuz2GelVJuV3khSpxx/H71tLaSNFvhjWSN2wTj5RkcDPai80mz0vyzdXEMxli3NFE7Hyjjgj1+nvThJXGjAiZorlX2b/AOIKwzuraYyTTQrEp9WjxgKD9e/vTLOOCytob6SVzMMiONUByM9Tn2q82pA200qwu7yNtaR1G4j0wOnHFE3cTLMFlHKzRW99OCvO1TkA+rHPNULvTL23CSRSszAYkZD3zxQ92LSQC2R4cptKFfx5NWIr9jYMY8OwwXG/Bx3x71lFO40Y/wDadxbCSJ1jdmyuZUBwe5x6+/WtfWTYyQCZRIisMxvKxL3GQOfTHHQ1QtrF11VZUyVU7na5TIH1Heqtys8q+WjSTLFkBWwQpPXH6VtZXGrEdu0sc3moiyqgBZQflX/D8KZcM8s5iWb7TtwqPzgL7Z6U/TLmC0u1nnjlmhQgtGOA/sTVeNwkEu1is5YYx/d5zz+VaJFWHwSKlyguCSAeOc4rQkuNl0HuvlPVNyDOOxBrFVtpLYDZ7Gpri4NwkYZmZ0XGT/CPQUuXUViW8jmdftco3CVjsfj5sf571XiVSxJk2sCML0z+NTC6BtjA43RDDKBx82MZzUEigImAwOCTn61SKRf02/trLUJJJ7QTwspHlthjn8feqSzhLgyBEPzE7COMVDk4B9acF55NOwEk0wklMkahARyF6UzaCAEzzyaRAu4hicVct4SkuY2C4GAWGQc9qluwrlQjAGRREQrDcMKfvGppEltptrIBIpz1yB+FRMFG4BTjPWmBoJBbkcXDAt0x3qJZRaSHbGpH3STUMVwYopE2BieVY9VpZZmZCzRjEjZBqLO4hsrjzG2SAIzZK9s0wkLwHQ5PVRTQfmwEHSpWljDJtQFcc/Wra0A0oormSKNY3aUYyE/u/nVz7ZGWZI0dSRgqWwCQPTpweapO7rZwvNwrPhZEJBQfhUV5cts2oN0XRXYDJ+uKxcEybE0moXUyC2kmG1W4XqMn+IenH8qo3QUTBScqDjdTojvULIMKh+8ox+tbZ03zdLiupFBaSQkRqmGdRjkdqq6iGxz6SLgiYsyHPKdeKiVS7jbxnkVfuxhiZNvyN9wYB59hx2qCdHihLfIuWI2ggketWmUmVmJKhccDOKTJUgqcGjO0EL0PHNNqkUhTknJPNKCw6etIByc8DHFWra1FwgKuARyxJ6UOyEwtbea6nMNsCXdWGAwGeD3NTyXOsTX13Ezh7i9RbeZVCEOoZSqjHAwUTGMdK09M0+0WzF5DeB74O6NAwwojKkb8/jUmlaY1hdG7nki8qMbg4bhyOcL6HisXWjF2vqaqhW9k6yi+Xv8A193roX9RnVRCkNpLE0alZYWP+r5PQ+lOklTfMkYh82ULlSnKD2z09atS6jHfNbM0eV3EksuCR6e4HXNUmizdh43E7x5BYD769cj1x71zaHOhIv7OsUlYq1xM8P3tu1oTzk8dfxqG+SymhjujIftRG3ygpOffHTj+tW7iyt4bN2eY/aHkZQiEbmXAyGHT8qqTte2mlx3q6akKg7Fl38+/yn8O1OOrGc/bWSTsjNMEDHGD1+tasujR2dxI4YtHHyitjc/v9Kdao7aZbn7MhSGQEtnqT059OKfcSgTzO6s0gkwGjztI9BmtJTb0JHJrrW0fkJArMjtIwH3GJ4Ax04BNY95eXGoXDPKI1aMbQEUAcfzpzqXlDomx2JYL2qMrFLb784kGTIG6E54xj2q4pIaL0OpW8OnpbzQeZKZMyM393rgelRPPPJeCa1Ro48j931wOnfrVdBA4V5M7wQgQnHGOtMLmC+4ZpMY6Z5Pb607K4G7fNa+cQ7M5UDcCCMHGSfy4rEEUbSvLC5FsjDcc/N+FWI5zdx3DXTsGJGxQOCc85/CopYpZJEdbKdUBGSFODilFWEalpA8T+eryyu3ASVjRp6JbTRXWT+6cuSCDuz2wazzLewSLJMzgffG717VoJdaTFpk8s8RN+wXysMQEHO7I79sVLTuOxDqUFpaXpUs6IzFxIoBVgemB379axtkPmKFkGCo+bHANaKCOeWMSq7QhjynK49ParI0a2msPNeR4JCowcB0LenHQ/WrjK2g0YUy/KrBTnu/Y/hUGccjkCpHWSGQpIGVlOMHtSyFNi7RhsfN9a2RYwHJzVq1lhG/7RlsKQO+OOKqDOOOaQfKfegCaOF0eIsp+f7uKS4jEdwyZz7+lRhmHc8dDnpQSTnJySetADtwUMpXOcc1IZiYQqFtxGW+o6VCOc59KcoLZ8vLNgnAHagCSaZpSDnkIAx9aj3gRsmf4hzUsURkKquCTknBpECh2SUDGCAwpCRAD178Vct4nuLV1MkaRhwd7HvVQ4G4c+gpQxB4474HrTGWJY4IoyYpt8gOCw6YqsTzwBStyeFOcckim8A5OaEA8SPtCl2wOi5yKniOXTDBcckHpTMJFJgMGyOTjpRI8QCIgywOd3rSsS0bmiWkeoak6y7bhByY1JUH06Yq19qmt7ZFRwU2uASSTHGeO/wCPSsmGZ1tkFsJVvt5YsmANmP8AHNaj2ov9EgRZZ/Nj8xnUxZGcD5Rgd/esZLXUkk0+ewWA2sot2SXcHaRMsAQMkHt/SubimK8lFdATnI5I+tWY5zYyMk0LoJE2um3Bx+NUmLqGRsrHuORjpVwRSI8CR8KNo9PSm8ZPtUs7RsyCPPyoAT6kdah4HStEUh4Pycrz2NCAlsAnJ6gU3kjr0oDc8GhoGdJouoiOJLWaNYwvKSlM7jnPOeDWvPKt3wnl7cljlcD/AIDXIrcXN4Y7YK0yqQREq5JAHPTmuguFFtOzCZJCEBEROFA2g/UYrkq0bu6OlY2ao+ystrX1vZu7W9rX8r+ZblmhWdfIdZWEeHjUMwUegPqfamzXii1KrDKoO1gEABjXPQ455ptpdJKYntw0TquSCo5Pbb/e/Wpraa5k8xX8sblBmEi7CnJ6evFZctjjKl6ximhuYsMrqOXQ7gfQnsagU3WowQ2UY86RmIiQuSzOenX0rcMcElpLcxEswZVEEQO3d3Yls8dKzGbyonmgRxqAz5SxocIv95ff61UWBmWV5JLa/ZnZwByiKB8/1qW6l+yTu1w2ZIzxGjArjtU+lPamOP5Y45ZMh1DYBA6Yz9aoXhNxcfZrOBHnBy7Rg8c+vpW3LqSMlvlmEaqpVgSOO341SdlZlVkcY+9gjmti30eaSO6mukLSLyRtwd2ece9Q6hD5cuxo0tQihhEOcAjrnvnNUrJ2KsVonha2lcj/AFR+UMRlgeMD3q7ZLaJLGyK4LY+R+S3PY9qqQWouE+0bo4ordgJCWBLEnjaPSpbvUUnnEdtCoaOUFGRSBgD0+tEkxNG3PPbwHOLaNFDfI3OWx0z61hSajNH53lkxgnOxm46dqS6hvUmzMdxlI2lehJqE2UiXGbzAVVyfm+8PalBJbgRXt+bpuN20gKcmq0T7XDt2/vcg+lOuEUyPJAjLCWAXNRhDy2CVUgH2zWySLVi5b3CQjDRb4yM434PNA1AkyKfmSR9zg5wSOhwOhH9aoE56461YuCN6DylDBeQp60WCw66dp2aVlXDNuJUnvUDxSoF3oV3AMNwxketKxDbRv+X27U+4mkuJF8yTzAq7F7YA6UIZEzAgYGCOtDIVxkg59KaefelwSucdKYCUUZxxR9KYAR0qxbh4iZgwQgcZ70kKysu5EyFOSSKWcyuQjsOBkACouK5NJduwKxlMyD5tq4IqnIwfGBjFKFbAZSM0yqSHYVm3HJpUKbvnzt9qaMU8DeQqjBpgAaNWPDNH2yeaacc46H1pGBDEHtSgkdgaAEz2zTgdueOOhz2oAaRgoByeFAHep5LWW3gjndCA+Qc+opNgzWtINWsolm+xtJHcJ5YO3sammuHsVeILLbyxsCyMe/asu31O8ijkRbyVBgYC8j6Uy7v3vEiEoLygfM/djWUo3ZNixqsjXu24MbKyKFck5z6HFVJJzOpVVLEjLHHepTdXA8vzMlOMhv4gKhllJijeOFI127CVz8x9TVx00BFUDnjrRS+vYjik7ZHPrVFB2xViCFJio8zYQcHI7etV+tOVyAVB4J5HrRLUGa1tZONYjjtblEcMNkp4BNTaiwk1BofNAlmkCSsBwvQdOuKm0W7s5Ha3mgVt/wA6qeR8q55/Kr6xWkst9cR2VuGkVWhCk7YSMZKknk8dKwcrPUgrWsUVpdJB5pk8sn5mBC49RWpqUS3gWS3aVYPL4dVJ+7yW9voeeKqQKkD201xZwToRlpgSxkOTnIB7DtUsl1NBH5cMKwyTjzI1VsBxkghQfYdK52/eAj02XMbWr2jiI5UlCSPqe/5VatQ81gLiOWKCdC26bOcDjt/XpVoGxuraSe3Z0vwEZ9pwjnnIPofesG4jMVu0tuI4n5VowCNyn+7k/N059OPWnuMxbl381HDDd3I/vdxWvBAljOzLO8DMDH8zYOB1B4+lZVvtIRODDnLHHNXv7RkjnN1K9wJGk3JjgHPX9cV0S10JRo6ZeHT1kWzcYfic3H3g2D92sW8nkuH84MDHwu4JgLgYximXtxJc34naWWSbAMj9fmrXS5On+XcRxeXMyZ3quRkjv+FTazuMzoNJT7dHa3L/ADSxPLhD0Gwsv4nA4qrYI/mCRkk+Ucbf1rX0sfZbt7i5nJnJ3BT3yOv45py6utzPtjgZbgkhjj06VTk7aAye1Avx86gQIAETHzE55/xqS9SIQmBcNMoxGiDjB9/XNOt1uYYmM7KJ25CoO1QrcxxXb/edd4Cjpsz3/Oue7b0EUm066Fmqlo8IfMRR94+x/KptUtba0s3RCN8jKZMHkH29qo3+pu0xSJdqRsV3Z5Oay5nR0jALGXneSc89q6IxYJFm/trW3CpCzNKfmPPy4qhnPBHy561o2NrBNKFkjkmXYThDjFVLqKOGcpE5dB+ntWifQu5D3yvalJZuPxqdICId2QCW2gGluoBGqbtyuRwAMg496aYIrgAjnjHSkyQNueO9PVCyFscA85ppxv54FMZKkJljLJHkjvUXGDhSCKfLiNsxO3lsOxqMn360AaVrJPbWhRgvlT54PUY71VuHKsoDswK9TUaynI3knbwAfSp1MGHlkJwflRMfz9KnqIp9Mg9DTo08wnnGBQVyeMkD26U0HBJHpiqQwpcmk7UUwD196OlFHHrzQA+NykiuhIdWyD6VdjeTUpo4JJVTOSDjPNUkAPU4IPTFOLAHEfB6HHepaA07rRJbLy0ldFkk5Ac4yPWn6dPEkJs/KRpXfeZQ3zDH8K/Wq+m36W026eSUqq8Becn0z6Uye5NzqLXDJksclOgA9qnUkV9QkWYCJERYySoPUA9qpmVmjEbD5S2cDrj2prsrOxRQqnoKaeoFUkND9hdmaIEoD0PUVopA1hFIlxbI5lxtPUqKrQ3xgs1jixvLZ3EcioBK5BG5sHrz1odxM2TocD26GGQmaQZQMeDWI0bKCTjhtpq8+obrUR5dXVQOB29vSqBJY5Ynnr9amN+oIsWSsfNCR73x8uOtbumSX1szSK8R2Rksj+g6qPrWR9iV4g0MjPJjLDG3FUgGZ8DlmOAB3NJpSBndXTxzafb3EKLHIh8xoXGAV7frn8KgnZjC07Jbj5ssU+YxrjqP8K56WSWW7C3blJQAMKPu4HFaX2LZp0kvlSSyxcNJniLvk1j7NJ6iK9vfzRT72BXy+WAGAQenFPutY1C6mWa6TzVBypK9B6VTkZDpyq8ahg5Pm5zvXsM+3P51BJDcjIWNiq9sdqvkQHSWs+nafZxRXKiRWckYblT3/pWbqWpxzFijbnL5bd0B9varH9k225I4p5pbhhktGeFqBdKDl3iu4XiZ9rMzbcHmpjy7koz7UTzR7YVUjdkk9j6fWrerahBJax2lqkqgAGbzWzlgMcUv2GS0gklKIgK7BIGyGpbDTWu5lYRqEQDczDhqpyincdylZYudShMsjYAALnqMDit5ja2dxGyklgdrBhy2e/61Ys9Pt7WdpY0zNuIV36Rmn+fawebuUSHJUORyxPU/risp1ObYLlOSee2mjMnC8sjD7xU8cVU1G8ikmkSCNyykNvd8k4Gam1CL7ddpG7MiQIGdQc4qlftbvMslu8kkyjldoxgf/WqoRQGa4eWbcoyXb7p70yS2miHzgAtyPerV47SwwskZRVBYtVCRmLjfnK8c1uikPjmaBy6HawOM+1Wri4luoiWhjChgAwTDVRjBLAADcfWrCTlofLRON278aqw7FuKJ7i1jgWMvMCWI7getRajOGFtEISjQoVfP8RPercANverE0gIdd0hH8J71Qv7oXUysi7URdo9xULcSKy5YiNT8pPrTpoWicArjPQ1EMdD09KenzSIuCASB1rRlBGhdgoOMnHPap/swjn2u4bHXb3+lTvYKLopJMiL1zjOab5A894gzMB3XiociblttOghg85JAYzzIjdVHbHvVOS9D2zxbAC7Ak4546UzZLbTfL0Y4BPQ+1JIvmMZcqrDkj6UluCI1lKwSRgEluhqHtVy4jjCwAT790Qdjj7pPUfh/WqoIBU4zg8itEUNoII606Rg0hYKFHoKRjnmmAKpd1VeWY4H1qa6tJ7Ocwzx7JBjIHv0qAU8O+0qrHB5OPyFIBG2hcfNvB5zUsaK0bs6HI6YHNQqCzAdDnr71tpHfS3VrBJOOCGVxzgDnp3NJsTK0tiY50EMcvlOgJBHNRm3iW7mR0cBRwpPOa0o5HSaWWRjPIXymRkHtkiki8uSWdxOF3FSxUcLWfMRcw2VnkO1eT2FIiAyYc7cHk+lbNxpkTmUwzqxRsg9N9ZYgjaHJlIlDbdmOPrVxldFJkLfKdqNkDvQylD7jqKme2aObbJwM43Y6VP8A2cwJVpAGZcqP7xp8yHdFJAJHUMQoPUk1fZbKHyT5btwckN1OetUduJNr5U5wR6VPOHYhAwdY1+Uj0oBm2NbmjiWJTGIz0J5zWBcTNJcvIQqt/s8CpUtZJbdpc4RBkk9BmoYyiSx7wMhvmyO1TFWEkT3Ec4VZpSd7889+OK2LTUpU8L6nH943DoDkdMdeaoajfW14nlwWfluPukHrVuyv44PDtzZta5nMyyLMc5GMfLSkNjFUN4eQnPmGc4TdjjAxj0qxeXt5p92yRyMsbrkFeearysTbRyK0kgBLfcBCmrF9HGsvmmaQ2zoCsqqMlvTrUXuSMg1iWG18iCzAJGGdATx9fWmv9o1PbDb6YiMDgBRtB+vqafNrN4EO21SNScgIMYNQvrl21ssYjCOBlnycs3rjsaXoIsyQ3NvYhbkcMP3cT/wnPp0rWQyRQp5hUfKMopwv5VzLahNdDy52c5GSepzVx3Sa3Pyyhk5Bz1NZzjpZgX7rU7ts+ZbKIYsAsTxg+oqAWMl9NJ5d6DD1C5x2yMD61jLLPeXf+kSuQRg4OOlaUVz9nkTyokyOC5IHaqcOXYC5Db21pG0ckm+4kbDu3PHb9aYLSC2eJ5XWJfmLOByewFH9qQNvlNsjunKg/wAXucVl3Wsm5jk822ibzM4O4/KfalGMmwsTXc0c080MOJIQvBHAGKx5zG23bl5D941JI4jgjUAFmGcg1cutMW0txOlwHPAIx610RjYpaGVyTxwasWj7JmkG3ao+bcM5FQvGI3KHnjOfWmgkgDr7Cr0KLzzGZG8pdpZjuH8RB55PcVUVXkbkEsD6cVs6bo8V/HuSeVJFAwdoxn0qgSYLmeJywTcUdl9c9ahSu9BFYRu8ojVcsxzjHbrUtwiJdfIjIny5DD86dFLJZXkV0qh0QnYW6MBxS3+ovqN0JnRV9EToKrUB8hlkRmUAKnQjqKlje3jhdpnd2cfIQeQfeq012WBQIsfr19KYsbzyjOdxA6D8BUWJsOmuWaNE3bwpzg9AagiG6UNlQNwOW6Vdj08PEzPIRg4XaOT9aqyKYk24IYnmqi0Mm2TX/mvFCDzuwgGFHtUclhdxwmV4SsfQk4q9o0ksMrmKMOjDDZ7VcvVuJLDyvLAjIMjMP4cdv1qHUtKw7nOYzwM8UfhVpbWYOoC8v0FPm0+SIR/Mr+Z90D19K057hcp4OeAfwpCCOuRn1rXg0/N2YmlMe0ZJYDg1fk0HzslJ97gZAwKh1EhcxzYRyAdpxmp7dJw8ZjYx7m2q+7GCa2ZdKu4IFJy5HRUApI9MmSNcoW3AjY38PvUuohNjLW6jtLS4WeV/PR90W3+Jjwxz9BVS3kYTTwyAl5MYzz+dbC6FwEaRydvAwOppLWxia7mnLskwPAABXHTk1LmrMViOSzjMOx4zuCAkpxlqzJ47iyijchP3o5Cj7uP61sfabm3UDYrgHLOx6j0rEvJGlkaWMuELDPpmlT10GiYzXF/b7FiLySSFpGHQY6AfrU72VvBMxe5Z40BwVPMR989fwq5pk0drAiJMixlclWX5snrWdfM0kcU5ZAxyMJzke9Xdt2Bmjut305pWtEcINvmqo5HTJrCLqkZSDJOSScdvSp9MlljuDbqw2yjac847/nWhd6aYLG4niJZs8llAxmmtGCMf7RL5SxoxAc/MnY+nFTSy+Zp+BGijf988sahiVheorfwjP1IGcf0qz9nR9rsjxPvGE65yaptIrYvaXPZ2NmZJoI5X6IcfNk1ct7iKbSX3vs8xgxPXbzTE0iF1jxNt2kvkLzn0q6ulm3tWjWRWjI3FsDPr0rGTEVU0+Oa2Yw3csLqPlRDjf60zVAtrGm1N1u2CwByQR3waZrKNavGnULhhs7+5qO9HnaVA5OQMqcdccUogdQbMEcpGfbFRtp8AIJSMn/dFXmKseRij5O4rj5pklIWEI5EMYP8Auin+REGICoB/uCrXylhkgimlFbO1RQ5S6gVXsbSRSGRc8/wgVA2gWRAyMg9MDpWgEI7CpFD4A4HuaTqSAyl0O0VmIUjdwMDoKj/4Rm0MXlhckdCRW0xK5xjce4o+cx/eORTVWY7nPN4Rt9xKMcdxmll8NQNGVM7qhIOCa3AH6knJphidyQ6ll7YqvbTFcxz4ctSoBfJIxk1DN4RieRBDLtGOa3jAuwEZFTRw7DkZNCrTQ7mPZaPd2EDQRspBwd3vUEHhmRZS0n7wM+4/Wug2vv7gU7Mg7mp9tO4XMf8A4R1GHzICQxIXsM1FL4Yt2ZGwEK88dK2yXLc5ApG354GRR7aYXMoaFbkNujjJbnJpI9CiibfFgE9Qe3NaYLqeVFOLkvgA1PtpC5igdGPkFI9isTktjqPSqi+GEFx5shDjnCHoK297nsaUEjkmhVpILmfBo0Ns+/am8/3egq0ljGHDvtYgg4A+X6EVLjLZBBpcrtPzY5pe0k3cLlB9IglL7kAZz1AHyewpJdGjZmG6MDgLhcFR/jWiMYJ8wZBpMcjLDmj2kguZLaJG4yZNzL3PU/WrUVlFGnytscDGfWrbDAPzCmBSx4Ip87C4sUUEZ/eljx2qVJbZGBECnBGd56iogvJzjNIYwMBgDT5mNMtXV7bSSxukEcWDwRzWLa6Ubb7QqzK4mPQqOK0GiTjCZFSBdp+VTT52DZlQaabfzA5SXeedy9Kq3mlSSzbk8qNRzsC8E1vdRtdce9IwjKgbck0e0aC5zk+iyOCIkQ9SD3BNZ3/CN3wcqSMA8HNdkSnC7CDR8oHAOapV5IRyMfh24jmjMkpOGydvUe9dBeWsfkwC1dncMPN3jggc1dxhumeKCF44odZvcdznF0xpL+8uJbcDfjYoxgn29Kij0y/gcjyVdC2QzMMrXTbBnigoce1N12DZRtLWVkAlaNHzzgdq05IbaO2GwFnZCrjpUYDI3Sl5bqKh1GFytfWdnParKpK3AGwxkZyPrWbqFmXggtoh8iqPmA6EVtbe4XnpSBSPlC5oVVodxwdScHmgurEDHSmhRwMYz0psignGfmFTzMizJdy5JOBSBgM570zYoJIOexFLhc5B4HqaLsLMeWHXFG4tUaHLck0ZyTzilqFmPDgsfanCX5eD3qIAbAdwJz0HWnGPIAB4J5IpgLvJJyaA7ddxxSSDYBkZ+lOIIXOOPSk2O6DqM5JxTld0AxSFsLwKTcQ/zd6Vx3Q4s6/xZzSmR1X72ajEvQgZpWm47c0aiYb2Yd6UFgx64pGclRtNCuxB54PSlqApVg2CTk9KTEm0fWlMp3AEHjqaVpgQMdKLMkadxPGcd6PLyCSeKeJVJORgU0EMSqZI60uViFCgKD/FTcA5x0p4wCGzwO9NcYUHoT1PajlYCbVHC9aQqfxp2SAensaQHjJYZ9jTswI2U7eDQsZHAbGakAVgwYdO4pqgb8k5C/yppANxgnL808EgcUw+W/zKMY65oZkA4Y7qBjzKV49aUy9CDzUZAAznJ60xkJQfMA2aLMCwJem8HNBkYH5VyKrOrkMwbjtSCORCcszZPQU0h2J2lYkDZg560PKc5AqIeapJZeScD6U1Q5bJ3YFVyhZjyXDAD+IZ608b1HIBpAMtnGCehNNbeOgyQe1HKFmPzxkjBFOMnQVFhjklTmnCNyckcUWQWYeaVzlutSF22jnimBDjBXntQdwAG0nnJosgswDtnIOKXexbgbfekdt5yqgY6VGWZiAATS5UMsFDu3917UeWdhKkZJyc0rAqwOchetPaRmXKgAUhXFj37M7VxnrTDKQGRo169cUecdoA7HtUTzZl24NFwuTtF5a/dBbtioM7zjZ060gZjlgTtqVAFj680rjGLEACAME96VVaMHA4HJFO8s43EnimFwSTk4HWi4CLLgfdLbjxTXkODkH1p6kDYeik0rBRIecrigQ0OSgwuAfWkJJYg4PHAzQZ2BCq2Ex6U03OM4OSeOlFwF3DagCYHc5pSuWGFJAqF5cfKe9KjsAFBOTRzDJASScDHbmnKCSV7DmmrKgb5jjHXNP+0YPQc9DRzIABY5VuhHP0qJuFBHAzQ8rFxz945/CnDEpGTT5kFhhDEfMeKdGHT7pAHXOaHU7tpPU8UwnaSPQ0+ZCsSZL9uP7tOAcoSRgDopNLG/zcDg9KZI5bJII29aHJCsPaKQhSzr09O1R7VGcnPpgUxpGKjk1JHMMDauW6ClzILDkUbW3MQTUe0BiQxAPHTtSNPtZkI6n5qVpN8XA4FHMgsJ5e8eUMg9zSskYVQQSQcU0ySMu/pmoR5plwTx1ppoq5aZF3Kc/hT2WAJtAJI55qBmYRHcM84zTN7E9OgobAsmVNqHbgHkj0o+0AuWKAYX9aqASSc9PalZJFGT1xxRcCyLjJRiBuIqXepHzEYPpVAEZUD7xFKDtDEng8U7hcusYwCrYbHAOaMRLtbJFUg25QMdO9Duu0fN7UtQuX1mjVN/BYHpQlyrAnAzWdvALKFyadvxwVosw3LhnzJx1FI0jFtu4D1qnlQPlByODSEsIyCDgDk+9FmKzLpVCh+bijykAB34rODsygkkClMrjtk9qLMdmf/9k=", "path": "images/4pts_ADE_train_00008124.jpg" }
depth_point_13
images/5pts_ADE_train_00009729.jpg
ADE_train_00009729.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 212 y = 155),Point B is located at (x = 265 y = 179),Point C is located at (x = 123 y = 214),Point D is located at (x = 261 y = 118),Point E is located at (x = 34 y = 161).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_40><DEPTH_74><DEPTH_60><DEPTH_75><DEPTH_60><DEPTH_35><DEPTH_80><DEPTH_119><DEPTH_65><DEPTH_98><DEPTH_31><DEPTH_25><DEPTH_0><DEPTH_68><DEPTH_45><DEPTH_63><DEPTH_17><DEPTH_31><DEPTH_86><DEPTH_65><DEPTH_15><DEPTH_59><DEPTH_15><DEPTH_73><DEPTH_64><DEPTH_41><DEPTH_63><DEPTH_3><DEPTH_74><DEPTH_87><DEPTH_40><DEPTH_77><DEPTH_78><DEPTH_19><DEPTH_1><DEPTH_66><DEPTH_1><DEPTH_24><DEPTH_12><DEPTH_55><DEPTH_19><DEPTH_33><DEPTH_32><DEPTH_32><DEPTH_66><DEPTH_46><DEPTH_37><DEPTH_48><DEPTH_48><DEPTH_46><DEPTH_3><DEPTH_5><DEPTH_49><DEPTH_17><DEPTH_13><DEPTH_26><DEPTH_56><DEPTH_6><DEPTH_22><DEPTH_70><DEPTH_64><DEPTH_38><DEPTH_81><DEPTH_36><DEPTH_77><DEPTH_19><DEPTH_48><DEPTH_40><DEPTH_78><DEPTH_33><DEPTH_64><DEPTH_32><DEPTH_0><DEPTH_23><DEPTH_16><DEPTH_1><DEPTH_57><DEPTH_42><DEPTH_23><DEPTH_42><DEPTH_29><DEPTH_74><DEPTH_64><DEPTH_64><DEPTH_44><DEPTH_2><DEPTH_25><DEPTH_63><DEPTH_9><DEPTH_19><DEPTH_49><DEPTH_31><DEPTH_36><DEPTH_74><DEPTH_74><DEPTH_44><DEPTH_64><DEPTH_36><DEPTH_63><DEPTH_94><DEPTH_END><DEPTH_END>. Since point D has a higher pixel value on the depth map, the answer is that point D is closer to the camera.
D
long
5
[ "B", "C", "E", "A", "D" ]
<DEPTH_START><DEPTH_40><DEPTH_74><DEPTH_60><DEPTH_75><DEPTH_60><DEPTH_35><DEPTH_80><DEPTH_119><DEPTH_65><DEPTH_98><DEPTH_31><DEPTH_25><DEPTH_0><DEPTH_68><DEPTH_45><DEPTH_63><DEPTH_17><DEPTH_31><DEPTH_86><DEPTH_65><DEPTH_15><DEPTH_59><DEPTH_15><DEPTH_73><DEPTH_64><DEPTH_41><DEPTH_63><DEPTH_3><DEPTH_74><DEPTH_87><DEPTH_40><DEPTH_77><DEPTH_78><DEPTH_19><DEPTH_1><DEPTH_66><DEPTH_1><DEPTH_24><DEPTH_12><DEPTH_55><DEPTH_19><DEPTH_33><DEPTH_32><DEPTH_32><DEPTH_66><DEPTH_46><DEPTH_37><DEPTH_48><DEPTH_48><DEPTH_46><DEPTH_3><DEPTH_5><DEPTH_49><DEPTH_17><DEPTH_13><DEPTH_26><DEPTH_56><DEPTH_6><DEPTH_22><DEPTH_70><DEPTH_64><DEPTH_38><DEPTH_81><DEPTH_36><DEPTH_77><DEPTH_19><DEPTH_48><DEPTH_40><DEPTH_78><DEPTH_33><DEPTH_64><DEPTH_32><DEPTH_0><DEPTH_23><DEPTH_16><DEPTH_1><DEPTH_57><DEPTH_42><DEPTH_23><DEPTH_42><DEPTH_29><DEPTH_74><DEPTH_64><DEPTH_64><DEPTH_44><DEPTH_2><DEPTH_25><DEPTH_63><DEPTH_9><DEPTH_19><DEPTH_49><DEPTH_31><DEPTH_36><DEPTH_74><DEPTH_74><DEPTH_44><DEPTH_64><DEPTH_36><DEPTH_63><DEPTH_94><DEPTH_END>
212
155
265
179
123
214
261
118
34
161
117
11
51
149
83
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDzGCW/d3KxpnbuI9qcbvUCNogU0kU7bGWMfOwCc1ICyEg5yo25Fc8mr7GqQ1NSvY8Brb7vWnjVLhnJ+yHkds08fMvWnwELIT2I21PNFdAsMGrzMNv2UjI64PH6VXOoSrlfKcZ74q8f3TAMvTgGow6edgjHBojJdEPXuVv7TcRlRG4PUmlGqMIfLMLk+tTf6xGTg8dhTxG2wtkE4I+lVzR7CaZENVjVcYbOcnpWdNcmSYkdK0jDuiDBFzzkkVjyjEzD3rSCW6M3fqPWRlYHd+FbMF7ClttZiDgZNc9/GD271t2tvDvRXGyNvvvjOKqdragm1sW4tRtcjzHOB6CrFneWz/K0iqgz1GKgW2g8sssYYHkE9ams7a2I2tBuckA49DXNLktqaamhFqttsTdKq4OM+1Tx6pZqZGE4LMckAGs86PGdkpVI93GAOeDU/wBiscySCAMgbHJzmsrU/Mtc7JZdZtSwxICduDlTjNPXU7aRxi5jUDjBNVjYWT3D5hRUPAGcds1TbSrdtrBSuU3YDHmnyw8wfMXpr+FJBtnTbuzjdzUkl/bMQVnTbjpvrKaygUJgFt3vSS2UabsR5wf7x6VShDzIvIuSXKOzsk0agD+JxVCSdfIcBwWPPBpDZQRoDIGBZcj5qz7qJIkXy3Iznqc1tTiiJX6kRlY9h+FOSQFgDx7moe1ORFdsMeMVuSXvOVcASE/Q0GdchvMIOPWqvkxBeOvpmg20THjcPxqWl1BErTpn74P1NQTyRvGcEUPZxbDjOfrVb7IdgYfjQrFu7QW8clzcR29vE8srttVEGSTXf2vwx1KLTPtly6mU8+TGdxX2zVfR5NN8E6db6jdwtPqF0u4KCMovtXq2jao91Zo0yqrNGHZEO4KSM4z+VVZvYg8SvYzYu0DBlYdzWW10sTbx948Zr1Dxz4WDQvqVvs2IuXHT615KUkubpYYYyzs2FA70r9w32Oi8O3itqqB0DhkKjjlW65H5V6Jpem3F3qi3Dxb3TDICPlT/AGjniqHhLw1BpkMZljBuDy7n19q7VY7ZVaJ7S4lQn5vLyFJ9fc1zympS0N407askkGqxDC3+lhR/yylBKj156n61Elxe2MSXF1bQC0EgMsli3yjsHIIyQM+tUp9C8ITfPd29ynOcOXA/HFWbXSo9CgmvdDuUvdLIJuLGV94xj5th7HHUGri7A0uhJJN5d2Z5AFaBtkgbnCN3H+wfvA9uaralEZba3095nSOW4jinKnBYDIxn3NWJLGKJLeJJWeymwtvI3URSDGw+oBIx9fasy6je8sUlckNBIs2Qf4onAb8+arnFyoydUmy+ranMBFb2EgsbZByNw6kA9+K4/XoEtwkk/mPNMm4mfntngDiu+1K3hu/E0lnOVj02C6l1C5LcDlV2Z9ehriZpItQfWfE10r/ZoXENvHEdvzEcY9sfzquZGbgzipnUtgcf8BxT7ZjzjOfTFbVlZx6tC009jdBPMwJ2lGweuSfT2Bpl7oL2zbreBth6OW3ZH4dPzp8yJKMCDeRuXcgyxB79qN/mGRsg5brWSImWQgOeRzzUwt34KMwyfwrFxT1ubI0lb5W2qSoPWpFdtjeWp4PGPSss20kJY+cxzU0aXUR+SfpzyKhwT2Yy+ZHZQHGWHXNIIvNkBIwTWbJc3of5nViT6U5bu9h7rnPUChU5dA5ktzVKFZ9kadh2/OkkJjk2gcbqy11O9SXzNyk9DkZobU7p+oUnrgLT9lNai5kXZpf3e0DaM1jSf61qlnuZnRSyDB5GKrht/wA3rW0I8pnJ3FTmQD1PNb0UsjLtWMbf4iTjj2rDQBHDZ3e1Xlu5/uKoA+lE1dE3sbMRXZtjIKHgn0FTRSLFG5B+cHt3FY8E91Gx2xI+eqjvT4ryeOUyCEFiOjdBWMqbaNVK2505MgmtAJgQc4GehpFUF0MW502kOCvVqwP7QvzMJVgQHqDjNWo9V1OMZEUfJzxxWLpSuVzlqVyJN7lg5GSuOB2qOSdyVXgZHHGMVUOq3QSVXtwwY5Y+lQT6hd3SovkKvHBAwfzq40pdRc5dRX807Dny+MVNLJujZhhtygYH1rK8+9RTgIpHemtJdoFBQeo/yKr2XmFy3JGOQAfkPIPWsq8KNLg/wjFWpHvirOyjGfmIrLdy7knrW1NWM5O4hI3ccCrtlEvmBwM59ao/xAd6tItymDg4FaMktSx75SVAyPSoldiDxzVd5Zy3CnJpu+UHleRWfL5giUNk5BOMUwO2W9McU3fK7YCckelNLzpjbtwRnkVVrGvNoattqsN7qenprJU21ujJvA5x1Gfxrv8ATvFsMl01rpEXnsFAEjfJGvv6k15NJ5mMsBj6U+31C5sifs87RE9Shwad+xkztfFviu7Bm003btNINsoXhVBHQD/69ZXhsLFE00ag3MjBQx/hHtXP27ebd75yXLElmY5JrcgguBdRxxHYWICkds1MnfcqKtsddpHiCWK+WKaRZB5ojyQCQfSvULZ2YFvtgiUDhWjGK8ZtvD11YGKTY/7p/MZyOpro9O8ZXK30FjFuupZWACqeEycZPsKlcttB3aZ6ct9KhEXm2cjnogJBf2HJ5qpFcwx3t5fgk6fNasZ1PSCSL7wI7ZB6+1crr+t2dtCZL9be3uLa8t3guIj9+MnJfpnhQePcVxF98REul1mziieG01a8Mk0pPMcXA2qvqwHJ96N1dF3R6OZWbwt4XikcRSz3EDgMcbUGXOf+A4q1dwPJp4lCMnnx3Uxjxg4cgKPbkj86NIfT9Wube+eQXBih8m2T+CJCB09WOBk+3Aq1r+oRaXb/AG5/3kspVbaDGWml/hUe27k1ndSKscl4nu1tdM8TTFcPPcx6fCeu7ai78fTkVxXiaymgutJ8LWhJcRRyzxqP+WzjJOPYV00UTXfiO3stQkEtt4eglvL9weHuC29hnv8AMVX/AICayfCNw974j1/xJcI0k0NlPdZPBVmBIAPbABxVWRJzfibUBbKmh2Mp+yWgxIQfvSZ+b9ak1Kys9BsrWK7lluLx1EjQLJ8iD0/WqvhbSP7d8TW9o7bYyTNM/bavzEk1Brdwdc8UXDWabxNL5cCAckDhR9au13YlrQoFdxDZPFTId20DPBpkVtemLf5aBf8AaIFXbazkYhztyP4Qc1Eouw+dCSKNq7vWnyqcDapB21HciRABJLABnjOc/pSrNI0QO+EnoMmsuSQ+eJBGjGRHkXhck0pEs8scUUe55SFXtyelWGgvPL3bYSgGThqoQuxuVVg+AdzbVztA78VrFNoXMjqIPBxtsyam7KglWImMEjzD/DwM/lXU2XhfSLi2CJar5bxhhIy/OwBwcAjg1d0trC+0ezvb21kW0TMvmTkDPGN2D16cGt3TNb0HXIHi0rUVlZUJWMR7ZF4O4nOMZOOcdqxcZ1CrpanIeL9KSS0htYYYktDEEiSCA5SUEAbj0AIzk15zqGh3ulxh54v3RYoGB64r6AvYYbm5NsIfOk2bipckdmxkdh78/Wsa70OGTYpQPbL5cO9IyT1JJIPG3jGT68UvbSpO0kHs1JXR4THy4449avwSKGJ6npmuo1TwhHLeTPZmRHPIt0UDbknGR/D0/WsRNA1KOASbEOW2lc7Srdgc10RrQkjFxY22Zmc56eppBuM5Az1warO8trI8NxEyODg57URzKGBzmqs3sP1NmEB3UDhvaifaJSCMis8X5inDDBIGMHpTJr3zJCSQAewPNY+xd7hzlw4D4KBh69qISmH+UAiqP21OzE/U5pqzN8xAJAPJx+VW4MfOa8cKOAM7geaXyjJOoUhUHqeapxG4d8xRy4RdzYB4FEc0se6V1k2KcsdhwKlx8ylJF+/kEFpk7T7+tcuzbmLDoTWpqDSTk4jkwD3XHFZbDDEelaUo2REndgqlpFxWosZDKw6bcYJqjb4B3McYNWhNEp3eZ17VcrsksMm1N5UYLjFU7jBkOcgdBxUn2iIn7wxUcsqMclwfalZlaWIoYjnnj0NSOzIVBQH047UizQqhAb5+2TSGUFgrMp+lDuy42sFxtaLag4PU+lZbDDkHtWi0qsSoKqoqvdJhQ6kE9OKcVYUkhsRCruHWtzRtVt0vVurl2UxYIAXdnHrWLFC7xkKMt1xVm2tHhjlLD+HAwcgk0pW2YJNG/q3jC41ONre2VooMct/e/wAKxLPVp9LnMlkdsxG0sRnA74qJ4ZLeyCh8En7tRRQujhn4oi4pWQOLYl3e3Wo3D3F5NJLKzZJc55wB+HQVCeCPenSj9+w96bIhVwcfLjrVaILHf/D/AMUSxXMOkyWVxeEE+UIJSrH2IzjHvXVa/qF1ptwb+82S+IbgiPT7FPnjso84DHsZD/OvGrW6uLC6juraWSGeM5R4ztYfjXpuieIrWTTZL3RtG+060zqsJlTzmiOMu5A6knpwKylGzujRPSw69029tNK/4RHTgLrX9Vc3Gqys/EK5yEZu3XJqnr1zFofhB/D+iO87GRf7UvEOQzlT+7BHbjt6Y71dupb7w1oElqzBfEmrl7m8uJD80EOflBI+6Wqt4S0K10TRZ/FniOIG0TH2K0Yf698naxXv7fn2oEENongfwFPdXJCa7rEZjhiPDRRHqxHbg557kDtWN4ehTwzoc/ia9Vft04MekROOWY8NNt9FHQnvTJ7qTWLq68WeJMy23mFLe0z/AK9xnEY9EUfePvjqa19M8Om4jl8XeOHaOxQBoLcjDT4+6ip2Tpge1V0uKxx7TrNK+xQEXhW/vD1+tMSSRZkCMck4q9DHZXDNwFYc4IpjwwWhSRQpbORlulZ3sYmbdQyxXLs0bMueo5zSKxVuVwB0Fac15DnMoUZ7qN1QmZZQxhB9yRxRzBYeI99ltkLgSDIIPSn6Vcz2F1BNZK0cqtzKwycHg0+3h81EaU/J3B7VdgSC2mb5WAH3eeBUSnpZFKNy7DqdpFYSWd/BqFwoBRAt4yxgdc7TwPwrPsPEUnh4Oul2sdp5rDzJt7PKyj+HdngeuAKmuYoplV1lKnuPX8KzprF5QSq7wOpApwqWWpTj2PW9I0+C6vNM1CKecw24kkZ0jbynd48HBz0H55rQ+zW51iB3jErM+1CzlQqD7x5OCMDp715b4Y1i/wBEuGgg2y2p+Z4ZBnB9RyOfbpXocNra3SR69HeSapcsrm1M/wAkdvgfMFjAO0geoJrKqlJ3ZpF2djHubedp3W23zCWRz+9dWDIefQ/KAOM84qstnCkoiuoDHDKjExbuCnHztxkkdgOa34fNktvOk84+XvEjlcYLKMBWfAz2HBpzoJSSqtJGzqPlDku/WMBiDwNpBbge1c2tzaxyUekJf3kC6hDEBPExdkDFlVfuNuJ4BA54zWBBpVtcTNcrAxt0dkeL+JiPrjjv2rtZ9PIjmZYw0pkjg3lcqyjJZV65GeCTgelMugI9IW7vbe3LJdBLfzVbCr0wSP59DW6qtKxm43ZycOjwpPBMwD20qtIoCkmRPZe2O/NSnw/ALYA+WylRKJI9xd4+hwMcHpXVT2txHpc81zbXSmw+UtbwrmZG/uqegU45FLeQbSjC4W1YWG6RZ03SxbQSGYDO4knOM9qHUkHKjDn0mKGQrbwLNAYke1WKJZPNU8ckr1z61FJpzxX32WOXyJLddszNEY4nJ5AYjoB+VdRqFotzp+ixrqIEE0DvgAqbgBRhsKBgAnocVIltDfeG4LoWUl5cWTi1ZJHKFjkBs4JBXB6GkpsOVGC9g8c0OniMXkdyFkbJYpICc7wwJ2qo/l0qwsD29nMmiTiaSK43XKkebI6jhNoYAEeuOlbUdnJ/wj+rpeDfaWpHkxWu0uirzs2qCB7Z96TThbpJbX08MZtngaGO7KMbhpD94BQAAAOpAp83cdkijHa2cl9E5gWK+khJFq4zFHPjPLr1JHbJrGm0W2j0ye6v7GKJ7k7Ime38t1bqxAyVx+RrqLLT2somhhgjhuLe3RiBciVk+dgSA2MErj5veqzvHpen3DRaibW4eUWqK7PJHFgbjhe5APJ5A9annfQHFNHF3fhOK1jtnMz26MP3ssibgrfgMAcjkmoB4X1OKGKQ2aTLJnb5TKxOP8RyK7Z7ZLrT4p9GhluYr590twkUZAKnDAhuTk881NBaRx6/Y2dwkyLazLMszbQj4BBKcHHPbNaRrzTszN00eX3Vo0MphmtQjDgqy4pkcFrJ+6aFQQMnbXqHiu18LiW91S71GWS4+zECyVy21wBg4/h7e1ec39hc2KW00qCPz4lmQH+63TNdcZ3WplJJPQybgW0Z8uOHkcEkmq7SRr/yxGP96tclQEeYqRnoVzuH1qk7ReYcgHPTAxVXZJT327cGAk/71BKuI0CnaD0+tXPsgm+6No96ozoIJyn3SO1PmV7DW5pJbk3UX2cHy2AUnpg96sam8FtcC2hZnKjli3BrIhuJd4CuwH1qUb5rnLZPqcVlKNndmxaeYLah2H3jVNN0kq/Mduat3ds/lh0wUIwBnpUawxfZyrfex070KwEEsO+VyGAFMkb93sx8w5qWJU2kH5SB0NK0SOCUbkAHr+lUpIDqNJ8MRajpheRSswQSKc8MKLjw9q2iTJe6VNPDIp3ZjYqcfgaf4T11/tNtps88cIVdsJZPvnP3Se3tXoLCVYBFOVLHJHFclWcozuVFJmBp9pout6o2r67rNrK0cYlvbUbg8oQfLlT0A9APfNUb7Wbj4ia6luwNjo1khmIxgQwj7zn/AGsYAHvWpeadZvOl6ITHdxH5HjYofpketZmoSi40O5h0rR5rSSefzL+Lc7tIB90KQMeXk5PcGrhVUhuFjU0uxsGtpfGetQFNGsgIdJ0/HLBThSQeCScnn+LJPAriPEXiLUvGGrCaZWKZItrWIErGvoAOvue/sK9z1LTdGk8LW1nrUkUNnBEgVnk2BHC44Oev51wt14xsdC0l4fBWj5hiXEmpSxYUnOOCeW6gc1tCZLiedWN2ss0rYJ2rjJGc1GJlvkkj2ncmeau20oSAzG3CFegIwGrO+2LDcuI4UwTkkHvUWbehgnYRYih2MpI7fLnNTw2ckjqI0kC55+XAqzBfZniGQAfRea1YLiKKUB3kA7bRkfjWUnJGqdx0WmSm3dAyghSQQOelUoohcxF33CUnkk1ovrdtCzLF5skg7Af1qmurxRSEvaAKxyQRu5/SsVz9hlYRuHCtnaD1p/lsrHgknoRVr7TZ30biB2E6gsY9uNo/GrNpcWiwbHXzD3ypGKbbHylGzklW6ETFiuDnnkV1mjai+mG4gFxOLC6QK7QvteE/3lP86wIxa+eXDt6fMD/hVprs21tI2Ymi6Ha/I/A9qjmlfQpI7NmtY7a9uBO8jpBbJvkKytndjcqsO4PWn3bxRzTNK7x7SSyCd1K42YBfkD73IHXP1rkdH1Ky+w3dxdyORayo0QjhMjYP8IHQrnsfWuk03UIjHHqlmls1ojnfcDLyNzlxsPc5A9quae40X7qyaaFWe1hSQbpnWS6wFkZuMgjpjkEjg8VRuLu2t31LT31OK3aecJDmcplQAWO8KcHr7UC7068kjFndiee8R55Yb+AFpYxkiPcQABnsfSsKfxRZTaOdOuroLZthJLW3tjuCjqFcsMH3GRVwp3REp2djp7KCRornW4PMnltI2SERXKst2vQBmBPQ+uKjGnLf3jKr/wBlX98+6a2uWWRpVCgFogG4+uDmqP8AwkOgzeBptH0uS9lYqUWGaUJOVJ5wxUg+mO9F7NaR6HpGs2UGqzS28qrKit5Msa7cENhTxwfu4zVeys9Qc0XGvLW6M+mXEMe+xzaQXV8U3s5xklBgAHgDB571Jc6bf2ngQzazpkL3VlcC4W3tpBEu1W4J2jHTnAz061HrevR2njHT9Uj0+0utOvYxEL+KJjPCDweRnn2IzUGnWWueGfGQMci31nequ69vJimYs85QsPmA46VfsUifaGhZ6nbaVcR6/FPYWvh27izJIAfNln6Z6ZP6VVure70qwL6tMLjTb6dQ8kk0s7bGJKiPpsPTmpvE8Gnt4nivddjhTTLaLMDRXD5Zgc8xgY/Gn2+uWEF5d6tL4gmubCZQqWRhysfPHqc0OBXMM1PaoV5ERLS7uEQhLcyO0W0BUkxkhlOCD04qlI1/PY6tY2S2iXFpKA9zqMgfMWNpkIP3TkEdMYqe3f7bfT6n4fSSSdiUDbY41j45BJGPU85ptppC2trqc+rX8DrcQbZG8sqhU8uFcYz+AxmsnBJ6iVRti3F8wvdE0Ww1m1tZ2RXdIbbcs+f7uPlCnB9K5zUXii1i8bTru9+2RzMz+cQFT02oTyuePWtG11aWDw1b3Fna2lt5NwY4JJ7ZmJt+dpGOc5z9c1ckgsnvraWaW9vrbVzuVWUOkCjLMCGG4DHbGaVrPQp6o8qt9SntNSN1KTM2796JCT5vPIOeoNdjrFzY+J9DbV/szWV4UMcYEmYxHF6DtndjjutR33hQ6lDDfWRKJdu6wBLUxpGq/wDPTPT69Kp2NlqWhXttZ31nby6fc3EbNJIAy7TgHa3b3HGe9dLnGWxjytas5Oc7EUZ47VXJGQe+a3vFFvbjVbuayMBtTO6xpGGwoBxxnr9RkVzpVgSSQR9K2i7ogWSRic7mxnpmobomScvz261IHXPNNdwzkiqsBNbxIEEjsPpV0SqLvafugZODWWASemaUuROHOTkd6iUblqfQvx3AuLh0LlUHTbUYcJc5eQnHQE1CshJ2xYQHrxTC2JMHlsgVPLbYttosMge5yfxqSQRpjCD6ionDifHAzTZnZGCdc96EtQbshFw4J54Pat6HxVqBtUt7l2uAmArMcMAOg96w1AEZ5waabjy8FUVuf4hUyhzaMEzopfEupMrJuZU6gtwRTNE8X69ot3Nc219uEmN8MxLI34dvwIrKF5NqTLFtRdo6gVSlSVHIK9PTvUwgoqxfNc7+efUvife6fCIlgMBKS+W/yYJ++QTwccDrU2q293428UDRtFAj0fTMwxsBiONRgM592I4rjvD93ZW80/22KZS8eEngJDxN36HoRXoGiahc6H4duZPD9tbahn94Z1JMqnOMyJ1IA6Yx70m1HQEc/NprXGipKihVkJUFDwPTPtXHy2FzDKUwSSeWQE1bWTUrSY28l08KYHDAbfpVz+0W2mPzFO0jnAx/KrjzRTe5zMNG02dblZcHGMES/KDXTW9jaMZFmYnB428c+nPase3u7m4iDW8at24JFbaG3SxV0ebz35x6VyVJts2WxlS6WYvNA3AA5yhB70i2rJJvjV3yOdw6fWtW3htbi2c3epi3kZsCJlBzWvF4dtHsUMOqpPcbjuCTJgDt8o6fjUpsduxxsC+V4h3qFIaBg236U6RF89nXhR6VY1GFtNv9qOfnXKkAbgPekimhwCwJb1AzVt6DII5/s6O7RmRR23kEVdF281nudQqlchVycj3qaQ2bW7bgVk7MuDk+mMVQZJG27kCqDypX7wzyKjcaep1OmeGro+HGkieazlvIRPHdB12kg5CbfvDIA5FUvBonivNSsJpJzdhVmaSJgBuUngnrt5GeK0fFC2y6KbiDTiMIgSYq5KJ16n7v4VjeCfIvfELKyOUeN/MVDtBHHX26VqrOmydpI6jxPe65a+HjcztZ26Tx+RJZkhpCScFkb06Y+teSNDOwMaLkjnjmvSPHdtbPeKtvGzXTHe8sz5ZegCD+6oxnFcbbWrQXGCxDHjKjP9a2pzSijKWsitoskgutuOcYw3rWhO11JLIuAqxnDHdWrbxQw20irARKBknJzVa9+zuxVg6kjk4IzWftead7FctlYo6XfGK4eEv+5PRfQ1Jql7LcTBgBI4wN0ihjx7mq5S2gLMrZJIOfSonMgdmQ55+la2u7kbaGhLqWp6tLDbebJNJkKke7PJ6AU2ewmeQwXKSRTp95HBBB+lULYTpKJldRIrB1xzgg8V6/cmz10ebcor3qRhliGBjI5ZmHbFZ1J8iVi4Q5tzj9A0rVdD0tfEESq0bEg2TE/vIzwWOOlEvjDSdQ8SS3uvaTJLarbrDb26uJFjPc4JAr0MaVcLZFFZQjRGJXxkqpB6CvDL9JoLmaCZQrQkq2failUc9x1Icmx16+MNNvdGOnziZrq4u1ZgIhtVN4CqCMjAXAx1yTU/iWGfQozdQztFJhjGyS5YktkbhjAAHGKyPDfh66tr6z1i/jhjtosTJE5BeQ/wAOB6d6f4svdRv7eOBbGYASF2bygeOwBXjApyUHKyGr8upkad4x1CyN3FdD7XDcj5hIx3KfVSeB9MYraGuxa9ALODDxsMvYTgZwO6sP4u/HAripbW5Q5khkUn+8hFbehaRLGGv5I7gTxOPJjRCGPHJJ9ParnCG5MHJ6DdRi03TtIuEZ555ZCPs0cjHbCM8nI7/WuVlLo21xtP8Adr0Y+FptSQ3sciwXVpKGmjkAIYHncp459VOfY1WXwraXmsNDPdym5ZRIweMAbT/Eo70o1VHRj5Gzh7KASTFZIwwYHBL7Np9c1HNHtuJMAbQcHBGK9l0/4ZaGrhJ5LmaVlAUu+FHfoOv0rnvEGj2djdSafd2TIUHDwMMEdmBx+lU667B7JnnkbruP0pkhDYA7DFbcuhWxIFvPPkno0Wf1rFmjMM7xE5KnGfWtIzUtjNpoWEMxYD0oUqrYIHuTUUa3c11FbWFrNd3EobbFApdjgZOAAScDJ+gpkv2u0vRaX1jPazYyUnUowGMg4IBqx3LjPltysSwpZMsQT1xUEcbSyKiAlj0wM11yeF430Y6pck6dbyFIoVcnc7Y+YnceBwTWbaWrNFeSOUm/dJ83ekUo8O1uCOhrfv8AwteW5ilFvM1mHG+VyNu3Gc7gOAQDzXNnaZW2fdP3R7VUJJohuxYikRPkUck9TTbiSQTFVHHrUKDZKG9KklP70NnBxmiyTHfS5PbEk81JZXP2LV45mknt1z8zxfeA9uRUdjb3FzNmKORlH91Sc1NqME8aZkgdecAsuB+tRZX1Y1e1zU8QMtzbJcuu2Qqu5cYz71jac+LtkdscHH1qxdu32SXc7SASAIxOcrjtWZyJFfv1zRTh7tiZ7nRQ3EtsiW7ROAwI3FcAVI0zwOIjKWZRk4HB9s1jCQSFSZ5XPYFs1OHK8v8ANU8qEmzd0e9SGZ9QmhSUZKgPHu2nPGM9q3taurTUrYSx2cFrIBvLpGqHOPUVw8ZeQht5WMHgetagv4khZZiXcD5Bnp69aycNdBqYydmlh+f5Jceneo5/siWTFPNaYY2ndjn6d6iubnzJN0bgs33juzj8KliS6uIZHhSNliXJ3tily26lxdzZt7Yw6F9qlYbmfoQSeaz76eWOAqHZeeDuxkVVbUZ4LfbvIGOULAj8qj00x3cpn1HLQDJWNert2/ClGLi+ZjOh0fxbbXWlNouoBVuJF8mO6kIKBc8buOCP1rodG0S08H3AvP7VWa5MZDLn3BGAp9u5rAs1EkbMltbWsKJuLpGGb88Zqyur6bHPvl/eyEY3MP6dKiUr35ENWWsmS+KrpNV1GGe0kighVAG38Et64GTWBNFc2kp85C0fXeFPNbsmr6beQskgEQ6DLLke9asC2t1aBYpFlXYAH4I/GlzuK1QcsZPQ4qa9kbAggkKgf3SaSOa/e3MQtZmA7iIk1u30MFhMswhBTpLu6DPQ+1OMH2aZGtdRijiMe4fIenvjitFUjbRC5H1ZyJtb1MmS1uAG6Eoadb2+qSsyQ2ly5Y4H7s16DZQtJfKJLyC4hxj9wzZbI4z2rtbPTVghGIwCemRzUyxTWyLjQvq2eKfY9WjyjWbxgcHOBn613fw9vNRe7a1vbWO4gCY8wyYaMf3cA4I+tbtxpxkvZFbDJnBOO/er2k28VtHcRrGEBI6dTxWUsQ5aWNlQSOtWOGO1CxrgYxtxgCuE8TeGNPe4/tE2iPKOXyeCfUjvXV216iRrE8mTx1PSm6m0JspVIZtyMBgDr9TxSu+hLSRwn9pQFFPmBh0IVf61Ab9GlVBEFyf4zmua1qbVdDdFvbKeGKVv3RK8N+PrWE/iKYkNHDj/AGutdEcNze8c/tZLQ9Bn8vnzLhAPTAqhLeWVuWAvAMjsSSK4K51q4lyX3sewPaqMl/cEAFiAeoHetVQfUj2jPcdBl0248KyrHrEFvK0jCR5Fw2f9oHGRitfTY9Pu/Ke3ht5khXyY7nyh8/rtPXGQa+bmmkkODK/XpmvY/DN/PZ/Bi5vIfK860WdonBzsIYdffmpnRaWhrTn3O71FF0yyk1HaStsPMYKOw615p8Rp7e5nsL+2Yus0TA7eh7jnsa6v4fatd+J/Bd3Hf7N7NLACeA2RgfzrzfxMWk+GeiyzoVu4ruW1dugPlgjP6Uo0ncJSG+H7GTXZmtI7jyLrYzr852kAcg9wa2k+FX2rV3t1u7uKRAPNlaH5ZM9dteX2tzPaXIntriWFweHRyCPyroZPH3iR5UePUZIAihNqc7h75+laSpTTvBmakno0ams+DYvB2vWCNdKgv9P1OJXupEjTebV1UbiQBlnA5PcVT8G6fZX/AIk8KeHdRa3vpI5LyWZI5VlRI2i3JHvUkHDI74BIG/1yKurqlr8SL/TNK8S/bftULOltJp+0b9+3O8MDj7o5FTeJvDGm/DDUtM1LQru9fUm8wobpkdEG0qTgIMn5jTjNqPLLcpx15lsewSeGNHjsbi0trSC28+Noy1ugVhkEZBHNc95b+FdNt1vIo7uC0Iht5iiiRd3HTAH9fevL9O+J3iWz1CO6uLtb1IgcxzgAEemR0PvXoepapaeIEitdVMUUU1iNQ8mT58KBzz1zjkGuepTnHfY2jKL1N/U9Pj1TTxDcBXR8F4iflauDvPhtoySOY2uk3HIHm5C/Tiqvg/x8sM66VftvtyxFtcscEJ2DZ9u9egXULSL5kZyvXNc1X2lHZ6G0IwqdDiovh9o1uASJpWxzvk/wq3D4c0qxdWitIg/YkZ/nW3Nc2sGXvLhIYhwXZsDP41xPiDxzZwN5OmH7SynmQg7R/jUR9tV2bLmqcEdBP5USlIflIHSs4tJLbOZYi65+YHkEDnkGue8P+KL3U9dgspYomFy+wFVwVGPrWz4ounsNLkhjk8tpW8snGCB3qvZTjNQl1M+dON0eZMJp5ANpXAHHT61chsHZlVskn05qyqADzCv3uhFWFeO3gaYgbugLH+lehOo7WicqgktSkbVInwG249RT0BXIU7s9zUNukshLbSwJ6+tbdstrHGRMFSXp93NS5OIrFJ7ZkgBdSGAzg1VFtNcXcUb5XewxzxitGdkyQrMRnnjqK0YbS1ltkEoJbGFJ4DD6+tTz8q1DlTLMGn29nHsReR/ExyT71I7pFCdpUeo6ZqN7WFISfmTA6+cR/WsqGFZ4HlIZhv27ncsP1rOUVJ3Go20K1zA19MZAuETkg1r6LZSPMCUC9lY9Fqr5au4VWDDPOT1rXe8h06yMk5ZUGECRgFiT/Km27WRXKY2t62tsz2NnzHnDMe9YYZJAS0zBgOMDrUk9vLf3LywxbFPIDVPFpO3AmkPPOBXSnCCS6mapykZjH5xtOcc113gW5lF5dIxIgEe/YR1bIH8s1RTS4EQPtCk9y2DU9tE8PmLFL5fmDaSO4qZ1IyjYuNKUXc6fUl1C9sZJbOxL27nYkpIG45GcA8kfT0qN/Aqq8clxdtbwImJmYnce/HbFQW3iHUbC1sokuYilmwKp5eQeT1z1qPUdduNXuN8xBXsgAArmXNHRGlle7Oo0/VfDfhq28qzhluX6l/vE1Tv/AB9qEzH7LbpFD23nLY/KuTkaPfk7Fb0U9PqaYhVVG75M8ZODSUUtxtm+vjnWo2UCO1aPPKFTz+Oa6vwjf3fim5ujceXarAq4WPJJJz6mvNlbJ4I+oJrR0vxbqWg2k8Gmy28bSuGZ2j3PwMYBPQVooRfQnna6nt0Whafz5kLOz4yZGLZx7VTTTpUluLee1haxEyvbNC5UooAxkDqQc15Pd+Otau70XUV09vGAPl4b5gMdcDgnnFaEfxFuBBGLhru9KLysnlouceqqSR+VDpu2hLlc6b4oSJN4YDRpJL5cyiQIc7V7n65xzXiojQqAuQPeul1LxTfanaLZkpFZhs/Z4VKqT6knlvxrBdw7ADHHYDFbU04qxEtWU3t2JJ649DUbRfuSdvH9atyS7FICkkdSOefSolaYbgCwaQY6ZFapkuJnmPYQcZ9q6y18TLp3wyu9FiuCbu+uvmjUn9zDgZPP94iuckQsm3ByvU9OaqiIlQeB+NVuhcrR0XgzxPN4e8Q2Nxc3M40+MlHRGOFQ8kgd+QDWNqd/Pe3FyBNI1qbiSVEOdoLE8gdiQaiCENt24PuetBOMkEemCDzRoVyorbCeopdpzjBqzImVBUqM/jTVQ5HP1yaOYOVHTeG420OKXxD5gje0jXaxVX3Mx+VApI6jqe3aotY8V3eqN9k1y1t9QW3LeVId0cibuR8ynnjHGKx47koFjwjkfcLKCVPqKrSqfMdicljkn1Nc9OD5nKX9f5Hp4mth50VGmtdOiVtNU39q71u/1snRrbRXUU5tzJbqwZoi/wB4eme35Vpya/JqF9d6hqM0izfY2t7ZIkG1cjaqn0ABPNZcRIIC9abIVaT5gQfUdK2bR5rVkRQWzXEhSOPzGIwABjOOfwr0nQ/E1no+hRpe3O2YkqyiTzmAA46dK83lVtgCk4zkU0xc/LgjHPtUVKaqqzHCbg9DoPEXiu513MIHlWqNlExgn0Letc6R0JYj1pyIykkjj1pSp3HA4FXGMIR5Yg25O7NnwzqFpp2tQXc52LDuO8KcklcCn+J9bTV3jETs21ic4I47VipGpcFzVmKGIE4wfY9KzlCPOplXfLyl+ztJLskCPAXuc4H5VPe2MtraiQxI+cBsDp/jWno0qQ2jqy/NvzntjAo1S9jEJHytnGBu96w5nzWBK6MTzsx7UjkQA9+BUDTnBXeSR6Gnz3MSMOoXOTzn9KoSzIZcxJkH1AroitdiNSGW8VmKicIRwf3mP61egmumgUxTb07NupYtOtx4T/tAaZplxcvqF3FJJeXhhZUSOFlCL5qbjl36BjyPapPD9sZNJt2LBQd3LdPvGiqlFXsVS952ZKolGDNKx46E5FWIHkUbYyxX+72qVoYomwX8zJx04qdguwMEIUdlWua9zrUCGMMiMr7huIGAMEfjQLVHZtx3EevWnsz4VVQMM5GD1oXG4iPv12r0oG0kDAptDgjHQVOkagBiIlJ56/41CnygqzZ+uM0OzOpwDtXocZxU3J2HhpOQSoBPRv8A9VId7KQOvoBwPoacEGz5d2ducjjn8KmS3fb94jPQZJBp3I1ZEqMIwX2nP3uuMfnSusCxgKASevIqy8JfBiOR0I6U026oGDD5wBx6/Q0xcrKrMqRFGCbj/Fj5j+NMDuIs4APZmORU7QyGNnCyL7ZB/nS29uyIJWRjjjrj9aCCJIfuyPOrZ/hUHn9KaqIEYAEDPJHGfzFW1R3ZyoxxnGc4H50qwgqQ7Jt7HGOafM0FuxT2EQYBCqTwBULukLbXjVV7/wCOKusrPlXdSvYKMGoxbIwcNuUryGY9f1qlLuS4sqlGZifLIA6MzVEYjuHAYHuRwK0o1aJo0kHqVBx/jT/LijwrlQc9B3FUqlgUTKlWWSNYnY+UpJ2g9D69KFt2kiGxzn1xwB+XWtEeW8hw7LyeN2M5qvOEtnC5wc5yO4o9ox8pgGzbUfEcVlJqD2dqIWknuFBYRogZi20EZPGAMjJIFV7Ozu7bUNQsrgs0trKYpATnDAkH9RVi91qbRry6ew823u7m2WNbiKUo0S+ZubGOcnaB1HGfWrGnakda1G+vHjZZ5Y4BIS+4vIqbXcnjliCx9ya35rQuZJe/YfDaYwDk/wB4Z4/+vTbi2CkjAU/pmrkjMhVWxx/FVaUsp65J+lY8zNGhjQs0XJ+7z7CkEXAOAB1zjrTTcuuUOM/pSxSySkoOPXIqveBJPS4wLucuFGM02TYZQyuT/Kr0ieWCowADxznNU5cDgAGhSG6bW4xY2ILL9acIi6s7dRSRswkAGcVYaNl6Rvk+lDdhxTaIFRmJ4FR4+f5QpA6nODUwhdiflf6Ypfszlvljb34pqaL5H2IcEnpj60FVDc9auLpt0eVhkb6LQdOuXb/j2kz/ALtTz3Ycj7FZoQ4xGi7vWo1V4wVbHJzWiNKvniJWCTj0FPTQNQKZMYU+hPNOM0t2JwfYiUzKpAEoB4+XIomtzIqIXAz/ALWTT5b1mUbQF28detTJeSCNXWOLPrtrG7NVGBXTSQVG1XORnczirFrpMaR7mT95nhmPA/lT2vpHjWNnGB0FQ+exYIZAcnAHvScp21GoQvZLUoMniOGOezgt7SWzNzLOiz29vKQz7QzAuCVyETp6VpaPay2elwW1xGY513ZBOcZYke3eopWlizL5wIT73OSPamf2lbhlZjkjtg03OVWNkOWGeGn76ab7mwxUKN2zA7kDNHyM5G8eX/CQQKyn1eAyZXc4YcqR0/OpbF473zUjkijfPyxySbSfpxyalUpdRe1j3LEjwxHZyDxjp/hTkuBG2EUBj6Vf0bwfrniec29skEUSHmaRiV+mVBrqovhNaaWiTa7rJZA3ziIeWoH+8cn9BVqFtzJ1U3ocOblDzJtBB7nj86v20Kz2b3DyxLDnA3Z6/hXQajp/hPw94k0i5t3guLESuZsTiU/MPkYgk5Ao8X6tpU0tpc2jQXEUUZieNXB2c5yB6H2rKaSZSdznbdIbmeKNblnZiFVY4ic+1bGqaA+m6ZNeMJVePAUbVGSeg61mReJY4JLa5t7P/UyBwWjIGQfX6V0HiPxra6vo8lvFa3P7whgy4BjYHjnvU2d0N6IrDwd4hazW6NtDFHt3fPcKCBXMy3YinKSSBh/ejlDA/iK3ovGviaG3t0IiJt0MaSyRFmYe/ODXOXFtJd3DXMipGZG3MsUbBc/jW2l9SFzMebiM8rMQc9znip4bqJmYSyZ4+U5xk1VEVnAf3soAJ7jH86urbRpE0ohYxJt3PgEDPT86LJ7DtFbsLYxpPtBBz7jFWWWYqwI6dApBz+NV45bAcmKUtnIOzA/nVsXkOwhA/A6ECokaJRXUqCCU/MAVPpjFPhgG399HyOeTjP6Uy51MW0xjeNnwcfeH6VoeGx/wkl/LbQZi8qNpGLDdwO2B60Wna5N6d7FKWGSZQFQAd+eaUW0rbQ7YA7g849KsQTXEtzJB9mwY8kusisMA85x0rQ1y2l0TS4Lt2SYyxrJhB8oVuhB70JTfQTnTTszIbTpMECQKD65JqF9PMhyT7Va0C+bWNat7AgRJMTyGJ/hyK7QeFoycfaZCe+FFZVKjp/EbU405q6PP/sKqwQybSe2etPbTEZtxOT061Lqtu+nuttLFi58xxOXTAPJwyHjKmsG81+6ikAhkUgLlsoMg06LlWeh3Y3DUsLFPztqt/NeX9emwulQgc5KjjFNbSoHAAJU9QAeayE1fUjcxwyyKu5kzhV5DY9PrVjxPcX2l+Ir+OEvDaee4h3KDuUHHBNdCoVE9zzZYikuhZTQrXkbMk+p5NW49Ft4zuaMDtycEVrNb26/Cey1NnT7bJeIHmCYYJuOVP1Arl9bmV/EOqvazMLWOb9wYm4VT0xUKE31J9vDojZ/siy5ZzkfTpVmDSNPPSIN7lawfDRl1HxZptncySzQzXCq6ySMQR781gxae50ezlbxFfRXVzYTX6QlD5IWOSVdpk8zIY+ScfL1ZR71UaEn9ocsSorVHoSaXp6uSIosgc8jipkiskYmMW4bHdhXFawpa605hkmTSbN2PcsYgST6knPNQzWcqLGUjyG6k1m6Pdm0anMrpHdyHTowGmmt0Ps4GKqSXuiK//H9bH6OK4poJojhmxz06ip9L0yPUNQCPCHBXJEa8+nTI9aPZxirthKU9oo6abWtFjZR9sQj1jyfz4rL1LxLbR3KpbSSPGVzvAyAc9MGrD+H9LtFCvErsAM5JH9faqklhp4YAWsYH+8en51MKlK/UTpVpLVos2fijTVAEr+YT3ERU/pVv/hK9KXJC3Cn/AGYgf1JqjY+HrO+abZGiBULKwGecGsfQLBb7W7O3m5S5nEYAPABrVKlO7XQylGcLJsqPBqEfzNEinrzTDbX5OVbYW7FttdK5WWZRv3hiDkjGPai5UGNllUgL0zQq77GXJfqcxFpuoz3iW0SmSds4XeP5niteDw3qtpcpLN5C7T8ytMCcEc8VPoCsniWwZQDEzEZ/A11l5bk31yCvSQiorYpx9zudGEp2kqiesWmvkcfD4euUExikyXUou/oAfp1qM+FpyuZZQCOmATXZQQGNWI/Krlvo9/qUbtZW0swT7zcAD2ycDP41zwxNVytHU68Qqc4pNKKWyX/Buef2fh3cheYuo/h7U+40HyYXeJmbHOM1PrGrXmmahJaS2vlXEf3kfB/lms1Na1CckKqnPYCuyKrtXZwXoLQt6W9/ZzFLW8urRJCC4glZdx98GtsRXF+ZvtV3dXBCHHmzM3T6mszSpvOvIo5Lm3L85jG/d/LH610tlGp84D+63zd6xr1Jx0N6Mack2kYllpEUYLvCrkHq1akU1qi7FFvuVT8q84/ClutKF6FUSvH/ALtMbwrHAYWW5k3OpJ+Qf41l7WLV5yG4yj8MQm1G3AALsy+0eRmkN1DGiv5MxQ8YEYH0/WmX+k/ZdMeY3LFU5wVArOa/iWyjeS53FhnYqnP8sVpFRlqiJTcdzVa6kZj5MLliuW3kBRUKXk8CI5iCqTkHdmrelvpaW63upPIZN0jvDGwwygDaCQCBknGM5rqtQ8M6UxFvATl4AwBuB8kjYIBB7c4FW6aSuzP2zeiRw1wba8jka5t1kkGWQs5AAxzx3rBj0+GS3eW1vIVOxUZLmVUZW746/KPWvbNKsfD1xp7NFaWsIMYPzuDnsep45Bry7xFos8WoajLpcUc9oCUcxgERfdzz/wACHIrTD1NXEzrq8boiFsP7NtLm2lM8LfIzAD5XA5U4/T1FXLa1Lpn+I9KyvCsj/aprCRW8q5jOAcgCReVb+Y/GuntlBUkbTyCCKzxD5di6F5LYzZbW1juj9ptb6SXCsj25+ULzkHPeq+m+F73UJLuW0jkt5Y3XyUlLAyoc87geox+Oa7/Q9Lsr13vb+GJrO1jkMzufujaCD+GKzbjU7LVtHlu/DEwsRAfJuPMwkjLxtcBTkdetVSlLluRVSvvqcjarfwSussf7xkeKWR0JyMjp7npVjxO95qtrp1jDFM0FlaJC4UcMQcggf5xTvDVut/rZspZRcPLp9wzMzAqr4wpBzxjrk4rQ1HwtLba7pdpPYiBL6UYWOYsfk4fAGTtIGefwrf3tznbi3qS+E7KSO5E7RSFY72KNJJgA4UoQF4+legxwOHOBjJ4rlPDGny2qeV50KW8eoRF4iu55Sd20g9Vx06c4r0ERdRgZyea83GRcpJndhppKx5n8Q4tl5ZMxx1P6V5zf2btfMkEjzKvziMMdqE+nPPFer+P7B7kwSAEiIFmK9h0rz+LSGur+TyL1o5mB3jbjBAzz+FbYWooQ1Lrx5tjPln1DWNfiea2tY5w8a7UURZUEAYHrUvjaGVvFupkyyOqXD7FPKrliSBirb6G+n6kjR6hBdFWSQTwE5zjI59q2JNKW5jiuLhndrh281nOcn1/WuiWJjA544ZyVzlrG6vrnSJ7U38dtYovyxXczlCwP8IB6856U+ysptQ8M+ItSkk82W2aLDbiCQWxnp/Ou1fwxpllZMs2snTROm7EVsZMrtHGe3XtVfQtAtLfw74g09JZJLK4hjJmZgGZlYlQBjIyATzVRrwlHmZnKlJOyI/Amm6fbX2nX91fWUlykkbpFG0hlVs5+YYAHH1+lcDbeOZbTw3BpUUd6pjsJ7Fl+2/6NIsryMXaHZywEvB3dVU9sV6Hc6trUEcQtLhVtoEVI08vawwvTIwa5W+nnaXUSGxbsQ7qTnczHA+vOaUKy5nbUcsPNx5mthNQ23UmkG3ZZVGk2iMUIOGWMAg+4qyLCdogXmPHQY6VNpWmfZYI9xOSoJrbjgLJtXGc1x1cTZ2R6dKhaByt3ZT2wt3n5SUsVfPXAq3oEEh1NRDcNAWRsMACeBnFdPqmnG50i2QhSRvwfxrI8O223ULJpP4XIb296mde8GP2fc0bmxFkFtgS4RR87dWJ5OffJNZNxCZU2E8njI7V0+tKBqMigDBQMM1gzcNnOK5qU23qbcq5S14eQLLPHnA8nH865Dwk7L4k0fAyBdof5Cum0iV0laRBns3/fVcz4Zdf+El0vGFIuYx/48BXfh9OZHBiY2cWNMbRbvLkDY6YcYH51JbhZm23czRvj5GABFUbKN/IkZd/ruJJJHuKJS3DZrVpvQ5U9Lmzo4Mes6YC2SZQp479K7K7H+nXHu4P/AI6P8a4vS1P2mwuBKuftKjb9DXdXseb+Xg9FI/If4VwYndHfhneLLnhzRzrWp+S+Vto/mlcHB9lH1r017aGzsjBbxCOKMfKoGAP8+teb6Jrr6PZSxW5iinmvYgHmUkSBhjA5AyK6c+Ibu9FrAk1qtzPDJJJHtbcpUHsSMDge/NdeGpqMbo4MROUqmuyPKPido8Ma6frqS/NdM8Eke3GCnRs/Ssr4caZHqniG6hmUFFspXA9+B/WvSNfsdL8QPbaPc/vIrIm6MUZ2ynccMCc/jx29ap+HtO0DQ77UL/TYmRIo2hLqzyKQcE9T7V1ymuSxilK9yvP8KodKjl11dYzsiLi2MQHJ7Z3f0qhZKyJcE8kRkV2+peIprnw5ORNEitGqKfIPIYZwCT6d64y3ASCfJ++g6+9eZiZptHpYSLSbYkJCSIW6AitNsS28BI6g/wAzWc0TKg4z0xWjHn7Jat65z+dcktTrNHQrG2udXt4rqJZICrlkYegq7qmlbUSa1gEVqnzEkD5VPXA9faq+jXMVtq8MshbaivnapY8jngV1M+sWkdgJxa3DLhcRmIqzYOOh/rXbQo80Lnn4ibjM8a1PVNWtLYmIkZlKAiEEY59RwcCsyHU/FF5GGgSRxnGVjC8j045r0271CCKG3u102CbybiWdopZhuZ3OAT0AOM8H0x3zXJXfxAubfWBplh4Nj1VrBMySWjvIGV1DDG1TgDOM5Ocdq7o0rK1kzjlUb6lGZ9V/4RKWaVrlL22lQ7lXqrA5GOvBNFvqGrt4e0uKexZ/MvWDySsVMx+UiMjHCYxz7Ve8PfEKPXzHu8PpE1iRG0MczM1wX3YGPlAC7e+78MVoz3L6lHpUMcKB4nEqlHIQhH5YEtynIXJ9OKtQstieZ9WYVlHcJ4jt47gp5bTSKIw5YfLu456jNXbEHySDyRj8eKvW99LNrdtAdOVZvKlEy5x5YLEhx65/OsyynDQt1yMY4x2rgxMX0O7Dyvc3YrSGfRL6zmu5bZtQCxFo4i52qemM4GSQM1xGreHLXS9PF/ayXUkW9UcSIq5UkjsfVf1Fd9p94v8AZVvbm/SzkmnZQ7OqnHB+Vv72QOvWtnVbXTtasTpGp6mI2BGZRPHu2hsjcD0J9hXXQTUDlqK82cLa6bp8LXBngnNod4hVLYFzGY+G3dQQex4Nbvh3TZIta0i9gnvXtpJ0ZkuIETGY3HYZ6jGOnNb9hb2OjaetpDqPm7eInkuEyBwM7unQDIpINWsPN827vpTJA4dN1wpR+uMEDB+nWnKTtYi3c5y20WK08bWl2zXbS/btqrsAjU/OTk46AEY5r0uVcNx0rlItaTVL7T5Y3LE3WPmnAOSMDAwNxxXaSRc9a5ayvE6KTSOO8UukdvMH/jhwPzri9PhRZ7RwCGkZt3J5Ow9q6b4i/JFZMhKlnYHHfiuWspzDLZO6lgJj7fw1xpStY76cjIgBBA9Ca6ULGmm2O7pvfn8BXG27ahMxeG2LRs7cnPHJ46VsQ6jdNb6dbSQ+W6ysXyex2AfToetbTpOxLqxaO1vJNOi0qaW6tluEFoqrujDFGK4yK5ewuhDFNDBIxiYhn3gAlgPY+5FXprtpfD2ol1A2QrnJ9K5mw1GB3kXj73HNYJScWkVFRvdmrqpWbSxKIgkYuVDIpJyNvPU9a5i8+zzamYVdfKlmQIB8vBI7V1lk1rc2hjluVhT7Sfnxuwdh7elU9VsIIrhbu1maS7RlHlqoO5QCS2O3I5Pp2rpp0tLs1lj/AGVF0kt79dNVbVW1fbt8kM8QFNLvXjjyyphcD2qtFc3vkzOlpKBFtBPqW6Ae/WretWlxea28aDdIIxIwU8D5eetdZHoV9PZTxpagebp8ZLCUDdISeoz2BxShBON2jmq15RtynG3Oq3X2GJFiZnhmMbDnlmxgdPatDT7KWz1sQzxFZEGWQ9sqTXbyeFpZHukKFVAjSIhgcHA3HHr1+tY+pwtH4ycccEfiMHFRXiox0QqFWUm0zI1R2+3EP1EK4Htk1kSLufHtW14gTbf2atyxiyCPYnrWW0YMitu+tc0Fax2r4RfDsOdUdCMqVHH/AAKuN0IeT4mtSwxtvFx/30K77QF26yuejZ/mDXD2y7PFCYHC3wP/AI/ivRwz+I4cSruJHb29zDaYM8aJjk4yRVVpoVxmRnI7mprq3aSEqjs4CggelYjgqcMDXXTine5585cuiNyyvIIponJA8qRZOmc4NeuPpt3d/wClxxqsThVBkYLk49/bFeERgl/lH1r2z4YJLL4NkVpnaRdQZiD8zY8tfyrDEYaLa1NIYmdON0jobPw/N9jRbnTpJnjl3xvHcogxnOOc962JYtQa7W8XRGMkauFR71NnzDBJGM9vWtm0jYRRpsxHs4yPmB7VcMZEJO88deKqEXFWRk60pO7PNtZ8QWXh+9+3ahZCOaRPKAa437eAcKFXr+NZek+OrHU7iXT7PTpp3m3ytuuGU4x82Tt4GKxvincxajNapAx2m98rLAdQFWtHwVoUOj/EKOSO5WdJ4Jo2TbgxuFU7fyzVpK17l+0s7M6nX7LUX8KSBrC1t4VReRcszADoMbRk/U1xdpFvWVAMAKvbFdh8Q9PuZY7XUBJstbdPKaME5dmOfXHAFcvppjEtyrHkRj+dedilroehhW3C7LIiKIGPJBAA9a2ofCl7PbCOG7tHKAvhZCSAT344rIa8hgmRpT+7Vgz/AEHWrXhLxzYz+MrmN5plgugIrZHRsbi3GPTNGHoKr8ROIrSp25Qs7VrbXvskOowR3qW5lw3OAcjoQMk81Jql7ejYbq7gyBhCuFyfX3NZV14jh0XxRrNs9j59/c3SQ2jFhhCMoB69WzXV2NtFqfhWeW5s4zcqzbQ2CRtwOozjPtXV7BwXu7HNKtzO7PN9Q14adbQErO+JTMuZSu3qD07c/rXH6nEmoWctjYzW2nTw6h9plhuLtIsxtFGI2DMRu2EScDkeZwOte1WegQweCJ3vbGGW6Xe0YlhDEAlQBnt0zXnS/DV9fuptUuo8ROCAlvdLEVEa7c4ZGz93PX1rpo2juc9R32Ri+DprmfUvEc9vPLezeaJ/PjBjM3zP82B93O7Ptmur8PWGpXcun6l9nS1tgzRrIr+c6DcSR5R6jIPGOKyvBEbeE767uP7KuZLW8hjVJZZRt5O4cgAYIB/KvQILhdIuIbcaHcnYzyMyOOd27HOSDzU1ZNSY4NONjkdU0y+s9Tv9T06SOa3tgZBcTSeW7jknKn/gVVpLPXrZQsdtA0zhcIGyx3AEED05FdHeTahrJntv7EEUflgIzzFsggjLEEDqTxWJFrE6anjU4YrsyR+SWif91tICjnsyge9RG0twlUlDqdVoXh+w1jwu0uoz3FuYCyXsRRdu5eSVYj7vHUfjWFHqemWkj2c9lqqzXRQxowiJdCPkLE8jjHHau61TULW58AvJZ2zRxyg28EQAHmANtyB7gHrWaW8O6RaR3F5bGEqhVo48NgsxKdCOeo4+lHLHWw1JvUwJLu6t5JRa6Xq92lupeOSO4CCJDzg/K2DxzjrUE+p6tfacdRj0OWdIQCDJfM7cjHChR+PFdfoniTwpquoCxs7GVZZH+VmhHzZ7k5JxnitCLUNE0/UpriPSZhKZDBvCYUkenbFJrl3QJtnB+GLq91HWbC5FlJ9kguER5J3JZSc8KMgH8q9ln6e+a5fQ9V0a70q5tdPt2jW2n+64/iznIx9e9dGXLKd2enGampZq1jSGupyfi/SjqVqHDlWtkeRRjg8dKpP4LsP+Ec0+4Uo1w6rI8kgO0g9cDPH1wau+MNT+w2YJ6OGibnHVc1r+H2e68K6V8iOhtlXDuOvrU0IJp3NKknG1mcf4n8P22hwaX9kaCBbm7CMsYPzqccHNbev+DdLE9q1sjQZmXzeS3mLkDGTkj8KXxv4Y1XXLewXTY4FNtMZH3y7R26cexrb1bUJbK0Fxd28AUbQoNwoJPTjIxXRyQSMHUb3PDjrsa6vdaB9jnuVe8a3Ty5AN67sKMH9a6KXwbZwSqstoIw6iRHXGHX1yOKwtO8NHS/FkWrrf6ZPGlxJK1t9oA2gk9SeMgkflXbX2rSt4fFikumTQWtmjRyRXQaQOoAB+pPGO4rGvQhy3puzNaGIkpWkrowH8HabFGkitMCzMSNwwOnT860LTwBqBt/tdnNLGS21QSAzIeCCf7uKPt6mCCZFR28w/uy2AeFOCT0FSaj8RvFOnXP2Z9KsElkYLC0chdQp6dCQffkfSuehTqT3kdFeolokV9X8GXSalLd3F3dKHzGzhMrt9CVPT6019P1ZY2hj1qURuiq2FXJC/dJPX8a9DXUNUWx8qW1ZL5oWcHyyVL4xgjGOvvXm4vtb0i8uLLxBax2s7hri3Ee3ayZwwGCe/OPenKnUiv3ctiadeM3aaNG6j8RxT3UQ1tn3hAXMag8DjHHBrPuIdVttTgvbqWC5naVFMYcK5DtgHBxheetL4j8VHQZjfKgmkEkYSM98gE/pVG1vrbxLc3WrPbvay3iGJWd8hkXaSd5HUHb90D6UU4TqLmqP3RVK6g0qa1J9aFzdzu3m26G1Ow7JAwz1AyDjoagk06UZZpFA68A8CsXxhpGl6FqlnC9qqJKFmlMcpYspY5x8wByPpVbSZ57ue4azuzblnJjtm3PHtVTwSWJyeOaHhXa8X95cMak7SRtJcTabOs8Tq5U9MdR6Vy0UxbVUumAUG6BJHQHdmtaG9ju4BKAVbqVznFcwLoq0sC9PO3k1phqbs77jxVRe64lZZWUcEg+oNRSMWHzbee9Rkkn0o7V6fKjz2ywk8KFTtJx3r374Raoknha+by0CxXKjIHXMa9fyr5428EA9a6Xwx4k1HwxO01vPDNC4bfbSysI3YjAYgdx2qJQW5Ld1Y9s8aePNS0HV9MsNMsradr2MuTOWBB3bQOCKx9c8e+MNL0Rru40yxiUt5ZdAzEM3A4zXnWu+OdX1+4s7l2srV7UMEa3Z84PrnPTtWTea5fXUBjuLuNjkNv3uGyOh9zScXfRkpNFa+1fWNbnFtcStNM0pdQVAJduOMdK6iLS9U8EeJ7W4lvg3y/PISTs3rggg9+RzXFi5kN6Lo3f8ApCtvEirlgfXBrW1vxbqniFo2vLlFCYG2KIKCR6/zpyi7WiC8z1nxTPNf2lzeRXd0bKNooFEu0JK2SSUHoOmeprkbK/2pfTF8AKoGf96uWsvEGoywfYZr2SS18zzRGVGA3t+ZqeS7jSxumEnzMynb+f8AhXJVo3ep6VCXLTbua7a9+/Rkbndn5a67w88A0Tw9c/Zk+1Pc7TNuxtUTkDnOOm6vImmz82enbpUjaxdGC2hW4cR2vEaHGMbt2COMjPrmtYUOVaaHJVrXep3XimOCD4lXlxO+1Y5o7iMM/GQy5/xo0rxdqkfiW80u0uHNgZpiUUj5vTBIOB9K4rU9VudZuZLy7VQ8jklkGOtU0fZMJEdwR024H8q39ndWZhzHsmi+J725bW7ea8dktbIzh2ZcBh0UDofSsG38Y3UAQ/bbeUsHSSyMWNgbgkEdTgk8nj0rzjzwkjPmQM3Gc1aOr3G1QDtKnII65rCdCWnKelgsTh6cWqq6ronddUr/AAvz/wCGfYap4neHTNFto2U2iWcPmK0fLFR2/Wu31O6N5qMSQffLI7bnxjjd+oyK8QmvHmiijZmxGu1SWJ4/OrFnrd1ZzNKk0olIA3CRv155rSpR57M86M7Hr+s6pBKzJEpiIiBUgFTuDHrjHTNZNpfw2nhMJFGXLF3lwSeTxnnpXAXniK+uY4mOEmjJxKnBIJ7+vNNTxPqy2j2n2ndC5yQyAn8DjNc7wsr6M0jVit0d9pHiG2vLaz0+R5ljtHLtGTwGLjaQT1GCcj3rrPE11HH4bvnby3U2rrAvl5zxzjGfrXhdveT2sjTQvtdgQe+c1bn8Q6ldWrwyzKyNGEI8tQQM54OOK3dDVEKaseiaZ4isLPwssdlawPqJS3D7isfRjuyxwewHFdj4cgTWfCVtHNdvGzJlxFJyDnkZ571474X0WTWDJNNbzy20IY4EbH5lwcAhSCT0xXc/Dyd/st/EY3hSO8dVjbgp6g1UqSluSp22O3njTSbdYFlilDyYBKAPg4HJA5PvXSBQ0Sg8n1rgtRnzcRnknzF7+9dxFIPs6seDjpWcoq5rSldHCfFMCPRrZlHPnEf+O1xVh4z1TT9GtLS31Ox2xgKkTxtuVT3LDrz7V1Hxcu9vh2EZ5W5Xj6q1eF3DmWTceuMZqaEL6lV5O1j0XUPiHrM8YSd4JdjfK8bsmfw/+tXR6L4hk121+w6hBFeNIrL8kiscKFbaNxyMkgHpXigZgMBj+dSW11PbXKSwTyQyI25XQkFT+FdLppnNdnureCEju1lhhBz5jAS/OqE9Plz36D0rj9XjsNNhksfllvHZWk2AkRgHJGc8H27VyU/ifXJIzDJrU8iNjcBMwyAc9xnvWSLuZV2iTIHSspUpdGbU2t2eq6OujXejLc3+pizd5/KSSZdy5CKxGDx+fWrBe0mvnto9b0lbbzixCxRoVwCR3xkEA9K8qg1S7SJYjcS+Ur+YIxjAb156GoZ7szTNK0u93fe28fePvTjRsFWVz2qSTxE+jNNJrMMm2RXXM7rkEFuTnrxkYrTt9Fi11LebVmmuLmK4CGVmLBoyFyq88IT714rZ6rIummwluo1tWmWZgnDblBAwewwa7rQfiSujaL9ijtXuZYWUrhsKUyMD1qZJJ2QRi7XbOwl8C6ddT3jTmGR12PGWtzhMEjpu54A5qF/C9za2GnrYtprKYyHUo0fzk/w9cDjmuah+KeoK8oubY4ZACUUgghgcnPtxW4fijpjhXktX2K3yYHONp6fjQo36CbSepFrvgp7q9VZJYTHH5YDyTln2kEtgbOPQdfpWVp3w5NvrZkaEJAlwyl1uw37ogr0Cctnr0q5q3xa059IujYW08V+YAYWdAVDY6nHpz+dcpbeNvEOrKIl1W1tnkyCm1txye/Y/nW6grWsYyaWpBr1gnh7WZ7BWQOEDMFl8wDJPfA5rjnkH2qQ+tdzc+HdTnuWubm5szPKfndrYMXY/7x60jeFNQiTc88SjOMx2cQ/nShR5WxvGwcVFvY4XyJf7o/OjyJT0UfiaYks8kgRQGc4wB71NIbm1k2TQyRv/AHHUg/lRdnQuRkPlTBgPLyPrVqDbEjrJATkgggD5fXqKYLlkk2yoUPYMMVbhvV34JXB9aTcrFxhSbtcZezDzl+y2sLxoeCsZQEfTPNJIpuI9xiVGzkjb/wDXq150UZ3s0ZB7KeaUXVk/JyD9Kjnkuhv9Vh/MZbWkiLuIHtTGiZVByuT25yK3xcWjADkj1zU6iyK8OhPbJpe2fYX1GMtpGGlm2xZEkOT22mkFuxGBIa6BYY2+6Yc/hUiWsW35oIm96iVaxawdlZs5lrRmPMn6VLBpjTgfvgvzY+ZTXVQ2VsePIQ1YXTrZRnyQKh4tdDP6l5nIyae8JMBkBKtkHHBq9Y+G7i5SUrcQpsXI35+b2rcfT7VmJIYN6CpYnMSlImcDHTNUsS2g+ovuYLeE72SDzfNgUAdCxyT+VVv+EevMJ80ZJPOCTj9K68TXDQ+X5zBfQAZ/lTV8yEghnPYZAP8AMUvrLF9QmziX0q5jO1kUkdQDSnSbkAMsYI78jiu8GZ2zJ5fTHMMZ/mtbOkeD7LVXd/tMkTHBO1V4PsMU1ilsTLAzjq2eUPYXStsaLB+tRG2kR8FG4+le9n4T6bIPMfU7ot3wqj+lZ178LNMhVpVvrtmUdCEx/KtXVa3MI0HJ2TPGxaXLLujhcj1ABxTG068ZSxglOf8AZr0Z/DiWIZEun2k91BqmdOAbiVmx64FY/XIm31GoY/h3xb4l8KwyWumqojkbzDHLFv8Am9a6DwVrVzK2pXF0qpNPdGZ1UYGW64HpVNtJCkMZtufpU2nWK2Dt5NyDvPO4ZprGQYfUKpp69rSwZZSxfGBjsex5qax+IN5LZrFNJaq6gDe8oGf50n/CHJrzCabV5IyOgSPj+dWrH4fR6czeRr0kbEnjywefxqJ1qcluOOHqU9Di/F/iT+27ZbVpoi0cm5irghvSuTGm3M8Ky2qG43HaFiBYg++K9Tf4U2M9wXbWZWZjz+7H+NbGm/DCHTlzb6xOATkAp0P4GqhWhGNosUqMpbnid1o+r2UaS3Wl3UMbHAZ4yATTP7L1MAMbCcKen7s179q3gyTUrFLa41NmRDuBWHBz9S1Y1z4NAVVOoliowCUPT86bxVhLCN9TxMo6kgowI6gjpSrbzsu5YyV9cV6onw0sJ5SW1KZSTkhVHWta0+F1tEpRNYuArcEeWP8AGqjiU9ivq0l1PE/Jn6hSB9Km0/SLvVLxbW0iZ5W56cAepPYV7O3wjs+2szlfTyh/jWjpXw/k0R5ZLHWXUyLtYNbKwI+hNV7cl4e/U8cHgzWEThIi+MmIsQ6jtkEcVHF4c1ViiLbkySSBE2yLknPSvYbvTr63lbdrXlluSfsajOKZBBexncviJM7s7fsaAVl9as9WWsNI8sh8P6+97dWtpHcs8YKSgsuR7HkjOR69qddaV4ks9LU3lvGkEDlvLmdA5JI6DOT26V60mlXNwedYtmY85awQnP1qvqHhee9jeGbXYdjEbhHaRqeCCOevUCrWIXciWHdzxq8S+Xeb22+zl4lKKU27xyAf0qzpsmk2sEckqO12pyFEmwZ7c9q9O1HwPHqrJ9p13JRBGNkQGQP+Be9UE+EFk+HGuN7DyQf61oq8WQ8PI4a+8RXV1qEMsVxNBHGQwiM5dc9+c55/lVm48WzXSypMFRSONjMOc+5Ndsfg7ajk6zL9fJH+NA+DVm3J1mbP/XEf403UiSqCPLp9NvbKXz0UFFbKSofTkV2OmiDU7qLUJ8fadgyCcYIHJ/OuQsdYmgYlwGU9evNX4JJr+9MtupJIwyj0PSuWspuPvfeXTai7It+LwLuOC4hXMcbFNwySea52zs5rmUrDGWYdvSuhvJ5tIsxayEGaTkLn7lUNJ83+14drrmRwhz71dKcoUxSjzSujOW3lWGWZ8hQ2wHPU+lJBbvKw3AZ+ldP4m09baaG0TtuZuOpJ61DZWQWPcRzQ63u3NadK7sybS9HS4spG+yrIyNyQCCB+dTrpamRv+JWCowMifHPfI3Cr2nf6LfQ7S2JCFYA9ag1iWRlKeYWILj8ccVx+0m5WTOr2cVG4/wDsGznt1dIJoJc8rHKrfzaq8mhXETkQSyP6KyY/XJqa0njls4nDMcrzx3q3DETl4pJFb1DH+VKVWcXY2jFNXTFt9KAiVm+2CTaMgKu0nvyaJ7eSAK2yfaepZkqtJdXEepxSFyR5oVgzHoVOP1Fa2oTGTSycgOjDp37GpfMmr9RJpp2exkGzku32i5eNT0IiB/qKmm0G8gVHhvmbI5DR4/qas2kpURNjlhxmuntI4L9cPHtkQhSoPBHY1pKo47GKlK+5x0mk3ggEo1CAKRnO01nCHUBKVEu5R3INbGuXLzX4to4wkcTYUHocZzVO0ugsJjkQ5zliD+gq05WuzB1Z33Kw+3K+WmhUdADn/Cur8Oas9nPGzhZOhIjY8/TNYjRhkPJAkXcR/SptLgeO5UQnK4xtxUTatcpVJvRs9SPje3ddkdhcAk8Z2j+tU9Q1a5vrUiKzKk9Nx/wNcTdOYrlkHClQ3zc4NSiK/mXfHq1vEjDATymJH61Mqs5LUIR5X7o3UbLWZDuSNAe3p+prn5bTXkZi0SLz0JH+NdEFkE/2dtchabg7Bbtn1/vVYnSefCzXoO0dVtuT+bURfLuatTlscNNFrYIEiJz0wRVbbrIkKCP5vqK7p9Mik4kvZivosCD/ABqObTLG3hMrXV8UjGeDGCB/3ya2VZdifZ1d7nOufE+nW6M8JCMBhklXFVX1bxAXw0bEgc/NXZrb2l9CI5bvVCiNgxvMq4x24WkttAtXkkS3aYRqoJEsm85PuaiU4LdIdp73MXQfEGrW93G14pMR64wSK9OsvEFpJGB+8LHoChrG03QbeAAzbevTIJq9f3drpluJYVJKtj5Fyc1zuproitTQuPEFnAAJjLHnOAYzWVd+LdFDDNw4JH/PEmoPtEWqW5uApLfxBlx/KuYu9HlaWWRvmTPRQcgdqqM76SG1Y6VfFmjxupkuJQuf+fZ/8K14fGOhlkELSyM33R5LDP5ivN0triaZIo0Yp13kcACuu0bQvJ3yvGxZyCCw+6PatHUUVoS1fc6OXxdpFvA006XCKvJxCTTT4y0bIBFwM462zHr0rHuLTc+0xs4HZeKz7zSJZwqx70z1/wA8VUMQ7bIzdPzMLxp4sj1KeOPQzI88bFJI3h289vSuUiv/ABRIGMcCnacNwOD09a7eTw+sUim1XzbxPlBAwE9cnvUOrx/2Roc728cZdWWHLqcZZuTx1o9rC6Sirh7y6nDS634gtyS6KDkrng8j8akXWfEkgB8hCG9R1/WtJNOvJBG0txabUGPuOBWkjXBVCP7PkVQF+UsP6GrdSC2SHyVH1ZgpqPiK2cGSyUZPZM/yNd9p/wARdEsrSJLq0u/NC4fbDxn86xp7i6a38vyLTJH3g7evbIrDNlmcNcJHKMklRKRn0/hpxqx3siXRqPZs9VtvHHhq4jMm27QAAktbsf5VbTxjoxVmEc/looYv5D4APTjFeYWd3dW8oY2dsyBcBRMygEd/umrL+INUdZkjtNPPmgAnz3JGBjsK0VdvZKxm6E+55TtbcFzgmt/Qb46XBcyAB5ZNqLxwByc1jGV+p28/7IqSO/mhgaDbEyMc/NGCc/WuuceaNmc6VmWLu6e5u2lnO5s9aWyuhb3McoJby3DgfQ5/pVZI5bu5CqnLN1HAA9avXHh+9jhE0B89P9kEGs3ypcrK6nWeLbpZ9RtLpVXEsIckDjJFZYvAirnvSNYXmp2NnI7qkiQhWDeo4rPDrBKYGZmZWG4rgYH41yKCtudMKtjotPuBNf22TxvWptcs7m1ikmkjzCJQwfGRgn1/GodN1jS7bbmzn+Q53lgf0rpn1vStV066tfORfMiYAPxzjrzWNpKadjSVS8Ti9N1OCOzjhmkXMZKg4963AlxDbC6COsTdHArl7Dw7e31oL21CyR72Rlzggj/GvR7VEbTI7STHMQDo55Bqq6gpDo1pONjiNRl8yVcM7S70YZHTt/WtJnWe1mQdSpxj+8OlO8Q2tnptzp9zCFBEuHVW5OCDU1z/AGW779+w9fkYgflVSV1FozVV8zuVdPeRYw0ygAHGBXbeHFjkhdyQwJAUrWRb3GgadBHO7ZZxwWOau/8ACaaXboEj249OKynGT6ApRWrZR1/TTHdtvjKrJyrY4PrzXMwWs73phiheRWXJGzoK7GTxvYzJtIU+xNFj4h0+S4VjCkO44B9apSnGNmiJcsnuU4NFkntomBxgFSJPlq9Z2VnpQd5bgOxHam63ful8yvta3kC+VIp4Ax8341n3dzFNCRGVOE2qM4rNXkVdLY0JbrS7ufDpuJXnnGBTJIktpzHEpCYBXJOelYsIUS2ibSZA4ATv19a6bUlSOSKRnwGUDB7Gk422NaclfU5m7lNr4hgHlZMhDZ3HJBUr/Ot3cSd2wZPXnNYWu+Wl/Yzhgzs2A27oFbv+dbbSKnG5CRxgNW0/hQ6bipS1HqdoqtqCk6fcYwf3ZP5VagCXMZeOVMDggnnNPntIntZQ1wigowJJPpWUZJSRrKUeV6nP+G7hp7WR227jISdowOgrYNy1tcN1O+M8Zx0NYvhwxyWMkxxGDLjYp4+6PWt+1a3klVWDpIAyAMQ348VdZLm1M6U48u5BHqZCBvLkVzzuRs1pDU1mix5gHHImjz+gxmqBt3jYlyNq9/Wq98yfZzh1BUZ3GudasuWqN/Tr6C5DRkKhjOCFXaG9xzV2SS28neY0XI9eR71i+H7OVYvOlTYjHeA3BY9jjtWjegyY/d/Jj5sNUS0egou61IDqlla5cx72HHaof+Ew2hRHCgUHoT1rMu4IllCqWwfesK4j8qdlRskE4Bq4RuJ6s7i210XJz5C5b0kGP1FXEu4bmFmzI204aMkgqfQivN2nkjQ8sM91PStqw1J7iWIBy+UIJ5ywA4z64qnCwmrbnWRi5l2iGNIlUHAHAP1rmPFhnGlRoyDbNeQr68gknn8Kvy61PCI3TLg8OMdKyda1OK8FghlB8u7WZweMAAj+tVTir3Jepn6oHTSLpgh2iJyMHP41S8LqDpb7I5SnmEBic9hxV/Vb62fSrmJXAJhZVyD6Vn+F722g0fy2uVGJT1U9MCrSfsX6mkmvbL0Nto0ZsmNsU0xoT91h+X+NQza3ZK4U6hEmOgI/+tTjfW5QubrfxnIrmtLsdHNHuHlFGD4JKsD93tXO+F4PO1G+uJASR7ZwSzH+laWo6xppsJkF4hk2HC45J/Ksjwnd6ZaWc5urpI5GcBVJPQCuqkpKlLQ5ask6kUclPM8km9zyR1xUloATyM/WoWUtjcDt7HFXyqxxRFSDkda9aex5kLvVk6xYBYAH2q+mqX0VskK3LBfuqpAOB+VZYuRsI6t0FSt5tvCLi4GOPlWuZxT3OjmikdPpd9Jdak1qOBGmSRjk+9ZGugQazMFZecEkDoSOag8Ol/tTXMbtkNk/l/hT54vPv5ZEYTLIxYYOep6Vio8s3YISutQtSskblnwPXFH2dywaDcx7ndjIp8dndq3FlJ9DxWhBYX6uDJamNSOhYCm5qLuaNXRQ0zW9R8PtcWlvEpdn3HzT0OMcL3q02oa7cq8komDSdPKTA+nFQawsN1doCnlyRDaZF6k+n0rQ8PQSlmCX14zLzhZSuKJOLXN1MoW2OevVvgo+1+dsH9/IHNQqZXI2hyMYG3NdjqlhrNzFJb3F+0tq/QSSD9eKy4bafSZUV7yKeN1bCqc7CBmtadVNWW5E0lK5mQQy5B8mXjkfIeK0rUiR/KMYMmM4YYrYtmtNT02JWvJRdNHuYLkID9aSLw9eQzfLGJMg/NnPGPrmolVT0ehagmYd4CkuxYMsDjg5ogjuE3M6FFHI3HpXWWWhXU8v3QhP3s+tT3fhq6BCo0bL3JBqPrCXuj9kugyw07+0vB7ZJ81HMi89TXOwJMhJ+fbuGRXoWnz2mi6RFBI8QIBU569c1jX/AIg0TzmH2SaZuhYAKB/jXPGpK7sjSyS1K9nC93qMcoRjGoK4HYnjNX9Zwj+W77NsfAZh9Ks6FqGmHakMyRIWyY3OGPpXN+NrHWJtXurme2le2yBC8a71C/UdPxpwTlLXQUttDJ1a4SRYh56MVyPlOe1OOpDYMygkrg5BFYMm8KF2EAHk+tSQhpohsRnIHOFzivQdNcpzqT5jpLHWoLaWWR2ZkkQDAx94d6i1bWTdxqtrIYwBzlutYH2G9cgJZzsD3WM1MNNvo13NY3KrjqykD+VZKlC/MU3LYbaajPbs6JMQmQ20ngnFb+l+JIUuPNu1kDgbVIAKgfnXLQhXlYiNsDrzUhjl3ZFtKynoQOKupTjLcIXueht4q03Yu2YSZPI6EfgQc1csLvT7+cmNA0g52MmOnfHSuI0/wreamkVxGRBCW+ZpD0x1wAOa7GCGC3tXS1TIzsL4+d8dyR0HtXDUjTg7JnTHmNR9aAkKKrOQcEr0FQPrN8NxhtfMAXdjdjI/xqKNIY0AhjIzztA5z6ipVkdXYluOAwPGCKShDqi7Mo3HiJEiY3VrcQljgM3IU++O1UY5kvJGaJopEA+ZA3zKfyrcniDxlhIi7htxgf16iuL1WWHRdT+12OFkDfPGuBGQeuB2qlTi9iXc15rRljJQIc9VZcY/EU20hNhvldwfl+THXJ6/StkuFtlfaMyKrKijpnkV594pvbtNQdB5qxocMVUgA+g/xopxc3ykzm7G/ca1w26Bgw7FsZrJu9Ss5NswJDDrtfawrlt8rAMS/PdieaQ7x1OfbNdkcOkYub7GndyRSo5S9fJGdshJNVLJFNuf9MWLJ+4TiqbbiSdtMGQMAgVuqbtYzcru5pfZbff816jHsA1bMDRiNQs8YA4wHGTXJhCxyXFPkXK8MmfpUOjfqPmNDVbFlkNwkgK9SCMGswKyqshUhWHBI4NBZwNhkbB6gHg1ftdXuLeJYGSOaBR8qSD7taqLjHQhq7uZxkBHLE/UmrmlyR/a1EwzGeACOM1T24AFTkqtqAG/ek5FE9VYiDNEzQi6J8pAofIAHaq2rXq3s4VR8q9qWJGuCsoUYzzg81JPp5muXMLqAccMeawiknqW9VYn02drTQ7p14aRwgP4VkkHGAauXcU1rbJA8gKZ3bV9aqKc1rBJ6leRYSSVQNsjAj/aNdHYa40emuHO6ReFBJrmoTvwK057SWHTll2fIzfNWNWMXozRX5bkb6g8sm2VVYMcnOK19N1z7PII4rSNi2BlRya5hYy0m7tV60g8+RIg+zcSSc9BRKlC2qM1J30Ov1W9SVUEgELkdGYcVz8kqG7RQ42/MMr71blisbG7jin06OWHbgvuO4++ax9Qgtf7c+z2xCQ5HqT0qaEY30FUba1LuiXkKuhMiBovlKt3H412d5r0VtYRfZbmMSuNrFWBxjvXnmnIP7Qto2ZTG8jADdgcV1Z8ONOqtEY03DozHn65zSrU4KV2yoSla5d0u8llvY3MhDHG47iCffFdFreuGxs/vAnGF75rmPDFpJZ6+9lcyKreUQq9cn2NWfF8E5WHy7dnRQQWVSa5pU0qiXQ0Tbjoc3calcXLFpDtzznrVqyQph1LdOGPzCsx8cIUCt0zV/TZgkTIJCrLwCegraSSWiBI3oLOOVQJUOD824Y5+v8A9arkOr6hpk+Bvmt24WN3Jx9DWXBeeUFEjp6D3q+l5HMuwruz6LWDXcqxfv7LSdeVZD17gNtbJ/8Ar1lxeELDRpftEt7OUzkRM+0fp1q/o9qJ9RkJhwkfPB7+v607xY8Vva7pShZuMORnHqBSi535YvQTcd2Y+v8AiSyj06a3sgUd9oDjOVIPWsCfW7lJLy2kZp4piD87HK8dqzbySCVwkC7/AO83b8KS8Mcd+SJBgovzE8Z9K9GnSSjqcsqjb0I7Z47cHzIo5D/dkBINblv4uvLeNUeyiZFGPlJXA+nSsE3EGRvO4+oGaFZB/qyHB+9g1U6cZLUUZyWx6HpHie2v/L3ExlT9xhkDPvV25hWyu2ul3i3lGWVMkK1efWturEbLhQy4YDHX2r0Cyv5JbaEORuYZbPC/rXnVqKhL3Tsp1G9GSpJ5nlyRTK6beR1watzyQR2nnSFNp4I96y5IbV5XbypI3HBaAja3uR0/SqEmmC4byxfSKCcj92Qf51K0RrzD7vX44t3lrkA4Cv0/lXMQ28uvau8SqdrNl2AwFX611Nv4WQIzSXBlA/vHB/KrwEdnbhIIgEXhicAE+vrRzpbBKWhzmo38rTt9iulhggXYCrfeYe1VbK5m1q2njnIkkjKhZCv88damn8PWk900i35hRuTEPm/KrtpaW2l2vlwmPGfnzGSzHtk5rTTl03MW31OXvNKv4HZWt2Izxt5B/rWVJbzLIfNgZR7rXZahfsYs7lIUYUFe9c9/aF0szsUVo06g8Z9q3pTm0Td9TNkigMXyoQ/1NMtzZRoReW87vngo4Xit9UhuLYXUSYJH3ey1z+oP5l2y8DCYraEnJ2ZnUdveRM6acVDR29wAexkH+FVmMC8+U2PrSreIEVdpOKk3wSj95GfqK0SaBTvsUzIHkyBgCnVKq2mTtMmfcVYiS0UZdWbNVcWpl5Y0ZzwacDgcU09frTMCzay+U+QT+dPW7dZTJk5PSoHjjWMMkoLHqKcBhF9aTinuaRdi/Pex3MSpNwf7w5o/s+F0HkzgseoPGKofrVm3Z0glcEjA61HK47FXLFnZiO5VDMreu3rXZotvHbBZihUjOG5Jrz2GV0mDhjnNdFe3bbbcB8fu8ke9YV6bk0XCehpXFtopt3l3BXVSQEOP0qjaxiw0YajtBnlb5N65ATtx2NYU027PA59K3LKN7/RTbRgGRBlASecdaTg4Q3IUk5DjrDXJQ3ChwvQnio0EF9qJmlzg5YDcRkjA7VmxxTyERi3csOMAZrQtNLvLxljgjYFEbzP9nn3+laKKSbTG29i6yx2OpaM0cCoEueTk/MGIznP1rRXURBrM4dztRz8ucjis7WtLubPSIppsSLG6k4cZHNa09laaiPOt5fLl2AAE5DD396zbi4rmDqZL3rGdr2OV1ljf5CD0Ga3P7YaVEmjupQD069KrRaDKLBzFskx1J4zWLbx3CPJa+W/mISQoGTis2lNGifKegRWmlaraK9zaIXHJkACn9AKx7zwvpRkdrXUDGT/C3IB+tXPDLuT5FwjRHZj5x1Nc5rIlW/uEBxsbjng1lCMr2uVKVkaA8M6jJAfKaGdR02PUkFhq1vMqvYTIBwSATn8qw9O1Oa2kIEvcYBr0zSpvt1qpVxuPBwcdutOfNHRgpcyObW5u47iPTrENHeXhCmZsjyxznH4dT2qfU/B+mJaFo1Mlywz50jNuY+/NZi6nFJ4hu9RJcqi+TDsAO3jHp6CtGbWFeFSX+fphkPH5VUm42USFZ3ueaX0BtdQnhZXjaM7SmehqK6X/AEhSh25XeN3IzXV6U8OravrZutu6dgMEZ/I/hVsaBYWfkzokk0mNhV2BA/8AHa63XS0ZjyXOUjuZTB9wAjg4XrVG4Yq3mplWzzxXSS3ccMij7JbOJkV1Mi8jA2n07ioHctDKn2eEBuMiMAD6c1bqWeiEoX1JvDujNd3C3lzFi225VT/EexroL+OdZFKnZGvGFrldJ16a0tRZNGrmJjtO7HGa301Y3MILRlQTlir8/wAq46ylzXZ0QaWxOrTLGg8wEZzjvWms5EIeWQRnqhc1kTWEFtGHmnlctyADjH41La39jbvtEDOR/E53n9TWSjfYvmZYt7u7uLc3E6NCCx2g8ZXselMvJvMhQCVFRDknPJqC98TWZJR45COnIH+NY7XdrMzMDcGLsCRx+tXGm30J5tTQR7ZVDebg553An/61MkuhNbM+8GMt1C88e9UbY2kzLErbZHJAOWH58VUuAnzRrcBc/wAKZwK0jTu9SXIS7v1MT4OQKxwJr8/fKIxw2M4A9TUl8dkcFpEq725yDnIq1bxeRCY1ZGHfccZrpiuVaEOXNoVZ4buwg3i4cREYByAPyrMnkaaUyFgxPoP8K07tZLxHJuFdUH3O4rNkiMEzp97aSuR0JqoJESvsMHl5yXIPoV/+vT+o4OfwqI/LIN35GrJcZBKDkcjNWRqQqoBzmn/jSMVY8YHsKeDx90H3qugXKwUntSqMnBFTFTjpTYgpyT1FSPlYkhUx7VABp24CNc/SlkjG3cKciFUGDkkZFA0mhg6+1WmBGmtyeWweajjjHR1bd9eKJ5G8t4xgLnO0VMk2N7FdGPPHOK2L+6ilit9oBIjAasiOGTbuA4x61MeFBb0xTaTdyYuwhIMmQcAfhW3puuQ2FvJ5al5imBhc9+a59APMXzCdpPSuicWp0vEPloQegIBrOpbRMF1I5PEWoEYTciHtgLmi21K7tJYpYjh3Qlhu6nJx/OqCgEZYnJ6VZCx74BnnYP503CKVkgUmaOu6rqNzZww3Tqkci7isWfm54zWPFNJEu5ZHU57Dj+dbeson9n2T5UsUIYhs1gK67FGcHqKKaXLsErpnSaVq+sG0eK1iMqr1ORn+dUo9YubXV4r3JSZDh/M4BHcVHoWqLp95GzRSTP8AdCRjk/jWhryX13Oss9vFZqoysZ+ZyPU1nb3uWxWyudWfFCxtgRRykfxoeDULajYXEge606TLclgf8K5Cx3SWygZLA961reWTKRkkfXmsJ0lHY3UuY6gWeiyMstrbkkAckng1U1LV7ew0u4WyIEkoMfytgqT1NZ0NwY5upI/iA4zWTKbVNejJnT7N5iyMWHCjrg+tKELvUUnbY1tOuls7FLeS33nq3y5JJPNW5r2w8s5twvHGPlP61i3eqyXM8j2NvcXKbj8yoVX8zWZJe6hIj5t0VSP425p+zbldicopaF7w+bUrcvI0iuZ9y4xnFdA8ttdxyrHNhSenQg5rh9NjunZxCVGTz82P1rREF1ATtcKxOCS27+laTppy3IUmkOv7SOOSHy5VmCO8WWPTjcP51Gbe4c8HgehFVVaaSxv4pWVpI2SdTjGSOCPyNUpZLmHKtEuRgkhua6HG6REZWJ9QhNpcpPjg4VvY1vWCmSaBWDJEi7gzfxn6elcpNd+fEYZWfnsxJx9KsWt/mBUeWXMXy5DdRUzhzRsXCep6FdRLdIIw6LwMHrVRtIG/5LhM453DiuY82UoGjmdR23SHP862bLEkKiaZ3LekpxXN7JrZl8wlz4XZi0kt7FgnjCnA/GsuXSYoWKtcxuvqCf5YNXzeyR6jPpu9SoQMOc4rnLmSVJnG8gZ/iFa01NuzZEn1NWNrSzC+RKgkHRixGD7DFVZbkLL5ktzCzeuD+hxWU80g+bIOe4qrNMGAwx3Z5rXkM+dlqORrm+eU7ePlVScVeFvOUzIY/qSKxYNztsHJrVmkFtbtHuJA4JPrVOLZSk0iO5Bi2qWHuVI5/Kus8MeH7PUIY7maBZRMWJkkOdpzg8fgO3euFYlskHI9SK73w9ePp3gR7i1txPcrcMWTaThAVyf1H51FVNR0KptOWpS1TRk0fxFHZPawTLMpZNyAZ/KrLeGdIlSUPeLFOkXmOI4woX8zzU2oWkt1rVxqVxE9vdyNALSFnBILAbjx2ABP41HqzG41J4/Lt2txGRnf87cEjp9DWblLRXKUV1RzV74YurW8CQSxyxSjdC7fLu74x61nfYZ2maJceYoyUzz+Vd3p6vqmnRXF2ymNH3QIhI244IPrg9KS5s7Y3cZu53zIT5cbNhWbHtz0oVdrRj9kuh//2Q==", "path": "images/5pts_ADE_train_00009729.jpg" }
depth_point_14
images/3pts_ADE_train_00012344.jpg
ADE_train_00012344.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 144 y = 200),Point B is located at (x = 178 y = 166),Point C is located at (x = 71 y = 224).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_31><DEPTH_49><DEPTH_49><DEPTH_49><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_5><DEPTH_49><DEPTH_29><DEPTH_49><DEPTH_29><DEPTH_49><DEPTH_49><DEPTH_49><DEPTH_31><DEPTH_49><DEPTH_35><DEPTH_29><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_49><DEPTH_60><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_36><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_31><DEPTH_74><DEPTH_15><DEPTH_29><DEPTH_15><DEPTH_31><DEPTH_59><DEPTH_74><DEPTH_29><DEPTH_29><DEPTH_31><DEPTH_74><DEPTH_74><DEPTH_72><DEPTH_40><DEPTH_76><DEPTH_39><DEPTH_38><DEPTH_36><DEPTH_74><DEPTH_49><DEPTH_19><DEPTH_46><DEPTH_50><DEPTH_33><DEPTH_50><DEPTH_64><DEPTH_71><DEPTH_49><DEPTH_74><DEPTH_49><DEPTH_15><DEPTH_38><DEPTH_38><DEPTH_15><DEPTH_49><DEPTH_3><DEPTH_76><DEPTH_69><DEPTH_49><DEPTH_60><DEPTH_60><DEPTH_60><DEPTH_31><DEPTH_31><DEPTH_59><DEPTH_70><DEPTH_31><DEPTH_60><DEPTH_60><DEPTH_59><DEPTH_39><DEPTH_39><DEPTH_39><DEPTH_9><DEPTH_39><DEPTH_39><DEPTH_39><DEPTH_39><DEPTH_39><DEPTH_14><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
3
[ "B", "C", "A" ]
<DEPTH_START><DEPTH_31><DEPTH_49><DEPTH_49><DEPTH_49><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_5><DEPTH_49><DEPTH_29><DEPTH_49><DEPTH_29><DEPTH_49><DEPTH_49><DEPTH_49><DEPTH_31><DEPTH_49><DEPTH_35><DEPTH_29><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_49><DEPTH_60><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_36><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_31><DEPTH_74><DEPTH_15><DEPTH_29><DEPTH_15><DEPTH_31><DEPTH_59><DEPTH_74><DEPTH_29><DEPTH_29><DEPTH_31><DEPTH_74><DEPTH_74><DEPTH_72><DEPTH_40><DEPTH_76><DEPTH_39><DEPTH_38><DEPTH_36><DEPTH_74><DEPTH_49><DEPTH_19><DEPTH_46><DEPTH_50><DEPTH_33><DEPTH_50><DEPTH_64><DEPTH_71><DEPTH_49><DEPTH_74><DEPTH_49><DEPTH_15><DEPTH_38><DEPTH_38><DEPTH_15><DEPTH_49><DEPTH_3><DEPTH_76><DEPTH_69><DEPTH_49><DEPTH_60><DEPTH_60><DEPTH_60><DEPTH_31><DEPTH_31><DEPTH_59><DEPTH_70><DEPTH_31><DEPTH_60><DEPTH_60><DEPTH_59><DEPTH_39><DEPTH_39><DEPTH_39><DEPTH_9><DEPTH_39><DEPTH_39><DEPTH_39><DEPTH_39><DEPTH_39><DEPTH_14><DEPTH_END>
144
200
178
166
71
224
null
null
null
null
100
51
75
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwB4zt5Rs+2KUPtOSjf981KkQK5W4XPuwpojkZvlmXr6iq0DUaZkA5yPqppySxEfeUfU1Hc3BsgrXLoqscAkUi38BXd58WPrS0Grk6tGW4YZ+oqQRg8/lgVW+2wHaS0JB9//AK1TboHYARxE/hSsh3ZMEj/Gjyh6D86j2wkgiLH+6cf1pSsX/TRfox/xosguyUQp7UCBCeM/lTMKekso/M/zFOGzI/0hvxUf4UNBccbVeO/1FRPbLxnGQewqbI2/LcoD7gf40gjkxlZIzn2P+NKw7kK26HJYAelPW2TPpnqRUxjkUf8ALM59GNPAkIwVBz/tf/WosO5Ua1VScHj1pjWx/vsPTDGrpSTnMTH/AIEP8aMkAZjcf8Bz/KlZBcrIs8eNs8uPrmpxNcqMFz9cCpC6kfcbA45U/wCFKHjPdQffilYNBouLkDOVOPVKBezhwWjjbHfkYqRXTJ+dc+zClCq3IwfpSsGgwX2ZNzQKSP4g1K17AZfMaBtw9MUpiB69PpSGNTnGB707MLIRr2zE3mbXRjwQF4P1xTlnsklZlZkEgw6gHDfXio/s6jsD75pPKwcAUtQ5UTxGyjkl8qZFSUAOp70QW9vG06RSxtHNjdk5Ix6VXMBY8ikNqhHKj8qd2LkRZgsBEs8QIZJSCHPVabDYMkEsD/MzPuWTPQelQLbAAfKR9Dil8p0PyyyL/wACNO4uR9ySCzk+yyxMCbjfuVu22kihkNh0JuVY7lx27UitdIeJiR7805bu5Vjh1P8AwGi6FysaQRp0cww0mD5iAcrSXBEFnDOQG3puIB6H0NTR30wVsomD6d6Fu18oxm3GxuoFPQLSIrpPspjEgPzgEfjSTR+TcCBxhyQAMVK01u8PlPCcA8HHIp0sttIIncyLIhBWRsk5o0FZlfBjm8tWKyZ6A4NTx6heRnbHdSg+m6nsbeS7juo5x5y9S4zmlW3jjvTcRsjq6lWDdBmn8xPzHLrmpJ0uC3+8oNTL4mvl+8sL/VcVSis/KlmQkOsowr7sbaiispfInhYEzbtyN2x6VSlJdSXGPY1l8UZ/1tlGf91sVMviKwb79rIn0Oa5428p07cqsbhCd4xx7U24iKW0MsY37gN+P4T3qlUmT7OJ041jSZOryJ/vLT1u9Mf7t2g+vFctPbeXdxxLhkcgBx0qpcKY7loRncDjjvVqq30JdNdyyDaBQDFMD7VGI7Bsg+cvX+Gn4I//AF0pPoBmsOVG9zLngiluysZ8yFeeR3qX+y7WQcxID9KkhG6eRiMHdV1P8ihIdzNbRLQjmMZ9hTToNrgFdyfQmtYFR1HX3pXK7T1NPQLsxxoSqcpPMufRzSnSH8pj9ruN2P7560nnXSSbXnjVuuGI6HmpPNvCMLLCfw98+tZ88S7SIk0q834S+kwPXBqQ22qIMJdqceqCplu7yH5ikbfQn/Gr1o5ubZJpFCls/KPYmmnGWwndbmWYtYDjEkT8d1PNPjfVuhitW65yp7Vakv5I5nRbdmCnAOf/AK1Il86nLWsmfbH+etLmj3HZ9iq02pqQPsMDeu04/pSi/voz82nP/wAAlqympbc7oJAO3H/16uW1wl6m6MEBSVORTTT2Ybboy31KdW/48LgDHZ8/1p39s7VJMF2CP4SgrbMeRyB9cUeQh5ZBkegp2YroyBrcATcXmQ9w0R/wqRNetN2GuFGe5jIrS8mPGcLj0xUZtIHODGPpilZj0Kf9s2kkmxbm2ZgMnLYqY3Vs/wDz7H6N/wDWpG0qxLfPAmSeMqOaibRLBjzEnHX3o1DQthoz0i4PTawH9RRlR0WUA9w2f61T/sCwQHCfTDUx9AizmK4uI/ZZDRqGhoqEYA+ZL+K//WpvAP8Ax8D/AIEo/wDrVnnRbrAEeo3A+pzSDT9XjPy6iX/3oxS1CyNNfMJ+WWNh9D/jTiJcjCoR6h8f0rLEOtIBmS3lxzlozk/rSPJqqkYs7Vj32kii47GoN4PMZJ9iDTSxyd0LjH+zn+VZYu9Qj+/pzkeqTU5dZK8TWd6h9doYUXCzNLeu09vqpH8xSebHnHmL/wB9CqA1+23YYzx+m+I805tcs0UM9wgycYZCD+tF0FmaGUPK7fqKTYCM45qmL6zlPD2jkf7Yz/KrCtCy/KgAP92TH9ad0IeFU0hiBGCeB60wbAeswP13f40cjP8ApLY7bkAx+lAXH+StM8oA9D+FAZuguIiff/8AXS/vj/zzb6N/9amFxuxgOGcfjS7p1GfMP5Ub5QCGhP8AwEg0nmescg/4CTQLQct3cL1bP4U77a4Uo0alD2quZ48cnb9Rj+dIJIm/5aA/jTFZD7zUY/snltDjA+Uds1u+DtDe/mGr3qDy14hUj7xHf6CsSCC3ubu3inb91JKquQexNesxRRwRJFEoWNAFVR0ArWDsrmM1rY8eUcdKRxgZHTvSgd+aHOFJz0FQWV7cbt5x3q2qjuBx7VWsQTGCe9XADntSGBXIB2j8DimTcRNt2j6k1N82Mdvao5CdhB78cmgZyHipV/tjb3VFHH0rECjH32B9mNa3id92vXHPQ4rIyMV2wiuRXOGcnzOwpDFgBLIMnH3jXpNnEIbZEVeFUDj6V5vCN08Y9XH869PyVjYbMEDHWsq6StY2oNu9znfE888D2hgleJnQltp68msQarqa9Lwn6itPxY58+yH/AExz+dc/up06UJRu0TUqSUnZl19b1VUP79D9UrtdHRksImYhpHXe3Hc154zAjFel2AKWUBB/5ZKP0qKtOEFeKLo1JSbuy2xO0dRjtTQ4Pelw74GOtKEA4ySfasDcd1wOQPYUfwYPX1zQACRn9aQjaSAc/UUhmRrTwW1uLu4DeWrBcp1Gax49Z0g/8vdwmfU1peKznw9LnBxKlef/AC91FaQw8aivcynXcHY9GsE/tS3mntL2Z44Rl2yeP8elVvt8TkbdXjJXpkD/AAq98PFDeHtSH1/ka82mWPzpOP4j/OksLdtJ7DeIsk7Hf/2lcR/6m6t52PRR1NbwO5c+vtXnPhKNDrR/64v/ACr0SIlokYHIIqZU3Tdm7lRqc6vYftA6ZpAuc5NOIboDxTWQ9zn9KRYjLkcqT+FRTvFDGXlwqjuRVleAB3qrel1tpjgE7CQCOMgZoArfadPkXmeHj1IFKRZ3AAzC/PYg+9ccviiQgeZp0DH2p3/CRWZGZdL5/wBlqXJVX2SVUp9zq20exmDFreM++0VWk8PWBIxHsI7qxFV9CZLx4r2BGiiYsnlk98Zz+lW9cnt7VYpLi5khQkqChOM47ilr1Rd+zIDoSRyDE1wCeB+8P+ND6XenHlalOqj+E4NVE1S1dgY9b5/2wP6irK6g6AFNQtZcdAeM/lS5l2H8xRa6shJ+1xyZ/vRf4VG0erL0jtX59CprU02Wa4ti06bZFYqQParRTnrg1aJuYBvr6CM77AnHdJqt2twbqBZTIYiRypOcfjWhJErDBwfwqppqQQS3ED2wk+bcGLY4PYUnpsA5SzN/r1I/CkKuTjYj8+lXglmxObWUZP8AC+aiMFiDnM6fVQaabCxWEank26gA9jivXYZI5Yw0Tq6+qnIrykQ2vlkLeMpx0ZSK9G8OWkVpoVssT+YHXzGf1Jq4u6MprU8uXBH+NMnLCFyCFOM/WpeCOP5VBcjEDZAP1ouMdbYWIcEcelW1B4IBNVoQxjG0/rVpGzwcZFIYFQfmwCfWmlTujGeC6g/mKl78U3P7+If7YPT05pXGef6zcQPq9yZop9288pjGKpiSx7/aR/wDNS6g2+/mb/aqriu6MXyrU4ZSV9i1atafbYPLeYsZBgGP3r0tlAjfOW59P6V5vpK79WtF9ZV/nXoczMImwePcVhXvob0NbnJ+LDE2pQxtPHEUhUYfIzwOlYYhjP3b62P/AG0xWv4wI/trb2Eaj9K5/ap6qPyrWmpcqszKo48zLJt2H/LeBvpKK9NsSDawgdPLXt1+UV5SscZZRsXk+ler2yIkKYUA+Wgz+ArOveyuaULXdixggegpcHGeKaCvcZ9cU4gfw/rXMdIY56g+2KUsQPmAIH4Uqpnn9M0mCDkAfSgDA8WHPh6Y/wDTVP6156O1ekeJoZ5NK22rBZDMpUOAAeDnr1rkv7P1s9ba3k/4Ap/ka6qM7Rsc1aN5XOz+HHOhakPr/I15rP8A8fEgx/Gf516f4BjuorHVI7mFIX2AhFXA6NzXn0qXIkYyaQG5PzDeM+9VCXvN2IlH3Urlvwjxr6D1jYfpXosGRboO5HXOa8/8NyY8Q2yrZGEk4JLk8fQ13tuC0CHPO0Gsa7uzagrIn2jbz1poRgPvU7LE4IIJ7mg5H1z3rA3AjA5xUU6ZhcKM5BB7dqlJ5Gc/lTGBIJB4oEeR9GI9DSHkVNJazGeTywjruONsi9M/WmtaXQHNtL+C5r0VJPqee4tHX+E23aMgHVLrHXHUNU3jNd2locDCyA/zqp4S8xNLuEdGQrcI2GGD1x/WtLxWit4emYn5lKn9a5X/ABTqX8M8+2qeoFLAqpe27AAYkX+dMDj1pN+10b0YH9a62ro5U3c9Vt/lnuFXglg35qDVjlgCRmqdtJ+/XniSCNh+WP6VdIPHNec9z0FsNwG7fnVJCseoOpzlkzx7H/69XsgcHgVQncpfxFRkEEHnFAFvGwd6aQDzTskr/SkPTuB9aYCbf19a9C8OOJPD9ng52oU/IkV55uzwM13XhCUyaKVP/LOVh/I/1quhEjzhQQfu1BdkBQo6kjjNS7jgZFV7rOYx1BPpSZSLESnZ/hUoY9B/Ooo/u4ziplXPQ0gH7ueSPxqKWTbKGyPlRz1/2TTwMdvxNRSJKcjy0cHIyWwcEdKNBO553cHdcyH/AGjUeK746dGethEfxpp0u3I+bTk/AiutYiK0OV0JHJ6GB/bVqfR813krl4Pr6HFZ0OnW1vdpKlg6MpyCpH+NaTMjAjy7gD2FY1ZqbujalFwVmcV4rbdr8/8As8ViV3t3oun31zJcXAuRI5ycKcVXPhfSiOJbhfqp/wAK2hVgopXMZU5Nt2ONiAMyDvuH869Yh+WNQRkbQK5b/hFtODqVv3Ug5+ZeK6eGRCxCSh1AxkVnXmpJWNKMXFu5K7cjgigrlgcfhT8gkcg/hRuC8bT+fFc50ABkZABHoKXOR3wPSlyT/Cce1BAHQ4pAc140dV0mEt0+0j2/hauRhUTJlGI/Guu8Z2lzf6VFHZwvM63AYqvYBWH86xtDvNb0G2eD/hH0uUdtx8+23kfQ1a2M29Tp/h5C0UGsBpGfdGuMnOOGrkTc30CZF5Lgf7RP9a73wpqz3r37XGkwacyxgbUjKCTr6/55rjdS8R2FzZyQr4WS3lYYEilxt98U9dNBaFfSNTu5/EWnxSXLOhmAKnvXfWzBoY8ZztHUYrynQHKeJNNJBH+kL1+ter2jg26DjgYxRPQdMsAjGGFNZh90sT9BRtAbPU+lOAOMgfUVmakZxgAKQD70jIQQN2BnsKlZl4B4PuKa/wAwABH5UBY8VvYVS/uU2jiVh09zUQG37pYfQkVe1lNmt3y+k7/zqlXopJo4G2mdh4Nb/Q74lmJAByzE9GU/1rf8UNKvhy5eM4ZVDBhg9xXN+C35vk9Ym/ln+ldZrambw5fDBGYGOOOwz/SuSokpnTTbcDy0ajc/xGJ/96FTS/b2PDWtqf8AgBH8jVQcmnkV1cqOfmZ6tphZ47Jzglrfa3boxH9a1QSSQ1YeiS79O09ieqyL/Jv61t7uBjmuGW52R2DhjgfyqldIFnhfoN2CauAN2Hy96q3ygRK5ACqwNIon4XkNQcEZYijIdBk8EdKjYLjCjFAhzH0Ndb4KlBhvIs9GVvzBH9K4454B/Ouk8FOU1S5iJ+/Dn8j/APXqkTI44Ek4xVafJuUU4wOasZ681WkObteegpMaLiEDg1L364quvbNSAjgH9KQyUBx1P4UuTkDNMXB6HJpwXJLbsexNADwSPrSkt6ZNNUYPJpwODwKAEw27JAGKkHzZxwaaMlvmpSSp4FADjkDBH60oGR0prPjqvNCMA3TmkAucn/61SRgHt+JpuQWBHX6U4ZPY/lQA4MAMZpQe24H8KaduPumnKQBjAoGO6njr7UbSOppNwXrxSgk/WgCpcWqs24M4PX5XIoFvgACWbcf9vNWmHUHkU3cCOCM0CIPs8ik/v5SfqP8ACgQznP8ApL591FWhgc5pMA0BYriG4ByZoyR3MdWoA4XMhRm6DaMUHIHA/WlLZPGM0XBIeTxyDSc46nimjnjOaAW/uj86RQ8DI5Y/jUcgxGxU8gdqcBn0ppB7CgDAutI0qe4klmtnLOxZmaEkn8RVaTw5oTEAYXPqHXFdG33eRTSmQMDpWqqyXUxdOLMSx0Ww0yd5ra7iAdWVlL5zlSB1+ta88KXenS24eFi8RUEMODjFThFCjK96VoInI3RJg/7NKU23dlRhZWR5yfAurLyr2z/STH9Kjl8Ha0h4tlb/AHZBXops7fPESD6DFJ9ii6gMPoxH9a0+sS7GboIxdFtLu1021hngkWSOU5X2KAf0roBjPAFVvs53HbNMMHrvNWMsoC53VlKV3c1jGysHHXv61VvubZsHOB0q1nB+7UNyhaFx044xSuOwKBhcDCkDgClIAbFRW+TbRHJztFSHp8wOaEx2FZB2z+da3hd/L8QW/P31dOvtn+lYmXzV7RZTDrdlISQBMoP48f1qkyZLQw92G6VWLA3ZIA6VayPrVRDm4cnrmhgi2nXpzUwPFRoad370hjhx/wDqpRz6U3OTyDSso2nBPTNKwCs+wDnr0xTll3j73AqJlG5SPWkRcAsCQCc0WFctA7f/ANVOYg9cVGvAHPbNPGCeCPyosMUkbOTmkVgxwCM/Wo+WZjkDB6UwR4ZSpwck5pWHcs4x3p+eeTioY2cswY54qQHGT1NFgHfXpTxjpjFR4Zu/P0pwB7n8KLASHO3ApCMDkfl0pAe7HNO3EmgACjGeaQg46d6TfyQOcdxSeaQcYPrwaBDw2aGwDkg5qFnd2ULlcnkntT0mDIpcENjoBQMlDMT2IpTgnt9M0xXXt/Knjk7gMfhQMXvjiggZAztPem9T7/WlYjPIGKQCbgTj5h9aUHkcimhlbO1hx1A7U4LjB6n60AI6kg85pg9P1p+ctg/lmmOyRsN7AZ6CmIcrjBDHvxTsjBOai3Avtzn6VKgGOD+GaAGs2R7Um48YBI9BTsDPQCm7sEjkfhQAoGCc8CkIIwCCPqaThWzzz60hye4zQAm4k9f0pr8q3Bx05FOXLZXPPtTWjPOMc0hla0KtbgA/MpII/GpiMnGTmq1kCFmXI4kJwDVg8HORTANpB44p0chimSQdUYMPwNNznPeowxGep+tUiWUxwpziqtv/AK1yPXoKsE/Ieg4qC16E9cn0oEW1GTnGDTjTOMgnk+1PyBxigYA4HPNZ8908Tl3uEijckJvHXFXiTtIzXO+KebGyXuSTz9TSavoJvlVzTF+Gxi+t+KeLw7cC7tSPrXBEKQOAKUbcDJo9lLuT7Zdj0K1vZJ7kx74XULklD0qe4kmiAECqTnuegrA8JjFtK4BO6TbkCuhkzsl3DgRP/KlZpWLUk9SD7Tcnnyo+fR6BPeZB8lTjPR+v6V59GzBmbzH6+vFWjNIIyVkYH601RnvzEe3iuh3Ml9NEGd7fA6nD5rRVvMUNtIyAeK870ySW51e1RpXKFuVLHBr0KLCxAKB+B4pcrjuy1JSV0SjilzimAZ5NOA2nJP60AOyTjtQSQO340mc9z+dLyfYUwK015BbvtkfaxBOMHmmDVLMyZMwA6c1U155bSwe6jIZxIoAKjgHtXMDxDeDrDEf+A0KnUlrFCc4R0Z2xv7QAfv4+D/eFSRXVu0YImiHHTeM1k+FHOu3csdxDGqomflXnPFZN7q0dpfT27WUTeW5XOOv60uSre1g56dr3OvWaDcAHQ59CD7U9HDDIORjjFcIdbt5CI1sVDMcDtXU6PH5FmYjghWJxnnk55otNfErDUov4WaoIB4oyMnGcn1pAB37+9DfKOpoGIQRwTg07gjJ/lTc4GTS8+uPwoAjfeeBgrS+WpZGPP1rN1S7FrOhe9a3DDgbAQcVTGpI33dWj/wCBRipcrdB28zbaMqPlLHHAFPVjuxt49axDqbqCRqFq3flcVb0q+muzMJwg2MNu0H5gRnNClcLGhKxC/JjPvVV1Z3LNjcF4xUVzdTpMyJ5G3qMvg1H9tuif9REf92WhzS0YcrLqs5YblGPY1KGI6ZFZj6hcRpl7XgdcOKs2V39ttFnVWQNkYbrwcU4yT2E00WNxz159aMnP+Aoxk8nmkPyselUBVhz9pnUnAyDUvI/izUA+XUGx0K5xU7fXjvmgAJ44zTWOADgZozu6YP0pOnXNNCM+RtqE8CorMYRScfnTrkqYW3AH0pIPljUAZNAFvgHg0p5601eRigsV44pAOfAQk4IxXLeLn2iwUEAeXn+f+NdJI48skZ/DrXJeMyTd2qDOFhHT6CqjuRU+E55pwe9OjfIHfJqqAWwCDxVkcMQDjHp2rVs5zt/CildLzjgyt3xW1cNtguWPaBu/0rJ8Mr/xJo88ku1aF+dlhfNkcW5/mKyludMfhPOo2+U+9S7yFwaoicVIsg45rY5mbfh/59ctj7kivQI8lRn064xXnvhg7teh+jGu+jOFA/kc1lPc3pbFgdelL3Hf8aj3HpTgeTnJrM1HgnOAfzNBYg8g03cKA5zjIoEZPiLH9hzHgZlTPP1rieK7bxHn+wpvmBHmr26da4mu7D/AcWI+M7n4b/8AH/cj/Y/qK5nXeNdvR6Smul+G5/4mVz/1z/wrnPEHGv3w/wCmppxX7xil/DRnRj9/HxzvH869Etcqz88cYGOOg715Gmqaq7zz2fh69u7W2mdGnhVmQFOTkhSBgYJ9MivR/CurjXNIi1MW/kmbIMe/djadvXA9M9KwryUrWN6EXHc384Odv408EkEE8fWowQaXgHNc50Ck5GM4/GgcnkcUm8e9IwBHP4c0Ac14wCGG2I7OwPOewrlcJ2xXV+L1P9mwuo5E3p7GuMWR/wDIruoL3EcVf4yVwowcc5r0PTl29Ojwxnj6Ef0rzcu3Q16Npz5jtXz963A/JjWeIWiLw71ZznjHfHf27qzDdGRwcdDXOi4m7Sv/AN9Gul8agF7VxjOWBx+FcnV0opwRNVtTZfsbiZ9QgV5WKlxkE16DZgRCaIYG2Rh+Gc/1rze0bbeQH/bFelw/8fM3GQSGxn1UGsq8UnoaUJNom79D9aQnn0HvT8YHGMfWm8Hgg/WsDoKUp/4mEXHDKRmrDcZFV7gL9pgYkj5sZFT5DNgc+poAbwDnnFNJ556U/K4wCPypjEE8/rTEZt4oMGQ+MdfenW7ZQVHdAmJcY5YVOinYuD+lICTeueuaNyt/FigxhucAH2phUcYGDSAScbYS4IOfU4rk/F1zNDrW2KV0+QA4PoAK6ucM0eCRyeBiuK8XzD/hIZFIzjj9SKuO5E9jJXUr7P8Ax8v+lP8A7TvOf9IJHuoqiWG7rTt/TH51djK7PR/DbO+iwO7Es5Yk9B1qxqrMmkagwyMRAAnkHnP9Kq6CNuhWYAOShP6mn6z+70DUumSqjj8aze5t9k89XUnX/l3tT9YRUq6q2M/ZbT/v0KzSCvSgdq2sY3Oq8MXZn1yICCGPCsSUXB6V6BHkKOOfpivOfBozri+0bfyr0VWYn7vHrms57msNiTdzg8GlydvSmb+cEA0AuScdPaoLHKxHBUnNHzZztIx6ikwTgt0HQUO+5Rtz9KAMzxC+NGkzGWUzJkKQD0Nchvtx1iuB+Kmun8S3s1jpKyx7ctcKPmUHja1Ylhqd/fKzJbxyBeDtgzitqc+WJhUhzSOl+Hc0Z1qdI1lGYiSXx6j0rD15rZtfvvMeZG85gQIsj+ddH4MeY+ICZYRH+4bpHtzyKx9Ynt01e9MtgJGEzjdkjPNUqmvMS4aWOW0OfSY1sZ7y42Gx1+8uDKuoQwPbqVt9shicFpRlCQq9dpHOa6L4b8+DbNdrYBkOe332rhr7RtEnu55zHfK8kjOVWdNoJOcDKZxXpvhnTrfSdFt7S2LsojDgyEFvm+Y9MDqT2rGS6m0X0N5MAelO47E81GCQvTn3FAOTzkGoLHjjJB496QkleOaUjjk5pDhR1oGYXiqMSaUF3or+av3mA7H1rjvsMp6NGfpIv+Ndd4sAfR2BBIEiHkDHcVwvlp/cX8q7KF+TQ469ubUunT7jGdoP0YH+tdxpXNnp5JIKxspw2OhHB/OvO/KT+4v5V3eghTplmAOA7jAHqqmlXvy6joW5tCv4vgee2t/KRmKueAM9q5L7DdD/AJYSf98mut8XrmwgcblKy4yCQehrjvMmB4mlA/66N/jTo83JoKtbm1JY7a4SVGMMgwwP3TXotu+JgwP3oIzwPbH9K83E84IzcTf9/D/jXoGnsfJtMDINvtJ/3WIqa99LlULX0NP+HNIxz3PPbNMBJ7MPY0oB65yTXKdRWvGKLGy8YYVJuI74JGfT9KhvSBASrk7SDUpO5QwxzTEHJ5+UnvxUZHy8075iOT+tMbIIxgD60wM25bc0aqe+SKnUOFHaq91EyBZQWO1sYIx1qRZJGX7px9aTQlJExJP8XPtSgnP3uaiDMP4f1pGkZuNlFguSEliinOS6j9RXnfiuTf4huDnv/U13ySs8iOYyBG4LFuD68Vzt54eivruS4lmIZz2P/wBargrbkTd9jjAehpyt+ldYPCVt2uT+f/1qH8HKMlLjJ+oq7ozszotFyujWa448oc1Hr77fD16R3ZR+hqWwiktraKMq25Iwn3sjj2qPVI5J9NeAQNMXlBZN4U7cdcn3rO2pq3oeZSNzimjpXYf8I8jddHmP0uF/xp6+GoSOdKul9vOU/wBa1Mil4MIGsMxPAibNehCSIqAD8uOMVyuj6WdP1HellcQhkYFpCCP0NdIJBgZGfwrOe5pB6Eq7Q394VJ5gK4CN+VQ7wQG6fSgSk4wQM+oqSrk4kUnG0rjrmo2YbgRgj8qY0px8wH4EVFPcw21rLdSyBYYkLuxBOABknA56UWC5j+NTjQo/+vpf/QWrkLHXNR0hWNhezW+8/MI2xn61e8TeL9D1DSFhtr/zZftCuV8qQcBWGeV9xWC8M23mGT/vk099BM9S8Ba7qmr6mn2+9muFEblVc5APHNZOteK9ettdvrSHUXSBJ3RU2qcKCeOlTfDMFL+PIIOyTr+Fc74oYr4o1PHa5c/rScLwaRVGcI1YyqK8U1dd11RmzEXDSuc+YcsST1r0nSCDZ2x55t4+3+yK8vecspHyjPXA616VopQ6faOeT9mj4z2xUQjJRfN/mdWLq0ak4+z6LVpKKeumi7Lr1/F7ALSdF4HqaU7jjGAPfmmI6npwO1BYZwD81M5iQM5OMDHqaY/yyHeevT0qRW46gmkL8nOTQBi+JI2/secnbgbT3z94Vwteh64qzaTOjOsSkD53OFHzDrXHDS4z01KwP/bYV10JJR1OWvFuWhnYrtNAbOlQZzxPjj3T/wCtXPf2QeovbI/SYVvaGBFZPEZEYxzRkmNt3XdTryTjoKimpaljxWgfRSRklZFPJ+tcKRXoWuwNc6XJFGAM4OW47iuQ/sW6PQwf9/BSoSSjqOvFuWhlkcV32lNvsrFxnpIvH1B/rXKNol4OcRn/ALaCul0ldun28cnWOcq2Of4B/hRXaa0CgmmbPPQLj1NJyc/Pz24p5JyR/Ok25U44YfrXKdRWuwWtpBtA4+lLCd8MbdiuTmnT/cYHuOgqtaSB7dQQRjigCwSCcDOP50x3G3G0le1O3DO0HPFQs+4EA/pTAq3e6aLYJAp3DqKrqZEwDNx9KPtab8n+VI1wh5JFHMyOVD/ObP8ArR+VKLk/89FP4VEJkxxmozLGDwRTUmHKiybp2GGIqLcD6VH5iHtx7GgMMfLjH1pXBIlBweNtODMDiolPQ/1oDYbAB596AsXUnKLggcdaja73EZUVArZOM807PHTGKrmJ5Sws7gHEYPvmlFxzkpg/WqxYlflI49qQ8pknHfFHMHKWknHm7myQKf8AbkUndG1Z+4qehJ/GlDK/UP6DBNCkDiX/AO0YuyMPwp638LkBlx71lFMnocfX/wCvUiogyD/n9afMLlNYXNuR9+sjxHewDw5qkeGZmtJQCF4GUPeiR1IVVGAPpVbULaS80y7tomw00Dxru4XJUgZpXBROD1XSrGPwVBFC1odTsEhublY42E2ybJJdioBA326gBjglumTXrhm+biQj8a8lPgfxFJJO7alAXnXbMzTyZkGQcMdvIyAefQV6VjALEsVzjt19BSRbNBZmDZWUqfUGhpN0ir80kjn5VVdzMfpVzT/DtxcYluMwxdcNjdj6dvx/KtyNbXTYDHZQBnxguTnP1PU1nKqolRptnK4AlMVxbmGXskqjkeoPQj6VZjWFU6KuAAMDGK1jdxXSmDUYFKnvt7+tZ13oE6J5thP58WfuMfmH0Pf6HH1NKFaMgnSaBDDnrg07MA6PWOqSFyhYq6/eRhgr9RU20hT64rS5NmXCAXIWTA7YzUiwAn5p2rO3OBnOPbFSKznPzYHuKfMuwuWXcuXNlZzQGOZFlRuCr8g/hWYdD0Qcf2XaYz/zzqcscjkc9/8AJpzgEnHTscUuZdB8r6lNtC0TPGl2v4Kf8amtNPsbQsttAkCuwZgmRkjpUojyOg59TS7URSoQnjglqL36hbyLtzaW91atBP8APGwwRnGa52fwzo6TBV09SpGc+Y/+NamXwPU9s0DIALdfdu1Pm7C5X1MtfC2jN1scfSV/8avWOnWenxpDbqY0EnmY3k84x3qUsQRgACmljkZVfwNHN5jt5GmIcgZmycdQMUfZo+8prPdmB+Qdv73eoPtE3pn8afuk++aU8cKxOfN+YDoRVG0hLWsZBfnP8Q/wqHBkVgwxn/aqxbskMflLuKr0yad4iakKbU9i/wD30P8ACo2tZMf6yT/x2rBmUDoR+NR/aBz1NPQPeKyqpXoPypUiUtlgP5U2O7uhGWZ8D2UVUutX1OHb5UO4PkhiuePwrmuzayJZkT5sAcGsiRg5+UrnNVZb2+nWQypweWXeErNSS0LEvpz7h15z+VXF9yJLsac5kRCdw9sGoYr5FOxpxyOzdKiS0iuCGXTptueVVTilfSIVlL/YrlVHOORj8+tU6qRPIy4rb2JW5f0xmr0UbbeZWNYL6XHLJ8lvcQj/AGST+PNPXSldCyC+z1+8AMU/axFySNq+urfTrKS7uZjHFGAGfBOMnA4HPU1zE/jCxKHytUbcDgfun5H5VNNpFtcfZ7e9muo7aa7gjmZzgKjSqGJP0JrkdYuLq6sbr7RotraC2vREskECwmE4fMJAAL/dBy2SNvJ+ajnT2GovqdNLrOooQPtDAg4GQKb/AMJDqaYHmhh7qKtto27Ja5uckfLmH/69N/4R9d+Ptj7vQwkD+dS6kQsyFdev5Fb9+uSMj5RxUg1fUHiyJE+oUZp6+Gt42xXqtJj7gibJH4ZqB9Jkt5Qj6hDExGQJFZTj6EUKcQsyxDrGoLhSQd3qozWrZ3k877HPzY5ytYH9nysNy6laMc4xuOf5U9rG8hf/AJCNvuHUbyuPzAqlOImmdZEzOgY4z3GKbLdNb7By7ucKoxyff296q+H/AAzrOqBZFvtlpux5isSD6gev4V2E/h220/7I1rdg6nHJujadN6vwfkIzgA8c8kY4rOtUUY+7udWCpwlWXtvh17720vbW17Xt0MvRrG61a9NvNGbV0jEhWXqykkZUfxD36CuxtNPsdNA8tPOnHBkbk/n2/Cqlhp16+oSalqUsLXUkQhVIFISNASSASctk4PPT6Vevr2z0i1+0Xkyxp2Hdj6Ad651UnJanTiqdGNX91tpte1+tm9bf1d7lg+ZMfnPHZRwBTxACOlcFfeP3kLC0iaGPsSuWP+FYsnie6ukEgvbkE9iMVJienzWAZORnjqaoeXcWT7omOPTtXBWviPUFw0d7IcdQTW/Y+MZMhL1FkXuwGDUtJ7aDV0dA/wBg1MBLuMRTDhXHBH0Pb+VZN7o97ZEupM8PUOo+YD3Hf6j9K14ltNTg861cMO47ihJbux+UfPF/dbmrjVlH4iXBS2OaQNLGGRwynuAKaVfAcvnPHK1vy2+n6nKZIHNtedCV/iP+0Ojfz96xrz7RZTtb3DR7xg5RCQR/SuiM1JGLi0RbJdwAYflUpWQ5Ac1Ab1wc7kPb/Vn/ABoW9ZSfMKqSc/6s1V0TqSHzUHDZ+tL5jkYwPrTDdoTgyR88/cakF1AG/wBauf8Arm1O4Dy0gIPy00yyZzgUxb1ckl0xk4+RulDXkXTzIx/wFqLgP8yQ5GB/hTxHK4BBWoReRDpJGfba1NS+ZCxkMaZbOCGNNWE2yYrLnt+BpVjkI525qv8Ab1DH97H9NjUf2jzgMhPb5Goug1HMsiHoPelQyAn5RzUZvBnLugcHBGxqT7coP3o/++Gpqwm2WGZwDlQeKiLyjpDkVBJf8FUMbE9eGGKBqg24JjyP9lqr3QvIqXk8F1bbVkdGHKkDvVG0S2dSsodZ19GPPuKrbsjpzjrR5YKlw6oy9y2DmuVyZ08iN620azmTdtkPCn757jNT/wBgWnZZP+/hrBs/EUun3ASf5o2wCT39xWpdXl35ZuLS5d4TyVIG5axm53vcpKOxc/sK2xgGYf8AbQ0p0K2bqZz/ANtDXKjxBqcEGoTrdM3luNocZArOT4gawOvkn/gFChUezBygt0d5/YcA5DT5HT94aami233RJPwckb+/rXFf8LB1bHKw/wDfNSW3jvVbi7ihxEu9gCQtP2dXuLnh2Og8Q+FG1LRLi0tZmFzJt2meQ7eGBOcA9ga5O8+H3i7UliW+1mC6EQxGJ7qV9g9BleOg/Kug/wCEk1RWx5yn/gAqtd+NtSsViJEUm7Ocpj+VTCpNPlTOiWFl7P2zXu+q72vbe19L2sdUNBiwR51xg9f3lIfD8Xae5H/A65AfEi//AOfeH8qbF8RNRi3eYkchJyMjoPTiq9nV7nPz0zs49DMMgkivbtHHRlkwR+NNuPD/ANsZWuLu5mZRgNIQxx6ZNc9p3jjUNQ80iOFAg/u55q3F4p1Ri27ycA4H7v8A+vUv2i05ivdetjSHhaEEYml/If4VIfC6ynLXExJ7tg1zsnjfVklIAt8A4/1f/wBemf8ACfawD922/wC/f/16f7zuFo9jvtI0Z9OkaRbqZiwIK5wvPtV66Xy57V2A2iZckCvN/wDhY2tp0itD9Yz/AI1d07xpq+rq6SC2Ty/nDLH0xz3PtTab1bFe2x6Lea1p2nBxcXCrIib/ACjwxHsPevKtY1S61q+a5uDxyEQH5UHoKjvdVudauEvrtkaUxqpIXaMD2/E1Re7wNlsm8jgu3Aqn2IRJs+Ttgj0zSbMLwoGPaq7famBZ5ceyrUTG6QBhNnvhl/wpWGWCGRtwOPcU5b5l4kH/AAIVTW+JbbcLg9mB4qWTGwbcEHvTsgu0b2ia/Np14s0L5TPzL2Ir1KDUtO1BI/LuIzJIu7y85YfhXh2njJOB36V0tlfz6CY72AoJyyoA67vlYgH9KlLXlG9rmveSt/bl5HbONglOX7D/AOvU80TzfO0zSMABknJrJuJPMupJ8g+axc4GOScnipLV/wDS4gSxG4cc10Qio7GUrsnYgDaOTnHJp8oZxG47p/KrcqlWG1MLnOcZxWDNdwRzyIYpSVYjiTH6VpZ9FcyuursXwhc7cc9+elJ5ZO7AztFZv2y2zuFvKCe/mUx7yJyFSGRSxxnzKLT/AJR3j3NTuRjJ9KPLO3Poag0gvFYuGZmYSuCTycZqG+uoYrx1eF2JAJIfb29KEm1ohXS3Za8hsknrjPWpJ4y0iDqNo71jm9twc/Zn+vm1FJeRSPHGsDqXYKD5h4p2kvsheL6m0AI5DnG7HGakSLzDgsMY6DvVbQreQ2Vwn3nWZh8zZNWbkEIpbrnGB/WnbS4utgdEQnIHPeovLBfJcDNRF1KkeX8xOc55pvHUjOO2aVyuUlaPb0Ktnik8knuMVXPC5657A0w4GQc07hyGer5ODx6GkZHIJwCAOaGJAGCTS7j5eS5JI6dK4zqM+5RHKg4+9jBrqPCMI1DU4IJgSnzfKpxkBc1z2z7TeRoPlyScn2rsPAkPla8rffKxucdO2K0irtJkSdkyHx5oWnaV4XkuLOAJLPP8zK5YHgn/AAryEjFe2fFifPhW1U8MZic8c8dePrXiZbPWtbJN2Mb33DNW9I+bV7cf7VUjWhoQ3azB+J/SlLZjjudQ8Rzu2gY7GsLxACi2/wDtAt9K6FlORnHH5VheJxhrQf8ATOuWEFzpndPF1HR9l0221te9r9r6/wDDIwN1OlOCB/sikwMdKkmj3TY6cDk/Sus883fCuStyQMnIrauZRbkMFJDenasrwimI7jIzyK3L22klVPKGSP0rlqL32dENkYUp3SMyggE9zUbDOOnHpV4q0bFcfMODTGjPHehF3KcgXA2cDvurf8IRq/8AaJ4ysf8AjWRJGRGeDW54NjKxauxH/LH+hptaEsxkZms7eMcbwBXSaHpttct5bLhkRirjqDlea563h8yCAHOQMjH0q6FkthmPzgxGMoxFV7SMJ+8iFTlOOjOweRLeI211FGruNkcgGEkJ4HXofY1Xv9Miut1ibaMXUP7uWRCCsZHB5H3j7Vy8jyzxeVP57I453OzfSgCaG1TY84J6oshGPwq3iot2toSsK0t9SrrmkjSrny9+9WXcrd8Z71m2EpMjxZzgZH0rVe3F0SZWkZgP+WhJ/nWXHAsOqOgH8BqOeMn7pbhKMdWb/huyjuJS2clZcY/DP+FS6swZXZWyvnKMDthhUngvJuboHnaC38qq3+fspJzzIp/8eFVBe9clvQ0N6571NA+yRHxnawPFQRZIY4GBznpT45VY4CEsxwCcirA3Y7j7TGWj3AZ6Cuav8jUJueQ1dBawSW0bJKRknOAc1g6lj+0Z8DA4/lXTR3OStsVAx6ZpYv8AXpn+9RxzwenNCnEiketbS2ZhHdHQ2iKqXK46TkdfWsjWCBfDgj5B15rXgx9puznH7wEfiBWVra/6ZGeP9X/U1jS3N6mxm5FNH/HxEfRwadxwMU1+GU9CGH863lszCO6On09WW6vo17SA56daZczsxMTYwrdfWpLUsNQuwuPmRG/SmXlvt3Shup6AVy68p1q3NqVz0LZ/AUwvnAHIpCd5wqkAdcmkbdjOAAPeszUazlT6GmuSTkcA9qViCpb+ZpFkIQqTwaAMwqAvXP4f/WpBk/xHH0/+tSAk9F79hTWXA44/Cuc2uS2K7tQUHkKjH/P51oxbklTbkHOMg4IrCSV45wyOVOOo7/Wtq2kY+S2RnIORVdjN9zP1iZZNDd7kPIrXMhwHwcbuPWuW36d/z6T/APf8f/E10GssR4XtCersWP4muXxxnOeK0ityJMsFtOK5+yXGM4/14/8AiauaIbNtXjEEMyvhuXkBHT6CssYEZOR15U1peHVxrER2/wDLNjRJaMIvU6xo+mRjPesDxIsIuLYTeYcRDGzHoPWumJO7nGB0rmfFPF7bj0iX+QrOC1Kk9DG22P8AduB/3zUxW3dyhjmL54wART30+X7Kk4AKnqB/OrMNo+55+qqGOO3Q/rXQomLkjR8LiMCUxkhTjG6uhIxjqc+grG8PRhC8akEqqg5HfH/1607+eW0EQjK/NnO4Zz9K5pr3mbxd0jHlA86T/eNNC+1SvIzksQoyeSP/ANdIAw7gA/59aVi7jHUFCMHNbPhPi21cekP9GrJYZ4B5/wA+9anh1jBDq27aAYQBnvw1OwmYyh/7OBRireXkEdqtWOHhRXmMpJOcgjjjB680W6SG2h8lA8mMBcZz7VauFWKWKQxvHKy4cMMAAY6frVTj7smRCXvRRotYBbdJGiTa2MGomtYTEx8pOM44rWnwdItz7Cs88ocn1rGrBQaS7GtKbkm33INDt7a7vbyJ41YREAA+4FcrtB1hwOmZB+AY12Hh8BNUvcD7wU/yrl7KMS6+Fbo3mH9Sa6IxXso27mMm/aSv2N3wWuybU2OeIx/X/CqN/IWtHDZPzL1/3hWjoi/YJNUTco8xVCbj14PSs/UI2W2cE9x29xTitQvoWo33qwLhQOgPenwuvmLlz19ar+fs5JJ+i0jA7UlUkAHOM0A2dUpCs7Y3f0rnNSmB1CctHkA9n7AfSh9QleB45HbLY2kcH1xVKeQyXCgbgNoJy+cf59K2gzlqaEqyrgkRnB9X/wDrUx5Qq5WIZ/3/AP61LTJD8tb2VjNPU6WzbM9ySfvJG35rWfrh/e27bQ3ykc8d6t2GXkPPBt4zj8Kq64APIweOePTpUU9zSbMnzMdIk/En/Gop5Tsz5cfUDv6/Wn1FccQMfTB/WtWtDJPU6S0fdeq56yWqGrNyw8hxj6Cs+yb99a+jW2PyNF8wEykEgFa59kdC1kRo6s3LKox1YVCWJJAORSbuSCefemhhzz9azsbDi46Gm7txOOPwoJUAdffNQu3PI49qLAQ5IAYAhD0J701iADuY00ychWyAOgJpsj8Eg8f5965rGxJY2qXTzFz9wZ+vNacaCJRjgIO9U9GCsLgk9hirsvEEhIPCMf0NaW1MmzD1w+X4c01f9gVy5JNdZqkDX9nZwxEhYolJIGcHmsseG7g872/79mrjoS9zEJ4NbHhU51cj/pmTSt4auAD85/79mreg6dLY6uN5PzoV5UiiTVgjudQVIBbA+tct4oVm1SJVGT5Y/kK62U7Ynzknaa57VjFLqche0uJCuFDxjjGKiG45bGU88hsI48/LnqB+la4GNLfkf6tv61VjSCNCg0682kg4I4pwuybQR/Y7p1KlSVXgit1NGTgzU0aMRTuQfvqrH8q0by0N0EzIQFyemax9DuvNupEeKRNqjaHGDgVu7jzWMtWzVaJHPuhRmUnODjOetKGbbhc4psv+sY4x8xpAvORzU2NLj85+8D9Oau2sIKeYSeSRjHUYNU1Ug4YYq+uVtAVGepz+BqkiZPQqWUhT7Ew4IkT5vxFbfiTAltPmLD5/6VzqItxbQQSlvKkwp2jnmtXUbOWytLOFmDLCH+bOSFJXr6nJqZ0eaXPfYx+3Fm3Of+KfhI/urWL5r81v3EUg8J20piAjwMPkZb8KwEJ2471OI3Xob0Nn6lrQG/4m10P+ma/zrm9PwPEdvnncjH81zW14dkc+ILxW+6IVx+dYls23xBZHI5jA/NK2gv3UfUzm/wB5L0OpWFJojgkEHGe9YOozNJG4LsxU4yfrXQwuqIRkc1zeonJkwmOSc5681bREWPBUAHI6dKjuWeKIOwwCcge1RPcmJARG2QOgBNVJ55J0J29QQKzZUpJFu5uIjErIxGTyGI5/z61KsizztMxyCAqliD0HasZ5TBiOV8pkMOM49P61dsIoLl18y52s/QHiqjKzMJJs0lYMPl9etNk/1bZ9KLO2DXBgaWNV926/TFa02lW5QqLmE/8AAz/hXRGV0QojtNf95FxnNsOfoaTXGLQwn0Y/yploRbTxRtIjbIipYHg85FSXckU7RxzOgTOc7hx+VEdC5amJnmorjHkSD/ZNbUcOlMuWnRT6EE0ktrpDoR56kH/pmf8AGr5iOUis5BtsW/2ZBz9SattcRy5CqDkH5mFZUrxRlIIZGZVJOduOCegp7Xcc87w+ayoMliF5A9P8+lZFt6jBJv6HPpS5ySD1HemrCgT5ZSM+kZpREoH+tkP0iNRys150DOcEk5qIv6dKeYgRgNLj/rn/APXpvlA8Zm/BP/r0+Vj50aDLlRyufXbUUkbbDyPyFP3kcMCCOOaSV8RN9KysMqWO4mYqQcvV2YOLKclD/q2Gc+xqnpYHllu5Y81pSnNrMP8AYI/PijqMZHbKFAEWMfSphboDzFn8RUu4CnZFKwyL7PER/qP1FNW2hSQSfZlyOhyM1MCO1KSKLARMAwP7vg8YyKhMIH/LIfmKsEjtVV0mkuJM3BRFYYWNR6A98+tFhCPHhCRF2/vVXsYibCAGP+Ad6nlsxKSTNOzdgHwPyAFVbewt2tondXLMoJy5p2EWY4YopTIIlViME5GaPOUnHmruPbcM/wA6j+xWY/5d1J9+aiu4LeO0kMcKBsYBCjPJxTSQaj2eBc7mj689KiF3ahhj5h/spmroSNeAigfSn7sDA4FOyFdlH7ZEw+W1nY+oiNKbubbhLC4OPUqv9au7j060hPy8cU0kJmVDOVtrdRGY5FwytkHI5GamuLudD5byeZ5q7SzZOPmB4/KqhybaN/RUUfmxpL5/3kBz61lUbU9DWmk46nYSOD4eQ9RtFYqSgLuqo19L5Cp5rbCMbc8VEtwCAMVnUfPZlU1y3EMhF420lWKDkVQVtusQ7sYBwMcdqf5mb0c/wVXkP/E2hI9aIaNDnqmacl9N9uNtCFOI95ZnI74xTJnlaKVJhtbbkYkJBGaqq2Na57w4/WprpsynrzER+orsscmxakKRxlyZGIHADGsGWfcWIRlBOec88/41sPPGsTM5zgdKw7iX7QTlTj27VFRIRHJIrOIwM7hklz+lW7JQ1wCTjqGyOKz5GWSBDn5xnJx1qW3eSN0O456DNZAdhp9qlv8AMfmzxgkHIq9vjDH9zHg9Bt6Vh6ffM+InwuBxzV9p1UEvkY610xSaJuXGmt42BaOIfhWZd6kk9z5UARV+6cjGfXFY+sakWuAkTkbOD71ltLJkSZO08sx9aic7aILPc7MapEIkKlMDg8dMfWornVJLeQFAGRhnIAwK5yzk8+ZUILd/yrTv50it/LwDnPGO3cVUJOSEQSauz3CNyvrjvjmlS+xPmVsq8hd+gz6CsF3ZZk+U7e2aetwH5469+KjmdynE6SPUlmL7pWG3qAeWNaEczCLiRskZxnNclHO1urMBweCasx6kWTCEqw7g5FXGaW5LRoQavKbjyrhscHp61peY394/nXJtc7bkSN8xz3HU1pwayskgjdMA8Aj1ohU6MdjbufEM+qKsU0QUJIWBAwRxjB/KoJ5/3JGRWLZzHOM8EZIrSVJJRhBuYnCKBy3visaUEo2RqnoWLAlLcAnnJzV8tm3lHsP/AEIVmRqYhtCt8vUHrV1H/wBEmcgjhcg4/vD/AAq2ilJMtq+ak3/pVJZlbG3J+gqZZI9pLMQaOVhzIn3YoJ46VXe4iUZ3Z9BkZo+0wg4LcEfn+lHKLnROMngDk00gmaYqpwZGxgehx/SnW8iCeLfzuYEAYOR7/lVJGgWEPudWb7w34z3p8oc6LrLNEvm+Wy7eQSuBmqVnJHJbIFljJVBu+cDH504eU7bfKYA8Ann+lRRSxrEm0HhR0o5Q5wa9hHIYn6KTUdzcRvGg+fmReAh9c/0qx5yZBIfHtUDzbp4h5bBeTgn2/wDr01ElyHG7fd8lpO3uQB/Wk+03RHFnj/elFPWZs/MnHs1KJSc5Q+2D/wDWquUXMQ+bfHpFAv1kJpzi/ZT++t0/3VJ/rUpeQjCRNSbbggkrge56UWFzGNE7/wBnOT8zeaqqAO2On61FPN5ksS85BPBFXrCzllsgeQrSFlIPQjip3sZdrLvBB4JPJqZUuZ3LjU5VYosMKu6kfHABwferq2EwbcGIPrinmwkcbXcsD2NL2Ie1MJw8Wobm+6UFNMhN/Cxz94Yrof7ISTG9Q3HcmlGi2+4MVUEdDnpR7B3uHtlaxjzqj3MRcZ5YdeelMmby5FwzEMCvzHOOlbraRC+CWHHTmq8+iEkGJlbAPDVrytGfOmYRHmJvZxyclc4qrPIuP3Y6E/NnrV25s5oDJEyAvnkis9kngJVl744rCQyOPK5O7B9/6U+3JZmV2IPbnpUTJvlAGQF5waeqkfMuSCc4qANC2cxyfPnIHBPStOW4E1tIrN8xU8daybU4nDKoGB0PStJpJDAyxqytjnvitoaIl6GGGB++2ewPpSmfZwxBU0T2V0C4CqAedueahXcoCvGcrx9KxcSrInjJRiYzsOOQtF1cu4BdtxAx1psau7BlDPx0AqYaRqF0A8drKRjn5etVG4LzM4uPMBJ69zTmBH3xn0P+NaP/AAjmrzKP9BkXHP3cU8eGtW8vBspNx68Cr5X2G5LuUBISm0rlT1XrTYl2knd8p6DvWovhfWDtItCCP9of41Yj8J6q42+QEHqzCjkl2J5orqYc43neR+IpnmZOAOR0xXTp4N1LABkiA75Jp3/CDXh5N1ED7KaPYz7Bzx7nollYeDbZ23QXMbIRtaZMA46g/wD162BB4XlVGs7nyX3KjKAN5BPZj0H0/wDr13LQW8ow8SMM5wy55qP+zbInJtLf6+UtTc25fI52zsfDV1H5TaUjDc2GGPmIAB59/wD69VdQ8JaLcm0isontjPIPOYtkRrtY85zjDYrsFsbVORbxA9v3Yp/2OAf8sI/psFK7uVZdjkYvhVpaj/kLbie/lr/jSt8LbHPy6nH+MI/xrrP7Psv4rWFj7xigadp54+xQZH+wKrnZPIjjZvhbEEJh1K3Ldg8eAfxyapn4Y3n/AD9afj/eP+FehCws1GPssQH+6KcLW2AwIEH0FHOxciPPE+Gt1GSwvLEsVKqEY55GM9O2c1HL8NBB/rdTtF/3YWY/pXpa2sK9IwPpQYI16Aj6MaXMx8iPKbrwbDaWkkltfT3Fwqkxxw6fJgt25PAqO38OaTDbRm6j11pNg3JFY4APcZOa9XMCdSG/7+GgQJnGXH0Y0c7DkR5DqGkac0SjTNJ1xpFb5muIuCPoBWfJDZasQ2jaFdK9sp8796ZM59RjjpXt7WiMOZZPwc1y58FmHV31PStQNqJR80bRlgSevcVSn3JcDx46gikgW4BHHINIdTYDiMZ9lr05vhUJZGeTVfmcknEHc/jSj4TRd9Vb8IR/jWvtImfs5djzEajLx1yfYCnfbZWDZ3dOld5J8K9SEzCG7tTHn5WYkE/UYq/YfCr5W/tG/wANn5fs/I/UU/aR7i9nLseYmdyFGCQD3NO82Q9FAr2FPhhoq8PcXjf8CUf0qVPhnoIPP2s/WUf4UvaxH7KR40WkbjgUKshPDDmvbF+HHh5esVw31mNWY/APhuPn7AWP+1Kx/rS9rHsHspHhgSUDrS/vR3H5V75H4R8PRn5dKt/+BAt/M1YTw9oifd0qzH/bFaParsP2T7nz0TLjHB/CgR3DgbQSfYV9FrpGnJ92wtR9IV/wqdbeKP8A1cSL/uqBS9r5B7HzPnCDR7mZz5lpdSbj95FOR+lbFt4Dlvl+Wwu3buWjK171k+goyetT7TyK9l5nhw+Ftw5B/sub8WH+NSr8Jp2bP9nOBxx5oH9a9sEhHao3lnydixhe24nNLnXZB7LzPJbf4USp006FfdpQcfrV1PhfcLnEFkoPXJJz+lelGS745gH1U/40pe6I/wBZED7Rn/Gn7TyD2SPO0+GE3cWK/wDASf6VOvwxf+KWzH0iz/Su9Bn/AIph+CAU75+8rfgB/hR7Rh7GJxEfw2K8fbYkH+xFVlPh5GBh9Rc/SP8A+vXW4bP+skP40Ecfec/8CNHtZdx+xh2OWHw8tec38x/4AKnj8AaWv3prhj9QP6V0XPqfzprLk+tHtZ9w9lDsYo8EaKnDecfrJj+lTp4O0QDP2dm+shq89tDIfniVvqM0iwLGuI1UD0qfaz7j9lDsVD4Q0P8A59Mf8DP+NIPCegp1tV/GQ/41d3OOCo9qq3NxJHEEMSYA6huamVaUV1H7OPYUKOeeKeqADGKeAB3p2AaChm0DsM0u0e2adtHqKNgoAaFxngUoB7YpduD3pcACgBAduMkE0KpxkgfgacFHHApxP0oATHA4IHtSbsCnZzR36UAIuDzg07tgGlAXtSFeenFAxD1z/SlU5796UrxxQq+nNIB+DSig/SjIpgBPtScA07FG09qAGgj8adn3o2+1LjpQAZpeopMUtAgyBSg0UA/SgAo60UZFMBMe9BHPBpcikyKQBj3pKU5NN6YoAQ8U0EZ75p/B7Gk5pDG7vY0ZOe2Kd74pv04NABjnNOw3XFNJwaA7A8c0AOO70po688U7zDjrSFs8Hg0AI2PWkHPSkLc880m4A96AHhcnkD6GmSRoefLBx71DNeiHrG5HqBSLfNsDeW208521LaGj/9k=", "path": "images/3pts_ADE_train_00012344.jpg" }
depth_point_15
images/5pts_ADE_train_00013120.jpg
ADE_train_00013120.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 245 y = 211),Point B is located at (x = 65 y = 224),Point C is located at (x = 170 y = 220),Point D is located at (x = 158 y = 174),Point E is located at (x = 39 y = 123).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_64><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_19><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_64><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_31><DEPTH_31><DEPTH_59><DEPTH_29><DEPTH_49><DEPTH_3><DEPTH_70><DEPTH_17><DEPTH_67><DEPTH_70><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_49><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_67><DEPTH_35><DEPTH_59><DEPTH_70><DEPTH_70><DEPTH_31><DEPTH_30><DEPTH_38><DEPTH_11><DEPTH_67><DEPTH_70><DEPTH_70><DEPTH_70><DEPTH_17><DEPTH_67><DEPTH_67><DEPTH_1><DEPTH_49><DEPTH_35><DEPTH_85><DEPTH_60><DEPTH_40><DEPTH_35><DEPTH_81><DEPTH_11><DEPTH_3><DEPTH_45><DEPTH_3><DEPTH_0><DEPTH_60><DEPTH_25><DEPTH_63><DEPTH_64><DEPTH_24><DEPTH_19><DEPTH_73><DEPTH_44><DEPTH_15><DEPTH_58><DEPTH_36><DEPTH_44><DEPTH_48><DEPTH_33><DEPTH_14><DEPTH_84><DEPTH_46><DEPTH_49><DEPTH_76><DEPTH_20><DEPTH_121><DEPTH_121><DEPTH_47><DEPTH_32><DEPTH_33><DEPTH_27><DEPTH_71><DEPTH_36><DEPTH_72><DEPTH_72><DEPTH_77><DEPTH_81><DEPTH_121><DEPTH_8><DEPTH_29><DEPTH_83><DEPTH_84><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
5
[ "D", "E", "B", "C", "A" ]
<DEPTH_START><DEPTH_64><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_19><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_64><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_31><DEPTH_31><DEPTH_59><DEPTH_29><DEPTH_49><DEPTH_3><DEPTH_70><DEPTH_17><DEPTH_67><DEPTH_70><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_49><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_67><DEPTH_35><DEPTH_59><DEPTH_70><DEPTH_70><DEPTH_31><DEPTH_30><DEPTH_38><DEPTH_11><DEPTH_67><DEPTH_70><DEPTH_70><DEPTH_70><DEPTH_17><DEPTH_67><DEPTH_67><DEPTH_1><DEPTH_49><DEPTH_35><DEPTH_85><DEPTH_60><DEPTH_40><DEPTH_35><DEPTH_81><DEPTH_11><DEPTH_3><DEPTH_45><DEPTH_3><DEPTH_0><DEPTH_60><DEPTH_25><DEPTH_63><DEPTH_64><DEPTH_24><DEPTH_19><DEPTH_73><DEPTH_44><DEPTH_15><DEPTH_58><DEPTH_36><DEPTH_44><DEPTH_48><DEPTH_33><DEPTH_14><DEPTH_84><DEPTH_46><DEPTH_49><DEPTH_76><DEPTH_20><DEPTH_121><DEPTH_121><DEPTH_47><DEPTH_32><DEPTH_33><DEPTH_27><DEPTH_71><DEPTH_36><DEPTH_72><DEPTH_72><DEPTH_77><DEPTH_81><DEPTH_121><DEPTH_8><DEPTH_29><DEPTH_83><DEPTH_84><DEPTH_END>
245
211
65
224
170
220
158
174
39
123
118
61
96
7
30
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDvbhQ0txsYsACByPSuGgY7EB7E1PNPNFfyCOeULvORv68YqOJQFUdcc5rnk7nXQo8isTru4qVM55qJc+tTL61NzexKOtTJ0qFeakB2nGKLjJcc1MD0qJTmpF9aCWSjOeKlG7vUS5JzUm4AdSTnGAKEJ6Eo6U4GolcMShIDjt3p4+vTrR1AlBpwNQhsdenrTxz0yapgTK7f3qXc1MVQOox+NNkmjiGZJQopWC5NlvWjknqT7Vnvq9lE3D+aTnhOTTP7SvLgD7LZMoPdzjFVYnmNQIx5PA96CFX70n4VliHU53/ezKg9qtpGyjB+YjjNaKJPMWA0Z6MMdwe9Sbmzg4+gqlKZ1jJhRDJj5SR0rIh8QXlg3laxZlUJ4uUHH4+lQ46j5jo9+eKQk44qO3mt72Hz7O4SeM94zmnHd6EH3pMpMCWxzSZpDu6UmDRcYtLmjFKFJI449c1IvUZuNNNP2kjgAnAOM011K0BYSlDcYpnFC9TzQMUjIph4FS5wMYzUbUhkTjNRkVKaYxouBAwqJhxU5OelRMecYouBXYc1A44Jqy/rioW56ii40VHJzRu+XFTMmegqAoynJpDILof6dL/10NEdJcf8f0/++386ROtK4kTipl6VCg4qZBwKlsolTpUo61GoqRRxRcTJQMVItQheamHaqQrEysCMZweMfnWvoupWVksiXsYRixxIVzWMtSFgUKltue+KtOxE48ysa2s6hY3ghW0GGViWlCADpWU08eQEUyEdSKiWMxoMDzPb1qRZtowY9n0pX1uJLlVh3nv/ABW5C+vpUkcyt92QVH56DuaCwfpDv/Sne5SJjE69H3U5bW1m2i6RsE1FEsivuEv7r+7VpMEZ7UmDVzQttNtoDmzt7dk2nk8sPrWdcSzg7ZWCH/ZGM1MpKjeGYAf3OtPaczAbmd8dA4HFXGWpnKJnZbPzbgfSpFk44GKkePa38J7/AC9KQDJrdSViOUFfJ+bOe1EkayKQ8ayI3UNyPyp2KNuaiUkUomI3h4Q3i3WmztayZ+YZwhHpt6ZziuhRJEQG4cNIRxjvUG09KcKzbNErEuQTS8VFjmngVAxdoq1YWsN5NLHLJsCrmquabI0ZTDgk+1MU1zbGnqen2ljbPKk2ZCQAM1ks+SQaNse/eiHf7mmM4yc9e9F0TFNbikLimqUBxSGTimHoSemcGi5ZZyD0pjFc81GC+AvGC1MDtt7AZOPzqWFyT5KYVQ00t6mmbuRipY0DRqeAcVGbZepapGds8VExcnpSHYa1ugOS1V5EiXvUzCQ8YqGSFyPuj8aaY0VZHwfkqB3P8VTzRsuM7R9KgaHPofwNUBVuuLyY85LtweO9CcnqK07qJJNQkkkUMAXU49c037NA/GwrT5CFIrR/L15+lTIQexH1FSLpyZ+SbafepPsdwg4YSj2qHTL9ohB07VKiMSABk0zbKg+a3IFSpcRIMnKcYyenUVNrA3cQyJGMswx3xzipFwwDKQUOMHP9K0rXVYrLSJpWgs55FujGq92GPpVaaUXdzJMIY4c4GxO3FV0M1L3rEQHFKOD2P1opR1qWy2GPUn8KeCemfzptKKpMLDicdh+VKG9c/hxSDmnYp3BolB78ZqWNs8YquFNSq4WmmCdjQsI7eeZkuZhEij+9tz+NJqMFlb+W9ndiQk4ZTIHzVTzEfAcE4HdBj86YFiTIWOHg54PP5UMzcfeuLuXcQAAM9hinZANN27mzzz604R1V3Ydhd4PanZGKZ5ZFMbIqdQsShgTjFIGHmYGT+FV2JHNVruaeFXKTqiiJiuf73alcZpCQHHH19j6U7zFxVYRyKdmd7AncR64H+NO8uT+7VASFwB3oBOeMH8ajZljHzzpH/vGqs2raZbf67UbdfxFMLl1gCNwYN7qc0zbntn6HNYcvjrwrBJtOrQPJ/diOahufHOmJEJLfT7+5yf8AljFnP61HKyPaI6HAIXtnjHpSLGSVG07N3Pr+Vc1F41ubyYw2nhjUd2NwM0ez9c1WuvEfjAZNr4dt441OS0kzZ/Hir9myPbxNmOCZtQgRrk/LNIzjH8PUf4VqC3GRlZFGT1U8VxUureLrjTo7gQWFtKXfzGDZIUDjt61BNp3ja8Tz4tfjUTHhFQHtz+uavl0F7eKO+8jjPH4mmhYVOXljQertjNeX3Gnax5Ze71+eVsEMqLtwfwqg/h2DfH9pvL1kxuYm5c9fx4pezuJ4ldD1S51LTLY/v9QtYwO7Sis6bxd4cg4bV7ZmBIIVwf61wcOlaLZLIz2U87FSI2lkLBieO/1qiNK0+CFYFs4TJGCCdgJJ/wDrVSpC+sHb3XxE8PQDIknmHrFESPzFZdx8UNJORDp95IPUoQP5Vz6W8KKoEEaD0zj9KZLbhASAuD2U01SXUTrl65+KMoA8jR12noXkArMm+ImtXDfuLOGIfUGqWjCDzneeFZ1DH5XrYvfsske62tI7f/eq/ZxJdZ9D0mZf9Lk/3zQgNSyrm7f3c1LHH04rBs6ojUUntU6QuT8vWpoowCKvQxgHhaiUgsUVinB5XNDIf+WkIP4VuxRsRnH6U57YMPmFQpDOcNjaP83lc/yqGW0CozRyHPYVtS2gUMVP4VUZSq/dAx7VXNdDW5kBJxtLmnqzc7jWrKvmBCwGAc8VA0EbSbtvHpSSLuUw6561JvXHHX0qQ2cZbI+WopbRl+6/44pMVxysB95aeXOcKeKgS1Y/ecmp5bTEQ2vgn2oBsXf/AHqfkAZzmuZ1bxZpeg3H2a/mY3BClYo0Lls/Ss5/HyTOE03RNTuXPQeSy/zFaKLZlKokdfcTyx/6sIF8tsZzktVjcXOApLtwAo6HrXIpeeN9TjJtvCxh+RvLMzjIJ7moPEOmfEXSdMN7e39pFEFeVhCuCvHTOatU7ke2SO2MhT77hO5Z2ANMbUrKJS0lyAB1O4H+VQeAfCGneIPA+l6lq8lzdzXEfmMJZMjk9OldpbeEPD1muyDRrNB14jp+zJeIOAn8YaHG/l/bHeQ9Fjhc5/SmN4lLAvaaPfzjBywUAY/GvULeysrQusNvFEDjhFxmpLjC202D0jY/oapUyHiLngsvxUhe4SCy0acvI21Q5BywPTg+1WLTxF401SSWOHwowzGxjZvUdO9cL4VbHjnRTtLZ1MgqT1+Z6+p5JL0EeVGgTjg1rKlFJEuseLRaX8W790V7eC1Vl+8xGAffFSJ8MviJeuXv/E0cIPRI8/4V7NtvN+GeMJjOQvIqkZCztm+dSD0z1pchjKtY8g1n4Q3Npo+o3d74nuZntYGmKA8EgZx09qZ8MdJ0bUvBsk+o2JmuI7tgjlic5A969I8XXgm8KaqsHANrLvJ5zwRXAfCZFk8J3QPyhLkSBicDoOK0ivdZnOs3E7yPStNtZQYtLtY1CYBKA0qGBdyKixOrDAZBtbiqzXBN04bmMHI78VNLPD5caPGZoA24sx5U9qwkYKoyjfQMzedG2zHDp2PsKhnkO9lndQrBcqD09KhubyOxkWGZmuCGMiLnABPaskyrLPNJOzAkbwFQ7SfTPSnFlvUuXloIbRAZP3ck7Aj8OKzftk1pctCflaMkDd0BOOaka4uLvRUkXg/aWznnaAOKo310l5OWdQ8xXa5xwR9KctSrOyNHU9Bl062uLyfVrK4MqZEEZO85x0rnpLctHgnOOWB647VObKC4uVa1tQWVfnkxzGO5z+FQiIfvdjsyqxzIepPapjoXe5FcRTx2gVyFj++g75rPSZrdmaL7/BJPrWteadeC0hnuoZwE4JZCB7D8azr6NbfDxAmOQjnbn61aZUdiLIMqu5MryNlwo6VNqllJZQiVSWiYZxxkVVt53tCfIws7P1YdqsrPbSTSrczTSMo4GflJoW4dTmNODFXIPVjx710FxZSrZtLEA0ShXkJ7E8cVk6ItvtuPtSna7tswa6iOFWswY5hKsBjRoxxxnJz60VHZlM72Rf8ASm/3zU8atTZF/wBLb/fNWYVrjbPRiiaCEswrXtrcAgmqcA6VrWvQVjJlPQtRRLt6U6SEHtT4zgU/NZ8xg5O5jXMBXJHSsuZPlJrop03A1h3kW1GbtmtYM0gymRwKjYYFTkYqE9a1uW9RmAeDQ4O0AU/GalhQSZz2otd2FYpEMKsGMmJaW6iMbZb7/Ye1TrGTAhppW0EjzJILeT47aPHcwIY3iACEbgSM175HbQW5zFBFGvqqgGvC1Kp8etCY8K1sG59wa90injuoWK/dBwa64x904KsveFJcbirkggkD3zXE/EwH/hD51YHmB93PfArtmA42uANpCVxfxK3N4SkBYHEDbsfhVR3sZ3Lfwoz/AMKw0HI/5dx/OuyNcb8K+PhloW3/AJ9x/OuwYjOM/NjpSa1sV0IAoZpCeoxioZlY2k5PQRt/KhTI7vj5QMZ96bN5n2afJyPLb+RppGV1c+XPCBC+O9DkIyF1Mkj/AIG1fUZvm34WFj0r5a8KME8b6M5OANSOf++2r6Sur37PeI7TbAcKCB+lbVI6IqWjNB72RywERVRkE+lc+2RIzN2OK1bstiSONeTufGfvdKzI3IjJcDy8Fip7n0rF6HLUepmeJt1t4Z1GMc7rOU/zrhvhgZP+EZkgWFp4zc5eNOuMCuu8RzqNK1CcbiPski7V5HeuX+FN0lloF0jTPFK1zksgByuBxzVR+FjjtqdtNpb2qC8S+ZHCbfszRDJNU2uVljhj+6cZlXpyKt3TvMvmed5rF8tWVNApvZJWHyuwCrnvisHqDsJdpFLaCdoTJKDk47CsRWltJjGxkazI3GJh/I1okvBdwJLchInP7ybsvH3aqS+ZM4ZMgpkcc7gBkUrWLp6uwlxP9k0FTCARLOxwOw2nFZMVyiyeW6bZJfut7Cu+l0GKHwst+ykW8cJungxzI+MiuMvUE+1EgXzkdWY9DGCOh9ulPmOpx0GQXk/9k3dgrKjzA5lHULmq807Dy1iTcmQQijl8dDVuG0N60xuZVjit4iBLH0JB/wDr1SWRbW6ezWcsBhVlI6UGdrMvX2u32pWxiu7mSRUKuIVXAUjoKwjFNduILSG4mTzCxCKSVU//AF6v3AfLSR+WI1GCSe/TP60mnatc6BPJJaagbZJVEbuEDdO/Iqb2KM+5sLdo2ZZSjqdhD8MDVBoh5Tjeu5OCO7VtfZZNevXSwXzrx8kliF3nru9OaytR0ybSzsuCq3aH99GGysZ9AfWqg9Qt1MKwQESnazBWxj0rYjm3W8aQho9qsJD/AHz2rHsX8oswPzs3StGFmldSvyiRtrMegrSdrlbns0i/6S5/2iaswgZ61A4LTv8AWrKZX+GuJnoxLsPUVo27YNZ0PODV2I4IrFjkaSHAp27HNV43ytP3VFjFoWXkVkXw/wBGk+orSkbis6+/49X+oq4lRM9x8o+lQEc1YIyoqIitkaDB1pSxQ5U0uKa/Q0tmNLQjlkeRt7nJA4rWhX/RI/pmsY9DW7CP9Fj/AN2tI6mb0Z5LqZ2/GzQt/AFvH09Oa9bN8Yt0UOdpPSvItZU/8Lo0RW6/Z4/616d5nlzHDDrXfGPunl1XeZtySFrW3dEZ2LbQFPQn19K5Xx3G8fhy5j3bz5L5IPpiussrq3so1MrkPcLvwvIGO59K5Dx48f8AYl0yfIqwM24HhtxH+NKC94q2ha+FOoxr8NdHQ5ysbJ+INdL5somFzvzngL6Vw/w3x/wgNgzkAJI4OPTNdi9xbxM0UD+YCNxPofShr3iHIui+KSvG6l3IyoUU17sfZJQybSY24z7VnvcThn2BVYgcn0qOWYOjhTu/dNk++DTtoYOWp86eGCp8X6QMDnUuSf8AroTX05YwxSRySXQib94Wj3dhXzH4WYR+L9KLIrD+0DnP/XQ19EveQzOVIQKnAAPtVz2R0VJ2aJL5nSRjCwfex+YMOB6VSuTLbwOu1XXeAAe+e1OnmgmiAQCN09Dyap3xkFpIfmK8Mp96wkc7XMylrkT2+lalA0JiuGtJcxhhjGCc1wfw/Msfh+4Vd6xJcb9y9jgV1viDVfNsdTZSZZ3tpEL/AN0YrnPhibhtAmij2mJrghy30FOL91ltaHaW21rPzSyLztK55NNkitX+dZD9oBGUPoeKiughYPFbANnPl5qGe1+3I7YmguMEx4B+baMkVzXIKN1py3Vs6xyB4Y2Vivd8j+lU9H1p9LvJUe33/MFy/YdOn0FWWW3EcDol0siFt5AOAfesq9MtzcwrB89y5KK/bpnmrTua0+522pePDbQCC3tY3QAKdzD7pHPFcnYXlleeJkm1l1S1dNpeHgP6Z9qzBbM17boYvMnVRvQn73rSXsEKl18kAM+UjH8I/wA5osdMZGl4jmsTfFdKJS1Mm1Y4+FI7nH4Vh2k7z6nCJB8xfqRkd+MUxn8oSyRkDYMKp7Zq1BCrSRys5DwMrKFHU00ZyetzInt5Ikk8tnkYyM5RwcK24YFaQgRIo0uyyzOfmjHIyRkfhUiyi5nld5M75EzHjkEmoh5pYTSzpCSCZBJ1wBjipkiblVbeNpzFJMYkCl1OemO2fSo5tLtYYbuae5HnJh1hiB2yA98+tF8sZuAY18yHKhYyeSevPtVpJRcX0pkt4yzJxFFykePeiO40zlbMI6MV+8XG1vUGr8jFYmtywC9eOuaZo1pHPb3jyAmRZQIVXtT7m2UblYN5lXUepSkevTeHbI3TurTI25iX8w8ZPpmpNGjNq19CsxkWG5xljngqtYHhnUbu/wDGmsxXMpKR8CM9B8x5/Sui0tv3mpMFHzXZz+S1zzPQgbMRwoGc4q1G3AqmtTocCuexoc38Ub+70/4b6tc2N1NbXKeTslgkKOuZkBwRyOCR+NeRW2s6rpnxJ07Rl8Y+IL9oNajtLlLhmjicLMFb/lq24HB4IHBr1D4ttn4Y6wP+uP8A6Ojrx+LxSvij4jaLdbdTRpNainEVzqH2iKINMCVRdi7QOB16CumlFcjOWrpNH1AXyKpXh/0WT6ipycVXvDm0k+lc6R0lOQjYoLqpywGe/SoQWY52gj1BrMeMX+vWtrOX8mK3kmbYccgqP6mrI0fS2dfKu7nhuiuOa1Qr6lsr2bds6j3NQyOQTluSc4A7VFbh4La6g853VJ2VGY9hVW6vp7SLTjCExcXAikLDkg9cVLWpTloW1SWSEMkDOOea6CEf6Em4HITFQ2eRbBc4xnp9atbm2c4x6VpExbuzx7WgD8adFDH5fs0PP516qbaBcukweLJKjvurybxFz8YtGBO0fZocn0616aLuDcoAyi5Dbe/auxbI82u7SEaXzZfMc/MeCB0rD8Xgnw3fxMfl8k7PzFaLqsd0yoT5a9AeuKw/FsjHQb055SAkfmDWqREHqJ4AuCvgmwtx0MjZH4100crRuVTgAnJrnvh9Cv8AwiVpISGkVmyo+tbwmMkzwqAWJ59qGtQluWkkZssZcsRgD2qVI3gtXfjbtbH5VSU/Zv3fBbPzfSnPdRx7lUthkb5D347UEngXh3B8VaV/t6hz/wB/DX0CtqZZ3AIQDqx9K+ffD4YeJNMZRgjUevp+8NfRDTxEGN2BOMnHGaua0HV3IJfK3rHFhlT9arzpMrFkcYxwjdDU82zCBE4HcVh3d04nZASMDvXHO5mLrtzA2j6kfsqrIbWTLD6Vynwyuli0S4ieRhun+Xgf3a39Ukkk8OXwaNBttnLkHkAjP9a5n4fJGdCuSzyb/Oyh/wCA1S+Bml/dO6DRuquziOMHb71BcaglvE3VlUkIR1rOmt28xSpLBfvDd3qJLpZ72C3RC+GKkY6nHX6VhYViaNoDDMZ7lly4YIO2RWbugikW5ErlRk4A6ADr+tUrmV/Oa4MmQ5+4D0xxTonuD+8Uho2KK65/h5ya0ii0Pdja3MbxS5dUKMzdfLPesmXe0skVxNsZfuk9/Q/lU0935srsx/dsCAT12+lUr+Oe6gW5Yo25BtI7AcAVRaHmzeUsIrhchfnzVl43gt5Nt2qpnhSOc1hQuURnk3byRgCrcty155ryoAQBjApMpIjN46TLgFjuB4/i5/yfwpTePeXyvfOZ8DAAAAPP9KZp/wBgn1Wxh1KdrfT3kxcyL1VACePxAqCAC4vHWzLtah2WBzxlM8E0mh8uhOrSrLlPl3ZKg/WnujgsqtsUjJIOMmob1nh8pHzuG5AR3wagMkzxKGcMQcgDqPrTitUCIdHMgLvG2McEZ96syytKHjj4RsknvkVm2qsLaTbnJBBA6mt7UrrRPtm7RRKbURxI5cdJv4h/9enUdmFrnpWk+H/7N8RX+obstdqAfqGOa0NJUML1v714/wDJarvrvk3jBdMvyPMP8A/xqbRi8lh5jQPDJNKzYbsM1yyZ6MVY1VPFSq3FRD65qRTUWLsE11DaxNNcTRxRLjc8jBVHbkmpYpkljSSN1eNwGVlOQwPQg+lcp4g+zQ+ILO81eDztJjt3VSYTIkMpYfM4A6EYAznnsOtWfCsYEuqT2kLQaVPOr2sbRlM/INzgEfdbjH06Cs+f3uU75YSKw3trva+2m9rJ91u/L730+c1DdH/RZPpTs0ycA28gJ5I4rRbnA+5zcDZ1nVHwSYbFQAP9pm/+JqTSWSXUYd0TRlDuOe/FJHNPp+r6g76dLL53l4MYzkAH/GrTaxIUZV0a4DMpXLIBjI65qzJ6sjgDtp+5uru8n5ux/lisvVy/k6Ft+79vTNbKRtHpcMT8v5Sj/d4NUby0mvLXTHgGPKuxJID/AHRU3KZ1NqP3P/fX86skfJUVrnyRx1J/9CNTvWvmZ21PGtdB/wCFw6RldwNpEW/WvQ5pYRsS2iyNpLfnXDanD5nxg09f+oerfq1dfC7sUMPBKMrZ+tdcVeKZ52IXvDJZ/OndwMDGcVjeKm3eG7xvWEj9RW9/Zs0bkHCxKnmSOT94D0rK8TaNdw+Erq5eaMsLbzWjJ6LgcfWtk1sZ043dyn4RdrfQbcK+3k5rpXuUJfy4irnHzj1rndMheKytUEYUbFKj64rq7RHtY58xgysQct0HNFTTUHuVGlMMm3GZOASe4NSm3kbR7i/kUbo8qn0xUuoyW/2d55V3TAcbe1XIZLqPw5eyKUKQowCke2ayjO4WPnjw9lte0ls/evySP+BmvbWdJH+ZTycZFeN+FI/P8SaT0Lm6dse53mvYW3CTOAQCcj3rpnsgq7kiJL5gRJRg/wAJ61kyzBL51lXf9a1RZXhQTNtQKeuefWsy7t5CJJJIS8rjcuK5ZWbM0ULqS+u9Gv8AyLQANbPvOemEGKwfB8k1ho7IiBllw0mepyMcVa1uK/TRbswJLCgtGDncecA1ds7YaboOm7IGM0tqJcn8KpJKDN2koj7bULUwSlGZGc87u1U/tUcE7SteFWlGQVH3McfrTdMjDidcA7TjkVW1K2hXaIoj9owd2emKwasFijdyxThZLXfjaVLHufWrtnJJc2a+VGoSHLSSk8MQBx+tZKsttGU8tpCfmTB+7nsasW7lLFYfPCiSXPHHuapaBYZdECPcQoMnyhV6LVOc+RHHaxSl9oy3PQ+lWL0IT5gbczZJx0ArKOAmVyR6+tDLSLBlVimZF609mmDOUkQLjnNUo0DHcqZX+I+lTFyIyisD61O5a0INokX5h7Zxwea0bOzulty7wyJEYt20LgcHgis3zSq7FXJJrVtJhLG0tzdsFC7Yow33j6VRNyKCOa5tIxEN4BkLM3UdKebOHT4bpbqJzchVKEdBmoy7lIIbWQIxydv91s96fPNLbo9tO/2u5k+d2HRcdBQnqJMybUE2TXPOzfg4pPMwozwdjYCLwfQn3qwLV4PC9pfOGSC4upYk9CVP+O78qgaKUorkjZ6d6qpZso99dR5r8c7yc05SQMZ5HSiT/XP9aeBzXDI9EcuABTgeaaOlOWkO48etOBpo6U4daLDHimy4MRB+73pw6U1xmJqaWo3sMRm8tQXPA60mX5xI3Ip4X5BSYxVMz6lW6UbSenrjvyTUVtIsdnbCQ4ZgQPc5qe5OFPGe2KZahBaxRuyMVY8N2rMpmtasWt4iMYyc8+pJ/rU74554qtbNH9nUb4lAz/EKtYHyEfMhrXoZvc8l1KYRfF/TnIODpwH/AI8wrqQ2Yz5bbcqcHHXmuM8S5Pxc0hPuGW0RR+LPXf3aSbLOFQkMkURy56P7fWu2HwI8+vuyFnSa0CPJITG2MZ9ev4Vb8dfYG8Na5GrJ9pewL454OAB+GCKz3iM0DtIpgkiJVwe4PSqHjB7i28ItLLF/pEkRR2PdF/8ArEUcruTQaV7kdkGvTbtEdpKIVA/Culu41luplZ3HlkKxBGCev9ayfAdnBqWjRPuIm2klvVVPatG9gNvfXKli4jOAB1x15/Oqqz6G3JGUbokRY4oykhG0nvzmpllSTS7wM5jV1IHox5zWc6JJGJo2LFRyhqzDOxsZYHRVLxkpu7cVhHe5g9HY8T8HOkHirTSTtC3kmM9/v4r1y1LXFwytjy8GQk/XivF/DzBNe05m5YXrgn/gTCvZ7RkjNxsjYsBt9utdVV+6TU3Lt7dRyzOBiOLIb9MfzrOuZNkCszkNnAwe1RziUvjGMDkGoVSKWPDMVcnDBu49q44N3MiPXL15/Ct+pIWM28pAPXhSKkU/atA0EK2FSxVWY/QH+lUNcKJod8iozKtrKB+RrP8ADl49xoVofMBCIEZfT5a6L+4zZP3Sa2CwTX4Tk+aQAO9R3VwsoAZTuQdRxU1rvFzeSnB2uVH1qldiZlcsmSAC230rGYm9TKvLRn8yeOTaAC3tkVp3Gm2MUsBkYCKW2EkeP72AWH15qK5j3WBjWNnWUIyFf4V96qagLs2hAIkjVTscfwNwCPyxU3NClftAjmOzyUxjJ71mW7O2UADY6jPSrLqBblc8Z2hh296kvZrCWCCzsbRhOgG+Y/xn0qi0VwMcCQKjtzjtTJNjqWTAUAkNnqR2okikV/LaPbI42okab3J9gKtDQ765s0u1tZIZZZvLWKSMo2PXBoG9iiuJYJI2YRyhQy5oFwoKhUBWMfLnsfWpLixNndvCx3uvVvQjtSFERckYDcH60Mgjt2Z1ZmYBo+cjqxzUh1A+VLGE2ljncOuarRo0UuDwetLIzGYkEAEY4oW6DqdncalZN8HNAthbHcl7JiVv7yl95/EtXItA8g8yIkheT6AUkU0txottEJ3NvBJK8cGPvGQhv61ZJMAVURgzrh09Fq57g2e6NxK+fWnA80yZv3r8d6F61wnpk1Apob2pwPPFADh1p4qMZz0p54NAEmR3okAMTYOKbnGD2qK41DymaFYWc4+8OlAE0f8AqxzmkbAqrFfOx2/ZXOBnin/aGY4NvIPxFFwsMnIJwDzVCWHLcfpWg6h+R8p96j+zFiMyKPelcbK6qu4DacAV0ls3+hQj/YH8654RqQdrkkEjP0JH9K3rX/j1hPbaB+tWnchnjXjKdrb4r6Dd/eWKGN9vr8zrXpupXEcT2DtA0yQ2skpQdc5Uc15f43A/4WloYU/M0MSgHp95jXqdo7HUYWuWRfMtpd47FSRwPfivQh8KOCruYj3iXEUss29VnmIHfjtVDxpqUd34YMUBZjDEwZm7jaK3LvSrayhkxdO+wmUccDPauQ8QPcHwpeedAUXyW2vjr0q0YR3N34UXyNoOmxE/MvmxsuOTnmm/ETxHP4ZvILm10+S+mvpYoUs0cq7MwbGMAkklcYxWF4DF4nhyzu7WREeKVioPr70zxjdsdV8LalqNzGoXXbR5ZZG2rGoZjyTwAACSazqR1NYS6GXZ/Ey/ttXsdNv/AApdWL3twqB7iZlOGYLkKYxnGa9Y0o2d9bzQy5NyYDtPtzXzr4YjTT7vQtLvLm2mnn8QWc8cVvcJOIo1JVyWQlRvLJxnP7vntn6ds7LT7cp5DYZI2HPXpURWlxT0kkfMuipJ/wAJFp8CjDm+aNCex3sMmvpKOxhsrH7K8sbSud288Z9RXzpoRX/hONLc7iqamS3PGPOP+Ne769m91iCIBQiKRGA3HJzk1tU2JkZU6bpNrljtJ6dDz61VMAluUSeXaxIGFHIFaFrYvNZ72uPLVXdWX1wauW0KadIZ4PKkdlGTID8ue9YKNmZJanK65E0fhq9ZJWdfLdX+Xp8oxWD4Iikn8PyyqBsjfDH8BXWeJrl08M6mBLGpmiZnGOD8uOPyrjfA949t4YltVhkIlmJLDH93P9K6IwvFl20NSG1WS6vlklZBHLsBB/1hq/a2UkiSW9vbTTM4bcV5KDBXJ/PNN0a5eG8uz5SSFpA4R+oOAePzrUt9Tuvts09ozWhKsCqgZYnt+YrKVO4SZzMtw58NaSkIeLzSA0jJgyHNV9Q026tsQmRYreVt3PUn6VrW95JqGl+HtOu87I70qXAGQAa1tc0/ybeWMWzybdrLcN2BrNwsNM81ktpVSRFBVQ2MsOopltatLIyRpJJOxEcSr0ye9ddLoU91Y3u6USCKMsH6ZwM4rP0KP/RUlSYo7f6oAcluMfz/AEoUSrsv+CfC2oDVpdc1JAY9MSRkQHJMm0gH8M1Pe+Ldb8RPbSQaZHbI8CbS/DLKTy30qnqN/wCIItKtLdI3h0yZy7TJ1kbPO724qW7ffZwrHncCSAD0APA/DijYm7OZ1SwksLj7NPM0t4STcsv98kgY/Kq0cDkzRSq6oByjL8ykd69H8JeHrXW7+W9kkLX1ky7RJyhYnqe/Az+dc/e6PNp/jTWnlu/Mjsm+0yPJjLRN98AD0p7lKRxdxDHH5eJmZ1bGCP4aj4KADruJrX1ywS1u0eCbzkkTexXoASSo+uB+tUbaJWc5OMRs3P0pW1NGrkNgSbIbeqrx7VOJZpJTKHAfhDmotITNpu3DGcZPbvU+5DdT78KMAgj1onuQ0e5zOPOf60qyCqpu0Ez5hY81ajvYAfmtf1rksepceAvUPknt6U7B6hTmpoZ4pS3k2smQQSQmatqdjhChUkE4IwadhXKIWQ/8smqZIp2X5Vx9auJlj1qQRsT1NFgcikLa4P3iAtPFk6nDSbfcDrV3yyeCeKeIwOppWFzFH7ICeZz+VKLRM9WPvVxhj7gBPvRtJ+8QKajcLlQWsG4fKSamW1h6FKlVVU5z0oaXsOtOwXOabCySBRgBn/8AQjWxaN/okP0H865s6hbm5uFEylxM42k/7R4ragvrSK2hWS8jUlSWjXkioVipJ2PJfGpVPiv4clP3VEQP5tXpK3dumrRzNzEFZBnpya838X2txqvj7SbnSoJLwQwrJiJc/MC3H61fuNe8XwAC48GXDYbjyQW/TFehTkuU4KsGz0G+v7W9DOGKhBwgH3z6Vy/i2dbjwRfRLMHVYnIP+0ccfh0rBPjzVLeTF34Zv7dlOARBnHtj1qjr/iiF9GuLa60e/s1uomERniMY3noc962hJJnP7NpnR/DaSIeDYJJFJcTtuArS8UeGdJ8V6bFYXhuYYVlE4NuyqxYKRj5lPHzGs/4badczeFbaMOoYysGP41rXul3F9r2oadb6sLOHToovOmMHmOzuCwCjdjbt6ng5GOlY16iT9TfD4WVWUtUkldt3sldLom92tkcjp3wp8P6Vq1vfxXepmS0mjniDyxlSyncM4TpkD0r0S31MCYo9s7Da2HX6VF4PMeqK73LRfaLWeS3nQA+WzKeCmSSRgjrjnPFdfcRMseIoLdWzgdOmDWcZppNdSatCpTquFTdHynpQD+JrAfwtqGcZ6fvTXu6ac0t6SU+YL8p3V4bo8BufHFjCo2vJqjLu6KMSsa99uYZF1CFbhngJaQLJHyDzxXS9UhONylaW9zDYuxEYiBk3HPPUVoaij3d6kVrZuPlVd4HGcZqCw0WTV4UjQzJCk0onduBKNwIx+VdwsYhiCRBfkTABPU4rKRKgcBr/AIK+0+H7j7Tc7NkckrHPQbTXnfgO3uLjQy8fG+cxpKfukkhT+hr1zxKt4/gzWJbiREMmnN8i88hPmFedfCi2u9R8ETWNsAipcM6M3ZtoOB+OKqm2Nqx0ng3w9a3cutG8bzri1vWiDw/IOFFS6pp82mRtftbGKzhIZt04ctk46Cs7QrfWxHqTWz26x/bD9rPm45wPaty8066+zql9erKipuWNQDkJzg+tOzuRO17HGaLDbSalpqSMxnTWGiWDoQuMgkV03jfV9QtXTS40heC4eONjGcuj7lAyPTBFcYmrzf25FqItvkN79qCquHLY5564rRMF7cX9lqksoL39w84Q9VCYYD/x2iwNWR0OoQWfh3wrqcRlW4vNrSIJV24cjDDJ7VzHh6HTIfDEbKl02uM2EDEsiYY4YcdMAfnXZeNI1vPAN5J5AlnS2Eu/uPWsDwtfafpGmafMsgnmaFmdH7E9v0qG0F3Y6DRvDd7caRcC6u0khvICiwSJnyGY4yPTrmsLWPDbWrubGWO7giiSNo4V+YkfKT+YNP1TWXupWmWKWBG2n93Mw5GaxX1650jTIW0yYRGeWQlm+Y7g5IGT9aVrhe6I976ZPJIt7c2M0qbGhhk2ORz1qrDMIJrm+lVpLzAaMXPzGb0U+oNX7l01PRf7Wuo1fU2kBmlHQdcADtTNUsnvUiv2dN4jCsinG30rOclElbnFNK6qyjy/lJBGzB+bDHH0PH0pkMTvaXDoMyIhkA9hWhqlg9tL57R/u8jJB6VThuwjXDfcDwuqHHHSlGV2jqWxX0hZ4rPdHGJUuC3yjttOKTepnLKu1gcFGq1oTyQ6FHLEkkn2W4zuC9R/FVzVoYZriO4hTDvIADjg7hVyauJo9jcDzn4HWplihfrEKif/AFz/AFqeLpWHKd1yzZqkbSqiAblBHP4VKRu1CEDvG36Y/wAajtv9a3+4P/QqfI23ULc/9M5P5rUAW4kwAeMVIWVT94DiqokbAHamSyrGhd5iiLyeKBcjZbM67cjmmM+TyegzWNJr9htyJDJzxiqk/ieMHbFal8jq3FS520LVJnRksB6GmFyD3NZukam+ombzYljdMAAHtWjkA80KV0Nw5dBr3EUI/ezKmT3qs2rWccg/fKxz0HesfXWWWNd4I2tzisyHbswqqQe561nOpZ2NKdO6uYmp6eYzc32TtklZwFPIBY/41DbR53orMjMhG8HJBx71tagv2iwuI14GwMv4Vk6cjyXCBAXDkhsfSuZSbkdLikhsun3NkTdLqc7SRgYyAO/sKvJ4q8QxHC6o7J/tqOP0qa4wQLUMFmuE2qG9c1qWfw5nYg32pBP9mFSp/M12cs7KxyuUFuVNO8WauJ3a7VNRhYYEZRRz61d1bxW1zpjxt4dYHhczqpVV79855rVh8A6XC4KXNwJB1LHOTRqvhX/iUz+XduQefmrZe0SOe9NyMLQfGVno2nx2sWhzbQxJMJGMnvyabqviHQ9cvobp4NasLv5bdrq0nEbCMljtbqNueTxngVVsvCt3d2H2lNVtLZVfb+9Hp+NU5IIbG5hRdTtr47yGFtyM89eTWU5N/FsdNH3J81J2Z6Ro154Zs7KKy0q7higjLBFySQSSTy3PUmm6hqmnfaYYX14xSsCVVcEPx0PFcothZzxQCWzglZlGVK8Z571k6vpFrD9n+zWHzNkNFGh59Oa09olHQ5/ZOdRuTu3uzF/4QWzfVLYaYDFfC6LvdSP8mCScjn6Vcufhp40iUfYvF8DtnhXfPPfHFS3Fg9pFEJ/LViciNGDbB7470yCEo6NHI4eM7kZTjB7VMMak7M0lgla6ID4K+LVoFSDXkdVIZdp4z37Ut1efGaySJjCbqNMH92F+bB6Gn+JPGvjvwt5czXNhNZyjckrW7NtPoSDxWzca/wCJDLbXc2pRrJJbq+2FCsfIz0rf2yXvM5lh25WOZ1Dxh8Q7uwurXVvDDCKWCSIuvVd2Mnr6Cun+E9vc6X4EUvA8Qa7dwXxkjA9PcCrEXi3XHR4p5LaRGGCTGen50201y4tFDW1pbhkUlWK8E/ShYuming5l/Qn36frkZyjyThiMfebCmtG8u9zpKHUYDqFx13DFU7bxtpcVqsepWDi4Y/OIrdvLJJAHPTuK64WVlCBIYYkIPBfp0rZVVa5yzovmPPX8NarF4khnjtN9v5nBHbK5qzdXIsLuOOeBFuLbG2M9twII/IiuL+KHjDVNW1rQ9N0HVL3S913PbTSW1w8avzHh22kZABJ56DNYHgjzLj4g6hYa34gv7u1+xedBczTNmTeY2jchicEo4OMnGcZrPne4Old2O71/VrrWNONvIwhSFdu2L+MZ6HNYaaRus45I51JIyyj+Hk8fliuum0HRJ5sQ6tIrk8bjndSDwvbwlvPubt4iPu2x2sfxxS9pEp4eRiWHhjUbwzeQ8W2EBsM5+bPQVrv4NuUtlTyE3WzOXGeGLHOfpzWhaWFlaMJbWGRjt2kSSAv7Z9aqrPrsDMHX7R1P+sC7fz61SkuhPsZI57Ure+stGdG090tWbBkTuayIbn7M0hDF96jcj9BXVXk+qXCbZXlVSOYt25R+XesNkeF2E9s8iPxnyyaiUVLcTovdmTqLC8glZsJkDYhPWuevEJ07nAMSkOR2zXWagpWzlCw7sD5AIiDycVj6zYMmjyXVuQBHF+9Tux9aFFLYtRZT0PVri30lrMSBbdmcjI659avPrLPpSQPHHvhxhgPQ1z1lf6VZx+XqDzluoCqeKux6joUjFY7yZEP95TVSpNsSi0e7v/rX/wB6p4+lQNzK/wDvVYj9KzOwsW/+tP8A1yP86dMcXdsT/dkH/oJ/pSW4xPj/AKZEUXKnzrUjoWdc+nyZrJ7lEm/CL9Kp3b74JUIyGQ8fgalmuba3Qma4jT6msybVrLhlYuMEfL36UN6DS1OZjAXjAFT4LYYKG2+p6U3yy5JUjr070uNpGQCw6KT1rjkmdiaMvRPib4Qs793n1nbG6YLfZZTzkei16BHrmm3VhDdxXiPFNGssLKCC6sMg7Tgjg9+a+e7KytZfC+nR50fdJoV5cvbS2uLiWRJbnEizCM4KhFIBcZEe3HNd/omj+MIvCmjzaa+nTQyWMLxiXO9QUBA4Fdjp8itE4I1ZVHdnW39zHd/JHHLGDzmQfeqnHF5eSefYVhSa74ntZGGvaVO8SLhnt1Xanuac3izRoyBPcNbvtDKJByw9RWUoXd2dEJ8qsXZ7ti0sLAKhZ1HqBWavht5mjmj1SeHLYaOEnp68Gq8WpXN9du2mabc3kUjvtlwNh5+tTxnxjdSi1gjtYMnaVjBMgH4jHaojDU0dTQpTaNeJqkAj1hzOD+4MibufxNWX1nxXp+vGa8vre7vIzkQpN8hUD+761NN4Bv2tJrzXLie4ES7huOwj6bcVf0Szs7SyinjtlkkaMrvckt14rdz5ImPJzmRb/HHWHvv7OfSLYXTTeUGaXGCfbHNbGrXfjXUoJXu9St9PsUwHjVBvl+YdPSpVtbW0uJZrewt453cu0hXcd3rzVa9eSaN2knZpCQB7EnP9DUTxV9EOGGs7swodLgVixnuZMnOHuW2H/gPSrtrbwWhzb28UZZhuMSgc/hVqy0iG7uJFeaSMCMOu0DqetLdaTcW09qsd0JS8u35hjoCf6Vzy5nqdKcVobA1BI7Jlt5R5qcEEZwTXlt9r3jO51OVF8R21oJLuaCwt5VCtNtcrhSEIAz8oLkAkHng16SwQW8rIFXzZF5A6kA14xrep6LdaqyarHeNLpt1cRLFCi7LmMzvIFZtwKHc7AkBuCOhFb4d8zaZy4u8EnFnW+BdTvNX0We5v5vOmFyybyoBwFU44A7k110J4AFcD8N5fL8OXBZW2C6clscD5Eru9NSa/kRrSF5Yw3zOBgD865qsP3jtsddB3pJs6M2kGpaH9ju4fNgmjZGX3Pes3VrdbU21smGjihWNfm5wO5qS8udU0xI47aW2uGZiixITnOM88VmvqNxqTD7daLbXEBKbQTk+9a1Z2hYypx9+4o+8KnHK1WDAtgdQKsRuu3k/jXHE65fCbOlktYvHLzCkgyp79DVjxY41meNbd7gW8cLs8qOVCtnjIHWs3TtRs7QSx3dwqSuQQhyegA/pWvOkc9nMrP5aSQlwSMbwPSvSUrUzyai9/Q8N8X68um39lPao/2yCK5hSVW8vY7Kq+YMdwCcdOcHPFJ4GvpfE3iiM3khNzBppjnuLiTe1xiYFSSecgMq9Twgrd10W9veWepWVz5rSAyZXjy2U4zW74fsLnxJfxRh2NpC5kuHHCqAcnNZOu1T5bENONRTaNOTTZERshVCjAKnp71ci0Rowiw+IZ4pCMssjlh0+taGoae0Mq/ZIne1lBKEc8djWc6uhYOjqGwGytYQrSSO+ykkzKmjuba6lR7iQyDq4Y/N6Gla9vUA/eNtI6tzmlvpYjqFwN/ZR0Nb+nRr/Z6EopGOpFVGpJluKsc2dSulGBNk+mMYqddQvmUCKCa54+YwgnH4VsyRQMxzEhI7YqKGSSzZmtswg9QvNNVmmKVNNGQdSk34ksrpFAxmWMgH8arySwTxMr26gEYxjit2a4m1EJb3DDaScEDk8VzfUkAnaTxmm8S76BCirFeTS9KmIMtsm48Z21DL4c8Ptw9vGPpLV1/QVGy4BJAOParWJkV7BM9FLfvpPrViNuarMR5z/Wp4zzXaecXID/AKSnupFZ3iia3i0y3e5uGt4hcIrOD/eDD+lXYTieI5/vfyqp4j0ux1qwhsNRDm1kuASY+qkK2P1rNrUpanNSCw80LY3Usz/xFwSMUBWJO0A49qgl8AX9jEBomvFSvAjuI9+R9Sa43xZe+JvDc9vbajcxjz1LxtGNucZH5c1Li3sVzJbncsUjGZHjU+rHGKoz67pdmCZbxCe/lncT+Vcf4V0+48URXt1NPJNJbOqNC02Ac+grp5dAt9DtzPJpEJDPsVQwaR3JwqqOpPXj2NZTXKtTopRdSSjHVs8li0zxNPp40y21K5msgNq2qSzCIgtuwFIC9ST9ea9e8O2nj2HTNOs/Ni0+1toY42WWRWYqqgcYPHSiy1Ifafs13BJYyBSwjyMED3659se9baOlxbGZJGO0hCCaj605bocsE6MrPr53X3rQ19TLf2XOqv5uIiBJuG4nHNeYeNPDOo6rq+ltpygRm0w7MwwhJ6GuzkA3E72z6ZpjckkdCOnrTdcXsTN0J7vwxoaxXd59rFquRHtwuWbHWp7n4hSRzjT4UhhkZxDtjjIIJ4HP40zVOdLaPBbMkYx24OayG0vz9YiuBEzlriOQsO2D1qIVLscoKxK3ifUr3XbnTbhnkjgEkbXDH72D6VvaaZToNm0ow7bunpmsKbSJotTub7O9mlkJUf7R4rpwhhs7SPoREv8APmprN2LppdCF2yCV6ds1QvZ4oUt/On8tZJ9gAHVtjYH6itLbzj2qhe2scsUUkiZNszTpuGRn5RmsabXMrmsloWtHhmvLlmt7eQ7rdRvI4znmugn8GX9+sEstzHC0EpkjG0kkkY5xWP4X8Wa/cf6rT7R7KL/Xs0gi8tfUcc11U/i4spW0ty5P8Z6D/GvVThynmT51LQ5S9ilt3Fkv72WOZtxiQ7eMf41gX3hmwSdXu9GsPNnPmbmgQsxJ5J4966HXdQ1JdHvpbZ0WXYzkx/IQP4jkHrjJ/CuauU0qK80yTSbkzXE8uJy0xcyAgZZwTw3JPbk9OK86rNRlaJ7GFwjrUudvv0vsr6vp5M6bSrew0jRwLTTraPdIWZI4wq5yRnA78AVPPctMzEsAAB8qDbWHpfiSy1aSfToIpEuLZGLsemFbBP5mtMt5iJIec9H7VUm9jkimnqJdSG3RJSdrRTK2FGc54/rVW4s0vvEVxbtKwEjF/MHpinXEpeK4t4o5ZZnQ4WIbmJxxkD7tbGk+E9Vu9TS+vGWyiKqPLU72YY59Npq4U3PcipVjDYw7/SJrCBJIrszFnCKqjJGTjmtSx8IazdMDNPbxxf39hzXfQaTaWduQkIkk/vsMnP1qzAkht23HB7Gt1h4o5HipNWOettD0fQlWedVkmjTcZ3GW/KqzeIbS6jV3xGrE+Szrj5eh/Otlrf7Mxe5QXCMMGRhk4rjfF1mbjTUGBbwvOYoxjDcjjHtSr03y2QqL5panntzodvBq19FfSSwxNIXs1hhcm4YnO1TjHcDHHJ61e0O/v9EC6TGrW9zPIJDuyN+5RgHPp0PuK7nQ5mayit7iQ5cGPcT0x0rl/HGn3ccllexwPJLHugzEOQ2QU/A5NedrFnoYzFe2pqFu3W60VtFbRd1r07Hc6W862KQXGftURKyAdB9Parkr7SVOzpgcVQtnmXU0glkA32gB9S4Iq4wyOmOa6Uk0csW7EMtvbzndLbwtnqQOlBigjTy0jwtSFeB8oNG0sMZCntmmkim3YpnT7ebJOR9KqSaNFyROVA5OfStjJJOdqkDlugA9TXOahqH2x2jtTi2BxuPVz3/CpmkaQuyvCqC/Cq25VPymudC8D8a6G2RReIowBg+3auaSZPLBLLjofm5rnSZ1p2Q48HmkK7kanBS7KowWb7oHWm7uCpbAAIb5ec1abHr0O9Y/vn/3qni5qqW/ft/vmrELdK9c8cuID5sX1I/MVX1maW3057iHBeN0YA9DyRz/AN9Cpkb95Ef9v+lV9ft2u9BuIFfYX2YI6/eFZzVyoOxkv4jnU4uIo8E42qenvXAfFySOebw/cxjckkEp5YnHK12Op+G4dN0S8uvPkluIkyM+5rhPiONmleGD/CsVwmfoy1NLmTHV5XEu/CBsjWlwNwMZDd69H1PTTqlokazmKeGVZoZyu7y3Vsg7cgHjI59a81+EHN1rYHQiP+tetbCgJwM84LHAFbzUZJphSqTpzU4PVHBa1Z6i2oS3+qtaNOkJKLbBgnYZyec4yMV1N8qImIo1QeZ2/wB0VkeKbi2e4+WaJwIDE3ltkbiQf6GtS4cvawuerDd/SvNqRUdj0HWlVs5dNElsig+CxbFRdV64NPLcnFMI3A84Nc6eoMSYqsSR/LullJG70C4/rWnpNhI0UUB242/MV5OQax72DzTaoASdz8j6LVzToAbRfLLpICRv3VvThrcib92x21rpOnwxsdqvIVO5T3wOtcfdviSLeQvy/wDs1WP7c1G3kltXVbpFTaG6HB71DPaebMpMixxJEudx6c1Vf30ooyopxu2UnuEQFifYe/0pJkka2liwS7Jt2ntllrzDxNfzDxvNAuomS2huUEaqflxxxXrMsbPdFBgFsfdOf4hWc6DhZmkalyto9n9nu54yCiSQsCCehHQ46Gr0bFhvdvmIALYwOnoKlisnhuFdiTl9mT71ACFJGQNrHJPTrSlKS0KST1JWdtoGM56GqF9a28Vq08UEUcizJK7BApYjPJI69auR+beSGOxgeRzwQR8p/Gtuz8HvPERqcxCvgmBegx71caLlqZSxHs9Eec6BYNF4heSGKSRplkRhGvUtz+XSu70fwZf3MaNqU/2dAMCKPnP1zXXWNhbWI22tokSrwDjk1opkN1JHbNdsKKvqcVXFSexRsNEstMULa26p6knJP4nmr6q2QWIzT6K3SS0OZyciOTIjODUaDKjJOO9SSf6s0iL8lPlGVbm5SOGUcEoudnY1zHiKZrvQ4p440eTerrv4Ckdf0ror2S1M6wThtzLyyisG5itE2wWwcopJO+uPEysjegveOQiuttoV2SMTk5Xsa1PD/iA3Epsr6AlVAKuRnOOhPvzVuXSLJnEjQsrdRtPBqVLNAwUQqu7jIrz3UVztnAfczi6uhLHEB5eVjI64x3q1kke55pIoDHKcL0GMVL90nit1Iiw3O0AHqe1NZ1wfM+UA857e9PZ/kdiyoiqdzN2FVbdTqUiPgpap/q93V/r7VS2uJ7mPqF+dQkktoGaOzjcq7DqxHb6VWCDGFQbcYAH8NNluYEu7lGjKgTNwvTtTftMO04JFcjq62O2ENLibRHLIzKcKhzmsyz0HTrnVLqF1dY1ijZcHoe5rRuZEZH2PlhExwe/FNtGW21QyyZZr8ADHSMIMkV1UbOJFS9zPu9P07RJYrqO6dpkyNjdqgj8MXs0AuRfIsk53lW9DVG+zqGtbnGTNPjb6AV3DbMoMYEeFUVtGmpGFSrKFiZz+/f8A3qniPzVUZs3D/wC9irEXLZrsOQvKeY/98fzp+oqDYTYyD8pBHPIcHH5VCGwEbsHH86NaeSHQNSlhbZLHbyujYz8wXipeg0rlfW4nl0LUFHzFrd+vyYNeQ/EG6gn0XQIklRri3kuPNj/uhmzj+VSS6nr+ubXvbyVo2xuVBtHA9qyPF9kYzb32B++bYB6fKD/jWMZ++aSp+6L4M1rUNFl1EadZfaZLhFw/ZCK6i4tvFGuMx1DVPs0LMD5ULbcDvnmo/CFpHB4Nivo4z5kshLEdcdBW9F5+0NLHuyMms61SV2kdNKEbXZV07QbHT7eSJS0+X3Fm5ycV1F6wENsoOAIhxWahQAAfu89qu6zcCKS2jCDIiGfWuH3m9TfRbFVmA5HUc01VyWGM45zUDrcuhIQKp7sccVxvjnxBHa21rDpl/wD6Q0jmVVPG3GBWsKTZnKokd/E+65tti/M8TdegJPWrVusNvEEky8m/O1elYf263tLXS5Lmfyg9vGoY9225NbtmUnRbiMq8R6OnOa1guVE1JJmLrepNp+q27pEziaSOAY/ukHk1z3jy9nTxGLVLuRYY7RHaKM53nLda7vyoW1yTdGHQ2u5dw4VgTg/lUd34U0bxGJJL+ItJhVEkblW27Tjp7mtKdue5jUvyNHikFqr6zHHNGfnfkMMkEdMj1r0d7uSy8JyXHnvHLGrBJShGG8xTj34/nUF58Koxdo9jqMsDqcqWO4/jmupsvDi6bJZ6bPObtZd0srSDIdsDHHQdO1b1LSsjCneJzvhbVvHOu38Ai04S2QkVpJriLyjjuRnrXpmn+Dod7T305m3OSIhwo56e9M/tXUbJQI44mhUYEY4qWLxlaq+y6t5YmGDgDjpRJRTJbqPRHRwWcFvF5cMSxoOigcVLtwpFZtr4g027HyXSA+hNXxLG6ZRgwPTBq4uJhJT6jUJLdanqBBmQjIyO1T5A61aIuLRTdw6dD70u4E+tPQm7EYDbSL92lcgDrSJyKDQSRFJyVGfWsm8tPMlzWyarOgOTWNeF4mlKdjnZIhG5UDPtSQ27MycYHpV+WDM5YetSxoEf5uOMj3ry/Ya3Oz2mhA0RGNvB7k1VkKxxNJJIqogyZD0H1q/dNHDE0lw4jhXlmbgYrkfPbxJMs7AxaUG/dx9DNg9T7VvGHQnmLSKdWJuJlaPTY+UQfembt/wGtGN2aVVwoyBgD+H/AGabMwRI1TCqq/L6IPQVUFzHFIPNkWPJ7nk+9b8qUSdXI5yaa4+0XGbLKiZgCo68n/Cktjbz7vtELxkHpXNiTVGvLyaO8fYZn2LjtmtqyubliFlwTsYk474rjlBNnfCTSMrSNSOr3WpOu1bcOYYcj06n+takEyxWt0yHe0KHJbn5m4/lUVtaRaX4KtkWFFnvn8yR+6hjkY98D9ajOY9AjAADXLtIxPcZ4/SjbRAncwZNWi0W7sbq5haVnLggf7IAJ/EmteH4g6PK2Z0uYMf3oS1Yeu2Znu7RQSFjtd59mdyT+gFYk+nOIpCkhPpxmuynJJHNUjdnsG7/AElv981bhbpVAsBdyf8AXQ1ahbmuo5S8zfuj7EH9as36GXTr1FwS0Tgg9OVP+FVM/wCjufb+tX5cNBMrdDGfx4NZ1VoXT3POIrT/AEMpIVU7TgL9K5LxhEf+EZ02bJwt0qZPutdlb7fIAAOQpHNcr46wnhKzTeMreKSv4GuemnznRVa5Dd8ELv8AA9krHgzMP1rq3hjAySeDiuP8GXcVt4BtZpZAiJcMSx6da7CFvtMXmxOpjP8AEDu3fl0qJS95iS91MqvBbvcISxye3pWV458RXegXFvLbRbpZogGbbkLW69qhAlPBBxyKfe28V1rE0U8YcCFduRkYrO6Urs2fwni19r1/qsn+lXj4b+BDis6VAIAGUKPmGepNeual4H0K6G8jyJD/ABoOhrkb/wCHt/CSLC7SVOoDjk11qUTjkpNl3xBN53hXw7MUDq8Ckflium8BXzy+Fp7c7SLO4CgA8lG61nJ4b+36HoVhfO8T2kBV/LPXmup0DSbLTori2soRHviOWIxk1DtY0jdyLkNhCL6S7jkbzTHsCHpVuCGQIyvhXJH3fpUcZJVcnK+lWIWKzbs/SsYys7m843RnhJDdqH39a0r2Pyb7S5excx8/TNWEcDl1DHPBNTuqXHlCUD9025SexrVTuzGULaoq3URYNtJB5/lWDNE8lw53gkBRjHsK68qjnCrnccVyljcS3U2pRqgEttc7CPUdR+hH5VjWcm9DSk11FXToPLDSICT3BxiojKbSQCC5ljOeCTkVLPYX7Q+cVyD/AA+lUlhmxtkUrnuegqITmnqaNRaOqim12GJJYbm3uFYZxID/AEpT4mvoD/pmkzbR1kQgr+XWnaa/+iRqZ4sgfKo71eV28zcDyR26Cu3mZwSgrkNr4u0u54eeSBh/C64/pWxBf2tyoaK4iceobmsiW1tbnIntYpM/3hVF/DWms26ETWzesDbaftDN0jrjgjI+bNIOK42Sx1fTLdpLPWCyKmStydxqePV/EcCo8umxXMTYIaOUCtVUTIcGjrDUTD5TXPx+Lolk2Xdjd25/vGMkfyrTg1nTrofu7yHP91nANNyurEWJvLBaq1/Nb2EEtzcSqkSqN249vb3p11fQWkJuHlQR9AoO4ufbFcd4tE17oKXeoRsqPdQrDbZ6AuBk/rXO1Y0i23Yhe6k8WSG4k3LpEbMqW2cGdgeCfatPG5lPyjgcLwBjjj8qqWuEjujFHiJbhhjtjtj6VNNcJawyTOjbUxjjOc09Erm/KyPU9Qh023E8z5/hWPuxPeuSmuJb9t8hJ+bI9hT9Rsp9UvzPPLIZV+7EqkqgPSlS1eOLCo7AdTtIrCpJ7o6aUUtxsZKKuFAUE5/GpowztsjHzyfIo+tVixjYAjO7+WK0NFQSapG5J2RIXJ9CK5U5HVLltoR+I1Mt5FYwcLEgVB7gFR/6CPzqtrEX7y3tYeigAfhx/WrsWbrXZ7g/diIPP4f1J/Koihk1Hzz8yquAD65p31M1oYmpQXD6jMUVSMoq/TaP6g1UltW2iN4yCf7tdEse/wAx2GGJ+Wq3+kK+SFzWsZWJtc1ZXxdy/wC+auW75ANZszf6XL/vmp4JcbRmvTOA2wGa2YqpYbT07YNaCkOBjBLKdo/D/wCvXl1x4/udI1+9sLux+0W8UpVJFONqnkZ59DXptswDQbeSdpz7HFRLUHFrU8QvvGcq+ZBBFtKuy5YY71zGpX9zqMeydvkDhwM9xmptbsrrTdUvmmidYzcvtkUZyM9KzmZCgY8IBuJz1pRSuS5Nqx3GmKB8ILyN8MUmIxnjOR3/ABrB07Wr/SZt9jePECeImO9W/PpWxoru/wALtTSNTI4ujtUd8kVTsPC2q3yBptttEfvZHOKz01ube8opI6rRviFLdXEFjqNqPOuJBGHUcc12twSut3CBuPKTaD9K47R/C2labJFIEklnVlKyN65FddeqF1uWVyWVoIwMfSsKqW6Not21H7A2A5J9sZFOdGSHIxu9hTo4fMwVYge9SEKvBG6kpFpIrW0b7034DZJ/CtS1EazRhmGWBGaoBx5qN6VoQyKw3MgB7UubcGlcjj+VAp65xUy8gY61D0ndfRzU0f3aybKbLKODVgSKXz7VUjAI61Mo4Aq4yJtc0IpC2zouDXOWdo1t4r10KflnaORf++QD+orbhz5ig9OtJPbquuSzd5FUfXrWsNdTGXuyshoDLC/zE7QvB/GmzW8d1A8MqhQwwWXqKeMlpUP/ADzz+Rp0ZHJNRN6hGTIbHTrazWBEUv5eTuJ5NXxgY4IznIqMHpjipcHAJNUpXRMgMRxu6j0zSodqngjj1qQNzilU89KOYkpaidum3XzKT5eORmrdk5Flb87l8tcYGBTnjWZJFkQYbjFYzX9zb+KrXTkUCza2Zl/3hWsZk2udE2yVNjoGH+1zWfNo2mXB+e0jVv7yDFXAflzSBvmFXzGXKVbfSLO0VvLQuc5AkOQD6jNZHjTnS7PJwHvoAzdTtDc10ZbrXKeOriO30zTpJTiMXyE/gCf6UpFQXvGVPqkej6NcXMx3bZ5Fji7uc8GuQj1rWHn8yacEs24w4yo9BUdzdPqV41xKS0XmMYEHuetX7S0KASSDLjj61y1KltD0YUupr2OryR2rfaYi0jk5dOvtV6wuIRZshmHc4c8msfGTkkj29aNmDu2iso1VszSVJGqqRXEKCSEA8/OtSW1tHa295IhHKhR/M1mJM8YZUY5xjFXZ5Snh8t/y0lV3z7McCtrxaMuRrQp6cP8ARLucn5pLg7cf3Rn+rU943jQycbHfj16UJE1vpsEfQsCT9cipbiN47OPJzk1mldjehJHbBYYwwyRyarTQAN93P0q/l9nTsKjZWHQZrTlJ5rGVK268kxnAZuDxzn1qGXVbKyYeY5Z+0UR8xs++Ko3Nld3d7P8Aa7oiEyN+5j47/wB6rVrZW9op8iBYyf8AlpjLEfWumVZI540mctqPh271zWb3UVZLWKfayxyDlsAZ+mcV6edbWC3h2Id6xqGLHOOKwPIDMrEnaOgY7jyfWrMUAAUMTtAAINYe1NeUoyxw3LyttDByS3HXNYtx4H0i5lWUjyk3bpFQcN9a6dhGjHYiqDwRmowMMQjqVPVTSVUHTRXsNLg06xe1tokWFm3YUdfrV9YOQzMc+tJCWwRt4zVxAGPAJ9aOe7uVbQiMACltx3Doat3IUXgZOvlJTjETFkJ2P8qVmUPGx43RKQTSbuA4SGQAHKr3xUmzKny+ajD/ANxd3tUsPmISzLj0FICL7KTMpA47irptiIwR09DTElKktjn3qX7SrriTKj2oGiOYYuHI/iCn8xTg3AxxSS8mM/8ATNST+FRK2GAORnpWZaLSGrMZxz1qkrD1qYFuCv60waLquSuTxg1JqVwkF/bbw3zrgEdsVVWQsuD941LreQlpJxhWx+JH/wBatYysc8174LNFLOhiYnfEynPrTkIz7YH8qz7aQf2hbhVwoJz78GrkWQi564xROQ1GyLAwanUjFVlPNO384qUwaLeRgHvT0brUI+4BnmlU7c5/SquZNFg7eCQOK5zWAIvFOgSDgM0iHHupNdBnKiuf8RsEvNEmPG28Cg/UEfzNMlLU6TI8rAqNWO/GO1KmScAE1GWKzEYrYixOGGw5HNct4yht7rTLZbkIYUn3sH6HCkf1rpgw2n1rifiIS2mWNuDzLcqv07n9AamRVPcyU0ix2xyrHLDGvAYHgAD0qU6dOiL5QEisBsYccYzUH2hhp125mZ0WFtuew7cU430z6edxYG2RACnHOKxlSudqnYiYSI/72N1wfmHpSKcgkMuM9+taQ1i2eDJizIFGQ3RjTillOiSGIIzDnbWbw9tS1UMyR9kbE5HHB961NTURW8EH8K+WmPb0qL7BbGRQ0xKswAU+uaXVJA13GoyVMrH8AKSi0rDlK5DfSHcqrzhRgf8AfX+AqxfknT4QRhvMHIqjd5aXqQcLj8z/AI1bvWP2RRno46/StIIxluXs7VGf7opvmk/3RVdpCVUj0phYsMlQPxrUhozZmjS8lbPPmHimm4DEADrUF1GrahMUYj52+99afHEofOa52mzaJZVWAyOeas7ieClJEcJwAx96lDysei/SjQBBbrjcQD7UojjySsQBx1qOSOV23bsH2pyeZjDZodgLEEB25Ygegq5FEBwq4z1NVolj4z8p9quLJxtVt39KETYcRsH3uvB/GkKQxgKyluABn2pd6p95ck9TSSzhxhixHoKq4rCbz92NQvvTyX24PJqsTnoVA96I5J3O2BST69hTuOxIwY/e4pViQdSzVYZXUqcLK2PmU1Zt3iJUbNj/AN09KaVxbGddmWNISOQRs2/Sq6XUTnLblZezVeY51GJTxtlPI+pq5dW9pcKRcRqSejAc1mlcu9igjKOc5qbzcAH1qB9IfG6zmPH8Mn9KrPJdWwIubZ9o6OvIocWUmjWR+D7Kat6qPM02E996H9Kxob2KTAjdWJGG4wBWzcktpiYwcAHPoKqJjUWtzPRdlxbN38zH86u7sED0JrLlvopL62igGVEoLP6VotxKSDkD/CipoUtSbdjmnDk1Cz5GaUNx1qB2LSMCQM1KXxuA6ZqlGQDU6Pzz0p3MpRJzJhRXPeNiU0yznXrDeRP+Ga22YFTWJ4yRpfDUgQ5YOnJ/3hV30uSo6nSZ3R7gB/wFqhR3MhJHSuGjS6tHxb3MgX0Bq7Fr2o2WTOqyRhsM3cegrRVUxui7XO0DgJk1x3jRBcXOjr2ErufwQ/41t6ZqLarpS3TJ5THchUdiDWH4mIN/pg/2ZT/6CP8AGrWrMkrHP3EXl6fcKD95dv505lP2W6QnbvIUfgTUlyp2BTzudfyzTXbcoU9SwNNLU1voQxWBQAFixPFaMTBAEUdOOakCMoLcHngVTaQq5ZgevSqYle5q28ZNxGQqt8w4NU523akCR9xGbH1NOsple4UjPAJwfpUYy19MQfuxBTWMo3Zqrle6cvKhHBOP51PduPKkU8kEGqszKZ4uOjDP51PKDcMyKdoZiCRSjEHKxYjbMafSiWQKvFEIQKI92SO9EsQbbzjnmqFczrkKLubcN3zt/Ok3jIwoply2byf/AH2/nSryuaxNIlmKXI2ng1dhU/73vmsrfgcdamt5ZkYMDxUlNWNJwy/Mox9aIy0pxgZpiBpGG5/wq4AAo2rjFFiLjcADDLmkjiCvvUt9KeNxIqXeBhTRcCRJx0ZB9acyJIcj5feo8AtxTt6EbR1polocLeI9V3U8b/uIPKX/AGe9RROVOKsl2Vc45pjQ1Y2Hs396pgd2A53EfxY5qKNmY81MF+aqiKRQyRfxKPmzISc/U1fLoxO1CCDVDIXVlX0Y1fLIO9KIPYQ3AyBIpbHAI4xVuKaORgofP94Nzn8KqbeQx5Bq5aLEH3eV/wACrojFMynJ2MLV7JH1dIIVEJkAPyDHataWINpBtg5Hy7N3fAPNV75lfxXbY6bP/Zasyti2f2Zx+tZNe8Ve8RJtNt9N0UeUoLhkbcep+YVWF1H5jITghjn861dXYf2GSfRP5isOzsIdRkuBKr4ViQyn7vJp1YXkkFKWjZaLAkYPBpyOGHB7VmXNrcWMRMF0J494UKeoqOLU1XIlXaAxTI9qwmuV2Nk7myjVIGIBrPhu4pCCjEmrBkyKm4SiWw2ePaqHiM7/AA9OegG0/qKmST5/wqDW/m0KdfVB/Om37pNjGkYYyDj19vrUNtEb2ZJSStvG5I/6aEdabMj3V+mlwnEsg3yt/s1s3SRWsMEMa4hjDBfc4qYRdrmkpq9i1pDAadOnQC4kI+u6sfxG+dU0854EMzfqtaOksRYzg9ftD5/OsnXWVtUt1PVbZv8Ax5gP6V1wZzNalNny8RPQEE/hSMocfQjkVHcRnChG+bPSlhE4bYVHrWnUCRTJESVbdk55okcMcnjPXipCrZG8YqGROTigFuS2ibJmYNkeWx/Sm28n+kXrdjJgfQCiIkPJ/wBcm/lSWu3y7jPUytWb+I0exUlOJ4z23CrQJBYjoSaoXDHzkA/vD+dWY5j5mO2TREllxMqM44oZ8qzE8HgfWo/tSKMEdKbcPnaF6HmgD//Z", "path": "images/5pts_ADE_train_00013120.jpg" }
depth_point_16
images/5pts_ADE_train_00003706.jpg
ADE_train_00003706.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 44 y = 152),Point B is located at (x = 289 y = 111),Point C is located at (x = 80 y = 131),Point D is located at (x = 152 y = 204),Point E is located at (x = 173 y = 179).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_41><DEPTH_33><DEPTH_35><DEPTH_31><DEPTH_25><DEPTH_69><DEPTH_40><DEPTH_72><DEPTH_46><DEPTH_84><DEPTH_45><DEPTH_78><DEPTH_35><DEPTH_59><DEPTH_44><DEPTH_40><DEPTH_30><DEPTH_15><DEPTH_66><DEPTH_55><DEPTH_45><DEPTH_78><DEPTH_35><DEPTH_59><DEPTH_25><DEPTH_73><DEPTH_35><DEPTH_76><DEPTH_81><DEPTH_119><DEPTH_45><DEPTH_78><DEPTH_35><DEPTH_3><DEPTH_25><DEPTH_40><DEPTH_11><DEPTH_76><DEPTH_50><DEPTH_121><DEPTH_45><DEPTH_66><DEPTH_20><DEPTH_5><DEPTH_64><DEPTH_75><DEPTH_30><DEPTH_36><DEPTH_81><DEPTH_121><DEPTH_45><DEPTH_19><DEPTH_43><DEPTH_83><DEPTH_63><DEPTH_60><DEPTH_67><DEPTH_15><DEPTH_81><DEPTH_12><DEPTH_45><DEPTH_58><DEPTH_85><DEPTH_37><DEPTH_77><DEPTH_35><DEPTH_81><DEPTH_83><DEPTH_81><DEPTH_12><DEPTH_44><DEPTH_66><DEPTH_13><DEPTH_55><DEPTH_77><DEPTH_35><DEPTH_58><DEPTH_84><DEPTH_62><DEPTH_8><DEPTH_9><DEPTH_56><DEPTH_80><DEPTH_55><DEPTH_24><DEPTH_55><DEPTH_12><DEPTH_121><DEPTH_46><DEPTH_16><DEPTH_81><DEPTH_20><DEPTH_6><DEPTH_52><DEPTH_27><DEPTH_6><DEPTH_32><DEPTH_42><DEPTH_37><DEPTH_4><DEPTH_END><DEPTH_END>. Since point B has a higher pixel value on the depth map, the answer is that point B is closer to the camera.
B
long
5
[ "C", "E", "D", "A", "B" ]
<DEPTH_START><DEPTH_41><DEPTH_33><DEPTH_35><DEPTH_31><DEPTH_25><DEPTH_69><DEPTH_40><DEPTH_72><DEPTH_46><DEPTH_84><DEPTH_45><DEPTH_78><DEPTH_35><DEPTH_59><DEPTH_44><DEPTH_40><DEPTH_30><DEPTH_15><DEPTH_66><DEPTH_55><DEPTH_45><DEPTH_78><DEPTH_35><DEPTH_59><DEPTH_25><DEPTH_73><DEPTH_35><DEPTH_76><DEPTH_81><DEPTH_119><DEPTH_45><DEPTH_78><DEPTH_35><DEPTH_3><DEPTH_25><DEPTH_40><DEPTH_11><DEPTH_76><DEPTH_50><DEPTH_121><DEPTH_45><DEPTH_66><DEPTH_20><DEPTH_5><DEPTH_64><DEPTH_75><DEPTH_30><DEPTH_36><DEPTH_81><DEPTH_121><DEPTH_45><DEPTH_19><DEPTH_43><DEPTH_83><DEPTH_63><DEPTH_60><DEPTH_67><DEPTH_15><DEPTH_81><DEPTH_12><DEPTH_45><DEPTH_58><DEPTH_85><DEPTH_37><DEPTH_77><DEPTH_35><DEPTH_81><DEPTH_83><DEPTH_81><DEPTH_12><DEPTH_44><DEPTH_66><DEPTH_13><DEPTH_55><DEPTH_77><DEPTH_35><DEPTH_58><DEPTH_84><DEPTH_62><DEPTH_8><DEPTH_9><DEPTH_56><DEPTH_80><DEPTH_55><DEPTH_24><DEPTH_55><DEPTH_12><DEPTH_121><DEPTH_46><DEPTH_16><DEPTH_81><DEPTH_20><DEPTH_6><DEPTH_52><DEPTH_27><DEPTH_6><DEPTH_32><DEPTH_42><DEPTH_37><DEPTH_4><DEPTH_END>
44
152
289
111
80
131
152
204
173
179
98
120
14
78
42
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD0nHFMYVLjimEViMrzLlG+hryvUYGbR70kgAyzAZ+p/wAa9YcZFeW6hG40m4ifBjeeULgdOelYVVqjSEnG9hsSlrWxGesGCfpg/wBKjtrmFfNkILSROw6dSCQP0qaM7LOwA6eWwB9Plqho2J7u8Bx8/Jx65rBbG6unc3tNfzLGNmJJye3vTr1cxp7Nmq9vEYI3jSRh8xOfTNSSlpEVHPKjJI7mkkTKV22iu1QPU7VC/WtCBBTh1pop460APWpBTBTxQArfdqGSNFwRD5jnAA7fU0+4Yrbuy9QOKW2dUEkkjAAbVznocZ/rUu17spc1vd6lholkt/LdsZAGQe9VfNa0Y7gAXbAz6DvVstGziFuSwyBiqg/e5gc/vkcxr9MZz+VSldXLVTkajLZmjbSCaFJB0YZqZoIpMeYoNVZnFpa5jKgKOM+lZzaxPLLJFDt8tImbzcckggf1pK61QpRT9Ca8uZ49Ugs7WX91yXyMkcdM/lXW6VDHLoVnPJGrSuPmYjrXCaQ/mfYWcl5JFkJb1Peu90Nt3hnTvof51pB80rMmcORaFlLONTlIEBPOQoqZbZv7oFWZjIZNqelNENw3QfkM10JIxbuRi1buQKkW3UdXFWI9LvZOiSY9kqzHoF4/VXH1IFWosVymsUQ6t+lSAQipxo8sd6LaQDcwBU5rTTw8R96RPwBNNRYrmQHiHQCl81eyZ/Ct1NCjXrL+S1OmkW69S5quRhc55ZjnAQ59MVKDKf4f1q/eWUUGo2xjBAdSGBPuP8a1ls7dekS/jzRygc6ElPoPxriPiErLFHv5xAx4+teuiGJekaD8K80+Kyrm3QYBNu/Qe4qakbRZUPiPL7Eg2Cv2Jbk+gNZ6yyFmlXALZYDsRWpFEq6akbEFPmBI9Mms69iVIiYDuHCgegrksdUXG9iO2vIvLWZkYPtDfiasaQsl7czyDauMZzySDWdaQM0Eefu+SDn3zW94Ut2N9egjjYmDilK17DUnZlk25WV0J+6QM496p3ReEsAe+Oa3pYcXU/H8a/zFY2prhz/vGjlVjO7M9k84ruzwc8VKseDmnIKkxQI9rxxTCKlxxTSK7TmIH4Un0rzPVWxoU7qM4uHP16f416dNgRsTwADmvJ5Hefw1eZBz9rfH5rXNX3R0UY3TfoR2kjyQW277m3gHtxUOhxbdU1EnoJNo/LNWrSE/2bbOT03Aj86raY+3U9Q4ODJn/wAdFYpGspa2Rt4wTjvTH6UsUgkTjsBQ/SqRk1ZlZqhep2qF+tMQgp4pgp4pDJBTxTBTxTEJJjyznkYpJUVY0VQvDbm+uKeVDKVPQ01xUtXKjKzuQrcQpdwoxYEn5flPIH/66hOs6Ub+W4SdmeBSsiiM8E9P5Ul8hhijulb5kkRQD0GWHNc/bRlbjWGVRkzooHr1JppLWxUryV5HUXd6l1FhY2VQ6qS3vz0qG3iCxMRjaY5Ofq9VbuTFtdKDtKyovuPkqbcRo6FDuIiOf++qhrQpa2Qum28iXNv5aZVImVOeM+9dt4ZbPhbTx1KlgfzrkNFke4eIAlSoPPua6PwaXbw9Hv7TuBx9KumrMVSXMnfodhHII7/eQCEGSPXAFXL/AMSFSyxDaAQPlrKkysl2w5xG5/QVkkySxAnIwM9Pxr1sPFNNs8yu3okdJF4jnldfMc+WB0XvWnZeKYLnAMTLlsD2rhY5TG+SehIPQdRirVpdBD5hIIJB2A+ldLpxfQwU5LZneT869B/1zH8zWrXP2V41/qME7JsOzGM56E10FcVrOx2p3VwooooGZmoDOoWn0b+YrTrOvRnUrX/dP8xWjSAK8o+KkzHVI4QOlixB991er15Z8SlVtZGTz9lx/wCPVFV2iXBXZ55E6wWkYlOcswHHv/8AXrPvWFvcOcZWReB/tZx/WtBomls2OwlRK6gj/P0pl1AskThh90ZHsRXHza6mzh7qtuZ9qAunxnGfkH/oVdJ4IiaW7vVbkhQenbIrndPUyafbD+Mx5Az15rt/A9p5eqXSHkmAHj6isb/vLG9l7J9x91BtvJ+P+Wi/+hVzOrLiU/7xruL6HF7Px/y1X/0KuL1kYnP+8a2exgUEFSYpEFPIqRHtVNIqTFNIruOcglUNGwIyCCOa8qmiSLw/eJCxAF1jJ7HK/wD1q9VuyVtZWHUIxH5V5pqEIj8MTcYJnBP1ytYV7KzNKbd+XoZsN75WmLHIpZk3EkcDGeKj05lbWbojBV9p+oKCrD2wl8OyMPvMpUH/AIFWSC1pr+1FZkVI+P8AgIArnbT2N4Reqe9zo4AQ0o24CtgflT36UQ7m3sTlSQQMdOKHpohu7KzVC9Tt1qF6BDRT1popwoGSCnimCpBQA8U0inClIoAr3savp7q/C5VunvXORsovLsIcLJeoMHr9w/411jgeQR6gfzrkkUSFrkfffUDtPttpdy466PYtXsInn1FeeJh/6B/+qr9ttWzKMQc25bHoCRxVazxINRZsbvtHX/gIq1aoklnGD95rQA/TI/xpPYpuzsT6LEym3YAfNNx9OK6nwoCNAtQevmMfzNYmjhTLECBw+RXQeHB/xLo1HQSH+dFKV5epE17vobjkh7sjqEfFYbDarDIPHQfWtqYHF/8A9c5KwUYh2LDII646V7OH2Z5tfdDS0hdgqlmJ4X1yO1LbrNGgV02tkZHoe9MEY35LMqs3Hep7KS5tYg/7wAnABHysD9a6UzBo6rQ7hba1jnI4VGPXP8bCuvimWZcqeQBnj1Ga5TS7KSSFLSRDCzR4Ix0BYmuotLVLSMqrMxY7mJPf+lckra97nVDm07E9FFFQamfdc6nb/wC6f5itCqFx/wAhSD/cP8xV+gAryT4h3IfxS1uBytuCT+X+Net1418QP3XjBpFBIlCIfY8Csa/wo3oJNv0OTtGTyJucfvCcHjuc1FNNHJFMFYZKEj3HrToIBPb3iHr5hK+2CaddwhLCbAG4RkA49q5ZcthJy5jH0ONpY1hLMu1OGB5HJrvvAU7S+IbmFgfktypY/wARDLXH6Eipb27d5FJz610/hXWNK0vXZJ7q6SJGicM2Cedw44HtWF/3tmdE/ehzI6W/T/TZ/wDrsv8A6FXBa1/x8H/eNdNf+MNDN1K6XLOplVgVjbkA+9cVqWsWtzNui3kZJ5GK2b0MlFj4xTzWcNViUcIxpjawO0P5mpHys9/xSEU/FNNegcpDKMxsD6GvKdcmf/hHdQ+b5FnAGO2COa9YlGY2Hsa8u1q2Q+FbxwQV83JUDk8jiuautUb0JRV+Yhgy3hcsRjhjj8ayZEjOufvOjRR962YY2bwpjODsY1jSp5us2+D8vlJu/AniueNupo29XE6CE5D/AF6fhSPVa1LLqt7G3fDjnt0qzJTQpx5WVmqF6mNRPTIGinimCnigY8VIKjFSCgCRacRSLTu1MRW1OQw2DSD+Ff6GuXsSotrKNuFN0Wz+ArqdbAGiyZ/iwK5qCEyDRkxhHlYn1o6lX93TctW1qPL1ZiSUjlYA577Qc0WBlM9tjOBb7WzxwAv9TT7Nimgawz/eErqT7hQKuwgpNaqRz9i5/wDHamb0aHDfmNDSYzLdQjJ2rJlsGuj8NqRaL/v4/WuZ8Ly+ZfTD5sKw611Xh0g2v/bSppN8yQ6seW5sTIX+3KOpRwM/WsW3t5Z2niVlbyfmd93HHFdLDGs2oTRuMqwII9eayrLSppdRv7RDtEBZmPHQdK9mhszza26M+1igd3EspCg8FR1Gf0rpbNoHWC3glWW3jbaxA+bPPH41gOiR3cqSfIGHO1R/nrTbaV7ScTRyFWDbht6fWuqxztnfwoV1gBjkiNefzrXrmtCvJb+dLibBkZecfU10tcTVmztg7pBRRRSKKM//ACFIv+uf9avVRnONTj/65/1q9QAV4t46dU8Xz7mwrEMM/wB4ECvaa8Z8aW5n8RySDBMcpbnv1/risaztZFwXU5LTXc3ki4/ds8isfQjJ/pU19IqRmM9XBAqtoZJRmf7xuXBHocGrN/A3m+aSCgwoGORXFM6YpczuZcZNrBZxx84J4P1qTXYMkSIOe4X09asw7wsCxIDIxIBI+7z1rQsNNl1jWxp8YLLHC3mgNgsnf8awd+dM3hKLhy22OJK896acD+7+dd1N4a0yzcrPb7CP77n/ABqP7Boaf8s7f/vrNdFjD2sTiNyj+JaaXX+9+ld2IdJX7sEJ+kWf6U7Nkv3LU/hbn/CixPtV2PWsU0in0hrvOUYRXmet2yDwzfuq4cSk5B9xXpp615tqkiyeHtVRW+ZGbcO44rnrtq1jSEea5UiCt4a2k4JRj1+tc7DuTVYAf+eSkfTJFbFsGfRYGPLBSv8AP+hrOdQLuwfHPk4P51zLax0tcr9TajGL64xGAMAl+5NOkqRHVixHBPao5KoyafUrNUT1M3WoXoEIKcKaKcKBjxUoqIVKKAJVpx6U1af2oEUfEBzp8KA8kkkewU1l2akvoYIwdpbH5mtbWowbRpSBujgfn64rMh3td6P5eMi3DDP+6aJaspOyGSqT4e1Yqcbrps+/3RWjINmoW4PT7Kf6VmSFW8P3a7vma8JAzz94CrmpEyXMHlnBMBX0x0qJGkU3oaOgRsJZmhA3Nj8etdJ4TINio3ZIZc881zfhMvJuJYBsjp7Zra8GLIs1wHJOWB6dOTinSVpIdTWMkzr1cJeyFpBHlsbiM4+brU+li2tNRurie7VvOUruGc9evSoII45bqbzSAoZsnHT5jVlY7Xy5HVt2z0TrXqU3Oz5UedPlvqVJLKwm1Oee4uzLE64CqhBzxn+VRXGnaY1wrwvKseRuULyR3q/JLaRR71O4+gFbtvp9pLErYbJUEj0zWjlVjqQo05aIw7K9tdPnH2WGUwqAArde+f51q/8ACQBvu2kn4mkjsIE1WSIL8hCkgn2rSGn2o/5ZD8zWV2zW1tjP/tqZulrj6tSjVbk9IEH41oiztx0iWni3hHSJPyo1GYn2uee7Y4QOqjp2Gc1cW5um6uv4LUhhjXVcqijMYzgdeTV7A9BSswKAedusjfgK8q8V3CHWbo5yFdgT9K9lrxTxfabNSv8AykZnlkkJGe/rWNZbXLjdJ2OS0OcS27yY4a8Yj8RWjfgqnmBjtJCle1UNHiSHSGY9Euz/ADAqxc710i6JydpBBJ6niuWb10NowbVye2jWPZIxAChhk/Wuo8DWwXxdNP3aIr+GBXNlA9hE+0kHDYrrfAh3auW77WH6Vzx/io3atRbIPEKA63cAgEKQACOgwKy9oHQAVr+IB/xPLr/eH8hWWRXSchGRTCKmIwOaY2aBHplNNPppruMxO/T1ryKSRzZa2CRscPIeOR2ANevD71eX6iC1jrSIgWJWckj+I4rCvFtI2pVFC6tuQ6bAo8OxMeThiD+FYsyFvsJB52ED8607Lzo9Dt4oziJkLZPOODkfyrCs7kvDZrJnKsygn0wDXM42SaNYtzcn2N23VlusOPm8vk+/Wp5Dzinj/Xt8mQVHz0yQc5ppWJlLmdys3WonqVutRPQIaKeKYKcKAJBUoqEVKKAJlp9MSn0xFbWsnS7s/wDTHArJsH/4nNrHyfLtcc+ygVc1m4Js7uLGAF5zVO7Xy9eRU+UC3OSB7VD3ZtCPR9Siys+lAofme95+m+tKUmPWIozkgQnOfXg1StnA0KxBIy99/wCzVoahsOuxoAQWjYFs/SiSY/aK7Re8NqxvFlU5DEkL7YNdR4QDfY97jEkjBj7dcD8qx/DEarOflHyqcewxXS6Co+b/AHhRSl7yMqq/A1kz/pZHXLY/77NVrZyrMWcLJHnHoevSrH3Yr05K8NyO3zmoZJYIdPOXYuqECPbghj3z+tezh9medW3RDbO1xeeV/Du6dgO9d/aW6W0OyNiVJzkmuJ0K03Wslwz+WZT5aHGc+o/pXZWtxJLK6GFo1QDBYYzVVddhUrJ6kSj/AInEn+6v8q0KoJ/yF5vov8qv1gdIUUUUAVD/AMhP/tmP5mrdVP8AmJH/AK5j+Zq3QAV5D4nlRvEFwgYFhvJ/OvXq8O1Qu3iG+kkBV2R2I7fermxHQ3opNNnLWDMmiXTg8CVmx77+v6VrX0OzQJVHLFOfc1iSK8fhoJGDmZ3y3p8+BW1KZ5dLkZ8AK23b7d65pRumzSU+Vx8zl4/iXo6QpG1nekBcEbE5/wDHq9Q+Ht9FfXkVzCGWOZDIqt1AZQcH35ry6yS4/wCEF013vNSishoN6DEbYtYu/nXON77wBJnG35SdwSu++FERjh0w54e2U/8Ajgq61GEJRaIjOUou5ra7zrV0f9v+lZvFaWtj/ic3X+//AErN/iNSQNPJzTCKlIphFAj0qkNLSGu4zEHX8K841BRFpOqxsQG+c4/CvR/X6V5h4iULca2OQQpKn0+U5rCvsjWjDmk/QNNAbwrE/fy2xXLS2uNO00RhtwY8r1yQMmum0hseComY9IjnP41gqzNY6cFHLSY/8drlj0RtflbZ0CcBh6AVDJTCwgv0hXhZI9xHqadJVLyJaas2V2qJ6kJrO1qRo9GvpI2KOtvIVZTgghTyDTSuSWxThXm+qJc6at5bN4nvTqdlgXFs5ZU3bgrIj7yWZSeQVHRiCcc93o8jy6LYSSOzu1vGWZjkklRyTVzpuAlK5oCpV7VCKkWsyiwlP7io0qSmI5/XXJsrmVDnMyxcfhmh5d2vyJKDg2xDYPTOKqu7DTbdGBcXFyME923/AOBqy0JfWtTBYlvszY9sYosluU5tqy3RStoMWGlyEZ33Z4+jN0/IVevy7atp5XILSSEg8ED3qOxJex8Og8F7l2x+JNWdUyPE9uccYYZ/CpnLoVCPvXN/w7C0l6XydiRscZ74rqtBXCt/vCuZ8JNk37HgIDnP+7XWaIB5C4xywNKk3zRQqseVs1bNI3nmWYExktuGO281FrdkdO0+WNYg8MrDa5+8PY1a0wMbxwv3ixAyP9o1J4oufK0U24kDStIAfYA5r16LPPqpdSawiRNAsZAo/dgMSDjnPIP510KncobpkZrG0sxW/huJ7hgqOhY/j0q9FPLcwr5KNGpXhnXH6U5ajhoNj/5C030X+VXQwLMB1XrWUPtEV5KUAnlG3OTtyMVLplw9zJcySwNE4fZg88D3qEtGy+bWxo0UUUiir/zEm/3B/M1aqqP+Qi/+4v8AWrVIArxPX5Fj1rUFdAJEUjI/uk8GvbK8T8V2zPqF9cKSpC7SR7k1jXa0ua0ldnMKySeHkiH31+Yn0Xf/AFrav4mOjSrH94qSPrWabdIvC3nr96SFAfz/APr1f1e6+zadGq8ySMFVfX/CuOpJLVG9GjOrNU46tvQ8+l+GHkxoz6xjcm7H2XoeOPv+9etfDq3Fncafah9/kxCPdjG7CYzj8K5y4N9JeWtvdiBWcMytETtcDGVIPQ8ZzXTeCGA16FQwbEjDI+hrJ1p1JrmOirhlQp67tXundNbFjW/+Q1d/9dKzcfNWnrX/ACGbv/roazcfMa6Dz3uNNNIqQimkUCPR6Q0UhrtIA9G+lec+IfJNzqyyAhih+h4r0U/db6VwuuqDNqWehiP8qyrWsrlQvf3TJ0kL/wAIZEGxtMbA/rWFZN/olmuOVcHP4Vu6TNGnhi2ifq4YAY9zXItrulaXDbRXt15U2A4Xy2b5eRnIB7iuRK+x07N8x1U6IbmBmcggHaoHU0ySq+ma5peu+Y2n3HnNAoD/ALtl27unUD0NTyU7W0Iu2VzWXrv/ACAtR/69pP8A0E1ptUMhAySQAOpNNOzFa+h5ZquvWepi7uTpe3U73Bubh5t6bshmeNNoKMxHOWPVgMA8ej6H/wAgLTv+vWP/ANBFWkZXUMrBh6g08VpUq862EoODsx4qRTUWalQ1mUWE6U80xakQB5FU9CeaBGJBCDYWKMdx+3ZB+jUsODrOpvnpAR+op8BfzLCNo9qid2z7gmobdWa91KRWAATBz3FQ1rqXe+qGWQwfDK9vMlP86s6qSNbty+NuXwe9VrV1W48ODI3Ikj4/A0/XVM1/bhD1D/rSkXFXaOl0PI03UXjxjYST7Y611XhwKNMtlz8x2kg9a5Hwrn+x9T85gQqkHjGRgDmuq0KJ47nLElWCkcdBVUo2kgqNWlF7o6PS0D37r0BJ/wDQjSeJdNAjhaFT5kj/ADnPXim6RKsWqOJSEG48twOpq/q19G91BEjKygglgRgZOK9WlKzPOqxug0jTJhHDJekskagQxHovuR61u1ALy1xxcRf99il+2W3/AD3j/wC+hSlLmdyoxUVYrxj/AImk30H8qtRoFklI4BIP44qklzbjUXbzkwR13cVYW8gEjjzUxwQc/wCfSkmMs0Vjy6sbqzu0txJbXCqwjeRMgnsR61orcwhRmZCccnPWgYwf8f7/AO6P61aql58RuywkUggc1ZE8R/jFJMCSvKfFSKlpqzd/MAH5NXqfmof4hXlPjEPHYawXIIM+U+gBz/OsK6vY0g7HK3g2eD0A6CFP6Vb1KCG4sBHIdr8FGHUEEdDVa8GPCEYP/PGP+lW5ZY7izkjAOUxyfrXHK2qZvTnODVSDs0Z1zDPbalZm4uTcySBkUlAoUcdAO/XmtrwSHj8ZKo/1YfH44NU7+Ivq9g3G1A5P1xxV/wAGSbvEsRIwftOP0rFWUopG9StOqpTn2tskl6JaGnrP/IYu/wDroaz8fMavaqc6tdn/AKat/OqWPmNdTOHqNIppFSEU00CPQ6Q0opDXaQNb7j/7tcBrdyF1O9t2By8OQR9DXfyf6t/pXmevwzSa7dSBGG1eSDgbNv8AX+lYV/hRvQinJ37FHRl8zw7aDnOSAfT5gf8AGuGkgtx4oivrw2n2aw00zN9sjaSIuXZIwyqrEje6nGDwD2zXovh5kPhi3KjHLZHocmvONX0HUNdlLWN5DHAsSpLFJIy7yrMQcAEHG7+dZUWoyTZdV897dDQ8J2aaX4n16ztZM2hkjkgYfxwsGaM888oyn8a62Sue8J+H9Q0Z7mTU7uKZ5UiWLbIzkKgIC/MBgAEAAdhXQSGio05tohfCkVzVG+GXiZ1LQq2XAGe3B+lXjULnms5K6sb4av7Cqqlr7/iraPo+z6MqW21rl3hXbCVAPy4DH1FXRTBTgaIqyKxVf29TntbRLV3eitq+rHZqVKhzUiVRzlpDTZ2xHjOCeAaENKwBkh3MFQOGYnpgdaTBbla7xFJZ4XOA5wPoazdNkzb6oWwpCDv7mtFpS+uW8YPypbsxHY5rDjjYQ6nISQpIAI/lUHRGK2ZPZW/2jUdEGfu27n9P/r0TSZ1lM9GJK89un9KvaUUbUdMCn7lixI9ztqlqbJ/btrhAisGAI/ipyixQqJtx7nU+HE+2WmpA8CSBlB9vX867DQBJ9gjkmGJWZQfYDgf596wPC8aLZX2FAxFgfSup07myh+q1dKWtjnqLr2JGiknLtFBJK+8janYetRtbzq4R7OYP/dNbnh4fvbg+5/nV6+YJeQ5fGccevNd9OCkc85WVznY9Ou2YL9jlX3PQU+XT76IHy7N3wM8HrXYUUcqGcfBDcPao62skku4h0X+GphFdAgGwmyenNbenLte4/wCujfzq6cb19eaSigZziw3f/PhL+YqTyrsLkWMhPpkV0NVppyuNpUAnGT601C4m7GRYieWGVpLcrMr48vPSrapcj/l1I/4EKns1K3dznqXBP5Cr1JRQzPC3H/Puf++hXn/j+2R9MufMQHMjnB9cCvUK8z+Ibg2U6g9Hf/2Wsa+iVjWlG7OK1N1bwmdp+7Gqn9KeyEWsrjIOzr9SDVbUJY4/DDRPw5UHHr0rQuJY/wCzX5BygIGeozXI02mb8yg0iS74vLck4wDz+FSeEQYvE0QP/P0tZttNJNJF5wO4HkH3FW/DLGLxZGmfl+0piuePx/M0mnGLj5G9qn/IVuv+urfzqmR8xq5qJzqVyf8Apo386qH7xrsON7jSKaaeaaaCT0EUGlFIa7CSOX/Uv9K4PXFafVJVVsRrH8w9Tiu8m/1D/SuH1x0tr5i7cyrwMe2Kzqu0bjjFylYwtItjJo9k4J2clx2JDcH9a5ewEtvHNLGrPEmd5BGBk+neuy8Nv5nhW1cjk5/9CNcvaxXJ0y4WNohCQS+Qd3XoPyrilKTikj2MBHDxnP2ttWt72tre1uu1vnvsdBbus0O75SQvUcj6ioJKjs5HgSJJIwqyIVTac4x60+Q1aPPkle62ICetRP1qQmoWPNMkXNKDTAacDQApNTIelVyamjPSgZaSiYB4yp6Hg/jTUptweEGDy6gkDoM80CGXQb+1o1VcKkJwR6cce1Y1qwOkagzgESOdp9CAcVqh5Lm4uhLn5I+SOOCen6VkrGw8J3+zrHLlT9AP8alW2LkpL5GnawG3u4pUR2ZdORMKM88c/pWfruBqGn26H50GTjtyK6XT4/8AS93YW8a4/Oue1qFv7cjkPGM/iDj/AApOQ6cWpXO08NQvJFfuHIUQ4Hpn6fhXW6WP+Jbb/wC/XLeFGxpuoFsD5ev4VgePZr5v+EbtrLWr7TIXttQuZpbNm3MIYhLjaGXccKQMkY3VdG8pJEVI2uz2Xw99+4/3j/OqnimY299ZuCcYyfwNeQfAvXL2/wDiFf2za7quo2Q0t5At8xGH82IZ2b3GcE85zya9a8dRkWlrcjorFD+PI/lXp0VZpHJU+FnWowdFYdCMilrN0G7F5o1tLnJC7T9RxWjmk1Z2KTurlLT/AL05/wCmjfzNTNKguol3Z3ggD6c1zmp6jNp9k0kRO55HH61i6d4lJ1gXF2H8qJMIv93IxThBtXIlUSdj0Q52nHXtXLvqputXtrUxmOISHOeOFz+nT8quPqk9xYNdQXNsqBc/INzbj0HNcAHabUlDqX3NlmUgbsnnHp3qoLuRUntY9PtG3XVycg/OOn0FXMg9DWfYgCSbygAoYbR7bRS6hfR2du0jbdqsO/51mja5eY9ADg15p8SXX7KwAwcMT9cj/CurfxBF/Z5mQFXY7Ru4HX/9deYeOtSa5towyv5iRkOM5wS5rDEL3Ua0PelZGDrVq4sWkBb5gre2BitCWBLe2upn5TA69hkE1XvvMHhm4lm/1h+XHoAQAP6/jWjfqH0qVT0IAP5iuO/K2jSTdSMW+hUmcQXFsSoHmtux6DHAq1oLr/wlCkYyJ0P61BrFusk8EhziNgcD61W8N3Bl8Ug5yGdSPzrn3ldHSlenfyOtvDuvZz6uT+tVyPmNTXHNzJ/vGoj9411nC9xpppp5pppiPQB0pDSikNdhJFP/AMe71w/idSL62bGR5ZH55ruLni3auQ8QeYLmEoiuDH0PHrWVVXRdOXLK5z/h0mHwhAduSu75V/3jWTpWH0+cHoQf51taDmPwrb7Rkjdx6/MawLEt9ik255Y5H41x20Oi/M2aU0LSJblR/q2JJzjA/wDr1HIaspH51vExOAuSR68VTkNOK0IlJvTsRMahY8mnMahY8mqEPBpQaYDRmgBxPNTRmqxNSI1Ay8hqQAvlV6kd6rI1WIVEjkEkcZ4OCKQbDfKES3r5JJUD+dZtsAfDF1x96Q5H5VdeR0t74TEbgwUH+9x1/WqtpFnRA28gM+COx5FS0k3calJq5v2YxcPnsqD9DWBrYKXsZZsrzj1rajuAl9IuAQSv8v8A69Y2vYluIwpGeRUM0jF3TOn8N/6RoV/5fQoc+uBXMePtcXQpPCuoLHM+2DUIsQzeU48yJY9yvg4I3bgcdq6fwQhh0i9Q5O1WO091xXSaZPa232UyXMUf2kqIkeQLuxgAKD17fnW1H3ZKQT969Nb7nmvwL1FdR+KGo3Qa9YtpDgte3X2iQkSxfx7V46cYr3XxTb/bfDt0i/eQeYP+A8/yzUGi8LL/ALx/nWscMhVgCGGCPavUp6pSPMqTs2jlfA+ptvewYAoV8xT6H0rtNwxXm/hIrF4h8rnjcF/DIr0IsO5q6i94mM7I5vVbNrvSZGVwrRu7c9+a83e6ktYJiSVl3hV4r0DXblrfSgFIHmGRTu6EZ6f/AF68/v0R4chcLzjOTg0qTsiavxE2m6nK0aWzTGNAcjP97nk/nSTztHcludmflYj/AD+FZWx4ws0QDFedv/1qBel3Dlg7AgEEY2gf/XNaPV3Mj2PTbsppEd0UEn3WwOP4R2rD1fVZLXNxIiSJLvUrg4YEDkg9OtOubr7N4IgkK5LiNQCMnJTt71zI1VUsGjSXcUG1Qc8A9Rz161nBKzNptqyIZNQl8+JJCHiRlCgt0Hpmjxtaxxm6GATlefbOawp2T7XGiElC4HH866Dx/Iw1K9gxgL5WPoQK5MZtE6MJf3rGT4hAHh6fthR/OnamX/sl9gB+7nPYZFQ+Kt3/AAj0wX2qbUyw0eUqQMAZz6ZFcCR13tZi6nKBJs7gA/rWbpMqxeO7dFACyMqj65FXdYZIy0jsq5UcsfQ1m6AgPiqwd/vBUk/NhURjpctSV7eR2s//AB8y/wC+f51EfvGprj/j6l/3z/Ooj9410HK9xpptPNNNMR3wpDSikNdhJDdn/Rm+tctrf+vt+P4P6munvTi2P1ri/E9z9nurP5wu4DOfTJrKt8JpSi5SsjD0i6KaJZRgDY27cT2+cis7Sx/ok/fAf+taGiws+j2pwNoduv8AvZ/pVDSAz2ko7kOP1NcaOmaS2LVvd/6JGAmS2Rwe2M1Vkan2dsUtlCkkrk4z2xVeRutVEmdtLDGaoSfmNKzVFnk1RmS5o3VHmk3UgJCeaeh5quWqRDQMvIamiuFhmQMD852jFVENQ3iu7xkHAHO4nAH+RSZUEm9SfV2cW8pRRgkksR7YqGznV/DsAJBLzcD1G6m6ndK2lyKD96qNizJa2A+9mQbfQgEmla5pFq2vQ19QDx6Rqd7FJtlgikaNsZwVTI6++K4m9bxGqtL/AG5ZXF4LSO/ktY4yJFieNZM8xhSQrAkKTjn0NdjqF0kvh3XE27SLeUY9D5dcHc6/pIlbUbU3r6g+lRaeIpYUSOMi1W3kfeHJb5Q+BtH3ge2D00IJp8yOepUk3oz1n4aTyXdmk8x3PJbjcSMbvl5/WrVpDo+myX9vrti89xcTAWrfZ2czx7MKkbY4YZAOMckc8cRfDJlXRLVsDi2QE/VVr0WIbUhQeoP865+XmlodmHxXsG7p6q2js9772fXdFbwLFc2/hu1iu+J1jwQRgqM8AjA5AwD7iunzxXNRXNxas3lYAyc5Gc81YGsz7QHhU+4yK9KjOMYKL6HlYrnrVpVbW5m395ieF0WDxDPERkqX59ME123nKxK55BzXKWqW1pePdRwzeY5JI3cc/hV6O9UTmbY+49jitXVg3uZOlIpeI0DabAxbaFZyeM1yM8MkdoSqZRhuVgentXYX6rfwRRl5Iwu7JUA9TVZtNjktfJeaQn+95fP86yjONipwk3dHCSXSQxOip82Px/Gsppdspcx84xgCu4m8GiZnKXxXcMHMX/16qy+ALqc8alDnsfLYfyrVVIdzN05djW19ynw2sG774eD3+SuE/tKWK1aOMhVYjJ7mvTdb0OfVPCltpkM6LNFIhLvkA7VxXLP8NtTKRqt1aHb1yW5/Sppzit2XODdjkoLkieH181ck/X0rr/iCCdYuPKALO8W7cegwKrf8Kz1pZg0c1sy7h/y0IPX6Va8eIYdQn5yxmj5PsoArnxko2TRvhYSu0ZHiTA0C5zyAlUdUuXFhMcnyigwMdOh/pVzxEjSeHp1J52DNUdYiKeH7mRjyI+n4j/GvPR2wt1NW+RZCMgHjisuzUQ+LoCowBAmMezitKWaOVQEIJC8is4Ns8Rwk4wYRj/voVld3BK2518/NzJ/vn+dRH7xqSX/XOf8AaP8AOmH7xrqOUaaaaeaaaYjvRSGlFIa7CStfH/Rf+BVxPii2aS7gkaQLD5IBz1X5u31rtL//AI9f+BVymvqJbq1Rh8qxbv1NRVScdSoTcHeO5z2kXapo1rE+fMJIAHfkkGsDR74x3DxfweYV5HXJrodKgV9Nsp+6qw/U1iaFFHcXDOOVRyzc9W7CuR2cVY3py5ZSUzVhTfBwxG0HBHfisiRq0LOdCZFDqV2EDB785FZMjcmhdiF3ELVHu+Y0hamA/NTGS54qaOOD7M9xcXUdvEjBSz9Mmq2eKq6983g6+9p4j+tXBJysxSdkXWvdDT72t25/3Rmmf2z4ej66tu+kZ/wrzMGkro9lEz5menf8JJ4cT/l/lb6RH/CoLjxP4amUK814wHZUxmvOKKapxQrtnfzeJPDEqsrw38gPbOP60J4u8OwrEsemXbCL7mXHH61wINFP2cewczPQU8aaPKxgXQ3ZZ22uJJcg545FWPE+kaRDem3t7G1i2Pt+SFRn9K4rSFBaZlQPOgUorDPG4ZP1Hau31a3tV1aQWjBreIny9r7lGR2PeuSvNRfKv60PVoYFuh7e+tr7aWTtq779lbtrqjtPAtmrGYKNsKRbFUcAfT8K9At+AvJOGVcnvgVxHgOQJaXTscAckn6Cu1tWBjixz8wNTTk20cE42bZZh2heQDy3X61MXUIAUXGPSoIz8o57t/OoNQn8m1zvC+5OK9mil7JNnmVW/aFMTt514Q5YKwwD/D7VlNrN2momIIjQthSx7fSnaRK09tfynq2Dn1xkVz3nvJrrpyY1kGDjgHArLTmNbvlO41W4ax0+1MIO9gwwADnmuRk8V6lEx2zI6ZwCYh1966TxM3l2Ng+9lK7zkGuAvp1Z1kaIfL/rNrE569aimlbVBOTT0Zry+NdXijiKi23EYYPHznPsauQ+OdRWEO0NpIS2MbCD/OuWjmtpJWXy/kGcfNWlCLQp5YyhH4kHuatxj2BSl3PRNR1efTvD1vqCQRySyyDKv0AKk1zw+I90qlhpkDgNtyJCK0/FjCLwVanPHmJz0/hNeam5EaFUGUYEkHnNRCEWaSk0d0nxSAdVfSRk9xLx7dqzvHLCTVJCe9yvH4VyUUPmSRMyk5YV0njSbbrSBhhDdElj2ArnxcUkkjbDSbbZz2oX7z6Vco4IzExAI6YqLX7iQaBdW5XLeSCX6ccYP1q7qkCLol3cYI3xHYCei44putxB/Dk74GTAorig7XudNS03Fw0I7OJocbmO3yh19TzTZudZtmB/5ZH8twqSQNHo9q23c5VGPuapxyM9/bswxiF+/utZNWk7Gl3NczO3Jy5PvSH7xoHOKD9410nEIaaacaaaYjvBSGlFIa7CSrf/APHqf96uW8SborWCdFBYoVBPTr/9euo1D/j0P1Fc34nUtokRHUbv5VnV+FlQtzK5zmhSBvDlo/8As5rI8MxCKKbHR5Gcfia0dFVm8L2yIdrGPAz2qhoJ8u2cntmuPpY6Wk22Omi2fZmjCj5mzx1/zzWRIeTW6rNJFHsA53ZPcDvXPueaqK6kSlf3ew0mmA/MaUmmA/MaoRKDUOsjPg3U/aSE/wDj1S5qPVefB+rfWL/0MVdP4kTLY87HWigdaWuwyG0UtJQAUtJS0ASxMUlRgcEMCCO3Neq+IIlg1F0jVUixlVRQAteTr1Fet+IWDX4P+yM/kK5cV8JvQbva+hu+B3a4025WPAJcqc9+BXd2UqLLHbKMFcHHoO1cN4DRRayRKwVi5Iwee1dvbRq1+10uMuVB/KsKS1TRpUktYsulwsaj1LfzrH8TSONKCquWJqxqEvlPZHuZHA5rH8TX5itQnLK6kYB6H1r2Kb/dWPKqL94Y9rrken2gt5lQ+Z8xxNtIHPFOt9S0pbo3CpcqzOGYLKrKcfVaxg8MdlCZohLlC/LH1Ix+lWNIGkajdCEac8TlgvmRyrxk46FefzriqRrxk5RenyOqHsmkmdLqniDT9WtIoTJNB5YIz5YbOfxGK5TVoYYrcXEd6JiHChRGVIyD1J+ldTr2g6PaWCNbSXCXPP8ArF3K2AM9MY6iuHlMwmELxKgGSSGJBGPQ1NGVbmSew6kadr9SWGYMG/dgjBy2MdBUnmvMjkdTjae/tWrp+lWU0RVZZobnBA8wgoT78cVVvI4LUsAsgljO1txGMgV3HMdx43yvgmxHH+tXOf8AcNeXgZYMSRk5xXpnj8t/whWnAd5hn6bDXla3JUOqgFSvJPUVEC5mhFdTRzRqj4TzBkjrk10Xi2x+2a6pLfIbhuPfJrjbSUm6txtyC6g5+orutSnW61WNh/z8PjH1Nc2M05bG+Fv7xmeI0zoN0v8A0zI4+lVtWVv+EPZ8HmFOn0FWvFEgi0qZCOWQj9Kgv1eXwikW4fNEpH1xXBbRnVHTluPIH9n2Z7eUv8hWPKNmpxfN8vksoH0Iq/Izro2nkdQqA/TFYl/I7avaIvUbi36f4VFrtji7W8z0Je1B+8aF7UuOTXQco00008imkUwO6FIaBSNXYQVdQ/48z9a5zxKgfw8p5BXdgj6V0Won/Qj/ALwrnPEjhfC8jHtn/wBBNRU2HFXdjmdJB/sGBVbBCjBFZ2iLvt3XpuJFO0qSRrSzOThQARnrzj+RpNCZTFweQxB9ua4lsdUo8ruWUZIIsMQBllH51zbnk1syFjK2V+UTSd+v+c1iOeTVRRM1ZJjSaYD89BPNNU/MasgmzTNR58JawP8AZiP/AI+KXNF8M+FtZH/TOM/+Pirp/EhS2PPF60pFIv3qcTzXWZDDSU449aSgAopyo7fdRj9BUyWN3J9y0nb6RmgCEV6trrEaiBxgopH/AHytecx6Fq8v3NNuj/2zNd14lnMd9AyBtzRgNkdMAA/rXNiVeJvh9Z2Op8Bgm8DdMSHH0xzXf2UBtzjOd8u8ew7CuE+HUyvE7kgE5PP0r0AMPOjA7YrCldNFVrN+hi+J3KWlky5yJH5H4VyOqSSvALl8SLJHtzzxg9c+tdL4sd/s2nbDj947H9K5LU32WpTcPmO7LDj8K9Knsjz6m5XuiBYRY6eT/U1W8Olhr9pgciTP86uI0L2iI5CoIvmz+NV9BaH/AISK3ETZUSYHPWtKj90S3R03xM1u80TTdOubCVI7hpnXLIr/AC4GeGBHUV5ddeNNXv7hp7treWRzlm8kKT+WK7v4vndpWkrgZ86X+deTiLAOWGaxprQ6Gj1zR7qa80iC6dVDyxhmxwPTiqF1JmeUljkHBBPep/DmG8O2KsCcRAcHGRkmuB8QW8kviC+dFAHmt0YVqZct2z3f4iS7fBul8jDS84/3K8qiG+VI1O4nnjr9DXNW8skDIXjdwFKsGkyoJPUD2GK6GzuPIuAVA3nuegHepjpuFRGrZWsbazaRufLUSoWznpkV1jWgi1yJsACRiRg5zxmuV0byp7kXEtykcNuwaR3z0yOB3JrrE1nS5tQWd76NVX7uQfT6VzYlc7Xka4ebgmu5U8W2gk0yZiAdsZ61nSslz4Ys492HkgQr/wB89a1vEF9aX2nSx2d1FM7LyqHnHc81g2/OjaeCclU2j/P51wyTjc7Ie+rPZE458P2hcciJc/XFYMqONXheRlZmDY2jGODW3bk3GkCJ8jA2isadwdVtx3+bj8Ki+rBws7PoegIwKjFHvxUMe8RshHHY1ICa3ZzCmmn8fzpxNNJpgdyDSGgGkNdhBV1H/jxb/erlPFj48HT885x+hrqtRP8AoD/WuV8TKkng+7DqGC4IzUz2HB2dzl9DgAsImY5YEkVnaRJFCjiRipZyQfxNWdKkmjijtVAxjcGPp6fnWZHE08rSw5xjYu0981xuNlc6qdRTk1I3JPMFyXjKkHIINc3J1NdDG22doc58sAE+pwK56TqfrVLsZPe5Cx5pFPzUE800H5jVASg1at2tHtLu1vRIYbhApCdeDmqQNOBoTs7oW44aR4Zj5FhcP/vSH/GrVlpGjXV1HBb6NGzucDe+fzqmT61u+FQp1cnIykRP6gVanJvcTikbcfgvSUi4tbVX/wCuORWVqPhrVbSbzdLt9Lni28xsm1s+3b9a7NJ4pMqkqMR1AYEikeruZpnkl7r+sWF4lvNaRWrE4Ia3x37VMmu6ob6SFrkKoUFcIo659vavRNQsrTUYPIvIEmTqMjlT6g9jXnviHQp9JvmuF/eWbqBHJ3yM/Kffmok2a00pNJl/S7vVLlY5pbuQxdThsdu9Z+r3K3t5Ch3ElScseSuau2CAadGA+1WAXA78V1/h3wZZXKrPqMXmSKuAu7hR6cVklKpKxomoK/Uq+ArZXkMv8KEjHboP8TXoNuBtyOnmAD6AViW2k2/h+6lWzDfZpPmKk52H0z36Vp2FytxarIh+TedvvRG6movoTJJpyXUo63A13awLGhd49zYXr9P0rnde0LVL+BDbWTMdoCjcAQB+NdPvckny3HPpThLIO7D8K7Y1LHNKnd3PObnR9VtrMLJZ3AYRYJ8snnnis7R7e9g1FGjRo2HUsn3R68162t5MnSQ1X1i4afQrxHb/AJZnBHUN2/XFFSqnBjjT95HBfFFbi00HSVa6lmFzl5N4HDdcDHvz+FeYLcMFG4A16j8Somj8C6CshDSB0y3XrGSefrXlA5Bow/8ADRc/iZ6Xol2f7GtAFPEYHBrldQTzNUu3McjAzMcrn1r2vwj4V0e68HaPPLbHzZLRGdlcjJIry3xJpU2n+J9Qt4oXKmZ2gUSZJQH2NdNOcL2bMlCV9DnlhJdQiShiwA3Zx1rY8l47kq5GRwR1o0jTLzUNYsLZYZk8+VTyx+4GGW57V7BN8LbV5mljvmDt3aP/AOvSrOKasws3ueVW0TpYSOcAMw4B681mX010lyPJJCrgj5c9q9F8WeD28NaHHN9oSVXmCABSDk5Of0riVPFcrepUVZE+lyOzwM5+Yoc8Y7Gt21KDQbVRjIJ3fXJrDsm/02PPTn+RrTkiE2jWLI38TBh6jcTXJWs5WZvC6hdFMah5MKrET87sOB0xWdczs+padNjb5gfPHerBaLYEHDvKyDtzk0uoIqTaawXhZtuPYisLanVzpxs1qehH72PeojHycEVIT8x+tNzya2OIjKN2P6mmkSDv+tTGmmmI7gGgmow3FKWrsJK+on/QHrkfErn/AIRO5GSBkE/Tmur1Nv8AiXvXI+IR5ng7Uj1Kx8Up7AldmJpqr9lV+M4xWJoKsL2dG/1cbEoPdief6Vq2EnlaOHJ5A6+9UtGb92zHqXNcSbSsdEoa3DUWa3vEdc/PLuOPTCismY/Ow9zW3qDRtcJkbyDwvbPHWsC4OJpB/tGqinuDkrKK6DCeaap+am5zQp+arIJc0bsdaYzMFJVdx9KjM7J/rIGX68fzFRJtGkIcxFc26XEm9kB4xyT/AENb3g61igv7tkQKzW5GQT6j1NY32qPurD8q3PC1zG+rGNc5eJhyPxpKcr2KnTiotox/ENokerXMql45CwG+Nyp6Ciw1vVbB4ydUu5VYZ2SMHH45B/SrvigxjVZoz975W/QVkFQxTHYY60e0ktAjSi0mdlbeM4XlWO6gZFOB5i84+orfubaDU7CS1lOYZ0xuU9PRhXmOz5hxXZ+GL4y28lo5yYvmT/dPb8/5041G3Zk1KSiroxLGwnt9TXT5HZTDJ83ocHP613cmozWttLPaM0024KkSjg+uT6Vh66XivreeNiBKuGHbcvGfyxTodSuc489h78U4zUboOVyszXsbq+1QuLq4trchCvlZ24PsCcn61oaDdStbPY3aG1mthlsjKOP7yuDz9Otc5bSrLOQFBUDArUt0QENsXcD1xShOKlqrv1Kmnayeh01nH9rDFZCoB4JHWpzYy7sLMv4iqenXcNpZTXFzKsUMQLu7nAUDuazk8eaHdXCpbanZ7ASHEkhUn6EZr06dODgnI4ZykpNIj1XxZoeiXr2OoamIrpADsMTbSCMj5ulRP4u0jVYobbTr23ZZHw4LpvH+1jP5CunkbTtZtxHC2hyqw5EzCT+dYWt+FPDtvpFyq2GiLd7d22JMlj6DHTNTUoQnFq4oVZJ3aKPjHRrPxHpKWLXjrqEb/wCiyTHYsg7F88cgnpzzXi0uj6hbs6vaT/KSMiM44716ffafpelaUkNuJodQkUbktrh9kI45K52knoB3punlYZrdLzeYQR5gU5YjvgnvWKUqVNcuqN4tTk0zttL12z8MfD/Q7jUTIm62jRUA+YnHoa838Uxpq2sz6hb6okfmOfJIRiwUnPt64qX4lafcnW7c6fHcyWPkK0KytnaMdFXqBwK5vTYLsWcPnW84cZBDIc9a58VUlBaI7sBRp1HqzovCtlfnX7F72+zNHOio6NnzASO/YdK+hQTnoK+b4YNSudRSKytbhnZQPlQ+te8+GbS+sdDhh1CYyT9cHnYvZanCynVbbRzYy1Ko4XvYxfihaTXXhIPHG7iC4V2CjJAwRn9a8nt9Bvbi3WePywjDI3Ng4Ne76+Z30po4JfKZ2A3jGR+fBrx/XPE1toup/wBn3Fm00sPy7ozsU/g1bykoy5XuZRi5x5kc+kEltqRgkwsyKxK9SPlNWdPuSdFjVuSsj/zqndeIF1G9c2thHachppGbfJJ7Z7DgdKq2108duQFypYkVyV5Js6qUGotMm8uMyMxzmOYyKR7/AP66uXYWRYCOQsyH9RWGbx4jK8i/KzDoenarr3TxLDxuQspBz7is0noOS1PSSfmP1pueTRnLE00d63Zxik0hozTSaAOsjuXKjMLA49qUzv8A88j+YqYIAKp3eo2dkCZplB/ujk122sSN1GUnTm3Dac9K5jVsyeD9VAP/ACyrSm1eDU7N2gyFRypz+FZ1xtk8M6kr8gxHj8KiTGjnLIR/2YiSY28DmqGkKy2eCfm3Hn8atWU8bWiwk5ZhnFUrEM8RVZCu3rj1rj+ybu6epOpw25+uSfzxWFcn/SJf941qagcSLGzbvUjvWNMcyvznnrVxCS05huaVD81NzxQh+b8KsgmH3h9a9PeGKQRiSNHGejKD2ry4feH1r1LP+q/z2pCkUZ9N0xpNr2EB9woFMtdJ0y2u1nt7URSjIBDHuMetaABa7BAzgf0NSsp/u/pQTdnL67oFtfXq3Mjyo7IFO0jHH4VUTwfbSJlb5wf9pAa6fUVwiHaCCcGqtuVBxk/nWT31NFOVtGc8/gmX/llfRH6qR/KrGj+HtQ0vU1neWJ4dpV9rHOCPQj1xXTeWpHU0hjxzu6e1WlETqSaszF8SWl3e2UIskZpI5CSFIBwR71y722vwDJgucD0TdXfrubIU80FZQp5ocE2EarirI8+i1XV7Js+UwP8AtxGrcXjXUIT88EDYPoR/WuzVpQen6U11VxiSCNv95M0ezS2K9t3Ry9148N7ot5ptxpymO6iaNmSUjGe9cCdNTGFuHGexQV6zLYae5/eWFuf+AAf0qu2h6NIfmsVH+6SP5GteedrXJ5odUeWrYyRnMV3tPtuX+VSf8TVeE1KTHtOwr0pvCOkSjcscyZ9HP9aor4LtJYVdbqZCRnkAij2k+4/3bKfhGVfspTU72FGjkLLvcZcnuT1J+tdNIttcAmC6t2fsRIP8a59/BH/PLUEP+9H/APXqB/BV+v8Aq7i3b8SP6VXtpW1QKMFszq/Gmo3WoaRpdjbrGGt0BaXALZxjAPpXGZ1VBgiP67cUreFdZi+4FbH92X/GoW0jX4f+WNwf91wf61jVlObuaU/ZxVkdp8Pb6ey1pjchQzgAOB0GeRXdeKvFkWjXdokt1bpbzhg0jOxZG7fKvavEUk8QWLh1W7Rh38sn+lRX2sapeMrX2JGUYBkiA/pWtOs4U+VrUznRjOpzXPXLjxVpz2oZPEVnMWP3ERgV9/m61zeo3GiakVaTUvtTrnMccag+2CBxXngvFz81pAT9CKsw6usBytmg/wB01lUquS2NIUVHqdvHpXhm6wEnuLCf1kO9T9f8imz+ELmK2DWs1veJycwyDP5VySa/GGy1u34NVpfENt5arslUj2rglTmnodSkrEWo2clsAksbIxkAwy4Pr/SmxDLxf3SwBHoag1LVY5/IKFiAWJ3fl/WpIJlAiYg/My8fjW0FJJXMaj1uj07NNB60m7mkB61v1OMcTTSaQmkJpgRXniW+usqJBDH6L1rBvbpxE78k/wB5jzTmuI4xiNdzeprG1W4mZME4BrobEjf8MTMdIlJOczMf5Vo31wYvDF6efnR14+lY3hhimjj3Zj+taWpy7fDd1hgD5TmouWtzndK+ZIjydo5PsAf8RUGiNt83nJzV3T2RNPXaRtwTmsDe0Uh8o/Io45xk1jbQ6IyU20al3IBfMGRnBUNx61lTEGViBgZ6GtOSRjMu8YYIM/WsqdgZnIORmqiYsYTQh5phNKh+Y1YicHkV6Hd6tbWlnDcl/MjYjGwgk8da86Brorzyf+EWs8MS4HPPvUiZuw+KtNyT5joT13Rn+lXYtfsJyAl1ESegPB/WvNc1Ysz/AKTH9aA5UekLKlzGwBDKTwRyKriycMWDK3tWXot4I9Oy4+RGfJHUYNX4NZsLltsdyu70b5f50+WL3Ju1sWg2zhxildh5eR36UGVsdc/WoJZCeSc4FHLYV7j7f5mduwOKmK8Vws/iy5tLyaFYInjRyASSCealj8cf89LNh/uyf/Wosx2O0WM9aY24Hpn2rmo/HFj/ABx3Cf8AAQf61ZXxjpLjJutn+/GRTFY0xIzSn5SF9DUrICpyo/Ks+HxBpk+Cl7bnPq2P51ejvoJR8ksbj/ZcGpGSLwBUNuf9Gj/3RUmfTpUNv/x7x/7opiAxrknOPwpWiCqDuxn2qUxKV+8M/WmNbkkfOSByB6VPQYzy5Oz/AKmjbOO+fxFWVjwOtKU96LgVd847fpSGV/4owfqDVrYaNp9KLgUHjtpP9baQt9VH9RUR0vSpR82nw/8AAVA/lWk4KoTioIJU2srj5uccUhozH8O6K55tGX/dZv8AGoj4O0mQbkM6j2f/ABFbTKjRsdgBx2qWM/IKB8z7nl2uWkdrqAtoT8sYfAPfmmWlyrTQQk/MHX+dO8USmPWfMDYw7jP41nW06jUrcbfnMqbsfWjlujVTWzPZg3NJnk0wH5qTdzSMCTNJmm5pCaAMORVVeBisXUl3VsTHisy5XdmtgI7LUPsVqIkYqyscjqCDWpcaiLjw5cCQrk/IoXqcnqaw2i+Y0wrxS5dSubSxYglgjfDP8uw8dgxHNZwJjRUXgKcj61MRyKhk6mmJK2wskryYLsWPqagY089KjakMQmlQ80zNKrYNAyfNdHdx48J2Z3DPXG0eprmQ2a6W8P8AxS1p/uD+dJiZz+asWh/0mP61UzVi1OLiP60DOi0bMlhcx+krj8wKwGU9QCexrf8ADTjF4rdps/pT00Rmy0pwCTtQdh2pxV2RexzkWrataKUguG29lf5gPzrp9Av7u/sJHvCpkWQqCFxxgUz+yUX+CrllB9mR1AwCc1bWgrnnOppcxapdgjIEz4yPc1VE5H34yPcV31/pyS3UkhUfMc1my6RE38A/KhWsO5yLzKcBAWbHQUzaWYGQg+ijoP8AGujm0JOoFZ0+lSJnZk49aYXKKkbj+FOU4YkHrUbKySMrDB4oU/O34UgLUN5cxSP5dzKvQ/K5HavTrCINp1sxeTcYlJO88nAryhT87n6V6xYE/wBmW3r5KfyFTICfy2HSZ/xwf6UbZR0kU/Vf/r1D9pcHDIP1p32od1P5iouIk3zr2Q/RiP6UvnzDqh/BgajFzGf7w/Cl86I/xj8aYD/tbDqj/wDfOf5U4XqDqcfUEUwOp6MD9DS0aASrdRNwGU/RqcpQdBUBVW6qD9RSCGL/AJ5qPoMVLGWSUYEHofaox8ox71H5Sdi4+jml8s9pX/HB/pSA8t8UMG1F1772P6msvT1/4mNr/wBdk/mK0PEhzqsn+83/AKEao6cP+Jla/wDXZP5itI/CUz2UH5qTPNNB+akzzWIh+aCaZmgmmIxJTxVOSrUnNVn61sBVdaiYcVO4qFulAFduo+hqtJVmTr+FVJDQNATxUTc9KkC5GTQcDj9PWgZF0Ge1ChmII4HanEp/Ey59M0zmRv8AWKF9jQBYCt2YH610F2T/AMIza8c7en41zmx1GVckVu3Eh/4Re2OeQP60mhMxQ3qp/KrFuU85MHnPQiqqztnkD8DVqGYFlGCOfShoo2vD0ixyXbOQF8wE11qSI4zxXH+HvLkluY2UMCeQe/NbJtLi35tJdyf883PT6GtINIzZrsimq02BgDrWeNTkg4uInj9yOPzqWK9juyxRlOPQ1U9hCth2Ix0qJ4xUM91HBK+XGSe56cVTl1WLohLseyDNYq5ZYlVFHOKy7ueGJCWIFStHe3fVfs8fq3LH8KPsMFupc5eTH33OT/8AWovYRx93IZLgvsKrjjI61XX7zVoav/x9/h/Ws4feNXuA5T+8cfSvVrE/8S62/wCuK/yFeTr/AK1/oK9WsT/xL7b/AK5L/IVMgJ9+0Usk8ZVAMEng1JuiIAxj8KQpCcn5c+uMVnbQCPy42GdgppgTtkfQ1YVExgH9aXyx70xFQ24/vH8eaTyGB4erfl+hpPLbtQBW2Tjo/wD49Tx9oAz1/I0+RXVCcVFFcMImjMZz2OKQw+0Sr95R+RqyjllBIwagZiYzmnoflFHQDyzxAc6pJ/vN/wChGqmmj/iaWn/XZP5irGunOpyfVv5moNL51W0/67J/MVcfhGz1wN81JnmmA/NSZrECXNITTM0E0xH/2Q==", "path": "images/5pts_ADE_train_00003706.jpg" }
depth_point_17
images/4pts_ADE_train_00005526.jpg
ADE_train_00005526.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 288 y = 105),Point B is located at (x = 23 y = 132),Point C is located at (x = 259 y = 166),Point D is located at (x = 278 y = 195).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_44><DEPTH_36><DEPTH_29><DEPTH_31><DEPTH_5><DEPTH_70><DEPTH_3><DEPTH_49><DEPTH_70><DEPTH_31><DEPTH_58><DEPTH_29><DEPTH_29><DEPTH_3><DEPTH_67><DEPTH_59><DEPTH_31><DEPTH_31><DEPTH_70><DEPTH_31><DEPTH_44><DEPTH_44><DEPTH_11><DEPTH_11><DEPTH_17><DEPTH_5><DEPTH_3><DEPTH_31><DEPTH_59><DEPTH_31><DEPTH_44><DEPTH_58><DEPTH_36><DEPTH_38><DEPTH_30><DEPTH_5><DEPTH_67><DEPTH_20><DEPTH_7><DEPTH_67><DEPTH_72><DEPTH_82><DEPTH_69><DEPTH_58><DEPTH_66><DEPTH_25><DEPTH_60><DEPTH_75><DEPTH_12><DEPTH_71><DEPTH_63><DEPTH_57><DEPTH_64><DEPTH_25><DEPTH_57><DEPTH_0><DEPTH_16><DEPTH_8><DEPTH_12><DEPTH_75><DEPTH_36><DEPTH_31><DEPTH_15><DEPTH_9><DEPTH_39><DEPTH_19><DEPTH_2><DEPTH_14><DEPTH_41><DEPTH_75><DEPTH_29><DEPTH_58><DEPTH_31><DEPTH_72><DEPTH_78><DEPTH_25><DEPTH_2><DEPTH_57><DEPTH_41><DEPTH_60><DEPTH_29><DEPTH_74><DEPTH_36><DEPTH_74><DEPTH_38><DEPTH_74><DEPTH_69><DEPTH_58><DEPTH_82><DEPTH_72><DEPTH_0><DEPTH_1><DEPTH_1><DEPTH_1><DEPTH_1><DEPTH_0><DEPTH_39><DEPTH_14><DEPTH_55><DEPTH_14><DEPTH_END><DEPTH_END>. Since point D has a higher pixel value on the depth map, the answer is that point D is closer to the camera.
D
long
4
[ "A", "B", "C", "D" ]
<DEPTH_START><DEPTH_44><DEPTH_36><DEPTH_29><DEPTH_31><DEPTH_5><DEPTH_70><DEPTH_3><DEPTH_49><DEPTH_70><DEPTH_31><DEPTH_58><DEPTH_29><DEPTH_29><DEPTH_3><DEPTH_67><DEPTH_59><DEPTH_31><DEPTH_31><DEPTH_70><DEPTH_31><DEPTH_44><DEPTH_44><DEPTH_11><DEPTH_11><DEPTH_17><DEPTH_5><DEPTH_3><DEPTH_31><DEPTH_59><DEPTH_31><DEPTH_44><DEPTH_58><DEPTH_36><DEPTH_38><DEPTH_30><DEPTH_5><DEPTH_67><DEPTH_20><DEPTH_7><DEPTH_67><DEPTH_72><DEPTH_82><DEPTH_69><DEPTH_58><DEPTH_66><DEPTH_25><DEPTH_60><DEPTH_75><DEPTH_12><DEPTH_71><DEPTH_63><DEPTH_57><DEPTH_64><DEPTH_25><DEPTH_57><DEPTH_0><DEPTH_16><DEPTH_8><DEPTH_12><DEPTH_75><DEPTH_36><DEPTH_31><DEPTH_15><DEPTH_9><DEPTH_39><DEPTH_19><DEPTH_2><DEPTH_14><DEPTH_41><DEPTH_75><DEPTH_29><DEPTH_58><DEPTH_31><DEPTH_72><DEPTH_78><DEPTH_25><DEPTH_2><DEPTH_57><DEPTH_41><DEPTH_60><DEPTH_29><DEPTH_74><DEPTH_36><DEPTH_74><DEPTH_38><DEPTH_74><DEPTH_69><DEPTH_58><DEPTH_82><DEPTH_72><DEPTH_0><DEPTH_1><DEPTH_1><DEPTH_1><DEPTH_1><DEPTH_0><DEPTH_39><DEPTH_14><DEPTH_55><DEPTH_14><DEPTH_END>
288
105
23
132
259
166
278
195
null
null
12
81
138
158
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD0gW+3/VnFPHnr1bIp+COtKP8AOaljIvOAOHVh9BTwwYcED3zzT8e+PpTDDGx+6M+vekMcPrmkOe4ppiI+42KUiRe+aAA8j29KZ5aE/d5pd/qpBpwcHqy0DGbXH3WxQXZVO4Z4qQAE5GaDkA/SgCNceUjKmPl9aOO5x7U15BFaGVixCr0FVItXtZyA6GM+rcUScUgitS7yRweKbsUnpz60iSwSDKTK3pg1JgqvIpOz2C9tBmMU0se9PyD3pCPbNUNCZGBSHGDSkfhTCODikA11Uyfd5xShT24prmXfhSOlIFc9W5pAO6fxYpcgfxUzyc/fbNOVEFADt4+tAkyeBSqoxxTvwoAbuftSgOeppaXKnvimAmzPU0oiTv1o3IO+acJF6BTQDHAAUozngcU0E9hQd574FAi3Z8IpPrV+2O6R8+tZ9p8qxg881oxf6xiOmaaEy2TyakUjGTUYO6Uj2py88UyBxlC9BUDSsShVeasBRkcUzGGQjFAEZeduBxSeTOfvS4HpVgnd1owPr9aAKklvgpls5NS+WsTDFOlOGjyBjd2pH/1lAyCZspn3psX3C3+zSyD9yfWmxE7SuP4KQzC8uRDw26nb5R1TipCD2pwDeuaGBF5q9+KkUxnndTiFPVBSeSh7YpDAAk/KM0EHHPFIIsH5XI/ClKSA5X5hQA3APvSGNT1QCn7yOqYo8xT3/SgZCYuflcj2pG8xQf4uKnABOQB+dI2cH6UAUrnnTJP9w/yrDwgjV3XIFb9yP+Je47bD/KsK4jzb7AfvCuPFNxWhvQipPUriMNEzxOVxnGK6aEYto8sWJUck+1ctp0bw2rI5y2D+FdXCCLWMZzlR/Kqw03IK8EnoNC4pSpHegE96M5711GIzcQeaM+lOPXtikxxQBG7DPXFN3qO9DxjdzShVHbNIAD+nNG4k/dpwx2GKXmgBBuPtTsE9TSZHc0odfWgA8vvupQqjqc0hkUUeZ/dXNMCQKvYU4DHaowzn+HFO+agGSbT1PSjA9abt9Wo2A96BFi2O3aeoyf6VoxH5j9az7VcRID6mtKIDccetNCZa6Sk05ORmkP3z9KVOhpkEuelQk/NH/ntUgz1qI8NGP89KAJAaUk03BoJxSGMl/wCWf++P50sn36SU58vp98fzpZeDmmBA5zC59KanQY+8Vp8oHksPUZqEOAUI6gc0hmJvnU/MM08T8/MpqUHafvD8acMNz8poYxoli9SKevPKyD6Uvlxnqopfs8Z6Aj6UgFAPcg0ADHSgRbfut+dG2QHhlP0pgIR2xxTCqnqKViy8lSfpRvGPukfWgCMxIT1prIwU7Dxipsr1yKQkFTg9qAKM4P8AZkgPXYf5VzjTAv5LHBAzXTT/APIPk75Q/wAq5mSFftG5gdxAANY1lFqxvQdmTiJkt2bHBFb0A/0RRnjaP5VzxlmN7JEVP2cxZBroIATaRgdNv9KVKKjsKtK7Qo4A70jKDQNwAxSFmzyM/St+hmN2eho+ZeDzSmQdMYpFYev50gGSM2eKaC9SPgnqKbkD+KkABX9aNh9aN4HfNL5goATYByTTtoprSdOO9I8jeeU28AUm7DtcmHHan8+wquXYEcgZOBmpFDMcZ5qhPQkA96eDjvUIXOOT/hUiooHJzQSPLYo3ihVWl2rmgZPaHKIfetKLhj+FZ1tjyk471pRcnH0poUi1/GfpQMbTmkBy5+lCkYORTIF8zaBgVE8jHacdx/Kp/TgVE+dyYxjI/lQMYXnb7oxTSlyx+ZqsFj0/lScj+I1IFZ4HUL83JYfzqUx+Wpy2cinTHhB/tD+dNfGG69KYDGO6Mn/ZqDoyj/ZqUH9wwx0FMXHmKCO1DGjGWfHWEx/U5qVZ1PUZ9wMU/PPr+FO2gjkUMYqyRt0YVOOR94YquIYs8JUiwIBnJFK4EmPQZpp9hijyn/glI/CmhZR1O6mA4ZHWkK+ozRl16xjH1pvm+goEMZE9OajeLIODjipTInqQfpTSVZSevFAypIu3TZFP9w/yrDlC+UM9cDFbs3NhLjn92f5Vhyj9wTwcJnrXHidNjoob6kYnLWr5X+EDNbluR9lXHQKP5Vzyf8e7deVx0roLfDWseOm3+lPDyvuFaKFyMDmlB44pAB6UjIc8GusxA89RTdqkccUmHB65pGZh1WkAyRPm60oRccmiR8EcU3cx6LSAcFXsKdgDoOaYC56KBQQ+OCc55oC488lQR3qMshvpULgHGKRd/nJ8xIB9Ko3UEk+oyCI4fcD1rCq30NII0iu2YBhuCjIpVchlY8Cq1qZY4JFlYGQHjmpZP3SL5jZGN1axd4ia1J1kGcAjJqRZB021w0+tzR6nvU/uw3C5rtbWUTRJIB94ZNNO7LqUnCN2WA/otIztjpUg9aQkmqMLE0BOyMCtGM/OtZkTeV5bMeDxWjEcSL6HpTQSLh4kHuKVeppGB8xfbmkUkhj70zMm7CoWPzL9R/Knj7gNMIJdR6VLYxxHegHim885oVWI49aS3ASf+D/eH86a/AY+1OkH3RnuKSTBVlHaqAZ/C49qrqxLc1OT9/I7VVxtkDZz7UMaM9bqIn7+KmSWE/8ALXn60myM/wDLNfypwgiI+5+VJjJlKnowNSqD7VXS2i9WH0NSi3HZm/OkBLjPXimdO9HlSL0cD/ephWYfxIfwouMf1pCB/dphaYY4X34pDI39w1RIFE/u81DJGCDzipfOHdTTHkUqeO1Ayt5QezaEnBZSM/hWJcaJeeU6Qypjb3NbkbqYVwwyPWkcbhkN1HaoklLcqN0c2bHUbeIxlFbAIytbsIeOziVx8wHP5VIS57ZpBuJOUIz3PSiFNR2CUmyIP7UvmLSnjtTDj+7VAhcqe9Hfrmm7QRTWjGOCaAB92eAKZ35OKJUJIG4im+UMcsaQEgKj+KkLqPvShR9aiaNApOT+dUNSiM0CYJHHak2NI0Dd2qsrmcYU881X+12Md9JcLPnJ6ZrDhsGEfzEnPrTzY9+OlZyjcuLsaz6np5ZmMh5PaopNb00hVPmtxjpWabGJMFiOajawjyMHinsgs2aul2ekarO6JAQy/MSRXQiDySEjA2gYFc94WEaandRIwyqDNdQSOMHHpVRXUKk5SaTIgHxg0hU9zUn/AAKmkjuasgmiA2xgjIFaMWBtJ/CqEeCiHtirsGBsA6e9NEyLrHEgJ9KFP36ZJ94UsfKvQyBGkIUVA07A5FSkZXmopZLe1gluLiRIoI1LySSMFVFAySSeAAO9SOxE9xJngU3z5ccZrNPjTwh28TaL/wCB8X/xVbqlQTwKLjsUi8pyec1JGZCHyeTU557DnpTHJCZPXNFwsLypbPpVJmOatO+SfpVQspYZ4FNsSQ0Ef3hUifWoSI04KihcHpxQ2NK5dUD1p4B7VVj3BsZ61bCsB96pTHYCgfhiaekUY6ZpEO01IDUt6jsIYwEYqOag+YAAgVaBwQO1VpflcnGQegrSLuSyMqOpANRyIvpUgfk4ABFRyEkdKaaCxSa3jJLDIHpVd7dCMhyD6Vdd6gkkFDt0HdlQ27gcSmhUuOhkytSbwx60FlFIBnzr3pCz04sn97FGQTgHI60wGeYR1XmgyjHK04EnpikYE9cUmMillGRxTPNB6KakkB3UnIFICCWU7D8pqOX5reInj5asOSVP0qvPLtswSm7j8qmWhSIEkjEYB600urfxbR64zVVGXHC59qnjmG/iP6ioUi+W5AtxHNcmIksAOPlq2qIFH7ompop1R/ltVQ/3qsC5ftHTuOzRQ8OIR4jvJGiZEKBQT35FdPJES2CenFUbCZ3uSJBhSMVoO6qcE5NXFmTI/LX1pPLWl8xe1IziqAni/wBWo7VdhOEU+lUIm+RAOc1ciJ2Iv50ImRdDbjREcFhTRweKbGx4b1obJJCR0rA8bf8AIh+I/T+y7n/0U1bEjsPzrG8SRT6n4P1qytU8y4ubGeGJMgbnaNgBk8DkjrUc2pVj5g1Pw7bWvgmzvY44Rfx+XLclblWdkm3FMx7soFURckDJl78V9evjtXy4/wANviXNLeO+k5a8iEM/+kWwDICpAxuwMFExjHSvp7dg4bj3qptPYUUPZtuB6VDI2Vw3Q092+bbjPvUb4ZdvXBrNPUqwxTwcc1Xlj8wBQcGrSR7Q+OOKrNy/WtGJFdmy3NSL146VWEY/vGnBcdCaGES6rZ71ZV/k964f4gatf6D4E1LU9NuPIu4fK8uTarYzKinhgR0J7V57aeKPHNn4qsrO88UWV/bxazDpt9HbW6gozOQVO6JTghJOVz07cVKi9ym7M98V89aeHqqH56HFODkFcUk0OxbVs1Xvrj7PbNMR8q9aerc8UskYniaKTG1wQfpj/HFPcmxzkV4804mV/lfoK1SHIBz1rltMMscctvJ963nZeevPI/Q11lvueAFetcjcuY6XBcpXdG21TlDAdK1mjZhVOeMjtSc5ISgjKdnTnbUf2o91qzNkZ4rPc88ij2rL9kiU3CnqKa15sKk/KnSq+8Z6Ux33oUOPbij2rsP2SNURcZWT5T05pCj9nzUNjcKbQBuSo2mpy6dB2rti7xTOSatKxG+7IG6jDY+9SO67qTzF9DTEI6sQQG7VXhJUmJvmz2qyZF9DUcm1+UGGHeplqUhrQohyFw3pVW8lS3jJ4D08+fuLZ5AwM1lXxZ5UR2yxPSs3oXFm/ZyC5skJxuq7sCoo4zWLpayCHHQA4rYVG2jrVLUGxzRPvVk/hGTV5WDoGK8kVUCN6mpoyyLirSIZKNvZaccAZ21GGYmlJfFMQ+J1RIy/y7iMVchYKwQ9W4FVIlDRJvHT1q/Eo2o2OnSmiZFl+GUf3etRI/mIzL0HFTNw6+9MjA4GMDnpTsSQLJtTc46Gs3VNXtNFt1kuFkPmSBIo44y7SOQSFUDuccZ4q/uAbGMjNYHiCxu5LzTtSsEjlu7B3IhlfasiOuGUHHDcDBPA71z1G0tDrwsKc6ijUdlr5dNFfpd6X6GjpGvWmtecscdxBc2+3zre4iMcke7O3I6cgZ4J4rQDbxluBnArnNIs9QuNdm13U7eO0lNstrDbJL5hVdxZi5xgknBGD0PPNdKSAACOvNTTbcdS8XCnCrantp1vZ9Vdb+v57kbttBBP40jSfcEYzlxuNJK4BxjgUkTjDntmrjucrLC/x/Ss8gh6vq6kS7RVJsA1qyUUwD6GngHFQGOfP+s/WpI7ediCZOKUmOJx/wAWAf8AhWWr5z/yx/8ARyV5p/wlen6/4006OxiZmuvEkN7G8mnw2zwqZD8haMkyE7lyW/ue5r6DudLgv7Nra9ghurd8b4p0Do2DkZB4PIB/Cqlt4Q8O21xHcQaBpMU0TB45I7KNWRgcgghcgg96hVLKw3G7NJIrhxgjFQNPJE5jbGR0zWlEsjHLNxVG5t4pLolpACo4FQ03qUTxvIIfMboaifVIYE3SA46GkvFdLMBH+XPFc9fifyn+YEEcg/WtbqKJauRy39pfa1dPagqxUFhj+IcE/kK6mxVpLOPyzg96830hnj8RXSPtO+PjHtXo2jNutNnoTXJ9s6HfkJnSRTjcPzqtOs2OGXH1qy5GDxlgcYqtcLgHcmBRJ+QRMm5WcZwy/nWPKLjeRkfnWzPEoPB68isudAGPHJ71m0zdFX9+O4/OngTswG1c49acF4G0c0+EASpnOe5qWnYq6Q7SZfMaeNl5Vua0iFPOOTWNYEpqdwqE881rZkwcR8nvXdSfunFWXvaDXC7uBTfwok81SARzUeZPStjL1JQPajA9MVFiX14pCJADzUjC4kCIdq5NZkse+RZtmGWpby4MMpZycYrL+3OZ5WBZkIwFPrXNUlrY6KcdDo7PBt1JGM8mtOIgqKyoGP2MZOCRnH41ft1cgZbtWlJ6Gc1qWxinA1EqkADdTgh/vVuZktKaaFI/io2E8bqAJkOYkzV+H7iCqEQBiVd3I71eh5VfagTLjDLL7VHEPm496e3Yj6U1BiQ470zMqBSN2R3NRzxZYEDoKu5UM+RnDVDJIN4PQVjKxqkUolYz88AVbbLSKPSq7TIJ7hScYAIp3nYiyDkk1KaHZizfNGRjndUVuNu8HnJpxmzuOeRTbZt5c7Mk047gW4zzLgVTbBY1YiDHzDnHFU5GYdOtbMgiVQT3q1GAoFVo2nA5QZp/mTqclaiQ4nO+I3tLjxHZWOtXHkaNJbSMoM5jSeYMPlcg9FGGGcc9z0qx4PfzLjVbWyne40iCdUtJWlLkfIN6Ak/cX5cfXqa2pLb7dC0N1bxywvjckihlPOeQfeorrUn0aSG0jhRY9gVFUABQDwAOwrm9nafMeq8YpYb2FntbfTe/Ml3ez8vklvL+7ULjOazbqzEupRuCRuHIqK11ia5lEbJjgYNTpKWvUOehroumrHmOLQakpW3UAYUNWS7IM8Bgeua09V8xQn90tWU4JZunsvrXJiW00kbUkmjl5oDaeK4ZFZTHOjbcD6122iycFc8knFcHq9y//CVWKgbI4mC7fqa3Lq8k08RTo2FD8/kazTad2bKPNGxqa9rw09/s8A3y4+cj+Gufh8R3JlCzNlWPJrGuL57+4mu2P3jwKiLc/QfrW8Vc7YYdKOp2byr5YaR9sZIy/oK028P71yJAwYAr7iud0V11DTWgmPzKNv8AhXW+HrhpdKRXOZIyY2/Dp+mK6IwTRwYm8NEZsvhiVdoSXBPaqVx4b1KEjyvn55I7V1l5N5LKSegyaxJdfa5ZzbZ8tODTlBIxhWm1ojEPhfVI2aVJNr9DUT6Xr6S7AC46giuohu3lyS/FXonZVLZ60JW0LdeS1sctbWGrFD50Dkg9aeYpUbbINrehrqZrgW9s0q8uBnFcFqGutdXcs+NrrwVpydiqd6nRGk6TRkhlIA6mo2YEHDfSpdO1RJpkRwG3r3rSNtaSXK5TryaSkTOnY5a9xJIVBBGM4NReXGm4BAOldZe+HrW7td8OUcAivO9Wa7sTJEpOVfBJ9Kxqx1uFN9DqBII7EyHk5wPbmtK2kQxr83auC097udDvlyqkMRXc2wBgUgdVFOkTU3LgeP8AvU8OhOAaYoX+7UgGTgAAdTW5iOE0SfeYDihp41xk4BqvdWwmaNukYHUGrzTpFa/JGGwQKTkBVj1SBJ0tgMyHtiugjjDRxnO0ntXNXupKEWVrcBhxuA5q/puvwXVzBbICX9xihT1sDWhuOecY6VFFyRnj5q828U/FjUdF8Y6joFh4QudVeyEbPLbzt0dFbJVY2x97HXtWj8N/iM3j7+1B/ZP2BrExZzcebv37/wDZXGNnv1rQyO2yBJICeCetQSgFFyMjPWpXGy5YE9eaikdXj+VwSp6CuedjZXKAjRr6Z3Py8CrLshA2L8uarw7ZrqUkcVYZXB+RDis1YrXqQFApkYnqeBTrVWR+GAJ7UkysiFjx6iqo1GO1fL9G4zTjNJhyGlCSEk3euKqM2GI7irKSBlcAfKeQaqE/M5Peui9zHqTqrH+LmmtlX+Y1MkytnbGRVO5nIkPyEmlJaFLcsPduqbFH41zuuzsZ4pXb+H5T+tXJL2XeMJhQcmsfVC0unO8inaj4z9Rgfzrnk2dECzpOp/a5o+GG3gnHFbscuL4jP8eK4LwxLcZ2MflMhx+P/wCqutg3/bgWJ3Mdwpx0eoVNjY1dsrHzxmuau53WbzUJ+VSFPpyK3L1nlnAJ4UVyTuZrj7P5mC7kEZ7Uq1pSVyISstDE1qaRtSt7twSfMGW/Wug1gb9Hk56AEfXFS3+mLLD5KoDCnzB8d8VHeYbSZMHI2msa0bK50YeWpy1kQ1tET0x+tTnOMnr3qjp8mLfaeqnH61bLYNWmety31Nvw5L+8nBzjcCfyra8P60kPiDUbB2GHAljA9QOf0ArmdKu1tLW7nY8HgVzb60dP1+DUlydrjePUdxW8GclempRbPZJJmuMs/rgCucXMOozRKAqSc4rejlSa3WaIho3AMbDuPWsjU4m4mQYKnmtJnlQutC1bMTcYGQB96tqJhtAZsAdBWHZtvkUk43jNaqLIzFVVSAnUjmlG7HNWZNfAvaMRwByD61wGv2jWz/boUO1h+8HpXbSJcvbiJlYAgjPYVSn0me4HkzYEYXBz/ED3pSVyqcuXY4yxugqwy78YPrXTWd/J58XDN82OBWnpvhTS9Nt2WT94WORv5/KrxlsbfiC2XK9gORSjE1nWTLikiFsLyTxmuL8QeFtT1jUbl7TyVt2wVLNg5rrbaWSWXe6MqEdGq6dkZUYyGrRxvoc/O07o8+tvBOpWkOxTGzkc/NxW1HZXdpDiWPOAB8vNdUzMFKqMEsBTWmCA7wGwQv8AOhU1EUpykzmlkPQgg+9Pcs8Tp0yOCK2L/T9482BeepArJw2GDDBANNoSOWRb1E+S8kKt0H41chivpMqL5wvHHHWsu3ujswXHGR+tXY7sK3Eg6jvXPK4Ime0vWYAXcjr6EV0HhvTz56zXA3EDArDiuCdpEw5966Tw9KXk+aTgLThG7uEmeG/FeIX/AIu1aws7y1tLqDUIp5lnuVgDo1rAEYFiM7CsnA5HmcDrW/8AAWUz6v4ymN19qMlxAxuNmzzstMd+3tnrjtmus8S/Bvw94t8QXWt3t5qqXNzs3rBLGEG1QgwChPRR3rT8GfD7Sfh+t/Jps97Kt0EMv2p0bGzdjG1V/vn9K6ehmtWXvEmoNbsYIW+c/ePoK561upYLg4lLZ7GjULg3V20zdyQKigTLF8Fmrz6k7s7Yxsjbh1QxZJUc+lWT4kcfdjFYiRyP/q42Prmh4ZVGXXavpUJ2KcUy7cao1ySznap64rNWQ6hqEdpECyFvmY9hUU7bIWwDjFaPhW2IE9wepXgmqgrzCS5YHQ2422+3sOKqt3x61ZiBWJt3PNVj0P1ruscRoqTjBwPwqhK37xumPWrBnRFyDnisme8Q7jtOc0pbBHcjmkJbnGM1xXjTXXsf7L01GH+l3WWOOgHT9a6OXUFeTKx8Kc1wfjfTNR1bWNHurZV2RSFmBOMfP/hXOpK9jpSOl0C3mfeyrgpLjOetdtYxCaaGVuGjTaR6+9cjYb4rt2YKI85OG74roNPv4VuFLHANUpJsqcdC7qStBN8xyCcg+tcUWePxPtAATBJJNd1qV1ZXVlJCdgLD5JN3Iri28PxGYOb8s/8AePFRVavoRCNzpVj8rTyg+fI9fWsMr5enTxM4YtkfStGHTCwKHUoygC8MwHanyaXYx28wF0pcj+E5qKslKNjWmrM81ikEM08bHDbiQPUZq00wK8cg8fSr2maNa3fiffNnYsJJH4110fhTSudqA7ueTTirnYsSoqzPOb+/jghECktjrgda5nU7qXy/kidjnP3TXucHhnRrf5jbBm796t/2XpmCv2SLBHGfWuiKsjlq4l2scL8K/Ect9pMul3iustocRs4PzJ2FdtehTEyhxk9qlFlZIdwto43AwSnemPZwTN1O4HNW9Thu7i6Hp7n55hkLwB6VvKoT5UwMnmqInEMIROM0POY0GGyxpxVgk7luaeGBiMlnHTngVRkvsNvkH3v4ap/fkO4/MxxUDSiS89VX5RTY0WUuLmSWUyrhQfkH94e1Wnm8naVjDDP4mqFxcPDBsi/eXEfOPapGaSW6ESfwDB+tGwKNy494y7WMZEZ5x6VO87TIfs5yVYflVZ5dkKxuuRtOaWLUIVdoQNig/e9/SnzFSjZF5WlTMszYBH3fSonkYkusLbeO/U1G2owqjGU7o16n2ottXtZdiRnKP0p3uSh6X92su1YCQBgj1qndx3ssjOtoVGDxmtR7+GNR8yk8DApHvlFwgk+VZOBSGkeV/wBg6yHfbYSYyed3Wrum+HdTvLzyZLZ4V4JcngV6b9pSECNGBYe3aoXvvMmEcRAPQmpcCLWZjaf4PjtWVrmfzcfwjit6Y2Oi6VPeeU2y2haVlXBYqoJOPfimrOAcbtxFEl6Issx5I4qrW2HG11fVHJtrniPTNDtvFF7qFlLZyrDJNp0VrgRxOVG6N92S+COGOMk+grpvEF2YNKcZAaX5R7d65qHwxpdlPDKr3rW8DrLb2b3LGGFwchlXrnOTySPmNN1q9a5lEbMcL8wFc3vRj73+Z6OLqUKsl7Jd+ijppZWW7Wt31v13MyQklV7ntV+3IhRRtAPrXEeNYry6XRLCz1CewlvtVgtDPCxBQPuGeCMgcHGecVwejXWpXOqaPdWPiXVr2zbVLe0uIrlmjZWdsqCokcMrBX7/AMJyOmco0XKPNc551VF8p78+o7VIV0H0Ws2a8MpPUirx0mVOXCoMdQc1TngjTOX3Ed8YrFM0Rl3c8pCqvCk4rrtGtJLfTl3KRvXIrk7hVMsceeSwxXoIIFvFHuHyqB+lb4dXkTXdojIs/OmOQM1UZWC8jvV6J42MjbsMBVK4cBRhu9dhxllljVCSoA7VhXbhQdig5Bq9e3QP7vdx7ViXVxGoBDnvxUvYcdzlbi6uo7lFjc4LlWzUrieQ5Lnp09KhdxLfNs6CXn8jWiqgDB6YFcU5WkdsbctzIb7XATskJB9abHJfSSoGmK544NaE6jPFQJGPOjOT94fzqOYp6orw6Zey7pJL+425IAB9617Xw9NcKC15cYx3NWLJAq4PIycfnXR2aNsUdBS5rsGkloUY/Cdlaor3125DAYUnrTNetLfTbWH7Om3Lbc+oq9Po8+p6t5ssrLBCBtGetVfGQMVrbDcCA+KbViYO7MbR1/4m0jnP+q2/rXVI/wAuAAD61yOjSE3c3PzBP610EU5B5rop6GVVXZoiQg5zQZOc4BxVXzcigSVqmZNFkvkEjg+tPhb97u7gVWDgN/s1JASfNb0qkyNyyzDeB1xUZbJLVGjZkcn1okbaMetVcLahvWKNpDzgE59KzbJ2+zjcy+YUduexIOP1qTWZXi0a58nmTbgVzj/abeCW8dzh4/LC+hJqTRRZ1Wkz2/leSJVe9ERyxPWrkQuInJkVfMyWOO9Y0FrbWENlPCS00gAc5roXDPOXB6L+mRTjqXOHKyrdXWdo24Yg9frVOGMCWRXcMztuAPQVDLembVZINvCNtBH51T1G9Szt3TJLyKVVvQ0dRuPNZGlI6lTCpV9/YdMY5pLONbaQRqg4BKYrH0txaKYzJ5roAd2c9RzVme4mMqG3P7wn5B6inzWJnS5S4HcRswUgr1z1J7YqOO8mu90zuxEY49AamdJJ5IZo3G+NSpTsSetQ6pcLbWwhhULvOWx+tNMmEvs9SfTr6SWAvLjcDge9X4pgu58DcelZUeyOGNFPJGSalMh+Ueho5gcTWhuhGjFupqCS4LMM8iqJmxnNME27mi4rFx5ixwTxmsfUcfa246DirwbcwGetZuouGvWx2GKwr7GtJanF+PdS/se00XVjF532LWLe48rdt37A7bc4OM4xnBrz3w3q9r/wkWgadplnLbW51i1uJTPOJnkdXCryFUAAM2Bj+I89Me7W1zb2iGW5nihQnaGkcKCfTJrciO1CaxjX5I8tip0G2pvYS7lZmPNZE7ZJzzV2eTLms+XlqwRotyqB5mpwKB3B/KurjEkjZLYAw35VzFiN2sRexropnZGJU8EYrrwy0uY4nexYY7VYKearycuq5pufkJyc4qrI0n3x1rpOckaCMZyCfxqjcKm04X1/lWg5POazrkqFyWx1/lQ9iepy80nkzTSbRhZB0qddQiC5K9ar3IDtPtbI3jNVPNxkeXnBrk5U5s6+e0EX3vo26JSRXSSXEcYTBLD+dZzO7dBipLAt9vhJ7HH60nFBGd2aUuvxacZFaDcYye9Oi8dukO+K1x75rC123CRXbljuLGsq1ZhbKhbgimoKwKd7nQX3xO1r7O3kusYHA+UGrE19eXmmwXF5KZHba/pXE3G37FLxkg12Ab/iSWuepRaKkbIdF3kSWNw1tdzSjkOOPpW9BfCbjbtYda5dZMSKFOAFrTtpiTgnHvWfPZGvJc6JLkdx0p5uAelZkcnTuKmL8jbSVYl0S8t0n3ScY5q/ZPvti/ZmOfpWNlP7uTWtEPKsUA9M/wBa2p1OZmNSHKSQHehPdjmic5mVBS2gxFGfaoWcfadxP8WK6GYor6gMxYzjPFYzvbSJJb3LFVbAX/eNbOpFTbnccAMDmsSCSBo4xcW5lLzbVIHcA0jaMWa8NiLLSBJIxmZWAHOMe9dCIjHp0TN94QYLZ6kYxWJNA0nhi6RX2Sbshj2HpVo3Zm0fT9ku4NEATnr0p25UTO8mYUkz2NwlxK4yXLTN/sngVJeGC6to7WIBzLllb0/zmsPUBc399eW4UGFvkGT+dWka4tWiMMIxEAoI9BWftVcPZzTTLWm6d/Zm7z3y565q4baOWeK6RsSW+dvPY1lyXtzI5d4WYk5xinxaiFfcYHweCMU/aJlSjJ6s0TKZYJY1bBcYU+neswxO0E8lxPvdpBsHoMAf0pjasuLmNbd152IcdiOTUCzxKEkyTyODVc6CMUnzG5aMTBAD1wM1YLZkGetV7d9wjcfd2g4qQnLhvrTWoS1HyybdwpF+VTnv0pr4LkGnORnFFxWHxk7lJ61mXZxey/7xrRiOWFZt7/x+zezGsK70NKS1MgtY2msT3OtQh7d40W3leEui9dynj7xPPfjuOlbvhmKa30Z0eN4YTPI1vDIpDxxluA2e+cnv1HNWrP5bYe9WnbCCuJR1uelWxnPRVK3brporKyto+76/NkMhGapORmrDk5NVH6mr6HEtxNKUvqRKnBFbjR3B/wCWg/KsfQADqDk+ldASCcCuvD/Cc9f4io32peA4/KoTJdA9R+VXyMdOaYU963MCo8TZO+Rh+NU7iBNmdxbr1+laL5BPeqU4JRjjGM/ypvYjqctOqrLOAMfOOlSXFtgB0AAI6ClkBaaYEDl6vARlVBJziuaOs2dE/wCGjnmDElSDmrFmjLqEQYfeINXp4/n/AHaA1DDDImqxs3RcCrlH3SYvUzvEh/dzgkYzWFalTaBs5wK2tbtDLJdEseucVm6dAPsWCOxqOiNI7sx55gLKfHWuvV9+k2f/AFzWuSu1VbS4GPWupiP/ABJ7T/cWit0KodRqjdIV9BV+E8HjFcVrra4NRzpi7kC84qimueLbXG+3BA/2BUexujT2rR6pbyHaKto27IyAfevK4fH2r23/AB9ae74/urir8HxTQMBPpcoHc5rJ0JdClWj1PScscDnnjIrauH2WaqOMKBXm2k/EPTdUv7OzFvJG8sgHJ716RergpF3LVtRpuO5jWmpbFuMbUA9BWZM2Li3PYu2fyrRJwtZcuWuLYf7bfyNdDMYkOv3CQ6azOeNwqpYwTS6NaeXxIHZw3frVvW4UudPeMjnINP0twlvDv+VUGP1pdTSL0L9pcpqGl3ltPGEMYwxA74qONIooYLdMLFDECpHeltbaa1lvzgNBcAsD+FZt/Ji1mCtgpFgfTIpzk+UqyuZcEpbUJXPQu2PzrQVzg44FZNkp3KfWtUEbdtcDtfU3u7BvOAQaTdTR0oxS22Fr1A7e6g1DIkRVh5a9M9Kmz2qOXAjc/wCzVJu+4rJdDQiULAmPQU7POe1NQ/uY/dRQepHpXatYnP1HtguKG601Tl/wpSaoCSH74rNvs/bbgf7daEJ+cCqeojbqMvuaxr7GlLcu24xbJUshO0YqGNsRKPalcu2NtcdzUYxCqS5waovOGD8Yq1JGCMscn0qnPjYQBg0N6DjuW/DwzdSH/ZreK+9YXh3AuJAf7tbxx+ld1D4DlxHxkZB9aaQc9acaaetbGJVYTv3CVTmt2KOHk3e9aJI55J+tU51yrdqHsR1OcMQVnCA8HmtReEQ4zlRUS2zG4KsMAjNT3MkUEYXIJA7VhTXvs3qP3EU7j5ZQdo596Zjddxng9OM1Qv79FeMncB61VtroyatbkFwu/oadSTtYUNWWdQlR55kWNg2cH5eKwbSeOKRoHDAjOeK2b2eRLid1eQESHCHpisgyqZWlYKpY/wANQk7I0Vk3qYOoSgQXIAbjpkV1EJJ0e0Ocfu1/rWDqQMkE2xWJI4HrW3CQdHgB6hVoqlUFuRQMRqFyBzkKP0FakJYkEbfcECs2xGdZkU9Ny5/KtBoW+0OEO3msm2bWTNCNEPWFG9flFPOn2E/EllG2faqiecDjfVyGW4UjBBxzzWcnPoylGHUWw8OaQNYtrmOzRZI2JrqJnL3qL6E/yrI0eR5NQy0YHyZrWi+a93e5/lXXS5ranHV5b+6WJ22xuR3HNUWCtcQY/hcn9KsXpJQgcDuaoLdrJqP2ZV+6C278Kt7hBCaw/l6fMznGOc/lVuGP922SMchPqBxVTWI45tOlikYfNgD60squtzBapJjJDdfWi/vDgtC1otpeG2e4upMjkFc+tcV481C80PSVkt4mldp9iAdkIJ/oK754ZrdXgDk7lJB7ZNczqk4eeOKZUcqOQ3YmipNFcjueVwfETWbRgX08tgdwR/StCP4tSoAJ9JQZ6nea7UW9hMoMlvCc9eKedA0K4XL6Zat9RWDnT6otwqdGcrF8V9NYYksyn0yauxfE3w++A7Sxk9SEJrSm8EeHZ+FsY4/91aoXHwz0CUfKZIyf7oHFF6L3JtVWxbh8d+G5sAXj5/2kxVxPEejXGFiu1ZnO1Rnqa5ab4SWDg+TfTD03YqK0+GH9najbXX2zdHFKrEZ96FGl0Bur9o9PAG1R3xS56/SmNPCxZlYADilWSNwMOpPsa3UkkQ0SKvGaax2nb6085VOlQjLHJ607hYltz+956dKr6qmy947otWYhlgB61Bqv/H2P9xRWVbY0pblyGONIkfuRTpX+WmRECNB7UjmuOxqQuu7k1SuulXm5GelUbw/JQ1oOO5Z8PYM8mf7tbhUcVh+Hv9a/0rd7Cu6h8By4j4xhWmFTnrTyKacZ6GtjEFV24SIj61R1GKcMVd0AK/dA5FdMEP8AFg/hWJrBAmOBzt4FU9iOpmzwx206kFslOdxzWTdPMxDJECCPSm6hevM0zrxsAA5rPGpSxpy3QccVx687sdVk4Iq3sczTpvj+So7JPL1W35JXd1q1/aYYHcNx+lTWt2sk8KeQAd3BzSc5WGoRTG6paTSXkmzlc44qvFpflD54zj3rQu9dNrLLGtuCy8bs9TXPP4mu7x1V0C4JHFXzSaRPsouWpoT6ar5ZsJGBUUyolvtj+6FXmsG9vrqZbgNMQqjIArZiGNBt2JySikms5cxtCS+FEdgT/bUw90/pWxIQLth/tVhWcoXV5nJ4Gwn6cVsBlkn3qRyc1ErlRbJYWLPg+taMYGSKpRxkEEAdasgMMk8VDsWkzW0pgZZn6KoxmpjfxW2XVtzelZlpeCJZI2BAbvjrUN0oLq8fU9Qa6qc1Y5pRbZdk1l9TEltFGVYdTWNqU76bA7iX9+/Gc9BVpL0QpIYUAkIxmsO4iN3JmVicnP0pSkXCARXd1NE484uzDgZ6H1q64ut6SfaSZAuWOelVYVS3UADB55qyjKYGPcgBj+NRzFOJc03VbtNSjjnud6Y6nNWJwJ7hpiAwY8H1qlbndKq7Rx0NX1XChd304qZSHFEYRFOPLGAfSpxKqgDy+Paq8rN5mwHnGTVmIExjnn6VmWL5sR9QaXcjDl8UvlA8nBpDGhPIxQSxixqHJ87PtmkuFdo9qHNONup5XvR5JBzuxQIzpjcCIqY/xFUvtckDgkMK3TG/Xdn2xUTRB1IZA1WmBnf20doBduKfHqTyPiOUFuuDVkWMBBzCPzqIaXCWeRU2uo9arnDlGrq13FqYRh8ojDcetaD3DXKpK/3iOlZP2Zv7Ziyf+WQyPxNargALj6VM5aDirGvGcRJ9KC2aF/1aey0Y4zWYmMJx8vWqN0cLnrVssQSEGTUE8YRN2cn0pS2KjuP0AkTsfUVvZOBWBoWTeN646V0BHyiuyhrE5cQ7SGFqTNKRTcV0GJuMuF+tc7qZZ52HYDArZnnKRg1hXbEvkntzVPYjqcreRqktwi99v9azymzhhWhfMTcT8c5X+tMlhDovTIFcqfvs3fwozXx2AqWyI+3QD/aFQzKUPPSiyb/iYQZ4y2Kcrcoo35iPVG/0q4P+0a56zbdOy9wTW5fkm+mGCcOc1lw2T/azIvCmnGSsO2upXkjJF0CeSprehIOg2vsig1WezUZbqe9XoIlfT1iXjGKU3cqlaDuYkV7bW+o3bXMoXdgDmtOC/wBPkbAuol9MtVC98LRXsxdywbOeKyLnwFK43RXGG+tPkVhOs09DuYiWGYrmNl/2WzVoPKFyVLCvMD4V8RWi5gvHx6KxpfP8YacwX97KAPc1DoJlLEPqeoJeMDh0YD6Ustws7qBuUAc15tD418Q2oxdWAYe6c1fi+JUCjbdWMit3IAqXSlHYtVYs7G4RjgRt04z61SYXanBA4rKg8d6JcqNzNCf9o1oxeIdIuT8moRZPQFqThLqilUjcd58q8OhNSpOXikG0jkGpEuYJlOyaJ/oakCcHao5qeVjckWbPP2iM9sVaEmDg+tVArpGuPlI9aAZCCSM/SoaLRZCnz2fPBFWkPAwelZySZIDBlHrVmOeDvJt+tIC2GI78UZHbvUQMb/dkBFSMmACrrQJjx6UtRhJOvrTsN6GgQp/lVblnLA/LnFTHJ4IIFRBVjBXPU5poVyUAYojHMv0H86QH0OacgOZMdwP50irlGRcauhH/ADxP86nYkgfWoXONVQ9f3J/nUz/KRk9DjHrQ9ho10ZRAhzzim7SzZPAoijxGu4HOMinsQSVBHAyTSWuxOxGQOV71Q1G6hs7fzZQQd2EHqarXHiKyjuzaQv5kw6lTx9Kj1hW1Sztl2YMb7/rWiptke0SLugXBkvgx43jP6V1BbAxXJaNa3EN7GzKcZ/pXWEDAOc100YuKszGs1J3QhpKUikwa2MiW4kLDFZt2uWGPSr7A9aglXeMbfxqmZnIajGY7uTd0fGKXdtGNmeK27m1SV8yLkjoaQ2sf59sVko+9cvm92xy90fNXATmoLNCt5EJBgq2a6o6crdAKb/ZSsQcYYd6HC4Rkc5Pb77iVtvJOaZHaNu+7XUNp4Vj8uTSCzI/hpRhYJSuzAWyyCduTV6GyjSBcL81aP2b0BB+lSrEBGMDJHtQ4jTMwW4Ln5aX7Mv8Ad5rTEPOQD+VO8nk5phYzBZ56kflSfY9+QQD+Fa4twemBTjAR0IFK49DBfSopV2mBG+oFZd54V0+cYe1X8BXYtD3K5prQAjkUXDQ81u/AOmy8CIqfY1iXPw92ZMDMuOnNevtaqeStRNZoeqU0xeh4q/hDVbdsxXkgx05NPEXiuzAaOQuB0zXsL6ej8FePpUDaQp9x24p6Bdnlkfi7xNaHFxb7wv8AsVbh+JboQLnTnBP3iDivQpNIDD5kDf8AAaozeHLWbPmWyt+FTyRBVJHPwfEXSJQPNjaMd81r2vivQLwhUvowSPulKq3PgbS7gHNsFPtWVcfDS2fmCRo/oKXsYsv2zOzieyuBiC6Ru/DYqyIWCgpKv55rzGb4d6rbHfbXkh9OcVX/ALO8ZaYx8md8D05qXQvsVGv3PVcXC5IfJ+lP+03K4LAH6CvK4/FvjCwGLiN5gPVauQfFC+iI+16XkDvk1DoMr26PSRfsPvx077ZC/wB5K4y2+JujzEfaY2iJ7Bc1r2/i7w9dHC3eCfUYrN0pItVIs31lgb+LFPUKpJjfOQP51QjutMnAMd1C2f8AbFWY4gvzROjD/ZbNS4spSRXkIGrxj+9Aw/WrB+Z19Oc1S1GTytZ00kYWQSJk9c8VbI+YE9Ov50pKxSdzSaeG0tfOuZhHGoyS3pXDa54pudVDWOmKYoScM/Ut9D2qLWk1PVtca0aRjbxkBFHSt/R/D0NpGuUy5610UqPU5qlV7GN4e8Ni2kFxJuaQ9SxzXbrbfu1G3pU9vaiPtxVsJha3asZJkdsjK69CKvcDOO9QRjB4FTH2FNAITSZoNJTAuMoxUDACpmJxVeRiDTuRYgdVJORURiU47VKzU1sYGaLhYj8rHRqeqtmkx74py5IznH1pXKSFK880oVQeRUck6IfmbP0qs9/gnYB+NLmQcpfZExyABUTzW6naoGaoF5J/mBbGeQKsJa9WkYAVLY7WFWfdIQqcVKB8vzx8euKha4ih+VBk+tRSzySry2KRRdU254Py1L5MDdJKzUOflAyfU1ZjhbGZWC0wsi4toGHysDTGtCo4wapyTRocRO5P1pY7ycAHcAPejQTXYkaFh2qPyz6VKdQ7Mm4eopwuoT95SKNAsyDyx6UhiJ6VbzA3IcAUpiXHDginYNSmIsjpSGFfSrWwjtkUhHHTH1osiWyp9nT+7zTTbA9uKvBQRnIzSFd3HNPUNDPNquMHNRtagZHAz61qeXmkMfPIBppsVkYcumxvgPEjfhWfdeHNOuPlltEz7CuqMQz0ppiB7Uahyo4C68BaRcZP2ZUPrisS5+F1q3MU5TPYGvVzAvpTfswb+AflRZhY8Vl+HOq22XtLo4HQbqrf2N4xsRmC5lH+6TXuLWeT6fSkNgDzxRZBeR49pc+vtq+nyau0siQyjl/Q16OGyQc9q1H0mGQ7ZEBB5z3qV9IhZsqSD9awqUnLY3pVFHcqWlpG7tKFG5z1/CtaKFEAxy1LbWiW0YQZI9TVjAAwBWsU0jKVm7iAcdKQ8U/tTCAabVw0BetSUxVANSYppBcaRUZ61KQaY2aAuSmQ4qGSShn4zVaa6ijB3OMjtmmzND2cGmsUUAs2DWbNqgIPlqcjuaqtNJcYLEn2qS0ac14i8A5qs95LIcDp7VDHaseSdoqcSQW+AMMaTKQxYpJTjkYqwkUcI3SMGPYVWa7dm2r8oI61ErEDk5akMvPeKpxEuKgaV3fLMee1NiilkPC9e9WVgit0zKwZqQEAVmwEU/WrUdsAcyvj2qFr0L8kScdjUJZ2O6U5zQBde5RRthXn1qF5Hk5d+PSolBbAj/8A1VMluA252z7UANXc33BUyQE4aRsD0pzSpEPlqBpzJ93p6UAWmlSEfKAR2qu0vmHJHFQ5yeDk9xU6W7Ng/doQXIw64OATzU8SSMM7iPrTwqQA5xUMt0ZE2oOfWncB7zywYG/NKuoMDh1zVNl6MxzjtT1R3KjGKVwsXkvoicbDU4mjY/eAqskAUfOcj19KhmeEMURdzVSYWNMBH+64pSmBxzWMjMIyVYoenFTJcyggLISR1FO4mjT28dKTaKprdXPUx5FOS/BbY6YI9KLisWtoNJt9qi+224JOTwOhqg2rMXAReM/pRcrlZqFaTHFVoL8Sou9No9anNxEV3B+B2ouTysCB6U7aOMg1Qk1FsnYuaZ/aM+QWGKLj9mzWAx06U7FZ0OpOTh4xgd6edTjJYKpzj0ouHI0XCtJjis0apJnBjqRdURvvIR9BRcOU0FFPqG3minHyMc+lT4z14xVJicRpphqRkwRgg1FIMUCuc3Nq0sjHA2g9KqCOWduQxPduxqbyYYhufqO1MN4SCFGBziobGTpbhQPMccelP+0RLwoHFU2l3dSetKoDEBepNIZM91I/B4WosqWO3k1PHau4/ecLmpcw2vbJp2AYlvK/J4HarCxwW6/O2Wqs1zJKxCcJ2qLB4LHNIOhba9c/LGML61Ez5fc53U2MFz8vrViO3RQC5yeKLDTIl3MQqLj3qzHbbTmRs+1I8yxLjAqF5nl46CkBZMkUZyvGKhaZ2OMcHvUGe/pUyJI/Qcf/AFqAegi5GdxqSKKR+cbRVhYFjBPU85zTWulXhfSm1YTZIkUcK736nvTJL3jEYz71V3M55J+lKXVRjA60gFJLAlzn2pVAx8vBpY4mkJParaRpCuV5PemkO5HFbEqDJ9481YaSONCeCfSq0tzkYWoACRknqf6UXEtSR52l46CmABMkjGO9LtIGRU8VuXUl+lAr62IFR5CFVc7uauxW8aHd0YDmnZWJQRxiq01yznaBx603oNuxJPdbAVRhwMmszz2k+dGBJ61NKuUZR95xtrItoL2GR43x5atwalsuK6mkH89xHgc+lJHEi/Luwc4ohcxSKyAEg1NOEL7h/F19qZskloDyK0SRocgdTTVQIuGY89KdbmFZ+f4lxSwoqPJ3IGBmmg0GIXVjsXPvUkcZm+8MsegFMDrkLJIEH0rQt7RW2vbShiDk8UIzlKxS2NHIUYEMOmaRVbdlSNxNblzAZojlRvzjOKit4JoW5RdvrinYj2pmSwzxpvZeDTAh28gYNbl3b/aohGODWS9ncoSj9qGrFKon0Io1eNg6SBaleW7bJMgxVckxko/SnYCorIxPHc0rmlkIL24Bxu6VYt9UbKiZepqFtssC7QN4PNVXTDc0ByI//9k=", "path": "images/4pts_ADE_train_00005526.jpg" }
depth_point_18
images/4pts_ADE_train_00009353.jpg
ADE_train_00009353.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 231 y = 168),Point B is located at (x = 109 y = 127),Point C is located at (x = 319 y = 181),Point D is located at (x = 271 y = 142).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_67><DEPTH_70><DEPTH_69><DEPTH_19><DEPTH_41><DEPTH_57><DEPTH_3><DEPTH_31><DEPTH_31><DEPTH_59><DEPTH_5><DEPTH_70><DEPTH_40><DEPTH_40><DEPTH_84><DEPTH_19><DEPTH_3><DEPTH_31><DEPTH_70><DEPTH_70><DEPTH_5><DEPTH_58><DEPTH_25><DEPTH_61><DEPTH_61><DEPTH_18><DEPTH_31><DEPTH_67><DEPTH_11><DEPTH_67><DEPTH_5><DEPTH_64><DEPTH_39><DEPTH_46><DEPTH_16><DEPTH_119><DEPTH_3><DEPTH_43><DEPTH_6><DEPTH_6><DEPTH_17><DEPTH_72><DEPTH_25><DEPTH_78><DEPTH_32><DEPTH_42><DEPTH_17><DEPTH_69><DEPTH_8><DEPTH_47><DEPTH_51><DEPTH_60><DEPTH_25><DEPTH_78><DEPTH_94><DEPTH_98><DEPTH_17><DEPTH_33><DEPTH_94><DEPTH_55><DEPTH_17><DEPTH_82><DEPTH_38><DEPTH_84><DEPTH_78><DEPTH_27><DEPTH_30><DEPTH_9><DEPTH_45><DEPTH_78><DEPTH_50><DEPTH_32><DEPTH_19><DEPTH_66><DEPTH_50><DEPTH_16><DEPTH_6><DEPTH_12><DEPTH_27><DEPTH_14><DEPTH_14><DEPTH_57><DEPTH_50><DEPTH_81><DEPTH_41><DEPTH_55><DEPTH_6><DEPTH_24><DEPTH_48><DEPTH_28><DEPTH_51><DEPTH_70><DEPTH_22><DEPTH_11><DEPTH_82><DEPTH_61><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
4
[ "B", "A", "D", "C" ]
<DEPTH_START><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_67><DEPTH_70><DEPTH_69><DEPTH_19><DEPTH_41><DEPTH_57><DEPTH_3><DEPTH_31><DEPTH_31><DEPTH_59><DEPTH_5><DEPTH_70><DEPTH_40><DEPTH_40><DEPTH_84><DEPTH_19><DEPTH_3><DEPTH_31><DEPTH_70><DEPTH_70><DEPTH_5><DEPTH_58><DEPTH_25><DEPTH_61><DEPTH_61><DEPTH_18><DEPTH_31><DEPTH_67><DEPTH_11><DEPTH_67><DEPTH_5><DEPTH_64><DEPTH_39><DEPTH_46><DEPTH_16><DEPTH_119><DEPTH_3><DEPTH_43><DEPTH_6><DEPTH_6><DEPTH_17><DEPTH_72><DEPTH_25><DEPTH_78><DEPTH_32><DEPTH_42><DEPTH_17><DEPTH_69><DEPTH_8><DEPTH_47><DEPTH_51><DEPTH_60><DEPTH_25><DEPTH_78><DEPTH_94><DEPTH_98><DEPTH_17><DEPTH_33><DEPTH_94><DEPTH_55><DEPTH_17><DEPTH_82><DEPTH_38><DEPTH_84><DEPTH_78><DEPTH_27><DEPTH_30><DEPTH_9><DEPTH_45><DEPTH_78><DEPTH_50><DEPTH_32><DEPTH_19><DEPTH_66><DEPTH_50><DEPTH_16><DEPTH_6><DEPTH_12><DEPTH_27><DEPTH_14><DEPTH_14><DEPTH_57><DEPTH_50><DEPTH_81><DEPTH_41><DEPTH_55><DEPTH_6><DEPTH_24><DEPTH_48><DEPTH_28><DEPTH_51><DEPTH_70><DEPTH_22><DEPTH_11><DEPTH_82><DEPTH_61><DEPTH_END>
231
168
109
127
319
181
271
142
null
null
115
4
220
145
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDhFXpUirzSqtSha89s0GhaeFp4WngVNwGBacFp22ngUgI9tG2pOc0uKAIttG2pMUoFICMLRipdtG2gCIrSbalIxSUAR7cUuKfjNG2gCPFIRUu2kxSYEeKTFS4puKAIyKTFTbabigCvKOBUYFWJl4FRhaoBAKcBSgU4CkAgFOApQKdigBoFOAp2KcBQA3FOC04CnhaAGhadtp4FLjigBu2l28U8CnYpARbaYVqxj2pClMCsVqNlq0VpjLQgKbJUbLVtlrM1XUE0yFJJFLbyQAPpVxu9EJlhQKkC8UBfapQtIY0LxUgFKFpwWlYBm3mnbacFp22gBgWlwKftpQtAEe2jFSYp22gCLbRtqTFG2puBHtpMCpdtJtouMZt9qTbUmKNuaLgRbaCtS7KClAiHbSbam2Um2gCLbSbalK0baAK0y8CogKszLwPrUAWmgEApwFOC0u3mgAAp2KAtOC0AJinBaULTwKAEAp4FAFOC0AAFOxQFp4WlcBoFOxS7acFoAZigjipNvFAQ0XAgK+1MK1ZK4phSqQFZlrivF8u69ggGcou7A9zXdMlcBfg6j4v8ocgSKn4Dn/Gt6HxMUjsQDTwKAKeBWIwAp4FKBThikA3HNOApwFKBSAbijHB+lP25PFKVwMUwOZ1W41FdfhgtZSsJQM47AZNbmnTLcyNFIeeqkVXvlzOSOPlGWx2zU2kx7rvJIAAOD610wSa2HYtXhjtoC4JLHgCq9i73MpSRgAFJyOual1cHbAx465z2o0m3K752X73QetV7ON9hdCwLUtIwV/lAwCe5rmbrxFLY3EkU1opMbYYKwyPw9DXWeakakNkkk/KP0qjPpMV9IJXVVk/iYqMt9arkiTcxtO8RRX+o/YxCVbBO7PpW4F4JrO/4RqK01hdThlwCpDpjgkjHFamK5q0UnoNDMUmKkIpMVghjCKTFPIpMUwIyKXFOOKMUAV5xwPrUIFWbgfKv1quKEAAU4CgCnAUwACnAUopwxQAgFOApRinDFAXQgFPAoGKcMUACin4pVFOxSAQCnBe9OC8Zp2KAGYNAFOxS9qAGMKjINTdaaQKdwKlwwiieQ9FBauG8KRG+8SSXJ52hpD+PA/nXWeI5/s2hXTk8ldo+prH8BWoFtdXJHUhAfbqa68OtG2RLY3AKeBQBTwK5WWAFOApQKeBSAQAU7ANAXmnAUAIFIFGM07FKBTQFOWFpJ1BXMWRuP9KluH8uWCOFI1dmOAxwOBnH49KuJtEEu/hQQSaydQvbfylMcBIRwQR1NdlLRA7l2QrdSpbXCFScOpzlX9cfpT7uVoUSG24dhtUj+H3rNGtC4WJ3jVWSZR8o5Vjwf0zVj7ZGtx58gZowCU29SQxA/UVorMl3LdoAhmQlisRCliPvHGSfzp4mlb5ljUJ6dyPWoraOUWM5mCrNNuZl/u8f4VDe3Yj8tYTgsgJYemOBSbBIu3BBgyOhxVcCo7WczWTK3OxlwalHSuStuUhCKTFL3oNYgNIpCKdTTQA0iijt0pM0gYy4HyL9arAVNdOiJh2AzVNry3j6yflTUWK5YFKOtUW1OFT8iu2akN7shjnZAEJwAOuciqUWx3ReFOArOTVIONyMCOOtSjVLUnqyn6Zo5WLmRdpy1UGoWp/5aj8RipVu7c/8tkoUWHMiyBT1FRJIjH5SD6EVMnP1pMESAU8LQqnPHWpeIl29z1pDGYzRTh0oxQA3FGKeFowRQA0CmsOKk5pCtAzjvHdx5enQQd5ZCx+grR8PWxtPCMf8LzAn/vo7RXOeNZjda9Baj+BFGPdq7xbYQQ2FoP4NufoFP9a9CmrQuZy3KQFOApQKcBXCWKKcKAKUCkAo5pwFAHSnUANpwFGKWmBTvXYoIgcKxy30rPd967BhR0Bx0rSvIHkjLKQAOCappa9d7jGOQP51001oUUI7RxOty0gZ4zkdvMPuK2dLxHYNLIF/dO4BPbBP865XWppEv/lZ0RFBT8Kuve/ZLGe2vy0YTE7di28ZGPoc1pF26EOWppT3TSufmJZ+cZ4qeWwkeOKSEZyu0j6VjaLPFeSyG2LOgwAD1DHrXWSMtrbMxJ/dqAMd8U1ruFyrFbG2ssMfnJGaXtSrdJd25ZBgjGQetJ2rlrbjQYpD1paQ9axASkI96XpSHa3bFAMaWPQU3jtSk7QfaoY5RIT8vA6UPa6EZ2rxs7RsM7T1NZnkKOh/HNX9YlOUAMhCjsOKzI1eQZEZH+8a6FsTJpEmxAeucVqfaEj0uBHjSRZVcDOcrgissQS/7IqeaeUxRwfIBFnB9ckZ/lT2J54khghIJ+UD3NNa1G35F3fRhVJw7DBK4PqaYDKh4HA9DUpMlziXlswxOUdTjuRR9iOAMkZ9s/yqsJpBzk/nQLiTOFMgJ7KadmNOJv6b8kG1skg4zjFaMXXmsvTWkWAxvvyDyXrTi4Iz1rOaNV5FyMncOKftJJJpsbbc1IDxyfwqLDE2mlAp/bpTgvGaQEeKXbUmBTgtK40QlTSbcnFTFDVe/lFpptzcf3ImfP0H+NOO4HnNsv8AbPxB6bk+0Fs/7K16O7xjUH3yIpjiAwzBeWPHX/d/WuA+H8tnDrVxd3tykQSP5S56knmu4vNX8NPKZJLq3kkIwSec+lejb3bGfUqAU4CilrzyxwFKBQBSgUAKKXvSDrS0ALRmkpaYD4sOJEPPA4pjafAxOFdd3Ur39vpUsAx5h46CszxLNew6M7WSb2J2vz0X2967KOsRMoXmt2FtcCCOyFx5R+99Ow96oeKYf7Z062vbTllcRyKfvZPTP8q5WO2uLqQpJI4AGcYP4fjXa6VoKtpJie5cSyLyqH7q/wCOa12JW5J4N0a40y1mku0EckhARG6qBn+prZ1Ij7GQTksQOTXN6r4kvLLQ4Y1KC9d3hZgchQmPm/HP8653Qxdatr0MUk8jclyWPp/9ek9dR9TsbNmWUjpnqPpWn2qlBBIkjllKnI49vWrgriqrUsO9B60d6Qn1rK4AT2qJiQDwABSyuqLljgetYep3byfJDJsXuTVRi2S2aNxeRQqd0oBI6ZrPivIVfCDe5IwBWV5NvJIDLMCBwSDXTaO9pDIohMXmKecfe4711KmrE3K11DdquZIXhVuR5g7VkXbMs2BLlfQV6H4hVbnTre553AgZrmDp9vI4Lx7iKdRxiNQc9TnQWI5c1ZWNmVdoJ4reFlax4CwJlj1J6U1bZ4LhUdNodgPqPas4a6kypWZheRIQW8slR6U4W0ikF0lCnuqZrotARHluRyctwGGa6OCBAAcD8qmpU5XoXHDpnnIsLlydltMRnjKVJDZXEVzGXgdcHJyMCvTGh3RsF2gkHHrVCPw9Nf2BkiGLiMEMT/F3p058+450VE52VHSIS7028ZY9F9jV60tri6txLbKHQ9x0ov1MOgPG64dp9vPYitzwwwfTQMYYdsfWlOyi2XGN3ZlKLTL8pzEufc4qyml3O35tgPpuzW/5Z44oZa5XI19lEwV0+8B5Me3vUn2Mg8FfwrWZOM4NRFTuGP5UwdKKKiWGRnfUy2Axy9W0X1qYIOmKVw5Sh/Z6kjD1Wv8ARIdQ06WzkeRY5RgkdRzmtrZ7GlwO4OapMfKjhR8M9EBJLXDHvl+tKfh3oaH/AFUh/Gu3K/5NROAT7960VSQuWNrnBrn1p4Y1GDSg0rHOTBqkBFV+acCaQE4p1QhqeGoAfjml6U0GloAhuLx7QoEhMm/OQOuBU4aPULHdDhlkBAPofSkbYSA4UkAsuexGM/pVS0Btp9RWIACOVW2jvkZrrpawJ6mR5ao2Nigg9Md6S5mnt7WZ4dxm2HgDt3NdLJaQXQ3PGVJGNy9qZBp8cLMzMZMqRg9MVokx3VjzCO1e/kMCkFmHylm4/Ot0JaeCYoJL0Sy3lxk5hAIXbjI5I4Of0qj4jjew1qR7eJFtCwTYfu7gOmfxro9PuJL3U/D0sEtyJW03UlSS3UtMGFo4BQAglsjIGRk9xVohCad4qstbu3t7aO4Rli3ZlVRkbhnoT61sDp06CsPBTxPYi4ubq4uBow8x72Dyrnf57cSrub5sYxz9zZW8AduDXJiFZlpjMVFLJ5aFh1HQVOeBWbdXMTsYWccjtWMIczGyrcSM8jbm6du1UZ7Q3ERDgAEHHYinPIs0TILhev41FO92yhYpIpu5VuoFdqikQYunKSjxSrgwvtPNJJcfY72O7jYqY5ccHqven3Cy2l6ZJY2jknIIK9Dio2uC8ZiewVmBPzF/mxWuliep6X9rF5owAfKblbPoDULW+BkMQa5vwtMJYXUuzSxqIiCeGAOR/hXVyfdrlrfEdFP4SoRIDjzB/wB8ircl9Jcwx2k1qsjNIoWZOGXmqr8niprQf6XDyc71GB9anaJTV2V7a2k0+dvJk6tjGKufbbtOkv5rWjqVrCtmWjiYy+WPlDYIbcct+Vcw0snAEjEdiDnNYzkupM6nLoaf9pahnicA9vkFbXhfXtRt9UKTMtxbNGzNGVA5A4I/OuYUMcZkatfQkP292Lk7YXP8qhVFHRCVZSdh+pQjVGlZg0SySbwo7GorNLmxUIk5Cjjgdu1XGx1B4xUDyDOKvmurM6La3HNqF8DgXRH4Cmm+1Hki9P8A3yKgkPJNMVjg45pJRHcu6feahNqUCSXe+Mthl2gcVaurqdLh0WUgBjjiqmjj/ibQduTz+BrU1LSmi1NbfzAWmAIJ7ZpxSbFJmb9vu+izkEdeBxUX9o6nuIF3/wCOior3zLO7ktpAjsh27171V8yU8BFpXgmY+2Sdi4+p6sAcX2P+Aiqj6xranC36/io/wpN0uCPKU1C0crHIjWqUoC9tEcdd8QDgXkJ+qf8A1quaVqmv3eoRxzXMLRF13hVGducelZpjmz/qa0dDaSPVIUNuwV3Clvwz/SiThYXtIy0KQNKDTRSigkkFOFMFPFIB4NOHWmCnCkA8U4Gmd6cKAI7hpwo8iDzXwcZbAT3PrUQWKw0t5ppOXDNMxPJY9P1Aq2Cyk7VySMDn3z/Ss/ULGa/QxHCxbiUXPr1/LtXTSnGK1E0EN9cPNHK7COG5J8qI/wDfQP4gGteKQupDlQ68N9az5LaSS5tpSECwFcD6DH+P51bEknnPJhSCAPr71p7WAWG3EdjKHguEiZWO50cdT61z2veEbXUrO2Frci2S2DnYse8Hdt9xjpWveWz3MwkLKMDGarW4uY5JPs5V0QlSGP3jjkCplXhE3oYaVa/LZJbtuy/r+trmToPhX+w7me9N55ylfJC+Vt6kHPU+ldKoIH1qC2Bmto23AqSWx71axgVjVqKeqInTlTk4SVmtGRyA7Dg496831FPK1K5TeSfMNelPyteb6sP+Jrdf9dDVYd6mbM99ynIY0G4ZSCsrA04+9RkA+/0rrWxAslzLMgVp3K9cGmiWXOfMY/jTWRSckc4pFhTcOOvvRcDe8JTPJrJDH78bZrq/EeqzaVbRvDCJC5IbPsBj+dcn4QUf20P+ubV0PjqSNdKEbZ3uwKEe3X+n5Vk1zVDWDtE56+1rVXKyowti2CI19Mdau+Er/Vr7XLdGaSRFkVpMDO1cgE+3WszUIyhtywAZ4AcjnAxxXWfC23c3Go3HUBEjz25YH+lOcUosqEnzXOj1O6naYt5x3AFOe471hPbxkj5a2dQU+awznrzWeY5GIESruxkZNeXJvmUUYVm3IgWyjz/F+FbPh60SK+mcZ4gbrWXbvO0wSaEKCpIIPcVu6Gp8+49fIJ/WolzwlyzFSTU1cUrtHNRMo6irbAMMd+tRmJsYAzXQekU5NoPTmsrV9QOkaTPfeT5oj2/Ju25ywHXB9a3J4GjG4o+D90hSQfauc8YoW8GX8ij5AUByRkHzFFXCL5lczk9HYoyeMtV8P3EU+o+FL21UFlAuWeLcccgFk616NqepH+147hgD5ZAx9K8o8TSQ2t/40ne+sriDVbxjZx211HNuP2jzBKQjHaAgZecH95x3x6PfDEjkjqTit6sIwasYxk5J3Obubu9a6mY2TPlywIPYmmpezZy9jKCKusMsTzn609cjnNedKW5xN7lRdQ/vW8o9sUv9pwqcPFIv0FXgDSMgOeB9SKSa6i5kUxqdueSJB/wA1e0DULa51u0jjkJZmJAI9jUSxoeqj8q0tCt411mB1jUMu4gge1F4lw5XJGGKUU0GnCus6B4p4pgp4pAOAqRRxTBTxQAuOaeBTadSuA7HGR96jA9Dz70UpFK6ANo9cmkHUfrSgUEUANx6VWe0be7RTtGHOXUKOfp6H3q3ijFDSe5tRr1KLbg9/JNfc7oijhWKNY04VRgU/GKdikIpGcpOUnKTu2RsPlrzjVv+Qrc/75r0lxxXm+rj/ia3P++a3obkMz2AYEHvUKwiNsgkj0qc9aQiuu5BGRSL94U400H5hTA3PBgzrZ9o2rZ8fDFrCBjkP+fyisfwUM603/XJq2PiBwluvrv/APZayv8AvTaOkLjNJ0RNf8RaXps0hijmtASy9QMV6npngOLQbBPsFyfLSbzZt3WRQCMVwfgFg/jfSty/MNOzn0AA5r3OdAdMnbIwYzgjvU15NXLp26Hkuof609O+MVlyq0gCqxU+oHStS/Q+bzxVW0spb68htYiN8rhVJ7V5lRvmVjlrJuehWhikSTc0pdQpAX64rc0Q/PdkHgQHB/EVS16wuPC9t5+rFYYsZEigtznA4HuRVHQvGOgNcy2/2799coIYl8mT53LDA+7x+NJ06sndq46SamnI6ZUyykHjHNWGCKikL36+lRxL8v4VO4AiyeOD+I9K6D0TY0S/srzRr2yDgXEW4BXUZ5H3hUEvhCx1XwD/AGVfs2yS3UtPCFWQ7W35yQepA7dM1heHfLOrXU0jBpk3bB2RcVvXuoX7xx6Lp86WzDT3u555I95CA4AQZxknIOR0ORzTc2misPQdaXLt3vskeUaT8NNGv54Ulur8B4RIxWRBzgHj5OldlfnJOah8Jyu+oNHIF3RWwxt6bSox+NPvQSSat1HPcnFYf2EnD+tVdfgzJI+ank7YycZIHT1ppINKxIjYrnIHbrXDvI8fqZ8urtbsFnsZ1bsQM1b0/UIdUeZLdJFMSb33jgDOP58VHc6xN9n3Q2cscgTarEZ+ppfDM0+zVPtM252t0RQwx/GCa7alKnyXT1NFFNFzFanh9c6snPRW/lWbitbw4udUz6IxrhQUvjRy3fFPFOZYYreN5JADISF4POKrT3kFrHvlfAyAK9GUWje5aFPFZH9vWWcBmP0FaCXIZQyxsVIyD61NmFy0v1p4Bqkb5EO0xtmnLfFyAkeWp8rAujPp+tPUE9v1qmZ7hettznHWnCS7JwIUH1NTygXQKXp1qkTegjmIZOO9Zuq6lfWbxxKyAsMkgUpJITN8Y3YAP4il29jmuRj1m98xTLOQh+9jHSrf9qSPNJElwSsbbRnAojDmEnc6IrgbiduKZHIkoJQ5rEtbqG+nMLXZZ+mFPetGyt/skZTcW561UoKOhSLopDThgigiswIn+7Xm+rf8ha6/3zXpTdMV5pq7AaxdAn/loa3obikUSKYxqQ+o5qJiK6iBrGm5G6ms1Ip+aqA6LwQM60/tE1a/xB6W/rsf/wBlrK8D863L/wBcjXR+MtJudUgie3hZimQT7EVhJpVbs3grwsXPh7Es/i6yJOc6WFDL6bQCPqK9evrG6i0a1itJflgcNPuP3owDkfWvKvhjZvaa9bvcKYtltJGA/cnHNe03gH9lXBHIEZ5Hasqkr3NfZ8iPI9Q7MP1qgsrROjoxVlOQw6g1dvSzmqBHzAda86s7NHFW+IzvGl1dXvhW5jmnknKlBGG5IzIvArJ1HS7C31LQDYPZvJp2oQ6feG2jZTvG0guSo3MzrPyCeFUZ4rc1mzuL/Spre0kENwSjRyFiu0qwbORyDxWFoPgXXhqCXLX9sbeG5iubiPzpP3hVsg424LctjPqfWu3C14+yak9f+AOm3KSPUFOFAqaT/U88cVEnUVPPjycH0rK56djE0GX/AIn1xGoIJjkOSfYV2uraNb3+iPPM0sdxa2jSQywyFWTK/MPQggYOR0JrhdAZX8STom3cIpc4JyOlej3sfl+GdSm3E5sGUD0wpptJ1OV9goznTkpQdmcF4VgSGdti4zblm56kquaW8+65HYVL4eO1589Vtv6Corsjy29xVaLYnFzlOcpSd2Y2PmNPwMcjimjkk08ZwSOwJ/SuPqePYX3J596Ao3ZAGR3roLfwXrM9jbXULW8iTxhwvIPPauY8V/2h4c0+4ZrdPtkRQCNgWB3MB0B9619jPS3Uvkki1W14aXN/IQOkf9RXl2o+I/FGlQ+bd2OnKgk8pjG4k8t8Z2OFkOxuDw2DwfQ16t4XX/Srg/7H9RRUozpNc3U0ox99XOLLMcbjkDpkdM+lYuvkqsPTZz1rY71ma9GWsBIACY23Zrr1dk2XJW2MI7QOf0FdXoTNJpsZZieSBn0rjBgHBxtHH+FdtpcRi02CM9dmT+NDi11FEbdf8fbE9KargOu3jp0p98mJlYHquDmmWqeZcKM8DnirS90o1ZRlR9R1NTofmNVZ2P2eRgSCBuFLFHdyR71V2UgYIHes4xctgLbDIGBjmua8Tkrdwt2ZP5VvCG6DwZik+983FZ3iTTLm8t45LeF3kjbkbSTinyO+omcKGmu75VViVeQbR+lbOoWytcyoo25kOMdvT9KsaFoV2t+k9zbTJHGMgSKRk9sVr3WmXL3Jnjh3buSuOhreOkthRRl+HLBINSll2YKD8zXU8n645qppunS2cLearGRzljjp7VoLEccq35VnUu3exQi5UVJnigIB1z9KXgD+lZcr7AMIzXmutDOr3fH/AC0NelysFQkHJ715lqR/4mlyGJyJDn61tRTvqKWxnlCpyD+FRs394YqZztU4FQiVX4711LYgYw4po4JpWAHK8U3cd3PoaewLc6bwF/yGZSf+eR/nXpDMY8EZU+1eefDmMS67IpIAMJbcewzXobtHLK/kYdOnyjI9K5a0U5XZ101aFy3b6k0JDPBFLgdTw2Pat+z16G7H2ZZZoyykeW/TpXKyEAEs2PdhVrRpIm1iFRJHuyeB1PBrmnT0biaqbbSRPf6BelQ8CxyrjqOtYU9tNbtieCSP69K9k0eCJ9FjMiBlBbr9aJ9JtJ/lwF3jgf3qwlRbXMY1KdOo9dzxKSYxsI408yRgSFUgcep9K2/D0wltb/cpR02BlPUf/WrpfEHgN7qZLvSjBHOqlWRgdsgyMZxyMc9BzVLT/C93pVtdiaVJLi52EjaVAIzwM9QPWsuRp6o744fDRw6cbc1vPmvfVNbcttnvf5pQjBbI6YqeYDywDwDjmoJfOtDte1cD6ZBqCbUWKkBFGP05rpbRjZ2M/wAORI2v3THHmeRLgjv82K9L1qPb4Tv3yMNZ4x/wHFeYaPbpbz38/JlmUgk+jGvQ9Z1G3fwhewK3zfZfLAPfjFKMr1WxRi1Y4zRB/wAfrdxbgfrVO6f5W+laOlQ+VHqUm9WLoowO2Cazb0YVq0et7GeJ3kZwqQdOelRL0FSCuI8m+hsWHibWLCJIor3fCo2okkYIC+1ZHizxFIwj167gDvb3FtM6KAA4SVGx+OKKhvLO31C0e1uo/MhfG5dxGcHI5HPUVrGs1JX2RfPdHleqQada2sy2estfPNcB1SNHRQgDcyB1Hz/MMbcgfNzyK+gPCy5a5b02D8z/APWrz3/hDtAz/wAeH/kaT/4qvRfCg/dXJ9So/nW2JrxqtcvQ3oNSqKxwIOaSSJJo2jcZRhgilFKK1sUZsXh+2SXczsy5ztNbSgAALwB0qMYzxilBpO7CxKyRyLhxnNPiiijHyIBUQapVPFK72AkfBiYY6ivQPh2kM/hVjNCrOtwwyR2wMfyrz4HjnntXc/DF5v7L1OGXok6lPoQa3oaAdl9ks8n/AEdPyoFjY/8APuo9wKl5BwetGa67CZCdPsT/AMu4656U06Xp5624/KrOfrRnjNFuoFT+ydNyf3A59qT+x9NP/LH9KudaKLIRT/sXSv8An3H5Un9iaT3tQauZpKOVBc4vxzaafpegm5trYKwcZP1r571mdm1i6IGMvmvof4j4HhWbqeV/nXznrBzqtyTnO7p+FTZcwPYpmRj3qMnnIoNNNWtiRT160mefzpCaP/rigOp1XgEbtUnB6eQRn6mvT00uxnUxwSOYIDiUIcZIxn+YrzP4d/8AIZlbGf3fTtnNemfbJLbTPmEUbmRi4Qckt2P5fpWe8jrp60y0uiaX5hj8lmYDPLk/1q3punWNtfRPFaqJBkhucjg1kafqSLK5nDeZjjaDk1q2uog3IcW1wuxWYbwPm4+tVODcGrGcJXkeg6SgbR4lbvuGfqTWddaTqDakj299tWMBlB9c8j6Yqvo+vQta/ZP9VPjCF+mW3H+dbUElw6RyIqMS48wnuAMZFcKvHQ2bcblq0eWSDM6BXDEEDp1rB8ZyPFp8RjYq27qK6T6Zx71y3jg/8S+L/eonqhRfvHJQ63dxfK2JVz0apZL/AEu7wLu0MRPV16CsVid3ApeuPm59etYuBspm1b6HZsTJYX6yK38LdR+FWtTiuE0yWMxknbj5cGuYb5TvXKuO6sV/lVu21vUrQDbMsyDqsqj+dZ8ti1JEmjbxZaiWUhvlGW4qnfqwgLY79a6Gy1GDULGaSe1FuqEK5HO4+tVbjQra/Ba0vCvP3SapSdmrGVaPOtDlFPGMg08Vpz+HdRtvvQiZR0ZOtZzLsbEiMhHqK55I8udGcegVVnLyXKQeY0aFSxK8Fj6A1awDypBqOWBJlxIgYe/apdzbBVY0avNUWln0Ts7bpPRtf1Z6kVq7b5o2cuI2AVz346fUV2nhYYs5z/t/yH/165BI0iTaihR6Cux8MD/iVue5lP8AIVUNWb+0hVxLnBWWnl0V3ZaK71stNTz2lFJSivQMhwNOBpg604UgHg1Kp4qGtbRtKbU5nXJWJBl2HUe1LqMpA13Pw7kAk1GHsURv/Hsf1rHvNChjQiPeDjgmrHga8jttdngZgVkRoyR2IIIrammmI9I6nPrRTVkVgMU/6d67BXFAyaVsIMu4APbOKkhRiBgZdjge3qadJ5Eb4AEjDgsfWlcCuHVxlHBHpmjj0pZ/LltSmza+chl61n21w6StbTEbxyp/vCmkTcvZpM03PfNBNMZyPxG58Jzn0K/zr5x1g/8AE2uf97+lfR3xE/5FW5+q/wA6+cNY51a5/wB7+lR9oOhRJpCaOnWk75quhIGkAK9QRx8ue4Pel6HJ5FaGpwMsVpIqt5RgUKxHU9xRfUOpv/DyRodZndeGWDj65ru5BPaX1s8sLzndklT/AHlI/SuB+H+f7TuiAcCEc9vvV380Ja/0uYO7l5pIyc8LgDH+H41lf3zoi0qepPezXt5EEt2ktpHYtC0vHnFgBgH8Kh8NWmoprqm/vSSIZF25yM7T3+o/Suis0tVsrGSR0ZkdGXJ+8Ohx9DUkNsbfxNfooxFgTRsf9rII/rWlSu+RoxpxtJNG9omkQHTnebYdx8zb/ECpNdPaxCG1ijGRtXoe1ZWm7Z9Hs4WXPmKXb2Gc/qcVqhZUO5GDg87WrzlJy1Z1Td2WBXLeNEMkNrGvV3xXSLOpOD8jejVg+IkMl7YL/tZqpPQUdzhdX0qTT5VUSAOVDAVnRP5kayHqw5rf8WS/6c5z91cCubhBW3QDrtFOewqbbJWGaiIOdtTc7RUbZDnjmsTboatmCuh3H+1MP5VVBKvuUOD6g1bi+XQnJ6G44/KqYBLZFEdQbZZh1zULQ7VmLr/dYZrQGv2N0uzULM47so3AVgsuG+tNPHNDimVfQ3v7B0XUwWsLhUduyNk//WrOuvC+pW+TE/njsrVlSKC+5cqfVTirdvreq2XEd0JVHRJaylBGcqcJblGaOe3YrcWzxsO4Fdf4aIbRkZclS7E5/AVUtvFtvcutvqFiyMxChlG5ST9K6CGGO3QpEoVOcKOgzSskyadBRlzI8jpwNMzSg11nOSDrTgajBpwNICTNdd4IcedfRnp5at+RNcfmuo8EuBq8qf34G/Qj/GqjoxnTXankk/QVw3hZvL8W3i+s7H9K7u+4Qkehrz/RW8vxvdL/ANN1/UV0q10Rc9YgdscE+9XFkbFUIetW06D610PVEpmlDKAHOcFUGD9f/wBVQbgMZIBx3NQxvskAJ+R1wf6UskEUpy6kkDHWosV0JdwLcOAe3NZmogRSQygcq4U/QnH88VdW2iRgwQ5HTmqGqv5skUCkbndePoc/0qkIvK/T0p+cioRwPxqUHimwOV+IQz4Tuvbaf1r5v1f/AJCs59W/pX0j8QOfCd39Fr5u1bnVJ/8AeH8qz+0BQPJpvf2pe9IaroIQ8VsadctdxSWM77o3X5M/wY7isc1a03BvkycHnH+FTLa4HaeDYwizPja3mbGA6dOBXcQwy3L6TJDgiG8ZpOcAAKDz+Irl9LQQvDbxx7N8Zlkf+8x/wFbscivgvuRVG7dnAJ6f4VxqbUuZG1OzhqUr2LytX0iGKctshikCFuzHn+VdS2pS3uuPsBFuI2SM93IHX6ZrkXhH9pW0jfM6xCNXXooHQVuWM8s09nAMBoYnC47knj+dOrKEk2yqcWnrseqaIpFhE57rtH0H/wBfJ/KtLJGPSqmlIsek2iL0EY61M0rpPGgiLRvne3930rCG2hpInKqw2uMj0NYepRAarZqucYLcnpW7/BnOfesTUG/4nUf+xET+taWJRwni1s3E5HU8f0rJUY49K1/E6brkZ/jcCszbnJqqg6aGFztpqNliTTm+7imL2rDqa9DXTB0KP3maqyDmrPCaHbf7Ujn+VV4zzThsDGtHuOahdD6VdAz2rpPC9rBNFdGaJJAXGNwzgVSWopOxw7RNuAxjPqaabeR0zHhuP4RmvQpfDel399c2ssZ8pQGARtpX8qiuvDttpmkzzW8hjW2jLlFHJAGevetowgYud3ZHA2NvIupWzy4EazLuJPQfSvQzIkzM0RBQ/dIHavMf+EotJUhmHkIJgSBn94cV6Jp8gk0+3lUMA0alQ3oa569KMZKRrTlfQ8nzQDTc0orQ5SQGnA0wU4UAOzW/4Qfb4igX/nojp+mf6Vz2ea1vDcvleIrA+soX88j+tC3Gj0HURjOfWvOLRxD47nJ/56RP/KvStX+VunWvLrtvJ8Y3Dk4/do34A/8A1q6G9ESleR7BH8r49KtL0qucBs9m5BqdAdorqWqIJCgdSpPHtSwvMsqxSpvVjtWSgHuMijUb5NMs7a5kRiglG4KMk0mhpj9Rm+xQB0QyO52gD6Vl2kEkkpuLn75zgelXLPVrbVbmJI43Bj3N8y8YwRSDLF2/6aP/AOhGnEGTqmTntTwMVArY6mpFbjrTYjl/iID/AMIZfEdQgIr5xvopbi/laOJzuIJwvtX0p44mWHwpdTMm8IoYqO9eC3HiqVs/Z7SKMepHNYyunoUrdTDj0bUZj8tq4B7txV2HwnqMp+ZkX/x6mTeIdTkYjzwo9AKqtqN65ybqT8Dip997D9024vBXeW6GR2TpV238KWED5/eu4+6TWPY+Jru0GyVhMncHr+FdLZ6kb2BZlDIH6Bq56jqxNoqDWpJZSRxlIZF2sD5aY7D1Nayss7IphYwL0JbG4+tckbpv+EoS1UlVLjefU4rs40+UZwRjPFZu8RQgOVMOjRoiketWtDmjj1hpGZXUA8L79P1phdI0LuQQoPAqn4cYxtLHKoLM5ceoHp+tY1KjSLlpJI9l0bUre5s4Yd2ydUAKP1Jx29a0hndk5Poa8/iYG3TghwAQQeR+NbWna9NB+7ugZY+7/wAS/wCNVCeiNJR7HVAYAPcVzWpORrMg7rEg/ma6GK4huId8UgZSOo6j6iuZmPnazeuOcME/75AFdCs9TF6aHMeJUIMEmP46ykBK5PTFdL4ohUadHISPlcY9zXM9EwD7UqjHTWhG+CeOmKYo4NSOMAY601R68DIzzWJskakvGj2Y9Wdv1qCHrU1x/wAg6wGf+WZP6moE4pR2GydRkn6V1PhMf6JO396Yj9BXMRqcFvSur8I/Lp5I6+cx/wA/lVR1ImJp2r20niHVreSQK0TqgJPt0q7rSmXQNRVdoMlsUBPTJwP61ijwxHLr0t9bSLGWnDzKTnfg5rf1Bx/Z85RVZTIigHp94D+db31SCpGEUnHc8huvh7DoUsN1fKCrfLEyv8vvXoduqraQhRhFRcL7YFVPiGW8jTFAym+Qsew6Yq3EMQx+yqP0rPFS1t5E0VdOXc8h5pQaTNANM5x4pwpgal3cUhkoRiQApNXtOWSHUbWXGNkyuPwIoiXdBG24cDpUiEhlZU6HP8j/AEpX1sWonpOujGz/AHa8z1O0D67LdByC0QQjt1zXomszrNBCR94ICfxribrBu5M88DArafwkRXvHXx+INPnjiTzpBIsahh7gAVbg1uxRwxuG9MEV5rfaudNiK26q104zj+6vrWF/wluo/Z3M5BDEqrKPmLD09q6qTbjqZz0eh7muu6awI+0g/Wuii8qa0hbasilQy7hkfWvmaPx9fpu/cQN796+mLHcdNtdwwfJXgduK0exMddxREkZ3JEi88lRjNYMeq6ckbBr6AOC2QX6HJroWOBk4wOTkZr5F1e3uG1C6lZSVmnkKkDPVuKlOxe59Nf2tppXnULYEf7YoGr6dnA1C2/77FfM8WhuwBkZufRcVeh0BP+ebn3NS6sUJRZ7X441Cym8Hagsd5A7eXgBX5Jr5x+eXhImPausi0RmGFgGKtx6T8o3FcDjAHSsZV4l+ybOMWxupjgJt/wB6rCaJK/33Gfau1XTbdcbjz6VMttAhG2Os/rHYv2VtzlNL0NYwXuYg77vlx2FbxzbwDYijnYgPqelX9oXgKKyNemKrAnVTk8e2MH+dZc8qkrG0YRRhaoVsNdbypxJLCVPmDpv6k13OnSJeWUVwsnDr8y56GvLpcG4ducE5LGuz8GT5NzbsCVXbMv8AIj+VbV4aXJhK7sdJMG3oqfwkFge5J4/QVWF7PDI8qxJlSTn1HetBED3Cx7uGbLH0AwP6VSmiAEh3ZxnHp1NePUqJTaZjUl79+x2Wn3n2uxhnUACRQ2B29atrMd2M/jXN+GZGGl+XzhJHQfzrYBJOc10xV1dHVGV1dmnFfPaEyQSGNgO3f61o6fKblpp3ADyuZGx6mubY8da3bG3ml0xjCcM64Fb0tjOo9TmfFmrxT6rFaq37qIljjuax21QFMpGR65qfWdFltrlpHVg/c+tYzNg4YYPpVzTHBpFl72VsnIGageQsMs7/AIGomz26Uz5iMetZPQ1Wp18gxp2nD0t1PPvmmgDA9KfcDbbWC+lsn8qjPapW1gZNHnDbTjg113h1P+JVCWQhRIxJ9ea5SAcH34rtPD6FdLtiD1Qvz71pT3InoPsciedh93ccVCxLaJBGDgtcpz6/OWxUyvIkE7QsBJkmmSR7LSwUjH+kKVPrhSTV3vUsZRtyMxfHKPMLGNT+6yCw/GrHTj0/wpvihib21j6fdGPxoLVOKXv/ACNqK/dpnj+aUCmUoJqjkJAKXimBjmlzk0hmzZKslmpPVWwfpVhVIU4PABqnprk20qDrkGtC1tnurqKI5w74496m2potjqXYvZxk5GUGfyrjdUFxCbieCMySLEzIo/iIrvpGRYvLZRtUYrltRf7O3nx8GNgVI/z3rdrQzv7x5VperRJe+ffs00b5WY9yrDt7g4q9ql5Yw2lvDHeJcIrmTYiHcMjHWui1LRNF1WYzmCS0uCckwgY/I8Vmr4CtmH7nUGHH8Sc/oK6oVI2sRKL3OPtozJcogH33CY+pr7HjASFFXoFA/SvnbRfB0UGo2bTOzMs8Z6cffFfQ7XEIAG8ccdDVJgiO5bZBI+fuqTXgEMcZiBKhiwyc+te56ldRDTbohxkRMQMH0rxVdKkwDubmsK0XK1ioO25X2qh+6KXzG9AB7VO9lLGhY9B603G8AbcGuOcXFm6knqRbyDkE89aaSx6CrYiPB2in+WMcgVA7lED5uTinY+YdTVohVb7mfpSCM4JAFF/IZD5e45/SsHxH8rRnj/VsB9ciuiGFOc80KPNdi0McnyFMMo4B/rVwlZ3A820y1F3fLG6bhySPwre8G7oNQnJOR5XBPrurok0VTOssMaREIVbHcVFpXh8WM0jLMzBgAAR05repUThYzhGzNmzhubqa5Fp5W9sAea4UY9s1n373FhZgXKDHmlSq85PrWxb2IVcE4Pr70XFlCY0yd7BucnPNecqceZtmcqN7kfh99mmgrklnLdO9barI3aodPiWGBVAHGcmrhPPBxWi0OiMLRGeSSh5HIIrc0TWba3sY7e4DKycbxWIzAIwxnPes/LKDgkj0rSMhOJ3sxsb6IqJInBHRjzXAeIPDaC+MlvcRQ78KBJyrH+n1qIzSg/KCvvk1HI0sy7ZZNw7A81ftHYXIjIe1ntZmjuV8sj+E9x6g9xThHheOuMg1tSiO4smEoLyW43IT12+lO/siO7tBcWDb2x80ZPOfaole12aR00Ld8MNCP7sKD9KYoJAJp2oHbdlWIAVVH6VEZwF+RSalFWLcWOeua7rSFCaXbrkB1gXg+mK84EkjKedobjjqK6/TtfMFmsUkavsj2hh1xirptJkVE2jUX/UOxwASOaJ+ungj70jvg9sJ/wDXrMTVop7ZIxhWzk5rYuMyXFiGXDBXP4cDNVT96qYuLUDA15x/bkAJHBVce+KQthST71V1dvN8SIpH3WJ/IU+d9sTn/ZNGI1qfI6aelKJ5PmgGpI7WeU4SNz9OKtx6Tct94Kv1cD9K15W+hw3KQ60oNaa6Rjl5v/HakFhbR/eYt9aFTbC5FpDf6SY/7wrsvDtru1aEt1GTj6VyUKxQ6nb+VgA56V0kM8tpeCWJ8OrZFZzXK7M2hqjodVQRTMiHOT09K5LUJBIxiT5vWt2fVnupD9oiV42Hz7Th/wADWbNYLCnnW+Zbfvx80X+96/WqlPSyFGOpQitVkUNs5PetPTrGP7TGGbG44yB0qBClWEYKVwfy61mpNM0aRt22gPDfQTCaKSNJFYktg4yOtdo19aMxCjjqMIK8n8R6xq9qLJdNUXEsoZQpHUjBGfpzWaPFPiEzpGbEtHgbmwQTxzXoUrtI5pKKZ6vq1zA+nXKAfO8bKuVA5IrzkgQLsILMvyn6gCuau/GuqygCN03s2wIO3rmtZLid0dDgMW3M31ArSslCzZFP3r2GXs8szrCCAvcUxIGbt04zVqG1OfmXJq8luAPu4rzqkudnVFaGZ5DCm/ZyWJINajxYPAqI5QnismrF2KItWzxyKcLZi3yg8datCVkfO081Gzvv44qR2IDZKPvOA3akjjVOQfmNObJblvzpUJzlcfgKBolhk2E4TNMGfMPGKkjimZsgYqwltzlzzVWbERJ0Gck0zy5GXgY5zV0RIB0p+4LjaMVKgJkcClI8lqm8wLjuahZjkZx9cZqNyU5JYAdSTgfnWnIO5JJOeeMVAzn1rMvPEOlWefNvYtw6rH87fpUQ1l7mIPa23yN91pW4P4VXKxaGmxJ71BLLFGu53UD3rmU1S/utVFtPN5ce7ny12j867FbJLezi8uJZC7AFT1IxzzWipdyXUtsZpvlaG48stgxkbj0rPtHu7e7SW2kkEhYdDxjOD/Orl+1vZG4QA7Q4Ty/4uTTbeZpriBIGTBYBs9etYNPZmEHXq+8tjrLuWxnuntLk7ZUPEnqcCs660+4tTkHzYzyHHaqmruG1W4P+1jj2FSafqtxaHYf3sX90+lS12O1Oy1EjJJB5xmtaN9kB9TxSCCy1JPMs32SdTEajdJIQVcEEfwmlFW3CTuOL5C+ue1b2hzzXGofvHZwkOFJPT5q54EHHTFdB4YQfaLkk8jao/WtaK/eXMqnwMzbqQyeJ5D/dDH+lS3jbbOU+in+VVmYt4hmOMgoTn/gRFLqb4sJv93FKs05uxsouMUn2uckJXPoB6mpWc7cvKPoKyN97Jl1kjCDqrGqs+tR2cipdFMnuhzXpWPPNxpE/vHHqTxUP2hCcRxkn+8elYb6/YnnfI6dkRRz9ahk8UxKhS3g+b/aPAovYEb0rut3bM6hfmxwa6W4z5qkDIK5/GvOLDUbi8uWMrDAxgDtzXpaHdaW56nbiuHEO7Oin8I+EEAZzUscpgbfGcH37+2KhBI4zSH5WDEEkcg9qxsWLdRINlxBjypOij+E9xTIychhlWB/yKuRTpGpUorRvyVPT8PelW0gmBazLBxz5T9/pVIRl6qrRiG83bEgPznPRTwT+ooEbyYdZjIjgMCOhFPvoftdjLbtnEikHP8v5VmeHkuLa1+xTtiaNzsz/AHM8VrFN7CMy7sng8SWyvArQy8BsfdPb9cV0kUCRNyM1X1uOX7LuUgbZo3z3GGBP6VqNBliF/wA80Tk5biikmNQheR+VSq5bqBiljg454NP8tBxn8qzZSK8jjrwKrMXkPyqTj0rR2JgDaD9aTIH3QB9KWjHczxb3D9sfWj+z2Jy0pH0q8XJOMmmlutKwXK/2aEdcsfengqnCgD6LUF1qNlaLvuLmKMe7VgXnjrSbfKwPLcydhGPlq1SbE5I6cswHofXNNySeBuxzx2rhR4zvL2UJDBBZxEZ82YliD6d6x9Q1LUb9izanI8WcMIvk5/DtWsaL6ke0ij0e61bT7Ebrm8hjwOm8E/pWJL44sPmFlDLdOP7o2gfia42zsbKQbmj3zdSXO7P51rQIiybURFXb0xj+VU6aQvaXQ658W6zOSsEcNqD1I5b/AArFnkurs5uruaQf3d2B+laN1bL95V4z2qk0RHB600uxLbIVhjUHagB/OuxsMLYxEAfd59q5IDH0zXWWpC2MeRkbaUnqOGrM3T5DJfNHL95Zd2Mda7/G5LRf7zivPdPOdRtHWcHzJSCAO1ehJjfaDuOh9TWrld2FUik2cjrkoW9VUceY8pcZGSVzgf1qjZRk67akMcmZM47/ADGjVyv9vxskgLHaqj0C/wCNbWm6Oks1jfpIwdG3Op6HB/8Ar1zSi5WPSwUoUqGvUtag2dQnIPBkP86gVjziiZt0zt6kn9TTA2Ky2Ryy6sesrxSB0cq3qK3LXXkkAi1BQT0Eg/rWApzk0wkg8d+x6VLRUTrZLEFPMt2EkZ5BBq/oeow2CyrOrEMchx9DxXF2ep3OnuDA2Yz1jc8VvwahZ6qrbD5NwRyjf0pwlysHFSH2lwLi7nmXIXAx+dN1aTGnye5xTrO2e2klVx8pbj3qrrkmLIAd3xWd7yNJyujxmeW9aQq7yk5OdxpU09nQM2MnuDTTdZJOOTTheuE2joK9W7OCyF+ySopH8NKscSLz1qI3LsOpphkJ6mouUkjY0YKbiUA8lOPwIr0+0l3aXCw5OBXlegv/AMTML/eU/wAq9P00506IZwORXHW+I2ivdLiEEE4z3prSHt+VOWJVz8xOetOGxDwozSAYhZhgKTViJGQhicEcgjt703eSOtIGwcmgC5dKtwPOBCseJQP73qPrVG4tIp48KMSLyjj+E9qsQSbn8nIAcbQCM89v1NRs+3JYbQCfmJ6Y65qrvoSylczG/wDD8zY/emFlPsw6j8x+tX7aXzrSGRfusgbP1AP9aw5NX0yxu7mG5vIUilUSja2cMeCP5Vh23xA0+x0q2gZJZZ4olUhenHH8sVfK2JNHdlu5PFGMkH16eteYXnxKv5eLW0jhHqwJrBu/E2t3+RLfShT2QYAqlSYcyR7FdalZ2aH7RdxxY7F8Zrnrzx/olqdscj3LjsgyPzryqUMZDvkZ27ktmoSAD0rRUl1F7Tsd3efE66cMtjYrGP70jbifwxWFe+Jdc1KzeZ9QeLYeY4vlrBzVqxILSwn/AJax8fWr5FHYzcmyzpkX2u2uLi4YyzK+Mu3PSrBA8kqgAfbwfek0rjTrgY534/HFOBGa1VrGTu9yATD7IkS5SRW5J70yNym5zIfM7Fep9AfarhVHOSoJpoiRCSqgGjlB2LUbxOVcHyJf7w6H2q9BLI1wUdQj7cj0esnGBxUkMxQFGP7scn1X3FEoJhGVjVe+hinEcp2R5xI3uRwP5VFcNaeYI4pM54Hsay70yidpyoKyJs3npjj9aNNsku4mLXYjCnDKetZqOlje6epadNr7SOc/nXUQ/wDHigx0SsRLVCqxQNJLtB7cj3z6VrR3SJbKq/MwXnjHpWM01IcFcwtCiC+IYwysSGIUehr0ueXyxGQeVQgfU8Vw+kwNJ4gWZlCjcSAK7W5wrDkFY4Hfp6Kf6kVV2xVkrnnt0S3iBNhJdVxz7Cu50dium25/6Z5P1rjp5oXvI5Qh3MnzE9uO1dhZErpkPQ4hXBHes4X5/kbRVsPG5mu2ZD7n+tI3XFN/jJ7UFurVk+xV9RVfANNLZFRBsk5p+RsxUsBrH3qNiQwwSG7MDQXG/A7VE5wDzU6Bdo63Qry5urAvcy+YyvtRvQVFrzD7PGpOPnz+lL4e40pD/tkiqniOTmJfqamOkgTujx5WJ7U4A0KQOlLvJr0zmQ5UNSbV79ajDEDrSg5NQWkaei4XVoADycj9K9N0ts2ePRq8t0s7NTtm/wBvFem6Yf3MgHZh/KuSt8SNo7GqW5PSopbmGFd0siIPVmApdo3HmuE8fx7tQsiWZY/LYvjoQGHH45qox5nYzcrHTXfivR7EnzLtW9NnOaw7r4i2q5+zWsknpvwAa4IqHcyMqj/ZxwKTj061sqcVuLmk9jpbnx5rN0SkCxW6t6DJHHaoPEF/e6jb2Wpfa5Ql1FtlVWIVZF4bp69fxrDXoxz0X8q1NMze6Ve6aw/eKBcQD/aUfMPxH8qu0baEu7ZjMu45ZycnPPP+egqXYGt0faD2JqNyPKOPr+FSW3zJPGDwVyKrpoZzSTuR9+KAcH2+tNB6flSH65oV+pWltBS24kgjk1EcZ5OKkjVn+6KUmKI9N7/yqiBqxMwJ6L6mnJKkUq7Dkg9aid3c/OeOwFNwT6AU2JHQWqiOC6Qd3DD8qiB5ot5t9qrDuAD+HFNB5qlsSyZTT+tQqakBqyWKRzjHPb3pwhbqQFHcn0plxdfZYlYbVyMk9+tQMVuYo2jkkd3bHzdBQIvQSwGUW7Eyq5ClccITxn+VLpFijS3/AJ6/JEDtz6571FCrRSsGZVYDDFR24/wqzZMZIb6Tcd8kSFgfXPNTJ21RcGygNXjiuZIXaVGD7QIzwe3PtXTFVCKy56Vw2oxCPxCyAg5kB/lXaM52KCaxq3ZpB3LNpK0F0ky9V5ro5dRjubW8LuI3a18vaPfPT9K5VJNsiqQcE9fSrbMJdx/h6CsNVsaPXQnm09ILOJ0g3SBcuc9z6VesdVjmheyZfLmiTAGOGUDrWaLtwyseoHG48YpNOJa8uJWO4eWSB6VnzNS+RvdKmolrJ29aaeEprE7c0q/dBNJhYaeBTXbCjFOc81G7ZAFSMj3fMTUbscdacWAzUEjhlOKVhM7LQ/l0e391J/WszxFJ/pUYz0StTTPk022T/pmDWBr0gN+R6J/WlBXkLaJ//9k=", "path": "images/4pts_ADE_train_00009353.jpg" }
depth_point_19
images/4pts_ADE_train_00005949.jpg
ADE_train_00005949.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 257 y = 209),Point B is located at (x = 137 y = 155),Point C is located at (x = 308 y = 204),Point D is located at (x = 190 y = 156).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_70><DEPTH_70><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_70><DEPTH_70><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_5><DEPTH_30><DEPTH_11><DEPTH_70><DEPTH_60><DEPTH_5><DEPTH_5><DEPTH_60><DEPTH_70><DEPTH_35><DEPTH_11><DEPTH_29><DEPTH_36><DEPTH_59><DEPTH_45><DEPTH_63><DEPTH_60><DEPTH_77><DEPTH_73><DEPTH_30><DEPTH_0><DEPTH_33><DEPTH_41><DEPTH_11><DEPTH_76><DEPTH_15><DEPTH_80><DEPTH_38><DEPTH_67><DEPTH_43><DEPTH_15><DEPTH_82><DEPTH_77><DEPTH_69><DEPTH_7><DEPTH_9><DEPTH_119><DEPTH_23><DEPTH_42><DEPTH_36><DEPTH_58><DEPTH_68><DEPTH_27><DEPTH_62><DEPTH_46><DEPTH_27><DEPTH_57><DEPTH_94><DEPTH_9><DEPTH_58><DEPTH_75><DEPTH_33><DEPTH_0><DEPTH_40><DEPTH_78><DEPTH_9><DEPTH_1><DEPTH_42><DEPTH_33><DEPTH_45><DEPTH_26><DEPTH_68><DEPTH_9><DEPTH_12><DEPTH_23><DEPTH_33><DEPTH_41><DEPTH_55><DEPTH_41><DEPTH_42><DEPTH_98><DEPTH_98><DEPTH_16><DEPTH_94><DEPTH_94><DEPTH_16><DEPTH_12><DEPTH_56><DEPTH_19><DEPTH_77><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
4
[ "B", "D", "C", "A" ]
<DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_70><DEPTH_70><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_70><DEPTH_70><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_5><DEPTH_30><DEPTH_11><DEPTH_70><DEPTH_60><DEPTH_5><DEPTH_5><DEPTH_60><DEPTH_70><DEPTH_35><DEPTH_11><DEPTH_29><DEPTH_36><DEPTH_59><DEPTH_45><DEPTH_63><DEPTH_60><DEPTH_77><DEPTH_73><DEPTH_30><DEPTH_0><DEPTH_33><DEPTH_41><DEPTH_11><DEPTH_76><DEPTH_15><DEPTH_80><DEPTH_38><DEPTH_67><DEPTH_43><DEPTH_15><DEPTH_82><DEPTH_77><DEPTH_69><DEPTH_7><DEPTH_9><DEPTH_119><DEPTH_23><DEPTH_42><DEPTH_36><DEPTH_58><DEPTH_68><DEPTH_27><DEPTH_62><DEPTH_46><DEPTH_27><DEPTH_57><DEPTH_94><DEPTH_9><DEPTH_58><DEPTH_75><DEPTH_33><DEPTH_0><DEPTH_40><DEPTH_78><DEPTH_9><DEPTH_1><DEPTH_42><DEPTH_33><DEPTH_45><DEPTH_26><DEPTH_68><DEPTH_9><DEPTH_12><DEPTH_23><DEPTH_33><DEPTH_41><DEPTH_55><DEPTH_41><DEPTH_42><DEPTH_98><DEPTH_98><DEPTH_16><DEPTH_94><DEPTH_94><DEPTH_16><DEPTH_12><DEPTH_56><DEPTH_19><DEPTH_77><DEPTH_END>
257
209
137
155
308
204
190
156
null
null
179
35
125
64
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD1kVKtRCpRXko3JO9SL0qJTUgNUmA8dKU0gNLTAimTKE1mTJgLjs4/rWs4yprOuB8oH+2v9azqbFRKsa5txnsaxb9B/aMfH8DV0ltEXtiR2NY1/H/xMY/9xqcNEiTL0NZfIk2pCi72G8gAnrnr9a6FdxGXuR9FyfX/AAFYelWb26tvgcyFieXAHt/StqPcBxDGv1JNOT1HYdi3HG53OevSsrU9paArbmVfOJC8/KNvXjuOv4VpmaRSieYEJOAABUEsCTsPOZ/lbcMEjJx7U0waL0XmgbgiIc55A45/xGKY0j7DmdQAOAGHPy8cD2NRwCJhuEZJz3qyiHHyRcfSmtSbFaRFdiDMX+Yj5UJzyB/L+VVnUicDBH7lsZGONwrRlBVR8ypzzlgBiqsu2S5G2RWxGwwCPUU2la4JFOSFriJoVxukidRn/eNQ2OiTWcMcbXEPAwCkQyfxPWi+1K30eAXd0JTGAy/uxk/eNVjrkF2UeOwuZQvK5bH6U09BmuLN15N0wH+yAtMe2jI+eeVh3+c1ROq3b/c0xgfQsc/ypReTrEGu0SAsxULtyTgE/wBDTuKwXBsrdSZck44Xk5NNKqFBjhYZ9BStdb8HzT+AUe3eohdb+jtjH8Uir/npSuMnaVk3MLZz68gE1DDNPICZY1jHbc3JpG2Zw09uOeCbgn+QqPMGB/pFsM47O3p7e5/KmK5YLEdZYh9P/rmmGVN23zgWx0UVBvg4/wBLiH+5bscdPU+5/KmPhbqNmuJ4WMY+aBck/MD/APX+oFC1C5JIyyABWuCT02Rt/hTFRo1YLDdOOvKH39f90/lUgiildd0t45Kjqeeg9/8AOBSm0hMZ/cztx1J479ePp+tAzUQful4xwODQRilUYVRgrgDg9RS9aTLIJh8tZWo/8epHuK1pulZWogfZ/wARW6MzJm3pbxGNtpLYyKhVrqYt5b3UgBIzHHkce+MVZmGYYAP79SWqr5ZQ6uUTLfuUVzjJ5Hp3P5U5bElcWWoSjKxXxX12lfX1+hpw0i7b5Taz7v8AblA/r7irnlWbJ8+ozMRnhYz7+p/zmm+VpYDbri5OT0EIGeT7/T9azuBTOjyjbuhhBbpuuF9uuD7ilGkhQMyWK5/6bZ9PQe9WgNKUcC6YcfxIOPy60wyaaD/x6XDfWYf4fWqTArjT0ztNxZj6bj/Smy2MagbLuNsj+GI++P6fnVsT2f3V09mJ5GZWJH6f5xTzKoIKaUuSOh3nHX/H9KdwuegA04HFRDceeaeM1wq5ZKDzTw3NQ7uetOB96rUCcNTt3tUIPfNOB96YEpIK1SmGF/4Gv8zVktgcVWnOE54O5f51nUehUSfTFzFJnsayLu3L6zEij5tpA/OtrSRmObHrVdov+KjhPYL/AFrSEbxRN7GLbTRXbl40lBUleVxWnHp17IB+6Az/AHjW1HbRRWs6rGo5PQdavbeK6o4ZdSXUOcXRbpyCWiBH44qX+wpSfmnOPYVv4oxV/V4EubMSHSBHdqHd2BQnk9+KJNBMshJk+U+rE1qsP9MT/rm38xU+KpUo7C5mYY8Nw95B+CVVv9LisnikRySQVwRj0rpqyNaGTAPdv5VNWnFQdhxk2zznxam/QCPdj/48ataVb7rCLi6K46D7v4VB4pBOhtj/AG//AEKr+lRk2UY8uU8ZH7zArn+yaostZoQf3NweO7Vn61APIgRYTzITsZ8Z+Vu9bBi6/uGPX70uKydbT5YF8pT+8Pyu+R91u9SgZDb2ybQDaw5PGWk9/rUyQL18uyXA6u/senP+eKLdQAQIbdf+2nHX61Ki8Y2WPT+JvY/5/KoYhMrGw+bTVHrgEdaas4LKEu7IDjpFnH3fb2/Q0+ZNu0iTTRg9xnuP8/nUMLlfL/0jTuAP+WYJ/h68f5wa0RBKJfl51GJOB92H2Ht/nFQGTyLiP/TGtvkXkLnow/l1/CpxdDP/AB+2S/8AbL6e1R79l0mLqODCLzIuc/MPbtjNOJSJhOMqft07cD5gnTgfywPypC6bMefMeOhHHQ+/0/M1IshBU/blztHIQ46L7e3/AI770hkIQ5vOMY27D6H/APVQxosAZAOST3JoxzTs5GSdx9fWipLIZRxWTqg/dIvqa2nHFZGqDmP610GZmzrhLfA/izT7SKR0Dposbp/z1ZHbfz1647U+cf6ge2aitobVkG6+nPcr5fC+uOfrTnsT1Lyw3uBt0qBfcxjPYdz707y9TCEC0tow3+xGOv4+/wCg9Kr+TYgZE9wx9NgH9aQR2AB+efHbhff/AOt+tZAXCdVLElrZSf8ArmPX/E1Vll1FSd11CAT/AAyL159B7mlcaaFbYbontnZ7/wD1qhJsgDhJ/wAXX/D6UXBjWuL5nAa+UbsjPmcD68e5qSb7VIwD6pGcqM/vT/nufyNRubU/6tZQfUuD6/8A1qQvbDrFIR/10xRcRuQy6m1y6HUJCqopPygc/wD6v51oxz3vGbjP1WqtpHuR5P77kj6Dgfyq9GnArl55G7iiVJ70D/WIc/7NTLcXXGfKP/AajRMtzU4jGKalLuKyJkmnxykR/Cp1eTAJhjNRxIMVZEfSqTkHKin/AGgDqMtkLRGkjiErHdgYPApn2+Mu4lsI9qFckSZ5NJGceJrqP5Qps1fOOfvEdaiuE22LP3Zg5+pYf0xRJySuJJM1tLura4MywQGIrjdnvTXVP7ajIHzBOfzqv4eH7y7z/e/qasMQNdUf7A/nXTTbcItkNWbRdH+pm+pP6VaquBiOTP8AnirFdhkFFFFAELf8fif7h/mKmqBv+PxP9xv5ip6SAKydY/1lufdv5VrVlaxjdb/7x/lUVfgZUdzz3xIQdEce7j/x6r2mRqbRT5cRwOpkwelUfEAB0abjoz/+hVd00L9mUfugVz1HJrjfwmyL5RRn9zDn/rr/APXrL1ZQfJUpb43E4dsL909/WtHjBP7r6AVka4d0UWNn+sPUZH3T2FQkDJokwAuLXp2z7VKoIl6Wf/Agcdap26qqriW3yB1wef8AP+NW4T8xPm2fP98cd6VtSWxxdGUgtp3Az06cD/P501jgH59OHBH3fr0/z6VM7MBxPpoxxnb9P/1/nUXzsP8AX6byPTGOP/r/AKVaJIZX+SQebp3Q/dUf7XTjrz/KnA/P/rLVMgZE65J4bpx/k4p7+YwYCXTOQemMjr0/P9BQoZpSiLa/cU5m989P8+lXFFJkpLeYT59qT6hRj8OKcrNkBZrUdOQvA+7z0/zg0BW8zAFpzjgED09/f9KQK20HybbGAeD1+6fX/OTUsZZK8nn64o204g5PFJUlXECgg1kamB5iVtIuUb61j6nxOg9q3exBn3Aw0X+7ViCO7jjBaytApUc7U4GPr7iiSJHdN3aMnH0GarQfYPLUrJcFsfxFfT/GqqbInqXmN2rHdDbA+m1Pek33gZVCQAseMhPb/AVWIt8D55M89hQBa5+Yy4/2cViBY3Xo6eSMemz29vpTd1/IB80eOB95R6f4ioWW1zhGlxjuRTNlv1LP19qYEjG7AGXjwpyMsvXj/wCtTGe7xgyp0/vD2/8ArUwiDJxI+KQrBnPmPj8KdgOtghEcKoo4UBfyq1GhwOKFXHSpkXAFcZsCoc9KmUZ4AFKqg8mpUQHNaxhclskiU9MCrIX2pkaCrIXkVvGNtxNmE6xt4rePeRJJZAbcfwhySc/pRqPFlL7Y/mKmMIHjMShDn7AV3f8AA+lRahHttrhstk447feFTUXuii9Sbw8cy3Y/2z/M0+Q48SoOxi/rTdBXbcXfuxP60+b/AJGWL/rl/UVpTX7uIpfEzTY/u5fYH+VT1EBw/wDntUg6CusyYtI1LRQBVbP2+L/rm38xVnNV3B+2p7xt/MVNnHB61PUY+srWOZLYf7R/lWoDWTrP+ttfq38hU1fgYR3OG1tA2kTf7z/+hVdsvkhKGQZViNvl9OfWo9VjDaXc8dBIf/HqsWTO1uMvN3JGBj8K5GvdRsTAgY/eqP8AgBrM1fBkhPmRgFm+Yx8D5T2rYQfMf3kv/fGaoagrPcw/Oxxu+Yx5x8vTFQguVlAIB+027f7sW309qsHDjBntAP8AcI9farKDIXNwp/3oB/hTzzn9/Af96H6+1BLKJjAH+usiffPtTPJ4B32XTjmtBlyCfNsz06x49KjMYK/8uR49Mf1oQilJbtg/LYnvw319/wDOBTxCZGBSKFxtXiU49enNWJYGCOfs9ocAnKtg9Dz1/wA4p0EBlh3fZ45sDHzNgjg/5/CrjcpEflNnAtoCOBhX+nv7/rSGJigJtRz1O/2H+fxqVrfLEiyGM9FY8D/PFMa3YDItnHv19P8AH9aTL0Js89Me1GKP4qWpQnuSwKTG31rF1Mf6Yg9q6C1XMD5/vf0rC1ID+0VB/u1uxIg8oG5kYjhbV8E+pApkTXvkqGltypAwFZcjgdeKmui0e8KOsZH6CoIktAvMEy5/2z/h9KqpsjNbik3TgjER9fuj1pVN0n3ViGPXFGy27eav45/pShLXqZJfwNZDGMbn/nnH+AFMxN1MKn8qkKQE8Tv+dL5cWP8Aj4fNAFcrL18kfQCmETY/1A+uKtGOPP8Ax803ylzxdVSA65UJ6VYRcACkUVKgw2awjDuaXHIvrU6KCaRRUirW6iTckjXmpxTI+tSgdq0sSxvkx+Z5u0b8Y3d8VjakP9Fn/wA9xW52rF1Hi1uD7f1FTVXuhHcdon/H1dfX+tLN/wAjHCf+mZ/nRo3FzcUlyceIIc94/wCopU37kQl8TNYdH/z2qQdBUWRtY1Cuo220Zcj8K6bpEWZcoqp/aNr/AM9R+VKL+0P/AC3T86OZBZj3/wCPyL/cb+YqU1UNxFLcoYXVyqN0OfSpYpRMu7BypxilfULExz2FZOs/621+rfyFa4HesrWRmS2Pbcw/SpqL3QjuYC2n2ywvIgCWMcgGPXeKltdLlijHyvz321b0QAyTDt8//oddIowoFTGHNEtyszmDZSKerj86gjs5JtT27mDIhOe/QV15GazUTGuTH/pkKTpJC5rmaLKfPLsccc4pwtps/MQf+AA10GxT2FJ5af3RT9ihcxzzWsn91D9UApjWj55ij5/2T/SujMaH+EUeTHj7opexDmOTubQCCQ/Z4x8p5GeKfZWQfTFkaFXyTjJx610N1bRNaTAr/A38qg0eIHR4A3cE/qaXs2nYakc5PAgY4gIHs31/+tUYjjU52TKOOhBOMiuqk0tXbIfH1FV5dH/dtiQZAPUVLpMrnRzvfNLQwxkelNrnLZoWYzA3+9/Suf1AFtUA9q6Cx4tz7sawrw51d/YVu3qxIjuY3eRNgyzZUfXFW/smpIdrZOKs2kAk1PT89GkckeuP/wBVdcbG3ZiSnP1rXkckZt2OH+y33/PEUGG7X/l3HrXbf2bb9lI/4FTG0uInO5qn2TFzHFMt0SS1sD+Aphjk72YrtzpcfZ2FMOlL080/lQ6THc4hk/vWgH4VHiLPzWufau5bSgvPmj8RUY0pnGQ0ePUr1o5AuQqBUyr7VGox3qZcEVmkW2SIM1KPauA8W+Ob3w1rQsYLOCaIwrJlyQSTn0+lUbP4qzzRyySaOpEIBbZP6nHGRVqSCzsepx/rUg615+fiLIIFkXSgysSBtn9Pwrq/D+rnWtLF2YRFmRk2h9w475rRGdzWPSsXUubace39RW1ntWJqJxFP9P6ioq/COO47SGxcz/T/AAqG7YPqLNnkDGajtLgQi5mPSOMsR6gDNV/DviPw/wCJYfPtbhROf9ZBK+HQ/T+orOnBzgkuhcmk7losw/ib86jYH+9W6tpanpGp/HNZGtzWGkiKW5uUto5CVXeCRnr2BpzozSvclSRXYE9WNMMXqxqvHrmg3E6Qw67YtMxwEL4JP0q3NJDG2GuIs46AnPPTtWXs6m4+ZDYWktpC8T4Y8cjtVpdRvFHEkf8A3xVY9aOopKpJbDsi0NWvQePKP1U1XutQuLiWJZVjwNxG3PtTDVG+crc2gHdiP5VSqTYWSLFheT2sjskKOCWBBbH8Wa3Itayg8yB1OP4SDXM2Ls092pzhZTj8avgnpVKrOOgOKZtjWYO6Sj/gNY2pau63omtS4G3aSUpMnHJpjH8KJVpNAoEQ8T3inDSL+KCpl8VzAfN5R/4CRUDgFun6Uwxoeqg/UVKqy7j5Uy+niwkcxxn/AIFipR4rT+KEfg9YzQxN1iQ/hUZsbckny8H2NNVpLqHIjcfxTDJE6fZ3BYEZ3CtbRyDpNuf9n+tcYNPgPOH/ADq5A9zbIEhvJ1Rei5yBVRr2d2J09NDtcimSH90+Ou01yJvdSHK38n4qD/SnLquq7SGuIWXHP7vk1r9YiyPZsqscsaSkzk0tcvU26GlYpm3H1NYMy79Wn9hiuksVAsA3qTXOFgNQuHIOCcA4raS1EmjX0/8A5CemA8nEp/U113FebT3kizI8ZZdgIUg4I5zUsWuXcfIvnB77jW6kkrGTR6JketBI9a4EeIr8H5b9G9iFqwnifUhzugYD1A/xqlImx21ISBzXHDxbfDrbQt9M04eMJuklgPwcj+lDkB12Qw6ZFJCpRcH1NcxF4yhUAPZSjHcOD/hVlPGOnt96K4X/AIAD/I0J31YjGs7iC6jVhKQSM4birBeJePM57CuS067SICOUkKTw3oa1f7RtkILSqcenNcqa6GpxvxBQtq0E2cqYdgP0P/1645p5LdHVJCEcfOAcZA5r0/W7Ww1yxMBldJVO6OTaeD7+1eSX5aCeSFiC0ZZDjpkUQjrqVeyO109ZJI7j/SdwdRIhMYGznBAr1jwHtTw6yL91bhwM+mFrybRBPJZx/aYwkrxbuD0HavSPBl5cRabLaxW4c/aWAZnwPuqfSuvRGDudhe6nZaeitdXEcO7O3d3x1rl9T8TaK8bpFel2fg4Q8D8q8++NOqanZ32iHMcLKJXQxOTn7oOcj2rktL8TLfoUlKxzr1BOA3uKzm+YpI9buPFOjrpt7DE8/wBomhZEJQ7ckYFeOf8ACO31pKLq2uojJHyFQsrEd8f4VsNds43AEj1HSqs1+0Q34YEHI471EdNimrnpXgHxXC1qIGGHDYkDnLA/4V13izRE8TaEVhObmLMkBB4Jx0P16V4rY+PLzRrufZp2nSKWJZZ7UBwfQkYNdto3xkSaGE3WgvFHJJ5KywyDZvxnGDzXTzprUzadzzk3luL3T7aS3ZbmK+DSSgfwdNueuc166xtVgDWyKlssirHEwbePujGcnjvWHe+KvCupFbtfDdtcSFmYSq218r1OQtVP+Egjurx47e0EMAeM8ys3XDZ59iKTa5WkB35+8aBWe13Gx3rcYGeqN/hUr6kkELPJdOVUZ6BifYAiuN0OtzRSK/iLVH0XQLzUo1R3gTcqv0JzgZrgj8SbTVUQvGbWYDlOSAfY1p+PdXlufAE0jw+T58ipsdAHGHPXB9q8SOcjnvWlKLiglqeot4ibzC0F+4LHJG7GTW3pXj2C1V01VZ5Y1XKvAAz++cnpXlFncIgAIBf1Ndd4bvtGmvRBrVsssDqU44wSMZ+oquVSeouh6GnxD8ISD5r68g95LfIH5Zq3D4m0G8jeSy1L7Qi9SsbDH514f4p0ptC1J7ZZRLbv88Eg/iQ9Px7GtLwZaWt9pOoebGJLlWHkMSRsOOvH9abpQ7EqTPYrPU7XUTJ9mcsEwSSuOD/+o1ZGa53wxC0El0svliRkRjs6YJauiBB6HP05rinGzsjeLuriEelJUmKTZ6VJQi5ApacEJoKEUANoY4jb6UH5QWPQcmuWvfG9lBdT2kUBmeFyj/vAuD/OqjFsTZ0S9qdXGDxrMZARZxBc9C5z+ddFp+tWmoxb0dY2H3kc8ir5XcVzpIpTHpaD2OfzNZEWSCT0JzU812Bp67SMY9feqUM42gBhkD1rWrvYmJO3XOKYyqfvKPyo8zPU5pCcnNQUQtbQOPmiX8qiNjbn/lkB9DVqm07sRVGnwjoXH0akNiRwk8gH1q4BmjFPmYGe1pcg/LdnH+0M0wx3o5Dwt9UxWiwqMjtTU5CsjmQxwBjilmLi3cxn5scYFZdhqMOpwLJayq8fQlTkg+hrQS4EbGPJOPQHpRARZtC4hzKTnOSW44ryjU5Vmu7h1IIMjsPzNen3F3CbG4/eIrmNgAWAJOPevLG0jVCOI4F4x8068frV21uK56PYkR2sLKdp8tRxz8u3Ndz4WYrpcz5OUvl5+qqP6157Z3drbwxpNcxfdUEZJwdm30rptB8U6bZ2txZyETNNMJBhtuMBeOf92m5WRNjkfjheG48R6dBniK0z17lz/hXmMRImRl+8pyOM812fxR1KLU/FvmwwtEi26IAxyT1J/nXM6FZw3+t2lrcPshllCuSccURd43YzoLbUP7Qtt7ALIvDoOg9x7UB/LlDjqvNYzSLperzpHJ5kUUjIT03qDVibW7PGI4pnPqcLS9BlrXL99Rv5b6QASSAbyO5xjP1qnpOqsHstPaJTEl6twW5yT0xVGfUVlG0RFQe+c0zStv8AbFsXAK+Yuc/WtI7aks9YvbeVp2u7WK2to5QUChQvYAnFNjle30zVo0KqYwq+aqgliEXP07U37SHsoiwUpGzIuDndzmlh1ZdKstQujaxXKGRB5cg4OVHX1qZSsKxj6Rf3Woaqvnu/AIxgDP4DvXfLavIiBZgu0qxBY88dh61zmmyNe3kV2+n2tkBu2iJAo9ycfpW15wa9imQnYQY844J/z/KueTsi47HN/EkvFotqhlEivPyAvQgHv+NeYfxV6H8RHme2tVCMYd5LOOgPYH8689IySK1pu6EdBDZacYIV3TvceWryfOFALAHAGP1q0i2sOCltkjuzk1zl/I6arM0bFWRtgI9Bx/Sp4dVLja/DevrVcrHc3bydb1IxcW8UgThQwPyj86bZ3o07cttFFEGOWCqef1rLGog8HJpDMXO4K35UWYGyPGOtaXcSSW88ZWVQu14wwUAn/E/nUi/FDxHDh47q3Vgf4YBz9a5qeXIKkEGq0kjBAc5+tUoXWpN7HdR/GDxCIyjJp8hPG5rfke/Fa1r4m+It5arPBoRmiYblkSyOCPwrykSY6hT9VBrb0C+S1uJGlnu4IkjLf6LKynqOwPvQ6a7DUj0jQ/GXia+Ek0+jloEbbujtyADyCOvJyK7m1vHubaOVoWiZhyrrgj8K8107XriDSzbaXfXi2OWUgysdrYLH6EnNd1Z3sb2cBZyCY13ZB64FYunG+o+dl69uRDZySNwFBP5DP9K+bpb2WbVZroOyvLIzbh15Ne2+MdTjtvDV46OCREQMHnJ4FeHWqjeCea0pQQpNnR2+qSI0aMNxYhRjqTXSnT7ectaXs0UTniRVJYp9cdDXA3PmOUiiV2kY/KqDJJ9qWw1ie2fZKzsueSc5BqpQQKXcdqs99oupz2dtqUzRxOQkkcjBXXsRWl4d1LxTq921rYao29E3nzmyMZA9D61pJaWmvwCGfBYj5JAOQa5oS6p4N1mVYigl27QzpkOuc5x+Aq4xUkSdh4X8cas+py218DdoiEBYYAz7gwHH613Wk6tNqV04JPkhWIym09u2M968u+HF4YPEk9wzBXaB/mzjkkZr03SLVbWeaZbiSVygQo2Bx6/kAKmcfc0CL943aKjWQscBcmpMgdQRXNys2TQUuDSBlJ70/g9KQyJqZipSBmmkDNAWPE11yQyCGOQQBEQYjAXd8o5pr3jyNl5Xb6uTXNzFlkJ/iXAz+FTR3bH73Bro5exlc3vMB5IBp4mAHQCsVbw8Amphdrjk0crA1luMjrThcYHWslblTnk/gKDcgetHKwNe41TSmvI5tV0db9goGftDocD2HFbmna/4BBAbw4LVuxdPNA/X+lefXE5lkyCcYxUWSKlw6MalY980HVPBV0zQxvpGJBgpLGq59vmFWbj4eeC9SuFc6ZbordWtZSg/Q4rxPwvocXiLU5LGaZ4gIi4ZFDHO4Doe3NT6DvsvFL6dvDxrM0JBHBwTyB2PFVCm0JyPWL74OeDBkx6xPaH0a4RgPzFche/DDTLCdLiy8XWsgjbdhoWJAH+7kVBZa29z/osmnG1vHIMa+URuUcHr3q7qkU8Wn6okw+UWxYEHgHjp+Fa27k3G2cMs0BUyhzGqkM4C7uCM/pWpZ6RLc2t/ErqgWSPfLIMqG29MDk8Vj6ckdjdmIXDvvt0Z0d87Dn6V6DocSS6BqTquGF3GxbP+yB/WsJRvdgjFt9B0lNOWO81G5e6B+YQwYhI7DB5PHfNaW3SvKjjZ7p/LOVCoqe3qaq3K7JCPQ1ECc1zSqtmlrFieHTJ0kje0kljddpSWQEflivA4tFiOlWlw2t3MV7dafNfpEYf3QWN5V2mTzM7j5Jx8vVlHfNe7LktXh1t45ltPDcGlRR3qmOwnsWX7b/o0iyvIxdodnLAS8Hd1VT2xXTh3dMiRSid5IUkkZmdlBZmOSTjqacCQ4xTLf/j2i/3F/lVywtWvdRt7VPvTSLGMe5xWoFuBkMQAG1u5Hen7ipxmrnifQn8N6x9kMolRlEsbDqVPTI7Hg1miTeOeopDJ+GGG6VSeyub7UbDTbORI57y7jt43k+6C52jPB4yR0FWA470JqMOk6zouqXCu0NnqME8ixgFiqNuIAJAzgeoqkJmRcWd1bwQ3kWo2t9ZtOIXltgwCP1CsHRWGRkg4wcHng12HgC4S18RGdo1kKwthXAI5wM4rjpL/AE6DS00rTXup1nvI7mea5iWI5QMqKqqzf89HJOecjgY563wKWGvFo3CyLGdmRkE5GM02iTsZLS4M2pX6xr9jGXkzgAthgAR19K7K3jzbRcY+QcDp0rkptRH9karBMzNPOokwASOPvc9q7WDmCMf7IH6VzVdDSB5/8SLnydKMK5zLKqHjsOf6151aAA5712XxF1GN2SyVj5jSea6/7POP8+1cZCdqk+gzW1JWiTLc1dF1yDRfE9teTw+bDGCrY+8meNw9xVTxRf2Wo+JLy6sIlS2dvkKgjfgctjtk81iyNvdmJ6nNAPvVMk29D1M2dwqyN+5znP8Ad966LxZ4g8N6zpoSNLue/jXC3ChUjB/HkiuEDZQqDio5DsXaB19qadgOo8BBTqN3uVWXyecjpz19q9F0PUzPrEtsCSixHOe7K2M/lXmXg87Li6nF1Lb7EAwh4fJxg8dK7rw5AP7ZeSOQsDkNnqDjODQ3aIWuzrNYu2s9GvbkIHeKFpFQtjcQMisiw126k1HSrBrW4R7m2825dWO2JsEhecjPtWjqCGSxkhdvllwnPvxUNpb4t/M2jMjF8BcHB6fpio50VytG4ZWSIM1wowcfvEH/ANal8ybJ/wCPd8dlJX+Wa5aXxFZRebG1yzCN8OQ3yqf+BfSiw12wUySpexhnPzFl/l/+qjRg2dN9ocEZt256BHB/nzQtyJG2hJFPcMuKz49UifjfA23kgPg/jmq6ak0/iKK3TiOFDJJhsgnGADScYpXBNnh14T9plH+0agXrmnTvuncnuxNItUloKxYQAgdzUqkKfuj8ahQFCMgg4zzUpbODVJ3DYsJcOp4bH0GKlFzKwwZDg+oBqjT0PHA/GiyHcku4VaNZ4xg/ddR/OquMrV5WDBo2PysMVScFCV9KzsDNDw7r7eHNX+2LbrcAoUZCxXjIPB/CrXhy9WfxvHf7HXfctMqD5iCSTg1zTk7q1vDILa7agLuPmDjcV4+oraO5J6x4l1D+2ZLNi6tNFLiMRcEZUj+oqnefaLWyv764EZbySqB1BDfUfhXU24jXwrdRRwJE8aOrYwSGUg5B69CK4fUX82wuQz43RkkkZ7daUlYlnYW2mWMRE6WkIldQWfZljx6motW1q6097GwibFveTEScDqoyK0bcZt4iefkX+VY/iaFDDZXBZg9vcb02jOSQRz6CuF3ua3LEknmuTnmo+lWINOvrny3sgLguqk7omAXOMkkVW1KC8sr2Cyzby3UrnCI4wEHJJ5yOmPxqXTkhppk1v8zgY6msvxhHpN7pRuLae2muTbyBHRg2wKMtyOhwenvSeIbyF7GO3FhFGVmRp4o7gyGZAeVHGR25yOlchrF+sts8tjYrE84eJzFHhCGA+UDHBHJ/GjmcZKJ6FHBRqYd1m316aKyvZvvLZf8AD24fHGadC7wSrLG7I6sGVlOCCPSgrt47e9JXaeYaGqatea1fte30geZkVCQMD5Rj/wCv+NUi+wZpmfeo5m4C0Lcdx5vH7AVHNM0yhZAjAHOCoP8AOmYGK0ITNHYxyWaFpCzCRgmSPQfTvU1JcqR04XDrESabaSV9Fd7paK6vv32uzOEUW7cIYwR6KBXTeDby3s9ZLXNysCMmBu/iOQQP0rGvkVLgAKFYopdVGArY7VteEHhS4vjLEkh+z/IHxycj1qoy5oqXcyxFF0KsqTd7Oxv6lcg305SRiq23TGOoyf1rcHxQ0WLCiG6OBjO0YrGnmgdZJltmD/ZwhJ6ZyQOPw/lXo158O9K1lQ76cto+RyEHzevAPFJw5uhjdo8T8WeJNN1y486z054Jt3zSPJyR9Kx5Y7m2hheaNolnXcm8YLDpnB7V7dc/DjQdH/exuouFIaJnIIDA91xzXn3i/StZ1rWHu7lo3H3EZQVG0dMDt9KrSKsPc4tlUgYOMUwqRWhNot9bH7hk9wKjj0+8lOBA6j1INK6FYY1tLbWkdxNEypNnyyf4qpuxLHg1vtpV+UtzJIJ4YePLYn5V74rRi8Ow3gBWKVkHXb1X/EUOaQGd4YtWuJ2Ad0yVxsOM816F4ehNt4hvULlikzQ7nbLNhAefzrG0jRoNNV5RemNXI3sFBYY9M9Ku2DxT6tLHYoZ5C+/LSY7EEn8hSlUvGwLRnW6uxSy39AG6n6ED9SKsbRHGOwAFc5f2F+ltG1zdokTTxJ5KZbdlxxmt27lEgkiTOQMuewHpWW5oeV62PIkWCP7zI0kgznLFuP0/nWYty28Nt48nj8s1LdytPdyyucliSfzHFQ87kHTEf9BTb1MCSO8cGFQ74dcMNx55/wDrV2vwtmkvH1W7my0krLCj9SWORj8Aa4F2MccbKCzAHAA5J5r1n4a6f/Y/h+CacbfKje7lGOckcA/l+tVHV2KjueLSHLULgnB4Hc01vvGnJy1WM7bxta2MUGjzWjAtJbgfLwGjAAU/zrlFpZLmaeOFJZGZYV2Rg/wrknH5k00GhDY7PFKpINRGZV6jJpv2hs/KuKsRZBOc9Kbc9QwHBFQefL2IFIZHbh2zUtDuQMctWr4blEevWhZmVDIFfb1Kk81lMpDZq9o4m/ta2+zwrNP5i+XGxwHbPANVER65d6hPZ+H70wXDxo175ZyMnYSARz6jFc7NdK9neB41IML7ADjBwa07+9u7zwxKL+0+zX32uPzIsggYwOMeuKxUhee2nC44jcknoPlNDJe56VZuxtYRn/lmv8hTNRt7u9spLe3R3ZwAVRNxK5GRVWxeVrSABiMxpyB7Cu78J2ZjjkuHDFm+UE1yU/elY0ZxsWheI70rC9neLGVC7p5sDAGBnnn8q1tP+HskE5knlhO4fOeSSf6D2r0HA9KXA9K6rIk5yDwlbxLxKFY9fLjApieDLG3hlSNpZPMkMjCRgRk+n5V0p4FZVxrkKTPDFG00idQOg/Gp9nHsO7PIvHHwkcQyahoEWXUFpbQZJb3T39q8haDaDG6lXUkFSMEH0r6vudeEdtJJbWUk92g3C0DANIO+09Mgdq+c/Hd5cap4pnv/AOyJLB5jh4ihUkj+Ij1NNqwjlWUgkEYqsxLN0OBVqSUbWB4buDVZWaQIioxck/cJ5FCsBOLC8kiEq2k5j/v+WcVDbtIJgIWcOeMJnJ9uK9Hn8U3uqaIdOsrXaLcbGIXG1gMYOSMflWV4E0mWz1a4vrwri3tZGwmDg46/zpyaWjHGUou6dmZaeFtWunaVrZbaInPmTsIl/DPNaen6Ppemyl7zUBdPjHlW8ZI/76PFRS3b3r+bLJJIx5/eHJFNZge9K7QI1o9Ws7MFbPT93TDXMhfpnHHTvVi58Z6/d58zUJQD2U8Vz+Rim7vehtsLIuTanfTk+beTPnsXNRw311Bu2XMilhg88H8DVctke9NpMdjsdAvtOvk8i+XbcKMh93Dj6etbbwaUF2pBIT/e34/SvMhIyOGQkMpyMdjW1D4mvUA3iOQd8rg/pWfs77FJrqdXcjbF/ogijcDgyJurlZrbX4rgtE8MkBPzJDJ5ZPsMirieJoZFxLA8beqncKng1O0kOfPUD/a4o5ZLcWgy1a1gj3TaPqiXI+YSsonBPbODjFP0h57vXY7lYTGUkG5FUgBMMM5PUZJ/Kuw0WRJYQyMrD1BzmthwpUhgD7EUmFtDntRhaZ7SQMjR27mZoweWYKdv4ZOfwqR1EWmzSZy3lMxPqcZrWktoCOUwD6Hiqlxp0babPBHPsDIyqzjhcg9/TmgZ4hI2C/fAz/OmufLcluix8/pWnrGiyaX5h+12lyOmYHJx168VmS8yS/TFLqYM6/RbUQaFbMrwzSTFW8xE2uocZCk9TjBrvbphY+D5+zXUiQJ6lRyf5frXnPhV2u5NKgBysduXce6sVWu78Xy/Z007TweIbcyv/vMf8AK1ox95stvQ8IYYY5BHOMGnxDLV0/iOysJle6t2hilHLIj8NXNRqAaUZcyuNokpc8Gm5GaHJC4qkIgPU0u7ApSMmmkYqwEDEk0pbAo4pjjgUAOL5GK1fDVw1r4isZR2mUH5d3BPp61jAHpV/S1B1GDLFfmHzD601uB6df6sv28whmhhkvQkrbcOvbnuMHrUGowzQWDLNFtkkjfIGO3B6Vh6hbhtNkuULecH83PXv3rrNSupRYWF9Ht3GIucAMC4BySKaUUrIndnq2k+GNPGmWbFSWMCE5P+yK6C1tY7WERRghRUWkuZNJs3YctBGT+KirlQopbFBRRmmu6oMswUepOKYCmvOtR8J6zBqc13Y3bsryFwy4yuTmu1uNc022yJLtCR/CvzH9Kw77xvZwgiCBnPrIdorObVtWDSe5ydnZ602uLeXN7kQA5kuYdwHHYdzWJ4ih+3XrST3H2h+zbAvHsB0rR1TxSLhiZXVVJztTgfrXNal4mSyBWO1Z59uQoUk4rBylLSIJpGefC0c8pdbc7j3I/xrd0i3uNFs57eODT184FXlkjBfae3WsS08S3V5KovB9jhwSzAg7fqO1Nv9Q0+K4VV1GZ12FuEVt34nH9aajPqO5WuYbPRru6uZrp5HnXBKfxYHGfcY59Qc1Y028ibwZq99ApTzSLcEjrnGf5muZ1nU4i8MZt28qMiTZNId0gPr7EZFdLqItbXwFYpa2jW0d3cGURMxJ4B9fwrSMfeuwucypIbI4qYZ9Cf6UpiiFusiSEPn5kI4H0pEOWyD+VbuIgLjFM3cZFWTa+cCYyFkx93PDfT0NU23KWVlIKnDAjBBqXECUEEUjdKrl8dKXex4pWKuSZ5zSBsP7Gk8tj3A+nWhoGb7rHI9qFuDGf2hZ5/4+7f/v4P8asKysoZSCrDIIPBFZNr4dtpvAc980cP9okNdRMblRIYUdYyoi3ZIJMrFtpx5XXrV7Tz/wAS61/64p/IVotSTQhmlhdWikdGHQqxBH5VsweKtYtgALwyKO0qhq0/hzpFhrOsXkWoWyXEMVqXCOSBncB1B4710HjjwRo+jaA+p6ek8UglRPLeTcuD196GkGpl6Z4g1LVlZFmtLV1PzOV5A9eeAKLhI5V33U8l6wG872LIAc4xjjt6VzGmaXfata3UGn2z3FwzRDYv93dkn6VbvE1jSbqSN7ESwxDZKgbdtHTPHTv7UuVEtsyfGQvZ7qKK21CCx0qOzjnnaZCI0kZ3VR8qszE7eAB0BPABNckhvLXV57S7uI5sRBw8WCrqwDKwOBwVYHnB55ANdJ4v1bTJmSwu5JxaXlnb3CzW6LI8csck4AKllBGJHB5HODzjFYXh3QLjxV4muLDwzattFvlRPIAQq7FZ254yTnAzjdgdKmUbj6HoXwv0a4kdLuWIiK6fbATxuVWOSPbNWvGGqC61TULnPyeYY4/91eB+grs/DFv9ls7eCMjOn2K2wZOhkyQWHr8zZrynxQ6QySwRuXRXYKx6sM8GqpKyBnHFbqdvn3uo6gtUi280CAuvynoa7xNBiUA4U/Ws/UfD0shaSCRcldrI3TArndVF2OUYdxTHfGM1ZuLWa0cJMAPQg5FPsLH7bFMxkC8hcbc7u/rWkWnqKxTRGkmWLKxk93OAPrS3cC2+zbcwzlgc+TkhfqSBWgmhXU1yIpJ1STblGPO9e/PtXTeHLOzsIpGKr9qRtkvmDJU+2e1OUrLQLHANkSEH1rodI08XOnMXtkdWfh2fBGB9K6HV9GttWvEmWJmkPDeWMbvritOz8PXKwLFHb+XGvTccVm6ugNWOKm8Ny4LwyRcdIyT/ADxVe00m9S9izEV+YEMSAD9DXpaeHxGN1xdRIPRRkn86ivLXSII1Hns0pYbG67T61KrO4OxTmtYpNOmgjSZpfKZQRwM4OMevNa3hWK2n0O2XULJ54FmnVo1faeo7/iaSy1y0uYVNrbKrYywJ5B71e0i8soY74wRSvE165VW42tsTcPzpxqN3JVrno6eKtLsrOKKCOUpGiqq4xtAHAyaoT+PVORb28f8AwKTd/KuO1W+ivdLntGBhEoABXBOQQf6VS06G1bU7bT7mV7e3yFdo+qnHH4UueTdhvex3V7q2tm1ecyRxoF3BUIUsMZwPfFU7VIdZtJ7mDVftaxZDujbghA9/Sue+K2jaodJg1G2mT7HaLllXJbcSBuGOOnXNN8Mabf8Ah/wfd2iyqJr0bzlOIcrgD3PrW1lbUaLcelyzwpLcXcihlDCNFHcVj3cNtbauELM8SmIFXOdxbdn+lbLTTQxLkb1IAZfX6elc3fSW11fzxLqPkudnmLJC28AAn5SOM89a55FWLWq3Vlb200UFvGbgqQqRxgtk9M+nNZukWRslmm1BmN1JtiYkg4656fQflWhYr5mU0qxnm28C4KdW7lR6/wC0Sauw+E9Zmto1MKRt5rO3mSAHHQH9TSUrKyKsrnJ61pscsr3FrIA4UAgdCPcVgu9stysc8LxkFQyouC3cGvUU+HFxPk3GqJGD/wA8ULH8zitFfhnokjI93LdTsqgcME6fQZ/WiLfUmdnseH6gk8l48dnvKgZ8yRf3nHbJ5HtXUeMGaC20WwZmLxWu5yTkknAz/wCOmu58VeGNE0jSYUsbCOO4uLqOPzSWZyM5PJPoK4HxjIJfFUsfDLDGkfPsuf5k1tTdyehgEYwDycVNGAO1RcB8DpU8a5AzWwidOQM0tzELmMEj96owr9yPQ01PvU+WTyoXf0GB9aYGUqEtgqS3oKkEZI54/XH+H50xHIJ55PXI4P1qwpEi7gB8vJBxx+fA/WkAiqhPqP72cj6dhUqsYwDggHp2H64/rUf3QGJxnox4z+J5P4CnDO4fwluR2z/Mn9Kl2SuyoxlOSjFXb6HLrD4hjnjlCEPFbNaof3eBEysrLjoch2568k9a3bJGjsrdHGGWNQR7gVbdNp+YD6AEE/zOaI7csxQD5iMgHgmnCSkroqrRnRly1FZnXfD3xDpvh7U7uTUnkjSeIRq6IXA5zyB2rtfH2v6VqvgaT7DqNvck3Efyxv8AMOvUHmvGTwcHqOooB9asy6nonw/uW0y2urqJopJJQE8ts5XHOTUt3BJcajNLEhLyff25wxJBqt4Dsxd2lxvcRx+YA0meenGB3roQzQM0cb55++Bg4pC6lDwx4a0FvG9zbX2kWt+slqrr59sJFhbJyMMMcnNegJ4c0TSorq50fRLCzuRC6eZbWqRM3GcZUA4yB+VeRadd2ONZutUvLi21qONmtZYpnVo5AWGxSD0OVXHPBPI617Np96YtGgOp7ILlkBlRBuCv1YDGeAfrWNKrztno43AfVYp3vq1tbVW21d1rvp6ao4OS+TQfDzPOrpPcNIIxjncqkDPphiPyrxbWLjzJ85yOgr1HxrpsOnQ/bI9RuLu1aRiytE26LcclumMZ68VwEmhwaivm219lW6HAYf8A1q3POR2crbenSqcrbs4rVddPj+aWXzCOuCTj8qFvbdP+PezLHsduK8pRaNOYwjo736lWtmkHuMVYg8JyKAP3cI9M5/lWubq+lGR5cQ9+tPW3WQBri6ml5+6nFaJtdRJt9DMuvDtqluTJekzxnfHjAG70PselMK2Mc1tqWnW73AICzoAWDIe/1U/1rQv47GOeyNvDIhEh3FicNx3p1nqq2cktjtEYZxPED93nhx7c8496qLT0uDUhsmtSxadFdW1pi3myI2BAzjrxmn6tJLp+n/aLq/O5lykUShc8Z5JPAHHNZjw3McEenJ5lzE7vNCyrnbnO5Ppkgj6mtafwtqfiF2S5tnhtkt0ETSMFDuB0I64ycn1wKpRgnqJJ3szjYItT8SKskd8IIVJAIJy5A659O1TCHULe7t9PupBISpeHy/m8w5x9c9eK9E0TwCNNhjSW9VgiBNsaH0GeT/hW3H4P0QYM1mtychsz/NyP5U3NbWHY8aC3X2uRbS2m86Mq25UwwBODgdzXY2/h3VwlvBZ2EqwhS5dyF+YkDnPfAz+NemxW8MP+rijQ+oUA/nU4HGBU67BbqcBa+CNUlkWS6uYIwOQoy2add6edI1KNprOCSZCX84u+2TJODjI6dPwr0OJNzKMgZ4rgvihbJF9guX8wgb4zsOBxg8/rTs4q4XMTXvEep3tvJaRywbY9m4qm7knpyTwBnP4VoLqss1xbJNeXM0TPtALELge31rirexnk06BzuQkh22k/Nkn5fzNbQQ20CzYBO/bk9vmHT8qu7FdrU7ywsYL7zTINyLjj3NWodJ0+3cvHZQK+cl9gLenU1R8OXAEs8LHqoIP/AALFbbcGobuUxUGAAOB7VIAOmKYvanr1pJCuOA9KdSDrS1Qjj/FzfaNe0GzzwJJJ2/4CAB/OvG9WuftWuX9wDw87kfTJA/QV6z4guAvi25nJ+Wx0wnPozEn+grxdGJyW6nkmtKWzY2TKMnJqePsahXsKnQYWthE6Hj3NVb6TLLEP4eT9asBgB9Bk1mO5eRnPc02wG4709SRhgOa6rwR4PPi2e/RrhraK3g3CUDIEhOFB9uv5Vk654f1Dw/qD2eowmKQH5T2kHqp7ipApq42GRSy9i27H5seT9BSo6oPmXAbnhdoP4feP1qBDsO8feHXaOce3vUqndlkJx3IOPzc/yFDipRszSjVlRqKpHdEyjjZkbv7gXn/vkc0+3YJIAQM5+7wP/HRVZTsQkHEZ/unYp/E8tTvM2rg4CduNi/kOTSjDlLr13Wa0SSVkleyV2+rb3b6k9+o88PjDOMYxjP4VUzUzsGTY2F9DgIM/zNRFSvJUj61omc77novgm2c6HK5+Xe5YbvQDqPyNX4LqVp5orkJ58TbWKfdI7MPqKpeCCU0dsk/ccgdcZzTdTkeDWkdGbc6HcWGOh4/Sm5NxsKSsyPTNYjsviPFcXSsbaGMqXVclAUOAPxJr13TbqC8s1vIUba5JUyLhhzXilov2nxFeO0bMryBMIuT07fnXrFlrdqpgsfs0tsxGEV0bnjtxjtWUd2U25JXZ59rfxdCQzCKEksXQIwyB1GCK8XtrqezuJJYJCruD91yACT1x0Nex+OvAemyzy6haObeSQl3hIwST3HY15s3hYgjM52+qgZ/KqcrOzFY6CL7FcxEy75SGPyyPyB9B1rVg1OJVG9HKKMfL2FcvBbSrKrLIHXd8wZsMK1LCTfK8EqurhjseNsbx1xzXnNNs1jZI6WLW7JFyIX+uw1I2vpgbIZf++KxxpqMd32dyf9qT/AVcisZNuAEUenJ/nWfIiuZFXU9ZeeLZ9nZW3AqxbkH6CrWh6bea14it5NQh8iFFLbQcM+R0x6f4VZj05iylm5U5GABiqHgJpoviDqsUsjyZBAZmJ6H/AOvVqCuTzM9WtLSC0jCwQrEMdhzVoHNQRKUUhn3/ADEg+x7VMvWrslsSPBJ6mpB0qMdaeDVITHClpoOKUHNNCJ4+cA1yfxKgMvhuF1H3LlVJ9A2Qf5V1KNg5rH8ao83g3UfKwZEQOufUEf0zVN6AcfYWkc0NhbxqTtVZpuOg6gfi36A1V1FP+JHIcYKStn8Ca6TSbZLLSYAWLsyKXc9WOBXP3bq+mXsffz3/AF5roktCTf8ACzA3khz95CP5Gukk+8K4zwZcCS7i5+8g/wDQTXaS8Vy9y2CdKetQq3b0pwY0CLAFKRwMVCGPrTg+Op4p3A801/z7x/Fk1shkkLLbKqjJ2qo3fpmvLFHHNeq2d55PhfW9UP3pBdyq3uzeWv8A6FXlQ6gVvTXujZNGucVYHQVChwQKlBzWgiO6k2QYHVziqI6VPeNumCf3RyPeocUgPbvg8+nN4eurWKYNfPMXuYjw2wcLgdx/jVn4x3lnD4Zt7Voo3up5swlh80ajliD78D8a8U0/UbvS72K9sZ3guIjlHXt/iPatXxR4pvfFl/Dd3iohiiWJUQccdT+JNMDC6HIFOBCnd/Dnn5d233ApKUNtOR+NIBS37wOWJbqDndJ/gtJ5vlsSzbWP907m/Enp+FQTM0YCIwEbHIx/WnwW4bBduPQU3IaQqSuz/u1C56tklvzNT4VIyGJZz7U4skK7UAFV1bexOe9JNsGen+C7my/sPy1nhNyMiSPeNwyeOOveoNUkSXVi6j5Q+0ck8AY7/SsnTPBtpdW1nqYvLm3nlG4CMjqD29K6Sc26abILy1Vpol3LdRtsdzwQWHQ88HAFNO6J6lzwFDb/ANuvIXUSQmaST6khE/QOa7nUbhG8ra4Ko+9m5wMKcfqa5n4bQxGDWr+OYzx3V6VilKFNyIoA4PoSR+FdJrT4sJB1z2NJDPO9dvpruVlY/IG4ArnXhRgcAg+9bN1HmQ1SMXPSueUm2NEUGjR26NLM+APmZjxisl0VLjzkYKHAdQfT1qW6u7m9LLIzyKRx/CKciMY4I2fdsiAB6456frWNnbUp2uki/BrbiMAwrIw4LKcD8ac+r3DL8oiQ/iTVQQLweT9TUwjHyhQB65o2HyMa93PIpMk0xXHIU7eKZ4MiuYfF8d19qf7NJlVgY5xnHJP1FTSKfJfBzxTdDYw39q47Pn+dJMdj14nk5pwPFRZyT9TTwe1MglDDFOBqIU7NFxPckzTtwqMGlBzVIGiUHBqtrEX2jQr2EcloG/lmpwc0rDfEykZ3KQavoI5mOdf7NhAOMIP5VykqbBdBQcNMXOT9KvR3v+jLFnleKoSzBo5PU5JpznctxViXwlK6X9qF/vbSPzFehuWKqWwDgZx0zXmPhify9VVc/dkbP03Zr0e6vYEOA+8+ic1knpqSyVTyeacXVV3MwA9TWU1/IfuLsz361XYySHczFj70nJDsasmpwx/cy59ulUrjVLh43CkIMH7vJqqQQCScAck+lYmoeIobYlLVPPk/vHhB+PejWQWOd8Ua2ljoA0SCEf6VCjmQHhAJCSuPfArhF6/Wt/WYpdQdp2ZVm7DZhcelc4H2MVYEMpwQRXXD4bCZcQnIzViP+Q5qmkgJBqaSQLbse54rSxNym7b5WY9Scmim5yadSGKOtSDpUY608dKAHfw009KdnjFQXL7IW9TwKAKry7pi1WIZHZgqgk+1VFHzA9qt/aJEj2IQqnrgYJ/Gpe5WyCeVgcHrU0akIPeqSxtJMuT1NX+nPpVxW5J6Hb6qzaTp+xmMqKFJVOOQOv5Vc1m0u9P0N7m7WNN6ssex924Y3fh0FcpYtL9ii5bbsHLH29O9WL83sGlGO4zHDKhkSPdu4HJPt0x/wKtpUoRinGVzFVG5WaseseAbaO38CaYgGA6vK3uS5Oav605excY56VH4W3L4T0oEAH7MhwBjqM/1qXVBm2b6VzrY2PPrpME/WqBB5AzW7LaS3MxSFCxzyccCrMOiwQYeYiaT6fKv+Nc7VykjgHhHK5zxTLVsFQPdf5GrRQkkehqrbLiUf739DWS1LmkrepdxjpUi5zz1oUE/TvT9gIySfpUmo2Rcwue2DUdguxrd/of1qeUH7O/0NRQYWG3I/u/1obM7anqNq2+BG/vKD+lTjrWZp1wgsrUO2C/yL7nn/CtEHgc00Q3qSL1p461A0qxIXkdUTuzHAFZ8viKwjJWJjOw67On5mmlcDZBxTvX0FYsestKu7yxGAOmc1yaR6rqs119qa5eMzsImdiqqoJ24GemPaqceXcVtTtL/AMRaVpwYTXSs6jJjiG9sfhWReeKzeaUZ9OjZN52B5B82D6Ad6zYPDUW4tcSBty7dkY2jH1ro9C062sniht4gkanp1pc2tkJp9DntO8J6vfqpFv5ER5DztjP4da6nT/AFjDh72Z7l+6r8i/pzXVrjAqQHit1TSLbbOc1XS7Kxs0SztYYV3c+WgBP1PesIoM9K6zWQHhA9K4jVtbs9Jfypn3TkbhGOMj1JrGpF82hJbC4/+vWPqPiKxsFkCHz5lGdinjOcYJrnr7xBc6hHIjyokTf8skOOh7+tZ32eNpGSONZpDnheevIye1VCn3C5fu9YvdQJ85WWIZwisFUf41nSuUheVVAQcBpH2j3x6/StP+ygsMst9cLEinLfPhY+MDJOfy6+1crqGoq8kps7qaZlXAlZcZ6DCDqPx/StowQmy3culvCZZ5BEg6O/LMePuqPeubu7sXtyEtYlXH8crcsPc9qjaOaWVfOd5ZW+VUB3Mfauo0jwLd3GyfVWW0tzyLcH52+uK0ukTucuuVYgON6nDBWB/lT2lZtqO3y5646VsapAG1Dav2dbNAwtxAMLjODnjO7I5zWMWMFxlG+ZTwcdaaYJF6aFZWVSI0lIG104SUf0NVGVoyUdSrA4IPWrUMiTKRGgKnl7f+qe9SMqSQDe2+IcLMB80Z9GHpQxmf0pwbnmnTQSW7KJMENyrLyGHtUYPpSAkzVKcl3A7LVqRtqMfaoEXI+bj60MCOOLNWfKwOlSy28tpAs8kTLGxwpIxuqFTLdzJFGp+c4AB71NuoEkadSfwqdH2OHKhgh3YPfFbTeFr2NlVTEVxzyfk/xqtNBp9ozI6Xc7KMENtiB/mapNWE0XLq/t7aETSqFLAFYlOAOOgFO/tG68SWc0scG6TyTBHDGMkY+Yn6k7asXOiL4iMb2qLZ2MaiNJHXLOP4iP5c12Pg/QrnSIJDEBbRyMQuAGJTPH5gCk2tkNRZ2uiDZoGnIva2jH/joqeWETEq54Hb15p9nCltZwwpnZGgUZ64FKzZZjR0HYoSxrH8iKFUdABiqMq881fnOWzVNxWbRSPMzy5NVFCpcE54Df5/nVtqpPgSOf9r/D/CuVbl1dkaSENkCpgDjrUIYYBA61IXxGO9I0GSDEb5OSQcAVCSFtYflIwMVKx3KTirEek6he2+YrV9oOAzfKMfjTsR1OgtdXFnpds8kHnDG5OQNrfX8ax5PGWp3M7xRrBaxheAnzN37n6dhWrBpTNp9vbztgxjJ2HPNWbXSLCzO6K3Uvj77jcaVzFanN6dFqWoSytMJ5RwRJMxx056/0rdtNGZWJnm6/wpz+ta45xnt0qVUzTuVfoQR20cQ+VAT6k5NThPapBH6GpAuPekBEI8dq0NOjCyg1XVc+1XbNSGFOC1A21YYAp+R61XXoKfkV2AU9SbMfHUV4Lrfh3xD/AGhNMZHu9zk70fnGSeh6da93vfmTArnrm2DnoM1jKbTEeJtZ65bks1tdAY5+TdxVy01/XNMjwLX92eoktO3rnFevWNjZqz3N4T5SHaqL1dv8K6mCSzvLcRsjImMCNxgfhjitoNyVyb3PmbVtUvdYuvLlmaVFciKGMYVfoo//AF1saX4NvZoi9xJ9lDjGzGWx/Sva77wVp0lyLy3iSOccbtgyfXnqKwbqwksZNsy7ecAmicmhWRz+laDZ6Tl7WIGU4/euMsPoe1aHlMX3EEt3Oc1dWOk8goWZAWJ7Gsea4zgfEvhy7SX7RaJugAYsq9VLMSTj05riZ7ecPkrkA9RXuhUFAVJGfXqDWbe6LYXjFpoF8w9XT5Sfyqo1bbgeNjMbhtxUg8EHFaENyJDuyI5uhJ+7IPRhXpa+HLReAkMi/wB2aIN+vFcrr/hKW1Z7qyQPEeXiQcp9PateeL2AxlAO9FiyBzLasenuhqnNbBF86FjJDnrjBX2NSRXAIWOYthfuOv3k/wDrUXMhZiCwMh4aRDgOOvI9aq4FUW8twwWMDPXk4re8NS2lpE9ylm0l4pCgugdlP+yp4z71Jpnha71K1+0iZYVIxGGUksQf0HvV/TLY2ol0zUrZLa9fJtbg4w7dhu+uOD2qedAQaroGparsuZFAYEl03l5Me+eCfatHw/ounWYLwOZrlfvtIuGT229qx9M1TUNKvntLmJ/O3fvrZurZP3lNdrcadFcusuSkyj5Jk4Yf4j2NRNsB6oGHSsnxLAr6SAVHM8ak45wWANaEdzNaSCK/CgMcJcqMI3+8P4T+lGuwmXSJQBkqUfj2YGs0GvQtrDiPyEAA2lFAGABir+lX1rIkaRXXkuDsKycDcOo5qtM8VuA0zAkjIQGuaZ3uLqa3AC20kvnBAOh7/wBKyleS5l0OikrPlfU9PTUdmFnj5/vR8g/hU6TxTDKOpz26GvIrrWNV0m5gME5W2kJjVXTerFSMj24Jq1pnxLsdQu2tL20lglViBJD8ynHf1H5VSq1EtVcpwp3smemyrzVVl4FZVhrUV9D5tjdxXUa8NscMR+HatBbtHHzqVPtz/wDXqlWg99CHSkjy5jlsE1BKPmbr/kGukt/DTZVrmfB7iMf1Na9rpFnasGSBS/8Affk1ktGKburHNWllfXqgxwMwODu6D9a27Tw0XGbqbH+zGOn41uovTip16+1IXMRWWk2NoB5Vuu4fxNyf1q5NzEcnNC5xT3XctBN7maqnrU6RE9qkSHn2q0iBRQBAsOD0qUIAKkpMU7AN2igDFOwaUDPakAKKu2wxVUDmrkFaQQF9G+UUu6o1PA5pwPNb3Aq3XINYF9IS3lAkDG5sdcV0E+CDWHe27GUSp1xgj1rmrp9DKspOHulJLcRQiaWRVj52Rk/ePrVjStXvLeT7paPP3H+Yfn2qq9usy4DAez/ypyWXlRlmtvMI7q/AH4ZqaVWasl0OGMp9Dqx4js0hDzRyxE8cDI/OuZ1vXY72eMRLO0K5IJOOelQEOIduDt7ZPSq7QkEOWDU6uKurIVSvN6DI7mNCMJKFZgCCwOM+nAq6V/uk1WQG4kCRr8ikF27fQVfK+9KlJ21R1YbmcfeKyxbS5J3FmyaayDNWSMUzZmrbNyDZ7Uxo+9WtuKaR60XA5LVvB9pqEpnhb7NKeWKrlW/Cqun+CLW3k8y7ma4I6IBtUfX1rtSuTnpTSg/GqU3sBTSIRqqouFUYAHaob7TbfU7Rre5j3I3IPdT6j0NXzHRtPYZp3A5a3tka/jsNahSe5hB+y3bDmRPTP94VpW4ksZxbStvgf/UseoP92tC50oarB5ZGCh3Ry/3GHcVT1G8tYNKZZG8y/jIOV6hgevH40cyeiK5erNE2atC/2kqkRGCG7iuT1XVV0yyu7O2LGzGwJIwzsJP3M+nHGemavyz3eswCWSYRow+VE7e9c/8A2JeTRvpD3CyXdwd3mMdqhF5DH6Y5NEKbv7wnV6RLdqZ75tzOXbC9D6j0q6gOn6mUnWNntwpdM5wSM7W9+mRSeGrrT9P8N3Wqi1me+gZYd0sg2NN0XauOygHn2rLjlzJeNMxkZn/eHpk4Gf1zSrrlhp3NMIv3hf1XFzpGlwEKGjG5T7kMxP8A49XFw6bdQ6qjwNGts7iTzVAJJIK4Hc/yrobyKW7jhHmLKsJLJ2wcY/GsqK1uLfUvOQ+YeABIvLDIyucjHtRCpGS3HKjOGrRLNbx28lvHbq8NxLPxJb8MWA5OPf29a1LTxTqkV08bGK/tlAUhl2SpJ3XI5OKpXNs9xeD7RdQRvGCALaQ+YgPXLD5efQc+9C2otYVigQKgGBkZz+NaSpwlugUpHpIGaeKAKeormIHr2qZVqNRUyCgCVakXpUajFSL0poBwUCnY4zSCnDpTAbRT6KAGgZpQMUtKBSAcoycVZiGMVXUHdVmPqK0iBZHQUu6mAjFLmtAIpeapsBzV16rFcmplqBnz6fDcHcQyt/eVsGqx02RQdl26g9cgc1rlcHimFPTrWXLYhwi+hljTp8YNyceyCgaZFuzI0kpHZmwPyFaRU96aUxzS5VvYSpQTvYr+UqKFRQAOgHQUzZjrVkio9pplkBX1FNKn0qfFNIoE0QEAUhXPapyvFN246UCISpHak2ipiOOlSpasRukJRf8AP5Um7blRVylsLHaqk+wGalaKG0i827cL6L2P+NV7/XLWwXybdVeU9CO5/rXI6jf3VzLFJO5CvIAUB7fWnaUvQLpfDuamq+Ji5MNmCB0OOuK5q7UW9/DeFy0crBJm/wB7ADfgcVbSCMXpkzhgSoHQHv0/GnGz+1xTWLDiSJkU+mRx+tb0opbC1auyXTbd1hm2SYEc7pn8c/1oux5Gtaa0yEXYhcyY6CN87Rj1wpY/7wqXwRu1GzDzcNJMS/5KG/kTRf8A+leLPMPG5ZHA9AFGP0rZxRm4q5zl5a3ml3EUCB59Lurg3MKoMlJAcYP5D8KijLJaXYlHz+a4b8DithZCNWVZlLxRshVQ23aWJyR9QKzLy7R4bq8WBEQyOwiXJAAY8fp+tcuK2UfM68IlzP0KEtxd6dq/2ON/Pt2RJImlPzBGHPPfBBq4mqW0gCzhRk4G/gE/WoLd4rm8a7c5+y26x57csSP0A/Osm+skvruKxJeMeX5jMP7xzj9BTlQg1cVPETitdTojbxMpEDBQeccVSmiuLdCY8lgeADx+IpjQXVrCsqgkbQSRzmmRa/EGEc4I9+1ZctantqjoU6VT4tD1sDNSAUgp4GKZxjlFSoMU1aevWgCRRmpBxTFqQCgBw5NOpo606gAopRS00gExTgKAM04CiwDgOanTrUS1KtVECVelLTQadWgDWqFhipWOajI71IEZFNxUhFIRSsBERTSKlIxTSKQEJGaZipiMUw0mgIioppFSkYpNrt9xCxHYVLVhdbEOMU+OB5jkDA9T0qw6QWq+ZcsOO2eBWHqviYKTFbjDe3U/4UlrsN2W5p3NxZ6bGXkIMg9T/nFcpqOu3N7kQcR84IPH/wBeqMksty5adicnhc8f/XpcNnqABwMDvWkaa3B80tyIAH5s7nI5ZjVTUeLYE/wspz+NXSjA7cY9Biq96Q1hMvUKucela20GloKi5uS/B+YdfpV2IAaiGTkheaz4ipYSHuimrzyCG1vbvPEVuzA++MD9a0pIzXwk3gSMf8I9cXS8ZknKfi5H8jUOpR+V4rtG6L5BB/4Ecf0rb8CWBj8DaeCDmYGQ575djWb4khMWovfkfJBPHb/iAHP/AKFWjelyWYt6hS7vn7xmD+Zz/OudJkbRD5SbpHBIB7nOcV1GqLtvtdTH3Fj/AETNYEEyQR28rfdU7vr3xXDifjXqdGEfxvyM3SHR/C2osB85UA/8BHH9Ku28O5YZz96RWbPsNoH+feszT9NufM1CyEoieULlQMg7j29PT8K3ZIGthax/whGUfhiuqWxjuiwcm2jP+yKxb2xtbgtuUqcfeBxWiJG2BT2Jx+dUrm6RH24Bf0H9anoWj//Z", "path": "images/4pts_ADE_train_00005949.jpg" }
depth_point_20
images/4pts_ADE_train_00000416.jpg
ADE_train_00000416.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 113 y = 111),Point B is located at (x = 22 y = 196),Point C is located at (x = 82 y = 223),Point D is located at (x = 101 y = 206).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_19><DEPTH_25><DEPTH_64><DEPTH_74><DEPTH_59><DEPTH_74><DEPTH_44><DEPTH_19><DEPTH_2><DEPTH_57><DEPTH_44><DEPTH_64><DEPTH_36><DEPTH_31><DEPTH_70><DEPTH_29><DEPTH_64><DEPTH_44><DEPTH_19><DEPTH_41><DEPTH_64><DEPTH_64><DEPTH_74><DEPTH_31><DEPTH_67><DEPTH_40><DEPTH_36><DEPTH_44><DEPTH_25><DEPTH_41><DEPTH_64><DEPTH_64><DEPTH_74><DEPTH_59><DEPTH_17><DEPTH_60><DEPTH_74><DEPTH_64><DEPTH_25><DEPTH_41><DEPTH_64><DEPTH_40><DEPTH_67><DEPTH_17><DEPTH_22><DEPTH_29><DEPTH_11><DEPTH_29><DEPTH_64><DEPTH_2><DEPTH_60><DEPTH_11><DEPTH_15><DEPTH_58><DEPTH_82><DEPTH_74><DEPTH_49><DEPTH_19><DEPTH_72><DEPTH_2><DEPTH_35><DEPTH_41><DEPTH_1><DEPTH_25><DEPTH_25><DEPTH_78><DEPTH_2><DEPTH_2><DEPTH_45><DEPTH_63><DEPTH_72><DEPTH_74><DEPTH_94><DEPTH_16><DEPTH_1><DEPTH_94><DEPTH_14><DEPTH_77><DEPTH_0><DEPTH_74><DEPTH_2><DEPTH_72><DEPTH_44><DEPTH_98><DEPTH_98><DEPTH_94><DEPTH_72><DEPTH_29><DEPTH_15><DEPTH_38><DEPTH_1><DEPTH_0><DEPTH_64><DEPTH_41><DEPTH_8><DEPTH_76><DEPTH_25><DEPTH_9><DEPTH_2><DEPTH_2><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
4
[ "A", "B", "D", "C" ]
<DEPTH_START><DEPTH_19><DEPTH_25><DEPTH_64><DEPTH_74><DEPTH_59><DEPTH_74><DEPTH_44><DEPTH_19><DEPTH_2><DEPTH_57><DEPTH_44><DEPTH_64><DEPTH_36><DEPTH_31><DEPTH_70><DEPTH_29><DEPTH_64><DEPTH_44><DEPTH_19><DEPTH_41><DEPTH_64><DEPTH_64><DEPTH_74><DEPTH_31><DEPTH_67><DEPTH_40><DEPTH_36><DEPTH_44><DEPTH_25><DEPTH_41><DEPTH_64><DEPTH_64><DEPTH_74><DEPTH_59><DEPTH_17><DEPTH_60><DEPTH_74><DEPTH_64><DEPTH_25><DEPTH_41><DEPTH_64><DEPTH_40><DEPTH_67><DEPTH_17><DEPTH_22><DEPTH_29><DEPTH_11><DEPTH_29><DEPTH_64><DEPTH_2><DEPTH_60><DEPTH_11><DEPTH_15><DEPTH_58><DEPTH_82><DEPTH_74><DEPTH_49><DEPTH_19><DEPTH_72><DEPTH_2><DEPTH_35><DEPTH_41><DEPTH_1><DEPTH_25><DEPTH_25><DEPTH_78><DEPTH_2><DEPTH_2><DEPTH_45><DEPTH_63><DEPTH_72><DEPTH_74><DEPTH_94><DEPTH_16><DEPTH_1><DEPTH_94><DEPTH_14><DEPTH_77><DEPTH_0><DEPTH_74><DEPTH_2><DEPTH_72><DEPTH_44><DEPTH_98><DEPTH_98><DEPTH_94><DEPTH_72><DEPTH_29><DEPTH_15><DEPTH_38><DEPTH_1><DEPTH_0><DEPTH_64><DEPTH_41><DEPTH_8><DEPTH_76><DEPTH_25><DEPTH_9><DEPTH_2><DEPTH_2><DEPTH_END>
113
111
22
196
82
223
101
206
null
null
25
56
138
108
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDPjh9RVlIh2FOSOp0SsGWIsQ9Kl8sY6VIq1Jt4pDMbUraNgjMi53jOR1rltQ0y2udSkEkEbA57Y7V2mpJ+5X/ernigOpuT0AP8q5K0mpHRSWhj2/hyNx5cM8sChg20HIPFUDpuqWzXEa+VPtGV5xxn/CuzsVG7d6KCPyrNjALM/wDfLD9aXtLbl2uzk/MuYIGa5spAyEY2g9PWkjvrb5Ztzo5ypBru7GEjUGBAOBt5HbA/xqrqtlbXN60UkMbRAgYxiq5421QW1sYEfyCN8rIJUypHelCtEHV4mBK5q/e+G7aRYPJeWHaMAo2cD8agvdEu1uIljvj+7iVeV/Hmpaiyk2VWCNbKM8jPBFSyJmKJgOMipU0/VItQYXFuk8RBOE9NvGB9az/tapGfOhmhCg8lTgYpOn2KU2XCh+1Yx/CaREzDKcdCaZFeRSyq6yoT93BPcipY3wkg2E7uhHSs3Bo0U0MKcwHHUf0qNU5l9iDU3mJi2HII65HtSqAXlw3UfnSaaGmi/wCHlH2z6xEfka3JF/emsbQRi8T/AHWFbjj9431ransZT3EValVfakVamUVoZgq1KFoUVKooAQKPSpAntShakC0wGhPapAlOC1Iq0CGBacEqQLTgKBEYSnBB6VIFpdtMRFso2VKF5pdtAiEp7UmyrG2k20xFcpTSntVgrTSvNMCsU9qheMVdK1GyVQjy/wAQaN4hudTneOIGCSQ7MMOFPAz+FJ/wgcBtY3a4lSUoN4ABAOOa9Euo87F6ZamXMCx27EqOBQ5WegNiIlTomKFWpVWrMhQtPC04LTwKQzN1BAVjB/viufI/0udgOitXTaivyR+ziudVS0lywxwhrhr/ABHTS2JLUbbV3/6ZZzWXaoWjgX1Yj9a1yNmjuQcZQA1n6am42/s7Gs5PU0XUv2I3X8jdAXYfliqc7ebPKw6CbA/AVasDyWPODIf5VThDNbM56+dz+VJvRAlqXHUExgdQkf8AU0XkQ+1HjnaufyNT2iebIR/txr+hpt182p3C9lKj9DTvpcLa2HiPZekn+GDNZjQB7VVZQRgk575Nalw5N03bMQWokhAumgPbYKHLUEigPD+mTRzCe0jIRDyBggjqeKyR4dSRsxXVxEoUBQGyMdq6aN/9AvZT3DY/E0jW4GnzOOPlUcfhTlWaKjE5KTRNSjjjEV7G/wA5IDpiqt3a6lay4a0WZicMYjn8MV3C24a9tYu+wsfzqpgSXpOP+WzAfmKtVe6FYxvDTzPqSeZZXUXBO+RSF6d66d1/eN9a0JF2sBVNh85rZ2voQncRFqZV4piiplFADlFSqKaoqRRQIcBUgFIoqVRTECrUgFAFPAoAAtOC04CngZpiGhaXbTwtLj2oEMC0u2n7eKXFMCPbSFakxRtpiIStNK1OV5ppWgRAVqNlqwR7UxlpoRQlXNwg7AE1FqJAtGBIOR61YcA3JHoP8/zrP1k7bUqOrcD8azlLVlJF0LzUyrQFqVVroZgAWnhKUDFSAVIGdqKnZHgfx1zyLsjumPdcfrXS6kMRJ/vVgSAC3uSO5Fcdf4jppbEVz/yBGx6L/WqmkAbYz6bz+lXLkH+xfwH49ap6XxExPZX/AJVzt6my2LWmjr/uyfyFVLUf6C4/6bZ/Q1d05SI0x1KSfyFVbYf6FNx0lFDGi9pzbW39vNX+Rqujebfzv6yD+tWrRQLLf383/wBlNUbP/WSMTn94P60dEHVmgIi+p7fSkUhtTunHQN/IGp4SBqrMQcc1Vtzhr5z3zj8jTArKduiyDP3yP5mtOePGnOO5cCspjjTok9QP5mty5XNgAOpmFYvc1S0KSP8A8TZ37RREfzqlZJueNscmVj+oqzFjN9IewwP1pNMXIg9NzfzFXTd2hTVkasw/eVRYfNWhN/rKosOa7mcyBBUyio1FTKKBj1FSqKYoqVRTEPXpUiimqBipFpiHAVIopqipFFADgKeBSKKfimIAKUClUU8CgBuKXbTwOadtpiIsUFal20hFFxEJWm7amI9aaRTEQleaYy1ORUb8DJ6AUwKMMYkuJnPY7RisjXWAnjQfwjcfw5rdsQVV84yzZrl9alEl1cvk4C4H48VzzejLitTowOlSqtNAqRRzXWzmHAU8LQBTwtIZR1Afu092FYE6FLafj+MCukvQP3Wf71Y+pJttZPd/6VyV1uzemzOuh/xJPwX+ZqlYDFpKfRW/kKvXI/4lTD/YU/qao2X/ACDpP+BfyFcz3Z0LYuadnEK/7ElVrRc2VyPRxVyxXb9kI7xvVW14tbwf7Q/nSYFmF9mnAY/5aN/6DVK0x5Uh7eYv9avKg/s2Ns9Xc/pVC24spW/21/rQ73KXU11G2/lPopP6VStf9RdN145/I1eQ5uZn9Yv6VTtRtsrrPU8foaHv95JBMMQWg7FV/ma3WAMUY7ecetYVwwAsE7lV/ma3WYNAvPSVj+hrN/EadDJj4srtvVv61Ppq/wCj27f7TfzFQJgaROe5f+oqbSv9TF/vNj9Kqj8SCp8LNCU5kNUz1q5J941UPWu851sKoqZRUS1MtAEqipVFRLUq00IkWpAKYv6VIvWgQ9RUi9aaKetMB4FPHWmrTxTEOFSCmDrUgxQAuKXFIKcKBBTTTqMUxDCKaRUlNpoRGahuOIW+mKsEVWuwWi2g8k0N2QIpbhFaSSf7Ofzrkbs5jJ/vNXW6gUj0kkHljiuPvmKxRDuctXHM2idsKkWmVItegchItSKKYKeopAU9QOEU56H+lZGoktZEk5y39K1tT4hBPv8AyrM1FQLCEKPvc/pXJW6m9MoXK/8AEsPvCh/U1l2/y6fL9T/Kte8GLJkx0gUfrWPEc2En+9/SuaXxM3jsaljgvYr/ANMn/rVa1A+z6gPbI/MVYsiUnsD/ANMm6/U1Dacm/Hqh/nQ9/vGS7h/ZUAx/fP6Vnwf8g6XHZl/rWg0WNPt+eqOf0qhD/wAgyc/7QP6GlLcaNWLO2d89IR/Kq9uMafKQM5J/lT7eTdp07dyiinRoY7AA/wAe7H5UxMzbv/X6d6bBWwjkRSZ6B2/kaxrv/XaaP9j+tao5tJ/Xex/Q0raldDPDn+ym9M5/8eq5pLZt4R33N/IVTYY0oDucH/x41Z0j/VL/ALzD9BTpr30Kfws05D8zVV71Zk6tVXvXYzJbEi1KtRLUqmgCZalWolqRaaESipBUYqRetMRItSLUYqRaAJBUgPFRinimIeOtPFMB5p4NAh1OFNFOFAhaKKKYDaQ06kpiGGqN+5GxV6mr5rOuRvvoY+wG78qio7RY47mbr5EcNvAp+6uTiua1Jf8ASkQdlUVuak3n6ntHIyFrDum86/fHd+K45vc3irHbgVItRipFr0ziJR0p4pi08daQFLUv9UPqf5Vi+a15OsOMBDgVs6p/qPz/AJGsXTgFuQzd+c1yVfjsb09h+qJsEi9vKAH4Guej4sJf98fyro9WcOH2/wDPP+tc4vNjcY/vLXLP4mbw+E1Lcj7Vpw/6Zn+Zplku65vF/wBhjSRHZeWHsn9adYNjUbng8o38qf2hvYdNIFsbdf8Api/61nQ4/syce4/rWjepiOEZ/wCWBP6VmwH/AIl1wPcf1pS+Icdi7af8gp/olXXx9kgC8ja38qo2n/ILdf8AZT+VXmXZBaKT/CxP4iqXUl7nATeO9KkmtXFveYhGGBRf0+au5sZlvtFN5EGEcyeYobqAwyM+/NefWUNr/wAIS2gtLN9vu7aTVEh8kbNyHKkvuznyopMDaf8AW9e1d54aP/FHWwxk/ZI//QBXRiqMKaTj1MqFSU7piTxFdM/BP60aSQBj/aP8qs3ZxYEAfwx/yqtpnAHP8f8AQ1x0ZXmjpmvdZpSHlqq96nkP3qgruZgiRamXpUK1KtMCZalXrUK1KppiJRUgqJTzUoNAiVakWolqQGmBIKkBqMdKcKYiQdaeKjBqQUAPFKKaDS0CH0UlFMQtIaM0hoAQ1QjCnUJ5W5VE71fY4Ge1ZLyrFYXUhPzOdtZ1HorjiYYbfqDyDouWrDi3SXZA/wAk1qg7YLhzx8uB+NUdIQPqKE9A2T+HNcb1N11O2HWnimCnLXqnCTLxTx1qNelPBpAUNW/49T6YP8jWNYHdJ8uT8o6dq2NW/wCPbA5JOP0rE0U4lbPbjmuSr/EOiHwskv8APmzr/djrAi4tLkH1U1vXbhry65/5Z4rBjOYbhR6D+dcsviN47F8f8hCxHGfLFOsh/wATaZfVTUbNjU7QjsiU+0cDXGz/ALX9apfEHQfeMC0Y9Lcj9KzoD/oFwPTH9au3Skzj/rgT+lZ8H/Hlcj2H9amXxDjsadmmdMf02rVp2DR2QB/gbmmWan+yyAOSKr3FybZbMqnmN91UzjJJxjNXsgpwlVmoRWrODb4c7ZreP+1f9d3+z9Ocf3q9G0iz+waM9l5m/wCzRCLfjG7aAM47dKzBJcjUrBLlYuD8pjJwRn371sRyEfbB6lqitWnN2kzV4X2HzW6d09SG9X/RJBnoE/lVXTW7f7f9DVi7YtbTHoPl/lVTTz3/AOmg/kayofGgqfCzRkP3qhFPc8GohXos5iZalWoFNTKaaETLUoNQrUq0CJVOKlU1CtSrTESg1IpqIGng0wJQaeDUWaeKYiRTzmpAaiU08GgCQGnA1GDTgaBD6XNNzS5oELSUUhpgRztthc57Vh6i3l6dGv8AfJY1sXRzFt67jisXxA+JYoQfurXPXLhuYtydtiT/AHnxTdHG37VOf+WcZx9TUd++LaJAfU1PYqU0SY9DM4X8v/11zx+JGr+E6qniminCvUOEkXpTxUaipAOKBmfqxxbg+hz+lYdh8l1KueuCK3NV/wCPYj6/yNYWj/NcMW6gVyVf4hvT+EY5/wBNuR0+Q9KyIv8AluO2B/Otd+dSuB6of61lQjLzD/Z/qK5Xubp6Fqc/8TOAdwq06DP9t46EsR+tR3X/ACGUI6DaM0+JwNdQnpvz+tP7XzDoLPIDeEHJxCV/SqNsf9HnH+yP51aI36jKM8bWx+VVbYfu5h6qP50nuNbHRWoCaaG7EHIqhdwLNcWsDMy8cMvBHPBFX4WP2BUx261UuRt1a3TPKqK0kroVOcoT5ouzRUa3li1WyM9wZmzwdoUAZ9BWhnbPdDPc1VvWJ1SyJ7Malkb/AEm4+tc1TSR0yqzq2c/ySX3LQJyDbXHp8v8ASq1gfk/7aj+RpDOr21wo5IApNPP7g88+aP5GnQTUkZ1Hoy9IeDUY606Q/LUanmu850TqamU1XU1MppoCZamBqBTUqmmSTLUq1CtSr0piJBUi1GKeDTAkFPXpUY6U8UxEgp4qMGnigB9OFMBpwNAh1OzTBS0CHZ4pM0lBGKaERSHMi5x8ozXL6pMZ712P0rorhiFnYH7qha5VsvP9TXJXetjaBnaiQWAA6DFaWwR6ZaR9CQWP41l3R3zkDu2K2dR+SeOEH/Vwqv44rKPVly6I6AU8UynLXqHESg807NMFOFIZS1LHkjPr/Q1z2nZFxIeePSt/Uz+5H1/pWBpY3XL5555rlqfGbU/hZGcnU5B/snr+NZsH+vmH+wa0A3/E6kH4fzqhFj7XKPVGrl6m62JZzjVV5/iGKDn+2B67/wCtMmydUVh0yKWV/wDibA9P3lPr8w6Dw23U5fUBhVa15WUD+7/WrG3OsTDPUmoLTAdx7f1FFtQ6HTQKEto8/wB2sq4l3a4h9wK1IWMiBewrGkI/tsdxurSfQmO5Y1FQuqWI96juW2304HQmjUmJ1O09jxUN4SL2TmuepqzansRQptt7pj3A/nUmngiIse0oqVYiNOlPqBUNk2IXT/pspopSvJDmrJl2Q8YqNTg05/u01BuYL0zXdY5yZTUoOKryN9nhaWUhY0GS3YCvPdW8Z3l1I6WTeRADww+8w9farjBt2Dc9MEyjuBT1uY88uv514jJfXUzEyXMzk92c0wSSschnP4k1fs2PlPdluEPRganWUeteELLdIcq8yn2JFWYtY1SA/u764X/gZo5GHIz3RZB61IrCvGrbxprVvjdcLKPSRB/Ot+x+I5BAvLIj1aJv6GlytEuDR6UDTwa5rTvF+k3+FjulRz/BL8prfjmVwCCCPUUiC0CKcKiVgakBpgSA04UwU4UCHClzTQeaWgB1ISfWikZgqknsM0CMu/l220hz95yfy4/pWDAMybj2BNXNRlJAHtVRPktLiT0XH51xTleRvFWRmQDz9UgQdGkFa2oHfeTP/tVR0aPzdYQ4ztUmrcq+ZcBR/E1KGzCe50fenLTacK9M4yQGndqYtLmkBT1EBkRT0LY/SsGzPl3EnYhua3NSbCIf9r+lYkSkXnJ4PII/lXNU+I3g9CiCW1h88kmqanbfN7hv5VbB26849xVRhjUce5H6VydTdbDyR9rjJPpiknJGq++6khQySRH6U24bOq/8DFVYETklNYf1BqG2OZ3HqDVmYD+3G9CwqtD8t3gepFFtQvodHEdkSPnPy1hs5fUw3fdWzbgugU9AvQ1hx4XVgp7Nzn61VTYUNzQv1X+2LMcYzUGojF9Jjp7fSlv2/wCJnbsM8NS6kAtzx6dK55SujaKtYtPgaISO4Ws+2GIZH9JFq7McaIPQhayo5gkEgLAfMp61nQdmi5rRl9pMjr3pUYggjrWXJfxDgEn6U2LVFBwykDsa9O6OWzsM8Z37x+HXjAwZXVMj06n+Veb21vJd3KQRKS7nAFd74ojk1LRcWsbyukqnbGCx9O31qHwr4U1K1mkuLu28l2UCNXI3e/HaumLfLci6Wgul+EbOBQ91/pEnUg/dH4V0cNpbQoFjgjQDsqir8WmSxId6Bieh9KYbORe/5isnGb1YcyGJFGf4V/KnNaW0nElvEw90BpNrp1FTRtnFQ00O5Rm8O6Rcg77GLJ7oNv8AKsq78A2EylrW4lhfsG+Zf8a6xAKmCjFNSaC7PJ9S8J6rpoLmHz4h/wAtIvmx9R1FV9O8QappTj7PcuFB5jc5X8jXsIXFZGq+FtO1ZS0kQinP/LWMYP49jVqSe5fOnuZekfES3lKx6jEYW/56Jyv5dRXbWeoQXkIlt5kljP8AEpzXkGseENQ0ndKq/aLcf8tEHI+orKsNTvdMmEtpcPEw9DwfqKduwnTTV4n0EjgipAa840L4hxSlYdUQRP085Pun6jtXeW13FcRLJFIrowyGU5BpGUk1uXRR3pitmnA0CHVDdHFu/qfl/Pipaq3z7Is+nP5UN2TYluc7eMDKFBzg4qK5Pl6S3q8mPwFDndITSaoStpbxKOeSa8++rZ0dkHhxMz3Mp/hTGalhX/TFPYGn6EhWxnbOGYn8amsYPOvWPZTmtIL3UjOT1bNcHmnCmd6eK9E5hwpa5zxfc6tDbaVbaLdJbXt9qUNmskihlG8MBnIOBnHIGeK5jw5rviKfxFpC3Wu2upaZevPHut4Qo3xx7ip3RowI3IfQ569aai2rivrY73UBuCD/AGv6VlSr5M0ZAxjOa1NROFj9d1ZkhMk0W7rnjHeuWpubw2MWU51liBg8VBJxqYH+1T3bOuMM/wAVJdcaqo7GQfzrk6/M6FsFo37xPb/Gobxiupk+j1Zs483BGfusR+tU9R41F/8Aeq3shJ6lyUn+1uepAqKAZvsHkbjU7EHV4yDwUQ/pUP3b1znoxp21Fc3/ALifKMcVz4JbU8nqTW9bEODu7jNYFwfL1h+2DSqrQdN6lu+k/wBMh9Qan1UhpVcHqorN1CX/AExMetX9SP8Ao0LHuvBrkS0Z0bWItcuDbeDmlQ/Oqhv1FclYatbXyhC4SU/wOcZ+ldJqyz3vheW1giaSRoVCqB3yK4+08DapP80zRW49GO4/kK9DD0E4e8YVKlmbrRkDkU0ITWjpPhttPGJb+edR/A33fyrZitIVbiNR+Faew13M3VRd8JWRt9NkmPyvMxx646Ct6Gy8vdkgHqTWDbloJA0TEY/hB4rdtNQRyvm8Y9K7KcVaxyzlrccURCQQcCq0iB+Qn6VoiNLiQ4PGOuetNaPYMqPlFU4kqRjSWYY8jBqE6VIxzHya3RHv5xjmpYUG4p37VLgnoyudo5lbedG2sh3VZCSAfMjD6iukktxKCxjBHXOKrag62tqYx949Pes5UEle5SqtuxjCr5sE+6t2gf8AuMMGs4AyOqL949KtyWmOCdz92PrU04J6tFTk+jHNp1yOPLDZ7A9a5HXfA9pfl5YE+yXffAwrH3H+FdXHJdRSIY5HypyATxVx9TW4IFzD04LKMir9mumgo1ZI+f8AUtLvNJuTb3cRRuxHIYeoNWdG8Rahoswa1mzHn5om5Vvwr2LWtK0rV7BoZR1PAIIK+4NcO3wo1dmZ7e7s5YjyhZiDj34pOm2bqvBr3jp/D3jGy1oLET5F13iY9foe9dQrZryr/hV3iaFt8X2YsvIKT4P8q6zQ7zW7ALaeILKSPtHdDDK3sxHQ+9S6c1ujOTh9lnWg1m6rIfKdR/dA/M//AFqvI4IrH1SUkuAerYx9Kwqu0Rw3MoAk47kiodabF0sY6IgFW4BmRM+uazr8+deSNnJY1xdDdbm9psYh8Phz1Y+lSaQAgkfuSSafKnlaJBH6jJpLGPNqDjrXTFWSMHrcuDk08UweuKcK7TA5jxxqMOkJ4f1O4V2hs9atriRYwCxVNzEAEgZwPUVyHhvW7TU/F3hy0tkV2tWuma4FhFaFw8XC7IiQcbWO4nJ3Y7V6jd2NpqEQhvbWC5jDbgk0YcA9M4Pfk/nUNvoekWVwtxa6VYwTJnbJFborDIxwQM9CapStGxPLrcbqoykfOPmrOkfZNCcDBGQSau66xS2Rh13VnIBMtuwxgHHHeuOfxM6I7GITnVGbuWpbv5b8HHIYVGGI1cqf79Saodt8SP71cp0EtoxS9Ydf3hz+dUNV/wCQjIf9qr0eF1B8A8uTj2qG90+6u712jiO0nqeBWvK2rIhNJj0B/tKMn/nkppXQ+YXA6lgavRaW5nimZsFECkAdcVdSyjUk7cknPNbRoSe5m6iOf1TW7rS5rGysdLm1Ge5RikcJO/5QCcAKSeMn2ArFj1q9v/FMVhdaRNp9xL82ydiGACk5wVB5xWz4iEceu6arzQQiXT9TiVppVjTc9qyqCzEAZZgOT1NYHh8pBqfhnS5LiG4vLeS7kcwyrKsUbxjZHvUlTgq7YBIHmeua6Vh4OHvGPtZKeh1z6Ks8okkkbjsOK01hG1VYAhemRU+3FKOBg1MaMIrRGjqyfUZ5YxxTDFVjHpRtquWxNyoUx1oC4q1sHemGP0pgQrUitR5ZFJjFNC3J0upYuFY4q/aaqFAjnGU7svX8ayxTwiY44NaKfczcOx1CxpKsTQuGVySAPSoPtdvavukbLq2do5JrIs7qWylEkbE+o7VFLKZJmlfBZjk1V1uTZ7Fm68QXr/JAqQoOASMtisxrid2LSszue5NSyH+ID61a0m0Fzd7nX5UGcHue1RNc+hcfd1Nq3too4gUjG/GCe5potyckcn0FaUcPAwMAVIIAp3Y4FaKOliLmR5OMl+/GKVYEI6ZNaUkMcnJPSmpbk9BxRawXKX2JGHTioDa+TJujd0btsOK1vLK5FVplGzA6k0cqFcIri5UDdIGx6qKq+KL8aV4cvr4hciAquRwSenH1xV61VGkMZI6Zz7V538V/FlndW8egWLq7o4a4dTwMdF+vrTcuWNx04OU0iPwH4lfUbZ7C7k3XMC7lY9XT/EVoXMnmPn1JNeY+GZLiLxJZG3PzM+1vdSOf0r05kzJt9O1eRiHsj0OXlkx0WAWP91c1kxqst4oHOWzWtKClrO/qMCs/S4jJqCDHfFcz6IaejZ0V1HiCFDxlenvVu2jEdipI6CmX6ASKcdMAVYdwLbCZ+mK7IqzOdsgpwpm7A5pBJngdK6mYmPeC0udang1aUJAsSNbxtKURuuWPP3s5H0q7oMskunszyNLEJXEMrtlnTPBOe/UdulT3EcNwqxzRJIgOcOoYA+vNMuNQgtU3TzIg/wBo1ioWlzHpVcaqmHVFJ9OuisrXS7y6/wDDWi1chok4yAScetZVuyx5CH5c557VHea/Z3ziK2lJZDkswwOtV0vrWJGlmuI1dgTtDCspayujlimo6lVbW5n1SWSOIld5yx4Faq6KJ5A87E47LWtE0aRwcjZJGrK3rxVjYAOK6Y4aK31MnWb2KP8AZ8MZ8xEAY9TTxHirJUmk2e1bqKSIvc4q9+Iuj2N9cWcltfGSCVomKohBKnBx83TitrQddtfENi93aRzJGkhiIlUA5AB7E+ork70ayt7CdA/48/tl1/aZOfI83z3z9px/yz8ry/vcY3Y5zV74WjPhm5/6/G/9ASqa0JT1NnxB4WsvEn2b7ZLcR/Z923yWAzuxnOQf7oqjpPgPS9G1SG/tri8aaLdtEjqVOVK84UdjWwHvb6a4NrPHDHbymNVaPPmMMZ3HPAz6etXNPuPtthDcYwXXke44P4ZBrKNRSdkdtbBypQ5209r73Tauk9Oy6XH7aTbz0qfZRtqrHLcgAINPAFSbKTyzRYCPH4ilCZ/+vUwXHfNKFzRyhci8kGmmIA4PNWcEdelGwHpSs0MqiHd908+lMKFTggj61dMeRxTgDjDAOvoaaEZ+COhpxAI5AzV02ok/1Lc/3G61XMbBsEYI7U7BciCc4PIPatXTJ7a0AEiOxznINZ+w/wB2nrlexprQT1OvS7tp4y8LBWHVG70BztypOD6VyysRyhP0q7a6lNbnGdy91NaqSMuVrY2hgnmp40JOQcCqUOoWs+AT5bVpRLlcqQw/2arcVyKSEkdMmqdwqqQGHHY1q7d/G6szUYf3nl8/MRgjsaTVkJMzZnS3snO8+e7YUj0rwnxbbra+KL1VA2swkx9Rk17B4g1BLPVxbSkLtQYbsRXjXiq8W78TXki/d3BR74AFcdR3lbsd+GVjZ+Htn52tz3bD5baAsM/3jwP613KkPMzY96wvANn5Xhi7uyMG5nCKfUKP8TXSw25DMCOeK8+rrI1k9WQXgK2mBznnmoNEU/alYjowq1rQ2Wq7fTmovDybnDH1JqGveSFf3Tcv2LBQnJLY+lLK4igYngqDQ5Elwi4wvBqhrVxsjfDfKBiurzMN9Cpe6/ptoMSXAdv7sfzGsObxgzMVtLb6Fz/SuMaQnknj3NR/awgIRiT321bk2aKnFHR3XiG9uOHnIH91OBWbJO8zs0jsxPdjms3z3YfKAv15oKvJ1Yn19KhlpJbEks0Uefn/AAFZd9fOpURjAIOc9614NLeZd2dq56kVV1zS1t7OOZSSQ+DmnBrm1G3c09J8bypbwWl4C8cQ2qe6j+tei6JqsGpQgRyq/of6H3rxi60W6tYEn274mUHcv8P1o0zVrvTLgSW8pUj34P1rsjUXU55Uk9j30oKbtrC8LeLLbX4VglxFfKOUJ+/7rW7qE8dhYzXTjiNc49T0A/E4FaNpLm6GUKc5TVOKu3ovU881L4WHUNUu73+2PL+0TPLs+y527mJxnfz1rpvCvhk+GdLksvtX2nfMZd/l7MZVRjGT/d/Wry3t/b3EA1C3gSG5kEaGNyTGxBIVuOSemRxwa2BGe4qYyUtjSth50WuazT2ad1+H9fKxj3GjW9xO0peaMvjzVjkIEgAxhh6Y9MdTVyOBYYkiRcIihVHoBV0xY60bPahQindIJ4mrUioTk2lt/X4emhW2Uojqx5Z9KXZ7U7GNyts9KQxnNWvLz7Unl54NAXKuz2pNvoCKueVzjNHk/SiwXKo98ipBGD3xUpjZewoCnunHtTsFyPZg8n8aXY2OgYeoqYYxgqSPQil2An5Cw9sUuULkAUnGUDD68ipcLKNrqJMevDj8e9KY+fm4PtRsPU8ijVBuQSWWBujyV9O4quYyrYORWmGI5RiD6NTt4Y/Ogz7U9AuzKwAeG/SnqzY+Zdw96vMsbD5VUt6MMH86gLSIcBdp9O1FguNREkPyvtb0b/Gp4p57dh85XHvxUJXOGddv+7Ve8n2u0IJ2AVSJZt/8JPboDHNG7SL/ABKKu22q2GoKpEoDg52v1FeQr4ugt9YuLG+TEKvhJ16r9R6V0I/eRLcW7rLCeVkjORWEsQ1Kxt9WtFNk/jeC3GsrJFj54xux0rh7rTre6yJolb6jmuiuVZySzMx9WOazWjINclSXNJyR0QXKki/pNymn6TbaeifuI2LdeeTW3FdwTDEbYYnoxwa5wAhRS5NYNFWOk16IR2EW9hluaj8OR/ls/nXO31/L5CxySsYwcKCfX0rqtDVkhJQdeKVveRDuo2JJ7hku2xg4BABrA1i4+QKTy3WtS5P7yebPJYqo+lc3qMhaQc5wKuTFFHBLbXFwwOGfPetK30VyAZCF+nNbKRBRwBUyitWDn2KcOlQRjldx96m+wW5P+qFWhjFOxjtUgmRBFVAoGABxWXr6BtHm/wBkgj862GWsXxLI0ekMFH32CmhbopGjYAPYwkgEFBkfhWPrPhcSK1zYLh+rRev0q74cn83So887cqa3U4IrTZ6A9zy63nms7hXRmjkjbgjgqa9Z8L+LLXxHYtpGrFUuZE2B+MSfn0YdawNd8Nx6khuLYBLoD6B/Y+9cN++tLgq4aORDyDwQa1hMpatNaNbM9/h0WUXMUl5qEt1HbtugjdFAHBALH+IjjB45+ta4UEYrgfBPjlb5Y9O1SQC4+7FMx4f2b3969DVc9Oorppxil7pzYmrVqSXtOm1kkvuVkQiMYwelIYsH29asFM/WlVccHkGrsc5W8v2oMZ9Kt+VgZHI/lQE70WC5UCcdKdsB7VZMR7c+3pSbSO3FFguVTGPTikKDt0q3t9qaUBPA59KLBcrhffIpDCTyjVMY0PsfShUQnGcGlYLlbbIp5GM9Djg07Lg8j8qs+SOQxI+vNNaB0GQcr+Yp2HcZ5jEYbB9mFL8p/gA/3Tg0eWxpVVx0GaBCBB/Cwb2PBpfLBYZBB96lUiTh15HRh1FSxwu3QZX1PSlyX2DmtuVDalj0P1ps0YijO47mHSr8siQjanLGsa7uVXc8h+UDA96Erbhe+xHK4G4k1zWqaoFLeWcserelSahfvOSqnCeg71g3uTGcelc9Sv0ibwpdZHA3kpmvZ5CclnJ/WrWla3f6PL5lncMgPVDyrfUVNqmgXemytuAlTg7k7Z9qyhx2rnep6seWUdD0Kx8Z6ZqAEepwG1mPHnRDKn6jtWymnC5j86wuIbuI942GfyryuOyaWFpY7iHKdUdwrfgD1ohu7qxlD288kLjvG2P5UnEydOL+HQ9Okt2jOJEZD7jFQuoRSxIwK52w8f6tCvl3fkXcYHSVcH8xWodbg1qFJoLT7MF4dQ2QTWbgZShKO5VnzdahaxnoZRgew5r0OwVobBWBxxk1wWnJ52uR+kaFvxPFeh3jCDTDgjO2kviMpvoYN9Kpnfa/B+b/ABrnrlg03J4JxVyaQlyfQVnAGSZcDPespy6lJDAeakU/nUYHvUiV1MyRKvrUgBzTFWle4hgUmWQA9hU2KH4zxWL4lt2k0iTaMlSGqxLrIH+pjz7tWRfXE90jCRyQf4RwKWzuWosh8LajGga0Jw2dy+9dhG+6vMLiB7OZZoiQM5BHY12ug6suoW4DHEy/eX1962kr+8gsdLEc4FZfiDw3Hq8BmgAS7QcH+/7GtKE9KvRVncWx46Vls7gxyKySIcFTwQa9i+HvjEanGulahKPtSjEErH/WD+6fesTxL4aTVoDc2yhbxB/38Hp9a88hkmsrn+KOSNvoVIranUs7lyiqsbM+ofK9qaY8c1z/AIA8WR+JtOFvcsP7RgX58/8ALRf7319a61oOcjpXemmro82UXB8rKYBXkU4xBhujH1X/AAqYpsPP3TSFDF8w5WgRAq55HUUpTd0GD/OrLRhx5iHB9f8AGm7c/XuKAuVwPVfrSbM9Bx71ZK8jNI8bR4kA3Ieo9KAuViitwRzSeUpUgx7vfuKs/KcHbj8Kc6KAGGVPc0WC5RWMDjofenhMEY/SrDRjd9aPJzmiwXIWtweRxUYhfOOT9OtaMNq0pH8I7HvUkgSP5U69C1OwrlBbbYN0h/AUk1xsjIUe1PuZAi8nk/pWLd6gqA7T83b2qZTUFdjjFzYl7dpaxncd0rdR6VzN3dSTsWdvwHQVLcytIxLHNUZDXBVrOei2OynTUSvIaoXHzyRx93cD9atyGuf1LV10/U7Usm8IwdhntmsUrm1m9Eb9/wDvLqXjjdiucv8ARoLhi6Dy3Pden5Vv217aaope0mDO3WJ+GH+NQyxMrEMpBHY1SJ1izh7rTLi2JJTcn95apnrXePH7Vm3ejwXGSF2Of4lpm0a7XxHK9j9a6zQ08vSUP94lqwp9IuoXCohl3HAKdT+FdNbRm3s4omGGRQCPQ1Mh1ZqSVjU8NReZqk8nYMqD+ddfq0qJbRhcnLck1z/g+EMRIRne7uf5D+VXfEN2y3ARfuDkVinuznersYd1KPnOMZOKjskLTr9ailkLsM8dzVnRhvuQ7cjuKzZWyKHC8sQB6moJdTt4eFJkP+z0rCkuJp+ZHJ/lSKO1dQlE0ZNUuJjhGCL/ALPWqxDMcsxJ96YgNTKoqWWlYQcc0uNwOBT9oIpyrikWihNbrIjIwyDWPG0+j36yITwePceldJtyTmqt3ZrcxFGHPY+hqoT5dHsDR1WkajFf2qzRn6j0NbcbV5TpWoT6JqG187M4dfUetenWFzFd26SxNuVhkGqlG2xkzUi5rmfFvhf7dG2oWSf6SgzIg/5aD1+tdLESMA1cTmkJOzueNaRql3o2oRXdrK0c0ZyCP5GvoXwb4utfFNjxtjv4h++hz1/2h7V5N4y8L+WW1SyT5DzPGo6H+8K5vR9VutH1CG9s5THPEcqex9j7VvSrcj12LqU1Wj5n1E0IZSccVBsMR2sMqap+EfE1p4s0pbqAhLpBieHPKt/hW68G4Yxz6V3qzV0eW04uzMsxtC26PlTSMglGV4Ydq01syn3unpTzAh5Cj8qTYGSp3KQw5HX2qaM8FWGQauvao44G1uxqr5DRyEMvHtTTAhaFVyVPHr6Uvl5Q46dwaslMAEDcvtViG2GN7kbOw707CbM2KE52bc1OLdIl3Oc46Crk7KkYEYC7u9QRqHJkb/Vp09zRYVxrFoot5H7x+EX0rOuJ0t4wWOW5P1NO1C/CFiCN/T/dHpXM3dy8zH5jisatdQ0W5tTouWrC9vnlY8/hWTNIScnk1M7Yqq5zXnTm5u7OyMVFWRXkOarPVhhkVWlYKOakopyj8q4vXsnUkaSJjEMAsO4713CwmY7m4T09ahu7aOXhkGPQiqTsJTs9DjptK8l/MtJWTuMmr9t4lu7YLDqcJnjHG/8AiH41oTWozjHHrVGa2yNu0H61aSZPtJfa1Nm2e11FN9lMJO5jPDD8KY8ZUkEEH6Vy8tg8UgltZGjkHPBxV608UzRkQapD5oHHmDhx/jSaaKSU/hNyxQfbo2YcJlj+AqhPcKRI5PJya0YLq2ls5ri2uFkURkBehUn1Fc1fSeXEc9TxUtXYJWPQfDCm3t02/wAEQ5P51matP9pu3fdwDgVyuleL59KspbaWMz54Rt2CB6U6HxLBdN80flvnlWas/Zys0HU1JG4fn0Fa+kRiM7wPlxzmuCu/EzRFhFaqQGPJetW0+IMKwwxXFgYgowXjbcD74p+wnvYlzWxlbMnrUiKMcU0U5c5q2aImGF96dn0pip61KqipKHIp704g9qTOKcGJ4qWMYq89KlK5HShYmY8da17PRp5lDOPLX360tegOSW5y2pab9qj3Iv71emO9O8N6zLpVz9nuQRCxwwP8Br0CDTIIF+Rdzf3jXOeKfD/mKb62X94v+sUdx61tHRWZn7RXsdfbyLKispBBGQR3q7GTXnnhTXjC62Nw/wApOI2Pb2r0CJtwBFJ6CkrFwKsiFWAKkYIPT6V5h4t8NnR7r7VbKTZynj/YPpXp0Zpbm1hvrSS2uEDxOMMDSCMnF3PJ/DXiK88N6vFf2bnK8OmeJF7g19O+G9csvEelQ6jZsCrj5l7o3cGvl3X9Em0LUWhbLQt80T/3h/jW94C8Y3HhbUhJlnsZWAnjHb/aHvXRRrcvuvYqvRVaPNHc+mpIgarNHg4xT9O1C31G0iuLeRZIpFDKyngirbR5Ndt7HmWKSRZqU2iyD5u3Q1Y2KgzTXfG72/nSuJoptHDAm9V5PSoZizSLDnJIy5qSdgsiKx4jXJ+tUpZfs8ZaQkSynnHVRV3srslK7EmPnSkgjYvA9Pc1majqqxx+TATgd/Wob7UdxKRfKo4H0rFmkyTk8muSriOkTrp0OsiOeZnJJP4VUkapHOetV5DXG3c6kiFzmoG5qVqhkbaKkCGQ4zUCwmVtzjCjovrV2K3LHe/HcCnSICcjg0yW7lZkwBxVaSLPOKvcchs/WoyoPHanuTsZMkO4e9VXtgOO/ethogDx1qKSMbc45qoiZgTWuOgxWZdWSTqQ68joR1FdNLEG68VTkts5AHXvV8xKTWqOIVJ7e+EcTHeGwNveutl06K4h/fL85HBHasyDSLqz1eOZSJIyxLE+ldFjNZyeuhvOV7HIX+jTQZZBvT1HashoiCa9CdAO3FZd5pUM5LBcMe4oUrEp9ziXtyaqvGyDjp6V0lzpcsBJK7l9RWXPBtBOK2hVFKKZtqvPNTADpSSIYpWRuoNHNYmiZKKkGelMjQsRxk1r2ulzTYL4jT361NhtpFBYyxAxmtO10iWYgsPLT361r2tjBbjhct/ePWroAp8pm6nYrWunQW+NqZb+8etaC7QMZpoFKoGeaexG+5KMY471G8WcgjOaevHvTz933ouB5z4m0JtOuPttsuIGbkD+A1veFtfF3GttO375BwT/ABCuhurWK4geKRd6MMEGvNNW0240DUlaNmEZO6Nx/KmaRd9GetxNkZFWFPGRXLeG9eTU7YBiBOg+dfX3rpY3zgikJqxX1rR4Nc017aXAkHMb/wB1q8furW40y+kt5lKSRthga9wTGOK5vxh4cGr2f2u2T/TIRxj/AJaL6fWkzSlU5XqHww8af2TeR6beTZ0+dsKWP+pY/wBDXvqEgYzkdj7V8aQymCTDZCk4I9K+g/hj41/tSwTSNQlU3cCYgkJ5lQdvqK66FS/uszxdD/l5H5noUkvzc9M0pJxk/wAPzH61VaZI5DJI3ToPU1lahrBZTFEcDv71tOcYLU4YQciW5vo4VL7g0jNk5rCu7153YsetRTTFjyeaqs9cdStKZ1QpqI2R/fmqzmnu2Kgc4HWsTUikPPrUDe9Ssc1DISeFGSewpDIHb8afFBg75AC3YelWIrcJ8z8v/KnsvHFFiW7kLcHFQMKsumcH1qKRQI2ckAKMnPYU7CuVZiqRF2YBR3NcvPrsyXm6DBiXjaw+9UmrambxjFESIAf++qxXXB9qhytsbRgup1lnqdtfjCnZJ3Ruv4VaePIya4dQyncpOR0Petix154cR3WXTpvHUVcZp7kTpNao13j46cVWdKuLLHPGHicOvYio2XNWZFLaAcYpAoAxU7rzUe30qGVcgkHoarSVakHeq0g/KkBXIyeRWPqdnC0bORsIGcitlwQM1h6xc/dgU8nlvpTiho0NRg3FJVHPQ0+10ySQAv8AIvv1q5H6/wA6uROCAe9a2M+ZpaC21pDbD5Fy3qauo/PNVgamjqQLaHvU8eOtVEeplbC/WmIsBskmlyKg3e9SKcrUFE6n8qeDz7VAG4qRCDwaBkvU1Q1XTYtTs3t5VHP3WA5B9a0RigDJ6dKAPJf9M8OavtJ2yRng9mFemaJrEOp2azRnB6OvdTWf4i0JNWtDtGLhBlG9fauD0vUrnQtSOQRg7ZIz3FVuap86s9z2hHAxUyN37Vi6fqMV9bJNC4ZGGR7VqRyZpGbVjivFPg2W61NLvTUULOf3yk4CH+99KzDc2OiPb22mXTzahDIJDdKcKpHYeor0a/gF5p9xbEnEsZXI9xXhe5re4Kn7yMVP1o22Oii+bR7H0dY64dW0q3u1bmVAWwe/f9aRpD61xvw9u2l8OMpPCTsB9ODXTvL1ApOTerMpRUZNIkd81CXJqNpBTGkpCHM2PrULHPJoZvWoGZpH2J17n0pXGO5dtqjLYqzFbCJd55Y96dHCsQx1IHJ9TSNMSQG4Hb0qlZGbuxGGSajI5qUkdRUch2qWosBGzgRnccY5ya4/WtXa6Y28BIhH3mH8X/1qn1rWDcFoIGxGPvMP4v8A61YJGRkVEpdEbQhbVjdpxUbjvUufU1Eck+1ZmpCW2mlxlc05k3deKj5X6UwJoLma1k3RuR6jsa27XVorghZP3cn6GueOOtIOuc1SlYmUFI65xuGe9RMML6GsO01WW3+R/nj9D1FbC3cNzGpibOByD1FaJpnPKLRHJyarsRyD0qw57VVkI5oJK08ohRmb7qjJrkLiYz3Dyn+I5A9K2tausIsCnk8n6Vz7EA1SLS0O0ifpmrUTbWxng1mxP05q2rce4qjI0VPFTx81TjcFcjoamVvSkBaQZIyamZ8YAqskmOtG/JzSeiGtWW1apVPHvVaPjnuelTCRVGBy1SMnU4609Tzx1qsGzU6mgZZVunrVhMFGb2qmHAGe9SxsSpGePWmhDzyOK5Lxf4f+2RfbbVALiMfMo/jH+NdcOOgpsigp65oWgdbo8t8Oa/JpN15cpJt3PzKf4T616ja3aTRq6OGVhkEV534u8Pm3kbULRP3bH94o7H1qPwr4jNpKtnct+5Y/Kx/hP+FO3U2+NXPV0lrw/VADrt4E6ee+Pzr1TUNYj03SZrtvm2L8oHcnpXklpKZ9ViaQ/wCsmBb8TzTQUk1dnsfhaw/srQIIDw7DzH+prVMhJ9qgD4A54FN8zNZi3Jy+TTC1Q+YBzSxoZjk8J/OkJuw4bpjhPu9zVqNEjUBRQNqLhRxTS1BO5KzNs9jzUB54NSbulNLAina4rjA5Tg8j+Vczrmt+a72lu2EXh29T6fSul9yeO1Y+r6PDfKZowI5/Xs31od7aFQaUtTkNx/ClGMelOkgkt5THKhVhSFQy1idNxh5pvrjpT9pHXpTTgUARNn8KiJyOaldqhfmmAwsRwabv4xSnp61GaBNknFCyNG25WKkdxUQPrSM2c81SJZqQaqGws/H+0OlTzSosTSFgUAyTXPs3UZqWCF7m3li81lj6cetWmZSS3Mm6uGlmeQ/xHj2qoTxVq8tprZsOMr2YdDVJjWsUDZ//2Q==", "path": "images/4pts_ADE_train_00000416.jpg" }
depth_point_21
images/3pts_ADE_train_00009267.jpg
ADE_train_00009267.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 235 y = 170),Point B is located at (x = 180 y = 172),Point C is located at (x = 11 y = 222).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_70><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_70><DEPTH_5><DEPTH_67><DEPTH_17><DEPTH_17><DEPTH_67><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_49><DEPTH_43><DEPTH_49><DEPTH_75><DEPTH_5><DEPTH_22><DEPTH_17><DEPTH_67><DEPTH_70><DEPTH_6><DEPTH_47><DEPTH_65><DEPTH_48><DEPTH_56><DEPTH_17><DEPTH_39><DEPTH_80><DEPTH_17><DEPTH_5><DEPTH_7><DEPTH_56><DEPTH_28><DEPTH_28><DEPTH_28><DEPTH_22><DEPTH_72><DEPTH_56><DEPTH_43><DEPTH_56><DEPTH_78><DEPTH_20><DEPTH_13><DEPTH_13><DEPTH_75><DEPTH_83><DEPTH_44><DEPTH_64><DEPTH_77><DEPTH_61><DEPTH_82><DEPTH_77><DEPTH_62><DEPTH_50><DEPTH_66><DEPTH_78><DEPTH_55><DEPTH_27><DEPTH_14><DEPTH_27><DEPTH_94><DEPTH_9><DEPTH_39><DEPTH_45><DEPTH_41><DEPTH_42><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
3
[ "B", "C", "A" ]
<DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_70><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_70><DEPTH_5><DEPTH_67><DEPTH_17><DEPTH_17><DEPTH_67><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_49><DEPTH_43><DEPTH_49><DEPTH_75><DEPTH_5><DEPTH_22><DEPTH_17><DEPTH_67><DEPTH_70><DEPTH_6><DEPTH_47><DEPTH_65><DEPTH_48><DEPTH_56><DEPTH_17><DEPTH_39><DEPTH_80><DEPTH_17><DEPTH_5><DEPTH_7><DEPTH_56><DEPTH_28><DEPTH_28><DEPTH_28><DEPTH_22><DEPTH_72><DEPTH_56><DEPTH_43><DEPTH_56><DEPTH_78><DEPTH_20><DEPTH_13><DEPTH_13><DEPTH_75><DEPTH_83><DEPTH_44><DEPTH_64><DEPTH_77><DEPTH_61><DEPTH_82><DEPTH_77><DEPTH_62><DEPTH_50><DEPTH_66><DEPTH_78><DEPTH_55><DEPTH_27><DEPTH_14><DEPTH_27><DEPTH_94><DEPTH_9><DEPTH_39><DEPTH_45><DEPTH_41><DEPTH_42><DEPTH_END>
235
170
180
172
11
222
null
null
null
null
160
15
90
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDm6DSijFfRniCc0YpcUYoASilpcUAJRS4oxQAmKMU7FGKAG4pcUuKMUAJRS0YpAJRTqMUANopcUtMBtFOxRigBMUYpcUYoASilxRigBuKMU7FGKAG4oxTsUYpANxSYp+KMUAM20bafijFMCPbRtqTHNGKAI9lJsqXFGKAItlIUqbFGKAINlBjqfbRtoArmOk8urOKNtAWG9qWlxxRTsAlFLijFKwCUYp2KKLAJRilooATFGKdiigBtLilxRigBMUYpcUuKAG4oxTqMc0AJikxTqMUANxRinYoxQAmKMUuKOlACYpMU7FFACYzRS4oxQAlFLRigBMUYpcUYoATFGKdikxQAmKMU7FGKAG4oxS4paAG4oxTqMUANpcUtGKAExRilxS4oGMHSjFLjijFMQmKMUtGKAEpcUtGKAEoxS4pcUANxRTsUYoATFGKXHFLikA3FGKdijFACYoxTsUmKAExSYp2KXHNMBuKMUuKMc0gEoxTsUYpgNxRinYoxSAbiinYoxigBuKMU7FGKAG4oxTsUYpgNxRinYoxSAbiinYoxQA3FGKdijFACYpMU7FKBQA3FFOxRigBMUYp2KMUAR4oxTscUYNUIbijFOxzRikMSinYoA5oEJijHFOoxQMbijFPxzRjigQzFLinUYoAbilxTsUYoGMxS4p2KMUANxRinYoxQIZilxTqKBjcUYp2KMUMBuKMGnYpcUhDMUYpxFGKYDcUYp2KMUDG4oxTsUuKBDMUYp+KMUrjGYoxT8UYoAZijFPxRigBmKXFOxRigBuKXFOxRigBuKXFLilAoAixRUm2kIwaYhuKMU7FGKAG4pQKXFKBQAmKMU7FGKVwG4oxTsUYoAbijFOxRigBMUYp2KMUANxRinYpcUDGYoxTsUYxQIbijFOxS4oAZijFPxSYoATFGKXFLjmgBuOKMU7FGKAG4oxTsUYoGNxSYp+KMUCG4oxTsUYoGNxRinYpdtADMUYNPxRjigBmKUCnYoxQA3FGKdilxQA0ClApcUuKAGimEZNOAoxmmhDcUYp+KMUANxQBTsUYoATFGKfRikMZijFPxRigQ3FGKdijFADcUuKXFLigY3FGKdijFAhuKMU7FGDQA3FGKdijFADcUYp+KMUAMxRin4oxQAzFGKfijFADMUYp+KMUAMxRin4oxQAzFLinYoxQA3FGKfikxigBuKXFLilxQMZS4p2KMUANxRinYpcUANxRin4oAoAixRinhaXFO4iPFGKfijFADMU4KOaXHNLjBoAYBS4p2KMUgG0Yp+KKAG4oxTsUYoAbijFOxS4oAZijFPxRigBmKMU/FLigCPFLin4pMUANxRinYpcUAMxRinYpcUAMxRin4oxQAzFGKfig0ANxSYp4GaMUANxRinYpcUAMxRin4oxQAzFGKfijFADcUYp2KXFAEZ4FLjinYpcUANxSilxSgUAMxRtNS4FFAiErg0mKlYZpuKAG4pwAIpwQmnCIgUMaI9tJtqQjFJigVxmKXFOxRigBuKMU7FLigBmKMU/FGKAG4oxT8UYoGMxRin4oxQIZijFOxxS4oAYBRin4oxQA3FGKfjikxQA3FGKdjFLigBmKMU/bRtoGMxRin4pcUAR7aMcVJtoxQAzFGKfijFADMUYp+KMUAMxRin4pcUAR4pcU/FGKAGAUuKfilxSAiAJpwQmpQoFGcUCGeXTggFG6jJoBCgAUFhjoKbSGgdxh5NGKdilxTEMxRin4oxQA3bRinYoxQA3FGKfijFADMUuKdilxQBHil20/FGKAGYoxT9tG2gBmKNtP20YoAbijFPxxRtoAZijFP20YoAZijFPxS4pAR4pcU/bRimAzFGKftoxSC4zFG2pMUYoHcjxS4p+KMUAMxRin7aNtAhmKMU/FLigYzFLinYpQtADKTFPApCKZI3FGOadijFADcUFafigigCPFLinYpcUAMxRin4oxQA3FGKdilxQAzFAFPxRigBuKMU7FLigBmKMU/FGKAGYpcU7FLigBmKMU/FGKAON8R3usJrU8Vhq9tp1pa6et3O9xEWHMwi42o7Zy6dsdaseFbvV5b/U7TVr2K6MCW8kUkSgKySIXVhhQcFSp5GR6CqPibWLTSPE14t2XUXmjpbo62kdyFYXKyZaOQhSMRkexINT+DtTh1nXdevreFYo3W1XAiWPcVRlLbF+VdxBbaOBnFedGcvrXLfT/gHfKEfq/NbX/gnX7aTFSYoxXoHCMxRin7aMUAMxXntx4X/wCEn+IOswtHdskcUKobZc4ldURN3BwgyWPsp5HWvRcV5d4xt9al1u/t7LTLl7aS4huPPhgdizJEFX5hxgZb8Sa48am6at3OrBtKbv2Nz4aIU8O3SspDLeOCD1B2JXZ4rnfBf22Wx1K61CyazuLrUJJ2iMTRgbgpO0NzjOa6XFbYdWpRMq7vUYzFGKfijFbGQzFG2pMUYoAj20uKfijFADMUYp+KMUANxRin4oxQBFijFPAoxQIZijFPxS4oAZigin4oxTAjxS4p2KXFIBmKMU8CjFADMUuPanYpcUAMxRin4pcUAMxRin4oxQAzFGKfilxQAzFGPan4o20AMxRin4pdtAFC60rT76USXdha3EgG0NLCrnHpkj3NWbPQo7Hf9i0pbffjd5Nvs3Y6ZwOep/OsNWtv7PvL2e6aLV4SfL2zlWjbeBtQZ6YJ9epq/GuonRV1CbVmjZjhIGnffJggMR24J9fWvLjj1KWkV33799NH5HsY/LHhIJ8zerT0tqrax1fNHXfT01RsDT7w/wDLpP8A9+zS/wBm3p6Wdx/37P8AhWO+n66skqSfaVaKHz33TYwh75zRPo+twWQvJY5xAQrbvNzwcY4Bz3H5itfrj7HlW8mbX9lX5/5crj/v2aX+yb//AJ85/wAUNYN1o+o2Ud014Xhe3WNyjNksHOB0pn9nKNJiu5L1VnnYiG3KsS6htpOeg5/kaX1yXZBbyOh/sq+/59ZB9RWbDeWlxefZIrmFpuMDeMMTjADdCeRwDmqM/hvUlh1BtqFbIYnZJA20n0weSO/pVVfDOsSSnTm02WK4jiEzMxUIsYxlw2cHGeQOevoawrZhUg/dS/HXy8j18uwNDERbq3WqW6Vk73k7rVK2y189Un0zWdwkywmFvMYEqoGcgdelO/s68/59Zf8Avmsnw4w8u9UgMqKkig5wGztz+RIrS/5as5ywYfcZiVH0GeK7adWrNXSR5SULXZL/AGZef8+0n5Uv9mXg6271EqJbpNfBMuinYhJ25I9PoP1qK4sYZtVuJ5IlYyQldvO1T1yB755PtUzrVYXbSNYU4S0TJZrSe3AMsZUHgZqLFOsoPJ0hFWFVjVlCuBy/yknP04p2K6KUnKN5bmM4pOyI8UYqTFGK0IsR4pdtPxS4oAjxS4p+KAKBkOKMVJikxQSMxRin4oxQAzFGKkxSYoAZijFPxS4oAZijFPxS4oAj20uKfilxQAzFAFP20uKAGYo20/bRigYzbS4p2KXFADMUYp+3mjbQAzFGKkxRtoAqX1tC2m3s7QxtKkS7ZCoLL86jg9up/OsldWI0pbF7WCQoxMUzgl4wSCQOcckfqa3L0f8AEmv8f881/wDRi1yJrzMSl7RjnUlpr0sbep+JbnVDMZYYkEsKwkKScAPv4yfX9KbJ4ivJrZoRHGFKBchTkYEfP/kJf1rGrqfBuq2mlvdG6k2CVokHzAcZOSeDlfUelc7VhwnKUrN2uZupeIbzU5Lp51jBuURH2542nIxknHNQx6tcpposfKhZEbekjRgugyCQG7AkA1sQf2EbfS/ONsJftGbjG4nGWyG7bfuYx71PLPocNtry2j2ytLlYfvElSFICHpjduzn2pXRXJLdy/rcwTrt6YL+Asnl30nmyjb0bOcr6VMfFGqG8F35yCbyhCWCD5lBB59ckc+tYx60lVZGXtJ9ze8Nnc2of9cQf/H1rW25PFZHhn/XXo9bf/wBnWuhtwEZpj0jGR7t2/wA+1d2GdqbfmXHVIZMoV0g4IThvcnr/AIU67GzU5zj+8MVGMlwT1zkmptQz/aMpYAE5yB9BRiFaHy/VG9F+8RwjOhQj0kH/AKDUGKsWgJ0NeBtDrz3zio8VtRfumdTcjxS4p+KMVrczGYo20/FGKLgMxS4p+KAKLjIMcVyOp+MNQtdfvNLsPDlzqTWoRne3ZiQGUHJAQ464rssV5h4yQajf3thaXtrbXUGoLPMLi5SDejW8SowLEA7CsnA5HmcDrXNiqkqcE4vqbYanGc2pHS+EvFh8Um9BsfspttnBl37t27/ZGMbf1rpsV5b4I1tLXxJrBnuVuY7u4Ba7K7N53Ph8ds5zjtmvVVwyhlIIPIIp4ar7SGr1JxFPknotBuKMU8LRiukxsMxRin4pcUAM20bak20YpAM20Yp+2lxQOwzFG2n4pdtFwsMxRtxT9tGKAGYpcU/bRigBmKMU/FLtouFiPbRt4qTbRtouFitfjGi3/wD1zX/0YtcdnrXaXxtxptxFc3UNskqhBJM21Q2QR/KuUVdHEkkcviCyV0bB2hmB9wcYIrzcS/3hTpTmk4orVr6VYwXsIJRnkSQlkU8uCAEUfVyB+PtVPGhj/mYrb8I2pRdaNCvlp4kjVWYMSkTYyOn8zXO2EaE09YmlaeGp55dVhlmjil05S0i9d2AeB+X606Hw20lyI2lk8rZK29Is/MgztHPU1myXmiyyvLJ4kMkkhy7eQ5LH35qKS90SKJmGuzsF5AFs4/rSuaewf8v4lU0VOLnw8Rn+07o59LM//FUouNAJ4vdQb6WR/wAad0ZfV6nY1PDH/H3dj1tj/wChrXSSjZEkI6/eb6nt+VcrpGt6Dp8zzpJqM+9THgWhwBuB7fStB/FukMxbyNWJJycWZrpoVYxVmbKjNRtY1AMVPqEbyai4QZOM4/CubfxppK3Bi+z6iuFyd9uQfbirD+OdLa6MyQX2cY/49z6Yq61WElp2/wAjSnTlF6m1p/Ph45671NRYrBg8ZWSQQafBaXjSzyqih4iK6LFa4eSadjKtFp6keKNtSbaMVvcyI8Uu2n7aXbRcCPFBGCBjIPf0p5U44xn3oA4GaTYHP61r9rptm7JMjzMCqBTnB9TXkd7ZW+oXslzcyTGeU5bDAD0HarBbzpdi8EtgZ9TVySyUxqPKkUOWWOUtwxXrmvBxGLlN3a0X4Hv4HLZTj7rSbaSvfVvZKyf42XmY9tbx2LusPmHcRnLA9PoPevSPBviAXGdLuZVMqjdAT/Evp9RXnqq6MzO2PlwoJ9abEtxFeJPay+VJCQ0Z9xV0KzpSuctWl7RWPdsUuK47w54wmu5kttTEaMRjzBwN1dbPd29qqtPMkat0LHrXsQrQnHmTPNnSlB2aJMUYqlp+r2uo7xE2CrlQG4LfStHFaRkpK6IcWnqMxS4p+2jbTuIZijFSYoxxSuAzbS4p+KNtFxjMUYqTbRigCPFLin7aXFFwI8UYqTFLtouBHijbUmKMUXArXFulzCYpAdp9OorGj8JWSTyyefefvMEgTkHI9SOtdFtpdtRKEZO7RSlJKyZh/wDCNWXea+/8C3/xoPhq08xGE95hQQQblyefQ54/CtzbRil7OHYftJ9zEPhqwJyWvT9byX/4qmz+F9PngaIm52tjObqQgjPQgtg1u7TS7aPZw7Bzy7nPjwfoXexz9ZnP/s1PHhLRF/5cF/7+P/jW7ijbRyR7C55dzBh8JaLDEqCxRyByzM2T7nmtSGzgt41jijCIoACqTjAq1ijFPkj2Dml3KUenW8d3PdBMzTkF2Jz0GAPp/jXF/EHS0hhtL62RhI0hiaNCQHJGQSAevB/OvQcUiKovrR2C5SXIJHQ4IrOrGKg9C6cpc61OR8E6NbxaJZ6g6s9y/mOGYk7NxwQM+ygfnXWbajs0CwFQAAJH6f7xqfFVSSUFYmbbk7jNtGKkxRiruSR7aMVJtoxRcLEbLkGmkcZqUj5TULkJCxJ+6Mk1EpFJHhLqI1IK4xwcdvetI3RNkoldmByAAMdf8akjt4msJpi/3wqgMMHOeSKhRlubA2R2JNG5KsTjcPT868SVKL3PZpYqtST9nJpPf+v63ZjXZ2ksSSo4qeL5LdB944zx2qhcownEUisTjgetXlUwxLhSWxyDUS2JTJ7eYlJ0mXG35oznBJxir8Gq3Gp2S2Us5H2ddxY9lzjP8qyoB516kPmbA+dzY6DFXLXSmmcQwzqsk2dnH3iPX8jWtNu1jOaRettRdNkkXEkJDrx1IP8AWvXISzwRu4AZlBIHY4rxCGeOx1C0mZmUJKpYsMjGeeK91QrJGrqcqwBB9RXoYOTadzkxSSasJto20/FLtrsucgzbRtqTFGKLjGYoxUmKMUAMxRtp+KXFADMUYp+KMUAMxS4p+2jFFwGYoxUmKNtFwI9tG2pNtGKVwI9tLin7aNvNK4DMUYqTFG2ncCPFLtp+KMUrgMxRin4oxRcBmKY3E0Bz0kHapsUyRfnhOSMSDkVnU+Bl0/iRBaAeU+Onmv8A+hGp8VHaJtSRfSZ/51Pj86IP3UE17zGYoxUmKMVdySPFI3Ck+lS4pCOOaTYWIj91hVFn4kjbocg/SrgIJK56cGqM5KSBgR0x/n8cVjOWlzaEdbHi08xldVVdqJ8oUHNQW97FbavC90hkto2DSJ3ZQelOjYYyc7PX0NQG181JZQN4AC5HZieK8qLfNc9CytYku8NeiaPmJw0qn+4maem55WlkBESdBnr7ipZ7fy1a2YfOCI5GHr6D2FBjVZfsk8oVYQTxyT2AH50bseyFjhluvtN3aReWIFDbcZ9quafeKXjeZRDKgOyUDGCQc59ye9a3hLRjLPdSS/NDDAWBB4J5xn9a6WLwolzHeTgApLCY0jzj5h3z9a6aVKTSaOapUSbRyeleH5bjxJYx3roFMpYwMMggDOPxr11UCgAcAcAVwFppl/B4/sYJFLQ28BcSnnIxg8/U16GBxXZQSin6nNWldobijFPxRit7mI3FLilYqiF3IVVGSx4AqH+1NHSMGTUV3EZwqFgOfUVE6sY7s0hSnPZEoFLio/7Z8OjrqUh+kLf4VWGuaS7ELex4zgbsj/JqY14S2ZToVFui7to205GV0V0OVYZBHcVl32pyW88kSKnyjgnr0pzqxgrsmFKU3ZGptPYZqZrG4WLzDC4X1xWJp/im7gskURws7DJcqck4rf0a3g12xN9fx+dI0jrgsduP93OK4541p+6jshg19tlNmRJDGzAOOqk9Kcqlz8o3fTmuZ8bXht5tTjhZ45EICsvbgHj8Kh0u7+zW6q17NJIxB3NweQvHH+8Pzqli5Wu0S8JHozrWQo+xhtbrg9aMVzv9ssLgyiTzSVwGYk5GM1janql7JGrLdSr85A2sRx2prGK2q1JeEd9Hod3ijFJb5a2iJJJKKST34qTFddzksMxS4p+KNtFwsMxRin4o20rhYZijFPxRii47DMUYp+KKLgMxUNwdgjbp+8HNWcVVvuIUPpKv86ib91lQXvIS1BxNk5PnP/OrGKhtB81z/wBd2/pViiD91DmveY3p1qNW+dhSTvjHPHSoY3/fc9AOaHPUahpct4pCOKbCxZWz1BqQjinzaE2szOkPlXx77xjb+BrPuyPNdDk5Q44q7d4adGBGcgHPaqV7+8VXRsMxyPqDg/oa5pvc6YLY8ShnkfeEABXpj1qayUC5dZ2Ij37pMdeP/r1ThdWUeUSHzuPOMYqVRuiaNy4uSxYnt3/+t+dcFjsLtvG8l9JLKV3Bydm7qe2P89q2Y9OEMzkwSBlA3P8AeCg8c/U1hw3DR6hO77EIIAUrnBxitqz8SZt3juLtEc/LtMTEsB05FXGy3Imm9jR8Oan/AGNqd3a3gIE6YQg8Fug/nXqNvEsVuiIOABXiMzWlvel57qN5Ijwsm7AI5wMdMH9a63T/AB7K0O2S809mH94spP6V00ayirM56tFy1R6LsXfu2jdjGe+KcBXFr43IxmXTGPcfacf0qM+KVkuEm89AFbdsjvxhvYjHStvrETL6tM7nFGK5lfFoI5ggP+7dJ/jViPxOGGfsmf8AdnjP9ar28O4vYTKPiXC6mu4khohwD7kViy7PKt/mLZV/nGPWtjVJxqdws3kTR4QKAAjdyf73vVF7dpFjCGddgbjyeDn6GuOTTm2d0dIJGexTYwyx4PH4VhTkrJLjIIuYiOeny9a6wWM3UNKPcwPWdP4buZpZm85iZJll+aCTsPpSTG97npGnc6da/wDXJf5VjaqinUJSfQfyq7aapb29nDFIJtyIFJ8h+oH0qjfTxXF08qMQpAxuRh2+la4ialBJGFCDjUbZk2ULeShOWzyM9uBxXoPg35dB2+kzjH5VwUEZjjiGYzj7xZiMfL2GK67w1qthp2ltBdXMUcnmlgBkjBA/wrjaZ13Ry/jyLN1qrgDOAev+wO1U7a2ZoYH2PyqHj6R//E/z9K0/FQj1Sa/a0mt5FlUBPmAJO3HeqtpasLeBCLfeqKCBMOoCe/t+nvVrYjqVRbECMbZOFI5GP4cVSvV22oHpJjn/AHRXQS6VdWoDTW3lK54Lt14xxmsy70y7e2LJAzL5nVRxjaBU9SzuLPmxtz6xL/IVPjisLw3dTQ6ADqLv5scjqFYZbaD8uAPatZL6B7trYb9yqG3FTtOewPrXqKorI8t03dk4FLioZ723t4WlkkwinB2gk5+gqnqGsQW+lXN3ATMYhgKo5LccfqKOdE8jNLFGK4ex8R6veXUN7PGbWzR1jljIwpGCS5J5Hb9K6WXxDpcFjFeSXSiGYZj4O5ucdOtCqJlOm0aeKQ4VSxIAHJJ7VUstWsNQh8y2uEcYJIzyMYzx+IrmvFmozSyx2cbtBbGNmkk3bc+uR3AHbvmk6iSuCp3djsMVFLPFFGZHcBc44559Kzpb37PocclvPHM8aqhkU8ZA7/y/GuZ/4SFIzdWs+zLbnZYz/GO+enNTKso7lRpNneVVv13W4AH8a/zrn7zxXHFoTPFIgvCAq4IIXOeffGKz9N8UmWKw00mSa4LbppZO38QAqZVo8u5UKUrnW27JELxpHCos7EsxwAMCpIr22ntTdRzo0ABJkB4wOtef+KLuSbWHtPOEEMf71lc7Vdj2x9AaisryzuLaCxGoJBFdwLJKMHhlONnHryTSVSysOVO7udSfEWn3LqkcxznjI461fhdmuiOgZQRXnBuAjSwRCMxeawA6kAcAZrWfxPdkAwoiNsCnPJBI6/pWPtddTb2Wmh31oP3APdiTUx/Suf8ADdhrkWnG4meOQyRiSOGWTGFOSOexPFLD4ohlti01ldw3CHa8JiJIPQ4NbQrRaMp0ZJl29iYlgg5OGz7g/wA6oSsqwzLJjcjZX1Xsf0qtP4ogFwUks7pYFwTKUxg5/lWVN4iWSaLy4gVUfM56t6cVnOpHe5cYS2Z5bDHbpPxMVBHzMR+fFXNTNvFdyyW24RuqMoPJIKj+tVLWMrM4nTKnowq5eLHLNBODkhF3Io4UgcD9BXPyvsdF0Z+RPdOgJQPhWPfjqfrXf2XgM/ZItU+2pGGiR/u7/s5f7ucHlsAnHbrWH4bGjReJlk1clrEhmZgp5c4OPYcYr0KbW9AttBuETWLaW6bZ8kQYhznk8qBwMY/Gk3KEklG6e/kFk4vWx51qXhFIJoY01VJZZ3ZEHlEZYEZB5681TufD0enQm5mv4ZEEnl7QpBJxnOKux65qbzL5k6BIpFmVCF5YEcA9s9/pWbqNrd3d5dTx+RsnlMgHnKMHPbJ6c1pLyRnG/VkQtIdwCMZQVJJCnA9PxqS304uw2KZHZeEUVHbWOoK6q8kcceScpMvHGOmfatK1t3iu0kllCrjkJKOT/If/AF6zakaJooXUDCaaB41BhGTzjHQfpVQwhCARgkZHHauiltorhJdksa+bjBdwCOV6/lUV/pK7YRDfW1wFUKwDFcEADvVxuN2Iv+EZvvItpkMTR3EfmIyyds459+DQmh36OowdxGcb62rWc2ml28AnidwGDIZOFGSQB+eaX7dkBpHi4BBKnJ/Dih3vsJNdzF/sPVRkgsPpNVaaPULUSs9zOoiYK5Ep4J6d66kX1tg/v/pwfT6VQulglkufLnRo5GUqXBzwO4xRZhddzIszql5cGGC9uQwVmJaZlACgkkkn2qWDU/3Y87xDext/dUyH9a6fRvCWpeJLaaDTnQbhtZwpAx3HTvVu4+B/iIxgmazAUdmOa0ikl7xEm76HLPqXlldvie9JIzwXP4fWpI9R1aeORrLX7ufy1yVLspxXR3/wq8Tw2oaSC2Ji5EiuQQKw7LSrrSdZMdyNrsoGN5bPrya0hFTdrGcpuKuFwfGdkGNxNqMYVdxLNnAxnP5VJZ3Pi+eWEB764SQjCNHvVwexGOQRWhqnipL2+kspf3kzqE8xV4CqpXB568mtXw5qsMWq6XGZvs6RSKHlZ9q7QpGSSeKwcZLSxqpJmnqj+ItUNpe6b4f1OS28jykdVULjPBVdxOM84OKfb3Ot6X4W1Kzu9JuYLmX5vNeFirDJYkjOOMDn3r1O0vdHj0m3jj1G0W3TCh1lXaWHJAPTqDWd4wuLe88OX3l3yG2WBmkMUinnIxUoqx87SeLNa81j9qhXJzs8hOPbkU0eL9WyB9qtj/27x/4U99Iilu5H33EgLHoBnOfXFKnhxGuDKILjBbO04A+lXysnmQ9PFeuEbkNsw9rVf6Cnf8JlrSjJFoR6+Tj+Rr0TRfFuq6Vp0FnbaLZkRQrD5jn5mC5wTj6n86qpZ+IfELW2j2j2VmoZ5gpU7T828kjBzyanXqO/Y4Y+N9WA5isyP9xv/iqD461EgB7WzYD1Mn/xVd1NJ4k0CePw/fvpc6SIHiMVuh2/MT6A1U1K+1BovsLzWsUCLk4s4wSSeACQSeSOlPURyUfju7jbcun2oOMZR3Bx+dPm8dy3JBuNMhlI7tLn+YNddYqL3SvKuUtlAO1lFrGD69due9STabpkFkXmitxbKcFnjQDPXGcdaL9AOLTxgvlyRQ6aLffyWjkH8goqib+NzGfs2ODu5znNdJFquhWTXBlsoSokPlFIwMpjj+tc3canazStLaKFUMWA4+UelRNW3HGxfs7uz+zhZ7F5gpOApxkdv61oabe2kupwGDRbyGTdgSN90frXKvdzPLmEE7VJATsByT/Or9l4huEtREJTw2ff6VmpLZjfkdV4litJPEEqS6bfXcihf3lsuQBjoeR/k1mQaLaA5j0TWBjsyr/Vqiv/ABFdLK99CXjd1AfysZOPr9BWW/ivUZGADTsT0DTdfyFbJqWpNjpV0WGEFls7+PJz8+3Gfzq5p6R2N3cP5Bd2Qo3mbSq5HBX3Fc5FPq89oZ/IbywMlmLHj15NQxXsk33XG7yzkbOnNRdGlmjv7XV9Tt7xJIdUKKoAKSlSCB29unat6bxQJJXcm1XccgCYcdPb2P515SftZWPFwVOfmxgcfgKxL3Vb+K8MZurkK2cbZCAKaaYmj03XJZdZSNBdRrEpBKrg84wckVz0mjrGhb7Uqlck5Q9K5OGW7ukLy3UyNFxnzSQec5+mM1btbyG4mMMRZ0K8ludx9vSkwRjZo3AnGeajIB4PagV2WOYk3Ypc5FRE0q/XinYB24U8kA/KcgdDURX3oH1phcsqwIqRWGKqCRRwSKXzkHVqloC5uApwkFUvtUecAkn2qeCK7uP9RZzuPUIQKTa6sdmWDIMrSBwUIJ5BzirC6Nqrgf6Mif70gqwnhW8klDy3kUeBjCKTUOce5ahIzxJxxSibGQa3YvCMOMy3M8n+7hRV6Hwzp46WysR/eJb+tS60eg/ZSOj8E+EbDVdPt7+TUbqCdhgRwMVHXqSOteq2WnQ6cJle4uLhXZSomkYlAFAwP1P414zonxLtvByy6asMcnlyMPLwwI56ACtS5+Num3mFmtpYivH7qZ0P48VDSbujZ1Kjjyt3R23ibRjqG6a11u7sgEVfJSZgp5OSfwI/KvJPEGljSNVjkbU5b5GY7TJLvKj0NdYPjdorW4g+yBiF27nlJJ9ydvJrhPE3iS01a4+0wyRLtUnaGB/lVRSTuKVWbjydPRFi2t7LVTb28J8rzpGZZUXOflJOfXO2teLwrBat5q3kjSKCVDIpBOO4OQfxrmvCt5CdQ061jz5kCuzZ/wB0j+td/wDaS3AUE/SiUpNmUYRRwFyvii+020tLyR44AHkeGO0ARH3YX5UA5I5z71Drkt5FaLbWFiGWQAO4sJInBA+uCCfavR/IZxvdiB7Gm/ZgGB8wjHY85qU2Voc/oN5Emi2cU8LfafLBl327Z3nk9vWughUugYAqh6bUxTHG0k7yTVOV5G/i4pDNR/IQcyyk+lY2qTaobi3k0rUp7EoGWTyzzIDjg/lTHMx+6aWBJMkuxzQBRFj4hn1SxurvVmnEOdkc3J2+igDj69K6CXS7e5YTX215AMfMeQPSsTxHqF5o2qvJbMGjnRJEZuy7RhR7A5rDk8e6zE+PKt2H+0WFNoSPQbDT7G2+S3hjUMxY8k5PrVPxdO1j4emMZUCR1jwVDDOeeCPSuHHxC13dlLexAHqG/wAao3/ibUddvbRdRjgjto5NzrExGc9Tz3xRFWd2EttDrbHwbpeoaGn2sTtLPGrb1kwU5zwMY6cc1DcfDizMflWd20RwBukTOR7kV1mm6ppV9bxpbSKhVQqoTg49PeriRmViy9Acc96UrN6iSaOBh+HN1aO5gv7aQNBJHhty8shA7epqg/w/1uOSNgkEoU5ISUV6hskU5KmgnAqeRD5meTzeGNdRDC2mzEFuSBkY/CrNz4bvLTUt17CYHgh3KAm4MxUBRxXpysQ3FPLPwQ7fnQoWC55rdamzaXDbvaNHKr4MrSbtwxjGMADvWTY25Y3ATG0AjHcE+/pxXrsgDcMkbj/aQGoPslo7ENZW5z1xGB/KhQstCnO+55vCsmANjF+R+tRN4fa4N1e52pbwfJz99yen5ZNejvpemyEZslX3RiKjbRNIKhGgmwCSP3hOCePWkotA5JnkFta3NxDJZsGCEfMc8gDt+dS2mmTW0ikjEkbAhlPevXE0TSI0/dx+X2z5YOarnw5bLJujvgoPODDVO9wVjxMzID96mG5QVsN4MuiuftkR/A1H/wAIZe5/18H6/wCFbe2Rl7MyGvF7Cm/bCMYFb0Xgq+b+OE/99VOPA9wDiS5tkPo2c/lUuuu5Xsn2OYN459qjM0jH71dlF4Jcji4jfH/POAn+ZqzH8P55WyZFVfVlx/Kl7W4cljhFkAHzKT+OKsQXfknMcCE/7ahv5iu/i8AWyEedqCY7hY+fzzVyPwfocRyzyykf3mIH86OYLHDWes3cMhMMIDt2VQf0xW5Z3fiW65jtJmHq0YArq49L0i3/ANVaoD65NW0aFF2xggexqXYd2ZdnZa00e65FpGfRiSf0rVhtdgHnOCf9jik4b+Mj8aXy0H/LVianlRV2TfuF5EYJ9Sc0puHPCDFRbB/C/wClOEZPRxTsI5S58L3R8UNrUMkLktvEMgIGduOoz9ayLzwnr8+pTX0SWKPLncoO5fyYGvRAjA4yCaUBzwMfSjUZ5a/hDxKsokENsXAwNpQfpiobjwl4muSnmWiMVGBtZBgfhXraW0zdFFSiHy8FwTzjavJPHpTuxM8y0zwp4nstQN/GsUUzLtLMy4xx2/Cuy0u319T/AKbfWwQ8YSLJ/PitxllcAyKODwgHA/xpfmPUU+YmwRqIkC7i5H8RamyTgDgn65odsDGPrVZ2z/DxSGI8m49/zqMtjrmkJ7gU1hx92gBwIx1/QU5CAe35VEq89KXpxg0AXbnTU8QaX9iyBeRZa2Y/xdyh/mK8zv7F4ZWikUo6kjBHQ+leiRSFWBBKkHIIPSp9Y0iPxNavcQKF1SNMugGPPA/iH+1/OmC0PIPngckAZ6cjNO+0h+GjiB9dgrQvLQxuUcYI74rKmhZDQMsx3c1u+UYjvxxXR6V42u7KPyy7MPRzuArkBKy8HkelPyr9Dg+hosM9f0vx1ZXIAuEMbHup3D/Gultr2yvo90MscgPoea+fVd42ypINXrbWLi3cHewI7qcGlYLHu5tkwdpOaja1cYwQa8103x1eQkK03mp6Sjn8xXU2HjizuNonRoSe/UfnRcmxvSxuvVT+FQr9/vVmHUra5TdHMjA+hqX92xPA5ouFiieKYQCc+lXzboVqL7JgHBp3FYrHBWmliSM9qma3kVeBVdlcbiR3oA5dLWVgBHaMfeR8D9KtRaXeueDDEP8AZTJ/M1M15n7oZR7Uw3DkZMr49zWXIi+dk39jqvM8zuf7pf8AoKljt7WA5SKPd64yazWutrcMT+NIbp/4c1SSWwrt7mwZcD5QB+FQOd33mNZ32mTv0+tSLcEHkfrmmIsGMEYXmozbv6D6A0ouARn5qb55U8An60DAWpJ5UU77LjOUpPtTP2AApwl74oAb9mz0BpwtB3H4ZpwuDg8Yp6SA8k/nQFxq247An8aX7Pj+JvwNTrJn+IVZi2seASaAuUktnPALfjVuLT2HzM35VZdkiQsSBjvnpUW+WdiZD5cWOFHBb/D6UCuUFmubmZo4kMMCnBZ/vN9B2qURiFdsZ/E1c3RDgZx7CoXZCe/5UAiINIe9Nd3UYzk1KXVVzg/lUJZWyTjP0oGQtLIPSojK+elSsynntURK9c0CGmRvSlLn+7QdvHPelyuetAxVl45X9KUyAjOzrSDaCaeNpGAaAIt4B+7ViC4aJ1dMq6nKsO1QkAikBANAi5q+iQeKLd7i1jWLU0GZIugmHqvvXmF7ZSW0rRyIwKnBDDkV6XDcvC6ujlHU5Vgehq5qOl2ni63Z0CQasi8josw/xp7hex4pLBjOOnpVYqQa6PUtJuLG5kimiaN0OGRhyKyJIgfY07jKquV68inbkbocexprIRTCpFAEu70NTRXksXKuR7VVVgOoFP3Rkeh9KBmzba7LE6kkjB/gO2uhsfGdzG4/0gOn92TrXCnHZqTcR3pWA9etvG0BwLhNuf4geK3LbW7O5XMc689ia8MjunRgUOPoavQauyZyMOT95Tj/AOtRYD3P7QpXJYY9RTl2P6EV5LZ+KLiEKEnJHcPxXQ2PjJkIE0QAPcUhH//Z", "path": "images/3pts_ADE_train_00009267.jpg" }
depth_point_22
images/4pts_ADE_train_00004236.jpg
ADE_train_00004236.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 87 y = 182),Point B is located at (x = 259 y = 123),Point C is located at (x = 66 y = 97),Point D is located at (x = 281 y = 195).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_17><DEPTH_17><DEPTH_30><DEPTH_17><DEPTH_83><DEPTH_4><DEPTH_61><DEPTH_53><DEPTH_35><DEPTH_20><DEPTH_83><DEPTH_14><DEPTH_121><DEPTH_98><DEPTH_119><DEPTH_119><DEPTH_119><DEPTH_119><DEPTH_119><DEPTH_25><DEPTH_67><DEPTH_51><DEPTH_56><DEPTH_54><DEPTH_28><DEPTH_54><DEPTH_48><DEPTH_71><DEPTH_71><DEPTH_48><DEPTH_68><DEPTH_22><DEPTH_82><DEPTH_53><DEPTH_20><DEPTH_76><DEPTH_70><DEPTH_31><DEPTH_80><DEPTH_3><DEPTH_45><DEPTH_64><DEPTH_18><DEPTH_10><DEPTH_80><DEPTH_119><DEPTH_60><DEPTH_75><DEPTH_98><DEPTH_54><DEPTH_73><DEPTH_9><DEPTH_65><DEPTH_33><DEPTH_57><DEPTH_0><DEPTH_23><DEPTH_4><DEPTH_121><DEPTH_10><DEPTH_60><DEPTH_42><DEPTH_16><DEPTH_119><DEPTH_119><DEPTH_98><DEPTH_42><DEPTH_54><DEPTH_2><DEPTH_16><DEPTH_81><DEPTH_47><DEPTH_42><DEPTH_39><DEPTH_46><DEPTH_42><DEPTH_77><DEPTH_32><DEPTH_119><DEPTH_94><DEPTH_66><DEPTH_66><DEPTH_12><DEPTH_41><DEPTH_24><DEPTH_42><DEPTH_119><DEPTH_12><DEPTH_82><DEPTH_41><DEPTH_94><DEPTH_57><DEPTH_12><DEPTH_9><DEPTH_27><DEPTH_45><DEPTH_47><DEPTH_9><DEPTH_57><DEPTH_57><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
4
[ "C", "B", "D", "A" ]
<DEPTH_START><DEPTH_17><DEPTH_17><DEPTH_30><DEPTH_17><DEPTH_83><DEPTH_4><DEPTH_61><DEPTH_53><DEPTH_35><DEPTH_20><DEPTH_83><DEPTH_14><DEPTH_121><DEPTH_98><DEPTH_119><DEPTH_119><DEPTH_119><DEPTH_119><DEPTH_119><DEPTH_25><DEPTH_67><DEPTH_51><DEPTH_56><DEPTH_54><DEPTH_28><DEPTH_54><DEPTH_48><DEPTH_71><DEPTH_71><DEPTH_48><DEPTH_68><DEPTH_22><DEPTH_82><DEPTH_53><DEPTH_20><DEPTH_76><DEPTH_70><DEPTH_31><DEPTH_80><DEPTH_3><DEPTH_45><DEPTH_64><DEPTH_18><DEPTH_10><DEPTH_80><DEPTH_119><DEPTH_60><DEPTH_75><DEPTH_98><DEPTH_54><DEPTH_73><DEPTH_9><DEPTH_65><DEPTH_33><DEPTH_57><DEPTH_0><DEPTH_23><DEPTH_4><DEPTH_121><DEPTH_10><DEPTH_60><DEPTH_42><DEPTH_16><DEPTH_119><DEPTH_119><DEPTH_98><DEPTH_42><DEPTH_54><DEPTH_2><DEPTH_16><DEPTH_81><DEPTH_47><DEPTH_42><DEPTH_39><DEPTH_46><DEPTH_42><DEPTH_77><DEPTH_32><DEPTH_119><DEPTH_94><DEPTH_66><DEPTH_66><DEPTH_12><DEPTH_41><DEPTH_24><DEPTH_42><DEPTH_119><DEPTH_12><DEPTH_82><DEPTH_41><DEPTH_94><DEPTH_57><DEPTH_12><DEPTH_9><DEPTH_27><DEPTH_45><DEPTH_47><DEPTH_9><DEPTH_57><DEPTH_57><DEPTH_END>
87
182
259
123
66
97
281
195
null
null
221
69
9
187
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDjrWPzrko2AAOF7Vr6bLFA2yT5VzgjsawWJWRVHBzgkGtO1YNIsUgzt5PrVGLZpvbfOdo2wMCciobcxmXHljPqKsLuaMRQPlumw1b063aOSdHVAcdMZxUFl2OOC3dfMmMiunAX+GmyWu2HfIxlc/c9hTVhjBwJkVsfnUF0Hiki2O+3+LHNBQsdrclkeKR0JHIapbhm8pVljV2U/eqWFlYvKGZ8cDLVXknZwYztyT3NBMie0T7IZZGK+W4zxVltWtrpEjQtEEAzJiizt/Pg8obSV6mr40u2KAgJyMHikxxBmhdEdZXJwNrY61J5ZZwTId2O9K9vKhiWB49g4wBnFWo1DzAOwbHtipRRQZL9FZY1jkcdB7U+I4tXM8IjGOi96ulDBcMyry3TnoPSkcLJAy4AJPTPSnYEcHq+yTUrYrlV3D+dX9etYEsJXG5SF4qvrwxrFshTABGMVa8S2s8unGQSEKByBVNAaegR3Mek280Uh2kcg1rgTSzAzPj0qj4eYPo1uq54HetCRv8ASf3zgKBxj1qGgHzR+YE3sCAelVdVtrZ7C5ZYFDhcZNSZMzAFW65zUepup0+fG7hcdKaHuLo6Rx6bbCNl3lBkCtApKZcBcp3rN0tI4rCHbt3BPxqwt7IbVptuza2ChPJ96bAmaJsuXJSMdPSqU11Z2kisUeQkcbBxUlzezFCixkhlyA3AqKyupkADJbnHYYqNBmmC1xB5kiME24Uhhx+FIyLPJ5YZgSc4dSpP51Naq+oXcaLG0cCEPJIF4GO1a+p20OqCHULFzcNAfLwnOPar5SWzAkh8y3MTR4bPWmwSySymFgyqg+961Nf3a20iJOWhPQ7xt60xZIZpBtuY3XHRHyahqxSGyRCdCisfxqssU5uFhHIHQ05pmjEqokmR0+XNZ97rDwWIVNxuJPkUEYIz3qR3KbXcc3iFjhmjt/lGOm6tDUrKCGzlVWH2i4XjB6fWpdJsbOys4/OBeTdvl55NUfEbRr5k2no0SOCN0jZ/EVrCyZjUkZNsyrLiSErFFDsK+rY61y8hfz21BwuRlSPWpbrWbk2SWzEqc7PMHU0mq31u0EaFQZlwsWxeDxzkV03TRzpdTMjkZkCNEpaQkls8GoWsA0TytKEIOCo7irqaeL0rKzfZoYxl+eh9BRIbZo5BbRuyYw5P86hormKI81Npjky46AVbeZ4UBbPzA5B9arLbyRFZ4imQMgFuKuCU3lmzzRgSRMQSvO4UIe5SKysBI7goozjuKasKyN+7Hvk0lzLAkkckQPBwyZ61Xe7eX5UBRSOoHSoZaiidp3R9hA83oH9BVmG2SZ1YSlmHLMfSsuH5JkZ1dlByQe9bzzxLH5gULkYiiUc1aihTKixqF8tQWkL5zV61WCe9JaQxuvGPWqSSbblAMqeePwrSgIlkRYY1Zj9/dUobRq2Yt01GM7ycelXIlli1WYhCyMKWws4bd8smbosNrA9OKugSpcbwrs3qagpEMsGxt8aKWABIapZVkZIxMoUSdMU145ZbhW8xEOeQatXbPGnlOUYYzTsUyDc0MbLGEYE1BcKs1uyyRBW4wy06Jw4wyqFY1K4US7CQ0a8hT61NxbjdLVIrCWFJiJCeprUsvtKoYyFcCsOw82bVnCKPL/jZuMfSuoXy1G5Q5Y9aHYFcaGdInMcWX61VhdpUjEp8t2Y1oFZHXELANnncM0lhaNqt1JapColCcuT71KRRGGAl+/kKKo3kfmBWtpTvY5xT9Sni02Typk3XMcuwKrjd1pdRJEG1gFRk3dOn1oY7HJ6mZ21W2juMZ3da0tcKppkqJcZyvFZlyN2pWmSrDtgVb1cSpY3H2hF8vPyydh+FVqHqdJ4eLnQ7ckqNoxmtB2t5P3TOrPWV4UlW70iGKK2kcrxvRSAa3V8Obrj7TPL5ZHQIct+OKtU2yJTiupRdzGhDoyRjvVW9na604w2kbyFmxuxXTDT7bI3h3OP4qu28UUCDaqj6VosOzN4iKOf07Rbny1SQKpCjrWoPD8DpsmuWAPZBkVfEy7jxUiSgnitVh7LUyeI7EVroGmwx+WYRMR/E7HNaNpp9nbD9xawpnrnk/rTImJPNThqzdNDVRssLGjKAVAXoQBjP5U6GGOLiONEH+yMVCkgFWUcEVDVi1IR4IpT+8ijkP+2oNU59E065fdJaLn/ZG3+VX9wpynIqLGqkYE3hOxJJt3kt2P8AdO7+dY1z4Dka++3RXxkkC4VZ1AAPrxXc0tKyKOA/sHWISXmgjmYnnyfT8aoeI9LtE0mYCWSJ3wAsq9CfpXp1RTQxTqY5UV0I5B70JImUeY+cr61TT4BalkeRSHLnsPamWNjZTWb3kiOvykoD/Ec17Nq3w38N6ruLWn2WRuslsdrf1rl734favp2kfZdOkjvlQkx7vlkUe5PBq7mconnETSPYtC0QETEFmH3sjqPSkuGUqDbRFY+B+8GCT+FSzzXukp9kvreeFy5DmRCFHuGPBrOnlll/fsCVRgUYnO78qLkKBFcGMyuhAQhM7M9eaZY3MCwyMWPnZxs7YqORftEjySYVs9B0qB4dpLYGA2cDpRzWNLaGhNb4JliVH39V71TXT8oGcMhqy08BhBQbWyM460gc3du4Fyx2t8iE0iFcaYxJCoicb0HzA1WVjFOswfcyn5fY1JcEybFQbMHDA/3u9RFG2uuVwDz609Si4X/09WYKdpw3tV2KNjOSjBX/AIcHrVFYftEz7Bnn5vrWrYToIfIaICeI7s+o9qSKZ0NnaxGLZKlz9oOGLZNX7Zj5rJ5jNhcgk9azdOu/OuHPmOkmzb83SrqCIMoWQlgtIqwuzzZSJIAnOQ+7NSS3kchANvtA4yT1pfs/nqAzFQRxU2n6ZcXsgjhHn443EYAqZSKjG5WKqu1lVQh5z2FDxx3xxHmWUDCrGO9dnp3ggsiHUpg2B9xOldHZ6XY6cgEEMaD2HNS5GiieUWuj61PdIrae0YXq8hKbq6638N3x+aSZYtw6Kd2K6l5oY3IXlz6VLDHKfmfaMjtUxTbLaUUYtn4Xs8D7VdTuf9klM/lWtp2jadppd7MMrsMFnYt/Opo4icqxyQeKnYCKA8gEdSa6OU5JVDD1HwhoGq3/ANruLeQ3Gcl45CuT+FU73wRa3ELRw30sZ6bmHmY+uTV+bVY4WJUlz/s9KzZL6a7kJb5VHGATk1vHDNnO8TY4/UfA+pRanC0N5bXUcfGFwjfXArei8MWhWNr8m6ZeiE7VH1HetaIBEx0Of4ev60/+8SOTW0aCW5jLFX2EjRYY/LgVYYx/DENo/IUEsT6f7vB/OlydvTBpuTW8YJHO5ykKCwPfp3NADkccCk3E80eYc4FOzJE3EHBpVyGyDTerc0obBqJysXFXL0UhyAatB8d6zo35qZZCa5r3OiLsXlbJ61YRjxVCEkmr0Y4qZGkbkwYmpk6VDGMmrAFYyNopjqKKSoNh1IVB/wAaSlFAxNvGKNvv9KdSZpAVb3TbPUYvKvbaK4QDpKgb+deb+JfhBb3Ja68P3clnNg5gc743Ppz93616iSe1BAIIosFj5g1fQdW8N7otYsjDA5/10Y3xH6v2rIHzKdpBUn5SvIx25r6wnghu4TDcQxyxngo65H615z4h+Ettcytc6FcLZyMwLW8ozC5zz05H4VNmhWPG7exS5ZmUHgZLdgaUWUL3e2JlE4GQiNk/lXQX3h/V7C9bT59KdN2T8nSQA/wn0+tdTYeGrKyisPMtgJIhu80ct9DTc7Iyeh53Dp99qFyBaQvKVcCQFPu56k0668NX6a21hEiyyOAwZTxXoV/qKR372VtC9r5/MkqqMfh703TdLstFiNyqSy3ag7pmbLMCc9OlTGrcVrnmcbAAKpJBPOa3NPXz9RiiCFUA+ZgKxWQidgOOegrrdGgk8uFrd41uJGC/P0A9atlpX0RYt1t4ZJyeJRyHc4FWbH7TqEkcFha+eD/Gi4A/HpUmqrpGiapPbatY3F7OSpjlQlEYYBPT3rRtfiXbWUSw2GjQxIOMBtv9Kzc1sehSwlaUbpXOg03wcdsb30sjMv8AyxB4/E96623sYbaMJHGqqP4FrzZ/iZeyDEdrAn/bQn+lVm+IGrnP+kQxj2QGpujd4Gt2PXWAVD29Oaxbtyj5OST0xya80l+IOpBR/pQYr95fLGau6P4p1aOH7bcusjT3CxJGUHyKc8/WiKVSVkE8NPDw55Ho9lp7IPNuQpc8qnarIykblm24JZiT0H9BXnMviDVTcSoLwg7uhQcVWm1vVkhmuGuGbyh5nzDhgOSCPSvUjgZxjzHzs8xU6lmdjceKY1c/Y4x5I4MrnBz/ALvUj3rLudckvDtmuBt7LGpAP1FYNxdIuoMpChZY45VbH95QSB+dNeAFflJwfQ8/nXfh8JDl5mefisZLmsjX+1R5wp4qWK8j3ha5qR7iI46j1pov3/u8jvXb7BWOH6wztEu1bjNON0nciuNGpN2Yil+3ueCxrP6saLEHX/a4+zClF0vZhXIfapOME05Z52Pyk0fVh/WTrfMD9DjPXJoIx03E9gprmE81nRDKxaRgBzjk1Zg1T7XqsmkwsbWeL5YpgdwlOM4Oelcld+zNac3PU6ACRhloyD9eakCN/dP51xa6vcTYZ5nSYkrjNKb69XpcsfxrzJVLs3U7HbqjfT8akXcPX864E6peDrM/50o1e5/57P8AnS5y1VPSLcHPT9a0FUkcj9a8pGtXg5Fy4/GpP7f1BcYu3x9al1DSOIPWU4xx+tSgivIf+Ej1EEf6W9Sf8JNqf/P4fyqLpmqxSR63uFGa8lHinVV4F4f++RR/wler5/4/P/HBRoX9cietFvf8qFIx1P415T/wlesAZF2P++BTx4w1lePtQJ7DygadkCxcWeqZGPWmj3I9hXm9h4q1u/u1t/OVYwpaaTyx+7X1FdPo/iKPUzLDHkzQ9yMb19aUqclFyWxrDERbsdEPeiqguM5wMfWneca8n+06V3HsdfJdXRbpD7VW880eeaf9qUQ5GSzRRzRFZFUgjkMMiuP1vwpdtmXSLrAPLwyHk/7p7V1Jn455qPz+Tk1jPNqHUfsmzya9W7a6jtnL2i7WDGYbSCO+48GqTtc2oRY7iKTc2HklOePY163exwX8ZiubZJkIwSyg4+lee694X0qDVZUhdhGUG6DeTt+lXhsVGs/dM5U+U8tjiJQsHye9dRpE9rb2uXkk3r83A44rFlvLfyU8u1CF8ZxXSq8C2KRxW+X8vLEivWewlo7mr43hW4ubC62F4ZLYKDjv1rj2sQ43xLKPqhrsv7Xe7gSMf8s1C4B3VK11eGyDYKurfeRcVj7K7u2e1h8ydONrHBmzkzwsmf8AcNOSwkf74lA/65t/hXZx6nfPMQJQWx1Kc1Zh1a9XCSF2PqrYqvZ3Oj+2H2ORis47YeYbeaTphTGcn07VsRRzRaNEt4hjaSQz+67TwPyNXftuqvcs4u52UfdRpNo/KqeuJc3FpHcPOWdGyyelXTgoSujzsbjpV4chmS67pMkjXKarZpOeLiKa5RCGBxgAkelXbKSPWLWRre4ikhctCXimV1BI6Eg9eR+deYalBptnqFr9q0lr+TVrieWR0dxLGvnyRBIlVgC/yFvmDZ3KMDv1/wAJLZZfDNxK8RljW/bKFsDhI69FY6bjyHgrAwUua51DRvc6VaOzAyAPGpHoh2/0p9neMo2SdRxzWjaaba2Hm26xSyWkz+YQJMvGTz8voOeai/sm3uJ0t47uQPn5S0ZbA967sPjIcvLI8/F4ObneADbIuVO6mPEpHK06DTBHcukepqjRMQVkhKBvzNWxZApubUbIc8gzKoH610xxdPucTwtTsZn2QZyBTltwDyOa0BZuzbYryxk/3LpTSyWtxAM7bVvc3CimsVTfUPqtTsVUh9qbJPGF2rw1D2uq3DEIlts7bLtWP5Cqb6dqMKoHtWLc9+tWsRTfUl4eouhNZ3DSazYg87bhCfpRNpl4+rx3tpG4Kz7mTaeeeufpV3w/4b1C8vobuSSGGKJw7lmD9O2K6/UdTlhvLi1+0xxQyJiJgeVbHb0rxcwrxcvdPVwOGly6nnGtExa7fIE2/vS49lPSoY5JAMlSBWxqKQ6rBA5mWO+t18l2c4WQDpk1l/2TrDybkspnCjrC29T+VeZzJ7BVoSUtBy3Abg8mlIDdMU3+ztVdQX025BI5KxHIpo03U0KL9gvCQCdywsRRqZezkh5iGODSOnI5pq2GobQGsrwbs7tsDKaebC9LMVsrs44OIGppO9g9nIj2r680YpwsrsHmxu8+n2dqUWl/nC6dev7CNhj9KGpCVNtjOBS7gO1SDT9SYbv7Pufr5LcU4aZqafM+n3TE8f6lqnW4/Zu9rEBk3DC08DYBnOe/0qRbK9hQE6Ze8ntbt/hTfs9/LLtTTb1jnGDEy/TPHSqV0xKm+xe0w7NO1WTDkBVRcd8g8VJp97Lp1zHcRpIXyN3GNo9K2dD0+Ww067juZbdbhhkw7guPTNRjSnsLa2+2Xs09xcMfM2tuUDnGP0rtjiYqm4NbmscNLnUrnaQypKiSxklJBuXPoakJxzmsjQYXXSI7f7YLuS3OxnHBAHrWgZFjOJZoUB6EsBmvzzG4Wq6zdNH0FJpR1JfMNIZDioGubRSVa7tldjwDKMmpDHgsCy46j5+eO+fSuN4TEfymvPEXeSKaTmomvrFAGa+tEXvmdcZpi6rpIOP7XsPoJ1/xrH+z8RJ7D9pFFuMBW3EDHfNeYQ6xbS3E0tz5huZpJAp7AKxH9K6bxJ4qsE3aXY36tqE6bYzEu5EB/iLDjiuA1ex1PTo7a3RrWQnIkjVhucnncK+lyrCzor3jObi1c5m1t/tk4jSVfkbANdpY6dKJlkMgdFTGOgNcrocCLOzyYRwxAH4V1Tw3EdmWSX5VGePevpbWORahYqLK6lmeIkM33V7Uy4vpmvZE8wrFnOM4q1pqtHbrI0wYH1qs2nRmZ3kuQeemKUlfYpKxYt5d/mEHIVcjHWnm6luokiSJ4F7y4yaLW1WGYufmXbhSDUqhpZHjkc+WBxinFCbHukttb+TDMkp/vt1qITO9uUOxmH3sin/ZcJvMoDVHuiVZJHmAEcbOxwTwOSadginJ2W55dLpPjX7ffLplsjWrXc0sLkwFo95OTGzfNGSMfdI7V0ngTStT0HRpbS+ja2ma6aQIHVwV2qOxI7Grum6xKrSW6jmRyYyVI3Drx+FdDaJJdshgsJZJD2IwPzqU1JXizWrRq0ZclWLT/r+vXQseYUjG9WEjHIYHHFWtOmA1e2jRc7yQefaqN+by3jYSabKhB54yB+VU9HuYv+EpsIstudz39qd0jnfMmaN/cRf2hcRSYciVse2DWfObWYDMSgZwRtHNZWqTtL4g1NI22tHdMg/Oo5oJbe+jhnn3ZXfwaSbMJstS2K3UpMNsI1RgNyfLn8qi1jToV0+Y/aJAV5PzmrAvYhIPKZgh4P1rQkt0Kq1xtdcdPWmpNMISvuYnh5ljsI5EUsc/e3nNblhrU1hqAufLaVRxsdyw/WsO9jayh8yFljjd+AO1VftosJQ1zBIwODvFXJy7ltx6o9OtNet9TWNBYCBWcmQIxXv1qhqsJ143b6dsimt1+bzjjKDuPeucsPENvdOYrIMXHJ3cDNO1cXkcduzSAGU4BRu3ocVzz8zs9pB07xKd3fLc6bEgUMqFcY/iXPOau6fH/afnIb2eywo8pY5mCgD6VTjRm2LFtUjBZMfw1p6U11FqMg01VFnMAJ0AyPesW+XYxhr8R0x1+aw08Wbv5VwUwHZid49QTXHpcT3MbeXd3KqrncRcMPx610niTRbfXLO3trVWhuwRsIBHHeq83hCC0t7UGVjMX2yIv8dbU6l0KrCK2I49H1XWtHle2luI5kAMZM7fvAOvem+NLm5jv9LEd7LFutACsbkbjk5PHU11N9pctvaW01ozwSWuB5QPBBrF8S2t9Ne2E+mqiSLAFMjjKpknP86iM5JgoxZzEdxfSfKmqTjGcsXPbritdNNvr24JtdYlu7OEL50yyFWUkZxgdau32mLHoLmKwilvcOFuFOAjjqevep7AW+mHTtKuIW8zUkyxXu3Q5qauIdrI0hShfUhvbHUIbsRz37PEiAoyTMNy++O9NXy5Emkku7uIKh2Hzm+Y+3NQXwk/tJtIKR+ZaNhJAD8yHoDWxNdM8cNrBzcRrtCIOFb1pwk1G4/Z07nkcU+vXV5qLR6xcKLP5pIHuGDEEjG0d+or0/wpa61o80cl9JI6TxhwZHLfhzVNfAsmoXF1c3MaPfbgyXLHGT6ECuwt9KuZYBDeTGQx8h19K357Kxi4RMvXby0bcbgIdynJI2kn6isr7JfwwwyTyLGQdyrO20hfb1FaOveH4bWJ3aKW6yMgDtXD36S6tfDztTkm8lNrhgVKc8LjFYST3BJI9C36XpVk11BcIskrhpI45CQG/i+tZPim1tLkW2r2fmyzvhBbbyBKD1wB3rjbeOdbzbDMiSyyCN9wOVRjj/GvSNG0yTR7WWzt3+2lWBYkjJXuATwKhRW9im2c9pehXsuowX+rJFahhgWkpwUPbmqOtXd/d3dzpyXZUo23ER52ng5PtUupy6xcT3MLAzXMeXRG5MQ6YJFZOhMLO4mudUsSl7JGAWzkkVSjHsQ5Et6unpYDT2kx5BH3lBL5HJz61lvptpd2TixiRruJhuXHb1rWmj0Sdx/p0xml/wCWcilQo+pFQ2d/BbTvBFAIrhnxC+eH7c0+RdES5u2hbt9Mu3RYsW9sUQhJI1DNJu7NkcVBDbRQIsb3CSajGGbyic5GccMeap33iK9tzPaajbxQvasd6xnO70OQcdqWFfD969vJdyoly6EpIjcJz3otyg22jJP+kYlYCOcCt3SpjdWZt5MyOx6bsH8KxbeNJ4JNrlphHuXHemWeoNBpE8oIWZFJVv5it1dmkLGncalpWjusdzLMZuf3CAt39auWHiDQbzzI4zJE4X5zOeW/OuCgke+EnHmso3u56gfX1qxDod7fb2iiIGPvUc9jdQurnoUZUKoJDA8gA9u1RGdoZBm3fZu6ioNPt10/RoDcnzJ06tk/gKuvd+ZAnlqXOc4FHNczaC5uggjChScc5FZ+oQC6sZYQRmYYG31ByM+2QKsXJ373HBx9zHFUItUhHlxRBA2SC7HjNDimmmVSqSpVI1Ibppr1Rkx291JOzzxrGsUnmsWY/MwHGPavQbLxJdS6PamJRGGRflHauEm5uDKGZvmwwzxW8BLB5CQH90oAxWMm4edztVX6xJKyilsle3nu29fU6x9euxEiuAyNw4PQiuF063mtviBYwmNZFhuSCynAXIzj9a6azSWecRyYKvxiqFtpviDw942X7RZ79PubrcLpRlRwOCaqlJyMMXTUNjldXtLqbxVrckKgBLxyBv561RnLzt5jRTmdegUk1093EG8X6qxAGbuQYzwcGrF1AUZfKChW4HHP4108nU8eclsU/CunxaveNYXUU0G1dwlGcA/Wt1PD1/aXf7vUbO4h5ADuA35VXDPJoRig/dsp2sVOCT9a4i6NzFOMzSAg8HceKxk7M76FFNXLt3pWoRalcfamMUYYtGsv3W9xVCGG51G6Ie9/dp1z90fSugtLSTxXoF3pkl8RdWo+0Ryt/Gg6rn8ayrbXNIOnNEUaOJcDAHLGrvoZVo2kWLWOztikgmJtYiTLg8n6VXSVpbo3Fh9pktSSFErEbaJkg1AYtUZUVQyE8Bqv2KXd7LHAEjW3jGGI4+akzGzsanhktc6h9jW3W5l2ZG18FT7n0rtdDgl0/wC1w3kNnDAwJX7K4eTd+FcvoFhc6Z4gN1DjZswZEHT61v8Ahu30671a/uBFK93BKGEqsdozk9DxWdjdSdi3baxLfa9byHSLqGDaY0n5JPB5IxW3pttLEjRXcIlVW3Ryjlvy7VqH93bOUO9sZHGKgtbwPFCqEEspyDxyKOQrmGuBcIwUodp6dDWRO0ixRoFgZWUKVbGetW5NSjSCZp4SGL4QL1NRvYQ3Wn+ZMWV04Vx1A64NY13yx0BasrJbfu9StCqiCaHdGoHAODmp1sLYXVhfXA2taQYUmrhmS3s1mZR5YAG72qrcpJcu82S9sEygXufSvLpynKZo3YW909rlDcWQgWaQ7meVASR6VFZaZFZ3P2iaVY5GXLBVxye49K0NNMrSSGeMRN1VCei0+7soJHMjI7mRdvBrulGaWhKZE8llAimV2h3njPen6jqCaVYG8aJmRcDyl5LAnFNjhhuIxb3cYbyv73X2rnfHVzNYaZHe2cFzNcRSbViRQVOeDn8K3puTWoXPJfHOs6o/i/X7tPF+uadYQXFlbw2+nu8gzNbl+FEqAYMZzjOSa7D4R2zXmja8dUvE1K+s9UlhF9csZg6qqDIZjnHBI/3q8p1HxfNo3iDXI3t9RtZru5tbjdZX32aSMxxsNpOxsqfMzjj7or0X4Q3Meo6Nq+uX2Yjd6xO5SE/KGZEcgL6c/pW0tIgzv7iCwuEEj6cq2r/vJr1OM45B/wDrVy+o6vJbWcv9n3qy2ivnzFfaSvpRrF09/pt9FHqQi06KbeT91QpOADj6dK4i7tSJRKrCUZURLEx2Yx94j0rO1yW0adjr9xGZr/zZhLv2ufMz5ox90/zq3awTarC95HfZbeQFz8y46qPaodNuU0q3+yahawXEGC7yofmyarS6/obWEotkktkRcRxk4dpB1PHbpVWsZ7kOt6feyWzXd5dgtH/qY24Kj6d6o2OqxRzskq5AADmTue2Kgae4vbyBobrMPBYT+ta97p1lcXqXbnDxj94q9M0nJkO60L2n31jKZhdWkKvuG4yEMH/u8UX2naPpulzOIYUSVt2WAU7j2X2rm797eG/t5raHMSn96jufnPr9KkuNXjEf2aUrNFyQXPKg9hRFXGkTxwzaXeQMJgEZShJHrx/WoY9PsrW7lsbu5mmkuI3EPlfdQnu1a1vcya3pMcRtEW7D4ct91F9atNFZadJ9ks08wniS5fqT7e1d9GjzIhTsc1p/h2eDT5753VpLZ8eWD/B613mnXka6QhER4XLYFYMcq6dfLcmRJYXBjkiUcEdeat2F/wDb5Ee0IihcEbG+lc1ek09D0adRcg67uzeW5jClVY/L6GnCaa1tV8vCEcfWs+5tJotXFjHOC8sZKoD3pI4rjTrSWXUmKuZNsRzlc1EIvqZSb3IGvlNy5KyKCuMHis2XTFgtprhHk34JUKepNbkmsWV7brE1n+9+4JK3PD2ipc63Z2728ksCkSu6nIGPX860iyE0za8OfD/RdLit729jlv790Eiic/LGcdh2/GneKNGmdhqNqqlcjzI1HQ+1di43Fi4wAen6CoMBnKdquUE0bwlyO6OR0axnnnRwrpg5MnQ/rXf2k3mIAw3bRncR1NZwVVbYDxWpZp+5PpWcYKI51Ofc8v8AHGjQeHL/APt9N/2K4k/0jPPlue/0Nc/e+LNGn8v7K7yycYwpwTXq/iW406bTG06/h+0xzDBj7GvO5fB3he6Mktq9xp9wFwgOSin6d/pWnM0rHNLDqWpJpF1ZalprtbM4mU4kVhjBrP1Dw/uikkDbpSpK/Wui0bwhbxwSSabqjSylfnt5k2sW9evAq4ieXMBPHtaMgOD61yVL3ud1FJRscF4XsfEt8NSfQ44IPIj8md5e/Q7Rz361RS3trmMONOljmhbaVEZIU9817f4a0qGysZyI1X7XJvfj73atiHT7SAylIIw0hLNkDnNbL4bnLVinI8r/AOEd1HX9IOm2S2lqUCyGQqSXBHTIPFVT4H1TR9MtFguJJri4m2hNpIi6/Mfyr1kPZ2ELG3ijTJ5WNauxP5kYcLjdU6k8qtY5Gx0HU9IWG4e7S5kjGJcKQGFbT/Z4oWuo5ktxIAWbIUcfWtR3QHY3fivIfGNzLfTSQsWWCGRgsYPHWptbUuML6I72TXreSZIo7jCqm8yAZDdqpWj3MU7C5YSQ7t8LR87vYntXjsN5qVoCkNy4jOco3OBjoPStbRvE95orQb2eS3UqGQuf5d6fMmOVCVjv7jWrYTXFtqKHZEwdNh5XNdAl9b21vskYFZE3Ih6keuKx9U0GxubRri1ZPt91EHiieTbuzg4xWjcaYJ7qC7kTKW8YiYIvzZ9vzqJwbRjC6dh2q+VdaCUjLKxA2ovc+lS2ismmQu4ECBRuVxlgRxTY9ENvKI7eWWOGM72eZjJuz9emK0j++tW3KrluFB71NKgo6jlqZln5A1pQtzLNIV539AK1S5F2qg/IVPyisibVdP0uxd5WTz1+VlTlsmprOSOOwidpSJJfutnJUH1rZ6Ci7E02q20DzM4C7CAxPf8AGuY8S+LGt41WytkmRpR5wJGTggnB7VZlS8ivLiS6sVltiu1Ud/lJ67h6GuI1jUllWeKK1Szwh5c7gT2PSspNrYpatK5qad4l0C+u9Uv10dLfUoI/3aOMtsx8xz09KxYLqPT7xtSsbxpmSTf5YPyrkdOfrXGSyotpBGqxiRTnPl4YH3PeprXVXs7Yo0SoJAQzMODUU5uoduYYNYVqzet1qrPS2q1ejvp6Pfc6m+0++12ZL2Ty4YhGFUWo+8T3brWW2l3MMP8AZ8sxtzuysqgkknuayLDxNqWmyCO1ulSJuqN90jtzWxp97rfiCSax07bdiQ/vrjZgQ++e2K2sedytlK4nW2eOzmR7qQjDFuN3vVKRbe2Qv9jQNjAyfu+uK9EsvAVtDMJvEOqec4GYUt1xgY/vg896ztY+Hlnc2c2qeH795vLQs9tcHqAMnaT0PtQmWqbRwEtyzFWODA3AcDnNLaX32eOVblWlHYbuQf61REquR5bMRz8voQeadNHhSzZ2471TSE0r6ks6TXSvLgr8o4zwfenQ6XcTJGWVVXuxPakV7pbRJ0jLwZ2nFaos55FCTzhQU3KB1oWhMmjd1G4srbMsCkPLGN5U8ZJwDWYtxKY8N99BjNQPF5GmRwtJukK8nPpzSWkhwZDls43ivcpw5UcV7oHme1uN6FjBL95cZ5qF9Qjs7WHyw24ZYZ4498VYu1lhhMkQDRoQ3/1qle3skuobprUtuJIUniM4/WsasLo6Kc2kdLY+H7rUWsdeu3W1VoiEhBzIw4+b0xVXx3Abe303T7ZAG3GSRCSSRg8mktNeSwnEUlzJhyDIpbKp6f8A6qsx6jc3evQTXtkz2sHzEi3baRjgk9K8yUWmehpOBx9gbu8t5bZbWSSQnagVTu3fyxXs/wAP9JuNB0RbO+ST7fN80w67B2GfpXOReNXt7zyLNY4yRlY4ojtx61fl+Ja6FAJdRhN15rYDRMFKn3zSUrE+wsdfc3UVpLbq7qpmYqqseTTzxtbH5Vxb+ItH8U2cOuXVlJbfY5MRr9pQMx9cde9egQzRXFtDcBBskQEYpTxHIHIZ1qhmuCSDtY8H6VqzSiGzChgpIrjIdRkluZFiuFAWRgAD710aMHsoDI+4gcmrjVUy3TMq/tHutrYDsDwT/DWHeaPcq7GOTIJBGR0OOtb8+qQwy7M81XnukfkEYpuSsNQlY5V01S2uo2jd1dDkSL3+tdPZRtqt1DdXR2gqRKq/xEdPzrHurplYlCAe2a3fDMx1G2NzMqxRxttIB6kVhGScrGsotQudXagk7QmxVGAPSpnk2tgjrxmqlpf275HmgnPHNTXEhVRg8Z61uld2ON33JB5AbYNme4xQsytIUXqOmaqXFw1vsaMK2/qxqrNqeLsIrgMFO4MMAe+aXKZuepozNIqySjy8KhIz64ry7Uri2aSRpwN7sScetXdX+Jen2TR2kJGpXu8h1X7qD69KxbueG8xIygGQ7sDtmsamh24dN6lWS3s1IckAGrK6faXNtIoQMcZB9Ko3MUMjBQ3Aq5FLbafZySXE3lxOBGXJ6E8AVzatnZJWR1MmqjUE0k20Rje3ZQrkfMNvBz7GupZDJJGI5WguT84XqCPeuM02Zh5C2ssbDhVc8qVPXJ6V2N5MlnaNLsZpTgK4GeK7EnynkTdpFxZp1keGUIwP3COreuap3lheXZlKyrFuXEag8qfWq0N/+5Mz7xs6EqRViPVI479IndgzjLAg49sGmiHIxINBk0+e0u+JUSRjdK/JbIwD+dSS6ZJc3yzaXftHJC5ZoyAVdT2rVvZTpd3JdSIot51ClieQ5OPy6Vkav/a1pFaQ6aFV3ZmkMfc9ufSlIllbxNeat5kduqpJC334o85/OvPdQg1BdSMSJvtmAUeZ2ya7zX7i7W3a2lvI381BuaLrGfQmvN724u7O7RI0kYbgm1jncP71YyZa2M6ezure6lQspMLYLt/dqG8kN6oMSiNANvzDlj7V0E1rCkifaVJEvLYOeaztWvoJIRHAgyvyoQvIOaqLM73ZteA/DNjEbzXNQjF1HZjZHGfu7u+a6ttTvUuW+zfZ4bSVAyCJAoGf72BnIrmvDesRWdm2kTYE8jmUuDw2fb8KvXFi7ZdDz1pylY7qCTRRutQvbW/Jkv8AckJImQgYII/h/Oreh6lJbyNOpMNvxvk6hgO2PX1qhuhkBt503P8AwA9M+9Q29xLYhgIJFGDwo4YmsmzodmjpfGHhPSb/AMMz+ItLs0h1BR5zlcjzVHH3egryu3mWaRrdoxIG5LdNo969d8M6he6jKtjdeYIpkMRJOcKf7p9a4HW9IOiaxc2m+O6e2baZnXkg84P51pF3RwVo2ZFZCBFe1jdfK2ghexJ71UFjIIWErs15kmLB4AqlLLIZy4A2r1Qfdx7CpIrlmtQsTFGyfMwMDFOxz2uXblJJ5n8uEEE4BBqK1xbXctrk7yATk1ctwIZpAcLhcrzWZPE4dp0f96xwa+hn5HLEvzSLKypECLcON49TioL/AFGCBC7Kztu2gZ6E/wCFZovboJ5SxdTk+9QXkLeTDLI37sfeC9WY1y1KjSOiFO7ub+mzaVocf9o65Yf2k5ceUqzlcA9SVH3q7C++K1peWUNvpyy2Eqt8ySWwaJ0x05NeVJDKx/cxSy88EKSAPSrtpouq3hK22m3MjL224rgcrs7YqyOwPjG8uLkSWusaZYqi7Sn9mxsQe5PtW7ZzeBrl4Li6vYZ7oDM7TYVHbuQvQCuFg8H+JJ5VRdJmycKNwA2+5rV1jwJrej6XcXl9qulRNDF5ggGTI4HYDHWpauVzWOpttE8C/YzE2qWXBJeZrrAHPGB+VdpYa/4ft7S106HV7aa4SMRxRpICz9sgd68+8K/DC/1mGG+11zYRsmVtUUGRh/tdvyr0vRPBHh/w9IJbDT41uMYMrZZv16fhWcoJkuRylvoGg6b4gks2h1ie5yZXlRWEKbju+Y5961p7hYgyxkqmcKmcgD1qbx74hXwv4Tv9YNqbk2xQNGJPL3hnVMFsHpuz07V5Bb/Fm4vdV021n8MS2g1CSNYpZLk4KM+3eoMY3DOenoeajVLQ3puK+I7i4Rnud7NTpJGK4B6VDPPziqkl5sU1jzNna4lLULi83olqIy7OFJkOAAe9bNodRsIvs4g8xlJYSROSj/hXMf2wkV+iyRLK8jbY0JwWbtj/AOvV+78QeK9M3LcacITHkkOM7R9RW0IdzCpPodnpEmszWTO2lhZA3G7jP6Vs6dDq93abb6IQsG4O7oK8wh+JetK4KC0fJHRjitFPinrEcqrLp6SLuADK3r+NbxVjkqand+KNSt9E0JLm6kVWSQCMDjee1eOeJfFup6ruEMzbWP7xYR82304qv4v8R3XiS7+03b4giYosOeARXMOzq+5ZGEo/i9R6Vuo2Rz21IYESOdEUFY3bI+faw+td1o18l8/2SUiN1XCbTu3YrgnZjIrHGVOc10FnPtlhk52MMZHbNctaNz2cHGLi7nWmynRi9xiOId+5P0rl/Feorc21osQLQLIyuD0cjH8q0r28Fhpc0v2gzD7iHPzLnvXM3txb/wBmR25bLZ3BfrWVOFmOTi4NEuleIrzS/wB3E7m0bh42PA57V73q+rS6ZqFg8bIbZ7dWkikbtXzRL/qVJ6BhgfjXvnieeS58V6ZpCNbI9xpyvEbgkKzDORx7Cups8apE2tU8Swz2UP2aNmgbIl44Wubvr64ADNMYwF+Vj1PPGKoQ28728qpbSzRIG87yz93HUVnXmoTyvbAI/AxEpxx9ayk7HO5anfaxb6lN4ftJ5yJ4Yk3SjOG6dcd647T/ABDdo0tjeXdz9nkRljmiTLID0xz1qLTNaudbuXg1S8uSYR+4iUAISO5NYd9JYzSXU8cs8bwNuljfgO3quO1S3cbkbd3qdrGkOmabObjgmS4mG0zH0x6/4Vzb3VxavsuZGecN8sbDLDNVYdTit9PtLlYM3auc7ugXJ5rbN5Bc2UNyGDxtlASBu3YrOzuCbZHI96LqIvGAoXcN4wT+FZV/qdq1qWEca3Ct64P5VSv/ALX/AGnDaWt1JO0xCIq9WY/wioX8P6rZTvHqOm3ME0R3OGwRj8K1UdNS1FmjoiLq2swPM4gSE7iPuvIewH0716lEkYj4YHIrxqSQ26Q3q7oyDvQr1x3/ADr07RpJrmwhumyFdAwB9DUVE7HfhmrFDX7AwRfaIpdp3ccZLe1UZNV1CwmFvJsPmx58lhxGD3z6n0rqZz56BAfm7HGcVzGpaNqLSsbOdGSUZeNhliw9/Q1jFvY6Jx0ua3hPVDcTmcpO0tkjSrbRDLSgdlHc1wlxJe6xNLfzSStO8habj+LOApX8q1vBGtT2XigQ29jGdQVWjVZGI3HPQc1XmhvNKkeMFkVSXkVhjGT6nrW8YOx5teWtipDpU8zyFP3VypO5HPysfammR4Z/LngIlZwCirweKfNegNFLuCs6+YgYn5iKVtUe9Ri1wqFSPlC85p6owi7GmbS3+zboiWbaOQc55phtTII+Oc9xjFVPF2hT+G/FN5YQTyhCRLCoYgCM8Y/MGshNT1G2JCXCyEH7rDqK9aOIvuZuhbY3msP3iqxIPPIFVbjRL6/1K0sLJRLNNGWyRgKR1zUMXil4vmuLXcCwGV9cV6Z4Js5oLQ6ld2xRpVHk7h8wB9azr1I2OmjFpmh4a0hNB0WHT5Hyc75WRcneev611EOr2SNh4niZRxIIzzWRLKAxKvtb07VBJqs1uv8ApEXmR/7Nedz6nd7O6Orj1qxljeQTqFQbiGGDx6eteaeEvDsfibxdf+KtRgDwW8rLaRyrwzA/fA9sfrXRJcQahCJLfZJ/AMKOp4ro7G0TTrCK1iACLliP9o8n9atSMpw5di+T8vQqOinOCR/Sl8wDHOfeqww7ZkyVp7YbKxOu70PSs5yZKRwXxkQTfDfVIVZVMr26h3YKoJnj5JPQe9eKSahpusaxo0Wm7lk0zWbe2gEtwrmeE7UVkAUEKPJBI+bmXrzX0D4u0WDxJ4evdHv/AD44JQru0LAN8rBhtJBHUDtXndr8G9BsHh1Oxu9WN1bOtxEjyRkMVO7HCA9vWs41Ek0y+VtposPqCPcNFtbzclQmPmz6YqOGGe/kYR4CICZCx5X8K0PsP2rxXp07wyo8sb3IV12FWABbOK17fT2glckAfaGOQF/rXJKTTO5Tujz7xf4ZaHS7XW0LMseIrpwcGM9mUehJAo8O6/reoxXGiXV49xZeUQJmb50GOhPpXot9obazotzo7TGCSdQVLICGKnIH5ivPrDS59H0PVBexGC7kkMBPuMjI9q7KMnJanLNWZz+o2MNvLJHEiKo5GBin6NB9u1u2hQSKhD/NjgELwTUtlJb6ZqkF3q8L3cOQjgMdy/7QHevVtU1HTU8OQXdmtlJa3DeXJNFGqlVIxxjvzXRdLUzinJ2SPHbpWSa4gky0kbndnuc9RWfIM8hvm75rqfFdrPBdxO8QaEBVjnTpMhHyA+hA/OuacK3v71vGamtDKcXCVmVnORgj60LPMiBPMKx54A7VN5ZfioHUo+1v0rOUS4VJR1iIxdzIdznjqTxSMyK3zsFG3qetKp+VwpJPofSt3StV0bTreOSbQWvLxNweWRyUP4dKVkgXNI5+QM4SNVO5mBUY5bntXrXxYgu4dY0PU4rWR4YLaMPMqkqnzc5PbNcHq0mp6s0WvXMEcFtA6qPIjCBV7Dj2r1j4lX9/AmmwWyyDT7i3P2wuv7rbsO3Pod2KERKPcNS8VxyWMFl4bt40e5TfO8Y2bAfQdz71zF8jwQxujs8rHDNKeRWN4Q1q2ufsumXlsseAR9sjkO8nsCO1dbc+GdJRHuXurt47cFsbiSznpxmpqQvscs6bvcp6XZy3E8kmnvJPHBHvnhmmCiP1PPrWb4oks7rSl1IRpazErFDbJ/EvQuf0NU9Ijn095JJ7e5XULhim55CEZPcdDTL2PS3sWKQ3T30MjedM+dhXPyqBnFYLQzMaYSNBt3A7V5PasxXuIdsW4+W2WVeu0+o9DWpe/NlPL2RsBwDVK3soLi42zXAiiXjezYIrW2lzeCN/wZAI7uPxVd3UcltYTKvkZ/eSt6j6Y/WvTJta0q+0241YRX+RnHmnhyR0xjpWdF/ZbabDZ2sVpdLbwq6ywxhTuA5JAHP1o1TVrLTfDDCC1kdovmRJDwue7fia46leSmopHf7Fclzzqe5Gl5N1HBNeuCY7fho4lPdvU+gqrYa9rcTqsN3I6SHEcbNxn6dhWXLK9xLJcSKN8rlz+PpVCz0Y3EOjRprt4mp6tC0ttD5P7rd50kSoZPMyCxj67MfMPc13LWOpzxfKz2Xw3qR1bTBqGzlD5cqDqD9K2v3MatKGAEUbSMSMdBnrXi3gLXJNJdJriaYwTbhJhic8nn69q6DXPGcmr2T2VhGYImYK244kf8PT1rJ09TpVX3TnHu2mvZb+ImNvOZo3B75Nei+HvGcGvKNM8U6bFcoqZW6bBEY9xXmgISPais207SGXHPoKerNGSqswXbl8H7/tXVFaWOSSTZ3XiXQrTS2ivbEjUNLm/wBQ+4MYSe3sOmKxTeWGx1NqscgXlx1rM0vVby1U26T+XZz4V4ZOR7Y9CKieFo7mSKaNo5FbnccnB6fpWc4oxcTuvG+uad4vitLm20+aC/iJUyOfvL6GuJl0+7XjfHuHGcHimDUp449rXQxnuab/AGzdOAiNG6g5yOSanmOlWL2mWjW2pQz3sayxRHcE7MfevR4PFOr3SCZI7PbjaEZ8ED868zjv7id9kVs88jD5UQZJ+grRg0LWb/aR4ekyem/gfyqJS7lqSR6F/a+pyIA+nw7QOqzKSf1p6X0inLRTRrjnJVv5Vyll4C12eXatlBatjr5oNXrjwh4r0eFrp1cRqOWiuQTj6VHPFF+1O58JSpPdzRpGRHDlyduB7V1Rff8AMuMnnFcV8NJbmbRL25up5HVpzGhk+YlRXXox3DJy2TjHpTbIbuXYweACcHrmnyQLIMMoFQrIYyA4yp7inSXUKj+OQ+wzSbEzlPEU9/daxH4d0ueOBzaNdz3EkW8qm4KoQZwSTnOR0ORzVDw3f3Mkt9pt+6yTWMiAyIu1XRlyp6/e4OR09K6HWtIttdNu0sN5BPAWENzbSmKWLdjdjscgYOQeCaz7HSbfQlltbYyssjmR3mYszuQMsSe5xXJOEua56vt8O8NyJe9bst77827TWlv8ruAWE6axLL5geKcBUB/gz94fSrF2inKxLnY4GD0AA7VZjYNMdwA2gbcdyfWq1wd5ZCflMoJUfQ1LV2cadiXTQSFmD/eXKmsbxx4dvNQtRqlo/neUu6WA/wB0d1x39c1LZ6tDHp1sijzbkrgQJ0Tnue1WZJp5oD53moM9LebZj6+tbQ0FKPNqePazBdxTJJNEyxOn7rjA/XvT7OI2ehso3AXEpPkjLenNdz4m8J69qjF7Ii4sJQGEEkw3RED1756/jWd4cnXT7i5WSyY+QgQQyjYy4+tauZvhrJ6nNLezy6XLpk8U0ts4LRMEOY3Fc95css3kxr5kg6gcY/OvYbTXbe8mBGlyR7DjAnGGJ9RiuEBs7TWZEv0Pkz3ex1j/AIcjPPtV068UtDSdFVJXaMFNLvJmWJdu9gCNoJ/lU9l4U1K/M+YzCICN8knAx7DrXrsNpaWMaRWNtHEsa8FRz9c0sjM2Wm8tyGBJYfeFL6w7mcqMFseT2uiaXDcGK91CS82ctDYRMJB+LDFbtnZolv5th4dt42RiVudRk3OPQ4Q4/Su+huktzJ5dtaqWGGcRdan02z0+4v8AZb2MNtLKpLsq5DY61M6xnZRPIPFrC5tVlBFxfecguGiBAYegHTFdT8a2cX2gxrIVDRDcN2N3B6ivUf8AhHrBTuSysyU+7uhySfrWT4q0XR9RvLEarZm7uYU+Uq+3A5/Sqp1uY5pLmZ514P02x0mOC/vJIll8wOS43BQD6CvR9ZuPC19D5v8AaMME0y7Qyg4cnoCKpxRWFqnlW+kWkYAA/eIGP51DqGkaJ9ljub61jt2hbzITb/IXPof7wqvadC501JHLw+EfFGmQSqdOacFzIro4IIPbk5zXPapY6gkUqz6ZdsBycLwrH19cV1HibxZqTaedV0qTVbafftazeNm2HHUf7PtVzw74x1K80nT766u5PtkZkSWEjJfpg47U7XOZ0EeWujFsCVGXGCd33T6EdauWOmG65t1/0gEAnIO4E4wB617jD8P/AA1qcRvJ9HhS4ufnkKrjn1+tRy+A9E0CI3+n2UhmiO4ZbO4+p47dat7Baxz01jqWkaNapObWEhkX7LCDuI9WPrXE+PNVd7K3sgfLE53SoDy2P/1V22p3TyQvIRl5WLEg5YHtzXOX+h2GrRgX4bKJlbhTtZefXvXLypyudvN7ljzYZEhwBjvWda+J7W1t9HlXTZW1LSYGitpzcjygxlklVzHszlTJx8+MqPcV6v4f+E8urrd3k91I2nJE/wBnAXa08m07T9Acc9689ZHXcr4Dqdm7HGBxwPQ11q1rHI4vVpaFLSoydLsgoaUurkIoztw7f4Vp2YTEtzKS6KuwMvd24/8A106yultlGyaa3lUHy54s9DwQV/OopJItnkWocWyDPzdXJ6sfeqJIs4GTjeTtBFDAblRR9ykWRN3yENgY68jNA/15PqKq5PUfuwynkHBGR71tIpuilw5BlmTAJ9V4H6VijqCDyefyrX01TLabX5eJuCO2eaUiKmh6ZF4a8OQgGLTY3y2CWctgfjXnfiyW0n191sraO3t4B5ShBjJHBNeg6vdvp2j3czv82MKPc8V5RIrzybEyZHO0e7GuKlfcUHZHcfDXTdzXerOAFQ+Tb5/Mn+deoWlx8io0vAHHNcdo8CadpFvYRKQUTdJn1P8A+urhm/dq6Eqw6rmsat29DNz1O1thbybnZyMdea0CkV1bzRB96tGV+mRiuGsVurzd5V0iIPvFzWzpT3K6x9hjAkQDdJLu4C+3vmnTptmsJXLWh6InhzQbfTA+7aWcv6k1YeGSRcL8uCOR61faCRmYuCyscrg/drPvLuK0wI0e7uM4EUZx+ZPArWeh1RLETzfOjx5YdRnr9KnhnhAYhtpzypHSuRuLfVNXukZJmtRGQWKHvn7orb1bXbDRNN/tDUWwV+VUjUlpn7KAOev86IyBmvPcxRW7SSSCOIDl3OK5u5vUvZFe3hkRR/HJ1b6D096yxqc2oqt/eKV3fct2PEQ9x61A2pRKxIlU7egz0pSdzanBdTVjuHgkYlMk1BNLOyyeTDulKEoB1Zv7v/16orq8Yb5zu9MVI2rQbQJOmc4x1qFE1cTmfDema7pqyGTTbuJJCSUkUFkPsc5I+tdSHlCor28wz13Limx6tEwABJUHkE9ae2qWoGTICR2zWjYIvxXjRcJuyo5VeTj1qrqoivstcWYllUfdi4kkFJFe2zrlJkAY8/MPyqpqd15sEnkKL6QKQsYcKB7Z4qZLmGlYqi2e3hZ49Ge1VmCj5yzr65Brmte8ONf26XulxM8pXdcQ/wAROcbvb0pZruLbHBNo+paddnA821lVgpHfvxUtpr9ql4YEuPNuZcRtKQdxGR8vHFKnQ9409u4olsrjWY9Oht5rURTxfKZGY/MO1SCHxJI3yvabT3dsf0rr7i082crFAFA5ZSwxTUt7dU/ehQc9EOa7lQXU4pV5XOdh8P8Aia4znVNMt89w+4/kRW34f8La7ZeIodQ1DWYri2hR1aJECglhgdKmluYLRht09pk7lnH6c1dtNWj3Iv2Z4gT8ysD/AD6VFajFw0MvayZ0WcFRjnNc74g8MLr19a3CaxNYSQLjbEgfeOfWuhZgEO1g2F3BARzWJZzPFDIgKRGSQsCgO5fzrgwNFpu45MyV8CTyKxPiK9PqDbp/jTD8OdJSeKfU9Wu7gw8qsjlR69Aa6OS3gu0iSa4nldDkk9G+uKuQxw20JyERT1eRgAPzr0lTSQudjhdWbwlordJgBjhAc/U0kNqm5ZBptlHGTnIUBs/l1qhd+LvD+nyYudXtVK9dnzfhxXMX3xk0S3eRLGzu77b0ZMKD/wB9UaCsekBiBwuF7YqtqM0kNlM6QNcPsO2JernHSvGr34va9dJILOytLSLH35cl1/I4rlr/AMR67qn/ACEdavJI1/5ZqhVM/lmplJIfLYu6nrWpNNIs1pFbsJT+7MhBXn7po0nUblNRgn1Wza4tFO50iY5l+g9P8Kwft1pbYeS5G48BVVix/H1pH8RpFLssrcFQPvTN3rOy3Q3M9F8VeNbnWdJWwtNMWLTmkjZ4zwzqpzs2joMgHIIPFeaarLG9zPIhQJIwZUUbQp74HpVOfUbu8xHJdsVbnYDwMVDGCDyuSeG56HsaXsuaXNft+B20cfyUHSt366e8rO6tq10d1b5IDkfOtOhjFzOkZJUMfmOegpBgMVB+X39abtGQwOSODj+VdB5p1Ou2cNzZWwt7SKFrePhk4M3ua5WPmUBl2sBS+bPjb5khA+6pPQelafhbR49e8QQ6ZLdG380H94vJBAJovYaV2URkrnHyjgn61etZDb2clwsmCHCsB3GK9Gi+EWlhB52t3koIIOzA/pWdrXh3Q/Dl5ptkXuPs12jK08hB2SA8HjtjNCdxzpFXxfqJbbbA7liOXA7k8YrF8NWH2jWgzHK2+Xz2yegrR1TRLme5Z3uFUA5cHuan0YLosD4iaVpXy7enpXMpe7Y53NJHUF5N43enJHeoikkjGQllY/lVCLWHmUlEx83GakfWWVRFIwJI7CuZp3Od7llIAHGyQ7zyTniuy8BwMNOub+XDNcy4RsfwgYwPxFeeWlz9vv7ewhIE0z7FkY4C5r1bS4Z9N0620+CHzBBlTLN8ozyeMVtBtHTRRpXLbojvJhiH3uetZrRfaozFBH5Ns333PWT2qTy1mYtc3kbIW+Zc8Z9qvwiAgESRsegOcDik02dmxAkKQRcKdh+6Cen4VQntIY3F/dKrTxZaFmXOwn0+tbErRxtvYj654rntUumumMYJVB04qZaFI4DWp5LWK4vWLHzZeVDY55rmzNBLOfOguVz12XGMfpXcatawXNuYJkEgz6kHPrWJB4csribbCtwFX/WP1/rV02nuEmzJSfT1fYJL1QvcSE043emkn/iZX6DvkE1S1O2jtb+S0sZHkx94uMY9ax7qQxwvC0ACkffDHmulJdiHOSOklg03eA+sXsZPZiRV+ztdHib9z4mh3N1+0w7v1JrkpdTguE+aN8j+LGarPJaumDgE+1UkuxN5HoE2iWVztJ1+xcA9InC5/DNRzaPIVMUN6jxdijYP515+rWvALhSOhHFX0ltltQqTOX3jP7wjvRaIOcjtrXR760dSr30gXO7ZMSCPTFWbawe1G+PSoVDHCOY8P65Jrjvtk0SP9lvZAT6Sk01NS1ZEBF9NnPcg01ZO4nKTPTo1mwyyFkc9VZt4NOEK7QrEbs9U+QV5+mu6yNp/tB19jGvNSyeJdbRgsVzGfUbAf5ircydT0TajSBPKDMehKbh/+um3tzEo23GpRwL33TBen+zXm9xqV/dAGe+n45IUBQPyrLe6s45VMk252yfmYuT+dZymWonof/CQaLaS5XVLyaQHlogWGPTimXXxASAj+ztN83P/AC0nfb/46RzXDLKqw5RWRSOyir2qWosZbRYnMrOnmYYdKyjO17F8hp3XjrxHfSFLW5ht0xykEWT+hrnLi61C9WR77UriZM/Mk9wQv4KafdS3M64YrwDxCNpH5VkGMOuyTLPnhif50+Z2Fy2ExZJJzGdvUCKHOfxqNxfTQ+ZBpV61uWwsohOD+NWlXycxM/D43AfXtXW+FfF03hy4C3BW40tnxNEwyYsn7wqFOxLdzjoNJ1TUI1W302/mkZhlUhbaOe5r6NGlW7WVvBJplqzeUoYugIHtWhY3Frd28c9h5bQSLuEkYAB9qladY1LS/L3rlqzbYjnrrwhpZjzHptjvxnHlBQa58+DrSVWjvNGsEBPBEIz+ddvLcRTKxjlLNtOFHrVSGe4eRrfAkyOvdalOT0RlJHnuvfD/AEmPTpIY7ZIrh1zC6cYI6D8a8fkhkieSAri4jYxnnqc96+mbnR9UuYWXzYfMB/dluwrzjxj8M9ZuNWW/0qO2uBImLiMMRhvXgfWuyjzLcULo891/S4dG1P7FHdC7i8tXkx/yzY9qzGUhsq+M9MjFdNq3gzxbZzRSXWkS3L3IAaWAZGegB/Cs288P65p0zRXWjXI2HsuRiuq5ZniPcp3tn3HNavhZpLbxhpckCDzPOK+Wo+8CMZrLdGgbdPBND7FTXcfCPT47zxbNfN84soOCRn5icf1olsVDWR7NFbxW3mE8scjntXlPxZdTe6LHH0aJ2I68hsZxXqly25xbqRuIy3pjuc9sV5ouht8SvHNzcR3JXR9PxAs6j75x8wX8Qaxgnub1HZFOV4mRnkUuSOeaiS4Y2/loFETY5xzVgCFRtiUMCMEE9KeIVwFWNQMdQa5tjxrso+RwN7lecjbTGt9xG2RuPUVfcsesXC+1D5YZPH4UJ6hzCeHIW/4SvTEBYnzw2cehr1jVJEigaS5Y+WT5cdunRm9TXnnhoGLxJZSSOoiOU99xxivSYsXU/mSBWWI5TI5zVM7cOyLTdCgiiBuoY3m3bhGPup/u+g+tWLm1sijxNZrMSeVWq2p6m9tNBaQ4Wa5chpW/gUdf89qmgeW4YCBiltH8vmn7zmt4wTRq2Q/8I/ZiDEIkt89kboa5u+TV9McpMYrmBfugfK5+rHiu7Cgrjlj/ADqtqFjHfWxhmUYYccZxSlRQ1Ox54b65lG5dPk3Z5GR/PpWZqWvPbWuyS2S1aVioJkV+3U4q/rOkXtgxt/t00FvIcKxYlf8A61cZrlodLYPM6M85xGGjyQPWsVTszVO5Ulubdd7G5V2Usd+0gsW9c1mKs8lysLTAj7xAYAYq1JJGy4MSnC9DyT71VniTUZ7XTLWMedcMAWUYwPUmumIpaFuSxiwMIHXoCv8AOqUlopYYY4/vEYFekI2n6bapp9jaRXTQqELBQQMeprNmlW4lOYbeV+6RIMCrlEz5jijZcfKy5zmo5bN/MZtoOP7vSuonto2J/cop/uoOlUZY4kEhiJJOBxzismNNHOtZfP0yD7GkW1CuMIV5xkZrbumlgs5plKuUTcARj61nJqzylHe2Xb32nFAXQwvcQDCzydcDHapCbqVcF2OP4geaQapE1yVFqSp/2qsC9gR8GBsYycelA0UvszyN+8V34wT1IrXi0iKWzLxoPNgG4EjqKiTU7YcxxzIG4J2ZBH1q9ZataQT/AOsmYMwULs/n7UrFMz5JWZQwJ2MMY966DxQTBd2ADDBhHQVgawU0278qQviUl49q8cntW542eRbrS0jAJ+zg5P41m1YObUzludqZOSBzzVS5jiuGXy1AB5bHHPvTY1lJPmuMY7VctoXlkCBPNcjIQjFTza2NHqivEkc1qVaNsx43MEJWM9Mn2PSljLHKvyR8oLDhh616X4OuPCWk6Rc2uqavZNdXpPnxTOBsX+4c+nWuP8QWOnafd+Vpuq22o2MzkxNDMHkh9FIHUD1qnDS5zvcueE/FVz4aulEjtLpr/LLbA/6s/wB5favZrSVL2zSeF1nidAQ46N+FfOUZktJsXIG9vvKOmO1dh4M8WtoF9HFJK89ldOEaActE56FR6His1T5gseviJI5QEQKxUkHFVwTHdJvRYpWUszL0I+lagBkUMVK5HQjn2zWHqTMdUBCthY9uR9c1vTpJMkba6pPqchNtG9taJKY5JZFO5mH90envWyAq5+U5z82evsazE1F8Lk7l6bgM/p/WrkVyjAMpDMoO7ccZrblSYbCXUvlR7yYlQHfIX6BfenLdQyWizQMrwsm5GGDkY4pswt3h8p4UeKQYYPyD7GovLjgtvKgjWONF2oijAA9BRawXuVJZYLq0c3UEckYGGQoPm9qzrO1sdDjuJ7awi095jg7By9Q6lqS2Fw0Z5kS3aUIDyWyMD681BaTXF1pOm2V6hW8kAkd3O4qd2cEduKhyu7GijZXMXxje39xHBpdmzWltfkrPeL1A7qD2JzXV+DdNt9F0+2061BWOIEgnktnqT+Na91p1lf2Ulq8SLG5yCq9D/eHvVTSbWXT5jbzj51Pyv13DtW0dEZylc8wlmttkELW/lPCu1mB+8aerbGOU3ADn2pm0SPuMKZxj/wCvTvvDDZUKP++q81yUjzbMkGT80cYwexNNcndt+UimMOnzKoxnpTo03oHjQkEcA0Ji1FIlVQ0ePMUjbjtXb6RMdWtk6pIDtbB6HFcoNG1PYs5tMpwRhhk0+11i78LxyXKWjXTyIf3Wdu0+uTWsIs6qN4m1a3J1bU97zxGWyne0l2k4KgDn68118UiqioTjbwo7Edq8G8P+LdV0jVZZ7+weWO7l8yTyzgBj1OK72z8faZdRpJHP/pE0/kwQyfKE5ILMTxjiu2FkbSuekRvkbu1ScMg55rE03UDLbC4cF4/76dPwHerpuoziSQPH6Ln+lDWoX0DU7O1vbOS1uow8Uo2H1Ge4r5w8T6dcaF4kn0u4uZJ/KX/R2f8Aijz/APrr6Inuw2SBxjnPcV4z8UriG4nt3ZVF0jeXE4HzGPrhvXvSlEqMrHHecwB2HHAGT6d62fC9tbuZdTu3lLOfLggjXk++fTiuZz5jLGc7XO0kddvqBXo2nal/oipp8LQQxRhd7QMDn19/rURQ5TuWUt5ZYgWgxBn7gOFz7nrTZWZU2tiGInASIDn8etRyXMpIeR5mYj5RsPzfhVa1hvdQmNysWbSIsiJIcESD1B6jNXuRcZMMxbi6ohPCg/MapyLzlU2/7PrWo2m+UFBbzrxznAHyoPaoZoBGxQne4+8aiSaKTKAt2nj+y5Ia6BiygztB781gaxYWmlynT7WeW5ki/wBa7ADB9OK6C+vW0oBwq+fIpVAf4R/erl4ImZ3lctydzHPLGstUCVx9vCsSDP335XParVnaG7uBvbEMZ3O3r7VGFMsgRV3M/wB3HUf/AKqvzyLbWwt0GF/iYdSahyNkkEn2d7iUxgohxtTsKikbZMmSqrkjpU1skYsrq5mkKrDgcd+lI6LKi5Of4lOO1VF3LTRc1ay/tjTEeJ/39uQ68dh2rQ8ZAve6YRz/AKMMH86p6VcruW2kco5z83r6VY1y9S7kstzAyQReWygdTk/40T2JkjMgtycKFLOwAAHc0/Vb2HR7drO3cnUHGZJCRhB6V23g3wZNqEsepaghWxTBWM8GY/8AxP8AOuovvhz4PvmZ30iKNnOSYhg1zKST1Jc7HzqypJKzvsZm5yeSfrSovlPuhBiYc7lFe7yfCLwq5JRb2PPP7uQf4VSufgtocyf6HqWoROP78gOP0rRVok7nmNtex6laLaSk/aV5Vv6j/Cs2/iuLSURyhkkDB1dT154Ir02T4ISsqtba/tKtkF0J59aSb4M6xcLiTxBaygHq8DE5/OqjNAebprOsQBjHq97EWbdy+4j6Zr2PwTeX1z4O0+4vrgyXUisSz/eYbiO1cdqfwh1iwtZbibWbMxIhJPktux7DOTVOXxjqGlaBa6VaIto0IKS3QGGK8nheo7V0QdxNXPWRc2tpHIJpBb4z8ztwT6U7T9RlnZfLkiljIIOwjgeprwNtU+2us9zetdORndIcEVp2WspbW7z27bptpWNi2Oa2siHc+gFdAhkHzAHn0ps8yeXKQNu48Fq8j8G+PorC9ks9YuWaOYZjYnIVvevT/wC3dPewkkXUrQbMFsyrk/QZqW1YfK7nM65dNbalEEkeOWVDzGobd/31TdEnf+0yGtxDEp3hdxZtx4ySaoatq+n3V5bXkNxHJBGTHIQMYyfWtKB1hlXYcDG7jqaiCTdy5VGlY69bzaAUfPQE46Z70yTUQXh3yDd5uxeOowaxIboBMKduTlgPWm3V8kVzbOyqf3gx7cV02Rje46fwlbJGzRth+wJrL/4RW/yu5lCN1HU11HmRIGQQyLxnOc0ksqxjAcxlgDnOa+ejJoycUcfc6K0MsrIxbauBkcVn30M0dlMxyiorYwdp6V1F3qvlybCy+UOpxUC37SfKQjgjkY4rSM9TKyR5VHrF+jRmPU7pSRja0pbH4VZh1TUfldrtnODzINw/I1293pdnMmYtMjyWy8gPAFczr2ixaSbYx272zygkjOQy+td8Kmh0U5ooT63doEYRxF37FRxXN6xfSXU8vmCCKNeNqoBg9zWlc+agU7s7enFZV5EJYZpZOWxnGK0TZ0PY94+H7X0/gHSJ7ic26qhby2TJ25I61tG6eeVmA/dJ/wAtD1/Kq+lLs8L6bEhVU+zgY/Wobu5EdsIY/vHrXTBHPIJLppILuTOAqHDHvXg3iTU31TX7mZ2wiOY0HpgZzXuN6y2PhXULl/4Iia+eCxneWY/xsW/Pis6lyoI9H+HmgIllJrd1brJ5hKW8cq7sL3bn14xXYRXkjxOyIHIBGwRAKvPHNeW6X4p1PTrWO3WXfGh2op9K2rPx1dwr5VxZt5THkx4yay5kinFnfRX0s5WRkgd0GAsaDOPrWYq/vJWUAbmYqCP51kQ+OLQfuvJvUQA8oqVNb6/osq4F5LFKRktMvGfwrWm0S4yJ7iVYCywD94wwzH+H6VmBYoYZb24J8i3B3H++3YVKLiyfcx1az3seXIbp+Vc54h1IXtyLW0dDYWpPKk/vW/vfTpTqNDjF9THu55tRvmuJgNz8hc/dXsv+NOZliUsCFUDnJ6CmRnjeVfP0rf8ACWl2uoaoLu/aP7FbNu8mQ4Mj+n0rmkzVuxv6T4Y/s7wLd6zcLi9vI18lWHMMf9Cea4u4JKFf9kA/416rqt2bvTLhYo4FjZBsCvkAenWvLyiLefvFAWL5myeorN6ig2yLVHaKzj0+P+EB5j6n0/lS2TyNZ+Y+4xhyocDj6VHa2t3rF+LeBC885+Zh0VB3P4Cum1e3gtrCPTrfKpApKnH3mPVj9auPulxTRi7SJlcc8ZFdJoz2kmp2FxewI9u0mJFHXJ4GfTnFct5pwV/iKgD2q3Yy7y0LDKSDgE9COh4pyjdGkrWPoLz2hZokRQseAqgYAHYVOgJjDlM57CuV8Ja9DeaBbSXtwsNxaboXBB+cDADHNabeIVaVUtLVpf8Apqxwn+NcToSk9DC5sDIPyB+eenFI80cIEkksac4JPFYUl/dSgLNdeUr/ACgRjNSrbqigkkKP4icljW0cIx3NMX9sRjeTz1xxTpb+3gi8x2Co3AOcD86qKVV9u0YI7Dmq17eWVjGTd3VvAMA/vDk4+greNGMNwsx93fWjqo8ppmz8vG4Z+tcxrfhqx1+4Hn2sUbk5LxqBjjvVfUfiBpNuXh06GXUJh/EgCp+uOK5m/wDFmuXrMFuI7GBhykAy34k1bnFbFKPcs3Xwz8P2482/1mOyj6gOo4/WuSvtD8KwTslhqN9esp+8IdsZ/wB1s0sirPKqyPJPIeQoJYn39K2tN8G+I9WbEGnC1ixxJc8Kf++eaydZFcqRzyLFChNvZRKQuAXUPjnvmqTRx3N15UMInnf/AJZQjJZvYV7Bpfwl01fm1u7kvmHJiB2xqfYjBrtrLR9N0qBIrOzhhRfu7UBK++TzWMq5LZ4UNIubPwXfwXdpJa3EaMxWddhGTkEDvWj4f1tbzS4yXy6gByfvDFa/xX0We/W81eJ+NN2CZAT88ZXJOPbivK7K9l0+4SaBskdU7MK1pT0MpK57JBdiQDBHOKg1ktJpVwyNh4uVPoa53SdXhu4jJFJhgeYz13V0K3K3ulSK4BdDhsV0xbM0dM16XgA3lQx2/Ke1VprMu5H2rGMADHUe5qrZC2k/1lwgG/ClW4JrWsNM+03kqTXyMrchE+9xXlqF2QlczoLEMjSJGJVBw245/SmR6XNIC0MbwZ6q3IrsYrK0twVRAroOx4P1pTco+0mJiW67RnFdUaCK9mjjk0IqVjF1sDHLK/AaotY8LNrFnZwSX8sVxET85QkbeeMelddeWMdxtBMgIIwwjB2j3qrLDFbIj3NzLID8u2Mcj/Ct0oxNIqMTzy7+G2oxHy7fV7WU4ziSMoR+ZrCu/h54jTdHstpS4wuJVG4/TPAr12UoiSKX3FvumRAXWqBlvLN5SkUUpwBHK5746H0pc6uU5olsY5bXRrW2uUX7RBGEkCnIX6HvVVxmVsjqeKtFXcpE/DY3SBDwD7HvTIQJ7zYBwprsjsYN3KvjFfK8B6pHnDNat1/CvnpJYwE3OEJXIDdK+jPF9uL3Qrqz3ECaIx8DOK5dLWyjhiik0+0ZI12fNApb+VcuIqco1U5TyIXCHBDofbcDVyKYBV9BzzXpUulaBPxNpMO89ohtP6VRfwh4edWZLWeNicAeax5rmVVNle3OLhmVJWK/xdc81fimVwEyrHOcAdK2m8DWrIzQ3s0O04IKA49utQp4Pl5ZL5So742muuMbq6LjVTItLgS58Qaek0cMiiblJ1+TGDwRXcXWj6S9uu/S7YsEIDW8fHTiuObwxqSqDHcW7jqv707ifaof7J162URqLpYwc5SViDSkjTnREAVeRAApViAHHalaCNmDNEjEds5qKaKeFx5lvMrHJJfnrUe6Ucq3zDkgjGKzbTGpxZZ8hFOFV4lx91DgUv2a1ZD5iliRgk96rJePIwDMDxxipRdDbgkHnGW45oUbFq3QsWIfSWln051RnXa4Y5+XrxUEl9cXJMkkis75IymRUa3bKW3BFA7YzkVVSOV4yUQkFi2QcYokh3RZkKzNJJsKDADFIyVQ46kjpmord/LZZYnBdW3BTyAfSmCV4pZIpHZVOCVU4WTj+KowIYcuTtJOT6CmmJo6ePxdrKlGcWTBekbRcH9a0I/iDcrhZdIjdh/zzYKK42SdccpvC9SO1MF/EBhI2OOu07qfNbYycT0O2+I9rH/r9GmRT94pOGx74AqY/EfR23taW91I6q2Fb5QxHQcivNv7St92P3q8f3B1qmt9FFIJAJGcMTt7U3N9A5Tt9S8c69qOY4pRp0DD7sCnf/30K58kzS5meSecjufMcj6Cs6XWXkyIodpPGSa9c+FllZN4ae/nt4pLoXLJ5pUZAwOM1zTm+pbdjkdP8La7q0IezsHCZ5af93x9D1rqtN+FcSsZNX1KSRSMmK3+QL7E85r0RpQT5YPOM4FJuJBDIcd1x/WudyvsT7S5R0zQNJ0iFTp9lDCcYLqvLfU1fcsygLjHtTTwp2sCo6gdqA+ABH1NYNsG7i7Tgb2OCOVphJIUIPlPBFCMzbWIyCDzSCRXcAZyMZI6VLTFcykitrzXdWtrhA8LxLG6t90gqOtfPPiLQp/DOv3OmSjIVjJbyNzujPf+Yr3jSroXPiO5cOhW5jcKhPJKNtrA+K3h19S0GLVraEfa9POSO7RHjH4ZJrqpztZE3PG7W4fTryK4UYAOGXPLCvTNC3AG8RlNndkRgg5KPj7p+uCa8vUeYmU2kMp25PNdZ4L1BN7aZJIY4pGADE5CN/z0/Dp+NdqnoDgeux6fpc7DNqdowRjjBqY2GkWskiq7Qu3cNmuZRr2RdtxqUk8z8jZ8ijHtSO6xwsoj+fJy2eWJrCVSH2Tn5kjXvtQtNOY/Yp3kfI3ZPWmP4zlhfAt2QFeAo5X6/wD1q52SQRuGKqc9QTzUZuHSSQZdhtHQ9Ky9rIz9ozeuvFV5KVwMDHzMvQ1B/bbAb2LNntWMrqXxvkCnGTtPNNe4MbmPO5e3Y0uaTJc5GrNrMwlYNtX5eMmqb3hcFZpWETEFiDxkdKpkJPIRKA/YEdvrVDVJo4bd44GJ84Y2k9AOCcVVPWQ4Nykdf4Y1V73Qbi5lXZIsphQjknvXQabB5SGRx8xrjfh4ZjaanAY8wQShxKeATgf0rvUZJLcNHIjxnoycg/jXr0/hNrWZja8+2xkbBPvXGGW6BdkjRxu/iNdf4h4sGQFiT1GK4oyIvysOc5IrhxWplNk1vdC4LhXIZSd6kcCozdICuZC3zbUFQs6OANwUO3Rf61Z0m3id5XADRxcFpBkKfY9q56UOaRnuzXMBWCGNk5C7nIPU1kayJ7DTWuYJHIEgBDeh69K3BNHdgGO4gkcdRGQf0qtPbPd2ctuGEbN/DIMZHqK9fltGyNlsZZ1WWOIOpToBkA8cZqvNrbyQOFQbW42nOR703UNOvbaIzIJJkH+sROeg6gVz5vrifHlxruf+Njwo/wAfauCfOmS2zTF62yT5uRjBPNVZL6QjJm4X5sheAff2qk0jorO0i9cDA6ntxUfmTbWIDKh5cFetZpagnqWLnX7m2imSKzs5LmdsvcMDlT3VR6VGkfiC7+zyJbQWsZbaFHRz75qDYzMJG2cj5WPUf/XqQXVwyMGuJDGpBVN3Ga25tDpjV0GC5vhcyW9zaxrKh6k5B+mKsiWRYRI6RgZ+6M81SRXViihmOc5/+vU6ksQd+5sDAK8Z9Khu5EqrFmzMVkKrGE9T1qXW9KutBmto9QYHzVEsbIM8ds1UmEmwM8QJ3YC5757113jp1XUdOKsGC2ygjritNCoVZN6nGm/WebfNcbnbhsrgAD8KrCSMO5QZT+8px/Ota4VH/eeSpX2FUb6wW4UFERGjG75RgmpudL0VynNchUyMqfVkP+FVwDJhvlf1OcV2+i6rHfaWiXUULyw/u2Vk64q9DZaTdSDztMt1ycAqgHNYuo4s5nWd9Tg0SJJVJI5PQV6d4J8TwaHpMtheKypLctIJO2CBx+lZNzpWhfY/ltHM+776PtA/DFVk0+Se5jiikRRgkMzZpTmpImVW56zba3bXdqZEnQqXVUWP7x+uavJfRPA5hmYxAcyD7xbPQCuE0vw4sNkyyXTG+lIZJIRhUHqTUr6HeWtwJbPU3j7xyltybu4/nzXM9NhKZ27TyRTNNnfC2F2jnB9D71I19sUlh5eOFHUE/wBK4qO18Q2onFtdgvI7TMe7EDJJ+vamT6lrWl2xlkhid5GRnVVzkEZwRSauWpnbJcpe24mjYgMvyt/d59Kd5ypcRo5XzypIIB/M9q4UeItR0+6gkksjHHPFuaEfMYxnt+PatOx8T+ZFIlyDbSgb1835Sw+h/nUspTLun20ra3BugkSWJJTMzYwwLZHTuRWy8SokiXDF42Uow6hgeP61hHxlp8VubiaUIiIdyRnc36VzE3xBYRKVspYN/wA7K0nmALnjaQOpqop3uPmSOA8WeH28M+IriwyXtm/e2r/7B6D8Kx7eeW0nS6TGI2AK/wB4V1Gualc+KNSWa9HlxRsfIbHIU9Q1PtdBsUtFea7iKTg4XqSwOB9OK7YvQXtDq/7UnLGTZH5cnTPBWoTNJJK6RyJuH8JPSoJLK5Bb/S2R2A3smNpqm+njy1QvAVZiHZgwf2rmUUcNy208G8LKymX2NOWTcxjBKD+E+tVFtY4AkcJMjqDhywIHNTgMNqgKQD93PNNq2xLHtMPMVHc7mAz26elSiVo5TiM56DKg5quqS7Sdq8k49qiMbMCZS24dMUrAT3EyxPtwI1z8pPt61zdxfC71SQ7B842KR29fzrckgURxt3GSec1iXkK+RP5DMWYYzjgE1tSSua0pJM9O8JaVJH4Mt0STf9oYyzL0J7YH5Csy4tdf0yRp7QrAn/LKLOR+RroLO0g+wLpbTR7rhFlgj54YAcZ/Cr99aXEiwSzgA7CXRegOK9KL0sbvXVHm194q1W8BtrxoIpl4dh3/AErCN+gyFbc3dz0Na3jWxOn6xZz/AGcrFOhGR0bnvXMspIVUAji6sV5Oa468bswmi8Lkp8yqSMArmt7w3rcNppMi3BRXlm5yM569jXLfYwrhmdnYJjJokgkddsszOi/dQDGKmn7go2R0esN4ceUyIz2sx/5aQyFd3/ARxQmri3EVtYOrqy8zyOXZT7g1y7xZaNnAzEMFl5zmmOmJUVCQh4JFdSrMvmR6HpM95cY+2bY9jZEiN8rj1+vbHSkn8MaXeO8tyrxyEbsRcAe5HSvPl85JXjhnkBUYyx4+lSTz3csZV5pNpwCA3NJzTHzIs6taW+mah5MF0l7GRu54KH3xVA3L4O5sYOSvXNIYM7eM5PzMTzUYidt3y4IHDVjYVxXdZMoV+ZuQP7tSbwVLhCCBsC+vvQAUl3AgMy4yaUblQZ/hPWlYQ4NnCM2NvB9zUgRgVG4EkDjHA96bvLZIAKnsfWnMvlBCEAcqOFOakQ+JELhwDuBwQT+tOnuZLko0rBsDbkmmAN5ifw881GoV8KzcgcUJiTaY4gqGXPHUU0NsYseccH3pWkVhtMZ3DoaHGSB270+p30ZcysyqjNY6gSvCsM57H3rZ8902EueoPHasfi6hmQthozkH2qxbSmSHIGdowc1FSJliKfVGgl4XkCgq55xg8fjUkdzJhYwBHJklyOfl7AGqIUrsOFwe4pjy7IisB+bgmpSSRym9aardQJKiPKsbEff6gd/wqxNrt1cTRyFQscce3y1bgjPXHrXNs91IcKuAQMt6UoMm4xtg8Y3AGp9mO7Ook1/U5be3QSERrICWPyswHOMitGPxMBdMbv5oMg4UZZT6++K4yORxD5RlaVB8ypjCg/WnC4kdyjSDBXhR2NR7IOZo7248YaYNqRWckyqf9ZIMEehH49q57VtfnvRm4jXC8NIiAkDtWBuzFIHcZGOp9/apAxRsBwIwcnA4Y+lCpWBzbCK1tnwC5CN824Hk/hXSjUNFjjQzWLIJEAeMc7R2A/HmucBjEYyrK5JLHttpSsZ5Lk88fStOUFML6OK1eWOJ9ySMzbuuMdPzqiir5QkCEKeQCelXt2IxnDZ7H1qtIzNJhkAVTk+h96paA5HUXBkMKJCyckZXdwPxqv8AYftMxWZ3JDZ3BsgAe1NSLeRGgC7AcAk4z71L5syQBWaMSY+YIeg71m4mZOqWke140VN/yhlH8xUE01tEw8px5nPXv6VEHESIrsNrHI9RRK9uynfF90ZTHXnilYC0kjMBuTAVdzAcc/Wq73DOVJKsoPJQ5wKikzMuROEYAIVPcVEqNFuijjESvxnOc1aQiTzQkpkbchOV2laYomaNlURsS3T0PYkd6RYzGqRh8ksx3tz9KN+H3OHLYwSBij4WLY6DwvqLmb7PqD4jtJPNS53YJPTA9q9MilguFWSKWOQOcjDdc14o0rLuwNuz5Ub9eag+0XyK+y4fMh5ZXIP5dBXWqmhrGpyno/jefw9f2DaTcajbx3itviVZACr9s+3tXllrG7LIqp84+TlcLwc9e9PuIVUfPCHl67vvOx9STSkSSgLcPI49FAXa34VE5XFKdxXjcS/89Pu5JOPrURYSK+zO5ztKs+Pyp/lu8pCK3oxbqKRYh9qjjVWfbknjjNQiCNoARC0JJTGHCjj/AOvTJrdlZPn2ANyCP61cjjxGhlaMoemGIUU3bIZFJVnjdjtcgc0wKcsceQ8m4bjgcdfehIypZVYGNep2/NV3acmMxsVHXI+770LbwbC6yMdvy8dM1QXKKww4Mqlyp+XyyOv+FSiGQuU8kJkc7mp7RRHagibJHzOTx9RTo4VTLOQzoNsfzH5h1zQPmIfsqAOSMAYAJ5pzQYjEcaqckZyeTVpNggfghy3Q0jugUFIlAY/NIx/lQwuVHiRUWPcpJOSMdKCqQ3DlE6ZUHsBT28tSzRkFQOWPrmhXaNfMYZ5wfr6VDHcgMIllJL7lQgna3qKWWFI4ipByvCttxj61OWidXxE+5SCxAwKDGUj8p5V2nsDnd7UDKqfIrhgzNjjHcHvTADDujfhsZBPpV4CMSkjcSFwvHYdqhuYPMikXoVwSx7e1F7GtKpaVjOUN9oZlUGM9TinAiGXcrERNwRTy4DEZ+U9hSH95DsXAA5+tVe53z96Jab90qM2GUDstBiYb0hjH+0T6e1R2sxe3Ck5MY6EdeauRxyRSKWG8kn8faotY8qfusZHDIiLl25IOM9vSlZVjlZt0p59DgVMd53qVXaGB69Pan7TtZ03r/wBMsZ3fnRcOYrvlAEjY46qo5Unvmhbdi4lEW7ocDpVnawUSK4IDEeXjoTT1LI7Kj7enHbPvSuTzFdbRpE3BIxIWweNoApzxSL5nG3a2DnkMe2KmaYtkIgk77R3+lPJJxMWyo5KHrRe4XKyxs6COQvvHUZ7VHtPmgBNwHDHONvtirXzL8jA7T91x1GeaYpke4LELsAOxx0P196Blfgx5eOThs8DpmnPA/m7ogyqeMPUgLtBtVg2ACxPBAqEyB5cFgVHRtxxTsFj/2Q==", "path": "images/4pts_ADE_train_00004236.jpg" }
depth_point_23
images/3pts_ADE_train_00008671.jpg
ADE_train_00008671.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 74 y = 109),Point B is located at (x = 18 y = 165),Point C is located at (x = 21 y = 217).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_67><DEPTH_3><DEPTH_67><DEPTH_70><DEPTH_59><DEPTH_70><DEPTH_70><DEPTH_3><DEPTH_70><DEPTH_67><DEPTH_40><DEPTH_49><DEPTH_31><DEPTH_31><DEPTH_49><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_40><DEPTH_3><DEPTH_70><DEPTH_59><DEPTH_31><DEPTH_3><DEPTH_59><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_3><DEPTH_70><DEPTH_74><DEPTH_49><DEPTH_11><DEPTH_3><DEPTH_31><DEPTH_3><DEPTH_31><DEPTH_59><DEPTH_59><DEPTH_70><DEPTH_67><DEPTH_60><DEPTH_5><DEPTH_22><DEPTH_67><DEPTH_3><DEPTH_3><DEPTH_49><DEPTH_74><DEPTH_15><DEPTH_0><DEPTH_16><DEPTH_68><DEPTH_61><DEPTH_81><DEPTH_13><DEPTH_49><DEPTH_30><DEPTH_35><DEPTH_36><DEPTH_23><DEPTH_14><DEPTH_121><DEPTH_1><DEPTH_0><DEPTH_27><DEPTH_78><DEPTH_27><DEPTH_50><DEPTH_17><DEPTH_66><DEPTH_23><DEPTH_94><DEPTH_98><DEPTH_94><DEPTH_42><DEPTH_42><DEPTH_9><DEPTH_55><DEPTH_53><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
3
[ "A", "B", "C" ]
<DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_67><DEPTH_3><DEPTH_67><DEPTH_70><DEPTH_59><DEPTH_70><DEPTH_70><DEPTH_3><DEPTH_70><DEPTH_67><DEPTH_40><DEPTH_49><DEPTH_31><DEPTH_31><DEPTH_49><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_40><DEPTH_3><DEPTH_70><DEPTH_59><DEPTH_31><DEPTH_3><DEPTH_59><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_3><DEPTH_70><DEPTH_74><DEPTH_49><DEPTH_11><DEPTH_3><DEPTH_31><DEPTH_3><DEPTH_31><DEPTH_59><DEPTH_59><DEPTH_70><DEPTH_67><DEPTH_60><DEPTH_5><DEPTH_22><DEPTH_67><DEPTH_3><DEPTH_3><DEPTH_49><DEPTH_74><DEPTH_15><DEPTH_0><DEPTH_16><DEPTH_68><DEPTH_61><DEPTH_81><DEPTH_13><DEPTH_49><DEPTH_30><DEPTH_35><DEPTH_36><DEPTH_23><DEPTH_14><DEPTH_121><DEPTH_1><DEPTH_0><DEPTH_27><DEPTH_78><DEPTH_27><DEPTH_50><DEPTH_17><DEPTH_66><DEPTH_23><DEPTH_94><DEPTH_98><DEPTH_94><DEPTH_42><DEPTH_42><DEPTH_9><DEPTH_55><DEPTH_53><DEPTH_END>
74
109
18
165
21
217
null
null
null
null
1
23
51
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3yMkjkGnEZpaKAI/LwpAPXvUQgbqxzVmimm0Q4JjIwepp9FFIpKyGOokQjNVTC6nANXMCjFUpNEygpECM6kccVMSdvA5p2KKTdxqNhqNuz6inUmMdKWkNeYUhOKWigYmcDJo4YU1gS2M8U8cUARNET0qEgg81bpjKDzTFYgXrVhcYqLbzkCpFx60gHYpaYxPY0iyDoaBkdxDvUkdaxZoJNxABroutRyIDzgU07CscyYX7ioyNprduYFxwKqNaAjNVzCsUU5qyiHbSi2w1XBFtUCk2FiqoIqYPjFDYFR7sGgC6khIqXfx1qkktWFZWXrUjJhJUcpBIpQcDNIQGoAruNp4qJmNXCgI5FQywHkimgKZk96kSXGOagkR16iofMKnmqsI2I5QcZNStyM1kRXGDWhFcI6ctg1FholB+bmp4xmqqvu71agNAx6vyQakqorbT161aHSgBaKKKACiigkDrQAUUAg9KKACiiigAooooAKKKKAE70tFFACZoYZU0MMioRIScUAIXwMUm8inmIFcdzTRCQOaBEZkxzSxOr5zRLb5UAZpkaFCKALoxgY6UMMilAwMUUDKjg9xQqhutWWUEHjmqsmYj0oENkhA5qJidtWfNVkwetU5XGDigCPkmmsB2pUBY9aQgqCaYhyxkjIqVUORTIZcEcVZBJagZIiErzTlTFIpO3FOLfLSGQvkHrQsnzc1G8nJzUPmfPwaBE8oVgc+tU3s1fkVOz5781G0mKeoFRrYoeKRFZTU7yioS/PFMRcibpWjAQFyTWNE5Bq7G5OMUmMv+Spb2pwHl9+KYrYFRu5NICwHU96dVJdxbFWkXA560DH1FOwCe9S0103YPpQBSSVlcemeatSuwGV6VFJbnORTyPLgwaYh0Um5eetSA5pkIG3NSUhoKKKKACiiigAooyKKACozEC2akooAMUHpRTWcLQAo6c0bRnOKAwK5FNRsmgB9FFFADd4zgnBpk43JTpEyjbfvHoapwyvlhJ24oAgmJFVWLEe1ajRCUZAqL7OBTEUY95OFzUrxy7cHp7VbGE4AAqXGRRcCpFFwDirIO3NRTSGMZAqkbxgwz0o3A1FAPQ09kwuQazobgE9etXoisnGTSAhktGJJU5zVZoGQ8jNaiph+ppWiVhTuFjGZsDnrVd5eauXsJjas5h70xCltx4oGQQamt1RWy1WxbrJggdKLgVFbeQMY961bOIbTuFRrZ7cEVbTagw3Wk2NIZIsg4AzTVLFsOMVcoxSCw1EVRkfnTqKKBhRRRQAVDOwMR9jU1VpxtYnGQRQDK8dyUIX1qw1wBg5rLlDZLKefSojLKaqxNzbSdSOtSeYoGSawAJj03VYiWfOGLYpWC5rCVWOKfwahhiwuT1qcDFIoTAFLRRQAhOKWiigBDnHHWqcscivknIq7TWUNQBBETnHapivpxQqYzTsfLQBDKXSMuG5qCLUAzbXXbViRWYAGqD2MruMcU0Jl9JxI20UNCC5OevWm2tuYVO45arFIZD8sePXpVeaTbk1bZAR71G1srjnrQIzRMS31q9A6GP5ic4qM2oV8ipljKg4FNggkgUxkNyD0rDuIdhPNboYsuD19DVC6jA3bu9CdgZjpIyNxWhZ3m1xuPFZ00bAkr0qNWZecGtLJkXOujuY3H3hUuRjOa5m3mYkc1rw3DMirWbVi0yW8h8xc1jTwFa3t4fioHhRjyKEwZhqxQ1pQ3IeNVAwRVhtPhIBA+tSQWUUfIFDaYWH+YPL6ciqUsrZHNWpAQ+0VVuIpM5QdKQzVoqCO7ilX5WGfQ1IGLJkDmgCPe27jkVKrbhms6RpI2Pzd6khvFQfP+gpk3L9FUWvCz/JwtKt4d2CKQ7l2msgcYNMWYP0HNS0DK72cT+opFsYR2JNTu4RSarwyM8jMcY+tMWhOsKJ0Wn0isGGRS0hhRRRQAUVHK7oPlXNJE7v8AeXAoAlopAQehpScDNABSDpSKSc8cU6gBAwNKTimFCWznFPoAhdpd3yjj3ohMjctjFSNkHJ5FAYdMEfhQA6iijNABQaZKSFyKakpI+YYoASVTjcKWJic5qXrRQA3AYnFV3sxI2WPFWRjqKXIoAqNp0DADGKrXmmK1ttgHzZyc1qZpozuwTTuKxz8GnyqAx6GtSG027SG6jmrexQpGKgLiNxjpQ3cLE6RhfejywT7U4n5ciozOoznqKQx4GOB0prSqp6GoGuwOlN+1KRQK5a4Y9KDGpBFVBdhTgUNMcHnOaAuYaJcDkK2B7VoWMz+YEyT9a1NqgdFOaaqwq+dmD61TdxKJI0KOPmUVE1mhHHFWQc0VJRUSyC/x8/SkWwCNuEhJ9xVymtIq5yenWi4rEccATk8mpqrC/tnYqkyMw7KwNSR3CSDgjNAEhAIwRmvn7W/jH41ttc8SW2naRo0tjo13LE8rxvuVBIyKT+9G4nGTgdicAA19A7h618n6xrumaV4z1uxuI4ZEvtcvhfzMsu63iZniBUKQGIV5W5DfeGMGgZ7x8P8AxTeeJfBmn61epDHc3Pmb0hBCDbIyjAJJ6KO9dhHdB15BzXB/BmKH/hUWhsyqx/0jn1/0iSvQIirLkKBj0pisSA5GaYZkU4Z1B+tDqrIc5A9qqnT7eQ7izH8aFYHctCVXO1Tn3FRDdE/zP19aYIIoVLIWOPellgW7jB3FWHFGgiwZIwuSy4+tIs0bfdYGs5tMl/hkFJFpcyTZMvy+op2XcLvsabSKq7ieKhS8iZc5wfSqk+my7cxS7j78VCNLuRg+YlCS7g2zRjugzbG4PY1MZVBxWK1vdwknYT7imxXFwWIZGJ9cU+UXMzf6iiq9vcB1CsDuqXzFJIByQcGoLImnYtgDBqTzV2g+tOwCPrTPJQZJyfrQIkyCO2KrXCFl/duAaWTy0Tdk/nVR7xMjH400DZbhkcAK46d6n3dzWes0cnGce9PklMQAZuPelYLlonaeDwaaTyOefSqqXqDvUhmLYI6H0oC5JPMI1znmkjuBIMjrUEpGeRmkjiLEsCB+NAalsyZ4DcmopF5wRkeorPvZjA+Ek7c4qFNSbIyc1XKxcxtrOMADrWdqsgj2yRn5ifmHrVd7vzG4O09iKqTpK4Zg+72JpxWuom9A+1sTUyzkjrWUWdDypx64p0cz/wAKkitXEzuavmk465qwku7B3YrNSVh95SPrTzKiIWDqT6E1DRSZztt8UbO91nSLWAjybuNzMzqV8tguQPeuyt9bgmtllVldXAKlT1Br5KVpYZ454ZjFLGflZTyDXY6d8QLjT/Cb2Sl11JJcLK2CoXOTx69fasITjLcpt9D6JXV4Tj5dp9e1Mk1UMPkIVu3NeV+H/HcN/PDbXk0CM0WTPnaN46gg9PatHVNbeRzBaSgJ/FKD1+ldEYRexDlJHczeII7cHzpo14/vVxmveJLjVm8mJilqpzgdXPqf8K5/cqsVz9SeppJGPl/LgZ96pQSegnJtDHuWTKRn6mnWmoXNlcJPbzOjoc5Bqqqk9e9JtPIHUVvZEXZ6jo+vvqdikvmATDiRR2Pr+NYF58NPBGpXtzfXmhCW6uZWmmk+1zjc7EljgPgZJPSuQXVbvSYJ57QlZQhHAz1746HHX8K1rbUri0udPng1e7vmvJwlzbSsrA5BJdAB8iqecDjGBkYriqyUZ8tu346Ho4bBzrUvaKSV7pLXVxV36ad/yu16Holnpeg6Rb6Tptv9nsYN3lx72fbuYseWJPUk9a2ILqFSV3j865RLthxjIqYXQYcjFaukcSqHQrcxuW3ybTngDmoXuirEAbl9aw/tBVuMmnNe7FLOcKBk0eyFzm1/aSqcBcj19aBqyLn92fwNcm2upvX92wBPzHPSpptVhjt/NDh88KAeTVex8he18zp212JVLMAqjqSazf8AhL7czGNSwX++V4rj7rUJbwjdhUHRRVTJB6VpHDx6kOtLoelJq4mjUhgM/wAS8jFXkvofLJMoPoDxXl9vfTW5xFIVB7dqsSavdsuPMx7qMGoeH7FKsemNe24XIlU/SqNxfIXzE/B9RiuDXW7oQlNwJIwH7iqhvZVJzO4LdfmPNJYfuxutfY9BF+y5O9D+NIbmJiWV2V/XNcAupzRjP2h8D1anjxGyKMgS56EHFHslcOdnfLqCKRukY49qkOrpjA5+teV33jUwtKgKI0cZkIHJ4rJ0Dxze6vK8TSlJFXOOuf0qeSKdhqcrHsv9poDkoPxNMOqQc/uwD7V5Trvim90zSpLnztzcKowBkms/Rviet1GY7+FIpFBO9SdpH+NDjFOzBSk1oeyDVLVTnZ/47TbvVoLiDYgYMDnJryiT4k6fHdSRmJ2QAbXU8H1rBm+Iht9dubuFHmikURxoWwFUc+nXOal+zXUacme1R3wQ9zXC6h8YIdM1fVLbymnWPC2+04AYDByfrXnWofEDVb2MRmYQIEA+TOc+pPrzXK70B3F9xP8AE3OaznKL2HG63PXovjZcNcp5tmnkEncB1x2/Gum1H4l6RbQWskc8cz3DAFEbOwdyfpXz0Mn/AHT3zSGV1+9gYGBUKVinqfRi+MNOl1m10tZd8tzGZUI5GMZA+uKtW2uaZd3s1nBOjzxFg6DqCMZ/mK+bIbt7S4huo3KyxOHRgeQRVrTdWvbLVDqVtdNHMzMXYnls9c+tae06snlPpXzkB4Io+1AHh8V46/xPvxAqraW5k24Lknk+uP6VmJ8RdcSKdZJIWaRsqxHMfsO2Kv2kCeWR7o12CMZGKhN5t4VsD2rwYeO/EAnWZ7zdtP3MAKwz6VZvPHWo3Wo2t1nyI4DkwxtwfXP1pqpAHGR7W10T1ckfWojOPWvPIviHbyWole3CODgr5nv24qRPiNpRLLJDMpzgHOQf8K0VSn3ItI8vjnyAk2Sf72e1TSxblynOO/rVQGNsddp6VOjFc4YMvevNsr3R0Etld/Z9wkQEe9blh4ke0zGwBiB4DHP5HtXOxSJlhICMmkkKjORhSeCO9VzST0Eeg2viW3nUlgY/TvmtOG8hnA8ueNyewOTXmttIUXEbHB9TkVeinG7OWU/56VrGu9mLlR6A3Pp+FIVI5D4+tcUNZvLVjKJjIpxnJyDWta+JEmTJiIPoGrZVSXE3yu5WVwrKeCPWm2UNvYXH2iCMJKDkPjOPp6dawrnX3VCETYfVjWNJrd48yk3LnByMHAqZSjJptXsaQq1KcXCMmk91fR+vc9gtNftnjHnDa/fAyK0YtVt5DhJVOOa8St/El1FOIlZZBj+LtWsfEsqrE21Rg4df7w9j2rRVe5k4HrK6pbvIEWVCx7A1S1TUV2FCdqL8zsenFcO/iCygCvLNtz045PGaxtV8TTX8bRQyFLc5BPdqtVYohwZ0c3ivTklKgyyf7SrwfzNXrXU7S9hMsUoAH3g3BH1ry7zVYbg4Jz0PeiS7nRMsdgBwQO9L6zIPZo9O/tiwJIF3Fx6tisS98cWMHFpE07Z6sdq/41xKyh1Y+YR25FV5FRTgKGHXJas5YmWw1TR6KPGdiyKwgmZiBkDGAfSpB4y00ryk6/VR/jXmrXTIvyttCjoKge8eTqSQKSrzK5Inol74yt1DeWxGOwHJ/H8ay28YMkTlQfO6KC2QR71xBlkdjgk80rbmClvlAqZVZPqNRR0OoeKNRvLJ4SwUN1aPg49Kxxe3O1Q1w4Veg3Hiq6tECCpI/HOaXKE787scgHvWbbe47FmW6klk813dnPVnOSfxpILqSGRZopGideQytzVNnALEgf7ppQdwyBsJ60DNXVdUvdXXNzISgbcqqeAcelZaHYdqghj68mgSFR8xUtTZZd6gpjI6jvRr1AMnByfmOaeJG2c5Ue1QAuxByMUrTFTwfqOtFgCXJTO4Nj0FQlsMBzTzISeCRRuO7IwSeuRVDH+eWz7dBSCXgg8/WoztJzkjHWj5GbgEDvSsgFOXfIIx9aeH2/KOMc9KaZNuAqgj0pXZZMBsg+tIBRMWO08+9IZGTtx71CAwPfIqXfletOwCGTdjHUU5fn43Z7mm7PlyAOewNMRsBtx5BxigC0GCgDJOB3pp27snBHpUJfnrSA72CgcDmlZgTFQoyp4p6Ng8ke4p3kAE+W3HYE9Kbt8t/mHNYqSaHqhzsgKsB14waH8wRjAAGeSe1Os9I1rUI1uLO2tpIzcSW8Ie4jR5ZECkqqM4Zzh06A5yBUdnL9ot1eQgM2cgfWqfuq7CxJDwRsJPqCatiR42DsFKqeapGJNww7A98CpcyLsw24Ade9ZtpsDV3wzxYYDDDtxxUcUDwSfMCqE/LnjNUvMB5xg+lStdl4hG7gIDnnNaQn0YmiWeXa6KSSrZ3A9qaShUsTwOeKy2mzIWI7/kKGlYOSGJz71fM+gcpJ5xFyZB2O6tC4m+VXyPmHGDWQrkvg81MrtOnlNksg+XH8qdxNDrm5LzjBOF6c1dtGYQPnlByKxpD854qxbzSbeGPHYU3e2gFuAMjM5YYzu61IzCYZkk4HYVRS4LyZ6dsYp0j44XgAdTU+8KxM1yC3GWA6ZNRJNy0jckHgHpVEuTkipTMDECQA2ODTcRkslw0hIYcH0FQorMSRnaOp7UqykYx0p/mHg9vSntogFXci7tufRhTmaMjDklu5zUDTnJU4I7Z7VDk96OW4EpIDZByPeneYyKCVxUW4CPAwSfans+MA8/WmA7z9xw3I+lMd+MKc06JFJJY8A8A96d5cRPf656UtEMjXBGXJ56U7zgnyhVIHqKWSH5AVbI+lVmyD709wLYQTLvB2+gpJAoGD09ahVyVVQaUvgbe9KwE67DgBRtxTXMajqcjp2xUIkPOKc+ZF+UfN/OkAgZGBLdCaYwDH5ePSoyChIIIPuKMk9ufWrC4/cwHPalLgqPypFIK4P50N83GOlIBxbbjBpVOMsVyKibJx604sBwP/10ATCYHt9KAMtn5ceuKjAGfX+lJKWGSDxSsBIyoT8rU9WQHaF5NVd3GMYpyyfKfWnYC75m4bsYH8qHRmUFQSR6elIs6k7WXGO2KkSQEfKQP9n0rk1XQo2vDWtaJYaZp66k1m01lqtxcvHKLkTKjJAA0Jjwm/MbY3ngqvQVzdiypZRkjnnv7mpJLG3kdnZDljknceTSpFHGuxBhR2rXmU1oA8vu6fhSBjtJLY54zShSY3ZcDZ1Baq7OxGTS5bCLCkqxIbANJIwdueD6ioQ7ADAp2EJ+Ynd6ilawEbAhiD0oVsgA0twGIVh264FV1Zt3P41otVcCypw2cVagRpZY1jYBicA54qsitknGVHXNWbaIPKC+5V74/pRzW1AgeFpJ3OCOTStbyRRLIGwe6981p3OnwW9wim5wxOACc/maoTRi0uGHnLIfakqqlsSMaZzAW2naeMkd6bIodeW+YjIPat610sXCLKHDxMvII/pUx0OBlG8MBnorY/pU+2ihnJAYOKUocgEV1n/CPWo5Bk/Fh/hUMnh6Mg4cg+5zR9YgKzOe3DaVx07+tMZsgACteTw9MrEo2/2HFRjQ7ogjaB7k8Vaqw7gZrgMoxgYqLaa3ItCkVsSTL+AzUj6TbI3zTMD/ALlHtoBcwVUbsHOfSnhQzEZxitsaRbOMpM3120h0Rtw2sCPXBFT7aIJmS2I0IGKiVsZPXirV/byW8xRx9COhFV44ncHAGAOSTWiaauMWMk4xk8UrxljnHFWbewcyqspEeem7IzWxFp8Sj94TJ2+UVnOtGIM5pQu4lM/jTCMtXVvpVt5LBYnXP+0M/wAqoS6VHHs3KqjfgkOScH1pRrxY0jFCnmjbnAz3rUkSzh3KE3uDx1x1pkc8ikeWqpx1A5/Oq9ppewMiWwnZARBI/oSMClOk3R/gVfqwq39olK/6w59TTftEh4EhJFZOrLoFkVP7JuO7R5/3qlXSpsfM0Y98n/CpDcPnhjgdzSC8lJ46UueowsiB9Jk/56p+v+FOj0dww3TxgfjmpftkjHNH2hnGWXPbPQ0KdTqw0IZdKkj5hcTD24NVzbT5wYZOOvymtJZGONrY9jVlJpAuJMkdfSrVSSXcNzFaxnYfLbyD/gNM/s+72kLbyY/3a6Bp5jyrsR9agkuJs7llcAnoGpe2kHKZMi4OXDZz97+lOsEV9QijZwFLcn19vx6fjUrgvGwztb7pwKzo8rKG3FSDkEHkUK8otGlGcYVYzkrpNXXddvmbayLcxTh7dIvJUlSMjBz90+pPSqSr5j43Yx1NK9/POgSSVmQDp/j6/jUSv+8DFsDvxmppQ5dzpx2Ip1nHk6LVtJN69lppt/wLJX7hrc2kFvHtEqsS8nGDn3rLY+vSr7NZSXEbZdE3DeCByMcn25qh8pPtj0zzXQ9TiG7qA3PWiQEHIBCH7uaaBSsBaRsnBGQePrUyxRknMeee3aqsb8Y9KmUsX2scFuV4rJqzAsyIig+Ud2eQKi89sqBwwqPbKh5Drimu5aQnuOtNRQiWa4aeXfyCuMMR6VRk5O8k81opK0akAA46Aj+VKbiGXCtGgUdsd6lPl2QyzoF8lu0gmlKrj5Rg8mukt9StZowwkycdPSuRFtHnfEx5zhWFdrY+Di8EU8V5Fh1BwFPXFS4893EEgW6tjxuGaoDXbNrx4drbFzmTjHFbbeEZjk/aIc+u01ijwbEsxxqtqGJPGD260o0X9oY1dfsnuFXDCIj75HQ/StVQjorLkq33SAcGq58EvEq77y15Py5Ugn6Gq2oafNboEF357Rn+FflT2Hv9KHQb2As+fC24HAIfZhvWk3x4+4KwWv5I541mjQLuyCBnJq6uowt8sw2Oe4GR+dZOm0Ivkxsf9V+VB8tcfIR+NVUO8B45yVPTNP2zk8sjAeoxUWC5U1IQPjdbs7dsNgVkRWtzGVZLf5sYyBn8a6VkLdCE9hTPLyMFifxroU+VWC5jx2U7yLJcuAFO7BOSPwrSFwgGE3fyp7IgPv7CmmMYyBWU5XFqMeQnJY4rJu5nkO3ouenrWoyZP3c1C6ZzmPJ96UZ2dx3Mfy279TT1QIMnrVp4pc8Lx7VXkBU8qR9a1UriGMGb+Lj0qBiBwSx9e1SnGBg8dzSFAeucCrTsFyIEnAHAHrT84HAyO/vUq28knKISPcYqddPkxk7c+lJzQFRR6ipAR/8Arq4LKboF/M8VItgduCQuOwGTUOSY7FLy+5arltJhfLf7nUHuvvUwsoVHzZOOuTijEZG1IgfrSUrDSIJECylfUZ4OQaQpGoJd9v0NW8jkEgD0UYppSN8tseQL/ETwKrXqBitdkYMuHX7rL/Wo5bENl1mUeZygI7Uya3+UNbgspPKk5IqSUO1rCT2bGR2zWu2xJW2svykYYdetOQZ7NjPJAqy10kZYb0XAAyxxmpU1KBY8wrGZT1Cnk/hV3fYCvcQxxfcOSevPT0oghi3qZjIF2bztXJzz09qsx3jSrvVQGz82O9Ri7SeVopgwXgDHBFNT8h3ILpoJIlaFGVs/MSepx+lU3fjqOK0riymRS6SB0J3FmPI471kyHBJqk0xD0kINW4pAFDEHc2e3IFUQAELEdelWkI8tWGSxHJNKaBmjBMCm3zWBHTAp8qrKp5G4jk45rLDMrBhxirMUyb+V+93zWEoNaoB/kvIRsAJFVJ45IpGyCCeeR0qy7PAxHb3pfte5em4nseaq73WwxkV1kYl5z6Cul0rxbcabafZ1SORAflLkjH5VzRhimDbRtcjPXgmoFkaF9r9R0JpJa3joFzvJ/HVz9nKG3gw6kDaWrl01BuSG289M81meeJXIJ696lSMEAA8ir5W/iC5tS6zNdwKkszEA5HzY7Y4qCXU5EiMS72iY/dbsfY1kZKHDMeD19DQLgbNrMacYWA0Y9RLsBKgbtyOv/wBetiOKGYK+wAnqRkVzf2lWjClVAHOUGDV211RolRTlxnljz+FTUpt6xC5svbuhVraYIQeQed3tVo/MBlcH2NZSalGr/NIrcg4I5HtUo1SJmyoIUnbg/wA6wcJWC6LjRgNlX/pTgrDpjP1rNOoW5A+cjJx0qVJfOVjbybtvBGazalbYV9TQA45alAT0FZga5bOUcEe1TKZxxtqXFjbLu1R/CBRhCO2agy5Qb9pI7ZpRnd90YqRaDzGh6qKY1rE3BFSAY4zThigdit9hhXtR5USnG01OST2NMcqBnaSapKTBRRExhTrtB+tG9dmVHPaoiiuwZh83Y9SKMjcFJyx9sZrVU+5QzF0+1mkWNc/dUZz+NSBkAIGc98nrSFTnnIHp3NRhAspkzgkdCOK05UtkBLsByGQYB6YqMvErFCrDI64pJJRvUq5HH3fWm+YAWUkjPUg80wBsE9HI9EGM08yoAqhSExmgy7Y8F+OD8vWojPuI3EMw6Z4OKLAY3mRx5kJJOfu5qRZFmjZVGM8Y9azJpmk4Pb2pYJCo2AZJIIatOTQixqWdra3H2y5uoRcR6daNc+RuKiVjJHGASpBwC+44IOFPI61Qke1l1GxntLFrESwlnjyxjLAuuYyxLFSAOpPzbhTFvrvTr8XVjJtcBkO5VZWVhgqysCGBHYgiop7+71C+juLt1YomxQiKioozgKqgBRyTgDua0XwldDRYq6gxEAZ+amCMGUTM44HP1qvaRsZiSjmM9SDg1cjjt5MRQuwLfxN7Vk9CSLz3guD8xdG4OehFQXlusWZEZShPAx0qaeKTyAGOJIzyPUU+NRcROCMkD068cVS30C5nQortuZvlXtjOand1+XZgCpv7PiyF+0BHxkp1xTJ4TDIEYYx+oqrpvQCJmORk09GUnpxSssTRO2G3Jgn3FRqoYoEOCw70WuBfCpcRbCSWx6cg1WMMkasN3I7d8UpWSA/vEdT1pHyJPXdzms0mnYCMOcA+lRzTF2xggDjmpGiZMseBxj6VBOfnz3rSNrgOiG4nO7GO1WVbPGTjHemW5/dsS2cDPH9afFtDZ3FgR1NWMe6+YgJ9M9etQLEeC35VbC7zlCM1E5bmOQEEHIzUp9BMjKAt+7Un2qxEmxgD0AqJC67hjBp3mnPIB+lDuxjBGwkLOSMnOBV7hApfG3PGe31qOGQ53DlwOB/jT3cSj5lwyjketZSk9hWGysGXcACKkgna2ZXTrjn1ojQbwwBIxgipGihB6duueopK1rDsXkvxJFg8ZByep/KtOHVLV8boAg9QoxWJG0e7H3Owx3NS+WsBYhyCw79KzlBW0CyNv7fZtnKDGccgc0jXtkHEZjXeegrBjSaUSuCojTG4/wB7ngD3qYO1scqApPr0FSoLqHKjanWENlBhcdRxmoPPiEmwEBvTqaz5JnNszK+XHSs1LqWRCzMQeBu71ooR3HZHQGQZH71jnjPpTXMYPXdxnr2rDaWV4iC5BI7d6gHnswYFsjp7VXKhmylxE6kxxsWUnnPAFP8AtMR4PynsM9Kym8xgMMAi8MRxk1D5LsxJYgGjQDamkSTjcQeDwaYNrvuEgIA6VnJbybTtByeBmrab4I8syFSOWx39KljLOF2llAJxTCW8sFSCw655zUBdYogTGDnggHjmhEbO6MkAfwN0z7GgRIvHzlfmIx7Ch0SRSXYbeBnHQ1XVZ5pDkbGB+YY6iluBst2gXliMAe9FgZzeWl+ULlj0qxHZzfcxtbOc0kcnlI7cbumfSpIZx5Z3FuT2rVt9CG7FsaK0kCu8yo7NhQxxuHt71Rit1jnfzOkbEMo5wR2rVS8tLq3T7Q5UxjaVK5Dgen4VRv52kvpJFxhzn8BwPxrGnObdmejiqOHhRUqb106p301bW8bPRJ/ja7V7nKsFIHYY7CqscbAhwTzSRxeakhJII+6as29m4b/WKRnvWmkTzBlupk1NYmOFYgMTWk1vBZ+YIpi2/wCXA5HqDVGeFoLhJHbIbIz/AFps0UiwZVy2Mk/Slu00yhftSKxVkXb3fv8AWrkctpcusbx5JH3s81hoWyTkAnsaFEkcgPIPvxV8iCxrXE1igMQTKHILL1FWFsra2jiuY5POB+6jVhbt24enStbT1kuLXYoBYHILNjAo+GzuCNaydLhC1xGBIf73ce1WWsLZ8rsQAdM96xpbWcOGbaSOmJAf8KswmRI1VpeCoIbHKnJyOtZuF1e5WglzpY8shdgUDBYdR6VnTaXMY9gUMRyCCOa1jJKqsqkTbujYxn60kbXCOu5WAY8jcDisVUktmToZcGnSCEBlVS2RywFOi0+WPcrLtX1J4/CtwCOQ/MyBh6/5yKn8uPjhT6VarSY7GJHZyRuWUD2A5zTpELFTJsJ9G4NaEtvIzL5TBQo6Y4qGWAk+W0fmN9Pu570uaV7iaaMe/kWNhH5YV8ZPqKpxK8kmFIz7mtefQJnnUC4j3Pnbu46Dpk1A+jX8Stti389VrpjONtGDIhFNE2z5cntmntE8ZzjI74qs8V3bY86F0x0LL1qeO6ICxPn88UmA9HwcZx9RTjcBDtIyoPGOcU8Wzo7YXODxnvmhY1zyME56HP8AKo925SYz7RuH7tAPTPrSqxlXZ5gOOT/9aphbleAwRc8gAnNMWJ0XMAEjDgn0FTfsK5d+1x/2dFZwhmcOXkZjyTjAx9BTJJERPmG41A3mMcOAmeN461XaN2P3tyj0oSTeoyVruSZgOgz0qwLbzSG55744zUUMAMn3gABwSKuRxyEfeOcdun4GtGA6KCIptU5OOfrT2iYYUKApGck804qIyMZU9weMn1+lNnZSruzdBjPuaTsMZtiXG5lz24zVQ6jHHctERhQP1qibiTc4mUkIOPf3qrMsbyBkJ5PbnFJR7kts30vIJMguFJ6e9TGKO5j8oqAnGGU1gRWwnLMH2BBjJHetCF5ol8uRVZB0YnrSasCl3Lz2rRsxMqlW6gc1CkcqTfLgqOq55qWGfFvkKRwSo/xqCfVChCDhuOnalrcptIu+apiIddpPQntUDSAy+YoDOB1qg8/n4Vyy5OCR0/CrMaxxIMyFvXtTsS2c3IwA9zyabu2AY9KYCS/NSmEmIyBhxxjua30QrEsCrMQSwUBSDSTxGMAb8gnAx3FSRypHbquDzzz3phlMrEBVKgg89qjW4hGmMMiGNshRg05roFQVYqOmBTbgx7PkxuHBpkFrPOrNFBK8agksqEgfjTSTV2Bchv1YGOX516DI6e9PmiaKfMYLQyAAflWcbeZdpKOAemVNaEUxityjkBl6ZHIqZRtqgM+SB1uDGoJI6VI0zEMjEnHrV77XEULKRvA4JHJqrdxKyefGSc/eFNSu7MLlMEhvrV+zkdWUKcDcDz6VQRsZ/rWlaqV27gAxPQ96qWw2aaqY5UYRIADu3ZqaDazsRnbGSqYGQT3NUVcKvkSEgKOp54qx9tiWyfYyrtPbpWU5OUbILiyrIXVhDtb1c8CpYo7gqFaSPOD9KqR6mkcamQKzE9BV7MRQNFuyeQCawlBoBqQMgZpmXPfB4qdLiJRtRc7e23r9M1W37YCMMAnByDx+NNiVJVVpM5IyuOM+1TZsZoxyl04Qqc/xUnnPhhG6kjj0qofMQYDYY9VxgU4SlG+f5c9MjOaFcdx89wyqjuoO07skbsGr9tdPNAd2N+MjAqjGoPIySTjBPX6Vb2JAMMR5nQ8/dpXuwK0sxQndI67gfmB4H4VQM08ciRTBZVb+PaOn+NXru2edTtbBxxVMRPHAIpfQhiBx/wDrrWLVtRjWxIM5Bx0KntUEk4tyh2/OTkZ6imwh4ZwWA2jPI6NVC+uPNnBBzjqa1hHUlll7vPRm9yRSf2iwBEechc1F5G+3+TILjuamS3SFUJwXXr71bSJHQXZkJ8xeMjg1fglRs5Gw5PSs1mZ3AXHmFs56imNKUcEZ3Z6A9DUuNxmw8UjH5ShI9Bg1GJbkOqsdgGABjFRCaRo8xDJH3h0NTWl6Jo3WUZkVuhHAXHPNZK5cVcsOMscH7x+ZjVediMDevqoHSm3L+fxC5wufxrO+0NEgSUEDPBIq0rktlcvdSB12NyeMj9K0rVkt4lhwu7HzEjnJqEXK+SCWJBIxzUM02+JmGBlsHHUGq1egie5V2QQ24Xy+pA9atQIYY1MgyQMBjVOzuWQKjQg4U5Ykg1O06xIJGznopz7UmnsBJdXWzLZO7HQ9AKoxyCSZ5dpYMR+WKp3NwXc9yx61ZimXyghUF+MH3quWyAuxEMFJUAoeB7HvWfdTOrt8xC9RVhpGaJhkqyHgGmfZlZd7B8dMepoWm4FGCGS6mCRrzjJPQAeprRgsAJHEriWIcFonwAfckf0qV7kzRiOPNvZ8hUA+Yj69+/Wkntlwz2du0agDDFzjP0PFDlfRCuR3McSJ+7hXMg2R/wAXbt70yOyhiVo3nBbPDBflz3Gev41YtRdTSrDLLDIhPBMmNrEds1WZmjXdKvzocgCp1WgmXLSx+ziVoFsr4gZKnJYDpwGA/wAalbV4IYQ9mr2N4rlRECSnT0J+U59OKyReRBfl3RyH+JD29xTJIZ7p0ZomdpDhHA+9649a0XmUb8OraxeW7FLiBOckvMASO4wT0zmqOq22qXAXzoS2TlWDBvwDf0qS200RyEkfuSvO4fMDVsulvCY0jYpkYkZsk/hWLqr7O4rnLRD94Q44HBq/HCVXap3DOG+lbCaXbXpEstrOkZI3TQc59eDxVeTS2hmP2Qs8DciVztGPcetU5pq42ZKaeZJWJIQZ4A/Wrm4FQudzZ6HjpXUWCyw2m62hiEwTMiOwKyY6kE9D7ionmtJAPtlpZQTMeXhj3uR65+6Pyo5092JnMzEtmXcThMfU1TG5o2UYy3Nbr2ELK4tpWUsekjZ/DgVUm0NwrPEei/dJwc0o1I9wTRni2d0Gwhtw7dQK0bYTLguxK4x05BzjmnWNvLaxf6TGBuGAG5NXN4TG1R+fXFTUqO9hNk6zwhA8nIJxgcH2NWDby+asTQt5jjKsBxVE5WJzJEyoxGM54H9c1YiuRDbsiM4jZiwdDhsY5z+lRFX3KTIWlWAtF5m5wec4P60yOQSMVkDMP4cirCvZyIVSyXnA3u5Offt/KnxaXchwjI6oOdxHUe1ElZaA7jkkW3jEpBI3YQe/rVbf50peQEPnBXNJcy7JWiLKoXjgg4qESpHjkOQPxpKNlYpGgH8sHbkgngGopCQwdQX3ffA7e9RpN5rbhwAB+IqCacHoQp781Si2DZFcXSJcmNBlQOnrWbdwoyHyvlIGSD3p1yyM/mKSXB6immVXbJ4boMV0JW2JGJcn5GyCduKHncSltxIPakmtpIQheMgt8wB7g1DLHIkg+UgsNwGO1UrDZMl4y846VPCPPkRkBBBwTUUVjcOmQv3mwR3/ABrREC2EZKNlu/GamTXQRbVgJG27lAx8x71EZrdkZht252nA6moGuDuEZG8sM4B/OmyiGNEtyASTn8azSELKzSoqxMAAcmlZnWPbJtcntVIzPEjFuCWNQJM0sigt85OATwKpRBIs3MLpChUDZ6+h9KrxMdihcF2OACe/1qW2LyF/N+4vUZ60kltGYRsc4Bzg+lUtNGO4+C5bcqMwKZwPfHWm3G3axD5OelVg4iJKjPGKeys68Nx6Z6VVtRldj8ox94Ui7+WBORyaVwM/Sr+lhYwXZd0TOAy54YDkg9x25qgQyN557YKMMxbA9atyXLxXCq4+TAwBSxRxLPLKmQp9T15pGlwVZUBJ6Z9Kye4mTywRIm+S4XYpxhAd3tx2FJNc2gRIS7SArkuuRz2GD2FSPEHUuyggdM92rJuC0cwdQcKc57Gs6TT0Eo6XNUadGhH+lRH5sB+wHrjqKqX32pcxzrGSpxxjH4H/AD1qO3cywl8kOOVBOBipJ5JprcefDtXGVz1x6irV3oA2w0gSq9xcOoiVSw54bHpWzJAJI1WzvoZdgBWL7gUd+px2/GudDSTOYogxIHRehxSIJxuVVYbRk9qUlfcTN4M8RZZWxJnDAnnNV5HDNsDFfqfas+OWSN+RgnnkVKzGd/lJLH+EVh7O0rkl+4/tKBYIWQ+Wx+U7sqM/SrSfaFRTNdRMGPXBOT7HuPeqlrJqETeXG7KCCCOowev0rUjRLiSUIqqhXcI1PzIcdg3UH1zVu0lZFblZoo7h4luG8pT83mRjO0f3fTNOSG13mVy8uflxu2hcfSs++lV3jjClW6MM1MhbAVo/L4wGPQ/WspOVkxF2Nbfy5HiUgkYPzZI57URMzXKjDGJSclhyR64Hesi4ke3mVDwCd2ex+lXbW4eeUBHRQBkZOAaFB3TEh106s/MQQ8gELj/9dJGAoHyNu/iJ5z9BVVpZAW4Oc4J7c/5FWbS7UEvNFu4+X3b3rSzS1AmMgcMSN20cITjNWIPu+U6JtOHaPjaOOo9fwqgvmSzrsQZZjlc8D/Ipbh57WUzeX5MW4AMmCo+vpmlCLT0ZUTRmUSwqlskajcGMiP8AOo+hp13qJAjV/wB5Go4UEhST/npWausweZvdXC54CYGeM8+3tVy3neconkq6E5IxwM+9Wrrcq5Bf6dHdXAjhmVrlgP3SRhUB9Ac9qzWhFszQPIGKnG4Dr/nmugv7GztFZEacSBD95wVyP89q5m4mdULPgSdzn1rR6uw+g+a4WMlVIxiqTszR7wpAHfsRTYYbm7JeCIkKR83YGuiXRpjIkF5F5cTjcWikUjH1Gcf/AF6r4RHP21rdXOWiiLKDySQAT6c1dTw7dgo5lgjLHo74PTPpWzBc26bbWCKWZ1wseH2jj/P41TuJF8uTzlSB8/6ktkrzzgdqTmwQyby44o1lcMF59f1qlLcBGBwshOSp7gelRy3rR3KEKjBCDhuQfr611Gnas+rxS+Zp1o8SdSqopB+lTGL6huc7aT3N1ei3gUs7Z2jOBj3PYY71NPOlqxR3jeQcExnIq/qV5Mkb2kCxWVrkrLKQCSOwyOfwrOistG2vNPqU8uBnakexm/PNPlvqxWKn2qLl41IfpVOa4aSQMeoovDBHct9kkd4SMrv6j2NRQW81zJshiklc87UUk/kK0jFLUdiWeUywoS3I4xSWTRpdRSSglFb5gDTpLK5hBWS2mQ9fmQjFNUbD5ZGecHNPZDuXL66Qh2jiWIOSdqjgfSqCyuMLnANWJmRwABkDn3NMxEYAAORnr1pLYRGVIjw2Msf0pVnIiKEcjjPqKh3HG3qfWm89aqxSLNnE1xciFfvPwvOMntWtb27W1sBIxDKXGCuPlz6/UVmWMLG5V+Qq85Bq9czAIVOOCcn61En0C45l8+Anpzxis55WiYkH/Zq21yPsgCscdPrVAOrklhjJ5oiiTZN2m3ByQePpVCYnB3St1/CommZpckY9u34VLMVeNd2N+MegH+NZRhysJdgglEagZyAOvNaMSpc2gG3AxgEknn6/j0rGBABD5wOtaMNxHFEPLbjoMdvWiae6IZNBZvp8pWUqx3kbkbIB+tW5sy25ZQjgnZ1xn8agW4aWRRHghvvA9KfuJLK0aRrnKqpzxWEm27sW5SNnLcRNJCysEO1uSCPpnrVuFYrePK8uRy2MU0RNHI0yvyW3ZxVeebfJnOAT2P8ASrfv6IfTQ1I9WMMTJHCkjDPLLnP/ANaobm6PnoyBMqB/q/u5xznPWq48y2gaSO0Z06mVhkfpxx6VDZRyXtyIY3dnYk4Az+nrmmoaD1sX3ZpWa6jUqcbdpAIJ9PpimR3zRSeRcxIAwyA+Dnp3qWayurdHjzJFKQQyyDGQD09Kiiga4RkeNRIo3KcVLcXuImlSORRHcRh0HICtjb9Dis26hUv5VlFM7ZznfnGe2AKuPHPIxUswZgTucd6rQrqgeX7NGR5eSxBAyP8AParpXva40y7a2k9wqw/aoIFxk+a/PHtVVYZreSSOdwJc8AnjHbmsd3lyUcESZ+bI5rQtWDoQRlxkqc/dWqnFKOgmtC4khDRquFYtjcT09avNJ5Kl2kaTPDr1G09iPcVQgMAnXzh5kZPTOMdsmtKEtdyiOGCPaoLEDkEfzNZWejQGXNpXmMZLKRTEzFtpPEZz0PtyMGrHm3NhZbXhUOCGBz19Rx1FXLC4a3vjbwnZ5uAZRwc/0qW71bc88k9hazwwr5TKYhkkfxZ6jPNa819xiRXKakIyrRRhAMBlJYHv7H9KD4Ztbu+8uXVwZM/NiHjHoOf6VTtvEGnxQhI9NjDlsg85HtnOake6t5pE+yySAt94MvzKfTrSu462K1NA6ZbwmW3FztMI+VdmMjPXBPrWdLHcRxSRfa0FqpDMwzkkZwoB7/pSteSyExmUsgPB7496akzeW5O3Ddc1m6tndIlyM9C6T87ic4KGn3VrBK3miTahxtJHJ+tWhMt2m0spKnggZPbFaNpotpc2sjC4ZJFGWDIGAH0yKpO/qJXMNdAlu4XNufMdG5VBkY7Y9SaowG/t5vslqssczNyqAh2Poa7ePTG0/wApbWdJ43TLKxEe1cjLd/Ue/wCVU7i4e5mAgh2uWwJYgRvwOpwPbpXQpJI0TIdO0y9u9UUX9iACTul83AQY5ChTyfxqr4jextZZrYWZX5cxSg7Tn0PXIx9DUn264ScSXEm0qoAwMAY7ADoKjmaHUo3WWJwoOR0H60m0tWTc5Agds+1b2n6Vq0MJkhCQs5HJcZI7cD8/wq7b6TYgAiE/KuWYkuT9McCrkkc1zIAhKjOFzxgeuayqV1bTYHLsV5LzX7WFPPG+BP8AWgYbOeoP5VWe90l3Kz2g2tw0hT5i2OoIxtGfrV2S8u0VYTdj5SQw68AHj6HJqvLBZzslzcoXYuAVRu3rzTjOIkzPm0RJVSawuhKj8iOUbWHtnof0rHZSrlSGDA4weua7CBbCYpb2ibH3fNLIWBx2wOgpl7oRR/tuFlViZAyHOelaKb6jTOVcbCQ4OMcetM2AlTu4PXA6Vfv2WSMlcArgAYqrbwidW2uqbBk7+9aJ3KRdWVEt0jUg4HX1qjJKW3A8Zq2UVYwyuW7EmoTbjy2Zxg1KshIrhiMKcY9aGPy4PrSLwwJyMU6RvnzjFUMQSMevTtT2ZjjhSPeoijZwAcVJk+Wq4G4/41Nl0BoQLgEY4b3qzaxB4ygb3yeMVG9pIqhlbLdStaNpot0+HuDHbDrhz835VLd1oxDrSGWOVtpAj7byM4qeUY+YnGfWny20Nqu551nkyRgZP86rzToi7VYqe+a5ZJuRmxC6kBJC4PTcOOKqvC6J9oQrIqnBDjp/n2q5u+0WjOGzKg4I64qqjNBEZZZOWHyoCCDg9CK1pjRP9tu7eD7K0hHmLgIjADB+nrVi3lYW5FqIIZlG3aYwXbHGQ+DzWRdNvZpGQRyEgnHHb0/WlSRYrdTuJatJX3KehuW5e6iG93VweVzk7vxoFpc2Fzs+ZZlIkKkYO31HqO/4VQtbvawmVtrA9B+VbMNm93HHLJdyPIeeVJOD6etYzVtydyk95ctcyPPuk+bjux9PwqxbSpIRID87D5icfL6CrFtpMssyP52Ffls8Ngf7P41e+xW1k3mMnEhORGA+D6Z64rKUb6tAk3uY7XFpHdf6VbM56ZC5K+/5ZqqNORUd4pEMUjZSQqQcfj/OtqaRLhyhPToTyD+HpTZ7Fp5kuUaKJQoR1lO0AgdutEJvWMQ8kZcUMDhVQkEH7wbrU9nM8V+ts/O04AAGCDVGJALghnGAcjb6etW1niE8cyZGz5QZOfw9TWvK1owWg/VJlcK8MCRZBB2dTiqQuo037YsyleQ/IPPPFWbt5DPG8jrIGPylOB+VU7yMxXbSxRFYzGC4HIz3x+PargU2aFjpdtrUayLGI3XlzCMCPnuO4q9HpIWSSSO4tH2NgAxiMgj88n6msLTLtbab5JHTcu3gY3fWtRJC7SFgTIW3hgeQSOc1NSWlmK5FJbv5rjeoDZyQff8AWp1iigO5sSA9MjAqs5YsAT8/tVmEkrhl37vl2n/Hsa5ne/kQtxbwxxQh7SEFpZATgdT29qrlr+GTasJZuuA3T1z+VW7iUNJEoB4/n3NRSTlA7GVG5xljySf/ANVNVLvVFXQ9IikQjILMxJJ38fT6VG8zwuFZN6EcqD94fhUP20scDAOCfQ/j60qXLFDHjcZPlbcucDIPH5U03zK4rkdxBLJJHKiLGp5AZxgfn6mrUdier3MK7m+VXOWHrnHAPTvUM5ScbV3LKoJZl5yMHHHrVO3tbuZJW+XyY/vOWCkfgea3i+dFb7Gqttew72iuI3yvzBeBjg9/w/P8Kz59Rkhu5HaaTzWBD71Py9v6VUa9ktGaOGbIBDZBPUEEfqKJtTjnhd7hFMh2qi46KByfqTzVqCsMaWkYB1bcg7suMn+tadlcG3AeFAzAhtu3dz6fSsMWk9wvmwxStGpGSFOD689KdEbhJVSNHDIc7dpyCf60ShfYR0EuqTiCPMkcbAAN0Bx2/n+lNTxJPHKGkCTpuG7C7SRgjn65rMjsryZ5HFvN0zyhPPp0qknJ2ZxztOaSXcGy3d3FtJKSIPLdh82M4plvE6wyJG8vlAZIA43e/wBahubZmVZYtz/L8+Ov5U+1unW0aLLbWPY8VolZaFLYlSKIRBOoc8jGMUy6RERUGBz0/CmvKHIOSHB49DSiQSy7X/8A1UvMRSmtyoLIwwO/rVc5P3qvmTa7KRlRkgVTlUiU8HnrWiKQx3Dv1wKsRNEm3gEgcE9aqHgc9aceQvJ6Dik43VgepdjvJLVzLEwL9AxAyv09KuW9w04GXO/qc881hsSR1zToJXjk+QkFht/OplTuhNG4JTMBFGAMAh3PI+tV7hSzlA6EDp2pRf28C+VEN64GWxjnvWe7bySARWUYNMmxojbDGEikdnYFXYcA+w9adEkSWx/eETk8xsoww+vUYrNidtwBcgVYleQMQx3Fh1B6fjWlmmO1iO5Ty53UP5o3YDdyPWoz90AnipDIRySBntioWOM7ehqkM6PT5rG2j3qoaRVH3e7DHXP49KsnVw0iukYVlPIHHrmubtLhopOCTxU6TbbneVwNpyB64rB07MTOmS9iurjedsc3QP05x1/yKlO1Ul2ErIMAqvzAt1zj+76e9czbLK7AKQXz8oz19quFneRBPuUg/Jgg9Ox+lS0hJllwcCQgqcfdx68c09ZYZ1aJ84x8p5HP4Vky3jQSsI+2QT1/WkiuW3KewPrUOm1qQ9C09lIsm3ABkzlky2cc44/Ors+py29m1sluWiAG5xFj8CcZ7U9Li4WFTaxAnb+8kUYOB/kVXgv87kl8vDKVAKjB+uMVvCWhoiF74ahKiskUMbHACjaq+5P9aYJJbW4NuXEsR+VTjIbB6YNZc6zK5+RlGeFA6VoRyi+gePcFmiIMXbPt/Ok4dSbEskgTJKJ1GAR93/PNSLKWCypkEAkgH86nhiUx+XJCjOxypJ6cc1VcG1n4PMfJyMfp+NZ2TE0PQmWRCTtHJOKvW6Tu3+iozNtwSBnBPH9ar2+ookBRVCSsDubbyeP0FWF8QXkBwCoIXI478c/oKmybsJNIbc289vNHDcxbHkTJzz7Z61kNuQHDbkz65rds9Q8y2WGWOKRXYt5TZJLZ+8fYdQKzry2aNXmQb4CT8ygcfUU1FLYbXUoK5Z8ryQOKuqucM33QcE7elUEVmIKA/NxzxVlY5ZCGUsMHqB1HenJIRbBaMkqCCR3HFYc9w4uWctsfJVyveuktdplVtm8E5AOeaiuY7C+naG6g8kgECZVwQcd/XpSotJ7FROWkcMwUcZHNPtLiOGXdLAkwz/HnAq3/AGLcRymSaOT7MnLyx85Ht/ninNBYSMY4zIgIyGznPHcV13jsVsalnqb38zJF5cUES5eRxgBc9lA/Sp2aTeDGolO4bXUdPcd6yl0a9jV/LSQxDGSn/LT8KhtnuophHHBKGY/LGA3XpwKwlBPWIOxrPeSxOGd3DHIznPNZlxeAu3mxq53B923Bf15q1qI1KSNM2kqzbgHQISTxxmoLjT5opWVniZwM7Vfd7cjtTpx5VdkpWI4oZ55v9ElUgDKhm2np0+tM+1K4EPkqrhcEseQe+PrUiQNDM28FPLxnHzD659M1o2OiS6rJ5qwMOcGXIAJx0x6/StFJbFJmWtgfKWa4l2K3KrjJaogyq7nOQD+tX9QS8imEUgwq/wCrBxg/SqLKQTxjcRxiquMrOknm5Ck55GKi8zLgtnFaQDR4I4yBg1SnjRZS5OVJ5App3AgJDcGkbiTHYCkzjHHJ60Pnex7ZqrDGYxUkSgsT7Y/GozU8JCqM/eJyKHsM1YLCGGDfcZB4dcY6f4niqt0YnBeGLaByw74+tTQXCyIFnQlQNuQcZ9Kiu3UqDHEE+QByvRz6/pWSTvdksqIRuyc+2BVpHHzF1yeg44qCMqGBKgpjkc80rkFmC8e1U9QHMVL4wMAflUbkdsUwg7zzTk2bxv3BfVe1UkBNGP3e9VwvTJ7mnx+ZNL8oZgBkgCpHhiRCYpw6n+EAjH0zV+11FLLT444YkMpO6RnAIPtj6VlIVtSrBOYCzsnyDgKw4J96sx3aTRzoyKzEbkPofapRPDqVp5V0gV8YhkBwRjr/AErNYPbxDa25W5OD6dvwpW77jI5FZSFOASCSPQUvMZUMpwRwKYx3nfvyehGKRd0qswztHJxTtpqS0bVp5b2+J5xDHgkMe547d+1ZEgeFmTzN0ZOeOlQmbAUrxt4xVmOPzIyxyI15LEcClGHKGxLFOQu18AHP/wBahYjDKZ2Qrk/Ln+KllmsooTGJlkycZUHj88VWFyzjZu3Ljgn61VgZt6WQdUUSknI6YweRUOoRyC9YPbPE7cYbrt9c1FZahIWxOfOjBwVY8gex7dqtXksl5KxgYiJz8oJz29ahxB7WJn0uJLVLu6mKiYfuo1HJA4LEn9KtxW+mCzBuY5d6ZCtv5b2AI6epP0rNnnluFcTLveRBjA6AYAx6YxV2AwC3S4uz5swUrFETwR6t7e3es9iSC28mOZ1WXyGJBWRgD9Afb6U6aaYOwiczxx9JY87Qc544/WtH7bpmr3MpvLNYwMRCSP5MnoDxVK/aHT9qaeVZj8kr7cDg/kT9OOKbhpqVYrpd7XO+JCCAFyvYe/rT/OgcllJjDEjA6L6Vci1G6WNRiOKZAfLZI1IweoIx3xUUWrLNdXKPFEytgMJEG047j0rPlUle5NhbXcJt4AnXHPPSrCX1nfxPtt4128MkgyrY9CMYNV4GgkdF2zIVcMPK74qa+t7ebe0OLaZ2B3Mv3uadN8vUpbETywy5hUFEj4WMcYB65zSR6bAiRzhrcKc4CxDkZ6EnmmXsaRyeYzhm3clc4+hNWmdrqDPIVVAGONnXGP1qZycLhfUWKGOW6RbdWimQ7lxkoMevf8qu22qzRO0z4+f5sAkg59h/kVkMz22Sru/GM5+Y1SWW7DloIJvMwQnGO2KqjJyQJnQNK8wmGEh45SH5Hbpkf/WrD+zK0srSnJAO0IeevvwKoLeXsLnzQ8b4wd64OKmS5fIZTyM5ySd2fWrm2iWyzZ209yglK7Ys43ycKf8AH6VvTPDaWqQF3ZQNruOFyTnt/nFYdv8AaP8AWbJDG3VFYlWJ6DH+elXYZppEcTxskTcgE5XdnBJHY1nbsNbaEjCNrVluEDwsPkbZ09CPTvWSNOe4lWO0H2ls8KpyV+vT86speT6fI5M25HX/AFaSZwMdfapYEvGRp4sBSBlQQCSemRVRfLowTIm8J6k83lMId4T5gZQSPTpTrPwkjyNNqqyhVVQsUDDMhPv0AwKIdavLeOX96yzbgADzj1zRBrRubkHUW3QAEAdMfT0+tbKTLP/Z", "path": "images/3pts_ADE_train_00008671.jpg" }
depth_point_24
images/3pts_ADE_train_00010110.jpg
ADE_train_00010110.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 78 y = 164),Point B is located at (x = 236 y = 141),Point C is located at (x = 139 y = 174).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_64><DEPTH_36><DEPTH_36><DEPTH_31><DEPTH_67><DEPTH_70><DEPTH_49><DEPTH_74><DEPTH_29><DEPTH_74><DEPTH_29><DEPTH_36><DEPTH_74><DEPTH_31><DEPTH_70><DEPTH_70><DEPTH_31><DEPTH_29><DEPTH_29><DEPTH_74><DEPTH_40><DEPTH_29><DEPTH_49><DEPTH_49><DEPTH_67><DEPTH_59><DEPTH_49><DEPTH_74><DEPTH_49><DEPTH_29><DEPTH_0><DEPTH_45><DEPTH_29><DEPTH_31><DEPTH_67><DEPTH_59><DEPTH_31><DEPTH_29><DEPTH_29><DEPTH_74><DEPTH_82><DEPTH_58><DEPTH_78><DEPTH_11><DEPTH_67><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_49><DEPTH_29><DEPTH_45><DEPTH_58><DEPTH_58><DEPTH_22><DEPTH_17><DEPTH_67><DEPTH_29><DEPTH_31><DEPTH_64><DEPTH_38><DEPTH_44><DEPTH_83><DEPTH_49><DEPTH_22><DEPTH_59><DEPTH_59><DEPTH_31><DEPTH_69><DEPTH_72><DEPTH_70><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_74><DEPTH_29><DEPTH_29><DEPTH_49><DEPTH_25><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_78><DEPTH_19><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
3
[ "C", "B", "A" ]
<DEPTH_START><DEPTH_64><DEPTH_36><DEPTH_36><DEPTH_31><DEPTH_67><DEPTH_70><DEPTH_49><DEPTH_74><DEPTH_29><DEPTH_74><DEPTH_29><DEPTH_36><DEPTH_74><DEPTH_31><DEPTH_70><DEPTH_70><DEPTH_31><DEPTH_29><DEPTH_29><DEPTH_74><DEPTH_40><DEPTH_29><DEPTH_49><DEPTH_49><DEPTH_67><DEPTH_59><DEPTH_49><DEPTH_74><DEPTH_49><DEPTH_29><DEPTH_0><DEPTH_45><DEPTH_29><DEPTH_31><DEPTH_67><DEPTH_59><DEPTH_31><DEPTH_29><DEPTH_29><DEPTH_74><DEPTH_82><DEPTH_58><DEPTH_78><DEPTH_11><DEPTH_67><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_49><DEPTH_29><DEPTH_45><DEPTH_58><DEPTH_58><DEPTH_22><DEPTH_17><DEPTH_67><DEPTH_29><DEPTH_31><DEPTH_64><DEPTH_38><DEPTH_44><DEPTH_83><DEPTH_49><DEPTH_22><DEPTH_59><DEPTH_59><DEPTH_31><DEPTH_69><DEPTH_72><DEPTH_70><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_74><DEPTH_29><DEPTH_29><DEPTH_49><DEPTH_25><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_78><DEPTH_19><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_END>
78
164
236
141
139
174
null
null
null
null
65
24
3
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigDEQ7Naf3IrZH3qxLn5NULfjW2pzzW1XZM56W7XmR3Y3WkoP901zznEbcZ4ro7jm2l/3T/KuZk/1Z9xWmH2Znid0dHbnMER/2B/KnyttU/SoLRs28A9Yx/Kn3XERNc7Wp0X90nxmoy374jsFpxcBgtRuCLjcMYK4NSaEiODx3xTs+lRr0U+1CvmQj0FAFG6LLOhHJDZIz2rO1MH7K2Rg7un41rSqfN5x97j6Vmar/wAe7jP8QpdQexgnNUtQvodOtvPmDFchcL1JNXiK47xtfGKOG3IATiRm79ccfrVt2VzCV9o7safFsgU5gUv5hxjgbP8AGugiuYrlN0Uit0JAPT615l9oBtDPjIAJx9Kt6Lqr2UwnhUSGRQjKT64rOM9TH99TcvaLROz8megv1pkY+apG6UiDmtjco3+rvZXIgjjjLEDBdsZJycAd+lZMviXUSgYfIjMUDKAMnGfr2qzrD2638xldRIsSmMH+I+lY8UdvBZKvmEyI/mk4GGyTx6jGa0gl1RnPVaM6zQZLt9TX7RM77od3JOK6xa5DwzcyXWpyGTjYrAADAHIyPzrsFwO9YyT6msWug/FRTQLIytkrIOA69R7e49qnGCacy96RYmmO8ZuvNAJV1+Zeh+X9K2FwVXnIzWfp6gtdccF1/wDQavCMxhRGAec4NPoHUcikXDk9D/hTGDLcP/dYflVBdchbV3ssBZFYKQxwRkeh6/UVpt1brjHWmpXE423EdcF2zycUwr+5z3yaHlDMQOVKk5pJWKWmVUsfQUJ3E0czer+7AyP9YK5i/OTee8oH6V0M15HKHJwqpMoHqeAenrzXJ6pIzxXZjjP+uBDudoUgdfX9K9OjJciZwTjeq4PudDbkNLwwOEC8euKqzXSm5EcKGZ1znb91fq3QfTr7Vh6Xq0jszajC6RO+0mPhM479zXRAKsiqgAUDgL0qYVoVH7rLnh6lFJzWj2GxRyZZpXBP91RhR/U1BenABz0Bq2DgNWdfv8p+laLcxlJvcj0wcMfqa9BtVT+w7UDG4Rp0+lefafgRk/7JNeiWqGLR4ImK7gq/d+neuTHP3o+pthNmQdI2wO54qjPJvG0fwkVfUq0Zx2Yiql2AqoMDBPpXOdVzraKKKyNjB1L5b9T6g1sQNuiRvasvVhi5ib3rQsj/AKOtbz1ppnLB2qNE0/MEg/2T/KuYl4AGe1dRL/qn/wB01y8p4H0q8N1JxW6NuzbEFt/uCpbw/uD9R/MVBaDNpan/AGaZeTfuyM8hx/Os2veK5rKxd24mJJzSSsPMBpRIjyEKwJ7gVDIMdeprI6CeElo1zSqv70MDnjBqGKTYq8cYqdGyRxg+hpMYsiBmU9xWDqw2ecDxuII966LrWNrwCWTu2MA5J9qXUb1RzIkRpHjDAuuCw7jNcN40dbu8+ylQpiQYfuSea52bxbqCas13ayyRxCTd5ROQ4z0b14rofE8kU2pJLHkb4UZh9Rx+mKTlzIrH4WtgoQqPd6/ccpBbyCxlibhmzgVHYRNFAT90s2R7Voo6vnaegGfxGahbnIHaoW5w4jMKs41ITjZzab/r7j0qEN9nj3/e2Dd9cU9OtMt0ZLOBXOWEagnrk4qVBXSarY43xYwj1AyMQoUKT82CRis+Q3arBCtq8vnAxblyRGRznI9yBXWan4Wi1jUEuppyoT7gUeowa0bLw1aW4GJZyQMDDbeKq66sqL5empR8HIq3kiLuwitnccnJIJ/nXbKPl6Vn2OnWtkzNBHtZurZJJrSUcVnJ3Y0SDml4NAGaXbSGWNPHFx/10H/oIq8p+dV68VSsVwJ/eUf+giryoAwzz3NV0ArDT4vtbTn5iSCQwBHFUdaudP0q386ZfL3uqqUyPmJ4ztrVXLXLf3VFc3rz217cT2s+xii7tndeuG/PNc+IqezSt1NqMfaSsxtrPJcM3nLMC4bCtI3yjPNbN7c2mmaV9puSEiTAJOTz0FedaHqU+kX8Jd5rmxuB5ZlIPyyFj/n6Gu18TxRXOmQWs4zG53EZxkgf/XrLDWpXUpXW5tVpOVSzVt/wOatr5DqFzEoyGYTnCjAyBjnv2rndVuAt0kLgmNrndIAOSBjiujSw/wCJqsy7UhZdhOKxNSaxsfELzXm9okUmMKM7nwMD9adCvUUJwjrpf8Tqq0qSxEasbXS/GzFn0261SyWa2VVtvtARVC8jsWJ+p6CtC08yJfIldXeEmIsp64qPStTe9tU02JWEcpMzTIcMrZBwPTkYp6yQvPLJboUjeQkhuOe5/OunA3VfR6WOLGa4NJ9GWi2EPNZd42VNXnb92cms26+71r24ngyLFiONv+zXplwyi12JyQMYrzWwGbkL/uj9a9GdiwXknqTj615uYO1SB0YT4WUoojHCATzzk+tV7g7kQ479KvPyMYqhdxsu1VbB5xn1rM6jrqKKKyNjG1wY8pvertgc24571X1xc2mfTNO0pw9qDXQ9aSOXasaEnMbfQ1ys/GDiuqb7h+lcpckbc+9Vht2TiuhvWC5sLY+i1SvlZLkD+FnX+dXtMOdOg+n9aNQjBjVsch1/nWalabLlG8U/QmQBZWPqajuAM+3enZ2kn1NV7l2Eo6YI4+tZbm+wsPzBCwx3q0r/AD/Sq0fKL64qQODIoyPShgi2ay9djD6e6Ho3FaaYCgCs7WgTZkds1JV7any9c2slvfSWrgiSOQxsPcHFd94qtvIv4yDw8Q2j0xxV/XfBg1TxBDfxSrDE2DcDuSOhA9/6Vf8AEWkSal5UsJAePIIPpQo2TR251ioYqjT5N1q/XQ8x07zEuJUfOSMnPY0lvOWu5oj0LEgn8q0ztWd1K4YDBbHWksrGI6nGHUhZpFDfQnnFZrc4a2Lp1XUlVhaUopL1R6LBF5NpDHndsjVc+vFSIMVyWg+KZ9U1ySzkWJIju8oDg7R0Huf/AK9dcvWt07odXDzoS5JrUsRirUfFVYx61bjUcUGZYjIFWEOR3qFKnWgZIo74pxyT2pAOKcD7UhktoxWOdsA4lGfb5RWgCAQegxVCxXcsw6Zk/oKv7d2V9RVCHL95jjmuB8QaMTrLala3LW8+8LI3UFM84Hr0ru4lZQwZs+ma5vV9OuL/AFeaFZSkMibcp1BrkxafKrO36+RvQdpGdHplrd6/DPHE0S2wOxE4Rs85I9a0vFrTJpsE1rF5ro2zb9cVqWWmppljHDvLuFClz3xUt9Z/arIx55PI+valQoOMG56tmqxD9rG7ulpfyOX1F47a1s5HYK79Ihzz61x3iGA3ryMi5kSQnjuABn+VdJeITqls7KWbaVI7LisqIZvR/vsa7MuoJyk+jVh5hVWFVOUdXe/6WMfw3qzWUEyJaNPMGDKd2NqdxWxE8skKSyj95J87fUnP9ag1HTZbXU/OslVYrj5ZQB931PtV4jkV1YbDKlUk0c2Y4iFSlHktrr5+jFdSYhWfcg7lHvWsV/disyYZuEHvXdHc8Wexc0lC2op0/wBao56dRXevNIwjTZ8vQkcdK4rRIjJexbcAmXOTwBXUxyeZdAK4UIPmDHnOe2K8rMtasTpwukSe5ZkTKnp1+lVLhg7oRgjrV+RQ3ynniqM67JUUdFHAApHU9zq6KKKyNijqy7rCQ46Cq2in/RSPTitC8TzLSVfVazNGPyyCt4u9Jo5qi/eJmsrbowfUVydy2EwR3rqLY7rf6MR+tctenBx/tGtMOrSaM8S7qJu6Q+dNi9mIq1ff8ex+o/nWZpbY05eekhq9eSD7I59MH9aynH37+ZcJ+7qWSmR+uKr3Cg4JGf6VbDKSOmar3GChwehrJHQyvEPnGR1QU4RbJ0K5IPUE/rToQTGhx2p6Heykcc4psCxF938aoawT9lI9TV5SVYA9KqauAbTnseKhDexysrrGjPIwVFBLMTgAetU7fULW+RzazJIAOqnOQRwR7VmeOpmg8J3hU437UJ9iwzXGfD3VHi1SXTnwY54yVOOQw56+mM1TdnY7KOAdXDSrp7dPLqNuQPtEv++3867bTrC2Ol2twYUMwtwA5HI4ri7of6TNj++f513unyxpp1hEx+eSJdq+vy5/pWNL4mZV0nCOh5L4cEg8TafsJz54zj07/pmvXh94Vh6X4StNK1a4vw28lj5Ckf6sHr+PUfSt4DmtoqyN8yxNPEVU4bJFiLtVqPtVaPtVpD0qjzywtTrUCGp19akCYUChc+1L0NAyxp/3Zf8Arof5CrkWSW3DkVU08/LJk/xn+Qq6hyDg8VQkKvvjNQvGPMLg4O5eKegcyEkAAdOetIXzIygdGGfalYLjbpCdpBPDD8qkb/VqDTLgtuxjjOQaLgt5KKo6nGc9KaEcxdRhbqVtvODXLWw3XZ/3n/nXXXanz5u2FNcpZruuifdv516WHjGK0OHEVJVHeT20+41LhMq9UxGfMrTkXO8VXCYJrS5mQuuErJk5ufpW1KMJ+FY5GZ2NVDcipsa2lxsDHtJBJPStLyyNRtgp3OOCG45xUViFgG9sDbHkZ9aZBcq+q26q3zF8En1rycY26unkdFJWVjoYy/IcAMODg5qrId84zyQcZxV585PH41SkX/SF57UHYdVRRRWRqIwypHqKxdNytzMvYZFbdYsY8rV517EAitaezRjVWqZesGysqHqshrnNUG2Vh6SN/OtuxkA1G6iz1wwrE1gf6RIP+mlb0VaoznrawRe0pv8AiWSe0n+FS3kuLeQdioqHRfmsp164YH9KdfgC3PutD+Ni+yjah4jX/aGaZcgeWfpSxEhEB/u1HOSyMD07GuTqd3QigDeSqhucdfap412bAOxqvHIFjQucKRjJNTJIGKkEEbu1NiRYc5GRzis/VJM2eDwc1oEhF61k6sSEIqOo3scB47jMnhG82qWKlG6dAGHNefeCbOeTXDdxxkxW0bFmHTJBAH6/pXsEqCWN45EDIwKspGQQeoqlp+l2WlWYtLOERxAk4PJJPcnvV2u7nfh8wVLCToW1f67nnk6N5rkjksc1Q8V6vcNJY2sMpSKK2Q5Q4JJ689e1epT6XZXP+tt0J9cYP515p4+0ZdNv7a4gVvImQrknOGB6fkax9m4ts6MsqU6uIjGS16ep3uh3Ul/4fsLqU5kkhBc+p6E/pV8AZqhoMRg8OadGeot0P5jP9a0QK6EeTWsqsrbXZNGOKspVePpVlKRmTpUw6VEtSrSGTA8UueCfamg8U7tSAnsstHIB/eNXwygHnHOKoWDBcqe5Jz6nNXiCUIx1NUA9enrzUTAIGYd3BNSEnyzjrURbzIzwRlsc0gCc4I68mpCQUQ5zUE3GB6VIBhfbPFMRz13/AK64/wB01ytgP37cev8AOuqvDhrnP92uY03mVs+v9a9Ojt8jzqu79TZcdTioSPm6VYkHBqDA3HmgCC6GI6yIl3T49WArVvjhOT2rPsl3XEfuc1rDZszqbo6K/u4X8oxRDcse0hhx0rKsXT+1IU43M4GcdKLtsMTkADiotM2yarBtjLurhi3ZRXk4hJM6IO7O12hEG3pnv3qnJ81xyOmKtTputyOc5yD6GqNyzrLleoxkeooSOxnUzzx20LSzOqRr1ZjwKZDe21wAYbiKTP8AdcGs3xU+zwtqLjGVhLDI9K8Wg1+Xfhwo91JFZK2xtY+gScVm3KbdSVwPvJ/WvHk8U3FpKsiX9xGqkHAfI/LvXr8F7b6rptpqVq26GVN6n2PrWsVyu5nNXiZ8tz9l1hJT908N9Kqa0wN7LggjcP5Uajlv3nbNU7yYTMjZ5KKD+HFdsI6p+R505O1vM19BkxDcg+o/rVq7AeyJ9BWVo8mxplJ+8orQmkDac2fUD9aznH3my4vRI2gCdmOgWorg4Q+uKsJjYp9hVa64BHODxxXEegypG6vGqg8gVKWCoMcYPFRQEFU4HSh2JmKZPTofrTEXjukXHGO9ZeoxeXFjtitWIYZhjtVLWF/cA1HUb2OebrTDyKcaQ9K0MxhFUdS0y01W3WC9hEsauHCk45H0+tXjTDQOMnF3i7Mg2LHGqKoVVGFA6AUoPNK1C9qYiZPpVlc+lQJU6UDJ0B9qlUH1/SokqYVIyRcjv+lSKvvUQNSr0NIC3ZqDHkjJBq2h+Xmq0Z2QKepxVlcFRnuKYIbHIrg4IIB9aa/3Rg/xU8AA7sYNQPKC4UHgHmmATHLjHTNTyEALVRm3SEdMNip503KDuIYdBmjqLoc5qJxJOf8AYrm9NHJPuP510ep8ed/uCud0z19xXpUfhXoefV3fqbL8ZqAZMhqeX61APvtQBR1A4B96g00brogfwL1o1KTDBc80/Tl8tJWz2ArVaQMmrzJXj86Y8/ge9X7O8gs1t4rZE3ysolYdc/5NU/OjgALxBiDnk9adp+N6y7gZ2YEKBwqjr+lePifekr7HTTv0OukAMOD07iqbbXnIxkcVbkH7nbkjI61QRWSZlY5w2Oepq0djKV14gtL7QryEXFvdLLER5YkyT7YBz+VebTDRHdgYBG4GNsdwVI/Bs1X0+S2vJ7e3ZUV3ZVIzwa9Jv7HStVsDBLYJ5MQ2xyRLho8f7X+NY1cCsOlGE2/U9dQT1tc8yl0nT7sbYrq7iyO4SQfptrvfCOoyeHfDn9mzyG6iWRmjZYyrBW6jHPIOT171xuo6BbW1q97aSB415aORRuHuCOD+lSeEjOdYS/ZgNNtcidZpTtfIOAoPVuh9q5uerGXK2TWo06afMrHqepW7WtnEzsx87+FhgqcZGayLK3a8vkjJIQD5iO1WE8QWfiK38xX2hiVC9dhFSaFYXsVzNJcIoVjhCjZ4r0FiGoN9TxXRTmuxqf2ZFDIxt3bIQnaTnJrOkvdtq8TqyvuBKntW60Twq8jgjjrXN31pPcSCSH5y3BUdc1NGu27THVoq14nXWt5FNFFtfogJyMdqdcyKyNtYGuehluLWFEmj2sEGM1JDfNJN5RP8Oaz6m3QtQPkY/umpZNpZWOcr0NZXni33ZORkkn3qa3vDPFnBGegPpTA2ZLgxIdpG7HGaz728+0QhWAVlOeO4qCS6Y8seo6elVftHmq5xwDgH1pWBsgJyehppI9acaaasgaaYetOIHpTCPrTsAxqB1pGpRnNAidKnWq6Z61OufWhlInSphVdQ3979KlUH++akZMKlFQqD3YmpV7CgC+iqUXnoKlZtkZI6/wA6rRSFouTyOOlTb1bI646+1MCSMMsfzkE+w6VC4VEBA2jOaczlVGPUVFM3A54zQwGn7ykdzmrEkgyFAJ45OOlVGbLY9MVYc7ImPryaaA5vV2wZf+uYrB0wgIO3Ira1pvnk5/5ZZ/U1hWBwqD3H8q9Gj8PyPPrLX5m1I2T+NQZGWNKWy5+tRO4jR3JwACTTtqIyJ28/UWx92Ic/WrlucWo9Xas223G0Mp/1lw2R9M1zvi/xidJ2WmmSobxCAWwGCAeoPGa0qtRXoRSg5PQ7+S3Rl2nGTyRUUMRSYuq4PA69q8YPxA8UTHnUlH0gjH/stSReN/EpkTOpEruG4eWg4z9K8uUondGhJH0eZVEI3HGFyaqlv9IJ6gmpiwKx8ZBGRVeQ4n6gfNzUmlzwTTZ9ur27E4VTkn0Fem2vi5RabbOcxMg3AE8SeoI/lXkcMwSViys2UIBUZx05r0vQdMU+HZYby3QFT5kUh67uuR7dq6sbUUb36H0OGcFStNXuzXu49K8RaYkV1aCEmRZhJDlCSP8A62f8K5jTrKys7x9P1O4k+xJK7IyHaZMnCk46cD+VaXiOMWUFrqVgfs8fmrFcwLwjK3G4DsQcVxOozLfXMrA7V4YDOSCM9K+aw1V126l9H+Zx45xg4pdTqtYnufDMglsrgtZzsFBbGTj+Fsde+D9a7Lwj4phNv5d5IBLtLpznv0/DNeNLNquqFLRftFyYQSqhc49+Kdp89wbyG3ZpYnBweSGWvpsJho1qHLfU8fGY5wUIKOivr6nvOq6zi2nk8xSkaFsZxwPX0rkYPEyXUZljkR0UEnaDnjnj14z+Vc1NdW1pcpc315c3FlBCzNFk/vH7AnvnmmRkTPcutuEjtyxHln5o1IwRxwQP61zTwkYXVTc2oSlXV6ex32magmoWgkSXzVbJVs5x7fXirluxW9GfvH5c/hXm/hbWbe2k8mGCYQglnQt5nlqOfTjoa7eWQazF5sTLbq4JjSObDlOgY46Z5rN0XTdht8yv2NOcmSWVADxzxUkGY1xj6e9YtrZ3VjGyRTPJk9ZZSxx9SKsGa9BXHGO3BBosybovSTb5GTHKmo4l8sbRnvVKKe6jYtKAxPHyirKXUhHypnnncKVmFywTTSaCaTNWSITTGpxprHikDI2paQ9aXvTETp0FTKagTtUymgZOvSpAahQ1KDSGSg809WAcVGDSkkKSuM9s0hltGCqFHQdqYZGWUsGAU9eK4KLx1Mt24udPV0yVBil9PYitODx1p04IktruLOOqhufTg1mq8e5s6E+x2AmViBk5rzL4g+OfE2h+J/7L0K00qaBNOW9nlvn8vYDKY87mkRcZ2DHXJrsItd0uWMyRXsSEdfNOzH1zivJfiJqumL4zvkvLvT5I7rw/HBEZjM0LuLxZMMYcuOEY/UDPWqU7rchxa3R2PgDxn4g8SXGtW2u2dnbT6f8AZ2VbUHDCQO2c72DAhVIIOCD3zXoYuo5YflbtjpivIvhJe2epa94qnsFAtjHYRqqlyg2xOhCb/m2ZU7QeQuK9U27eAOAO1NS6E2MPWX/fyqD0gz+prFtHCtEueTz+la2tqRPcOeB9mA/nWMqlZ4T7f0ruoz904q0feNcHLVQ1lymkzYOCwC5+pxVqJjzmqmqYlsWTvwcVrGWtzOUbo5Lxdf6vY2cVvptukRkzGLhpBlAB/CPU+tebjQdUJLOEJbkkyg5r0TxXerdXtpZIcmEbpMHox7fl/Os37OmBy35mvGxuNkqnKj28HhIukm+pyaaDfKOUj/7+CpBo98vO2Pj/AGxXUG3T/aA/3jTDCmf4/wAGNcSxUmdjwsUe4wOHggO4HKLgjvxVe4VXZlPUkkEdjWX4WvBfaNaSbQpg/ckA5xjp+mK1pE3yEYODxxXpU53imjypx5W0zxDwlryabqDWzQF/tBGHU424Hf2rtW1JzIsKnKO2SO+K4SO30WKVZEknR1OQwY/4VcW+slvFuReyqwAGCSVOP+A152YzqYiT5HaLPZpzhGK7nXeK5YV8PFpEYW7SxBkU5P3hnH5Vx9y2nWMNrc2UplaYsrLJg4xjt2qfU9UstYtktp9SaONWDfIcZI9cio9OsNKtJGLOt1uIP7zqPbp0riwWGdGKU5W3KxPsatB6e/f8CS2v4dOP2tHlV5T8qRttCnufp7VDrE0MmpxX1vMWlChZE28ZxgYpZ9LtHJdL5I0ySqHB2+2c01bBIIVkGpQgiQMHbADEdutexhMUqNVSvoeFXwU5waJrm8gt7doZbdZWk4fdyQfb0xWPYaleWr4QhIC5HA4Pbn64/StG40wXkjSi+tvnyT8/Wq76cYoIbZjDMpkx+7kAOSDg/XOK9qpmOFq6XOHDYLFUPe3/AMi6ka6SsOob/wB7EnzxyZxNnIBXjkAYrrfDuu2G6ykPlhriMxykMSwcY5JxjB6j6muRtY7a500ie4ZmRQr7v+Wa5P3Qf881y2v3FxoFpE1lchbh5BuKqGAGCRgnPtXG3Tk2qjfMvx7Hpv20aanRjenJLrs+p9EsBnjPIzyKpXl2loyb45X3Z/1a5xj1ryfTfFnjSy8b2Gi6xrFvPBsZiI4IwjAI3y5CA8MpU9sqeo5r1Wzv4b+5RojysRLr6EkcVzKp73K9yPZv4ugwavZEYYyp67oyKv7kRN5YBcZyemKgF0J0vFB/1RK/p/jmib/jx9yoH8q0TFKPK7E6zxN92VD9GBp2c8+tU5WtBqMVo1vEWkRnHyjsR/8AX/KnMiNFDGUHllyNo4GOfSpUk9hypuNr9S4y4UnIOPeoTgdarzWsEUDSxptYdMMf8aZc2aXN1mR5FVUGAj47nrVJpk8paeFxGJCp2nvSiNmQuFO0HrVGONbR44kkkZXRiQ77sEEYqxK8rxxxxSiPBO4kZyKroHLrYsoOB1qfyyADz+dZixXiBs3SnAJA8rH9an8y5maILOEBiDkbc8mpbRXIX147/rUoH1qgUuFQsLhTtBY5j/8Ar09bictiKJGAUEln29fwqeZByMvgc9T+dPAz3NZ63N2YmcW6YUZIMnPr6VdhcsobgZAOKE7g4tGO/g/SJJWf7OQSc8O3+NL/AMIdpm0LscD2c/41uhqcDS5I9h+0n3ME+D9OIGQ//fRrH1L4VeGNVnE91aSPIF2hhM68ZJ7H3NdxmuCE+oXnh+98SPrt1ZXluZglplPKg2sQInQj5nOcZOD8y8cDOc3Gnsv6R2YXDzxKd52V0tbvV3ttftv0NDQfAuneFWnbQzLbfaNvnAvvD7c4+9nH3j09a6FVvQvEqHAwPlqWzne5sbe4lhaCSWJXaJuqEjJU9OR06VOK05U9Tjk5RfK+hhahpd5fKRJdFc8ExgDI545B9ao/2LOm0GdiV6EqOP0rqqYyg1a06kO3Y5ebQ76QqV1KWMDnCIgz9ciqdx4cv5gVbWLkKf7qIP1AzXXShhjaBkkAZ6U0wTkdIz+JqW11bNIptXSRwUHw+jEjH7bKWJySygmrJ8AsPu3ueO6f/XrrZC1tueRV+VS/yn0pi3N8Rn+zZeRniVD/AFrB0aT1Z0xqV7aHJN4Bl7Xan/gFRf8ACBXOT/pK/wDfNdl9sugyebYTRqWC7i6kDJx2NTmchioSRsHBKrml7CiugOriE7GD4c0O60Np1ldZYZAGAXghhWutzIsh32xU+zZqwJ/VJP8Avg0jEON2enGMc5raKhFWWxzVOeTu0fPLyY3HcOh7VUnlLZ+Zcc9qsTn5W+Ze9VHAZTypPP3a50dbZZh02e4iMvnQqByFyen4Ct22dXcFGyMVlWbzPYysHI2YwoqxpBP2l1PcEn61l7+vMbTqc/LpaxdvGIt0H1rO1LYug2rFc5uX6/7oq7e5EYJPGTj2qlelG0OzDEZ+0ycf8BFZt6nNjV/s0rEUdyHsYbQwKIyxw5XuenP1rNY/IwwoOeua1ZdQuL2KK1WMMqbNu1STkdKp6lZXFn5jzx7Fd225A9anDzUXyvRswwsm6fK76d0FjdXFrCWTgMpj3EcEEYI+vNO1u8t7Z9Hu72CQwWk0bGIKCZMbmHXHyk4/AmmadqCQo0cypNEp3pEw439AeKvrbTXOoT6hNawXbh8vBNEHX0Hyn29Pwr08VjYKKbjr3OzL8qr1pOEKnu2vb5mHp2vtruraObtV/tC3a4VnjgjiRomUuowgA3b2lJ453CvXvCUotbK4uGY4WNmIJ9CK4O0s7ISLPDZW8MnJBSFVK9uOK77wlEs1jNG6o6sp4bkHnvXNGanUTCVJ0YyhLoyXw9eNNJeJIfmlRm/z+ZroLiQLa/8AfIH5ioFsbe3WWVbaCNxG2GQYPSp7k7rQepZf5iu1u7ujkrSUpXRi3kk3/CZ24VMgKoHP8ODn+tbIkUCDPP7wnH4Gq7wI2txXO9d6RMmM85z/AIZqVHGLb3c/yNYUYuPNfub4qrGoqaj0VjzzwZqdzea1q8k8zsbhd5BORkOMfkDipvEfjrU7TxHquj6V4eu76WCKMGe2diUyobcVCHH3sde1b+m+GbPRrq/ureZpDOw2oygCIFgSoPfkfpXnfj9P7R1rULG0vbW2uodQSeYXFykG9GtoVjYFiM7CsnA5HmcDrXZiKkZzvHY4aClBK+51PgHxnP4pNxBc27RSWajLtLuL7ie20YxtrqdcuZLfTLiSGQJIlvKysTjacDmvOfhVMZ/EPiSY3X2ovKrfaNmzzcs537e2euPevS7yBLtvIkUmOSJ0b6HArL7JvTmvbqc++pyfhTXr2+1e2tp7hpUW2dHDN1wCQT79Bmu4iYgqw7QL/M1yPhbw5NpdxqV1coFZFaGLP8Qxy30PGPxrrIgDKEPA8lP5muarGfspKO9j0synRliV7Lb+mWElIt5wxz8hPP0qW3YsCoIGUXJxnjmoXQR2k/OTsI/Sn27AXIwMkIBj/PtXLl0KsMOlV3OGrZy0LNwzRwyMpGGXGMf57VZgb9yn+6KpXuHs5FIBypxn1weatxYMKdeg716ETCWxZBp4NQj6mpAR6mqIJM8Vkz+F9DuNQF9Nplu9xzklflYnOSy/dY8nkgn8q1B9f0pefUVMoxlurmtKtUpNunJq/Z2HUUnPtRk+lUZC0hoz7U3PtQBFcyLCnmt91PmP0AzXngutUuEOvtO7bZ9i7G+5nnG3oQBgV3uqKZdOuI0PzvE6j/vk1xmmTxx+BYYNwMpuiHGec/e/lipe57+UpRpuVrttL5O9zrrqUXFiZl6SWxYfiM1B4j1aXRNG+1wQrLLvVAr9Oepp8y+XpKIeCtoB+lU/Gah9GjQjIMy9/Y1kzmwtOE8TGEleNzWnk82yt5MY3vE2PTJBo+0xWlrLNKcKHPTqT6CkkBFjZr33xCoLuzkvbRUjxgTEkE/hUVHJQvHcypwg5pS0Vx2n6xFfTGLymifGQCc7hVpVIcAjHzE/qayIY4x4hjW2ULGpwdo9BzW/KFLwsO4rLDzlOEubpoVjKcITXJonZnzLcNxgbO9V1jkml8tNm454FJLIWJyqAjI4PTp71Kmm6jNZSahbxZgjJDmM89f5V0U4c0rHPUnyRcjpdP0eKKxZLrVILcuuGA5JH501YLW3v0+z3ccy7cfKMfjXNxx3JtXkSzkYg7SSc8+tSLFci5tMRNmVfMRl6EA4P0xiumpg6fK3z6o86niqqmrQ0ZuXiF9uB6ikurXzPD1s7sP3Vw5AHuAOf0p88buEAznnPtUl1EbLS7HJZ4pZnEi+wxXlxS5lc9mc0oNt2Rz+nuINXhYN8rNjnvzWz4n8iTciOGxMZHG/1GMD8qyre0thd77gGO1Lkbhgso5qCURr5qB1bGSuB1FJUF7dVux52Jxy5F7H3r6FOCCKSSVZ5/s3y5j3thWOehPpiujtPLjtpIr+ObeYwYstgA56+/HH+eGWvhqLVLSBI3WO8xwwYOj8ng46dunSp9T07W9PW2sdRgnWOJgInADqQeqq47H0Nd1XAvE01yySa6PQ3oZh9UrOtFPVWut1qn+lvRvbclsYLy+mYQxSTD5vnwSTjnk/Sux8NfbYdOBtYopByDvbGOa0/CGixW91Nqf3mnQEA9FBH9cc1b0+yGny3dsBhFlJT/dPI/nWUKHs5RN8Ti3Xc6jVru9vn/X+RA7a3LuRoLZY2GCdxzWhcxPJb7UbDAggkZ6GpaNwBGT3rrPPbbM9oNQDlxLa7j3EJz+eadNb3H2eEQyIk0ZzuK5B4IPH41bLrn7w/OmFwehzQF2UfIvmG2a4QjcpIWMDIHauR8Q/DbS/EGtz6pcXd5HNPt3rGy7flULxlc9AK7a7ultrSa4dXKRIXYKvOAMnFcw1/q1tp8esXFxC9u4RpLZIsBEYjlWzktyODxyfQVnOoobr/hjrw2DqYhXi0tUle+rfRWT/ABsvMPC/gyw8JvO1lcXErXO0P55XjbnGMAetdJNHIzLJGU4DKVbvn/8AVTFJLDjvUo47VscalZ3KUcF5GjqkETF1Kk+YcgfjV2dJ1cNCq/6sLndggg/SnBiOSD+AqUSA9cj6g1Ni+dlZZL3ZIjxFw64GXHB/IVLJPFFJKjzeVIVXacE9qnWRD/EPzqZAp545pco+fuZcN5arby77yR3ZCoWQk9j7YHNb8J/drjpgVAEHXFSxEgY96SQpSTLKHJqQGoVPIqTNOxJICacDzUQNPzmgB+eDS02loAaWpjNzQ5phpgG/MsYPr/Q1ylv4JddX85LiI6eZN4HVsf3QP0zXQPIxfefkCn5Qepqlaag092wRTgZ2lhxxXDiMWqNWMGviPTwNatSpzdJ27mnqmBbT8DiLA/OsXx55i6PbsisxFwv3R7GtO4MtxBKvylmUBQDwcHPepJLu5kwUs50ODyCjD/0KtHJPQeGqOjONVK9n+hPdjbBaqR/y1QH8jVe4uxZ6cWGd7uyrjtyeaJLp7h7aM2tyhWQMzOgC8A9wTRIttPaCKYruVycNkd/b2qavNyWjuTTsppzWhS0O4tbeZY5C/nytsUkcY+vvW0vMiHPAB4qpY22nRyCXZHHIp+UGXdirkBDOjcYwaxoQlTp8smVi5xqVOeKfz+Z4MuiWcOo3FttV/LCB+c7X25OPxro42kstBniSOGaMqVEEa7GIPBxgHmq93N4PtjNJHqgSV8sTDvck+uSDk/WuPsvHl5a3Ko8UM6BvlJUqT+VehCHM0ovU4q3PHWrF2ZrvJqEIlWDSFhRyColkcEYGMjp79KupZaqmmw7tOtHtYsv5aSuGweTjLU2++KpSRPN0m2Z9gILguQP0ql/wtq/dgIra2hX1EOcfrWlejVvbmS7mLq0ZQj7GMrr7jTsLSW/lSCC0uFmbtIwK4+vFQeI9PH9nWVrPdPaNHLKMRrv3N8vBwarwfEPXL2V0W8SNB0KwgZ/StZdahtbK0uNT02XUmmeXLLCHKtkHOCO9cWIpewcZL3n2X/BKw8p1aUoVenVo4GXw9dQAPLLaygk9JlJ6ZzjOe9bU93qH9j2huLSOWCGDYj+SuSF4wSBnABHWup/4S9M5svCtxjtuVI/6UyfxPrV5by266BbxRyIUbzbnIwRjoBWE8dipR5fZpa91sdeEhClNbtdrficTZ3D6fZmMrGyyYYHkckD0x04rb8PeJtQspPJllklikYKEPI59j/8AWqk2hXS2CJNPbIqvy5c4BIAx068Ultpf2dyft0DEZ6IWwcYzVOrFvc96dLAcrslc9000AWgcKFDdAOgFMu4x5+/GdygflXmFn4k1C1hWIXscoUYB8kqf512OgX1xqFk09w5bc3y+wrphWjKSSPnKtGUYtmvhQudq5+lIfoPyoz8v40h6V0HIJmkJ4FJnrTXOFFS2UIx461hxeHrKG4Rla4MUTB4oGmJjjYc7gPXr1Pc1rrKJIw6/dPSowfnNJxjOzaNaeIrUE405NX3t/X9XfckQDeKcetNQ/NSk9K0RzjxUi9ahDU8NzQMmB4qRSOm0EfSs7Ur5tP0u5vEi81oIy4jH8WO1cXb/ABTs5GCzwvAT6AMB/X9KTdi0rnpSso/hH4CpleHIy23/AIFiuAHjzRJCA2qde2xhj9KuweJNDn+5qdqfrJg/rUc/kP2Z3SBD918/iDUoT3/SuSi1GwfhLu3P0lX/ABq/DcZH7uUkf7LUc4cljoNh7EfiKUKR6fgaxhdzp/y2b8akGoTgffB+op8yFys1tp/u/wBaD06H8qzV1OUfeVD+lP8A7Vx96LH0andBZllsZ603IPeq51SHgFHFBv7UjJYr9VouhWZBeJG1zAJBlQWb6HH/ANeqsV7HbqyJGEx696Wa7s7p/Mtp45fLyCUOcHjg1nwyy3d3NGttJsiYLudeGyM8e3OK+ZzqvNVEqW6PXy+lFxbn1NdZmms3lUbZBgjHetELJsXZKEIXnK5zWdYMjoVVl3RtsdB2NPvLh1xBASJGxyKeVqVaaqt6pWIxso0otWLYaZJIxI8bB2xwpBHGfWq8NzfyoJBpwZGyVKTDJH0NSTMVe3PUgkn8q5bxD42uPCtnpMcOnpcJcQb2kdioBHYYHXvX0VGEqrUY7s86cowV3sdP9ruAD5mkXIHfbtb+Rq1FKkkMUqIxV13BQOQPpXK+E/iF/wAJNfT2Muni3kEDSo6S7wcdQeBjrXV6YAYLTBz+4H8hVVqUqb5ZrUVOpGok4vQ+eU0XRoTl7qSQjtzVm30TRJ5CBE7FUL5Y44FZtwCZlKuOPQ1taWwMtycgH7O/DHHavNk5JX5meo3z/EigX0ZSGGmq5A4Mhz/jSjUreIfuNOtk/wCAA1nSeYqA7WUEDBKHB698UwTo8akOTk4GBjJ4/wA/hV8qk7t3M07KyRpt4huk4jSKMH0jqvca7qbjH2hlX0AUf0rKID3SLIJNhYAkHoPat/xPpDeH5IJoVeaxmjAALdDjkEevfNWqUbXsS6jva49bmVoVd55CNoz8xpsMxl2sd4zzhutQWsiz7ArBlQAtj19Kl3ETCsZpLQ1g7k1+wXw6GbgfbEOf+AmmQTK+SpBBPWtGCKO50dLCRGJnu0jyvUcHml1Hw2+kxQT2iSyQIgS7LfwSev0/xFaQpv2XODlTlPkT94pxxln5HFeh+Fvl0hR6GuHtoyxzXceGuNNIz/FRQ1qoyxCtSZuZ+X8abnmmk8dTSHHGRmvQZ5yFLAdSKjd1C9R0PNNkkCKTwPwrmdZ1t7WUQW7fviMsx5xWVSajG7OzDYWpiJqENzfiLCJQcEgckEYpoZvMPT865aw8QXMcwW6fzIifmz1HvXR7+S24Adc0qNWM46FY7A1cJO1TqW0yW6/kKViw7j8RVFdTso5Ar3cIJ6DeM05dRs5m2x3cDtnGFkBOfzrdM4LFsMw9PzqRWOfun8CKrg55HI9RUimgLFhXA4OR9RXH+PY7UW+lloYSDeDfhByu08H2rrVbHSuM+Iplmt9JggG+WS5YIp7ttwB+ZpMqO5paZ4V0K6jeabSbUjasY+TGWAyx477iR/wGluvh74bnVhHZGBiDho5WGD+db9nbra2cMGAzIoDMBjJ7n8Tk1MSOvIx1wadhXZ4xoXhWDWLOSX7VLE8cro+3BAIIwB+v6VpHwHdR822tMp/2kK/yNc5Pr+o2Gjf2Vb281uJZpJTMvDSBj0HHA6c9ai0vxpq+mIsTOJ4lGBHKOR+PWqtHqN83Q6YaD4ttBm21ksB2Fw6/zpwu/H9n0mklx/tRv/OqNv8AEeTJFzp6kdjHIR+eQavR+PrB1BmtrmNu4XDj88ijkiLnmRjx/wCK7SQxXFsjOvUPbHP/AI7irVv8U77cEuLC2x3ILLio7jxXpEs9rcw3TCWJ8FWRhuRuGHpxwfwqtBJb33iK9aOSOSCWdAZMjG0KCev+6R+NTKmkUqje5tXPjPVroiOwtYBkgeYgLjJOByeB+NYFvFq3inU7u0vtTlRbY4kQnIzkjAUEDtXZSIt1aSJG6nI+VlIIDdQfzArD8L2M0up6tfyApFczNhCMZwTn+orDESp4aDq1Ga0nKu+SCOn8M6Xb6TbTWcDyOHIYs5GSe+P0rV1Y6xHoBbRCv25ZF+UqDuGcEc8elZ1syz6kBvO6FeMHnNbUWoRWiLHcB96dHH8Q968avS9pWVaCPoZZfKnTVOLuy9aRPHIHljjSeRFaYRjgvgZ+vSoGSWeeSWMjMeTyf5UsV6ss8aqTukYEk+n+cUrwTLcOsQZlb0P862yujOkpOejbPIzWnJcsWti0Ji9vEzHLAPk/QU+O+g0/wsLy5CtDBaiRgw4OF6fj0qKaIwW2zuIpGJ/AVynxBv3s/A1jaIGIu2jRiPRV3Y/EgV61GHtKkYrqzgcnCk290hvwxsHkg1vX51AaYPGmBgZ+++PbJUfhXodiu2GBemIAP0FZ+g6Z/Y3gaCzK7ZFtS0nH8bAlv1OK1YUO0qO0QFaYqr7SpKS2v+AYWnyRimfMy2lxpzpbzx7JAPmT0zW3pUhje5lUDckLsu7sQOKh8VDZ4kmXOOFIJ+lTWQxDdny9wFtJg5wOnf2rxY1HVpqct2j1Xo2V9J1vUdX1mxgu542tnmVWiCgB8+o710EWkaJq1xLbxW7RGIFgEbaAenSuT8M7jqlkdiMYZkfK4GBvHp1rrPD0Utvq8s8isI5S8aEg4JDZrDHwdOXNF2a7EYScakZvW6PO7tAsvlsMEHaST0rsbnRdP/sbTrjV9XnKoWFvaxqPnx2JA6cDmsvxd4ems7s3FuFaO4dto5yrHmrcPhvUbzSoUnu3MkUZVAeQM8ketdkcdRhTU5S3NaVHmsp6J9TT8RSadE9jmD7Nqrwjz40wVwegYjqeOKxHcecMDn0qpY6fqeo6pI2oSu7QkBmI5YgYA/DFdZYeFYrhp5J7loyiZQZA5/rU1q1P2nInra4pclOKa+fqR6RpE+sQwxW8xiKXHmO4PIAU9PxNbWteJIpvCeqWczq9/bN9mYJ1ck4DD+tP0CaLQ9M1OfzVdIh8jHgM2BgZ6da4Wz8N6xd+ZqSxidXbzXRHBYnPJHPNdeFqQqYazfexySi3XjVjtpfzNOymxEoPBxzXc+Hyf7Ozjqa4K2iZTgkrjjBHSpNW1K7thBbQXUscRjDFUbGTk+n0rCjJRqG+IXNBnpkk0cKbpZEjHq7AD9azJ/Emk25+e9Rtp5EYL/yryuSd5WzI7Oc9WOaaZCBjJx6V1ur2OONJdTttS8dWCoRBBPKQepworl21UX9605G0yNnBOce1Y04ZlPFQxuY2wevUVz125RPfyOUI1nF7taHV3WIFLBwQMZINYtxfTyTOfOkKnsXJ49Kg8+W5ZYgSzMcAVNJp93Gfkt0b/geTWNBqDd2dmdx5oQgtXcbDJJ5oKEg84IpnXr1pnm3lpLtmsn54GQR+VW4FMg+aCeM/7QBzXZd2ufMunJOw2G9ubdv3NxLH/uORWlb+KNXtyMXruPSQBv51U+wh+hX8iKadOk7c/Q5pczIa6M6SDx3eqR5ttbyL3xlT/OqOu+KYtS1PRJGtmjW2uvNYBg2QCOlYhiKEA8E/3gRVO7Q/bbQH1PQ+4q1NkuKPW4fGGjy9Z3iJ/vxn+maujWNPuoZPIvYGbYTw4B6ehryQ57g0jN8jH0FNVSXTR2SoszhxCsgB+V+OPpWfe2tlFM8ktonmOBuZo85qHw1frDoNsjEY2dO3ets+II2h8qW2V1HA2nOaipKcNUrmlKKqXS6HL/2Fo7W7xlQjuSVcnBX86ifwhZy26C2nZJAPmdjuVvwrt7HSLbUYmeW1ZEfOznpWHeaX9ku5IkVvLBAB7kcCopYuM5uD0ZVSioq6OfuPAc/mIba5VoicOzrgr/jWfPotxbRXdidrvHMrs46FSpOf5V1zzXMU7x5kjIduDnkHkcVjTXBjudTkuG/eYReRjJ2cV1yTikzmjZ6FDQLea01K3ljnlzu5VTtU+xFeyabaQrojsQNyDJPfNeZeF/IuLw79u5Cm0E85z2FelrmC2ePccP0HrXzud12pQpPVPc9PL6Sd5rRozrKFor2Z42G6Q5bI/lWu2nz3FsWAVj/dPWs8RhnJTIYHvW9azeXEgJBOOSK8FZjVpy1eh7ftZrVMyrONzqCRnIVV3N/s84xW48Mon8xZ+QcjcmcfliqMkqnWGljAJ8sA/nWwrKUVh0Ir3MDjnXxXJ0cTgzObnBSK0yXE0UocxljEypsyOT65qD7S5gt4ptNlPlheJIRKuR0I2k4PvWmFU/wirEaLn0r30jw+YrT6xby6ZNFI5SZ42UKYnXJI6citSF1SVgxAO0Yz3oROKmVCeuCKXLpZBzanzn40G3xIzdjGtXdKeKFJ3lUMggcupGcjFUvG1xC2vRmORX/cjJU5wcniksnEtveKCPmtnAI7cV5NCnL6tBSVtD0FKLk9TtNL020+yxXO6MbhlTEQAM9hjrWRqV/dadcSWFrcFo1YujgDCBgeD6sCcj2rC8JawtjYy280IlgMoPzH7vGDgVHe3LX0zSwglJJiTkYwuarD4RxnJT1TKqRUJ8kH/Vjdg0DUb23hE8jzojb1klkzzjrnrW0lnPpmnTXVxMjQRAyPs+Y49AenWuSbxvPHaLpKCJEx5LS7iWI9vT0rM1DVb7yDpsF06wODvRT8uCe/f8K5pZfOd3Uel/wF7GcJJOVm1danUaLPBcy3Nwn3Xl3qD124C8/ippPEs5mPkWjETMrER7vvAcnPrXNCK40S/Y6PcvKyxgPK68F++BjBX2NUdS1OYT2V2sUv9sK0vntGvyFMDbtH03ZqqeXxlXjWjLS3z7WIhOz5Ki0vv0fW51On+IdFfSrbTtQgkktusnHf8CK6CLxHo+jRQ21lBcpbhsRpKmMEjnBJJ29ySMV5XYywS2s2+NmYp+6IP3WyMk/hmursplSxg3Rp5gQZbHNd8OTD03BLrc9DH4WPLGdJ2T6dCZ9R+13M00kRheRyxQDIH41Q1ySIXFuWlVf3A4wc9TV2S5xyMAn0qjqkdjL5L3TkOYhgIfm6msYVPf5mjlVFNcrMg30AYJkkk9TwKv2sEFyRm9iiB7Y5qmND8z95CZjEf7yjd+WatQadZwkAhtx7Skgn8K7Jcs17j1MFGMX7xqvotqEDfaA/u5yKqNpVq7eXjPoVOB/SpfLjQAg+WR0KnFPXVLiNhHFKbgnojJnP41zKjU5bqV/wK5oRd2tV1RVfS1swZIoJGb0I4NN+1XZwqO9v7LGavz3upMf3ULx8cgBj/Osaae8lkYyFyQeeOlEKbkvesXKTcuZN3JEaSGbBU3Dnqxy3/jvTNXArtgBPJz1kckD/AL5WqkWoTRLgqjL6Yx/Kp49YtyQJNyLnkpziqaqfZQmud3k9y9DZM8Z/0gzN/wBMyq//AF6ZFZRec8u0kqMMsxyB79v61PBNpM5BEyyH1c7T+tSSWUNy3UlP4SWJH9RRH2jT5tDOc4x0tcq+ejP5cZQkjhlZsD8hg1nX8Crq+lI8iTMxIchduelaUzQwDy0nEsg4EaJvJ/LFZ9xaXUs6eegVeoXjzB9BnNTBtSteyE4c0bpGnNY28aFi+xB3LcfrWRNLaDcFl3AcZ8o4/MVO1kAhDxPx1LqePzqOLShOf3LEf9czXRTi0tZXMpUZpXasiSwif+zEZE+TBHy8qDk10WmaabZYb6cIYAgYgHJ5B/xqTRJJtLsvsrBJV3bst1/wp+s3U11D5drDsycsVPUelclTEupU9knZdwoJUry79DorTV7SYiJHAk2nbu4GB2+tW54opkBdFciuJsXgtraV73CTLjyN56nnpWlaX8t+jZuERg/KjgsBg0q2CdSS9m/ma+1jGLk9jRv7LTZIluru4ZGXKhdwBAGR9a8x1WXztWv1tUMwkmRUTGd3ygV6MLS2vobo28ZeYkqzN2bHQVyPhW0/4rW5gmx5kBZsdfmAA4/M11RqyjTd18Jjypy06maNA1rTtTs9tm8U8rBoCMH5hz26V6qkdwXgM7xF1GWVAcZxVyXLxqejDoO9Zr3Xksrsen+NfNY7HSruK5dT1sPh1BSaZa2/NuKbSTUgSRY9wAXIqndXyJywwh+Ye/0q0v269iT7PBtQjlpDgj8K8yrhps6adSK3HaeRObq4IwciMfh1qW68QabpMyWl3M0cm3d9wkAH3FVJpV8O6PNLc75Iw24lRySe3515vf6pNqd9LdS4DOeFHRR2FezlWFkq/tnslY4sZUUo8nmeuW+v6TcEeVqNuSexfafyNbFvIkmSjq4z1U5FeDq4ZTnH5VasruW2OYZpI89djlf5V9L7TueU6Xme+xntVlO1eL2viLV7cAQ6hOAOzNu/nmt2y8c6xFxKsE4/2kwf0xT9rETpPoed/wDCGm1bdq+p2NmnUojb3/KogsUL30enu0kPksI3cYLDHX86s/ZrGM7mVpXPVnPWnrPHH/qolTPHA61z4nGyrO76HTh8LGiml1MHT4L8LKBa5Bbcp6AHFWbPRr2CNllu1QMc9Oa1GuHY43flTWlCjczBR6k1g8RUlsbKlHqVIfDmmxYaTMjdTxV2NLKMEQwJkd25NR/aI9oO7d9Oag89UPyrk4xUuNR7lpxvZFq5uGMRHQe1Zej6mNE8QxajNBJPHGHDIgyxDKRxn60+ZpJhgOUPsKgaWWEYkEci+nQ10UqUoe9HUwnVjJcrMOzlaNpS8RUs3yoo+7z0rojNPb2yL5B3gDIY9KrymzwJRbSiTPBzwKSTVbll2AjB9hRJSnq0ds66nSjQj0JTeTSjbJBIvutROJUlV7Vpt/c56e1RLNJw2VbttPNX7bUgo2vCR67On5UnFw1ijlTk4vXbroOiF60e6WJGf+9ISx/InFX0tYbpALm9ck9Y3/dr/KnWtzb3EgSORFY/3jj+daq2EYb9/L8p/urx+dcspyvZLUtxjFKTZAdMW3thJbwQ7AOqnfkfiKZ9liiKXb+XbyYxuWTY2Poc5q81nbREC3zluvluwY/lxUf9isjiRd27sZk3HP1H+FapVFD3upisVTacPxK0civcgQyyN6yG3A/I/wD1q0ILGwaczzSPLOw2lpOOPTA4qpdTNZfLN5OTnBRskfUdRVGKa6v12CaKND/dPzf41lGlUqaQ0NJuEY31fodJNpNjPGN9vCw9QAMVz2o6J4fjVgszq392I7smrMVkkf355JCezMQKibSIGO+ISIw7q3SuilgqtN35zF+25bqOnnp+ZzrafbxzKJPOWMHglOcV0WmjQUXJb5sc+dkf/Wp8Nhfq4CMLhe6uMH86kl0m9d8+QkcfcBVc/pTxDcmoTdvmTHmm7J/K39IteRpzS5QQkn+KM4I/EU2XT1d/3F1Llv4Qc5+vf9appp8MJOYzuPUnrU0aSxPvimkGPU5/nXP7GEXdzudrw9dQXJ+ZTntbuONoY5UjGeQke3P1wcn86yH0u+jlEkNyI2HRUUhT+Ga6S41WWBP3628vTthqzrjV5Ls+VaW4Hc7Fz+tejQceXRHFUniI3U1dL+uhnRajq8bMJgibe7AkN9Oa0o76/lHCInH+sK8/lmhLO0Fuss9y/wBqJyUlJiC/oc1K9jqAuI2gbfbsOGDebt/QVyV5U5Oyil8hRxEWveRQktbh3Duwlfs7Nkn6A9KrNBcxyb03oR1IBH6itibzbe68hljuM8nymxt+uelX4EthhpNwf0I4rNYipBXSuvI3ahVjboYlhfX1qxaC6ZGJyQ2Dmn6M7ab4jGryTCeV5X81BgFVYDn9f0rSmtjLMRFtkXqOhA/OkXRio3tFFGo6sDt4/CtpYqDhZ9QeHaaeljo7rxNp6b5VZ3LDhUQ5NcHrGvajc3iSRssUMfKW4JJb/e9akvbmOBxHBKZByCWX+XA/OoLS7tIxmSFjL0MmcmsI4enTjzxV2CqzqT5I7febui621ze2EOoRCH5x/GCBwcfrivSoNQgitiY2Ukj1rylLiwkwBKAfRhirsSpIh2XblR2WTNclaDn0sdKgotJs3vFmoxz6dLarKm5nDNz90Dnn9K4FPIfJW4hPsTitO+gub25FkLSZj1BZwit/wI9TUf8Awil6Z4rdLSYzyDIRMSY/75NejhcPKlTUTKpDmnJydip9nkwSIyR/skGnKrI2DuH1U1p2/gnX5wxtbOSTZ97awBH1ya1NM8I+J/M/f2N2qYzhgDkenPet5XitUctRRhazuYsLHHDA/jVqFip5WulXwfqsqs0ukNgdioBP61E3hG9Rdx029jwcfICf0pctx8kl2+84CS4WPOTn6c1Sl1VU4SJif9rioYpJVO2QKxxnjqaR7aa7YHaEA6Z71ioJP3jaVWyvFX8i3Hdi4+40jN1IQBcfiaebkLhZpIVXpsyXY1Wj0rg7mJPYgcVbtIvshJktFlU8hx94UpcnQU7vVoreWJjmxgmDHoV4U/hVsWl3GgFw0SE99pJrXtjp94dodlf+4zEH8Ox/Cm3dn5Mm1W2R45aR8ClDENvkbt6lxhCe7MyTTbh4WeCTz3AO0KcfpT7W309IgJ9yXAHzCcFfr7VdaWwCIkTySTgc+T0/M04zXs22FYY1TPLSHe2KJVXJWvb8CZKDs4a2I44dP58wwkY6QliT+VV4dEe6upCsEiWx+4ZeGz3/AA+tbtsxt/8AlkhHqBzWjDeQzfKduPQ8VzPETpt8quEoOMuY5qTwpMse6GVC390j+tY97o+pW5G6IqmeSoyP0r0GS4trdcvMEHXA6ms6bxJC3y2ls8zkcZH5VVDFYhu/Lcn20Yrll1+88+aOXzMYdR6jJrQ0+bU45h9laRR6A9fw6Vq6hLcyyiSa1SM9tqj+dT6brQs8K1tGR/eAww59a9KdZyp3UU2ZfW4U5WV7+Zp2C6zKB51rFjs7rtP6f4VLe6brN2u1LtWXvGAUH/1/xq5a+INNmUq0kiP6MM5+mKtQ38RbKhimeobJrx51a7lrHY1g+aXtIJfoZCW1jp0R32csE/eW4hMw/AjipNttdwKzslwvUPcyrGi/RV5/OtzzFuDiIMT3JOBWZd2cX2gs0ERdf4tmDWuHoVKs+Vuz3LlmFOCvJO3kZ929ikW2ycrcY++GIjz9GySPpVKw8QWkd79lu490mcb8bATV6bSLOZyzwoznqWXNZt/4bgkgPkRrFIOQynj8a9qlhlTjyyb9RSxlOtG0Gn5PdnVx39s/CuU/2SMD9KtqyuMrh/oQa87stMVIgk6+bOTx5btwPfFbNvp07LgyGNV/gVjk15GKwdGDup6jVOMo3Ssbt9qVlA3lyYklP/LNRux9T2rCurlpiXVVtY+wzkn/AAqx/ZkSr5kDNG2CG5z+fFV5tMkjxtAbd3jJXP4Hg0sPGhHd3fmaRU4LTVmSILUyg3LylM9Bt/mK2LWW0C7beSNV7KDis86bNG+QGR+Mq8eR+lXoba1mRSfIZsZO0f0r0VCNVcqOdYirG7qtJf126jprlRIIIYWuJj/Ao4/E05NCfH2m/UgHpDbDG3/eNWVDRfcyvYHpU6X8yjG7I9xmuav7vuQen9dTVfvFzqCfnpf7hYdPsJFxbSFP9kjOKjktVjcp58RbsM4zUks9vIPMmjCsP41O2qa3KygrpqMHLYNxMB8g78VKp1aHvXdmZ8+HrJp3uuhHestko81cNjIAIJNUE8++K75mjgPVNx/Wty3tbW1laczLcXDdWkQn8qz79o0uQy6bMynOXhI4J9utaUr1pXsn59iFVhRXLNNdvMhfRbUj7jj0ZVyP51Wk8OKWPlT5bGcY5rYGlswBS4aE8ErIc49ulVbyc6WVSWeKYnqsRIP49qJNqXLc3pVYJqcHZv8AroZtt4euZZdqFCv8TE4xXo3hr+wPD9qFubCaec8tI0YYH6Vx0mp6XfwJC0k9qgOMLghj6n/69X7UQrGFsdYUA8hZQDn88GuOtObadrJdLGNaTnVcmm/mejN420QgILCdk9PKHH4Uw+L9EiViNNkQEYJCqv8AWuCkm1oSLGLe2kTODKBx+PPFZ2p3SXsy29qqsBxJIucH6e1aU69eUlGNiE4SezR6BZeNdE8xoNO0y5AB3sVZQp9yc/8A66cfHEduCyaTfunJJSRGx78VxNnJHaWqQJvTH3nXBLGr1pcxpKX85WPo4IP6VdariFK7joX9VhNe87HVJ8U9MUP9psb2B1GQGAO7/wCvVd/i5pob93ZXTg9jtB/nVa3mt7kCOVIHVu0qh1P+FU9c8MaVFAtxZrEs552RtkA+orOjjHKfK07mU8FUbUYSR5XaNbuAsTrGf7pGKuqkfcZPc1zPmxr3yfWr9jq81vINjBwP4HGRXVUw0rXidVJtzcZW8uh0ENrM/wDq1+XtxV6LR5HG6RgCeuKq2+uWd6oWdmtn6eqGtHFxHF8km6JuQyHIrnjQlPTmSfn/AJk161Wg/ehp3Ks2nWkbBZLZif7+cH9P61Xk0sl99rOJf+mcvLfgTWvCtui77wFD/wBND1qpdarpWVaBXkc5wF4BI7ev6Vq3TT5Fe669DjpuvN861v0KCzC1k2XEHkseeV6in3d7HAq7ELZ54PT61OyavqkWwW629sDkedxx6Hv+NVf7MCH9zexXcwGBFHEXH0z/AI1jFUub32eko1ZR0smRia+uwywxBF6Zzz/n3qWHSXGHnlfA5KBjz7Gp/Mu4Yw13YTRL3dVyP/rVZhdZVzE6uP8AZbpXo0o0do6mMsJUnac52f8AXYqyadazKBtkBHfdVVtLnjbNu+7HocGtyGJ5G2CIt744q5Hp0YOZWx7KaKtSlSXvtehz1qOGlJxSafe90c/a3skJMN6rKezMOvtSs9xJLmCGMxHvImK61IYFT5FQ+zjJqKaxt5BzGYm9V6V5SxVD2jdnY3oSfIoVpbdV+pzf2FJ2DT4Yg52ooUVIbOIAeUWiIxgocfh9K120uRRmN1kHscGqspjtTiY7G/2uK3+tJ/wz0Y08PyuyQltcahbNuSRJP94Yq3/b6jat5AI2IJy44/P+lYVxrS8iLoB16n6e361Wjjv7+USfcX+FyMY+nf8AKtI80nz1V/mctTA05K1P3fyNu88RQRHZBFFuPfbnH4f44qC1sb7XUMzTCK3BOCBkkj0FNttHtIlzKGlfvk4A/Cp4rIwsTZ3UtqT2Vsg1pOqnHlpSs2ebWwU6cm7XiuuwxbO2tlkeK41FZR1Jt+M03T7vVLoNLHam4RTtLKdp/nU41u80wNHeNHdo3q+Gx/hTrXUNuXsNNS08wcyuSfyFcdWFSKamtSaPtG4+zbSfSw1NUgSd4rhXgfoUcHg1rW1n9ojB3qY+oI+9/wDWrLW1UztPI3nTMcl2/wA8VPnaRgFSPQ0/qU6ivT0OtYlU1aq9fLp6mlfQpBboIxt+bBPc/jWTPGkwKzRRy5GMsMH8xVg3MzIFdy6A5w4z+tSpqNtAmZYUUdyvNSoVcNG0o3OmnUo1YfzGetoHcGM3CH0Rtw/I1XvLiWxKrI0cjEYxgoQfU9gKsalr1xcxmPTY3VSM+YMA4/p/npXJXQmaXfMjKfoa68PKs/elovvPOxfs4r3YtXNeG5gu7hmuboKo4VORWtEi+WBbumwdFTGBXGEEDk/lT4ZXHzCXy+OCM8n04pV6Tqu7Z6eGwNanDnTjY7LfIpwSPxFKSXHzBCPUGuZtNS1B5RDHIZWY4wwz+tdGLadoQGaPd/Fs6VySpum7OVkzOGIpTnytJNdenyZFe67HawPbtdojEYBbkr9K5xLf7WWa3uY5yOWwefyNX7nQJlvPtkD7Zj1DLvU1Xn02/uUMUskEUZI3eXEQTXpUYYdRtCQJP2vtIrVbW/r9Cq8E8Zw8LD/aA4qPkZxkZ65qZ4b6K7jt7Lz4olGGldsq3vg9Ks3k0ckKjeHCNgvtALn/AAq50kluE6zgpSslbvewtiL24YrDNKAxAKg4DD39q6GK3gh+RFZmY8uD1P09K5621SdZisSwr5uA27+I+5NbEV9d2spWfTJVZhgNHk/lXLJuEtDzcPiaWspXZcMYUldxHqGHSjySz7hg49KZFf2cc2J3eNwM7JkI/OrcMP2qbcpQqedyHI/SrWItuz0Y1aMr8stkVLmUWkBmbII+7juawP7bu0nMv2pt2c4Jz+HNegPbRND5LRB8j5uhx+BrLn8N6XdY8yAKP78bbcfhXIsfTlL3lY6KFZwhzJe8eO7mICEHb04FTCI4/dhh6k8VoxRRO+NxKtwGUcr6/L3rptO02xI82AiZiu046Y+lenVxapq9jzJezXXmOas9MuZchFd3xkLg810un6PqFqW/0p4VOMBD+eRW9bo0S7QiquOABinFpC23jnsK8etjZVHsbyrTdPkWxjXGgG6GUnl35z8xyM/0qKwZ9ALLe6eSpPFxGN1dLEkgX5iBTJnZR87LisVXnP3Hqh06/soWkrox1u7DU7olY7u7PURMwWNfwz/jV2SaWJAs1xb6db9khwzn/PsKz77TrG5G5UMcn96Piqh04RpiIsh/56Dk/rXdDASmlLZG9LFYep7sZa9ma41nZAIbKKSTH/LW5J5/Dqa4+51GKzv2/du8wc7yTtUeuAKtyaGZHLfbZ8+uax9V01rB1YytIr/xN1zXpYTCUabsnqyMVVrUqbcI2XXqd7a6tIIkwqSREAjHHFaMFzDNjY+xvRuK860uO/ubcm2vWjEZxtbpWlCbyElrq/LgDIRMfN+J6/hXPicvpSbd7MFKnVim4NeZ3mGI+ZMn1FV7jUrbT1/fvuY8BF5PPTPYfjWDbjUrlHVZmjjJ4XoCMd++fxFU3guLKVpZFM7KuCW5OfQY7fXNeXDCQ57SkZ+y9+yNefVr65JFrEtuueXY5I9fr+FZLmFS3+kJJOc5Mx/Q55P41FIFkfzY7po2Jx8zZXPpmq97FPw00YJAxvUcGvUp0adNe6iK1V0oNwhf+vLYmhu1hnEkttEW/wCekYBrXh1C3uMASAnpz1/KsXThBKfJli+bswrQ/sq2c/KHHuGrZx5o8j2ZNKVaolXuml3eqL9xdw20e+STC+w5NQwJqerHNpF9mgP/AC1fqR/n0qSG3jjjC/eUdm5rTgv5Y0AJBUcYPauetQ5UvY2UjZY3lvo5edtF8iumj2+lIJXj+1Tk582QZAP0rXtrmC7QI6gP3U9/pUcepwSrslG0HrnkVTmsN0vm2bqR1xnkVwuk5q1dNPv0NoV6db3ZOzRdubS0RC5Pljtg/wBKprAJf9RMkn+yeDVedWU+bfzmNewPLN7AVTbULi5hMenQGGJsjzW+99Tjp9OtXRpzgrU5Xf4EYh0ow993Yt9erZmQMcun3hngfX/CqaQNdoHmkJB5wOMj+n861rDT9Pjt9sz75zkl242k+n/66z5dNVH2wSGPYxPy8g59a6qcm6nLJO5lRq0lFyduVf18zRjtoVgXyYg/975u/wBKFiikba8DL79v1rMP22EcMsgC9ehJpBqW1gJt6kLubcflH405U5Jtc2pvGcakLxlp8/8AhiW40q1mVmRcheoHBFUE8Pm6YLbsVA65HStmzJvThZUWP0BwT+FSalb6gYxb2carAeCVb5j9axlWcPcb1M60o06bi9fT/gBb6DDZx4RWY9znk0yURQttMMoPucVDb/2xpSENALiP0D5I+lTx+JbYkrdQSRMOoK5rgnGo3f4jnoYmEIqMrryEVQ/3IHOe5bpTjEyj5gigd2YmpbXVLHUZTHErq49V/rWLqk0c1w8NtI0qgYYk4yfQevvVU4TnLltY2jXUtVt94XVwbueO1tQHDNg7By+Ow9B71Jc+GvmA+2oZT94MMAD0Faum24tLVVhkikuSoDEnGPYe1OnF07ZkhPHdRVTxFSEuWOiQ1QVdfvHoc3/Zmrae2Y42GSRlAGGPXNXLXxRd20MiXkTO3IjYjHPp71qid4fuM65HRhxUont7gAXNujkfxYzilLEKf8SNzF5c6etKRyV1fx3ztJJaosx6urEZ/A1reH7MhvtJO1yMJzjA9au3uh6asXnKHixyFB4JPrnmqSTXcJQK8cgzzkbePavRw06dSL5dPU8+WX12+danTebNGwYgSY7kc1Il2HYZXYx7gcGudGqrGzecskTbgoPJDe/FaNvfxTOYxNGzD+EnkUVMJBxvJJ+mge0r0pWd16nmPlkZDI35Vagu57fkNIGAwrK2CP8A61XY7ySUYjt+fUnin/ZpJT+/fj+6gxWi5paSR1wwTetFt/Is2niGeTMcjBsY+YLhj+FX4LhJxvjlDHvg8is37HF5ZURAKfzpjWksUgmjO9sjODtYj0B6fpWf1ejzanc6eIp09LNnT2888rCJZPxIycVZlt9sJKDfLjq3JrmIdUltzvdGIXgsvBXPbB6/hW5BrAdMgBh7dRSrYafNGWHSsuh5Sna6r7lcoeS2c+9KqHpgn6VLNq8ag7olzjODyfyrJn1+SWMFAI43yFIAzn3HUV6EcRUt70bfM4/YR3Ui9MYo0LuwUDqScVlXjwXO1PK84KQyhhjP0z1qSHTdSvl86by7eMrtYycA++DVuLwxE8G46kmAOCvI/nXPWxtJbM7aNavTjyp3XZkNvpU9ztJVY0Q5CDGMehHStKyso4iVESnb74xXPC+nsbh4lmEqKcZzwfpWpZa1bOCsiAOe7HiuCuq0tb3R2UcZSqRaWkttf8zUjUecw2IB7tQihZXyI8e54psB3lmUR47Z/pT4VmaciOJW/kK43pud0leUkuxWezinmYsURxnDr71SXS54ZALV0eNQQFJIBPr710qaeufMm2sf7qjAFUb1t8pVPlVOBt7Vrh683Lli9BcvtH7u9jGEhtHJntyuSF3KACxPt3HvV5LiKQkJIoYdVxz+VH2o48uZBKO4YVAbG0kbdG7wZbcUzlc+uK9WGIlTVpx+aPOxWDrt3lt+H3FlmzgDk+tN5JwTzVU2V/aFTE/nRZJbPP0AHX9TTE1FcYkidZRkmMDJUepHYVksPRqvmjIqOY1qceVxv/XYvj5RyTgetVZ9TMW0WjK8j/dJJwfbiqu241OTuIFbPcK49R0Oavw26W+di5kPBkP3jWk8RChH2cNTFUZYmp7SpoNS2e6cSXzNKODsY43Y6ZwePwrV+3NFGI44I1jXgKBwKzizDuSfenLNIBkru/CvKm3N6nqxw3J0THzlrhGBAjYj70YwRWRZ6HJ9u/d38oDckdC3tmtRpw3VSTSKyqRKG2EHiu+OOlCmoU1r95xPLlKblU67WLuxoFxLbKyjuaytU1+2W3aGziXzDwzFQQv0pur6hf3MXlW42R4+cqfmb/61cw6uh2lfqDQqSqe/UjaRlThONdUakmodyQTsS5ySWG0kdcex7Vft9fvrbGyXcoXAjbkA+vOayi5TotG5e5HNaOEZLVHfVoRVRwjTaXRp3Org8Wg/6634C5LKduT6Af8A16syXGk6uEDuyPjcATtb/CuJHXipViZlLM5RcYBHU57Ad6x+qQ3jocuNpexag2pX6dvU6W7vLaxtTY2XKscSzg5J9h6n8ahtrMRO0znMjcjOMKKW1sorVI5biL94FARPT3qyPJcn5mXPUECtsOoQV194qVN25raIPMwBtIx7HkGp11K4hxhyR7ng1AImUHABHqrZ4qLjGOeex7V0NU6i1VzovG9jVj1XccyoGHqtTre2XLMVj28/OKw92AMD6ccGsrVrwbPsw65y3GMVyVMDRa0Vi6cHOVkbt3qMd7KfLlBjHC4NZ1002zbGrPjuRyPoa5xpNiF8nIp1vrM8SgF2x+YralRahaK0RvinSglSc7XNUanP5q+YSVU8jpn61oxSQ3UZAiAVz83ODWRBqEPl4kjBDckjnNXYbu2I2BlIHTPGKDnoYWvB+/LmiyNFOccAVKHA6UgRxkMMGnAKvLfnXPOvc9BNEyEleafkKOfzrPuNQWCIuiNJjuOgqjPfMzsjSCVf4Wjyoz/Ws1CcyHVTfLFXZqTywE4OGdRkbTzWYl2I+VcsHycA4dT/ALTd6bHaXV9IJJWJIGAz9cVp2umwRcuBI3v0reny09OY56tJTSlUV/JfqzOVbi4/eMHcqMbgMcfh1rR0O6tbG8L3Ue4EYVsZ2n6VpI4C4wAPaq9xZQXRLEbG9VrWXJX/AHcW3c8PEYarSbrWslsr3NyWTTNcVbfzy5zuCrkGqOraFDBYqLS3leQHqrZ/OsBluNJuFmjkAIPysO9atv4o1CX5Fhidz3wa4JYWrRl7j0XcmNaNVe+tX2LXh3TmRZPtVhjussg/TBqjr8dtPeJFZQqZR/rDGOKuSve6hj7VPhR/yyi4H4+tOjt1iXCqB9KdOnUc3VSv6bHQsPBRVKo1H13/AOAUNPtprUh5JDj/AJ55yK6Wz1NCAjx7B2K9KzokXPJ5/Q1ZCxqMAY9xXRUy6VaPOnf8DSGMo0f3M4tfiary7bUyjaTj+E5rHEM0rnEbflUqkxEOrn3x1NPXVtrYlXI/vCuB0a2HTvE9CjVptfuXd/iR/YZW5Ma59zStYpFGZbiaONF5LHoKLjxBaxIwgBmlAyVX+H61yV/qst9c7nLNsYNG5yoA9NvStKKxFR66IyrY2VNXehp3+qwW0ZFsX+YZRznD+wx0+prCkuWYuy5G47stgt9N3p7VEWLyM55JOaZjnn1zXfGmoLzOPDUp5jOVpctvvL8GqXMIAV9wHG1ua0oddhb5ZkKZ7jkVznmYOB17nFNLHOev4VE6MJbo9OGT1Ka0q/gdpHPDcjKSKx9jz+VBZ434/OuNjkZWByVI7jg10OlvqMqgld0Xqw5/CuWph+RXT0ORYqVKs8PU1/I1Gn2qN+N3piuc1XW2inMFuoeXOM44X2rZlSQN82c+/FYOp6MLiUzQtskPUHoT612YKFFO7d2dVanONO9Hf+tiIxa6pEizgk/w7hx+FTz6qluI4L1N0pGXKrkCq6prkSiNXRlHRsjimjTVgY3uozbypzsHOa9F8r+L8Dn9+K9xPz5ti3GLG7UmGUAnquf6VFLpzqcptcfSskxvql8fIiEa+wxtFbZbyLXyY5fur80jZPPpkA81lUpxiTCSqRk9YpdU7X+RSWEkuX+RE+8eevoOOtbunWrW1uk7oTgZjUrg/VveueeVDGqxrtXqSR8x+p71Zg1C9tkDJI/ldPm5XNclSLasjyfbQhP+bub4Ms8vOCxqSfyk2oqjcPvGsyHxAD/r4Bk9Xj4qxFc2Vyw2XAVv7r8Gou1L3tEj1aWYUpyV3ZLoWUiZlLq21R3oFzIOGw496WcuAERSIx0xTbeIvJuPQHin7ROLnI39rGcHOe3QtR26zoTjyzj6gVg3Xh+WVnMU6T5PrtbNdMxdI8RKCffvUPzOA6Rqjg85rgWKqXumRRnKCd+pwd3p13aErJFIq+/Sqyq0andFkH0r0SQyzJgFNw+8h5rPfSrG5yJEEUmf+WZxXdDMXy8skSqVPm53o/vRxUcpjYjJ2Ht6VcEoKZBzWrdeH/mIhmjkI/hf5TWbLZzW0iwSRmMseCemPrWzrU6usdzow8pUE7yTif/Z", "path": "images/3pts_ADE_train_00010110.jpg" }
depth_point_25
images/5pts_ADE_train_00010770.jpg
ADE_train_00010770.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 136 y = 198),Point B is located at (x = 79 y = 147),Point C is located at (x = 176 y = 213),Point D is located at (x = 317 y = 223),Point E is located at (x = 195 y = 180).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_67><DEPTH_3><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_31><DEPTH_70><DEPTH_45><DEPTH_78><DEPTH_5><DEPTH_67><DEPTH_70><DEPTH_70><DEPTH_70><DEPTH_70><DEPTH_3><DEPTH_35><DEPTH_76><DEPTH_44><DEPTH_5><DEPTH_67><DEPTH_70><DEPTH_70><DEPTH_59><DEPTH_70><DEPTH_31><DEPTH_70><DEPTH_40><DEPTH_59><DEPTH_67><DEPTH_70><DEPTH_17><DEPTH_35><DEPTH_59><DEPTH_59><DEPTH_5><DEPTH_60><DEPTH_30><DEPTH_35><DEPTH_59><DEPTH_11><DEPTH_56><DEPTH_72><DEPTH_3><DEPTH_75><DEPTH_69><DEPTH_1><DEPTH_26><DEPTH_54><DEPTH_3><DEPTH_49><DEPTH_84><DEPTH_31><DEPTH_11><DEPTH_3><DEPTH_49><DEPTH_82><DEPTH_43><DEPTH_62><DEPTH_36><DEPTH_72><DEPTH_36><DEPTH_72><DEPTH_64><DEPTH_64><DEPTH_72><DEPTH_36><DEPTH_72><DEPTH_72><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_19><DEPTH_25><DEPTH_19><DEPTH_25><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_2><DEPTH_41><DEPTH_41><DEPTH_0><DEPTH_94><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_42><DEPTH_42><DEPTH_42><DEPTH_16><DEPTH_END><DEPTH_END>. Since point D has a higher pixel value on the depth map, the answer is that point D is closer to the camera.
D
long
5
[ "B", "E", "A", "C", "D" ]
<DEPTH_START><DEPTH_67><DEPTH_3><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_31><DEPTH_70><DEPTH_45><DEPTH_78><DEPTH_5><DEPTH_67><DEPTH_70><DEPTH_70><DEPTH_70><DEPTH_70><DEPTH_3><DEPTH_35><DEPTH_76><DEPTH_44><DEPTH_5><DEPTH_67><DEPTH_70><DEPTH_70><DEPTH_59><DEPTH_70><DEPTH_31><DEPTH_70><DEPTH_40><DEPTH_59><DEPTH_67><DEPTH_70><DEPTH_17><DEPTH_35><DEPTH_59><DEPTH_59><DEPTH_5><DEPTH_60><DEPTH_30><DEPTH_35><DEPTH_59><DEPTH_11><DEPTH_56><DEPTH_72><DEPTH_3><DEPTH_75><DEPTH_69><DEPTH_1><DEPTH_26><DEPTH_54><DEPTH_3><DEPTH_49><DEPTH_84><DEPTH_31><DEPTH_11><DEPTH_3><DEPTH_49><DEPTH_82><DEPTH_43><DEPTH_62><DEPTH_36><DEPTH_72><DEPTH_36><DEPTH_72><DEPTH_64><DEPTH_64><DEPTH_72><DEPTH_36><DEPTH_72><DEPTH_72><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_19><DEPTH_25><DEPTH_19><DEPTH_25><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_2><DEPTH_41><DEPTH_41><DEPTH_0><DEPTH_94><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_42><DEPTH_42><DEPTH_42><DEPTH_16><DEPTH_END>
136
198
79
147
176
213
317
223
195
180
46
2
67
87
22
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDkYkxVlIzTUUmrUaH0rgbPYSHRJgYPSh7fYd6H5TzUyLUoBCnADe1RcuxAgDAetShDTQjBQ+3ae49KkVtw96ljQBOKcFpQPWnAYqR2ExTttFA60dChwWl20UtIYoAxUkYA5qMVKn0pCaLLtkLjtWdcwiOYOOj9frV3J5plyu+3bHUDIpoVioFHWggURnKj0xTjjNGw0MK0wipDTTS1GMwBTCBTyRUbEDvVoQhApjCgsPWmMwpiY1hUZ60rtUZcYq0TcenLg05Fw7j/AGqgWQA1Jv8A3rH1waaQmZRULfTD/ap7AelMuDt1CXmkMgx1rSxkKQPpUTYpGlHrUZkzTsK4NiojjNKWJ6KajIc9FNMlkkI/f/hU5TAqvAHE65XFX3X5TWsNiJbmUy8tn1puwVORkn3NN296h7l20IChzUbJzVsio2XmncTRTZBzULJV1l9qiZaq5LR2kYqygqGNasKMVxs60iQcCnA/XPtTaUGsyrEqnn1FRyJsbcOnelB6VOB5sRHancLEQpajQ7fl9KfmpKQ7PNHNNzzS7qBjxmniog/Bo3iiwE/SnhsYqt5gz1oEo9aOULlzeM05eVYe1UDOOxqxFMpQE5570rCuVUbbuHoaUyCqshlNzIFViueMUoiuXHEbj61YExlHrTDMD3pBYXD9RinjTGP35KWgakDzj1qFrgZxmr40uNervThYWynIXNVdEu5lNPTDKzdFJ/CtnyoU6IDTSUHRT+VO4rGPtmbkRtSfZ7huiY+tazSCo2kp3FYzfsc/dgKl8hgOWycdqnMpx1qJ5O+atBYpzWCSzmRmOSKT7FEPU1Y354HWmkGqTIskQ/Z4R/BTTHGP4RUhBqMhqd7kuxGcDstRN+H4VKVJ681EyE9qqxDaI4z+9FWHGI2qKNMMCRg5qWQ5Q/Q1pDYncoYpMcU7Heioe5ohhFMK81NimkUhkJUVE6VaKg1GV9aZDR1yLxUwFQI3HWpQ/vXLK50qw/NLmo9w7mk8wetRYq5MDU0Dj14B5FUwzk/KpNTQrKGyUwDRYAkYLcEdjTfMIHanzWryyBt4FKtivBLE0aCuQmYetIJ8+v4VbW1hHbNTLGg6ItGhRn7pWPyoTUiwXDfw4HvWgGA6AClLH1NFwsU1sZW6tipk09R96Qmpt2RSgse9K4WGiyt17ZPvT9sca4VRijYxPeo5FlVsbTjGaV7sLEm8DsKTzfapLSzmuJ1iGN7HAroY/BV8wyxUfSnqRKpGLs2cwZTnj+VMZ2PXiull8LSQ53uePaqE2mJEccmo9ok7DVRPYxTuI65ppDnvWg8aJ0Wqzvjooq+ZDuyqyH3pojPfNTNI1Rl29aq4mxhiJPSk+zM3TFSDOetTxLk0nMm5FHpbykDNUb2xa3naKQkEDIrrdPjG4ZrG8WgjVVA6eWDxUwquU7GfNd2INA0L+2bx4ozjy1yxP+frWreeFBbZOR9Kv/Dlgq34K8nZ83fHNb+qsDEemayq1pRnZGDm+ax5rc2SQkjArOlXaeFrotRUFiawpxya6aU21dlJlB3btxVZ3f1NWnXnrVZxXUn3E9CEM/mL8x61bkXETH2qqPvrkHrV+WP9yxH0rSO1xLczQuRRsqTHT2orLqbpEe3g03b61KabgUxDNtNdRUvFMemDR0qW8pxuIFTC0/vPn6VMoHtmpAeT0rkcjdWIVtox2Jp6xqOiilLqOrCmNcRg9aVmF0SjjoMU4nuSarfaUJwM5qVXDjGKGCZIGB6dakWOR+FUmoowM8AZB4r1Dw3pNumnwmWNGYrnJrOTsROqonnQsrgjJiOKX7LIvUEV6tf2luqkJEo+gri9UhCu2ABWUqlnYiFXnObKqvU0hkjHvUk68mqhHvWqZvcnEqg/KtTJLnogqmu3NWoR3okFy/bjcRnAo1dRGkbAcnjipLVQTg07WlX7PA2M4J/lWUZPmJvqT+C1S48SR+aDhULr9a9VfGz0GK8p8GOB4jDdP3bV6TJcfL1rqUkkcGIvzmbqIBJ71yWoJ8xxXTXs2c1zV8+4muCXxaF0bmDMOTVGXArQmGcg1QlwW9jXTTjKTsjsk1FXbKrtg00EGrsMYlGR8ueKHsJSrtsHytxjuB3/AFrtlg6sVexxLH0G3G+qKoFWYhVZQQdpOasxnGK5JXWjOvmTWhr2TAEVkeKmBvoz6xir0MmKy9fffdR/7grOnG07kpamx4GlEa33ODlePzrX1G6DKfpXL+GZjE10PXH9av3dxu71E4XqXMZQ95mbeuCTWNPyTWhcvkms+XkmuymuVBsUnFFvZT303lW8LyvjcQvoOalWF55khiUtI7BVA757V6FZadFomlyxRyRCYRMztuG53x0/DpXpYOjz+9I83Mca8NpBXbOSsfBt7cWS3TvHArguiN1rHuUKwtnGc4JFexwtbeQQcFXjXYQMjbtGK8jv/wDlpyP9YR0966sRSjGnocWUZhUxNSamjJ2/ypNlTdTSEV5d9T6VEJWgrxTyKaRQIbimMoqSkYkUwPTYtJg+y7u+Kwr2IRsQOK2luyINue1ZF4+9q86Ld9SzJZT6mmqvPU1M680m0AAdya6oxk3yxJcoxjzSIJ5TBEJBjrg5qzp159pLIF+YDJpus2DwaWJZFVkcjgHkH0ql4cVftEr4ZSV6Z4qqlKUNJIKNWNVXhqjahwzNnrXrGjz7dPgGf4B/KvJoeJT7V6Fpt1ts4hn+ACuCs2rCrxvob15c5jPNclqThmJzWlcXeV61hXku4msI+9K7IowszLm6mqhAHJ6VZmOTgd6r+Ws8wVnCovJ9/avSwtJVJ2ZWJreyg5E0duZI96hQME89TUkMbBUcqcMP1p7B0WRo13IQCrdl9adHJGICXEmc/hXrYnA0I03yvU8XC5hXlU99aXLducEZ60urtm1hx2J/lTIyBtYfdYZzSX53wIPevnrWkfQrVj/DTiPXUP8AsGu5e4+XrXn2kN5esofY11T3Py8GpqNo5a0byJbu4HIrCupetWricnvWZO+7NTHVmlONincthCazF3Sz7shUWrl6xCACqcMgVtqpvx1r3MroznK8Vc8/Na8KcLSdrluKULJKoTdx8vpUlvdKM+YXDDH3e/sarJPkO8Q244INTWUpZiiBPct617XPVrP2LVrHzdSlQw6ddu/NsR3oiaUSQnAI6HsaiRuKuX0SFfNAUMTg46ZqgrfL0r53G0nTquLPrMvrwr4eM4ltG96z9VO6dD/s1aVqpX53SofauaK1OsfpEmx5voKszS7h1rPsjteTnqBU0j9cGm46mciGVs1Uc81K7ZNQtya2hoTsLYrdSarbpZHE7PhT2HvXc/8ACJ2bx5u7u8kn/jmUjCtnnHtXP+DowfESt3WFyM+uK9UtYs2aZVdpAyPX1r28NFcl2fG5zipwxKpw0seZXGpat4ZY6buSWJOYmYZ+U9AP1rAvW8yHe33i3PFdj4rjBvNK3AEeaYz9Aw/xrmtfQR3dwgUKolIAqcQnyy7HqZVUhKMZRWr3MPb3ppFSe1NOK8ux9GRFaaRUhpCKBEeKay5qXFBFArHWCb5cZNQSvmmF8CmM2a47amgxuals1ge53TyYIHygCmBS2QOpqxbXRtBsVQQeWyOua9bLaMpzujys1rxp0tSTXmDaT5TYGeQw7+9YmhQmG4lGc/IBWreYEM525Vk4HpWdo523Eg/2KnMXKU02a5TFQoOMfU0Yf9a30rqrS4IgQZ6CuUg/1xrahlxGo9q8mpFWPSkk3Y1JLjIPes+eTOaY0pNQO+c1jGNhxSQw/M4+tAmW1Kqkccjnn5+1LBzcKKqXKs11tUf/AFq+iyWjCdT3jwc9rzp0vcNGOVZovNQMqnO5R0BqpHfzCUfOfLLBSCO1WbZNtoyt6mofJ/cBhjGP616+How5qikj53F4qap02tGzQHy/KOQD1pZ/mjX2NMc/NketTQx+ccenNfGV0lUlY+7oP92pPsVrb93qMZ9q12mPrWHqjPYMJUGWwMCn6bfS3lr5sgCtuxiplC8eYbtJmjJKSetVpHpWaoHbNZpGiViC6+ZG9hVOxjDSSenrVuY/I/0qPRcOJFfIxnNfVZHomfKcR7RIkGIpwOCDRa7mB28EHNPwN1yPer+lWQlQt2zXp0LLE1GeJjJKODp3KbStJBIGHR81VU5ArWv7ZbeKXHXfzWODXz2bf7wz6nIJXwUSQGq11y6/Spt2KgnOWWvNS1PaRHAdrN9Kc7dajQ4c/Shjmr6kSImPWozT2NMq0SbvhDI13I/54P8Ayr062d/ssfP8Iry/ws2zVt2cfunH6V3sV/thUHGAAK+gwceakrH53xDV9ni+Z9Uc94oB+0aZn/n4P/oS1zficYv7j3mNdBr8pkl00n/nsT/48KoeI9F1G6u5pbeHzE80nAGT0orwclKKPVynEQpQpc7toceelR5NWp7G8t+ZrWZMDklTgc1TYleDkfWvInTlB2kfV068KivB3FzSZFML00yD1rOxpcm3CmswxUBmA6c0oJdc0BzHSFjim5prGkBzXNY1LFtkzr6dKZJlrggnbtHHvTrY/wCkL9aQxeZcNmveyT49ex85n91SXqSXPzW3X+Dms3SuLiT/AHK1JdogCt0KkVk6cSLqT/crmzNaq3md2US/dv0Rq25zPiryuQMZqhbH/SPwqyWwa8eS0PWv7xP5hprMTUO7mnbuKjlsWie1/wCPlPrTSpe/bHYUWh/0pOM81MmPtTnFe/krtUPmuI7+xVu5NGStvIMdCf5VXAItA2eo6VOrbklwO5/lVbdEbTbvwcV7FD46h8xiYv2NJstueffrWnoyCSd/92spuD61s+HRuupPZP618TX/AIkj9Co6YePoZni2ErGqoOoBrO0jMdnhhg5710PiQYvIcjqgrIGO2AKXN7tjSlqrj2aoy1Lnio2NRY2GS8o3PanaPGQz9T1zTZMeW30q/wCHrWKSVt7MF3Y++a+jyaVkz5LiVpRVyjLFsluCRgZFaelzLHbN2w1N1y2hglmEbEqWFUmcJavsOCDx+VepQlevM8HFwU8HTJtQuRMky5GQ9Yo4FSwytJHMWHOetQg8V4ear/aD63IoqOESQ41FLyRTyajftXmntIi6Majc09vv1E55rSxDGFs0lDcUmeKdhXNHSpjBdq4BPysOK30vnKL8rAVzFqxEgx6GtdXJjjy/8NfT5XZ0j4DiOnTliU5dhL67aV7UlSfLkJx+Irr7C8nkMjJFJ8zdMiuDuWA8pueGz+tdTpF6SrNuP3uma0hHmqzRx5jdYSi0rE+uSy/ZbkSRHaYxnOP7wrzXUcNNwAOK7/WrwvDOpA5Qd/cV55d8zmvOzJJNJn0PDMnPDNtlNkx3qJhVkrURXmvJufTkQWpkHy8Him4xUoXCL70Ajbc85pFND9KaprnN7lm2OJx9anhmEN1IGXPHFVYD+/T61Mz7bp8DPFe5k38T5Hz+e/wSaST93vC546elYunnF2//AFzH861g7GAdmbiqcdg9rM0jHqu00sfQnKHPHZMrK8TCL9nLdpFu2P8ApQqdjhzVa15uh71LIf3h5rw2j3X8Q8NTs5qAGsnxVcS2/hq7lgleKRdmHRipHzr3FSo3dhuXLFvsdHaH/SU+tSyHZcPzj/8AXXBPZzaV4kSGDxLqF4bLW49PuIrhTF5h3sCyASNuX5CDnGNy+td5PtN22ewr3cqhyVbHzOe1VVw913QtqQsU5DZ65rOzH9nYg9qu24URXIUH8azxs+zY74r1sOv3szxMT/Aps2yc4J9BW54bP+ly/wC5WFnKqf8AZBrb8Nf8fsg9U/rXxmJ/iy9T7ul/u0fQTxR/x+Qf7lYea3fFI/0uD/crBrM1o/CLmkzzRSHrUo2Ek+43+6auaM+3zB71SfOxv9007R5D50gxxk19DlC0Z8fxLG6RNqMrPJMrdiKgt90sTgjvxS3TBjPnruqG1n2Ryd8EYr06a/2iR4tdP6jTXmM8sxLLn1qoDx0qfzzIJc/WqwPyjmvFzP8Ajs+qyPTCJDiaaaCaTOa809pbkUnWoWNTS8Gq7Va2Jau2NJNGeDTScetGfyq7C2RPGen0NacALRIoPaspAcYHXBrUtonVF3N2r6XLP4T9T4biFfvl6FS4yEQE9GNaWm3DQRvhuprLuv4VzzuNXreI+Rgj+PrW9B/7RM5sdDmwdNE99M0rPk8bR/OuVuf9e1dPcjasvHVVx+dcvcf69jXn5v8AxFY9zhyPJQaISKYwoNxD5vl+Yu/0zSt1x3zXjPQ+iUk72GYqYjCp9KiqeQcJ/u0LYfU03PFNXpSyHFMUmsLGmpYhOJkJ9amZS13INwU+9Yt9rMGlzwrIpJkbr6Ct1I457s732gjg17eUu1S54edLno6BCjYjjJ3HPUVf1Sxe2tEmbO1+OapwqkNzGgbcA/BrqfFlw03h20VoEX95wR6Yrpxc5KlOC2ucWDjF1qcnuchaN/pKn2p85/fNUFof9JQVJdNtmfjPevnLXPqL6gpzWP4u/wCRWvPfZ/6GtLpOtDUZ54jGUMR49+a1zIFG5iAB6mk1yO40vaJxXU5W58cy+Jdfs4PLvUhudbivil3e/aBC24gJF8i7F+c5HOdq+ld7cLi6dj6VWsnzcRlSCCRWrHD5k7M3TkdM17OWVVKtc+ezuh7LDNN9SnbNmKc44/8ArVmmZEh+7zjFb/khXcKBgkDBXFc54o8QQeHraCFLdJJZV3H6Zx/SvUhU5Ks2zyJUvaUqcUb24FUI6FRWz4cOL5/dT/OsC1u0vrKG6jG1ZYwwX8K3fDhzqBX1UivjsQ06kmj7alFrDpPsSeJzmaA/7JFYGau6x4g0/U9Veytp989uCHH0qh3rOzSVy6D90cTgUcmsfxFd3dppJlsuJQ4BOOg9au6c9zJplrJeR+XPJGC24Y3e9WoO10ac6vZlh5UVXDMAdp6mqum38cd2QzgAnrmuT8W3TR+Y8IkWQEKSOmPWqNtIJ7KOUrIC6gtxjJ9RXrYKt7CNzxMxwyxTsz0Ca5ile5COpwc8GqkbOFcKDjrmuc0FzHqBQhv3ikfMav3uqXlqY/LiBUtlsD04xXpYXEp1JVHseXicDalGkuhdtJJGabepHFKp4plndtcpISm1dvHFNDV5uZPmrXPYyuHJQ5exMTQKj30ya6jtbaSeT7q9a861z007ajpuoFV27mmQX0OoQedAflBxStjHv61drEc19UVrq7itY98rADsPWm2F/DqFuZYegOCPSqOs6FqmqSRyWdtPJEiEllXjNP8AD+h6lplnJLeWs0UbkYJWtuVWuY+0fNZmyCdvHWtGETNsAPG3qTVK2TzJVUgZwTtNXroELH5cKjA619DlMW6dj5PPOV1kn2KzktIgfGA+Cfxrt7PS4WticqcnrmuKkRWe3yiDLAEEZzzXp1hZ2AsSPs8a888e1Lmca8znxah9XpJs5XWrWOG2lKsMhVxg+9cBd7g0u3hsHFegeJ47RSywRKrbV5A964G4XfI4JxxiuDMZNzTZ7ORpfV3ynnXnSpeeYXbeHz1ru1YSIrDnIBBrK07wq1xezSXOUtUJKn+9Ww8SwgRqflXgVwTfY9iimmxlWJOif7tV81Zl/g+gqOhuty/J3xzimx8rk8VyzeJZ22nC8nkCk/4SS5VGChODU8o/aI6r/hFl8RX9qjy+WiPgt7dSPyBrsfGHhy3tHs7jShmF02EbgOR3rJ8O31x/YHmPbr++HmFx1UA4/wA/WovHPiyGDT9Pt9NukmkR3EoH8PAxmurDV/ZSukcONw6rR5bkJspVgEZwGJyOanvpbuXT0W4I2xn5ea4hfFl+5P3AVU8mpT4g1Kby0PlNvXdyetdFTFOUWrbnPSwKhOMk9joLU4uk5OKmu23XBK88dK5Qazdxyj9ypI4PNbvhnVjfatDFcwBYwwLtXncltT1EztPDvw8txpGoX8kpFxLEGhQ9FxyTXITECdWmXKKCORnB9TXsthq1tdSzwIUSFItibuNxOeK8huIZ0uJvkJxIw/WorQckrF4HFKjUcpea7PXs+hJpRAuiyjbEXBUYx9T9K6mAoCxDKDk8HvXA3OrRWOC8oRverlhrAvU3xzBhnmtcLUeH1Mc0pQzGT5vL8Fb7+52chAAYsu7dk4rnvEXg+68Um2isUR7pSVyx4CnPJ9uaFunYcntXReHdQktJjMBuZ8xjnpxya3ePlNvTc44ZXGko8v2S83glNI8Oxx29wzz2cQEyN3919qr+Gxu1PaM5KHFdBDfvq0EUsLthP3M2R99Tx+lY+gRtZ+JZIsqvl71yegGa4atNOSkjspVJcrizOf4TNZ376wupn7U7s/ldtpPSsliwZlIG4EjAr0fUtRH9oGMPvXZ1HIFea3Lj7VLtYY3tyKdZLoVh21ubfhuwg1LV1S5VXgj+Yq3RiOma3/GDQ3NgZQqq0LBFKjAx6Vyem64dCt77UI4hJJFAPKU9yWAH866HWXSbwnLcy/LcSBZWjHTJ5wKqmvdIqtqpc4HTtIfxBrEdnNIj2ztmUAj7ma6j4j2NqdMt5reBYTbSCLKAAbSOB+n61z3hjVE0fU5rxLM+d5REKHkMxYcV0/iKR9Q8HXd3JGplmxI8YJwvOPlrVWtYznfmujy21YwX0TlsYYCvSkt7ayisJXWN2nn4HU42EDH44P4V5jINrKVRuD3rfs7G8utZ02/e6b7NGGITPQgHp+dV7S0eVC9nzSUux0Gqw2ySXUtttAc/dH8Nc+CMVka9PqjatrEset2mn2FpPBD+/jZsvLGzgDZGx/5ZvnOO1ReHL64vbGZ7mcTsk7IsirtBAA6DA9e4zU1m5Wky8O4xk4I3d1WrbQJvEsE1lE2xSMu56AVnhh610Ok3UtloN5NG4Xc4XJODjFZR3OmexTfwZBoFv9js7zz5Dlmye/HArKjUPOiMCFLfNnrjPSmy6vL5kFx5nzJJnJPsamVkklacOGVk3E+5Gatx1M4aKxd1HxVcGM2doPJgUbQFqKy8V3kVv9nkxJF0w1c6G3uz9ajLEMD75qieW51FjdQrdibZhSTlR0FXZLiF2+8QPQ1zcTYDDdznOKeZWxj+tdNDGzoxtE4cTlkMTNSl0Nq5kj3RMh+5g4A966BddQRkJKygnoBXCmVs5ycU3z3GME+/NNYxqUpdzKtk9KpBR7HWXt3Hco2XLHjqK5Nk8268snBJOfYUn2iT+8fzq1p6gi4nlxwpQH3rKvWdVo6sJhFhY8sR19dKQsMXKxrtyO9YvmbpMk1PEwEr8kqFJqmOSp9zWTVkda6k/FWJf4c/3RVTdVqY52/7oqegLcxI9Kt5hCqXUHmKfm+eq93pj2+8F4nwT0qrPCFgt3ClX2gN+tEqqYUZSN+/B57VomjKzPXPDt/bL4fW2LRktAEIz0rz+XTrS5t2dbhEme4kYhm/hBIH8q5ybzILjajEBj69s1KilogpbKnv+NUoaXJc7ysWxZS2zzAJDMPLPQ54FWA/lC2eSyUAp8hU9qZpsL/atqkndC4rRntbj7LYgJnYuP0pWZol0KijTppG3NNE+TnjNWNOt0eaWG2uZAxXKtnHaqX2ab+0JCYiAc1estLuHEiKSpdTg59qlyS3KUX0KTa7q9pAyJdO2xs53c8VVg1y/wDO8w3Mu1jkfMeTWfcQz2tybd8+YGwPc1ZhtHWaONkwC+AfetG48tziVOTmyDWZ5ZrpQ8hf5QxBOea3PCTkW7gEDL1oTeF45Hikcc7ADW1ofhlLdWCBsE9qxnVhY6qdGSldlqPJH+eKv2GqwwvNaOjNNs3LIvY8VZTRmCgYb8aZa6TJb/briZcFmBB9hx/WuVTVztaVjufBUdmmmyg3JeWVcMv9w+tcbYXU0Y1d95lliSeEt3LA7R+mD+NXPDmqWtrI9sJ42mcZCKcmruh6akN5PuDYlDE4HcmtJzWiZzQhZti6VC2maGRIWLLGcmTk5xXGuzFuSMn8qoWHjLWZ59asNRIkFjazOBjaW8vJwa5n/hMr2K3iu59JmNrMzJFIzkI5XG4K23BIyM+mRVOLewo1Ix+JndW0bTXAiygR/vZ7jOf6Vv8AijXLSbTTZwSsCduWx0xVO205oJDMTv2Kxx7YqjqGnsdPNzb/AL8s/wAyH+Edq5lX1sbThoVPD89pa6i817e5RIyUBHRiQM/lmtXVPEGmG0NnbXYYNGRhK5mWCZo2DWaDAP8AAawdNikN8x8veDESufrXbGzjc5ZNrcsyJkEiXIxXU6LqNnHptmJphHsDbs9+cVzrIxUj7KRQLWY2SgDDZbAP+fahtMqNypf+ItPt7/X7aeV1a7ubSeOUafDeLiOKRWBWVgASZBgjng+tQeFNp065MbFk+0ttJUKSMLjgEgfSthdFt9gM9lbyyEAl2jBJ/GpI7RLZCkFvHEpOSEUKM/hQ5pqwQpNT5hwz6U+WH7Tp00W+QYIYBTxTcOP4Ks2bF1kVlwT0qE0mdFr7nLXcFxEBbSNkOcKw7VoS3TafaRQxpuEpEa/jiqHiGUo6pk5znilnm3QWKMCG8wEZ78Gt9DDVNlqNNqsD13nIqOVljQu5wozk1aZCsS5GDWdqZC6fMfw/Osy3oi5p9yl0ryxnK5AzVvNZfh8409xtIw+Oa1SxJ4WhoE2NzxTT0FPLN/dpjM392lyj5hhPWpJp9tiIxkDeTTdzY+6KJAXtgcc5ppCbuYmo6hLZRkwsAX45qWxllkgUykEnniqF+nn6ikWflQZrTtcKpGOBVy2Mot8xMTVqXqv0FZ8l7HHKFZHP0Q1oSFX5HAwKm2haepGltbyRdnxx0pf7OtRyIR16VsLbJCuFxyewpJYv3bFEJYDIArDn1On2Vkchd2SXfiFLaMYAT+VWPDOnfbTcWbBRJCx5b61f0TTr9tYubqazOWHyE9q2fDuianH4me5eFI4JfvIOtdlKpFy5GcM6bXv2G2+iG2vEG9RkEcA1r3mgILONjO2R6V0k+lN9riO3gnHStS50Z2ssFQSPauhxjGMiee9jzZNGiM25mZj0rTsdItxJ91jx3roF0WRm+4FqzHoVwjZDgDHQd68CddtnqLlSPHfF2kSQ+L44LcAecgkQev8AnFaY09YYdMmmQCR75Q2O2RXXa34ehl8Tae87MXVlVWXqMg8fpWZqVlssYPmJKX8fJ+prd1rwSOaNL3nI7M6PYu4MigmtnTrHTLYECD86hNuRt+TPvVuNUUYZTn0rlpJznYdR2ReeXS4kz5C8Cuf8V3lg3hXVSkO0i2bafQ461ozQoyElGrK8QW0Unh29hZcGWIooJ6k10qg1UsY83unjfwru0/4TEi4Yuz27iNmPevcbR42ugAev8vWvJtG8EXnh3xlptxI4MMnzIR06civUrZ1e4CxLvBByV7dc1ljNKiZpRT5Hc4/xP4Yjtzr+uEqrSadcg47koa831S90ufwxLocL/vtNggmjmN0jRyvk+akahRzunY53HIiHTFe5avYQatY3OmyyNGk0TR7geQpGDj35rhF+DugfxX+on6Og/wDZK3o4mEE+Yxq0JTtynTarHMtgjWkilmZQ3P8ADnmqn2O/iu7fbGTZPG29gOM9q6CW2tWiz5JLDHQ4pt2fOtUtcuAPu7H/AJ1yQ5W9TubZz95CkdtM3DYUk4NcZb4todPuSoAaRlYZ7E5rs7y0ihjbz2kVCCDj6Vz+rWFrb6HLcWjpL9niedVYnGQpPI/CuyhO0bGVWm279jSkjUcmMYPQYqn5LS3D7EDGOI4U8cmuSufEHiu0sReTWdksSKjsA4aSNWxtLxhyyA5GCwHUeorr7EXGqWltesyGWe1jkYR8YJUE8Vr7NrcinVhN6dDPjEKWkcscoN0WAC7jk89CPSrkhx1T8asJEsETM6jeeC7Lyfxqu5OchQ3+62f0NYqm6Z6WKxUcRa19L7u+/T0XQrtKFOCB+BoEw2NsGDg84xQ3zHsP95cH9KYRsRmZeB1IOatanJYw7e0iur1nugW21a1GC28qKUnYsJ3cDtS2rK0kuCBnpk9aTVIzJptwg5JQ9DmtNbpGVkk2VrjWNPZBtuV6+lUry5t7q28qKZWZ3Xp9a5GQdcdvarelxST3sKRgs24HArdxscarNux6BHGsShVAUew704rgAkkZ9qsWqedKicdK2o9ILAExNnp1zVUaEqiuaVa0KaSbOYeREOC3P0oJGMlhj61r3+nxxuEPBboCKnXw87ID5CsCOo61osPJyaIlWgknfc5122ruyKrXN35NtI6jO3nFb19oTwRktG6D17Vy+qW7x2koV+3Ss6lPklYuE1OPMmYMWoLNemSTC565rftZEeHchDKTjIriTknn9a6vw/tfTgmedxNTJaEUpc0rGgW5qV3wfwxik8nkU2U4cjFZXN+U7IRIeqr/AOg1KsGCcKVz32Z/WlEqgDa3zHtGKjxhtz3BHPAc15+r1PR8mKm+C7AzkEd/mNdF4fZzcvLs49XG2uXubq9XaLNRKRwSEIH5muj8LW+oSiRp0hjz6Hn+ddeDinUTZyYptU2kdFcziSWMKCMHOQcir11cGOwfD/Niqb2GZVMkztzyARirN1FHHYt5YAAHfrXpVY6SPKi/hMAXkpIzMG/CrH2h+MM3T+GqD39tbNmWVBjtTZvElvEF8uJnB4DBeK+a9m77HsPYyNauJR4rsQWk+/H/AA5/v1SuFeSwuFbLbL6PqMY5Nc94s8a48RW0tuq7rcgtkccE/wCNYjeObt1ukVVxPcLNnH3cHtXbHDtxTMPbJPlPfIncW8bCPkqD9/GeKsxmVpAfKJ47SZrivD3iS81HS7aYvAMKFO/rkDHrW63iGS2uFR4o5AR96Os8NCSqhVV4XNycSMmFt2JI7tmsDXdKub6CJhGVKEHANb0eoG4txKi7R3DdahnaRrVzGSeMj2r0JP3zmhsjjrmTWG8QWjSWSpbw4wcZ3e9b1vqcMNyqeWE9TsxUEN3IbmIup44b3rXb7LeIEFs24A8kV5dZ88jvVoo52/ub1722gsnh8+8eQRuwyEVVyT9emO1QWmp3VtfPp2sSkOEDxy7dm4ZIO7t6Yx6VY1HRohbAiYptbzEAcgow6MMdxmqmkGAecs0Us0kuBLPM5dnxnGc+gOOKylBrU9GFSj9X5Wtbdlvfe+9raW/4daTC5Q+bb3CzRkH5W+b8qptdWpUm7ikgkH8a0+aygtd0sNx5WQTgniqcN08h8t41mX1FOMb6nLZMa01zgm0uxMn/ADzesDXJreXRtSFxZtFMLSXa6jIzsOOa27nR43cvbs8LY6Cs1I7u4Etje2huIJVKMwBXKkYIzXXTir3RM3ozzfxBc6XfXmraxb6qxk1FvMSyjR1aMs4dkkJUKUXBA2k5IU8YNeiaOYotE0t5bdkBsIsSL/uDmoJPAvhgYBsWjI6nzpD/AOzUXF02ntBZWG6SGNBGinkKoGAK75O8Tz6FFwlqa1uXOnkw3AZSc4kHWsyUIG/eWxT/AG4zWtFEkulBpo9jd8HGDXOyyvDcbLaRnyejVnWadjooqzZNtDHbDcgkfwydaZPG/kOHhJ4PKHjpV1bXzoAZY08w9QtZ15KtmxSCRt38QrCLuzoasYljJOtzICmFKgBWq3db/scpNuBhD8wPtWjZxtLEzTKMnp7iqGuPHb2Uwj+Vip4FaRleSMZK0WcFabHnYyH5Qp/lWh4VydaiwCx2nj8Ki0eOGW1u1kwH2gru6Co9ELLqYKuQQDyK7G7pnmRbTTPXvDsSTaoiuNuBnBHFd6lqgUFVTtXn/gRrmS8DtIWXaRg16PKcQKQPmr0cDG0Dxc5rNVbnI+IIVOo2abXAJGT2610sVrEIxgdsZFYNwTPrMBJOFxgGujIHklu4610QjabZzYurL2MGjC8SwbNPJTcTu7V5zdgyq6O6tu4G4civQ9cn220iZJzzXA6hE0sD8ZK8g1wZguWaPbyZ8+H1PM76E295LGw6NW1Y31rpmm20kyys0hbGwA9COuSPWs7WVAv2K/xDJrd8Ifal1q3SzaU3YsNSMIhzvDm0k27cc5z0xXI9Ujou4SbRLZ69aX15HbxxzBnzyygAYGfX2rTuIS4yByP1qhL9r83QBrRl/trfc+b9oz53kbV8rzM853ebjdztx2xWo5KnHasJrleh10JOcbs60uEyFwPl44rmLWZn1JN7Er5nQmt/zFlyRKvIIrJi0qSOYSRzRsQ2RXHBJXO96s6ixhD3M8W8hewFa2jBYtQ8rccHqM1zNvc38U5YpGT3w1bOkXs7agrPb4561phk1URz4l2ptnZXCoIwSSMVXnhdrN2VgRjPNWru5UWjMYm6Z6VQ1HWLa004eYpAkSvcqJxi2z5+lNVJJeZwuo6UL6ff5hQ9Mg05dOvILUQx3AYAfLuFWF1PTnJxLtNTC+sQATc5FfNynLm0Pp4pKNjkbrwTcXOoRzPEGDn5s9zVpPCBtnkVoIQUOMYBzXVnU7UywAPK/I+79aiv78C7udlpMRn+I1ftZ8piqcXK7KtvoQW3WIyCNfRQK6LTNMtLVFAbe47tk1lJd3JA2Wka59TWjaT3hYAtClXhXJ1EKurQdjcZlCj5CePSmu8rxMoXYMYHNZd3PKqfPfqvstUJriDBDXc7kjoK761NqTOKl7w57yysrlRdTgOW+6DV0arDNIEhuFTORjBrnILazlusiznkYHIZ+a0VEr3G1bQLg9xXjyjrc9Hl0Lj6eiTCU3QkLc/OeBVd2kRzs+zlf97FX5hmArLFGD0rn71rK3yzqM+i1T10HT10LrI1wP3kCP6ANxT5YFW2OLdlwP4SBXN2lzLdXw8hXWPp1rent2a3KmZ1OPWqUbIbdpFNAonJ8u5U4/vZ/rSXc8itaW6TzwJO5WSYgZHHCj0J7H271VjkRLgIL/5hxzW3JYi6tGiuCkiejrnHbI9D7100KTm7Ifto0pKc1dK/n03s9HbcwCI0vpbR72aSERhhI4yynP3TxznrUgtraCWMpcjJ/vLUs1ounWzCARIvfA5P1J5NZ7X9w80CJbo+TjOK65UXBNMwq4iFWpzw29Er6b2Wiv8A1dnQLIU0k4mtz8x6j/61ZHmFZOI7Y57+tas1uf7LAkiQEtk4rl9Qlt7UbFT94enPSuevF3SFRd02X5pZTkIqKfUHpWTFp7famllbeByB61Hp8E9xJuaRhEOvPWtdrePYfmYYH97FYWs7HQtUUXmWJWJ4wOlc5qO+8hlABYkHgda1JZdPMxSSRic4655qVre0SAtEzIcdcVrF8pnPVWON0ZoLCG9+1xFvlGEI5qjZQk6mDHlVJ4+ldLd6dHdEt9pwx6jHWqlro0qXQKTxnvXQp7nG6NmegeCIFS8wsx4QkivRPJzEMucYrzfwbZXKamx8xMbD0r0qOOXYuXXHvXs4N/uz5XOF+/sc5cmK21q0QuCXA/nXSEqYSRg1zGrZOv2PyRnGP5100f8AqsbU71rTl78jPGR/cwRy/iF0itSW4JbH6Vxkk0ZDKXVQR1JrtPFyq1njylPz/wBK8o12zlniUW4KOp+bBrz8wlzVEe7lCcMOYOptbPqUodvufdI6Gq9ppFzqB3A7EzwxFK+kXIOTgk88963rZfs9tGsrSKzrkBBwg9T61wzmoo9KhhZYiTb0S3u7L+v62KUWgnTLyKf7TvxzjZjtj1rpEmWWMc/MKyZWKStFKSxB6+1OS8SB8gZFZ35tTT2fsZODVmt/U7BobHbjj6LUI05pmBhDxqPU0ltqNqo+QBT6mrP29JFKiTGfQ1yu51J6B9jmgI23rBvrW94cN0btS06yc45rlpLNJ8kXL5+tbXhW1ltb+LNyWXPAOK68Ir1EcuLf7qR6XfectkxVVJIwBXI+Lb2e1htkWDIZPmArptS877FkEbh3HeuR8UzXR+zFArDZ82a9fFK1NnzuWN+2VzAhulcAvZk+2K0IriUqBFYKvuazxPdhAAqLU6NO4+e5Cj2NfNyR9amWJprwOh/dIAe4qG7mn3zFr+NPpVC9WzVlaW7kPtmoJLnSQXIQvkd801HQm+prxzwtEpe+dzgdKu2k9rvGBJIax7W/txCoitCcD0rYsbyeWRVjt1H4VthlaqjOu702aUryFQY7HPuagZr/AMjdHbRqf9oZq5IL6SLBYL9KrrayNat5t1jA9a9WvC8vkeZRlp8yPTnvjP8AvZI19lGKZcF11Fi943PYGpLS1tYWZnus/U1VmudMW8OWZ2z6GvCnoeqneRJetbKNztK59aoF4SSYrN5DnqRV+51K3CAwWkjntxVRr/UZF/cWWwHucVKbLQkcl2D+7s9gqe6ivri22b1jB96pldXlzudY6a1hcMuZ71j7LVJjauQw6ZFbSiSWdSwPdq6k3ANkpHz4X+E1y50yyH+tmd8+rV2ujWWnx2EZRd3y9ya9XL1zSueZmVX2cDj7pbq+l27COeB6Vu2+mLbW8CqN0hI3NVzWJobWNmji5HcCtLTsXFpG3lkZANehOKlUaZwLE8lNTMrXVFtpTleSMc15oIJLy8IJyCeW9K9R8TW7vpkir8oJFcfZ2kdsmCRnqc9687HJU5csTvy2p7WDkx0cCRQqiDAFUdQuFjUru5I5q3dXccSM24e3NYVwftqlIzmRjXnQjd3PUbsitYWS3NyZXJCIc5raSfhgpymPSkW2+yWghA5xyap384s9PkKkZxitJXbsRZJFW61pYHcfZ0Kr3NPsdUjumVhBGpPtXJSXbznaTyTW5pI2yL6LW6p2Rg56npHhdUNw0mxRweldMzkIQDwRXK+GZgyyEHAHFdFI+Ixj0r38BC1M+MzuXNXRl6haW8mrWcpHzDFdIsKpFndhRXNXD+ZqUIzwtdE0oFsfpWij7zJxX8KHoct4r8prMjzGB3V57PasjHMr4Ndf4sn3RYB75rlZ5F25PPArz8xjaaPfyh/udTBvt8ALpIWOaNPvXdkiuIw2BhXyc/j61LdfMWPY1VdgixyKc4615koqSsz2KVWdGTcHv5J/gy/NGGn3k4zVW7tjG2QeGq45823DDrjNQO3mwEdx0pR00Im3OTk92bccdtJ0H5U82UTfdZh+NZ6WTqPklqQxXcY4fNZM1UidrORThJW/Or2lC8hu02yEgHrmsY3N3GeVJq3a6jOGAMf41vh3aaZlXXNBo9XiublrVVZgwI5Ncv4pa7lWJVlVQvH1qzp107QplzyOlY3idZ5EGHwa9rFK9I8LCR5K6SM4RSbf3lwcfWpI/sqcvOT+NZMdpIV/eS5H1qzBaWy4LuD9TXzrifR8w+7u9OjbOC361VOp2o4igJOP7tWJUsg/Y/SoHuIIuUhLEdMCnbQht3LdlqNzKoC27AdsjFbOny6h5wwQmetYMOoSl/3duce9aFvdXzSKVQLV0dKiYp6waOqeK6eLDXRB9qhWzCWb+ZO7n61Fbi7nK7pevUCpJNPch0kmbB969qrrqeTT0dhbf7GiNkj6k1We8sopchUPPYVAbW3twVMgb6mojJYRDJZc189VjaTR7NOzVy5ca5+72wRE+gxxVOPUtUmJVYdtNfVbNBhFyaamuED5IufpUcrsWWNmpyDLMi/Wj7DcOMS3GPpVN9Vu5T8qkCozPey98UWZaZeOnxKR5jsfxru9FihWwjC4xtFeai2upCMymvQ/DtuY9MiVjk7eTmvVy5e8eJnP8K4zxBcQxQEE9SOgrT0udWs4yg4wKz9cjgitWdyDjFXdMuYWsYyuMYr1EvfZ41SX+zK5Q8VPM2lSCMYORya88e3uHz5lwB7Cu88VXappshVSTnivNX1G8m/1cW0eprzMwj757WUy/c6FoWkX8Rd/qacrxWoJCqvuetUCt5N/rJtv0pjWgIO+Usa4IrU9W5an1OM/MX3fSsLVbz7VC0cYOK1FgjC4IBx61Wne3iYDKrntVohu5zdpZzNcBmQhV55rdti8PA7mq819Ah45PtVWXUpdv7tOc1re5nax6Z4akCQGNhy1dW38q838GT3Nw7GboBxXoT71j3+lfRYT+Cj43Nv95sUJgq6kpHc1qs7eSR/Diubm1BTqgUjaV71bn1YRQ5OANvWtqabkXiKblCNjm/EzkEjt2rmJpQbcEmruuan9qlwM8ViCUPbkHsa8vMZKUz28ug4UrEbyBumeKpP8jlDnBqdiuMDqaivFK7XHORXmaXPSd7Fyyn3KYyadKfLbjpWfbTBZQeRVu4YNGSDzip6jRoQ3pPUYq2Lwgc1BGIWOCtPaNMcA/jWTRaYr3y4welJHehWGxM1CyRLzkfjQk8MbdRn2q4aNClszrLG5uWjVgqgVW1ua5mQHzMYqC01JfLXaCfeq2qX7svyqD617FSd6R5sIJVrlFIpGB3zEip4LZC4+Yn61QS5uWBAXaPpU8K3LuMvXiyR6q2NtbOPjIUCopltoT94URW7smXl6VFPaQA5ZiTWd9QsMOoQJ93Jpyar8w2RnOagKW6elKLiBMdK1grO4pNWsdJZ6lNJImQQMVNcT3Dzg7sDHTNYlrqYR12jOKlutU/eAtXqRqe6ebKn74+4hdnOW/I1GLAk5Zsj3qlNqcjP8ijHrUf2u4kBySM15VT3pNnpU9ImottAg+Yr71fRbSNASQeK5TZPI3LnrXQW9sTAvUnHNZSWhdyxJf2sfAXNUpNYUZ2Qg06W074zVc2qrnoKUVoO4x9YvH+4Qv0FdZ4X1SZ7RUkc55FcezRR9XH4Cr+la1FbOERCx9q9HAyUZ6nBmFL2tKx2msEXFm6GTP0p+izrDaLGckgd6xYNRa8V1Me3FQNNPHdlVk2oRXuKKvzHgul7jps1vEtyptWyVUVwUl9EhPzD8K2NaJuYtpkNc19mRGPGTXkZg7zPay6Hs6XKTNqKt9xCfrVeW9uD9xdtTLGBTZSq4ORXnpHoFMG7lY7icVBPZkupZz1q/5qAnLge1U7u7REJUEmqW5LZGLaIAAjcacyIq8BQPeqLX0jj5Rj6VFieXg7sGtEiGz0DwnIqM+1h26V2txcDyDz2zzXmfhctbXB8xvlPpXefal8kDIJxX0OAs6Vj5TNKMpV7pHN3c0smqsQQBt7UkhXYN7ZPvTdSkKXPmZ7dqxZr3k7nAAqZ13Tk0ehRoqUE2SX/lFegrGmwikJjB5NSz3y+hY1l3N27ZCgAV5OIlzSuenSSSFEmDk4zT5JleMKO3as1fMdu9Wo7diMk1zNGsW2Ix7/pU4ffF70ggRe+TRINqfKKLX2KVy7G0xb5RVn96w5eofOXGSaQ3AHTFZ2KTH+QXPzuakjt40YZwarm4Zugpu+VjxmhaMGro2oZlRRtwB6VHc3akY4+tZqJO3U8UskDYya3521a5lypO9icXYAPIp8N5mReSQKorFg1Mi4Yda52jZNnQpOrx5+7xWfdTHcQDmo0Y4xSPjuRU8pVio28mlEbnFSmSNf4wPpUbXcQ4AyapXFYsRIFIJf8AKrjBX2/KSayxdNn5Ywaf587dGK/StVVdrGbgr3NHyhnoBUi+Wo+Zx9KzAsr9WJqRImIwTisW7s1SsTm6hRiN2a67TnV7GNkTOR1rifJQHls102m3ipZLEAeKyqK5RJfyOuR0rEnZ2P3jV+6Yu5IyKzZWAzlgKIIL2KzKM+tWrMBJAwAFU5LmJD1zUQ1AKfkGfrXVTdncznZo620uCspBcDIpJ7qNZ1YsTXKjULgn7236UNJLM3VmPvXpKveNjznQSlc2b7U4+mQMViSX65O00PbO45O2ofska/ffNcdeXNK510k0rCm8dulQTPM5GATVyNYU+6tR3Nxt2gcVzGupBDbSsx3HFTNZx4+Zs0ttIzBjSTEgkmjqJtEIjiizhRQZ1XoAfpVKebBIAqEyOe/5VaTJ5jasrwJODnbzXTw6k7IoHOa4K1V/MU89a6a1b92NzYr1sDVUFqzzMZTc3oXdVZ5bZzjFclJ5rPgKT9a7KaSNrQjf2rnJD82AKvMJptOIYGElG0ikLUtgu2B6UsltEq/dyaslsDJOBVaadAvXJFeU23ueikkVigRuOKkHAzniqstyzH5RTAzv941DuVdLYtmVBVe4mOw7aFVugGaUwFl+Y0LQTbNIWwz8zVIIoV68moTdoBkc0w3pHRB9aizLTRbAUdFpdxHYCqBuJW9qT96/Umiw7ml5oA5cVG9zHjl8+1U0tpT2P41Mtk55YqBVAL9qX+FTTftj9gBUq2kY5Zj9KeIoF6Ln61LaCzIUmmfoCfpTzHM/Y/jVhZAvCjH0pwZn74pXCxVFm5PzMBUi2SA5aTNSkKv3n/M0wz26dSD9KWvQqyJgkSgADNSBsdEqkb+MfdSo31GQ8DAFNJhdGqC5XqAKYXRclpB9KyPtUzn7/wCVJskkOcMTRyoOY0Hu4Iz1JNXrLUcg7cAe9YQtXJ5wKt28ATqxpOKFds0rm8Zs/OfwrNkZn9TVohPTJpjD6UKyCzKYgZz2FSpagfeYmptuT0ppKr95hVJ9h8qJESNTwKc0rBsKOKrm8hTpk1BJqW4nYuK0TZDsXisjjLHAqB/KTl3rOkupZOrHHtUY3v0BP1pNdxXZqC5jXhRn3qrezhiDwKZFbyHGWwKke2jBBY5qdEPUdp0hcsOtSyo7nOMUtk0cbEKuKnklGfX6VF9RctzMayy2WqRYI0GcCpnfOaqvMo6sPpVpt6BZIkXCtkEmrcMhxgtj61ktc/3Rio2unI5bFaw0M52Z0DXkUaEM+T6Vkz3+5iEAqiJQ54yTS+RLIc4KitalS5EFYV7lmPLcelQ7s8YNW47RF5c5p7hAPlWsbmliuIWKgngVII1UU4MTwaAuTyaTZSiGQB8oxTWGRz0qTAHamOeMVPUokS3BbBbip1to16800OB1wKXzRj71RqCRKixL0GTT94HYVVM654GTTWuvYCqswui6HY9hihnA6ms03eeN1N8926KWosF0aDSoD1qNrlFOAMmqoinboAAaeLKQ8u9Fh3Hm9btwKiN0/Zjz6VMtpCnV81IBAo+VKNA1Ke+SToGb1qVbeVu2KsiXH3U/SlDStnHFLma2C3ciWxY8s9TLaQjrkmljjcHJapS6r1YUXYWQqRoo+VAPel4z1pA646ZNRNI3XGAaVrjTsSnFORlHeqjzBRlmxUP2pcnGWpWKbNNpkHU5NRNcBQeBVISTycImBR9kkk++2KehPMSPeLzl6otKzv8AIGIq6lpGB3b61Osar0AFNNILNmfHBNKfu4qdbDvJJj2qy5I6UzLNyTTuTyjRBDH05p2VxwoFISAMkionuI1HXmjUpJImye9NbGM9veqT3vXaOageeaQcnFCjqLmSNBZo4zkmo5NQXogJNZ4XJ5JJqVIyf4adkQ23sOkuJHqAISSWJq2IPc0AKhxjJ96egWZCISegNOFiCcucirAYkccUo96Li5R0UUUY4QUrMc8cClUDHFIygjrVBFERYc5OT6U0nPapCFHQfjQDnr0qS7EYX1p/TpSEgdKjZwOTikPRDyaikcYwePeo3uQOBzVWaV3GM0JGcpos+aT90k1IBKwwF/OpUUA8ACpRntSuCK628jdWxUq2ij7zZqYKT1NKIgerUXK5RixQr2BpwdB91R707y4lHJ6Uwzwp90jNIdhd0hOFXilEchPLVC1/j7o5qM3jsPSiwXLnkgcs1BaFD1/Os9pGP8RNNBJ6g0+XQVy+12i9BTDesR8q1XVHbomakFsxPJxRsFwNxIfvHA9qZnnJLGrAt0HU5qZY1HRRRcZDHLM/CrTvs0zn5mIX61dtk3SheMelOuI/KkI4pcwyl9kTHzHNPWOJOiinHNN4pNlWJFfPGKdle9QNPHHwzAGoJL9QflGaLXC6ReLccVG0m3qcVmSXjt04qEvIerE1SiTzmi93Go+9mq0l8x+4BVXBPepFhdsYFPYnmuI0sj9TimH0zk1aW0J+8asR20ajkZNFws2Z6wyOeF4qZLRgcsfwq78q9BTS2TRzD5SNYo15xzTyfYU0n1o3DpSuCQuTnim45yadnApu+i47DgKCQKZSd6aHYmD+lNYj1pgbHfFRSXCL3yfSqIejJieKjaVFByapSXLt04FREljkmglzLEl0TkL0qBnZupNNI4pFRm4FOxDbFGPXmgKT0qaO3AGWp52r0FJuwctz/9k=", "path": "images/5pts_ADE_train_00010770.jpg" }
depth_point_26
images/4pts_ADE_train_00009395.jpg
ADE_train_00009395.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 234 y = 199),Point B is located at (x = 301 y = 159),Point C is located at (x = 134 y = 147),Point D is located at (x = 10 y = 104).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_59><DEPTH_31><DEPTH_31><DEPTH_70><DEPTH_31><DEPTH_74><DEPTH_44><DEPTH_19><DEPTH_41><DEPTH_94><DEPTH_70><DEPTH_31><DEPTH_3><DEPTH_5><DEPTH_67><DEPTH_49><DEPTH_36><DEPTH_25><DEPTH_2><DEPTH_1><DEPTH_70><DEPTH_31><DEPTH_70><DEPTH_30><DEPTH_40><DEPTH_31><DEPTH_49><DEPTH_64><DEPTH_19><DEPTH_0><DEPTH_70><DEPTH_59><DEPTH_5><DEPTH_82><DEPTH_39><DEPTH_57><DEPTH_0><DEPTH_69><DEPTH_44><DEPTH_39><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_49><DEPTH_44><DEPTH_33><DEPTH_64><DEPTH_80><DEPTH_72><DEPTH_58><DEPTH_67><DEPTH_5><DEPTH_49><DEPTH_85><DEPTH_19><DEPTH_25><DEPTH_60><DEPTH_2><DEPTH_42><DEPTH_57><DEPTH_5><DEPTH_5><DEPTH_60><DEPTH_7><DEPTH_64><DEPTH_36><DEPTH_69><DEPTH_63><DEPTH_39><DEPTH_121><DEPTH_59><DEPTH_31><DEPTH_30><DEPTH_17><DEPTH_68><DEPTH_0><DEPTH_9><DEPTH_58><DEPTH_14><DEPTH_33><DEPTH_31><DEPTH_49><DEPTH_29><DEPTH_60><DEPTH_36><DEPTH_121><DEPTH_61><DEPTH_42><DEPTH_2><DEPTH_66><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_59><DEPTH_68><DEPTH_60><DEPTH_33><DEPTH_98><DEPTH_14><DEPTH_END><DEPTH_END>. Since point B has a higher pixel value on the depth map, the answer is that point B is closer to the camera.
B
long
4
[ "D", "C", "A", "B" ]
<DEPTH_START><DEPTH_59><DEPTH_31><DEPTH_31><DEPTH_70><DEPTH_31><DEPTH_74><DEPTH_44><DEPTH_19><DEPTH_41><DEPTH_94><DEPTH_70><DEPTH_31><DEPTH_3><DEPTH_5><DEPTH_67><DEPTH_49><DEPTH_36><DEPTH_25><DEPTH_2><DEPTH_1><DEPTH_70><DEPTH_31><DEPTH_70><DEPTH_30><DEPTH_40><DEPTH_31><DEPTH_49><DEPTH_64><DEPTH_19><DEPTH_0><DEPTH_70><DEPTH_59><DEPTH_5><DEPTH_82><DEPTH_39><DEPTH_57><DEPTH_0><DEPTH_69><DEPTH_44><DEPTH_39><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_49><DEPTH_44><DEPTH_33><DEPTH_64><DEPTH_80><DEPTH_72><DEPTH_58><DEPTH_67><DEPTH_5><DEPTH_49><DEPTH_85><DEPTH_19><DEPTH_25><DEPTH_60><DEPTH_2><DEPTH_42><DEPTH_57><DEPTH_5><DEPTH_5><DEPTH_60><DEPTH_7><DEPTH_64><DEPTH_36><DEPTH_69><DEPTH_63><DEPTH_39><DEPTH_121><DEPTH_59><DEPTH_31><DEPTH_30><DEPTH_17><DEPTH_68><DEPTH_0><DEPTH_9><DEPTH_58><DEPTH_14><DEPTH_33><DEPTH_31><DEPTH_49><DEPTH_29><DEPTH_60><DEPTH_36><DEPTH_121><DEPTH_61><DEPTH_42><DEPTH_2><DEPTH_66><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_59><DEPTH_68><DEPTH_60><DEPTH_33><DEPTH_98><DEPTH_14><DEPTH_END>
234
199
301
159
134
147
10
104
null
null
87
125
56
11
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDnUYvFK4EowoOD169veq265ZhtW+P1Vf8AGuljuJ5uTJCvQrlBx78j9Ku6k80Ojw3CSw7t5DeWqsx+oqOZakcpzf2e6ksF2pP5nmHnaN2MfXpThZ3KWRWXzUZpVVWdQDz261aN5M9ozl33B8Z8sA4x6Y6UtpIZ0+ZnOJo+XUDqf5etTcdi8li0Gl7XgywYEsHxn8Ko+T+9A8iTp2l/+vW7ewRpasvlWpZQM7X56n2rEEQMwHkxnj+//wDWrKXxGq2HWybLqYbHXgcM2T+eauVWgTZdyDYEyo4Vs1axWsdjOW4UtJ0NLTELSikFKKBDsU4LmkGacpxTACMUZFKT1plACyf6l/8AdNY4rZkUeS2Ou01gzSGPZtAJdtvPalIaV3YnWnis9nl37fNP1VQPwqTygxw7O/8AvMazuy+VLdl9SrZwRxUgqrbIibtihc+gxVlaon0JQOakXoajHJp69KAJFqXsKjHTNPHagZIKkWmYwePSnqKYDxT1OAe+aTsv0pwpoBwGacBSLxn6U4UxCgE96eBwaQU9fu/jTEAFOApAKcKAHJ99frR3zSqcYoFMQoFLQBS4pgCjLD60kg+dvqaevDj600880COQXEabg0PHarWpSm48KQyboAfNP7uIYkH/ANaopR/o7/vIycdMc1ZnPmeCtnmxkiYnywuJOffPT8KwhszWW5zi7vsEn+uz5g9d3Q9Pan2JYRyE+dw6H959e39aAjCxmGyU5dTjjPQ9KS1VhBcfuphwhG4jJ57cU+ojq9RWMwN/x5nj+H/eaueMaiUEi3Oc9TxXS37hrY5mti205AXvub396wHK5U+ZB3/h/wDr1E/iKWxHEALt9ojHyj/V9Ks1CoH2rIaM5T+AYFT1pDYh7hRz6UDilpiAZpwzSZpRQA7mlH0pM0Z5piFPWmnhqXOaGIJoGObPktxxtP8AKufusnyv9/8ApXQkj7O30P8AKsC5x+6/3/6UpDjuVbfLO+8ncvJqVJ0ChmYck0Y2CZup64qqql5Y2A+Un8BXPVTaUTeFnJy6GxAMZqwOgqCH+L2qcVtyqOiML31JF/pTxTF4qQDigZJ2FPWox2qUAYFAEnp9KkFRAVNgcfSmA7PAp46UwAU5mKpx60wJFNOHSqguBnBkX8xTxcKcbZAc9MGi4+Vlvp2NPB46Unp9B/KlFUQOGadgikFOoAB+FOANIKdTEOUbjikp0f3vwNIBTAMUYpaXFMDmpWBgceap+Xpj/wCvVjK/8IQ8Szq3z5MO07gf97/61Nb5kYebnII+7U/kmHwndQF+N33Ahwfx/CueD0aNJrqcskYNjODG4yVOC/J/GorVMQ3g8hlzGODJnd8w/KpoY/8AQbldijheN+QefXPFQWkWI7weVEMwdpM55HXnge9PqI7i+kJtB/pGRtPHlH1/+vXPO5ymJj1P/LM+ldHcuW0xPnuP9X/zy46L3xXOyMQV+ebhv7n/ANaon8RUdhJW3XYbeX+QdU206mysWuFJMh+QffXH9KWtIbES3ClpPxpRVCFxTh1pnelFICQikAFA6daUCmAgHtSNgGlPFI/3qAJD/qH+lYFx/wAs8/363cZib6GsC56xD/b/AKVMhx3GSczKh+66kGiABbYcj5SSTTyoMqn0B/pSmFTC0XIDZyRTtrcSZbtzlWPHI7VMKqWilIwh6qoBq2AMA0mNLsSDrUqng1EvNPFIZKpqUHpUQxxT15oAmBqUHoPaogBx9KkUUwHiiRgI6Ow+lJIMpimCKvmwoSzxogHJY8YHr0pxZHlieMgjacYHGDjn9KkaBGjKOCysCDk9RSxW8cKJHEoSNFCqo6AUpLTQvXqaGQTx6U4UwVIACnvmrMhwp1MFOFADx0zS9DSxgFwD0pBVCHqcEn2opKWgB1FKgzkZxwTmkpiEn0y1itZHS5uGZVyP3Bx/Krcmn272Ulu0t40T4Lr5B6D/AIDXP/8ACSX08Ridk2uNpwo7/hV7T9fu7zTr6VyN8AG0IOPfNZqzehbv1JT4S0iPy40hvdszhHBQjIwTxx6iq2t+FtK0rQ7u5s7W4jlCbd0uduD61Ul8U6idxMkQ8keYhw3Xpz+BrOl8V6hqtvcWdxcQNG0TEhFfsM9zihvcL6HRXEQGhWsi/acPbhj0x91en5Vy0w6cTY3eo/xroYZprnQbbcrsi2+AVkIH3V7Z461z06HZnY/Uf8tDWNX4i4iTE+fFkSD5P42z/WimzLsnh+XGR/fLU6rhsRLcKXPtSZpe1WIKUGkzRketIBw47U7nGaZuHqKXcPWgBck/jTcnNOyNuc1GDnNMB5YhDxxg1gXTESQHjG48/hW8eYmHsa5zU+bdP97+lRN2RVNXkkWA6nHzA/jT85HBNc1uO6lWRw4wxH41zSxUuiO5YFdzqoc5/rVgHpWPozuxmDsWwB1Oa11reE+ePMzkqU/ZycSVTTwajXrUq9KogkB+UVIpqIGpuOPoKAJVIOPpUgNQrUqimBID0FPAHcUwc08AU0A8KvIwOlKFX0FItOA560wHipB938aiGaeKYh4pwpopwz0oESx8OCfQ/wAqQUinBoBpiHilFNzThTAevU/Q0U0HAJ9qXNMDloEyFx+gq9oOWs9WQbjiPPycAdevrTIVPlLlSPfGKw7Hx14b0m61W1vdR2S4aLaIJOHBIIJC8/yrGG5ciw7ZSQ7+sLfw9xVCxkDXTr57MTG/y+Xj+E96fper2er2k01jcNLGm5SdhXBxnvj1FJp7SNfY8y5ZSrDBB29D70Pdko62yXf4egcIGBj+8zYJ+QdvwrAnUbGykf4t/wDWre08j/hH4g2zcFCnzfv5CtnINYMxBRuYh+FZ1dzSJHKq+ZBhYx1zsNPwPSo5Wy0B3Keey47VJVw2JluLgZ6UcUlFUSLx6UtJ+NH40AOpwNR0UDHsRjApF4JptLQA8n5T9KxiFcYYAj0NazD5T9KycDtSkJbkDWFu55jA+nFNOk2zHOZB9Gq0PrTxms3CL6Gyq1FsxlrbLartV2Yepq2tRZ7809TTSS0RDbk7slXNSqTjtUSmng1QiYdKlB5qJegqRTQBKpFTKfeoR1qVQKYEgqQVEAAeKeB70ASA08HkVGAex/OnDNUBIOtPFRjOelPBoEPFPHU/WmLyRTgQeaYh9OFMFPpgLThTacKYhRS0gpRQIhj0HUCn7y4tsAZx5+a8T1CZ7ZUNrptld3F54iv4XSa0jleZR9n2xhipYDLt90g/MT1r0T7OqFXa6R2A4EYJ+ma4i48K+LPtt+mn639msrq4lmMKXMyKd553Kq4yRgH6VnGyZodJ4G8Oxiz119PvIzYQ6vPaQ7pOWX5Ar+/BHNdYngm8sGN495DKsQLECfPb028/nXH+DvDN3oOlTWt0FeV52l8yF227doAB3KO4P6Vu22lyQXCubd+O7XQOPwwM076hY6drV4tLErJsVzxu5OMP/jXIyMcEbz+CVsaXr808UmmOkJgZ2aNkmDspAPGMk4NY8meeXP4CsaruyoFaQnbbksx+bHIxUmahlzsiyGGH7mpc1UNiZbjs5ozSdqM1ZIufajJpMj1pC1ADsn2ozTd31pAaBkgNLn3qPNBYD/8AXQIkOSpz6VkZNXnvrZMhpk/A5/lWXDNHN9yVD7ZqWNIsA8U8HihIZWPyozfQGpVsbpv+WJ/HikVZjAakU+9Srpt13Cj2LVINNuR3T9admFiIEZ6VIOmc4p/2C4HO5P1o+zyrwWi/FsU7MQqk+tSqx9PyquODy8R+j04TJnlhSCxbVx9KmVh65qsj5GQfyqVSPQUwLGelPBquCO3FSAnHDU0BOvQ04VEpOD0p4PsaYiUGniogakFMCQU4UwGnigQ4Y604UwU+mIXHI5pwpuacKYDu2aXNNH3T+FKKAOWln+zW7zybvLQZJqJLy486NbixngSZ9sLswAJ64Pofb1q/c6aLuxltnguAXXAZ24B7HGOecHrVWHSL6e5ia/e1eG3fcFDbTIQOC2SMY4PHHWuafPzLl/r1PVwscK6MnVtfXve1tOW2jd979O2rVqJWB+aIDryZR/LNPjiXzFJS2HPacsR+AarHkxo2VjtVPtKSf/QjSRMm5MyWSHPTBJ/9BrVo84r2VrZxXMTRR2qSFjzGjBjkHuRWdKOW4J/4FW1DMhmhQTQklgNqxAH6ZrDucLJIML1PU1lU6FRKswxGMjGJPX3qQGoZiNhxs+8DxUnPtVQIluOpRTPxoz71Yh+aUtTKKVwFJzUM83kx7sZ5xink1S1F1S2csP4Dj2PABoAljvkfg5FV9Vm/0EhHwGYKx9qxbC8uTeJC4SRCfvdGH+Nb00SywMhA+ZcUndaMpJMyLOznuJjEqeYcZG2tiHw9dvgssae7HJ/Ss3TLn7NfQyE4w21vp0NdFqlzLFPGEcgFckZ96tPQZi+OdS1XTHsU057lBIrBvJGckEY7e9YFv/wmd4FmFzcxxkfdkutmff1rrRcF3BZiCOOTwanDL3P4ik5AkcgNL8Uyy7pNVKDGNpu5D/Kmv4Y1mU5fVgfrPKwrtQgYdiKuWenRXETO5cENjCmknJhZHnreC7yQ5fVR06bWP82qxbeB0RleS7aQq4YYjx/M16INIth18w/8Cpw0q1H8LH6saq0g0OfW2aNR83SnhfWtr7BErMBACM8Ek0v2JMcQR/kf8aXKwMYAA5GRUySSL0bPtW0LOAdIE/Kl+zxj/lkg/wCAinyMRkpct3Qn6VZjmDY4YH3U1bQYBA4G49KWmohYjVqlU8VVTJXeW65OMVOrZFKxJOuKkAFQrU60wHAU7n60L1FOFAhM46ingikFOxmmAopaTAzSge9MQ4dPxpab2p2fagDk2023VmJltgT/AH7vn9GFOezRwg8+xVQoHzOSD9PmOR+dWY7q3i5TTdJj/wB47z/6EaUavIjNsexjBI+5bAgcdspxWTkjQqwaci3EbJd6ecEYCW+T+ZWrdvply0qul2wG7OEtF9fXilGtXOCBqMwHpDDgfzFRf2hcuip59+wA4UNgD6daXMh2LlvplwtzFcGW+aPzFYhhiMDP15FYl8QtzOAU+83TnvUs0iLD88UhYY5eYADn0xVCWQnPJ6dhWcncaI53/d/eJ6H7uKnzVK5Y/Zwfmx71bzVwJkOz7UZptANWSLk+n60ZPtSZFGaAAk+tZWrOdgQdyB/n9K1DWJqpLTxgNg5JB/T+lC3DoJZWQSVZxx1BFarngVVtFkRVVwMEZBHep5DyPpmipuVT2M14I3v5dq4LLk4PfNaLTS3ITzSNyLtBA6/Wua1aC6vruG3tLtrUs5aSYMRsjVHd2OOSAqk49qw4rlk1LSnstfvbyCa5EckU+YpFwy/eQOw2kNwc84YY4pRWg2z0AKQQT0z/AFqbeU6etItIxMSM5YbVGTvOMD60WAu2KrdXKxklc5yV+ldDbQm3j8tG3ZOclea5/SHVr+MjjIPXvx69625kjnuFikVXTy2JUjI6itIoLlksw6v+gppkA6y/qKaIY1UARoAOmF6UoVR0UD6CqENaYDpMP++v8KQSoesrH6bqkxSE+/60ARF0PZz+BppZf+eTH/gNS0UAQiV9o/0eReehK/40eY+MmPH1YU9u1MfhTSAiQ7Y9hZcj0NTLgiqik569vWp4yaTRLLSDnrVhQw64NVozVsdvpSEKpp45pAadtBpgKKWk28jB60ozQAvpS0UCmIWnCm0ooA4Q3OeiIPon+NAuZFOV49wAKqckcqfxakyB/wA8h9TmuU2LjXch+9Mfxc0wzFurg/gTVYSAfxoP91aXzP8AbkP0XH9KBkkjkxty3/fOKRixzxIfxxUEkoMbfLKeD1YD+tGVIBKpz/efNIY25P8AoTEgA4HVs1oLjaPpWVMwNmwHl5wPujmtKI5iQ/7IrSBnMk4HYUZpM0ma0JH0lKoz2oZo1+86r9SBSGMJ5rntTnzNFKqkoBgn3zW1Nd2qI2biLOD/ABCsaJ1lXIIaNh19qnms7j5bl/TphPDvGcDjntU8pAVj6Co7KJYoCqDC54Apty2I2Jzye1Ju7uVFWVjndY1BtIFrfrEswMzJJE5wJI2R0dSR0yrMM+9c3BeWE+r6TBp+ntaxRXSsWlmEsrlmXqwVRgBRgY4yfWu+yInhBIH7s9frVxDxVRl0CUWkm1oTpTwA3BAIPUHoaiU1IpqhEml2kdvclowy7geATgYU8j0NbViZDKfMLEgNgtu/2fUmsyzP78DPG1v5GtHTsb2xt/i+7t9V/u1pdy1YkraGlSUUlAAZGQcKDn1OKhZ5GYcKBkZ71KQPSm4HYCgBSabmlNNoARj8y/jTJDhTSsfmH0NMkPy+9ICAHnrn8aljGQcHGOahAYZJB/GpojkH6UESLMZI7Z+lW0INVI6tJ+dJgTLThUYHTHHanjP1oAf3rA8T+MdP8J/ZPt8N1J9p37PIVTjbtznLD+8K3Qfm/CuS8UCVvFugiF7hJTY6qEa2UtKG+yHBQAjLegyOe9AFnw1490vxTqMljY295HJHEZiZ0UDAIHZjz8wrqcCvPPDCuvju1Wa5ubicaCfNe9h8q53faOkq7m+bGMc/c2V6HTBhgg4zS8+lB6/hRQI8wMvr5S/U0wTncQJR0/hXNBtbmP70ccfsxUH+dM2SbuZVH0Of6Vz2ZtdEhcnq8rfRcUigkfckP1bFJ5ZJ5kY/QH/GhYYz2Y/XH+BosO4h2gEFYh1+8+adayDyUIKj6JmlVEHATH1Y06KNMY2JwcD5c/zosAx5lFm4Mjfdx2FaFu262iIycoP5VU27raTP91unFWLQ/wCiQ/7gqoEyIr3VLXTyguZNpfoAM8ev0q0rB1DKQVIyCDwRXJeMEK3dtL2ZCv5H/wCvS6H4ght7dbS6JVVPySYyAPQ1V9S1S5oc0dzS1ppVuFfJ8naF4PANU0i3gHcMVsyGK5hPKyRuOoOQRXPSGTTLsRvloX5RvX/69ROHUmMvslo2ybTwW/GqMplsX3wr+7OQy84P+BrXhMcqBw2VPTFO+zeaCTH16iosirsTT9espYxHIXhlJ6MMg/QirMx89AFPFZTaO6TNKqmJVbPJGCKmileNjx8uelO4FiRh9p3SY2bcKCM/571YtcrEcggZO0HqBUQZXIZfxFWFPFTTp2lzHdXx/tKCo27ddPdVlZW0b6u7v82TKwyRnocH2qZTVUgGQkcEHrUqyfMFbAJ4BHQ/59K6DzjQsT/pIx12t/I1p6exaRsnONw657j2FZdl/wAfA/3W/ka09OLB23AggHru9R6//qq0I0aQ0daRjgc8D3pgBpKge8tUba1zCG9PMGfypPtcWPl8xv8AdiZv5Ci4WJqSohcM3S3nx7gL/MimmS4J+W3UD1eXH8gaAHufmH0NRO2FJozJvxIEHHG0k02U/KaQEZkJByOKmiPHHeqi9x/Sp/MWJNzHAyB+PagiW5ej61ZSs1LplH+rDD61PFfp0ZWX9anmQ7M0AeRTqhjlSTlWB+lS5oAeOmK5Xxn4LHi82P8AxMPsn2bzP+WPmbt23/aGMbf1rqQayW1HUbm5nGnW9u8NtJ5bmVyGlYAEqvHBHTJ45FKU1Hc2oYedZvlskt23Zfj/AF8rmF4P+Hx8JaxNff2l9q3wGHYINmMsrZzuP939a7gEGqmn3qajYw3cYwJVyV9D0I/A5FWxVJpq6MqkJU5uE1ZrR+qHGikxznml5x6n2pkHlQz/AAgAetLk7hkc04ADbnpSk4f5eR3rmudFhcHP3uaVe/1p3BIxQnU/Wi4wUcmnRDl/940KPmNOj4Zx7/0pACr+6kGP71Laf8ekX0pyDIkHuajsz/oifj/OrhuRMxvGEe7TIpe6SY/MVxHmEdK7fxTa3U9j5sUwEEQzLGT97ng1wpq2aUXoa2iar/Z97umZ/s7KQ6gZ57HFXr/xFBfQtbxWMshP3WZgCD2IAzWBC6xzQyMAyqwJBGQRmvRkijiA8mNEX/YUD+VNLoRUa3ZzGnX01tKomhKOwzslBUN6Gtd9Uvc8iBf90H/Gp9QsEv7fY3yyLyj/AN0/4VhQyOHazuRsnjOASevt/hWFWMo6rYulJS0e5dkv7lpFDsGQnDBcDHvz1/OrI9RWWVI3A9aZaX5hfy2yY/Q9R9Kmm29y6kbbHRJjKnjPlHI/GplOOv51FCyskTrypiOD+JqYIfJ8zA2btv41sjFkw5ZvrTsAgggEHqDUSHHPb+VSqaok0dOjU3SR5O0qRycnlfeteOzSOYKjyquwkhWxnJ74FZWm/wDH/H/u/wDstbg/4+P+Af1q47ANNrEww5lYejSuR/OkFpbL0t4vrsGanNIaoRE00NvhWkjiz0BYLmmrdRSNtRyxPcKcfnjFPYENkYzikIY4yc80AONNJpTTTQBE5/ef8BqGY/If8Kkk/wBZ+A/rXGah8QdJtLy4s3t70yQyNGxVFwSpwcfN7UgOnRwCPlLZPRetS3iN5UHykBpV6jHTJ/pVPw9qcWrWSX0CyLFKG2iTGRgkdifStTUDl7RfYt+mP60n8IrakK81OqBhyKyPEt49kbFIJGjkWIuxXvngZHfoagtPEyombyLgdZIv6ipUG1oNyS3N7ySDlG5/KpFup4uH+Yf7XX86js721v4/MtbiOVe+08j6jqKtgDGCMilZodkx8V9E+AxKH36fnVZ9Kke5kks9QltY7ht0yRqpB4AJU/wk8888/SntbRueAVPtUYhnhbdC+cf3Tg/lSklLc0o1qlBt03v3Sa+53Ro2ltHZ2kVvCMRxqFHA59zjuetWAayk1CSM7ZUz+GDVyK9gkA+bB9DxVq1rIxnKUpOUtWy2KeKjUg9KfVEHlyDIxTiMEfWmjgA+lPPY+9cp0i9BQvBIoPJAoH3z9KAHD7xpyf6x/wAP5U0ff/ClB2yMf9kH+dAEkf3nHv8A0qG04twPQn+dSRHLt74/lUNp/qmHo5qobkT2IdZG7Rbwf9Mia85mhkhK+YpXeodfcEcGvSdRXfpt0vrE38qy7TT7XVPD9ktwmSIgFccMv41s1cmE+VnD9Ur0O0uo20u2lkkVA0SklmA7Vyl3on2K7jtSTKZT+6K8FvarB0iWAD7TPbWygcebKCR+AqHJp2SNWoyW5uTa7p0HHn+YfSNS369K5nWtSF9eQT28UiKg2kyYG7J9qlc6RCf32oyTEfw28eB+ZrMvruzmmgFpBLGiN83mPkvzT957k8sFqrm9aXC30W0kecOPr7fWqksJVzkY/pUD6rBdy+dFAtrcLxsU/LIPy4YVrQyx6lCCpHmgf99f/XrlqQcHdbHTTnzKzNHSblZrNYTjfChU/nkH9a1YXElubfo+7cM9+OlYukwKs8pIw4iP8xWmvP8AQ1rTd43MKitLQtpbyFGdFJ2feHcUg9vyqWC6fY0XmGNmGA4PX61St4p7e4eGQkpjK5/z0rUzNvS2Bv48f3T/ACreHM5/3f61gaeudSjwdp29fX5a3VXEzfMT8o6/WtI7AS5pKKSmAUhpaQmgBppppx+tMZgOpAoEQSffP0FcBYxWkdxq1hdTSxz+IdQuLWFFhDK20sIyzFhtXznU8A8xdq75/wDWH6CvP9U+Hf2rUbq8/tQr58zy7Ps+du4k4zu560gNzwACvhW0BBBAkyCP+mjV0dw++8iUH7sP8z/9asHQ9MXStGhsTKJhEW+fbtzliemeOtaliTLqUi9gY0Ht3/rSlsJbmZrUrz6/PGq7lj2xAY4+VRn9SayJrdMkIxjb0PSrrzGeaacc+bNJJn6scfpQ6efy654+8OtaRWhEnqzF2tBNvAeOVTxJGdp/MVt2PirULbCzhLyP1b5JB+PQ1X+zspwpDjupHNQPaRsTtyrelU+z1ITtsdnZ+ItOvvkWbyJjx5c42nPsehrTTzDJhycY44xmvNTBIg2su9B+NdP4RkcyzxiSTylUYjZiQpz2z0rOUUldGkZu9mdWACpyAeOMjOKa6jB+VfyqROh9zTXPSszQLeWKFyjsEz0BOBV9RkjByKyJIVlLFhyOKij863P7mYgeh6flTUiXG5xMZyg/rS9Bj8aSIHb9DQ3TJPH8q5zYkHUmj+P8KarLx84+lOLLvHU8dhSAX+P8KaVO4qCeVyOe9OL/ADAhT+JpQSXBIA4xRcYsBw7Z68VHb8GZfSQ1Ko/en/dFRRYE1xx/HVw3M57C3ADW8qnuhH6Vxf8Ab1zYaVZ21sqqxjJMjDJ+8RwPwrtjypFebXG6VIoUiYvCHG5ecrknp7c1sRC19SO4vru7bfcXEkjL90k9Pp6VUPJz1NSDkNTMUrnQlroNpOhFOINIVIGaBNaDTVqyvXs5dwJKk8gfzqvto245oaT0Y0mtTvdOvobgecG+coQcfxe9bMZV9PbbgnzAcjsMVwNhHdWtkL4Am3LkHHVcd66fTNQGAyMCp6jtj/D2rBfu3Z7A7VFdbmoOcA8VY8xmRUbqOh9qliW3e1kchiMZG3qp/wAKpwSrMpHRh1HcVtYxNrTf+QnH/wBc/wD2WtzOJST02j+ZrA0xs6on+5/7LW45kEmUjD5XGS2Mc/SrjsA8sO2T+FG5j0Q/iab/AKQ3XyU+gLf4UeXIfvXD/wDAVCj+VMB2JD6CondE/wBZOi+xIFKbaJgd4aTPXe5b9M4p6RRx/wCrjVP91QKAIPNhb7pkk/3VJH59KaWY5CWx+rMF/wATVpqbtzQBn3U/2W1lnlVflHRSTk9AM4qg95cQyxi8ihEcrYXY2Sh7A+vpkcVq3cMU8MkMpG1xg+3/ANesC4gZLoCS4edU5TIHH19T71hU5+Zcv9ep6OFlhVRaq2vr3va2nLbRO+9+nzT0BJ5qkqOAcc0mnSbPtdyf4ZJH/wC+V/8ArVRa7e0tt4h8yEHMmz7yD129xUttJu8L3VwucSW8rgn/AGycfzrWT0PNS1Mq2G23iAJ3BBx+FWUkB4bg+9QpwcenHFSjBPIz710IwZKVznjNDRq/BAP1/wAaUDAG04p2f7wxTAgMOPusR7N0/Ot/w5EwjuJHXBLKAfUAf/XrI2/JhcH0rpdGQJYAgdWJ/pUT2HBe8aYGFFRN94VKeg+lRH75+lYG4zsfc1Hjk08H5B+dMpDOETJB+Y9fWkMYGTinIPman7SQaxLGKgABFPPDLSohKKcdqcy7SpPrQA0/eWn+lIxUFfmBwecUu9SQFznPcUrgOH+tH+7/AFqFRturgc9Qf0qU5EiH1BFVrYsZ5jI3PGSaqG5M9ifHIzXGJp7tZ3F3bZW4trp+ncV2vyjv+lYmjHbPqkagEi7JGT6itzE5K8hjaP7ZAAsbnbJGP+Wb+n0PUVQJrc1/TxZ3JeIYhlOQB0B9KntvCm4Bp7knjOIkJ/U0rG0J23ObzTXPymu5h8P6dbgFoDIfWZ/6Vn+KIoY9LhEMcSKJeka47H2o0G6kn0MWDRtRuQClrIFIyGYbR+tTXfh69tLQ3EmwqvLBWyQK7G1LtaQEBzmNfQdqh1WNv7KuiwH+rPViaOZENyfUj0dEOi2qMIwrJyD35OaxZlOl6hKsJPkhsgf3a3dGhMmh22HAJj7KPWsacbZT5mWBJViaUmpe6wV4vmRvaXqO0Kdy4x68Ef4VqNDEHFxFwG+Vl9DXDIz2EuQT5JPX+6a6bT74SoFYjPbnrWUW4PlkatKa5onSaX/yFF/3P6V0Q61zmlHOqL/uf0FdEDzXTHYyHUUhYDqRSbwTgZzjPSgB9JUUkywrulZY19XYKP1rMuPEulWxw1/CzekWXP6ZpOSW41FvY0blmRF2nBJqlI8gJV3NY1r4jbU9ReFIisK/caRsFhn0xxxW1Ow81gehOKzcr7A4taMgJz0OagljWQEOMirZiJ+782ad9jlbqFUe5pCOdl0/7PHiKMSwgHMb8/pWnKnleFplxj93En5stXprMpbyONz7UJ+UYA/Oq2qhh4cn29fNjH5MKpLUL3MJTlifftUi/eyfwNVYJvMHPDHsKtL+VdSOdkzN8hIPamPOIbcPKC/zY7ZpGOAfwqvfn/R4l9WrKcmp6dilaxeQMcMh+VhnnrXXaapTToQ3XZn865JOFA9sV2kK7Io09ABTqbDp73Jj3quzcOfSpicgmqzY8tvc1izYXoAPbFMPXvSk9ajY0AcYpYEsEAB9e1KZjjmRB9DVbzVUcQ5/3j/iahfVoYQQ9xbxe28f0rPlZXMi7nsN5HspxSd/uc+7D+lY03iKwTrdM5/6Zxk/qaqSeK7deI4J5PdmC/40cjDmOky3+wPwJ/nSZOf9Y34YH8hXIyeLLgn9zaQp7sSx/pVSXxHqk3AnEY9I0Ap8i6i5jvUO07iT6ZP/ANeqtrK1xcTMG/d9hmvPpbu6nOZZ5ZP95ya6nw7q1ta6e4uJ0jbd0bqeKOXl1Qb7nRPtQHcrN0wB6msXTgw1jVUCqP3iNyScZFSzeILB0klSbd5QBxjBbntnrXPr4iEWqXdzFbllnCgB2xjA9qauxWSNfxMrf2O5YrxIvCritWIK8EZLO2UB5Y+lcXqWv3GoW5geOJI2IPyg561XfWb90VDdSKqgABTt4H0p20C53haKIZIRPdsCue8VXtvPpqxRzxu4lB2q2exrmGlaQ5dix9Sc1FIcrTUdRNnYQ+JbOCzhTEsjrGoIVcDOPeqN/wCJTc20sKWwRXUrlnya54HgUMeDT5UFzWtdfvrW2jt43RY0GB8gz+dX7G+W4uEcjkMMj/PbNc10qWGZoXDocEUOIJnSSsjxzK8PzvISx3E/XjtzVKG4/s+8MLSZjwCrY6EjNOhuENqZOuBkgVSWQygsw5z0qJJSVmXC6d0ehaHqsKXAluZQqqh+fGe3tU+qeJ5mnjGkCOVApDvLGw59gcVwdlePbShX/wBX/Ax7e1dZbFL9FEIxKP4QOtc8qlSC5TojCEveEk1PXbhfmvvKB6iJQv6gZqBY9RBfbqd184+Y+a2TW/a+HLqUhpcQL/tcn8q2rXQrK2wShlcd36fl0pRhUluOVSEdjirbQJb187ZZyerOSQPxNdDZeELWLDXQVz/cTgfia6UKFAAAAHYUuK3jQitXqYyrye2hm3OjWU8SJ5IhMf3Hi+Vl+hqFobq3hkWdvNwDtmUYJ+o7H6fpWuaYy5BHb0rRxW5nzPqcxoGoXE9z9mnBbAO1+/HY10zLgVRh0yKC/wDtcKBXKkEdAc1V1i51C3IMdzbRoeihcyfrx+lQv3cdR255aF28kaKydQfvlVJ/GqkqfbLCS0ZyI3Ibg45HQ1y98bidCZ7q4l5DAlyMH1AHArb0yWY2UEk7biR97GM896mNXndi5UuRXMK+sbixkAcd+HHRqSG7I+V+feu0aKK5jMUqB0YdDXP6j4dlhJltN0sfUp/Ev09a6oT7nLKD3RWLhlypyOOlQ3nLWy/57VVVmjPGeOvrVjP2iWJ9yjyzgj1olBtuSIT0sa9snmXMSergfrXZD72a5TSFEmpQ9wCSfwFdWvU/SnV3LpgemPaq7nCp9c1O/Cmq0uCQD2U1izUa0gxUe4sOlLsHcZoIA9qEB4E8k0pzJK7/AO8xNNCU4UtAhoQUoQCnZpM0DDAFJ0opO1FhBmg0UU7AITTP4qfTT1zTAQ9KSlPQ0lMQGmtyppaQ9DQADoKTsaB0FFACmlzSUUATxztCpI6YwR6inW0wZicYHSoM8H0otjGFZTu8zPBzxj/HpSaHF6m5bBJVeGTowyPrWhpOr3mhXe1JNueAxGVYehrChlwQCSPQ1rRtHeReTJ97sff1FZyjdWNLtO6PTNI8TW+oIFmXyJe5zlT/AIfjW71AIPHY141YXkun3XkzNgj7rdmFdpp2rzRRhoX3KPvRN0/+tWKrSg7TNfZRmrwOxpMVSstWtbwbSfKl7o5/ke9F1q9nbEqH81x/CnP69K39pG17mHs5XtYuYqrdX9rZg+bIN39xeW/KsK71a8uQQjCKM9k4J/GqltAJLhQ6lgTzgfrWTqt/AjRUlHWbLVzr9xM+y2j8tPzY/wCFZjkzEsSd565PNbRsRCwkh+7wfcVFe6dvO4YV/wC8OhPvWUqc2rtmkakU7JGK+QhVh171c0q9jhjFq7HOTtDnhgewPr7VXlRlJSRSrD9aqSx8EMMqaxjNwlc2lFTVjro8gbomyB27ircU6vjdwwrlLPVHt9olbKjgSY6f7w/rXQwXEVwByFc9CDwfpXbCaktDjlBx3Jb7SLLUV3uPLm/56oOfx9a5q/0W8sQWMfnRDpJH/h2rq0dk4fp61bicbTnBU1tGbRlKCZzHhYmW/Ykn5IznPua7DGFPuaqw2tvFM88MYV3ADYq2Adg9zRKXM7hFWViOT7uKgY/OfYAVNLwRVRn5b3NQyh2AaY5wOtKXVV5OKiaQEcAmgDwUUtNHrRmqEKTx0oooxQAUUvekoAM0GiigBtJTsU2mIaehopSKQDimAlIRmnEUmKQDV+6KXHWhR8op2KYDaWlAAoAoATBqOP5Jxn1qUnAzTUkaOXfGw+dSpyM8EYNAItDlfcVYinKkZJBHQiqiGplwcVJsi7d3VxPaiNRGzA53Ec/hU2ja7NbzR29yCGJ2hz/Ws4MydDxUvySphwD7VnOCkrMqLcXdHoEUqXKbl4YdRVyzkt4pttwoG7gMegNcdpmpNC0cchPoGPf610pEd9b/AO1XC705anVZTjoaktu9vKhUKy5J3t0I9K0LZ4WzJEAvTKn+Dr09aw9P1JrQ/ZL75oTwHP8AD9a30RI0Xb9z+Bx2rrhNTV0ck4OLsyfbkcAbsZ55HTqfeomTkgDj36gZ5NPBAXaxUHsGPynpz9acMMOQXzk5A+Y89/QVoZmHdmGWRo2Q+WDhW/iBrMuLd4OW+eM9HFdRc2Szgg8SEYDDJ3VnJZSLK0e0sGz+7424rKdNSNIVHEyIdMlnjEykLETjPWpo4GtHZYXJGeVb7p/DtW1ZulrH5BQeUCenIHrUM9sPPfYPlPzLjniinSjHXqE6kpElnqOf3cqk8cg9R/iK2rZEeDcjDPoDkVz3kAjkfQ+lWLe5ktWy5JX++B0+o/rW5mbauNxX7p9KtLzGv0zVWCRLlMMoJIzkdCKdPEVTKuwHTlj/AI0AJO6pyzAD61UETNgs5HsKY81rbn55E3DuzZNV31e3yQm9yP7q/wCNIZa8pF6D86Y7VnSaq54jgx/vt/hVQ3l3JKqblXOSdq9qBHkIpc0lLVEBSik60tMBaKSlzQAfSikooGFIRS0hoEJikxinUhoAbRjNOxSqKAIkxjGe9PxTtoz0p2O2aAIyO9GB6U/FJQMYVBUg96rHgY9DVyq0wAc8YpiJVbgGrCtxVOFsjb6VOpqTRMsZyPejJHSowwNOc/ISOoFBRP5pYDJxit/SNVdZEhmJWUfdJ/iH+NcmLolRgDHfJrqreyXVNGhYYW4jBVH9cHgGsqlJTVmONXld0dSFjvYeg3VJYajLpr+TOC9sTj1K/wD1q5jSdXkiuhaXOY7hOBu43f8A166pfLu4v9rFef71OR2e7UibNwHltAbaTMLkHcp5A/yaZbXm9zHLuzn/AFhH+s56e1Y9pdzaVNgZeAn5k/wrae3t9QgWe2IaMnLIP89a7adRT9TkqU3D0LG9HLJvGY+HAP3OT0Heql9di1jXn5mHyE9QOeSKqRxPHIsqP5QV+GB5X/GnBUZSR+8kyf3j9/oK0MyzDKL1VEgEcuAFJPy49RUAuFjneJWJCtwxGAT7GoJYyRv++oHIbjZTNgeLPEiAfK57HPpQBsxCG4HzZVu5UfzFOOnSnmIrIP8AZODVC2ikVA6SM+OQ/r/9atS2ug+EkAVuxHf/AAppisVVtLu2cvEk8LEYO1eD+GCPxpHF7Mux2ndT1UqP6CtSSe6iXKSOyDvnp9ahOozkYLGmFjNXSZupjEa+rcUx7RY/lXk9zV95pJPvE0qWkj8kbR6mkFjNFuPSmm12TJLj5R8rH0zW2toqjpuPv0onSJIW89wqEYPOBSbKSPnsU4GmA06tTIWl700UvWgBaMUUZ5oAKKSloAM0lL1pKAENLRzRg0AHagUUoFABwaXNC0GgYUEelFB/SgA+tVbgYerdVbnh6AECkRLIO3BqVTuXIpbcZhAPSomBhfI5Q0AnYnFPU5GDUQYMMg8UoODQaEE8zTS72VFOAuEXA4GOn4V23haRZNMkRiBtfOT05H/1q4eRSHJwcEnB9asrI5tQoYhSfmAPBx60MzST0Ok8R31hciJo5w93D8oaMZyPc+oq14d8QfaH+z3DBbgfdPZx/jXHYpOQwZSVYHIYdRWdSkqiszWnN03oewjZcJkAE1DBNcabP5sB4z8yHoa5jw54kM7LbXJ23K9D2kH+Ndguy4j3Kee4rzJKVOVmd6cZxujXikg1aESwECVTloz6+9VBbMsmCikgfMsnTOe1ZSiS1nE0DFHH5H2rorG/i1JdrYiulGcHv/iK66VZS0e5yVaTjqtiBLRpiJI+QCMsOn4+1WTYJIpjbEkhORt+5+eKsKoMpBUifPKE/Iw9aqy30ZBjjjknBzlAAqKfY10GJU2y2bttO9BwR0UfT3qaHZdISjA1CyS3TJ50jyn+GNOAtaEFkYzvlfHH3V/qaQh9pJMjFGBKjjJ7Vc/s+KYNJ9zaeQvQ/wCFYmo6oIo/KsyjP69QtJZeJJobZ4riHJPRwf51PtI3s2aqnK1zoI7aKP7ij6nk1HcXNvbg+ZIN390cmsObWJ7qLCOqjuIj/XrWVI8iHO1vxFZzrW2RcaSe7NW615idsCBF/vNyfyrIuLlp2LPIWb1JqpNeK3yhCX+lVZI53PzHavpWEpye7NkorY83FOFNFOBr0jzhadTRnNLQAtB4pMe+adzQA2lxRx2o/GgAoopcUAJRjmlxS0AN7UAdqXrR0NAAKcBkUgFL070DAUUoGaCB2oAQjiqt194fSrfbHWqt2PmFCAktv9SPxpzbSCDyDUUT7YU44JNStjGRQNK5AE2nKn8DT1YMcdD6UYoKhvr6igpaCXM0zxRRO5aKLPlr/dycmiE5hI9DTJCwQg8j1pIec+1BOzJaKCQOpqNpQOnNAx/IIZWKspyGBwQa7Xw34iN4Ft5nAul6ekg9R7+1cGzFuppY96OrqxVlOQRwQazq04zVmaU5uDuj2gEXEWRjNV3Vo5Aw3JIvIYcEVz3hrxH9ub7PO6rdqOCR/rB6/X2rrIj9oU7gSR/npXmSg4OzO+MlNXRo6fqaXqi2vPllxhXBwG+lai6UkahJZSyrxheB+Jrk5IOSB69O4qxLJdXSjz7qRwONpOB+IraGIaVmYSw6bujauNTsrFTHbqHb+7F0/E1hXN5eXzFZW8uM9ETgfj60qyJGu1uKrS3QyVRSfeonUnMuNOEAEXk9OAKHnhRDhvm9BURE0uN52ilFsqYJG4+9Z7F3bK5Z5WJRPxqSKOQv81w4PoCat7BIOOCO1RSKVPI5qlJrYXKnuEhdT1Jx680Lc2oAMhBcdv8A61KGB4b8DUEsUasGJAJ71cKjT7kThFrseWClptLXpnnDx0pc8d6aDxSigBwpc84pAKMUAL0pPxopcUAB6UoBoo5oADRnilpOKAEFLSU72oGC8/WikHBp3SgBQeaPfFJkU7vQAgqrdj7vrVvPBxxVW7PCkUAIFK265GCDyKcj5GO1RCUtFtGA3r60bXjADjr0oGmTGkoVsjFFBQyX/VmooywOB1NSzf6s1HGypJnkgZx2oE9xhDFuck0oU96k+Z+R+dKIx1PJpaj0GAZ+6M+9PCf3jn2p1FOwrsBlWV0Yo6nKsOCDXc+G/EYv2+z3TBLwdD0Eg9fr7Vw3NBBBDISrryGHUGs6lJVFZl06jg7o9nMsckO44DgcEVUkkmcnCkA965jQdbkv4Filb9+mMn++OmfrXaRETxAJwV7GvNlF03ZndGSmrooi3ZuWPX0qWJY1yNoB6ZqbBGRg57imEA4IqbsqyFdB0xUeccGnq5Hyt0p5i34xz70hlYqRyKcDvGCcH6U9UO4r3FBtuc5xVxhJ7IiU4rRlSX92+3HWq5bEys5LYz7CtJ4gRgnOKgMUWfmFaqnK1jF1Y3uf/9k=", "path": "images/4pts_ADE_train_00009395.jpg" }
depth_point_27
images/3pts_ADE_train_00011977.jpg
ADE_train_00011977.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 288 y = 201),Point B is located at (x = 168 y = 104),Point C is located at (x = 213 y = 186).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_70><DEPTH_3><DEPTH_70><DEPTH_67><DEPTH_70><DEPTH_67><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_59><DEPTH_3><DEPTH_60><DEPTH_60><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_31><DEPTH_17><DEPTH_67><DEPTH_59><DEPTH_11><DEPTH_70><DEPTH_5><DEPTH_59><DEPTH_3><DEPTH_31><DEPTH_70><DEPTH_72><DEPTH_83><DEPTH_33><DEPTH_2><DEPTH_32><DEPTH_77><DEPTH_67><DEPTH_31><DEPTH_59><DEPTH_3><DEPTH_19><DEPTH_19><DEPTH_36><DEPTH_36><DEPTH_64><DEPTH_1><DEPTH_33><DEPTH_5><DEPTH_29><DEPTH_59><DEPTH_31><DEPTH_74><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_36><DEPTH_0><DEPTH_74><DEPTH_59><DEPTH_29><DEPTH_38><DEPTH_74><DEPTH_36><DEPTH_44><DEPTH_36><DEPTH_44><DEPTH_64><DEPTH_57><DEPTH_36><DEPTH_31><DEPTH_81><DEPTH_40><DEPTH_35><DEPTH_60><DEPTH_72><DEPTH_36><DEPTH_36><DEPTH_40><DEPTH_78><DEPTH_45><DEPTH_121><DEPTH_94><DEPTH_39><DEPTH_53><DEPTH_30><DEPTH_59><DEPTH_70><DEPTH_76><DEPTH_74><DEPTH_59><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
3
[ "B", "A", "C" ]
<DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_70><DEPTH_3><DEPTH_70><DEPTH_67><DEPTH_70><DEPTH_67><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_59><DEPTH_3><DEPTH_60><DEPTH_60><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_31><DEPTH_17><DEPTH_67><DEPTH_59><DEPTH_11><DEPTH_70><DEPTH_5><DEPTH_59><DEPTH_3><DEPTH_31><DEPTH_70><DEPTH_72><DEPTH_83><DEPTH_33><DEPTH_2><DEPTH_32><DEPTH_77><DEPTH_67><DEPTH_31><DEPTH_59><DEPTH_3><DEPTH_19><DEPTH_19><DEPTH_36><DEPTH_36><DEPTH_64><DEPTH_1><DEPTH_33><DEPTH_5><DEPTH_29><DEPTH_59><DEPTH_31><DEPTH_74><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_36><DEPTH_0><DEPTH_74><DEPTH_59><DEPTH_29><DEPTH_38><DEPTH_74><DEPTH_36><DEPTH_44><DEPTH_36><DEPTH_44><DEPTH_64><DEPTH_57><DEPTH_36><DEPTH_31><DEPTH_81><DEPTH_40><DEPTH_35><DEPTH_60><DEPTH_72><DEPTH_36><DEPTH_36><DEPTH_40><DEPTH_78><DEPTH_45><DEPTH_121><DEPTH_94><DEPTH_39><DEPTH_53><DEPTH_30><DEPTH_59><DEPTH_70><DEPTH_76><DEPTH_74><DEPTH_59><DEPTH_END>
288
201
168
104
213
186
null
null
null
null
30
9
84
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDmVB9aeAc9acEI9KcqnvivWOIVc+tLtbdTgM8CnqrE8mgaIwHBx0FSrkHrzTlHbrUqx98YpAIBnvT1SnCPkVKqetICMBgcZp4LDvTsDOMcU/ywRwKAGiRh3qVXLDJNNEJP4U4LnI/SkwHKCf4qk8sletRr8vap0w3UUhXIgG+tO2nbx1qYgAcVGTn2oC43aRyaCd3NOwSPWgKSme9MLkb/ADDPccUBscGnFSAOKYy5YVSE2PBx3o59aaAT6VIijvQCYiqxarAhx3pqHHAFTIOeeaQNiAHpjNSDd0pxQnoKkVPlpNom7IlBBxTgnzZHU1KEOOmaswWzOV24z71LaDVjIY5icE8VpW0UuzBPGamt7TD/ADHg8Vox24CYYYx0rCc0axgVkgYg5fn07fjVpFf7pXI9ulS+QD9D1xUgXHA6VhJnRGOhGqHp09KeqHccfjTwCWAIp2PmqLlKIxRTgmaeBinUixoUbaNopwFLik0AwCnbc0uBRRYYmzFIRinZNB5oFc8CC04UiyZ/go3cdMV7BwkgA9RUoXjiqwyamjYngUWAnVCecYqVUqNTxyacrKD1osFyYJyKcEO/FNWVc+uKsLOgGd34Y61OoDREfSl2H3FPF2meEpWuAe1AriAHI5p/I+8B9RUYlQ+tPBHrSEPCg96coXHBpowRT1UsQqruJ7CiwWFCkt7U7yx2H51fg0mby98g2Dtk1VuF8h8ZzUqSlsJpohK/hTWbApjSZBqMuD3q7AOL570ZDdqaDuHAqRImb7o5piBYiegqdIj2U0scciNk81q2eVbBh3D1NQ5WBFGO2djyhFTx2eX5OPrW2hBO0Rge9PECEdAWrN1DTlM1bMZ5yPrVgWCZGc89qu/Z2ABHPtU2zYN5GTWblcpR7mc2mBZBsH51aW28sqAg3evarZAlU7iVPtSwxnaAxyOxqJTZSgrjkGVA6DPNWABuG7kDpSIo2Yx3qUbcYFYtm1hQM8+tOAxjNIGwMUtSUhQOc07ApBS0FCYpcUuKMUAJnFGaXjFJjNABmgkg0oWl280ANBNGaeFo2igR8+K564pBknuKtzWUtudpXiq+SOHwBXsnAJk9BnNSoSO9MHs3FOBUdzSFcnUnvTgwqvvLDgmnLmmmCLOcjrTl+tRLUijJGKTGTIPfmpAR360xUORirCRA9TipC4iYB461MI2JyoJNEceJV54rQDRxcAjcalsCqtrKsJkJ/CrukFUuPNkHsBUSNlME5yaUyLA2U/Klq9AvY37m7ieAxM34iucvFMbgh96+vpR9oaZtqqRT4dKubgMSdqd8mlFcgN3M9pFzmkALc1qXOlxwbVRsnu3rVYWkuecAe1aKSEVhndgVet0JGMnNAsOd2/H1FalosCoA+D9BzUt6AQxrt4IzWrbvkpGF6r19KqFSz7lGF9Kswq6hiCMnqtYtgiwp8xM4xtOAamVVQKcksTzUaY2BT0HI+tTxZK/d6nrWbNkyXdlgVHFPjRmLNTkiz0Gcc1YWJ8bwBz2rJuxrFdxqKMZPenKgAp7QvjJPNAjY1m2WkIB6U4Lml24pwyDQOwBKdtxS4NOxSKGhaXFLRQAzBpQD3p+KQnFAhMUEUm6jd7UAJkilDmjg0cDjFAxQ1IXxTSDmgLnrQB5jqtuklt/tdiO9cowt1kIYsWHUVp3V/IxYbvl/hrGd97EqvPc17EInnuRIfKPC5FSJBEeslVlBByetWI8Z5q7E3uTC2GeH4qQRAH1pq57HAqRc1NhocqD0p4THSlVSakCe9JjEGRjBqQKznk0bOlTxw7sVLELErAnLCpwgYH1pBAD1OAKcURVJ34AByfSpGIdqkbTx9aeGDcEDNUbG/s9SDfZJRKV6qRyB6gelaccSORsUsfX1oEx8ZVV+7z61MlwwP3z9KUWzkhSME9KsR2AWNpHOQASSeAB3OahsRCSsmRgn0A5NIFk3Y8sj8KhtNb0SW8+yR6hD538PYN9D3rfjiz8/UeoFZ89ilEzkhJPzZ6Y6VPHZEfMGwPpWgqBR0yDzTjCWBK9B2pOZSjYrRQLG4bBYnsaey7yFIGD0x1qdYyHUn8qf5SblcZzUuRVhBblV+bHA6U6PeeAMLmpdrFSTz604Iy4XpmobNEixDhDxzVhT6VWQqvyj86lRhWD3NVsTjpSGmh89KdnNBVhDQBk9KcKcMGgYgp3FJ3peO9ABxRx603IzSHBoAGbHSmZz1FOxntQFPegQ3HejJ9KkC0uMUAMAJpduOtOx70tACcelGBS4pKBnz2Mngk/jTguFI4x+tankJcAFEBH96rcFokR8xtgx1B717XMuh51kYQXGOOMVKg9DmtqZo3xt2H2HpVYRxeZuKgA0uZsVivHGT1qysQ4pzKqviM5qWNTnnFK9ytgSL0qXyWYfKKekfPLDFSAlFIQKTUsVwt7OaaURxoWatu38NXEyI8kgiz1FSaLcLbkAKGbuwrponbAyMZrmq1ZR0RrTinuUYfC+mo43KznHc8E1j+MNKtNH8OX2oRKsWxdoQnliewrsRjGO2RXn/wAY7oJ4asbbJ/fXO7HrgH/Guf2knsdLhBWPHtO1KfSr2Oa3fbKP4exFd0vxBVUDJYRSEjL4fHNecqzOxIAyvSns32S1WRSQ7kDb6c0+aSFKEWz0i3+I++YLPpgSH+La2Tj1/Cl8XeKpFsIk065G25XgfxsvQ7h2GK4ZBHNcIBMNwPIplxcStqLNMPm4UFu46Yp8zZHs0mXzp6raq6OZAVDfLwF/GrSa5q1nFGLO+lihh5VAepHPOetVY5nR90kiJtQgRryD6VUeRZY2kh3JsO7aeo9fwrNN3KfKdto/xQnEwi1q1DoessIwQfcd69E0/VbPVbYTWVzHcKP7hxt9iOxr5/uY4pEF1bk/OwLKPWpLHUL3S7sT29w0MinO5ecfUdxV3E4rofQ4BxnbtU9c9RUm0DjHFcVoPxBsLqykbVpltbuCJpZm5KSIoyWXHOcA/LyaSf4ueDo7eWSHVfNlVCUj+zTLubsM7MU2yUmd2sbHoDjGCB39KqLqmlK7o1/bB0YKw3/db0PNeQ3/AI+8RrqETSzlPs7B2ijTbtPofWs3xBaSi4j1pLoXVvqRaYyIMFWzyrDPbNTYtLQ98je2lA8u5hfP91xVgRlVJOf518xJI67JFkcLzubeRitrRPHWuaCx8i786HvBOdyn6VLjcaPoYDacYH4UvJ6CvJZ/irqN3ZNHa2UVvJIoHmD5jGfXPaqln468VRSzGKVLxIFBlDfOAPXIxS5Srs9mzShj0xXnWnfFW1kVRqNi0a8BpoGzj8K7iy1ex1LT1v7S5Rrd2wGYbcH0oaBPuaC9KQ1Gk0bOUWaNpM/6tW3GnOWB28ZHoaVhjgopRj0qPdzkfzzSrJzSBEmBRgU3PPWlzzQAuKMUE0m6gAxSUvXoOOzZ6/41S1PV9O0W3a41O7jtwBkBjy30WgZc4JGcficCqWr6zp2hWjXOq3a26DopPzN/ur1Ned+IPi/Elu8WiWxSVhxcXAxtHqF7/nXl2paxJqGJbgyy3RYvJcSNnzR6AdqBanVrcOF2DhfQUGR34G7Huc5oVMe9SqB6V7tjzbsYit7irClhQvTpUyKD9ahgmOjyT7VYVSOhFPjhYrzHUot2UcRmpKY6CEygBSoPoavSaY8QDgA8cgdqqLbyDHA4/StK1i2NmS5PzDGM8Cs5MFYi837OERQcHrgda29OuZYk3XLbYyeCT0HaoP7NtXjAN0u48qQaz9fafSPD81ykxLgiOJsZKlurAevFYTtaxpBM7OKQEKcgnggA9a8o+MmorJfadpob95BG0rj0DYx/I1U1bxrdN4V+xySlLhJgYbmLh3A9R6155f6hdalcSXV3O0s7keY7dT/9auXl1OqPmVhKUm+Xpnnmr8xUFMAEdQx6dKyY8MC3OWP6VYuo3MKKrFkb5VC9QT0NaLQcncesrFUMgG4DcWXg1cWVpFX5gW6gOO1Z0h8tIrFRmWM5kfu3sKuSmOLT0lZT5jvjB6gUPcSLQVwBjG7Ocg9aGkPm7wwBH/j3tVS2MhJZOQ/Qf3e386dDL5i+XKg85ScOKh7gW45PIDzxLjPLKecfSnyOhuTIhBWUBgR+tQKQzAk7cZBz3pL2ya1EcsRJUffX3PSmIL5Fj067UjgxOVH4GrOtWVr/AMI9fCM6Oxt9H02dbeK18q5hd0t90hkEYD5Ltkbz/rM/w1QeV7iznhbBMiMik/wkjFULm08Q3dpFZXOrSz2kYVY4ZLmRo0CjC4U8DA4HpUyGjpWZLnMEv70RqdrHhgPrVKGSWWTbG5jRm3MueB6/jVp9qK0qcuONv96qTRukiyqRnqEHarTEXo4Y7wSwQgcHADjG41lz2s9tcSqEdtg+ZkXO3tz7ZrQEkk0geMgTRnOPWrEkrXdm6yMRLjAK8b+c/NQBX0VPOtZ0YDaWB+XoDVe8t5rOQnrG2QrLVi2uIrUCNizKx+Y4xg1fZoJEaFx+6PIb0oHc5tZcE7fl9fWtG31GaOB7dZJDDuD7N3G71qG9054CfJxJEBu464pdPO1ZFwCcfL9adgNFNQMU6TwTOkvTIY5PtXYR+ONS014Utr6SSyKAgzfPhu4rzu23QzkTJnnr6H1rQlSWORmg3eUOVU84NK3cR6/Y/ESCUwRXFpvdly8kHY+mO9dJZeIdIvyFgvog5/5ZudrZ+lfPVtfMZSCTgH6HPrV1dXEcmyUF0PROhpci6Bdn0ZwAGJG09wc0oIBHqe1eD2PiK+tIyNOvJIWH/LMv0robH4py21uwv3E0yDgInD+oJ7fWpcLDUr9D1rnjjk9B6j1rN1fxDpGhox1G+jiYDOzOWP4V4nqPxM126E8FpcvaW8r5VVbc6r6b/T8K5CS7Z3d2k3yE5dm/iqSz1HxH8XXlVodAhMC9Gu5x8/8AwEdq8zv9TuL+c3F5cS3Ezfxytk1QZ2YA/Njsc5qN9zfdH1zSKViVpiCT69zUUjEsMAM7AA7eRTHULje+f9kdTQJWX5kUIe4WqSE2ekgNThxyc1ZhO3AdVI+lWRd6eoIKrgdcnpXtSlbc8u1ypGFdhnp9K2rW3RgMFPxFY83izQrMsi200zr3QACsoeML64dmgihhT+BMbifrmuedZItQZ30FqHO3f8w6L2NU73VNJ07ULfTprjM8xwfL5CD3rjdU8ZalNaiG1VLaQJgyoM7j3A9K5e2mka/W4XfvbiUyHJY455rF1L6mkad9z1bX9W0vQrD7Q0izTt/qYUPMnPWptG1DS9a08XcLImFJljdsNGe+favKtYXzIoblc8fuwCe3X+tVIZZUuUihZ0BAEmDjcPQ+oqPaXK9ijv8AW/GVuk622h7SF4kvJV4B9FXv9ax5L+/uLURzXs7RzMGeKRzgkdGrHv7I6fqGYzuTeHT8ccU3XNTQWyRxn55Ewcfwj3qW7mijYzNQvUn1CRi26JflXB49qyZJc8DOO9K7sFVCecZwOntUfyhuT1696aQ27aF6C3WTZslO5eNlXNQMNpbxKoJl3ZYelU7dn89IETaVO4uT96i9dpo2kIYOxxnHBFLqHQbpzZnkL4LE7g569al1iUfa4gG3oq/Mvpn/AOtVCMNDcByp2ryOOcVsXdlHPD9qj+b5N2G7+1Dte4RYLeeTOjIv7g4EYHXHTP58VFOzRThpJASTwwpFQG4tyshOY/mjxgJ+NP1iKOB7cxDczdfrUPcdy3G8asrYxnrnkMKSdPOiiTzD+7bIK/dA9KzVkIOAeDx+NW0uXVRGwAUd6OXUBIIt0sm7HljncatfLHGPLYGNuAfSoUlQhkwWjbrg4x70suJYhHCpCg557msG6ntPL8Lfne56UY4X6rd25red730SW3Lbd73+Scpk8sdCB60ilGGHj3IerA81WWa4QBSM7fbP504v82Y8I56jPymt9DzSw26IqytkD7pXt9al+0EKsqY3hsOvr9KrR3BiOGGzPUYypqRk3jcrBT/Cp4/Ij+tAE8+1GS62gxseVp8TwOCBKQrE8HqtVVmG0QzJ06Me1QNE6udh3n+8ODTEbu4JCcFXwBhh1qu1pG0uUfYSMkjuayw8kLBiSrnuOKtx3hyFZM57r0/GkA2TmZlk6hR0pUklgY7fXkHvUspLRlWUbhzuFUJ7sRHdku2OKdwW5dmEGBK+EbvjrVV7tbg4A4XoTWdLPI2Hfue/ahbna3K8HuaTZRdlnPl4Xk9M56VWyWyOSvfNRtKmxiRuP1prSPxz9AOgqNWWtCZHMh2KAoHc0zzUyRncem70qKRW3ZbqR26VEBvxheRRYd7lozBDu6yHv2FQvJJL8rHCg5yP51KIJMYK4XuCetKYmZtu4DH3cDpSE2RQsI9zMnH949WpjXCSZBXbEevrVqOzmkJLgkeuaf8A2f5rHcMqP4h0FO5J6DPJ9ntpZScbEz75rk7e5ku7dlmcO7vnA4I9qW61m7uLJrJwGVvvOOorNMTQlX8zL7c4TrXfWq82xzUoW3Lk6eaQgbawHzID1qeFRHbsoHzL0yaooCDnOWY5B74q0kqx5+YO7j5RXM0upsvIsC6UNhDlAMsGUE5qOefdKJBEEUDO1RgD3qvGFH72Qkktg471ZLxuqsTgNlWJ7Cp22FdiXDxGOBS2SBux60W9vI0pcp1IYE9vaoQS90HJXaPlBxV2W5S0jMuGCHAAJ/ipPyGS63PCmlG4B+dsLFn72RXGSSNJIBu+ZvvfSrF3ey3U4LnlT07LUSRIA0jMN5HygCrirITd2NSFplJUc5wM+lS2tuEmfzT8qdCOc0sQzb4BK98mpbdNsEoYEshyT6UNglqS20AhvpX3Ky7S27J6VXu54ZysMUjbYzwPc1eTEdpc3EYUM+EG8cEd8VUFtEYco+SSMcdaQMr7JfPTzG6jBwc5Facc0lvprEbW5KoD78U1YCTtSMIV5LE9ahvVk+0qoiZUAyRnj60Nj2GiVkZQcMvBBPqOoqzqTG6ulCoUCKCKhSANGsDAqFO4N71OyOwBYHIXBJ7elICnJH+88pByD1pn7w4G0kZINSXSkQ7xnO4fMKmf/VqeRn9adwsMSSExBVU5JwakjuHjbOOKYIQ7MiZxjr71dtNNkmDFzhe1TcZAbhXX5lI5/wBYO3+NTC0llQSRFH7nA4P/ANetWDTYBjchbHrwDV2NY4Pl2r7eX2qGwOcW2nYFfJc/gali068bBRMeobvXTNIu35mKfUc1UbUeSIQXH95+KLgZf9k34/5Yhx3G4H+dOGjs0fmFvIYH7rNmrpvJZEJZ8Y/uCkEiOu4bj6g0cwigbd1bZcSLKmOCBTlRYBsQYBqVyV5HJz09KpXN19mVjw0zdPQU7jQy6uUiJPPHAVec1kF3EhD4Lfe46YqXZNNJv3AydyORUb27KC27OTzjmi47CJIzr57lQoOAvenm3EseckHrzSizkG2RtuTUgeQHoG7ECk2MpSRkNtALc1YCO33iFx0XFWAAIyQFLZ4A6inQKZJgWZ29Rt6VLmBGIiwORk+1SpZSypvTChfSrgjjz91c++aa87YKqGIHYjAqeZsdyqI3wQFaRe+T0pEj2nJbbj0FWlLSsFztPotCxgttJ3NnGAKoRCzsXXAZlPfpT239BuBJqwwWMgMwGOoqurP5gcHPPApXAI4CFVy5+X+71NOARpi/CsBz6GpgrEKWGN3XFMcRrC+eG7D1rfmuRYZkxorLGST29qYkAjhkJyeM59KkYbYk3PlyMgDsPSozNJJnbjB4p3AUYXayHKYwR70jyA2zxxrliw+929abDDKrFugBy1OuGW0DNK24EZVR1NAErMsUayO4RYxkgfxH0FZN7fy3WWICqOkYPAHr7mmyXLzAM653DCqO1RlASFUZUdR6mmrIVmyHaWLEZyRVuNGWMSjkpwRV3StGu9VOy1hJAPLuNsa/VzxXb2XgWytoI5NXvvOaUnEdmQVXH9481Ep32KskcVChZQ0CCR4gTjaW/QVftrOUadK01jOzTsM7YmGF9c138NxYWMKC3tYo1QEF4gCT6ZzmrSa3fzxwQwqxQKSFCLj88VHMx6Hldzp88rSYt7owKMAeU2AOx6UQ6dcNCClrcqjAkkQsRn8q9RKX5kaScrArDGWYY/KhL5bKMxz3juAeEiUc/pSbYKx5tb6bOi7iGjwRy4PP51JDp+pahdbbe2mnkDYPlpkY7V30viQICbe1Q54/foKr/wDCRXzSERyRQ85PkrtH6UrsLo58+F9WjJV9LnJYbnyCMAVg6sktpMsM0Twsw3gSccdB/Ku7fV7uQuWnnmRhgYYiop9RSa2dbixSRlAUNIN2z8aLtAmjgI7Z5bRSjlmz096tWumykgzg5HQGuwB0e6kiWC1m81hhjFhYx/tHIqGTT5Y0d4h5y88x84Ap8zAyYrFVYHapY/xVZEO0ckIKcWVFDLlgR37fX0qMh5CDkkf3KGxExNui7mZn/wBlelMac7MwoiD361EV2g8EDPIpGAGGwQe1K4WHSI7w7wQ7/wC11qs6nMfGCD81TM2EyzIh65ZuazZr+V5HW3gQqP8Alq560cw7FxsKxIO0DrVZ7mOI/KcnrkVXDXFwuJXznso+UULb7wQd0hHBxwBSckFhrzzSMXJ47bKrFAx387j1Dd6vG3VFw5wvoh604RxLwEwe2ajnGUkt2PpAgHIHVqbtj2FbeNix/iNX1hBALsFfP50BxghV3MD0yADRdgZ62twxIDAcc5qSK0SEHfKGz1Aq48VxMw3bAOyRgn8zUkVqEkzsHI5ouwKo8raEjjJb1NL5VwRgEZ9FNWTEoYEKx2k9elBnlCBo4YwSecGi6Ahjt2X+HJPUk9KsNboyBZJcZ7CoXmldsLKqf3lIqP8Ado+RIWX+76mndAWY44I12Ky/U037SiMRHPGvZuMmqsl1CuAgUA9cmq00ywnzCqBT0I65qeZgXdsUhYhvlHJYjlqYXhUBvKkZv4do6VWE+4hnz77uBSG9l3bIYsL6ipcmFj1LVfhbeJh9JvY51HWKY4b8DXD6vpGo6TNjULGSFzwpZDt+u7pXtlrq1lfRqbG9jkOf9XE4OPrV2cvdobWeASRsMEMNykf0qlVCx84iJg+cFt3Qnoaa7LFGik4cE5A5r1rXvhtHdwO2gSJbSqf+Pcn5H+h7GuAvvBGvad++vdOljiPG6P5lz7mtlVTFYw471+dsJAIxk9Kh+yy3J3Es5PTH+eK1Y7NYzkLux1LHFbVhp8lwxc2u9AOADtX6k0/aAcZJCqvs2lcDHHauo0Dwe13H9qvY/wBy33IuhYep9q6/TfB1tbj7VcIJJjzkr8qj29a230nYqK0bSqeU2ttGKTbYJ2MWKxs49tvJNtUDEUcQxj6+tLdJDaSoQhYdOvGfYCuhttOCSoscEKxqDncNxzTYLMl44olQYcmTKZwe2PalcVzEgnklt1lh03OW+XeQAw+lQuNU5TKQBm4SL5sV1LWsIxFJJHwDnmsSeYW23y9offkCM8sKLkmZ/Z94zmKV2lI55P8ASrKaLLctsE0SkD+JgCK17tpI4/MSML5q5LkcisiDU7WO3fIkLxn5mU4z9T70wIp9FFnEA/ljnhsFmY/nUNzpzwwArBN8wwrMMZ/SteLV7JbrbeRG1lCBwXkBOD04xUcmradNMpVEERfb50uSCfbmlcaRlwaDdzx7VglkUDJZfu/hjrUcdhMJo7S3SRJd26RZUK4/Oti0vdOt7uRbvWAiSNiPyT0+tUJorOTXcf2oxtmPE5bGKHJW3FrfYdqllNFZbpTtC9SjLg+3ArFsHNvMZWcK45jXPAFat5q2lCaWzgEl4inDSHhc+1c7cXLS7FtisGCdykbsio50ty1d9DpnvdIu7tpNQtEgGz55Y/4j9OlZssmiNbFbW3vHkBwsy/MCfcAVnxRIVKyFmZupzxV+BY4QBGyorNksgwKxlVS1RagzHN0u2R2jdFhOHYjqarSXcrIXSM7SfkGeTXX6xbWxhtru1jTy5AVl3IQC46fXvXOPZafKqlka3cruODjd9ParhLnQmrGNMWnkBkgbf/dbOKayyN+7jhKkevAH51pHT41DD7YwXsDzn8aGt4IGBDsz995yPypvQRnRxyvt8+UBf7q8Zq0wiRQwTAH8Pc1HJPHFN8q789zwBTo7w+ZtGwKR97ODUgNKLIjvtIP8KtyfyoXPG8D6E4Ip6ney7Gl8w5BIGTio/wCzoJZ8IsmTyctnmi9h2LEQiYqN8chHZTzTJJ/IbLBE54Xq1MimyxRIxhTguw6fQU87nY7fnGMAuQBmnzBYFu5GbcqYOedwxkVF5rBGy2HJ5U/0p6x7ECyuq8Z+U0020Uu7fKZMDJwOgo5xWKks8yyLGrIi9cu2SaaN8eXmbcO201dWwtRjFvJIQMg7Scir1npF5czBbLSZXY4+8CBipUm+gPQwkmEXzSAlmGQMVJFiSRhcIXU9NgPFdM+jxwMYb65FtdB/nUxbgq/WtSLw7oZUNL4pIQjlUtv/AK9NxkxKSOKks4McwqrDpuam/Yd6jdGG+ikgV2rad4SgcL9v1G4QdfLUIP1BqwLnwJbr8mnXU+O0j9T+VK0luFzhBaxRAMxAbpljU7JEgGXjOfSupk8V6TC5Gn+GrNAOjy5Y/wA6anjK9iBligso/wDZEVPlbGc6/m2s4e3keN1/ijOCwro7bxh4gitBHHqMo2D5FdOo9zXGPrW07o7eVtvcjtSnXztBMLYznIpOJSPU9I+I90YU/tTT0aQcb4WwTXX2PizRNUjDJqEI3cGGU7WU+9eDR6+g3S+TIFHqOtS2uqWnm8xMkbfM27pS2Ge2al4csNRuIbi3W0IHVcfM1UdSg+xv9nKz8AbUWLK/nXnNnf2MkhNvIBKVwHDkEfSus0TX9Ssf3c+rfarYjDRXKbyPYHPFXGRDiaEslw1riCwcEsFIY4OO5ocag7blhMUSYEZ3fnUsVzpGp3Lw/ZZLC5K7gWbMb/Q1VlnMcUsciWzpkD5Dgmt00zNqxQ1DX1s40WW7MkxbGI26VLY6hE88MjTq8knDlm+6PetaDTdNS2jmc28hP8DR8r+tKtjomnCdpGSEyHmRRwDRoBXsNTtDJKt3GjxKSBII8L+eaq3lxbPcReX9plCnIWMYGP61R1yK3hdfsdxLchMNIeiKv075qCXxZDNZxxORaKGwrr/d+lJrqAl3dQvZTI1jc+Y75UbuCPes2bUZZLdYoNKgh2uGQdd2OOa2dI1nTb+0un1a58uGNsRTbuW/Cop9Q0rT7yK4j1GKVN24RxLmTA6Z9M01ZoCpd6jc6ooSbTwtxbn57heDjHAx3FYVxZ3ckhyAS3zEKMAV3sXjjTZ850aWNZzidSB8q+v49ar6pqPheW13WlvPBMH4O3O4fnUWuVc42ys5YYzHkAE7igOc/jUs8E7nCBnUdMHgV1lqfDKWqm6v5ZpmO5gkezaPzNV5LjQd8rGeSCH+B353U+WOwXZxr2t0DzlR/s0kdtMW5PQ10P8Aa+hmVkF3tx3YVcs49JvHH/EytkB/ikbpUypRY1NmPDD0AQlq3dO0rUbrBjt9sY5Mjj5RXT2b+GdGjXzNTtHZv+Wkoqjq/jHTbqRI4HmuoIyd0MK4D/jWbpx2K5pGbrt7fXUSaHp2nxXi8M9xjAV/QHt3zWTceDPEjKY4bMl1UFpA2QDjnHrVyy8V6hFK7WumWccefkSQ5OPQnHFX734i3FpCpj0fZKBmRd2VPuPUVXKkrIVzkJ/D+om1juJ42MLEorqPl3Dru9DxUKaHM+0JY3TM/OVTPSusk8Y3txpr4tobZZyGl8gY3fX3rJ1PxpqL25t7C6nt532hjnluw59v6VLQ7nK+INAUeXPqEN5FZWltLcuMBHkG+KMKpIIHzyLk4OAc4PSsPQNPtdS8X6Zb6Gk8hnjdjbzuC0bhXyu8KAwwobIA646itrWdU8RzXduXguNUKxywTwSo8qOr7cg7cEZwpBBBBUEHis2yttcm8RWM0uiXFlFbxmKOOOCSNI1wxxlsnksxySSc1pH4RNneTeDdVsZkmv5ra1BBwjTDkflWYmmBpEQXtoIwxy8nOP1pjWd/PLtO6TsCxyB7VZ/4R/WXiDfYXyOhHQ0uVEuRNFp2ilS1zq3mBTjbBbcMfruqf/inbe1+WzeeUtlopZeCo74xxVIeG9ZQlza7RjLDv+FIdF1OSYSLZMrIvyereoNWooTkaU+rabI6Ja+HrOPcwwzgszHsD7VrSXN5ptv9qu0sbRVOzy7eHLEfXPFZa6bDZWyvcieS4kjzH5H3YX9Ce/0rCmh1ySVraS3uXfvJKNqbvek0kCdzopfGF4sm2zk8iPGCxAZz+Pak/wCEhlu5iL66fy0UFWYZOfwx+dVovBlxPotzfHWbNpoUJ+zwsWyfTPFc4bWWKyEjzKMjcwI4QY5JNCQ2zcvNWhvWfybEO+3DXDHLMPrXPMZEORuO05C5qtNqlpBGES9hbnlllXn9anDzFQUSRo+4VTj86rVArEE15NK2zyyg77aaJXKkK6gDiratKihjG6sM5UDOBU0Gl6ldoJbexnwxwH2fKf8A69J6hdGUC5HLd6GZwc5/Ctc6JqjylW0y4JX0SmDR9QjcqdMug5/6Zf8A16Vh3RTMpuQyRusabdu4jqKfDbIsSRqw+Tuec05gqoAIpMj34qEyMW5jbPbNJjQSWrPPuabKd0HAqy0a7DHsL7ugPQVDHv3hpLc49QetPluZBNxb4UDj5qkoiW3S3JcgyHP8fap0YsPluJyh5Kh+KpSXbkkNENvZeuKPtUmASmP93ilYTNu21G9tJDPFOxRF+6/LAexqX+2NRvIvPDl484Bx/MVjxzseq4De/Ska9a3YlSyr/EF6PVIVjV/tu7MW1pCEJwRnFV7zXrghYmMexuGDDIb3rM/tBmj4XC5zyM1TafzJAzspIPQigLFma+nYgrcTIucfK5xikhmDOZGjMj9AzGs+RC2W8/AzkgCpI5IliIklO7+ED+tUgLyW8L3BJH7s84PQGtW3UJKFifHHzFRgN9a56GaQ8mQ7OoT1q9BqMSgYiYN/Fk8UuXUGbomRXVVwpY4PvSlmt925Q5J444ArE/tJFnLvEdgGF7nNWTriHGCenKsKb0EajXNzJcJt4QLyTUUzAFJJlV4CcYYdD61Xhv4pGDrzkYIp8ksFzGyOcr3FSwJJ5raCRVLRyA/wjml8q2dwPsqSFuwGBj6+tQw28cQVo415645zS3NpvcPDK0PIJQHg0k2Fxx0a2+0CRIth7ZOcVoJA/lqZ3yB04qlEhiSQQyMkzdSxzU4lkVlV5lZT2PWiwcxbdwY/Khl2kfxA1A1tJKy+Zdu4/uZ4qRfLGD5f1IqVWUnAGF9adguUpba42Ri2m2hScxMchs1dj+0mRN8ELBB25pJog7RsiZZe/rUysVXJAXjHAxUvcaOhs/F2mWEQtrizWPI+d44xvA9vesy08Tx65rkmnyRvHbsD5KznDMB3JrHw8U026B5jIchhyMEdD6CpNPs4hNbTyYaWE5APr6f0rGE5OVmeli8JRp0VOEtdOqd7q7aS1Vno0/8ANLuY4rWJAptIjt4IxtU/j3pJdRs4T+8i2KvXDnH4cVTE++YW02yLI3BDk8mklmjQLG9s88RPI2DI+ldK2PGbLqXCTASfZN6bflb0ppWCRAsUg89j8yFePamC9mRAfMMKN/D3/IU7z4WBxcNv9duTQFy5tEcIElyiuvZUzS/YmuIwxISPOR5i7S5+gzWet46ZWOVzk8ncRTmkuciQT4b+8zdaLCuW/wCzIkUNJGxYcAAA49utYviezWPwxrDLCit9imJIPQbDWjNcSuUURopzy0bdfeqniKyiu9A1CGxn8y5ntZI/KdQpLlCAMnjv3qrjueM6n4dtrXwTZ3sccIv4/LluStyrOyTbimY92UCqIuSBky9+K97At0h2RN52TgRY2D8q8Mk8K+N5ZbyR7RS15EsM/wC+gwyAqQMbsDBRMYx0r3UWul7HDTyHuo/iP40Mub7CG2s0GPLbzFGSIxk/Sqw1m4t5Y1SC4li3YVX7fhWhbXGn2pBht5Yn/wCeobOfrTNT1aByieW6tnIkx1NJEiNLI4LvDcRljknP6CmeRd7VuisjITiMH7zexHamRX7GdEuJbiRTz5WCN341pQzXMcm9LaVI2PO4549Pak7hY8LENwvDTjFMWK53j98B7moBNEW3Etn/AHqcHifq75HYGi6ZsL5M0spLTEgH8KcIXfcd+MGkN4v3UfCj16017xmTahGaTaDUDG8khHmD8qGtpQAN341Gs0i7Thd1Tee8gIPUUKzArvDOjD5uKikEoAzyCauPLKy7dnFVpXYsPl7YNWkgKzIfKbc2BUEcaNgkk56cmppPkjOBknpmizSXLFlBPqelPQLj3twI+V4PfNUJHiZ9oO1x1I9Ku3aytHhpeD0UVRWHacEoKAJIrL7RGZEkLOhwAxq0sIfbGwG8HbhX4qCE7GbCFgR0WkktJ5VLRRmGJeT83zE0AXJ7Y2zBo9xbHzLvzioQBKQsruoY9TnJpsMk9tH5yICOmG5Jodrq/dS5AZeVUUrATTwNp/3nZlIyCrVDb6khPlzOVY9Kja2eVlRiSR7057dVhZNgR89WoaQG5b3fkDezBlA45qU6mZGGduwjPvXNLDJCSyzKQOWB71JHdwMvmHKkdqTXYdkdK19Gsfyc+rHqKSG4MkzeYoKnofSsCOZZZneOYFmH+rPSrUUuxQjhkJHQGspRkFkdJGJMY3ZX61ZhARcc4rIsb1Vj2MTgDvV1byPhdwGfWmm0TbUvbmRi244qQsXUDbketVAgMjMshdO8dXdwjQH1/hzQ09xjEWXJKOfm6D1qe1D+Yrt8jZxgfzqKCQGRcL065qy3Ckg9OcLU6tDR15uIksLeN41mbBAnbGW7nNVPtDMVYCNVBx+FUtOs2k0i9voXEtxsVYYnfjg5YAepFZdjfyahZuyp5cySbHibIZf6VcJaamUoHTxyW8fKpGc8mRhnBqKe680n93HgenFYEF1fvceU2nyhADmRnGM+wzUUmrTRTCFrdl+bAkbHP4VqkmRZnTI9spHm5kB7qT8tQyKjKcoGTPG6seO/k2b5JUXcflXtU0dzc3COkMkccjDC788e9J6DUGaKOIeEQIT3zzUd3dtZxrLOHYMwVQq5Lt2GPU4rkp9D1L7ak8mtO86tncM7R+Fad1cTO9tMJDLc25OTyA4IwQOODWc5PlvE6cLSpzqqNV2WvW3TRX6Xdlfpub1vqVtqJZRZmGWIDehQqwz0yPwzUocD5sNu9fSsW0tdQuLk6gwSImPy1R5OVXOeTgd/Stu3t0eEPPcyFzwVQD+Zp0+ZxuwxlOlTq8tLbTreztqk1o0n1/PdqxTaN5bf6DpTDMUIy3APGecVYkg09cIZpEI9GzUFwmneXhJnLf7VXZnKaNnq8nmKLiaHygfvFOQPb3q//aMLOWS4uXGfk2KSP+BVzMS20DB1OcdpO9X49auY0IVo4g33UjqWmNM8aW3iCAMjK3oRQLSFgeJPwBpkguS3mLIXI75p0T3bpg4571XKjW437ND0JcfVaaLHD/u3LdycdKlj81cvs3MD65pklzcCJ/3TDJ5xScQuR+WwYkvyOmaeokCZbac1WW4kHzFDk+ozUhvssQ6j8Biktxk3nPEnIBA9DUMkuBkD5jz1pyzRFTuXP41Vmlj2lvLOfXNVYTJN+8cD60kJnZiADs78VVNwFwoYjNXYLvYgVGPP0pWDcdIE8r5s4Ht0qmqxlwVG4d81o3FyBEQRkn6VQQgsCWCg9RimgJVMBfMB2SL2zTpTPNtYnBz81OeK0Kq6vtcjsKS3SSUbUcH3J6UwHELnbtLGiGQxSkQ2xZj1Y9BU80MMcW15kLeoNV4pJYuEliKjvupAXN0bMA6ICOw701odhYtau6HnrnFRLcCMrIfLL9hnpVttQeQLjyfwahq4GTPao7E7JUPYYqCG2jlLKNynPzZFbEl9cchUj546Zqt5kobARfxwKNhmfcWHzblAAHQg4piwzqfMBc49TWoSHIGzkdeaQBEzw+z3NJsaKKG5bB80KKsQ3Tq+2YB1PG7PSl2ockLn2pTFC3QEHHIqWxmpZ6iYYNgl3uT8p7gVYs7xGuGaVmOOhJrBWPywNnUd6ny4USb8P6etTcVjo7u7SWBEglMbM3LHrj2oF3JGpQMWUcBR1P1rHsr1JcRXEfzdm7r9KsOFgm3MzYIwcd6UvIR1+hXLrdwOWzsx+77ZrV1+3glvF1KFFiN0PLm8s43OvcDpnkflXGadrMcOFU/MDy3eurttWiudOWxZFOHDKVOSD3IoW4PYy5BNCyrDHJMp5+aXAH60hFxcyDfGsZHTJzmteeG3jk227ZXgbGOWGfWqrLtHQ8egrpVrGXNYy77RoLq2jjMs0Zjbd8p6n61XbTZEu/tv2+ZJEG3OeCPp0rYMgDLGySYJ+9tNTBYyS3l5B7MRRZD5ik106Koi2ySFeN2eR61WnurmaJHLww/OMHoD7ZrWkj2g/LhTyMAce1Z2pWYurdFW184K24KW280rCTJJLq7sJYnvnYwSkAyKCyLk4Gak1FL+K9ZU1BFQAFVjTKkeucd6rJaXggMJVVhOC0MjbhVhFuIEVH2EEFVKgkYpJDbRcjmldR8rMNvzOB+v9Kge5kfICrFjHzu4PH0qgkV6k7qJWcFNoQHaMfjSxrBGjfbCiscDG7PP1q7itcddzSqFdfLniQ7pCZMYA9MGtK0ubZVDy/u3P8H3sHsMisi1tTZXcskF1GttN9+Bl3Aj6nmtKG3giibCxgdvm5NRa7KukcM1qikBWYH0qM27k7hOq4/hzWmIZIIMiPzH96iaKTG+WIKo7CmIpeRLjemCvf5qibzCCp3fgc1siO3lgwqHkdKgexVgqLlW9aWo0zKEkgBUAbR14quwR2+YH6kYrc+zyRKygKQepqIiE8FAaVh3MxYoR1Yg1TukXbgMa2Ht4RuY8cVmSQRyPjfVJ2DczxCF5LE5NWPs4GMOQanXSWkIO4kA9qvPYmADMhUdsjik9QSsZ5spimRPjNK1pcRQeYdrp/ezVprS43A7o2z93B606OKdQ0flSMvcdhQkO5VhTDZaNsDpjmrE8ka4EO5SRg4FReTt4beDnqKUyQq+wDO3k+tDAbDIu8Ly3vjgmr0lyjRhXVR2x5dRSSxmAIsYUjlCKuWl1DImye1yFHLZ70gKG9Y9xKD5uhKHimSOCAY4c+uFIramsrCbGzcM9s9KgOmKowjH86Ti3sK5krNgktbEfnSKsMrZC59QrHitP7E0TH5gDjIPU1JHpkc0e5ypOeSTg0rNDujMMURBGZVPoRinrbQsAZd+T2Bq7Jp8KNnzW/4Cc1G0E0J/dSM6dw45ppBca+mwxxCRZZFYc4BFMispC2TdOA394A09rgylY1g2euTSm5KhllhIxwCKegDmt7lIiMxyAHggVTFwEZjMh+npUhvRnZtf14qCae3uZA5YkKOWxjb9aljQ5XjY5JILcrVxdTKuEmICYxkioo7eOWMESZJPGKu2elvcpMboBtvT2HrUWHcR5LNJoWW5RCwy2R0q8l8CypYXSNIrZMnTI9qpWukR4KyjzOflb0pbrRGikgmsc75Th1/u4o5HYLo6PTr0pdwQz3AVJWCzybcvt7ED25rZuVurZ2Rod5U4GDgEdiPWuQt9XFmhF9ZKJVHyOTzitc+Nbi+jjhLLGcYRkIB+pJpRk0JxuaX9o3JGPIXHQZIqzCYLrBKNv/2elLYpNqFr5UjrcXqruSZQAJh/dfsG9OnesuXUGjV3jjWMof3m84Kn+7itVK5DjY1XdIm2N1PaopLmMId/QdDjFZv9rabMGhlZfOPZTxViG3t1kEqF2I6bvu1fNcloZJrdnG+0SIjdMN0q/YI95uePAjXl1B6/SoWitX3loYhv6gjr9KT5UAjDFM9dp64p2EWrm2+UbBIoPQ8ZFUHsmkRlcRt9ev1qdmbHyfN+NECK7HzXCH0xmnqIbbWslw3lxiGMJ1MvGTUi2T2zOSY5CeuDkfhSFY8nONo7nijzIyu0FT+NLYe55wmrNF1kJU/3uta0N6PsoZj19a5u8tBE3ycqe3U1HBdyKDETkD3zWSk1ub8l9jr0MM6BiQT0GKeIQvOSfeudtNQVHjXrzzz0rcWffDvVsqTWqkjJxsOm2jrIQewxwarFAsmAA/HJqSW4GPmkz6e1Vh+7yyv1/GqBEN0QqkknpWakYlJwVOamvZZpZNiuOB0xToPNWMKiK3qcVD3KRcsoimVcFR2APWppY3ZfnSQZHy1CkIEisyEsB2PSnmbJJ3tu9z0o2EQQpNBIX64HRu9B1KcMAIl56gd61LcSrEGaPOepPpVfUJYpMCOHBxgnGKd0BmrqCNiCVCvOetWkey3PIjgSEYO70qaHTbSaNXmtyCejZzmql5ZWki/K+x+m0+lTZjTIm23B2rLGeetIEihbYwMmeeOgqWz0Yzx/uyuV4x6UstjNboYwAR3xzRZhckjubdMKrMgb36VYFzCjbROrD1IrPWCRIWVogQeh25xVN02DJPyeoo5mh2TNrzxLLtJiwOhqrP5zMVU9eAc4FUFDEZWMn0OaVJJ9pVkJx2I4o5mxcqJXtrtVB8tjnjIekTzEODHICe5OalS5mmTy0RQffjFTbp3jWSW3YGP+JO9FgKz4kTlsFTyelSxsXQecR/s4P86kF6Xf540b0DDBFJPGj27SKI+RkkHFLQZLEq7gVKs/b2qCe3iaXzWGGJw6qPvVFZXFvIUWeXZGDyQORViV0ikd4ZFdAcjPek7DRRuEhsn8yGGSNh3B4P4U211KXzVKl40J6HpV8XgkjYMsUkh6Ke9UyyE7XVQW/hJ6Ug3Oitp4rhWaD95t5YnpRNqR37WwT/eHQVy5upLTK27fu25ZAefrV3T9a8oySOI2AXGxu9JyewKKLdxdQXkjAht5G0FuhqLGBuaEKFAXIORUAvI1YuEDq3JB/h+la0N9ZPPNEjJHCybVYr39azauiti3pImS4R9ksYBPzA53HtxW/cWH9sGW7s1ZtQgAM8ZGDMv/AD0Udz6/WsnSdHkvAJ7O9SRFPzB3wCfQVuK2oWk1xYQBhOF3JcxHJB9mpxVhb7mTHBC0ouJ4Iw4H+sIyTU8lyi7U3smepAqfVLG8ntor6VjaGYBZiBn94OpPpnk1QSymdgkty0m3k8YyK2iZvQlkvmijVn2eUD/rHbFO0xodcldLa5t1lR9sayPhmPt602S3iaIr5Y8voM9RVOPSLbKOAVKfdMY2nPrV3uSdLc6XNp8SlriPzGODEOoqm8OV2l3B9aybifWVAFuFdB18z7351dtr/U5IcSxqhXt1zRzMdkywsACfMxYe9RyJtGYo1FPje4YBnI+mKn3H0H0ovfcT02M7xv4Tt9NhGoadn7O4/ejun09q8xkjZJ2EIORwBXtmq34uLGe0kQoHXYWPOM+lecw+EdUF4sCMiRvgi43YDg9D9a576m6djkwPLYsSd56109qfLtlViQSoIBqhrmktpd3JayA+Yp/1hHEnuD6Vrad5l5awrsDSkbVUd61jJEyRTnaRpAHA/Co2uHVXSPgsOc101v4Ve4Dq9xscdVQD5fxqKfwlKo4vELE9xjim5ko5+zDIw4D56mtNfKjIy2AeuBUb+GtUglYRW4mUcgoetZ8013Yuy3Fs0co/gZR0ojNBY05HikdVik2s3AB7037C247wWycfL1rPtpkuBu2/OvYVvWsc9sBIzMUI6elXdMTTRKYVSFSGfKjAU1C9gJF+ZSVPcGrUc7+cu5SVzyDV2J7ZiSARzz7U0kxGc5mgQIFIj24AIrBntru8KliVRDydvNdNOSqMYpwAOSrdaz0u5m3NvxHngdaT7DuULOeaz/12/wAocbgOfxq2LlplYiRQv8Axy1PaIGJp5bccdGX0qGGKzuiCJ3jYH+IYFICYzzeWqyRErnBCDioLyKONWkwMsMAY6VamhC2zql1E0YO4gsc1nATS/InmCLt70mhpk8EUEkS7o2YqOccVDHabZTgskbHOetXwzQW4VoCmO/8Aeqs8ztIqgYz29KNA1HsyWyt8ytn1FLDeMQU2KEfggHpVS6uHDbAOV61Xwry/LvAXq2e9JsaQjW/mXjfI4C5yWpptBJEwI2qDwPer8N6VAjM7Zz3FNu7i7DgRwhwPm69aXmFzAnttzZCOCR0XuPWq++aJsGRtvTDCtyK4YyMZ7UhOmUGMVbK2d0i7Q6KOppaMDLg024MBmXYcdGPUVUa3AuMyE7+xPrWvPZIw/dXDMp55PT61DJoj+TvV90h5yPSk2MqCFdySphZAOc9CKa0FvMQzLsY9W7VN9geGMyGRs9hUc++AqgBkRhk+1IaK/wDZ0ocZIIz94HjFWfseFjCkg4yc9CaBNH5e1SRjsaljuDtALcD9aHawyW0u7zTmHkyBQTnB7Gtq38RarGB5MynDZMfrWA84JxwM9h3p6y748MNrios+gWOuufGeoXCFZ7dSjYDMOWYZ+6fT61ctbyzvJv3MrQBskQtyU9ie9cJ5zgZicq+e/SrC3JkB88GMKMebGfvH39qFJxE48x3whhmUHz/mP8X8Jqw8qCIW5jUBOd6da4ey1SaMCGxcBs7fK/gIPcfjzVu7nvoCsLyMs5XPByD+NaqZnyM6ZmLHHDD1pCpUbjkDpzWLpN1dEtFdZ2gZVmOc1sQmWUYVAR61fN1JaY4MMe3rSYXg7uvSp0tIQcyTNk/3atDS7V4y8dw2R95CeT9Kh1UhqDZmkmR0ZyI1UnBHfPpUyWMUTRRzsJXjUeWccAfSqunJLGlpFKCfLXhXHJqLWdZe0sJBajfftwsZAJC9z9Kx1ua2Mbxb/wATee1gR0DQgpy3AX1z2HSqGkiLT7krdXSEJwjQnI/Osu8uhPvdV2q/J56j/PaqkL/utgA27ugGKbbHY72PW9MVkhS4kVc8qF4Y/WtzZ9piyXQxcMp/ujuPevLY5JCQ2c7Two44r03wxqFveaUIEEYMZPySDk8ZNJyFy2LdtAs06SyNJHDgnIHTHTisrxnpKvbLfrEXdVzJtPRTxXRSGZja72UlQQ0adQvOPrXP+KvPs9NmktZT5MxCmNzliaUQPPtKtGe5leN9iJzyetdPG0n2cnaJQT1zVPT9INlGJrlG85uWUg1qLbCSMYXYT83LY4reGiInuV4pCkjHHzY4BGcUGaRFZgBk9fSnXKXdswPl9R8pVSeKoec0MZkkglLN6qeffHpV3EiG5vwxBljIzxkU+2SKZisM3lgKTz3qLc9yG+WMjP3DwcfjVj7P5aKAAhxgjIpXG0Oubq9eKKJNoA6ejfWprK4EqrHNaghW+Z8fpVSKLaHw+5D16nb71oLJBbWpVpDkLnjvR5isQXr6akuAg5JI6j9ahDbI1EZmVDyF3A/1qOwe4u2cKipAcgCQA5/HrVyPTEkX7PKjCZerq3T0xRzAlYktrHU72HzAUMaYKq7dakmsWZAIlYMrg5AySfTNU/Lv7YG2SOUqhzn1qeyj1G4EkNu+1gcsrsQQO+KVxmZcW53ygrINpzJu6j6VBFEk1u7IRhX5LcE1tzG4t75JLtC4UYVTzn6+tZwuLRT+/h3qzc4OMfhSuBWht1n2AlmbqCB0P9asXUccaI5k8uTo3+96fStT+yrK5gW5t5nVowfLQEgg+49Kw7nT7uUiR2WaVgScHuKbYJFeS9uUJQnehPQHj60lxeNFAI4lG5uvFVWt59+MFWxkd6bhtjlpMuM544FSUPtbs72Ur8zEbj2xWxZzr5Eq+Y654UgdKzrUByIViG9hkyHpV1rsW/7tcMUHzDFDAVhK6Ha6uVBOCuOKSGd5Ni/Z0YngleacJ1vLc5wGJ4KnnHfIqxFFaRTKiu6herDjNSgM/wCzRPfmI2u4g5Kfd/Wny6WjXhit32qV3DPT6VevESQ9QVByG3YOPr1pbScLckKoMXRW4ORSe4FZfDV0Y43eWH5ueDirreHJWX5dpYDqDmtDzLaQbDlCePanpdRJemB1bIXsxAIp3Gcrd2NzZArLC/lHqyrmmRWymL7zr6AjGK6qeVl+e2kZ4e8Z5wfxrNui0qhhDhgORT0YXMmOF42+R1PuamH2nYWR90f8StzSSIeNqvk9QBS2xuMkBAW/hU9TS5B3L2k6mYVMc6b1zwrcEfSuitL4So2xyCvRM/NXGXwljQSSKYiD1Iz+tEN4vmKEZ0kPBlDHgVLuB3puX6GMYJBJ6bfwqO5JISXJIB/1icEVkWBkjRmiuftAYYPmHvVi31Py45orlfKaPkHqDS5R3NdZSMNgsyH5FLdBVC90aC6uHuLQmNn+WTBO5h3wT096nyFmznD+tTo+1d5Qg+uenvVMgwx4S0nYDOZY3P8ADnv+FSXPhDTEspVtlkN2UzHJuOM+mK0J7X7VdRXLtIqqchQfvH1q4JkMu7OQPXsarcLnncWga0AGGmzkjrgVr2VnKtikrrLHt3bgAQynkc16VpV91WQgMx4JNTanYwT25kMCm4JwdpIDr71m7XHdnBRyzQRxgah88mNoJy+OnPpz61j+J9TuZdUiiaOSMJtIU8liD1HrXcX/AIc08w/aFg8u4BB8yNydp+h4IxXAa3Lc2GqxQTFSbV96yHncDz+FOyWwz0hrYXGkwG6+V5owW4GV/GuZfQJBIGsr0SRIc4kblvai21d7u32PIxQkHe3T6VqRalp8iLDIsaBRywbGa1TViGtSpDd38eUuLUrEcfMnOKVTbX0sqTTrCxGFDEg59vSt9GshCrKgZF4B38H9aytXttMuIcwo0czdc4wfpQIyptOmmhZXt4wAdquMEsPWse70ljKDJvjj3DkHk1tWc1xp4MUN0JLfqQ65/I1Ml5b3rySvAxjXgljwD7Ueo35FE2dpYXIMQlEcyhTvzjPrVhkjJERjjlUDBwAc/jV1gLmLyUKsMcKelVJrCRXVoyIiBhgp4NJoLld7S32AAYZTkAZwKSzgkfURLM6xxKMLnjeaY91cW+VhRVHdnGc1mvqUqTbLjnnO7HyilsG52sN9NBBLizSf+HevOPSufutScvmS3xcAnIAwB9cU621Ip5bBWWPs4yBUdxOJPNLYEh5OGB3ChsLGdqN20sQ3kiQ91PSsxGVZSWVZAx/i6in3AZx+7Unn7tJF5bx4kyjL/s0ATi/ez/1Er4Jxg4qZL1rokoqCTG3GcVUuI1cKqkbz90ninRxFcK8Y3jvRcAumNoFEMTl9uM5B5rOeZpZEjdQGIA4AGT3zVm6d4VUl8nPQVZtJINimaFW7hu4NO4ypFbD7PiNpHcMfkxyTUscX75Hcq+OSmMEH0NXY9mPPEjLOuSCBwwqF42nkjlidPMIyTnk1NwHWxtreOeWO2CvIe54HtVZmSa4MuJE5AwpyP1qzb2IjZmnSUMDuCZ4Y/wCFXmsdNlVXecxO3UDotFwM1xHG8hEgYqBw3v61PHp8klj+7UF8k/Ic8Vbn8IkhGivFmEvKMp6j3q1p2h39gXeGXDKNuT90iluBjBJ4gvmLlR1x1NXnuYQVEg3sw+8TyKv3Ed1NGVa1G7HOBz9awBBd2u5JIRJjJVh1FJgXVliztS429h2xSh7qCRgphlwMgnjP51jwyPLcxtcPtHptxir5tJjhQ3nKT90NzQOxatruaYM0sJQjtt4P41n6hdQySI4BjZD/AA8E1OWmtz5WXjI6CXoKjklEodpYkZgOQFpgaEMsU1vtkKypJ/C5yRWdc6Wm8+UdoHQ9qahtNqE5T0wan8qVUVoZ/Mzzg+lAFS1W4UkJIAFYd8Vc8y8lwCqsc9WIORVN7l1u1R40Uk81YXYTnLBQDytFwPQDp8BRQFfCnKZ71L/ZcTxHz3dQTkKOc1M9sWCiUlNo6Z6/SpQHVFCvsTAxkZzQhFf+zMxjY4BA+VCetZ93ZTJjZAzHPJQ5xWtOpQjLFGI6EcGgRr5oZfklA98UriKMM01vEWETMRwcqetacGo3FxsE0KjK4weMUz7Msq5bIXOSc8E0jWjoC6yOOwQjihxTKTKZk2X5tJZ1CFSwJ6fhTV0XTr28+13MSSyABYy3TA7471ddgFCzRqxA6gdDT7WGONMx/KT0P+FMV2XbWztHUxxwR7B1yoC/l1qHXPDWm39m6QRRJeKm6KSLgsR0XFRx3zjfAw5Y9QOalMLSSxOLshoeY9wyFb3xWcm0ylY81h1Ro0ZI2VJCPmTORnuMetbU+raettHJPtQgAeVnJJ/pWTqvgXXYLiWaOFLlXYuDA3JP0rPTQb9I3u720uN/UI0ZAXH86qMmDsdFaappuoOYIJMO/wB1HGOKs3FosYWOP5Vzu2djXCyo6SrdIM+VID8h6D0zXRz+MrIw73iYSHkRk9atS7k2fQtpb3FpM8kqEx4yFHX8Ko3Gq20MW6W6MbZ4Tqa5/V/FF/qJKh/JiPREPIrnncs5YksT680uctQ7nTXPiWJmKqkkhHQniqMniENGwW0LN/EX7VgEsx5NPETqVJ43HGaL3BxSNZdcvUi3KwC8YHUCrH9s3E7fvRCzEYG3g1llP3hjLgoMCmeaRPtjAOG60mg0N+yeeWZYhIhYKeDWlECY/LniEcvfuPzqjoYBMsrEHAwCa3Mo3GAV9DVxRk2U5IowRsyzIM4xUZVwd3kswPOB1rUX5R8qge4pduRgjNVoK7MI2UrsXMajPQMakj00sSrS7T6IM1sCPJ56CnqhHIHFFkLmZjnSZQNouMAdA1V5bGWABnQBB/Gp4/GujC/L2x6UbAeGGVPVexptIFJmAZ7iKRCz7vl+Ug5BqZFaeMfuQ5OM+1Wp9LjaQTwsUcH7o6VGkU9q26OPeT121DiVzE9tbPhIhO6bDn2rbia4aIReaME8E1kRTSlyrKfu4wSOKme5itdhmf5W44Oc0rWGnc1bl7pSBNErso6xt2rDuY7tZ5JCiMH5A9F7Vctr62lkx5rIjDKrg7m+tEGoRiYIhZoyDhl6/Q1LY0c9dMqMn2mMBSeQg60lvHulMlrc4VfujuK6C70YXcEV9b3pyhLPAU+YisxrZJG86BlXefocUJNjbC6u3cBJirsQACRzVJbcRSukmWhYct3FaaxK2VmjWQjo4PIFTCK3lKCQsgHdhmgRnR2cUgRY2BA7GpYtOWIb/mjJPXPFWRYxzMfs8qls8c44qrcWV9EWUjfF2Oec0xlS4gSZnaJ0kKcEEd6u6dEWciVUVscAVYs2+zRCOW3TLDPA61FLfLbSGSQrGOg4pXA7s3Ko+JD5hYYRvSla5cR7EILEYPoKzbRnl+Vxz2P92p4pFAcIx3HhuP1q7Ek8VwwUx+cC/wDtd/YVIj2zuyyBhJ67qosCQGQFmU9cdB60Ky79+5nf+5jk0rAXzIYFOXDRE8A9qfJcCcpHJuMYGchsColZXhYzFVRucHrmoVnxiIZBTkrjqO1CAn2OrEREfMee+KswyFX+7lQOXxxVKEyM6hSeD949B7VM7N5/y5RejDsfepYyYxh5TKMBafC6q+eSD+FVWkaM/KMihJQSHb5cGla4zQG3fuEm3HJB4zUkxQxqA7KP7pHJqhOyyuuMHHIJPSno3mXOZirHGBg9KWwbmTfeGtJv1acxNCzcOIuFz64rlb34fy8PZ36MvRVkTDGvSJZ1V3jVH27esYzVFDd5CiRlyR8xXqKE7hex5DqHhXWbDcZ7CQp/fiBYGsWSHYSrAo3o3Br6ARmjDO8rYU8Drz6YrPuzb3Tbrm0hfzPlKyR4xSZSkeFmA7s7SQOTjtSoCW2nO1cMCRXqt34J0W8TKRyWjA7S8bZX8V7/AJ1yWq+BdSsEee02XttnCtF99h3LL2A+tUmVe5ysrs0+4n5c8ioGbe7KBhWParLQnOM/L2NCQgHOMiq5iZaG5pMmyJYQ2AP1rbjPvXN2b7HyBWxDdAYBp8xnY1VJzjdU2cY71SScHGBU6yjvxTJaLAwxzginhhioN3HJpS+cVSYrE/0NICQcg81Ez46nnsKb5p6sMGmgsSse54NRvIoP93jJOetRvKSPftXP63fyLsgg6dWNDBRuF7eyXUr7X2Qr/D0LVXfMjDfL2BY54Uf41m2spnnSLB3u2MnoK1riOV5TbKqOY/mcDvisWzaySNGxu/MWdZQQ7DbGf7o9aqJLbQ+WFDo4GQS+M1CbN7mMyK7LOpO4dsVHFG7aeshLEq+GYDOBSFdHdaFcq0UczqSgzFuLjaO3WrH9gl7ghdqxkkLKxxn0rPt7ZItHW3jGAWDMWPUdm/GtO1ut8ccUiksc7ST8hx3p3sIwLuW7trh7Z4YldGxzzuFQi6uBkMsRHoBXS6xbx31u11FGiSwhVcqchu1c60LA81aVyW7DPPQ5M0BXH3WQ1raeJJVLQsJYx/CeSKy1jGcgYPoadFJJbTrNAxiZepX09xTsK5qX8iRQlmVGboMetcrdQSXThpe38NaTB3be+5nYklm7/QUnTtSaRSZ//9k=", "path": "images/3pts_ADE_train_00011977.jpg" }
depth_point_28
images/3pts_ADE_train_00017781.jpg
ADE_train_00017781.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 324 y = 178),Point B is located at (x = 41 y = 126),Point C is located at (x = 13 y = 152).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_22><DEPTH_77><DEPTH_49><DEPTH_74><DEPTH_29><DEPTH_49><DEPTH_29><DEPTH_29><DEPTH_74><DEPTH_60><DEPTH_22><DEPTH_69><DEPTH_31><DEPTH_36><DEPTH_29><DEPTH_29><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_73><DEPTH_22><DEPTH_69><DEPTH_31><DEPTH_36><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_74><DEPTH_74><DEPTH_73><DEPTH_30><DEPTH_69><DEPTH_49><DEPTH_72><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_74><DEPTH_74><DEPTH_73><DEPTH_30><DEPTH_74><DEPTH_29><DEPTH_64><DEPTH_29><DEPTH_74><DEPTH_36><DEPTH_74><DEPTH_36><DEPTH_29><DEPTH_30><DEPTH_60><DEPTH_3><DEPTH_29><DEPTH_74><DEPTH_49><DEPTH_3><DEPTH_36><DEPTH_29><DEPTH_49><DEPTH_70><DEPTH_30><DEPTH_76><DEPTH_38><DEPTH_3><DEPTH_59><DEPTH_76><DEPTH_59><DEPTH_11><DEPTH_49><DEPTH_61><DEPTH_11><DEPTH_74><DEPTH_81><DEPTH_77><DEPTH_58><DEPTH_78><DEPTH_44><DEPTH_40><DEPTH_50><DEPTH_32><DEPTH_36><DEPTH_64><DEPTH_21><DEPTH_74><DEPTH_36><DEPTH_74><DEPTH_36><DEPTH_44><DEPTH_36><DEPTH_39><DEPTH_57><DEPTH_0><DEPTH_10><DEPTH_41><DEPTH_1><DEPTH_1><DEPTH_1><DEPTH_1><DEPTH_57><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
3
[ "C", "B", "A" ]
<DEPTH_START><DEPTH_22><DEPTH_77><DEPTH_49><DEPTH_74><DEPTH_29><DEPTH_49><DEPTH_29><DEPTH_29><DEPTH_74><DEPTH_60><DEPTH_22><DEPTH_69><DEPTH_31><DEPTH_36><DEPTH_29><DEPTH_29><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_73><DEPTH_22><DEPTH_69><DEPTH_31><DEPTH_36><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_74><DEPTH_74><DEPTH_73><DEPTH_30><DEPTH_69><DEPTH_49><DEPTH_72><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_74><DEPTH_74><DEPTH_73><DEPTH_30><DEPTH_74><DEPTH_29><DEPTH_64><DEPTH_29><DEPTH_74><DEPTH_36><DEPTH_74><DEPTH_36><DEPTH_29><DEPTH_30><DEPTH_60><DEPTH_3><DEPTH_29><DEPTH_74><DEPTH_49><DEPTH_3><DEPTH_36><DEPTH_29><DEPTH_49><DEPTH_70><DEPTH_30><DEPTH_76><DEPTH_38><DEPTH_3><DEPTH_59><DEPTH_76><DEPTH_59><DEPTH_11><DEPTH_49><DEPTH_61><DEPTH_11><DEPTH_74><DEPTH_81><DEPTH_77><DEPTH_58><DEPTH_78><DEPTH_44><DEPTH_40><DEPTH_50><DEPTH_32><DEPTH_36><DEPTH_64><DEPTH_21><DEPTH_74><DEPTH_36><DEPTH_74><DEPTH_36><DEPTH_44><DEPTH_36><DEPTH_39><DEPTH_57><DEPTH_0><DEPTH_10><DEPTH_41><DEPTH_1><DEPTH_1><DEPTH_1><DEPTH_1><DEPTH_57><DEPTH_END>
324
178
41
126
13
152
null
null
null
null
53
33
13
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDqgtZPirzU8O3MkM0kTx4bfHngZ5zjnGK2gtPxkYNfS1I88XHueDF2aZ4JPqVmGLyXE87Huoxn8eKqNrcURzb2aKT/ABO2T+mK7H4ieDILCL+2dNTy4S+LiED5VJ6MPQZ7V5v5W1SCCQT6V87WpSpy5ZHtUqkZxvEvSa3fO5CyiInvGoXP49aovPLLudmZn7ljnNKI2OMR9OhJqRYWPVgv0FZ2NCAB8qQOO4o2hd25hg9KtfZgQSSx+ppQkYQDAAHqOlAioAu0KAzAe1PCOTwgB9TVoKGxjPscEU/bxk0DKghcj5mIH+yKfHAuMkZOOpqzjg0iqMD6UDItuO2KBE77VRGd3+6qjJNTMUTG5gM9q0fD86RarA/kyS7Ub5VHUmqjG7SJk7K5UbRdUjhaaW1CRou47mxxVYIQOMY967rVZr6506dYtPESFCCzHJx+lc3H4b1GTG87RgHI+nFaVYRg9CKTlPdGfa2y3E0UTnCvLhjnHFdcfD9jBbbliTpkHGc1mDw7BZWUd7O7ybbgxOi+uByM/Wult5YY9PWzuLS42xqVW4VwTjPGR7DA7UU3HqKpzX0OP0vQp9RBcfuoBnDkdeegret/C1nH/rZJJD7YArd0jTYY9Fhis76K5KFyQ37tuWJ6E4/WopZkhnWCR1WZj9wnk8Z6VzScrnbTUOVEEOiaZzH9nA3AgtySOKz7OWy0N722nnWMeduQMeSpVcGt61x54z07j8K5Hxsxs7+OWMLulQBmKg54FOlNxlcnEQTikTRXcN+uszwfMgt1AZlx/e6ZrU1GEtpWgzRx+ZJ9i2fewANqGue0u7uLzRtTnnnWVzGBgAZX73UAcZrsGXf4e0g/9Oi/ySmm3O7M5JKnZHLwRXB1mwZxEqC4T5VyT+dbmu20klzvWYxp5SAhVGSee5rNBxqtmMcC4T+ddBqq7zxn/Vr/AFq38ZkvgOOtbZbbxJpMgeRybpAS7Z/iFdRrYH2G53qrqpDAHocGsBreddZ06URPsjuVZmxgKARzXT6rZS3djdwx43ScLj61nU+JG9L4GjzjUL69iBbyYo4W+7+6B/nXZ6EQ2sO39+xhb+lULzwtf321JFRIguM+YAc9uxq7bz2+l6qsZnSSaOzSJ1GcZH0Bz+VDtf3SVe2p1CAbhkVE5wc84x6VnRarNJKoit3IyM4hc/zAq9JcqNzi0uDgZ+5j+ZFQ0bU5WvoczZ4bwJrCY5W5b9VWvPpZNzDYgQbQMLnkgdefXrXcW11c+RdwWlk5V5i5ttxyRxjPy/1p6WOsy48vTLWL03sTj82rS9jLlb6HReDp0h0LRZpnWNEdNzMcAAPgmtXxRrWmz3D/AGa6SfK4/dZPNcdDp2qzxlWUW8v9/wAuMJ17cE9KefD2qOD5mrzf7qZH8sVUKvJsRLDynqHg62urSO7ilhZDKwZcg4IBbPPTuK6Z4go+Zgq98tWBp2hS2ruZ5hMjE7WO4Sfi2entWqum2ofP2eNiB/EN386ybTdzohGSVjJ8Q3VtE1k6XCNNHcKyInzZ9c4p41PUJv8AVW0xz3Fvj9WYfypmuWdvC9reRxqsouYxlOBjPpW9zu+6apWsZzT5tTF1C5urfQJ3utyyyHYoYrkA/Tj1rie9dV4uuCTbW3oC5/kK5U8VtFWREmfRAFOApcU4Cvornz5znjg7fBuo+6qv5sK8PdAAOO9e9+KbeO60KSCUEo7oCAcZ5z/SvPtQ8L2T2QMAMLLIMtndkEHjrXjZhNKpr2PUwEG4O3c4LbUkMEk88UMa7ndwqj1JPSusi8NWSgFzI59zgfpVyLT7S3vrAQQIjfa4ue/XP9K8/nR6PsmtzC0Xw6upG4kuDIFik2eWDjtzmiDSYk8R21m0YMJkJVWO7gA9a6yW6j07UdUijt7i4lefzCsScDKrwSeKp3cF29xo9zawxpcM0isJRkKSuecde9dicbQstzi95uXkUvFttHBBbJEgA3MSFAHQVyWBivQlsbqXU8anNHOhtpv3aR7VHA980iafZW4Bitoh9VBNY4idps3w1Jyhe5wIgkdCyxuQBkkKcCt6DwqzBTLdAAgH5V/xrd1Q7NKucDb+7I/Pis7Urm8e4ksomWOJkyZSPmA/iwc8cfzrn5m9jp5Ix31M+ytNG33TSlpUjbajH+LHU8e9aD3cfkaQbMGGQW5WR0CgngEep7muXlvdkriFIUTOFwu7gcDg5qCS/lZdr3EhUcBQ2APwrWLs7nNL3lY6a/kkeN2e4LMeQZpsc/QkfyqK61lWwDf7sKF2xhj0GPQCuWMy9lzR5znoAKc5c25MIuOxvQXbXflWMMckjPLu3PheSe5OeOa7extUmsvsZvI47+HMb207BXBBxxnqPevM7K3urnzZIo3kWJdz7VJCjOOa6y08b3iwR22q2FnqcCKFH2iPEgA/2xz+dSpuL0KcE1qdBDpt3p9msdxAdoyQ2Pf1rKv47Ke9EGSt42CG3coQuQcfgK0rDxL4enAEN7qOjSf3Hbzof64H4CufuoptU8X3K29xaTuvzRyRNtE+1QRtGepx+dK63LT0sjq7aPMm4ja3RR69c1heJ9Al1m4ieOWKKNAATIcZ4FbFhZCdY2uGmLMmWLOwwcZ6Z4pUtLZXJECfiMn9ayUrPQ6HByWpzMemWOiaZeq13GxmjC7YiWORn1PvUsniSKOztLURyssMQRAsXJGB1Jb2Haujkt4p4zDJErJ12sKdb2tvbptit4owP7qimpWE6N+pyH9oys6yRaXNkHKyOeh9eFzUxm1+5PyWaBSB80pY/wDoTVvatrNvpcKtIxZnOAifePr+FT6fdf2hZJdGB4d5OFYgkqOM8fjT5nuT7OCdrmDFpWvtLG0ksKIT8wTav6gZrZeyJZg97dvzyPM2/wAgKusxz04HSmM/TkA+9TzXNFTiil/ZtmW+eEyNjP7yRm/mapWFrBZeJzHCgQSWrMQPXcK1/mYbiOPUCsxfl8VW+TnNo4/8eFVFiqRSibeP3in/AGhSORggtk/SnrjePqKinADHjuc0SFS6kJcjsOaY9yFUlnCqvJPTimsXVWKRtLgZCqOSfSobu1FzDJHNkx+WJkUfL0+8rY69qSVy5TUTNt/ErXt8kFpZNIjPtEsjELjOM9K6TzBn7o5/DNcto0kUV/LZK4UpcMUjI6rkEEH8DXRSTxQsd80aNt43MBVOPYwjUfUkO7+HI9cDFHYEnnODk1LEIrhP3UgJ29QQQePUVAF3AY247gipsbRaeqMvxAwOllgR8sqNx/vCtkj5jWTr6D+w7oZ+6AQPowrVHKq3rzWkTGrucj4vGL6BvWL+prmmOeldV4xXElow7qw/UVyhPHNbrYxZ9IYp2KUClxXvXPBMfxGcacg9ZR/I1yd4T9jxzzIP5Gup8TtttIB6yE/pXLXI+0WaeUytiQ5wenArwswd6r+R7WXfB8yiOcd6RPn1fTV64uM/krGpfJ2L+8dIx3LNis+fUrSw1G1ljnWeaPcwVOV5XHP5muJLU9Cc42O0ntYksZbgL+8kuZQzeoUgCoNNsku5Id5x5SzSj8FUf+zVyU/i3VruDybewuXi3u4CxBBljk8nNVTJ4hulULHDDGe8rk4/DOP0rqdZWj5HCqMm5O250twQ+quFIOLaQcHuWT+magMTEZwFHuazNOsdQhmka7vA6smAsPyY6egFWpYrNIzLMisq9TM5Yfqawqz9pPmOqjTlThykGrzWa6fLHJcIXbACRkFycjgCuQ1HVZXuruLcQJMA9sYHI5GfWtvVbqMxrKI447ZcPEqjGSGXk4+prjb+7a5vJJsY3HNEETVb7jS3myBRT/IIGTirWi6et/qcMJdlMnUgZ7E1tHw1cGy1KcMPNsZSrIe6hS2frxV3SMkm1c5nyQTlgePU1as7KS7uY7eBN8rnCqD1rdsPCtxdWizvcBPNUNtVc4B9zVzStIj03xPZp5kjlQZTuGThQc4q5QlGPMyYzi5cp1PwzjjskuA+M+Y8ZIH3iCB/Q10OvaHpupGIDTIfNeUK0jwvHkHPAIAGc461heBnWCCW4dJHjS6d38tC5A3EZwOfSvR28CQ6jYW91b6nf287kTCRZSQD1Hytx+GKwUOaW50+0cI26HlWrfDeIaZNe6dO5kiBLW5wx46jPHOOcYrntF8LXsc0d5db4EWXKjJD5XBH06167qWlaloWpWsdxMk6XL+VFdIoSVWwThwOHXj/AA9axNSYzb5GxueYsQOmdiUpc0dGOHJNp2KlvJ++XJ4Gf5GqYk/e7V2lj0Hep4lIkx2IP8q5u91uC11dRb28tw9vujlVFwAeOMmpirmk5qBvO74549qieaUsyRoS/lllJHyk9hmsoeIftVjflbd7eeGEsqyEHOQcY9elQarqd9cCwTS50RZYizkAFkYY4z9GqlF3sZyre6M1aKC1vbe8aRj5jcvJyFVkYAY9Aa6GKeM2glEihHyQ2cAgsTXGKuoWl5bPc3TzReYoeNhuBGegBq7fab/bGqeapmjtWiDrGzfxbmB6HjkdK05G3Yw59LnWRTW05cearNngowOB9KinjSGaeOZ1UQ43OTgEEZ6/jXG/2fHo2rWc8SksHPBLEH5T1Aya6PW7Oa4tLqEyKyTLHkODn5Svcn0FTKHK7M0hOUouxVsPEmmW1vLBNeDeJGAIUsCM9cirKtb3Or6ddQMrrJHKFdehGAf8ajk0iGC0wsajA6AVlaE7LdaOhZiu2cbSeBgnpWk6fJuZQm5XOzwAR9aJo2Z2Ix9OabzkdxUsgYMwAye2fSsmdFPqc82qTWdzqcDMsbrEHthJ0Y7egHck1hSxeILqJZ5NRdNwLBYxgDPJ6VqyxOviK5NxPI7NErKFB6ZIwQO1bDw7bCMMuDsBx+Fb0oKW5zVpNM5XR7yQWV9b3ZlluN4SKaOPlSBwS31IpE8LLJbLNO0jyMoYlmPWp9Lij+16gWgV2SdTvIX5cqO557V17wbNLg6E+UpyPcA1VOKcmmROTSRxfhcNY6ne2kRI3OoBLsCuATkYH8zXZgbVCgA89a5jRkkOv6ise3AMTNkEnow45rpcui7WbNYVFaTR1UPhKGtgvol6CM/um7Vdt33WsDZ6xqf0qpqfz6VdrjgxNyPpUunvu0uzb1hT+QoiFXdGF4xH7m0b3YfyrkGPGK7Lxh/x5WzekhH6VxbHvW62MWfTWKUCnYpcV7tzwDkfGenx3jWbtI6FQ4+THI49Qa5mbTYYbeBBNdFSWJXz2APTriuw8VH57VfZj/KuYvSAIBnnaT+teDjX+9dj3cvV6av5lOOytkIYW8efVhuP60/ZG7qzxqWQ/KSg4p24dsgehojDMG2qNwHAbgfjXFqek7JEGo3n2WDcFMkrYWKMHlz6CrVms01hC00SxTuMtGrZxk8D61mahd25ZFgeKe5WQFY1kG4jIOAfzpbnxLaW7rbvHNJcgYeKJdxU471fLoc7ra36GqI/VutZHiIRro8u7GMrgZwc5Falnfw6lp7TeTJE6nYnmJtbjqD26VxviXUluLk2yEbITgkHgt3/AMPzojF81i5VE4XMe7vWe1itxwka4+vOayuC341ZkYbTVYffrc5G7nTeDovP15J+giyoH1BFdzpkKy3fiRWyySNyD/1zfNcj4DjH24/79dlorDf4ifr+8Yf+QW/xqJrUuHws0bXTHttJhZkKxqiqCe/Fc4cf8JlD/s2cp/Q1r3vijVdStUt7fT7WFFA+aSUkjjHPAH61gWCXY8SGW7ngmk+xy8QgYUenU+tdleadJo5KFOSqp9DqfhsP+JfO2QCS55/66GvbtN/5Blt/1zX+VeJfDVs6O7AdQf1dq9Dtte1S0jSNFtbqJQAquDGwHpkZB/KuWlCUpOx2VpKMI38xvxChluG0OOCYwyfbdyuFBxhGPQ1wmpFowyMQWFw4JVcZwFHTtXT+IdeOp6josMllNayLOzgsysrYQ5wQfcdQK5vVj88p7m5l/wDZazrXUrM0w1nG67mcq7iRuYfK3IOMcGs+10hWmvpsE7pdxJ552itBJ4nmMS53ojeYM9ypx+lSJqlnaadPHIz+cJm+VY2P8K9wKrD/ABaixfwaHF6hauZNSSFlVvs6k5HUZbIB7Vqabbo1np+AxOGO5ge6x8DP+elZk8pu5dTby3RGthjcME43GtuOaWLSNHaCESO0TcFtoHyR8k1d17QxafskUdWhVbq1VlUqZ0BB6Hmte0txmMFFULDjaO3zv7CsK8N/Nf2jTrbxoLiMlUZmb7w9QK2r1b1rmIWcqxDyPnYpu/jbFaNr2iZkk/ZtGXqMbHWLJEIDNIwBIz/A1bl3tdwrHngEevSudNpcx61Yy3F5JMwmxtKqo5VvQVu6iC7SgZ5UjI9xWdV++jfDr3GX9diS186NsKFJHWuG0cj7ZpDDGPOuF/Vq6bVfDlqDJ59th+pVnZsfmTXM6aqwXmmIowqXk6gDsOa1rXsrmNC2p2nSnTkmTr+FMYY+lOmCliM81yM7Ke5jrEo8UzDr5lnk555DCoJ9WvHtUVNPmkIQLuLqoOBjNWANviuI4wHs2A/BhWw1qkemWxGDuiU/mBXTh7vY5cTo9Tl/CbSPqGq+fEI3JjO3OccEVeaXWX09IoWtVi2AKxRice/NQ6IAniPUlHeGI/q1dK8SLpVoVAGYhn69P6VdNe+0Zz+FHH+GUnh8RX6XEivI8CNkLtH3iK6SUN0yB6nNYen/ACeMZR/etP5P/wDXrdbBHWueqrSZ14b4SteAfYpkOeY2HH0pmjNv0OyPfyVH6VPKFaBgOhUjJqloHOh2gPZSPyJFKI6vQp+L1/4lUR9Jh/I1wrniu98VqDohOOkqn+dcC5rVbGDPqLFLinAcUuK9y54ByXio5vbdfSMn9f8A61c1e7d0QPaP8+TXReKTnVUX0hH8zXN3xP2hQDgBFNeBjH+9Z9Bl6/dohLbuCDxVDH2vUL+xU7lksWAAJ+RgrMD04OQO9WxlsnpRokKNq+qyAbfLtjuIx8xKNz+ornhudlZe6UofD9vZ6bHLDbp9pVQ4dxuIYc962IdMzeNeSDdLLawmQkDrt9h9KsXtxYNttY7qJ5SSvlhuTxmpbrVIbIvaLbTyyqkRxDFnAMa9+g7mvSfKqqt2PJu3Sb8zAvZBbQ3SQEfaJpVRcL935Tk/h1/KuH1CSOS4CxbfLjG0ED73qTXQ65duEed0aGeQmNI2I3IgwSTjuTXKN/nFczXvtnXF+4kMfpVcD5hxVg5qIfeHFBLOo8AFn1/BJ2rnA99w5rtdCG6DXm9Z5P0jrjfh2udbkPpn/wBCFdn4dwun6vvO0vPKADxn5VHH61nL4jSPwmNqCbby4GCMORiodHONZmb0sn/mK0r2Brie7ZYXbfKxRsgcdutNsNLuEvbi5kEUam2MYUHJBLCuyvUi6dkzCjFqSujofhqQuhsxTcNucf8AAmrvlspFtklCnGByD7VwvgSP7FoNwsjAiFcOR0IDNXokeoBLH7PJG6tgDIG4cY9PpWOGqckpeZeIhzqK9TlNZAGu6DgH/WT/APoArK1T7z8cfaJf5itTWZEfxFoQRgcPOSD2+QVl6qeSc9Z5f5is8Y06raN8GrU0n3Zjj5dUI6eZbMR9Vz/8VVlNPQ6e90x3M87KRjjgLzVKc7Ly0lB6+ZEfbKE/zUVpSXlvb+Hx51xEhFxISGcA9Fow/wAQsXpD5nKXahZ74Lx/ox/9mrc0cB7DSgRkfZ2/9Bjrn/OS/nv3tm81Vt9pKDIz81a+nXsFnp+mmeVVZISrLkbhlU4x+BqrpVTN/wAFEOq8XNv/ANd4/wD0MVtRD/STn/nh/wCzGuYv9QjurmHy0YIJUZmbGAAwJ960ptfsreXekqynyyndQDnPcVpKS9omYxT5GivfnGpWfr56/wAjWheE+cx9EP8A6DXM3GsQzXsEzyRqkUgchG3E47dq6SOaHUbZbhcx+YhwGPPTGayrNSkmjfD+7Fpm54lb/S5/89q86tTi+sj6ajKPzrq9Tu3v5TJdarFET1Eaov8APNcpqF3Y6fLbW9huvJlnMxlZs4c9hjg1pUqKaSRlSg4XudmeM806VchSd3ODxXJf2nr833LdwPaP/wCxrobKa6SxjF5HNJNjJ/dnj25rnaOmEtdiq2R4osif4oJF/UVr3V7aw6XaiS4iVhEoILjI4xXM6kms3eoCW2jEUSLsjyQDz1PWqbaRrb8maLJ+h/oa0p1OQzq05VHsXdImSTxLeSI2YzbKN/bIY9/xrcudbsoNNgh3O8sYZWVEJx8zY/TFcvH4f1aTh7tFPoD/AICnjwvfMQH1HH0J/wAapVbSckS6EmrD7C6DeJhePG8UAt2Qu+Ou4EcA57GukUGYLKuCGGQfUVzX/CKgN+9vXfHUbSQf1rcjhuo4gn2twqjC7Y0AwPqDWc5KTuzalCUFoTTL5aGRyixoMsWOABXO6ZrtjZafHEZd2CxGD2LE/XvV/U9PuNQgEX2+RY+rKwGG/ICqvh7SLSTTnEyF3SZ0JDkdD7GhWFU5tLkGpa5aajZSW4RtvDZGT05/u4rjm5bHvXoOuaba2+h3UkMIV1QENkk9R61576k1rHYxkfSGgNO8Lm5ulllP30XOI2ycitrFcNoXiy3gVIJgoVz8r4wT7n/Pau4ikSaNZEOVYZB9RXqUasZx908apFpnFeJudbcZ6RqK5rUWK3TgdAq/+giui8RNnXrjnptH/jorm9Q5v5Qe2B+leNiXeo/U93Aq0F6Ffc7EZFS6Mu8a9no0QjP4qB/Wo845AqfRObbWn6ZlVT/5DFZQ3Omv8JavLKDTvszwxpGisEcKoGQ3GfzxWp5S77qQ43bgv5IorH1/U7ZoZIIpEmZ12fK33c8Zz7HFZFn4utra0mN3JNLdTSF3CqOOAMdh2r0fdVZO/Q8m7dJrzOa8RStNrd1norFR9BWPgmrl9P8Abb+edOFdi2D2yagMZHVxWEt2bw0irkDAgZqJeXFTuqDq+ajXYHGBzUlHVeBI3h1Cbjc/lM20H34FTRaxrWHSDT2bc7OGkU5wT/SneAxnU7h25xH/AI10ZU784zjtWMpWZ0U6aktTnWl8TzDP7uHPoFH86tWVlqoEkl5qk+7acLE/GPfitcg5HP5dqikZFikbI+6ev0qOe5r7GKOj8Axm78MyJK7ETRqHYHk53ZOfWul8jUoeYNT81f7tzCrf+PLtrnfh58vhyM9BtT+RrrvmGD8vPYVE5NSdjSlCLgrohFzqKtFFd2NtKm7mWGXO332sAfyJrjdauo4psNHM+ZpWAjiZuN3sK7on5d5I4PSuNvZVAJPQzSkf99UKTe4pU0mrHN316Ta74rO5BikWTLR7RgEZ6+2akeR2ct/Zq7ieWkZBn8s1cuI1uLS4hXo8Tgf98mqsE5ms4Jf78asc+pFXzaEezV9SnqEeoX1m1vCIbdWOG2uSSPToKzF8K3RXMmon6AH/ABro07g7c09smPOevuaOdj9lHdo5w+EoRgyXcrZH90f/AF6sJ4TsFAyZmPc7gP5CtK4lhiRHlbYC4UFm6k9hV2NVlgikQ7g4OBkcYJGP0p3kLlpp2MZPD2mIf+Pcsf8Aac1eOm2JUZtISRwMpU/lncHIJH49KQkdM8dQaV2aKK6Ih+yW8Y2pBEDnsoFY95p1rZ3FlLDDsdruPJye5rfVR2xisnWF2LaOB0u4+/vTi9Sai91m1jk1LKSVQkkfKKjPQjrTztCA8D5eT3qmYU9yBMY2nk+gpVcLkDoffmoWkg3MHniibG4eYdvGcU0T26Ks5uImi37GdXBA49Qfp+dJI1c0iyTED8xAB7k4ppkj3gZzx2Gf/wBdcpd3c9x4jtYvtLmAFxF8hBwQeTuHJ7Zrov7QFpEiTWN3IiqB5qorBvfAOf0quWxn7W7LJKZ4BH1FIJVI24IPrjg1VTVNNmU+Ss8zD78cSHev/ATirEMtvcWizwLMgEjRlZgAwK49PrStYpTT0RJhtpwF4/Cs7QwVF+gOALt+MeoBq/u2gnYTnrVHR2zd6oPS5z+aiqiTV2JtcUtoV6M/8sia8tducV6tqo36Perg8wv/ACNeTMea1jsc8j0G1dzcETsSUPPoa73w7qtw6PHCS6JjAZsgD0rgBcp5qnqzDHP8/wAat2epSWVm9xBKF2Dk7uf07VzUa3spqR57V1Zi6v4rnl1y8STT2W4WQo6g5AI49vSpbjULR52YpK8v8axxO2G79vWrGm3BurOG4YkvL8xJOScnvUV24+2XGRuy7D6c06kru56uGg+WydiuL9TxFptwx7F9q/zNcTcal4hu7F9TGl3y6e+XE6RN5IGdp+bbjAIxn1Fd2FCcjGCOSBXMWc+lJ4X025lnCXMWhXlr5seowgxu8tztja3IMjbg4GQQAHB7ZqqVmOvHltqZ09u8dnbXEt0xM8SyhADxkA/1qC6iVLgk9JFEgx7jP860bG1Ot21tH5nlNDaIsSEZMhCZ4/EVVu7S7jtIpLiCRRH8uSONp5H61aMnboUyFC5wfzqM49BTs5X6U1hgVQEbkY4qJD89SOKZGuZAOlBJ2vgUYmvX9I//AGVq6DHBJ4Hu2K57wqxi0zWJEPzRwMQfQ7GqXUtDF7o2i3UJKzTCKGRj8ykENzj14rFx5pHRGryRujVku7aH/WXUC+xkWoRdWt7HcJb3KO6Qs5C56D/9dV4vA0ijL37j/rnGF/xqCyshpmoazEJJZVisypZzk/MAf5j9auVBwV2RHFOcuVHd+A7hIPD0EbJIxeNWGxSxwAOw5/iFdbDqFpMdiTJ5gOCjHawPup5/SuJ8HzRWukWRmkMaSW7Rq+0kBiqY7cfjXbyeBNbES+VrdrdrgfJe2ef1Uj+VZ+z5m2aKs4JIsBcMcA/X0rg9T4dQf78h5/3jWvfWOo6NqNtYajY2K/ao5WimtJmyCi5PGAR+BrJ1csZFYn+KT/0M1nKHKbU6vtGilBhpSQOdrc/hWbpyAWflEnMUjx4+jHH6YrQiOJCRg5Vh+lULQ7b3UIv+miyj/gSj+oNC2NJfEF1dRWQhLqT5sqxgDg8nFPe8LPLaNZXcUuwlM7Tkg47Hj8fSsTxPKYJrCXr5cm/bnrjBq1q2sX14ti+l4iW7DFi68qwAJwT1HzelaRjoc1WbTsUfEQl+1Wl5cRRoglUFVYtwDnnt/wDqreVrmW0gl067WOLYdqNbgr1P0PNc3cHVrQRy3V358Qdd0bxhs5OOAfrV/Wftmo3VpFBO9vbSxM22NwQdpHcfXpzWnK9Ec6krNmvDLrDgxu1vDgfLNGNwJz0KH8atQTS3OhJLcuJZUuZYy4ULkKQBwK4mbTJ9Mkilgu7jf5qrt34zkgV19qtxDZeRNKsiMRKuF5UkDOT35FRONlqa0Jc0tCYEY9DWXrpP2WE5PFzGf1rRLN2GBWXrzE2CEcbZ48/99CojudU/hZuZ496JThEAAJIoIwSKc+TCg/PmrexzU9zAWSEeLBBeMnly2vlqsnKliwwPqcVDc6rYaXe3FvaadNNcK53lFwEPsT0/CpNfsUlns7kHbIsyIxUkMQTxz2q9Y2EcktwwUj5hnBJz8o9a0px5tDOs3FtnPPeW+t6tZx3FveWU+SqOhBz369u/PvWpqWrTWdx9hsNPe4aJFzI75XBHHuaranaomuaYMYzKw/8AHCf6V0FhZfaJrmURLtRUBZVwO9Xye9ymXO+XmOYj8UX9tcxre6XEokYJvRsH9a29LuY5rGVVEiyfaGm+ZePnAOARweRWZ4itlW6sQEGPtUYxj1NbihljXeG3hcYPU1FWPK7GtB8zuPbBbBwc8GqGknGq6uuf+WqH/wAdq8uBwCR+OaoacNuu6kp6lIm4+hqIm1X4TSuxusbhfWJx+hryTYPsrv3DgV69IMwyD1Qj9K8dYkRsueAa1RzyOukjurq0CRMrIP4sY4Azim2sRvbUCCSQRIVV8cH3ORnNbRgS6ja33gCRDtJwRn68dDWZc2lh4cbfe30QWVv3Q8t8yAY3dAQDz3x1rhUlt1OK3Y6XR4/LsLSP0AH61FOP9KlIbq5OPxqro/iPRr2/tbKzut8rNhE8tx056kY6Cp87pmJGDk9q0nc9fDbMZJIqQSysQAiljnviuZHgC3wCzThHiV1k89cLkA8jZ79K6DUwHsZItp/efIAo5rOu7e81ew0xrlikTMyhFY5KqAMH9Pfr7UoTs7L+ux01cJOpT9omtm0tbtJXb2tou7XkWNGtH0zUpLZVlmhNuqi4jwoUBSM5Heq+oXcBtri1GqicuuBFKQ/Ps1aeiaNFDePbxrtimxHKOu4H2NZ1ro8NppKs0SPIqks3vXSoNya7HkuaUUzkxyuaY3vU0yhJmx91sOv0NRHjoKopbEL8VGOA2DzjipHqMdG+hpAzvPC1si+GrvOf3sD7z68f/Xrp/DNmbvw9ocGcb5EGSP8Aro39K5/w/hPC1yT/AM+zfyFdd4LT/iXeHR/tKf8AxyU1O1Qp/wAM3dT05bFYwH3FhnpjFeb3RxfeKWzjFvGP0FepeI22zRg9kry24YPL4rbI/wBXGAf+A114j+Ejkw38U7rwKMeF9vT5FH/jgr2RRhFHtXjngs7PDSe4X/0AV7IOgrjpbs7qq92J594+she+J/D6GWaLak7BoX2MDtHOf89a4rUORHnJO5+c/wC0a7zxjIo8W6GuRuEU/H4CuC1BgPLPf5//AEM1nWfvG2GXup+pVjA3k8fdb+VZeWj1gHOPOgx+Kt/gxrRjPznGOFb+VZ178t3aSc4EpQ/iD/UCs0by7ketQJcaZcb1+4hYduRTtKhSW10v7rY3dO3yJS6moOl3QJYfu25XjtVjSVVNN0XaMDax490WtqO6OXElLX4xHbhm4CyITxn+IVegjEstqdjAfvcFhjP3OlQ+I1YWhJB4dD/4+K0UQLd2oUAACXjp/crpl/ERxx+BmJr6iBI5GUkJNGSB1PzitaQ74YiFKgoBtJBP6Vn+IcgJ1wJoj/4+talx94Htgd8VjiN0dGD3ZBtIO0kZ9qy9fJGmk56Sp/6EK2dxJ+6QcVj+If8AkESDBB3ITn/eFYR3O2fws2ieTz9KewxErHGCMVGepzTiwWJatnLT+Ix9fMggtjFgH7THlieBzxxXSaYjizulZgwEy5OACSUHpXPauSNPQjOBPETn/fFaf9qtZi6t0tJZyzo+UK8fLjua2oaMzxSMXXULavpYRyjG5wGHuprq9HiKQ36+Y3CwlgTncfmHeuH1C7urjWtNaWzeGMXaYZmB9R0FdT/aFzZvcpb2yz+bHGWzKFIwW6evWtW17S5zpe4zD8WIGFuMkf6TFyOo+YCtZo0hVYxkBR2rl/EVxqEvlvNapFCs0bE+Zk/eHbFdXc/fBJ4I6VnXd2b4XciQqVwvAHqKpWnHiK75J3W8Z5+pFXgM8AjHuODVG3IHiF8HO61H6PWUToq/Ca23ORXjE/Err6Mf517SOteL3o231wvpKw/WtInNLY9Jt7lpDEyBHZAx5Azn1weO1ZurvFcvLcfZY5rjT7GeaCGVRIrSb4VJKnIO1Gd8HI+TpjNW7O1SKJ57m9kDSMX3bcjbxz9eBz2rL1nRNTnvItQ068aC4txuVwXjY5AwUKg8nnuK4acoqomzlg1coeHXln8baBcz2ENo80DOTCixrMAJAJNigBemMADO3Peu1jUucjAx71zug+Gdat/FFvq+pX0V0yhi7tM7yN8hA5Yc9u9dJCShz8pB9a3qtOSPUwyaixJYRJCQw3Ke3rRpFij6PZ3sinzZHYDBPyqADjrjGTT3O2JsbsUW9zLa+GNJWCDzXk38FsAcIcn8qVGMXNNmmIxFWNF04ydn0LNlE51lCkpSNWywGOSAT6VnXBH9hkkdUP8AKrehyXTXU8l2kaMNxUIxPAQ+orn7kak+khmkhSLZu2hCTjHTOa7Iv35HlST5InKyAGFW/wCebbT9D/8AXqFvfpUhY7JFH8QIPNVYpg64OMjg1mbDn9aiB+Vz/smpHJxURP7qT/dNAM73w3cGbwnfsV2hImVffgc1vReavhHSBDPJC6qj74mKtwjdx061znhnjwVqBH/PNv5LXTFCPBtjg4YW+fyi/wDr1EX+8+Zcv4Zjy24u2IuZbic9/Nndv5mq0UEdtpfiOOFAihI/lH0JNWbW6i5DON+Ox7Vnrbx3On69cSMxeMoAQ2M/KevryB+VdNdxcNDCgmpnofge6E+hi3lj8vdjYrNhnXaATj/Pau+OlpEMW15f23p5d2zD8mJFcF4asbe78PWhmjHmxyqYnBwV4Xv6GvVpoUMe5Bxt3A/lWNC12bYnmUY2PPtVWaPxtpi3F1LdMbWUhpVXcuDjGVAyPrXO6iAVhHf5/wD0Nq6fXsDx1pXtZSn/AMermNQb5IeRkhv/AENqxr/Gzowv8ON/MpxjDkd9jfyrP1XCWQl7rIjAevzAVbjfazlmAUK3JPtXK654iV7dobWJ3KdJA2AT2OO+OvboKzgm2bVZKMTotQjZbG6ViARC3H4Uy2gmudI0eOGV4m2klk642LRC7Xnh4C8Xy7g22NznG07cYb2P6Ve0iJ4YNJjdSrqjgg9vkWtaa96xzV23G77GDq+kmOMzS3V1KysrYeUkdR2rau7QX81nEWcKPNJCsRnhPSoteH+iyfh/MVoRf8f9r9Jf5JXRJe+jki/cZzWp6JaWpWZIvnWRCGZiTncPU10c+crgZ+Ws/XseQef4l/8AQhV26JRlIOOOlZYhWaOjCO7ZETyM4P1rO8Q/8gefPUbf/QhWgjkE7s/WszxFn+xbgkenPryKwjudstmbnBAJ9KVkDxAAgZ9aYpygPqKWTAgBGc5PAHWrZy09zL1xQmlnkHEsZz/wIV0NhaxSpqE7ffQxgfQhv8K5bXnP9lvuGCXQjH+8K7DSebfU/pCf/Qq2ofEZ4k5TxCoWewYDpeRf+hV1Gm28U0l8zrl0gQqfT5jmuZ8TkAWxHa6hP/j4rq9GObi+U97UH8n/APr1tL+IjnXwM5LxggXSpSB90qf/AB4VsyBCFLenGayfGQB0W6Pouf1rTJzFGc/wis8TubYXcQqmdrAsCOmazhgeJoxgjNo3B/3xV0e4Ofc9KoMQPE9qQc5tnH6isIs6anwmvtGa8d1UbNWvF9J3H/jxr2LPPSvI9biJ17UQP4ZnY/nWqOaWx6J9nWa1eF1j2xAhoxkZ7kg+tZb3cscLLHLKIXIERfJ2HritJ2dI4bxxtGzbL9nb5ORwT61Su8yxpcwbxAZ8lVxhDjGTnscn9OteRrexeXxouUvbW20vdLfW7jre23T8n0VtIssQkUgqYyf/AB01TQsqkdSOmKuW8ItrVoxjCRNk+pweaz9+eAwA7etdjvpc7oqnzzVP4bu3p0HTsRE2XAG05GK0NMQf2RpintbMf/QKx7gn7JLkYOw4468VtWjCLTbLcQALM8k/7Q/wrWh8SObF/CR23ym6b0ilP/jhrKv/AJdAH/XAf+g1oW8qyWl/IjAgQTDIPfYawtT1K0OlCFbmFnMYAUOCeldcfikefP4YnGvwpHcnJqtHGyM7MBzxUzPksScnNR+YpGCe9ZHQDEVC5/dSf7tOZhk85ot4HvJDbxDLvwBQJs7XQSF8B6gT/cb/ANlrobi+gPg+FQxBS1IIKkZ/dqOM9etc7pVrPZaFPDLKofOEgZwAwJGSf89q3p73TJIoop7m2eOH/Vqw3BOMccegH5Vns7lN3jY5CwmW3UySyKpb7gc4ArR04q3hnX5FdXBkBDKcj7rdK1zfaEPvzW5A9Iwad/wkOixWs0Ec7ASAfdjwB196G9LCguWVzsNBRv8AhFkVSVkOQrDsdq13NhqsjaLa+ayeZ5O2THYjg/yry/Q/GOjpaw2JnMaRyB2lkGFccZXHP610yaz4ZucbLqzJbr8wB/nRTlyNl1f3kUlpYq+LLu9h8Z6XLZ2n2jbYys67tpI3/wAPv/hXJ3eteYkCLZS/a2VisJHIXccEntXexR6NJdJdxOhmRSiuHJwD1HpXLanF5flljGhKEZLAE/Mxx+v61FSXNK9jWh7kVG/c5mbR7i+cSXs7OQCzRRdF9h7+9WIIYbWExRWZC+h2/nnNXUlWN3PmxAspDHzBzxx3qJ5InIBuIRnrmQcfrU6vRmrlFaoqXkzmxnxEwUxt1Yela2hFTo+l+YzvIoGwnspj5H6CsjUbiJbGVIp42kKlQAw6nvmntNZnS4IX1SBFV2A2RPwAqjGd2a0p+67mFZqSsixrsii2cZ7j+YrQDhb60LEKB5vJ+i1y32PQRIrvqCsynIPlk4P4sau3GoaVdIFutUeUDOB5EeOa1lUvJM54wtFod4gu4Sm0SoSWXgMM9RWpfPgpx0HP5mudD+F4yG3uWByCtvED/Krk3iLSGiRBcXLlSTukAJ+nFRVfPsa4dqm9S4rcjng1Q19W/sW644Cg5/EVD/wkOmgnBmY+vSnz6nZ3eg3RZLjyt6xFguQMgnrjHbpWag7nRKtC1jei5gjJ/uD+VSMQYk78n+lcz/wltpCqqltM4CgfM4H9KjbxlCy7fsJ4OfvGqcWYQmovU0dfjLaTMO+V28Z5yOPxrcg1WOwju0MTSmdIwpRlwCpbOcn3riLrxMl0iRvatsRg20NjODnn1FWf+E0lAymm2q/SMf4VcLx1RNSSmx+r3t3qMkUSWLIomRy7Tx4ADA/3vauqt9Zh0+4lkQRziWFosLMo2nIOf0rkR47vl+7aW4+iAf0oPjzViCQkK/RRVuUm+YzUYpWLOuz3+q2s1tFawBZAQHNwP5YrdicNbxKMsVUKxAPBx7iuUPjvWj0aP/vmoJfF+szEF5EbByMr0pTbnuVTag7o7M4VwM9R+VZ84P8Awkentj70Ug657A1zB8T6233ZAPolNOua+5BEsuR0ITkfpUKNjSVXmVrHfbHJ+435V5b4gDQeIdU3owDkgEjrnBqeDTrrxL4shh1RL+eOO2aWVbdMzGNQxAUYPJbAHB61h3tjNo2rajpcxO62naJuMZKkgH/PrVpGTkdRdau7STQbNse4lCjYGwnkEdMGrdtatJdJKl3E1oZVBUyAHb1zzjpwOKml0i2gv453mT5cs6OoXvj/AA/KrTWNpqsEdmkwV40AZsDdgdMD05rhUo8yUUYpe9obr6hYpHKDfW4LIQPnzyazDqGnBvmvIPXgms8eELb+K5lz/uinHwrp8SF5Z5Qq8kkgAfpXQ4xZ1xqTirImutW00RbEvELHgfIxAHeorjWNIvIljmurl0jBWNXjjAA+gU1kyaZaG5XyY5vs2M73OC/XpxwOOpq+2j6fFKI2t2Ocnd5xx39vaqSS2JlOU9yK1v8ARrTlri6c5OFhURoueDx7jvVTUrzR7qJUt454SDndkHNXEstOOD9jQfKSd8rVU1WO0hsFaG1ijkLYJDEkAY9/Q1S3IexzzRLuPznGfSmm3X++fyqwuSzA44pWHSr1JKhgjA5LmrNqqRjKJ82fvGmtUlv90n3pAb9v4YvLqFJhNEFkUMASeh/Cpf8AhD5v4ruP8ATXTaaQNMtf+uK/yqckYrHmZryo5RfB/PzXY/BP/r1MnhC3H3rl/wAFArpKVI2klSNASzsFUepPAFHMw5UbPhPS7Sy0Z4kgRh5hDMygluB1rVm0fTZh+8060bPrCv8AhUXh9Gj06UOpUiYggjHYVpFgmBnr0qC0Y8nhXQ3Gf7OiU+qFl/ka4fxZ4XuINSgOmtJ9lePISSYnac84z2PFenkEjJOB6VgeIyTcW3+6f5007A1c8w/4RzU2PzSJ+MlKPC16fvTRD/gR/wAK7Dv1oOKvmZPKjkG8KXCqCbiLlgO9WT4Tla1iRrlBtZjnae+P8K6N+sY/2x/I1ZJ/0eP/AHm/pRzMXKjkf+EQPe7H4R//AF6cvhFMgNd/lH/9eunz15oUDIyaOZhyo5tvCduikm4kbA6BQM1Ui0rT5CgX7Q24qPvIMZzj+Vdg6Bwy88jqKrppVuqBBHIwGMEscjHTB7UKQcpzsulWFtIQ8UxHP/LUdjg/w16LH8OtNi+G97q0aTPcyL52xpPlKIxxjjI4yawjpyO+Xt3b5NvO7oetUf7T8XNZz2iahMLCPdCIhI2No424q4yJasZJsrI28bixX5nCr+9fPIz0qJ4LJEikWxjIaPeQWY4wcHvXVHRkVVH2HlSP4DxilGkDduWyUHBB/djv1pcxXKYH9n24vhALO2Cuu6NyCQR3zz1rVTTNP2AfZIf++KvDTJcqfsygqMKeOBUi2U4GNgH1Yf40rgkZIsLJGOLWDj/YFTLa2204t4v++BV06fOWJwg/4Gv+NOWxlCMC0Q/4GKLjsZrRRKfliT8FFTiNQoPlqD9Kn/s6QHmWAc/36cbUKPmubcfV/wD61AFYAAYpM896nMVup+fULRfq/wD9aoy2nr11WzH/AAOmI4jxcNRN7PDZWMk0V1axxSypEzEBZC+0EcDJCk/QVzl9/aN5d+be2jQTeTFF80bJuCIEDHPUkKMn1zXrG+w8wKdShJbkEKSPz6VyXjC0trqaG7s9Rt5wqeWyKfmzkkYx1604zUtEVVoVKaTnFq+qurX9C/4rthFDBOHLcspUoRgg/wAXv7VV8HWl0+o3FwyNs8sr5jnAzkYAJ68VV1q/860tURpvKIDqpwFB5De+ayLMGeOYSSNvT+EdOtY0E1CxyU2elSTRpuAljkdTgrG4JB9D6fjVMWn2uQSX1zbKoOUg84bR7t6n9K8+ZXhwzzEIDzk9ag+2ZfAmK+hNa8ptzHqbRWBfc93Y7sYyZATj0ppGlrgG90/AGPvDp+VealpkQs0+1fXHWnWjieTEl15SjuwJz9AKOUfMej+bpSj/AJCFiMeh6Vl6+LK708pbajamRWDbeRkfWud+yaaVJOtSKT6IMfkar3GlyxgNDdmdW5GY9hI9eRj9aSST3E5N9Cg1xGpIMiZFRtcx/wDPVfyNElmuS8hI4ySRj+lJbQLcTFYLcSEAnBFaXRNhhuYyceaPyNa+itawymS6hF1EVIMXKjOOORWU9iqytHIjJIuCVNW4txlhtkJGSXOPQUN6DR0Q8X6lGNkVrZIi/KqiLgAdqcPGWsbX/d25JxjCYxWldWFo2jTPHBGJkg8wkLgnAyecV5xc301yWwdkYONq8VCSZTbR2E/jDVmcCC6EZx8yFVOD7HHT61Xm1/Wr1VSa5aRVYOBtHUdOlcagBbk123gjUp/tEtg/zwhDIDtywOQPyptJagm2z0DwlD4uu7Br5dTtolc7RFPCWzjvx0rbubvxPYIHuZ/D7Lngyl48/mabY6g+n+FJ7iNG8xZDt3IcDOBmuEnvkvLppbmUSux5aQ5P61g33NG7Hfxaj4lliEiaTpFyh/ihvOD+a1yvirxZdWV9Fb3ugJBOqbv9eHBB7ggexqlbG4sJxdaTL9muByVH+rl9nXoR79aXxrr0esWGlTpbLHJc23mOWAJT5iNoP1Bqo6sXNdGK3j2MHH9n26kdQcn+lIfHUnBWwtgD/sZrmLpY4I2fYGJOBVEXO3r0HbHFa8qM+ZnZyeO5iBm0tQc5Hygf1ob4g3AtY0SK38wMxYmNcY4x/F9a50RIUDdiuaoibc2Sny/3R/jRyoOZnVt8Qb5R923X/gH/ANem/wDCf6mylgYsDrhawotQjh+5ZW+fUrk/makfWZxhvs8GAMcLSsuwXka//Cfasc4lH4L/APWpp8eayek7/gP/ALGsCa+aY5ezgB9VTB/MUlr5kk8caKZN7BQu0k8+lOyC7N1/GmuNz9pc/iP/AImrEfiK+NhMmyaSRh5jyKQVBJHXjmsjULO60+0E0ltJErPt3OmPX/CobK48uyvZNzspjXGScBtw6/hTVhamta6r4lv13RTXG0dfLGfz461Vn1nWEl2PfzcHByxGPyxXSLPcr4ZsjY2j7pYvnaNemeuO/PrWDJpt4xBNjcf9+zSRT2KX9sak5+a9nX6u3/xVMOp35HN3cf8Afbf/ABVZstyUuJFljyVYjDDp+FT6cZLu8EMMTMSpJRRmqIuTtqV5jLTz49TJU0UWqXKb0jmK9i7qM/mKr6tDc6eIGlgeMNnG9cZIrMOpXZJzO1AGnP8AbIGCzxuhJ43FcH8QuKhMkhPK/wAv/ia3tDUXehYnHmBnYHd3qO00DUbm1jmitwyMpKsXHIpXBamGZSrfMdv41PaW93fTrDbAsz9MO359aaLZkHzKckZye9b3g2OSHXWUfKJIGJBB5wRWkoNK5Kkm7F1tAuWvElCuGwCoUZXHpuzx3/Ord94Qt5xEIW8vap3EcbiTXSIkqoFDpwMfcP8AjVbUb1dNtDNN+8YnCKi43HsOtcsIcmzPTxWLeIVnFK7be+rfXy22X+VvONYE1nezwMX2GRjGA4bOep46VreEtKtr6a6M8TfKi/xnOcn0pNUtiL9XkmgSIKWEcjcg59vX3960fBWJTdsCy/dzjjPJohK8TyqWrRW8ZaFa2Ol29zbKykTbWBYngqf8K4Qjcre1ereMLcy+G2wzErIX5OegH+NeXL5mGVCc1rB3NZKzO11/w9b2nhyG7hMnmK0e4M2Rgqa4p/8AWqOcc16t4gt9/hSVAWLfJ1Oeisf6V5hAsb6naxzSGOJpAruDjCk80ou5TSTIViJxhe4PSuu1Scx2lgu4jFunXPpWJLFIljeTxuTHFceUjZzkc9xxjj9RWjNFayyWyXlxdMWhQIS6gLkfTpWVRe9G5opRcXylK7w9hLIepU81Q0yXZcMwODtq/d+V/Z0hgL+Vs+Xc2TWbYSWcczm787bt+XymAOc+4rZ/CY9SaK4F3ezMecDv9as2qj+1ogB/yzao1mimuH8hpDEFGA5BIPfpVixXOsxj/pkf50dAPVNMt/tcTW5/5aWrp+aEV4e2FhdSfn8w8V7voCwwXkckoUIkTM7EdgvJrxG/WIPcGLG37S4Uj+7k4qafUqfQoqcHk49663wEQddm+bP+jn+Yrl7ZBIWB7etdj4Mt1XWpNyL/AMew/h91q5bCjuevW2P+EVkyQo83r+IrhfEWknyf7RgT5d4WQgcZPf612kcar4Rkwq7hJwdoHcVg22rvJ4Sih1FGFrcysZDEBvjZQVJAPB6nj2FcLhKVX3TolJRhqVprK50y9+y3kflzBAxXIPBGQcj2NW7T/kV9B/69D/6EaqazdyzeIJmklWVCkZhlQ5EkRQbGH4DpVm3RT4W0EkHm1HQn+8a3tYxgYPjGASeHJGAGUlRgfzrgjpYNgbl7tVOwssfltz7Z6V6F4niH/CN3e0c70HU+9cDd2822A5JT7P0zwPlq43toErXPU7SCJ7KBTEmGiUH5R6V5fFYWoDNdJO3zFB5TAdMex9a9RsYo/JtBsHMa/wAhXnV3G5t8Jnd58hwPT5aSu9EN2KM1kjkfZoZ1jB48w5OfrxWhMl1K0bygF9mDgdu3T2rIuo53hWRXO2MYYbuc5rQ1e68+VZkDhSijnjoKHFtpGkKkEndENxHLGMoGyRxgVb0d2/tnTwwIP2heorGTfKTzg+hNX9CGfEFirDI85evfmtOWyMZTTk2jtfHEayeF5SeqSow/Uf1qjClrH8OraS4t1lQhdyliM/OfStHxfGv/AAi12FVQfMXoPeucl1Nv+EEh09YsNsDCQtx8smKI25bDekrnZaG8f9hWO3aq+UMLnoPStASIMfvF/wC+qy/DyKdB00lVyYOeK1mRcp8q/e9PY1my1seNa/EI9cv1B485iPxOa0vBGyPxHExOAYnBJPtVDxPx4i1AD/nqa0fA+R4ktj6xv/6DW32TF/EbHxC2S2ti6MG2uw456gf4VwgtpchfLOScfjXf+P8A/kFWRPaRq48X8JO5nyQysMrySPX86hNpaG0YQk/edjo/DI/4kqj/AKatj9K6rQpUXRLVSTnaR90/3jXOeGljbSMxHKCUj9BXS6FxpVmPeQf+PGh6onlUZWTMtrXy7ePhdrKNufXFQaOrRa7b7xyYpR8ozn7pqJFja0V3ur9pDkbVuCqjkjj2puiwJB4ms2jaZvMhlDeY5bkYrSU01ZGEYNO52SzAgEK5B/2TWfrGoQ2drHdNA0jg4iBU4ye9aEGTGtNWNZLeLeitt5GRnBrM6EeemCWS7lRpYHVMlHdsIq9B1PQcV03hK2ZbKWYzEq5AAXAXjuB6VymbRbFI4AduNvmcfNzzzmuo8HRkW91slBUMoG3HAweO9JQajdo5qXxGtriAaUVYlgY5zg/7gryeIzSttji3tuHRMmvWNeBXS3+Yn9xcHnHoteZaTO0d2kZcQpI/MmDyamn8TN5dD1S/g36ckRYne+3n/rm9ePSWU91dG3hTfIoJ2jvivabtWWO3yxb98eDj+4a8wngMXi66tg6orCQ5K54xuA/QVNOX7xryHUXu3NGUR2vg+G2eYRzfZiGt2wGJJJzjr/8AqrJ1u1j+yiWWeaV0gQIQoCg4HBxWrBMt7p8ttKqGaOYIjYH3CVOKj1GOP7DPYykLIpJbB5HQj+QreUbtS7GMZWujKmjWPRPkclfLGPxrLso7WSVxdOyqFyu0ZyfStSdSmhhcggRrzj3rIhWLzds5KKSAT6A96N0VszUjit47qVLYYjAGGIwT9eTVnT+NaXn/AJYn+dV42g3stvK0qooXewxu/CprIn+2Fzj/AFX9aXQD13QrcT3ixSOxR4WVhx0K49K8a1KGGJruJV+7M+32A4r2rw6JP7Tj4XGw9z6V4nq7FbmdsA5ncfrUQ3LqdDLgLKxxxxmuz8FtLJrswkfB+yqRt54+XH6VxsTCMsSM8cd66z4fuz6xcsoXP2foTj+IVc9iY7nr8YKeFHJdiBJznHqPauI8LPc+J7e40K3tUMsTPcRzgnc2eqnPGMkc13lpbSXvh0WgZIzNLsDFjwScDtXMaZ4L1Hwr4h0me1vGmgubzyS0eVYFWyVYZ5yAD6VnRVpuRdbWKRW1DwpeeGb6G1uLr7UPLUBwuAp5OwcnpkH8avW6MfDOg4cj/RAcYHqa3PEMkd94juCsAjZGKsdxO8qMZI6D04FYsJceGtBwqkfZB/F7/Sidr6E0jE8Uq8fhq6bcW+dDjH1rgLu7crDEbbBSHaWPXPINd/4sZx4ZuSVAxIn8WfX2rh78fa7kSQD5ViOcjHWqjsE3qenWSN9ntSZG4ROw9BXnMr3L60lhF5bGWYJGrsQAzd+OnavR7MyC3tRsX/Vr/F7D2rz2SEt4zgCT+VIbmHy2VdxDEDFTF6lSWg7VtD1DSLu+tb63gjmgG4hQzq+QGHOe4OaTVrB7bUrSymtTEswRlLqWO09SOee9e+a1YWtt4wga/Aji1exaxckBlZ87VP5EZFeWeMrQHx9peiTNtTTvLtwwBO9QS+fbIP8AOtPe0YrRsznYfDbiXUWa2kNvH+4t7gx7FE3BAcEkjHIwKydPiuLbxda2kwCvHOgYrzg8fpXt/i+5h1VtTsLGEtcyJbX1sIsH7VtG1io7AYxz6GvGVjlj8bwJLHIs8M6RSLIMHcD0Pv2/Cmne5MlZnW+MVKeFrk72Pzp1x61geEtMXXrmHSdSd7e3MMgjljXJ3Z3D684rW8XXyTaNc2QCl8qWIbIHPT9a0fh3rtrp+r6LLLk/ZILjzB6sUGMe/AqUrqxb3J/D8BXQbEb3+WLHb1+laZizjMj8HPUf4Ve1C1NjdvEsarG5MqfP0Vjux07Zx+FUTI3ZYzzjh/8A61Z3uXax494pz/wkd+v/AE1PNXPBWT4mt42BGEccHH8Jqn4ryfE1+CP+Wpq54NZm8Vw7SD8jfT7tb/ZMH8R0Xj6NU0u2A3EeYepJ7V5tXpXj13/si3ZgBmUjivNaUdhz3O+8Hc6HJ7Tn+QrqNDhQ6VCxByHk/iP99q5Twa3/ABJZh6Tf+yiup0VpBpsQUpgyyjkH++1EhQ3MWG2mEG6OMlW3DO3r8xptnEU8RacsiEZE/B+grbsriNdJRJdgCPJtJPfe1YyTNN4p04qy/wDLUDuPu0eyt71xKV2dUIYx0jX8qDDEFwEUD24pEMrLneg5I+4fX60L5rRZLoOT/B/9eoNjgANNeGWZtHjfysA/6S46nHFdL4VutOWwvDZ6dJbmPDsgm37wOpBPoDn6ZqjFoFzb2F1ZyQpLcyBXjWOZeAD1Iz9abojS6PJtMUwu0nDmMx70ePgFcrk5IyMYrscU+hxqTT0LeqeJdNuoJbZ1uQArxMyoGC7sZ7j0rmGskhNvJAxlhEgWORuQORkY7Hmui17wbcfaJZ9PjmkzINkYh4MZGQS2eoyBjFVbDSdWssxy6bLJAxG+M45wchh6EVg4KL0NFNuzZ1PiO+fTLG3mCLKTOwweMfL1rgbl0udYOpFGWX+6r8dMeld5qlhe+IdKtkhjEdwkxLRSKQeRxjrmsZvAmvgcWZP4N/hWMVFO73NZNvTocqrNb+e8aqFkbdjPTHSoLi/gnvHuTbvGzgBkjk+U/mDXRal4V1nT7KSe4sXWFBlmGTj9K5Ym3AOVkLe5AFapcxntoW7lGl0rChVDKvU4xzVa30jzwCxJUgc/dB+nGf5U62mje9g+14a3U4KbsACt/UBYLcpJp+pwzRONzRs2wocdDnr9a2jTSIlJ9DJjgtrVTtQ4P+z/AIsamt3h85pUj+dFyTsB4z9aZJBJI27dC/oFmQ/1q3p1s73MnmxskTxMpbg44z2+lU1boQpPudLZeINZsW81IELBcAtF0H0Bx+tZsvgLUdU0v+1LcxyW7szs0b52tnkEHBB9qhj1W7i1KOCBXFsreW0ssJG5c9/wp9vcXmjRROL0T210ucwk5A9wccjp74x6VmoRd7KxfPJrVnNX/hvUdNtzJNa77dukyjgH39K1vh9CYtTu2kznyeMDOfmFdvpusrFABcXdnLBPndCzghl9SPftTLXQ9K07VJNQ0m8j+y3Me37KXyY2yD8p7isJPdM2irO52NhNHHolu7hii3Cs3BHAYfT+db63umGVZHvLP93NHKrNISS4XaWA7cH9K5uRQPCJJ6eYP/QqwWTcc8ZpQ2Knqx2s3sun6vFJuhmjuJ2DPG4bIOTnrxn3qjpN9Jc6HZwSxlXtB5PCHoCOvv1qHW7Z3FrNHuPlyhmVByVIwasaJZ3FppatcgoZpXkRHGCq5xz78USSSFC9yh4sUy+GLpFU7mkTAYYz19a4ENJBFiY4TyFQbSDggH0+tejeKVzoDAHrMnT/AIFXAXUf+jPn0pwCe56bZMDBacN/q1/hPoK49ZbKx1+31Yol08cyMkauCCVUYY89Ac/XFdxZLi3tuf4E/kK4TQfD+oa1qMcNnaySncCSo4A+tTCN5XKlKyPTviNqpv7TQbi0kf51VkDcfOMHP60/xT4Q1zWfFGma+1pY28UcWy5lMqphgCAxJ+8pGCD1xkV1raPp+j6VFqviYwGOxjCxQAZVDwAP9ticD0/nXg3jLx1qfjbWxHu8q0DEW9tuwqj1PqfeumXLfTYxi3bU9Ik0Szj8Xw6sviTRLeC3tEt1Q3ilmxuDcdBkHP1rnvEHg9NU8Xy6xpviTw8FlEbkPfqpMijBYDGOcetZVtpmmaX4d1We7t1muFhMce5QSHOMMp9icH6iuFWZ0jhJ6Bipz9aiLg1oOUn1PQNR+GviJ9GvJbYWN7EVy0lveIwHOepIrP8AA2gSDXdNsbmNovPmnVg/OFCLk8VmW2r3+i3CXWmSm3m6HaPlcejDow9jXfeG5IfECNquj2JtdVsxvuLNAfKZT95oj2B7p27cU7LoJSvqUpb671XToXEplLqwLsP4QcKB9cCn2Nt9jjIaRWLPuO2PAHX296l0aJbfTYrPfmSBdrAjBHPpV8qc965mrM6U7q55N4g0i4vPEN/LG8Cp5hx5koUn8KZ4NiktvFEKyoRgP05/hPpWprKH+2r04/5bN/Om+HlP/CU2hx1V/wD0E1tf3TFr3jU8aRPPpdsI0VnWYttk+UH88VxbQ3Bj2jTtPDf3t6//ABVd/wCMkJsrX/rof5VxhQ0RegTWpPoUx0vTZo7h0UtJkAOG4x7V2Ph6dZdHt5FDEGWRshSeNzVxAgEqurNtAQn6+1Tab4ru9I0+K0SGExpkqWzk5OfX3ptc2glpr0KuqNd/b7pFlk8sSttUOQBye1O8LyTjxTZiYyEDfgEk/wAJpj3iXUzzMUDSMWOG7k1YspI7XUIb2NlMkWdoJ45GP61p7OTRk6sUz0eN9qkFH6k/dPqaVWKwkGN/vHt7muXXxPeHpHbn8/8AGpxr2qtEzLYJIijJKBjgfnS+r1B/W6S6j2u45md0uIxK6bDIpXdj0zV2wuvsy7YdmPXqT+NX59Ks3Yh4IZB6mMVTk8Pac3KWqqfajna0KUb6lyfxTDpsQlvZEjjJxwCST6ADqa2NN1jT9WtkuLUpcRM3lkj5WRv7rA9D9a4+Tw2hvIZTGfLjLHapwecdPT61W1HTY9H8Wizguv8AQtQhDEwSkZZckZ9xgj8aFO61Cx7BbeFzexvJFhTGcMD2OM9vrWfqOqv4SlSO61Oe2JyVR43dSPXoRiuT0PUbPQ7sPd6tqaWj/wCuWO4ILcfnWV4+17QpdLmexv8AV5byVh5f2yXeOoz9OAPyFLSw3psd74m8bW8nw6v7l5hm5Q28JjbHmFuDjPTjPWvnK4VvOeSLeI85G45IrWtxqesaFdyR/aZrWxCySszny4wTgcE4ySe3OKyVi84eWPvMQoA7kkCkrLYTbZEbsdlOPU0hmkDE7QSe+K7vX/DdhZ6DD5MfmSplJpQ2cMCRkegPTGO1cR5RVSp5K9/aquxEZnkxnAFILg7CCvXvT8Um2i7GILqYfclZR7GgTP5gk3EuO5PNOCAnpU9zYXFlIsd1bSwOyhgsqFSQe/PalzdAt1BJJ3DyRrkJyzdCKtWutXNqykXDJznG6s8rhWYdgTW1D4alXSFvp1RRIAUMgzvycHnsRnOOuOaLgdkfiXFOtvEtlJE4RVYo+9Hb124BGfTNaY1yW3jE9x4cVkcbxK9uQCM9cYryJENtcKVcqPvIRyQRXpVn473eHrYXVxD58CPalGiYmSNud2c4GDVJKQ79TvdB1nw7raSWcuiW9temFypVARkKSB6gkDI+ldk+iaO8CNNaxcL1ZyAM5Y9/Uk14h4Qnln1KZ9NEZuEje6mmkzzGqlSMZ/uuR+PtXoHjjVo7rRJbdSWjV0ffE/GOcZIPuDis5RSKTFvrzw1d3MlhaaNZ3axK0jtPMyxsVzgKecn36VneX4KhuY/7Z8P6Za2RbDywzzORlcjgD14rkLCJLMNcXFxKm6IhczkYyR6H3NdDo9ppl7eRvc3CpCRvKTIZQ7dAOWxgcEfX8aiM4uXKieeLZ7Jp+m6BDBFJZWFmIyoaN1iByMcEE89K1IzAgxGqqP8AZGK4+G9ghjWOK4+RQFULFgADsMVgeMPiZbeEooY4oTfX8wLJBkoFUfxMfT+dbAdv4k0HR/EVtBDq5fyoJRLGFmMY3joTg8/jXLH4L+C2lEyQ3aODuBW4PX8RXK+GvjjFqmqxafremx2JmYJHPFIWQMegYHpn1r1hbzIyAxH+6aQNHNXHwp0C4tkt2ur7yk6LvTH/AKD/AJxWNJ8DPDrwmIanfA7gwY7Mjp7D0r0D7WfRv++TULyxvJukhDFT8pZM4oStsKx53q/wt8NaNYLLd6nMcDCLtyzkegDCtP4dWGs6bBLBZWsCaRLL5m+43A56ZXnJ4A9q6m7t7G+uYbi6txLJCCE3gkD8Ohq59uAwBkAe1VdW2J5ddCjqvgbSNZuo7q4M0M653G1k8sNn14oXwFoaqAEuDjuZiTVxtSCFizbQBkk8YrxTxH8dNZl1Oa38OJaw2cTlBcTpvaUjuAeAKmyZoj064+FPhi4leVrN2kc5YmeQZP4GqafCrw/Z3aXUWmyGRM7SLpz2x0Jrn/h/8Yb3VdYt9F8S29vHNdcWt5B8qO/91hzgnsR+XNeqpDL9quJBcbo5FGyNifkb29qTQKz6nAal4R0G6Pk3GnlgjZA85wRx7Gsw/D7wwemnSD/t5k/xr0fVNOLRTXDMCVIYew7isMBfb8jWbVi1qcBrvgnQNO0uWeC0kjkI2gmZmGcccE+teDXEhcnK4wSMCvY/ixc3dpeL5eoXMcL2ymOGMlU3Bzljzyeg5HcV5EJZGzlYz9YxVxWlyZSt7qKaE5qwLiOPhgxPscUrlSpLIgIH8K4pNOsGv5WJV2HonU1d7GTV9yeG8tGYLIZov9oENj8P/r11NjLc6eDF9oWSKWIOjxtlXU/17EHoa5+58PEx/uEljlxlFchlk74DDv7VDpuqy21mYNittYlS2crnqP8APpWkKlnqYVaCktD6LXw1I9q08OG2jLIWG5R6/Sub1WCexjknkvIo4oVLvGrLvYAZIXqc/gK9M1bW4L61W20dJJZQctsj2Js6MCTgYxXit9Z3XmTQHoGZR7gjFJcqWq1N3e5s2un2kgBfWirbieUduOozyBz9K1/GHhOz1DwWt5ZwtNdRvvRQ4j8xg2CFzyPlz61yVjpt3siRi2VCg474FdTLC80aZYhRwEY9Pes5yjYq1zy0+F9daw8tNBvUuxjE5vE25/3cf1qrZ+FtYgvRJrejalcQpyqW6q4J9+a9eikdUwTuxxnPWpBO2ehqQPOF8Q3+iWktrp2nalZwPz5ctuqrnGMkAc9utcXcXJa7S4kaNJEYNhYBGMg56CvfRcv7012ilGJIo3H+2gP86a0DU5C91zQLvw/dXSTEzXREgTzPnRyCSMegbHPofrXl1zPH9pcKy4AC9evHNe7Pp2ku2X0yxY+pt0/wqGTQtAlzu0awP/bBRTuK2p4I1wN2AD+FPD/5yK9wfwj4XlyW0a1H+7uX+Rqs/gLwrJ/zDNv+5O4/rSGeOQs4mQp94MCD6HNdp8SzdDWNPWeeSdBZIULDpknP5mumfwD4dss3kFvN5kPzqry7kJHqCORW34q8L2firS9MkuGa3mhUoJIVUMVwMA57CuOrUSxMI+p6FKnJ4Kc+l1+H/DnhTkCFuDkkcY969YtrT7ZZi2RYntri2jmjH975Av5hsisuT4Uw5/dazOv+9ED/ACNaVh4S1vTLQWtrr0RiU5TzIDlD7cnFdiPPuec6lbrbyBAyMAwwy5wcrn/CoI5LcKEc72YYUKTwe3Su+f4b3sxYPrcahgQ+233Zz15Jqzo/w1GlXqXkOrOZk+6TAmB/31mi4FPwTokkdzLdPq/9lRvA0TKx5mVuoxnOOmeldP4jF7PZW1jp8+mywRkNITcbGlYDqQRjrz3rZNkTFtMOnNtH8UKgk/hWHeWmvbdtrp2i7B0Azn9cCocXLRjdrWMS7tNZu5Bcy2dk87bdzRXSbdwPAxu6dP1FTFNStrYzHTX+T7wS4jkY47gBiSfw7UxrTxTGSF0TT3GMEKF9c/3vUZqvOfExZml8LwyEnJKqevTs1SqPK7olRgncji8ewxOVmNxCwOGWROQay9Ll/wCEk8UXuoXLrJ5aqUDLleoABHpk1Ymm1USGSXwYWbABYRy546d/eqtrqF/ZapFcR+G7m3i8sxTRrG5DqTn04Pv9PStdR3Rs+MdHsn0pJo0WKYSHbtUk5Zh/F2AzwPYYrrvD2t3d5oFnNJaF3MYVnAGGYcE/mDXA6vqd7fwLFBZ6i0KhWkV4idzLnHAUY68/SuZsIr+C4Zr2x1VoSCRHBuj+Y9+hoBNHuT67LCebQ/gM/wAqRtbklbclpKCfVcCvIZru1MBVdI1uOTjEhnY/mCtEM+msg+0W/iOJu5jYMPyKijUdz1/+0rgjPkP+f/16YdVuV/5d3/Bv/r15M39iEnF54kUdswDj9ajZtDRgTfeISueQYAOPTO6lcdz0Dxb4tm0/QLpESSK4uI2iQliMAggmuM8JaNbXNvHJcxFgcOGDeh5X8azJJPDskwWa412eDdkJIqLx9c1PpOu29g0sULsixswgeQZyhI4YAj069ufWmJ6lrXrNdFv3FpKwaMC7iOzbsdSGGPw4/CvpG28Yac8UEsl3Evmxq5y3TIB/rXzHf6tDqF+8t39ruLUhkRIsbgpOcA4IArR0o6eSXt/DWq3JTlWlYNgdhyMH8qA0ufTepamlxZqbK4ilikGGMbK39cisL94Ogb8q8jTxRqVvCIrbRtZhUElVjGFGTnoFpX8Z64duNJ1bPflhn/x2plFtlqUUj0rV9Gs9ctTbalbLNF23cFfoRyOg/KvMbP4b2c7QtdW80MSCVZRvYM53DYR6DGaq3Hi7xBvDRadqyYJyr5YEf981Um8Y+IXUCTTr8EYIIVxgjv096Si0DlFnPeNfDQ8O3KfZzLJayDG9x91vTOBU3h60Sbwnqzi2mndisQMP3owT94+3AB+tM1XXda1SyeyvRfyWzEHy3iJwR0OTzmn+B/FGp+DNUe4htpWilUxyK0bYKmrWhm7dCR5LeC7uYo72e4kmgjYER7Y8oBwOeoIIz/jWJf6ddvqE8lvaSvG77sohxyMnt61u317ZSxhdL0ueNVJZuHkfk5xkjpmquoavrF9BaQ+RqcMNsm1EVGx/Km/Jge+XENvbu6rI208YLZzVCY2gjUmBSuThiOtc1da1dyu5jRduMhiT/XA/Ws2+12JikbXyIEBU88sfp6Z9xWbbkUlY9d0zw3azWsE8zMVlUPsT5QAfpzXC6jfRpdXa2qEgXDRRjJwADg/0pLXxFr97p1raxXEVvbxRLGXjOWYAYz35/KmW1olpIssTSLKDkOGwR9KqUU9g2ZIrFUAYjIHNPD8dKs/b74jm7kYejhW/mKPtlyT8wtn/AN62T+gFOyEV1c9OKeH/AM5qU3ZOd1lZN9EZf5NSi4gP39Nix/sTOP55oAhDgcH+VLuXHSpfNsSObO4X/duFOPzWjdp57Xif8ARv6iiwERaP6GjKHmpWGn9rudT/ALVsf6E1TE8WcbyD/tDFAC3YU2c3POw1quM6HbHPRv6VjXEsbWsoEiElT0NbRwfD8ZOOGHX6V5WKdsXSPZw6vl8/X9ChwD940oB/vVFwfunmkAf6CvUPHJstj79Luf8AvZFS25hUZYg/UVZ+1WyfwLn6UCKYEx+6uaUrcgZMeB71aa+4+SMY9hUDS3E65WPA+lAFfzJBxsGfrS+dJ3UfnTHZwcHGRSbj7UAS+dJ/c/WlWaUHIU/nUJY/hSFmB6YoAsG6kHY/nTTdP02tiod554/Wl8wnPy0AS/amIJIOKDdM3GGPHFVWYEjjj69aesh9KYWJROemw0GQd1J+tR+b9aTcR70BYf5i/wDPMflSExnrAh/4CKZ5hz3zQHBJBoCyHiQIuFjVR7DFO884xsOKh3570eYceuPWgLEn2lsYCnPril+1N6GovNPpTfMy2Mc0wJjcmm/aW9Ki8zrijfk85NAEouicdc9xQbphwc1AWBPIBphKj7pIoFYsm6YdM037W47VX875sHr2pd/emB4hca5qV1/rLlsei8CobWC8vZwlvHLPKeygk16bYfDawtsPcObpvRztH5CuotNJWzj8u1t4Y0H8KfKP5VF+wzifDvhDUopI7q9u3tgDny4W+c/U9B+tegDkdKjEU8eM2zc/3TmpBnoUYfhRdvcB4GB6UuRTSw9x+BpnnID1BoAkBPoPwpcHHWmb1PT+dOz+FAC4x1JNLhaZnOdpzjijLDvQA4gYyKCuaTJ70ufrQMgulAtZTgZCmtdFD+HcEDgqayLw/wChykf3a2rf5tAlHHCg15GOdsVTfp+Z7mDV8vn6v8jH8mM/wAY9KVYEYgDPJ9TThj8KQSeWcnpXrnhmjDZQIgOGz7nNSGOKM/Koz9Kyn1RwNsQwO7Zqi9zckkGY8ngD0oEdAbqNeCVU0yW+TaVD/lXMszbhliTnrnNHmMedzUDNRp1Byc00Sqx9PbFZas2c7iT7VYj81lyOR9KYi6GB6U4vk8VAm9TkkVKASP8A6/NIBRk9OtO/H9aaFAOQDg04EE96AEAGMjrS596XI7U3gE0wD+dB56fnR8pPXmkGCODQApGevX60mfalIPXmkPB5BPNACHOc4HHSjkjoOeooJHXFNDZPQ8UAOXYWw5Kj1C5/rU8dvaOWP28IB/ehbr+FVcgDNNzl8gHgYpgaH2KzI/5Ccf8A35f/AAoNlangalB/37k/+JqkuMY/rSfzz3oAu/Yrbtqdt6cpJ/8AE1GLS3dyn9oW6gd2VwD9PlqsTzjj3FGeMkYpgWv7PhPP9pWf47x/7LTf7Ljyduo2P/fbD/2WqmcnGOPamnqR274NPQDUVNuOSPanD5em4/jTQwB+UdKkAYkE8Y7A1mAhZiOQacQSOnOOtIzc9TjGemacGbAGcjHX0oAAGxgnj1xS7BjoufekQBW2h/rnNTAZHUUAQPbxMfmjQ/gKhktYSRhWXH90kVbI46Z+lKRxk96AM/7Jt5WST/vr/GnC3kx/rQQf7y4NWyM4wAR9acM4wcj6UAUjBLu+XZx65pBBMwyNh9AGq+VPfqPzppXB5AoAy72OZLOXemBt65rZsudFm4JxGTgVn6ko/s2YgHhf6itTSBu0919Ux+leLmLtXg/63PocvV8BNf3v0RhEyHpEyj1fgUxrR5Xy7Flx93oK1/JVlwwyCOhpFgWPAXbgdMjOK9q58+Zhj2KVWFQAOMHFRJCSvP3j6cVtBV5+WkIQcEDFAjKFtG3GwDHfFH2dRn+XetI7CoIJA9elReUG3cnJ5+lAFA267sDPvipFiA6kce3SrqlVzuyAMckVJiMjIKfWgZlpYglt+GJqZYdhADADHSruBj5gPTIFG1SuMD2oEUgnH/16TyuM5/WrhiGCNv5U3yBnuM9hQBWx1GOBSFCRnkj2qwYAeNxIppg2rjftA9aYEPlgjuPWkIAFTeUx53gmgwsDy+MetAEHJHU468UhDN/EcetSmE4yGz7gUvkkDg9qAICnXnj1zSEBO45qw0ZA44prRAkZAyOhNAFZi3lhgDjoTjtTsdMH/wCvUjxsF9+4PpSlOMdO+c0ARk8A55+lJlSOTmpNhzgdfypu1/7gOPfpTAj+UHgdf1pnBPIx2qXaygkISPQEVG0Zbna2R2B6UAIQM+/emkn0p4Q917fnTcHHrxTA2VAI9aXIHQU1G6Asaf8Ap6VIABkcgGnhBjkUnAI5478UpIHRqQC+WBkgDmjb3xSfMeo47Uu4gZwMUAZtxrUdlI322Ge3iBwsxTch/Fc4/Gp7PVLG/ANtewyn0Dc/keavAKyEbRj0rHv/AAro+oEubbypP+ekJ2Ef0qlbqLU1vwFA/E/jXKPofiHSyTpWq/aIh0iuDz+uR/KoG8XanpbiPWNIKdt6ZH5ZyD+Bp8t9mF0djuHdcfWlzkkBTisKx8X6LekA3Jgb+7OuP16VvQvFNFvhkR0P8StkGpcWtyilqrAaXN9P6itLRObXH+zWTrxWLSJizgE42gn3FauhMPsyc5yBXh5mv3ifkfR5av8AYZf4v0RDjYTjqeTzmm5O45IIxnpjFCTQzM3ksr4bB2nODT9g6D1r2lsfPSVnYbk7cnGfSgnsB1p5QYHHSo3Hy5DcjsaZIpIBGM++aQ9fUmlTDL09jzTiADyD9aAGc4PUDFN2xjkADHfFTbf9mmFRngZoAZ8rAYLZpCo27Qx+tPVEQZHfkilIUcHv3FAFaPDA7WkyD/EuKmw2eW/Ain460zb7E570ANAJPzBCO3WgZAwF+U+9OIYAgN+tJyB160AMYtkZTbz14pMtjGC3vUm0sCcGkAOMDjPWgBo6A7T60m5s8qfen/MOpH0pGDYypzmmAhIxjnn2pGYAn0pBuPXr0pHby+XbHtigCKYqe+ce3SnfMRuK9O4PFIW81C0eCRTgzY/mPegBhZWHzIW75oMkbADp7Y6UmG6ZxSlfUjJ79aAFwj8KVP0IqJkwxwCDntStHE+AQCT0PQ0myQD5XLY7PzTEMbIBx0HemCRD1cfhUNw0+CXOFB/hGaqhyeA+fpQB/9k=", "path": "images/3pts_ADE_train_00017781.jpg" }
depth_point_29
images/4pts_ADE_train_00011845.jpg
ADE_train_00011845.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 120 y = 123),Point B is located at (x = 148 y = 197),Point C is located at (x = 10 y = 207),Point D is located at (x = 76 y = 182).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_31><DEPTH_35><DEPTH_49><DEPTH_74><DEPTH_73><DEPTH_31><DEPTH_40><DEPTH_17><DEPTH_70><DEPTH_5><DEPTH_3><DEPTH_40><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_31><DEPTH_60><DEPTH_17><DEPTH_3><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_3><DEPTH_3><DEPTH_40><DEPTH_67><DEPTH_5><DEPTH_17><DEPTH_70><DEPTH_3><DEPTH_49><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_31><DEPTH_59><DEPTH_43><DEPTH_40><DEPTH_82><DEPTH_82><DEPTH_25><DEPTH_77><DEPTH_59><DEPTH_31><DEPTH_3><DEPTH_67><DEPTH_77><DEPTH_75><DEPTH_38><DEPTH_2><DEPTH_33><DEPTH_31><DEPTH_70><DEPTH_49><DEPTH_3><DEPTH_5><DEPTH_51><DEPTH_58><DEPTH_32><DEPTH_14><DEPTH_44><DEPTH_60><DEPTH_59><DEPTH_31><DEPTH_3><DEPTH_67><DEPTH_25><DEPTH_24><DEPTH_55><DEPTH_63><DEPTH_19><DEPTH_35><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_70><DEPTH_57><DEPTH_18><DEPTH_66><DEPTH_25><DEPTH_29><DEPTH_20><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
4
[ "A", "D", "B", "C" ]
<DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_31><DEPTH_35><DEPTH_49><DEPTH_74><DEPTH_73><DEPTH_31><DEPTH_40><DEPTH_17><DEPTH_70><DEPTH_5><DEPTH_3><DEPTH_40><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_31><DEPTH_60><DEPTH_17><DEPTH_3><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_3><DEPTH_3><DEPTH_40><DEPTH_67><DEPTH_5><DEPTH_17><DEPTH_70><DEPTH_3><DEPTH_49><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_31><DEPTH_59><DEPTH_43><DEPTH_40><DEPTH_82><DEPTH_82><DEPTH_25><DEPTH_77><DEPTH_59><DEPTH_31><DEPTH_3><DEPTH_67><DEPTH_77><DEPTH_75><DEPTH_38><DEPTH_2><DEPTH_33><DEPTH_31><DEPTH_70><DEPTH_49><DEPTH_3><DEPTH_5><DEPTH_51><DEPTH_58><DEPTH_32><DEPTH_14><DEPTH_44><DEPTH_60><DEPTH_59><DEPTH_31><DEPTH_3><DEPTH_67><DEPTH_25><DEPTH_24><DEPTH_55><DEPTH_63><DEPTH_19><DEPTH_35><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_70><DEPTH_57><DEPTH_18><DEPTH_66><DEPTH_25><DEPTH_29><DEPTH_20><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_END>
120
123
148
197
10
207
76
182
null
null
11
75
108
47
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD1OlpKUc12mYd6eKbinCkA6nCm04UALTh1ptOHWpGLS9qSnDmkACnCkApQKTAUUtAGKKQBSijFAFIBR0paBRQCQUtJS0DCiilxQAtFFFJgFFFFIBaKXFGKAEpR1oxRigBaKKKBBRRRQMKKKXFACUUuKSkwFFFAooAKKUCjFAGFSikpa6iR1L3pBSjrSGOpwptOFK4C04dabTl60gFpw60lKOtIBwpRSClFK4C0opKUUgCnDpSDpS0hhRSiigAoopw6UXAbTu1GKKAQUtFFJsELijFLRSGFFFFMTCiiikAUYpQccmhiibd7qhY/KCeSaLhYSlpqskgyjq2DhgD0NPA5o1HYTFFOopXCzG0Yp1GKVwsNxRTqKAsA6UUoooCxgUtJS11iHjFOxTABmn0hAOtPxTR1pwqQFHWnAUnFKKQC0o60mKcAaQC4pQDnGep/KgDP4Vi+IdVsE0S+t49SjiumiKphuQ1Idrm5g84GcHrS8YrmfDGsWUHh+wt9R1JTdmMFtx5NYOpfEw2/iJLK1g3WqSbJJPUUDUGeiYxSis/RdWTWtP8AtkabULso98GtEHIyKQ2rBSqMn8M0VgeKPFlp4VS0+0xF2uX2rgdBnH9aLXFY3+MFi6qoHUmkMkUahpJUVem4ngmvJfiP4hvbjWU02zlaFIIVd9p+8WGRWZqviJLnwJpNhFeMb+GcmcZ520+Wxahc9Z8QeJNP8O6X9vuZN8bNsj2c7mqlL43023vYIHBKSxJJvB+7u5xXkup6zBc+CtO0USs9/b3DSOW5yhFV5boaXp1rMQXaQgEtzxnilYuNI+hlKsiuHyGGRx2NMnngtYvNuZo4YwcbmbGTXK6h41TRtc0TRPs+83sUZD+gOK4X4oeKW1HV5vDRUxraSBt6nG7PShRbZkonri6tpz2s12l4jW8P+tcdFplprmmX6ytaXayCFd0hHYeteHaZ4ibT/DWp6A0Ls18Rtc/w0zw54jfwvHewNEZftsXlZP8AD2zT5ClA9x07xHo+rXHkWV4skh6L68Vq7TjODxwa+ddKMumW73kMvlzRSId4PYkZH5ZruX8UXt34/QafeGTT2WMFQeGJAzUWsVKFj1AjA+vSgdacV+Y+1GKTMmgAGRXhnjTxJf2vxGlPnSGKxkV0hDYBAFe6DrXzr8QYBD8QdTdm3NuVvpxWlJXY4o9H+GVxPetqV3NKxE7eaVZuEJ7V3/nQbwizxs56KG5r5st9Wv8ATtNjSwvHi88nzSh5rU8F68NE8VpqeqXcr2wjYM2Sck9OKTpyepUo6nvMup6dDI0Ul3GrqcMC3Q1NFPBOiPHPGyuSEO773tXzvq8tvqOu3+oIztBcTl0IJzg1p/2wHsNI0+0u5klszI0vP3c4x/Kk42KVNs94BOORg9xS1k+Gb6XUtBgnnH7wZRj6kd61sVBDVnYKKMUuDQISilwaMGgDn6WkJ6jHtS11CsOHWn0zvTxQKwtPHSmU8VJVgFPApAKcKQrC9qcPWm0pzjipFY4r4h69d6IumCCUxRSSfvnHp0rxu+SZrxSskkkjlmyxPevUPi75jQ6aigBNzbnNed4JIDSeYSR830q/smtJal6C5W5WNZoxuhjCM3c4pDaPPqMLp/qeGOakij/ejLEdwR61awQx8p2Dfwn2rGTZ2KKsdh4R8RNpV1Fo1ym6K5l/dsP4a9I7kehwa8W0iVZfEmnB4zvSYZcfQ/4V7Y4HmHGTk0Rehy1laQ3tXlvxmdkXSAPu5kPHqMYr1Lpx1OfwrzP4xb4bPTJ9mQC6g+hxVR3M0eWWd5f6lKbi6nDznCknrtUHH6VOJ7LbOxkhMqtjeK57RL+8UyqW5YMRn0p1ppMr20sJkx57bvyrWXY3Wx0JlsUljLTIJGXAPrV7WxmwtVLDCcj3rh7m1f7VbZdsxjH5V0F1ffazFGzHy4U3MxqGtS11C41vUru5hvrm5Y3EACwn+6B0qGCabU74Xd9OZLqZhvY+1ZU2tqHxFCzID97FOS9SS5jeNiofggdjW0dDKx0Y1KybUpLYS/vY1PH0qm2s2UmmtcnfsWfYw749azLex3a3IzAkOrbj7mmz6Q9rYS27qdzPkfTFQmUdRHc211pE7xPmI9ia0/B7hda05FxksuQDnIrhLhxaeGEhAK3Ez4+gFbvwptbm98W2EMbuVWQs47AColsym9D6jb77fWkpxGWznuaMVic1hoGSK+f/AIgtEvj7V/M5O1cD8K+gvp1PFfOXjhlufiLq07/dUqgUeoHWtKXxFI5czGFt8KllPAB7VKi3F3lGIC+/ap2CMpVVHHIqWN9rBSOCK6W9CkSRWtwiMFlBCjpWxaWUyx70SIu2NxHWs2O4OdrDPNallJls4xgZFc82bw2PZ/Bjl/C8DMmxizZH41v4rJ8Mrt8N2XumT9a1qyOee4UUUUEhRS0UAczazC4tI5kIIcZH1qUV5n8NPFVzeTJoVxCCqqSrZ5zXpgrpuDQ7vTxTO9PHSlcVhRTxTBTxSGOpR1pO1KvWlcLDqdzxim04dKQrHAfFeINpGnZ6Cc8evFeXg5wAoX2FepfFgE6Np+Ovnn+VeYQAZ+bqeatfCaU0WoiWUBmII6GrCsyuiBifeohHuH41O0QQb92CKwctTqSNPw5M3/CWadA+AHuAf0Net65q6aHaJdzRlleYREA8jJ6/SvCJp5UkLQSMlwD+7dexwa0ta1ibW7mxzeSNFHBHFKhPWTgFqaWlzGceaR6f4a8YL4m1C6iggaOCAEAt/Ec9RR8QtMi1TwPqKyj5oEM0behFYnw6tRbaleRouEjiwPeur8W5/wCEO1gd/sr0oyTd0ROCjKyPmbRbYLqcQIHQg5+ldA5igujD5YBRcqay7IbL6E98H+RrZubcS6kxboYBj2reTtI0jsZOoxRS6gkiqFCgcetGpwRGSdFG1SAGxU99CqXACndjGT6VX1Mn7fcEHjavHrxSb1K6GUYo0VFQAL05FVoIo0u1CqcF1P0OaufKVUnr0FQxsouFI7uM/nWiZB1IhX7dK6oAhxzT9Zfe9sdq57/SpCxBMeOMA5qGRTcABuqVnFlGL4iWJbSyDgBmJAIr0j4F2MH2zUrsL+8jQBT6Z615/rNssjWTuN4Tqtek/BOeKL+1gzxQgbQCx68mlLYmeiPYiOM9sZFAGRnPFQzXltC0SySxqZjiPnhjUox1G1h7GsTAxPFXii18J6Yl9cxPLvkEaovrXz9rmoDUfEF9fx/Klw28Keoz616p8aZBF4csXKg/6UDzXicdwbhpnIA5GMVtSXUtIdcXWwxoq/ebGatoxcA+lUJQd8IAyS1aEY3DAXGK2Y0i3ANxUnmtuxRShOO2KyLZCGFb1gh2c1y1Gb00e0eH12+H7Ef9MxWlVHQxjQrIf9MxV+s0zmluJRilop3JCiiii4Hyj4Lgv4/FFtiaZLhJNk6jHCdM19G8AgBiQO1fN+h6+NIuU1KNfNvAwEhJ/gPQe9e+aDqx1fRLbUGGxpV+Ze6muhO5bRqg80/NRA08GmFiQGlB5pgNKOtSFiUGnA1GDTgaQWHg04dqjFPFArHDfFEZ0WwPcTn+VeZW4y3I5r1D4nf8gKzP/Tf+leaQD5xj8af2Sqe5cI+QCnKoeI5pFUlsdAe9OQFFLkfLn1rne51rYz77bCGLvt44qnYLFLeRfv8ADBw1Q+IJS8hQnbnBHeqMcyWUaTBS7H5fSt4q8TJuzuez+B9b0w61Pbm7QSyqFiyfvH0rd8X6/o8Oh6rp7X8X2zyGj8rPzA189rM2m3ltf24PnWziVfqDnFO1O+PiHxDPrU0fly3L73UdjgDH6UQpWM53k7i2zk6gn0rqboxwICwJZlGDXL2gBvUzwTnArfvZmd14G0ADFVNalR2My8YtdKOzAZqtqTD7ROB1wMVZuHUTyKOcKMVXv1AuLj1AXFK2pRnvblVidvuuD+dV14kjBXkSL/OtCeQG1it2+8c7Wqg24T2wLc+aoPHvWiIOtGPtAHfAokYBnYAqamlVI7hyBn5Qc1GVZoy4I+bjmslsUZGqkRyRbnOWHH1qCSea10wCOaSFiT9w4zV3VkUR28jgMN4U9sc0uoRW7hI5CyoBkYNO9xtXR3Hi+/mg+GvhRklb7SyhxNnkYFanhrx1H4f+HtrquoNNdm4umhB67SMmvLLvxDd6paW+m3bA2tkSsCAc4+tRQajMbQaXI3+gwyGVYwOhPH9aXJcycT0v4keIIvE3w90rUoU2JcXJwp68V5Va4DSKOgxVibUr28t4NLL4sbYl4Vx0JqlbsfNcdDnpWsI2FYvAjzFz2q2hYuFHfmqKLucc1pRE7eByO9UxovWgcEA8HNbNijgHJz1rGt2MjgE4Nb1hxGfpjNclU3p6HtGiZGh2QP8AzyFX6paMP+JLZ8/8slq6Ris0cr3CiilAzTuKwDpS0nTilHIpXA+NPDa2U+qra30phgbO1uxbtmvonwrpxsNFVTOsjSHO5Tkbfavn/TPDkM0+lie6Ef2mQMyuegB5r1keM9B0zSrnT7KST9yCsZJ6sPSutWRd9D0IMM4yMjqKkBrzn4f+L7W/tXt72dl1KeVmCS9x7V6CGOcYxigCbPFOBqHfTgwpWAnzTgagD808Nk1NgJQeaeDUO6nBgRigDkPiWN2hWn/Xf+lebRKMqCcV6N8S2B0S0XdhjN0/CvN4ssQT2HFV9kcdzTWEEAgn5eTVOFi0Uig5UysatIW3EFsZWqsERghYMcgsTXO0dXQ5nxEWzdvuwUhJUg47GudvNOvLbwzZat/ac0jTPiS3yR5IYuIznPJbypDjAwAOueN3xHIjreDONsPH61h3ni25vbK80+UTtp0lvFDbWrXBZLYx7NrgYwTtVgeBneTVSeiOStudA86shB+7jriqol/062UfdzhqnmTYrYGVI61UiG6/hA6NXWmWa9qiDUUk6rnArUuNomLHO2se0Urcog/Wtm4XIAZuT1qJblR2MuPa2q3akHYDGFJp2poP7UuUHTC1OyhiwHUkc/jVfU0Z7+6jD/M20bvSpKMq+UreWoH8LE1E3N1Ex6ecv86vyWWWQF+YeAf71ZSTO07xbDhHOTirRDO5uCjXDlemwVn3zNGtgUJwbgBsUaS0tzaPLIPnHyfhVmVVliAx905FZpaDZX1tF8u3UnAMyn9abcW63Lg5GFPHNLqy74oGAztcE1Xff8gh5OTkUluUtjPmT/SVdVA2kjnvSEkMSF+YcH3pJQ7XWGJJ3Zx2FTMjGRiTjNaolkTsUfaRyDjIqsjZuHwKnZGDtnoBmqVrKJJWb3rSJmakfABHWtGGM7Rk1nQnOM9DWnHjIA7jmpYLcuL8sUki9UQ1p6HI0unxMxyWUms2MDyHjH8SkVraNEbe1iQDoCMntXLU1N47HuOjjGjWY/6ZL/KrprzK58XX+mwW8N1NDbRlAUJ6uK7fRtbt9XsEuY3D9jj1rC5hKNmatKKT2xRTIA0opKA2Cc9BQFj4Ye+uJ5Vd5DuHCkH7v0rVj8+2hiuJCsnmISnPKketY7WkyQC4MbCBjhW9atadALmbZLNsTHDEnAbtXQtiU9TuvCXiF9e8QWNndQiOcZVZ04wuK93gLpAqSOGZRjPrXC+EvCOn2dhp+orGEvUH70seDn0rtjKhkCs6BsZ256VpGLKuWA2epx70TTx20DzOTtUE1UuL62tbeSWSVNqLuIzXmvi7xxEL6GeznLwREOYx0cdxTeg7npunaxbaiMxBl9Nw+99K0N2OSQRXkeh+O75rq0jmskSLBkQqB/q2Pf6V6Omr6bPIka3SM0pwFBpJXBs1w6568UeZ0weaw7TXNPvb6SwjnUXMbbCmeaW/8SadpouEnYGWHAKA859KfLcXMZXxGUSaPayc7xNj8K8+hCj5cnNbfivxOutXMMFrxbBQ209Q3esiCNdzZ9aUlZFQd2W4wvU5J6USeUF+9jBPWlkBitJXUZ2ruquJVe1idlxvUMSa5zrWxyWsL5lzceVht2OMc1PGFXyI9vOzJo1PI1C5jixHKyDYc479PrVm2jG1C2Syrg59aSrNT5Lf57b+h1/U4vD+2u9r7ab2s33e68vm0ERm2njP3ywKisy3gb7TG5GNprRlQi5DEYO04HrVcZMyFTlWrqgeayRM/bUAPANbEqhgM8DGKx4WDajFjseRWzKucBmxnnFEtxx2KuNsxTqBiq9189/dMOvFWiu2Zm6dBVWY/wDExuBngAZNQyiBvPwRtUjOcisqy+0TzSTb9qNKwx7CnXviQQ3PlQwh41OCfWrFk6iCZ4Vyc7gv1quhDd2bOjK8NvIhYvhice1X0Rmjyq8AmszS7a4tnkmlYkuApQdq1FwikKTU30GVL9cqv93GaqRqI5gw3ZAJar13uMiccYFVx80z5GNw4qSjImlCXflkEFicVaETSMMg+xqpqCFtTgYnbjNa0IbyvcVakJmfc28okkB+7trIsYwjNjsa6ach0ck44rmbcYmkAPGa1i7mbNSH7y+grTiOVzx6VlQEeaIz1xnFacXIG0GkxGjbAda2rEfdwemAOax7YELyuRW3ZDhcJwDk571zT3NobHFeJ9dGu+J0ku1Ma2uLZE7EDv8ApXuPw1uLC40FltJFeRGw6A8ivmzX76UarfxyRgK0zEMB78Vd8M+KtQ8LXC3Nk7bc5dM/epcmhnJ3dj68eRY4y7uAqjJJ6AVx9x8TdAgvVtTN8xfYW7VxzfEw6z4Ymie2fzrmJo/kPO7HavKLwi0IRlG7GTuPNQovYFDS59Y2moW17CksEqsrjKkHrUOsXpsdIurkLkxJux615v8ACy/imso7dJjMIU3EZ5XNdx4ovYrPR2kuFJhd1jYD0PWs7tXQcmp8ratN9juru0RVltEk/dr6E96paTBHcX0cchws3Dew9azZbqWQnk8jafwpbeeWF98Z5xjPtXXfUxTVz1WTXry3iNql35kO0LGQfugcVRuNQvZiHSZ2dfQ1zFjeeZa5DdTjaT0Aq6t+ImDLIAW4Iz0rrja1yXqP1nUNQgsyZJJAHOOT2rmEkUspLEqWy2T29K0/EFxLcW8ZkmBTjAFc7uIGMcdaxqtXBOx2VlfwvNcyB8B2Hlj+6gGMVe1G9NhpxuLS7bzhgqc9K5bQrZ729WDzAocc1u6/pSWGlOJLhfMA+VAc5pRdkU11MKLXL621c6hBcP57HJOeprqYdXfUIvPkk3zP80m4964IbdhO4BgOBXQ+F2S51aC1lICOOaUZ2eoWubFjPLJrkiNjb5QIA+tdJbfeGabeaVFpipOIwjN8oI7iktmBxg5NE3dGsEXrvd9jkCd1xUcUWbeJGGAqAVZizIpU4wexpzxM2OigDAxXLfU60tDhvEWBf3BA6IKvWXy2kT45KiqniJSl3PxnMY5rUscGwhBxnYK3T0MJLUSRcyB2H8OKwLfcblcE4DmujcLng9BWZbwLHOq8cuTVxIEiIF/EMYAPWtmWTkcVl43XsXsxBrTkRlQHGcnFEnqVHYrysQxP0qldfNd3WTjKjn8K0Z4jG5VgMnHSsq8DC9uVB7DP5Uh+Rx88EhdjHygbg+9dDDdJp+myzmEtKoXb6VlSZRWAP3mx9K0HZ4/D12hXcGx8xpzVokWszqrOVbi0jkjOdy5k+tWgRnPasnw/Gw0uNum4AYPb1NaJbbPHHtwhQnPvULYoLpyCpx3FVAczHcMEDirV026SIdi2DUDMFlJPLYpFmHezltUjUcZyPpWpEzLEjF8n0rIvNrarAzj/AHjW3DJCY8DPy9KohsjuHB3kDqOlc7bNmWQ4/ixXRzFGyRwcda5iykKvMCcnzK0iQzRgG7VE548r9citm3UA8nisi2UfaQ5XtjNa0B+b7uBnFDEacG0Ljnk1t2YAVSpx61h2zZOCfpWxbk7hg9BXPU0NobHkuu6jJLf3tvIFZRO+GA5HJrHjl28Amp9WbGr3pPXz3/maplst9aqL0OaUtTXsNUnsZD5Lk9cA9iaZNcNNIS7ksWyaz1O0g5qVXAJycZ71eiKjN2PRPhx4qi8MatPNKheOVAh9q9H8TfEa0vvDVzJaWYnCYLA9h3NfPcF3tlwW471r6lq5TShaQZiSQDdj+IVPLF6g5N7HNLGMcsc0+FRIwVmOAetMbJ6UxXKnIpGZ0umjRY7MJdSlZOd2DWlaQeHLhlzKQ69ietcWx3nPYetOEhDhgvPQYqud7BdHoq6X4dnXaZtwBP4VyF/pltHfTC3lDRBsD6VBBLJEf3ILMwyeaqrvMr7twOf1ofmaWVrm5biyt7wSxhvKCgE9CDTp4rHUw2ZnMx4UseKzZBIyoF7DkCkjgkldVQlWB60+gNDhpscZeJmG4j5Sa0NJ02CKVWa5KMOdwHQ1WlUNNlnzgcmlgS7uZja6fp1zqEix+awt1ZmVc4yQAeMkc+4rN6bj0SOva+luNsUk/mpEuBmprOcHB6NXI2+oyx381tPZS2s0SfPHKSGBBHBBAI61o2uvbDv8nO31q7XWg4M7yFkDgYye/tVmXy1XrwPSuKHiqTY0i24JAxiq03iu+eQNFbrsK9z3rFwOhSsWvEinzZcAHKgVZtUH2ZDu6KOB9K4zUtdvZpA0yAZHb0qCLWroKFDsO1aRVjFz95nazygAHpu4qlgpeQgNzuya506hqBt3dUMkAYBm9DS20+qXVwDbwOzDnpWikS5HVwsn9qxKxyOcgetajssjY2HGeTnFYFvazGOK4um8mdDkj15q5carHGALeNnc1MmVzWJb5wspcOQePfFYF5fM17KqHJbHPrWg813KhzB944NPtNNnSQyS2wOOlZuQ4tt6HNSQvJgbW5PUCtMBpvD16v8AcwMVt3MqpGIfITz3Gdo6qPWsi1F1bxP5sX7vktT5rhLlTNTSZXj0W2UjcxB3eoFWTeF5SDjHasu2nkTpE5Uc7gOCKlF/Irq72Zx34qk+gnKJqPKjSRkHowqpdyCKQPnqSKz59Ultgsi2xeN26elZ2p6286xyPAYwnIHrStqNSjYtTt5t7C444yc1eSYRZJIxXJnWZftMUoT7gPy+tWIddl3P5kYIJ/KqRPMuh0txcRsmMgZFYFumZpCpH3u9QvrjSRnEQBBz+FU4dSIldgvWtE7EuR01uWLKMde9bETMQBt6VzEetQiJUKkP7VrR6vAUSM53+tN6gmbtuoGSx561r2ZyARznNc5Hq9tGoSTG49quR69AoGwY2qcCsZq5pF2PK9VOdWvD285//QjVQdc1a1JW/tO53Dkysf1qrjFJHNLcfuJNOUGQ7SelRrmgFlORTbFcmZBlUjOSetWLyTfBCMglRtIqipYPkHBp7EkAj0zST0GmKwKkYpFj3MAK09Q0i5s5FZlyrgkcelQ2Nu1xLHGv3mOKpxC1y/ZeFtV1GNWt4tyNXS6F8NL67lWS+/dxDjb3Ndv4E0uXTbCTziSWPyg9q64Ege9VylHA3ng/StB0ue8ZclR0NeWanPGtz+4XAf5vpXtnj2EzeGJsMQFGeO9eHyWx+wlnz5m/AB64xVPYLHSeDY4NW8T2kDKoV1JZcccV0/izwalnpN1fWzFfK5OOK5HwfBcWfie1uMEeSdzD/ZNeweJMan4Uv1iHLJxjvU3G9j54EkvlnkkN71raBGJbPxBaGe3imuNMVIRcXCQh2F1AxAZyBnarHGexph0K5N8tntO4nAOK7zRfhXZanaRTalcXcT7du2FlHf3U+tRJXQmtDidUlWW50+1iuY57iz05YLiaNwys/mMwAYcNtVkTI4+TjIxVNRKCRu4Fdp4j8BWHhi7gks5rqSGWMhjOyk59sKKybbTYZcKqM2fSqj7sbMukjGRZyrFW7etNIn2ZZ1Htmuxj8LpJlSSinuRipv7A0axRrubdOI1yFHQ1Lkuhta5581tczHbGjS7u47Vt6f4WmVBPeyLCQwKoT1rdvtTWBo4bO2SGN13Ekc9OK5qa5uJTam4ldnE/P5UeZlKNjpEutEslfBMrPIFZB93P0pG1/BZYII4lboUABrnbSznu3cQpgCYszYq55dlp2EeQz3A7A8A9aTVxJGj5zTr5sv8Aq8cs55/CmG9iWZIrYb2JHzYrDP8Aa2tXMq26wGO2gE7+dMkKRoWVMlnZR951HXvXS+DbKYalf2+qWscc9qIiAp3ZDgsCCCQQRggjgg1m2NNN2N7T9NdpA8oJ7+1W9WvEsLFmABYDjj1q3c3fkwbVwD3NcRfXz6heSBm/dLnHvShHW5reyKdvc7L157lirup2kmrS6zaJbbJ5gxbgisLVpcW4bvI2APaseQK6liMnsBWjjcwnC7O4XU4JoAYJlSNDkdvwqV9QEseVKqvSuMuCj2cCxfIGcA4NaEIaArExLR929alqxMadzopLi1SItNPGApwFHesTV5tPvLYBW+ZSFGKha0huGWHD/ezuPb0qSLSlXAaMkBic0K5qqVjmZkKTMobIU8GmgMehrafTY/tgAbIOSxqVNIiTO45B9K0RHLqYW2QJnoKjAb1Nb8mlRKhAY1RSx3s2ztxVBylQFlPerKTSrKCuSRzzV5dMbg5HNXl0ogh8DHpVrYErGQkhaTzGdi+emelX4Z33jgnPWr8eiKzeYo256g1dTSGBzgYxnpUSZojj78lr55WXKl8fWqD4LkjgE8VvzKsIMsi8CQkCsQruO/oPpSjuZTjrcYUOeKfEFBJarFtEZpdq0PB8xBGDnFNpXFykGxUkUnlc5p9xAYlVugauy8EeEF8SX6xOMx5+Y+nNavxG+HT+GoVv0lzbtJsVOmKylON7FKnoL4gjhumgVMBfL4/GuGtdRttMv0V0kPkSEMVAycH61fm1h2jj+fkIBWlYnWTpukSaD/x6M8p1QnPkeb5rZ+04/wCWfleX97jG7HOa2qycdiHdHpfhTxDaeIdONzZxzRxxyGJhKoBLBQexPHIrogea8u+FV0sWgXSHvdsf/HEr0tXBUHsRVRd1djTItUtFvtOkt26EV5B4k0GS0lVlGF64+lez53LjBNYHiDTo7m1y20EetF0Vc5vQIIn1KaQqMNbKB9c139lbr/Z5hxlWFcdZC3spGPLPxgD0raGt308Yis7YqOgbFQ9yraFg6DaLqwvJNigDvWemtXrWb6ja3dusSFzHZNBncgJ5ds5DY7Djgepp11p9+unXN/dS/NDE0gX6Cm+G9E0/WtFtdSuBcfv1LSQCUiNz6nvnp0PYVz14zlbl/Ox6GBq0KV/a+XRS01urPq9LPp5bjNfv7TVra0ku42jib54weprmrjW7a0t5Tp9mMopO4jrXUfEBBjSztAAkcDH0rgH5tpc8/KcVpZ21ONWbbitDYkv57m3BkcANHvKjtkVUD48PxoSSfJ/xojbfaoFXcfKAx+FPitlXS4hcMFUREEVLSKRi3ay3N/FBEpc+WPw4oawtbC2ibVpd04bdHGnUnHerFzqXl+XbWsQUMnMnfoa5yXzJY7aRn3s0+Mn6VSZnIvT6vPdYjiUW8ZkIIj6njvT9O0l7wRsqZzg7j35NWdL8PSzSv5o2lJg6n1GOa7eyso7aNVSPao7UN2CKORlOmaPqepWl49oiXejpEi3azGJ5BdRvhvJ+cfLGxGO4FafhzUrG717XLqyULa+XaRoqlyoKRFCE3/Nsyp2g8hcVqal4f0bVJluL+z82VU2BvMdeMk44I9TVKDTNL0d2FlD9nE5AI3s24jOOpPqai12TyPnuV/EOoMq+Shw8pG4+i1kSJsi3KMGU4T6VI6tdThnPDS7W9hnFMmuRLfrKD+6hQrj3HetErGhzutSg36xL92Ndo+pqnuVYY/72eaZczGa7kk9WNR7z0201uZN6m7Y20VwlqvlHAJLfhVu4nEU7Q7QQnAqlZXpFkI8dORTGkjZyxGXpvc1RpC/lihbcihn4Jx0oGq+biEPz16Vl+ZIDkjPpSxLN5h+UbetSNsuPIDeLgYH86uou5fmrOIzfof8AZ5rTToKpEMbME2E+grIt25bHc1qzn92/0rJtx8v41aRDNCM5YZJIFaCNx3ArMh/1je1X4m+WhgkXom3LgN1rSt2JjB68HNZMArTgyQVHcYrKTNEjhtRkeQvDjjfT7TSpbyNBGnAPpW1LpXmXrIykEZxXsPg7wpbRaJHI8QLsM81Ep8q0J3Z5OvhOTTrNriQc7OK51bB5J9pHJr6P8TaDHc6HJHHEA3GAK8+g8KyfbuYj0HapjV01KsjqvhJoC6bplzLMmZHkG0+2KsfGW1S68Eb2OPLmVhn6ius0aH7NAEAwNorA+JEP2vRY7XsxLfpXO9XcEfL5UL94jpirEfh/7TG0wuduTkDy8/1q9DolxcLumXy1Pciuhg0v7LFHGwOCdvPXNdtSrBPlkaU8DVqw51tr13tq7d7L+rlbwokmlxtAHLBpN5O3HYD+leit4jtLcLGmZJQMACuWsLYmUJtAkzgfStLWtIjsfDV5ewnbdRx7lb3zWl9NDD3S7J4gvrrK20JBHpTotM1C8QtcysoPY0vg1t2hpNJ80zdWroWfdjJJpJcyFKSRyHiWyOj+Gbi6glJmWRQCfQnmus0ZgdJtmAG7yxlvWsPxkm/wle8DgA/rWl4flDaFaNnPyU+WzE5XRb1lmbQtQB5zbSf+gms3wFNu8G2AboExWlqHzaXeKe8D/wAjXPeCr23s/B1t9okC7WOFJ5PNFlcVrom8fEC301tpOJiePpXEw2EssUhk/dpg9fSuk8T6vJdwW8ksRSES4iJHU1yl5fzXSSKWKrtxiobvobQ0RfFykFkgjUGTZjPsKoyytLpgeQkkxEkenNNjbbaxAHpGOtOaCZ7SNEQMXTj6ZqLWZRlyAy6jbwjgmPH04rY0fQQtvGLoKzI5cVfsrBPMjlkgHm4A+lbKRkKCEAo5rBYbFbbQMfpU7bgv3jx600mVR8oqvNPIcIAS3fFTa7GUDNPLFJcG4dGTPy5GF5PBHc1SuLhbqHTZxg5uyBg8cCr0kdtKlw6KryRo2SOxxmsWyxJpGioowftDGs6VOUHr/Xmd2NxNKskqatq+iVl/Krbpd3/ndufs9hPMw4k3ov13daz71fJsFK/ekB59q0r8eVdpZfejjbdx3JNY2szYnWNDhAp49K6Tz2c8wxtGBwakCgqOOtRoC2c1MB8q00Z9S/alQiAqMGnvGBKWAGD0qruISPFW1VmOeoFDZaZIiptwxqVXjCgADrVd0bA4PPWhIm44OQc0hMlk4vBj0q/GflFUDzdAnsKthhwM00IJz+7b6VmW/wB38avTN8jfSqMOMfjWiEy1CcTSVeiPas+PhyR3q3GSKTBGlGeBWvpw33duuPvSKKw424re0EeZq9kvX96tZTNFsdNcaCf7TLCP+LHSvS9Ki8ixijwBgVVkslM+7A61pR/KMdqxauZ3HyqJIyh6VUWyjEu7bz9Kt55ozzUtIOYkijCr1rm/GiF7e2RRks+38DXRhqo6lbLdNAWGQjg0uUEz531nWDpca2kcCu8ybhkdK1PDqNeyRTTgkqNwQnIzjrXM+Lvn1W3Ze8QHH4V1PhMHy1JP8NdkaEJPmZssZVpwcIvR+S66Oz3V12N6K12Xe8KKd4j+bwtqC+kJ/pVlT81VdbYt4fvwe8LVu0cKepW8ES7vDsX+6K6PfXJ+CHI0GIf7IrpS+1cnA96iNuU1nfmM/wAVfP4U1BR18v8ArTvDtzHb+GbUzOAFTmqetalb3FndWO0lCnzuDxVTQdN+16ZBNLMfs+MBc1DbuNL3dTTvdZlvI3isImaPad7H+73qj4SsLO/04XrqSgkYLGTwMGt/yorexmjhVVUxsOOvSsHwGdvh4g9Flb+dDjrqTeydiXx3zo9mgACrcAqAOnFefO/D+uCK9E8XKstjZoz/ACtcDn8K4u00pZrqUTE7A5GemRSlZM0p3aHxWDmO2QHIaIZPpWzZ2jQRRqGB2DHNOhtYIowockAbRz2qytvE3PmEfjWTepqiRAS2SVz7U87ieCKi+yRqPlm/Wo3h2fMLg4qbDbFurhoU4OWPGBTIY3KtI5x8p/lUQCxSPNO2Y1GcmmabcSatp/2mNgq5YfUVXQlGZoHnf2VqWTuZyxJP403SYT/wjtrOcA27ll9zTtDikksL0I2PmK49aiAnttNs7IjgSsXA78Uxle3MksgnkxhsuxPbmuc1SUSyF19cVuTs8OlsucE5FcsZC8RDdRxVEyCzTe0lWUhDJmo7AYB96uRYCMPSn0JJY7QNEParaQqiikt2HlsKkY8qKYxk21XAx1pAQGIx2pbjBkQ0YBf8KQFbGZc+9TDrSNGRJxRhgwA4NWkTcikf5WFVo+lTygjdUKdaYizFVpTxVSM81ZU0mNFqNsAV0vhcbtcs/wDroK5YHCD611XhM/8AE8tP98Vmyuh7eTlvpUgfiq28g08PUWMicPSh6g30u+lYVyxvpGIIFRB6dkUWC58x+IF33Vsw5+Q/0rrfDKbbMNiubv4TPNa/7ldZpCeTaKPzrspK8QqOzNfcATVfUPn025XrujYAetRTXkcIJB3N6Vnz3VxPG8mCEjBYj2FE522IjF31K/hq8FlpaRsOSMBa1Sl3ftuZjHH6etY/hWSK+t3uGT+Msv411BYgAcYHTFRCPMtTWc+V6Gdq9nDB4dv1jGWMRy3em+EpN3hu2HoMCrGrndot4P8ApmaoeFGxoFuvpVKNmZ83NA6CVv3Epxj5G/lWF4VljsvD4ebhS7Nj15rSurqNEaMnLspA/I1zNrY3ItYIn3bUzkD60qs7bDpRcty/qF7LqrorRgW8bbk570BgMD7P+VRrEy/8s3/OpVjcfwsK5pPmd2dUUkrIkG3A/c4pyiLOCpBPtSbGAzlvxpjFlQvngetQDY5zAhXhs5x0qiPNlumzxErAZpGmluJF54zjFXY3RY0i3qGH3xjvVvRCtcp+JnQeH71QTvRABge9V/DEQ/4RyD94V+90+lS6+c6Bdgnd8oyfxqDw8XXw/EFHPP60vsjQ3w6oiivHZvljbf8AUVQadrpLe5Lkb5nOMdBWgI5NPgu4cZZkBPsMVl2TgadGZF4Q5zTWruJszNbLKjxB/ukEfjXOtxu+taGq3LSXzsp+QqDj6Vnv94getWS2Wrb5UX1qxG33veoYRhB9Kki+9iqEjQt/9W1SMTvT261FAcKRUhP6UFMSdsyx+1TKN0ij14qnM/71a1bKAy7H9xTirsiTshJYNlwOO1LcWxSVflxkZrpr3TP36ELwVFO1DTP30ZC8bRWljHnOI1CAxShcc4zVJOK6XxTbfZ7iPjGYxXNL0FJmid0Soec1ZVgapoasKcCpZSLJPyqB1zXWeESDrlp/vA1yKHJFdb4Q/wCQ3bH3qGU9j2UPzTxIKpebwKcsuaOU57lzfzS7/eqvmUvmc0uUZbD0/fVQSU7zKVgPD7e1MyQynAVFxzV37TJjybcHGOoqjYb7i1hAbCY5Fa8KpCPlHNb04Smuxc5xg7Ba2pVQ8x3P15qxcECyuAox+7bp9KjMhNNlfNvKPVCP0rZUlBdzn9o2zH8HHbYOOwY4/OumEmDxXL+FMiyfjksRj8a3jKqqWZsAdamk/duXUXvJEl+2/TLoEHmNv5Vl6ddCy0G2hhU+YyffqxLc/aFaJCdjDB+lVINN8iNY1mbaBj5u1Z1Ki6GlKn7tmSxGdQDIwdjzk1YWWUdTgUxbZgm0TqR70ogcn/XRn6muVybZ0KKiidZnHPBzTxKx6KBUYSReA0J/GlxcY4WL86kZJ58ijG0YPrWZeXhuJPIRWA9R3NSXVxKA0JVVJHLDtUlknlRb5Ey2MKTV7Il6lVrhLGwluyvMYyw9DVDwpdvcG9uZ8s0j5wewq1r8c8eh3ymLCFclvWs7we7C3mYxl84BApWurjRs666S6Jd7BgFfzOaj8LjGhxb/AOElj9BUmpSK2nSxtC6Ajv8AWodLcR6HKArHllAFHQCO3vvts2pzOOH+RPoBjFZDMYvDjoxVZADinWLyCCcxDIEgLfSqWq3KjZb7eWVvwq+hLOYnlDzKc5woFMflvekKgS5HTFKBl8+tNEdS6nCj6U+L760xelPh5ce1UM0I8BqVjzTFPzH2prNhgKBjJz+9H0rsPDdr51grkAnNcZOcSiu/8HENpYB6g1cNzKrsdNJCGCEgHCinSwh9uQDinA5xT85IrWxzHH+MbYuQ+M7UrggeK9U8RxCSwlbHRa8r6VEjop7Dl61KDUKnLYqQcVDNEWUNdZ4QJ/tmH2rkUNdV4Rb/AIm0ZqbajlseseZ705ZPeqSyU8SVbRy3Lok96esnqapCQU7zKVh3LwfPeneZ71SWSnh80WHc8f0N82Kj0ArVD1iaG2bJP9wVqbhXTR+AVb4ycPzTZH/cyf7pqPfUUlyoLRLyzDFXKyWpCu3oQ6GkcGmGUvje5Iov4by/aP7JII0X7wP8VP020NtZm3uFDEOXBHatIyRbBmIj3FcEqllZHYqfVmXFbavCoG6NlqcHUi21o0Ye1Xl8lhyr4p2LVRksy1i22axl0Kafat202wIqQllwGtOParCi33ZWdhSsIycC5Iz3oArZjJO6B147GhTAZVhZpEZupJ6D1qeULFGXN18ijJ96xxI9zLvBYyScHPYetUkS2X5Cbm7IAxCmFVv7/vVq4K7WiZyo4xjtVS0Lu6RADEWcZ71dCzEDcF4qW7lJaGJrakaJeH7U7Ls+631qj4SyLSX995fI5rZ1+Nm0K8OxSNnWsXwmgNtcKyBsY4PpVr4RHR+WZmAa4WVc/MKq2021LsRuqKJSBnvxUzEWtldXKoEATAArCs/JXTGknUFiWIyfWpSuAmmHbDMv96Q/j3rA1mQPq27oNmAPrW9I8EfmsRjywrgD6Vyl0++4RuzJkfnViZRfiUgUsYy6/Whz+9YmkhGZVH0pozZdC805OHqz5DbwMVEUMcrA1rYESI/zNQ5+cfSo1BFKc4FJoYT8lT7V2vgyY/Z2jrj2Qsoro/CrbJWFVBamVXY7tZDThIc1S8zpTw9bWOdDNXIfS5s/3TXlRX95+denak+dPl/3TXmbD9431rOZtS2YwDDU+kI4qRVOKmxomPTtXU+EzjUkPtXLxjBrpPDTYvkNSkOT909IWQ4qQOaoiSnh61scly8HHenB/SqQenh6lody6JDTxIapB6kV6LBc8p0XiwibkBlHWtEvg4P4mq+nW8NroccjzBnMeQCelVnn+0r5SnCOMZqqdRRhZm86blK5oI6ysVR1/OnpYfxFwTnOayl8P25UbLl1c991TJokqfd1F+PWuadRyZvGCSNZbabOVbr3o8q8BOGBH0rPXT9Sj+7fk+nFSCLV41O24ViPWsi7loS3oJCqGxSm4uh1tg1VY59ZyQIkI9zjNT/adUQfNaIx9jQA7+0Co+eyIxUY1e3diptWHrxS/brxGBktCB7DNNlv5LtWtYbcI7feyuDimlcCtc3iXlwnlpi3yAuD1NaXkxWjn584Ul2PZcdKqLYy2rrHNHhQMg4rJ8U6kbK1/s+NszyD5mzyB6U32RKN60ubcJvdiN33SPSrQurVwcTdazNNktItMhS6QuPLABAz2q2n9lmMBV496lFEWqtE+j3UaSg7k6ZrN8KRuDPGMHOAauajHp39nTmP/WY4Gar+GXMNxc7sR4Ck7uKq9oiL+sBv7PmjDKAOuDWJbwi4sMMQApIFauq2lv8AYLqWO43ORnG6s/SYBcWILPtIJJGaFsDWpla5J9gt8H5mlTFcysjSYDcbVCitzxK4KRDqUbmueB4FNEPcdJ94n1qW0XNwg9xUOckVc09c3kY/2quO5EjphbEupx2qheW5WYn1rfVORVa7hDtkCunlRmpWZimBtm7FHksYy2MYrV+zHycUgtj5BGKTiVzFOGAsAPxrY0RDFctUVtb7Tz6VoWyCOXI700rETdzaWTIp4kqkj8daeH461oYjtQfNlIP9mvPXU7zj1rub1s2rD2rlRBlzkHrWc0a03ZFUQtjNTmBhEDjrWoLQGPgc1M9p/o6rikolcyMSONj2re0FSt0hqGCzweRWpp0PlyZxjFCjqKU9DplftUgcd6oo/FSiQd6to5y4H9KeHqmJB2NPEnuKVii4HqRXqkJPeniT3qbAedWRju9MhhYqrBMHJrUitINgw8WB0Gaq/wBjQEfKrDHoaSLQ4yeS4x71y3PSWhe+yoPuun50phVRneMd+arf2RGOd8nH+1Tl0lGbAlfH+9U6WAsKf3nDHAHFPiMhduDj1qH+z5U+7McD3zSi3uUB2XQz/u0hFsSMp6nP0pRJKSN5474qmsd6GB84N+FLNLdpEzNgovLGmlqDLE928CryGZztC9xUUNjc2YjvZ+ZZD0PoKz4N17epdykohPyr7CtbVdRaZcgcfwgU3oJDrqZ765DEYKgYX1rzjxCS3ia538kMK76O5KhVeFiR371wmuYfxPcHZtyRxSjruDO30hozp0e6PdwKumS0UYMAH4Vn6VKkenwFyVyOOM1f+0wZBZ+g54xSGiO4FncQlEhG4kdqzY5LeHWtREqlo1CcCtJ5BFDLOwARRn8K5zSZWmvdSnf5vMIIBoA0b6SzktSIMqW6ZrMAMGnmbcQqPtyO4pb3fHLE7AbN2CAKytVu2j0soGwJJCAKu3uib1KOqzG4thNyA8xwD6YrKWr2rS/PDEpG0Ip49cVS6GkiG9QP3hWhpI3XyexrP6mtTR1BvFNaQ3Jb0OvDUhANRhqXdXYYj8DbS4G2m7uMUbuMUATxgDFSoQGqsHxUgbvQSy0Hp4eqoenB6BWJ5DvQis82w3Z96t7uKbxSeoJ2HqgCipSoK4qJTUganYTFVMCrEXy1ADUiviiwi8snFP8AMqkshp4kNKwi4JKeJKph6eHp2HcurJT1kqmJKer1NgOWWwl7Xj1ILO8U5W7OPem+ddj/AJZCpEnmCc29cB6Ii219ni5X8aXy9UXO2SM0ovGUjdATUi6gAeY2UUgIxNrEY+6jfSlF/qajBtB71MNRj/2gfpUi3qEg+Y/5UAUm1W8HDWT+vFRLePq95DbqGjhBBk+lW73UFEccEMmZZTg57Crdjb21lZuZl/fO2Aw9K0WiJZIbSMyTeWwMSkeWR2x2rPubqC0uVa4yAwyBirENwTOII28uNTls9zVl0gm4kSOTHQms3qykip/bWmOM+cFP0NcN4gnhk8SSSwNuQ45rv206xfk2sePauA8UxRQeIWWFAqbQcCnAT2R2WjyQjTYRO6rkfLn1q9J5MiBUdCXOOPSsnSrOC902ETg4UcEVoWtrFbO/lA7VIAzUlMXVFH9l3ERZcrFjGfyrA0BQ0tzngbV61patZRSJcXHmNuCZx2rL0tFna5RiyjYpBX601sJm1Dpy3N7HCxDB36Zrh/E21ZhGh+VZXA/Cuy0uEWmoLdecxS3+Zgx7VxWtutxtnUYV5ZCPzp6kSMhmdnBfk4FO49aJPvj6CmnpTRFhw9a1tHGLgE9qyB90fWtjSjiUn2rSn8QnsdAGp273quHpweutszRPuNG41AHNPDUXCxOGp4fgVWDU4PxQJotBx604P71VV6cH5oFYth/ejdUAel30CaLAanq1Vg9PD0xWLIanB6rCSnb6AsWlf3qQP71TD1IH4oFYtB/enh/eqgeniSgVi2H96er+9VA9OEmDQBkDU7Jv+XlPzqeO+syMean51T/sDTR0iP500eH9OBwFf/vqvN5j0TUW5t84EqY69RxUwnhZeJUIrmtR0qzsrYzCWQHoBmq0E0KwElm4GKtK4HXbYzzuGD7jio7yW3tLfzHwewAPU1hWsHmQiWSWQKeRzUq2kPmbpJWdRyoJ701EQlvCZZmu5EZT/DWo10TbpNu3bfl2ntSosyh2G1oSMAelRzWz+Q7wKGRBwO5alJgiaGz82LzJM7nOTUv2KNejMv0rF+2a9GADbqV7AU7+2tWQfPZ1AzZW1GcrMwI9a4jxXC6a/hmDFkU5rcPiaeMZmtcfhXOaxcnVL9boArwFwaqIPY6zS3kj0yHYQOxFa0jtb2hVArO3JBrK0JFNlCW564z9ahuvEtlDcSRMvzIdpzU9QRYvJpmsJlYKMqc1k6WTELlh18tR+oqb+27O9jeKNfmKnFVtMlVZboOePkH5mmBo3r+X4X1KdG2bikYx6muNvVYadaf3TuwK2vE12LfT1sEJ/eMJDjpxXONcvLDHE/3Y84/GhdSWyNxhlBpvFOlyZAaZ3pkMcuDxWrpnG41kpw1a9jxEa1p/ESzUDe9KH96rhqcDXSQWd1O3e9VwfenbqAJw3vT81WBp4bmgCwCKUNz1qDdShuaBFgNz1p+6qwan7qaEywGpwaq26nBqYi0GpQ9Vw3FKGoEy0Gp4f3qrup6nNAi0Gp26q2/FLvoAtK/vT91VQ1P3UCP/2Q==", "path": "images/4pts_ADE_train_00011845.jpg" }
depth_point_30
images/3pts_ADE_train_00013294.jpg
ADE_train_00013294.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 15 y = 149),Point B is located at (x = 151 y = 153),Point C is located at (x = 185 y = 206).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_41><DEPTH_41><DEPTH_63><DEPTH_31><DEPTH_29><DEPTH_83><DEPTH_43><DEPTH_43><DEPTH_22><DEPTH_17><DEPTH_44><DEPTH_25><DEPTH_41><DEPTH_29><DEPTH_74><DEPTH_76><DEPTH_76><DEPTH_72><DEPTH_58><DEPTH_77><DEPTH_64><DEPTH_44><DEPTH_44><DEPTH_1><DEPTH_7><DEPTH_17><DEPTH_49><DEPTH_64><DEPTH_20><DEPTH_29><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_61><DEPTH_5><DEPTH_17><DEPTH_17><DEPTH_58><DEPTH_6><DEPTH_22><DEPTH_44><DEPTH_25><DEPTH_44><DEPTH_25><DEPTH_57><DEPTH_25><DEPTH_36><DEPTH_15><DEPTH_38><DEPTH_11><DEPTH_64><DEPTH_25><DEPTH_44><DEPTH_45><DEPTH_38><DEPTH_67><DEPTH_29><DEPTH_74><DEPTH_40><DEPTH_49><DEPTH_25><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_62><DEPTH_30><DEPTH_49><DEPTH_29><DEPTH_49><DEPTH_17><DEPTH_78><DEPTH_64><DEPTH_64><DEPTH_44><DEPTH_77><DEPTH_17><DEPTH_20><DEPTH_20><DEPTH_30><DEPTH_58><DEPTH_9><DEPTH_63><DEPTH_3><DEPTH_51><DEPTH_85><DEPTH_82><DEPTH_62><DEPTH_30><DEPTH_9><DEPTH_0><DEPTH_98><DEPTH_98><DEPTH_98><DEPTH_32><DEPTH_18><DEPTH_8><DEPTH_10><DEPTH_14><DEPTH_16><DEPTH_41><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
3
[ "C", "B", "A" ]
<DEPTH_START><DEPTH_41><DEPTH_41><DEPTH_63><DEPTH_31><DEPTH_29><DEPTH_83><DEPTH_43><DEPTH_43><DEPTH_22><DEPTH_17><DEPTH_44><DEPTH_25><DEPTH_41><DEPTH_29><DEPTH_74><DEPTH_76><DEPTH_76><DEPTH_72><DEPTH_58><DEPTH_77><DEPTH_64><DEPTH_44><DEPTH_44><DEPTH_1><DEPTH_7><DEPTH_17><DEPTH_49><DEPTH_64><DEPTH_20><DEPTH_29><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_61><DEPTH_5><DEPTH_17><DEPTH_17><DEPTH_58><DEPTH_6><DEPTH_22><DEPTH_44><DEPTH_25><DEPTH_44><DEPTH_25><DEPTH_57><DEPTH_25><DEPTH_36><DEPTH_15><DEPTH_38><DEPTH_11><DEPTH_64><DEPTH_25><DEPTH_44><DEPTH_45><DEPTH_38><DEPTH_67><DEPTH_29><DEPTH_74><DEPTH_40><DEPTH_49><DEPTH_25><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_62><DEPTH_30><DEPTH_49><DEPTH_29><DEPTH_49><DEPTH_17><DEPTH_78><DEPTH_64><DEPTH_64><DEPTH_44><DEPTH_77><DEPTH_17><DEPTH_20><DEPTH_20><DEPTH_30><DEPTH_58><DEPTH_9><DEPTH_63><DEPTH_3><DEPTH_51><DEPTH_85><DEPTH_82><DEPTH_62><DEPTH_30><DEPTH_9><DEPTH_0><DEPTH_98><DEPTH_98><DEPTH_98><DEPTH_32><DEPTH_18><DEPTH_8><DEPTH_10><DEPTH_14><DEPTH_16><DEPTH_41><DEPTH_END>
15
149
151
153
185
206
null
null
null
null
105
74
24
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDxOO8ZgFkOB0DDv9aTlS8cZYuBwV4yD/SqUbBG5YFSMEEUM7/wucDoc9qXKBeuLvMMUUWIvLXYzJ/y096jMZeOMhcKRtQn1qOG3mlUMFDL9elTSTh4GgQEvuyfYe1VFRAiSPLsrKNqt8xHXj0qBzhyVY4zwKuWUCSEF5hE2fkJrUk05JIrd7cIXztkAOQD0H+NX7PqS5GZaMpwBxngFexratY5IYHRiTMRnb6gVn2wNtcSHYqOnDoRnkelTJJcJOkm/eznB56A9q55aMpanSaPNeiNsxyFGGUfPA9q2Z7k6fA00sqq/AKIfmxUOm3Hk6YvygRop2huP/11xd/NPqd1JdsWSInaMcZH0qYxbHdI3Wvd90bgbyqPlNz881u6PqH2jfBKxA527q85kspQ4nJYrn92T3qeDULqFdjlwTxz0xROm1YLo9LQeY0UqF2ic7RIh+7jtW3HMjkrEcrg/MRyK5Hw7ewiYwxSkebh1iP64rqkZGBVQVDHo1c89zeOw2zaaBZXWPeAc4Ddfela/MV28iOYpHQAv/EPpVYIWzAqH5SSWU7Tj29aVZoY3xc3EGSuBvbHHrRZvYrQ0Y4IplczCKUuB80yb2/Dmqtz4e064clrUK4HDRy4P5Yq3aW9pJGwglSTI4KOMk/SlSzJYgzywvj5gec/hScmtx8qZgnSLmC6n+zancRYTOJ48jH1zU0kmsrN/o0EF3bsgwYn2n8sVsi3uooZnUo4x8xHdfXFRQM8EUS/ZvmUZAPp71tDEShHQynRi3qZA1poebuwuLdQcFsZWp4dY0+427LtQSOQwrXlu4bhVhO+NQcsg6E/SoLqzsJLSTekUhxwJYxn866qeZ1EtrmMsJG+gxSCAUcNkdjzRgjjn8uarWnh+Hyop0h8tSmSIJTn+VRfYb2OUhNQeNW+4Jkzj8a7IZrD7SsYywVT7Jewf/103B9apSNrFsxCRW96PVGwf5UkesweUWuIpoWVtrptzg12U8dSnopHPPDTjuXiD60gz601Ly0fGLiPJ5Ck44+tTjawBTDr6rzXQqtN9TJwa6EdNK1MUOf8KaV9yPbFaJp7MWpHg+tBB9akwfSjGe1VZoCLB9aMH1qXb7UbfakFyLB9aXHvT8H0owKLhcZikwfWpMClx7UXC5Digg1Jg0Yp3C5Fg0mDU22kxRcLngSRFo2Y5wO+KauAOVJ+tWIBcXMgiiYsT1XoKZLbyoWV1dNp/iFfMHqjUdl5DMFB6A1MlrLJtZGB4z1qsq5B+bAxUqXMoAUHGOOKAJ4biSAMqucE9+TmpYL2WIr5b5AO51PG72NPsZIhMrTjfFnJ2j5gR60twyXM7TbVVM4CoMD2zS52ieVDpryO5uJJVTyyxG0DoOORTBMluQ6guXPTPIps0Rs8ZXYrclSO1NURMjHad3QH0FS3ca0Lq6rclk/ettTlUbpViKX7fPIEXM7AeXGFGDWGqSCQsTlB3NWbFn89TEdrKdyuPX0rSDUWTJXOrsrP7bG1ut5DHJGM7HBG39KzdQ0u7skJuoDITyuM4ZfXjtVa51KRbyO7h3GRWwyuAc+uauJr11OgSZ5UPKsVbjaf4cVu5U5IztIk0K+is7mA3EQM5cCObd/D6V6zC7PD5kcKsrZClcE47da8h0q00qaQrfPKjL/qZoT93/erttPtkSRptL152fHMdwcoffB6V5tZK+h103bc09Wmu49KkFnC0l2fkjXGGU/3s/pXA3ng/wATTM089usjthiN4JP0Hau306PW/wC1ist7FJbDuMEfhXQGPaTgAD+8vFenhMJGdO7epy4is4ysjw111PRrvEyS2s2cgdMD27V6p4R8RDX4RZXUhF9Gv7mQf8tR3DelamoaZa6tatZ3kSvEw+XcOYz/AHga880CxfSfFUtjcpJIkUmVXONw7En0rHF4PkV0aUMQpOx6OIZ7aafZFLj+EpKdqt6Y70+ze5njWGNjMyEsWYfMx/wFJf3l9LD5umRwOoXDIeMH2NZeqDXWsI7PTh5U7fMSW+Uf8C6151Km6mkTrnNQV5GjqGoadZqjz6lAszNtKIMkfWliit52d7OeKeNkLARnnHrXm9/4B16JGnjngun+8wRjuHr1rnrTUNQ0a9dRJLbSLxIMbTj0YeldLw0oLVGca6kezRxEWUTo7gjghT0+pqePzgy7bkblyGRmOayNK1WXWNFjmiMUV1HhZ0IAWQewHp61dNlfR7GjRH8sHayH74NckrX1NrNkiO4A86BZAWPK8HHrWfdrb22q2ksUcsTkOzM3zKw2nqK2Zbm30/Rre61GSKzB4+bqRWPqHiHQ76eJLPUFkCoQCxI6inTg9xS5epFZ6fb6hbr58dpJ5pYhnTaevqBQfDxgUfZHvLZd2A8EmVB+mRViytJv7KWRVEiqeAD1+hqw945lRlkZDGM8HoaSqzjLRh7OMlsZsMWrxMyC7gmAO0JMhBJ9cgHmnJqGoIcT6YzrnBeFgcfnWol3I7K7Pncc/Kvyk+/vUryxhGJgUkH70Z2kflXRTx9WL0MpYWLMpNYsW4kaSE9/MQirUFxbXGTDcRuPrV2eG3LBvPJV12kSjeM/jWbceGoZJh5ccSowyTGdhP0xXZSziV/fRhUwH8pc8s+lGw+mazpNCuLcF7bUbuEdlk+cf1pSutW/3GtbtQORjax/Su6nmlOW5zzwU4l4jnA60m32rNOtvBhb3T54T/eHI/SrMeradLgfakD+kgINdUMVSlsznlRmuhZ2ijHXjpUiFJVyjq49VOaMZG4gj8K3U0zPVaNEePakIqXBoA/OqUl1ERbaQrU+BSFRSvfqNHzsHaNgysVPtUk11PcEeZK7nGMMaBEXjyFz1wQetWIbLzY5JchUQ5GTguPb1/CvnLM9W5SAP3T+RNTeSRHuG3I961YtKt5bgTGVYoGl2iNjlwtdKmjeGzvMkE/lr8rtGScH1FbQouSJ50jg0Lrkxt161Oly62jRIo2Fst65q7LZILqWW1R/sqvsUnr6fnVSaCSMlwwJRtuMc5rJwa3RSaYsl5LIVEp8zbwC/QCmOzqduCHPO4dMVHMjB2Dgqcg7TxT0kPLHtwCf5VPLqMkaX9x5ZwR1qOObAPB3DldvY0F9w2GNdxGc5pYIl3jcxCdCR2NK2gyRnlbaQeXI+Y9jVnTpbeG4H2mNpIBkMN2Dn1p8drNLbRvBEfKI5LYOT61FbWJlaZQFDRNgs7YGPp3qegvIv+ZGbggthP7+ME59RXW6Z4TtL6CKR7wo7IWd4m4+lYOi2WNQMbIZnkTMbsONo+tdZoNj9nLeSzBW6qRng1hOSLjHUzF8O6jDOwsdRlCdI9zcg+pqGDWPFNhdyQrILgo2D5gzk11c8ENs7L5/znHKZ9aRTdPdxyQSW78/MrYDD2pRrzi9GXKjCTuzEfxxq+nsFv8ASwynrgYNU5/FFhfayl7LHPahwscwxuJTPOCK6u+H2uGN5rVM+YUwRyeO1ZWnJoytKL8RxrFwT1PXpjrW0sRKpT94yVGMJXRet9Q8P2+P7O1thE7cpNk4+ua3bRoGZ2S9huFONm2TIH4V55qOkaVPqMgs5FELNkMoxuH41FN4eVHBsrt4vVVJ/pU4dRpVFNFVbzjys9TEbjnB/QCuU8b+HItT0p76GIC9gXeWHWSP/armG/4SHS7pYo9UYKcYaQkgD8avjWfFUcUxxHcIw2FlXcrD8OletUxkJp6HFChOD0DwZcWml2olvZtjyjbENu7I+ld1LqoghS5gEV1AoG9YyEZR2x05rz2y1NNLJ+3aW2WTb86nA/3fSpBq2hmVv9Ingfn5SpxXhzpxlO56Kk7HQat4U/4SRhdXWo3ESv8ANDAcOI/r1rgPEPhC+8Oskzv51pI21J4x0Pow7V6Loer6Ra6N5dvfiSZQWKyMdzHPb2rbeO01Wxe3eSKSOdAGXPC5717MaNJ0lynA6k/aanBeCfEdygXSrhvkJ/dMTnB7/WuylWCbzA6GOTPzHsf8K8/Szj0fVHj5ZopsKcYOB0xXZweI7MhpLkSxHphk3Z968XEQUJaHoUpXLIeO0gMl04jjUZ3E/Lj61jx+NvDguUSSVyjSfM6qdv1rWWDS9dtntZZ/tUGdwjGVx+VcX4q8A/2fayX2klntUGZoH+9H7gd66aWBco85lUrrm5Tt9KkS+hNxbt51usx2SA7g4OPlx2I/rV2eVYz5CoxbAACn5jXl3gfVrrTL1ljkP2Of93IhOFXP8Q9DXo5ltpzv3lGGCvUn6nFcNSDhI6IyTRpESKitLIqFRg+mPeqKz/6SwO12jH3s03U9TtdMsbm8u2d4hgIVQtvPpgVxQ+JkYncNpUZhdsfK3zY9etEKUpDlNR0O18+O4hmGNoA5Oc4pUsLC/s4zPBDvA6tH1H1xms2zv7PU7GSbTHBWQZkRuqfWrrSNFpsZVwSV2kA96tuUXZaC0bIT4cgyTaPJCev7iU4/Imofs2tW2fKvkmA6LNHz+YFWLaeQTp0yoGatyz3MbM7IVj3fxA8CtI4mrB73IlShLoY51XU7WZY7zTQ6tyGhOTVhPEVgxAl86A9zJGQPxOK0FuVuGCBQ5RSVKcH9KkSC1eIYBO44cOoYfrXZDNasd0YTwUHsNint513wyxyA90cH9KeUI/hJ9xVGLSrQW8jRRxA7+ShKnH4U680icWsjWGoTRBF3FG5B/HrXXDN4te8jCeBa2PH7+G2slfYZDdt8hJA28+lQ3hEVzDBPH5sFuAgAI3fhj6VQkvbqYQKz7xGMIMdPx71PayQvLtlR5A5JaMMBuP8Ask+lS5KTGk0jbhjt7u1PlWrMBz5iH5gOo4rUGoxadpMl1NGVnnTYkbLj2JAPeregizsvCYmvIyrygskhOPMI42iuQ1BmubyPekqW0jFoxICXA74rob5I6bmdrsvz3WlGzSOxLec5VSrno39786yJLaa2d5X4nEmFxyrH29astozqVmkgljtiD+8UE4PbPpTLZvLvFKqJ/J+6hJIY+ue1ZSUrq5adiHUYkEaPLveY8u4YED8qphUlJct5b+hHB962dfnt7mGP7PBHA7HEirkYP41kJYyyN+6RnQYLEnj/APVWVRJMuDuVWbapU/e6AjvUkVwFIDKWjHO33qQBUYxyAbweAvIFNk2u+AAAPT3rFlJmleXcBS3NtkAR4IUn5CemarRFJmWVp2MpPIx1qK1lgiXbIuTv7HqKdtg3fuidmeneoaGd5pOoxDSXIbzZc7QcAFR7Vq2v2B1SRpp4FT5nYZ59vpXnlsstod3H93Az+dbUN/MhleWbAZAqqOQRxxWE6a6lxm1sd1dMLjy5IWiZJDkFTn5R3rlxpcp1prt98kDSEsVcgfp6VRtpbo37TWpMUYHzKeiJXSxXMclnFtKoWbgE8N6n8e1YcrgaxkpbliK0YRmaLUZo0UMVVyrYOOOoqjY6ElyQ5c3bzAmRXGCGz147VfjZp4CsU8kfBBDKGB9OAM1Lpmk6tZ7JrZLW4Eo5RyVY8/Wp5rQsUlcptorNcG0iZM22SYyNp5Hqakj0iSCQTQSyGWTC+UQGQfiK6bTdF8zVJ7i4G15P+WcbZUcevek1u6tNHsZPtdykGD8q5GT+HWri29hONjF1eG+kmhhkMMY8tcsFD4x16Uum6RE6rOS0UvmlW8liEcD1B/pWTqHxA09Zle0s3mZMhWk4Uj3FYJ+IWoo7KsNuqM25EGcL+tVKjUl8Io1ILc9ZudCs7wE3Ds0IwqqwGVrHudA0tVuI2hUjzQFdlB4rgJPiX4gk4V4FxjOFzmgfETXW3rIIJI3wdgXofWiNGa3H7SB18vgrTWt5J41kBU7UKfeGf6Vly+F3gbyl1Ca2LcANkZH17Ulh8TLVRsvbGRCWGXQ/0rtLTWtH15AbaeGYMOYG6n+oolKrDYEqc3Y4WXw9rgTBuY5FA+VsBjx702C41y2mWK6s4rhUHUjqPfFegJoyJHMLTFs4GeSSv61hql1a6huvZFYbfuAYz7+9YSrye5apRvoZFh4lGlGUHSGG/ltgORWzbeNtKmkTz45Y9wIbeucj0NakZt5LNytupkbByRnA96rajpumnTozJbRRSE/MwB5rppZjKMbGE8HFy5jhjaW8M85spIpIXctH8wBA9810MOoazZuDGbW9RRtOAuRnoMiopvCmm37KLZZIlJ+Z1bio5PC9xamU2epgKrEBSefxFROvCo+ZlxpzitDodJurq5lkhuNL8lFGXduVJ9ga5fx14SgNuNU0+JIZF/1qIOGB7+1SW8fiewEkiagpES7gsnzbh9PWmf8ACS69c6fPDcafHLC42vhcMB9K9ChWpQpcj3OWpTqc9zL8J27WNyEMhUSjDgHiu6a1XZ8rFh1GRwa4KFoFdPOiuo8N8ygf/WrTjvrMSFLPV3iLdFk/h/OuGrC+qOmN1qamv3Wo6bpP2jT7NppQ37xgMhB6kVymmfEPWLaVVvmS5tmPzqRzjviu+8O3rNFKLrUoJiThFOBuHfI9K4/xZ4atLPWftVnj7Pc/vFC8hG7gV2fVkqaZzqs+ex2UEtvLBDqNm/7mUZXaPXsaj0sySpKDNn9+eCRz0rH8M6ra6baywTybQxDKB8wQd/pWzpGoaUGuAuoQOTJuXPBA9a85x96x2KdlcvbIbGBlu72KAOxIV8AmrYsW+xTbpOCmVkQ5GK8l8daLqmn6mb66uHvre4JMUwbAH+zitz4b+Kp976LcuZInGYJGOcH0J9KqrhZU1zEwrKTPPtSsYtPulS3uEkI4Zk+57YNLLod5ZpbtMVjhuFBWUHI57H0rc8UyR3tmlzJYyWt2DhgifusHqQa5sXD20hgeWR7TOcHo/oa9qcVGexwwbaNhZNX0OYwsoICggP8AMiqecj2qVNSbWrqSbyDDNFGqwLEuVXkZJrHsbq4iaO5eRmt0by2UtyQe1TWplW5d9NZ/PeRtqqcgJk9R+VJSu9BcttzrLp3TTxc2N4yzQSD7UrYwO4O09qi03Q7jWNNubyJ7WOW4YsecNycDaM/jXPX7/abITIzK6Aq+P4m759qj0fUGsY2QJJM0uBFsbA39ACK1lP3rMiMdCHU4wmom32LG9su12Q5DsO5qG2v5re2uIECBZiBIzHB+g9K1hokov57e53T3C4EcUfV5GGSuPxqnd6PNp2PNbbd4+aALkgHjFYTjLmujVNGbPAqODE6yAjkK4Yj8qjgAaUru4KnmtptNmWJYZ7Qx3AAKSKPvg9Mis6axe0DCYIVI+VlOc/Q1nKL3Y1Loivs8sKzkdKlUIjGQcg/pVZ2YKMdOhB9aljQR7ZeCc52msmUXFnmjjbygQrHDFRmrkZ/dDygxBPJXmqt7fy3sq7lCxY+VIuAfpTIpJCw8rKyDp6YqGrgdVYsl7Z3MM032YwR7g/8Az09jS6YyeeIp1imixvMm/G0AdB71njULa5tobQ7ln35diPlPHeiU4QxW0e22U/eA5Z++KzlG+hpF21O9sILW8sCDkRRj5U3YKjrkmtjSprWxsmjNyIyp3BpTyy+/pXAeHLjdfTCSSTJXlc9/eu80/wAPQXUPnXWBAxDFCOZiO/8Au1EMNKrLlLlWjGNyjdX+ua1fPH4XaSK2K7Gu5cKnvjNV4vhkbmQTavrcs8nU+UOv55r0KONUVVSNEUDhE6Cn7fXivXpYOnBannzxE5anMWvgXw7bIF/s9JmH8bsST+VXh4a0MLt/sq2x6bTn+dbIQUuytlCCMXObOck8E+G5chtHiU+qkg1j3vwu0a4VjaXFzaP2GQQP0ru9mfel2+1J04MpVJo8P1n4c65paGaAC8gH8cAyQPda5ECS3lBUvHKpzuUlSD9K+nwCDkVg+IfCGl+IYm8+IQ3GPkuIlwQff1rCph1bQ2hX11PN9C+JOp6eFttTIu7cjaXx86j+td/Yy6drsH2u2kDw7cHnlTXleu+E9Q8O3HlXaiSA8xzL9xh9exqnomrXGl3XmWUpR852v91v9k15NbCqb00PQpV9ND2UWs9lC8aeTNCxBDE8is5mkMMiM7lFfLYGcVN4f1y18QW4aOTFzjE9uw5Hv9K0JLPyZJAJJJA/UKMGuGzg7M6rcyujlRdmOXaijeDjfKCoq4t2MSqblBLnlBg4q/d2LNGvzxhl4wy1GunoJAAgMgGc/wCFJyTYKLRn7SIAGjkDZz15NOKQXNr5gSSGTeQ86MP5VHfx3sVu8drP+9SQFUkH8q0rGJnSRmdZfmAZB1/3qtSsrkuN2ZQ0/wAl3lF6bqZgAsLQ4O31J9almt7Bo1hfTYpCADuU/MvrxV6W3VLnzd52gAc80XzWtjbs13MkESDKys33s81blJr3GZ6R3OduvDNkJJDayzruYOm87AoPUGpJPC2pQr+4v1dduVDODtzVa88daNECkCy3DEfeA2gn29aqL8RoMlXs5AhXBPrXTD2tjOXsiaXTNd06cRhIJSQCOOv1olujCUm1DQ2+QgEwDqe9W7TxNpWsXESpdeSzFQEk4zzzzXYyjy9PnW22hUB+/wAr07U+fleqBRUlZHKa34q0XWdDudPlgnt2GDCJV4DjoM1z2jxtZ38EtubbzwQVkMgKx59RXVIsN15sd3ZLuDhgyL196pS6Lpkkcojg2Oz46fyq6mJ9o9SKdFxVifxBHFqfgWfU2tIg7Jl5A3Kv647D2rgNZsLY29pFaCSSfyVWQngb8f8A1q1D4ksYvB93o0CMB5SDfsxubnrzWfeC71i1i/dxpA7rGmG4D4PPT2r16kubbc4YrlfkZselMumXU5aNimAy91J7j+X41NbzyWqxRoqWskafNMfl3D0z3zVrWdIm0XT1YOskc5UO6noe4IqPXtYt9UhsxEnki1iWCPIyzADBbP1FZ2Sdy90acl/p+oxpNdQx2X7oxsynhsDggfgKx9JtjZKNXniZoAxWOQLnDY4PtWbNLFdEs0m0ooVBjrj2oe8mj08Wfnv5JbcYs/KTWcqqb1HGNkdV4T1L7JqD6hcEyTysSHflSvQg+9TarrA1SPZHH5qJKdk2en+yaxrbV7dNM+yTwiVt6tFbgfLnPr+tUtSaVbqSTENuWwWiiHA+lae2SjdEuGpta54gtbvT1+zed56H5jLyV7EA+nFcpJcs5CtxtPC+ntU9zKsscbSNGSqbRhfc9aoZJPv7VlKpcuMbDmC7ucqO3fFJgpghuOxoQjcWJ/A09FWXpjjsaxNB6TMTgADdyB1x9Ks7vNAGdjk4wB0qJ2SSONQFV164oTCSOzMM4G3/ABpWBlqDLnbKpBHyjb35rXi1K6tQAHVlzgbl4PsPesjT5fIuI3WfawY/PjIBrqJnSSxSRRHE6jc277srZ/h96zluWrEWnW87mS9X91GWySTzXsPhp5J9NRmwy9AG57dvQe1cz4JbR/EV/EWRFuI4jutWOMkDH/167+KxW1YGJFjjJOFHbiu3CJJNnJWlrYQwLuJ27W74pwjIGCc1a29D1pNvPSurmOflRBspfLOcAVPsqRGEYztyaTkOxV8sik21qRwI/JXOal+yRE8p+VZ+2SLVJsxttGzqefw/pWrLYgj5OKqPbvH1BxTVVMTpWKF1ZW9/Zy2l3CkttKPnQj9R6GvF/F/gufQ74GNS9jL/AKqTH3f9k/417pt44A9Oe9V72wt9SsZbG6TdDKMH1X0YfTrUVaaqK5UKjg7Hgto19pV1DqFs+4xAZGcbx3Br0+w1S11nSkuLcf6/5G9Uf09hXF3+lTaZqc9hcL+8U9ezL2I/D9ai8NalNo+uNbOQLe7+Ug9AexFeTiKemm56VCeuux186yxTMSHcJxy2eanM06KrKAxI5ynTPvUGrTTW1hJdJAcw4zk9V7mm6berqlss0QCoTkBzww9a4XG61OtS1LNyiTSYeT95gHav+NZsVyV197IwlIwodGjONw9DVp7mO3mJtnRh0KN2NQaXpaR3W4MTK7YJY8H2FOEbvlYp33R0Edn9ulA2+Wi/eK9D7VZl8O6TcMHuLGOZh0MnNadvbiGJYY15xnAqd7aRCN0bDPtXv4ajTpQs9zya1aU5abHK33gPw3fxssmmrEW6tEdtcVrnwjnjR59DufP2Dm3k+VvwPevX1iYkBV+Y8c1fttMTjzO3O30/GtaigloZwnNs+R7m0ntLmS2uoZI5YzhkcYINdFoPi2+0VWtpn+0WjcFGOcDvivoDxd4A0vxbYnegt9QRSIbpRznsreor521PQb3RtRuNNvYDHcQth8Dj2K+orgnZ7nYnpoelQTQ6xpd3f2LbonC+QB13DqD6UeVJaMZJbVCThSOvze1cJ4e1Ofw/dCXLfZpGH2mHsV9frXqc7QXEUV3bndEFB9iDXHV9z0OinqeDX9tJZ3MyqCIxxtD52g9q2tMiRrSydJJbgIS7wZ27WHYH8ao69cyCWOJkhSYofMaLlZAf/wBVOm1hn03TLSzMazRjB2J82enPrXrpqM9Dz7XiLqUC32rJapI3mOfMuC7ZAb2NZd5AbSTZg+WWYhv7wz2rs9C0BLC/gh1uFNjKzysjgtGD3Pr16Vn+KX0a91qe20m4LWNrCEhZhgyNxuIHbkUTXNqxLyOSKSKhbHHrUbEtgE5Aq1PGyWsOGJEmSRnpVeKLzAcgkei/lWL7Gq2FWTCFQo3dcnvTvM3HczBsjkGpobB38sBxvdggQ8EjOKhu1aOVomUKIzjGc80raWGImGDICAOuTTWZpGwFGR3pgfacEDHpS7+Qeg9qBAVKpyOaRSQRg4NSoVYhHx/WmPEQWHAHbPepARnLdeDTolDsA3A65pFXLjJ4qWSBtm8D5RTuMsxoqNIWb5SM4HrWzpVpc6g8NrIRJGSMD61z8Evy43bSTyT3rd0G+uIdTiFkoNzyAwHHTuKlrXUHc9Ci8Hy2L280FrcCVD/r7V8FR3/TivVraLbawglmO0ct16d6yvA4vr3R2muLeOHDY80HiQ45wO3pXVCwI2ZYEDqBXWpxS0OZwk3qZwQ45pdlactkhGYshvQ0sVlGqjzMlvQU/apg6Zl7KmijjyS3Sr0llGfuNj61CLSRXQ8Fe9JzTQKDTLMSDaCF4p/HpT+MegFM3bj7Vzs3QpAPamOoIxtBqXtTN65xihOwWKcloJPurg1GdMl2Fd456CtPPpSHBBq1UaJcIs868daG11pjXixg3Fn99B/GnevK7uEXrYRwjIQWbHT6V9B+INPk1LSLuGFzHI8Z2MpweB0rwvzUhV1l2oYjli3t6Cs6vcqKaOrjimurC1SRjPvi2F84BFNhhtLCFdMN4Y5Ih8hHb2rJ8N+ILa6xphEisM7JG+79Kt3dkT4li1Ly9kYjCtHnIJ9a8iUXzWPThbluSz6XHd3KCRMyAbgxON1belWUt1cx4jEZj+aRix4+lcxqEN5ca5YTQtMxUFJFTlfbNd34ejlNvcmcsdrADPeujD04uqjCtJqmzrbCBY7YMnLNzluwq5nucH8KqxTqyBQecYNWUzjmvSnpK5xLWNkMaKOQ52AGlCCMgqc5pw+9SEZGR2qL3KsrCnlSrDcGGCPSuJ+JHhdNc0dtUt03ajYoWG0cvH3X3P8AjXaFvlx2605GyegyeAW6H2NJpWGj5deOOeAl03FVwD7V0XgbWZJreTSyWkdfmhLdAO4NVddt4YNc1GKGM29uk7Dy34Kjjj+f503RtWsNJ1BAxZ0k+QtGnOfXJrCpFS0ZrBtOx5o7GSCONvvx5yvTArY0DT0f/TJnZdh/dBepPrWLKzMpm4yxJz/StGyvrjTIPtsLRyLjaquMhWJHGPoDXZGVpXZztGrrl3cNFJutjE7uFiff85QfwkDnPufSsmHULaKy2S2qvOjExseDz/eq55upWV/bXWpWUAfVds0dw+XZY2bqoDYX1wRnGOxGacFv/al201zOsFqDta4Kce3AHU0SncFGxRb97E8m8j5sIn15/KtKx0iWExXF7ZTyQOrbQmUyQCc54z68VVuobW31AJbTG7t12ktjGfUf0r0LWvEcPiXTtBWCeCO6s3EC26AqjJj7x+nQ/SoKOMisUvreaSJZIBHkx7gc7vTPX3qjY6ct/cmB5/JLD5GcHDN7mtvV9Q+yMkcUnl3EcuG8sEoVz1GfyrK1GaW3ijhEiGGQ+Yvl4JH49RzmmBm3Fo9tdyQSEFo22ttqIgAgA8+op5bcxL5Jx1zyT61rw/Y9XO2cNFdO2AyKAiKOnFIDGI5yFPvzUnlSlMowZT1HpRKjRTMoGMMecUwMyknkHODtpMY3y3yBtbHY4q/5Nz5S5dAoHK5qst3Ip+8dvp6U4SAMWbc5/nUsBsqhZAduCO1aWj3LWU/22PKuvMbehrP3PJGWI2gnuKsWqBpkU5cA52DvVNXA+iPhh42j1PQXh1W8thcwOVGFChlPIOMYzk16NG6SoJInVkPcHp9a+UdASWS8nXyXVHU7SOAo9cdTivdfh/rtzdQCxktTKkQAFynT0AbPf9ahWTsGrO744x170Hn2qC9vbXTbR7q/u4ba3jxvlncIq5OBkn3IH41mweL/AAzczxwQeItJlmkYIkaXsbM7E4AADZJJ7Cr0EbP04o7YFGcjNGRR6AROSTjtSD2/KnmLcc5pkg2nK1VwHZx1pQwqAvng04EbetFgJiRUbN2pganDOc0JAOOSABx6V5T8SdDtl1u2vIoUUSw/MAMDIJPT8a9aH3fX2rjPiNbRPpNtOByku0fjipk+g0eVWirB4jtJEQNEWAYdua6bxCbu3sxPaJvaFx8jDAYe9ZE3kWEIuZiEClXQLycVrT+K9PbSZ5ElLThMCJx1PtXnVVaR105aWMr7fcXEYtrW9+yalGNzIFO2QH8K63wLDq0ktzNqGpCaFeEiVfvfU1j6dcRXmmx6rLBhmJCuEHI/nXSeANY+23t7aQwq0CN++kUY8tuw/nWmHlaZNZJwOwtYgp3Yx9auiQHvRtX0571EU25Ir0JO5yRjZEhbHShT8pBNQ7jTw2R1pctgQ49MUg6c8Dp7GgAmnFdvJHTv6UhnlvxR0aGa/sL3YvzxmN8D7xHc+/Nee6jYsLeJYT0PQV6v8TbrybSwWS3lfEhYTAfICcZFedebO6uUgChjwW7VjIuL948jJJGM/hUsQWRo4pJfLjLAM5yQgJ5OByah704r2A5rZkI6rxB4h0/WbJ0ggitWs74GyEYkLSwFNhLFiQCoih4G0cnAps97pWmxRfYpmvXaIF45k2oj49MDNYNtZrJhicj0z3qK4VklZcDHrU3HYfGyyTSM8nl7sk4HFMjfy/nV2Vl+5gd6hUE9aUggLzVXETs7PEZnZ2ctt+Y57VEc4JHAHbNNO5V254PNJycc0gLNnbTXdwsVvC00h5RB1NTRxFQ0jlY1RyNwPzZ9MVTinlt5BJFIyN0BU4NTLA7jduA5JLk9adwNptJtW8OHVJr6KS5L4+zK43bfXHase6XZ5ZGwgr8u05z/AL3vVXpyOKQEjPvQBZihiLDecY5K+tW45IA/7kfKex7VnK2Nw/iPrTxvBIAYY+9ipAvuAH2pIuCec9qtabFFHqsRZ/LjBy59axZdyFW6KeRgcGrFlPF9rV7pWeBSC6jqRTQzrAt7YoNVsI41a3mJXdIGyp55XNd54K+I32CB1nhBtZMtIIE+ZJfYdx0rzXxBqo1Ga2a0szbWyRiMRoeSOxNL4WvYtN19Zb2GSSHBV40O1iCPfjpUu17iR6X468drrvgHxDpl7ZtZ3g8loU6hl86Mnn6YP41zV1olhoni63u4dMs7SCw8Uw20Ulne+efKEjnEqmRyr4RccL0fI4FZfibWodbsLyC0jkiLuGSFhyQCOWY/T9Kx5dT1zV9UjfUGgIa7W6n8qKGHzHyfnbYBvblsdTycdTTTQ2fUOleJtO1hZms7lZFj+/uO1x/wGthJFdVbsa8C0XVNPstaS4ubqQQrOsjBBh9o/vDHP0r0Wx+I+kTJNJcAwncQiqcgj39KE0wO5ycmmsQ3FYFt4u0WRmH9pW7EnP8ArAMe1Xo9Y0+5GYb63Ye0gq+VdwsWHODUfmHdiozd25J2Twvj0cUZyd6kE+1apK25DuWc4FPRsnBqsGYnB7+/NPfeqM6RvIQpwq/eP096TsCL3ygYNcV8R9OSfSYb3zXikglVThvkK56ketaeg6xNqAvUkCiS1n8scHpgEZPQnms3xnp+oanFbfZZ1+z7xGbXIyz565NZTS5bmkd7HnNtBbCVVZdwduS+TmtZTp2oxNBHaxjcpOSgGce9RSGSO88i4thAUkG44yw9j2p3hvT7jTNS1BTDMbdySN6E/lXk1q1k+52QjZ6lux0aOGKNYZ5VVePLByB9K3PBf2HS9X1WMXMKNdyIVjU9Xwcj61VtN7SRSbYwF4C7WBpfDOlRJ4w1KS52zHas0QHHlk//AK6nBy5qnK2PEJKOiPQvNA6Zx70wzZBFQliWyWz7+tOVC54Ga91xSPNUmxwyanVABnFCRmMfMOaUk1DZaJBjtQeR6DvTRTgQMevr9KgDkfiJ5baJBACGkacER7uceuK4U6Z5ceQwkJ/gHau98daZBc6bHeOMXFu+0StlTtPUVxm+12r+/ZEA4B71hOS5tTVRuj587j1rWtglvpsl4YIriZZAgVwSEBH3iO+enPesjtVi1vLmzk3wTshPXHQ/UdD1rSpFyjZGuDqwpVeaa016J287PR2/qz1Ll+qLFa3EaCB50LPCueDn7wz0B7fSs4nnJOT71NNLNcSGWaZpJD3J6Drgen0qA9eRRCLjGzDFVYVarnBWWnl01dlorvWy7jeRR2xT3UrjI69KZVnKO3njgcU3qeBzRRQAvXqcfWpYlLLyRtXnBPWo1Yq4YdvWnSyea5cgDPbFACMpzj16UnIGNpwOpoZicHPT0FKkjKc7hz60ALtDHPAJOAM1tx6lNp7Lb3VtDcxABto6EfUVQutMuo5Yx5bMJlDo+3hgeeKbaWr3MzQklcLlu5+lLTqA/Ubhb6ZrmK2S2jJxsTOB6dait4pUDSBQRj7p6sParGXhZUwpVSFKsvP41Ztb94POFtChDgqWcZx64qW2loFyrDK8GeSM/MOMmrNtcNN+6iLGRuFCjJP/ANeqxljmu0hLMsRwqkcbDW3DptzBqKR2UnnqmGaVSCF96UtEUlqb7RA+Rp9rpboxCtMWU+Yx64/TtWdqMC2yS+XYTYL4VsbgPVT6V16Pe2kNnrFwI5DGRE8yTAB+flzx8p7c9sVYstX0SS9m1bU7tmujNsMcMg2qgVQCTjnuCenFcPtpqdraHqyw2G+qqd/et3W99uXdJLW/+dl5lGZZJVR4SS3Vgen+8e1dTpFhbXkqBrYo8a4mSZ9u/wCldQ2teHodXmjuEhEE44a2Gd31PepmtLXT7lmgaFLYpuUE84+ta89zzuRdzAn8OQrErpbyw+ZJhcAkAfWt6PwFEyqYdScIRztPIrKv/FumRWsifaAZITjaGzn6Vft/iL4fghVftE4yoO0LnnHNS5VOhSUeov8AwgF2nyx6sw3cgbzkimf8Ibq8DADW5U3fdJY4qJ/iDokUSLDK8io2cMOTn37V0cHizRtRmtIIL5NzjPlueRSdSokUoQZgponiGCcQx665cDKpnJNW7fTPG6jcNXZCP4TwfaukNnaXWri5kt/3sQwro2M/WtCN7lblxHCHgxy2MsD/AFqHiJLqHsUcVLH400sNsvVDSuCSijJJ4JNSX03jeSyK3F1blRgojYBJ9QfWumv75FkRmLFdygMIye/Q1anmzbmRHBXIHKY/KpnjJW1KVJXPORa+IdoaazjaeQklPMyTjvWtJ4g8Ro5WbQlLAYyM10wRm1uCSXeMREAkc/jVrU0KwDyzK5zkkEc/pXFWxEHq0bKm27XOKHijUo3Ak8OgMBlirHFWLbx4tjcSXT6DKsrqEOM5IFdI0oCAtCMtxyaaCkU8f2h4lQr92Qgfl606FeMZc0YjqUm1ZszY/ilbBcS6PcIcEgbv/rVcg+LGiLErSWd5FnrlOn6VT1pLf7TAqwq4XJyRz0PGO9XbLSrO4sIXu7WNZNvTy8fmK9J46XLqjk9gkWk+K3hqTgtdKf8ArkSPzqynxJ8LSAkXzjHUeWcg1lzaJpcGGtrfZOf7q/KfY+lZdzo9vcgC8trOP5uY0XJB9cg81SxSYexOtT4g+F2x/wATNRn1XFXIvGXhyRSRq1sQR3cCuK/4Q7SGj+aNWAHUDpWfa+DdKMk4a2DoAMFT71X1pLcn2LOo8Wy6Nqdk13aapDJfIgWOMTjaR3yK4eaJGdfJnUygYZQOM+1aTeCNHMbbYH3bj95+lQQfDuFrZPMe4hYjKkk81jUqRnK6NYxaPAx0pRx+NGMHkVJGyB8suR6V6JyiRkI3POaQt8xP3qGI5KjAJ6UDKg4xQA7Jc73OcUzAPOcUH7nWkGcdM5oEJ365oo5HBFFABSjH8VJRigBeh9qfuVsArx64zUYNSKwVj6EUDNJ9Uu5rKO0edvLiyU3H7g9BTrSeEGMLbjcoywL5LMP5VQtg5mXAUgHJ3DIAq8umNeXNwbFhLFDznO38qh26hYkkkG17ksqNKcCItk5/pWuNJA0y2uHlEgdsFYv+WZz3rnQRJ/rSPMyPwx61r6ZesVuLYZjQsGkCfxCs6nNbQcGidtImlsSLePzYBLtjkA5Dn1rstN8ORLpKoqYuANzOHyWb0pPDItbiOVXkEMe8CNW5yMeldZZGG3hWzgwuGLq4+6Se1clSq9jopwvqwt9M+zaY1tHI/lyD94HG7bx2rnb/AMNxH/R7YyR3kgypDgGVuwIxwR/Wurju0V1RcZBwxHSku54Hs3QQp5koJEi/eVh0IrbCUpzd5bE4iUUrI8/l8G3kuUQiPZIRMo6hh6HufasPULGHz1SK+luXVMsG42en9a1vEOsSvqCwqXIQDc6S8lvpjrWOkKtNG/70LLy7DkE+/vXbOMFokcikyh9klVdrKrqPlJHBqncWrRYXymRh/e5zXZS2CQqxmk/eiLdHgcn61Tt8XtxHbblLSICRIM5I61nqg53c4s8Ph8K30py742yjFT1BHb8a6bUfDKtHJc2soYq2PIPOR3IPbmuZlhkt5CuGBX7yNT0Nk0zW03xXrOlTLJBeyZTHBOQR6V634W+JWlatm3vf+JfeOAOT+7c+ufWvDAyzfLt+ekBMb7WOW/unpWc6EJrQ0jNo+omhWWcYRScBhIejfh6VbdYQrM8cjOhGSE/kK8Q8IfEG80PyrK9Zp7LOct9+Mex9K9iN/Bc6dHd28mYZMMkit1Hqa8bE0509zrg1IaGY3P2dIWEhDFWLcqD/ACqNLhbTTV/tC8QngZnbjP1pqAmRkmWEBVyAExuHtWDqsVrrWmJaXeWEH7zKptYjsM5rn9ySSZq1bU2hcboimYmAO+NiflI9qrX8drdWytMpkIA2grwprFsZXhgFmkLYhTBKfNj8a0LWWS5DWEZYMVBY+XtX889aKaUJb6D0aLrC4tTbNFciJJBtLde3atq0YPaRKztIecFjyfrWRJFJ8mUBMfETnue9Pvr210jRytxJJGZmMaCFsupPUr6YruhGVXbY5qsowV2Z/iXxzpOgu8M83n3SD/VR9vrXmes/ELUdUgmtrZUtLd2DYH3iPrWbq+mPZ3ErHdPG0hPmOcv9W96xnt0dTg7T2rtp0oRMFUvsdDb+P9dtIUhW6ZlT7qOP51t6P8UpLUz/AG+0WZ5iuXiP3QPSvONzo21xuP8AtUqrJgk5HPDVq6UJBzSR9I2WtaVr2ntNZTLMAN784dOOhptvJcRouSqQSxFt7Pk5HTFfP2mald6Xe/aLOcxSKRkHo/sfavZfDOv2niHTWfG28VMSwn+D/aHtXHVw/ItDSFRvc+f6UdDSAZo716hyDix27TjA9qZilJHagUgHcFVGOc803HUelPYAbcn3NNyASBk0CG8nrRRnijtQAUUUdqAF6jFGMc+hxmnpGcHdwMce9WAiLbSB0G4kFfWlcCBZfLIMb7T6jrVi3iklk2iTaZPlDE85qptyOD+FXNMWQ3sSxyCNyeH9D1FJ7DI7q2e2bY27ceGU9jTrO8e3l+6GBGCvc1p6jdQ6hcK8277QrESOzk7sccVDZpa2rvLJMjTR8ohXIbmhPQDX0a902xkEl5FLBcwvuXbzuz0H612dp4lsbrzIoJWjmBBwy8H6CvMdRuXursT+X8+NpwvAPam2TXMdysq5dgeQDzWE6Ck+Y09q1GyPYorhERY4yWzwADz9auTEBYvMQA53bkPYfyrzqx1G5tXE/wBpBwc7CeQa6yO9mms4WeZJHIJfb+ma2pSa0MJa7kWsPpgRkvreOOSU7g4GTH/tVz7arFDLHHp8sRgZ1I3JgBxnn9at60Eu9QtY2BEfLSsf4h6Vy/2ZxcN5e1YQfkDVbmm9CbHQ3Ium1hIFdbi6djtIOQx/wrHOtak9tb6xb6HcR29sx3XaKxjPOMFtuO+OvetCOdpZIJ0jETIuGdeDnsazrxjcR2+p2er2ttaR6QtqYvOQyq4h2SReVnd877m3AY+fdnINF7jidJb3dnqmk2l3pqG0uZXdpbcSbxu3MAOg4wM+1Yuq2h1C6hikliFycoMDblvf27VR0czDTbTyhkjfj6ZOanlLyK0pTcinAz1x6Zoc1a1iVpK5gXNjLbTvGw2SRkg+5pE2zxlXGJV7+tbE6rOiMynA6HOT+NZ9xZ4y8ecjkYqFK+h0R94qJlVCHqpyAa7HwT4rfRrtbO8Hm2LuCUblYz/e+ntXGA75PnyD3q3GqkDOeOv+17H2qKkFNcsjSEnCVz6Cvb1mtvNREuHX5ld+S4/uj0FYVxeyXyRgBoieRGTnaPrXO+DtZa506WwuZS81uu6DPUp6fh/WukOpoYvJhjjjLAZZowxx6DNeK6HLJpHcqikrkCC4ODI2YVJOwqeta1jLcjZMNqxK20RM+CPerNtaa9dB/OMUMaKCshOFkPYDFQazpOr6dax3Kvbzz/8ALTC4YfQ4p+ylL3bi9sl0Lmu68NK0qXKo0x+WPA7noa82MszRgSMWO4s27s3citjU9ZkvrNFnkSWWPhSq8EdufWsglRtMoKOThgfSuujSlDZnl4qftJeRTmu0YFWj3c4JzyfesO+tUUho1bymPyn3rqmtbJ0MYXGOQwPNZ0tvawTMsrkQSqQASflb1roTsZ05WdjmnjWRcOo3jjNVZoGiGGc4bvnir0isSyKmSp4PqKjdJfJIKqQffpWyZ1300KjQOgG4ZLdPpWlouq3GmXsV1Cx3x/K3+0PQ+oqhF5jDZu+713f0p8CLvGXAIPaqeqAx9u7pTTwad0XNNrVmAUopKKQExkKoVADBh1qLaSwAIoByMUoYdxn0oAVkVSQaCoK5Hah2BUcc0wUAFKvDA9s0cDtSUMC3cXSyRCNU5Heqxdic5zgU3B6inFSADRYBMkH3qaOYxMrDb7fKODUPSkosBI5MhZmIDnngU5H3yKZDwMZx1x3qIUUrDOmtbtbyI2hESCNdyKMDOOQSe9VruDb5F9Dli+QdqgCseFQZOd2ADytbWk3qi3e1lyxHMQbv7VDTRLfYfbq9wVhAwX+Y9iCP8a3dKtZbW8MOXk3Ydps8L/s1kWikXTKUZSvJPv7V0NvO6RSwqw/eEHJ61nzWZJSvrmTz2JPAyFzWHfTsWiKsd5P3OgrUvYsXO13EjdwvasO5m/0tWlTKLyQO+K0SBI2IYb1LKPcCuW3AFiMgVUHhq1BSN5pRK4yMEYH6VtG4W+eCUK3kLFuw3vQwgkj81CWwAQ2T8v8An0rKdbldkdUcHUnS9omlu0tbtRV21pbRd2vIrRWsWnW8cQldlQHhjxknOaqi6ie6Kyy5UenAqxqG6SSJVAdWGWYfeP0FUjDFyFQBXbac+lUrtXZyJXVy8yxF1zHuVh94GqLpmRgv3B0q0lqZo+HC4bAOeKZdLPFJtSJVI98g007mkJWMea2RZGcA7qVMkDgcVblFyykuFUe3eqjLLkBFFUnY1Ot8L3lmS1qbQRXTDK3Qc5PqMflXWebym+AlhwDxgivLbW7vrW4SSEKkkR3BivFeiaJc3Gp6RFJIu5920leADXn4mnb3jqovQ7LTtQd5Btn2KRjyZDlai8R3d4bVIY7lUjB4XPD+qk9qjsdNnwgdEHGByM0/UrC7uoWieFjFtOVUIN2O+evFcKXv7msmuXY88mvoVv5m8lYlRtojHQYqVpZJlZpACpHB9aw763na6bKMUY4Vs8ge9OhuJojsZyyrwAK9eMFbc8ierLjO6Ip5Xn72aYDJcJu2HvgtzUU8vEOQxLZADdOuKopJJbmTe0vmKTtGeMVXKkTa2oXlnIkoZ2Kk+lQ7FUfMW4qWHUDdbhL/AAjgU52jKZ2kk+lNHTB6FF7QSS5jJBb3pW08xsvmDA9QalJKMHVDT3uBIQGRqG30K3OXOdgFJT5AQQuMEdqZ3roMQooozQAvSkGNw9KXqakEJYHHUdqAQxsZ4popxTH/AOqkCls45x1oHYMijAJGM+9BBAyRTwoK4B+tAhhwMjOfpSA56npTlwCMjikP3jxxQAE0AenNAwakVwo+XGfpQAwqQuQKQEA5709ixHzDH0pvQAdfpQM0NKlIlkjGPmQ7cjqav6fp8kZd5MeaGwoPbPcVm2UapKjsGUlsIa6W3ljjCsRvYZ256Z96yqTIbHvaTEn7OuUCgZJ5J9RUskF1a6el55e/zGwiD73y9f502KZ4iX+YAn8B7CtCLUHkSFI9mISdrPx161hzAmYclhf3zSzoNozjB4Le9RtpF9JEJGhVcDkNW9PJL5yeUrtsQkBVJYr64FXrOQ3LCBlRZZPlXc3f39KftWSm7mAtldpHbPBLGm0bCrOAMfjU7/bUYxi2CoRgEdK77TtFsLKdLHX7KFpZELxs7khfT7prEvLi0h1YQrExiSTiJDxge59ql8rfM1qdSr1VTdKMmovdf1+PeyORWyu5UdorOQzAZE28YUenWp4tHmmmjIUiInMm05+td1rTaVcyRXlv5yvKoMNuCFRMeuOprGMVzFILwpPvVssypiMfU4x+FP2nQ50rGXFoiSSMLKdyqoWBkXvmoZreGCPyY5zJJjLeYMEn2rtL/WDBp0UoSCGS5wJJABluPTt6VztxrsH9lvbmCCefedsmBuVSOxHfNNNjtqc60bFfu9OoaqkkTr8x4FaxRtnMbkkDqeaatsrja0cladDUzBg7Qd2Ccmu58GRO8c8AfZ/y0G5sYPtWBBp0QnR5LaRoweRnGa7XwhEt3ezRw2MqAj/WnBArnxT902pPU1re0t0aSWV5N390SHr+dGoFLsCOC4ZI2wfMViXjOOmPQ10C2DKMS27tyBuCcGoLqGK0jErQTxRKT5hRV4HqcjmvLi1zXOqTVjxmeSaW6ubKKQBllbaG788801UktBtBDlu5HQ0zVbeNtXluLaXLtKclm4257GnQa3D/AGmBNEFiA8sEgkbvWvVjd2seRNalW9EsV2m9gzRjcB2Pc1LNBLOi3SgKjr91jyPwpmu3doQwkcGUfcMXArnTf3MsX35GK8Bh6e9bKDYKLN2wiP2p95jYAZBTmtE2xfABU5rnNEvBDNN5m1P3Z4Jxk/jWv/asjpJti2hhhGxjBpu60NE7Is/YHKsWK+woh0iSWRFXBZu9QR6ldLcRxPErIxAJz+tb8eqWNk2Jg3mH7rIalvsOMzzhxtYukYf/AGmqqyuWyykE+1bexAoRApUddtMeH728EDjGa3uSYxjbP3T+VNCnOMHNX381WbcBt7GogoAxxuPOadxXK20jjPNTxKyv85+U9SKTyQCzMeDSIwZsFsAUDTJvLV2/1mF7Zoa3Ufc3Z78daj3gN1yBSSTvuypwMdKLMq4kiCOQK3IIppEYUYY7j1prSFm3NycVHTJepI2egOQO9HIxnoeuKTIC4oOCQATQITAyeCKAflPNP2EcjLA0gAEoBBxQMbkkYHSnDgjHFXl0e7kXzIoSVPf0qCe1khyu1gAdpJHBNAEzNNO0BeROR8oU/dPvWvFPHuaAOPMwC2e/0rnGUxkAsQacjsWDZPy9+5qJRUgtc7vTNNur+aPyvLWNjgl3GF+oq9qOn6ZYiNTdvPc5xwmFLdhXLaJqdwLhhGw3kDCMccV1M9yomiJtlkGQxQHv61z8lmKyRp6NfHw1qdo0sP2h+ZJpSMnthB7V2byWusWsOo3Wi2huXBEYbK8jqTgjPauEa7spJ8tayQgjlkOTWmurt/oNosssdirMPNcc44qnE1i4k1/pNijxz3eqtHqTEGRZW/dRD0A6+3Wotd1mxtrN5LSG2dAoXzY0I3v3wSeg5qMHRJxf3F5bNPdpzB5j5Q+5H/16zb7VI9SmtrG6jtobGNQI0tkIQn1JJNTyEuz0OcuNZLTqHEqK3MPynHuwrqLCT+07MWt3fm3tUySO3TqR161XaexuXOnXccE0ZLCHy+BGw96rx2oW1ubg580RmMDseetOMFcnlsczNK7X7xssnlKTtdmJDYPBH1pYUAuVUSfJnIAX+tS7YjtXepBOGJPIqKCFhPJEkjFVO5GYda6tENnTLBkZWTnjO6nCMRyhHIB+hqpZzFsv1OP1Fdlot74fl0m5NzpwuL+FMyrI+AU9R79aykNalLS7MTyuCqSLt2kNkYHt711+hIUuSkUMaiKPDBcnIHfrUVnr3hmOzeRNLZcHDRwndu9x7Vm6lq+lPqMLWE0iRkEF0UqyE9j61z1YuatY2i1FHa2GpWVzdGGFoy/bLkj8Bmud8eXWtC0WDS7CbyFQm5ulGVxxwKpWkGnjynimaK4yUzIp5X2boPrW9pupWxtZLJr2O5R4mSNGk/1nTA/Kso0Yx6DlJyVjy/QvDh1yURvfWlpOciNZfm8w9cYB4rPvdCvbeSVZbJpFtWKs8I3RjHcmvWtB0rRtHug9pp8Szj70Uj5eM+orp5JLFYZEjMcazsTjjlzzhhWsW0YexbPDtC8I6br9sZbrU4rQqdxjbHT1HrWxpfgvSzrDyPdadLpMRw+CS0vHQYNdFrvgHT57F73T5ZIb9mzlz+6Bz0xXHzWv/CO3dxpuo2SyXhRXVxJwMgEOD0pOUraBZx3NW9h8JaTbyXtvolrcRo20QyFtyHsRz/OuFuNdih1O6ewijtoZ12+Uy5AXHQA8g+9X7i9aQjcFk3vhiTwfesPU7FzdK1s8YdT8xX+IUQfSTMpTuKwZEEouAsIbIBAJrPuZTJKGZWwT8r9KWOy2b2uSwGcru4z7YqRbW3mBMZ8rd95HOcfStVZEbFcynGFVnDcbB1zUJlkij2BiQpIHcn60S3L+XhcBh6dfrVWNyrqwc5BPzYxn61sjbUmnk8+3Vmkwx6j3qkdytj0q5PLGyhwihgeQvAJ9arS7HUsc7/aqE7XEZiYgdwzTc7mBbjNR4wcHrT9wxjGcc5podkG7ld3akY5+bNW7dI7gKrKd4onsnRS+0Bc07lIpKNxCrksaV0ZHKuPmHUUpUqQecdiO9IQSSSTn3pEidaM45HWpI4JJSAik579qsvps0BTzcAHuOgoHYZauMGInG4cH3qxcW/lXARxhlUMDj+dRS2E1u/y5bjIwK3Vb+27FVZR51su4kDBYe9AEV48mbVPM/duAPKB5B/wqO7in2tbPBwr5QZ7kda17CWG50+SVLdHlGInD9QM1JeWSKiyySCJ1+UOeRjtn0ppXEzkL+1ntp1S4jCPtBzngioYX8qZZAFbaejDg1veJD8trbhVkZFzvXnINc/HI0UqMB86tnBHFJ6IaNjSpIppn82ADzG+8BjZ9K7i20zyUz5m8dgf4RWN4Q1jSrm4aw12zklt5nGHgGGU+v0rt9W0wadqMloXBVQDGTxlO2adJKT1IqRe5gzwgODgVC0hVAAcetXpkVf41x65qpJGCT7+ldLpQM02ivI5KtjvUU5MvlnoyjAIq6IflBOcfSk8oDml7KAuZmWbR+dhxnrUgkubTS7iBZMIFzyO2c4rRCR5ALikZInVk35BGDzU+ygilNnEC4R2DNMh9RWjYyx7hI0yBRxz6VNd6NbqxKFMH86prYQqcBcmplBdC1JFhrk27kxyL5TH5dpq3HPdWhCxjdE/zEZrHexQyHr7DNK0cgAEcjAjvmsGWmjq7PWvslpC3lZcNtZc8MOw+vWob/W/sF5ILVw9u+HRuuPY1zyS3SW7oCrqTzkc1VkkkTB8sZHbPB/CkGh6Na659uht/Pt2EUuEBV8Ln8q0bp0hieAb13n92pGQuDyQa80sb5BZ+TNC5AbOewrWi12WCaNROxt8YCNzt96hrUpSsdbd+I3t5ELFiA4+ZvvYB9fSujS8Rkae7U3InkE0Uof7o9K89aX7RbuyzRtsGW3dGX0x2rqPDex9ESKAEov8AF5mRj09qz0Gmzt5tUeSyLQW6xq7coG4Ax1HvXI+J0k1vQ/mtxFc2+RG68EqTzn9ak1DU5YdCnhM6naMr5fzMMHisqwuftOnl5r9dzj58nJzjP4VKTHNXVjlbfTJAsaSzqpXld5xu+lbOrW8N+yQxCNViQeW68D/dP4/zqvq+oJK0cEblpLcgh2H3174pz6hBHbg+ciq/IWTkj/JpOOpmoRSsc5d293IdoUiEdMnv3FU4oJlUyzLiLoMV1yX0bMCrW0kjdn4B/Cs+9mtZttuXhQxtukVTitYu3QHFHBsSRlshxxTSGwFLHPYdiKap2MTt4pzy+bjOQw/lW9hNiPnAFKpJJGTnHQUMUJOCT6UMpV14IJFNIQNCTH5i9e9NRGfoMn27Vct5QGXcM9sU4232a5ALck7vbFN7FWFjUqnmOm50OCOma0YZJIQzIdyEZKkZI9qfGjHBZVyRkkdD6U2aHyblHSQEkfMvpWdykQ+ZBaL89rDMrclnTBH0NRRWcE6ebD8u18Mr8jFF7CJmba3OMnPSobeW6tPM+z8IQCwPQ1VmNo0JHa0k8hohGM5GOh+lTuUu4h5UiAqMlfWkhc38RLlB/dTvmqt/DNaokyxLsU5J68e9IRduHsIbS2ngDrKzHzYH6Af3gafoNwkd3LsKneCQX+8faovP8+VZrlIUs2wJAoyTx1AxU2j6cJ9XZIFUxxc7uhYfw8fShbiZXtbmaHUZvs2B5r4ZGHTmugvXS80qS0kDGaVSAijgkc/0rD8RWzabf7YyNk/zbB1Unr+tUra8ks5dwdgQPuk9vWi7TI3M2WaU4jlGCvAxxnFNR9sgJAJbtV+c207h1Lh2J3e2apvCkEgClTkcMRRe40dl4Gn06G9m+3Ku0rhW6FD6j1NdRqeordXLSrcNMPu+bIMFwOlcB4dvGgnEaGAs/Dsw+6Priu0m/eHfGF6YO3kfrURjaVwm9CjdzHywVAPtis2a4vhgqyAHsKvX37qHcSayJcyITHIgB6hu1bNPuZJXLq+cwBLO2eoB6VLJbyKnClv+BVnpO6W+3cRjuvQ1LHJaFVefzd/1ql6icSwysEGIBkerVA3nBv8AUqM+jVNK9sIg4iLD0JqiztyYFjXPQChx8wSCUDeOMj2NNVEj3MSwPp61Kslxs5gGfXANU3nuQx3oVB/2aWpSsLuVmJRcE+tTQw+YrYAyOtVkf86u2twkQYHqRWLZoMihMiHAGM1BdwKZAGTpWlayQ7XG0AkZp00ayuvOaV7BYzIbfERCqeTVp9PRSrEc4rSSBFGOvNSCIHcCe3ftRzJjMSYNDEwX+MkNgdq29EYx6d8pZR2XOBUL26yBlBycACtO1gCgRAfw4p2uLVEsMIaFt0g3EHK+xrltradez28bnylQssbNuBJ9q668iX7IiBXMjHbG0Yzt9SfauB1AGCcsyxsEY7Cg27lzg5/HNPka3Btks101xFCTHteHIGDjP0qi9yBHkjLZxk8nNanlxXKBxODGwx5LDp+NZE67JmjMfyg/KSanlIuyMyFmBYnPY96YzfOS3X1/xqSRGIBUcgcio1wo3MMk07JBdmXSgn1qSOLeTkkADOcU14zGoJxk9q0LQIMkD3qVQWK72J9yabFHv79KlAPlKSCoHOT3oBuw+JgRuTHye3WtlbZLrTDPIhdlIJKHHy5waxVZtv3NiH0rW0a4jDtbAcy5Ckt7dMUBcbDcW+TGjtJGDxjqKmeBkkkKYZGw29uw9KqGFDceZA4SQEoRxg1eEiPGkQwQxxgHqahlOVivcMk0W+Eo3ZgT0qgGla2cglogfmXpWnc2kJJCR+Sy/dk7bvQ1HPafapsIy3ErgFjEdqp7YpplJ6GfFG6xrPC7CReQPWrF/eXDrEs4KK6ZKp3p8ulXsFsbjyJUiI3feHT86zVdpHJLMwHGM8iqQrmjo9wrXsC3MreVFxt7Vvx3dvpfiD7REYzbyLtcg42n1rlUtWULKu+SInDbRyf8PxrpIIbCS1ZpbUiPABZjjOPWoe4rkviRre+iW7t3V5shHA78cGuPM0jzlmBbHynnpXpS6Zp+o6QUtk2nbmMkY7frXAXtnJC5iZcOpKk+vrVNkbBa2b3s/wAjBEyNxPT8K0Nd0r7A0Hl7mglX5GY9GHWqNlOLdxHy6AjA9fxrtr6yGqaE0DSBZmUNCPRvQfWnZMexT8GW1ukcoltZEuGXnemVYeorrZYQVyH4I4HTFUfCVxdz6X5V7HseAlPQjA71rgrcF1QjanViOtbQgtxPUwdUtiYAFj3f8CrmLy2eONxJ1NdHf37Ndi3UY2ff+vbFQTxjaDIp9TkdqiWrIRjJDnTgoBJ7YFQvHMEQIj5HcCtnzvOhb7PGTtOPTNMeOZgAX2+2cGklcCv9mmljAII47nFRnT5t65CrjvmtUQuMBtp/4ETUb25Z/vYArRQ0JbZCLBjg7x05w1Qz27KOHzxz82a02hGOoHHXHFVJYvkOBjg5NJxsgVznC3zHJ5GafHKM84zVZmG849SKiL4auU6FsbEEyq+SAa1LeVZJlXHWuXjnwc5H41raZOxvVZQX2jcVHepYHTAR7gykEGnSFQpOO1V4SgUEHJJ6dxmnzyDy2we1Zc1mFrjbSIO27OBnitaJcOF/KsjT5UjtHlk5Ct07mrvmzTX8YtiFRcZZj3xXbDlWpk3qbCqpjZSMKQVIPHXrXMa7YWYdFWLKsvluh4VV7MD9ea27C7kmMyS7cLIVVifvUmpafFqFlcRySMY49rDY/Q8EjPv0rbSS0BvQ8/05dhnjilEkcZ6nr6VQuQGlZ84U11dzpZ+2yyCz+zK0eY2YgEjGOg4PPpXJXKyK8uWyA2MjFc8o2HFDDOdvysVYdvWkRjJkZB9c9qcsoVSCo3AEBjTGG0bDgEjO4f1qGCQKN3lR/KGAwf8AZqtNsec4OWHUj1qWMK6u78sOo/vVXQurlkQD61SEixEY4FJB3sT6U62AnlCynCbTkHsarKykO7Nhx0x3NW4IiFSUoWUjLE+tDBkUgVMABtvuanspQlyJERSei+uelJeyJJGrsm1hwuOhpLdVLqDhW+8SKlMm+hLLbgSMigrk4LE+vepoo2EHkgD90cFj0Ge+abJIr3KytuAxg56GkebCFT0JyfSk2yk2aGoeSY4WicohA8xM5yw7/jWY7vFMZYT5Zb7wBwPrSWpZHDOAx5+Vj2piyuS0UsYMR6Y/nTRcWa8GpTQWggdRIGj8stIxJAqCO3srf7PeLHvUZWSFjzn1pqKiIUlbcFGQRUDt+4do13cZxRcd1c1HvLaySO9tGxdsOUIzHKvuOxqY2p1qKIC48pHyJYlIwB2xntWDaZRz5gGVXIDevpWhBqEClQGUSLwMfn1pE31LsMt5pV8lpDefardGAyM/KPT2qHTrG5ur+5lnVZ4VlJeMuM5z0z9KroSwknVyfO5k28bh6AVJYXptrwog2RSjY+4fd9DVXKeomp6WdN1MGBQYGXesb/wE/wANSpeOYIi0jmdTlWU8D2q1rUNy8iXkYdokUIXHzZ9GI9KzwZc7pY12gcsnRqGC2NKHWpEvVZC4TZsbe33/AHrftdWEiQw25JcjLA8AAVxhQSyQmUYQ8BV7D1rS0q2e3vFkMxaJW+X2oU7EM1xAh1hxC5laTo5+6tX9Ti8q1K53HGDgdqwVvVs7mSJnO5pPkjHbPetrUZFkjgIdkmC7ZMH75q4tWZJFZQRfZsA8ei/zqz9iGSWwe4JqTS7J47d5CFGDjBNUxqjW9zItwqmPnOOwrSFlqG5JN5VqN0pXPp3qi1wsqiSLBU84HNZH9r/2lqbSuQV5jQjoq9jToc2r+aGC25fEyDov+19D/WiU76ItKxspck/vY2AVeHibnd9KravMFj+RjyM49PanqhI3RqpzyjZ4xUF5D9qtGVflkX7uPWknoFtTkCxye3JqMnOPQ0PkMyMpDA4ZT1+tS2ar9rVplbYOT9fSsWzS6sNZAiq4YMp7elamlplJJzNsZFwAOuD/APqqKaO1eEC26nk5pIGe33bkAGNu89qhu5HNc6KE4ChGycDJ9RU0jYRsntVaKSED/RzhyxB39qU7I02CXexGc9s1k46jjJlq1w9mgxl4mLt7jtVuCOeSFUV4oVYEmZ+p78VmTyyWkZYkBnXBC+lSW80X7qORpZI8fdPABx1zXRExerLKqPtwhL74njwsaNgs3qe/vS3puNLht55o98OTG0aZ+UerAdTT5Iolu7cykNcbMwOjBT/wL/PSrEskUlvLDeXCGV/lkETcH8f8O9dKtYNTntQkvQkdy2opeRSZDIBzEOw9sj0rnH2qjqTtJbOMda1L6M29otvbuuYpDgL1ZT/e9ayJIJAu5cckgbjk4rGb1NVsOhgF3cLGWIQuFJ9Kt6lp8VnKqW+4oPvFznfVzSfsw0mR3dBL53U9qzJnaSdy0pkbdwewrK4k9TN81tix5AUfdx1oCNsJZWAz1o2xGQ5BUEZTHaplnKoQCXbHJq2yWRlPLiyqhs+tPW4Z4PLDbW9KrtIzc459aSPcSWQgY65otoFtCztWUorkqMYyelSIFjWSTaWCcUyOF5Y8Mec5APakkWSKNhvzg/MKkksSDNsGlYDd0GarbyVHz/IKa5QlSvzADkHrSRosmcnYBzzQh3sWkU53OoI7HPNWITCzAyqfLH3vpVGFSZ87gcVYYOhAPcn5c8mk0Fyds7WC4ZSeF9u1OWcxfMGVTjnAznPaqRkVAj5bB6nHA9qcWABYLsGePRvpS1BsmwYo3kIV2HAJPXNQ2lv5Q3yrnIPFPZ1e3xsO/uaFlG0AbiRxzRewkW43G7ylXaoXOTTGdEQ+ZuIPoM5pDIpQ5XDBeDUvmwDylZ2yvXIwvTuaLlJl7TLzUT5kEaSzQsm2QIuQgxgZqIgiOSGQSRzL0Q96UT2kdjJHZtPbTMefmyJfaieWS78ufyiTEm0v0zTbKb0GLbyIsckTDy/7z9R7VemuIrXTCYnVx0Zh1FV7aUyWQAC8HgZp8c8KwMix/MG2sGHBFIzbE0pnmuYnMS7iDmVv7taEk0Zn2Ty+ZLJISJF7+2ByKpGcxo0SyBURScHrz2PpVe1BkuZN68NHkSZxhuxzQn2EdZp9z9ksJLi5diM7AG6Bj2+oqlJEksNzKkaSARsBvJyD3IqulxdwrNbTCEbE/eMp3MT2YdqzbXWJ4pVcOcsoBGOPxrdtJJDRzlnMYXJVsw4w2eMVv2l2svyjByMZ7MKpa1pxO7UbYI0LNtcL/C3pj0qhYvwB5m07unpS2N4tSR01nNLaOLZyfs8hxGT/AAt/dPsavSAqTj7wHJHc1lLciZPIblyO/cCr1q63MAHmgY+Ut6U7i2Ibmyt5la48v98gycVhSQz5VoAvlMch88575rp0JLjK4ZeG/wBodiKx9VsFs2e8ttxjYHMfZSamSTIaZkyStAE+7j+6OtI1xPcSRopEgB+VAOh96eNOu5YZbkY2wjk+tSW+m3hgSeIHz1+cL3x71nZEo1rKSF7M71/fI/IJ+8OwpmoXG7yWwEGc4j6fjUFvcKzs7gK5bGwdjTdTMksJzIHIOVUDoKjqaW0LL6nFLJA3ysy5ynarTXr3kZgkgAjIwXTt3rDt50CEmPkD5/xq357FJVLJGFUFcfyq4si1hvlPcLHl5CoOMknIHTP9alV0t3YvLJJj7rxdMdMnNQ2jSXD7zGSpOME4+tLKYkuN0EpJIIkULnC+grRSd7D9RjLFKCiBxtO4O5xvHeqk8yszKjhVAwBj17VddIfszs0m1EIaPd1A9KqMk0rSCOIuzD249xTkM1rd9PtykkcfmRSR/wCqHPznrn9KzXffeSGOPy0HGzsK1NOtZYoDtjRR8uUY/eNJqcYiuSqxBF3Z4Pp1rHqStzlWIDAhSCR37UpkYAEEjjsOtDklA2c4bFRuRuI3Ec9K1sVYm80SAfLyP4R3ppAaQMqkD+IelNiyMlSDx19KkSMlSxJD9l/vUhEjRy5LqxK+tR7nDcsPek3PESkhIXsKiZtzAEbPeiwkh2/kuOopwAMfLZyaYzDO0Ebe59aeiM+JCQhXpmixViaGMMeW2kHnntUtzOGuA2eoGSB0qKR1dmLLkgfeXpVdmDZJznPala5C1LguFPzgcgkhG6UgLzNsJ5Y7hjpUK28hVZdwVW4Ump4rd8eaDjacEDt70WG0DmTylc5BzgUROXk8pSMnk06bgRuH3gE/LUETln4AWTJPFHLcLFqSRlQjkDIHK8mr9tNE28yAsMYCsODWYJJWUKXGSec+lDSYUDO5QTgipaIL5VYpC6oUQkFRnpUtzP8AaBHaoxGe44yT61mCZ2i2OxLHoKdbN+9VhlnB4UfxU7FJNm1MFtreHdGuChG8c4NZ8lzJLL5akqccNVjV2a1T7KoPzkOyn+EmsWUkkKG3ADLE9jRYGjRkfM4DvlguCB/H9ansZmhEzSozbjsCMuQ2fSs23lk84/Z1LSMuEwM81dsPNEibtxlYkFj/AAn607WHY13ma2tpoYYxCV+8xGWYfWsmKTy4dxUgk4Zsbsf41Ebo5kUzCSRuGY1Hb3EcEkpOduSGI5GKHK4WJpLhYTKkbnZIm0r149cdjWbbvK0ZtokBLNy2ORVgyoTiKTABzgjmoYzKt+GYMcnkdKd9Bwdrl4217bRi4lhdYgQPMHIz9atLMR/pQzu+6cDCuKE1ILZNazKwgYk7VOfzqrHsiJIO8dRz29KnnGpXNuO9W4SKRG+dBjHerHmKqHzGDK/BGM81g5iSdpkOwFOR2qeaYW8CHBAVgSV5zScricr6Gq/lN5qPgW+AeDgU6B47lZGgJ+7tD9MAVUgaKSNhIm5GbBRjzSebClm+9PJhJ+6h5pNEuLKs1n9mv3aNldHGdwOcU2S4zEwUAN2bHOKi3tM8jQxuNpG2PuR70l7BPppO8efEw/1g/h9jUqLuNX2KkCgguj7tzd+M/X0qUqkX7zeXLHkEdDUKRQeWZ3lUK/DKD0p0hDMqQKyZ6d8j1q7WKsX4XjlByS+xeo4Oe/FPnumji3xx+XgfIwHX61Lb2Uf2WRl3FnUKv170kdv59qLKWL94GwDmknqSpGTNNcTkSKoaNj8yHjmtWHYLZAQI5FIGQclh6VRutPSCRY0lwUblc1aKhbmJogFyRgnsfWrbuht3RqGOT7AJXj2kMSF7+1Jd2ctxbmfescQPJPUioFuZfJkil3GQPnn+Ko7qa5mIZ342jAHRamOpMUz/2Q==", "path": "images/3pts_ADE_train_00013294.jpg" }
depth_point_31
images/3pts_ADE_train_00018465.jpg
ADE_train_00018465.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 71 y = 154),Point B is located at (x = 150 y = 199),Point C is located at (x = 309 y = 198).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_3><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_67><DEPTH_17><DEPTH_31><DEPTH_58><DEPTH_3><DEPTH_49><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_17><DEPTH_60><DEPTH_76><DEPTH_31><DEPTH_49><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_70><DEPTH_22><DEPTH_60><DEPTH_15><DEPTH_59><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_59><DEPTH_67><DEPTH_20><DEPTH_43><DEPTH_77><DEPTH_59><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_31><DEPTH_35><DEPTH_18><DEPTH_84><DEPTH_29><DEPTH_36><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_29><DEPTH_15><DEPTH_75><DEPTH_42><DEPTH_33><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_25><DEPTH_77><DEPTH_61><DEPTH_36><DEPTH_2><DEPTH_2><DEPTH_19><DEPTH_19><DEPTH_2><DEPTH_19><DEPTH_19><DEPTH_78><DEPTH_61><DEPTH_63><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_16><DEPTH_42><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
3
[ "A", "B", "C" ]
<DEPTH_START><DEPTH_3><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_67><DEPTH_17><DEPTH_31><DEPTH_58><DEPTH_3><DEPTH_49><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_17><DEPTH_60><DEPTH_76><DEPTH_31><DEPTH_49><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_70><DEPTH_22><DEPTH_60><DEPTH_15><DEPTH_59><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_59><DEPTH_67><DEPTH_20><DEPTH_43><DEPTH_77><DEPTH_59><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_31><DEPTH_35><DEPTH_18><DEPTH_84><DEPTH_29><DEPTH_36><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_29><DEPTH_15><DEPTH_75><DEPTH_42><DEPTH_33><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_25><DEPTH_77><DEPTH_61><DEPTH_36><DEPTH_2><DEPTH_2><DEPTH_19><DEPTH_19><DEPTH_2><DEPTH_19><DEPTH_19><DEPTH_78><DEPTH_61><DEPTH_63><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_16><DEPTH_42><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_END>
71
154
150
199
309
198
null
null
null
null
24
67
94
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDJtLq3u498Tq6nuDVr5SMEA9q4DTA8GuRwBmT5vmweorvcfLz0x1rinHlZ0wk5K5l6ojCaPYUYjJCsev0NQ2iqzx9mELAK3XrWrPbJNEQ67h2zVNraSFflXzkxgBvvL9DVwmrWIlF7mrZIBDgce1UdfMYgQSLle4q3Yki3TIYjHU9evesrxSsj2YCAsAD0+oqIr3y5P3THt7b7Gz3NjOUY8gdVPsRXbW5MihnADGEE46VxOhQvJDM8mcKwXBrtohtimBHAh61dZak0noUtIRftjd/kP86r6BM1zq1zNIRkDb07AnFQ+FROks6yzeYqr8pPUfWrehtBLcyTQFWDKdxX1zSel0WtbMvQlW1nUnU5XauPT7oqpDG0ek6h5TBXyCpIyM1NpqLELllHDISfenWuHsrrHKFlxQ3dglZAh/4kls0m1WkJ4z3xzipSky+I7VhMfIMYDR4GM4PNVb+2W40ewyOUm3KQcY5q6ZifFP2byiqrEHV+x45FIdyhqBEsV0sh3AyBMH05rT8Nxvb2LxSsSiN8u7+FcA4+lJe2izwS7PlbKt7HFWrbd9imZgAzKSQD04olZoS3sWnXFrtGDlsjHcHvWfqu3+2ovaFf5mixkjsNLsoXV2VnES7eduScH6UzUG3a4mOnlL/WiO4S2NwwO2rwTnb5aRsvvkgU+drP7RfMg2R+Unnoeivlgx/EAGnt5kd3Blw0UqOduOVK4H5EH9KqRyNZrf3UpEgARsE9QM8E/jW/kY+ZHLiD7LGdxgEKqWLdPnU5z64FaMUgiLTIStwtup3Y5PoffnNZsq7rK1j4UPAvltj7rYH+NXrV5p7ya1DoXht0CbuMnBJz9TTAq6nNNFpUbxACRIonXHUNj/61YsGfs0MQdCTGjDH8IyQVPv8ALn8a276HJaY3CQpKsQV2HCkKx59jkCuccZKXEZAWaSPgHO3HUUug0XLRRG6IWyJVwTnOF3f06fjVm5eS5uo8iJU8zeW3gZI4PB9cZqpENsYkVBEFVuDzlt2Cv4881d1FLJ9C3sCZQyqJFUcrng5+lO9hWOg8HebH4zUQFQWhb7QhP8HUfjnH616jXjGgaqNJ1nT7kgLHHGkch7tE4GSfocGvZwcjIqou6JkrMKKKKokKKKKACiiigAryH4nEP4jwf4LVP1Y169XjfxIZ/wC39RdV3GOCIKPU9aa2Y47nmE0kcWoOznaCDjjPOKtLeW76beRRDM4Kl2A7bhgVWligQCS6ffIeT2UH0qCyYG31SQLhWdMY9M1myupT1WVpbm3jd9zRx5J9ySf6inBGFhFEPvTvgfTNUNxuLuR89WwCa3Z4HhvLUhcxxooUjoSWxmkwRavoRa3SwqvCoo/Sr7KP7E+uP51V1bJ1aQjoABVyU40YfhUFnKaSTNq9vI3XJzXdKAYxg8d89q4rS7K6s9ciS4iZB2JHXiuzC7U55x6VnW3Kp6Io3Wtw6bdRxXAZUkGQ4GQPrWjDJb3USyRSoQf4lORXIeKkkmvoCoG0RkGsa1urmxEb2zvFK2dy9jg9xVKleN0S6lnZnpowihSBkcZB61BdW4njOThhyCKr6dcy3WlwzTBRIwywUcU251OCykSO4YoJM4c8gfWsrNM10tqVIXSKCRRHjcwYsnTP07VvZxBc9sRf0NZxRGXzUCkPjle/NXyc293/ANc/6GnKV9xJW2M/QflWYgfwf4Uzw9AsUt06qBuTnHrgU/R2wtzldoC96dohI+054wn9KqXUS6CaHcyXGn3MsibCqFT7471ZiZk0udozzuGKgsEDaRfR5wXRhz75qOJ2sPDLM6u5SQKR1J5pPcaehouANMslyM5Jq4iZ8QvJjpFj9KpXODZ6ePXkfmKsQTPJ4mu4SmPLjyreowKA6jkvba8u7vTmVt6LhgRwykDofxq7aw+VamIEkBcZJyTxjmsZYyLrUZl+VjGwBHHarWmTTx6QjSsZZUVsk4BbGalrQaZYdSlvZq2MrKD+NVb4j+2yM8iNK0InW7sopghCkhwCOV+tZl18+vsP9lP5CqjuKWxpwpOPFVzIQ3km3whzxkYz+NSxQm3t7+zvZIpFikCMynK4POOfripbe8STU7i12sJIgWORwwOOlVGlfT7LVLi7/f5dSc/xAoF5rdWMh13J5EiK6E2/kqmM+gYnHvwKvuHIugsf7wwKFYn7w55z7EGqcyqwjgmH7qWJQGHY7TnPp0q0m43GpfaJHjiVF8pwfu4Un8t3X60IRR1YpcWz2obDhYlYMeCxDY/PgVlo7NJjyAqRLFG2D1Iz8315UH6Vpa4bdLWV3jDFtokHT+EgH9f0rOG/C5QeYQjOSc71PIP145o6D6jbVgJfs0hdcIGOTkD5ztP9Pyq5qDH+wSzjEjS5YYxyWJqhbtvjXy0cEquSTyY9/T8MVa1OXzNAWTcSGcYJ6kZOM+9TLp6jQ4yxzWsMyDIijWORfUbQDXrPgnVTqXh9I5X3XFqfJc92AHyt+K4/WvHrKQRPCDho5ogrfXAx/Wuw+HbXVvr8lsgzH5ZWYE/wjlG/A5X8auOjsTLVHqlFFFaGYUUUUAFFFFABXlvxUg2tJJbqBcNArEk8HaW/oK9Sryb4pSpNqCwk5CqEYfgT/wCzU0OO54yqmU7wDK2c7m5J/Cpf3kGk6jI6FHZkOPSlvpLm1lgtbb5EbGcD5ifrVvWoi+n3aIOWaMfzrPqWcvCjC2LAHpyfrXawYk0e3YjLB4xmubRP+JYAON0g/Suh0tzJo9r3zMn86lsEV9UJ/ticHpkAVZ1S4FroAORvOAoPc1Hqi7tSuCMcOOPwqS807+0I7L5jiNuV7EVPUo3I0H2CN5ly4GeR3pFjV+UPGe9MF7DdaarQzRuD/dbNRQyYXriiST3JTa2OW8USyQalGmAQIy2D9aoW2y7aE42sTwD14NdjquiQarmdmKSKu0MPT6Vzb6Fe2DxPGDJGhJ3pzxmtIWSsRK97nSaYANOiUE8KKyfEJQ3EcUqllMbtkHBGMVtWUEkVnCwGQUXJ/CsTxGEa8iBZOYnAVuM5xXOk1M3bTiU7ZJ7aZfs8+1MruQcjoOo7GuvkYJa3TE4ATk/hXMWCbtQkVwRtPGR7KK375lGm3i4JyjZHrxSqPVBB2TE0pUeC5YSLuKcehqPQVkWC5EmS2zA5zxiquhwGz0y74PyruAP0qfQbppLK4lkTy8JznpTfUpdC3ZER6bebmyF5zj3qVgs+lyqcFXlP8s1HbMP7NumBGGAwQeKjnljt9GVpGYKZgPl65pdQ2RJfRu76NsZlCjJx0IyOtX7O58zxNqEexh5UfXscgVBKzCXTl2ZBiwSOxyKu2yKur3so+8yEE0ugyNoBG124LEOhYjOe3YU7TWE+lo5XbvUnb6Uy1vxNPdxSR7BCcbyRhh0z7VbRdlvsBx15FK/cLdiE+ZFBZeS7IFfDAHgqexHeqz8+IpM/7H8hV3H+jwDrhhVGVwdeZR1DoP0FVHcl7F60mJ8R6qMD5IwBjrUlvKmqaROJ1OGYI4YDPA//AFVOptzdXLw7DMAUkx1HOQD+dYime08OXbyfJItyDyM9lrVGZbvrvy7iWFomKsijcenCNj+f6VrXeZVvIS4UZAVgfUHg1RlkikvpbaVBj5QD65GafdP5VnqDyQp88wAOeW9D9R/SmhEesuJoZldfMSMgMoGCqBSxPv1J4rHRhDceXKCHklQQPngf/WIJFa+uXLRwOyruBBAZDncrLjP61z1/HE9xHGpfaHBiOejFMn8CfyzT6DNHbslSQJs3bUUbsbX3HIPtjI/Gnamy/wBhxlBtUsuFJ6deKo6bcmZWWddsqInmBjznPDfUZH4VY1VPK0KBCwYKVGR34NTLdFLZkFtI3k+UQTuQMnrnHQf57V6V8OAlze3Nyw/fxReW34kc/pXmVs5aNIgPnKBkOB+Veg/D+6S1udQvWDFRB86L6gk/5+taW1Mr6HqVFch4f8VtqfiW9spW/cyKJLQMoBAH3lOO/IP5119WS1YKKKKACiiigArxb4gyrL4kuoz/AASDj/gC17TXgvi9i3inVmb/AJ+SPyGKOjKjucPfkf21bnoAy5zU+sv5FjcODzlMfkaoaqCdWjI5IZcfpVHVZ5ry+uUDExhtoGfTjpUW1G2SOypY28Y+8F3n8q3ND/5Atn/13SsN4y0BkZSp2lQCMcAAVuaQQmlWgJAzcKBk9Tg1LGiDUpG/ta5x03/0roLRP9HQnqea52/A/tOfr9/Ga6a3IES89BUspHG6fGVvg4ByqkgDgc966SJv3YyTzxxXP6YT9puFB4RRwRW5ECU2k5qYJpamcNjXtWEtvIueduKZY2ssN4VZ9yEHj3rmLzVbrTbwi3lHCgtG65BGetXrDxjAtwTfwtCD/GnzKOPzq0yrG55pSV1HAzUdxZWupKVmgR+MZI5H0NQvKr5kQ5R/mU+xp+n3kK3fkvKquy5VS2CfpQBXGhm2uGngmcqesbHpyOn5Ut4m+2uEfI3Db9M4rUnmQQsQQCvJFZ1wRLE5duZAMY/CsalnsHNZWK9tIskV1GgOdoQ/lUlvbqlvfxDgMmDj3FGnWpjtZixIZhnj8amcNbx3zScgKDnHUYo5Xa7Lg9rlGzje08PXKRk7lPy55706WWNtAga4wokk59M4NWtPeO4sZSpyplAxj6VHNbifRkjxwGZvyzST7mjJ7pJG1PSXikIQKFdex5rQtHzqmoD0B71lyxzJq+nsjfu1Vdy+pqzpl2JdU1L5GUqxXnoee1D2C2pDGim11Niud+8HP+8asEyWfhsmE7ZI4vlPXBz71MYN0V0ifxcgAepzRdIf7FdNp+6OMe9PcnYkS8ULYxynEs67lwOCQMn6VSBz4kl4/wCWyjP4Cp2VTPpYI5VSR7fLVeLnxLKP+m4pxWoN3RdsX/4nGtMv312jP54qTcNb0N/Oj8svJ8wU55HOR7VJ9hW2fUJoiS1xHuIz35FZVqWj8LRidWD/AGjHTkEHj+VaGZJqKkayXdTtZ1Cnsfuj+ZrWuDFc2l9DdFTGbgIv5DA/Osu9uJDrqQuVEBkHGOuMEZPbk/yqzOJLe2m+VcTXqnj0OOTT7CG6rm0imkLiP947R55DYQALjsDjFZskaI6OqlwknmOjcbSV9PQjB/EVpa6TdlohImUuWCAgdQFO3371lRy75MMWNy821AeF2hcYPtgD8qfQY61iUTR3MYVX2I8eTksBk7T7in6sSNEthjHK8dOxqIFY/wB4uQjlN6jrHgZ/wp+sSGTSLVm++xUkj6Gpluil1ILcq6r2kRBtPbH+c123hFx9h1d43IkaLIzzg/NmuHjIOxowfMXaMevb/P0rsfC5CaZqc4bjC54zjqCK1RkVRfS2OrQX0P8ArYHV1Hrgcj8RkfjXtlpcxXtpDdQtuilQOp9iM14XI6m8mi7oR+Oe4r2vRIlh0KwjRQoECcD6Cpg9WVNaIv0UUVoZhRRRQAV89eJ52n1/VpiODdycD0HH9K+ha+cvFErjVb8xYVmuHClucUP4WVDc5K6imluftW0Iijcu84yAPSqmkk+cZ2Usd4bjqTnNTTQRvuM9w8suOxzg02CaO3tFR/vZPAHUVmxli9lMzTExujKOVdcHnFT6bbySXOmtvHlRuWKY746066hDCVyMZjj/AA+UUumylJ4gASoYCkx2HXpLahPgZHmHitia5S3tizkBVXLGsC6mZNQn6f6w1Y12NzpkJy25n3EDvU21KuV7SCdGmkkj2qQCWx1rUjkJA29/Wm3dw0kTKUUEqDx9aWJWIB2rtP3cHNRF2djOPYxtSi825uHK8+UBx/vCqdzCoLhSB80Y5HqOa0dQEwmkHkShCvEij3/+t60ggS7hlkPy7JQMsOpUE/yBq+ozoITsVVbOOlUNRs4bpiTEHCjr3FaMbJPGkkb7oXyVOMVQmv8A+z5s+WHRuueMUNXFLYr232i18qNLhzAWw6SfNkexrSZwljvbOyPDEgZ9hxVb7XFO4aKLacEY/CrEMSmykDEBywwSeenp9c1z6t6kIvadNHJY71YFeAT6HNPub6Dz5Ukidom2qzhflXjv/wDWFU44k/sq4iyfMckAqcYx/WqllDN/ZN3cyS+aYWbAk4JxkHn/APXW1PValpmw2lp9nltrb90XcMCPXj/CqV2l3p2kRoV8597I5UE9TWjYX8KadBfXLCCIhQSxyBxjrU1wwaNXUhlaQYI5BBPWqaRd2VldHmjjwd6qhJI7UywjAmuHIxvPP/fVI1rJJrKy7z5SRr8oOBnP/wBeryWDQSNsYt5gDAHtzWbhpoaKWupnRXzvaXz3YCIjFMoTkr64rRiuENojiT5CgwxPWqVtCs0UinDB+Dg+hNOktkfSWiOCuwDB5pNDTLEuW1CzKxlowrZcH7p9CKpWuT4lmPb7QauCaRJ7aJceWy8/LyG9c1RtHA16VjwBcOf1oiKRdsLiQT6uS7SrHJ8qFs465A9KlXydW0mORd6oZd4B4IIPSqUDxWk19H9ojLXKmbevKqcnjPQ4FMZjZ6Lp3lssm64XBU4HzE+npn9K2a1MkyS4jca0ZCAVedVHPX7n/wBetKG4HlSn5pl+1lOTyvT9Aaw5Xhk8TIfNb5JMODkAEEbfxy1a7QOkUYjZmDXYkb6Ejj6U30BdTP8AEC/Z1ct+8E07FR/dJ28/XNVJHEz7HIZwWWOVRgE7R19Dzj8Kt6rJEMGaElGnf7mDjkAN+f41nSRm3hdceYj7pAQflOR3pDRZSSYOITGG2Isb9ty7SeT9T1o1l1/s212D5TgjPXGO9V8+YpgmkAcfLGw6A7OQx/rT9cYx2FqpHIwP0qZboa2ZHuJaN4gCAoVgvXjrmuz8KlRo+qPG3yvsJH4muDyUdZVGUIG7J612nhkD+xdQljc4Z1HTjn/9dbdDPqZV3MRqszckKcjHpjkfpn8K980wg6TZkHIMCYPr8or5+vBm6mOMMGyCDzgV7VY6tJb2WkQLAJEkVI3dDxGNox+tJWTHLVHRUUUVZAUUUUAFfOXjDa3iHUBj5TdP0r6NzXzR4jmLeIL8DlVuXAPqe9D+FlQ3Oek1CG31BLSK3AQsFDfWpltFP73Odz7MemM5qnLGH12P/ZkBH5itmdFtIII17yE/mM/1rNlFXXblrNJSkYYYUE/3eBWBpt7PdalbpkkGRe/bNbV5eAtOLtkEjv8AKo5G0cVVsreL+3bV4FVRtBYAe/8AhSvoDJ5omfUpCVJ/ek/rWvrIBtrce/8AhVDJe+l+bH7w8fjWjrG0pAD17fmKnqUUW1KO5g2RIFG0AE8Af5zT7RmSQMSBju3APuBWLYIRIxMm1/LyN3Oa14/PXgs25gBnPGPp61g463Oda6nUWIWayEi8/Mfxrn/EdtOkcZtT5e6T5tqjDAjHP4Vo6VqdvHI8Mk0aE9mYDn6VNqTxzRxgBmG8Hitk9LmnQrRNDbWMcKk4QfMO/PWqlz5FwB56neOAwOPpUbwsMuylYxnBJpgtHkjdkkG1VyAx5NYN1GQ3IWGNIiSJAw54Jwavo8S2fzgFsn71YgZUwpz15JPWrEDldzOjFRweahSkSm9jTtCDG7FgFUcDHUnsBSwkz+GNQEX7xiXXHTHJqSyMKWpkELFuuQ/A+tWNEjEmlXAjOQ8zkZ/3zXRTVtTSKISsMfg6NZsqmFUZxknt+dLqUVwbPSWglMaRyKXAPUY6Va1KFm0NYvLLlZASoGelQ6jxYacvG7ev88f1rbcrYsfaLiPXRb+UjW8qDDg4ZSoJ/GrNpqUV8HaMMDD8jBhjBqmJZP8AhIgrf6pF+T6leajs51+yXsiLtLEEZFQ7IE9TXeyjlgkiQiIyYYMB096SOw32pRX52YyehNY1nr8yaW1zdQ7/AC3EeIhyR64JrUXUFtrP7R87RsRlVXJGfb+dJ+g+Yi8qQTQsynAJGRWTB8+pXHGcyyf1rp7OYSMsaldxGSMjOPX6Vy9vIkVzPLIzYEj9BnufSpjErmujN0uJjfXLXAIt7dXULycDjP8APpWxeXFktlbIrgKgM0ATozA8c1BYqPJ1DypFldyWAJwee3tVTVLZprGxjb5CzbSuf9o8Vs17xmtiWGRLvVkkxgTTq4BHUZU/jwK1rO7WCGHaSFkvHTaQTk56D05rEivnttWWza3EgTJRxxtx0NXNMl/tO+iEMYhht545Cp5we4z+tDQJk2thSsPkA7TId2313DOfxFZSy7GxGBtYyExY4bj9P/r1evpZraTZkI/nMXRhnKs+R9OCDVCURXPEaGGQq48pvXoeanbcta7EzbNrSRpvAzuB/g+TAGO/FGvnFjZqemP6Co2ZoSWDESBmPI7BOmO46UzxFPm3sj2OSMfhSad0O+jGK/kkOp3oR8wx0/zmuz8KnHhzUSp+RplwB07VwgDxylXUsrYxz/X8a7fwwpi8NagDx/pIyvp0rXoZLcy5ZP8AT5VIzlztz617HBp8K6OsESlN0S4IOcMAMHn0rxiVd1/IVPHmc4PIOa90gwLeL/cH8qym7WLKfgy7vpxex387SyIwwWI4HbpXV1x2hXS6ZPdeayGJ5VQvn7vJFdjWyM0JRS0UwKmo3n2GwluAoYrgKD3JIA/nXzjrTibVrg42gzvx6V9DeIHMehXTqgcqAQD/ALw5/DrXzfqMgkvpGBOTM386Uti4bmIHI10cDHmdfTmtrVJPKhjYYyX7/wC6KxkQnWST90Pyfxq9rlpNeWsQLiJRIxU9cqFXn+dR1GZt9EkmyV8khSM5/GrOjxEajA+MFly3uao28Zl0t3ZslGbqa2tMjxfw+wI/U1LegIjaRft5wvWXH61oa1ybYZ6n+orMWJjf7iRjzc/rWnqwLT2i+rD+YpdSjH01AzMOoNup4+tbEPEAGCMCqGm2NxbNL50eF8oKMEHPPtWltKx8/wB3NNmUVZHG6xKBqU2VBwBzio7WeRXj8ieWI5/5ZsQCfpT9XhL6hOwPBAP6UzT4iZEOOA2f1ArRbC6nZLJIwYzcgdAaxLws160sbOoOAQrYBrpPJOdpHGOlY1xC/wBrwFC/OMe2BWNimipbCe4n8uSRiCc8jmrhZrcHehYRHB44Oeh96kgieESsF+ZRwfzqF1kEkqyncPlJb3PQVElYlqyN3T7+3W03s3lpxuXA5q74dlT7IY+MtKzAL6FmrnVgiW33bwTxhQfertnAJ9LeNckyEc5wOvtSjN3sClqdWAG8wN2Y/wBKgZIpbJWdVbaMrkdDnism8e4g0G3FvM8cu8IWHzE8d81Pd3U1sLG3VEZJjhyxwRg9RWxqPnUDXdxidVGPnDHaeBxTIYGis7jcMs6hhgdB/kUXeoFr17UwurIc7+CpwM/1qOzvllifafQHr0rOUtSNLmZGMaLJzj94cflV6edorKIrgBnVDkdq0tQtrYW4UR4Q4Zggxz+FVXtoHjVXJzy6jpgjpzTnICW1dW1OAhAJEgP7z2z0rIjS4fzpIPKLhiwVjwRnmtqCCMXSESZkEWCMcYz61T0kq1y6nyzkHIbpVQ3GjnbbVrG8ecXCNbn7pnQnaPx6/wBK0Jn3eQsMyXSQkMu3qfx6HrVe009F0vDRlWkuRu4ypAf/AOtWa2mMYrA2rbJJnfc8bfNwfStE0ybdjcjkSW/DLGyEuQwfr0Yn9f51JpYWCO3KFkeS5fhTwcZ61SS8vFJtp7eO7jyQD91wBu554zhf1o0y/tZyrRT+W6OWSKY/KT7Gi3Yd31EtIbgySOZFLB+A/OVHH50y5Rzb+SIyjFWyGPcnrn8aS4hd2tyVA8uYsCDnOT1H51Cl3cLCsc378+WS6v1J3Y61LuVG1i00yfvEnJdA7LuH3kwOcetJ4rmVlsIlQpsBGCO2cf0pDHDcu3ljLguDGTtJPGfw4pPFyNHcWSZBBBYHv1HFJbjZUErqxSQHaT1IrsvDm8eGZ5Gk3Zn2f7wwuK4lZ926J+AT6d663RrldP8ABE8krZQXYzt5/uitOhmtyg7g6m5XcP3uCq9T2r1zQbu01LQ4bUedCkWxVEvDEJgg56EcV4zHIJ75pIuC0mRnvXVN4ajsvDct4l7eS7ZhhIn+XysruBXoSMmocOaSV7F62ujtbGRn1SVneJ4pbpAQvQ8t1H0x9a9EWRH+6wNeM+ERKtsEGQRd5i3YB2ZOOBxnmvQY9cj0mPzNTlby8ABtuSST6CtLWk1ch7XZ0MVzHNI6JuyhxkrgH6etTVz2i6rBf2+m6hH+7W9tml8stk5yvQfnW8sqMDhgcdcHOKYjG8XytD4YvXVtuAvPtvFfN9zsaUhCR87Yz9a9+8fXkSeGLmGR9vn4SMYzls5/DpXz5cgXG5SNu7PQdaUtiosrwtZgqrMGbJ3Fmz3q/wCJZ1js7ZEbGICcD3AFYRs2VcswDDpzSavqYvCYgrARxhMlcdKztqNvQq6bcyeVNb8eWcH3zkCuo0w/6VG5/wBr+ZrktOdVkaPqWZSPwNdXpBDSRZ9Gz+tDCJWtp2e/VSBgyc/nWrqPOo2S+rD+dZNoV+3JjGd9al+3/E1sfqP51PUo0LaEEpscsDyynnHFXXskkU9uMcVlaTq9peMqW8gdlXkAEYrdWU5xtPNNknHal4ake5kuDdIiMcAOMY/Gq9vol1HIhi8qWMEAlJAccg12V5EtzbmNiVDHqOtV7O2itEkCsSOMkjFUnoKxJNbswBCHnrVGTShIyyl3RsnI7H61tq6svXtTMDZwcjNSUc1FZXA1WaSSMpBsCBVOQcADOPwqe1RH1WYME5jXhhkdf0PFb6R/NuBFYs3mDWMovJQd+2TmkxMV1FvaSytGjBW4HqevpTvC04k0ON2jcsrDdtGSec0ajE0umTR7dpdgKTwkGh0OPaSMjII/GmlZAkT6mxFhZhSQTc8/Spb4n7Zp8f8ACVY9O+aoQ6rZOo+1W0jsDu4bgN6gdqv2r218FnV5GaHjDDGAT+tK5TRSviqa3OzEjGR16/LVa3lKWBRBl2OSx7cVeuo7WXUrkNKsjYbhTyDjIzTTaJFB5blRkflWEotmdiD+0LlLKMtyGONvrVm5unhhjlKcMdrcZyPbFRyRIlpa5yNr7fmGM9alvg6WsTABgGB2Y5PIFVyFWJrSdhdtuR0ITPFR6bhbgvIUC+pXIqdXmW7lDxLv24I3dBiqdkfKJYMzDB6D2pW5XoLYu3CxyOrRpGyZ3DyHwM5znHTrWbb2kaLDh9qQySYVxgtk9N1RJGP7NtlDqWD5LZwepP5UttJdILJPNdY2Ehk6Nu9OvStFLUE9Sa3iDTMzlFC5+ST5t3X0+tZkVgptrWPygcIWIIzgk+n5VJpupJda5ewkKEhU7OdpJ4zVmSeKRIJAJEMyhlDrk89OR3rUsx7e1ijgj8zcxkJIYEjZ+Pbp6GntbOyFoZVnVlwA/BxnPUe/qBVuWISmDyCCgDfdOR04pgheOLLgBvKQHb15f2oIehW8yIhlcFJi7HD9OcdDT/ESyTXNriTcFHG49OalUlpHwilCXyGH+3ipL2Fb6/tFEZaNRg+n5Cp5tR3ujKeaN24+VvvA55z05P4Vvyb0+HExD7xJejJPXqP8Ky7rQplmJiKybzvwg6D/AHe1W50kt/AQjduTdYZCPunr/StCSKxY7olfGxiAG/umvSbaHXJfCtw9vcQRqTKRGVBAQDHcHk4zXmenZ8+Dad4LAFa9a0OAw+GJW815XdZmYFuFyCMYHsKm9pI0+wzmvDUOrJeRG6uUMb7CiJng8cnj0rtBd2tvE0l8C6JKSEZvmbkjAz2rldDuIoLO1mlfEIk3Fifu4C9fzq1qurWzaNMscqBzMWRcZz8xOfyP61FSfv3IWkBmo6oNE1jTxp9nIkFvbTKkAk+4crnO3IOMGuy8PeNI9baK1ksntwyYEgOQGFeL3Wo3T3UKidhsjbaQMEAlc/yrS8Oa++m329onmG8k7sj/APVyan22qdzI7n4oeZHpdsJArxNN16MSB1x+NeQsSHXaTgE4yK9D8Za1c3+nWck1sUcu4zuznp2rjoGddIuXCg4OQrfXsc1vKSbLizmdR3QOhIKhmHH86XWGhGnCFdvmm6dmwMsF2rj+tWp7fU9e1Cz0mxga5lJ3xxxD16k+lVfFGlazoGpNa6tZpayNiQbRkSDsQ2Tn8KIxb1QNmPpqFrsEZA65rrdJxGYj0ypP8647T55Vu0VQCrNg57V0Md6kBzvXMSYwx9amSKiLYMw1JFK4+bqa09WuI4Zo5GcgoMjAySaw0vfLcSFwTnjC1dsvtF9fIXiIi7l+SeP0pW6lJlnw3G6b5tiLvO3CrjpXTpcMPmIGKxdGwLdcf3jWi7nywcY6/wA6TEjGuPFVzDeywCxSRVk2ghyCada+KXuJvKbT3HmsFyJOnb0qKSNHvpG2jJYHP41JZwRpOMLghx/OmI60MqJgj6Vx+qaneQarPHb3zRRhgAhjBAOM+ldZIwSIux4UZNcterBPeNJz8z7gcdflFIbJtD1a/ur4x3EsbxKmQVTGc1pTF49RjaNo1JhPMnfnpVbS4IocMmTkAdMdBVXxJCLryEYHCgdBx170+oX0GeNHP/CHTswBZ3QHB4HzA/0rnb/w0fDN74avmhvV82aMXAnTGZV8t22cD5cSBe/KNz6dN4kiceEVEVv57RvGwi2lg4DDIIHOMVw8c2sXrS/arGRoL+/ju5Z2hYAOC+Sp6AHec/QelVHYT3PStKXToYCbmBJ5H5+8pwPpnNaiS6YiMI7N4dxB3IvOfrmvKXvXht5LYRoVZG+YjkcH/CrXhWxWW8tbx52XZMo2Ho1FlYd29Dv72KBIJrlIg0pGXbYQSM8VPbvpyBjcRvITg4Mb8HGPSs4JCl1fs+3L+YAGxx9BUtmIodHYLsd1ViCwBOe1RZdgsacs1tBZImn238WckElfwNVJkaS2jkdMbZFOOn8Qqkl29pbWpYbppWCPIqKO568dKsanA9ykcsG5lhmLsUJPpgHFN6jOin2/Z5WdRuCE/TiuO0W9WZmCFwQmWG3ODyPT6VuOZRcaoTI5TyRtUk4X5T0HauP8GhzcXJDOCsIxtGeeaEhM2pfmMaCfcSfmD8AZ9PzNSWtihjScSLLGpZT8+08EjOPwqKAajPBayRwPPO+S+yEkDjjGPoKsRaNrb2ttE2k3G2RX8xjA2Uy3/wBc1Cgm9UTZdTD0Wy8vV7mVFkHmBjyATk//AF61HtXijiMsQAjhUOSpGCAe/wCVc+zara3wtZrdrdyCQJcodo74YAn8Kmnl1JY9uVfODtR8kjGf5Ct+USm+xoMzW32ZVC8x5ZWGeik/hjFSC+V44y6rlkB46c1g3Wq6hIjoyPHKflJcgHB696sQ3P2uFGfKlQkbEdARwKicXbQXNcutdK6qFHQkfhmoo5WGoIqDagIHrUcMcHmWpE4JYEtlTjGf8KiS4MV4m/DRhc7lOeetY8jjdj5rHT7ozMAZF3RYPB4PykVW8RF20VY3IIeUN97nHUGs4XVtu/iGR8vUZputXSnTrYCR35Axjhcf/WxWkHfQaaKlk5t72IFCh3L0+YHnvXpOl2Ik0N5IDu/dSGaQEn58N3z6bfzrzuEwnV43hm82MSKcyJsPUZ4ye9d79taGztorFmgsZreTIJKgMFJ5HvkVTXvFJ+7YqWo8vRbXzlUq5bO1u21eeKqag8C6PHK8h3EqoAwOOePXtV6NwllZt5hXKEAHkdBis6SyS5tHYYkk3RgDPA+8SP5VnONxP4TlbiSV7rzERwiqRuHOASOtW9MlZ5gVYBxz83fBqfVIruyd4In2wzRK8kYAxww/rWNBdz2TC4t2XzVOQOtZtLS5mz0DX4pX0bT2fJGDgBjtxntWFHGIdIWZl3IThvm4IzkVn634u16/s4VuorQJar/yyRlznHXt3qO01Nn8NwRSCNR2Ck5POP6V0SWhWyPU/g/bwf2TqGti1EUtzOYIyTkiNAOM/Un8hVL41W8epeGUn2/vrOQMrY52ngj6dPyrovhqhbwDbHZtBkl6DGfmPNZ/jwRNp9xFcD9y8DhvyP8AXFdNNLluQ73PDbHS7aCGK4LFpWz1/hqxBZxvcKZPmYKWJPrVfT5nlWO1xh04Ge9aV2Ft0cAEsflHb+Vczvc2QtvFE8sfCnmtpcRqBCqlx2Jxiue01A0rfLkjjGTitiKPzEB2Ko6AAUmUmU9P1K1tF/fXIYn0BIFWH1uyMZHnEn/dPrXGqtwedhI7cU4R3GT8jY7UcotDoXuoXlZ1vI0BPAwen5VLDdW8c6yG+VlDAkKvX9K5xWu487Ys56HA4pZJtQlJIg2jnCgACnyk3sdH4n1yO4sYYbK4xl8yZJXgDOKzdLuZGWTzWSNN+6NZOSFPPofass2+ozRFZLbcpxk46VbWwu2O6GI+Wem3vTtoCaudTYXkCS/vLhCuOAq9P0qDUNTilnVIMyK6qhPTbhs/0rnJIb22yJFZSRxxSKLswFkyHD+nakkNtWOtvNVt59OeG2dmkAOAFI7epqla3trFpENrO0ilFKkMnU8+nasQ21xNpTDzAi7gxkOQuOhBPal/s29ubaAWjeYkQKmUdznp+FZKUufl/r1PQnhqKw3tU9bd1a97ctt7pa32+9XoTWszwPcBcxhGy2frTbdpU0uMQjpJvZsfdA6HNW/7D1Qx43/Iw+7nsaiur7epUQQwvCiwuiD5Xx3x/e45rpijzGy9p1ve67fxrEJnaZjg4ZvqcDmruo3d3FezW+n38iW1ufKVTJs5HBJBwSSc02PxZKnhy20KztIra4kuA5voyVl5PQn05IrAuCYZpopYfOmRmDybm+Y564FN26CR1kWiajdTK88sBZQEmZZ1YAjvkHA4xWp4hu9l3DZaFfiO3tYUDN5wUO/cnnk1xqane6HYGwWdjDewpIQQQMHt79Khf7TFIwlLtID94nnB5HOR61DudEXT5Ve6Z3WgT6zfQX9uNPudRuOB+5+bKHIJyM/5NdBofhSbTLS7uT4avY5CoCRtcFS4AYnqOuB0964Pw14qHhjVEu7+G5uYHjWRBBKUIGeMkEZGR0NdZrfxfkv3+0WbPHZBGVoZUJ3yMPlzz6A9Djk1S0RlUa5tNixN8PvEOpGKWC8sraBfmjiF4G+XOQDjgn1re1lr3wt4P0yGO5Rrm1uI2n8ucMXAbLDg814K16J0muDJ5cjyD9yicY9j2A9K27Hxzc2NlNBBY2pjkQI5kBJJC7d3J64HahStsiOVPqdPqWtalr3iGGeaaeSzeRQIwGxEu7kADvgc+ua0fHk8Wntp8GgPDCssJmJGGZgSMDLZI/HFZWj/ABLm02G1jmtY0j3eYIlUkOM/XA5rj72/k1fVbi/ZHxcOzoAMkc8jineyFY2Dp0uozpJLFH5kxVcqw25xjqDjr2ofw7qQW4aCCZrVpo1EqRlvmA5G0c1e0K11NLK3xbNJEJNwO4Duefw4rVu5fFRu82NoltAkjSRKJQPmOOWGfbHFJJDbZRuvBuoWdzBGIxLiDzG2/LtJIbocdjj8K4uG01NZJCIm9Blhx+Ga7e41LxJapdPrNysL3cTIvlSKxbpleen19zXoHh2UaLo0SPfQNCilQpgBHy5Jw2AD379qaSewSTik2tzxzTLG4vZBFfS/YochBMfmwxIABA7HNdtP4CK6Y4XXYHEalxuibPA9QKr+LtYsrrX/ALVZFDE0KpPELbEcvUgMM9TkD2rbku7e+8MwfYrPTba8yXO2SQxhRnACs3Bxxz+VEVHoDhKL5ZaHHadpWp38c1xZWslynzgTCEsshA5x6HvXV28XiO20n7HdxMtsbZn2iMgxnBwGPI6dvcVc+FuoRJNfI8FtFZq65SQsWRyOSuc8HHOfarvxG8cz6VNFo+kG3C3EeXlBDHnsBnjgY5HemloTzWdjl5bXVYNGt7qa1SFEt+JJZFCnpjqfelshcTGTKIqrgkBumfw5/CrPiLVBrGgTQRl54EWALbhPlyoxvB9OCf1qz4e1Gxt2ijEf/HusceSvRsED8eCKzkovQ0UXy3Zz08xa8u5JMTQQ26biqYKjzAfX261mW0ei3WlqiWV3JfrkyZufLTbyePlznAxiuu1SFIbDWIVC79TuH2A4Bx1BH615qHazdrcTBpygO9TgKOmPfilypaDdr+R10t74WkgWxubHWEBG8nz0JxgHGcdsdOteg+HPhVoN3pVtezJqEEU2Jlt5ZRuwem7A4yO1cN8N7G38S+KpWe2cWUO1pEDDaAvQHucnj6V73Hembe+RtyQoHoOK1jFtEOw+3srOwsobK0gWK3hXaiL0ArmvGnhT/hJdHe2trn7NcA7kY/db/ZPtXQedkkHr1qN7gY5PNapWJufM994Z1rw7rsMWoxvFg7lbdlZAPQjrTL67mdnGyLIP948fpXufjW0j1fQLhRGHmtlEsXqGAOfzHFfPn2hmLM8ciknrsNY1YWdzSLujQ0r7T+9MaRN3OWIx+laEEl47+XHLApAywCFsfrWdp97HbRSq+VZyANwxxWnp7IxeRPusoPvWLLRh2Wn+WVDzwoD97LK2K1GNqjYF7Gf92I/4UR2B4xbqfoKm+xsuM2+PwrQzGI9rj5pZW9NqYp/nWoGALhvyFSrbv/zybFTx27A5EbD6rmgCjI8LxlBFcjcMH5hUMQEMSxw2szBe7PW15LnHH5LipRBIP4mH50AYT2/nfM1g+4jBJlP+FJ9h5ylrg+8pPNdB5I6vJ+ZoCW4+9cIPxosBhpYMEdPs8RR1wVclgf1q1Zw3dpCYoFt4kLZKrHx+tbUSxFfkUSe4Qmp1jJxthP8A3wB/OlzLuOzMN4tQkTat2I+MDZGvFYh8HySTSSPdklzkttGc9TXdbJQMHao95FH8qjKlTwsZ+hzQpJ7BZnHxeDQJo5mvpBJHIHUqg6jpV658I2l9dy3NzdXjySuXfDhVyTk4AHFdHnABPH4D/GmPIVyfNRR7807iMWXwlp9ysQnNzKIkEab5Two6DjHrVoeHLBlw6SuPR5WP9atNIT1vkUf7K0jSAfdvM8dMUwGx+G9IRQosoiAMDcmf5mpk0bTIWDJZW6kcg7AMVV8ybJCszD8anVJTgiOXn0BoADoekIpBtIFUnovH8qqXng/RbyFUUJbBWB3Rjnjtznin6zq0Hh+xju76G6aJ5BGBHjOSCe5HoazNK8aaVq+pR2EFvcRPLu2tMBtGFJ5wxPagDRl8IWtxdw3Q1PZJDnYUtI8c+owM/jUlj4UtLWCaAandSRTbg6JEi5DdR0OPwq8j2qtkSkkdlH+JqeGaSVv3Ubn2K07CuW7GC10+0htIY3aONQqmR8nFXcsBlYQfqpIqqsd24GFEII5IAyKfHpjSOC95KR3AbOaLBc4/4i3V3anSriyuVhm8x4tqMF+8B19uO9cYviDWrS4Nt9ugfyznBkR4z+fymvaf7H09h++s45sfxSqGpj+GvD0wJk0u0/79AUxHif2641LVxJeywZbDkR+Wi4Xt8uAOnSte70Yvpb68un6hHAR5iybkEWM4GV+8BXrNn4V8OW8wlg0q0WQdDsBx9M1Pr+lf214cu9IWRIHmQKr9hgg9PwppDuzz7QfGGnxTebdaibOZ4gH/AHHGQMDOOScd6x/EHiPT55ZTYqs9xc7RJPLGCVA42rnOB+tS33wo1yINJDNbz4A+VN2TWUPAXiWFPNls2jhjJYlyABgZJ9ulLW1gv73MdHp3GnLNFMpzGIim453LkY4FT6Umq276mlncRrtt45ZnkXJLmRsbc9wcj8Kqaho//COQac1reSt9pHmPvGPmwCcAduf0rat/tMPhW5lvbcwTMCoXOfkzkfzP51CVtWXzXVh8ay6r9nUvG7xqZFYNlhtGTntjtXM+LPDltBqNpdJcRwxXdsZUQ8Zdcbl9s5yDXV6Bbx2qwQ7QC9uWkX/eAJH05rM+INrHLZadIoH7uXy1A6AHHH6VUdUS9Dqfg9ZRWPg641Dy9s13cMCxPVU4H6k13OhXIuNPBByVZlY+4JFcJ4Qvbez8KRW3miFWlkKbugBY/wCFdZ4U+XRC/wDfmkYn/gZraOisZvubkshUB16qeao3k5C7gaVrkLNtfhX4rN1B2RGTP3eP8KsQ6GVriC57g5BP4f5/WvBLieMPLaAkSxzHI/4FXpOs+PJfDUVjZWuhTalPeySKojl2ksoXgAKxY/N7dO+a8qt2bU/Gz2t9YXGnTXMjyNHIxDRfKXAwVHp7daxqtNFxuaVtIRbSu2GxnAYZqxa2SRRqweWMucllbj8qxdQmNlO8cNwHiT5FIGN3r9fStzQ75dQsgWADo2wj+tc8lY1TudCsk7/dhuW/Ail23faAKD13yAf1qkJZGHzMx+ppwDccUWn3F7pcVZsfNJbJ/wADJ/lSjGPmuk/4BET/ADqoAe9PC9iafLLuK67Fg+Rjmadj7KqijNtjHlzN/vS/4CoQvPrUiofSjkXdhzDm8hxgQKP+BN/jTY4o4zuRdp9c08RnPPSpPLB7U1FILjjNKwwZXx6bqjMaN95c1PGYI8mWMue3z7R/Kn/bIl4jtoR7lS38yaailsgbbKiwKThUOfarKadctysUoHqRxUv9o3LDajMoPaMBf5VC8srfeJPuTmmIa9pICUdwSOCDg037Lt5xH+WKN7nPJz7UeXI3JB/E0AVzEGYnp9AKniWOMf6oH3OKlWA98VI6RwjLBifQAmgBBMo+5EpPucfyqJ3v5XzCxVfTt/KnrcquSITgfSp1vEdduJUGeq4zTAyL+3uk1zwnJPLuB1+zGB67jWRawy/234Vjv7zUbm4Mt6X/ALVtjDcqvlLtHLsTH1289fMre8SeG4PEmlRWa6tLGyyiX5oCwGAwxyR/e61iaH4APhzXLbUxqZn8jd8n2cKDlSvXcfX0oA76KFFPyJH+VXArddo/A1kreyScFUP4VMDJsyVUgdi2KBF9bmBGIkzkepBFWY7hGACdD7VmRzTLgC2GP9mtW3HGSPqKYiQKm07skem2lRbQHhVBx3TFPMkagbsCq7XcSv8AKGFMCffAWwNmfY80wW8kkrPnCgcDNPeSLyQ9yqKp6bhyfpVZ71ZPkRtq9AMHNJsdiK9to7zyRcPJ+5fcFhlKKx7bgOtFyPtMDROAVYbT16fnTuB70hwB0pAcb46s5jptg1vGGFu7DBPQbeOv0rU12Br3wpPFsPntArqFOORgn+tS6vFPdCFY1+WOVZCM/eAPSkuvtNwJGCrEz9gcgD05p3BLUpadE8d+olI81LZVfB6kACs3x4CdFt2UD5bpefbBraVbl5E82GLCJsV0BDHnPPrRfR3DWksUCoGdduZF3AfgaUdGD1Knh8LN4csvMUEFOn4mvSNFtIf7Eto2CrCASAG5zk1wGnJJb2cUDLjy1C8Diu7smmi063X7VYQAxgr5rEP9cZFVFq9w5W9EWJre3ZGQTNJ6Kq5IrNuAWiYMNzoMH1Za1RM4wZTHKO0sZ3A/j1FZetXjLHuEJyoJ3Kefw9a2uRax5b40uLUstklytvd3NpdwQyzOERXLwMfnPC7kV0ycD5ueDXmlz51pf6dBLqMdy9vbFD5Dq6wAs58sOpIb72cgnG7Hau48S6QNduvOu3lULIxjWMgYDYznIP8AdFcjJoVrbTPskmLKcDcR/hXPKSuaJaFqx0G51iTZalG5BLFgMD1rrdO8GzWRcvOsRyCgiyx/4Fniue8PXgsbmWJ0cAKp8wDhevX861z4kngtpJfthYr/AA7gSahu+g0upqrCx68VMsHHLH8KVWB54H4VICB1PHuaokQQgc4P509UUdhQGTnkUvJ6DNACgDPFBba2McijyyRzx9TS7FXqw/nQMMsRwwH4UmF/iYk/Wlwp9fpTiSPugD1xQAwqB0X8TTxGByWA+nNAyeueaAMdqAFCJnjdTtoHGPzpQvHOKeoGBwKAEUZqVEPoKQEYxj9KeCM0ASBTj+lSROEfLIJAP4TkA/lVfLdVbp60mJv73FMC/LdmRNpjijTptRAB/wDXqt9ojTpj8sVCyTE5zkUwQnOSwFAEM+qXMs729lFFujALvKTgZ7YH55qxZXkV7GXkgKOjFHXrtI96rz6eWmMtvdGGYgK2FDKwHqPX3qeCCCyt/KALEksXZuWJPUn1rGKqc+u39WPRrywv1dKFubTve9veu9mm9rfhrfQjRDMAvI61pJGgwSFI+lcudRkgOwgFT3JORU39tqiBfMC/Tkj9K2PNOozGg3HCgd6q3Gs2trHue4jiGOkmA35da5K8lmvCNmrPBFIcRr5Z59s55/CpbPwO/wBo83UboGLrsTO5vrnpQ5dh2NeHXo7678jTYJ7xzy8g+UL9Sa0p5rqBFEFqjznktv8AlT8+pp1vDHaW4t7WJYYB/Cgxn6nqalAPoanV7hp0MqG2vjI0s8++RupkYsPwxWjGrxrguGPptqQfTFLmmIb5ny4Kgn2GKaxyPSn8Uxjg9RTAhb6Uw/UflUxwe9MIHtSGRYx/EKYwz1YVKR7Uwj2piKt05gs55lALJGzD6gV5Tca1dltz3k5kHVyx59+tetuiujKy/KRgivGNSt0t7y4gIb93Iy9PQ4qZJNalRnKLvF2NSw8Y6jZk/v5SD/EjlW/HHBrZHxJvVjxI/nDGMSxjP5jFefyLs5GcHjmoixqFBJ+67HQ8XOStNKXqtfv3PRl1CfVIvtH7uEPgiNRkHI7k9K5+5hctI+OCcjFaOi2gXRYJGd/mBLAHA5PStO2sobm2UDBYckGsYqak3L+v8jrxVbD1KMY01rp0Stpqm/tXeqb/AAvZYugsIYrrzE3B32sDz2qlfrZLZTzGMeYfugfwmtyHTWs0lUuZN7l8kY7Vi3G0xSRuMjJFbdTzuh2fJXkgfrSBBkE5OPWjcijHJ96d56f/AFjWhmPGVOQgNDySE+3selN8044zg85zSbkYc7qAHrnocn8acGwQAKjxz1xxxxQvfnmgZJv4JPGPanK2e9R8jg5/pS4z1x68cUASjIX1NOUnjjmol4IHQU8Egd6AJRxS7sdqjB96d3xxQA/kn7wx3FSDqM81Fk+tOB75/KgCQHrjH5U9W49KiDMeOlSgYPNAEytmn8HtUa9M44pwPPSmIcYkIwUWoJLQscJu6d+RVuPBGMYxUqI7thRk+goAxxoru248564bmrFp4fctny1xn778gD6dzW/HbxwD97Jvf+4Ox96c0rSYBOFHRR0qd9hlaOztLOYTRxiW5xjzXGSPp6VL5zk/NjJ9TTuew5pSPXFMQgfpnFO3GmkHHb8qad2O1AEm72pPM5ximBiDzTgVKl2XgdPc0wDd9MUxtp7imbuOaYz8cCkA4xrmmeWoPBNIjvE+5GKmp01GaJiSVcHqHFMCBhgAdaYGCjBXd+NbMOqQMfmh2nHbBFWHeBwNu3npxinYVzFgELr86xhs8Ak15N4qtBbeKb9MD5pN649CM17ZIkZByi5PfaK8n+INqU1uOYLlZIgCPocf4USWgI4i9UbD0yKrWdq97fwWqfelcID6Z71avv8AUFQe2TV3wjEH1fzu8UZYcdzx/U1mUdlqlolgYkgx9nK4UDoOMYpIFNjMoByhAIPqPWr8m29t3tnYb3GU9jVSMm4sRGRiaDqO+O4olG6HF6jL+QBmdQMbS1cnMAxbOSSc9K6WbmJ/93oaqnTHSFXZmywzgdqzRZobySD2POaVec4OR60zudv608EgAYOa2MiRZMYWnhg2D1z+lQhuy/rSqSRjAz0oAm3YOCcfSl3eh+nFQqdpznJ7cU8NjHvQBKDhacDzyai8zsDSqeOv1oGTZwuPXvTgwXvioQTjvUu05HagB3OO1PGc00A55IpjQBn3lyM9RmgCwuSDxT145weKiijEQKqSQeeTU/TkmgB6j8fpT1z2XNNT5hkc1KgIGScE9cUxDkH94+9TBQCMLkH0NSW9tNct8q7V/vHpWjHFb2XA+eT1NK47EFvYEr5k+I09O9WTIkamOBNi927moTO87EncQD3GBTsgjB60rX3ATAz3yaUrTRTxTEGD60ozjrS7ducnn3pOPWgAoyKQ7R60ZHvQAEgDNIHPUZH07UjENgDgCm7cdaAFZiTySc+9IJGAwAPxUGjaOoYUvlEg4dCR/tUwFWcIMPHG/wDvLzVkSWW0Caz2uewqgQ2OWTAPZhU62dw5D+WSOuSQwpoRrww26hXWJVbsSBkU9xnkgY7Cs6B5oNySQyupO7ITp7VK9yFUBmwv+4dwqkIfMAqkkHPY5rzzx7A0tnDcEKPLkxx6Ef8A1q7i4uGEJcBig6E8Z+lcl4xAbw9PIVKkMuMjp8wpPYEeT34xE+B1/lVzwjcpDeTIyFtycYOMYNU71t0L/SneGDu1ZYeN0qEKT69f6VmWd5FfESKNpxng55FTXjG3vY7qLGyb72Oze/1qntmt5QGjYnscmtGCI3VnNDKpUHlSex9qYinMVMpaMfu2I2/1q3aus6mJgPb2NZcAkS4e2dgCZOSR0I9PrUkhNvIzYOM8is5KzNIslWGQEll605Yz24PrVZZZSMByBnoTUomkJ5IIrQzJFRt3P4c1IUYnqc+lNDZPGB/OjrxzQAYxwAM9OtO28/1poKgnJqQHgA9O1AAFBA4p47jANN3AZz0pw7noPSgB6gjIIxTxwBwQaYCC2RnnoKeAT6UDHhcnJpwA7jnrQuOBz6/SpF5wTQIcADggcVIpAHQY96jYqMY4Nadlpctwokl/dx+h6mgZWiR5WCxJuJ6YrYg0xIQJLg7j2Xt/9epFENou2EZ9x/jSNKXOct+dJ6gSPMzLtRdqj0FQhT1xS5yMFjSgCgQuD3IoHBBzSY5zmlAwM9c+9MAOFJ647Uu9h7D2oOCAvG6mMufw96AHZyaM0m3jGOKTBzQApb2oz2o2nr39+lGO24UALjpzig4phI7kfnQWHqPTrTEBFNOOlOJI6A80mCykYbP0oAZIA4HGD0zwKkS4njCbXLBeAOlMYDBOckdsUgyDxzjpRcC7HqLy8NGxcHgR8U1NUYttcAfN8xPYfQVRcgPkL19O1RuxGSBgj0p3FY0Zb2KQlQ2Aeme9cj4yffoNzgg4KnP/AAIVsNIxH8OPTFYXiePztAu1UngBvyINFwPLroZjf6Gn+GIGn1yHY23YGcnGe3/16SRd8ZJOBjB9q6rwnpC2lo158plnA2hjghP/AK9Qii+JMsVa5cDGCClX7dpFZT8si444wankhjZiSAWPQY5qBI1AJJBx04xiqAp6nbGOZLxM+WfkfPY9jSyutzbhgT5iDa/v71riGG5s5IpfmR1OeOhrmIJGtL+SGTDL91vcdjUtXQ0y0HxgMOQKDkLzmmgZIBOR14p427FJwaYh4YYB4yTz6GnDgAAfXNNDHbjHHAzmn4JUn14wDQA/cB1BpdvQ8Y96hKAE/MQfap0Qlgpbj3oAchzxgketSYGRuG/vxxTcKCRnPsDUqgA5I496AFj2n5Q2Mcc1IFwg25565pqBTgbTgVYSMuVVELE8YFAFcrIScHA6DHerNnaXNwQqDOOrHpWla6UNwe5P/AF/xrQaSSJdsLBAOB8opDGW1hBZrvc75scE8Y+g7VJJKZD1IGMYqFTu+8AzdyCRmncDpn86BXFHA9hTh0z1qMOAcHPNOB5wDx9KYD846CjcAMmmscDg5PpSgEngg+1ADw2fpTgwGMnA7VHyhySM/Wly24knjHQdqAJN2WyQPbHpSHD5Ug+/FNSRWzjPHB4pxagA4HFKoBbnpTc5I4zTt3GMYoAUg8mo2yP/ANVOMhB6mmF/fJoAayc8/NTCnJ4FPLA03d70ANKikk3sQdxz65pxNNJ9zigBGDbQdxx9aQM64Xdx+dGaaTTAezMF5GR64FG6P5sjeQONgxURPSmMcYIyD9aBELyMdxKjOfXmqN9+/tJoiB86FevqKvsTyD0NZuom5jtme0VWcdVbuMUAeXTAIXA6g4IIrodLvHSUI7NtxgDPSqc8dij/AOkXMQud2fK2tk/XirCW7FldRx7VKGdKWcqHUqSBnntSD7T/AK1igGOVz2qG0cogU1ZEu5sYbI7GmBJBJIBnO1etZut2rLKl1HFtQcE+q1ps6qnOMVLFtnjMDAeUykDjmgDECGMgEfdp6jcegxnHrT9shO7AAzjGaUrxgn5utAEXGcDHqBj3qUKpG5hx15PWjPIkVeRUqsrjJQAjjHagBoG047Y6EU4uU6dOo5oJBPTnpSOxZhu4z2NAwEp6KP8AGrSqWweOPWo4LSafDKGC5+8Rx/8AXrctLSOElsZPdm5//VQBBa6e8o3SnYnUjua1o/s8UIWFQMHBPc1C8owQgGPWo0VOW2/MepoFctGXnrRuyBnpUYAFKfrQIenB4qRiTg1Gpxj61Iw6c8UAMcHBK43ds09QRj1puaVT81AD9pLe9OyE/qaRm2jjlqardM4zQApw69j+FMUnJ6YqSQ88fjUO7BFADsuCcFduPxpd7khQW5/KkI3DGSPocU4jaMd+9AEgyFHzBj9RQNxUnaceuKhA4xS7fcigY8k5PymmE9fQ0nzjo5pu+QHG6gB2aQmmNI+eccdOKTzSfvKKAHFjS9Byc5HaohKCc449AaPMjLZIcD86AHFs8mmk0jSRjPzOPqv/ANemGRc8OCPoaAHMRimGnYBHDqT9f8ajYlf4Sfpg0AMc1BKw2GrDI7D7rflVaQFeoI+opgYd3axu5ZkUkeo5qpgbRtA4PI6YrWuxhGJbA6njNUXRJSpHO3npxSARTtxx171ZQkjnimKi4wQKlCKRwaAFLHONp/pSI8gkyueOgA5FPAAUkkgD86ehCsrrg+1MDMEnzAk8A9OuKBIDnB4z3qDgn5OvcUjEgdVI70gLLumSQMdCKQ3BABUDI9RVZZBuAGSSe1bNjokkxElzlEP8A6n/AApNjKNqkty+2JGaTrx2rYtdGeMh58SP1254rTjS3tItqIqIOw6n/GmtcNJwikAdz1o1YhyOdm0qF29B0FDeY/GAVHYdKhLcYpVNMLkuxsYII/CpF4x6VEjnruP0p5dmPc0CJPMGMf1pCwI4qMgE9BmnYB6L+tAEytwOalkAKjk1VC4dWGeOvNTM29ePyxQAgwF47VIDtH+1/Koo1bZubGfSkO/3oAm3dRTflJBYKSO+Oagbc2OG4PakyR68+1AF0tkcZqInkelRK/vUoj3Dc33RQBIox83GTQuO/WmhgTS5FAweRYxl8/gKUE4DevtikLYBPp6ClzQAppv4UpOKQ89M0AIVHcVGVp7HtTfpQBGyDrUe1h06VYamscA0AQmPd1pCmQF6gdBUuOOtNwOuaAIyMUhORxnPelORTSRjFMBhOOlQyMcdTUrVC470AVpXcjBYke9VHk2OEwuSMj5B/hVyRaptGVcnjnikA0OB1RD+dO3oesY/A1GRk9OaOcc0ATK0f3drf0pxdFO0E5PQYqANg+1PDZ7imBjeanXGMdKns7Ga/wCUG1AeWYcf/XrW07QYoh5t2dzD+AdB/jWi8ir9w4A4AA6VF77DIrOxgsUDKA0v94/09KmkvAuFX8+1VZJGc5NNUHqQaaQrkplYncSTQZsc5x9ajLgDocH60i28e7cRuP8AtGmIf9tiHy7sn2GakSckjEchyepAGKaEVcALj6Cpgo45FAE6n8DTgeetQhcc5pUySTknPrQBODmnqT0PNQKDmpRzyKAHqW3HkYPQVKgzgAnNRAdOakB2r/tN/KgCQnoPypMAc9PWmhs04MDQAo470c5yKM0qAlgq8knAFACLhiemAM5PSmhg7YGdueBTpgy/IEIUHlh0NMXg9qEMefSk24pRgc8c0Zz2oAXPTigEGgtSbh7UAKRxxQD7U3NGTQANTT60MfQ03JzQAvfNISc9aU/WmEnNAATTD0OTTiaY3IoEIygkHJ/CmtQWHrSNTGRtULtk7QQG61KTUMmCCTwaBEbgkc/pUJTnNSAkKATmmMRQMgZBknAz61GRzUkmWX5Wx+Gahkcqw+QkHqR2oELyKUDFMbDDGSPpSg4HBoGaUl0zDFQ+bu6iotpOMGnlgBnrSAfu96cj84IOPXtUW4EA4NPBAHWgRITk9KcoGc96jDZ5xinE5IwcUAS8k8nmnKRnJqHP4mnKSeMjigCwVJOQMCpFUbeKijbPBNTrjFABjNOVcN2oHTtUiKCe3+FACooJJ6KOtDZZsmnMwJwvAFJnHWgAU4p2aYDxQDQBIH4xTmcxrtGQ56n0FR79oD8Z7D+tM3Z6k5pbjHAMPusR+NPEsvIZsj3ANMHHelY8UwJBMuOYkP0yP5GlEkWPmjdT/sv/AIiq3Of60vPrQBYPlHkO49mX/A0hQfwyxn2yR/OoeoApCDjrxQBOEkbkJnP90g01ty5DIwx6g1B0HbFOE0iAbZHX6NQAu5T35oJ9qPPbcSxDE/3lBoM6nkxRn6Aj+VADTknIzSE9s80/zYTyYmH+6/8AiKTdbkffkU+6g0AR56UjHinlEI+WdM+hBH9KbsfgKUb/AHXFAEbEYpm/Bpzxyr/yybn2zUDSAe31pgPZhUTHFBkHtTC3+TQIax9qhbGORnPFSM4IqMnPpQBHtVVAVcD0FMYDPenscDNRkjPNAEbAelNxnPHSnnio3LAjYB15zQB//9k=", "path": "images/3pts_ADE_train_00018465.jpg" }
depth_point_32
images/3pts_ADE_train_00010928.jpg
ADE_train_00010928.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 216 y = 160),Point B is located at (x = 74 y = 179),Point C is located at (x = 264 y = 224).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_30><DEPTH_83><DEPTH_78><DEPTH_85><DEPTH_30><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_66><DEPTH_25><DEPTH_38><DEPTH_44><DEPTH_33><DEPTH_69><DEPTH_30><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_74><DEPTH_36><DEPTH_74><DEPTH_74><DEPTH_49><DEPTH_72><DEPTH_45><DEPTH_67><DEPTH_70><DEPTH_5><DEPTH_29><DEPTH_25><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_49><DEPTH_15><DEPTH_40><DEPTH_72><DEPTH_20><DEPTH_31><DEPTH_64><DEPTH_29><DEPTH_36><DEPTH_29><DEPTH_29><DEPTH_31><DEPTH_36><DEPTH_31><DEPTH_74><DEPTH_40><DEPTH_74><DEPTH_36><DEPTH_69><DEPTH_31><DEPTH_49><DEPTH_40><DEPTH_31><DEPTH_11><DEPTH_31><DEPTH_74><DEPTH_74><DEPTH_36><DEPTH_36><DEPTH_36><DEPTH_64><DEPTH_36><DEPTH_64><DEPTH_64><DEPTH_36><DEPTH_19><DEPTH_25><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_0><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_42><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
3
[ "A", "B", "C" ]
<DEPTH_START><DEPTH_30><DEPTH_83><DEPTH_78><DEPTH_85><DEPTH_30><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_66><DEPTH_25><DEPTH_38><DEPTH_44><DEPTH_33><DEPTH_69><DEPTH_30><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_74><DEPTH_36><DEPTH_74><DEPTH_74><DEPTH_49><DEPTH_72><DEPTH_45><DEPTH_67><DEPTH_70><DEPTH_5><DEPTH_29><DEPTH_25><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_49><DEPTH_15><DEPTH_40><DEPTH_72><DEPTH_20><DEPTH_31><DEPTH_64><DEPTH_29><DEPTH_36><DEPTH_29><DEPTH_29><DEPTH_31><DEPTH_36><DEPTH_31><DEPTH_74><DEPTH_40><DEPTH_74><DEPTH_36><DEPTH_69><DEPTH_31><DEPTH_49><DEPTH_40><DEPTH_31><DEPTH_11><DEPTH_31><DEPTH_74><DEPTH_74><DEPTH_36><DEPTH_36><DEPTH_36><DEPTH_64><DEPTH_36><DEPTH_64><DEPTH_64><DEPTH_36><DEPTH_19><DEPTH_25><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_0><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_42><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_END>
216
160
74
179
264
224
null
null
null
null
42
65
89
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCGKOAsf3Scd8Yx/hVV5ITKVjKydeWk7/WpY7SGNdwjTHUjaOatxKGwUAXjHSvqnSlazZ43tFfmKvluVHKqCOinr+NSw7SFUE8cdamMMaZJTOfSkMKrjZz7VUYK2wpTd9y4oUgEUH6VWic7jnjHAFPlmEMbSSMFRRksa3hK61OeouVkkjrHGzuQqqMkk9K43WNZe/f7PbZWDOPd6bq+ryX8hjjJWAHgf3vc0zS7XfJ5zD5V+7x3rysXjOb3Kex24bC/bqfcXrK2Ftbhf425ara4xkU0PgnI49qXjnHX0rz0dz1EOMnipBjPPPvTTz1FCr7H8KALdrctbHBy0fdfT3FbFtdwy58t1YjqAeR+Fc+RnNIUDMHA+YdCDg/nXZQxkqa5Zao5auGU3eOjOuWYelOaXcuBkVzkN/dRAEkTJ/tcN+daEGqQSMELGOT+64x/9Y16FOvSqfC9TiqUqlP4loXDnPFIVb0pd27pUmM/WujYxvcgy47cUck96lIJ4FI8ZAyKdxDWU1EY2PNSKXzgipeSucCi9hbldFPvUvbrSANSlhtwaHqK4wjJ4FPX/aFMZsdKaHPc07XFzFkcfSl3VB5nTml3d6nlHzFgnimY561GJMHtTvMB7ClZofMBVacAB6UzcCegpNx7Y/KnZiuOZqidsnpT/MIODj8qYzZPFNITZGSfSj5qXee3WnAnGTVk3G7DjNIUJFONGe1AXGGMD60qrilIpM4oFcGApFIGeKQnn2pw4o6BcrKFK8Ac1Cw8sAp95jgCokJGTtJfsTx+lObG0sXQSKM9K8pVqreuq1PalSpRXZkonQYU4GeB7U+R4iMh1IAySD2rEW6k8t1ABYnjJHFJ9sIhwXCFjyT1+lcssa0l2Ljh05Nvc2PNjgt2uZnVRyW749q5HVNWl1B9uSsQPyr/AFNWr+Vpz5RmVQAOG4x71jlcMR17ZqKmMdVcsdEVHDKD5paiwQtNKsajLE10UMQiiWNe3HXvVPTLby085hhm6VoLycjJ+tYI2emgh5469hmhVAOR1pwCtwRn1xSjk4J6fpTJEwR/FjjGKQnnPIPtTunfjrSHBzxQAKwPXPvS8ZznFJjpmlC9f8aBjkYq24YOevvU2ElUAgMD2Iqlc3dvZR+ZcSLGvox6/Qd6x7jW7q5JFjH5EZH+tkHzH6L2/GgF5G9Nqi6QuXugq/wxt8276DrXS+EIbvxR59zMBYafCuDK55Mh4UZ+pBP/ANeuF8PeHrjWtZitYQ01zM3zSyHJA7knsBXe+KtSt9Lkt/CWmZS3slDzMOssvU5+nX/9VVLGVYx5Ysj6rSb5pIeY3VmV/lkRijr6MOCPzprN2qtre65Wz1yB2RrpfLuCh6TIMHI/2lwfzqpb6nIrbblFYdnXr+Ir1MPjoVIrm0Z51fCTg3y6ovMWyeCBSbiD1qaN45ow6HINDW5HTmu9STOFpkQYHOc0uM0hUilCkdqoVxNtBQ07kdRS5NArkYGOMUZqXrik20rgMPNAyMU7bRTuA3NKGoxRj2oC40nnNNqTb7UbaLiI8UuTjFOx60badwEycUc9acFoxz0pXC4zr3pCKk2ml2cU7iIsUVJsFGwe9K4HNf2ixCpJIkbNg4A3Z+lVbm5TBcTgPnGMcH/PNZkszPMIieUHH+z+NMnc7Ms3zEdUPWvlJVJO2uh9Kla7tqa0kiPChjfaFTqxAOaypElml3Pu2Y3dc8VWJLkk5/wqeC4kRjtJJKgEH0FZKm46o251LciYAucZx29at2dk9zIMo3lD7zYyPpUZVUBlc5OegrT0fxHdaW7+QiGJ8bkYdfxqnUjHRiSb1NEQARgDlegxTTD8u7HfgCr0fiHS7sYu7LyWPVo//rf1Bq0lnZXYzZagpPXZJzj8uf0q41IvYhp9TFaM5zk5BpMce461rTaXdRk4i3gd4/m/Hjn86p7B3BHrWhJUDHuM96VlDfN0NTvErAgdRURVlB69f88UAMGFwORUF3cPBbGRCu7PGee9WCOp7+tZ2qtxFFwcnPFIZkSRiW5+0SZkl6Bm5wPQelWIYWlYAA56YFIqFmzjmvSfhz4YjkZtf1BMWlqSYVYffcd/oP51EpWRpFXOj8MaKng3w6bmZB/at4vQ9Y17D+p98VwvjWydJoNaj5cMFmOevof6E/Su41HUJL+8a5cEjoqE/dHoO31PPes2+sk1KxngdRtkXBz29D+B9a43PW53Qpe7Z7mN4dkj1Szn0ksNl4gkt2P8My8p+fK/jWYY2PbaRwVPUH0rN0aaawvJLSQlJ7aTK+owf8ea6vXIlluIdUhAEV+pdgOizDhx+Jw3410UpWdjjqRMq3uJLWTKjKn7y9jW7b3KTIHQ5FYQ64NSQzPbSb0H1HY16eHxLh7stjz8RhlU96O50Plo/amvAQPk5pLWeO5XcnUdV7irqqf4q9Ln6pnlOLTszMMZHB7UgStCWM44xVZxjvWinczasRCMdc04Rg9TQcHqTmgD2p3FcQoopmKkPOBijb7U0wI9tATPSpSuOKKLiItmKMD0qTFJtouAzb7CjH0p+2jbRcBmPeggepp2KNtO4XGYHvSYqTbxRtzRcRHjmjFP20baLiPNjPHGhZCzFhg7jz/+qqgyx55NaK2scUYcqznOd3t9KnazMpEioFO3Le3vXyKqKK1PrfZNmWECgljgUCUn5Yhgf3qlljWQgbTkE59x2qGa6t7QEMwLf3FqJVJS2GoJbk0cZCMDyG65qrNfx2kqqELswyuOn51mXOpz3DFQdkf90VaSBZ/7LjbOxztYDry2KSjpdmijqr9TYTUbKU7ZInibucZH6VZjSOT5re4Vj6Z5Fa934CiOPsV4ykHHly/MB+I5/SsK88JatbFikHnBBnMLbvxx1/Si8JbjdGS2ZpwajqVrjErso7H5hWlH4l8zAvLdJPdhk/rz+tcFoUmsrqcUM8kpt33cuNw4BI+ldY8bY+eNW91/+vW3s5xV47HM3G9nubcc2kXf3JGt3Pqcj8j/AI1K2kyMN0TxTofRsH9f6Vy8kUOcBmRvQ8VGst1atugnYf7rYpKrJboOVG9c2EsJG+N0IGeRiueukea+IwTtGMCtG38X6lafJKscydCrjr+VUY743ExZlVQ2dwQY6/Sm60QUGTWNlCtxGbxysW4b1j5bHevR73VBfwWlto9zFDYQRhRbA/e9cn1+uK8ySVIZd0soVQv8RrX0uGC9uYxb3mMnJAPzAdT+lZ88nujRR1VmdrIk0O3KkB+Rnke4yOtLldw6/exlf4TTraKSfbbx75DkBVb5jWymgTR2tw05IlVd8aAk5Hpn/CsbX2O9yt8TPMvGNo1rqEGrwqcEiOXAxkj1+o/lWvokyapp0+lBgzyD7Raf9dFHT/gS5H5Vo6rYjUNOntWGcr0x91uxx2rz/T4tZsoorqzieVraQnbGDvjKt+orSm7/ACOevDqjdU7gG9qU4bOOvpVvU2inkh1O2UJbagnnKvTZJnEiH0w36EVT7812J3RxtWJIJpLeQSRthhW9aXiXa8fK4+8vpXPY5yKckkkTiRGww/iFdNGu6bs9jlxGHVVXW51ZHHrmq8ic5xiorLUUukAYBZR1Hr7irTMGHSvThK6ujx5xcXyy3KpTml28VMVFIdqjLEAepNa8xkMCegpxjKjmpMGkwc0rjIitJt46VLto20XAh20ban20baOYRAEo2e1T7aMUcwWIAlL5dTYo6UcwyLy/ajy6l60nPSi7Ai8ujYKl/CkNO7EebLPc3czxxhYQwxwOfp/+qqst2LLKyTZVc4AGSaiOoQmZ4YXKTIScNwPcZ+vrWfcW1z5qsICWkGWDc49DxXx3L1Z9ktdiG71KZiUj/dL3Pc/jWbgliTyetaawy/YZbiZeMlATxk+305qOwsJb7cY0LBcY9DzWl0kUopPQpqp2g4wp4/GtSNnVdK8sDcGJHGed/pUeoWwWVo40C+SMOQeCc1LC5RNKIUsQ5OFHX56qLvFh9pep67C92XWGaFCMg7o34XvypFWZEDIQoLEjo3Ucfj/IVCl+pdEEdzCx+6vlkAfj0P5VISvllG+T0DfTr/kVzHVvued6PE019HGDgqHY59lJ/pW7PZzCQDYT8y9BnqKy9Akjt/EsbSypHGxkXdIflBKsOeK9CksvPuYJ7MRXCrcQsTbyB8ADBJAPGK9zDVlGDiz5/EU25po871i21OC9kj8pkWM4wADnjvXNa7b309vZPa5juCrM4U7ScHFe76npCXd9LISMsydR/wBMxXkPjORdOhilUAN5Lgf7xOKyqQi4qa30KpTfO4s5G31W8WBTJJvbHO4VMmtXTjCBUz1I5NZcGfsUR4zjvSw5Ddhn0NcMlqejGKOimkZtLs5HJZy0gJbr1FekaDo1ra3cV0IZIXMA4Zg6EkDnPUewNebHH9iWftJJ0/CvXNNnD2NqjJIp8pcFhkH5fUVnUdrHRRimmdh4YWK2S8vpQSIEAXPbPp/nvVK58S6pa6itxOI5bcko0OzAAz0z/Wrfh+NpdDvIkj3g3aq65/h2rnrTtVtftNi8UxVdy/LldpTjIGOvOOlb0oRcddzgxE5Kp6FXXfs0dl/asBzbPG0nPsOh9wa840jWtTSxSWEoPmY/IMHr3FdzYW7a14I1PTWfaygMrYzjPX9RXno8OX+kXaTLPCVQhipJAcdwcjB78VlZJ66HReVSHodHHrz3Nv5N/YpNEGLqCcEMRjNZAfBIYYU/pVsXen3H3o2hb1jbI/I/4ikNtG+Ps9xFIeysdh/Xj8jXTCUbWTOSSdyEqQOP/wBdNHcHg0+SOa2bEsToP9ofypp5BOM+9aCEMqwfvGkWPbzuLYxQ3jvTok2Kst1OOvkLlT+J4rH1uFZVhcqGwdpBHFY4QA4AAHtWtOvKnsY1sPCrbmNq88YaxdAi1jhskPc/vH/wrZ8HReSLnxBrEkl3HARFGsrf6yRvQegXJ/KuVtrd7i4jhjUtI7BVUDkk8V3HiuzOi2Gk2UUgNvbZjnx0aZuS35jH4VlXxM5KzZpQwlOGsY7G4I9jPFnd5bbQ394dQfxBB/GnbKr6PcJc2dvJJksF8h8f3l5U/iuR/wAArV8uLH3W/OvSo1+empHiYij7Oq4lLZRsq9sj7RE/jThFnpB+prT2hhYz9lGytAxN/wA8F/Wk8pj/AMs1H4Ue0DlKGyk2Z7VakDLHLyOBkYqRAxRVwckfpT9oVyMo+Ux/hNL5Dn+E/lWiqg+p7U4sQ3Cj8qXtX0DlRnfZpOy0fZm74H41ebce1MKv1waPaMOVFX7L6sBQbZR/y0X9as7HPagx46kUc77hZHgs1tFJG8z2v76UghYZck5PPBHSrFtq9tbyLDEsxVAQY2xgdeAe1WNIhM2mtBbyokiEMJPUZ6Hv7ViXN7IXbfbLGdxLfL97ng183e/un19tTWGrRzw+UIgNoJCynIP49jzUipcvbrbQH7PIBnbs2g5HrWM6vIhuk4jYneo7e/61astSkiuF8+XejHBJHY9xik432GnYsWGnTQ+Y10uVZAcHvn+tWbe0WNLWMt8yscAeu4Grc16v2RW+ZgxJXAGAB+FTEQJHCkSlS4B59zkn8aUW9bjbV0dg135w8mI7uAflYcf405bgoqxyRupPfGAf5A1C0ccTxSqmSQVJx904/rSQTSM0qsoCjuB0I6/4VCNr6nNaZbi41ReFw0zAeZwOh610d/p0UUsslvCysJQd0f3cYAJyO1ZNhbSC/wBkSMW80sFIxkYJ71syWGo2yn7TZzRgurl9hGQcCu6lVS3PMq0m2rHTmPUluZTb6jIq5G2NwHUfID0Oa8Y+Jc8l1bWskqxq4kZSI12rx7V7Ne6m9pE7ByQFUKGAIzsHrXifj7L6VaMeT5r5roduRM5qd/aPscrbECxj78EU6JctxyaLVT9hjBBxznNLDncR1PauOR6kOhvlguiWuf8AnrIP0FetaZMJtNtYlVlxCp5Ug/dHf/69eSjb/YVuTziZ/wCQr1nSbiCTSbQeYFk8lMqwIyAv8qxq7o2oW1Or0SE3Gg6hGobm6UjBwfuL0qJX1K1wq3Uqjj5Jl3D7uehqz4fiMmjaiW+VTcId2M9FWiJLlVUQ3CuuE4V+vyHsa6aKThqcNe/tGV/C9x9sh1CfyY4jJb7ikYwucnnHasO5niQSJM5QFTt3jjkHpj+Rre8JxyLZXRlXEht23DGOdx7VgzyxozpJtBdMckjPX8K55r3kdND4WczJGuwNJGjDGcg4NY51HT3uXtkuzFMhwUkH9a63V9GMVonlsSGt1Y59TXG2nh2DVPENyhcxTb3+fqOPauutSpwipI4qMpTk4mjHeXtrETFNui6kK25T+B4q7p+pWd4rx3awwOfuSKdvPuOn5YrKu/COpaaJJLeWOURpvYKxUkfTvXN3GqpDEzXMG0j+4efyrCEr/CzedJxO41PTJpLCV4QsyqNwaI56e3WuWUA8461S0z7X5kszzzrFIMLDuIAX3HrWrbwNPMkMal5HYKoHUk9K2uY2Ov8AAOmKJp9bljyloNsAI+9KRx+Q5/Kt3V9Ml1Xw/clfnUjqTkhuoNTXxXw1oCWkIWQ2ce6QdnlJ+Y/0/CqFp4o+y6S73EBSGYrJvRs7QM9fXr+lc01Kbuuh1wcaaSe7MbwnfNI3kNnfKvA/6apyB+PI/wCBV6bBYxy26TptKOoZcnsa8fldbLxBJJaSAwzkXMDqeM55x+P8q9MtNSU6RLMGVUVPNjyeFVucfg24fhXVh5y+FM8vHUo3UreX+RreQi5+6D6CkAGcLnP0plnJ59nFKfmLqDn1qcFlORgV03Z5uhFjIOaim+SIkIGNWNpPSqki3CMcsrKexGM1USShcKkknC7d8bD9M0wz+VaxBVG9xgt6D0FNd1iWR1O7Yc7c9BUFi/nTOzfN5fIB4AwO/wCFbmnL1NWIFLcM4UE+tURetNchFK4X7xHr6VDc3X2gsiM2GbC+4A5P61b0+2WNgNoQDsRkn8aeyuyHGyuTFz/zzBpPM/6Y/rV4Qkg7VJx7ULbs3YD3PFRzoz5ZGeXB/wCWP6mm4U9YT+ZrUW3i3fvZFCjsOc1DOkO8iINj601UV7ITg0rs+VEmlhErxuyHy+Npx/EKtRarPNpggkCsWOTIfvfQ1RVhIrYVtjLtyB7g/wBKuwWawx/O20oAwQc5HuexryHax9Sr81zV0t2/suYOoZGcJ83QZ9aqxptb5xtCNwfQHpn2qz9tiaIQQRnLkFlI75zxV6WBUVCY1wRgg+noRWSdjRjYRPGjHLbF4fK9eOoH+elakZdkhYbcnnPXgVTgctZlMhlUrgDuOnNW95itVdT/ABH/AICp9KCTq2UeRGYzlwcgZO3pUiv5oUjcGxlh36VVj3kb0fcmM4ZeQR1AI+vNSCXyY9j8kdCDyR3rM2v1G3DS+SDl95ICnOCoz2rUt9b1i2RoPtzTRYwySjKlfTmsvLMMl/kRQDx1z6flUkZH2Ytn5pMcd6LtCsm9i1qPiO8uNLe0uLWBwNvlui4KkdBn6VxOprFdCBTH80TbtucjOO9dT5McsTIzMDv4I64x159qz7zS44oZZwcYO3k5zj3/ABrRVHaxm6avdI89u7RIIN6P1bhfQVnwcPjp7iuo1C03Ryfu1zJ93nkVzUa7HUnrzx+NXe6HHc3Bj+woc4/17df90V61orxtpGnlGDfuUyVOSOMc8k/hivIwok0GPvtuG/8AQRXrOhpGNG06QQhnEC4YDB6evr+NZ1ehrS6nS+HNaEdvqVtJpt7JALgq8sSlv4V/w61eibRp8LDqDQsMfJOmMYBHX8aw7a3ku7hVtkPnsPleJipGPcY4/GussdLuYS0d5cSTh0OwTASYI9yMmqp1GlZGFakr3bIvDenLaWz25mjmxGU3xNkNlieK4+4cWszRSMEJXIDcL34/+sa0rpTbzYn0+2Oc/PDvib9CR/KqEt06uFlJMjcKN3JJzj2z0qZNNmlKEkmJqF/nTYpbizR0MIDGKQow+bHAOR3FcjohC+LrlgSAXkrs9Xgng0MLJAOIgDvTkHeO9cZYHyPGU6nI/evwDyeK6qrvBehx4dNVH6nYfMZtwcZCglSuR1Pfsa43xjNbTzRwCGJ3Q5LlRnP19q6q6YC3kmSV0MURb5GBBxk8jvXnNxIbidpCSSTnmuajG7udmInZWXUhVAoK5JPc123gHSh9pn1mVMx2YxDn+KVun5Dn8q5CG2llnSNE3u7BVUc5OQBXra2aaRp9tpMZH+jpulI/ilP3j/T8K2qS5Uc9GHNIy9fYvoN+WBLeWT71k3UMf/CD27hjvazf5Sv9a19aVjol7xkGFv5Viz3co8IW1u0ULo1nJsfBDLgD3wetGGdoyKxivOBjzWzS+E7S+jGZLSRmOO6E81r2d0Ljw9LGxBSAhmB7xN/g2P8Avo1N4chW58NLBLgxvvU/Q1i+H3FpfyafecRqzWs3+43Gfw6/hURnyzuFWmpU0z1Hw26TeH7QxnIVNucY5HWtULXHfDySeGHUNIuc+bZS4yfTp/MV2rbUQs3YZ4FdildXPn5wcZNEWMdqz9Z1Cz02wa4vWIjBwFX7zn0FR674hstFsVmkJeWRcwxdC319BXkl/qd3qd0815OzsSSASdq+wHYVa7mlKi5a9D1BJrTVbJrjT5BMirxGDjHqCO1U9Kt5bvTTdYwACZSfQZ/TivO9O1O80q8W4s52hkHoeGHoR3FdVD43hOkQ2ctu0Lg7ZGiUEMucn860U3si3RcdHqbdrFJC4JjIndQdrZzjsPbGf51uWySNGPMAQjjrXBt4tsEummT7dKzDksFGT+dXD8RbZI1VNPnYjqWdRn+dVKV0ZTpPojuRK6Jt3cfSmh124KZ/GsLw/r662vyxlGXKsCc/Q1tW2+dmwpxnj9ahpLUxtK9hzSEjaEUAe1RHJPp9KtSQSpCZChIFQSRTrHuMRGevHSiLXQHCfY+WLDUFSyeONrZc4Yr5RyR+PTpT4pJGjeRY4Vif5TuA4GetY9qdOhmA33MxPH3Qg/rWu0wkt12hYgCRtAPIrz5Kx9LFpokj1F45NyKCQMKQAPxzWhZ3u9iZW5YhiSe/vWOGRV4XOPU4qVZIBGsbZGeSetTYo6SB4kkxJhScK2R0BP6c1bTeiFtmNjHr6Hj/AArm4ZpCNjENGBhZV5wPQ1rQX4VY0mOC3yggfT8xU2JZ18soitIf3Sluh2NkN0HT19anaVMpkLgjllHA5/KqcciyzojBiMgspBAHHalVirOmQRuAJx79OlZmu5PEGGZJCcO52BTnGOOtOkdIWOfvNwPb/OKjBUzwBJBHg7myfvdT+VTSIBIHK8sw2g9SepPFAJPoOEeyOOXbvkfgAnFQ3uDpU6xqGCMBg+uRk+uK39ZltG0/Tvs8aC5kiyWVQpx0JP48fhWDqBhGmT7FcDALYbPcZPb/ADmlazGndHN3/kPC5DcohJLLjccdq5iQwTN5hR12HB6ZOau3F+8fmknarkhT349P0rFS4WQNuQh/7wbg/WtraGcdzYADaGOwFycf98ivTtAtl/sawlCqD5K5LDGeP884ry5MnQeG24uf/Za9M0R4rPQLGWSZ0LwqqAycMfYc+hrOpfQ2p2Vz0jSZbXQfDlxrN5gAAtkdSBwAPcmvLrz416k2qiRYEggRjti2BsDpyeprb+Ll5JZeFtF0iJyN6+a/+1tAA/UmvE77M9pHd4w5Ox/c9jVWsjnVpybZ9Madq9n400NruJFW7jUGRAchh2Ye3/6vSufknWC72vN5R7bjkZyfwzXAfCDxA9jrSW7v+73BSD/cbg/kcGvUtei+y6xIjOoUgFQ7HnqOMnFTNdTai2pco2LUtXihKDUVlRs5W4iBzWMmjQpqjalKMXDliQrfJyMcZ5rRKjoD7kdT/n/PemMQpyDz6nnFZc0trm/JFapHO+KJ4oLcR7AZpBgEHBC1x4KgBefTpxWjqU8up6nNK0crANgAKe3FRR2srOf3YX/fYDiuyFoqxwVW5ybOp8BaaDcy6zMn7qzH7oN0aU9Py6/lXT+YXLMWJY557VXtf9GgsbCxkt5bNIt0rLIAWlbkt+HA+lTHiQjg7Ouf881jWvfU6MNy8um5W1GBrrTbmFQGd4mVecckVRm0LUE8GQSOVZIbSXzUD5MbY4yPwrSZtxJCnpwex+lVjZxklxGV3cuyORu+oFKFRwTsVVoqo0+xmeEww0GPcCAHbqenNY/ia1+x63BfJ/q7pfKk/wB8dDXYs4DAjhfpWZr9iNT0S5iGPNT95ER/eHNJS965UqfucppeEJS3iGC7Xbt1C2MM+Tz5sY6/UrtP51p+NvFVroVm9vA6m5I2sRyU9vr/ACrgdA1GRrCTynZbiNftUJXqHQHcB9V3fkK4zUb+41W5eaVmOT8q9cV0wdkeZKipSuzf1C9n1KUXc05mDqAregA6e1UevSodJ8yJWSU5tXUEH+62cfzrZEKw7wRnC8cda0eIilruNUHe3QzAGC5AyoPWh1IXGOvNXGjUR7DkZXOPcUydQYd0ansM+wFONdNpIHSaVypnIweRSdsjpS5zjoDQfve3etzE6TwXra6TrKCSPdFORG3ONpJwD+temRzpbSTMz4VSFzjuef8AGvE0+Ugg89a9Eiu/t1hA4LDznDkA89Pmq4w5tznq+679zrv7QMqPukGwAlVz1Apy3BtkaSSVWJUEr0BHpXJQNJ9rmblIymyJc5H+ela4jN6pG4tGFOCO5xVeyivQwdWSdj5aurGztnRojPluU3AYP1qeJpJIwgyVA6Dt71XtLp5i0U5DpjI3cYPse1Teb8mEBRf7o7/WvOep7cVZD9wPyjr/ADpwjZkzjBz3qvuKtleKkEjE/MzcdaTLTLMDi3kDbj7981s+bCtrBcCPKiQ+wye1YCjcMhgB78Vrx5bQdgIx5u78iP8AGlbQH0PRo1kJYEgIrKN2chuOMDPXmo3A84gc7mHUcevpUcEKQ7RmPcFTa68e3r1qzdKY7iHcDgxn+HgY/D3Fc5q9EY9pcT3V+IY3LKqMdpOBnB6frUdxfyAWoCXG5kEnyndjcSBn8qm0jcNYQ5B2Oc5HpnioI7uJ1i/0VQirGHKOw2gv2ya3srHLd3NG/kl0ySBLiUl/LRgcbsBhkL+efxzVe51GZtPbzAZYpEYKAvp19z6Vq+IZbEa7H54k+VLcL5bLwu8heo+pP1rlddeEeF7Y2TTCMfaMGTAbO5s9KpUk9SVWexk3At3QNdSCNuAsYGSg69O341hsIxdvtVtueOe34VVs5CbQ7jkljyetSJJ0X8mFJq2h0RezZvqTJojbcDE4HH+7W5ZX8wvrHT2VpovsyuivyoIGSenHBrAhLHQpMYJFwv8A6DXovh/TI00eK/dojI9ntG5BkcHgHselZydrGkVe5r/GSBZ/7J2tH5v2c4V3C55HrXkM9lcwWV6LiMqCVdTnI/zzXpvxwVWl0Mn/AJ9Tj8xXDX8jyadfRMfkjjh28dMqDVLUwirWZm+C5Gi8RKF4zGc/hg19BeN74WckMnDSSQZSM/xn86+fPCHHiOMY/gb+Ve0fFC3uru+8Px20qxEocsxwMEDP6fzpSWhrdqasbCR28miR3u6RXaXyipOe2e1c/wCIb7+z9BvbhWCukRC4Hc8Cqc2oX+naRbqXLWsg85Mx7sdRyR7LXK+M/EEr2X9kzxKlx543FemAuf61HspXWmhpGtFpq+ph6X4hnEjC8unbaw2jHUVotrEURSbynZJASvOOh5rjU4m+preZv+Jfp31cc/71NxJcVoejeFmgurOW5jtgrb9g3c9Of6100Xz3CK+FLcDcfwqnEixxFCiIvUiJcA/pWXf65Bbah9nC4lh5LOQqngHr+VZpOT0Rr7tOOrN/VSNIjubi7OyK2RnlbrsVRknjrgZrkm+JnhA5xq3J7/Zpf/iKl8R+JrTVdE8QoA0VzJaXDeWwzkGNjwfpXlGq6VYx+CoIoWtDqdgkNzcrHGwm2TZJLsVAIG+3UAMcEt0yapQ7mU6zjax74SCAOvrih1wRxgVA9xH5RmRkIAyGByP89auXU9tdNA0JQjyULmI/xEc5qLHRc4BdMv7PxE8mlsrtFdCRIHIAcEBiAT+IrP1vRbjRfEBYW8iWUkm6FiONrDO3PqM4P0qTUrqSHWdQnls52hMxIkwygDoPw4rON680sLSySuo+6C5OM+npW/Ppys4JO1Rl+GNVd7TIdPM3A46d6ueej7kTggkFj0/zzUQkt7eAI2x5AwbOOg5Gf0ptyALh5QuFZc4HeuLmvItTT0JTkoSBnHTI/wA/5NWLazhugI3lKcfN04qrFKsygIx9G+npU7zpbA7YwSMHaP4j6VqnazQPVNFseHrMqD9qc5+lI+gwLC3ku8jdACwAH6VbspmugGZQrNjanv3rK8TmaC6hWGV0UxZYKxGTk16CqPl5rnIoXdiFtIuF+8yfma2PD8l9bXiW6xrdRYP7o8FQepU9q4OSa5bOZZD/AMCJrt/hUhl1u6V2ORECDnnrWkKjbIrU+WDZ1OtE2xj8qHZHuQ88FM5BGPwrpkidLOLyGVWEYUZHtXPeMpY4ryCHaAzKOp4ODkf1qxZa7FJfSWLZVkjWVW42tn071vdPY45J6HyrCRuJq2HyOTVKH7xPTmri9K4rHrIdnnHHHrT1568n0qMMuecA0/O3DHP41NiyTdnAzkDt6VsWiNJYwRoeHldDj3Ax+tYnbPX361r2lw1rZWkyqfluCSPypCkegxLPOY1kuGIITBAAX5SP15zU+oOWtFYupkK+Wo9SzAcf57Un22VLK3uI44njdtuQ5XAIBxjseBVqS3WaSF5ShRZdyliCCVDHjk1zG7MTTl8vVkgA+czkfL1GB+fJqK2GoG2nlu7NtrRoDut8gtuwQOMZqs7T/abplUB/NYqdwA3c4GegHFc9pqajNFbPL4t1Wwmu9SntIEjLNFG6LGS7v5g2r+9AJCnABNdL2OJ7nqHi/wAu21lLZNNtJI47a2IMisPl8wjGQR0ri9fmWTwzG8VvHbBZLhQkecDBPPJJ5q/4X1TxZe+G9LmjvdTmDOEMxkMhKmWQMcnPQAVS1+81S60VW1QyG6TzFKyKFI4PUcVrHoY6Xevc8/syPsnf7xqeAjzOM1XsiPsuCM4Y1PAQJD+PWpn1OyPQ6CA40WbHXz1/ka9N0KW4fwnbRmKIxfZyC3mEkde3rXmFq/8AxJJyR/y2Tp9DXpvhe6ceGLeIW8m3yGG8jjHP6VzVOhvSfxC/GyMtDocmPl+zMM/lXB3av9j1HdnYYYCuen3RmvVPixaR3fhnTZHmRGigDqrfxfdz/OvLr9CsGokbeYIMgHphauErtozcbRj/AF1Mnwj/AMjNF/uP/KvofxXIka6czOigwdXH0zz2r548J4/4SaDH91v5GvozxFII4dMZnCA2+MkkDoKU9i1/ERim3DeGFBsI5CtnwNpwB8/Ax/nmvFfHEgbxjJg/Jww/EV63dajp1roIT7VMh+ymKMrEdpOX9D7n8q8c8Wf8jOmevlp/Kt4v3Tlpq1RmSpAkHTrW8TnTLA8cNJ/MVgjHnY963Dg6XY46B5P5isn1Ot9D2dVKRgl85UY3LtrmUt4bnxZeJcQ+ahiDbQ3The9dJFEDCMys/AP7xuRxWHbvDaeNrsy3DQRm1++ik44X0+lRQ+IWL/hnLzWz39/fWsbAPc2bRI0h4BaEqMnH9K4tfB2vTxXF0dTg3TKVlLTSbpVHzYY7eR8oPJ6gV3od7XxSvlq105RQuwkeYdh5yeg9SelTaZMk+g3VsWiSaIlysm0MylWHynqcY5+taOcHPlZn9VrewVZLT1W217b2vpe1itZgy6FYLu25uwN3plRViFpbTxTZxLMTnhyjcOQ5A6cVX0wudHsOAQL5Rtz/ALIq1fI9v4wsiYVjLMSFDZGN/XOarSzMdeZGp4xfGh30iuwKxqSvY/N3rgLO4byYjEitMSduR936V2viy6t301rOXb51xtSP5f8Aa5Oe3Arzy7jNlHH9kdnKIWLA/wC0Qf0rjafQ1xPxo6K11SAW0K3CqoUFGkIB5POPwzWwZIrpZIEUl0jBORx+H5V5vDd3cpE9xG8tofmYKOBjPOe3eu40e4kuI/tQfy1K5CkcBcZwf89qmcLbHKm07kqMFZXDKrMctnp+FTLtM37sqZPc/qKoz/ZY9SGWDIVDEAcAg8/nWtZywylVjgGcZHyjrimknqdKncv2r+RAJXZI2CHJPbjrXH6jrS3N0HkkE6J8iyJ1GfUfjUfjW/NsbVIXk2ZIlypAY5yR/KuV/ttYPMxAC2Ao3cFl9T6/WuqK92xhO/MdNJEGOUYEHoK2vCesS6FqD3KxxsxUL+8Jx+n1rnLPUIpoo2VedvX1Iqc3UasSG5Y8D3pxlJDkuZWZd8XeLNQ1C9MysHMbN5QHOMnnr2rO02+vLO/S5+1b7hTjaxwSPeq1xt8oHG7ceQR2/wAKoG5M90J49gEYwWJA3H/Oatzk9SJU1bQ5qPPfNWFLd8fia6PU/CciXDi0ZDtUZVjg7s4xz1/wrnCNmQTyOKmFSNRXRpGSaHZOc08HB+9UO5QRzj+tP3L6n/P41bNETKRnJFaIYLpEeSf9e38hWTlSOhH+fpWmjKNGjycgTn+VShs9Pt7hZtOiikEuXVYlbaeOARgA9fermoStcW0LQsQVUzId2fmA4ONx9fSodMuSsFmzzR+aI02hn7bcf3uvTmq1mxeynzJtYRTLkyZx83BHPAGP/wBdcp0NGbqESDT22MFa6uGXkEjCnkkfU/pXJ2HjaXwwz2Vul6ZLTU7i5Vob3yoptwjXZLHsO9f3XTIyGI4rrkszJqVlBPMwgVsGQMCSS2SQP8cCupvvB/hKx0qWabxH5k6iFZYrcpI4dT0xn1Jz9K2TVkrnJKMtZJaHBeErFZfD2ky/2haxEyxHy5GYNxPN6DHPapLi0K6DHCJ4pyZpR5iMSpznv+NdJd3OialrVnHcXfltsiNxICNkRiyRg55zmuTkvLeIG2sJ1khT5mzwVY8kVo6iS0OZKzbMHTtLaGMLcIcF+p44q/No0RHmQHbI2W2njIx0pzXLncwJYxj94g6H6fnUVlIzzy72YOM9Dxj0rBzk9S1Ukh8UZh0mdZOvmp/I16V4buIj4RtlberCJlU7OOp746V59NdPNYTKVEYUDO724/ya7rwzeQr4NixcAP5TjBfvkjgfjSm7pHdh5cybNX4k3D3Ph2wYEFDakAHsAE5rzu7Cm3v2ydzWkBIx7V6T4/si3hSAxrIwgTyuFzwY42yfSvNbiFINLkZDlpLdEIz0IFaQXvMhyXLEyfCmR4otvTa3/oJr37XdV2JYeYyrAIgnPXouT7/4V4D4QjLeKYTuxsR25+n/ANevetd8qGzsCWCqEUcnH8CH+tKpszT7aOP1+QjS7WCOFNkhZw6jsGbge3Irg/F1mTrJut3+rEa7ceorS1XXoUvmtMlYkkZV+bhRnt6Cq018spJn+ZWxh2wS3FUqlktDm1jJs5QjM4GCTmtqaNl0yzDqVKvICD9RVhpLN2ePyFRovukrz61clkiuYfJmUNg/KR1+tQ6ho6y00PTYMLBEFwuVGVHzdh61lWweXxpcAAZNqRhh1+UVesL2C8s08jam1QDsUA/lVSxeyj8bPJqN3FbWzWpXzHOTuOABj1pUnZm2IXPT904/U9SjsNWSaB8XMaLyPmH3cFcfnUdndKtw0lwiq8nyL7Ag5x9aoeKdOSx8USW+n3aXMPGJxnDHHI+vP4VQ0nD7YkMgLlvlJIB54IPc1coRc+dGf1qtGj7F7bba2ve197X/AF7s1rrUP7NMVuCjW5kDKobOBjrWvBd2k09vcohDRuGTsACcgVzHiOMefaLuBIUpIrDkHPX/AOvV+02TbVR4yAF/1Z2hD059sGpl3OPXRk+vKmuahuMnlTxDahBIGce9cJqEtxYyyWcsJRyOSw5YdjXVyyzwa9LCyq7oQdx42gYPT8awPGcRF5bXAO5JI+CAflIPv9aUVsU5OT1K+nXV35N1HEHeJgAqqn3j9fwrpdJuZkPm3K+UJkCqvGGwB2/GuT0zUZ0Z/wB+Yy+1RtXjr/hmui0KaOKNoL5hKZeI1YZIH94egqZoh6GzeiQXNvhd0OxgxB/izkYPbtUtnqC2sxwrNtG8Mg5H0zUOtXi2VvCigqj7gNrcZ/z/ADrPkuH/ALDluwNwOxXdRjBOf8KVNPlsWjJ1vW4blrt/MuJVnJBjkIAVuMMAPpXLowZwz54IwTU+oFGuSwBUkZIPaqYbBz1weh6V1JWG9TooJPIdY0kyrAN/uk9RV+BtpO7LEdz2rl7eYoVbcOCBg+n19K2oJwsrFZA4n4HPHJ9frSaGmTLIZZHDNtTB2gniqSy/aj5cY3RxoQBn9ao3d84kdCAcN8vsPSq9pdPb3QkUdeCBTQmeyC4NzHvSD7SwULiNs7SecsD0Pbk9s1wGuWIvNWu5bWFokVh+7K4JOOcD0zV8+IUZJRYOYQ3DCNyEyeN3ucCs4ah9oM04YySA4APHy/T+lcNGEoO5inZ6GK0UjlpFTABOeaZIQHODn3rYisUXMjSbQGGR7dabNa+dDJLHbpHFI2Vdu+f7vrXYp6FqrqZaMW6jGRWt5LnR0Ur/AMt8j0IxUD6Wi2ZmDuCBkA1Nab7yJUDbEK7iByAQcZPp/wDXpybiW6q6HptjHHFpEEyxws6xp8o+8wxnbwev+FSwWyyaXqJtHExkzjHXke/oxNZOj6wU8iM3DlY41HbB74H6+la1tJL9nCWuxWErCPHGVLAgcH1xXNex0OrF3ZBfzW9pp1zIHVZZwUQ7eMEjPPuFx+Nc7qE8W13t4SFT7qhefx9f/wBdWdXsUFnZQ3UszKHZ3A49to/LimpYBoECO/yDeq5HQ9M+pz/KspwTle/9fodNLM/Y03Tt3trZaqz5lb3l2Wn3M5l2lTbNMVBIyV6k1Unlbzwnk+StwQS5GCTx09K6hdNjutVke5t2WJj8iIDux656Dmi/8KTXBTddCKNH/dgYIUE9TxnIrdSR5kYprU5jzJbeFTETMS2JAx5xnjp7VOk8UBiLODIODGDxyfWrP9j6haam1hHE0nmMWMoGGZfXngelTWHhR5LiMXqSWquWVhjduwcD5v1ptqxPLqTooureVJZEWNioEr9FGeTx1ro7fVfsGkx6dHBuhiOGbjLdfb8qhsNCjt7byZZlaNSQcryy54/P3pIdOtY7NIbdp3UsfmZ+WPPuai6saQclombt141luY0jeVJYFYfKgwWYKFHPpgCqn9mabrBe7e2Uu+MjzSuOnpxXO3dsdOEQhzIh5Bdgcgnp+fP5V0ujuFskJNu4Bw4YcrnpScm9Uzow7fNysdY+G9OtHluoIo1udxVG885AwM/X/wCvXUXVzOsECT6rFdIU3KPLVSmAFxx3wBWFLqiaam2UWrPJKdgCgknAP5ZxUWnSXv2OKZTbwy5ZmMy4Oc9P1pNTet9Dr91ySW6OC1K2S48Qag/mx+WspIGfv5PGPatfQNEs9cuEtfP8kbz++lfjgdMe/OKoeItNzfz6g89uluXUExH5mzwSB9eado3Eyy27AhiDsLAcjvitWnKNouxy1IvmK2s6A1jJLNZ3QZ4pGWSPO7kHHBHXt6VDpN8JZ8EFyeD257mtaa523lxE8gSUkjpxuxz7Ypnh+1tbO1W6vYt9w+SHRM49vr6kCp1tqYu9tTQtLi5tyDbRuFYZVwTgHPT6/wCNNvLe6WRNTkDTFZEaZF+8F6E+/atY3Sssk1s8oABIUjbhvT/9dJc6ylvbO0yKoIAV853cAgYx61KugUmtjlPE+o/adRhuLAEzooGQvXt+dQWepSm/i3W6OxdWDFSCrHrx06119u1tPbktDESQdw2AEY55x7VT1Wd4bQyeWlyEl3Ie68d/yq/adEgmnPUwPE6LbajBJlyWjG5GyM4ODg9Kv6NcyTR2y7YkUZVH3YZTj5Qf89qm1bTV1mKG6D7FiXhVG5SCc0kbxxsv75NhI2iRcc+/51EqiWhjJGGLvb4hla9Ywy+djA+63GP1/rS+LbZRoMcnnDKXGVGDlgw6Z9qdLqEJ1SSG8hjMitgfTtj9KsaiHurLyk+Ro5FlVTgh8DqPcZpqok0mHU4eBJ1iddsnlnDOAvpVyzmln1KFgpO5gnHcdq6e01KVjGWCOTjJxnctXtO0iyt5ZpraLfcHcVTg7R14zx60e0vdMN2Z+szw3+pwxQM5NqhEgdeCfbNdDZaBfa74dudG0uDN47xzqrNtAVQQx3HjuKsabNqq3j3kmnQJLIgR2EAcHAA5wPQV0N/418QJaywyGN4nXayx264xjnjFVGSiU1ynkHiLwNrXh2RRfrb5ZQ5Mc6vtBOBkjp+Nc35cq7iF4U4J4xXYeINR1u682C3W6FpIAGTySCcetcqYblHy9s6jIyDGcflW6aYJohjYFdrj5OzDtWlpkUjAbAWdS2FA68ZH61b0vSIZCXu5SEkyERVGfqc9K1rCzg0+ACO7VyHbkcPzjgfgDU+0WwuZHKXdhdwhpZIWCA4yR0HvVLp2r0e+axuoTaSSMVlChUQcgg55PfrWZP4YsJkDwSNEi/ezyT+JqParqCkipp9tDK1zIizvGts5PlpzG4bC/jgA1nC4S3iWIF3aQAvgYIPoPWuk1HXNOinlWBXkEyqZHhbJLA857EYzj8K4u6lee7Z2BDE9+Kik3K7aJUbmjJfbbt0kDBlXaMn9Dj2/nUglMkCSTudgb5I85JGecelZK+Y7553fdGOvpird7utgtu5BZepVsjNbWDlWhr3moRZEKSHYyfxDjd3/AKVTTURHkMViQgKywKMsD15/AH8Kz5ZkngOVYPnJOegptpfSWsboqIVYgtuUHp702gVOx0mn6ijQpGY2ZzgIic7u2T6cc12WmvcxXaNseNF2uDnsRXF6baRXgt7yG4MN35gO0LtRQOp4rpI7z7TFLaJIzxlcMA3RjwD7VzVGnog2Zo3NyblWiaZyPMO3C5Izxn2qrZQyrMHUF1h5KyHA3dPfNZlveXEd9ItxNshL7Sy8gY6EZ9qu3tzECUghnlmAypjGQw6g8dKx12JOhhnkktf3qgE4CKoOPxNRwyOsISQqEVgAcZyB/P8A+tWJpN5MyM8o8pmJZVYD5sf1q4bnF3LJJIAgXAXI45Hb2rWCbWptT9DTnCKRcL8y/cJHYZ4JHfmsa/vbqS8Mb4TystG204H0I96tQXD7JtrZwcqSeo71DrM86x2zoyxq7AhhyPTBq0rMtq5ZsJGkiRSyuw+UljjP4fUCoJJJ4rolIwYXPzALkDrwai0yMvduskiBoycJwFPNXf8ASjeSIkBZXy2T0Hb+dS7ItRK2oSr/AGbsVT8kgCkf1/z6VkWeuXKXQljso49Okk2tLKuQccct0rto9AS7s9lze/Z1YhyETduA7Z7VvW8WnfZZNLubS2k0ttrRxGELggY/M1mppdDRRknzHmer3dtfvE8DQs0Tn5EOeCF56e1djZNcLp8UcawRqECsJwA2fXj29aii8L6TZ6ibi1twI/MDFXbKqOuMHqK3bxdMu3E4tFE7H51A+XNPnRupNKzOY1gJ/Zzpc/2eYEIZgEyeOOBXH6HNczalPNY2xeRCzhYQVAXrjjoMV6VPa6fLH5M2mxvEezEDJp+mxaTpM5e0sPszn73lsRmmqkUiXUgnrI811TR9fvkeX+znJuG3k7h8uTk/r61mGw1y2PkCyvxtU5XY3U9e3pmvZPtunFm/0cjBJ6mmy6hbSr/qZCPXceP14pqqzBzo/wAx5XpOlazK8twlpKEgTdJGx27u2BnqasajFqE+jwRrp86yRuSmUwdoHRsd+K9AW40+BT5UbZ7h5CfyobVIxhQgHvknml7axnKdL+Y830iS9SUM0EodxjBU/Pnuc10M0Us1rNCyDe8ZBA+nynHrmuhfUISrZTAJ6ZPWmi+g3lhGvPU4qXUv0F7emjktHttSfR7i1aGbzgpEcbgp1+tVl0bXPt8bTWhWNl2ykHOe2QB6V351CNYgzBGJHA5Oar/2tkn92Bj2ziiTvuiXVove5xms+Br2/uo7y0uokkCKrJJkHgdc1oaV4SuooIEvmhyiuGaMksS34eldKdXkEZZdgJPHyYqJ9Xum/iOc4wKHJ2tYXtqPZnHyeBZtGhnvYdRIghDSMJYjgKBknI56e1WrDxX4ahtVS51JGkAxlbeT64+761oa/fStoOpKxPzWsoPP+ya4XxGpt7vXNKt9JtTp9htEFwkKJIib1CSmQDdJ5gPQkj58jAXjSHv6sqNWLd4o9asJGkghvLW52RyorxyByp2kZBx9D0NaQ1W4CqG1Qk/7QDj9a43RbrHh3TYw+MWsQPA/uCrTYJ+WYNnHOKXM09CXi3tyo6G71geUytPYs5HBezQkfpXNTyzndMGtpWxt8sQhV+vHemXKiSYY5HTJaovKUHjn3zSdR3M3iL/ZRxaeFtchuJZ4nhJYk8SVn6jo2t+ZG8ltuIyQYiDj24r0ZSq4BjVsHkkmpSYwM+UMduapVOpPtV2PJ4Yr+zYCeK5jQHONpHP+cVrxXzPH5csMxLDJ2AnJ57fjXcypHIvCMDVVw68ZIxzRKonuhe0i9zkf+EdSU8zspx2AA/KoZPB85P7u4Un/AGlwPzrtP3fAHzd9xHSnRhEkyp2+45oVVlqv/MjldN8KGErNJIWfPCxjIH59a1otDt7e9W5ezM0p7bQUweuR3reiujEPlYc+1Sx3wTBEas+eTzSdRm6q0mrbEGm6FpFyxkuraFpXfBDEjaCAMY9siodQ8HeHWBeKKVFCkFFfGSD2yevf04rUju4GlLyZUk9+cU2dLK6kDzL5jDoD0qecVqe/MYkeiRPLGYhCskvAGfvfUYx/jWZHpdxDc3GnNcRRTRzBijL14z1HTtXbQSwpGFSJWCjCEqOOvT86iuoIrydrtlPmlhuYnGe3brU82pEnHujFtrGfU3FtbWMEoU5kcMDtOOfw4xUMmk6hot4Eu7W4jtnG7oSBnupH0rporlLaZ3tlZHPPyADJ9/WpZdUuZXHnBn7YY9PpQmw/drRs50aNqU+nmO2mRUck5fOQD1xnpmlOj3Ucpke24Pykbt4yf4hW2Ly4WRnwiHGOc5pwvJWXfv3fTpVKckV7alHYyf7IvhcZEfDdCCDj29q1odLia2SOcIcdVDcA0n2ggZYnPU/NUf2onlskfiTScm9xfWktkTnS7CK5M0ZdGPXa3+NXI5o4ouZA57jPWsfzmb+MhR/DR5pbgD5gOp5xUOV+ovrklskar3iHOwZz0HAwaYmoNs+Vxg8H5s1lgSS5LFdoGckf1qwmcDcSDjC49KXyM5YipLqWxe8hWfPbAHSkEzuCQQqnjLvj9KpHeWOFHpk805IXeTATGOx9KHYzcm92WWuVXOGV3HPygnH1pUnlePd5rcH+EConjhhQ75OWGcAj8qhlud6KigBB2z1oukIndoomyzeYep5yaYbxWGNrBWHY4quoBO4jAx25pDKCcBenGewqHMBxkUDAA575pjN8oARce+DSr+8PQ7c9asDyYV+ckkjIOevtQrvYRBDDJKSM/Ke1SMhibj7x69KetwXB2rgDqOxqORznayLk/U1onYQ3a2MF8c8H0oaIR8zEgHpjjmp0eO3Babl+yjiqNxMbgs5bgdAD0pSdgGSlCMDeRn1pI2Uc7yfqaYGAGP1ppKkngHufes3J7gN1CE3WnXNvHs8yaF41JPAJUjn865SXwl4nu7CKzm1ZZbSL/V273MrImPRSuB1NdY0hTYQuWJwig1OlzIxMLoUkwPlPOfcVpSqcraOuGGrqj7ZL3fVX3te172vpe1rjNPgNlptrauo8yKFEYg8EgAZHtV+E75QMKueKqPvdehz0H+NNikbzgvOenIrRRbZxsffACU4KlhxwajBbHPPHc1XumPnZcAH0xUaSk5AQ5HcVjJPmYywzOBkLgVJBPn5ck57Cq6b9xzkHrUgUqQRyR6U43UhE3mHlSeRTS4eIowXJ5BPFI6O0mWDAnuRSCJ2HJJHUVtbUCb7EEjI8o9OR61GsEQXABLYyCMYxVe5u3MUlwFJjQMuQCQenP58Zp2jams0CpcFF3qdrMenXgVHOg1LDxLs+QN6dKVLcoBhzkjoy1qQxoRuKgDoMD2qQbICdq8k4KkCnzIZnLCoX7jsc8kHAqRVY/MyBVXgnOa0D5BBL4LZz0qo0UZ3HdtHr6UX8hXRIiInzLl+wOen4UsPlAn90pOO4zmqQ29GLFR1HrTxILeNkj4GfU9fx7U7AWpVIjDuAqjjIOMcVW8+CErtUuT2Peq88xY/NKw3EkhTxRHKgwrMzbhkkdfzpO4EjX7E/LEu48lm5pjS3DcYUDsAMCo5I3DbkCiPuSDUSyuzHaQT9aVmBP5T5O8Z7nmmlmJ+VhjqOM0ZUjDylCeq4ohZUQ4JABxuPJNHI+ox8duBGGdztPoOasDy0j+XacY5PU1ns6sMAvwetKkbMx2jIA9cEUKKAv5WRcFwp7BTx+VNHmnIUjZ33Gq0k0FoAWPzng96il1DzkOSSDyAP60Oy3AvG8W3yigO3r2+tRyXplGwsVBOevAqin3N3A56E05n/AISgI7Go1e4E4YFxk/iRkUCUo2AMn2qt5nJVen0pVC45VuvODUNLZDJ2lboSOetPUs3Vc+gp9vbb4zIEwfQ9sfWnTllXaqjjGcDmqjTS1bAcJtisqoMjrzwKh3ZYMVyD3yPmohi3jIJAPcjFPEDF8Ar0yAT1qroLEmRIuN5Vj/Dt/wAKafLtkLNIDJ2GDUgCQqXfargYwDmoVlIcswDA8fd7U3JRWgiFpmmO91XPsOlQuqAkISoxn5qtb0A/1eeerGoSyvuyFOO55JqHIZWKkj5XBJB5HakVSibdu5m6E/w1KUUcgYGenpTkRApZc56VmuZsQ2K1llIeN0V4uRu6c9c09beYzGRmVpMBcR5AA+p61ahChAGAbHeo25UPkheehre0VqdSxtZUfY6WtbZXte9r72vr9/RsYVZNoJOD69cUsSr5m5mVWxjr1qI43kI2DTog4kz1wM8jtWid2cpFc7Wc7ihPYkckVFlVGOo7haW4bLs3PPSoN54IJBGa53L3mBPuHYMKXzcEEKTj3qAycDj8MUiydBg0XdwNNJt6Z25Kjv2qHzSQcLx9abC58rBOSeMVCz4c9c9ga6LXVwIbKUy6ZcRrFI3OW8x+TyCQB9fyqxolrFG4uFi2qzH9wScoR057j3rYSUAjYxBONxzg/Spt3lSE7gR+PP8An3qORHorDRvdj3UkYiO0kA7e4qKUAnJIx3wc4NSNNHnazKrj8f5URtEiymULtf3600gq0KaV9ivjgt9/A4weakRGkZtzjPZd2TnFQrdBVaNvlXHylQOlV3nZI1/fZ8w8leq4GOafKeczQO1htjZcsf4uCKr3bz26JgopxjgUtiFQcAu4PO4gDFXAJDhpIowhAwM54qidjOjS6lDMFy4PCgfe600QTzAOUCEEZJHT8RWmb4rIFiIUHI6YFVJ7tU3IJXYnjk8ChoRCh+Uq5DLj727GTTXMbOqrbgHqSBjmoY9hcE5C565q0HZ0JYjJ9ec0IoovaSLcluqMcAbjxQCRHgQ71z2BY5qw8MYD+dLsyM4Gage78o+XEGCHvn/63tReyBEpjC4llkdF252LjOahuNSKjyx8o68nn60zG6RmO4c45NAgjMpfaCzccgms5T7DsRKyyqRuPByM1KtoZV6/d6nGMe1SDJboSB2C1JcuTJjbwvHHAzWelgIordCcFyen41LHaqFO3LLnv2qEKd4JyMdQp61aToFUtzxy1Te+wwERTO0A84OOcVYghUMeGznqB0pywsjlgxIIGT0xUcly4BTIYdx3q0rbiuOkfaSE6e55PrRjDFomAJAzmq5lA5Djdn7pHWjzpBHvaHKnjjPam7sZa3SEffBbHPtTlkWKIM4HzD1BqrB5rqHaUqoOArDrVe4ud7gZAZeg6ihK2rETT3SyydAuBjFV2dyp2Ice3NRbi2ZG2bicEDr9aQtufcM1nbUYCVs4dzj0IpN6E4ySeuTRJK20AEYyePWoSQCckhu1RKSTsInEpA2sFbHOR6VIMNtXGB3xVZThOB8x7+oqaJnyTwcDgetaU9egy+7AjgEK2fzqBhtHAJB5JHamTFlUBzksOhqJ5GVcBSCOODmthEjkIARk4HPGM0sbsuTwPlxnFRGQspz1HFEbsFbOCMdQRVK4DZACxI5UdM1E+CASMH1qJpyrMq8c9MYxVd5nwQ4z9DWEt9QuWXUA/L8y+9M84r3zzVfzGZPlOP60wfMDliCPSobFcv2txvZkDYGaluGK3DBhkduKpWYUvgnn261LcGQMNxLYHftXTFxcAudJFAqqzZ2EDJJI6elMluFEZKnPp8vb+VZc07NCzZJJ7g4BNVJJZZY1YTHavG0elVY65YuXTQ1zdyYyCqA8s5XJH4VXjuWBBHykDIZv8KrxJJLtLHaD2x+tXI498okdd3Hze7Y4ot2OeVRy3ZBIkjj5Y2UMSCex4/8A1UJAYrkgkdBwo9qsyFZSwG7YOSox+ApwaONlWQFXAO0NyBTsQWojs27o/wB2cEjNLLNBkuXZV6bQeRWbcXSl18tiQOStVxcK8ojYOcjp6/X0p3QrGg96vHkTgY7vk1F5obKOqNnuvBJ+lVYwZHO1QAOoyOlWDtRt3lkuB0A4Hv8AzpAW7eKJozlcKepOOlNd40l+SQDA+72rN3N86MdueCB/SlhhYjeJiw4PNS2lsMmmcSH7y56qc8VHIsiMpyrZHUHipZVt2jbzG2En7vqfWo8fdWKMZPGayaTHYf8AOr/d3KfWhZSQT8uB70wssYIbBJUjBJ4pPNDKSE446Dis2hk2/YoIGe/HFIJIzyYzg800XDrEAGye+BTt0jMiLngj5RSUAJJMMchQB0OasQrFHGWLE84wOlRkDGQdqkEkHqDVeSVnbIBG0cbutbJWQidrkNuX5ii9PT8aheRsIU24z3FVZGMg24+Un9acuFTduBHQZ707XAsSsVBMgHqCOBTUjWcDGcHr7Glj3ldxQ4J+U4606dfIgI+ZiT1B6jtT5WA6aVmUK2VHXGf5DtVVzhCp2qx53E1AZZAjMSR+Gc1A0pYg8jH86xmBMrDcRkbh1/8ArU0zsg4OM8cnrTFBXOXHzHo3SmSnKYOSueD2/OpuktQLkUwZgZSGXuBTQI3YpuwAeBmqkbonAU85yetJHIfMLbgePSktQuXcJGf9YW9PapyoWPzF+Yj04zVBPmm+UDI7DvViaQRR7WJVj3FdUNgGy3SvOG2EgLj5z+lPALKGDZ44FVzsLcfMvTD0+ORWcgtsA46VLbAkeTCFSDjGQaE3tG7c44yajcOuAWBGcYHpUjRusG3nn9apeYFGR9srZBIByCeKj++x5GamkVgSuB7iqxj5yuQe+a5mrsTJCoIGD06g01WCk5x9KUM20KV/GnlBnJxSkrhYbGxMg2/Kc8GrM6sV/ek7h3JyKqsuyQEnkdsdqtFswnDD6VvS+FoBi3KbCuw59B2qV4ZVRZFTKN15Gce/pSiyeJElBCkjndVhJ44gfMYPkcnt9MVskJhDMqKAScHPyL/DVl5WZQW2KuCQue/+NZhulEjbWLKOduMflTQwDbgue/XvVXC5de9jAGODk/nUUsobaQXckY5PNV3KINqsWJXO0DkZ/wA/rTW2D5VBD9getJsLlxfKjUhZAG6k/e9/50Icxlt42gcn+KkgWAKCVAYqQKrvcx3G5eSBjOBio6gWY7uODhBtJ4IIz+NRzuzuD5zHAOQKq+ZGybY1O4nOc8D/AOvTllyNjHKe3SoctRk0UilTtYlqlSTaMJMASNpweoqosioihffOafG8Zyi4VX5yRzU6DRZaRGTEhDcD8KjaTkJH2HLZ61UkGDgNjJ4zUmSiopClcHBz3p7hctl1AJKk9M7h0zUT3RJEYOQTjgVWdXO44yp44OasRDy9oiCs3UGla4Dt7uvl7mXGMA98/wBa0FlggODEd5Xjk8n1+tNjiQAu7bm67dvNRHFwWVJCDxx/Or+EBGfadzIzp1HNQmZcMUD4bqT6VFvdSykDjjJp+TJFjGAD+frRdAP3gqCT7YpELAjcMr2wKryAg4AzzxzUqsSgz0BycGhO4FhL3YAGbAAJGOMVXluHkiILEdxx29aikbfLn5vxOOKYZ92VPXucdamb6ACygEZJJ9qm3Bl4C474qm4yc5/CmqxV9wOM/lWdrCuWCWDEMBt96eh3RMuQQTjpUOWfnHPqadGcZzuA6cClpsMaQY2wQeKlR1K4ZTkjj2FIYy+csCM96ckZeLKnJH5iiMbu4EsVtIrb1wy59en1pt0A0wBAXA/OpLaYRuqyJujAO7Bwc/Wk8tXmYlyxxjHTJ9q3uuWyCwxYd8Z2sGIGc5pgRsMu7GO3rUpjSF2WNSxbgkjNKrFVbcmOOM1HULDoCqSHeQd3Q4zmrFw0carsY+nXgcVUWT5gByB0x296bKrA8McN1B7VabtoMdIYym4DLY/Kqrjbh24HvUbylTwOlRm5lxkkFPSudJyYm0SsM8g0zdtI+bHtT0dMEbMZHQVG6rIS3bPp0ocNNREnmHJdl3cVaiAaEtnbkcfLVRl8tRtJZanRXkXG5QFHJ71vR5b6BqElyD8xYkZ6ZxVbd5pOWAGep71bj09WfAfO7HemSRja2xMKgxyeeDWtmJoh8rIRt6mMnAIPU+lPAMX7xVy2eAf8KZCdoYIoZVIOBzjPvTFiaVgcM3c0raiL+15Tw20n7205/GpbSw8j55Mu3bucGoji3QRkn5gucHv6U6acpgqQNoxw33qbstWOwlz8h3bH7lTxzVOQRsgZlxKck84GfQ059RyrKCSw6Yqt5riQE7ifpWcpdguhyySZA469qkHMZABxz70sYj3MGY4IyDUqyCPq42n5eP8ACs9QRXijiJw5dTjjHrViNmhXaYyzZ6+hqESBS+QT354qxHLHMuXkIk7HrQNCtHNLGSynI9TxUCSAqq5JcHseKlMiQoWEpbccAe1QpHvyyoFz/Fjmh2YyRf8ARwv8QI6g9Kv20RRfMLY3L8wx0qCO3lYc4KfTrVxEEUQaQc524boO9aQXURJJKixN8wO7p6kVRMrQxkRxEMc5b+tE05m3kBQo44HNJCZGXaDuKgEN603qxkMbuQfMXDE8U4HauJGGR0FSMwkfe0JwBjBPQVHMoygjHLHkHilZANBJUcEqvapzEVRWDhRwMHPPvUUGQxDtkDrjipppE/dhMsGGOKSdldjKhG1ypcHvuqPPzZbB5qZk8053bc/e5qEKG+XB3A4OaxlITQBVfllyPbtQAQcBeBwTipdqiP5mAZTjFNfYMbXJUnGRTuwsRkLu2hgcH0qTDwkEbiD+lD7HZM4CjkdqIpQmQH3+g9KGrO4yRSzZVV2kcENwf1qzFEELE8kjGDxz/WqccLOwk8zLMe56CrmYDMo+aQgYwT09q1S6jHCI4OMkdMCoGIDttycdCDkirSSQCNmCbSOOT0qrIVzuVsbzzgUMVhpdy4wDwOeakDqQwLg4IPpUPkytEGRt2c96ZGowCTxnHApN9LAWIwhcZJAPUgc0+SIlC+8fKM8f1psasZAeg9anmgaMKYz8rDpuFVFjMyaIbs7xwMZzTEiOQQAcfyqds5CkY/rShRvGCQBXM5PmDlInHGR09KAykAkD8utTvGrLu6kjtUEkTLnCkt2UVXqKwmSQTyAO1XLCISx5Ixjg1TWMxY3E/MOlW7eUxKwAGGHIIq6ejTC3crpcO06ny1XjgdMUonZmCbQSO+cUz7QfKjHlZX72R61AjzSTfLGdg5IPeul6aIi5ft0Lq5I2jeFZcetSrNFFHsyGI6cc4qM3LQsVMYiJbOFPQ1myMRJ8rZ6gkcZqXLlDYsTPHMucNu/ix29P6VDKw3CJMhcZG7uaYsrLGRgEE45pQWkQZwu3jnrWcpXENhBZn424/iqYQgIWLEkGoVA8vIbPvUi8gNuxk/dqNWtBIiYgy9evT3qVQeQRyO9Pa0IUSE9gdp6054SYxLuAIJBHqKLaFJEafMcLz6e9KgYMhKnBHXHQ1KxRERflAIzkHmmr5jN8vVhjI9KLajtYkEXmy9uByCcVZCB38tfujOPbvVZQI0G4MPQjvV2ERQMzKxBxkZ9eOKpJMqxIi+YJBEuQCM8+lR3DSNDgsCvU+oqZsW6qclifmzgVUch3GSAWOOO1D00QWGQcsxK/e7f/AF6kRevz4PYr3pjId+05IXjp1FMSJoFByeCRxVNaCLigrG2SCB6/pUMg3so4yvX2ps0skYWOQDkZz6UbkEqlc4K5YHpSs3uMlVIyrhR6Hmq7u0beXuwMdwOtTyCSInaCpUj86ptKj53Ng+nvTkugDkKO5MhIHfBxTp0Tf+6O1TyAx5IxUCSg53gYb86cSgKqAxxyD6iseVILi7ZYxvBBCnBB96RZE8sgxjn0OPpSSESbcdFGM0GEFF3cZPJFDlbYXoRqof5SDxg0sgSNsxgnjrirQKIjdSeADVZlcO2M/hU82lgsTW8JJBZ/wBqSI7Q3ykFT1POaZAu1hvyx5JFWkwy42HgcjP5VtBaDA7XBzzycZHBFQ/e3ADOTgEDjFT+WY4Nxwylhjnp+FRMCo3LkIHx9OOKc9hgjsqALw3oRwTSrs5P3c+tHyNk8lzximuHBJAypHP1FZ6jHxOY5BgnafTtU+1ZEYs2SSelRWkSSOhPAHJz/ACqzJA0eVC8Yz17mtoR0EUR97LHjjr6UxtwYkN9MCnPGoRt7fN0AznimqAZ9oViPVe/FZyphcFwSAp55pxEm9QsZz24qxCFLHgBlXO7FMkNwGy+Uz2J6VfKrAQPA0nLMFA4IzyKVE8nawJbrnmpHiBIO4NnHSoZEaIb1OQCQVHUVGiEQrKPsoZYwFHBWq63vBQDaRnPNLJLthKB9pOWIPU1WR4oosOMs3zD3rZyZmyxvaTEu7OMn/wCvStl3YkBsjqKgWdnc7BkZ7jinCNkYsWIUcnFRYB25RjORu5IojyyrnBBz17UjDzRkHPcZNPAKbQ0eR3I7VLt0BIExHHgrk7jtIODUah2PX5VHepiAzICcIPvVL5yeYVViSBgjHQUWHYbHCzICz809AE+ZgCMcH0NCzoigru2tkDjrSOySKVTLHnJPFSlqPYcG3rwuCTkFh19qmjTJ3Ftq9G9apxF3cA5CrwW7mrAdklcIdy9ie+atK+o7l2C5nRGIhR0fghh/T1qWN1lLRtFjP8I457VTg3yMMcADJHerqSJ5RUsATwOeQfX6Va2He5FdxRRyBWlYbRyByKpsqMUYyHLe1TtCWilO7LFgTmoRbyhAMEjdke1TIWpKrBgeSe5570FlaJpCTyOTSpaEhm3cr2x1pJIwmV59/SpbHYqM+ZD83zVfsNqwsccspAB9CDmoo7PPzHg8Y4q55TpGJHHKggY9KpSCxUmWRnJGSAoyD2/zzVYhDuULyP0FWpZGZHG45PQn9aosjNIACDkc7ehqZaiJGiEko2cEc88CpzEGVT8pJypA7c/4VDgxZ+bkYHPXFTwgkMP4z0wev0qLPqOxUf5HKr0zwKsLwI1U4YHcCajJHmbSCNvGaj3K7fMOncVLWo1oWWjM0UsofJ6571XmaRSducgc57il3tHkJyPShGkkjAyMA8+9DsgL9oP3BVkDEr97HIOe3pU00aoFKLknG4HtSQyrFblHXcxOOT2qdiSpb+Fu/XHof1rohsMoSxrtAViCexFMk/dD5DznOasyOR99ty9h2pItqxbgg278YPWqdrAQpCZFVgpPmHgirdpGIHPm5k4I2k4GcetR+eWYDgL3GOB+FIqKoy5I2np61mFx6AK24H5uwz0FTZkLbmGdvA55qrG8gJDBfmHp2/pUyIXGDkj0BpoGysDhmVhtPUHHSgwuoYorDOOc1YuQFdlzgHGB+FVzO6MCu51z06DFJvuIYySImcsD3NJvMoKlj0wc1ZwZEyzqjHopHSoII3DbtocA9TUNsBwjJyBkqOee9MEJC71bPOSCKkNwYiCnzEZ+92qCVpnPOQGGfloSuDVj/9k=", "path": "images/3pts_ADE_train_00010928.jpg" }
depth_point_33
images/5pts_ADE_train_00014277.jpg
ADE_train_00014277.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 252 y = 196),Point B is located at (x = 18 y = 177),Point C is located at (x = 173 y = 224),Point D is located at (x = 182 y = 122),Point E is located at (x = 260 y = 109).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_13><DEPTH_36><DEPTH_5><DEPTH_17><DEPTH_59><DEPTH_22><DEPTH_40><DEPTH_31><DEPTH_63><DEPTH_52><DEPTH_35><DEPTH_82><DEPTH_44><DEPTH_40><DEPTH_77><DEPTH_72><DEPTH_30><DEPTH_9><DEPTH_32><DEPTH_32><DEPTH_69><DEPTH_69><DEPTH_74><DEPTH_69><DEPTH_5><DEPTH_17><DEPTH_78><DEPTH_81><DEPTH_15><DEPTH_19><DEPTH_36><DEPTH_31><DEPTH_35><DEPTH_67><DEPTH_27><DEPTH_39><DEPTH_9><DEPTH_45><DEPTH_33><DEPTH_82><DEPTH_72><DEPTH_30><DEPTH_85><DEPTH_0><DEPTH_46><DEPTH_50><DEPTH_62><DEPTH_29><DEPTH_40><DEPTH_9><DEPTH_35><DEPTH_76><DEPTH_64><DEPTH_20><DEPTH_74><DEPTH_31><DEPTH_23><DEPTH_121><DEPTH_63><DEPTH_119><DEPTH_83><DEPTH_47><DEPTH_121><DEPTH_23><DEPTH_8><DEPTH_23><DEPTH_94><DEPTH_42><DEPTH_94><DEPTH_42><DEPTH_94><DEPTH_66><DEPTH_29><DEPTH_66><DEPTH_74><DEPTH_9><DEPTH_66><DEPTH_2><DEPTH_9><DEPTH_98><DEPTH_23><DEPTH_63><DEPTH_25><DEPTH_0><DEPTH_45><DEPTH_9><DEPTH_57><DEPTH_57><DEPTH_55><DEPTH_16><DEPTH_32><DEPTH_36><DEPTH_33><DEPTH_78><DEPTH_66><DEPTH_66><DEPTH_66><DEPTH_33><DEPTH_23><DEPTH_42><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
5
[ "B", "E", "D", "C", "A" ]
<DEPTH_START><DEPTH_13><DEPTH_36><DEPTH_5><DEPTH_17><DEPTH_59><DEPTH_22><DEPTH_40><DEPTH_31><DEPTH_63><DEPTH_52><DEPTH_35><DEPTH_82><DEPTH_44><DEPTH_40><DEPTH_77><DEPTH_72><DEPTH_30><DEPTH_9><DEPTH_32><DEPTH_32><DEPTH_69><DEPTH_69><DEPTH_74><DEPTH_69><DEPTH_5><DEPTH_17><DEPTH_78><DEPTH_81><DEPTH_15><DEPTH_19><DEPTH_36><DEPTH_31><DEPTH_35><DEPTH_67><DEPTH_27><DEPTH_39><DEPTH_9><DEPTH_45><DEPTH_33><DEPTH_82><DEPTH_72><DEPTH_30><DEPTH_85><DEPTH_0><DEPTH_46><DEPTH_50><DEPTH_62><DEPTH_29><DEPTH_40><DEPTH_9><DEPTH_35><DEPTH_76><DEPTH_64><DEPTH_20><DEPTH_74><DEPTH_31><DEPTH_23><DEPTH_121><DEPTH_63><DEPTH_119><DEPTH_83><DEPTH_47><DEPTH_121><DEPTH_23><DEPTH_8><DEPTH_23><DEPTH_94><DEPTH_42><DEPTH_94><DEPTH_42><DEPTH_94><DEPTH_66><DEPTH_29><DEPTH_66><DEPTH_74><DEPTH_9><DEPTH_66><DEPTH_2><DEPTH_9><DEPTH_98><DEPTH_23><DEPTH_63><DEPTH_25><DEPTH_0><DEPTH_45><DEPTH_9><DEPTH_57><DEPTH_57><DEPTH_55><DEPTH_16><DEPTH_32><DEPTH_36><DEPTH_33><DEPTH_78><DEPTH_66><DEPTH_66><DEPTH_66><DEPTH_33><DEPTH_23><DEPTH_42><DEPTH_END>
252
196
18
177
173
224
182
122
260
109
204
58
166
140
107
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD2ryqUREHIq1tFIRgZHWt+YhlNpPLyWHA71RbUIJnaOORQ4BI3e1azRqwJb8vWuT8XoNL0ttShjAMSsCcdAamVSyuSlcntryGGBg0qs4Jbg9faqtzpdrr1uLiA7JScib1Irz7R7+SeSBJGaN2fdkn16V6PpFzbeRNY25wIV55zljWNKqp6MGrHOatbEXiSLIIsyKXT07Z/GrGj6if7YmiaUOCdq1l39xaXMsFrdTN+5VlLg4JPUE+tUvD1pJ/wkL3EUga3jwTk80csVMTjdHo5+6R6VG33RS28qXMW9D3OaCDjBr0l5HO9GRUh6VJs9qay8VQiOilwaMGgBKKcBTe9AD6cvWmDOaeBg0AOoowT0pdjYzmjQCM9TTx1pNueadg0AOpVzzggUBcDLfhWPrt29mYZA3lxg8nrn1rKpUs7lKFzbjGDUjxCWGSI9JFINV7O8gu4Y5IzkFc1ZBYD6Gpb50FrOx5brUU9pG6uAZnzCoH8fq35VlWSywT+VAz5XgjHByK3p7bGsSQ27vezSOQGPSJe9dTqT6bpUBEcUWQA4GMnPOefyrgnBX1OmOxxdxo00WZbrIdmB2D+EY4P51i3hi+zTMzEp5myMHse9Wdc164k8QPbrI5EhAUIuTkjpVS8067vhJhdkkQJdRyDgZ4rOUdNBj01BiUQ/wCrC4FXLQR3OzHEyZdB/sdxWQNsOWB3KsSn8T1rQhUxaglwOAAGz2APGK5pllma8Et0nOI127fY4NW7q6ijfDJuuNuNw71gQzC4vZUixy3APqK11iuILhZZwrMAB07ZFCV4gWIbwzXQgXK+X2Pc1owXJt5ZZGjyFGaw572JNSMhUJGrYBpP7UniinaO3acgEsM9AT1/KsZRdgOi0XWZpp1RWcJLJ8q+hrprHUjpmnD7Q2GMpQj0PrXF+HrvffwTxRqqqAeT3q14nu5E3XsU8YjYtGUxnLetduGcoIzmrnSi7vvEOlGO1cRhpSjOf4lHFczrXhC/tLa4uJXBWJ1VcH+DnNJpetzKun2ttwkSkkdP/wBdN1/UtQ1ZSlqbgh0CyKAcHFdTd43FFWZlatdtIY7eJjhNixk9gK9G8PWElvZwlm8tFjAz9a80i0TWbi4DvYTMgA5HHSu6tdT1n+z2hewzIz9WO0ACihGzuKpE78SKz7RnoDnFOZgASeg5Jrn21Mf8JTFClyPLaMgp6EVrzspjfefl2knH0q0rjuR3upQWYiMhGJG2g1574t8SfadPudOlBPmMVGBwyjpj9ap3utC8tBbtMFeGUkbj79P0rG1bUo7v7MXXAiJDMB1rir1nH3TSKVrmfYlrq1hupHEJgIBBHL4OBiu48KwtI2olJAJOig926ivO2uBPKljCGK5yXHYZzk12uhW2qTNcDTTjL/6w9DUUdWmKexzXiISC5izE8TOxX3CjmtdWjh06OO2fy5hHl2HVjU3i2K6uJLWB1QyIpErKOh71gWM7zasgKMI5EKknoCKitOXPoVFKx2PgLUJbyO4gkfLxEj6812Trhj+Fcv4OktLUXUXliOTcSzNxkZrbh1aGa52jhCxwT6Y616uGrKUNTnqQV9C2wA4HNRsOKbaXsF5GfKdcg9jU7KMY711RmmjLlK+KMVNs7Yo2e1VdE2ZXI5pu3mrDKM0m0UXCwxeT0p5GQe2KWMDOM1KMbyoZdyjJHtSlNR3KjG5lNqlsk6w7/mJwfaoo9ahkvltl5z33DFcnqF2F8QToUPPKkfjS6VabxHPNkMznGTgkZrz/AKzLnszo9nGx6GFzxxTgnNJaoojRFOdq9O9WCMAkDJXrXZ7TQ5+V3MLVNVWyuURGBckrt9K5W91F9Vtpt+Wijbn29qt6lAsWrmSRvOWaT5tvJRe5rEup/INyIVyrjYIx1IB4P615tWu22jqjHqdX4dk3OYImDAKMY/h9q64rjIrifBs0IvvKKNvMY59TXd7NvB/WuvDzvAyqwtLQ5TVLG20QNqEJZXkk2sQeua5qO8huL5xKwkiVDkt3PH+FbniW6juy8KHIjG9V/wBoVwepH7FNHcSMEjk4K5xg1wYipedkbwj7upuNZWl1cpcxBIicCRgPmz6iorW6s9JW6iabfcBTsLdOScis0XqFYliJwWBBHepJ7YSxCYyRYLH5ifypQlLl1EzMvIQzSqm1XYAn0HNTQzpHPcwSMHDbQgXtx/jVNQjq4lnHmZIZs8D0qIosUgAcF0AO/Pc1Eo3KJCYba5YICkmMjP1yf0rqrPwvrut2iXMAxDIvyO3cetM8IeGZvEV611doDZRN97H3z2A/HFeyW9ukMKxRxbFQYAT7o+lbUqatqB5Wvw0vJo1S6uY89wAetbMPw+jBBkncDy9jBOMivQCMHIXig885Fa+zggvfY42z8C6dZrtj87HTrVweE9P2qrQh1XOA3rXRtJGn3pEH1NRNfWsfLzRgem6q91C5WZcPh+zh5W1iGOmByKsx6fHEMLGqDt8tEus2KHJl4/2TVR/EtmAQqu+PUU7xFyu5eNsg6fiScU426BNoUOD2J6ViSeLIF+VbYsffrVd/F0mMR2oX61SmkDjJnIaNqYvPiI8syFGEjA5PB+lepkrNuBXcpHT2rwezuGfxFFexyDYr889/Wvc9NYNZRMSS5Xk1cNjN6aHL694RtzptxNZxbZ+XHvXlGuwXmnTrDextGGHFfROBg9M4OM9K8g+JWn6h/aMeoXq+baq5VUUe1YVqMX7xUXYwJI7WLQ2ngUPKm1sg8kHtXXeEtbL4t0GwQk7j/e4rz2K5WGQlIgqvy8fsPStzR75NLEz7WZmdQB65NcvOotWRctjqPG1reWrPqETDypR8w9K4PS9TmkdomAAByW9K9D1fVINRJs7mNtstuSo9wa8rtYWi1Z7V3Kgscc9R71FRJ3Y4vQ9Hsp4riwuWjQrO0eQxOKuvqSW+krFDFul2jzWH06CsCwlZ3hhMqLwQQR1HpW5B++kaGytgNmNysMjjvWeFq2uhSVyfwrfK97PbNE0fyZXdXRx3TNdSJj5UPLenFYlxNbWtub1WVbj7uDWbd64ybtsxVJEySOMmu72/IrEOB3aSLcLvRgQOOKCyoQh6v0rjtD8RQw2qeYTuZ+ef4a1bvWY55reaDiOIsWPrkcV0RxEWrkchuNDkVFsxVi1mS6hWdTw4yBSlOvFdEJXVyJRMzUJvs1nI4Uldp5FcbbeIrpNQuySVQBRk/Q13N7JGlqwygypxv6V5rflbViVbLyn5t3euPGzas0XSiJdQtFerP5uWfDPu9+mKsw389zAskeI4YTsxjv60Xqx31vEGDFtmN/oBVOAXJKxIrLA67lK8H6muKU9OY6JdjdXxO7TRxo2Joz8rdjnsa1YdekvLeeDBEgQtx1NcJcstvHbTEjfJMVfb2PrXS6cHWNrgoVlwGTn+GqVWT2I5UZpubl3yAQR61Vkne5umjni2IOQ471PcXDRyMgfLZyWbmoFvnETrOiyKejY6VzVFK7ZrCzRr+H73ytWhCIQCcV6PdyRR27MQCxBwc15JpmoO2prMYwETpt6GtfVtbupEluASIVj2Yz39a6KNdQjZk1IczuZV40kmoPIJSEYFm/2SKqTWp1SKS4ZU2kbFLHkH1xVizi8+13NvRn7E9aqTWvytMmURXKsK5lO9S472VjCkkubOcRg42fJ06j1rba3S40sKh3SRsCzE4x+FUZlMb25eMykthvoOQabbSTzanPHECAQFAY8njNdiRFhjxRm8MEaCTzDktWzovhv+29ajtURvLj/18o6Yx0qLw3pK3WrJFlpJWGCOu3jv+NeyeHdEg0TTVhiGXY7pW9T6mtYxuU1ZFvTLC30rT4reBAkEYwB3PuapXmpN5xETYUVNf3mSUjPA6n1rCnlUZ4OPanJpFRjctNqLEEPIRn0qB7tscStiuV8Qa39ghMCENdH0/hFYunSa5qb7EllQd5Nx21hKrrY6VQVrneyzZGWfr6mqskmGy5iU+u/pXD6oLyzu2t5LqV2RQSd55zWZM0jHl2PHc1nKrZ2HGldXPQJ7mJRlriED2NZ899aL9+6g9s1wbqzHGTTJIiC2PWl7Yr2J2r6rYRr813Hj/Yqo/iDTEJ2Tux+lcaYsnkZojiIzjj6U/ak+yL+l2ixaqbeRwoaQMpJ4/GvoDTCslpGFBUKgHsfpXgls0d9eR2QUeYHC7s44z6175YyQ2lpaWplDsQFG3nBxXfCeh5sk7lPxDeSafYmSNC247PxNZHiRIdb8O/YvtKwysoYMcYJA5HNbniO7tYNMYzSKpPK7u5rwrxNd6hb3MaLLI1tcKzQHoT64pSqqw0ncoLiG2EHliSeO4KbxySprRtUkm1eyKjdGX3NngYFT6Fp0S3EU6yiT5CdrH+IjHP0p7tJbQiO4Tc6MW3R9RXmzqKxta6N3VEmW2jv0AYRFlUDrg9c1w6QoviB5bje0b8qf4hx0FbhmuJkNtNKyCaPO0dqzLi3W3aJNx85GA3ZzxUU581xNG1aqs87rFHnABjD8c+9dJo91cwTtCsGXk4LBumeoNU9E0qWdAtxFibGFdW4I65rXvorqIt9mgSJYgokZgctxVwpW1FY5a6uvtWptA7kbGKkE8BvSpL1ov7FFm53T7+w5xWDdXQi1MBWVpHkywJwc9K3ZHt5yJlwHC9T2wKicnHQDAd7jyo2QSKsL4IA61vWdzLKoiywVsMPwqvDq1oFL4B7OGXAzWfb6iLnVAnKjBxtPSlaVrlWR6V4V1fz2WzddrKCF98V1bEIBu4J2/rXmPh8y/wBrqYzgqcAA54rr9X1gwXEFqpyA43N9DXo4WvenaRhOPYb4hhmu3S0jQBXQsTnoK8+virXggYb0iO3d/FXe6xd2srSQLK0TSwb0lHO31rz2fy44o7q2aSULnLsuNzZqq/vx0CmatjeCO1mtCmZsFY9w7d6U3EaOnkzrsf5F9eO1QWQuo1kuyELt84HXjvVe7iiukSaNTH5cbbT0ya4/j9w2e5pWMFqtzLHdQozMhdFPQGt/TYfKmj+1RqkW0oGJ4x7Vzui2F7qWnzXGFMiADJbBP0q9cxteMsc0pigVeBu+5jrmtYR9nuTch8UT6TDbBrQ5n5U46c1z+mp9umFvLnYZMA+w/wD1067sobq8ntbaUyRDBMp7Cr+mCOwt45ZcEucIfQDvSrS0ukXA0TY2lgy2tuCwY9T1qOfyzE4m2JGvBVu9Ry6sHthOsYXcW8tj1IFUb6d5Lbz54g6AAkg/ezXn2cncpsTzzO3lh9pGdpHb0qOa+gYiIyjGAXLdz0qk8yQq0x5y+do9KgSS3uHjSGIRSvwXc5AreFPlZDNDSZVfxSNPmh3/AL9CD220XJj/ALTuBaRrJds5jiWLJH3iM/lUtvBFp97529p7nzFdJBwWXHTFd74M8LLDLJrFzEqXE7ExxdRGuc/nnJr0oxVhGj4Q8LRaLaedKM3kqjzW9PpWzfXJRSsRx2NWbm4WKMgHBrm7y6xu+b6k0S0NIRciK4nCk5NYeqaoYFWGCMyXc/CR+g9TRqmrR6fbmeTDPj5E/vGuX0Cae98Sx3Nw5aQhiOfujHSuSU7ysdKhyq5Zm0HyrO6ur248252F9q8gY7GtrLRWttFCPLjMakqvfIyaZcQFrPUCTk/Z2/OrYjJtbNsZzCnTnsK2hSSd2KVV2sjmPEEedUGf7ifyrJePP/fNdF4kjC6mnvGp/SsYR/MPpXHU+NnRD4UZpj2kmhk3E8deavPF147Uhi5zjtUlGaYBz14oSHrWgYvvDHUUixj5vzqkQ9yTS9Nt3AuJp1juAuGA9a66fXR5tklvmMwx4Y5+8T3rgi09uDNFJ+62lWPbjpWxpd8LiK0YxKVJGSvU1rzyjoeYM8WX93erbqk7TrtG+P05qoZoLm0ttPijdrpAQrSdYc9TXq1r4T0yLTbm81DMv2gCRiT9xa4tV0uW/uNQtiX3sAI27Dp/SqrS5Eho5bRbSW3E0kxPlo/yv6mrwBfUZJBJ8g5OasXeL7XBHEohjK4YD+EniqGo2V3DMtvCfNhZhvNec9WUiK9eO4VcSHzlH3h6ZqNbBxP9oDbcEfM3ORUcX2O3leMkXMzHcEP8NX47O7lslNvGoZGwV9AetaW5BnW2epSQaa72cizhkAB/u1R1XxE2ILNrrPyYlb1B5P8AOqvmJaWyJEP3Skbh7f8A66w9TAupZJAAZH5UHsoOMfpTp1JN36CZUFk48QLIJEkjkJMch7AdK2YGEL7xNGXwchulYgIgkjj3Yy3I9Krwyk3kq3DhbdScEemK1n75BX1SaM6mY9+Aefl6Zq5p9lLA3mrk5PBqlb6bHqmrsLP5YeM57mulk1HyIDAyZkQeWAPYVVR2SQGroN+dO1JmmH8PyN7kU/VZS3meY0hmeTzM59eaqw2BWKxeM7pM+ZIv8qTVZ5pLKZ1izIoG0elS242SGlc6Wa1sbvRbCV7oxkcOevy1qaxo9ndaL/orpFbxx/uwOre9cnaBtP8ADcTSEtNkjZ/tE9akt7+aPzWdZCyxkx+nOK74Ti42W5lazE2SNbRzW/Kr8re+KascdxdJtP7vB+X371nu1xZsXjlO0oJCvr61ea4tzbSbIm85k42+tcKbhLU0NSK5/su+AibAA8wIPX0qH+17aTV5x5Q8t2KkHpmsGNLhbqKU+ZmJcP8A7pqveTWU1zutpzyMsp7n0qva8wco+C6mig1F98RjjIzGo5wTWxf2plMKxphGATjsMZrkppB9ilhwFIOR+ddNb639m0eO28sF/MwGPbIGacndWGinqLROsY+75eQqDuP85rMudQ+1WSxlWWMHjB7ikurhrzWXt1Iyq/Kw6Ais7ylJaCTO85IbtkVCjqNjJr+MSvCCS38P1rZtLmzlsfN4DLgL9e9Ycrxp5csKeZIjk8+tdr8PfCb67crqM0ZWxi5+Yf6xvT8K6Y07knT+CfDMl80OqahgoqL5K4616NNItvb8KF9AKN0drAoQBEVcKPaub1XWlCvlxkcCtr8uhUY3Y6/vBzk81zWpalHBBJLLzEOg9TVG+1tFVppGGxRz7muMu9Um1a7LH/VD/VxenqaxqTO2lElubyfUrt5Zs7f4F/uCtrwzFjWYf91//QTWNbxYwa1LG4ks7mOeP7y1yX95M3krqx19yscNjel+rwsoH4VmSeITFZwwWsIMixqpc+wrKuLia6kaWaUuSMD2qI9FrapVd7Ix9kLPLJOfNmOXJIqEL8w+lTdj/vikbqPxrn1vqbLYruvX6UjL1/CpT94/SkxkL/uimBCV5/CmonLfSrBXr/umlVfmNUiGY9vewk3GksnmRkg8/wCNXrezFk0BSQBYlxtz39asvpVs101zEu19h49TVQAC4hWdSVK4k596Oe+55h2ms6sJfALTTGaJlOyM7jhgf5157b6m0Fk0JYid2DZAHIrudR0q11LTfsMV27wRKCQehwM8Vxtx4bgUG5imdiF4TPOKqs7pDQWm+CQ3CylmmU7geSPSpDeX8U6i4ibyJW5kQZx9azYQ0U726OWlwAM1p2xkFqUacrK8ZLE/dVh0GK5+Rpplo5yPTbj+2JrhyVWMcY/iya6i1uBbSgJIxaReee9Yb6g9kjNKuZZT84P8PpUEmpkRKwUmRSDkdxWko8wmdYGcRqsuBjktj3qtqFjbXlkkls+y5lJzz94jtWbqWswkQMz4LJkrnpVLUtSZmt2TKeUNykepp04WZLLqwRTfPIUhmiAJjJ5JxVz7PBqem7REgfcBt6Y561y97eT3bfamVRIV+cg4wK1PDxu7m1ZFGN4JLbuoHP8ASqnFqN0Is3GnpZalBJANhGN6qetTBrSHUDJcknJLBz0zUOmzNHdzrepIZlyYwRww+tZmuaqNQkRbaEmFSBkeveojFy3LSOrsNYtJHCI43EkKfarIkt/tMrbvU8njrXEWNhKInmEmxVIO7HTPaugd4zYeSsbG5YADB6571M4tyumM3dR+0T2gkhKtvO3OMCtWAQWVgCk487y1GxgCoz2JNcnJe3tr5FskZK7QcMOCauaVI15Is7SggSfvYiOOOn4ZxW9C8WRJamhJpy3V7djO1EgcRqeDuGD+XpWfp8qxxu6j94pIJJ6ZArV1GO+tNVQSICix73cMBlip+XHtVQOljoav5IaVpiZMDdkZxW1aF1cREsyzwuyEqduX3HhgOnNclKkcbmQgAseg9a6iSSKHdCvz20keW49ew9K5rWQkCbYATExyHP8AKuSK5Z2KKTgy3jISAPc+laR1Fkt1DBTjB4Gef84rIsI2mnlB5ZWycnOBWnbsu643RDy85U/StuWxILOzSvM8e0YO4qMZFOEjiKBZNqxAMckDJzVOeVXn8nLRh1ORn8qvQaZN4g8QxWGmK7xOFG88hQAMk1rFXAn8HeHp/FOsNAqlbRDmabGAP9kfWvf7K0tdK09YIQIoIUAGOBkd6q6BoFt4e0yOytVUY++2Pvn3rG8X6d4m1YeRpk0MNvjBDd/xrpSshrcz/EXjO3id1SYcfzrznUfFwuJSA2Qep9Kl1D4XeMZMsTFLn+69Yknw28XRAj+ziU6MQ2c1MldmyaRVudYk1F/IjJEK8n3NXrAYU56gdaS28Ga/ajD6ZOFz1CE1oRaRfxZD2k6/VDXNUgzrhKNjF1PVdag1R7XSoLF44bNbqZ7qVYgimTZnczqPvMgx15qz4V16/wBVuNQt79bRWtjGAbVw6nO7+IMwPQdDVDVrmzsNd1K31Q20QutGSGJb1JvLdxdRvg+V844RiCOMiq/gRoI9Q1kQvbmItEU+z+Z5ePn+75nz4HvzVOC9le2piqj9ta+h35bg/SkLcLUIkRgcNnjFIZBx8y4HcnFc9n2Oq67lgNnd/vCkLA1Crgg4ZTk5603zePutn6UNPsK6JcjcfpSk7QuPTFVzIQ3IIz608knaCD7Y5qWmF0TFvmA9RT48EjPeq+DuBPGPWpIz8wGc49KauLmRDa3ZuLxJ1OIz/DS6gYcFCjZDfM390VTtYpbCEMQWidS4Xup3VowLHqKv5kTBX4JFc7dmedyk0mqxw+H4YIm2ys5+cdxiual1c2pdoySwKqoPf1qXW7saf5elJGXkJJQ98VxWpCeO6VZGKHOSD7V1RhzrUOU0nvbkaiZI/nlJONtKNYmNtLJO/wC8ilA2j+LmqUSRLpslyXPnGTaPp60tpZ293jzmO3cAzDt710cqURmteS219Ym6kk2Tn5s9s9MVBDbmaOJbcyGZ1O8Y6jtUF1pt1LqHkWkLSW5YKrdq68LHo9gbSDCTCMBpAMk+1ZN22JbOfurCOHllMiFQGc9UPeqEVwkfmpKxdSfkLdRjiutgjtZbIP5wDRofMHr05rjtSVEvpHibegbNOn717kjVuraYGKXcCqnOO57V0Xha4t4rVHkDllJXGeMHj+tYDxGbSw0VqvmuW59uKmsGtpz9nmUx7QBuU96qSTjYDqtZ8S26RRR2sJa5H7kEjjB71hTwzWKRW5j58zfkD35FdBYaJBJEUuisjbdyv6elXY4o5C90YlKogXHX5h1NcspcqsWh6adFJZthDsZd20d/eoNMtJl+/gRFSVZuvHFaNtMbq5BiGA6gj0xVTUxMsrITjLhVC/3Mda54yaGaFzc2lvaGG5VpXK4VlHJ47VW8C2kN0bprqYRSSHMYbjoRx+n6VgSaybK1VL5fNl8wCMDqv1qZdZnuLuG4hUK6R7mjT3OMfWvUoJKNyZHo+vDTZ7tFnmhSYsrPh/8AWY4yPzrkpNQOm3TLFgRtuMivyFzXMx3Us04fUS5SCbciE/Nu6j8OK6FtRsNSvpWcKkdwqGQjopXr+fFbTknoyG2PF/ZLbjcocnkVR1S2i1KzWNU2gnKMOgNVNRcz6gRDCViY4GOy9zWtod3ALcxXQAxu2k9q8+rG0rotanFal4at5LrQtLu2lH2/VoIJZEIB2MSpKkgjPPpXKW1jps8NrqunJdQLBqMFtPDcTLKfn3MjKyqv/PNwRj05547DxdqOpWGoabdW1uJ5LK+juoFKFgShJAIHOM49K5KGXUrq4060g0QWNmLtJvLgil2yPkAMzOzE4GQOcDJ45NdlJ+5qKx1mnxPfawkAgeSSWQCJVGScV774O8JReG9PK4Bu5vmlkx0z2FY3w98Epo9suqXqBtQmXOG6Rj/Gu7klwML1FVCKSuPlJsqOhGe2aGwVwwGfbmqMkpPAPPaud1bxSmnTCGMeaw+8PSqlUS3LhSctjrAh9AR+VOVQBxkD0HIrh4vG4Yf6grjrirC+N4R96Nqj28DV0JnYYz/Dke5pnlqx+bafbbXLDxzaY/iHtirEfjSwI/134YpurBmXsaiZF4h+HPhbxTqCXus6WtxcpEIVcTyR4QEkDCsB1Y8470/QPh/4a8L/AGkaRpawC52+bukeXdtzj77HH3j09a4s+JLm90y611/Ed7Z6lGZTBZqU8iIAnbG6EYdscbjzyvHHPd2XjHTrqzgmm/cSyRq7xE5KEjJXPHTpU060Z6WOzFYGeHV+ZPVp+TX5+q/yvcn0LTpMb7SI/RcVnXPhTSXB/wBBQn1zV4eJ9JPW5UfU0yTxFpJ5+3xr7ZrW8ehxrm6mBN4K0x/uwFD9ay5vAdiCQBJ+En/1q65dX06c/JfQH/gVSCWFlLLJEwPXmr5YkOckcI/w+s2O4STL7hs1H/wgKRn5by4HpgdK9BVVIyAuPY07y8g4XNLkiL2kjyq98L3Vk5EU7ycZy9ZMzXNgS9yhCr1dB+tevXVsjg7k5rmde0qKewmCoM7DUShFG0KjaOBt7mS40/cD8zqd3qK2LSc24QDrsHBrI0iymup7qRkeJA/yr2xVpr2KLWTbspKLGFLf7VePJakGL41tpre9iv38zzTtCshOE9c/pXG39ybmfcZN7gH5jzmvXb+6imT7Pc2wdJCBz3rnb/w5YSRxrDGIircE98+tdVOoooDiFnQRhCRs2Y6Vt+G4ovtqxyKHidcOpGRg8VPc6NbaOku+JplUjn/Cl05LbT9SjRpWXz0ABf8Ah9MVrOfNHQDWul/s+RNPtp/3U74V8/6vuf0qfUre50vT7xg8Vw7gRI5wcg9/rWFqN5Fp+vQNcqZbc/vTs6E9D+lbcWq2WvJK6W8kdur5jXPBqEtLktXMoafLY6d8pP3d0kwO7nH3SK5eGU3E7s3QnHHQ16NOsCaaiQsFkdGDgc4J9a4GOaCGZoZYioUELtHU+9OlLcVjQ0zP2p7QcmOMtk+lPvtOFq32iMqUdVYbRVK01JobqKbykBHB3fxL71fu7+GHVLV03CzYfKrD6g/qaHcRraQfM06WMySPM4wgyeDWxpnmQhrOePLbA0nPSsiyklgvZPJXeW+5tHb1+tat25t51lcO08iAMg9PeuOqWi9pKAX5AB8mPOFU/dHvVyaS2e7LyMoVVwD9KwhfnT7wSpjy5WCSVf1CS1jJVVysuQnrms2nbQZia7pcj6ilxFFuhAYg/wB6rXhjw9dwRT6hNbsqvIvkux+UAdzWPreq31xaQRRpJFGjBN2eWPtXomgWusah4esNJjSOW3UnfOwIGOu0+/8AhXqYf4CZHJ6pp9ymqzXRtt0s52hQMj6iui8MfD1jAbjVmFvbZPyngkYzXb2tlp2lgxllvLlQCQSDs9qyW1ObXPDuoTzAxyKJYo0Xpx3rVwT1GldFjVtM8PmG3WK5it2RQAwTO4e/FYcng7SJSzR61EGYYKbl/StPSLmV9HtCL7TAfIUYmTLLx0PPWrWC5yV0aX124BP61i433NUjjNY8MaJpkSC/8QwfMQVXl5B15woJA4PPStHSPA8EF1BqFnfWN5HHkx/vN6E59sjg0tzG+l69eX8+htqVtdRxpELR97QFQcqFBJ2n7xPTOKuaBo01nZzC70dg0txJLHClyMQITwgKnBAxnPHWphJ81n/X/Dno1sLRhh1Ui9dOq1utUluuXZ3/AA0v0hm8RBBtbTyMc8mo2bxKw3BLE577jVM2UIyP7Juhnn5bgn+tNNrb4wdMvh9JmrVs8+xPIPE7RsBDZAkHne3Fc3L4U155WlkS3aRjkkOf61u/Ybf/AJ87/wD7/Gn/AGeFMkW16M8fNcZAqJJS3KjJx2OeTwrrik/uYP8Av4B/Wn/8IvrXeC3/AO/o/wAa3THD/FBMf965AppjtgP+PfH1ux/jUKlCxp7abMM+FNX/AOeUA/7aj/GmjwlqC53G2Hr+8HFbvlwMPliUH0MpP6g1FJ9mjOZTAoHOQH/xo9nEXtJHPnwKrziVmsN/qX4P1Hep28KBBve8tBjrhmP8qkv/ABLY6eqkBJJGOE24Gfzrl7/xHfz61FpwBUSruO0Dj8qajFbFSrVKllOTdtrvY0b/AE7TbbKtfIzjnEe7j8645lg1G5mSznkLRZ3dalMOoQ+Jp3eKWeErx6Uyw0y+Go3MlrtgEmNwftVxvciVrGNbNNm8USyCSFsjDHkV7T4HsE1LwdY3EhkMrKyk7jkkH1rz7+w7e0SVzP5k7ja2K9D+G91Hb+C4vPmVBFM4OT2JzXTBnLUWpeutPis13S6hJBx0Ehzn0rnLnX57eUpaXspA6lmJzUHiq6iutTea3mZkbpzxXH3+pLaRGWZ22KcYWlKWooq51v8Awk9+Jt7XJdvTtVuHxjC8iw6iiKrHkg4zXk9z4hnl4gAjQ9DjmksVkurkPO7ycg8n1rOctDSMHc6m71V3MQt58MeWXGM1c020FzqL3l0cRkZC0ksNq0Mb20CpdAZBboDVVLiRWjlmB3+WQSvSvLqEi+Ink8+Mo5EKHchPFN0K/wDtFvMkzY2yYG4dfxqfUIre4sollkJ8yP8ALFYbNNbafvtcERuSVxkmrhtYCbWLldShkWG4VVDBSO+c0y60eX+zYLgzrLJEPmI7U3R4EntZXuIAsnmCQMOhqTVNQks2kjkXdbzj5Snaqi9bAV5zHc6baRMQ4iJPI5PtVu31G2tEFjCqxwsu8v3U/Subsp0ULIJCQjkkH071pajok7kXdupMdwm8A8bRXR5AaFhcRy2d6iz7ZNpAdxxmqGlWLzEicIZcnLPxkY4xWTaXUdjNH9oVjGz5lQjHHrXSXQa5/f20ypYsB8/dBilJcoinI9pYv5F1aL5qoQOe/Y1U1Wea8sbedliWOJDFGFPJyaffW1jLdxQGZwX5a4Y5zxxT7jw/HHpxc6jvWP5o19W71a3JItI1uXTEli3EuwAVsZKiu+sb2LU7OLC7rgoAJMcmvPtJETXkTSxgoQQSa6yxkn0pQYLcNGQSGzz9BWFZJuxSKurXMSX8US/MqSAy7eQprZtIn1S4lFrGZjG5MagdzW3ZeDH1u0WSWNbK1lIklZvvMa62xOm6LdjStLt1+0CLcZyOuKdOlcZi23grTbeCC81uQAxYPkBuM1r32tyQalp+m20Sw2tzkKVGOg/wrEurifUvB+pz3BMksMzKW9MEVZ1PZJL4avCcfvFAH1Q/4V2qHKrBa5LpkaQ+M9WRwSpgjZcn61l+FJ/Ou9asJDnyZ5HC+xFW7q4MHj0jICz2gxz1wf8A69JpNpFYeLNZfgefApDds5plJWI/DN55vh+FGlt1ZC8Z3Q5IIPc5rXLwkfO9ln/riV/rWfoemrpdnJBNez/PMzKFkOACavyGJT8p1J/fzv8A69Ys0EDW39y0Y+oyKUi2P/LG0b6sf8aesald5+3Af7c3FI6IQMGU/wC9MaAGFbfta25/3C2P50mLf/njGPbn/GgqgPb/AIFM3+FATjIjBHYg5/WgBzRooybf84zj/wBCpm6JRu8mFR6+WV/XcaFjhc8wxj38sVOsUCDO4j/dQIfzzSYEKzx/weX77Wpkt0wGVSRh/sDdTLrUbG2QyTXB2Druk3Vl3Himxh8owxPNvOAydBUlItTSX8xKwwY934NZ9xoOoahblLi/aFt3RDkYp8uu302Vij2DtuqhcXcjkG5uWc+kfH4UAXZfDmjloBdHzng+6fU/SnzDT4JfNEcQkAwCF5H41mLLcTblhUgH1GT+dMlghtozJe3SoByQTyfagbjcdc6ltbMEWeMZI61kWFtdzl5TwjM2SxwOtQXXiq0t8rp9mzuDw7HgVlavqWo3F2kavtRguVQ4HIzTTsJQfU6Oc6dYxh729DnH3Y+ce1Zd74qEVt9nsbYRQ9EYt196lsfA17PiS7mW3TGcuc5rbi0jw/o65VPNn6s7Hcv4DtTu2Fl1OTgl1m6XCRM8Z+6ccVzmoT3UlxJb3AwY32so9a9KttfTVJvs9kFiw4UjGOM+lcd4ksvK8UXigfLv4q1fqTypyMBIC79OBXRabb7UJwMjBqulmBkgelbNpCFif1xWVSRtCOpp6RZLd26y3AZXK/JuPeqcUZt4fskmZQMjzP7ue1WLTUIbtI/LbEMUfHP8Y6mrU7iON2t4VZwgLZ/iGOf1rinucZkT6/pU9lNaPd2UTIDGRJMobI9iabo1sBZJLDOrpLGWWVWDKQCVYAj61z+j6BZ6v5Ekul2d1Jea3d287y3vkzCNVhIEKmRQz5kfA2tklQa2fAcoHhaxjG5m/eMFxkE+Y3+ArarRVOClclu5Tv7xrCxmsYnSQI6EMvQmnahc2GpacyTSfZ7mFMJt/iIGaTXdFWN7i4BZWaVXbHbnmuTufMa8kRTwGJFa0oc1gibVnHBdaL5FtGouEBaWVu7Vo2PiRrh7SO9nBSIbWUe1c7ZX7Q6fNbsOWcH05zUMVtuk8t8wguOcdq0UEtyjU1PUF1DVJLhrffAvAA6kVWg1Ly7W5sQ5FvJwv58V0PhrSUMpuS8bxRlo25yfriqOv6RBZZaGJ/KPzJx3/wD11Skm7AZMMbzkxRltpwCPx610djoZurO8tZp3UWrsyD+90qh4ZmkluJUS0e5uWAQKq8YPB6V7TpXhiLTrZ7nWigjJ37Rx8vGAfwqJ8zZrGMWm2eQ6J4X1fXblLaxt3CluZHGAoHevZtI8M6bocVnaXvl3t8MtGG5Ab1FXRfJF5+mWUKwLHaearIMFs+/5Vjpc7k8NXmSXdjG7HqWK4/nWsYdWZos6tq0194e1KfcE+zXPl7F6AKaWZgPFmlSg5E9rIgP4VSNuWg8UWQGAGL59mT/61LcXG4+GruBfM2jDP6ArzVN2Ha4Wy503xPZ+kkmP+BLVDUJri78KaPJaIXkgeJsD06Gte3s547/UpXcNFeMCUXrwMGprezhsrdYYI5UiUYVScgVDmUole80uG91Sy1FxKstuDgKVxz65NXdgZFVo1O3p8in+VRtFGSCQ3THJNG2FePlH1LD+RrNvU0Ssh7MrZ3HZ9Iv/AK1RKyqhCygnsMVKqgcqmffcf8aN5JG193sUA/pSGRmaQx7CqsD225py3AjQRGEgHptXbUVxcxW5KzMoxxwcZPpWBqHiu2s4XeMBtjbGJY8E9KBKOp0puoozl2IXHc1Tn8QW0LJCjhnfOwfSuMutTv7+5vbWJDlYA0bDpuNFtolxM1hdXsvkGBORnuetBajYtX/jG5l0+6msEBkil8sKBzTJLrVr3Uo3aZo7TyhuAP8AERU0a6fp3meQiI8jb3Lc5PrTRJc3OfLXZH/fPApMOW4yDSLazikW4n85ZG3MH5qcTQIgjghDIPugDiqk13p1mCZ7sSsOqqc5rLm8USsTHp9oE6YOMtilzWKUToTFcSJunlW3i/2jxWfcaxo9hwGe5Ydk6Z9/ashNL1zW2LTeaI8/x8VqWnhGxglRL2cyTE8Rp0/SqDliZ0/ijUr5/Ks18hOgWFcH8KI/DGq6nJ5txlFYffmNblzrGnaNP9ktbVU2uVaRl4B9CaoXetX32po74mC3lGIpIjuX60KIcxm634ei0rT4JoZDIzuVck55x2qjeri4hk9Yo/8A0Gt7ULKW18KLvn89TdZSTOcgisq6iDQ2Zx1hXP1BIrOT1SNE7xZv+NptUt5Yzp7n7P8AZw8mOuc81j6XaSXjpeWc21m+WZD1z6103iYXMd9ZXFsN7CzAeI/8tF54xXMWdysOuxz2j+SZGG6J+P0rp06nLFXLkelI95FJDNt1CF90mf4gaPGFkP8AhKbsqCOEbj02ir99axXWuB7SZbfUEIyM/eWuh1aztbu+a6cFWaJYmz/GwGAP51y4nEwpRt1LjGTlqcBaBJ4pmjOcY/OtiwsJ7h9qRH59oDY71sWHh/S4jNaRZS7dd5BJ+U+lbK3sGhafJLJEhgtlDj1Zu+PpXnfWHUa5To5UjzDTIHSOSCaNkdpN0dbGlXEpuzDLGyrCGViw4cZyDSQPY36JcSzNH5C5NPfUpJB5qMHRVdTjsqjOTXTNannJNuyOIurDxha3l7HptpELJb2a6t3aO3Z4y5A3o7ZZCQidCMbR0NdX4YtV0LwraQ3cbJqSLISgYMAS7EcjI5GKdHqslzdgZdFkXaF2/fHqK15LB44biC2cMWRZY2b1HarqV3Uiosurh6lGXLUi0zjdV1mUR7ROsnmAhkK8j3rkWiZXMhb5txPXivULrwsusxwNIsVvLFksy8F6yPEHhZoNPSOyt9yxtvdR94D1roo1YxtczSRzug6cdRvdjoTF/fA4z2rs08OwPZz2t0wZ1GQyr0rI8LTSyJLawYEUY3Ow6gV2Gm6Ffa4HOnPNHADlp3GAKmcpTn7o2YmpW1jo2ky6fYu8d0yBum4sf6V0Gh+AdT1TQLYarcrBDJ80hccoOwrro9K0bR3e4ljW81EW28swyML3FQalqMt8l1b9RJZpcQbOmRya2hT5dxD7eHSPCWnXSaPZp5tqF3yPyTnqajvpnurnWLWSQyLLZCSPPqAen1quA99ek8eTqdjhvTcBRaMqnQ7yU8PC9rL9VHQ/rXTdJXKLFpcrPq2jzgYW4s3iPPXAGP5Gs1GaPw7bgJvks7/lQewY/wBDToJIYbSyWWYQyWU8m0Hqyc4/PP6VYXWNDsfPK3EZWWQswOevr0rGVRPYcUrl1YZDq97ch0Ntcxojpnk4BB/nT7S1W1sktY0LJGuFOOh9axJPHmiQnYszM3cRJk1XX4h6NI7KGuQR6jrWbmaKyOo2jO7Crxjk03nJxg/7tcmvjaW6haS00tpMDOGHzfhWvpN7qWpuhkgFtEOW3dfpUXux3RqlNwGWwT0BpSGiGGbGOtWNRlhis5FsyjTsMBj2PrXDT6bq8+Wu9VVQT0Q8VUlpoOLTZv32s2diCZJ9zZxgetcze+MnmeEWw2xTSNGX/u471XfRIN5xfGWWNg7Ams1dNiW+WNizIrFwo6bvSlc0shq3WoajGG3O0yXROP7yir8ejxk3DXRURyv5jI3Y1fUmJM4jtUPfvWdPq+l27EGQ3co9DxmlzCSZpC6RcpbQFmIA3KKhnMuA95crGOwzk/lWMNX1jUGMNhbNGp6bF6VbtPBl/eMJtTuCuffmlzF+pFJrlla4W0hNxL1BkPf6VGsWv664KIYoj2XhQK7W28IaZo1jHdmP7Q+ed46VYuJZbW2LiIxQEhTgetTGrGTtcPQ8s1fRn0i+8mZi5KhiwHrW94XcW0V/O8Cu0EHmAMMnr0rZ1ezjl16OWYCSIQAY9TVLRYGgk1QhdxkhMYH45xWcqsVKzKvZEF9rOp3lqs9nIrJ1eFBhsVDoRaXWYZLe4JVn+eKU/Mp+tWzok9xIBaxvbTou7zx901xeuvrp8bWenWtzb2Nw9uXaaVQEAG8tIx2k42rnoenSt6c1P3Y7mMrRXMzrNXjnj1fUD5S3Fq0m54ccj3B71DAjQxHyFNxYN963k+/GD6GsHwrqOq6k+rjWL1kubGWKIHy1XaxLhgdoGfu4rpNQeKW6EkbtbzgKEl/hf2NUpuM+V7mqoqVP2kdia6S1Hg4m1lLxterw3VOvH6VmyrnT7Nv9l1/8eJ/rWtdB38JTtLbrFILtCxXo3B5rNYZ060B7Oyn64rOrpImmm4s6nxHayTjSZIZhFN9kGwnvx0/WuQnO68ANsI9TiPIkOA3uK7LXo7V9L0Y3BZC1vgOP4TgVzlxzKttqqedCT+6u16qfet5x0RjF2YmkXvmarLd6oEWaEqOB1HT+tat5cxzQGee4aGRWby4z7Hr+NYjW66WwkugbqKSVShT+6DnmquryX2v3RkG2NNxWJQMFVz1rxsVh3OojpjU0udlZavYC2E8ny3OwqNx5PvXH+K9VMgtoYrgyqvOF6YPUGr2maCtvE32qZriRgAG9KvDTrOHkQR59Xq6FKNOWhg3Nu5xVpppmtp1kvPLcgALGeCat2mmXM9sx34IwjKTxn1/lVXTIwbaYof3zyAxr7CtX7RJZ7keVUeaTJB7CuypC+hz0q0qU41Ibp3XyJLDTLpSEul2QpOGL5+YkZwF9hnnPrXRWtqbMtbmcyo6k7j1Armm8TW8stzFJMV2HKn14re0nVPtOnW73IXy3jOJcY6dBXO4uJrWxLrWXKopbJXt57tsued9pt1idFRBlAc4JrE1a6u7PbAXCLKVG5v7ueasvMtvI8zXASBm2iTG7bWJ4j1eOTTPJZlujgbZMYK+9OHxoyirmhor6FbeI7aOQfIZA8q5wHHb9a9Ju9fWK/hsURY41l2uqDACsOK8C0Yy3OtReahyOEfHAr2i9W1ulmuBLsaOFDITxvZe4rs5oxZbpSQkE0nnWhmz+6nktZs91f7v8xUUNxDYHT5byUKbaWa0mB/uc4rm/EXjeztTeeREW8545Ac8hlA5rzjVvEd/qs7yzzlhIxYheOvtXXTfMrilTlE9FuvHljpTWEEI877HK5DDujHip9L+IOnLZSg2P3HL4b1J7V5Nbp9ocxxoXlIGMdhWstqlnbo9zkuWyFFQ3rYi56M/xG04rvfSVKk4zUf8AwsLQ3UltGU/8AU/zrjI4YtRspBbwN5kR3OM9K5+SMxuxJBAb+9WMbSegXPUYvHfh+VwBoWH6cRJWkmq6ISjf2JCGkPBKR5ryS1lRLkE8ZweK3lvMaik0UhdsKQmMipqKwuY9L/tJI4WS1tY1cc5x261NYazay2VxcXEypJHgRBehJzzXO+ZLp8FzJfKwjmTbtB5HHasC3jOr6vbaTZygJJIEGTjHFZQk7hzHrWjf2fdWMrGdZJF5ZieMnPT8q5TW7YPI4RwRnjBrAvI5vDOtS6XJO5Zcsw5APHGKrWOrPfpcMgYCOF2bPYgjFdXMrWNIXuiWCDTNLu5ri5vJXmcD90DnHtVa98RSs8v2C1SJG4JbqKoqXvZDdSKA55PFdL4Y0u2uLO9luIVZ0wFzzWDmr2OxQfU5zSLK61/UhBLdMrHLdeMCu4tPCOlaepkmRZHHJaQ8CsrToBYeK5jGAhS2YrxxnbXCXusa3rN6kNxdOEY5whIwB61UOVvUqVOT0R6hf+K9D0VCPPi3AfcgGf8AJqCDXJ9Yis7jT4XkS5yFTHIA7141dReVcvGr7yGwB3Jr2bwRew6Ta6bZtHuvijR/7gY5zTxHLCLsc12pNM7ieb+z9CSF5UaTG2RT1Gaq65qHl2yQlHFvMgYOF6ECsXV7W/Gqy21p/pEvEo3ntS3uuXGo6RtuFSG5gG7A/IjFeHSTlO7NYxurmdfvEbh5QxcDgHvVFr4QmSVYyFRScerVzF/4ilijKbg3z5bsaa2pSyWtyzSqgCjcc9q7nQ1uZTqdEdpY6sJLy2hvL5og5XlRxk9q4n4m6qui+MbmSNFkuptMSG3aSFJECmVi5ZXBBJUbeh+8emK1vD9ut2LS+e/jLJL5fllQcKe/1rY1fSbCa5P9oafbXjxjZHNIgdiuTjk9uc/jV0ZezqczMpczVjmvh/qOm6xqfiO+uUkzdLaySxlAN05V/NYAcY3lmHsa6HW7GG1hiNgy3UWzMkWfmA9qSy8LppzrdrYR29uV3M0ChN3YZx16/rUHiGW00+MyFJoJVfcHUHBHHBrfnUqnMaQqTjDk6E9qYn8GXyRys6JPEQr9U9qp7BJpqleqzE/+O1lN40iazuLSC1jKykNI+MZI6Hissa3qOozPawKkZ5OFrerSv71xRqtKx0FvrU39owpcuDbxBhhqlGq6empqkcxeGYhDF1ANcxeJIltOJT+8VPm+vejRtNil0lrqaGWTcGIkRiDGexxXXVinBI8+nOTqO56NcNbW8IEssUYGQoPWsWXWbKE5jDTN22jpWVotmdStHkmkaaVZDuLN0GBxW9DpsMC4CKp9q8abcXqetCzRSOsX86YgtduejPxVZ7S/u+bi5dc84TtW6IUBwQTUoRjwBgDpWd76mtkebW8DrqwhM5jCv98fwg1o6jpVzLqUoEomhCApID2rMCmbUJH+ZQG+fArXjn8i7mjhbzI9gUvnoO1dk+6PKsZdzoO20WZJtrqcsWPGK6PQJI9Q0aLTWm2MXEkbE9gen04rLu3a3VLeYboiSSe1aGhaPHEi3M8u1M7owD0HpUSd46iTszq5bG2McQ2MVkJyg6Pj0rn7/wAOJq90by3RkjiUAoOmfcV0dhex3McRkkRShcg/3c9MVj32q3enrKmno0gLHzCgzt9DXKrqVzrw/LzXZjWcUVrqpWRXEIVhujOCD0rXN82oQG1hZ2YjyVGecVn3kiWOj5uEEzTMQZ06bic4FGjXq28Iu1tljWM7d8hxk9qUuaSbPSxFWF1YdN4AvtTu0luHS1tUwhcn5sVV1TwfaafYX6s0mbZN0cox8x4xn8DXWRanJdwtd3CFg2A0YPKHPpT7Cb7ZNfWrzxM7ZGX6EYFbYTEy5eWREpwaPKdFsr/z/tdvCWVRxxjJz/Kt210q8v8AWoLG9Cwi7YFZMcKvfHvW9O8lld7HVWQghQgx3ru3l0e00y3d7dZJ4FBDgZ2kjv8AjXRialloZVqEI01JHHz+FLzwpqc8aFbqCe3bBJx6Y/GuMt9FjF0bW/hdASHdge3tXf6vrUd7cW7XJL7fm29AvbrVS+S31TTnkQqjwKWyD1HpXLQnK+pySSSPP72wit2llh3BUkKRhuflz3962PCsYaaRfLMjj+LHABrYttNN7ZqQPkZdykjqak0SVbO4e0VUXaheZu+ew+tdU3pZmEVzPQ2f7Fu7+eKMStKJsBA56V33hrwNpnhy2TdGl1d+aZPNbgq2OgrzW38Xf2brVtLOqtbggYU9Oa9F1jxtplvqmnQxOlw7TAFg2AgIzTotJMbTM74nQxQxWeopZpNIjlJGxnA461xOkadFLDqc6RtFvtHyMcckV1upeKIJY9WsGPnQLLlDjPJ5rK0y7KWkzEgLNhAuP4QaxnUaZtTnZpHLfYY1t4mimUrjDFuMUzWNet/DcEAkfyvtJbbjJBC4yeB7itDWrSztE+2zuWtlcgxLxXK61qOm6szzWVossumWE88EUyB1dy8SklTw21C74PHy85GaVKHPVs9juxVVRinE0NH8UaNqfiS3kN9KHlUq0YRh0U55Ix0qa50qGISS282SpMSDuw/xridFm83xbot1e6dFbefauxMCKizcSqJAi4C9AMADO3Peu01SKXRr3S5pXWWSTMxYHqp7EdjxV1afs5pRMsPi2laRwTPINTZmT94snG6vRIp5nitJtrLeww+YTGcAqGGSax7bw/p3iPUr+VbiRGH70ADoT2rYs/DFwkkBnvmAij2HZzvUnlT7YrSsly7mM1zzcjUXxhdw6+0wEfly2xO6UEkADjGK5y5v7g300ilnMwOAnvXVy6bp7Oks0Ua+SMLub+EdKzXksbe/8+IhiOixjNcMYqOxvD3YNHN2fh3U790mkthsGQd9a9r4KRXbz53aNsblXvitb+1ppF22trjHVmOOfpTdmqXK/vLgondVFbOoyFTReSz07TY9qCONfc8iuWluoJIWmnkmN982GVz8nJwo9v8AE1sjR4y2XDSMeu9sVOmmW0Lh9ihgOMDn86wk7npYKvHD3unrbZ2enTro+prWnjbTho8NnqcU0LhAhIQ7feqvinU9N1mzc2dyjqUCsNvQeuPwFdFD4etLzTrdh8m4fNn5q5DXtGh0jUQYupHUDk/Qd6ujL30cM1e7sct4PgQxa78quBGpQ7ePv449KhsoivimRlzyrFvbmtrwhb/6L4lds+YETJYY/j9Kp2EYPiDUTjpb5H516VRuxyJK5T1ThroE8EHJq1owaLRo2DvGrBsSLyD9RVbWeHmPtVKPVZ9Ngi8oldwJfjII+ldKd4JnnxXvuxv+Dpdk2oJIN4Lqd/TPauie6tIQWeVRnkAHtXmyX89rJLsbJkclu3atrYkmpaEJAQlxbDcAc5ILCuOvh+bU9ClOyszop/Edjb/cDN9KpyeILmZS1vb4/wB4VQ8V2cNjoUckC4bzQCfxroLNIzpURUDLKMHHtXJyWRvfWxWuNHEMpeONRDKeSOzVhSaFPYWl3NcByoG9ETnIzXdXl1FZxIzxfujz+NRmaVrW4kSISARj5B6GsVUk2cJzOmrHNbLFqMQWO5B8snknngfrUl/pE9neF0RxaQJwwOeKiX7ZqGrw2sCpuixKqgY2fWq2t+J7jTjPpnmbpFJRyPU13UaLnuZS3Oi0rz7udYbFYpI40DsWGM7qtX2half3M9um20tJcLI6HkheRXHeEtau7d55o13s+AAa7FNe1ztBCPqK58RH2b5TroRuZtz4N1K4kWBJFhtEOYgTnB6E496g/wCEC1L7Opa9DKRl0J4ODxW22ta84zi2HvtFMOqa84I324/4CK5/aaWOx0+Yr23hu4uJT5kyKUUBpOfmP0p2m+ELuzuWuWvFZy5IVelNa91yON5PtUMSqMkrGD/SmW+o63cwCe31FNhOP9UP8KIrli2TyXaRo3WiX4kNw11FhRwpWqUEF/LdTM0gZZADsxxx/wDqpkja3cRlH1BuvaP/AOtTUtNSVdv22Qe+zH9KqU+Y1muaPKaB0y3uC/2l1Q+YpYAe2ac2iaYsZgmkfyJi2HTtntWJcafeMx3XsmfWqWo3d9ozpItw0y7TlW6U6bvJGMqSSdzq/DelxRKzHdtt5NqZbIIq/d+GdNnuZrnaUkmkDsVPcdPwrhtMmaYQRfaZ0a7Oco2BW2NHfH/H3cn3848/rW+IbUtSMNGLi2ibVfBmmSWjYlYHlgfSsWTwlbCIETuzZ+9u56VoSaM7cNcT4PXMx/xqP+wFJ/4+pP8Av6f8a53NrY1VOL3NmHw5p8cLAuQSRzv+9wKsx6XYxoAXGF/2xXN3elx2lnJM007eWpI2OTzVXS7SHUdPE5aUFuDvkINNtyjdgoRudRe6JpN/bGCZh5bHcfnHX864vxV4LVrvTH8MXtvp88LSFpGuGRgTtwQygnsfzrY/sOH++3/f0/41SltIRcSJDZzXQhbbK6sMA9cL/ePtTjXcHdGywssR7senml+LMnQfAeqW3iy21XXdX068jw3ms108juCjKvLLz1HU9q7+7/sloJWVLV5vJYR4YHaFBxWDb6VZXdvHNEhKONwJ5/D61k+KbBNP0k3MB2SBgNw9O9WqrqTTZlKgqV49UctoutzaTqL3EYDeadrL2r0IrqM+C8oiUjIwOleT2wEs2M5XeDz9a9pgmgNnbyvOigxg7SeorpxNNuKaOehNXaZnR6SCcyyO/wDvGrUVjDG67Yl69cUs2saZAo3S+Zz2rOuvFESQrJDbP5bnCM3QmuJU5XOlyikO0pLpta1KNx+7UhkrbKFR87hPxxXKalquqWc8JnhFv9r+ZGH8QqHTUute8Rf2dLdScRtJwewFaqlKTsZuaUbo6e4v7G14muxkdQOay5/E9kh/cRtJj1FY2mWST+Ir+0ly6W6KVz15ArPhKpe6nAMnbcRqg9BuGa7FgtDD6wd5p/xKtra3WC5tCmwEFv7tc1428XW2uSwPp28CMYJHUH1rn9Rt559Y1WKJC2bw5HoMmotO0a4vGvY4Th4m2/Qmrhg7STFLEaHX/DeBdQh1yKXcxaFWLZ64aqLyrH4pnW3UiN4gmP51rfDpRpdzrcMoG6G0BJ+hzWMpH/CVgDoyk0665ZWJpO6uQ60vzy5x0FZeoxbtHjkVSSMjgZrS1z/Wv/uitfw2kdxo22WIN89dNGPNTSPPc+SbZxBV5LkgKxwQTge1dC5Zbrww7AqTERgjH8bVLoiH+2tSQoDjp+Zq94mULe+G32gcyL+TVVWH7ts2hUvNITxgu/w2xP8ADIp/U1q6O3maLakn+Bf5VQ8VJu8O3P8AvA1NoTbvD1sPRB/KvHf8Nep6S+Mp+IdZvWsIoZUY2zMrJIv3j7Vr+GJp7kMzyKkIXDP6j39xVLVdPi1G4R57gW+nwR5lGeSe2Pc1BPqUVxYmOIi2so1xGq/ek9yadKldXPM52y/PqMRmdNKwxkBWW5A+ZlAPFeYzs819JJKxd85LHua7KCWW1u1S0t8Wwgbe27qSvWuRZMSNzn3r0KOuw2bnh4tConyFhRxuNeqx29o0Qc3kSgjcDmvEZJni0to1Y7XfkA+ldLcarE3g6KMB/NEP+szXPjKXPI6MNU5EeklbJVyb632jryKa8mlohJ1CD8xXib3Ui6bkSuXZd3XpUNzOy26AmTcyjDHgGuVYI6frB7NeNpMmnzg30JDLgDd3qtpN34fstNWCS+iEgyWwffivIkiunsmfy5PLQZ3HgH6VREg25BJ+tXHCXTQvb9T2yXWdCjbK3iNnqQaVda8PGIsL0ls8c14vG7MBjv2q3axSSWzyAEKpNL6oomqrXV0esx+INCdt32rI6YrJ16XTvEEDx2LB3QgYrzuwglmBKE8NzxXTeDrh4FuQqqZHk4yPSpdHl1RlKpKSsVba++wa7pQlbi3ZVYL71303jPQbcmOQyq68Yx1rzFC3/CURG4GM3AzgZ71q+MYo0EDLblWMmPM/vZ56dq6KtLnauY0qvIrHXXHjbRUlUqZDHjnio/8AhONJjO4q5Q9OK84vrYWumQyhzukbpjpVaXMtoWCkbcc5pfVkafWD0+78YaNc6fKPLlKNwQKz7Lxjo1laiFIpcD+8K4aLTpDpdzNJOUEQGAO+aoNJiJRvLHHJpfV9S1VurnqI8e6Wyki0uDjuCMfyrLj8UoJ7hrJRHFO5ciRdxRiOSDnk9+eK4m1INvICASOa0tGsWntwVhGS2ACKmeFpqJ14fEyp3tqn0eqO98P61DcWYt7KwlfyI23Hd1I5J/Pmuf8AFPiy11jQXsIbYwyLKhZic5x1qfwQZ4zdrbohO6UScfdXBzXD3FuI4/NCgb5GH1wa1o4dLU58RWlKTlJ6sfYLmT6nit7XZZh9l8tiALZMYPqTmsbTRmZc9AQB+NbGpCKeWBEctthVc464LZrucE0eapWkzPS5kFnJlj93A+tdJqDyv8PtKbGNtzjOPb/GsO3sGvNHuZYT/qWYsMdsV1GqGP8A4VtpaA/MbmM9PUH/AAqfZK2xTqamn8RVIvPDYHQRMv4ACs/wflfiFGBxutmz7/Ka1fiQcTeHH/2T+oFZfhHn4i2f+1bt/wCgmsUrVEjdu9Jk+iqB431UEcG3j/8AQRVbQ7eOXxdrsboGHmBgD65FWtKGPHOoL62qtn6AUzRCIvGOvOTxgMPzrt5uWNzmS5nykenJjxfr4PXz+Bj3qHQ4fK1zVoySMyg49TVvw2n2vxnrTnnMnmE+nPSsPWNcn0TxHqUtsF3SzY57ACuelX5pl1KPLA6XwvHjW/EcZwd9k5x71hDjxJbN/EY+v4Vp+Ar+XUdX1G4mA3zWUmcfSstv+Q/Yn1UissU7zuVQ0jYZrgHmSf7grQ8Huw0psHkPVLXBl2b1TOKu+DRu0+cejV04X4EcOJXvsr6OuPE+pIO/+Iq74pUpFoMh6rPIM/itQaOn/FbXyHvGT/Kr/jZQul6S3pcv/wCymtav8NlQ+NC+JlDaBdgDgAGo/D2D4dtT328/nU2tDdol0pHWOqvhp8+HYx6ZH65rxV8DPW+0iG5iF3oKSbwpSYblcHLZ6D8Kxri4W71lra3gZo48RhVHAAHWunmG2GOzaPcsjZLL2wtY+j3EIvNRa2U+ayneWH3a2wetM86TsamHtdOuJjH/AKPImwv/AHcLgV5+fvt6ACvoebRNMPgBriaE+YLIuT7joa+eABhmByCa6aF4tlNaEV0T9ljUf3jmu110Q/8ACv7LyIQrbArPiuOuEzhfc/yrv75bZvhwyyXKecI4tqe+VzU4hNyTRdFLY8/voZrR2hlG0+WGAP8AdI4NayX0dx4VuUmSFzGmwcfMDjtXa+LU0O58HR30dqFvmtY4iy9uK5zVvCFpbeGf7Rtp33eQjOh6Fqy5n1NrIz11e1fQTYXCuFjtwEx1Jrk9o2LzzjvWpqFtNaxRNMMeegZfpWYOXC+lb0tAeiNDTRbhx9pkCKB1IrrvB9zpMlo9jJYy3F4yyENxgcEg1wm/BrpvCV4NOuLq62b3ggZ8exAH9axrrS5rSlrYt6AIY7F2YqA0rYHcf5yKsaHCYoFmjB3GRyPepvD0OlSaMZ7mOSOWR2dcfX/7GtDSZNOt7cLdXxtpy7sgZMjaenauR35rGsuyOQgmeHX47llDsJw2Over3inUr2+/cyQFE88OjY/Ssy8n8maSeFlLLISGAwDzVKfV7y/YmafIT5wAOmK9CcG7WOCCXUmvIL+XTxcTIyw79oJHQ0XMMkFobd1JDEE4HSom1q8u08qSXKL8/TjNO/te5vT5UpTYcc/SptMppW0NCASQaDqJljyTtTa3brg1iTvHJHGixhdqgEjua29Q1OKdVt7VP3bxgufUisADEu33zSgpPc2a5bJDoMxiQH7uOtdP4W8RRaRBHbRaZFPePJgSSNnr0rmmdVZ09qsaf8us2g9Zk/mKupCLgEJ62PQPBAke71mRlWNmW4JC8AHHSuF1QZsLIgY3eYQPUZ612mlanJoo1W5a2WW3N28Z3dMEDNYOsx6Zc6OZoy0M28vAg6FT6VGHk2rBXW0jH0fH2mNiM/MOPxrp9EsFv9RWAED9y5H4lhXMaSxa5iJz94dfrXZ+Ef8AkPx/9cG/9CNd8VoefL4jI03Trv8Ase/uIZcRws8ci/3hjBravJ7Sb4Y2KqQZ45Yt3HTk5/nVvRNn/CH6+CwyZJsfkarXkEafDCzdR8zNGxP/AAKq0sTqaXxH5Xw2fbH/AI6KzPCZx8Q9OP8A0ycH/vk1p/ETm28Nt6N/7KKy/Can/hYGmN2KEfoa45Je1TOuLfsWXLBSPHd1gfetABVK33p4v1WNR95VJ/Or2iv5vxCnP8PkMPyOKXS7Q3/xB1CNOhVc0YidqdkRh43q3ZBoMosPFGrp/HJgAfj/AIVyXjZAutXfPJl3fmK7aWJLb4l6lCo/dqQPxwK43xrGf7bvCezqf0rOga13on5m38LHL6o8Z6m1lXH4VDKQNfseeMtin/Cs/wDFQR/7UUg/lUN2NmsWTejkUV4ipvUk1ojz1X1jq94EG+G5Qc/NmqOtr+8Vv9g1d8ASlFugw5xXRhfgRxYhXmyWwTb8QbpAOWiOBV7x1Ef+Ees3xyl3/NapRN5XxGJ/vIR+laHjRt/hYN/cu1/VTW1T4GEdJIbqIMujXHHJgyKyfCzbtCC/7RrVkbfpUv8A17f0rG8JtnTCvo7V4r0gz1L+8jqrWxQWjtId7+YxBHbNcfpirFPqqbCrCQL+ldPFdPG5jgUvn73NZ8+j3UD6hfeXm3kuFG8HgEgcUZfUUbqRwSi3seqa1/o/w0uSe1iB+YFfNajEJ92Y19I+MXMXw0u1PA+zov4cV84phkjU9Cf5tivSpWd2i5aIW7+++Ozmuw1jwqbbwrPdbXPkvFGRuPO5RXHyfPLMT/fOPzrtNeub9fC5SSZhH50Yf3wBioraNBGViPxH4Un0vSLhpDIpSCORvmJADMR0q+PCbp4N1DUr2aVo1tUeFdxxyQKpeJfEWoX1lc28/wAscrR26ZX5mVfm61p2/ia91fwlrunToFgtIIoozs2lvmFYtO1zaDuO+KXhoR+HNA1SFQIY7VIZEAweRnNeY6rotxo1xaC4OTcwrNGR0II4r3X4msE+H2mQ54aND75CDH864z4o6YseieFbxcDNksJ/BQaqLsx3ujy1kLSsO+QK6bwrHHJcaoj/AHzZOF/KsBE3XW1f4jz9K3fDuYbu6ZuCbOTB+qNRX+GxrS1kjZ8NWxv7F7bOPLyB9MY/rVHW7cPexRx5IQuh/wCA5FbPhaw1JLf7TDaO0LRPlx09P6VQsyJHiluVIy0m6uVL3rnStWc+9u1xAsKj55FCr9ak/wCEbnt0Ej8b5vJP1KirtmMalb5xtEgwa6LVLm3/ALNgQzL5n9oJIcdhtxXrP3Vc8h3Tdjm9Q8K/2IkzPKZJAoPTja3T+Vc3ZopuQrEhTkHA7V6d4vvbe50uR7aTfGwiXdjrjJ/rXm9nE4nDHpz0+lZykzWCbTTOhGj2iad9oilO3LMM/QVzWzE4PXLZrrZS3/CPwDHbP41iatbi11NI0GAyRuPoetc9Oo2zqnF6PyKTwb5pOK0dJsxPrNmx4xMh/UVHEjszsEz8rv8Agoq/pa4nSVM/I6n+f+FFSVotMdOCbTNW5Z59L1a17famYfpXO60NljYp3UMP1rrtP06Z7K7upPuPI+R744/lXI60++zsnfgsrk46ZzU4d2bJraxRDpX/AB9xD/bX+ddp4UGPEMY/6Yv/AOhmuI0pwLuB88b1yfbNdXo93Pa6mJ7eMSyLA52dON5r0FJWPOn8RRu72W1029hiOFkvXVsehrEOoXcuLNp2MCc7O1W9RuJGhnjeMxt9qLke5rJ/eHUiRkrtpSknsVGNtz1Px0hm0nwwqqWZlAH12iqWjQSab470xrmMorK2B6jGM1e8ZMV0PwzIr4dAG/JRUGlxzXPibQLm8dmM+84PZckVx1L86R1Qt7Nmrb2ulWXxN8tZdttJaMWbPc8/1o0hYLL4maoLNsk2oaDPdsVjWSGTx1IsuGVBICCOSATj+Qoubr7J8QpL1f3axFTtx2wP0rnnzOVmXBLluihpn2mPxLfTXbZuBE0jg+vBrlNXvpdSL3cwwztXoN6E/wCEz1aRMbTanH4qDXnMy7tPJ9GJ/WumitvQyr7fM6f4YnHiS2Hqsg/SmaoCur23tOf50vw4dYvElgSeTKU/A5BpuukxampPVJiR+dOv2JpSV2WdY5Kf7pq38OVWS7u0c9EbFUtXPMQ7ENS+BZGj1CZQcZ4/OtcM/wB2cmIf7wv3A2fES3P9+Pn/AL5Nafi9P+KSlPpcRfyNY19OyeObaQ4zlB+YP+NbHjVmTw48Yxg3KZ+gzW03eLQReqIoW3aNGT/z7j+VYnhL/Uzr/tk1s2beZocJ9bcfyrH8KAiS6UduleQ4+5I9BTXOjRMdwk0siMVO4cV2EA8/wcsLJsc3AaQHuexrl/Dt8+qXkzXflxlQGHTGRV24urjzJoy4Yl95ZTxge1cDm6U7Iwjsdt8SJRD8OrtSwxtjQHtmvniNTsjfOACv/oRrsvF/j2+1axm0UxobcKrE57iuHd2NrwCPmXAr3cP8CYpltE3S+zSkZ/Gup8VX4SBrYMp3XHmAewGP6Vg2Ns8+gs6IzyRz7vlGTUuo2V/eTrcG2l4h3gFD1LGtJx5rGYt1qsmqWbXM75Y3BEQx9wbMA/rWna6tdDQb6G8+YTBRHPjG/aRmsSHTbwaMkctvIrqzScoRngcV0J0eGTwnC8s0q38MhVYtp2lSQayqxtZHRRmknc7f4qTAeE9CXPysg57fcWsH4j3sepeG/D0NmVmSK3V2YdFO0DB/KrvxAv4Nc07R7eyLMIY/3gI4BwBj9K4i3S+fS/svkHymABJ6g1lPRX8zWM1ZHPCxvFYXIhZY+Tk+lbdgozJsGWNr5f4kEf1pjQ36Wwt5FYxAH+dTaXY3Mbs3kFVYgfMccVLg2rs1VRKSt2PZPBqtB8PYFY7RslY56nrXkELvNHcpnIWRse2TXeWuqMnh+3tJBtCBuFb145rn7Oyigs5llRVSScOzZ52+lZ8t9Bxqct2cvcRWyWy3UdxzGy7lHXrVKOeK6PysWwMnJ710OoWCXVs8NrCojZ14PHGfWsu18L3dv9qzFHtc/u9rg8Z4rvnF2sccKsdyGW9uHL6e2BbqocD8O9Z1lKHl8og7ucV1smiM++Z7RFuCgXiQEZ/OsnT/AApfRXzS3AiEZRtuHHB7UJaK5U665pWNBgw0WEYyjg4NP8U6X5n9lXVsAym0RXOe69amt9OuI9NtLWQIQoPO8d6cYZvKSF8eUflB3cCuL2bWq7nR7ZPfsU7Hw/fy2wukUeU8cwAzzhhVSwBtYVkdSFllXb+Gf8a347u/tLVbaIpsTKr846VlSabcMI4VMbRxMWBMg4pctSXNcpVUuU6u3IXQWQfeM7j2+7mvPtQjSWDSYZPlRyd+fQkdK72yI/smSGRU8zzHYZcddtciIZtPn029njhlW1cMY2YHcM1tSjuc83ojLCW8Os7LX5olmVFDfWuy0nUrKbxU84tH+zQ2jRsmBksDk4rhjOJNeknKrGrXBfaDwoyTWhHdz2d/JNFIYFlyA+Mg5rpkro5rXkdDpOtaRHo+tLfacZ57nd9nfaD5ZwcZqvPqmijwNHZJYbNWL7jOAMbc9AetZFrcrHp91G8gaRySuByKrGF3s45QZGKrydhwKjkYzsPEfifT9UsdDsreCQy2ZVJ8qOTgdK2/EtzFpfjvQJUiPlRRIxiQZPOelcJaWNzLHaiwtpZi8nneZ5Z+YgfTpVrUvEd7ca7FqMySLLb4UY6DHHSp5f3iL19mzpZfEujt8ShqsUMkdkEZXjZMNnGDx9ag/tzR7z4gXmoyROdNliK4IGQcYHGa5Eakt1rTzKsskkjZxwM/hTJZILK/leW2YZ58tjjNVKkm7kxm7WOhWQv4nvZckRNA+3J6jbgfyrj2wumuW43Z2+/Nbuil9Wv7lrRcvFFuZWb+H0FZRv4I5Gc23yqSAh7U4pKSQO8o38y54MlWPXNLbcBi5XOTjAzVvxSw/tR8EcTHv1G6qGjypqmvWltbwxxSTyBELDoa1r7SLg3k6Ttb77cmM/KeSDSrNRkmKnBtyGalKkhh2nJGQaPCTiLUpmP3QetV9Rt5bfy/NlWQdgoxis/Rnml1pLBJDGJjkt6cVVCScNDCrBqpqbWuTKPFMEinOAhAHXitPxRqKXGilDksZFYdK4qa6kN3MsspeWJyqtjsK6nwTpFv4m1Oa21CZii27ugB/iFb8ySdx+ybkWdPuxDosMciPlYdpwR1x9ay/D919nuZ3cEI3A5Fa0Xh2z3hXeVuCPv8VKvhnTYwoMTkEdn/APr15k50rtM7I0XuY2mTxeHdRWO4cymZFYntz1xXZRsJ7R/3YhnZtqMo7eprjlt1vU0+GZeYyNzt/CMVv6vf2slvb2Nk8byzEb2B9OtefXjd3IjsYfjHRU8P2PnwI0yXTAPcOMZb0UfjVTw14evvEuiztawFp4p0AbsU7/jTvHlzLPLZJLNkLAo8sHgEd65qzvprQIsFzJEpfcwRsZNevRd4IOWxp3o1DSEmihZ4jHOySD0NXY7nVpbq3R/O8o2pZjn+LacUyzkiuNNkilbeZWZ8se/rVmO9mWJke62uFTByOmK6ehhLcrR3GotpySTtP5is5bJPQDis2a/1KeKLy5ZeY+Rnvmtg3reVItxeF1cd8VXgSwjcN5wCheB71nKN2a0JQT94NS1JkxZwTsJI4gGbP3mxzVy5a4SxsZVmYMZEyB345zWX/Z1it0Xa7+Yc9eta41G0+zNEZoyCOA3bFTyaMKk1dNGFfXrm6wbpx2xmtfTbmSeyed5y2XEarnpjvVMWWlyLuku42Pof5VZSTTbGXYjgKVBwPWlUg2rI1p1qfNsdbqmr2Ok+HYmKI95MoVAOuT61Wktmh8PlZn/0lgrMfTPauWupLC7cSPPlkGFOegrUXWraW2aJ7veu0D952xXNHDTTTZpLEQ5XYXVH8rThMjlTG6Mw9RmsFNRiivPPS9kKljiPPStiS9sZoWt57iMxPH973zWYmk6KH3G8ztPFdkldnHh5xh8RFqN6yXSxpNMvzZIz6rVW3uFZj5t9Mq56E1sSW2j3FybiS7IJX9ahfS9CRlY3e7Iyan2bZ0KtSvsWr+/jh8P2yRTEzyO2G9gP/r0y+kaLwykwLsyxrkg1HOmkSJHEJ/un5fzxVkXenS6S9nLKPLJ28+1XGFkzGtUUmrHL/wBtT7hywpY9VuJL2IozcuAV9ea3WttEQKq7DtwNx71HHbaVBdLOJF4IIHvUchqqx6lZWltPamKVYUdwULHqO1cu/wAObYv5jaw0iqxbaa5y+8STxalHLBcKSMOS54POTUsvj/UsuyLb9DwtTRp8jb7jqT5rHK6qgi1G9jQ5CuVB9eK9rstN0m/8NaTbzwxt5dspYgc7iO9eJXt2bi6a4fG92yVHSt+28dala2sdtGy+WihQD6DpW7VyL2PTo/DuhR3BZYPbpWZ4wisdL8MTJawjzrhxFGucZORXFjx7rHaVATVS/wDFl7qclub2Rf3EgdB/tetQ4j5j0TwDpN/4e07UNR1Z1VIbf9xGr5C5FedX1w0/mSH+Nix/E1fm8c6lcWU9k9wGgl4YHuKxftUEibWcccECso0/fuae1tTaJtHQv4jRo1Ziqg8fStHxPZzylLvyX9GOPWqVhqi6bN59tIVkxjI64q3ceLbq5iaKa73xnqpArZxOWE2jQ8OaBq+iXFrqsiK0D/IVXqVI7/nWfrXhzUDq919isZZIWfcpjGeDTo/Ft0tuYvtkuzGNuaVPGV5CgVL2UL6AipVM0dZtEnhbw9rFp4p025m0+dIlnG53GNvvXS60R/bmoBQWHnE5A61zI8caiTkahOCPcVA3iuYuzNdSFmOSeOaVSjzxsEKrjK5oa2gEUDMGHLfyrI8OxS3HjSyjij3SNIAoJxk80268RG5AWaeRwOgNVI9UignE8JZZlOVYdQaulT9nBRM6kpSm5HVy/DHxTJeTutlEEaViMye5rrfh/wCBtc8O6015fRxpE8TphWB615ofFuoyHm+uM9fv1E/iO7cYe8uMZzw5q2rpoI1JXPTf7PvRcsv2aQqGYAjHrU66fd7R/o0n6V5SNdnx/wAfM5/4EaX+2p+1xL/32a4vqiep0LESWhtzQ3txo1uo2Dz2DF1J3HjG3Fbmiadp1o6x3MfkXLIywyMc5buKx9K8QXF3qSR+RCoMgSNAudvPWtTUNJudQ1OOznv41MW5YyvXd1zXnN3bTEkYPjq0AvraYn5hCqOAOM+ua47y8E54Net+LbKyi8Jj7TIPPhQKHxnecDH9a8lL5JLcHvXo4R3gDARy8MrsB7Gppba4fa5ZydgNbej2sNxZL5keTuIzWusCAAGIYC4rsTOGpVs7HGi2l2ElWPtQlnITyHwRiuzCQ5wEA/CkKRg8quKd0Qq1jlH02RyGAYnGM1NFpbFTlD0xXTB4xxtAqWMx852iqVrEzruxyf8AY8u3Aj79auyaKXRTsJbbiuiBTavzLyMjntTuA2cqVBx1FDsJVJW0OXTQ5EJOzt0qNtGcKB5ecGut8xB6D8c0n3gcYqeYbnLqcsdGk2IBHgcj9aDokmT8prqicdccUoywyMUJoXtX2OVGhyFTuQmnHQX2D92SRXWjGMcU9xlcZANVzIftJPY5GLQZWlRimNpz1qSTw7I0hbaOuetdM0Z2A557U9QMY5zRzIOaRyf/AAjk+1uOpB61DL4dmGMjg+9drs+U/wCNZmoybFwCQ3apugUpHLT6fCjYIyQu3mqslsg5wMgYyBWtPGNpJbqetVZISqk5yDVOx0qbMmRA82cYOKk+yrtBJyfpTsDzqnCktipui+cr+SCMULb4boD6ZFWcDrSjPXFNWZLmVfsoznHNSi3UjlcH2qfJHanJ8xx3p6C5yAWq9RkU77KT0AP4VaC4FP3EDIHSndE89il9iwMsuPWk+yx+lXiWZSx79aZgVegucqfZY/Sj7Mvb+VW8CjAoshKoyo9suP8A61MW1J5P8qvMM4pSwz8tJpFe2exS+yj6UggAzV0njmowOelK1hxmQrDx1/SnC2DHr+lTgAcEc/SnqAOtKwnNncaVpkEsryQvHHdxSllEXPy+tc+dQfRdcka8Jm3zsPMJ58vHWtPTrK8sdWe2jjuo4I5ibgk87T93tW5qOlw20kl7qtqpXG2FU746E18+/dkdiIhoLeLZWupbthpsaERwr67R1ryi8sbrTbjyJ4mVdzBd3cZ616xpVlc2ujNcqTFE7jeAeg7Vxfjq+/tLVIY4X3wwR7d2Mc8104SXvWKW5zUGoXVvGI4nwAcipDqt4c/vnqsI8gGpUSvQZLowbvYU6ldnrNJikN/cH/lrLRJDkZqIx4FS2HsYdiUXlwf+WsvWun8PWM9wh1GctJbxtsKn6VztnZmaVY/71ekRxjT/AAwiD/ntn9KqMr6GVSnBLY4zSoWvfEFzD5reRGzOBntzxVXW55LfU5IYpGRRg4zW94XhJk1GfH3g3865/XEzqs34UNkxhFztYpLfXCnPnOfoam+3XDD/AF0oqFYflqykPyCocjo9lHsNN5dbOJpSKVLq42H9/Lmlki/dH60hTCj6VLkNUYdhRe3Gf9fLTnvbrHyXEucU3bSFMjmlzMPYw6AupXuMG4koN/fH5hcyULAGNL5exce9HMxeyiJ/aV//AM/MlRyXtzJ96dyfQ0hU5NP+zVXOHsokDTzkYJNBuJdoBJqwbf5N56FjUQiCscelP2g+SJBuLNuFWkDGylm/uuo/MGoY1/csKshmXTpoTHkNJHz+DUucOSJRjuioIPXtUqXsgHC5NVZU4I96ltov3A+tXeyE6aJpL6cnhKSO/nVslKf5eAKPLyKXtBeyQo1IkZaPml/tQ9PKNMEOOKVLYZzR7QXsUO/tPB2+Weal/tSLYA0fNRSQBDuPegQIeT0o9qDoIl/tS3/uUf2nb/T2pfsyFTtFQLZ4H3M89aFWZDw6LQv7YgfNS/bLfsapm2HmdMe1KbRMcdapVhfV0WxdQn+LFOFzFn/WCs5rXAzUSRAuRVKr5D9hY2xPETnzBSl0JOJBWctnkdaGtdvc0/a+RPsT/9k=", "path": "images/5pts_ADE_train_00014277.jpg" }
depth_point_34
images/4pts_ADE_train_00008197.jpg
ADE_train_00008197.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 140 y = 119),Point B is located at (x = 276 y = 174),Point C is located at (x = 42 y = 171),Point D is located at (x = 236 y = 163).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_72><DEPTH_31><DEPTH_22><DEPTH_70><DEPTH_5><DEPTH_3><DEPTH_3><DEPTH_49><DEPTH_3><DEPTH_70><DEPTH_64><DEPTH_36><DEPTH_74><DEPTH_69><DEPTH_70><DEPTH_70><DEPTH_59><DEPTH_67><DEPTH_60><DEPTH_19><DEPTH_44><DEPTH_29><DEPTH_59><DEPTH_70><DEPTH_59><DEPTH_40><DEPTH_74><DEPTH_74><DEPTH_19><DEPTH_19><DEPTH_44><DEPTH_72><DEPTH_5><DEPTH_59><DEPTH_59><DEPTH_69><DEPTH_36><DEPTH_25><DEPTH_44><DEPTH_44><DEPTH_63><DEPTH_40><DEPTH_11><DEPTH_15><DEPTH_72><DEPTH_31><DEPTH_29><DEPTH_44><DEPTH_72><DEPTH_44><DEPTH_49><DEPTH_40><DEPTH_40><DEPTH_76><DEPTH_78><DEPTH_36><DEPTH_74><DEPTH_64><DEPTH_25><DEPTH_0><DEPTH_31><DEPTH_36><DEPTH_72><DEPTH_44><DEPTH_2><DEPTH_44><DEPTH_25><DEPTH_64><DEPTH_19><DEPTH_1><DEPTH_58><DEPTH_44><DEPTH_29><DEPTH_0><DEPTH_2><DEPTH_19><DEPTH_2><DEPTH_41><DEPTH_2><DEPTH_41><DEPTH_25><DEPTH_58><DEPTH_44><DEPTH_23><DEPTH_41><DEPTH_41><DEPTH_0><DEPTH_0><DEPTH_57><DEPTH_94><DEPTH_25><DEPTH_66><DEPTH_121><DEPTH_42><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_16><DEPTH_42><DEPTH_END><DEPTH_END>. Since point B has a higher pixel value on the depth map, the answer is that point B is closer to the camera.
B
long
4
[ "A", "C", "D", "B" ]
<DEPTH_START><DEPTH_72><DEPTH_31><DEPTH_22><DEPTH_70><DEPTH_5><DEPTH_3><DEPTH_3><DEPTH_49><DEPTH_3><DEPTH_70><DEPTH_64><DEPTH_36><DEPTH_74><DEPTH_69><DEPTH_70><DEPTH_70><DEPTH_59><DEPTH_67><DEPTH_60><DEPTH_19><DEPTH_44><DEPTH_29><DEPTH_59><DEPTH_70><DEPTH_59><DEPTH_40><DEPTH_74><DEPTH_74><DEPTH_19><DEPTH_19><DEPTH_44><DEPTH_72><DEPTH_5><DEPTH_59><DEPTH_59><DEPTH_69><DEPTH_36><DEPTH_25><DEPTH_44><DEPTH_44><DEPTH_63><DEPTH_40><DEPTH_11><DEPTH_15><DEPTH_72><DEPTH_31><DEPTH_29><DEPTH_44><DEPTH_72><DEPTH_44><DEPTH_49><DEPTH_40><DEPTH_40><DEPTH_76><DEPTH_78><DEPTH_36><DEPTH_74><DEPTH_64><DEPTH_25><DEPTH_0><DEPTH_31><DEPTH_36><DEPTH_72><DEPTH_44><DEPTH_2><DEPTH_44><DEPTH_25><DEPTH_64><DEPTH_19><DEPTH_1><DEPTH_58><DEPTH_44><DEPTH_29><DEPTH_0><DEPTH_2><DEPTH_19><DEPTH_2><DEPTH_41><DEPTH_2><DEPTH_41><DEPTH_25><DEPTH_58><DEPTH_44><DEPTH_23><DEPTH_41><DEPTH_41><DEPTH_0><DEPTH_0><DEPTH_57><DEPTH_94><DEPTH_25><DEPTH_66><DEPTH_121><DEPTH_42><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_16><DEPTH_42><DEPTH_END>
140
119
276
174
42
171
236
163
null
null
15
102
47
81
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCX+zjGqmFBDLuzMAc9DkVAIo7i+OouN1zJvkc+pJJNac80E1vBJFKxubhyWEa4GAOmagfTpBA11YSCXy4t7oTyMsc/lQZkCCK8SQTRxzsGGRJ24HSmxaZp9/cvpxhMBlYOcei8/l1ppgSMHcpZj84A659K3LSeOaFboRqjouwk9fpmghmLJcar/abwxkRwQ72jdCMhQpxn6mpNeiOpWcKzt8zRNLISMHqBmtYR2cBediXuHIBOOAvp79/zrO8RNatbSS+a6SNAUiHZjkHb+lAHJS6fLCGnjbcVXGfQU7zopITa3J8uTgBz6mtW00u8ayd7glG8ouFx1AGf/rUzVIbWa78poBgojIc98A0iWY0Y+yArG4cOflOKmiuZ0YLJ8rnPydjU8QDRPCFRNoJUkdMVWRpW2iSPdEMnf3WmhGirWXlwvNIWKnGwds1He28NqhkhclXfgegxVZJLPMbrIATgZIzk025imumZIyfv8kH2p3AerxW+zc2cnitKK+liw9u2Ezh19aw7azl1CSK2gG+RcsSxxwATn9K1rbS7i8giSJgkr2jXR3HAG3t+VPzBLUvahcSXzxG1wCq7HzVNpZowYpCBjnIqhaSSQIy3LtvY7iF/hP8AWrkd1bM5jwfM4Ac80XKZsaffKSqkkxOMEehrQtru22PG7IQ7lCx61z0rrBcFEJK7AxcD1ojlhibZkMh5AIzg/WkSdbbwfZI5ZY1cqkQbzR8xbnpxQrwTs0MschGN4ZxwSazdO1e4sWDxSZiJ+4egq3Lq11HAIX8tkJLZxzg1VyzbtfJRFRIYoVHLHoHzT4biGwMqxTfLLw6A5GR3/GudinW7tvPE+RCQpjJ4P4UsM0QZ0TCI3K7v4akZuJqVtgq25xnoRVGfUIxPsRsMeufTtWHdX00YHzoT6KOq1nXWoeeEmiO5VOBjqD3piZd1PE6MQgDMcEnofb+VZB8PXEd5G80QXawwFPBJovdUKpJC8q5KA47g+lWYby6uNHhNvKxncgFnPCncPmP0GaTGjBuIp9Bvl8yMnZIcMv3WJ/wpsN6Xv7eZ4wCSE/OtDWpZblJYHcOto2dw4DseDxXP3BVLSRwCHt8NjPU9aBnVQ5jdnKKQOFXPQ96pzXASSdYoxt21JbwTTwecnEpG6RWbG33qvdxx+WSuVyiA89yM0ElmwjJsy8q8tnj05qe3RIoZUY5yAelVY5J4okhEZK85bNSCfMDBMh2HQ0AOO1iGfcQeeTTlcRJwMbs5+mKqyXL3RWFFVTGuDgdailkkMQB+6eA1AEzQJcxq4AJZsc9vep/B2uQ6N4jlneI8q0JU/TAqooaKDymJGVPIrN1KWT7ZG6oqieI5wcbW7mgDbvfEmoTGWKK7mdGkDMO+5OABXO6vp66pa34UTzXsCCWPyxxjqS1aEEYs2jLSf7e7OSD3qWbX57a1vFtFVUeL5gi/MwPGCe9AFaPxTZ3EWnG5YRpJEonCqc4QYqpPqAubpGs9/lNJySO1ZOkRJcxXl3LBiGIKijpgd/5VMt5NPO8diR5KkkuV6YoLNGW7i3ySFwIkyvvnvVTKzyxxLldx+Vz61JDYxMjPJueRjuzjAP4VfOlvcwRNvULFl/lHSkB201vBPpjTrI0At3YmNRyuauaaGhgjdXdmaMLgDgqPWrMctvNHOgI3ocuq/wAfHSp7n91YW2G2ZYgxgfMWJzmgDO1Yu+qi6JMWQC+1RtUAYH6YqW0s90BVld4WO+Vunynoakisrhba4a8Zws7ZDN68CrlxKjMLXah2ADPY8f8A1qCbGXPaGG2U2TbrQS8M3XFSzWSXNjaxyIHeK7SZf90Hn9KjmnjfVLWFoyEiQuQOh5rQkgLykB1jTy8xfXIoCxJc2q3djePFIqyFCqqegUiuM8UaSqX8d1ESUhtwXCk8IO9di1uJbVmhlIurdWd0zgNxVe5s4o727uUuOJ7RjOH+bA9hSJaPM3Wd3LQMZY8kZHYVYs5Lm2LG4XNq+Cfoa6SDTZ7S31KKJIrhHZIoXQYJZchutXNKtrG9t7mXUIli42EMw5A6Y/Gi9gsYtxoiR3GtSx2++3t7JLm3YH7pO3NYWlaoVk3kdXBcHsOM16VaRQQW0sa2xeUW6xFuuU3ZxXOJ4fs/+EtMjZezlleBu21lTcP1NUmCRqvYRWswmslQW8nGf4trIc1dtrJInaRJlEBTCpjnGOn0zQNEu4ba3aWdHl3ebCwYMVxxt49jVWKKeydbcBTNN8pOcgen6UXHYpa1ZQwT3c08KCBmEitGecMelYVxa2yh2uAyo5/dlfT3rS8VX8UV2dPhTiJlBf8AusAOax0V57aaN18xw+7B/pQJlpbo2yRRJIhjkUKCw5NSLJEZlCsmD1WqkDt8tvcWyIqjcpNTzW0asCSWw2cL6YpEmtZpbiykjLZkd8KKSa8Ed0rz7duzZj3pbOzt4IDdSDd0aIE+lY93fpJcxLGcLGpYLTLN62lUY2QYWb5lcdMClvbjzMp5X3RgsKoW03lWUTDH3AyqT0qGa9kc5Iwr8Dbz+dBViheTKuHRjleCDVBryCd3Cu0QIGzHTd3qaaUyTeSqjJ647UeXZwKgnQHeQgBGcnuaLgLYafJcGW41EFImxsK8lv8AOK17ZDagxfZi0MZypJ5IPrUEl/b2sgiR87SCqbSAAP8A9dJLqKIS6S5Zvlz/AHc0XCxJPZPew5Taj+Z5jL6L2Fc/q+mXXk6qEUZXZ+tdHb3CSSQo6hkj/ets7gdc1FczW/2h4p3EcygPJjhXHYYoB6C6XGYYI4myMLiYv1yO1R3Ko3nOFwj8gHse1NuL9ZWk+6qlsuR3NZF7qL+W24/Io3fN69qCSybwrsMcuZIx+8X3qW4u/N2qQFkBzkdxisy3Pks23704DsfU1pJCzJA4hB2sRuPXJoASLKTl079ajWd7WMwttLAHGfepUUNukdVikUHBHeqt1holcAsSfmA9BzmgB7I0ap5hZsqQG7VQuJUmjDOc7TwPY1NuZ4wAwfcGIU9R7VQ1CC5QRGS3WBVjIIVgc4p2AjlvyAHZDsPAFakU0EY2bQC45z6Vz1tJtuF8xGkdSDj2HStMyrdXTymIgOMn8aTQ7DZWe+sGtLFNkrsWIA4Kin2nladBdwmPIcKEx2z1rSjhe3MaRJ+7GAMe9QXcca6lMkS/dYY/KgorCWQxYB4jGMYrX025khT5Yd42/MCe1RxqEhZbhFV1wAqjP41FDGVdvnJySRjtSjeTA7cXX2ExhrYk8qzx8gn+8TWjBfeUY4og09wg3GZ06DHA/wDr1n2U9wurXLNgwEhNsmMD8qltpEhluppAXSTAGw9+gx7UgJl1iSSKO3eJnWSfby2cE4zS3ODdi0kB4ZmEoOMjA/8Ar1Ibe2mjaCJWilhxkHu1JLYibzHIc+UAAM85IP8AhQIW18l4NybWByrEn5gKURzR3CiUq0GDjByRUVhp8sItJ3YFAd7oOqgHkH65rXudJubnXWkjj8mzeTeDnPyY5pgUp1jgvLcQylhMp5I+8uO9V7e7lKyFkUrLGQflydqnnFWZdkfmrEVZoX2xk+gOc1bngjincrFzBDvQjouRz+dITObtJ0TV08qR/wDSoZLnaR93MjcgdjU8tmXubJTZ+ZG0jxbVP+sQ4If25zxUlts8+BnCwXKxYViP4fT9avi9axnRyyqsajys84A/+uaTES28c9mG+Q+ZtCJuGOQSP5VUuVERkDxAK7GRz2DEYLUSS+bbtJJOB83mKxJ6k1VeKS6ZI1l3yKTuQHhlHNNDRfSSF8m2nEbn5kD9B2NVpoYIU8mxuDNILgbZW5JHcim/Zlm8udY/lBBCeg71Tkkj0+cR8FosqmPc5pgyDxJZy3ym7gsj5isyMF/jxyXP+FPsvCputJg+03TW88MbOFA5fd0BPtWnb6g88aI3EiZBUYwfel+0zSwRgrliGL+oI6/0pXEcTqNrNb3U1utwsohBUv1OR2pml+bcTjzSECjJJON2B0rY1Hw7PFqNpPCpSG6++xOfmPWnX2iLaTQ24mEiyEuCB020yGU9RbELRxO7gDIIP3c1gBfJk3vkyA5H0rob64gjQ+XgbkOa5Oaee8nYxAbAdhplo33vVeJlBQMuBgj9KpmW6t7qSCNw4GHbAyMe1UFuE86AXRCrLLtDjqMVoJpkcN1IYrskjgA/xUFiJcRQP8qNnOCT71ZhMdzMmfnPXGPuCsrV5HWIHds+Y5wKbbI8MKymRhuUAEd6QjWuhbMJHmlVFQ5AxyffNZUy+fB9ptXDYIzt5zg1Za/MaEbEKbcZbqax7m4Yki2ym4HcmOKBouW+pyNJE6K0acxs4OM1peesrzO2ydAArFh8yn1zXLR3s0aeXC22JhgDH8VXLXVWmiKyqsYjO6Rh/EKYM2xKrq4EO1CS2T2HrVC0tPt80ZY+YkWHm7AZ7Y9qpX+pyWUMEUcvMo3nd/dq94dvovJ3HObh2STA7CkxGz9nQvvMfyR5KnGMjtUgvHig3eUq/OGAzntipdSlidoY4lUqyYPPpWXch5VdkGyMY4BoRJJMEY795fP3gBjGao3W8K2IyNqlQ2cde9SsFK7lJ4wDimywTXSPAuQygMD680wRR8wwBbkNvMYG+PGM/jT9VkR7d4oWMhePcMn7oPXmplhIZidoJ556VHLb29tI0py+UJfb61QIz9LspptTjuhIkaKgDKzfe4xVm3hmhgbc2SXZRkY4zwamZrxZY/LjCR8IAccitWa0+1MI1wNqZ+lJjuUTLNb+W6ygw4GW9Dk5p4lje8uWGHJUSEk4oS3mWPdLtEGMD65qzZwRObgtHuYJtZh0I5qehRpWT21szb0WXf8AMC3OMiqEtuYr7DEsG5XAwKl823+ywsqlSjLx/e9qlvLeTUZsxApznjsPSs7tAb39nSnDq20Tvl0C8xnvU6Wccd5DIsg2g5ViMAe9WUbfcRlS6qwOzJ5H+9709I0gnSO4G+BM7i3cZ6VYFq1thGtxcAJIJ2/1iyA/d9BVi6ieW9tlt184yx+Y+DgjGazP7U01r3ybIlFiYqoK4U8A/wBav2mqC0d43jWTccBgcFQRzg+2P1oAjRoVkkkQyCQH50PzDkEVu2dyos0HnMHRkZgOOFYcVhl33+VbQO/2gkBlGcKBnJqtPrD6Z5csaLLDLyd3YrQBY1WO1XV3a1hmFv8AM8soU9RztzSQ3COQzucqACW7LV+z1bcl0/kjzHcTNbZyvzDkA/Q1ymsalDbTyMJ2kmnnOyBUGBGOu49qBM0rpYLWTz3Yjdkxg9ChOeKqW01vcxTSPGxjbcIhINpx/CTmm+Yt3a217J/rCdgjzlUAGOPWoGvgLTylQPczkgAjgEHAoAs3ckUUXkuH5t12lTxvqpM/mXEQgO1go3MPpUlxKNgs54jJcPhUlU4Af0rn49QlhuChXncQ23n2oBHYXOpRwQBLYkKEPmqD3IxnFYUu0zqQ+VwGBIxgd6jhhlYFxc7EmcbgVBIx2+lZc1wXupFy3ynYFHIGPegbNnzFOxE5jbIyeuau2moBULbyrFc5HoAOKzoBGkkE80qklgGQdAKsR2yvcLEiEqudueM5oJsdF5/niNt0hKxgrnoOtVJ7jzrPeVUOUK8deKlkuNljtjx5sICyJ6jPT9abHa2yyJIN5XuO3NMDgtXjZJi4OCOePesmCPbPIsO7LKQfbFd5rejD7fGEKeXJ827PTHOK5l4pLSO5ulVflbkeq9zQIdp+nQxMboN5xiH3T3J6/lU2pXMSymbgFPuFe4rP0e8f7NcovRW+Vvr1FVr5wZFaNCqdMN2qrhuF3qMU6uJCfKK/dH86dHdeZbbFw5XaFz/dFZtu6iSYEADDAgiohJ5IaYH5UwFHTdnrSbHYvXW2S5JkUbSuOKk8zGFwC23AB9KRIo50yobcwyR/dGM05bOW7ZCsbYIOG9hSKWhhRlIrtvMOQTyD0p+jeXNqEkUu0ls+WG6Ustq8l0DJ/qsEt7e1VfskdvO43sWGdp6YFVYA1UC61OOGA5yFRcV1ukWn9mxLDEScLhyezd6w9AgibV1k2A+SB1OcmuuadWLCQAEtyR2I4qWrAykwKTyCIlkzkfTAqe3QPZgk98AVWLtmfb8pL4+gqxG4ij2qpbdznstMgWW18su3GARn8jVOS6aBonjYkgj8PX9K0sieJ4y4aSQDaAemKxTcLDPu8rfDGSGzxn1oBFmdVid1UZjGG+oJpl79meD9xCUcr8xHvU15aultKxcGN1DRsDz9KzrO2nuLl54JASrA+U5xxQUWXjZ4IQWAjVfLZh1PvWpbKJnjMTKDt27D0xyay4bQSM5gaZopdyhtvCsP4asQorCB1ZljjTaSOrEHnP50NisaF0rHSZJFUgcq6j+FsYzTLCKC001CzMjSELg/xYBp8bEK0QBcTAl1J7A8H8qRF3FkASQKwZAW5UYxWTZQwzyIjiFEDSEHAFJb3cquJQJNxGCp6Gq41KO3w0sZKgE7VHOarNcSzRQJGzKGJJB7VDVwidpLfxJmOW0lMTruRoeoPrzV6aR9RiEeTuC4TPG4981Q0y4uHvoA0YxF8pQD7q+9aiCV9Lhkba0tu7CQJ6E5H6VsAtnZSQ2M1zBFuNu43oR90mpIAIruW5nbzNqc8cD1H61Ygurh7YnynMbAh5PM+93GR+lF9JJLbXBdNsTRxnbGvIUZyc0AWY70LawyW0jRtKrBcY4GD61h6pd2RhtLAEtFGwkdnX6g/wA6Yt/CZPsUUiALHwHcZ2n/APVUFlFdXDyO4DJKpVnfoU6dfyoAdea7plra+ZKAW87y9sec8fdH41qKdHh0jUp47zymvjjDKDhwPujjgVwVhpcmtay4gljFjZsxDFgFkf0FXSUguZbNlBEa7dmdwDH0oE2a89/ELePBVPLBxHj9ao3ExsLYXLgEO/7pRyagl1CGO0TzYfMJYl8nkVLbkSXKsRsCp+7Z+qZHagFqVb25uLm0ZMNAUAdWHJOTyaqzF40DRAbSBgnqa3ooZIbOSJFR0X/WSZyWHU/qa5u4iYotv5jrJ5h3LjGB2oGSW9wJpGlmdo2CE7M9fSq0NvK6LMM5ILEVatrCS0jnuJNj+Wqsqt161oaXELlXh2mOPJ59DQBGiSxK0IAZSyndjpW5Di3lQk7t64V88A1Vit5UxAJOCmHekU2yyKr75QoP7oHHIoCxdkjAlmYsSXPzgd805XkQCAbgDlgfWoRcSXc000cIjQAYQtzwKp215NMpQK2Uz5XPWmKxrNcGQPHKrZPAzjjiuM124itYFtwxKKxAP94NWndSX7maQ/JIseFJO6sO523lrBvUMyHLH3FDFYXSWe0sJLdYxuZs7m7iob5ZbmBI41w/Un8algMixMrPhicAVa8tViCbsyHkmp5wsZEVsG3rIuMk5OKatlE6jcP3aEke/wDnFX5IbjynjDEBu9UL5poXWE4+VdufWlzXEXtLCSzzEvsCjkeq96n+0SSxyNA3lwKxWIAckYrOgaSLpyTgH6VbMhjWJYzht1WtgTMu+tZxbJdkfuJB5fvuweazLyKY4m42FAK7C60/7ZYRF5CQsTZUdjjrWbPpUBi2rIQIgHAbuaHOxVyTSdLWyjack528g+tX0eMuQ3Jk+YUgufMMManPAJctzx2qKUeSkrq2GK/KPTnNZ8zbC9ymLgLJMZOplNWgEhRZVYkHJxWO0piVppOcMSR61ag86WA7QGVhwp7ZrRCsTNOGt0lJw4f5QvpTBOGU3qIAzsVmhPToaqXSSRpGm0CQkjaPQVcsI3uLVgyIkIUhnHUY5/mKbCxfs1EsMc0cyvBz8h6rxzVKKxmMkrCX7MsgKRuerf8A16ltrKYbQ0WxQ+TIv8S5zn8avmOOS481ZWEKkPGrDgNU8yGJa3UglFlbypcCzTzDIvR37k1I8cMV3JMn+rfLbB0BIGao6Xp0ujALJGNzSvJI4PBHQVFPNNbXSrJmNS5wO2KnmGkbDGRbdmiA80Y/75NV7sPErSIgAePDEHkEVGLkKSxb5ghA+lU5bsXsciEkc4YL124qNwGpsLxNIfKjLbdx5zUNzcjzPsysCQ/36glfegSJcpFg5k/vVDd2k8s0hSEkBRIpQcg9/wAKaVhLQ7yymvrW5kaQfuJVIDkc9a0vPuHu4lhdESZfmwfvY4z+lZSvILeeaefyzE+3yzzVhZIvNgEY3TOuEYdhnJrQZ02khvtX2SD5mZB5ik8KxGf5Y/OpUurfTEabUpDjLpJbpzwAMf1rLNqsUDpe3LIjTDBUHeFz1rU1byYdDkuLLdPPI5Xc+PlAXv8A570AcPfwiUiZCiNJMTGzcbY+vNVbvXZbDRp7dLSW5W5UqhDEKB/eGK6PTre3n0G4u9SUSRmMoiseFkPG78K8yXV9USS706O8a5t4pBEkyr0XcMjp0xQBe8O35tNNuPsxG4lg0bHrnuPerwvLe3tJ7mQlpuqgn7x9KqWtlbadpwVLklHZnz6j3rGuL4zyW9tZR+YwfLZHagTOgeZLmVS0Lhoxvc543H+Gta1nWX52dN2Qqqx4FZKWEtvIv2m7jbdgmMA9a0XtoxmSEKiLy240DRswXKeTKZ/nUZTEfAbgZrGfMreYgz5jAox6kA1JFcMlqPnAERLZA6g4xSS3AaYIrBlxnzAOnSgGTxyxS3aG5P7kZ8xB+lWZPIsFYKxCT4BHdfcVmogFtcF2BdcYHrnv+lX43t57R4pI2DLGSkp5waBjjdwMZ4baZipIUMw5qndsLeYkS75EwJMD+VVIpIYgIOSVPzy+pqC6laSeVdvlMeQPpQIvreSRxoVJ3nJY+1NguNjO2XARTsUfrWCb9W+QzEEnn2NV7rxJBpNykUvnSNjd8gBGOR3I9KYHQvcxzqW8x4jtxszmqQhQDKnAGcqO+ayNP1yHUppmjjk3KRwwA659D7VejmZo5CPlwealiLXlpJ827AHPHWqU1yys0nIPQCpGkLMNjZyO1UzbIyARynIJJBPrWdiNy6bx5LeTEyKoAPzHmsiW6a5vAgDlmI5xxir9rp0agl5gwXAZT3q6IoY87cKNoJ9uTimh8tiECONtmXdiwByMYrQgsTKFMvyRjkt7VUYory7svlRjaP1rUEix2NtIc7SMAE9aUpWGFtKkOA33Oj+4JqrNERDmLc/LAFhzx0q55qNa5LIdwzjvjoKqzXqJcxuj4aRclccDiovcb2KYUJbRluZAvIxjk00q7EOxZlDYJAq9H5bEKQDuOC3pSrC8ZUIRw/yj+8K0TCKM19L3mVC4KyLlf9mrdhYfZ7chixdlwG7Cr5g+ZvmVRgkexqaPfDaLlx5TjBOM4NNz0KsYV1ZG6uTCpZCu0+b7d8VcNrbJGI0Z40VSC3949M/qasXD26QzPESyxgHJ4ye39aqSXH2hMyMIjgHaB3xUczYWNmGaOLToUg+d4AQVbuvrUVxOsdlHsVSvBJIrKN/lABKCwXLbe4plxPIiqx/1MuAg9KWoWLzhvvOskjuvr7ntUE0P26Hy7iRQI3y5/iUEZFVZmmSF4pJWaYgFHU/dGelRrqBKuUVf3YyzHue+fWqJbsyRIlSNmmfbGXCRyHpik0+KeG88t40ZdzAOP4xg4P60saNd3GwzIkOzKlujk9OO1Zl3O1rIzJMReq4woOVCCmkK5nXRkluXjZ2AIYsF7Y71rB5f7PinimYNCPug9R71FHdwovnyJFK0x2Zx2J5qlceVY3sqbnj2tyqHIZaoZ3KE73uJo90WcEH+dXrm3trcWS211uMqKCydm6isu+ubiS8NtAEmFx8iIh7dzUy2jQmKBWOwRqQcdGBxx+VAzoobyWG9S5vI2kZBsDy8jjipZ7wXEDsXjihvCpeMN6HnA/Kh1+0W3nvuUABnjI4Y9M/pVW4uRZmFESEOrblZ+SoIH+NUA3VLZHsxYyypaWyI0gkdsdQQNo7nk1m6X4ZtdN0m1lEvm20hJlwuHYisq2jk1W4uJ9VuGHlXQSyZurZ6/L0wOK6YuLVkHmCYwbCqjgyPvXOR0AxnpQBzUY04aJqmpTQ7LedDDYJOccluvPoK5+zVtPu5JFWOQkbFZBkYxyM1ta2ft1zDpEqFobAttkxhcucjP06VjW+nGyjNtIxk2OfmU80DOh3O+2ULHuPOTzigQefauZlcOBuOO3NUNPkVZ1iZdsSjDEtk1fuZHCuY5lXcoByevNAFa7ukSEQsrpJldoJ4weAfzpCJbYoj/vCcgstUZbvGpBJLZiHjwHbpkHIxU1/JPd2pnXZEQpYxqTxgUCLtjMscDmQMS38LGrE2ox2QkNwpWJsBQPu5FcjZ64qW8wlRggZSQeuOpIqTWNZjuNOtYVXzEkdpMd1B6UAacF55yTpzud94U9MZ7Ul1e+fdx4bJYbPpWJa3RmhjgAKzRncHHcHjFW3sp44UNskzsR5m6RQMn8KYWKuoKsd1IASxcgHH+fap9OkXTtfm1qeWW3XT7PdHLFEJGWVyUTCllBI3Fuo+5V6xEFxaxzTREFwQzKM4OeorJ1jw3Pd3TXK3BMYAUZTkD8/ei41oTrDDY+JtVW0XbaXGy4tiRjbDKvmJ+IVgD7irUMsawlwGK9DzWTYaYNOWXM3miTAxt246+/vWosKLb7iGVfSkTLVkct3L5BSBAF5w3oDUdtbTxPFNIerYZAucjpmqzu+75QNhIO3PattG82ZPlCjbncT29BUjUBJLsW6MrIMhtuSvUDkfzpIyZpfNRHBKg+3ek8iSbIyCr5xvHTmpy1xaXMcSRqA6AvznHpSsNwHRzNDNvELhm4YDooq/giwBLRyiSQRgH/lmOpP6YqteXrCFIhFuDAeYRVaEbGbzdywt0Vee3FS0PkEWYzzvDGAuw4jft1qxskWeNJVV1RuGHvVa2RQrrs2heAM9Qe9QpciAxRM+F343Z5pcolGxoQRyKHK/LztKtySB3qTDbGG4EhQdwPpVNL7FrNJG3yxgp83U1nslxe6j5ayiJdgw2ccUxo2rWSUQvKw8yJWx07nB/wAa0J723ljMttICoYNtx3xgj9Kwba6lj3RW8xmDoGlOBhCPT8KeLxpomuIRCYm+RVT72fUiiw2TNdwXEo875uDwo4YA96rz5iljBJwxJJH8PHFRWkkisYxGitt6t79a0VAiiRZ9rZOM+9OxJn2sYjc9F3Sbs9iKS4uprmOY/KpUkoD04q5JbxRJHHuDxp/ET096zwVlWSKFD5sjfI7fdxQFyvJcTzzJb7Wy/wAx29ajhndY5lgjYjGOU6e9NaV7ZlEuUblS4/pWfNd3SyCLzNhf7wXuOwpom12XoZ43ieSa5BdPlCn+PPrUd3GEKNbzeZIUwx9qgtxFeSCKQCFoWGWHIepGhT7S6RO2drFSB1ArRDG7I2tjGr8KpOKs6XteSMFPtB28vTba0DkRspTOBu781sW1pBps5+zSM+RyijODSmxXOmggVbyEtbzJdLET5znhm/2h610U728VpErSrDPt34IzuJ5/rWXdXpl0579d5beJCGG0MfSrOZLuyjuWSEPH1Z+cAKOlSMv6KrX961jIWcGEySBjgIvoP51j6jbmdzp0EQAKErJ64NbFm9rZxRXfmOLi6h3t6YrOLPJeK8bnDMTER0AGCadwOYmMjK80zPGsTgJEoyWYcY9s5/StoqtratfykCWEBQjNkszkAcCs+8j1D+1XltQj7wzDPFSWcT3kESTxGVlmWd5E6jHPPsKLjHeIY47VRK3lpdXr7vIXsoGMn0rmrcTQXS70bLSeYAQen+FdTi11fV7m5vrRy0X73ajYOwc4x9K5vxTfyy+JY1tHMZKokajqiAcZoTuNIjngFte749svmfMv4mkuL6K0uY7ZmIyCQVBGa09FsTJGtxOMK2REPVaxfF8LQ6vZrGf3flZx/dJJpc2tgsS6fqK6m8e1H/cthi3vW5EbV5WKN5jYBKY6ZOMVkeGLONNLvZpWbzGlx9eK2LGKGAK6tvLMBtHWjmE0UNQ8P/v45mjUSupZUHTb05rldLsDcapLbO+DGGGPYGu4luZvPeRU3IcjLdQRWBY2z29217KoDuD0+tFwJrTw9Fbu6yylom6Eda37O3kW2dEmxGq7NrdcEVWSdUiUgDd79q0/sDXOmC5fPlglQqHBOe9C1ArWdnbWlnHbBspEQCfU/wCTWdfXwlV4oVVI2OA2CSfetCK0QL8nnfKRkOTVS7sEjuXIJCBsD/ex0/WsqvP9k9DAPDK/t7dN7tW15krdXpZ+uq3MIp821qbdSnylQSEDd6VM8axu7yB/l5/WhdkjIGSt0tNTzna75dhtjbh1ZygwQBuNPEroJIo+2drdcGmZaSR4AdqgYH4VPbuYPmCKdpz83epNo2JIbm8S0URxBmkGZGIzz04/CqxjlFw4wy7QMAtyTWtDdrDJhFxvHHoGpgjiviXK7JlbCk9C1K5TsZ4Yo7s6tsb5cKc496lW7imTyFcHHYj0qdR9nu5GuAPLVOSnRvUfrXOSKiO0qSMuXLRk+npRuJs2Es0YS3UeTtIDL3x3wKgaxt7h43Zm2OG2juDVuxuYbW5guPtaZZcMpPAouLO5muBJavF+8cMpB4qbkvVBFaqqW69TKckHjA96j/s5IEjnUFxJI2eclQO1OvvtaylfMhRtg3A89abaRyTPCTOpZ8MVj47UxLYy7G3dZ7icqfL8z5QrYJ/D6Vv/AGWKa4zBAYwQH2AY6UW9pbRTNHsYypIfmJ/H+tNutVcsA5EYBxuHWgCxDc+aH+2WgWCJdwYdevesXVvNcCSJysLnjHYetakOoQG4kiZHlRozvIbHynrn9Kp3Obe4MMAjkglwu3OTtpW1EZjlUDRi4ZkxhqlkmS5tjDcTGGOJdsap1NWryzTZJbRSBSp3AGP14+9VFra4bAUISjY82qsFildy2bW8aWTymQnkyc1SmV3giRUTC5xnr710VzpDqxwFXbEo3jvWXPpszBniZBEAQMvziqsCj1KunLFG7iUlkK5Aq5Cssk8uGkWNl2rkcDPpWdAkm1Ayj5Wxkd66tFka0iExCvuA2DsarYhsqKGtogjMg2HdvAOTjtUt1cy2+2eMsWfBD+lMmUb3jkYxqrcH3ppjCRvFcSHySPlJOOP8aiWpNj0e0u2tdIitZoEdZlJAf+Fu5pWeCBHlBYMdsXzfcXjmsq38w30Xmhv3YIXnI2D+tbq28F47LJiEqqzu46NnoPrSKKmph01EESZiGyOPjtgdKs+Qfsz3YOAJTDCD3wOTUen3kmpJcpcRrFKhcpI/UhWwCPwFX9628FleLFG32c78nndk4JpgRabZRXsDTyMphhHluOnzNwP1qvNo/wBivGZzu2xeSiRkjIYgEn35q/4VUXNxeFt7W016JCqtnOAxwB9cUlpq41WHV2jjCPHchA8n8CdD9OcUDOWv7kaaIISxN0SxmJHITHC8e1cmS17qU9xGpeTkKfQV6Fq+mLF4Xsrl1zNcTtvJIJdcHn6ZrBtLSC1vMqMbhjgd6V7DRDby3Ato4wpHlrhR6Vj6rp95qN2JFPCxqo9zXVSQCElt/BqOKLzUBXIG4k1N9RmPbW93a2jL1UncRjuBirFo77oyhG8HODWssEtuCsmCjLnPtSLbW5cOMDHcd6IsCBbUpBKkufmIcHvVK5jjhKIATuyeegroGIWKQMA+QMn2rF1HiLI+6MYJqhWITbia3kZAS6nbtHTHrWrocZl0sWkkrmRH3rjoB71i6dqDwCcF9qnnOM5xWhosst9cTLHLsi2gsQOx9TTQG61vGlxIiXAcYG72NMu9AklhDmSFGyTtBPYZz9auxwRHKCNUdQNrKc7uO9Pt55IVkSRUaTrvbooqVuOxzeoeFdStbJXfExlTOVHA71hRWkqyFXAXaOM9a9Sitbq4s7gz3DzGRMqQpCqB/wDWrl9Zt7r7SU+yoE2/6wdTWvQmxyUVvi5BIUkDkimTxR3DhZDscDA9KuNbSRRyOBtOeB7VUgEck5DsJHx0J6VAlIt2ptliEbTBy45z1Uj0qwY0eOIQEMVGQvfPc/pVG2hexkZkRfnOCxGcD2pm1lv1ubdiJFOGPZlqHuPmNjUoLd9PeR0aFuHVuzDoQfzFc5F5MRktrkRzbs+XtzgcZzXRNJHdKJWWQ+Xxs9c9eKy7qOXygvlqWRW2H/ZPQH3zTiyk7mMdPSa4jzCY1QHzGz39BWhcxxJtuFcRKsQGAx496fLLKqNHNtYOu5gD93jGKguAmPlQDKEKp5pjSuY95PI0jEtksCNwOav2U7WqIyjICYL+/pVKGAQygTgKucAZ4Oad9nTUJtRkmv7mxs7KyF0yW0fml8zJEBtLqM/vAc57U7CtZmsNShSNpAmGdsg5OapXdxFdXJO8fIORWd9gks72Ipdvd2lxafabZ2BUsm/acrk4YMrKRk9DgkVdEduh8xQd7gZBFFhjLd5be5V3+WJxtPqQa247uKeCdY44VVkClzneo9RWPLiTUEVY8g7dpJ4HBzV+fzVjWCMqrOQGZR296QmMvb1reCKF9jI65I/i29jUBbMBRA4t3+63fJ9amuIPKR5lkD5YIEY549qy8XRljcECIthTuHB9xTKUrGq19EljCkkhMu8gr7dqz57g3LOrBYmX5cDuPWoZra4jiS8kmjOXCbQeRUjlZJ2IdXyvWqKvdEMJiN2UDDyYRk4/iJGKu39+87o2PLEWNwHrWVEqebP5pzgfw96njuITKrOp2gfMnqabMUi4b/AWOQEqxyDjuafOzCForh/MKH5RgYFRQXDSK9vLBtDHKEjoO1RvGrSvFMxJUgsQetKwHqaLFCMt1BKkU9LhYI4ZJRuMnylffkg1R815Lvc0fDZICnqPUU+bbdzxzgtG8L7FjPRvQ/lUiJYryApJ5UW6WMFSx9WPP4UslzMmow6dDDGYYbPzXZnxlN2CD788VYlhtlg2rGqlUBlYZztyf61cl+x3jWE0MEiPGNtzgclc/K59s9qoCBp5NPvLFtNDxm3DMqBOHLcYb3GSa8xvoLq01C5hvPFF5p51C7nEMcZYwsqysm+U7xtUurDgNjaTjpn13UIdPR2gvfNM2T5MiHAZzjJP4Y/OvFNV1yyi1WaC/wBL+2TaddzrasZ9sZUys4SRCp3qHZjwVzuIOaS3KidX4I1S71Pw2y6lfT3Pk3EixGZy7AbE+UEnhR1x0ya3XjjjbeqbuMgetcp8PFRtBmGRvN0wGf8AcSu7MUR2M/3VAB296ym9SjKn80yIJYtqEBuRnBFWI18uByv76Nv7vXNSzTL5kafON2S3A4HtVVrmO0jGznzcge3vUXALgP5S4YsB8pU9gazWmkUlUwoHOMdKvyShYdwzlgPxNYsq3Ml6FibKueCaLjSLMlwHid3nKHHQVm3l2SUi3FlyDk065hdFdHfgnGaqyRmV2jH8OMNVRZRJYMrTyW5xuYFUPvW/4R3Q2t1AsR2nAkJ9RxXPQ2jxrHqDMABLwAeRXbaCXlsp2RE34DPj0JP61oZvcuQFbeaVV5IAK1XmR5DNHn5c4/3s4p5lYTAhAPQmmySIblI1yQ56+mB2osFzXsrq586K2W6Ksp4J+4QB0I79a2L6zTURFOYQrjC5H0PbtVDRbqzt02SRhs9DjJUnit9Re2duz3++aKJw6+UBuHB4NUhM8+1TRIWhXIkiySvmZ4Lex9K5V9L/ALNkKGaKYngOAK9rudOn1SwO1Flt5SDsfCnHeue1DRNKuJHgjVVniA2xHkP2xxVWJPMXMwBC9R1IPFZytMGxvwAMjPTOa9CvvCr3MkyaTbvG8T7XilI6+grkZ9CuYvMhlVvNjk2yKB90jnH61EoAFvM0MbszFj5eevfIqGS6LxKyld5bvUEsE2/yir/3QaknsmW2aEZLYzzSSsPoZLiaQzsHXIfkH3qKbz1i3OcY71fg01nh8yEiSXIHlE85z1NTPpb300kTS7Y4sBx3qmXzEVjNa77VLmFZAy+YyHnafSs7UdV0/T9T1GGSxllttQsFgkSGcRNGfPSXIJRh/wAswMY71qtpq2zxW8aqWdQSoJ59KW8t5oYmmkCQPnAjU546ZNK9hqLeyMCy1JdT1VFit2gt7az+z2sQbeUXfnJbAySzMxOBy3AA4rWmtZ7abbeBHjVQcI2GNSre+XAbbeIwCp3469/61DJcSzTSvsVkYbmyeAR6UNkX1IrieNLZGt4/Kw2cH5iD9e1SM+23adch2xuXd1/Co1VbiN1245BNVzJ5DFZTwxwM9qRSWgv+mu506z0m51CdU89vswZmRc46KDgZIGfcVmq8ouZLW7t5raSJ8SRy5DA+hBAINa2itbz3GvwX7Rn7TpiokZvI7UyMLqBtokkBUHCk4wchTUesTW934ivlsJmkiEVqiFpFkK+XCqlN6gB9pBXcPvbc96dlYCHVbEPKTE6lWTeoVu/vVOB/sbRCQZymNtSLJNkiDaCThj6VYLW87LvBFwB90dMUWHa2hVkeOMBVQZY5BLdKt2FmZ1uQcGSJd2R2FK7AwF3RcRkfjU8k0onWZTGqEY2joV96dzMk2xXEAlM5Z1XAK+3amWz2onVpQdxGDmnRTrFISkKlJBwo6KfWoprF/PbzGBAOcr6en1oTsI7lsSqiADES5Unnj0qdLgwarvO0IMkR44yeBikTT4bfSVujMfPDlTHnoKcoaa0F0YlAAwpzSGXLpP3KKlyIpphiRByMCteyns5bQJcXr28MaRyTD/npsb7v45Fc6xMLxOrq7BfMx/eJ7Va0yKO8uSLsbLAF5HlPQEAYBp3A1LxRPM+oSEJ9qYmG3I5hGRjP1FYr3Qkd494LhypAPSrur2kt3ZXWoxzbgyeXGw+7IPl4A9cZH41zBCf2wfs8ZhVZOI2BygHBBz37Vz1anLK39fI9LCYCNejKo29L9NFZXvLsnsvO/o9lLbN557tx0wfWknm8uFsMVKrjHqaiklYxZB5Bx+NYt1ePJdLubCg4P1oZwovfbJGuGYy5Ea9fX2qCW4H2gAKduMnNU1l2BG28b+nrUkzLdSp5b4BOKQ+W7HteKwCFSFU8EnrT28uAIxdxubfj07Vn3F1HGhby8orFRn1FSQzmRd7L5jL/AAqc4/Ci1ymrCmVSzAuUUnlmHaqmqRpBcIEnVlIyc9alnm+1LIvkyK4XlGXHHrVG7tFgtVll3MzoWBzmrigsWLQxyxCOKVPOLFWQj+EjrXYaMJdPtsjeS4XIz1I46fSvNdDbzb9ZMMrE7TnuK9ZtrfyJVcsHMSbCpPWtUjN7jT5k8jE7Qx+YemKmi02SVnZmAMRG3HfNW5BbDIhiIHBJPr6fpTvtioxVE/1p+UUrgWNLiW3kILhcMCxxk8Gt0G2hNwo1TdZyESEScSh89ie34VzImMzvL/q2B/kKu2lo0kfnxy290Gbc0R6/7tCbFY2r+yhEcRi1Bp7YN+8USh2Oe5xVlZtD81Y7O1ljvGX5BsKFz7k0tz4Y09bSWbTrr7EPvSL94E9hz0qrYTTQQCW4t2a/hdgS3R1HAwfpVisX7PTpXt2e409Y7idt0kjSh8kdOnSuY8vyNHuJpHZ5pZ23FTnOCRgCt5rRdS09p5ZLm0HOTExIGD0xmsy0ub77PHGsFlCsbkGWVuWXscY61VxGFZ3embmE1g5Zcj94vU/SqM+maXdCe5j1ArL2hWM4X8a6m5sZ7yZpG1nT0jicPhEXOfT3FVp7uW2ucFrJ1lHytHAoDeueKVrgzzu7s4o7mVUBilVch84JqVYIVtWZNyu4+dgMkmtrVtClfUbyR7oMYB50hKgArjOBXO3RurUfZlddzEMje1S0NFX5Z70XErYdMAdvu1SeWV5RKGUxscsxbp603UrshwpUZHBxWRP5oZooVcxr+8OORWFWnzHoYLHfVb6N3aejs7q9tbPTXVddNR73MZllCjagHR6vG3jKD7Pua3faH5/iPX+lQ2ti96gt52CNIN6tsGTngfhVuy029024MBaNvKj3StuyOM8j3wa0ukjz5PmbZXKCziWIcHJ5NQSp9rwMhShzzV24tA8AZVZzJ8yMT+efzFVJJ/s7qnljf1JpplJ3Mq80tprjzpnKBunamTWbaNIu1ixfa27ORiuiaRXnFvLGJeMOSfu5FWLuz0y8isfOZ1xJ5M6oMhR2NKnUUzqxWDnh1eTT1adr6NdHdL8LrzOUjzbSMWz5bkN702C4lluQSn3uQcdq1JdOS3vHty7TRqu63l7MnrRHEJi5t4/lhAbHsa1ZwuWtxm1S+wEsj8r6e9PuLJvJlKpuji2k4PX1rRtrMfZWk24bO5F9PamqRFP5QO7fGWx7+hqBJ3M+ymunhM1tbptXjDHk+mBW3pqvIy+a6g5LMrDH5epqrPbS4LWaCNRhiT2IqVLsy2flrtaeEFvMI7nii1yjdVBBLF57M2AN2O5qwpjm3Rx+asStnDHg8DpTfKCSKUeSTCjdk96bLAskUpnuGTcg8sjpnvSAtiONXWASeXIvzZz93Az/AFq1LI3kzJnNv5ahVI4ckktj36VgRzeTJG5QXOOMkdat6retOFijnJUAOoQbfLJ4x+lK47Gpc3UlpYwiLMlqjqxiJ6E9MfTFY7Nc3N3LcLjcWx8/Ug+tQx3W9P3rO2DhCW646n9aSOTdMCHIJOQDwc0mVFE0kzRoYm69OPfvVARh5WCZfYcnPer6PF5wFxt3MeN1MIW28ySPOM5O3oahjW5UlmdVjhWEYZ+GPWqjzLHMXHyhBgg/3qt3txHFHFuYhgN30rNklSZmXG4H5lbvmixa3LAn3u8bqhBUMB70+PNvAxil+ZeTgdRVAvMrO2FxtxyetWFulhEaMVAIw2OuKaQ5MW61GQwlYmb5l5fAz9Ky47yS5LpITHH2/wDrVNLcQQwvKk4kyxAX0FQpaNdNuQbsjIJ4Aq4olvQt6ZbwHUYDLcbUUhmA64rudGkbWb+4QExopV9x9O1cp4c0iLUtfSGZlysTHj2Heuq02Q22uzxq2yLycttGeF6VZnc2rpVh2ujZVQd2fWqCTNK6SZUFQSMetWNT1Sza2EeP3mcA9KxYJwh8pSSwyw/GpYzUi1i2tGj8+KV3bJP93NdN4bu4LretpJBAW+dzODwR6Yrly0M0YjkHmPwduMYrsdAsY1AuXFi524Ec+A360J6iL+qo8thLFHqenwo6g5w+6scX+oSW08d7rNvJb3A8lVVDuLHuvH866PUhYxRyBtKgmdk+YxgEqa5Kwt7UzKYLrZcFiFgaEuVOe1WwOo0yyOh2DW0WpQvCWOWmyRuPUVQvvElrby+TMqXowRst4zkH6kVDe6TqWp2QtY5I1tVbzSpXa2/vVe21DVtDtpWmtrcIBmJ/JyM98n8qYiKzi0a51KW8nzbxMny28iNuDevHFaKhrSJLbS447mQ5LvL/AAjjFR2N/Nq0TS6itwpJGPIgYKQT2qnY2Fxb+KY28udx5h27jjcuD1/nTEJrN639kA3LB55cJMirx3GK8+1HS7q4ZbgW8oIIKgcgL716h4geKLzbeF4IWfqJIt271wf61jPY6zbaZG1vqNr5YYjDDJYfn0pNAePapDKuoMgVw3B56e9Mtba5E7xxy7Cy8j1+teiTeDNR1O5JnmVdxwzLEeKwL7w5cWEzLNIpwABIvU8VLQEssSXEA86OL7TbxouYOy4zzn61lz3kLvs+abZwkh6gE1KkRtoXdXJmY7Sc9B/WqUcb7grzIiM3JHWsuXURMJ0EsxmbOSBx95gOlY+oQq0TSwFT22HqtXZsrIXg2yMUIJPb3qS2toS8yOFT+F3cdfeqStqU9ijpdzI7QpLGuwDaHwN2B0ArU095bclZUCQMcPtGTye1Z6aT9nuPvq8Sncjg4/CrzStLB5UUhUo4VuM5pwUY7I0rYitWSVSTdtr/ANf1ZDnMasY5wohib5eDkrnoKkS3W3WSaDaYZ1yc9qLq4iaNmuFzcIQNgHbParaPHIm6JUIVCzRg5A56VTZzooWTiWSBnkVIHk8uRu6nsRUl15MNwwVY2aMlcrnB96Vvshui8UPliVlco3Yiq+oSoZo9rbCck4HU0imiKVvKYPI+Qy5J9T2FZKzzJPIZY9vTCjpjrV1LhjJHHcx+ZCHPKjkZ6U2aGU7WVh5akrubjPpTiB2EdysFkGYcs2M+tT3UYZkjO0RkZqOaJUh/exHY54II4qsUWDcylmPX5qyuFiwI7dV2gk7BwAMZzVGYQJlQjZkO0qOuT0q290AyoW+8ASB1UVBaTBzMIm3lXyuOv40FoozWxgVY4wcxdcmrcURaSJ2yGIyMDPaoruJku1JY+a8g3L6/54q9bwM8zM+DtPyoexqWVcrzWjzPFveMEHrnmluLf9yQmSFPXNF7cBZYwY9pAHQ9zVQyruZ1IZCxz6jFND6GbqllO0jEOWAA4+lVtPhLS43jHQk9q3n82Z98aqUYYY4Oc0+K1RNx8lM8EA9/WqEmY97pkhkBRxuC/dzwR61Xt4Wy8e0EDg7uq1uTWplR2WPlehznvS/Z4xnaMyNkyZ9QOtNCk9DCisbfyXWd1DbwUUDr9alniDjEW5TnOFPAAq3JERMChUoQC3oPpVS8iki2zwkYPp2FURzdDR8HQXkmqXN7axMUjjIZyOK3rONbiW6Zn3SbeQrYzzxVHwcl1c2moZvnhtIuRGmOc9c0eGrS/XXpHsVkuI4VLyBSOhPGc1a2C5cvxLIfIisptuzcz4zj8azYWkjuopFDhfU9sCvSriXajypYTfIgWQkqQAfpWfNaHzf9JtUiZuY0A61nbUDMtizqZvlLsu704rW02aJj5WpRSqjjCXMYyFJq9b6dAII5JIfMRjtzjHA64q/eWdlKgikuCbaUhUK/wmixRowwQaerH+2hENoCmRATLjofaq0NtYa2GmC/Y9UDFhIvyjjgH8etYOmXtvot88GoWjXNsSQXdSSCPSuhmfS76EXUkMtqkahw8RwWHpV3RItxHqs0QjtdQhuVeXYXA2lW9sdazJ72DTjcad4ouJZOcxywD5HHp25Hf61Ho9zaX081vc391bQRtmHBABU+vHWtDU18JrbpDJczT+WP+WfJ+vIp3KCz8ZeHYUiWya6IUbQGHGR+NNs2vta1r7VLKY4Qu5TF1HpxWBpmmR37zvBOlrZI2FaUjLA10NnodjYW000uphxKNojV+lAFyfwUL2ErcajLJK5zkIvyZPT6VgvaanZaXK8Mlt9jtyyb5+pVepHFMkvVilNvpdmS5GFkYksx/PFdHJIk1lFNc21ztEQU28bLtLDqvPrVITOHk1K61C2Il1Y20DLt/dL8xPeufuhaWkx+yJeXidWlm4GfzrpB4hvpNQmU6TBIpOFEo6e4x3puq6XreuSYhtFsIBwdnQ+9SxHn2pSx71aNNrD+EHisq6kkPMO0kj5lPbrXdaj4Kh0+Hzru93N/F9fb9KwpLfTrbelvE8khUks3T/PNJoRz7bgtq6uMeYFf3zU75j+0TSMT85AQ9xxV+TTYZbdxAGOCCR3VqRlWbc0qhXiPQjg1L2sO5TkJbTkuIiWw/lsnoabtkVRNG2AcZ9jVm0Ty3dFI29w3Qmn3SeQj+VhnQHKDoaSshXLMEyKZIpTHLMQCrY5Apty0MAdrYA+anOOKpxyRmNlQFJyuS/p7U2VvMUhx8oGARTEWLWcXUUjcFkUDkdKZNai5tm8yVYvLYEN6561U06fy7qSGeQiJ14xVyGKK5gnGwu8RwUPf6VQzLVbtrr7PCCnynLsPlx65qtPGz2MLu5BUkMFOQ2O9b66eJxLHNM6KF3Bj1A7rVOKF57e6WU4Cn90oHQ+lIuJsCRzsSRnYg/xHGPwrSlUsABySgwR9KkWOJCDEm/P97rVhEKEAJkH/AMdrADHuEbcPMXEuOSO9TWtsIiXtozHOy7skccf1rWCwecYnYFguQSKIAococF8bhg8YBp3Ax5LQvfC5kYtLgEqOhOf/AK1aMfDJgBC+SQatzW0SRPO7YKkuAPQ8U2KKCXa4YlsDAotcDI1LSJZ77cigbc8luB6GqT2I063We4Yu7y4WPGPxrqVn2TSEkeWowSRnPtVS9SO8ulkMeBtz9Md6aQGLHI8U4Qkqj/PjHSpmuFZmCYLLk4rTKRTHE8YKdiODWVqTwWt8AV/gGNv9apIdxdNRd0TySEAswKgYzVdVRprlPOZdwIDN2IPTNSIpa1WRWBLOfL29uOazZ5SYJcAq2e/emTIbJEYmf95uVuc+ntVd4pBDIE3OoHGBkCpxGz24a4Vth7qeaswXcVpFPDHGY4pEwWfk5pkqD3F8KaPqGo3EVjZ3X2dpMyMW6Se1dV4bhvfC/iC+t523vcxh9sYzkDqAPWsTw1fW9nYR/aApKn5Z9xBHPtW9pSW9142a6lvJbyGFP3cScHLck5/GtOgWOhvNU2K32VnRZCDll9BWcJri4lSZ5ZWmDfLIVJH0rduNMgeN2hgXCf8ALN3O4/SqkP2CKNC1rdrN2RRlSfzqbDJbPXHhhYTYkeN/MWJhjYR1AHcGpGurbXZlgtNmn3at5oDrgMfTHvVa6IvrKS40+AwTWxw0c68Pnjg9aoi5N7bBZrFba5VgUKsct+JpWHc9GkikFkhubSKRlQK8ap82fYVUuYtHisnSWcRxx481ZDjbnsPQ1W8PQamkkSXc6CAHJBclj6ZNS6mL+4n3fYLO4tVkLy8newHTjHrVqwWOf1CwsNIlVLiKR7S5LbWzhlPp+VQ2Ph7w/dxGe3vbiJRk4Ynk/wCFSa3e22rqI7j7XFfW5LKroAnPXmtPw/ZXvkG+P2YRyjbDEBk4B54IqXuMyG0210yaCW4ltryxdtssKSDepPQ4rZ/sTQbeJ5Z5YsAl+Jge3A/pVfxTfaY2niOaxke8JO1lQJt6enWsrSbRIre6lutGvLq5A3W4H3Scd+e3X8KAJIHv9NMV7bwN5BBJVE3nZnkexxWzD4g0+fzFMxi3/wDLOQbdmerfUVpW89vc2Nu8txDFdNFhgDjafQr0rmPFMWmW15E+TPJICWKrgVSAWbw8b+Uz22oRw2oPyu8gJqCTSL6EO0PiQyImfuvgHH41rafoUF/a2DhWhjiBMvzHn8Kl8QQ20ejubNVG0gqUGdy9OaCWcXc2Oo36NL5T3kTDAc/Nn3z+FVhpG64RbgRRogAZC4X/AD2rW0yG91XfZXV21jAvKlOPYD8qsv4L0zzlkkuLiRkPzIzHj0780biZyl9psYkkaC6hjMci71EgO4c1mXkZms512qDncWFd9c+GtHkVjJC6qoG6XOM5/wD1VgazpFjbWwm0+4MsZYKU9B61Li9yUcVPaShgVcO2QwQeh9akmj2vJOkWCrZ6/e+la+yA3DqzBZAeCOmKq30JMqxRupQjHXuakqxnShZVLRLtLFeDwTxziqs05YSRBCF+nSkmlwibQWdGx7VcnV55I4zIkRjTLAjlqCbnNzW88o82NXxEeuK2bTUXgihuzCU24EjHqWqG7la2gmg2sI2YOG96XSnuLgyQFozG2CVYdKoo1PtomhuWDb2uONuOnfioLW6Dz/cZtzbyNvTHFM+zNFeKIpljG7BBHSmS2yx3sCmfa753kH3qQWh2sctvMpPIPTI4NSg7g67wMZxgdcetRRpEY2JwylvpipWDBlCYXDfdPUiue4xPIiuMBifukbgcVVisp4CCpAUrjNW5rbzmcozqgU5wOp9qU27RQhvOygUYLGi4XLNqiTWrRzjqRnHoKgmEYmkMBCgnKn0FT28iEx8g/KT9ahf7OQyMpAJxyO1WtikQMzxzbMAIy5yDyDUAmxMrABdowGHf60rPEsQkLES7ipBXHy0yZlCqigZbge5qkJheurQqwkTeCKx9aMcuZIzmQLz2BqzI/wAhIQD37VRkj8y3BJ3HJU9qaEJpdwLuxMbs2EJxkdKpaijQRlYwCnU9sVoWLJHL5KEKoTLcfe+lVdQj2xsrHzGkb5u2w+9MaVykJJYYF8mQmQgFi3YemKimS7vZ44omIkkYLluB9auQG0toTI/7yXPOelWtBhuvEfiUWtvbiVkTfEN21R7n8aaRV+h2Og6JZr4Sm022trTUb2Pc/nuCGVvQZNWfDXhf+ztKRtRldL9z5knlOBsB6KK2TayWOlwyJBbLdx43NBgbz/dOOtI8dtqkCrJvivBlhAOCPX6irZLZGI7j7X5cM07rgFcsPmJ9atwpdwskdzHIsaEkvjcf0qks1zpU52gtj5WDLkCuo03UZDIkEjiRmPRecZpCMlr2C3uNsdwZQE3SBF+4B61UurpdXURyjdlto28Nj2Na9pbWDazeXllC4vIARcx5ykw9NtYt7sk1HNnbNaTA/Jbs+CSfagCrDqF5o8rRRNICku/YcncK6+x1iZrBZ9T09PKnkOZIznAPsOeKzhqlqnk2l7YG2nVfJe4PzFW9xUttoM4juVs9TaKZXJO9fkKevXjIosUMvdasxo81jDEkwJ2rKw6jr9c1g2Gp6tYbZPsbvbAFY49pK/X9a3NS8KJa2RmW5jEbYPzP3xz9KsaJpsWq2zLDd3YaLCyBZSF/ClbUChaajo13cn+2rW4gnIG10iYgd+wrZ1O/mW2GoaRrTGOEqzW0uB8uQOnWtG38PQlBtmuIpSCuJZC273GffFcLeKbPVbkXll58zMY2cN5YHpT2AS1klvdVuLz+0LeykuHBEzISM+g9K6OO18TG3WOSXTdQi2ny58gdfxpLG2lSwjtv7I05YcfdnkBJB9CRRP4au5Yt0CpDa44RJ8BTVAYzaxqmlX1vaa3p4mtZP+W4PcVtaY0z2aT6SkAgHzTxysCGbuFGeB9az9U0TULWy+0S3guokHEJffsB6mofC9hpeoGaNpLiO5OTtSUhJEIySPSmhMq69dtq0qxQQGJgv742ykgnOcHFPg8RXKiO2vRbxxxAKHaNmYKPpXS23h+wgtpI7K5mjA4xFKSw9M+vas/W9BjntpPKmVrqFP3hC7Sw/qaGSyRbrRp1Mf8AaCSxyDeWlU9fT2FV7y68NW9ulr+7XzAwLRjOeDXI+bbMoVrMtHtwwDbefeqsxtbsARQGJ4xnBPGPrSbYrFTXrDToFhk0qd5d64kWTrkc8VzN87NCNq58374/uiukiFh9tEF1O8CA5E2flz6VDd6LBAwnW4EgJJU54YelTYZzqvAqyWUyFbVFDq5PzEmoJ9r3YeWZmIHyt3P1rVurAT27FYWJDFEPYAdDWWLaSQunyGQLlFzyT3osKw2BRND+7JBbOSexpbeYRz+e4DsX+cEdAKljsvJ02GRZz5hcvKncc0tzAI2W7VcgkeYg6sO1MosahAJXSeyO2CUFir/wketYcBWKdWugWyx5z/KtNHnHmxxgmOTkg9s+lZ97aBLhI/NyMf5xSsI9CXY2fLiOx23MM9BTxcM23DYVehI7elJCEhmVpQ4hVfLZl6Zp73PyvGsAI4+ZRwOK5bFlnzPNO5Ov8XpUBIEhWeRDHngVOunlrdDDOSxXLqf6VTkLQoVKx/KwBJYf5zTERJJifcnygMAAKmMZlhucviRfmH+FMly1xEUG4Y556GqYu5UvyQvyg4JzwapCE+1/L5eC77O4qqskr3EZmfyjvwh7A1euLgO/lRRgbkLb6rmJX+Sbpu6n+E0ykSzRGArFNLHI2OB0zWdJuht3kK5UP/Sk1FYnkd5HHmKMrj2OKqWeoBrWaKQEqrjr1zigbV0Q28rxySSOMswIUDsD0qnd3JEciKxLDAY+tTXV1DbygRMSWyTuHIOP5Viy3HkMzE539Qe9Wi4smuJFm2qH2hRlveuw8CXq6BaXWtTR72uU8q1XkcjvxXBRpJcSxwxrvkklUBR2zXsUHh29t9K0/To3iWVXySV4XHJH41pEib0LK3/iQ+G7ZYrAyKCJUl43Ee/41FbazqWsllvdPa1uLMg/aFGGbJ6VsWdxBbjMTukUqksoYfu2B5AHpWgrHUYfKinSQfeLdDn0NNshGPLrlyDtubVbkgh1L8L6c4p0mqtew27xTRwzwk7ki7+nWtZ7fddRCa2SBgmASdwI9cimaj4asrzbMiASJ0IHB4x+dSUSafZlbeNnnHztuEkbfe7kE+1WF1fw+0M1tZ38JvYVLrKMszsO3Nce9rPBbvHLcSNBCxbyWPTtVexs7QXRkto0hGTkqeQB60XtoTY37vWJ9VItZmhgkkbdJkctjuTXQWOkD7MslrfxX8uAJImkIGPTjmsOy8OWV5Yy3Ul+wbfhBHzvGeTitOHwLGt202lX7xSEgsGUg+1JKRRl63pOt285uprdltixUxxsWUDPA5qGxmntba6t7KaW385gJM469sGuibxS9lezabq1pvdDtZ4uQ3HBxWLa+GNW1NGltQgtXfdskkHTJxx1HWiwFmDw9rOrTIZ72QQR423O8gj2x0qvr2kx6RxNe+ek+QJd2Tu461p/8IrrgsPIm1xbS0QErhuBzXMCyutGvorm5dr0Rt5inBCydfWhgdHbXHib+zreKGKKKIDajsATj3zVmPVPEFiwF8PtCdlRQAapjxeZJHm+wFzkFlHOM9BVmbxVdx21w0mgyJtXdFI3T3q+gmZ1xrmpxxz2waJI2LBgqk4H4iodP0ksovo71rQxnaHUZzxzVjUPF4uTdQWVgiRSx7CzjO0f3vrWdZ+Ib3TITaws6xAA5dD19aVxGo0up2D+XGv9oeau1Z0BVh05xwPb8Kpan4jmeJLExSQsq4ldxhmzWffeONTjl8+WcKCwEUkfHPTFF7qN/dMZLmAXEioMO/XB7H/PehsaMtraaQyKhKYIznuO1MVVUmLYWZht469e1SyTzuGQxsu0dTzUn9lzalIn2SVoolUF5ZBjB781I2R6h4dMsmI7VgjLvCznHPrwacfAzR2gaXVI4pCuRCWyOe1SXemzRxyLLqBuCBsXLZAX1x61HHp/muYi5mjAUB9p4qiDFGn3VtK0EuVUfdYHg1SvdPlDJcZEbZxkdvWum1GynjDQQPuKrnBOD+tZRM0UBjljWRdvU8nIo2A5W7gZWKoWIbIJFWbJAqFRJuA5w3YCtFoPMJfcFU8hAOag8uFoxb8B1Bw46kn1osT71rEZcnaOndSB0quVMFyvmFWfOVyOtJ5ktvug2k5O3IHUU2aFpYIpGkbdyCB/CKQQR1cNlN5rk3DuXG9l/g/AVZeSXd5NpgI4BcEYJPfFT3GoC5t0e5mU3AXEewYGfeqsBMjlpsZH8Q4GawsbuJcAkjl27iyIMAp2+tVrm1VomlKAhjkHOc+9L81vPHPJ+7h2lmCnOecU6aYTQxMVJQ/MuPSnyk2IWt4lkZDMxZxj5B0qAW6iJgoYiMjdu7jPWpmWKQjCOM54HWoSSEZdxyeAKLWFYkRIlZmJUKFwvPSnT2wDlXGC3zBj0YVUNws4WFB+6Rvmb1pzTzOcM2TGNy59BVIOpj6syq80jhAEYjbnnGetVLQpHCXGGV1JBPc03V9xvX80ZUL82O5yaiUiTT5Eh/dkdPbpQ0aJXRj/AGyQzhmA3byDnnjNas9vaalLDCoVGAADgYBzVaSCOODOAWPf1pbDUBa3kZaEOEcZ/wB31qkPY39F8K3MBfUYlTbGSqyO2PmH+Ga9Itr2d7dYGtnN6sa+YzHALZ6j2rjre73P9nR9se/OM8HPNdjqd9FHcW92NrRyQrC4U/w9c1omZS7CP8P7XUHGpW2rtb3UhLTxNJ8uPUCoP7FW0kcQ3kjc7CQcBqgili+0G4sg0jRsFkjDHKJ361ci8QWl5qMsELCORSNodf4aQkRqLk3LRpdMIcBij/Mydu/atcXGp2MI86aC7tj90wnDAdzx6VQmt1uUku7eUQy2/wDrC3R8Vzlnqd5c3srpOWMe7ds+7sYAH+VJlHRXt28iSxC3Xy5l5cjnqMVBYW4sJxHcWbbscgJnzCfStHSbOa81C2u5kNvawKCgk6ykdDiumEhcbXkSWFgxK7fmH0NCQmzHuLvVbCxF9b6faQ2cIIPA389OMdaw7fU9TE9xeGecrMNokJIGcentVm80gW9rdTW98ZIEHzW7EkgHp+NVbKHSYLYf2lHcyKOQyN90kdetDBMpR3Cvchrm4/fuMlt3Le9d34fu4Bp0EKuPNJIPPJGazLLwtp10igXSySyIfLfuRjpXLG3+wag628k42OV+b1BpXsM73XtUjsYJrUlJ3kGPLIzs9zXnd5ql5KUFxPujRcKg4A59K0I4VmmlPztM/wB5ycn6VNF4aupUd7u4S0gX7qt1bPFEk29AGeHby3a5mMt0sM23KBl+VvT8a7qwia8thNd36XEZ+XZnjmuVbwlpWGKzz+YqdQBhqzX065s9Uj0uzZmebDJufAFNJoljBb3F1q0lpZxKJ2kbZHn5Rg9PpXoTW9slpDb38UTskarIQoHIAzXFx6LrWk6ktwiGaRVLh4z8uT3Peqk+oaxdzO11Lh2zuxxT1C518lnolqojk02ExMvmYlAyrZ61yetywyag0tvKY42UDaBgEj0/Ss5Y/OkkM91Nu+6Gzxit228NWl/B5g1J2Ece4gAUmm0MxEvCLtImU8rnJHWtD7X54j/dPFGF+ZOxP0qlcaVErD7NqBnK9Q6EFfbpVCWSbYDKXjmHbsaWqVwuXRNDJc7AI/MHDf3TTrvUrkP5NjGGAH7wKOg9qwVlzMVfoTk/WpftcdvO0sMjKVG0j3oUrkhNJfR3zSzqwyvDuOPpUlpcJuk+2W5mRUKlU+U81cg1abhJQstu3ViOhq+1paXVjJLBIqToNzHscVpYZgS2ZKnyIwIsfIT1X61mTWao0e5Su75i3rWsiM6zOWO08nceOR7VkytLI5Qv8q/KoHSiwrEMzfYwOVO5TwRyKpIrTQBo2CgfMxfjNSSm7k3KIyyno5xiqUaSvKfMfzIhxsUYINTJWBaGst9smS4DIwOSqMvGa0rW/txBJHcROfnOeMKPpWXcSwNNFIAhUAFUPGa0IhJcyx5WNYnG7aX9egrA6Wy7Lbo1m08co8wkKqIe3Xn8KbNef6IHRSqBghXvTdyQxIqR+XJu2uv93jrSpOx2MsSNGzkEn8s1RkwjuWeUSAvj7mEGCDRahjLI8oIMYLlXqxhDGDHzKzFQF4wR3qK9AgZV8uRWuPveYeRjtRYRmTqEw+eXU7lQ8D8KYVmIiuQwwMKyY7Uz+DzlO1y20oTzjtUzNmLcH+994djjtTQ0jL1dX82QQqDubPJ7/wCFUfKn8kA4h2Altq9c1sB/Ov2gMfLxEL/vetaX2GG4hiW7lEflRrgr/Fj1pMpOxwd2siBAGPK9/WtWy+x6fp8TXEHmyycuQdx9xjr6VNeWInlZY8AIS3zdTzWv4aktraefTGiguL+Xi1mboi9Tn34qlqKT0Oj0G1tNNXzru1EkjKZPLkXGEKnbjPeq1lbTalJam1tZWwP3ilsc5yNvtio/FmvT3yRTC3AdUEZ2dOOM0mg+M5bG4XzY1LQoUhUcMx7HFU1Zma1OgudK+z3YlCsZATgBscjj5vU0xbWS4WMmGNmBzu47dKt2uoJd3YMiv5gBml4yAKnOp2dtGzCIyLnCgDAPfNOwzIme8Nq6iGRVJJLKM8nI/KsywsJ9Mu4wqeYkpJkLNyvFdSmuT+S90tsEsYm2ONudxzwKZqD2+q3Uszqlr5cOeGx5h7YoYyJdRvpb20uTKbgxYCpJyAAeldBBc6xe75Xt7W0KMVReBvB9s1n6NqegWtjEGtpzMSV2kdDjrTrvxLaWYUwWu5mzmSaQnB9MUITHapFq1yEhazjj3cyNEeDWU6GGQ2skRwBhGK9R7mtq28Q681lHJBocksTIVDhc7j3qC41a5urVrC+0gxTnlJskEA9MikCMYXUllcpNaOI5k6AdR9KzJbi/e4mNw09yXYt+6GWz9P61dWB0YoXAO7DPtBIxXRpex3k9ssXkWtyFZBKgHzAYxuHv60rXGc3BHcxwpcNFNAG++zAj9aknluLlPLmle4Zegc7vyq9d+IdThhn0+R7Z3DZJKhlx0wM/XrTvDmlJfQyahe747WFtnlxk7pWPUD2oVwuZq6tdWrBYp3IHUE5GK3rPTdD1uyg1N727huWAUrv+ZH9c44FWIvB1jcxNNEs1mHBESN8wznuTWHfRan4avJLd4kMMoB3Y4YVd31JbudCPEqWWf3cs8KcyzQDajHsPrXN6vdQzyG4t5DukXLKe1WtCubnXrldHknjtLVczEBACT9KpzeF7ubW7jyp1+yBtqtnseenalq9iWV0uROAiqqOrAbs5XB/rVqzu5dNuEmtv9eCw+Y5BXt/WpJfBV15Y+z3UdwgBLKrbTuHTpWI9lfWew3Mc6Mpx8y44pWkNM6t/G7iAJLbQCTuQuM81T1HxDpl3G7WlkDegj5JF3cdDgfjVvwpHoF1aXEupvCDFIpXzGwcjJ/pU+o2dlql8z297ZQzK2+3lgAA+hPeq9RnIzaLf3LJLbWRYTE7vl+7+Haln8K6lApxCMOP9WXAJq5Nqmq2hkAugHwQ7xnINPg1XWLuyiR0ebe+wOE+b86aURGI2mapEGjit2kgyMkD7v+NadrpF5/Z6LDA7fNlgT1Brqbe9v/sIiEUcaxMAzNw341NazTT3URjmgRiD5kStyo7E1dhXOCmsnjaWAwNbFmA+bnP0qlJZXEZAZlPlMGZugKmvRfFlv9p0pNiLHKsqnd3C4OT9K4ZbU/afJ84lSMPu5yPWkBg3KMJgBMApzgqc5xUM8gjMbiQb8YzjtXd3/gZp0hns7uB2iAHGACDXM3vhq9t4XeRAhBOVYdfcUpIZiWsK74zLKpCpn6VfiMN0UdI2c7tqsp4HpVeGK2w0hwEb5VB64q1brHFA/kBhGMYCnGPUmuVGzlceZna7ECHzCrHee1JKDvQOcSknYi9MUQ6dE5LWcssZchmDN19SK147GKOMTEgOi4DHnPPWrIKcMk0cPMZVw5JP4cVNdeZM7ozHdEykN7d6sIqOzkSbwBuJJ7/5FVriSRpRGQFlJy4BxuBFAzEvx5MMvloWIb7w64qeFPPjBZ1Ro8MqnqwPNTy+XMZI41+Y/eyM4qsLUmVmDMEwACD0oHFWFjnzI7RAm4Q/Lx2qzLCLpnEjgRkZJHUd6pO7RSC7gJAQY2twScc1FBeJ5+SDnG5znJOBUyVy5K+wXmnlYYZbcyMjsRliP6V1OneFHsbWO/uCC0se9FQfd7c1L4T0BX0o313GzrIzSRKRgEdq3re41CYS2r+V5TEjCjA7dK1irGVn1Mi00iwkhl8/JVBjLetQv4P043XmWybb08gA5GK3J7N7qC6tsxh4xjGeMY4qqiTWyRQRxt56g5lUYIH9ap6glY56JFsNQWKR2duRMBkYWrunXh+1RxRY86bKLC5447/lWxd2cV/C0ck4BBK7m4b865BPDOoT3kEs9zxE5VXRsYINJoZ1L63eKI7HygkIJDLgfOc8muq0/TNE1CS3EZikbkPvzXCxwytI0CEtJG3L43D8+1aMMN7HfRwxAW1xMpeOPdjcO5zSVybmjrFvo2nXl3CtlPFIuChDAq4/nVHT3tbTWrUvH5kLyLgHkLnua0P+Ed1CdW3XURkA3AyMPmHpmtF5VtNMP9paLDBsXY0kSZyOmcjp9adgub2mIbBruW41ESCZyQFIxGg9Kr6hBbauJXupYzAmGjmU/cX1OK5vQNGs79Jrm8vZVgRjFCivg/n3FRz29zpFwH0oGSAL++jZcpIAMYK0xmTdWbwXkkEhDzM29HU/K6noR+Fb2lWWm3d1cWlv9rEyJhpdy/PkDKjNc1cSTtG0slu8WxvkGw7VHXirnh7Vl03UkmmWOYFxktHyB6g+tLqDOhv/AARG2mefYtM96AG8uYj5gOo471jabrGp6OqQPb+bbljtt3GMHpnP1rudP1yy8QzvaRGUBG3B4ztrmfHdtZwyRSi/JnCkGDOcY54H4VRJrvfXtlCstxpsiE/MRGQwFZ+o69os1jdwXxla3xyyryn0B5rV8MXsl9p0EiXIG3CuMfMwxWV4rs5UMWotYK7JuS68pfvDsT60PYlGTBJ4bazZJ2LyRuwR1yHZe3PSktPENjYXBfT4nNrIQzLNyV9hT4LzR3hzHAoUfIAEyTn+VY93cwF28iERIGI256n3pdBnfW2qWF2CbK6jjjkLEq/3gcDin3YZ7NopBHgruIbBH14rzYyLAUHlqA3LDPQ06O/v7SXdAzshOP8AWdB9KLsdizrVrbRmCSOIAZZsnpx1rTsvCyPp0LF5RPPHvi/uc9j3qvpxXxDrtjBesi2yKxlCfJu4yB+YrqLi4IuGjjl8mJTtjRPT0p2uI4G5jmtXWzmiMcivhy/Qj61HBerpbO+m3UokJHmdNo9cZrq9Yms59MMV8xWVQTHtbBBrhGgnmg2AKHkJJboBSemwXNq48QTXQkQXS85Ziw6/lTNM1cXTSQtJsmBI2t1YDvxWHCkfk3W9VzGdmAeWGe1Zcly1tIJLdCs8Mh2tn5iPQmq94mx2V9G8hNzHJI5UABS3bvVWKaSRTICNqj5G7j2NYmneIxelxcBoHwRuzjpWzDc6e8hjgnVvOGJTu6nHWgomjluowpeZF3c/KTmrK69eWahpB9r7CMgE4qGLSzHGihkkU9COSPrUc1g0cpkt5R5icfKMAUXCxxrCV74W0aB4Y+s3oK1bSdbeNkjlD7RwNo+Y1Ws7PyYWby2Q47c1OiLKmBCS4bG4VzWsXbXQvvFBFCLp2l2kZ2qMYPp9KfZXfmu0ZXKv0B9fSoN8ivhyBCI+/c1UluiISYV2sp3k+/SncrlL7ERb8lQpYAjNZl5PIGS5l5Mj4BB+6B0pJnZnSJss+0Nx6mm5Cx751CxIC0m4ZwOnH40y1ARrhROyRErIxEhB9D60s3nBAA2VQ5JB4z6VAWMZE7qR5gxEe233/CoTNcOFMSFQ2Mg/xDFFxystC+l4QuWWP5QwC4zu4qfQ9Ji1KX7VJ+7sbbHmyL0Jx8q/41jJYXt9qkdhbxl7ifIUH+AetehW/wAPvsWkYt9dkF0vzyRP/qZifUAZrSMOplN2ehrrrEOr2CRwRkyREJ+64UAD0FVRcx9ZZXik3YJCgIMd6wNK0XxHHqMo1AjS7SHkvbHcZQf7vXA+taOteGhEkbwXF1qIZs7HYYx1PHBqmhXuXYL2JIHiZwwkk4cDlufWs64vzDNOUmYv9wKpyRxVNkjuJ9iW0hVWz5a8Bfb1p6RXDzSFbHbEvKtF94n3J4qbAaNtm42tNeJ5XXCqC5B4yfatTTrOF2+zqvnSp80gdio56HisKyuTaXwnnhu0gVNrGJMn+VXDr0l9fR2mn28rSBiG87AcoOuenrRawXOikZ7BH09YUtpCcuFQMWU+5pkuo2sc7SPZTSrbqIopmT5ueuKzrrxC6lrfy2SS3IDAEEuOvB+mKeviCFVcrabmYL+6f1J601JCsdDFPHdQqZLWWONUCorjGSTTrmyh1eGa2ado2C7Qxc7W/CuVuvFBdE+zhUy+JA4Jxj6U+z1LUdTVniYyBfvbFOOaXMgsY6QX2jak0SNvaIlCgOVcjuK7C38YW6/6O9gIyCBIx5H0NZGn6TqGrRmeCMokTBZS3XA64rVbRtCu3kjNpekq2N4GC5/KjUZm+J9dN3aPa6eYhMhxyo24+tUNF0satAwk1S3guMcxkDn6VL4i0GDRSggmeRc7milYbgT347Vzk0U25ZY3AmHdTSuI6TVNC1LQ5AwLLC2Ck0LkD8cVUtNPur0vqIt5Z4FbbLKedo9av+HPFUqyf2bqswms5htyw+6a6e1tdHEUk1hfmBRkOinIP4VQbHF2F1LoniG3mDgRIcSxqxwVPGa6y68Y2zg74ZxboByFyHJ9anurHQUtmsdTnWGVwCJl+82eh/CuBvZtPsdRa2F20sQwVZhkH8qGxWN3w1pVrqc91eSSOlrEflXaAWrbbRtC2m5fT5FU87S5yx7muEN5JbtIYXeNC2R5fAP513On3FndabayyNKzbcOffvTihMyb/wAN6ZvgkWWZI5skAjOBmp4vDGnyAvHeskYwN7Dj6VrmWz81CIgsartJYEkU+OwsLi4UYZrUqWMg4/CqsI5PVtDh022Etpeeedw+7wVPNYUt1cWgxHdSSSMxJJ52mt3XdJnitbl9Mmaa1VgZA3UDPasD5GWBFV1bJAA6sfepaGULvUZJIWWQ+bP1z3rOiuGvBuErJwVx6GuytY7jTYWT+yV86U48xkJIFRXa2WolonhEKBgPtKLhh6ijkCxyjSF+InDbF6gfeOayzFLKkiyhxuJ5716BF4Z0aK3DJeS4Qn5mI5zXMTaUxCFmzhztww5HalZiscjc2MzSCNpTt/2euMVmSRXVldGO1dyoIycmusv0t4FlxueXGOO2KqO0ccLhEXzCgZpKpDKVl4s1bSnCpKQynJDjIIq5L481mWTzk+znHBjAwT+lUrjSnnTeAN5CnJHJFZz6VcLIUMchYngimM9CF8IIpSHxJKoyCMgfQVG8lxAq7W/dD7x7nisuZwNkqFmA+X/69OublvKMMsnzYUgD0rlZslYsi4Z7crcEtuOUxx0plzL5iiBflaXBdu30FRxXADokmGfJG0enapZ0Qqs5YY8zaq9zxzQUldE9naAyyXDT8oc4z2A4qJ5HupPLVg8bN+8HqPSpLae3Kyl1Kv5fGe4yKrLeQecY7cBEDZkJ7iqRlKTvZE8k0TTsszI5LBUAHC/SobUhrsCWbYEz5Z64NUri5kE5jMQRISXVh1etDQ7ee+mgQRCR0bdIkfLYP1o6mUmzt/Bumm1lm1O62vPIgSFicYXv+NbV3chH2quQDk4PbvUUl5HLbI0MfkjZsRWGOneqf2gybmlCgqDuA7CuhaIN2advdz2iTNHCwaQ7Csi5wDyDj0qndXNwU3xxpDMwxG684weeKveExbzz3H2lXlmSEmNQxPHrVO5J1OJoYm8qNCdjkYZRn/8AXRuVaxVBZCL6Nis0sgV1KZLDtgdqXQGntrm/sb9z9pLbvKb5BgjgirGkt9hu4bth5xT5Qh5Bx3p+uyS+JLovMn2RVX5WQAPmkFyaCeSzuVXz5mQHGCTgj3q1dadaa07bB9nvHJH2mIbc/X61hWT3Uv8Ao1xCzSIeJk5DJ0JPvW/Es66fNbQjfx06Er2IPtRa4I5kW8mhahF9rtfMKtgebyHA7j1ro9f0231HSrfVtOhSGVWAmhTgbT0OPak1PF54Y3tOPNtjuUOOVHTg1xk892G/cXsiwOgR07+5/rUOyKL8elLLcJEqsp34Lu+1Mn1Perd49z4ajiXTtYglWUgypFgdPxrIaFpowhnllD4Cc45qmbKN51YI32lAeM8HFF0VY7S18eG2soYrW2WRsbp2L43Oev0HtVlviVM8ZhWyCyFDhw3C1wlgZJYdqWpkl3k4jHU+ldC/g/X7iw+0xaWiMy/cdyJD+HSi5FjHu76TWb7dMwMj4Uvux0NdHH4JvpXt8y2kAl5VvMB3jHOB+VYU1k9nO9vcxfZJUONrjrXUaDput3Pk3FoQqRZ2yTn5RnH3aBvYgfwArtkagcocuFix3+takHw9Vf3kGpvFuOSNuAf1rrTFIQWmjXzUXll6PUS3KiONXyjHse59KrluZ3OB1/wXf2to9092t6qAksw5VRya42O3DPGrrsQ42yYyAK9z1SNJtDuo3wrGFwPY7TXiMUE/lMYWZmQEBWHDfSpasUjej8FOtj9ug1UXFu5BDSNgAd+KmmbUPCxiYYuLWRsDH3c/WtPwxqd9qei3Wnm3hiWJQkTYyC3U5rY1eD/ilbiC8RLl3Tdtg6Bx0K9KpAczpXjG0cvFqoEcm4lRt6E9j61rybJrWEpqkafMSig/wnrmvLyYkxJzISeQ/UVaMit+8STb5f8ADk96pPoJrqdZrh+wwPIdYjEKxlVgReZMkd89sfrXMx3rspuVdVlLDaM8iiz0++1O4VI0LsOQTyFFPuNA1HTlle7spYpCuUbAweaTA7G28X+ZEkF9BKzBcqU9frWXHa6brCyzW1+1u7Md8cxwM+vNYwn8tNssgMkYGRHyR9apX1xdyQmeCOKVsFTAvDfU0+gya/0x9OZYo7hrtkAyucg56YrGdma6Ulvk5G0D06c1OZZpJYDA8hkKjencEdhWXdyah57QiEkKclVHSosxGlZ2Pn3i+Y0QSc4OeAM9ea028FTQCSVYFkidSA6vlSv+Nc7pWqSRXiq0DBklEgUjIbHauutPF2opv8613Wwbcyr91DVpAYM2gvBFNi4dnjj3hMZyvcexrNwAPNCtgqOQ2MH3Feo2mtaTeIFgWGNm+d945PrXJ+JtEiN5LPpzI+fnYIflp2A//9k=", "path": "images/4pts_ADE_train_00008197.jpg" }
depth_point_35
images/4pts_ADE_train_00000573.jpg
ADE_train_00000573.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 123 y = 180),Point B is located at (x = 199 y = 110),Point C is located at (x = 246 y = 174),Point D is located at (x = 102 y = 191).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_6><DEPTH_11><DEPTH_67><DEPTH_30><DEPTH_3><DEPTH_22><DEPTH_69><DEPTH_31><DEPTH_49><DEPTH_59><DEPTH_5><DEPTH_74><DEPTH_60><DEPTH_38><DEPTH_40><DEPTH_15><DEPTH_49><DEPTH_29><DEPTH_29><DEPTH_31><DEPTH_67><DEPTH_60><DEPTH_35><DEPTH_59><DEPTH_59><DEPTH_31><DEPTH_3><DEPTH_49><DEPTH_29><DEPTH_31><DEPTH_3><DEPTH_31><DEPTH_3><DEPTH_11><DEPTH_30><DEPTH_43><DEPTH_38><DEPTH_30><DEPTH_59><DEPTH_67><DEPTH_35><DEPTH_56><DEPTH_73><DEPTH_20><DEPTH_58><DEPTH_46><DEPTH_75><DEPTH_3><DEPTH_11><DEPTH_11><DEPTH_27><DEPTH_52><DEPTH_4><DEPTH_78><DEPTH_0><DEPTH_82><DEPTH_48><DEPTH_50><DEPTH_66><DEPTH_78><DEPTH_57><DEPTH_52><DEPTH_4><DEPTH_61><DEPTH_4><DEPTH_63><DEPTH_66><DEPTH_63><DEPTH_76><DEPTH_74><DEPTH_1><DEPTH_19><DEPTH_39><DEPTH_45><DEPTH_45><DEPTH_25><DEPTH_44><DEPTH_44><DEPTH_25><DEPTH_19><DEPTH_2><DEPTH_66><DEPTH_19><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_41><DEPTH_41><DEPTH_0><DEPTH_1><DEPTH_94><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_42><DEPTH_END><DEPTH_END>. Since point D has a higher pixel value on the depth map, the answer is that point D is closer to the camera.
D
long
4
[ "B", "A", "C", "D" ]
<DEPTH_START><DEPTH_6><DEPTH_11><DEPTH_67><DEPTH_30><DEPTH_3><DEPTH_22><DEPTH_69><DEPTH_31><DEPTH_49><DEPTH_59><DEPTH_5><DEPTH_74><DEPTH_60><DEPTH_38><DEPTH_40><DEPTH_15><DEPTH_49><DEPTH_29><DEPTH_29><DEPTH_31><DEPTH_67><DEPTH_60><DEPTH_35><DEPTH_59><DEPTH_59><DEPTH_31><DEPTH_3><DEPTH_49><DEPTH_29><DEPTH_31><DEPTH_3><DEPTH_31><DEPTH_3><DEPTH_11><DEPTH_30><DEPTH_43><DEPTH_38><DEPTH_30><DEPTH_59><DEPTH_67><DEPTH_35><DEPTH_56><DEPTH_73><DEPTH_20><DEPTH_58><DEPTH_46><DEPTH_75><DEPTH_3><DEPTH_11><DEPTH_11><DEPTH_27><DEPTH_52><DEPTH_4><DEPTH_78><DEPTH_0><DEPTH_82><DEPTH_48><DEPTH_50><DEPTH_66><DEPTH_78><DEPTH_57><DEPTH_52><DEPTH_4><DEPTH_61><DEPTH_4><DEPTH_63><DEPTH_66><DEPTH_63><DEPTH_76><DEPTH_74><DEPTH_1><DEPTH_19><DEPTH_39><DEPTH_45><DEPTH_45><DEPTH_25><DEPTH_44><DEPTH_44><DEPTH_25><DEPTH_19><DEPTH_2><DEPTH_66><DEPTH_19><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_41><DEPTH_41><DEPTH_0><DEPTH_1><DEPTH_94><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_42><DEPTH_END>
123
180
199
110
246
174
102
191
null
null
58
27
104
155
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD32loooAKWkFLQAUUUUARPOse4OSPTjrXHeLNaAtBZR7xc/MflYBjGOCR7nP8AOrfjG+l0aODUZHd7USbXRWClcjj68ivMPFvia2vFsgYLhLhYvncsCCD0x6DPNS+wmzqvDGulbhLC2JknkKq0pJIRcZ/PNelW/EQXAUDgDv8AjXgXhK+e2nlnhZ2kRdwXoXPAx7DmvXPDOrXWrs0k4SNVJPlg7j7c/hShpowTOnopFbdnHQGlqxhRRRQAVHJIIyuSBuO0fWnLIrFgCMr1HpWXql0EiKTMIdsqGOUng85/xoAqeJr7yLKVIZzDdhd8BA+8w7e+RxXAeO9UYSadqtlGAzxATzK2QucfKD3POKseLdYTUhdQRwOTBHvSUHOYzj+p4rlppDf+EooZZfPv5pdiMBnyY1wAmMdTjp3zU7ktj1vLzxBcJkPKzuFLk8kKOoHsB+teieFr6JraW7ikcW6BLS2RjkgjOce56muS0PQSthJE8cg2oZZHGT5mABsGOTgHn6+1XNJub2G1t72cxeUNsaJgEemQB0455qWuXUEep20qSQqyMGU9D6irFYFveCe8s7eEgRiMS9OSeR07cc1vKQVGOlaIoWsW91+K3nuFj2SR20becQcsrgZAx345NbVcFd6Ebi811Y9R825mVhFa4CbC2Cep54x/jQJnnl3quoLoN5KL63Iu5SJYEb5wMls4HOMjtXGzBtil12l89Rz/APWqWZ5bO9nR+JIJcMDzhgenoadf382q3c93doDLO2/cFwAccjA/AYoSM9yrbL5jhANzdAAOSOc0FlEZzHt+TAbOcn2pIJAFMiJuIOF55B65FSSsrRHa+5eSN4xg9TgCgZVgmZZUDtlR0FTXaoEiZWCs4LMvHy9h0qquWcEcdSamtZIz8zqzAkgrnGRigRbtxJHgB1fAwrDkZI4A9+atW1wWKEDYACHh/vvjGf8APvVG0nlKvDl1QDEbKOAc8kn0xV1LlbewQR7hJkswK9CeDg9enNJoZQuZwsjgvuAUDOMZPelsCk13CHx5YOW3DIxg9qrSEZKj5l6jcO2ajtJnhvkYMV56g42/SqWwup6O2n6fFoRvU1K5a7a2UCOKP55BxtVc8hQd2c84HtWddJDqGnQmzf5dLtkkYsDlyxy4I9NxH5npWppl5JcaVdW8V00djYKPLjC5wjDDbm2ggZOc+2OaTRtCt9eiuLiykW308xSIoY4dWUlumcgcdf8Aap7lGHrl0Hslkad3luIowJFgCJIFzwD3CnA/D6VQtNFk1S3ivluIzL5nkiJSAwwOCRxweeevHes3UtRuZpQkrMFiPyg5JAz0556fyq0t9FJZM6SSxz9Mhhhxkdv4cceueaEIsa15rWmnNdSLLGluYYUhfKAhstngYPIPfPWur8MW7S+ELq3sXkjvY2N3vAONiDaAOOc8+vvXN6xq9peeHdIskcyXVk8isx4BViMY+mD/AI10fwuhk1PVJYRdtG8MDlIyWwCxALDHHTqDS7B1MSC1u4vFSHUZy06IWWRAOuNysc4yOf6V6neSGz8PQ61DHbvqt3IIyYg0YnQtgjBI/Pg1jeIpJ5PF9uVvbSGaCFUjZk3+Yu487c89M/jXS6frUFxpcGna0fNuHJiLpGVDsOu0Dnj1HHvR1GjtKKKKRYtFFFABUM8qRhQ5IDnbkdqlbO04xnHGa858aeKZNEe1ntplacSEyW5OQmBtJH49jSbsBX8eTiayaGPUyLKOXE6Mm8j39cdK8bmSNL7AkaSHdwT1I7V23iTxY+uJI9nbiKGSAG5VUVlIGMufQhjgeorkZjbBIoTncud+9AOeAAD/AJxTIZqQ3YS1VFjkjHMa7efm75r0Pwpd3EMO8yTsPMjV0VQoT5QAQcc9PoM1xXh2dLZLye8s/PJJVVYfdLDCsRXQ6ReXUTRWZcgyLgruyYxnr/Os3oNHrtvNDGiRBnyxIG7JOR1q3XO6Rdtqk85mi8pUkKxRv94ADhiO2eTXRAYGK0KCkYBlIPQ0tRTXMFuu6WVEGcDccZPpQBzmr6i2jzpciTzEIKMo4DH/AGj6iuZGrx3TeaJ/Nt1cK8Eg3MSed3sMgVa8T30OpW15At9DGc4VD8oC5G7cepbjp7V5paXQ0/WRLJPviGVZdudwxxxWT3E2al3pV1dam/8AZ9zEzrlpmDYQHdzz6DINVbKOTTtfgVVYu7KEjf5iSSPm44PINWl1u1ttSu7ixFxHYGHCr3WZl5JBzxkn8KqJpko0ltSmvGFssm1pVbMhJb+EZ4/HrmrXkSbEGrzaRaRhXkEReQ5D/KSQM8fQitHTpCfDzQNETcO6OzOmGKkHGPocnPpXGpJHJsgcbUiO5F6b/Un3rWuNd8+3t4lUKdx3N3AA4GfTFZN2Geh6NqdnNeRxmKZrlwI3OcKAOF/lXaIwIA9q8i0KdLFpjLdHMqgkqeRt5wvuTjmvRdFv/t1ul+7ALcYWKMdV9c++aqnLoyjar538WajdDW7q7W6ZZ4ryRVRBghDxkj17evFd5478Q63oPiW3eF3js3iKqy8qc8cjnkGvKLu4iC3JlZbiSRwzOxPvn8eRWvqTJlS7uxPOs+wR5jVHCfxEDls9BkVEbzdOcxpGCc4RcD8qkubu2W3toooSrBCXYkEuxP8AID+tRzXLSxkyqpc5JbH3mJzmgggugCzeWrc8ucYHPSmu4KttJKgdAOBVcyMMpyQOCfahGeMKzHOeORQA/jzC5+9wSKIVZ+Ux8uSSabKMyjC9RyKEHkuDtO3P0zTGW3klRpV8snLbmwOp9vQcmnvNlpYSTtkUAZPTmm3bSeZCQGjkZAzAt1Gev8qqiVvPIbBHrxS8wBQ6u/OBwuRzUtrBumVpsFByfWkuHEr5Y/eGDtUDt7VEJo1BRiSVHPPA9KNQOz0mWDUbGS0W6htEuZXSVZSScYGwknqR83pzz2qrpcxsfEMNst3KqGQ2yzQpk+W3yswHuCfzFc4LtxtUthUORx0zWho2uzWmpI7bZZXdVV5M8cjnjnsOnPFCC4/xJBareRXVlEUsGBjhcxlfM2nBbnucZPSsa5uZri7klJLKpGGHAAA4GOnTH5Vo3iaq2jyNcyOtlDPhY3bH7xs8gHk8ZrJg5VpCuEOVViBmqAnkdZI/vcn+EAda7/4W38FtqN+0wCEWruso/gIHJ9ORxmvOfJQlDGM5HJ3YGfxrf8ISm11COWaXZbu53IhDF8EfKFPXt9akaNme7ml057mOaCOSSVGXbhWkAXBx36nntXf2FneR6ANQt7lLaOe0K+Z5DyFmLNluvBwo5968/sLyxktrqO10+N7kO0luzIW2/MQEYZweDnPvSDxHqtroRguLxltPLMUUAYeud2ByODT63A+kKKQMGAIIIIyKWkWLRRRQAyRwi5Ks2TjCjNeR/ERNL1OadROYbxANsMi7fm7t9NozivWp32oP3nlkngkZryv4m22jTO07ap/xMIwMW/bBIyenXFJiZ5g82oeF5G8qZNl1EUbYwO9Tg/4dfWsp5pJ5TNJ95mLE9OTRfqBMwQsy/wADMMEikt086F5GLGRW5A6NTZB6FpVwUt4CLRn8wKssq4AwOxzyT6HsadbyRxaj59+syEFVR5DnAHJHP1rj4dSxax23mMqpv3Op5IIAAweMcZ9a0/Dxxew3F95klkGzISc5Pp+NQ9rDPZfCWpjyPJkaR16wkqcMvPPPPY118UhkTcUZPZutef6X4jD6kds4EQyqoRg8tx+n5V29ldSXcAk8oIN20/NkHHcHvRCSZZcqtc20ckefKViOfu5P4VLKzqo2JuJ98YrjvEHjh9GvLaA2coJcmXKZ+QHBx7ntVgebeMrM2GpyxyyT/NkxM+Bn8vTpXKtJ5Lbdvzlc5Yeveu18WavF4mk89NLUFeY5Wb5wozkFfrWFcQ2v9l3K3FtcrcKgMTSYDBcjn278e9ZtJaohlKJ4rq1lidFa5d1KEttCKAc59fWp5bxXshCu8CSUOigYUtnGSOoHtXPJKFbaSc9MntUpkDvIu4ls/L6Y75otYRqktLdRy4VCCucdMjg/nWrZQsuqzXDui5zhepHrjP41z9pvDYBCqDgO/GPce/NachFrDJbxKZXQfPIe/IIIB6YrORSOkE1s3lblZw2C49ec/wD666rSnnigd0xBJbo0isx5AwAqhT61wNq7GdHLBV6MQcjjrWlqWu3C6ZLbRTqrRpvM4YmSQnoB7D86iKs7DuS67f6vr1zbQAwvHfNGv2czht2AcOVHIHX06CvNb2Fkunjk4YEqQwwePatC1v5tPvftSkM4Qrlv4cjH9TWFNOZLlpRgjuK60Q9RyxsrEsCNp4xUjyBnOGKnPFVndx+7ydrDNN8wZGcNnqKYi3E8MYB7t1HWonKxtz9z09ajZkA4XIHc04Kk0IcEhh054oAYZ8uSo28YAq1HceXCibiyBwxB9exqukfnMeVAVckeppF+RlMmG28kHofagZPJM07tI5LMDgZ54xwKg3q5YMOT0YHofpUck3zOyjG48A9aWJwAoYAYOfrQA58s/Lf4Uxgo7HP0pxOx93PPTvT5SZZMt1OPmHXn2oAltXyqhVV2DZIYcY9T7AUrIZWe4U/Kr7jtG0hemRjioH+RdsZJwOSasR3J8t7UvhJkCkkkDP8ACTj0pAOuDeNpylnkEUjbY1JzuA4B98YxVGRiMIfug9cYzXQ6fpLzaZLdXF0rXcUZa1gikDO2H2nPoATn9a50HGCVBdSRj7wb/CqAVD5abVO4N/CRnB/xrckt4rbRYrlXcTSgHA/u5PJ/EVjBUKkByBtDEdcnpg1ae/jW08jDOOB8xyMccdPbioYyW0vJ/O32ryr5J35hU5zwAcZ7nAp2pX0tyEtt5njaVrksEHLMPmPqOeOfTNbfhEacl7AbicIJIpHvN3SNF5GB/FkZ/TFZGqq0l5PcRQgRSyAKXAjIYDGMdsAjOcZq0B9PaPdi6gWSPPlbRtJbJPFagORXl+h60+nXJjMmBMQQeu1c9Me9eg/2nFHpQvpB5cfBIbqATjNTdMofd6nBZTW8ch4nbaG7D6mriSK6hlPBzXlniu6uIbxoGz5bPugbPysh5BHr6VuafryxW6+QGdEVIkizuxu5ZvfkUBc6y61CwjAinvIYzIMAFwCfpXA3Vp4HdybzUmuJ7iNirzTEkDp06DHXFcv4402MtbtYF1kkd38yc7AE9M9OteZ3MZSVkml3hSQChzznt7VKbuJs3NbXQkv7h7GaWeKEBYPMGPN+Y5Zvz7Y6Vgwzm3ZAuQrHPvTYTH5UjyM25WXYhxk+ufakmdZwvBMka7crVkli3cxyktErRkdW6YHNdAtyWaGCGdUVtu6MnaOOhP5/rVHSNGfWbd5xLBBFFJtkMhwF4689B7+9bd7BoWh3cVnb3aalH5W642AYWbqAG7jp0qJJDOn0/wAMXzRTPIk6vGvmw/KP3y5w3+NeoaGlzHpdushVMAZBHI45H515ZYeJjf3CQpDPJEg3GJZSFPHt7816LoGpy3OntNeIlujOWRnx8w9M+3T8KSauUjopZCi8KCO/OK8p8fq8skl8z26o8G1UMoLlh0x0wO5NU/G3jGWHU5LPT9T3AHLBG+6eON3Q/wD6685S9a8LCVi5ycE9PpTbYmzU06e4eGaCcTCCQZWbup9R7Gqf2meOWSIySMcFNyjnOOR9Knh1FtqtKrfIdme2B2/WqErs2+RWYEMSSvHB9ayV22SK2oW73Mf2mMSwqAHSMbPyIqIvA9uZ0C7w+0xAHhcnkn8h+NQuiLCQwAYt97PUelEbxb3XbtVk4yPTmtOgGpYN5MamePdG4O1kwSDx14+gxS+erRSRK5BdySerew5pmnsyXcErrGUYgqr/AHQff1/+vUdugllbdEAxYnByO/Q1mxmtZDyGUPJJMAMBE6k+mKn16W3tGs7i0V7a5VVYRn8eT7/yqKKS30+7klM6lWBKBRkr2/A1i61fPeXSy/NuUYcH07H/AOtShrIHsZLXAa4yw5P3u/8AnrTHAKhVRVG7l2GD/wDqqF2Y3GFycnpUkzybmXO3AyK6SRXEbFQSMjggDrULLGhIwzEUjOHCYO3aBzSqmZgrt8pGT64oACN8GSRjPFNx5fmJkMy/xLyD9Kc8qFBGowDx6fjTNrwksGzx2FAya3kCIXwOeMntUM9xvYEgZGc470wy4Bxkj39aRwGlDLyGoARQXDOc7asZAUMoy1Qxk5O49BwBSZJ3Z6djQBLDK6yHGc9Oferhl3KS2NoGFwefrVOEDaThGIH3W/iNOVQVD8rjtU9RvYjabLbCML0NPUK5BJwc889RUE5LgN3z2psZbKFvlVf6VQjUs9Uu9C1KG7sbhkkiBQMoIBGeR9KqhkeCV2LiQMGTHrnmomXzIyx5HY063mWMg7I2K/wuMg0h3I1kaSSSR3+djk553E0+KGS5uUhiyXYgAcAGpDP5xijEUatESFKYGec8+tI+GgCxqGCKS2ByB/hQBZ0rSNT1Z9lhazzso+YxIWCjOOteheJvDb3bz6fbOss1nZxEyOwVWclMKBxnjjOO4qf4PiS3jubmO5hcna0kTM+UByoOAMdMkn6Voa7q+mwXEmvSNaTTgyRHezMpweFCDqCMDJwO9NdwIRHJHfiR1SZcrtQZyPQkfpTtUvBeSlneQSDkru+X6fnmqFpMV/ehWbJwGOd2P8M0+WKOVfLGFJOSayorS4SZH/aMks1rHI+Ugb92r84Hb8P8a07O5jsltnu0kCyIGUxtng5APsQefwrnkRdvyE7o3ORjt/kVfZUk0mGUTbrgOU8oAnC44Of6VsyUaHjSXSk095pJLeW6vQJBMjFnRucgrnAGOK8wuFSSEKiN55kxGFB+Yf48ir99fGCeaAW5COF3rJnJx0Iz0zmsj7ZLHN5qtsmzlWAxj6VCKuRPaTRXRt5yYpFJDCTjbj1piSNCFbhifm9SPrUkt155JlLNITkuev40jIv2N9338gjFMRMbqRpApZlU8hR0yRjNb1joYuJ7OPzkQ3Enk/NxtPHX2561g2d1Il3BMIlPlMDg9DXT3l7aatrb3YWWBpAD82DyFAz6dRUsDuY/h1e6VYfabZy78h4HALA+xq2ul3mo6TKLqSVUt4zIq7tpHbAwM9Qa6nwXrcuraYYb8xNcQYAZRwy4wD9f8ata1PpsVtIZWXzRH03kADJ5OO2c81Lgpe8WeFeKdPisEikS0eEvhmSZwzYPI3AHI7cH1rnrOTfM7MqdcquOPwrp/FTWUmorFp8012Tgzsxwm7qAue368Vy72k4Yk4jKn5QKq6asSyzKWMJIbOTwM9KqEyBMjIPXB706MSwMJBGCOhAGRUk25wilSJCNxGMcdaQiOOVyu90Log444B96txsk0SoVCErwT2yen48/nVaNlVWVnYAjcFHQmoUlYyl1yQnNJ6gStO6Sbg2GH8Hp/nFaFnNcS2skiJwpyzHvnpj8qyDLIZ5g4EZ3YcEYA9vzq15skaiCOQOpOQ4HcClJXAl1K7zHGCSznOWHcdMYqiZcSMwIDYBOTSySOgXzNhDHdg9j71XlZZJhuwWI5zwKuC0Ewb95co2Bjq2TRLIsmdp+fOc+tKsCvsAYY5yKhcCLOxhx1xVgI0Lqu5iFXOfrSyFC6smeODSSXDsdjYPvTWBQ84Hqc0DEJDhjjAUZJxUol/0fJ9MnjPFNiCuSSBg8bSeDUW5kZjwR049KAI87iQrD2NOaZmzyOuaiPBIAKjrgClEZJwOD6GgCwq/Mee3X1oCCNWGdzdvamxSYXJ28dCaZuJPzHmgCWNh5iqoyxBB3HjPapJWdlAb7zHBOPSolR3ZQgAbBxn0p85ZJFYEO23HHal1ATy9rBm5XJ9qrSHd8wHQnNKxlbIJ+U89OlRsf3ZHcmmAoYjscY4GaeSY2KYU5AycdKcqDyixb5gOM9z6U2NAYySRuJ49MUhllI1ZFkDKOCeT6dqn0+MSB2aZYYnxHISMnGQTgVWYsscUYycdMcA+9aNpJaRaXdwtaq13JzFcMeV5GRj0wD+dJabgaHmyWY82LCkMspjD4DLxhWA5x/PNVpLO51S6ht4Ix50ybl86XiNM5A56Y/lVK6u7i4ubVbxc+REIwVUBmTk8nHJ56mmsZrtWuHL7owFVm7AdM+9PRAeoqQLWKIOSowNoP3uBnn8KYYmnLGFoi/GG6bfXj8vyqC3DEby4Uj+AD7oqaeOJok8kgOvRx/KlCCVlcJMpph9RxOrRPn5inf61oT27CNktpdjI/dchvoaxbdibti0rKcHLA5J7Yq+2oWdtbJZyvIzSPz5TEE+30qarcWrDilbU4rV4Xju2JkDyFiGfdnkVjuZfNyGJfua1dZvIGuJFtUaKM/wALHmsbOzdnOfrVR2EWB+6U7fvHghu+aMsEUsCR0GOKgDOx3Ekk96Qu+3YDxTEaCfPZqwYBg7AheqjjFbWk28d2rZJEagAljzmubgIVwWG7j8q0YtQdZNtruRCm1l/vH1/lWc02rIDv9HvNQ0S6eO2mOGXDvgbsE5x+lbOp67G+kvPdMcSHbIo43e1czplyt/Epll2SpjzMDGSOlaYtFnimglx5LDBz3Pt/jXNGUk7Mo4KW4uLidvKysKttHYAe59aft8nb5ZdmByD61b1idVtBBBthswSy7gdzt3z7/pWdb3Dwh0VuE+fpnbXTLa6JsNe5YZVAxJ6+hFSm5DKonXcRxg9fem3UheUKDGwIGWUdO9RSxvEil1I3DIyOtTowLck2nyiPCMgDZkA9M8YP0qrPdxSFRbx7Ext2E4GOxNVUh3liWxgU6FBJKsRBIAyxUZJo5UgE+0LJdyzkZzjBxwOP1p7TtvCqhXP3M8Hmq00qPdytEgRSRlV6ClkuA6hXXJBznvj0p2GSzQ5ikZnG1Ow/iNVIecjblgOc/wAqsiZXQLlygHAPbv8AzqEIyyMxyAwz0q4iBZDGJA2VcnPHeoJZTnIwMgZGKsSOCS3VT371WK56cluAKsEMuLlbW2e5Chn/ALucZ5pL8apYyRrqOiXtgJZNim5jZOe4G5RnFN1WFE0qQ5G8BePxFdD40n0rztW+xTgyXviD7UBHqMN0lxHmX94BGMx43jAYnO/vtoGkrGHGyqBnJfd0z2p0sIZVZWCjvzUMY/iA65FPXllGPlz3oELHIi7g3zN0HFRvIyuxHVhg0sjgyBuME4wvHFNGTlQMjvQBJ5ZVAz8AenelBiZwSpye9NZyUO7PoB61PE4MfzIPlGScdTSYCpjfuAyNpBOearSyKX3LnAPOamZgpVlyu4cmq7yEIyjkt1IpoBskjM+5jmmqARznGeDilaF0GGDA+hpUJRckZyf5UDJvKVhyTjpgGoXbHGRx6UPIcY3HaOgpm0tIQEIPpjpSAnjnZZA/B4I+lPYSL8w+XecD3qOBEcEMcY5BxmrxvIWSBShdEY5ZyM7e3OO1S32AqBpI3aNl2yK2OT0xT5JnaJ1DkgnJ5pb8rDdHy5N/yg7gc5BH/wBeqLKyBcArnn601Z6iPWfmR8Mc7Pu4HSmSu+1ijYyORW9N4U1Z5Mi2wx9Acfy4rMn0DU181TA6+W207eewP8jW6cLCabMWMLIc4CFR1/z3qxHorX8a+XO0B3/6xum09/0qBbS4jvPJlidTkgqe/wDjWxLHJLpttbQuwmklfeowSygnAx24FYVYt7FRt1OD1mzisbpoFO4qNrNkHnr2PFZagBQXACjp712Oq6NDa7RLaEF/m2R5zx15PPSuXnQyEs0YUk7VjH8P1pR2AhRise1YwWPU4pqFAuTy2eKtwWN064iiYh8gZHp1NNvdPnsnRZF278EetUIbIsatuiYemAasWcGPNYLvKDK4Heq7WjNc7UU59AOa6XSdPniHmBZA0YyGA7Ee9S1pZDLWmz24sGSVwJc5IPI5rfSbyLVGkyYAp27eQR0HNYkVksnlpKNryDPpkmtsWKPYIs6OyADAJPy9vyrlnfm1Gjz3UmWW5Z037M4G45NVoJlhiJUDcx5fPb0rdvtLl3SCZdqAGTC4GPTJ9KzktHgZJSmOMhXXjFdV1bUkjimkEkcqRLkH+LoRUupzCS5aRcFVwuSfbsKSVt8fmDCkk8entVSQjyyPvEnmosm7gEN0bcOVQFmGBnsKjjmePJRyrHOSBj9aQ7DKCQSvQj2qWRI3lEav8mMnNOyAjtkVRJNIyntg96ZdNG7hI1C7e+etT/ZlaZvL+eNBnp/SoBbE/MB16Cn5gOjik2N5WCQMk01/lAaTcpJyc96sxI2wxgBdx5Y+nX/P0qtcbnyGwSnygDqPrRF6gV3lAU7MgEc+tRpgugyR6GgxqMlicA0jbdo2g/jWgDrqFbmIoxO1yAcHn14qiulW8MiuGl3IQ2CRjP5VqokaQNO4Z8NtVA2MnrSXahYUdMqJATtPJBzzWXtFzcp2vBVFR9rdbXtrezdr7W387+RWdihBUbQaRZv3bKeTmlj+ZSHBI7GmPHslwe/51ocQ6Vdq7OR3pYBtBLdccDNRg5bnJNWZYVRlKuS2ASAOgobGNBG0kgZ7c81LErzyhIkMksmAFU5JPbFJFGCpYMAQCeRV/Sdcm0Zmkghg88BlWV0O9Mjsc9aVwKj6feneGt3V1QzEMu35B1bnqOKJLS4aAukBZPLRmIXhc9uPXrT9Q1SbUz80US7U2/Jk5GevJPf09TTZdVufs8UK4VlUqXUkEr0wecEfhTApvIZJQcYUEgDJwPYU9oxsRvMDDPI6FT7/AONFzdF5Afs8MfygfIuMnHWofNBOCMn9KAH7miuEkUL8hDcgEflUtzbSW95OrNl+SSM4IPI6881VJGDz8x6YqYGTYsrsMOSo55BGOo7DmhsBqFkjySfmPT2p8soEZSMkADp15qJyWYFgMAjjpT5GLyvtVVTJYBRwKQE1jay32oW8MEIZ5JQiiQ/KW64JqfUp7p5nsSRGqNjy3ccbB0yf0FO0XWTod8t5ZhvtIYbWcAgKev0PvUnijUJNY1efUJ4UjndvmVeOAAAfc0r6jPoVbuMMAVlQE5JWfG329/rWb/al4bybypLiGEnK+ZJycKOSQeeenFRtHd5Vvsp4UArkHmo4TelgZNMYYPIypz+tL3uzNEo9yU3V66+c92XbJ/jGQOwyfxqJHnlfzGlVWLMP3kSnp0Of85qzcxSJIFW2EiHklMYGee/cdKrshjGRYSH/AHVH+NDuNRXcrvp1xeSybntLpHBRCIym0cZGVBxUlz4XhuLeCF7WzghDl3aKMhiQOBkjpVmOZliUrZzJ1ygXBFQ3eofY8edHcBZVBxywwfXk4pahZDp/DyS3yM1nFLGE27vP2k9c5Xpzn9KxPG2j2ca6IqWSI0t5HEzLJy45BB/ADmtQ63bCTaLiZSe4bAxXP+I9ZgnvNJRZJJPJuhIxfsMjkfnVKSvYnk8zVm8EQDWjPaxSQKykLiVTtPr1yR/jWtdWAmVgtnOdyAMUYHJHNRDXLYormScK4IDc4PtmmnWtKlxE1y6MATnnH8utF4voJw8zObRCY5pXtrwFSoAZTnk9QMc1NZbhMIkt7tgBjMqbag0/WrP7VfrLeyELPiPcxH7sqCAPxzV641vTYYmRr+ZQ/JCsx/WlLlelgULdRmoaIdQdVaDEW0MuH7/XHOOaybrw9pf2mCHz52kdwAgBfb9W7etaSapp6RKg1CcAgEqrZB/OrFjqUYdXh14snI8p0Xj26ZpKy3DlOLvPDVjbabPetqEjsAWRTbsocd/1zVePw/ZSQhkupUR0RxJJCcA5+YYHJHI5rsvE+pzN4VvrddVt33RneBGNzjjgc8VXsruW2urSaHWBE72ow8sYKquFwuOlF4hynJap4RmgvEwypbOqyC7ZSE+YErx1ycGqd/4eh0yBvNvVaUlOVHyqD69+nNev63q/mWMQ0+7tWuXbqyBt3Hp+tcqun6gupJNJLaSZBlxtDZOcHcMfl6UoyWwShY57TvDltcaprqQaorWtlAhDwIP3oK84yeACKk/4Qu2HiWw0uHW4LhLiKRzJEv3dvRcZ6mtHSLmVdU8XbxEjSRKoUBVAIU4AH09KnttQnPxE0+S9+yDyLdxuhRVGDnnjvWl42JsZEnhc2G1Jr22YAmMtE24j1bFXm8ASyOkovrCRGwy4fazJ1wRjvXRia4eeF5bbSdrzZk2wqGRdw+bOetVL/V/sF5Az6PaXEO0sWjUF0K8/L83QVmuVvRhY4fxj4UudIKXDR2ywXEuyLy3yfxHasX/hG9Vgto5zbNsmLqihhuYJ94hc5wMHt2r1TTL/AE7UhpiSaGs7RkKJmZhsbO7PXB65+uaw/GmjQm+a5tYodPjWIfZ1Zz8xUcqo9ST16VXMlZD5Tz82l1Y26M9tJsnAePzF4dckA/nUV3BO6GaWMgD5Qew9q6mGKO9e1t547aOGIqFQTHGerNljx/Kr3iPRrm9mjewtXXTyEVQo3BsDliV6/UVPLFS5nuaPEVvZKlzPl7f19/rqedlWSMkKSM4qOQs+CR81dhPf6bDcvA1glzBGQNyPs3Edea5OUqZ22KQpJKgnoO1bWfUwEgjaQiMDaHYAt7da3rYQWiqVRXy3G8dqz4boBI08vCxoVGD1YnJP8q14tOuJYopPLLAjcucjOaTi7XY99iudMUyxyu5WFl3YGMgZ54+p6VjXCD7RMsTb1DnDEda6u4sLgQCHYhIUEMp+6a54o1vdTIMq0b468jv1qFe1x2ZVZfIjzj5zwRUAcOwGAD9KtTgsD3JNV2hYBjg4FUhWGOA7Yz+dKkRZuOPQ1NFbjarHr3zU+0YwOOO1DZSRmryfQinGbLKMnaBjBqaeMoN6DOPvD2qrEMy4z+NArDzsA65z0pwChBnpTvJUR7/fj3qYIXtQEHNFwsVQGaZXAwCw6VveIkJuoRGhYqm9gOeKy44Ssabv74IH412Uuj29zdNNIXy2MgHAOO1S2NK50x0rxMD/AMtse1x/9elOm+Jdy7WuR6/v/wD69b8WlBfvGUemLhqnFioYfPP9PPNTzf3WKxkeIYddOq7tNNx9n8pP9U/G7HPHrmshn8XR9GvcD1XNd3NCjShkdsbRnbIQM454zSpHtHDk+xJ/xolUSb0Y7Hn7av4th+99pOPW2/8ArVra7rut6dPaLaxl1ktkkfMO75znP0rrsMOVOfbmmv5qgFdpzzyaFWjyt6i5WcKvi/XP4rC3kPo0ZX+tI3i298xBe+HrBgzBVOQeTXdYlPWOMn3FZ+rX8OnLaPdW9r5clwELyDAjOCd3T2pKvFuykUo2GteJNoFlLJpCSRySNi3BAEZHUj61CkOny/e0F0z/AHXH+Nap1jTo9Ptp5Lq2FvO5ERzwxHXFLJq+mQBmlngTacEkgYonKV9Gvu/4ArGGmk6DNf3EAsrmOcKjviTjByB39jVqPwvo+yb9zK3mJszIc7Pce9T2epaNeay01pcCW4kg2EJyu1Wz+eW/WtjzFHO04zjpQpT5rOw2kcqfAumH7t1dD8v8KB4C0/HF3dfkP8K6rz41xlsY9aDdwjrKo+pqOep/Kvv/AOCK0Tj5/hzaz8HU7sJ3QKuDVmTwPZtcO9rcywQkBRDt3hcYzgk55xXRHUbQHH2qIH03Cnm9tkco1xGrDqpYA1opVOX4UFkcwfAqB9y37hiMf6v/AOvQfBDZ/wCP/wD8cP8AjXUrdxEfLPEx9nFKZ3J+Qo3tvqP3n8gWXc4qw8BpHeak8upo/m4EYi+8jdt2a1IfBNnGrlrpnmfH74xjevsD6U3QNF1DTda1y9uhCY76QSRBHycgnAP5itSW71CGJ5ZbREjQFmYyjgDmtKikkrRBWIx4YtBIW8/KlcbNmBn1+tZl54AsLlN4lP2jktJg/P8AhuwK5zUfic0tvnTbfZnOJJOePUCm6X8Unjt3jv7JZXC/u3ViCT71nFO17NfP/gGihc6az8C6eNPgSee9WbaGlRJyoDY5Ax2rTl8L2NwipLPdOqsGAaXoRWEvxB0eWGFmaeGUrlxwQD6VwureLdcm1Rrq11WZIlJEaJwoH0ocFKXVA4NanqUfgzR42ZvKZywIO585z17UusgaH4eu57COaScJthjjy3zngcDsOv4V4Xf+JPEF1Iwn1K4bJzgOQPyqpBq+q2rmSO/mjcnOVkIPpQ8Om9ZNk3drGtqWh6lZWVtJNbyYugSp6tx1LDqDz39ax7qCVJkGxhwB92uo0nxprGnwz3fnrcy7ghFzlsK3ORyO45/CtAfFXVC4V9NsJM+zD+tdl1JENWdjjobTe8cYmjHmDO9mwo+p7V75oX2L/hHdNEksYxax5yR/dFeeJ8R3k/12gWDevP8AiK7q1nS5s4ZW062USRq4QDgZHTOKxxnLKKTdhQVjUlTTUwJGhG4bhuwMj1rxDxUIx4u1YQ7fL8/5dvT7or17Up7W3iWS5s1lAAWNQuST2UVxN3rnhQX1xFfeGpYrlHxKCBnOO+GrGjSUZP3rl3PPiOaMcV3R1DwFL97S7lD7Z/o1H/Fvpf4buP8A77/+vXRy+YrnDU2vTodO8HPoF08LsLRpVWS4dTvjbsFJGR/9ess6D4Lk/wBXr0i/7zD+q0cnmO5wlUfJBvCv8PWvR/8AhFPDL/6vxKg+rJUH/CCaM9zvj8TwE/3fk/8AiqOViucdjjpTgMV31h4D08XiNNqkd1CMlooyFZuPUE1Wf4fSMzGHU7faScAg5ApODHdHFMMvEPWRf513S/eqs3w91APGVu7Vgrhv4ux+ldB/wj92p+9EfxP+FS4StsVFq50w1N1B822IIOPlwabJrITJFpK//AOlUH2MCSu4e2c0+No1GxRhfXNeWpNBqWRrKKgAspXPfgUNrMWQpsZueQQOtVI41jmZ/NySOVxx+VWP3QySq7iMfTPpVOtO97isQ3OvwwZzayDHeorrXzbyIsS7ldQQT2J7Va7g/NxwATxUhiLc4U+uRn8K0jiZpW/UXKUI/EkpAJUY/Gll16K4CLcWkUyq25Q3OCO4z3qybKGRjmCPHTAQVD9hhaIIyJgYAG3j+dV9akHKaP26AafaubJHiLMURUUhD3pi3WnOVBtDk9B5YNV47b7PEsEJKpuztycZ9aSWW8hG6FwT7rn+lN4qV9EPlEl8PaZeXf2sC5SUKBx8q47cYxV9ALSCUNesRtChpAPk96525udWfKqWOe/lgH86pj+1UjljETnzQAflyfzq41m37yQmbVxaW9xgtqsQHbAA/rVc6PbsTt1iLnuSP8aw2trzlnjfHuDUWx92GABH+1VKceyJdzoF0CNZUYapC2GBx68/Wp9X0J9Q1Oa4iuoFDkfKxORgYrl4GKTpJsZwrBjtOehrm9Z1PX9a8batbaPeJbQxRCZUmReflQBQdpJZmYAD1YdBWsXGSskJanef8Ihfb+JYGXHQSEc/lVd/BdwGZjZJIx5J+0EGuL8IanfalZS3d5dyvKJTGCoCjaAp7Y9TXULqLR/KLu4B9SxqW4rS34jbN/R9BnsLTUlazdDLCFVfPLbjk8DnisK/vprdZNNnItZJVZNryseCMc5b370+TxU2m6VdP58slxIVW3DNnB5JP0FefXF3Jd3Mk00jSSOdzux5Y1TSklY0prqzUvPDOswssMdi7KAArIQVI7c0+DwjdIVe8ube3PZGYscn6cfrVVddvVjijFw4ES7F57dhVm48QT3Okz2chBMjK4Y9QVz0qPfOn93uLqPhu+05FnnlgFq52rOGJUnGcYxnNUo7ET7hbXsMjKjOyNlDhQScZ4PArTsPEk1zpcehXaiSCSZSH7r1H9atJpEdlrAVRujaKZT/AN+2zWbqOLtIrkjJXiclOQVD456UiadPJGzsrBsfKMVueD0gfUjd3VuLmOD7sTdGYjv64rvn1HRm5k0SHPcAD/CujmXVnHJ2ehwPg6/i07U7pLnTY7t3gIWKYAAEfMeoPYGuqXX9AkkHmeFLXP8AejKf4Crmv2Gky63p160T2/lIrSCJB+8TA2qeeCPWrdtdeGreTfHbujHuyZx9KbbjpFoltMbFqfh6JNjaGkQfkrtRq2Ida0yUbEEqgDGFBwB+FUm1LR5lIW/ljPrs5/lVVhprksmv3AJ7Ej/CsXGct+ULob438SJ4etbG9ggu57kzLFCkE5ib5lbnO1snjGMd685bU7e48UW1rq/h7VrO5v7hA73d4d3ztt34aIE/n2rt/G89pay6Tcy6iIiGaBCx4jd7eVY5j6bXKnPbFeUW1lcQ6hoGmzapbSO1/lYYZUmW33NGNxdCQd237ueNuf4q6NUB61L4H8OsW238kZPTLDiqp+HlixzFrnHvGD/Wlm8D3kvTUYH/ABIpjeDdaC7VvVK9MLIR/Sl+87IVzSHhFYPDE+lJqUTGecSCYrgDGOMZ9qw2+HN6f9XqVo351ryeGbseFv7NkYyTNc+aSGzgY96wB4R1KH5jbSnn7quMfzpt/wB0Lkz/AA61BVJWeCQ+gbb/AEqnB8NtVFz5s8kIzk4Rs/zxXQ6XBdabA8MunXbLvLBhyfpWr9t5AMN2pI/55tWEqzjpyMpGF4f8I32k65DdzFDCqsG55GRgVz1z4X14XErrYSlWdiCrDpn616Pbyu0oUmXDKfvVl3HiA2qk+XI65xwRxTVePKnysHucMdH8QxSRH7BegCRSduemfausnTU0RTHDOBj5sZzSyeMhtIWCVW7ZxispvGGshztEJXsClHNGXdApWOziLgAAkA/xAdacDLKQUwY8ds5zVYMiWzR+VtjUke2PWlhJCEh25AO1jXmWGWoROuGlYZHYDgU4sE8xgeRzgmsyVp9pMKFmU49sVMLjIjQY3f8ALQNRYZcEjbHzlR0Q9M8f41FDJMdqyiTeBg7Wzz+FRLNcA+WzIgHABBIIzx9Kct3Ixd8gRntngUBqTfa5o5WCIzjJxj+voaRrx+JZUbYSS/TKe1MiJcH9623+6OB9KRYpA5fzV2d+MZ96EOzLsrx/uSplVSNoGOo9c1C0Uk0u9nKBckAd6fHGjsuHY7PU0xJQk+YwxfGWLen8qdxWHLFc5JaYbOnC1It06v8AOPkC9d3OfpTMMZNxm2gt8ueaR4zNlkuCwKgEEUrjM3xB4os/DVhHe30M8sDy+VthClgxBI6kcfKf0rFsvin4d1HUbayisL9XuJVhUyRR7QWbAJ+fpzVjWoFg1PwkEkZgfENnkHudzVwNv/ahi0lfEpu/7ROs232T7du88Q/N5v3vm2bvKx2zux3rrpUYyp8zJuz2tktUVikCsMfw4Brx/wAX+I38O+M9YOnxxrfyXNrJukt45EREiUgDcDglyDkAEbRg16qqOu2NHyxHc4/pVWXQtJu5jcXWm2VzK335ZbVHY445YjngAVjRq+zfMx2ML4YNYXGjatJZW5W2fVZWt0lUbljKoVU4yOBXbqkT8iALt6DYPzrNtYbLSoWisbWG2iZtzRwRhFzjGeByeB+VQazrcOmaTJelnKgALzg5JwP1NRKfPO66jR5z431JbvxBOkbgxQfulwMdOvT3/lXNhgABmtfQdGfxDq7+e7C3T95PIDg49M+p/wAaybpIX1OeKy8x4PMYRHqSM8V6MLL3F0C4m/rz3p6vhgWPHerh8N6qlxa2/kfvbqMyRqTg4HXOehFal34NnstAury4uENxGoYQxnIC55yaUqkVpcdzH0sfadQto1JDNIOn1r0K1ggOsQWfmGR5S7gnsGUg8VxeiWf9n65o9xOw8i4CyKwPTqMH6Gu60fe/xA1K6bHl2cUcQ78kZ/x/OsazT+4uE3Fo5DS0aK0MMLGOWGRll2D7xzw38x+FTs94W+S6bOemM5rqNTtV0/xVbahbIgt76Q21wuOMnlW+vFa39nW8koWK3UsTjCjG41Pt1o7bmUldnBz3OrXEgNxOGKqFXK44HSofMvE7g+1enXfhiWythcXFiGh/2WDbM+vPFZ7aZaONghQBuckdKqVez95E8tzgxcXWSfKJ+jYpW1CZBg22R67q7ttOtHVQINx6YC9aemiCeMrHYO/UBVjPH6UlXi9kPkR5/wCJLiDxOkCXNvcwxxKuCjDJIBHoeOaw7bQNJtbiK5R73fFIrqHZcEg55+XpXpX/AAi91f6vd2NlClubNYzK0oBbcwJA5OMYrofC1lp0tpcQXWk2Mt5HcyWsxKkglSPunJwMEc9etawq+0lazR1VcFOnS9o2ul1rdKSum9La+TfmeaRapG653OOe1WI9YCsds8nXAwxFegTfDSCS4kc34ijYk7Ios4HpkmpYfhnoMeDMbqc+7hB+g/rVqDOOxxsviDZolv5d6RcmZs/P8wHvUmh3+p61qSWUGpKjEFi0jZAA69jmu+h8D+Grdgy6PA7esrM/8zip57ew0yHbaWtpbswxmKJVOO/IGa05X3Cxw+sT65ouoC0F4l5ld6vCmQRnHIxweKii1HxLLjZZTSD/AK9z/hXoI1O0tLaFZ7tInK52luT71Tn8RaanBuJH+iMf6Um7P4gsYOnDxFcz7LnTXjiKE7mTbzjjqa0tIiul819bsI0UYEarMMsefTNVpfG+kW5ICXTnPaLH86bZ68mvzMbe3liSEgHzOCc5/wAKqM+lwsWptLuHuZP9FsVg3HZ5jlmx2zhetKPD9g4/fxWxP+xBn+eK5/VfHl1bahcW1vYRN5UjR7mcknHHQD2rIl8aa/OcRJBHnONkRP8AOm52CxsxyTPGw24yAQrZ6e9a2leHta1CBpY4ljBHyea4GfTFXhoVsjtLJetypDbYuvvyaIrlVK2sUkg2gbXPB4PpXDSwt2+cpyMi4sb2wm8q9jEchAOxuPxHrUGVQbvl3YIYYya7C60ZLkRTTXUxIXAG0Hv68VQ/4Rq0AYJd3C7uvyKf5mplhZ302HcxoXE0ZLSFFUcE9KQxkxBzIvkjqR6+9b3/AAj1oQoa4nKj+HYAP50v/CP2u/P2mfaeqhBg1P1ap2C5gmKVCWwvl7eMDrRgPtL7FjQfw9q6M6JZlNqyTKPYChdCslj2s0ze/Ap/VqnYLmKkkTBm2jZ0znrSt+6cyMQPQYHH1rYXRrBAqAXGB0G8Afy5qxFoenK27bO/OcNIMfyo+q1Auc6qpJIjbhvIJwGzmrVhZi8mCB/JAzlmJIP+Nb6aTp6EEWxP1kNQ3i29muLeBUkwfmyTgfiauGEd1zbCbOV8f+AItd0OOO31ZIxHOsrt5RY8ArjGRx83rXAaf8J307VbS8Gseb9mnSUqLXGdpBxnf7V6rFf6jqF5cWOkWenyzQRpJcz3pbapbOECqMkkAHOcdR1rX0O/i1WzklNlDbXEMzwTwhQ3lyKcY3YAPGDketXb3uSm7L0+86p4SrCmqslpp11V9U2vPp/wUcvOkpglMEW6VUbYrHClscVyoFl/Z1rcWdw02rSNGuGmJaVsjKMufu/l0HPr7QNw6YH0AFQpZ28d494kES3Ui7XnVAHYccFupHA/IVk8Df7R0YHHxw0Wmnq09Ha9vsy7xf8AXRrjore9LAJY3BX2iJGfyrB8aeGfEOr2tra2emzTR7y79EAI6ZyR6mvVfX5ifxppaNBlmUD3OK2p4WMJc1zzbnkth8P/ABFb+Fm0+CGC3ubyX/SJJJV+SP0GCc8fzNdb4Y8KQ+DbYspt3lPJlC7nJ9ckcd+ldNJqenQttkvbdWxnaZBnH0rJutUtrsSGGUSKvyjZz1raMIp3uJsk1fw/Pr99pWpm6hja0aQNmL5pFYYxn8KZc+EIbu3lgkufkkQoQI+xH1rWGqWun2MC3DlWZSwGOwqgfGOmGQJGs0hzj5UzUTjScry3Hc5dfhLaHQo9Pm1SRpYpC8VwsGCoP8ON3TrWtpPgC00y3mSS/uLmSZ97yFApJwB6n0rRj8XWssU0iWs2ImKkHGSR6c0Wnif7bYw3cdkyRzIHUO4zik5Ubaj1G3Pg/Tbq2SGRp/kkSRWUqCCpBHb2q62k2MA84pISg4y/5VAdclZQUhTn1J4qGTUp7oKhaNQDyAKzVTD3shal20iivVnSeMOoP3cnHBqYadZq24WduG9TGCf1rPgklt7GaQPhywGQPU1TlvJt5zcSFcc84xV1q8IS95aiR0IVY1+UKgH90AVCZoY92ZlBY5PzdTXNNdJuZSzyMgBIJ9adG8UoLRcnqe2aw+urpEqxPq2naZqFytz9rvLa7VBH59nKUYpknae2MnPTsKTTLe3spra0tIDFAjEqu4nGTnqST1JqGSV0Qu2FH97+Qq9p255oncqTnqKrD1faVHoka1MRVlTVKUm4rp/X4dtSafWZS7iOFRg9zms2bVb6Scxo20bcnavNZ17cXayOLZCxDYJzgdetNW4JnMzhjnjHeuaVeo/tGWhPNJezZWSSbPpuIqO0hLTOu7coGDmrkUN7Oq7LeVs9NoO0fjUiWklnLmYKmVztBBJPrxV0FUlUTdxNlTU7eJriMyHgRKMfielUGtljcqueeCR3FdNNpUV6IpnmK/IAAEz/AFpsOj2luMfvpPqQo/lWlWhUlNtAnoc2LGNzuZcn3Aq9plssTyYHGR2xW2tlaoDi2Q/77E/1rKeQR3zRxlFXfjagAFa0MPKElKTE3cybnTy97cSR27OzSHISPOeaemgXGOLNwD/fIQfrXR3WrW8blWuXPONoz1rHm8Q2qk7YJm9yuOc4rN0qad5THcuX10pPlKwwPvGqFswa/GCDwOn1qqI25BZQeoIXitG1t0FysgUAkKuR6CuijX9q9tiWrHTSzxR2sQeRVOCcE1TN9aKebiIf8DFZGtgpeJLgEeWFxnryaoi1yoRocgADGefwrKeK5ZNWHY6Y39opwZ0z1xmk/tOxAz9oTH1rFWMqFKkBWXBA7U0W6FS21ieuM8Go+uPsFjd/tK0/56g/QGk/tSzIOJCcdflNYhti6/u2AB6n0NL5CrksQPQ5pfXJdgsakmq2g+bc2Aeymnx65aEfKHPHTGDWQIY/MO2QAg5455/OmBYjIW3HepwCvb3NJ4yfkBt/27HnAgk9icc1QkuJrlZWKgPgnBP4VXcqqjOMdAc9TVq1VjIwbBBUHIOetVSr1JzSezBkEmlXcMb6lpmoyWF26rFNtiV0kUZ5KkfeHGGzwBjvU+lZ0qya2gZnG9neSTDSSOx5Zj3PbPoBV29AGjnOR+8GMGscD5jGWKs6glweB7VOIbhU906J4qrOmqUnovJdNrvd26X26Gl/alxtZpJcBTztxVafWdhOZpjjqAf8KqSQ+dCFy2MgHHpmneUIiVGRxwBzmsPazb1kYD5L9pQTHuc44Bc46VhS2Sz60NSe0maWMeWilzsPHUjvwTV6aO6lulSFI4oG+83cN24+gq+jTEDeyEhunTp/OjnlF7gZKWdvdalbS/Z0h8pWVtq/fB7H2yK2tMtVjuZgsAijwuADnPJquyRysWMeHHCsM89etaWlKMSHJyT0Jz61th23VSE9hdeB8uxUKDiMnOM9x1rGeOdHwjRrnDKGXA//AF5rptRtJLk2myOQjy8blXOOao/2RqEgQGEgr/E5Azn1zSrqTqOyuNGZDFIoZVjCocsxz949f50jW4wiRSNGqj5QOQPatj+wr1olTzUXb0Jcf0qzFosoQCSePI4yuTx+VQqVV9B3MBHzMyySEMcDAHH/AOupoUIuFXdnLgnA/wA+lbn9hRMqh5z8vTan+JqF7CK1n+V5GPU5wM1ccNNyTaJYXm5NLlK9d696yApkiyenT0zXR2kcV3bzLNGHVWHyknHFWUijjACRRJjphBXTXw7qTumCOVijMwBihd94+8ikirMWlXzTb/s5RfViF4+hroXnSMYeYKPQtiqUurWMbAebuJOPlGaz+rQj8Uh3KD6RN5e+SSEADkctn+lS6ei280EIORu64x+lJPrMRhaOOFzxjLHFRWMzzX0LfLsBzxWtFUoyfJuSzTTSbGFjttgTnOXYmpdsNuvyrDEB6KBXKXGsXkr7xdMI2OCMYxWZPfTxzkNlyx2pk5ycfyrH6zTT9yIztJ9VtIgWkuA4HXHNZF3qMd5NmBDwvG7vzXOWNxMxlWUAgPwgPRfWtHTo1e+MkZGzaQFA6U6eInOoogadzqs9tst02KFjU7iM5JrLm1q8ZiDM2Bz8gAz/AJzTtYkkXUVRLd5fkTkDOMinW+lX7qHa3bPfcNg/Wsa06rm1FsCo95J5aGSZiSSTvJNXdMjViCMY35HFTNoUp4aeBcsGzkkg/hS2ii2uTGzmRmkALYwK0w1OftOaQmZFy8kdzJIvRmOQ3OOSM1GnlTKrDDyAlgD1+n6V07adYQsT9nDnOd0rk8/QYFMN9bWpKo8UR9IlCn9Kn6q73k0hmSREAB5a5Udj0rUtl+eP6isaNTcxB40kw4zwCRitq2I3RLnkEZHccVrgl8QmV9aije8y4GRGNuRnHX9ay0mliJ3MCR8owTx75rotQ0y6uLzzYogV2D5mYDP51SXQrxhiUwqCxz++B4/CsalKcqjaRRSjkO3K5PJyTTJZ77yWEMCFj/ExwMVo/wBgT5IFxbqAeu5iSPfAqz/Ya5y14Ce5CE1KoVP5QMmMzKiRupDsedjccd/506R4c+XI7Iz4+YDJB+vp1rbj0i3jBxcSnIx9wf41Iul2YGD5rDOf4R/Sq+rVX0C5hmZAreUpLKcZ29T9fyowhZ5ACueo6g8dTW6mlWCgfuHb/ek/wAqZbGzBLfZEJ/2mY/1p/VKj7COXdd64ZeMdhnOKuaSrNcv8y7VXaF7jn0rVukihdVjt4VDDJxGD/OqdwzLBIU2oSvVVA/lW9HDypyUmxNl2+jd9JAjRmbzRgBc+tULfTr10YtZSgdtwxnJ6810OkktYE5OT3qcqO5q6mHVSXM2NHOf2FeEZDRpkAEPJ6fSrf9hbmPmXS7SOioT/AIVpyXFvCMyTRr9WAqtLrFhFjMwY9goJzU+wpR3ArxeHrWOUP585AP3Vwo/rV4abZ5B+z5I7s5qk3iG22B4YpJAehGB3xUD+IJ8fJahQRnJbP8qV8PHXQDSntLeG3Yx20SHI5C5/nWdOxEBwcAY4HHeq7avPcq0ZIBPAAHeq9sZLhXWSQsVYdD+lXTr05S5YoTOvgI+wQknHFRtPbp1lQf8AAqwdbcqLdMZUxDuRg1mtMtuRhcA/eOegrOri+STikM6ptSs1OPOBPsCahOs2oYqokY4zkLxXLNN8+5W3B+me9RPcu8Yi+cLknI/T+dYvFz6IDopvE0MTMv2d8jA+YgZzVKTWhc3ioqqpbj1rnbi5CscliBh87c5HP+fxqroatNqKvHMBtl/eIfT0ojXqSklcGdqLmaz0mWUOFdpACcdBWXLd3VwgdZ3dSM4DEVb12RYdDyykhp1Xj3BrARrhoVdCVAHOPu4/D26UYuUlOyegFkNvZkZmUZJBPcDmozIrRKyOpXHzHJ5FTWdldzSIRbO6qSy7Ae+cgn8auJ4YlUv+8SFG52sw4PToM+35VzxpSk9hozFleVGA+YH7p6A1vaMpKxk++f1qs3hy3gjjZ7mVyrZwi7R+Zya0dPCQ3dvCi4TJ4Jya7sNRlCTlIlnMpBPdxusMDSEH7oUndjpV210PUZWYzQxQK/3vMfn8hzXVzXMMClXlSNf7o4/QVly63bIpaJWk9+g/Ws/YU4fHIorxeHLSMZlleRiMHYoGfxNQvbwWUsi28WzHckk1FPr1xI7LFsjXoDgmqCPJc3bmeR2YqMrnjr1qqU6KmlBaiZ1Bvore3jD3CxnYCRnBrNm16xUEqXlwSCQvcduaxdbkSO/yY2YqgAPboKpnVV37ElUjPzA9j/nNRUxUlJqKGbc2vggiBEU9AZM4z+FQWryz3ayMw/1mTgcGueur2EXXllowy4LKp5I9a1tCuBKAwUqN/VhjNGHq1JT996CEe5mllk81yV6Ak9+aqzzr5RYvywqjNo2rakzNJNFaxsxz8+4kduBVuHQYIo445GknKrhWZiBjvwK5JK7u2M6BpZWGGlc/VjTLFv8AiZYz6VnNqMrBhFCWIGcbT+NXdKjn+3l5ipyfl2jtXswqxn8JNjsZhmKL/dqvtHrWBqurXY1GW0jk2pEq4Ix3ANZ8V1fPv8x3IHOSx6d6wnioxbVh2OtJVeSQKRriBPvTIv1YCuWikDN5jnIB/Sh0tnBLRhn7ZP8An/IrL68r2SHY6X+0bIEAXEZJ6AHNRtrNkoJEhbAycIa5/wC0woE2Kq5HSpIboFcD7o9qTxkuwWNg67b4ykcjc44A/wAaQ66NwVbZsnpuOKxtzCbaQSx5247+5pUu1UgNH8owvJ/p2qHi5tXQaF+51CWdwRGq4HfJquk0t5buAyqeBwPzrLvbrzBI0LZIHbtzkc1oaJIsm5FGQoGW+uTV0a1SdRJvQTNm4uJrTSIfJkKbnAbHUjmsiWSW5jBeeTnn5nPrVrxEZF0qzWPBBc5BOOgrItLoeWoYhm24B6d6jFTkptJgXhboVA6A8kdj7UnlwIu8ZwDxlv1qO6LSW/7p8MnJwep4qtMr7k8lchAC3y8Ed81y819x3LKOgjZExtHYd6llfzSI8bXwPwrLR5JnCfelIJH5Vp2umX8xDfYpWXjDsNo49c1ShcQLGiK0jvh2wGwf1q5pQUrMydCc496kOhzRBmlaJI26qW38/Qf40sMCaekjLI0rSMNxZcADpxXXhqUlNSasgYa9Okd1Ej84gVgAPc1nSILtmDRsqk44PIrsJLC0uFilmt1kfYOWJ7U5beCPISCJRnP3Aefxp1MNKc3K4ziobJtn7rfLhdy5Pv0p8WkajcK3+iSqQQVLfL36flXbBiq4DbR6Diq8t3bxH97PGp/2mFJYRLVyA54+GridTuMMJI4JYEj8BmiDRo7KVf3u5kP8C4/WtVtasAxVZg7DsozWTPrCtcqEhcCTlWbgH2q4QoRktdRM2rWKC+s3E8IdA+dpJxkcVLFa21rGEt7aGJR0CoP61ji+mstGSTIWSSXaQBnsTgVjXOqT3THy5mbnAXf+Yx61VWtCEtVqCR1895FGP3s6jHYtVBtXtSMR7n4znGB+tcewlaf5wYlDZyp6/wCeaiw8qbpp2AAxk8E49qwli5P4UOx0dxrE0yhREsalsDJyT71LpzvJcrK0hOEbp06Vy4vggVIpwIkTLPIvB57frXQaJKj2wZB8vlv06dDVYepOcnzvSwGQL+GSPzI2VsHG5n5Y4/8ArVHLqcErfZxIvmsC2M9qzU0C5v5FUzxWYxjDMCxHqAOla9r4QsLNi7tJcORjLnA+lcfLFPVhqZskkzOVUmRRhlKc446Vc0ya6a5cSQSLGq8MykAnPbNbL2xgjPlFI0/ug44+gqFo5nKfumI6jnrVQqckuZILEV/aveXFwHCeW6rsYnkYA6YqlF4cgEiSSzSu69oyEH+NakDyF/vYJGQpP9PWnrGFlDn7wwQSpGalyvJsdrlaHTrO0/1SQoxGTIBlvzNTGFH2eW5YcYJPWpGkUN8qK3BAYdetRmZFbhCAcZbFJ67DsP2uIucAg9BxmqrSOmSUDeueKWadUOVdeR8vPP41m3erJDw+92A6gdKaTYOxosEjl3qwYdAvTtWlYqDPGR0PNZQWVgADtCHgn+VbVmMTx/jXfgbWlbyIkVdUhjOpmTaNxABYdeBxUIjj3IUcnj5gDx/LNO1d839xGcgHAz/wGsXyLi5thFFJIJlBCHB+bt2rjqJ879S7GkUZtwjKrkZUt3NRu/lQrvZSenA4yKks9J1F4of3U52ghmKHj9OlRy+GdYnuwJFjEOc5MqjB/PPaiNKbewNIqXFkWYvDIS3Un19OOnSnGFkkIMjNuADLnvW8mgThRuureM5yQpLZ/IU4eHEco09+zSADJji4bH1NWqFR9CdDEkacISoCjJJLDt1zVO4u3F15ZRgjYUuBwciuyGiabsCsk8gHrJtH6CrX2Gx4/wBBhOMY3Zb+tXHCTtqB55JDP8zRqyBVYMCucj+vNdF4etJLaKV502FiMEggYrdupWjkVY9sY29EUL/Ks+8kdoCWdmPHU+9dFHD+zkpX2JZZ1bSbrV9Kt47V1QqxLFmC9RVSz8JyQ7fOu4VCghfLUsRmujsmA0xCxA6dahk1C0jODOmfQHP8qudKEneQ7FO38P2kO7fNNLk524Cgfz9KvRWVpEMLbKe2XJY/4VVk1aNR+7hlf04wD+dVZNauNpKQxr6Etu/lWd8PDt+Y7G4gEf8Aq1SP/cUL/KhnGNzv+JNc4+o3MgD+a208bFGCKqN55kJyXG3KvuJ7471DxkF8KHY3r/ULVYQolVmLAALzn8qy5rrzQqJG3LDJPGKxsyLOyzxHbGQUYjHP+cVq2JDxggk9OT3qqWIlUny2E0bWoajPbFIovLXagOWGay5dRv2R8TZY/dAUACma+HfUmUNwqIQOxrEE1zHISiOXwRgDIGK5qtafO1caRcl+0yuRczXJCkH7/Ud+9RXkMUsDgqwByuVGTj0z2qVFmaEM2Mnrv7etHkMYmTcME8L94kfhXO5thoZ6WxiiHkSb+jDPHHpVizeUXHlzcpnKnHQ057e7IEaRYVSDluMinw6PK9+LqW8kZVHEargdMd6um0pJsHtZGjqjAaLAdhYfaD90cj5etZEYWf8AeeVHG3UEvzz39q3prWK4tI7aYsVRiwwSMnGOcVFFZ2Fuw8uGMNxg7RkH1rTESjOXMh2OYkjuZWi8mKWQHcG2jABB4JP5VOnh+6uUVJrtolU7umW/Ot9pA0mUcBgMAnPI9ajeeUYDqxydpK9AMdTWPN2FYo2XhXSrRGMryXDMckzPx+VaRnWP92gOFOAF9P8ACqksErtmNipHrnB+lPjR1bcHfOMDaM0nJjQx7yKRF+zIzDIBKnDLSpFdzQh5HWNc424zk/U0DKZxId3OSBg89M1BPc3aKPmzjnCmgbLRhaOIK8hcjgEkVG975fygheeoPTFYz30nmMrSlTVYYZt7S4XPA3cUWFc6BtQiL7Y2PcE575pqzM+RvKDAOeua5/7QFztbGOV3YPHtVCXW2jLeXICx6ZOKag3sLmOrMyRnLb8DnBHB+lZ95ebPmXC8ZwWxXLyalLN8rOxGM8N0qrI7OwVmcDORk5rWNJ9WJzNK71WdywRzWVJdXLn55CAeetNd9zY+ZQO5xg1DguDukBz6jFbRgl0IbPViLbO4LMxHTcwAH4Yp+m3DSahsIAC9KqtPGvVxTtHkEmpOVzwccjFd0IwhpAZ1c6ojArDDuIGWMYJP44qPz5hwJGUei8fyrPv9aSK6MCRFmUAElgBmqT6ndNIyokQ+XIOc8+lQ61OL3KNolm+8zH6mkAX1FYRvbsqN0ozj5ljWoBdu7MpMhwDjLGs3i4dAUTomniT7zqPxpn2+2A/1q/gc1gNHFIoLRoCoyM+tOXYR5akrt5IJ61m8X2RfIbQ1SBs+WHfHoP8AGoW1n5SY4QSOzNg1lFEhRtu7uQoPeljRnyzFS2crk1k8VN7ByotzXzTOzSMibRxj0xUNwonCKkj4BBOD1x2qrLC8YVNokkIP8PXPaizQWxKHAJ5wDWlCpKc0myWklc3b9kW0s0dsAg9/pWU2Vy0XfHPb3qzr+Cmnjcq4RiGbsflrIjfzFkcM+ULBY+5A7j2NYYhv2rKWxO+ruS8flEeWwBLZ5NPh1F50+YfKD1xgfh+tUlaNAomyJR2AyefSrkKSS2wSKykHAwzLgD86x5RXRYDM7DEwye3p/nmknDqpGF3EfKKiFhdyNjMUAGMAEtQNFWUA3F5PKyn7qnywB/hQorqwuV3ltlu4xNdA8cqeMGrlreRPcKkLFwfRTjrUkenWNqpkSOJMdHI3Mfzq0SoUAN7kdOK0p1FTldITuyrr8N7d3Uz2QRSBs3u2OcdR6iq2n6bd28I+0XQZ2yCIl7fjV/K5wignFKJ3IGQNxHGP5GolJSdxtXY2HS44m8z5mwP+Wj7ufp0qxgqFwehwMDAqJrlBk5I7/d5+uKYZAw+Qk7v4g2efwqR2Q9pHjAI59cLTftjyP5QYgg84HSqubxSC1wFA6nyxk/So5LiVGChSyk5OTx+VO3YLlma4aNyYwrr04/nUjyufmEaknq3cVSF5JMeIRkf3uAe9Vprh1QnJz0IU5osFzUNzGrIQEBI+U5PNL9oQEEbQ+ecdcVhedG8exptrkZwelY8szJ832k5A4waaSZLkdk07EEj5u3HGPxqlLfGIHapx39q5VdXnjUKJBsHrzzUVxqUs8ZD3BG7jjin7OVxcyN59XAwrSCMt26/nUN1qdssQ2XWSxHCjPFcs8zbgZHaRRxkjrUZlAHsPWrVFdSeY05r92dgrAqD1HeqM00jLjzCPp7d6r+arMGAAGe44+tJHOr8KjD0JrRRXQQ6SaSNV3yEnjOTxTHn8v5mBOfbNOlk+Uq+Vz3FQruBBA+pY5rRJATbw4HzYB6AjtUUm0v8AeXHY0N58uCPkxweOKb5bMQrFTjuBihIQ0lmx0fJ4z2qMW7bgWJAz0z0q0igHAXdj1oBXkGLoeT2qhHdpd73UMpwzevT0rZ0lALnPtWHal3CseBkrtPWug0r/AF/0Wng1aLZq1qUNUdze3ACFSHOHI4Hv71VinFuCrNhm/i6nIq5fo32+TKBl8w/N7ZqpewIUIUIpOeWPHNcMnqyri+Z5SiVDuZvlyfzz+tRy3MxmkKgFF5HH8zVRZI7Yx2sjly2XGAecDP4VdW3yVxHMdw3EhcAjHQmk9NwuAmNw2d5B5GQvFVpHntsyQ5ZywAVhyP8A61X0hnTaEREB4O9sAfhUY0Z2YZu5BnlvLX9ATSQXGxakGAWQhcAHPbHeo5tYt0cgFpSOgQZ5GM1eGi6fgI6SOF4GZOce+MU9LextCFjjhjxwCELEc9yapJJC1M0X2qX6LHBaskZBxIRgn05PvUEOk66upLNNc26w5wys+T+GBW3NqcCEESbtvQCoP7YtQwKqOOh64qoTlB3igsat5FaavDAHkcpDkYA6n/IquujaehOYRu7FmP8AjWc+qOGHlZYE93zxTTq6xglsc8nLZzTlKTdx3RuwwpFtMYVewKAA4p/msudxU55GOpNc7/b0UagiJcdRgjpUZ14OVHlMM917VHKw0OmLbCMZYZ3cnjpTGIz8vHfOM1zR1edm2puKe5qaG+kwVKfIOME5pcrC6NvyuhLY4+YAZx/ninLGH3NnAHfPWsObUCr7lMgYYIIPPGP8Kqy65PklcJnn1p+zbDmR0PkyhjsuOBggLjkUoLK5ZsqOx64/CuSbXLqVWEb59c8HFMbV7gKWllmH+5zgUezYuZHWT3EKxZlI4yBn3rLm161tpB5SdeOF4xXOzag5Y/vnOQSAyZqJmfy8ck9eBVqAnM25demY/KcZB78VntqV/Jn99ge2KzmmcKu5CwJIBI6VHJ5jR/IFz6Hir5Cbmmt5cbMyTEntubFVp7mTPXOe1VWf5Su9QxxjufxqNpc4DjO4c47VSSFclJOcsCM9ie1RyMqLuMhx7iqzuu0MGKsByOtMVGRXcHcucZNNCJZCzglZAD6FegpGEmcYOfpTFn+Y5wAOD2NHnTbTlQR7VXLfQCT7o+diT2phnJUHbk+wpEjd8M2V7gtTlhIUsWG4cYPAoUQIluPmVGVlbn/JoVHbgAL6YFT4iK5Ibj1ppBXB3AAdAfSmFxGtSUILEsOpz0pjJuwuRweMmpPMGCpIJOenemecSeUOPpT9BCBiqfePHpUW9s5A3c56dam3vypjPHIyO1R/7TMRigGDiXBYnDHvio1WUHHmH1xilM64OO/eoXuECkPJgDstPcDvopmuJo1jhnESdX24X8DXQaZMkcrbpFBHyke9ZvlztFtkcbg27A6H2qc2wiIYhlI6E965IV3BOKNlvcWSG4e6md7n5HkJwhGQM8c4pTHbq3yw5xnLPliaaFQjJYjJ6jvVa4ndHO2Q4GOmMVDu3dAaMUYCqIo4kxjgKAQPSpwTjc0obd69K5h9ZKEhUmdlOMEc4Hf6VDb67cz7liic8+gGBj0p+zbC6OrKZQkFT6D1H+PNRIsxkd5HCqv3AX5bjnj2rAa9uRyz7MDvnGPeg30hXG5fMT+73pqOgXN9yqh2BLcEgL1JqF0Unk/Pgntg1hHV1jXbyz9G9qUX8kuQrMuRmm4Md0Pu1MIEjo+0dlHcetVY2WVBKqBd3IQjpUxuQSD9oIPp60hvoI1YbwF7Ac1VmSxFgVyCTz94j0qQWaFfuqcngbuTVSbUIDnbyxPU8UxdUMedy4x09qfKxF02g3KrR8gAnB6VM9tbRr8wbjkdh9KzhqzEBlU4x82fSkbU9wK5A78UkpBoWpC6PtQAIB93FUXmmJOw42nBwc0x78zf8tMdiSartIF6hiT1zVKLFcl86beQJuR1GeKhdLrzCCh5Hy4o+0sxOxFI78DJoNy4xuPBxnK9KpIRGjvjYznA6bgcVIpmGPmZV9hUT3mWxgnPALDvTN8rE4xk9zxmmBK07BQcEnJPPNOFyzfPGx6c5qBVYguuMg4BoeOR4dsY+c8ZAHFLcCQ3Mm3GNo9RTfMYxnBBz1pvksMEyqPde5puByVQu2eTQBLHImCcqSBjnqKkG2QjKx5YZ56n1pIl3/wMpJ5IFSx28Ry0hXg4pMBgt024BDZ6c1BJasAeir1KitFTAg5JHHAxgH8ahk8pE3BCSTnAPShXAzlsEaTzCxAIOd3f0pyuIcKrAY46VPJcovJJyfXmolmjH8C5znpjmruyRxJKL+8565IqM7R8ryZORTPOBZmcE8c8flSCLcu4YJ9CDk00A5UmY+YJAM81EY2Z9zrx7+lPKl2+bPzdielPjjhiUBmzk8cn/Io1YXAKu7BUkDj2FAU/MM4HTPpSMB2c4J6DsahnKKzkE7s5HfNO3cCdhjLIcgHnPFQBxuAc/L6n0qMySFTvGV69Mc1G7ebtYAnaMY6UuawD55RjaqZ285HpVVrdWAI9OQas+WNoyP1pdojQ5JOece9JzvsI9Fe7WEBZF2EuFO5c5z0x6UPcbTuJLjcAB3Of6UwyQXQw8jElhge47VLJDAFRC7LuXp6nr1rh1ZuitJO3EabT8xUEjOBjOakjkhaAPKmTjBI7/wD1qcvk+ZtkZcgYCg8nrSyGzjUlE5B9c4H+c1aixivZwrIH8x0QA5GOn+eOKrxTWXmMIkL4IVm29Se1Sf2raopDb3AGRkcNULXtpF5rpAAXYMx3cnHpVWE2WWSNgElAKEfKSvX6/pVO4e2RDmNRtwFIPQ+361Tl1N5N3lhiOF45Oaozyb0O7vjPsaaEyZ7yByxIAOeOOM1DNcuFwoC55yp6VVikt2iz87Feq/xHtg03zIwoSLzArDIzWmxI4yjad5YHqB61A04hJGxWViAWP41DJFM2S/yMg6nvSLHIQxOZFHZRjFWhEkrSRuDEyAHn86ekjbBuk6enINRR72Xa0fO3nnPSniDzFKIgXp94c5AppgTZeQ/JIoGOSD1NIoAbBZSB1+Y4zUCxNj53CgjsMUOXVmVgu3PDZxnim7AWGmt1XjByPXNNDhmJQtgcHJ4NQMgK4kRGXpwalTI4K7UHBJpaCGlC45Uj+6wxUckssPJjZlxnK55qYSRJJtVy7kfdzRvl8wbc7cZ24xRcLgrSFdzFEDckN1/Cn/aInO0H5iPuk1G4jdSsmGB5+g96fHBApQqilxwGPahLuK4qy71IWLac5O0d6mbcu3dIkYzjHvTcrkHBVAcYB5pq/Zg5RlZm9z2p8qHcl2AoDHsZvXb92nhG8s+g67R2qFbkB8qzAnn2AprXwZiqlOeMnuanlAmklUJnn6elQLMuWDNuxjGO9S+bmMbsBh93AzkdqhMBdzsCAdfY8daenUBGuiQBJuG0Z4pHuEMIwjDPG4HPPvURtgrMHdmYnBK9KesLg7Yx65BGKLoQixhlLMBgd93GakKhW2sgPpg9BQ9oF2YRgOhwelPEAiXzlPA+U5PX3pNrcBUWDAJ3DHHTA/zirSeThVj4f6+lUZluHDFDufoKqBZQ24Z39weP0p6NXuBpTyJbgkuOozx1rPluUZmzx3wKSaRpPmeNiBjPocUwJ5rA7cdMnNHMgGrMGAOT/SpPILZwmSOpPQ1MixRyb2UE9j64pWk+TGc579xWbm3sIqsrowQruXPzH+tMZgWwu7jHIp7FypB3fWmxscN8rbj60WC4m0kE4HHAo8twuWYDnp1puXXOSB7Hmo5LmRcupHXOCO9NXYj0QXaLIH8vbj5RjrtH8zwKqyXZikkaPC8ZyRnj6/rVea9haDmP515cKeCR3xWedQUuSzMD3HoKjlNm0WkmimmE2fnUkZQZwO/9KJkkk2hrjjO4gcZ9zVE3YRV8k4HU8c1XmvCwzJyy8DtuBp2l0Fc1NqiAJnOQVJBI49ffmmtLAm1Jps7VII654rNbUyWARTgDkAZJ/Gqz3inIOA3XD9z680KLC5rvKbfI3ALwucdaz0uIR87R5c4LAEjPtVd5XlldPOKknKk8g1HNKsKKwTcSPm/lirUBXLax7RLN5itnqvcVG08wwqqAR93jkZ5/w4qGKcFXEaHPVh60+JWbe7fKB0ycVSj3EI7TgYdtx6kHrjNMjvMkpKCGP9z3qeQFzgPkDjPemM+0ZVBzwM8U3YByyhf9Y20kYH400XBV2BBOPun1qN18xFaTKkdccjH+cVNGhLFVQMQMgdB9KLhcR5JZUyMKB60BmkUliCBxuWpTauYy3QjI2gjinxxRxQIIyMk9D396aiFyqomEhwcKD0x+eatRpMykSuAcfwippPKVySpY/wAWTSNMrrgREFzg/wCJoshXI1hVXLYGSOcDNOCcc5yAFA/rSkmRgDhQDzjuBUi7RDkuQB0Y96VwIVgARiuMdDu4poUljvIIPbNTm3aTIQkg8Yz0FNmtA3yuXD4HCnkCi+g7EZYtu2puKA5P+FQzSztHuhIyMk56k1NFbxwuEMu4f3ientShYixUKuOx6GncViFJlMOZIgSBncD/AJ96rTIJf3kbpkcoQK02t4WlYREkNjIx04qrLbzLLtEW1AMAqOnNJPUBY2ILZY4Ug/U9/wBakE++PIJyDnnrThbOwyE/ek/Lk9f8inHcxCGP73IIHKk07KwDVK8DdkckjPfrTw8okBQ/IVxz1Oe1TJCkbYAGBzz/ADqv9qi5R1UBCCvtUvQZoJFI58woQB8gwM9etTmGRl3EcHIIHY9M/wA6q/2kmE2/Rh0GB6U59X+XGBvyD06Yrmm5PRD0LHl28i7iGLg9jgZqKYRRKpVVcnk564NU5r+Ug/MVJzyDjNUpLg53bizbcHPNJU5N6ici+yx7SxVV4wARz71UaCJFBzuYDJHaoVm3NudufTrTZpRtJPDEAYHetFBoVydwoQ4wwx6dKgZNpznI74/lVdWdnBBBGDmnNI2c4wOQc96fKK4OHKkKMEYxSgFOCwB7ioHnbcCrYUKfx96i81jHtIGWGGPeqSAe05fAUgt2pjlI1PzDceoYdKrSyxR8AN8vBJP61Zjt/MCO5K8cds1SQH//2Q==", "path": "images/4pts_ADE_train_00000573.jpg" }
depth_point_36
images/5pts_ADE_train_00004680.jpg
ADE_train_00004680.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 13 y = 218),Point B is located at (x = 292 y = 101),Point C is located at (x = 321 y = 167),Point D is located at (x = 319 y = 113),Point E is located at (x = 139 y = 175).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_5><DEPTH_5><DEPTH_26><DEPTH_17><DEPTH_6><DEPTH_17><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_17><DEPTH_6><DEPTH_17><DEPTH_53><DEPTH_58><DEPTH_55><DEPTH_25><DEPTH_17><DEPTH_6><DEPTH_5><DEPTH_67><DEPTH_9><DEPTH_42><DEPTH_16><DEPTH_94><DEPTH_2><DEPTH_94><DEPTH_121><DEPTH_2><DEPTH_67><DEPTH_6><DEPTH_2><DEPTH_44><DEPTH_25><DEPTH_44><DEPTH_2><DEPTH_44><DEPTH_44><DEPTH_1><DEPTH_42><DEPTH_78><DEPTH_72><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_19><DEPTH_44><DEPTH_36><DEPTH_41><DEPTH_66><DEPTH_44><DEPTH_19><DEPTH_19><DEPTH_41><DEPTH_2><DEPTH_25><DEPTH_44><DEPTH_19><DEPTH_36><DEPTH_32><DEPTH_78><DEPTH_19><DEPTH_19><DEPTH_41><DEPTH_19><DEPTH_25><DEPTH_2><DEPTH_1><DEPTH_19><DEPTH_66><DEPTH_44><DEPTH_9><DEPTH_44><DEPTH_64><DEPTH_74><DEPTH_25><DEPTH_25><DEPTH_44><DEPTH_36><DEPTH_66><DEPTH_78><DEPTH_78><DEPTH_25><DEPTH_44><DEPTH_25><DEPTH_78><DEPTH_44><DEPTH_44><DEPTH_78><DEPTH_16><DEPTH_16><DEPTH_94><DEPTH_16><DEPTH_16><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
5
[ "B", "D", "C", "E", "A" ]
<DEPTH_START><DEPTH_5><DEPTH_5><DEPTH_26><DEPTH_17><DEPTH_6><DEPTH_17><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_17><DEPTH_6><DEPTH_17><DEPTH_53><DEPTH_58><DEPTH_55><DEPTH_25><DEPTH_17><DEPTH_6><DEPTH_5><DEPTH_67><DEPTH_9><DEPTH_42><DEPTH_16><DEPTH_94><DEPTH_2><DEPTH_94><DEPTH_121><DEPTH_2><DEPTH_67><DEPTH_6><DEPTH_2><DEPTH_44><DEPTH_25><DEPTH_44><DEPTH_2><DEPTH_44><DEPTH_44><DEPTH_1><DEPTH_42><DEPTH_78><DEPTH_72><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_19><DEPTH_44><DEPTH_36><DEPTH_41><DEPTH_66><DEPTH_44><DEPTH_19><DEPTH_19><DEPTH_41><DEPTH_2><DEPTH_25><DEPTH_44><DEPTH_19><DEPTH_36><DEPTH_32><DEPTH_78><DEPTH_19><DEPTH_19><DEPTH_41><DEPTH_19><DEPTH_25><DEPTH_2><DEPTH_1><DEPTH_19><DEPTH_66><DEPTH_44><DEPTH_9><DEPTH_44><DEPTH_64><DEPTH_74><DEPTH_25><DEPTH_25><DEPTH_44><DEPTH_36><DEPTH_66><DEPTH_78><DEPTH_78><DEPTH_25><DEPTH_44><DEPTH_25><DEPTH_78><DEPTH_44><DEPTH_44><DEPTH_78><DEPTH_16><DEPTH_16><DEPTH_94><DEPTH_16><DEPTH_16><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_END>
13
218
292
101
321
167
319
113
139
175
149
12
109
36
129
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCCjNPppHNfYnzY1jxSU/FJQA2ilIpOaTKCijmjmiwwxRRijmkAUyQiMFs4AGc0/FNwDnPIpSdosa1kiva3lnfxRm2n33AZ1kQj/VAHj8xmptoPIPHaobdIYmjEUSxs+7cyjBbB4zU/rWNCV0bV42Ym2kZcU/FGK3MBi5zS04DFGKSQDKDyKfiimwI9tJUtNxUgNpKfj2o/CiwxlFPxSEZqkhDaKAMUYp2AKQ0tJ+FFgEop34UmKLAJTe9LSYNFh3CjPFOxkU3bSGN701s1JikPWhgR0U/FFLoVcYelIBT26U3pSsFzVxRTsUEVoYDaTFOxRigBu00bPpT6KB3GbPpQU4p9FA0yKin8elGM0hjDwPrTG+4cdcVIeTTW+6celTPYcd0ynFIGkhH93dk/U1ax1qxYQxSeH9TkMY8yK4hAb0BVs1BXJhZXudeKVrBRiiiuw4wxRSjmjGKAEoxTuDRQA3bTcVJRx6UANHSm96fjmkxzQO43FGKdikxVIQmM0m0d6fijA9KAGYFJT8D0o49KAI6DzTmHNG0mgCPaaTbUu00bTQBHRt5qTbS4xSKI+2MVE3LVMxqPGWpMBOMU3GTUpXPSlUCiwXICDik21KcUcelFguaFKAKMUuBVGQmBRgUtFACYFBwBS0h6UAN3DFGaMUAHIqSkJ+FKBT6BTGRYxzTXAWNvYVKVzUU+Vt5GA5C1nPVMqO4zT9Rihh1GxZgJJngYA98K3+NPIOTnGe+KhttFDWkeqxkM8rKOeuFBH9an64ABHHeuDBPc7MZ9kbijAp4APXmkIx/DXoXOEFHPFLg55pSAuCGx7UoG7sc+wqXOK3ZShJ9BuBRgVYWxndSQhxjqauWujvNLEjORvkCkjtWUsVTiaRoTZl7aNtdDqnhO+09y8Q8+EAHI61hBRuYEgegPBqo14T2FKlKO5Ft5pMc1KPcY+tM2561qZDcHtRjFPAxTSDVIBMUhFPAoIBqiSOjFPKgUmKBobtGaU0YNHA60DYlHNHeloIuJRS4FLikFyIpmkSMVNik6dKCkN2ACmEVL2pmKYyIrRjFSHpSYoAvYpMVNtFIR7VNySLFGKkx7UfhRcQzFJgntUoUHpQRjpQxkO0+lKPpUuOOabtwahspJjcU36VYWORztVCfoKkGnXTfdiB/3jiodaETRU5srAjHemShVjYkg8dK0otHnP3iAfTOakudLSCzlaT5jsOMVhUxkFojaGFnuc3oYvpba/hj3CFZI5HDDOMg8L6VpGGZ24jP5VlaNc3Ufi6xhE+IpLXMkQHDEYxXctk5yAD3wK8uli+S/KelXwvPa5z6adOxAK4zVxNJUMpfcR3rVG2NN7ZwO7cVTbV7EsyJN5rd0jG8/kOaJ4yo9iI4WESaKwtc4WMEj+9xU6RRR/KEjX3IqFJmaHfDDM2f4XXZ/OoGl1VsiGK3tyf4ZT5v6iud15y+I1jTiuhfmUJF904YYyBx+dFlNBFfW6yTRrmUdWFUX0ye5Rftl9K/qifKBV3TNJsor+3Bg8weYPvHNQ3ctK2x6GvlXC7leN0wMbDkcetUNR0Cy1FP3kMSv/eVAKa+imCQTabM1tIex+ZPyqzHdzW1s0uoW75TjfAN+73wKSnKLvFicU9zg9R8D3kO97P8AexjkDvXNS21xB8s9vJFj++hH617Ta3UN2gkt5Q4xgAnBH4Uy5s4NQtzDPEkgIwc4BFd1HHzj8Ry1MInseKEY6YP40h78EV3Or+AWTDaUwOOTFKcD865jUdIvtK2m6tTFu/uncK9SljKdQ4amHcTMIwaAOal27hmm7T6GupST2OZqwwrmgKKftppppghCvpTdp9KeDS5p3GR9u1G0U7bSbaVyWhuKSpccU3FUCQykIpT1opMoaeKaac3Wmmi4CHpSUuMik20rgau2gADvip0tZpPuoasRabK/3yF9qwlXpw3ZpHDzZnnGeOTR+laq6VCSN7Hr64q4NOt4AOF/4E2a55ZhBbG0cHJnPxxyO3yIW/CrC2E0mFxtz2rfhWFSe3ttpxeNTvLKoHU7s4rknj3LRHVDBJbmXForFctLipV0uGLBc7zmp/7YteREzTH/AKZJvA+tVzPfXUmI7NI0P8crbv8Ax3jH51yzxM2dMaEEXI4o42+WMDjrQ3TJbH+90pkUV10knRf+uYxUM+nQyNmSSZ2934/lWMpSkacsYg+oWkRIaRCw9KpahqYbT7jyoZGAj644rShsbZOkILDvnNQa4fJ0C7cEj93g+wyKz1WhcWjg/D0ckvj8hGwIrZhz25FdxJZ3rDb9tCqeoCY/WsPwxoC22vXmqNJKRKGUZ6dRXXE7CUIHsaLFTlpoZi6JZEq8wklcfxSOTj6Yq7GkMRCpEiqe6Ac1ISxICgDjrTVU7s9hTsZ3Y5eS2WP0qMEI2zGT608D5sg801/lbJ6fSncQ4MSRn1q/p4/0y1P/AE0FZ6nJBB4rR085v7ZBnPmCjQdjuVYMQKPLJfAJBI5x1/wpiHD9cbevGal8xQcVLEZk2h20svnx5huB0kh4z9RTsXtrEdwW6A6hF2mtNACCByKaULck9OlIDPttSguMRsrRuP8Alm9WGiS5Uq0aSJ0w3NF3ZQ3ajzVGR0NVTZXMKEWk+0D+Gb5lP06VSbQnFPcw9U8DWt5O0tu/2dm5IxkVyOo+GdQ05ZGeIyRKfvqD0r0ZdV+zLsvozbsTjzP+WZ/HtWgDHPD93fG465yDXVSxdSmznqYeEtjxDIPY49OhphxngGvVdQ8H6XqEnmKhhl/vRnFchrHhK9ssPbHz4m9vmFenTxsJeRxTwU46o5gikp7KyHaysrf3CfmpuD34Pp3FdkasWrpnM48rs0JRRRVp9SGhM0Unc03JzTuMD1pK57WdU1qHV3tNLgsXjhtBdTPdSrEEUyeXnczqPvMgx15qTQNT1S8vL+01a2ggmtREQIeQQ4JBzuIIIwQQcEGuZYuDqey6mzoTUPadDbbrSYpW60V0XMRMUYpaKVwO1M1vAdryqD9aja5iaPzI339gFHJqKPTYYyG2b3H8UjbjV7nYfmIJGMZ6V8pzM+hM43s8hHk2MyHpmU7f0o26nPLtkmSFfVVyavKFHyj8c8n86EXbIcD8TUgRQ2nlnM15dSN6b8D8qSTTbOaYSS24eQdG6H8assfmxzupVb5uetFwvYaqKg+5jHTFTfNhSDkZ7npTEOcknINLt9M4p3GIx+Y5NIuWBzTmXcoxQmdwQD5jxijQHcjOV5B5rK8QFjoVyuD8wC49eRWhPeW9sxM00aDrljXO65ren3dmLSC7jknkcAKD70XHymvp2ViaPLcTOMAe9WmDM7bs8HvXJX/jrR9D1C4sLlLl5orh96pGMA59c1p6D4nh8VJM9jEUjicArJxmnzC1N3heCcGmlsDKnb/vcV5l4o8da3pWsXdoIbeGOM4UgbjjtzXG3XjTVbwHzLuchv4d+0GlcZ7rPqthaDNxdwxH1ZsVTl8TaAhzJrdsFH8O/mvn6fUbqbDM3P5n86hZpGRnLDnjBFK4WR9I6bqdvqkAurNvMhyQGPQ49DXLS/FGax1QKNMZGgmxtkON2PTirPw5BHgaIPk5lbHOewrV1z4aXs/jKHWImtjpzyLI0e87xgD270Bfodx4c8bR6/o0mp3dnLpkUPLmY4BX1Fa+l65pWsoZdN1CC9QdTC2cVyOtqLbwJrJRQNkBVAOor5qsdYutPmDQvJbyoxPmw8ZoCx9rxSArwpwfTtS7wEJJAxXzl4b+N+q2ccdvqUcd9CCAWkOHx/WvT/DXxX8P+JNXXS7VL+K7k+6skQCfnmnoKx6BuDJ2P0qMAZwDt/3aalxFKHCyI7IdsgB6EUoIPQ5ouFgaMZI2qd3U4qq2mxKhSAvA2c74/X3FW8/NjqTUigEcdRSuKxj+ZqlgMSL9qQ9HQ8/lVo3cMhRXcRykfcY8itAjIx3qpc2UFyAksXmD+8Rkj6UxWM270PTL7LXNnHNj+NlwRXH6x4ImjZ5tNczJ1EPcfSu2WxvLSTbbzCaL+7Ofu/Q09rxIjsnhMR7P0B/GtoV5wd0zKdGMlax5Bc2F1ZruubaSIdPnXFV9o9eK9rmtbW+twsypLH1+bnFcpqngaOWcy6bIsRP8MnQ16FLMVa0jiqYV9Dz3Ck8EUwnBIxW1qOhX2nkpcQApnPmIOKzDF0zXoUqkZq6ZxyhJdDjdYvbC117U4dQe0VbvRkhiW7ExidxdI+D5Pzj5UYjHcCpPD99Z6h4g1q4sFC23l2kaqpcqCkWwhN/zbMqdoPIXFbGp+GtK1a4E97aebKqBA3mMuBknHBHqaXTdBsNH837BbeT5uN/zs2cZx1J9TXJHCzWJ9rdW/wCAdTrwdH2fUsnmmTTRW0LTTypFEvV5GCgdupqzs9q5/wAarjwlff8AbP8A9GLXZUm4QcuyOeEFKSV9y3/bek/9BSy/8CE/xq/XnviHTdKN/wCLLSz0yKx/sW4fyJIZZW8xBcCHY+9m5wwYEY+6euePRcVzYTFOve6tY2xFBUrWe52wpX+7x1rFvPFmiae4We/TcOyDdmjSfE1j4ihu207eVtz8zOMZ4Jx+leAexY24wO9K+M4FeQXnxU1JWcRWSwFSQN3zfzrLl+KHiKXIWeLPbEKrik2PlPb2yCNyfKOm44xUN3f2tnG01zcJDCCAXkPHPuK+fLzxZ4g1IM11qU7oAfkEhAr2vRtFh8R/C42dzFmX7IZUYt1YfN1/CmtRWIrrx5oVsHxcNLt4HlAYNYU3xZtbf5odPMoH9+TAryG8hMV60A428HHtUXljD/pSZWx6Ve/GG9Zf9HsoYv8Adbdj9K7iRdR13wBLeW9w8d99ka6TYPvEdq+eymIn57V9W+AYlOi6Wj/6t7EKw+uaLCb1Pme41vUJ5sPdO+Tyd3ernhKS4uPEturuThhjJ96Z4i0mPTPGWq6fApEdtcMgzVvwHDv8X2yns1BVyLxq/m+NdXl3nBuGP613/wAIIv8AiR6hL/02C5/M15x4iPmeJ9SY/wDPww+vNenfCJP+KXv88ZuV/kaCWUvjPoS2N/bajHjyru3Uk/7QAFeUPB5USc5J5r6R+MWkRXvw7t7kIWltmRQR2UkZr55vEAVPl45wR9cUrgiiV+VaeU3RHn3pzrhRxjHcmmsVVOqhgB35607iPc/hyp/4QiyyMbtx/WvZL6LFnGfYfyryXwAEHgjTSWyTGep9zXrV5cW7xJCJQZNowufah6EpanI+Kht+H+tPtO4xnivmJoNxbJOfcV9R+JW/4oXVScYxgivnu4gVrW4lKksr43e1LmNDlhZyGWNFQ73cBSPrX0P8PPCcHh/V7QgiS5Zy0jntkHIrxy1tUjvdNIBBeVM5PWvozRoCut2h44JJ/KkpXH0PDvEfizV/D3xH1uXTbieEfaWU7G4PzeldXo/x3vvI8q8sI7oj7zCTymH5da8/8cRZ8d62HwT9pk79fmPNcobdxKgiXcWfAFWI+sfDHxL8P+InS0juPIvH/wCXdxz+BHWu2R9wyrfKOMen41438MfC9vpdzYXEkCm/kGZWYdBnIA/CvN5PiT4l8P8AiPVksdRlEIu5VCS/vFXDHop4pXJsfVwfJ4pwAznNeBeGvjreCZE1qCG4ib70sI2MP+A9K9a8OeM9F8V2klxpV1vjjIWQsCpUnoKYjoiAW6imTRJKpRlBB7etLgkjt+GakxxigRmrpqwSF7VmhJ6jqDSTz3Ns8YktxInd1OT+VaeKNvOaPQLmfE9tdwt8qyKeGVhyPqK5/UfA1jdytLA7Wz9toyP/AK1dHNptvLdeftdZum+JtpP1x1qF47+FzskSeP8AuFdp/PvWkKsoP3WKUIyWqPEZdM1A6FPrb3LxGN3RoSw/csGxsdcfe6dcHkcVNEA8SMy7WZQWRhyp9K9Pk0DwvqGsC6n0q2F9zuDphGJySWX7rHk8kE9PQVcvvC2lX8hZoPLkx96P5c1rhK86Tbm/xvfz12+X+R0Zo6GIilSjazb2Ssna0VbdLu9fvbfkxTmsTxVYXOo+Hbu0tI/Mnk2bV3AZw6k8njoDXouq+Dbq1cvaMJoh0HeuSv5ksmWOVJPPJOIlQljjrivYdejOk+eVkeHSwtaVVRpRu+3pr/w/kea6ppvjfWRML21iPnzefN5K28Pmyc/M+zG48nrnqfWvRzGaW2njuELx7sA7WDLgqe4NSkZowtGlTTlSd0xYqdXn5K0eVroeFsHCqSzFvUmvXPg3Hiw1HIzvuEQg8gjmvK3Q+UgxzkCvYfg5GxsL0gfL9pTn86+cuexc4z4paG2j+MbyBItkMrl4vlwCDziuOKBHCgcBckEZr3348aYZLXSL7aPMEpjc/gf8K8LuWjW7ZCQPlXP1xSZUWZ+39xKfrivqf4Ywg+G9N3oCptwGDcgjpXzONOu3tZpVtLjysZ3GJgv54r6f+G0XleHLESEjy4AWB7DFWthPc+cvENj9l8X6xEY9qx3D7QBwATkfoaxAmYTgZ69BXrPi7wdr2reMdVvbSyQ2U7/JIZFH8IHTOaxLP4V63IQt1PDCmfvK2cVLGzzx0/0diePlr6s8CRt/Zulg5IW0TA/OvGtb+G0Wj+H5bqbUTK25cYTrz9K9q8EIsWnxFWc+XaqME8imJ7nhfxCtjF8SNc2H5pJBIRjJ71V+H9vN/wAJlZvLG6JuJ3FCARg98da9yudNspNRa8mggeUt8zNGpY+xrO1tEihsEhjjjH2xOFXBA2txxQtxnh17o+qX2uai8Gm3bebcMyMYjtIyehxXpHwuhltvDN/DNEySfa8EH2zXc6dJKdMtPnY7YxkAnHSsHwiGey1QscKL9uenrQxM6zxdYy634UXSYX8ppFRjIe3ArzeP4R2PmIt7qMk2O0QxXq+pOyCGNVPEKgn8KwJboQ8TMiAH77uFqRo521+HPhqycf6B5zHvK5p2qeHtGt/Dt6kelWiYUNu8oFhz/eIzWy+rWakMs6yYznyz5n8s1T1rUrSXwrqWHcsVXH7ph3+lNbiZH4TgjTw1pqqgVfKO1Qv+0a73yU/tkHCggDggccV5TpHjTRNM0fTbSeWczRDayIhPOc+nvXpEGoTS6o94LTba+UHJYgnGPSqYWNy2soLyxmiuIkkhkY7kI61xuufCLSNQhmXTpJdPlkHc7lz+Na/hzx1oGryT2trczNNDkyI0DcfpXUW1zb3JPkursOvPT8OoqLCueB3fwt8Q6Zf6eiQLewwSLmVTjIHfFevadam31VAUK7cnB610/Q8nt1qk6b9TQsMgLihIdz5v8SQwy/ETWVaNHKwPJgYzncK5rToEN9pEgTa81zj2PNfSWs/DnQ9Wubi8WEwXk8ZjaVTXntx8HtZ0680j7DNHd29vceZIXIBUZpNspSR3WhW7JrVvnJCnGR2wK+Z9agd9f1g+WTm9l5Hb5j1r6usbSS21eNSojx/COQc185wKs154oBAZhfydepG6i7FoznvCuhHVvE0dkxKw7SXPTjFeya5BF4f+FutjTE+yNG0REkXyE8nuK5bwraxRfEVo1j2Ktnkp9Qa7Lx2hT4Xa4ezNFjP1NNSCx5NpHxJ8TaRKjQ6zdYH8F25lB9uc4r2bwL8Y08RahaaVe6fKl7MdnmxL+7J/pXz3fabcxIWkTbhVYnr9K9t+GGjxaXb6LJsP2ifDSMecE07g0evQ63ps9zLbx39s88bFXjEoyp+laG4Yr428WXk9n481q4hZ4t142HiODwTXX+CfiV4vjuRZWi/2jFvHmCZh8q/Wi4rH0yDnnHFIwB5zz2rjL34meHdH1htK1a8NpdLFHKf3bMvzLnGQDXR6ZrmnazEJdNvIrheuFYEgfTrVIksy20MhJaNGb1YVUmspkbfaTMWxjZI2Vq+TzxzmnHG3nAqg1MuO6ZG23UTLIO6DI/Suc8QaDNNrEetaXY22oH7M1vcWjziNnBYFWQ4wGBznPYYHNdmMBu+MZ9Aap3NjESXRQjE8FDj88UpK6sma0azoy5rJ30aezT6aWf3M84h8D6iiXN/KsMU87hvs0chcRpjhSccsOc449KybiyuLXd50MiY7svFesBr2JtsyiSP1QAU2R7W7/cyqJB/dcY/nXZh8S6MeU5cXD6zU9pLTZeiSsl8krHz+3wfv3H/IbsV5JYrE/wDWuo+HWmyaGNRsWuFl23hXeq4BwTXTm+s/K/eSrjPO2uU0/wAW6Nouoaj9reTcb4lQq8nniuGxtY7rxXp9p4gK2+qQ+fHbuHRCxXnpnj61kQeHNItJSbfT7aNsfxxh+n1zVy/1C4nuJJLWxkZHO7Ltj6VEJNVbDfZ7eP8A3iW/kaLAU/EwSLwreLtSNThRgDHXsK3/AAVt/sPaM/LABk/SuY8UC4Tw3c/aJIPmIIVFJ5qt4L1bW71JVMq29mIwoZI+TjjvVXGdbKuZHTqByOcVXcxqPnYKB6sKhbR0di0tzLITzktj+VMXTLNcjaxx/eY81LC5z3jy8tH8NPCk6NueMDaenNavhbxtoaSrpqXLTXT24+SOMk8fhVTxHob6jpYtrK3hWQyhufQU3wx4Wj0HzJ3jQ3zHCsB0FAXNZtRuZWLxadM57ByFz+dQagLmRbFrm28hBeociRW/hb0rYjfcMnnHeqOqnFtARjIuUYD6K3+NMLkEP9of2faR25tgGizlw2entXnVpqniKKW50vTLiJPOnLMRFu2tnqMjpXptrGq6daBgcGIZOenFJYaLp9gWlt7dFlc5LE5JNAXI/wCy57u2gi1W+uLu5WJVldX8sE47bcVHFoWmwMQsDkdxI7SZ/wC+ia1Uw+4NuBqPqOO1KwyOGxtYBiC2ijY/3AB/KotWtJL7SLmzhwJHAC4HGRzVxAUbIpGLB+GIosI4vQPBBsdRW91SWKRkOUiXn5vevS9ACm8ZSMrg9RkEVi7WVucHJBzW14fTF4Tn+GmFy/YeFdG0fUZ9QsLJYZ5xiQqx+b8CcVau9HsrolpIijMfvROyE/XBq6TkEUj8MAD0pElAWepWzqLe6iaAcbJ1JOPTIrntZ8aDR/GWn6HJo9zcXF2MJNDIAg4z0Ndlzng4PvUUllbSzxzyQI80Z3K5UZB9jRYCGPVIGOyTfC46hh/WriyJIuY3BHtTJIIpgRIgcH2qo2lRD5oZprb3Qj+tA9CRgPt/BILDr71kar4J0HVoJ0lsIo3myzSQ/I5b1/8A11l6tqPiuw8W2VpYWMF3pkihZLuYHchJ9iBXSHULiE/6RZ8ZwGjORj1oauI4nTPheNK8WtrEGotJC0Ji8uVcsOMdRxVf4gaVd3nw+1SxsLWSe4eVTsjGTx1NejxX9rMQFl5/utxUNiAJrgAtgOflxUqJSZ8x+IEeDS9QS5heK4SCPCyLjHWvXfBVtjT9DIz8iK2Sc54rutV8O6VrdtLb39nHKsgwxKgHH1qtDottpT2UNmPLiQ7FUc4Hak0Nu58x6/pbXmvarcqQSbp8A+ua634b6fb23h4TxgB5JyrN34NdFrXww1a2NzcWTpdeZLJKU/i59KXwJod7pvhaGLULSS2lWZv3bj1PWjUfQ88+MSFfiLeGNiAtraj1z+7qh4J0nWdR1K2uLW8ltLdZk3mN2XcAw44rf+L1uG8f6rIMnbFajA6Y8uul8EWZGkWRQgfvFJIGM/NTuyTW8UfGC58IeP7zRbqwS5sIo49hhbbLygbqTjqa2/Cvxd0LxVqC6d5FxaXTf6uOfB3H2K8V418ZYVf4o6w2SSscOMD/AKZrXU/DDwvFpuo6bqEr+ZNcbSvAwmT296tMLHvEMqTO4hKyLG2GIfOG9KVx/DjOO9fK2peM9c8NePdZ/s+8ljj+2MTFnK+nQ16/oHxB1lvBF/r+t2dqTBErRCAMDICSPmBPXinclo9G3Fj1wBUU1rFcLtkXn1FeUp+0L4UEY/4lusq2OQIoiM9+fMr0Twz4is/FPh601mwiuEt7jeVWdAHG12Q5Ckjqp707isc+lnbwoCI0IHPA61z6eDrZtam1K6bzd0hkWLAwM1uabew6hpMV3CwIlTjH8JqyoHlYPPGak0HxglfnBGfU05lCsCuR9KjTJALcegNSZ7jBAoJdxs1vDcrsnQSJ/dbpUUNvDahYoY1jiGcIvTk5qdPmyWIGB60wY35yMCgFcfJhRgAY/lUIycZAxUkjgtgdKTcm3k7SPXikFhhUKePzpHJzuHcYpxwVzuX86E67RtYjrzQDQ1MgkjAGOgqnrGFt4TjkSg8/jWggOSQueccVm62we3RhnKqTjHcEf40xFmIAWcS9guBU6vxnj6VmHUbKGFN95Cp2g4Lilg1iwuJTBDe28soGSqSAkUDRq78rnA/CoATvx2rJfxh4etmaKXXLCORSQyGYZBHrVSTxr4c3AjXLR2JACpICSTxQM6VTg81xniD4n6H4f1y40u8ttQeeDbuaGNCp3KGGCXB6Edq1tb8R6d4atYLnVJJ40uDiJkiLA8ZrzqXUpNfk8V6holzrcKS32nYfTLZpJiognUhlDqQuR1z1xxzQJnoXhvxRaeK9Okv7CG5SGOfySJ1CncAD2JGPmFdp4fkJumO0tgYyOK8W+EF7JJDqulSxzC4iuTcPNKcElsKQynnOVJPPeuj8OfELW5fFyabFoi7WkCSnzM7FJxnOOPWgD20HeCR0z1NIRgnrzXDa18UdB8O+JZtH1QXEexQ4lVMit3R/GWga+7DS9ShndV3MoblR7igLG/gHFOB6VQt9Z068H+j31vKQcERyAmroYA88YPegB5HHNIMH2zTBLkHI+lAI6k80WJbJCoyD6Um1eTjk0m75cnjHWgnI4oC5DJZ2xy7RLn19K53QPDt/pd7qbT6vczxTuGhBI+T2HFdMckUm7nIwDnn6UDTKuzUIc/vEm9Aw5rK1PxJp2nanptrqkq211cSbYVP8R9q6E84XtUM9jb3UkMs0MbvC26NmUEqfakxjYZ4rg7opRJkdF/rTb2OOSAiQDhgMkYqeS2hcZZF/DiuX8WW+u6boom8LjfdiRVMEo3oVPU46/rSsF2P1z4feHPENwbm+st12wVTcRsQflGAPSq1l4Qh8P2EMVvIzpHIPvkEgZrdt7nVba3h+32yTuVy8kHygE9thyf1qTUNUtLLT/tF2620JZRun+UAk8daLAj51+MGmakvjzVtSk0+5FlKkarcLGSnCAfzr0bwLApt9FbHAROg5B+lelI9rdEMHglDDkjDZpl7Am622xhQJByqYwKY7ny5NZw33xSvYpUWRTqD9QSOgr07xDAlv8OfEe0KE8hFAT0yeK1b74QWK+J012w1B4HWUyvFKu/cx+mKf400u9uPBOv2Vlay3Ny4QLHAu4n1wBQC1PC7oayulwHTf+RcOkr5nmZ+zGXyv3u7t53m7tufmzs7YqLRPHHiTw9Z6XbaXqk0MAgbbCoBXmWTPUVpaH8Ir7VrMzXV3cWDh9rRS2ZJHv94Vdi8KDw98Q4NCkmF4lnEF84xbN+Xdvu5OPvY60Akdd8MtVs5PCQimuUiaGZ2/eHHynGP5V10GqafJmBby3kdE3MqNnAr56vtLuLGzvbC53Jc2s5V1HbHeuk+EEQ/4TG4BG8C2YZPvgf1pDPSD4/8ADUKrnUosnPHU5pY/Hehz6Rd6rDLcSWdowWYxx5wW6d68T8UaN/YnivUtOWIbLeQ7M+h6GvSvgzpcWseDPFNhOu5ZpkHHr5bH+dNAX/8AhbnhRW+Vr58r/wA+/wD9etJ/GdmPDK+JYba4awYlBhcN12nIr59ubZ7G6ntXJDQytGfwzXvHw302PWvg++nzjKSQTlf94OxH8qLiuYcvxksfIdrfTJGPI+c4Jrbv/FmoW3gFfElvZISXAeORuisceleD3lu0EjR54jZg31Br3nS9M/tb4Py2jnG6z81fqpJFFxnAXXxc1yZQsVrbQAenNdNYav4g1z4YX+uW1wF1C3uN7bRx5QryCaJYo1UHIDbT9a9++C9rDe+B57SZT5Nwrxv+I5pXBnjN94t8Rzuxk1OQAg/6viu48CXNzfeFtSe6upZmEU2C55HK15zq9otldTWyEnynZB+Br0P4bqT4bmUdJDKrfTctNCPM7ov9tmEksrlXKkF67f4O7U8XtMFJZYTuy2RjisTxzY22neM9ZtbfPlJctj65NbnwgyfEczEZAjP64psDD8faUbDxreoyAeaxnBHcNz/WsGyydSthjhp0H/jwr1D40wRx+LbTamD9iX+QrzOyGNVsgO88f/oYqQPZfivp8tx4Es5kLFrS5DE98FAP514dNZ4ZXLgBsdq+lfGqNL8PtURV3MQgX68V4LPp9u7/AGSOaT7SASMqNrkDoPT61EqijudVDB1a6vD03tdvou7/AK6o7b4LwtHJrYDAjy4gT6Asa90l0WytNUa4s4UimnVRKwH3q8S+DSlW1xuvEI/8eNe/XQH2yM+u2rucqPm/4woJPiPfYb5gqgZ6Kea9F+EGlppmixSqimSe3kmkY/ebOK85+KpJ+JOsE/whf61638PozF4Yt2B/1ent/Klco+fTa3UviAw6fJOkks5GUl5HNe3+INX1bwR8MdOubK7aa8W5CO8xyWGDxXlegJG/jPTTg/O5Nem/E9BJ4B02FT9++OM/7rUXESeAfirrvirVPsFxpsJiVgsk4ONprc1H4x+GNH1q80u+N5HJavsdlh3KT+dch8HbaNdKhZR873zB/wACa43U9Oi1b4w3sNz/AKqW8bAHXjPX8qLk2PoC18deH59HtdU+1/Z7S8cpAZl27j06fWt23vbW5VTb3EMnGfkbNeD/ABZt4bfwbodjFHtijnkK8cL1pPCPh1dG0C71NLyc3Z0y5dD5hKr+6YjAqrg4n0AJMNhjSYzyOea+cfA3jzxnqOq2ll/aZNsoDSb4skJ+f1rp/GfxV1zwv42fSre0t7q32KVzHtYsaLhY9qyN/PBNM8wA7a8tPxdt9I0/T28Q2U0El4GLLENwUDH09a6/SPGWi61pn9o214qWwcKXkG3k9B+lUKx05cbR3pofgbeSF4YnrVaK6trkkQ3EL9CQjZHNS71V8OSpzzxgYosMm5ByGHtxVTU9NtdUs/s97CssW9Xww4BByDUwkGcdz3pWYgEHnFFhkL2Fu7E7dpGOV4x6YrN1GDWI7qwXTyk0Jlb7U05wVXbxj8a2Nx29KaMEtjrSEyBbiUKTPEvHQqc5Fc3f+MrGxmv4raI3OoJdR2qWxfyy8rY43YIHBzk8cV1mQWBG0YHXHasLUvDOmalBdI0bQzXUyztPDgSpIuMMrEHBwuM+hNTPm5Xy7muGdJVo+1+G+v8AX+WpRh1fVor6LSdet9PM15DI9ncWLsUd0wShVhkEAlsk46Ac1X1P4faXqHidNfR5VvioU8/KRUtj4PuIrg3d7rE15fLG8UEnkpGkQbGSFHRjggtnkHFdEUuUiRY51kxgEunf86mnzW942xkqTmvZW21tdK93snrtb53PnXx7ZNb+KHgdlLy2EMr4bJJOeTTPg5Gy+M7tscLFt6e4qDWddh8Q6p9v3xtcNZpAQgwAgzj8af4GvLjwnrtzfXFhJcRTKAoUioU7bmKg2TfGG3D+PdUmRQEWBAx6c4rrPgAh/wCEf1dxx/paNkdwEINc74na38Vare3geezS7ABVlBxj8a6HwFq2leCNHurL7cJPOfJLKeOPaqdRB7NnlPjGLb4p1NzhUkuWKn2Ga9v+Duf+FcRNjA8qc8/7zVw2paH4L1e8mnuPEIEkshYKEfjP4V2fhPUNO0PRk0bT76K4iCsgySCwJJP86XMTyNHg3iCMR382HGCznGf9o17/AKCmz4YK4bpprnj15rKufA2hXUkjz2gYt3HbvW9BD9m05dPgGLUJ5ZQ917indiPnnVIEt1hA5LNmvevggu3wWc9wTzVdvDOkuf3mnxMR0zWnY2qaXbLFYfuIgOUWjmYW1PAfEcbfb5H2tl3Yng+td58OVZdCgwCoaSUkNxgblr0COwtAF22EDY/ikQEmsq+RV1e0gVY4g8DEIi7RnK5oUhW1PMviBBJL4r1eVIZmLXsvzLGSCATg1qfCSCSPWLsvHImEXlkI9PWvYP3iJhHIzjOB1qGQtIcM7N7MKpsZ598YAZfE8BRPMzaKAVBPYegrzDTLC7Or2bG1n2i4jJIjPADA19IplFwFAA6epoWTEnzbtvsam4rGf4qjkvPBF/bWqtJcSSI0aJ1bGPyrye68MeIiwlh0CcTMuDISMrkc454PvXs/3kAwTg5H/wCunhI25H3vpUygpbnXRxNWimqbtfyT+avs/NanC/C7RtQ0FdWOrWUtqs4i2b8ZbDHNexW97b30waPcArDduHQVy8ilkAAGQeOeldB4eBMc5IyGwCao5Twn4naPqP8Awlut6gbG4aKVlETqm4MOfSvWPCUDW/gpWZXRlsWBBXB6dK7zaoXAz1yMcUz7xLbQMnknn8KZOp8ueEYGk8XaK7hlJyTkEYPevRvigrDwppMJGGF0W259m5r0+TTNPMqSmwthKn3ZAvI/SqWv+E7HxNbRQXpZViJMbJjIoL6HnXwcTOg2xA+f7VMw/M1yFkvnfFoyjq1zNz343D+de2eHPB1t4Vs0srKZnhjd3Qv1BbJP6muMt/hnqdp41XWUvInhDyMV5z8xJ/rTEYPxcAOj6IAOT5hOB15YVuabCV8D3WV2n+yLjGfTyWpPij4W13WoNNh0nTWujBG28xsAAST6n3rat9FvIPBt1HPbSLcf2VLHszn5jGRj86Vhnl3wxt1Oqvu5AjUDPpWz4gtkn+M0RkUSIU+6egwOKPhnpN1BqVx9rtZIOECF1x0AzU12pf4wqoB3bWwD9Kew3ocz8VIv9L0uPAxsYAY9cV1HirT4dO+F95ZW6COMXMIQDoODWH8UYc6vpCMMFkBAPfmuq8cBl8ATqfvvcx4p3Ec7f20vhXwDcyade3EVw8cbmVHIYHnpWn4U1TxVa/DvXNav9avLic2gktFuJTJtwRzz9ab43V4/AUpfBJjiHPbg1paZEU+EFwxHB0sAk984NLmEO8A+PfE2q6Le6jq8UFxa28TNEyrsaVl+9z/Wt/wz8VNN8S2c87ade2kdvF5kszj92PXnNcX4MBi+GF3LgYWxl4+pFaegQM3w3mjVR5baUqkBsZOAaOYXKeh6Z4v0DWLdpdP1WGdEALtyoXPufrWol1AUZxcQsvqsin+teFahp0Nv8Jr+3t1RQ9vbK+MHBMqdfxrF8Q6Aug+HtKtNMlaGae5AknQ7W5UHrVIOU+mU+dDtIPIA549agyw4Y9eOtfPx1/xPoaaVpWg6q1xM2fP3tu+b8fbFdNY/EnxAutro8mkJePGqG4mQ42ZPJ5pi5T1sHrjgjg5Hem8onoR0AridK+KOharHctsnhjsw7TTMvyAAc1rWvjbw5e2P2q31eFrUvs81gw+b05FAWPmnTDb+dJ9nLlPITBbseau65pza3reg6avmHzpWRjGuWCfLuIHfAyfwqvpnkO+YIyiGJCw9+as+JG1CEWz2Vm0zPBPAzLGzlBIFUkY6EruHPYmuZNe0Ru0+VkOnaT/YXje8s1iuI4vsqyxJcjEio+x1DcD5gGweByDxXUDHOARn2Fcj4ce+k1C3ivrRoVtrJreN3iZS483eMk9SNxA9gPSumS6R7x7ZRiQKWy3fmorX5tDeglyak5jDKMop5/iArT0S3tI9SimkiCyLnBHOayRM320QgAKF3j61ueHwDqkWe1YxcrmkuWx1v9s2sasuX5PaM/4Ui6pAxOFkOR/cNXMBt2ScA1HtHmcE11KWhwtaaFcXaynIt5zgegH9aaNQYKQLC4+uV/xq6eB1pu0Pye1Ve4iqNQfy8/Ybjj3X/GsXU52bxNYt5UqlYGO0455FdMPljI9K5vVpfN8Y6acdIv8ACgDojdtjBhcc+tIJmA3LEx+ppzAmQk9MU2RehpsCPznzkxnn1PSlE0p+7GAfUmmn53OO1SxqAOaAIXkvP4Vg/wCBE/4Uvn6gI/8AV234u3+FWMA9KjYYNAFYyagMcWfP+03+FdP4d/tBLaRg1pkn+83+FYTYA4610Xh3/kHtnrmmDNZJpwf38at/uHP86SS8lhXH2aRv93H+NOpz0ElJtWCHMtrOn+8ob+VSprFmxBywPum2rC8nqQfpSSRxuMSIrf7woGC6hbSH5ZVP1YVJ5ikcMM+gOapNp1sTlbeJc9wKjOmW6H5GdT/stTQGiU+YZ3fyFK2Ac55yNu2s8Wco+5dTAe+D/OlVLlXXfdOwHQeWv9KYFXXtRg0XSpdTlgabyio2xgbjk9PSuDfx/wCHG1E3h8O6gLsKMS7Y8jPb71dN8QriZfBl3uRG/eR8qCD96vDJbr5zlgGyT8xx0qZNo2hFNanX+Idc8K+Jru3mvNJ1dZ7YDyyGQDH/AH1UHijxjY63op0m1tLuFd4fdJtwcfQ1yLSRMfklTI5YbuMVXkmizxIntzUc77DaR1PiLxZHrXh86bFYvGzbB5kmCDtB6c+9Kvjdo/BUmgxWGGaBYTMW6VxxmXr5ifnTftEX8Ui1Sd+grI6nTfFraf4PfQ1s4nLwNCZixHUjn9Ko6n4lup/CsOkW0KQ+REqSSxucsAO1YTXEWT86kU6K8SJg0eGYA8Y4P1ou10BJEmhx6xNZTwmR3tbjZtEshwNjhv6V0/jPUf8AhI9Ks7eytriKa3lEjs5AThQvY56isS112zFuJHJjkOSyojYH6YqZPENnODsMzEj+FD1qeaVxqMWjN8J2ksPiKK7ubhY1idt+WbOceteheHZ7e58Y6rPFcxmJjHGm9uozz/OuN0y9/tCGd3jAAlK4C+wq59ngysqKI2JHMeQf0p+07iVI6DRrJX8CattjAD29wZAo5xzWnqPh+zm0Kx010C2qTLJtHygnHtXH2xuYLL7Pb3ksSMGRwr8EHrnPFbCeI78CJXdZokyVEqgcn6fSj2iE6bOZuJdOtZQUgCBEBlAc/N6VoaTqttqIzt8mNyFVmJwe3XoB71kaw0Czzs7ERmFAxCj3q54Xur5gyaFEJrc4imieHK4yfvHoM578Vw17qkmj0sBThVqSU+i0V0r/ADemm/8ATZL4h+z6ZeK5mVJ9gaLDbgwPcY4rJj1Ezaql1DC2TFsYepyOeam8Y2P2O5toL65YX0UICIBvx7ZGemcfhWK895AZDOGSZdpC7ccVpQTdNXMMRGMKsoxd0nv3OlSaYauu5hGhUY4zxXZeHVJ1VWKjaqszOSAMAVwFtfwQxm8uZEZjgKobOOKuyeJPIs2ktIWlcrl1yRgf/qquR3IlJcp7DG6uN0b7kPJNHzbieMGvIk+MF3Eix/2VAFjUKACf8alT4zXA66TEf+BH/GuhQsjkvqequrjnnFMEpUEEGvLz8aLjvo0H/fR/xqvJ8YJZJAx0iID0Dn/GnyiPWfOOMnjIwPeuev2Mniy1IHMaAY9M1xK/GGZQANIhIHP3j/jViLxu95aXfiD7BGrwlVCbjz196fKM9PJO4npSs2DXkp+L1wXOdNjx/vH/ABpT8X5yf+QZH/30f8abQHq5POaZvKtxXlR+Lszf8w2Pr/eP+NH/AAtyYMT/AGbH/wB9H/Gp5WB6vukPQ4/ClHmN1P6V5SvxdlPXTY/++j/jS/8AC3JQeNOj/wC+j/jTsB6uI23DB5+ldPoIItMZGM14H/wtq5+8mnxf99n/ABrc0z4xazZWbGTw8jwL8xk+YAD65ouKx7rsY9DTmI+teMRfHyDIM+joP92Q/wCNXofjzoUg/fWF0n0YVViT1jP1FJu9TmvNovjT4Vf7wu0+oz/StGL4reD5sZ1MxE/34mosB3AbFRsQWrmIviH4TlbCa5b/APAgR/OrSeMfDsp+XXdO/G4Uf1osO5vBj60jMN3Bx9KyB4r8Oj72u6YCf+ntP8aVfEWiOeNY04g9xdxn+tNAZXxDkYeC7sbiB5kff/ar581K58m6JVQ/yEcjI5Fe9+P7+yn8GXCwXltM5kjO2OVWJG7rxXjcd69p5hjaNgxH30U4/Ss5PU3j8Ji6f5WoXeydLaICLac7gKebO0JJEtltTjG5+a0m1WZwELQqQf8AnkvT8qT+0JVUBBbgZyf3K5/lRzGfIzM+x2sqq4mskwpJTL/MarXAgitklRLVy5+6N/FbJ1KbjCwf9+V/wqP+0bo5KrACvAHlr/hT5hqDOdN1hWBskJPQruqxZfOkqHKn3GMVrnVbnoTH/wB+l4/Sqk0n2iSSQ4BHHQD+VJyKUWma0cCwaKBHt2hDjIzVHwszvZzFjx5vNXJnRdJdeceXwPwrO8LkrYyYJwZM4xUPYtpcxtWtulkHEfG9y5+tTbs9zTfMzwOCenFJ5mB05HUYrLU2Vh/HPfnJpWbePao/MycYx7mm+Z8hAIzmizDQwPEfnS6r5ZLeQUQN8wGetatgNU0GVn0dSqS43JIwIOKytfS4l1ZWB/dAJu+vNdUjExAn8qVT4EiIfHcp+IJbbVbwajqjMsyjlIucEewrl9au0vm+0WyyMqDa8rAjiumvLUyo7f6okY3msmTSYY7CWITGV35LL0p0WkrBVTepj2Om/b41EMhLDk5GB1rr7Ow8m28kqMlCpP1rD0FEhvDEVI9ia6P7QpGDkBeuKKkmpDhFOOp5rcqYbiZCMEOV/I1AScVteIbP7NqDOPuSfMKxW712Rd0cU1ZjMn1opKKogcMiussfl+H+pNjjz4lz9Q3+FcmK62D5fhpfH+9eQD/x16T0KRyZPNNzQaUDOKBNiZozSupVsEYptAhaUU2lFAGhpMKz3YRwGHoTivQdZcweFp4o3KKY8Feorg9AUNqSgiu48QxiPw5M3OduKxl8RvBe7c81BOQQcds03cRzmjtTa2MbkqseSOT60rSMQOfypsfSkNAxAcHoKeMHkgfjUeOacOtBJNlcDKD2pyjcQqg7zwAD1piqSBjk+lbFpYeVtkP3iOnpUt2NIq5Ys4WgB81zv6Y3Ej+dTpKFJQPu5zVO4lMY3dTmo4WbaW6E1ne5onY0ndXnDfnUpI7VQhJST5ud1WySDUstO4/IPWoIomWaV2YkN0ANOJNIrEHJ6UihTkcZ6GkYc9eSaUn5s01mxz70D3J/EBZNGt3VtrHjAPbFczb3NxEoWGR0XPOK6PxG3/EmtR6/4VzVuzcAdK0j8JlJ+8btpf3C6VO5lZpQ2EOKqDXNSVuTluhJFWLckaS+CP8AWVUbO4cj71JJCk2jWtdanNlcTyKGdRwvaq6+Jt42tbKG28HNMtcDS7g5HQf1qg5ULHv2gY7ChJMTk0jr7+ISzsnPO0n361qLgRJ64rEuJw10xDHHGTjpVgarAcKXUEAd+tck9VZG1OSUtTUlw8eG5HcetZ92iW+yS3iCsx2nJ9qdHfwTAhGLY4OB0rA16+iLKsLOrK2cs3FOnB3NJ1IpENzcfYbgSEFZFYg5Oc1e0+7d4Q8jjfPnj07VzE08s7NuOScZq/ay7oCGBLLjac9K3nDQxjNGn4liWazjc581B1HpXKtGdm7YQD0PY1vXV1K0sW45TG0qe9ONrGzElchei9qcZcqMp2bObCE9KQgA+tb39nR+YJFUBTyRmnzWMJDpGAMn7x7VaqozaOdFdfGB/wAKuufU38Iz/wABesP+yRkqJwx+ldPLblfhjLCikn+0IsEd8K/+NXzpgkzhSMnp1oyVIx2rUuNPZYImQEuo+ZcVQe3kXBKmnzIHFkbuZDluTTcZqRoHXGRjIzTPunNMVhCMUCn4ZhkLTQjenSgRreHxi/BNdn4pIXw+4DE5/lXIeH+b4ZFdd4vZRoB+7kuBwaxn8SOiC9w83ptOptbHOSR9KQ0sfSl25UnI+lIaI6euCcH9KaF3dDWlpkCMHdhkqcAYolorjirsnsbRVjWR85PY1oEknJ+maaCQNuOlBfkcdawu2dEVYbJErDk0CMY9hT2yOq05eFxgnNBTSGQjPJ7VNuB6VGzBeBTd3akCSRKxx3pGcYAzTFOOtNJAz3oGTBgaCUJANRA4GcU7AJBxxTsNNEniU4060QcjH9K5y0710nidNlhZjcpJXOAc44rnbVSN2O4496uPwmE37xsWwxpD/wDXX/Cqcpwy/Wrkasuk4YEFpc4/KqEhBdcb8AnqpoiEjQtTjS5/w/mazpyVjQitRB5ejS5RudvOPc1kybmCLsc/8BNEdxyWh1FyLdppSkrtCSMswwRS3llpv2GAWs0rScFhIuAR7HNPu7COG7mstz7Fm2F8DP8AOtCTwlbzxqi6hOmwcExg/wBaxsiY3ZDbweGbazZJ59QR3HzbYgw/D5hWNrVjp9wsa6N9oYL977QoUn9TW9/whaSMB/asjYHRohj+daEXw5uZ4hPDqEYDcckihNJhK7POP7EvXJIC/L15q1DpErQA740I6jPNd6vw01OMkjVIMH3PP6U5/h1qToytfREHoVqnO4lFo4IaX5koLzcKOAD3qylnP5bYkI74Peuqj+GOoREn7emT2JIqaXwPrqxiOCa3JHcsef0qWxcrOLghmMTKSFYcEntVie1uIwIlKSMRkkdq3/8AhXXiJztb7MyvySJT1/KrsHgPXfsoLfZ1feVxvPA/Kp2HY45tGvY4DIzRhWHGDXSxwNB8MImPBN8oyehIBq//AMK+1xkjaSaIxqeQrZ4rrT4Qt5/AY0uR2WWO5WUhep65/nVwYbHjkYmgmKOivv5DZ602WMPIG28DtXr7/C3SEjhdbyV/lyRnoarD4c6QcZkmJ9KmV7lWueP3tp5g3bXPHGKxpI2jbayMp9GGK+hIfBGkwMmEkGxw/PcipvGfhfTdf0qZIrK3hviFEUyrjGCP6VpTqdyXE+eEYhSvQ0K52kkjFdfc/DjXbfJ8pXUd4zyaYnhFIkxfTXlu3/XuGH55rX2iIUWZXhoBr0scZArrPGhP/CPKu08yL/DiqGnaRbWGoxpZXrXe8cgRlSM12WraDNrVitvMjwqCCCec1jKfvXOiKfKeKdqaVIr1SP4cWqHli596vReAtNVcnTg/1lP+Fae2Rl7NnkCDCn1qxLbskKMSvzccda9e/wCEQ0tF40OM+/mn/CpLfw1aQ4B8PwsM8FpScfpU+2Q1TPLNF0GXWSxWVI1jODu7109t4cjtI/JWSItkZOa0/ELP4XkgngsIYUmLHYFBBwcVa8PatH4nuDBNZww+Wud8fJpSblr0BRszBm0K5kJkiaEx565qJ9Bu40aRmi2KMkg1383hx5MRnU5FTqFEA/xpx8N+ZaS2pvpPLlXYSIQD/Os7lanmCW7SMdhj/wC+utPbTLzKbY1O/wC7g9a7aP4WWMQU/wBrXWD6Rjj9aW98GxWAt2TULqRhKFxj149adw1OKfSb5CFNu5YDOAKia0ukYA2kv5V65B4fhtYjEZpHwd2WPJ9qbe6dbQWU0kanKrwM5o5gVzyGeGdBkwSj8KhTeesUn5V3kjMxwq5OO9Vn8zAwFHNNNFcrOKeUo20q4/CnLIxYEAjHrXbMtvIN0kUe4DH3etLaWto93bny1O5wCAKHIXwmZdOyaLIrQI+6I/MydOKreE5zDpTDyIHBb77xgkcdq9A8SxwJ4d1DZCoUQsBgdK4bwbY3N3owaCNWCsVbJ/Gi75NBpx5tTWSUiQOIogoGcLGBzT/7QvEOVfac5AHT8q0I9DvGXDLGv407/hHbkjDvGorKMmatxMo310JxcpKyTAbd6ccVONd1bIK383H+1V1PD78hpUUeoGak/sBdv/H6R9I6abQNxZymoBZdcuAQRm69M5rqVKqqqT0Hc1xOll7hN8rnfvJJzmup0+CWa2Dq8rbTjoTVNmFPWRorsLjnOO3NdJpa4sIxjOCT1rmTA+OPMJHqprRtb9reLY2RWbZtyXOk2BlG4H86UDacgYFYR1dvXP405dXY/wAP60rsPZm3siY5JbNIYoSeN2e1ZI1Y4+4Pzph1UkEYouxOmascTRhgC45yASKdHuC7mfOeTWOmp7RylOj1VcbTwKG2L2bNcKWOVf5R2pN7+aCJMfSsv+1VXgfdpg1JQ+7nHrQmDpmujvgkPjFNa9iBy0q579azl1ON1bms6SdSxwT19aq5pGmdEdStQMlsnH8NVZ9Ui2kxE7h0yOlYLSZHyk/nUYlP979aCvZI0Tq14HyWQA9wvNKdVlY5dY3PuKyy/wDnNHJ5xx60B7NGqmqIGL/YLcN/e2DNTHXmKBWgQj0FYgVjxyc07yZB0Q5+lUDhE0xqqM2TAB+NTLrVuqYMD5+tY32ec9Iz/wB80rWlyf8Alm/5UE2gjWOtW/Q27/pUkmuwtaPHBDtl2/KXxjNY62V03Gz8xTJbK6CkeSM9iB0oJ5YnGeM7vxBqiWv2+yj8i33KrW4z1Oee9T/Dn5L29eZSrFMDK4rcuLfWUJ2KgUnPINU1i15ZS+yBAOCFTGf0rVT0sT7I6/z/AJxll6DpU8cuGXgYJ4xXP2zSlQtyQp9ga1IRYHhrmQkenasWx8hsvIFQk4HFZ2oSqZbXLrnzMnPtinrHp5B33Dn0y1V7tbFr60UOpXcxJLZxwKBOJpNdxktulTg8c1TvruL7LLtZWc9ARnNTv9hUkYjYDuBSfadPUdI8f7tFgSszkZESYhn+Vz2QYzS/YImHCfmxro5dQ09W4jQj2QVG+oW3BS23f8AFNIrmMMaS5GRG+O2BUsGkXCTpIgC7DuGRWo+ottwkEq/8CIFUXurs7vJZkY9zlsfnTsLVlLxZNq39mLbRtFFHckiUMMnHse1Zfg6w1WxgkhimhW1JyAV+Zm960rm2vb51a4n80r0BXFSafbXdijxhkXecgk9KrpYhw1NEpqirjbE/vUa6hqcZ2T2CvGO6U3y7nGWvAB6bqiJZSd16QfZzUWK5UW/7ZWNh5sG32xmp01m1AJZxH/vAisVvsZOWnkLf72KY9xYkFXG8f7TVSuHKjlNIYCF96srbs7SpBrsNAv7q2tZI496oeQCpHNa6aA+8sXtwx/2CTVhdHlGM3I2jqAtTdhGEYu6KLXt0/DOTmoJTIR8zHPtit5NKtwf3hcsfbFXYtNskORDn/eNIvnSOQCtnufwqRYZnPypJ+VdpHb2in5YUB96kdUAxsAHqBQHtOxxi2F43SN+PU1YXTL1h/qse+4V1G1McH86aypgUrhzMwBpF0yjc4FOGkPn/AFgraZSD14pu1aVxczMN9LuQTsCv9TVVrC4Q8wkn0BrpMbeaY8u0Z2ZpD5mc0yPGcNGwP0qMso6muhecFzuXj0xUD/ZnHNsPrVIan3MZSNw5yKuRyWgxvhJ96dJaQMfljcH2qL7FKPusB9adiudFuKfTR96A1aW80sDaUA+qk1kG0uR0wageORPvqR9KVidO50SXVgx+UoMdypFS/bbJR/rYwPULXKfNnIDt7VKLZ25yqD/aNANI6M6vZJ/y3H/fB/wpr6vZH7sjH8K51ohH1lT8KiaWAfxM30GKqxFkdE+rwLyoJPuKhOuIvIUA1zcl5boeQw9y1QtqMGcm5hAHY0WDQ6V9adjgKD+FQS6pKwwAo/4DXPSa3bgfK+7/AHBUX9sqeVhmb8KYczRtyXU0hywGR04FRea8eWCjnqSKyP7YU/eikUehFOTUhI21Y3IoDmNB5llUhiCvfg1VOn28gLAvnttYj+dNkmmx+62r9arGW6YENMB/uihIXMaFtarBkCeXH+01aEV3aRLtcbj3JrmCGIIe4fNNG0fKXYk+pxTsHMdU2pWHZU/Kk/teA/d2gD0FcoI49x4Y4/2qmWVF4VOlNILm8+upyA7flVZ9XbkqT/KsiSZiSduBUTSNjpTsSzQbVXXPztuPbmqsmoStndISe1UzMM4PWmtKuRT5SLsna5nI/wBZ+tQySyt0emGVcUzzR2FPlAD5meWJH1o2Z5Y/qaGlyORiozLjrTA7VdduVX+D86cviG5H92sk/ZlHE+6l3QE5yfzrKxdzZ/4SS54yAakHiW4x9wVjAwemaduh7L+tFh3NceJZwfuLUo8VzKuNgrCKqx4QUGJQOVGaLDN7/hJ5SM7Fpw8Ty4/1Kk1zyjA4AFOxIOQwpNAbw8TSn70S0v8Awkzj/lktYOJGH3jQUfj5zSsBu/8ACRynpEtIfEEh/wCWa1h/OON+KC7A/fzRYDZfXmbrChP1qP8Atlv+eK/nWRyx5oOB/wDrp2Dc1hrbqT+7UfU0HXHP8CVkhB1zinGNB1biiwWRfOsy5+6KifV5G+8oFVCsJGA/PvTRChP+sFOwbEzaoegY/lUQv3J5G4e5pfsy5z5gNAtGJ4RT+NFguxJLs7M+WPzqF3DnIB/OpntmUcwqR7NVdowB8u/P0piFWXaOY0P+9Usd7Gox9ngJHqmar7CDwx+ho25GOM+1OwtS5/amRj7Pbge0eKQX4/59bc/XI/rVExgHk0cj7vI9aLCZckvFfH+h2v8AwFj/AFNKLiIjBtCP91sVnsADnqfpSdc44+hosTqW2a3J5huh/usD/ShRpxPz/bx9Mf4VR75Dcj3oMrg8MaaQal8pomfnur2I+rAf4VKlnpMg+XVQoH8UgFZXmTscgrjv0NMkbcclQT2yMUWDU2v7GgkGbbWbaUflVafQLqQYWeBx6o+P61lfMfvBce3FSLPGq4KZ+jmmkGoyXw3qCsSrXBAP8JBFQnSb5OouuPXH+FXFvuMK0igccMaRb+VW+S5nT6YP9KYGfJaXMYyTccf7Gf6VCWcffZ+P7wxW9/a+ojhdVlC+hjU/0qu95eSZzcrLn+/GP6UXAxzcFOPlx70wXEjH5VU/StpTL3tYJKnDLj59Ii+qkincDnzLMeCAPwpOSeck10atp7KBJprp6sCamEOhSY/dSp9TSuBhLN8nLVItxjjdiqxgdTnHFN8iTdSsii+Ln/aqQXIA4asthKp5AwKaJXZ+2KLCNkXLEfK1SJcSd2rE+0FBgnP0qRLvao6/jScSkby3gUYJzUqXSNjpWCL1ccrQLxKnlHc6MzoR94UqsCB81c8LtTj5hU63oAAzRYLm6yA9Dmm7GXnbmspbzHJYipk1LH8RNAF/Kkco1G1T/Cagj1DdTvtiE8g0gRKVHYUEVH9pQkbWx9aU3CgZLA0DFC4OdoNLn5uVFM85W6GhZQepoAkyB1FJvTsTn60wyIB1zTDIh/hpgT7iBkHNNErB8DIquZ1AxnFQyXcav/rhQDNA3Uq98j6VE1wGPzxg/Ws46hHnAdm+i5pv2vdwqOSf9nFMRomaIDH2ZSvqM00TWhPzRT59Q4/wrNdbsjCIn/Ampn2S9k5dkA9jQSzWP2FzlrqWH2KbqaBaNKVGowYH/PUeX/PrWYumqWywLH1zVhLGJCW2KPcjNFwsOuAkTbo5IZR22PmqUktyzYjtpG+i1oJaoTtAUjr0xTjb7fuDH0ammDRl+VqRGfszr/wGkNrOwzJ5me49K2Yt8Z4kZfqc1P8Aa3IO8qyjuVp3FyswUtyo+62P9qnrbEnPy4+tbZ1GFxsaCPHrjFRtcWBHzx/k9Fw5WZ32bGO1OEIweeR6Gp5p9PUjbNKM9tmQKi8y2OcTnn1XFFxEflMOc8U4R8ZAJ+lSpCkiZS4gz23Ptpy2c2MjY4/2X3UARKUA7CmO7HG08fWlmSZDgRP+VUXedWI2ED3pgXTJgcSsD/vUn2tx/Ec/hVAuW4K4PrTGYr0NFgP/2Q==", "path": "images/5pts_ADE_train_00004680.jpg" }
depth_point_37
images/4pts_ADE_train_00001461.jpg
ADE_train_00001461.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 215 y = 169),Point B is located at (x = 293 y = 125),Point C is located at (x = 322 y = 221),Point D is located at (x = 111 y = 118).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_6><DEPTH_22><DEPTH_11><DEPTH_61><DEPTH_70><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_59><DEPTH_44><DEPTH_0><DEPTH_32><DEPTH_2><DEPTH_1><DEPTH_49><DEPTH_17><DEPTH_22><DEPTH_25><DEPTH_0><DEPTH_19><DEPTH_74><DEPTH_74><DEPTH_58><DEPTH_29><DEPTH_41><DEPTH_75><DEPTH_44><DEPTH_58><DEPTH_29><DEPTH_74><DEPTH_44><DEPTH_44><DEPTH_78><DEPTH_72><DEPTH_76><DEPTH_20><DEPTH_49><DEPTH_74><DEPTH_64><DEPTH_64><DEPTH_44><DEPTH_44><DEPTH_63><DEPTH_15><DEPTH_84><DEPTH_51><DEPTH_31><DEPTH_74><DEPTH_74><DEPTH_69><DEPTH_64><DEPTH_58><DEPTH_82><DEPTH_78><DEPTH_76><DEPTH_75><DEPTH_70><DEPTH_60><DEPTH_3><DEPTH_49><DEPTH_29><DEPTH_58><DEPTH_38><DEPTH_29><DEPTH_69><DEPTH_73><DEPTH_98><DEPTH_98><DEPTH_16><DEPTH_9><DEPTH_39><DEPTH_1><DEPTH_57><DEPTH_19><DEPTH_49><DEPTH_58><DEPTH_98><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_57><DEPTH_41><DEPTH_58><DEPTH_72><DEPTH_30><DEPTH_69><DEPTH_42><DEPTH_94><DEPTH_0><DEPTH_19><DEPTH_25><DEPTH_63><DEPTH_63><DEPTH_63><DEPTH_2><DEPTH_2><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
4
[ "B", "C", "D", "A" ]
<DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_6><DEPTH_22><DEPTH_11><DEPTH_61><DEPTH_70><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_59><DEPTH_44><DEPTH_0><DEPTH_32><DEPTH_2><DEPTH_1><DEPTH_49><DEPTH_17><DEPTH_22><DEPTH_25><DEPTH_0><DEPTH_19><DEPTH_74><DEPTH_74><DEPTH_58><DEPTH_29><DEPTH_41><DEPTH_75><DEPTH_44><DEPTH_58><DEPTH_29><DEPTH_74><DEPTH_44><DEPTH_44><DEPTH_78><DEPTH_72><DEPTH_76><DEPTH_20><DEPTH_49><DEPTH_74><DEPTH_64><DEPTH_64><DEPTH_44><DEPTH_44><DEPTH_63><DEPTH_15><DEPTH_84><DEPTH_51><DEPTH_31><DEPTH_74><DEPTH_74><DEPTH_69><DEPTH_64><DEPTH_58><DEPTH_82><DEPTH_78><DEPTH_76><DEPTH_75><DEPTH_70><DEPTH_60><DEPTH_3><DEPTH_49><DEPTH_29><DEPTH_58><DEPTH_38><DEPTH_29><DEPTH_69><DEPTH_73><DEPTH_98><DEPTH_98><DEPTH_16><DEPTH_9><DEPTH_39><DEPTH_1><DEPTH_57><DEPTH_19><DEPTH_49><DEPTH_58><DEPTH_98><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_57><DEPTH_41><DEPTH_58><DEPTH_72><DEPTH_30><DEPTH_69><DEPTH_42><DEPTH_94><DEPTH_0><DEPTH_19><DEPTH_25><DEPTH_63><DEPTH_63><DEPTH_63><DEPTH_2><DEPTH_2><DEPTH_END>
215
169
293
125
322
221
111
118
null
null
92
19
42
71
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3wqDQFA6DFPpMVPKgExQKdRRygJjNGMUooNOwCUYpaKYBRRRQAgoIpaKVgIpbeOdNsqK464I6VD9lki/1M7Y/uSfMPz61boosBU+0PFxPAyj+8nzL+nP6VPHNHKu6N1YeqnNPwKhktYpG3bdr/wB9eD+YosBPSVX23MX3WEq+jcH86BdoMCYNE3+2MD8+lDAnpe1ICCMgjHrS1ICcU1hkcU6loYFcqc0m2pyKQ4AqbFcxTktlJLJlGPUr3/pUOZk4KCQDuvB/Kr7DPamBR1xUtFJlRGR2IB5HVe4/CkKCpL17aGBpbuSKKJRkvI4UD8TXHX3xA0S1nMNpPLfPgnEa/KMDP3jj+tIfMjrDtC4xzUDAlqxPD/jPSvEFxJaIWtrtAG8mYjLKehUjg/TrXSrABknFA7plYRlqa8YxVtht4WoWBLcgYoApSR8HFRKhzyKvlAeRTCgoAqtFmoJIsVeZagZCc0wKDJnNMEeTVtl25qPApgU5I/zquYzk5HFabIME1XdMk+lAikY8mq8sWcitBlxVaTqaok9MooorQgKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkKhuozntS0UAVjZopJgZoT/sHg/geKb5lzD/AKyNZV/vR8H8j/jVumNIiKWdgqjqScAUARR3UMr7Fb5+6MMMPwNTVyus+M9DtVZMi8deyY2g/wC8f6VwNz8XbzRtQm82xaa1mAa0j3EjjhhuPJqOZDse01FPNFbxGWaRI0HVnYKB+Jrxm8+KPijUEdbKytNMj+b942ZnGMduneuY1a9M5efW9ZmujukA86XC5AGAFHHUmldCPX9V+JPh+wYxQSvfzjPyWy5HH+10/LNcfqPxG12+IW0ig0yBmA3t87gEZzzwOK86fxPZRRPJaw7bZWbDldu/IxhR1J9+nNchqWt3upSN5szLEcDylOFwOB9aW4PQ7PV/Eto7+bqN/cajdYB2lywVgeR6CuavPFV5MClqiWsWW4UZOG6jNYAPbHHp6UGqUUIvW+pXlvdrcx3UqzqQwkDcjFe1eCPi/b3XlWHiKQW03CpeIP3b/wC+v8J9xx9K8HBp6lgOuB70NJjR9nb2KBztaMjKyRncGHY/5zTkjVxuVgR6185eAPibe+FpUsr5pLzSCceXnLwe6e3+zX0Hp+qWOuafFf6dOlxBIPkljP6H0I9DWdrGilctlABiomHanjzF64kA9eD/AIUF0LYOVb0YYNIoiMeahkTbVwrjtUTpkUwMuVSzUqxA8mrTwknOKbs2igCpKhzwKrHcTtxWg+MVWI5NMRW8njk1XmhA6davEGq8kZPemJnfUUUVqZhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRSGqV/q9lpqbrqdIz2XOWP0HWk3YC9kVFPcRW0ZkmlSNB1ZzgVwOsfEqONzDp8B3k4BYbmP8AwEdPxNcXOPEet6jLczzyQxS4/wBY2SuBjgdBWcqqiXGDZ6HrPxBsbEMtoBKw/jfhfwHU1w9/q+ueI35L+Tnjf8qfgvf8atWOhWtsQ7KZZe8khya1RGqYGKwlVb2NI00YNt4bQnfdyNO3XB+6PwrmvHUFtHq2mIxWKGBOeMhRn0r0fAI5rzn4iFf7RBK5CwqT+YqYPW457HO61ql/FA72E1sLcsfnT7/zc4IPTtzXLiMsv2/U5ZHRz8ilvnmP49B6mus1u6tFVke3B+YSJH6jaMA46AfrWAul6jrk5eG3kmZuNwGFA9AegArZSI5DGnupLuQNJgBRhVUYVB6AV2ngvQNE1aza4ulkmuY32vEzYQDtz/iaLT4fJBEs+sXwhjzjy4uTn03f/Wrv/D+nafYPPpVrC0axKJW+fJbd3zRKorWQlG25xPjHw9pcFnNeRBbR4sBAn3ZPQY9fevPsAHnrXtfiCxtBKkEkCtFNOI/LYZXOM5wfpXKRad4avZLxPsBH2TPmtHIy4wcdM+1OM7IHG55/nPQAUmTmu01HwbbTwLLo0jiQruFvM3LD2rjpYJbeZop42SROqsMEVopJkNMRWx9K6Twn411Xwlfi4sJi0LEedbSH93KPf0PuK5nAHJP9aUNjsKejJPrTwh430jxjY+bZv5Vyn+ttZGG9D7f3h7iul2KVIZQR6EV8Z6bqd1pmoQ31lO0NzCwZJF6g/wCFfRHgP4sWPiXytO1QR2eqEYU5xHOf9kn7p9qzcbGikd66lP8AVsR/styP8abvx99SvuORUzqSfSm/dHNIsiPzDIOQemKhkXipGVcnYSp/2e/1qKRZT99dw9V6/lQBW2Fj7UGEAVOpTnBBx1FIeegpiKjLULLVp1/CoGHNMR2VFFFamYUUUUAFFFFABRRRQAUUUUAFFJn3rH1bxNp2kRs006sw42qR19z2pN2A2DWVrHiHTtEtnmu5uUGfLTlz+H+NcHfeOtU1ZjHpcJWI8blyB/30efyxWUNCmvWMmp3Ly5PManC//XrGVZLY0VNvc2dT+Is96fJ0iJiT08vlvxboPwrmbi3uZiZ9Z1BYEY5Mat8ze2eprZa1ttH0uVreJYlRCQAO9c5ZxoYkuZcvPINxduSc+9ZJymW4qJGdZjgkltdC0ze8Z2yXFx8qqf5ntXSaCLuTTFe+nEs7MSWVdoxnoBXG6W+RfSDGHvJTkegIX+ld9pi7NNt891zSnFJDi7stgAUAc5pNwA6ZqLY7yEsxAzwKyLsSSMqLnrXF+ILWO/8AEZjkiaQlAoG7CjjOTXa7PkIPOa56SEya/cz5AjUFM96qImcwNJ0eCa8uJLczzwr5hWUnYB04Fatvczyalo0MEXl211AZXQpgIu0nt71oixtUE/mYlEy7XDDgjOccf41L5udscEZIAwFQcAenHH86oRhLoNxe6Bc2V3KYpHuzIv8AHtj44wPXHet0eTb3st1Gu2SSNY2bOQFXoMf/AF6R45QwW4nhhB7OwJ/KrAsbdIRM8nnD1LDFAjGvmjubtGlyfLdXByPvD6VlW2hW8FzqU6SlxqCkOMLhc56Y68mtnUraG4lwn7tiOFzz07iseW4uLY7Sq4HpTTaFoTvYxLFGqvueGHyxuXnPY1lavo9rqUbRXgZXjQbbjqwJ4/EVbXUiWAkQbfUdquo0c0fBDKcc55496pMTR5brPhu+0Vt0gEtuT8syDj8fQ1j8npXspgKbwQHildmkVxuBXHQiuQ1fwhHcp9p0fCSsu9rRj2PdT/StYzIlA4nB9alR9pDKx3DkY4waZLHJDK0UyNHIhwysMEH3pI0Z3Cr1PetDM9k8AfGGS0EOleJJGlgyFivTy8Y9H/vD3617X58U0KTQyJJE67ldGyGHqDXxnu+Y44UdD612fgj4h6j4Sl8h83emufntmbGz/aQ9j+hqHEtSPpZWx0qT53HSs3QNb0zxJpqahplwJYjwy9Gjb+6w7GtbPFSaJlZ7dXPz845HtSFWTAX5/wDe6/nUzgmodrZ46UCIJSG+98p9DUOOeauNHnIbpUJt1TlGx7HkU0I6eiiitjMKKKKACiijNABRTJJo4ULyuqKOpY4Fcnrnjyw04NHbZuJyMKADjOPzpOSW40rnXFsAk9BWFq/i3StHQ+dcK8naNDkmvPJte8Ta2ipPKthEeCR95/oOg/nVJLa1sbwwxwPc3RYBppmzyf1Nc8q/RGipX3NTWfEOt+JoxDZRtZWwYOrscE4/WqttoA+SS+kNzKP733c+wrbRVVRipQozWDk3ubKKRDHCkahVAUDoAKfgZNKxCjNM88cgKSakZR1/b/Yd1vGQEyMHvniuchVikUaKzFVAwBknpXXT2i30BhuFzE2MrnrzmpYbWGBNscaqPQCqjPlJcbs4zQfDV4mmRreAQSMXZlPJBLE119tbeVBHGzbtihR26VYxgHApR05pObe41FIjVfb+I089c0fdRSRzRkn6VIw5GMVzEaPPql0oIVd/J610rEhuD0rmYpGAu5EbDckGrgRMjv7+y00lNpuZx13t8q1g3fiW+mBVJBEnTbCNoqK9hlkyXIPc471jsACQjBsHkA5xVpEkklxLIxLsST1JOTXR6DM91YmFWK7GwYohjOf4jXKk5+tdT4HXfc3mewU/zp2JuLrAexjupFtySq8R7vvH0zXG2XiLZL5Vypt2Jxtc5U/jXdeM0EmnTZzxIhBBwRXn05WVSl3EJ4/744cf0NVFK2oNs6NXhuR+7IRzztJ6/SkDS27kqSp9PWuViW5sx5thN9ptweYm6r/UVsafr0N1+6lzuHBR/vD6etLlYXOjtdRWQiOTCMfXoanks0lXMR2txwOAQDmsYxLKm6Ft6+ncVLb3s1scHLp6HqKVxker6TaaspS/jMc43lblBgqAe/qK4LVtOl0V3tmIkZ+fNQHBXsOe9erJNb30O1ju4I91rG8W6VfajZQJZtHsRtzszYI44A9quMrCaueW5B96eD6A1uN4X1hcM2nmRTzuicZP4VlvAUkZN2HXgo42sDWykjLlZp+G/E+q+FtSW902bYekkbHKSr6MP84r6M8HePdL8Y2h8g+RfRrmW1c/MPdT/EP8mvlxtyHDKQfpU9le3VheRXVnNJBcRnckiNhlNJq402j7Ezn1pNp9K828BfFq01eKPT9fkjtdR4VJ8Yjm/wDiW/SvTd4cZQhh6ioNE7kDg1GIzjk1OwJpmCTRcDeoooPStzIKKq3eoWtjHvuZkjHoTyfwrh9Y+Irfa/sejWpuGK/67rtb6dKlzS3Gk2dzeX9rYReZc3CRL/tHk/Qd64nWviTDbSJDplq105bDnHKj1wP61w2ozvLK1zrN9NPK7BBb25LMWJwFz7+nFbmjW+20JbT0tDuIWMMGOPUkd/asJ1X0NI0+4y5uda12XffTtBGeRGh5H+FRw6dDbX8SRqflBkck5JPQZrYRAv49apwsHvLiXOQDsH0FY8ze5pZIjg01n1A3U752tlF64H9K0VtoYi7qih2OWbuahE0jo3koSw4Gf51KkLlAJH4A7VBaEacRkKAWOcYFKnnPIXJ2rjhanWFFHAp4X2oAhEAIyxyaQ4EuFHHQ1YPAwOtYHiXXR4c0G91cW/2n7MUzFv2btzheuDjrnpQld2QN2N4cc0ZGDxXl9/8AFjVdJCtqXgm9swzFVNxM8eSOo+aIc16ZNOkILO4A9zTlCUdxKSew8HgDv3pCxIxxWBqOuRwAkzLFGO+Rn3/yK56Xxk0yFdNtpbkEf618on5nn8hUpN7Dbsd9yWwRTwOmaoaU0r6XbSTnMrxhm5yAT6VfHTPeiwDJcKhbsMc+nNcxbgfY5TkHcTjB961fEMMtxo06xPsfg7qx9Ls3h0tdxzha0hsZz3Ob1PW7Wwv/ALLcxuAUDeYBkfiOtcZqGi3m+W9sLj7TEzFh5D4Ye2K0fHK7tdweMQgZ6fr+NYFpFqEV00emrcO+4EeUCT/gfxrdKxje7sRprV9bnY534PKyL8wr0j4bakl/d36hGRljTcD06nvWXaeHtR1mMjVtOjiXGPPLBZPxAzXSeD/DUXh28uvKumuZJ0A8sgAqAfY89amTRSTLPi1SdNufXKGvOpoBL94kEelel+IoJLmCaF3EKuFzIMMBz+Fcs3h5ui3cTEDoRj+tK42cxHarC29JHD/3lODSTwRXIxcJiQdJ4xgj6j+orfm0C7jUlQrgf3TWa8LIxV1KsOxpqQrFKC/vtMcebmeEdJUPzAf1rftNTtb+LIcE/wB5eo+orHI2ZKkc9VbkGqsloHkM1mzQ3C8lQf8AORTauO51ZjeIiRDx2davQXM11Gbdl+9wzA449a5LSdbuBcC2uFCS4yOPlf8ACuxtYo5rcTW+Vc8FPQ+1Q4tD0MnTrDUoLSwjlWbMVw6yDOcoR8rcH2/Wl1TRbbVkCXqmK6wAtwo5zz94dxxWot+sRZGVwe4NSx3dvdr5ZwfZuCPpTT1Cx5ZqmmajokipOoeBj+7lX5kf6en0rPDo/VWU+q9Pyr2Ga0BhaN0Se3fAeNhkdhU3hXwb4LnuCuoQzmUn5Fll/dj2OP61opkOJ42kcrH938/svX8q9q+FHiLxDdXEekalZzz2QjJjvHBDQ46At/EPTvXqNh4Y0XTFC2WlWkI9VjBP5mrz2yDlMxn1jOP06U3K41FIafNQfeDj0bg/nTVkQn95mM/7XA/PpTW85OMrKPf5W/w/lSC4xxIPL9n4/XpUjNDUdc0/Skzd3Co3ZByx/CuG1H4i3dzeNaaPZl49vE3Uhvc9B+tYsOiNdP5uozNcOTkpkhc/1/GtmC2jgQJHGqqOgAqZVX0Gqa6mU2m3epS+dqty8hbkxqSB+J6mrk8MOn6ZO0MSoEjJUAd8cVf4HcVU1BHuIEhjXfmRS4H90HJ/lWV7vU0sktDn7u1H9raFpqhQIy91JjvsXAJ/4E1dKrrDAMnnqF7mse4itLbWmv7m7LXRg8lbaEbyBnJ6c8mrCyald48mJbGM8b3AeTH06D9aJyvsKKsWLu+WzszcXBWFAM4Y8n2A7modKQtarKwYGUl9rdRk5qSDRoEl82XdPN18yY7j/wDWrQVVViTgKoyTU+RVuojSRxbfMdE3HC7iBk+gqXHFc5Z4v9RjdzvUM8y7ucc7Vx6d62p76KEhSSx747fU0mrAnctkgUmSTwcGqkN7DcSeUmd2MnuBVoVIwP61xfxKA/4Vxq7DoWi/9HJXaH0rM1zRbbxFodxpV48qQT7dzQkBhtYMMEgjqB2qou0k2KSurHiXiaSG1v8AxpO99ZXEGq3jGzjtrqObcftHmCUhGO0BAy84P7zjvj1nxY7faLGFHZN+4sV64rn/APhSvhv/AJ/dV/7+x/8AxutjxO3ma9BHn/V25PHua3qTjNqxlGLinc5vWPLh0i+dUw3kP83U9MdadbxrHZwoCBtjUYx7VFroxotwmTlyiDPuwFakOl3dywWG3cj+8RgfmaptJCSZ3dmu2zgX0jX+VT0yNSsaKeMKBT+K5Wbooay4XSpc+1UVZYtHVm+6FGT6Cp9efNg47D+dVyFbTBGGXOBjJq47Gclqc3qS6Gqrq91bC5Dt5Qdvu5yOx+o7VdjvdmvvpEMKLi2eYNEPu4HGQc0y90VLzSYbSSRYylz57NjIbkHHOOOKvskJ1SXUlVvPliMLFc42k5x2H41d11FZnMT3uo33gjUL4gtOl08UDLncyrgdPbmuntFNtrFpNLMHjWwRHbHV/lP17Go4zFboYoVjiBJYKnPPc4XjNKsU8h/dwS4PXP7sflSv2Cwa/KtxDIqLIS6rtBXGcMK5uPS5l8avdiaQ27JhomQ4U7RjHY1s3kE9vLlkXgcbCTx/WqqaghOHlUH02072CyM7Rra8/s67NyW+0C7ZFY9dueCPardzFFMsi3UIZVYKGA+bNWBfwdBOoP1YU9ZY3Ubxkbw2c9T9e9O6YjnbrQCpZrd/NUdUz8wrLaBUYqyFWX14IrsmtsTKY2ILSFmxwSMd6z5Y/tLr9rRSrIX3qMbQDRdhY5iGLOpRGaItzxKpx+Y9a62xxFHLIxkVETcT0FZdxo0seJLZvNQYOOjCty3QvBPHjBeBhz64qm7iSsctba/BdymKbcjFjtWU8kex6GtIIGG6Ntw9uorlZrMMp80KVxyoFOtb+6sCCrPNCOit94D2Pek0ugXsbt/rWtW93Z2elQ2s80yTOTcsECrGm9juLKAAoYnJ7U3RdU1q9137HqVvZQZtftUL2zh1kG8LlXDspGdw4PUEdqz217TW1zT7m6lgSH7JfwSGZZNu6S3ZFDhPmwWYAleeaNM1Kym8SWg0sQIlrpXkyC2Mph3+cWPl+b84BDAnP8W4961SShcm/vH0L4Mlkfw7E00rSOHZSG/gx0FbrHd0ryvwdq1w2uW9vG0mJGxJGOQR616pkDpUJlETqBTR8wwenvT2amZ4piOO85Ux6HgfWiWdo8FikcQXLSO2BWbFLe3ChYkhtVHV5CHk/LoP1pYLbT3T7XdXXnhWI8y4fjI9B0/Kuc2Qk+rwojy28Ul03TcMrHnoBk9fwoNve3EDSXtw0UWM+Ragj8C3U/pUN5qMV1cww2cMtxCh3MY4yAT2AJwMVbE2rTL8iwWaDv8A6xv8KVwSLtrp9vZxfuYljBGSe/4mopda02CQxC5E0o/5ZwDzD+lY121lCDJqd286L95p5NqD8OBWtpJtLqzjubWJEikGUKgAEetSUhh1PUJ+LTTxGD0e5fH/AI6Kiltb1oXmvb5mVRnyo1CIfr3NbAUdMVT1Vttmqj+Nwp+lNCexzzXD6egFuq+ZI6WyAnA4BZqzNSlvHvNPtnvGT7TKwfyRtIRVJOD19Ku3BLX1gMHhZZz/AMCIUVQmcT+LLZflxb2jv+LsB/IGt1FbsyuzqvDmnWtjFcPbod0hG92YszfUnmtsHnFUdKXZYrx95iTiruQPrWEtzVbA5wjH0BrHvru9l1KDSbCdLeQ25nlnePeVXcANozgnOc57GthuUI7YqhqOlW+orGzyTRTwg+VNDIUdM4zjtyBjpUSTa0OrCzpwqXqba9L2fR2e/wDW+xHo99cy3F7p966SXFm6AyxptEisuVJGfvcHI6elJc6HDe6k95LNINyBNikAYHvVnT7CDTbcxQbyXbfIzsWZ3IALEnucVY7n86I3SJxMqc6rlTWmnl01dul3rboQQaXZWwzFboGB+8w3H8zVo89OlIoY8mnAU3qYWG5OaGOBgde1LwB2zQo7mkMydbYQ2KkgnDgn86pKtzJlo4mKk+yD9Oat+I/+PONR3kH86gv7x7TTyY8h2+UMB0rWOxm9yNo4bbP2q7ghYdQvLfrzVOfVdJiB5nuD79P1rmrrfI5OSSerHqaqMJF680xXZ0p8TiEgWtnEg9+TWvYa017ZM81v5RH3G3hQ/wBCelcDuzXQeE5z9qngWBZXZQy7z8qgHn+dOyA07q9UsuSzE88Ht6ZI5rm7m4imnYvbmJs8+tdVq3nxkPKsTIqE7VGMAVwMlwGcsWJJORnrTSEXfJJBMbB1/WiOeWBvlYqPQ9DVJLnB4bkVZF2GGJAGH60WA0rfUV+6wKEfiP8A61XX8uZMt3UruB4wfesIIj/6p+f7ppVklt24JX27GgDZaAiUPHlSzqWx6AYxS21zKzxh4/ndSTgdicYqnBqg4Eg2+45H5VoRyxOVdT6gkc9adxHGTwDzWXptYg/nUQgjUkM2R2FdXeSwW5j+12sB82QqGPp259ealWy0yO8DTWCOisAVEhAPGcHHTpQKyOAvtJtb0jcDuAOG6Y/xp3h6OHTdQZPsqJOyFBJuYh1zkjBPsK9V0ex0LV7u9uVvf7Ha2kzaQLsKoFUHzHZh+8UkZ2nHGRnBrWt/C9rr3hL+3Hsvs2qT2mWK/IJCpPzFQABuADDA7iiNXm907K+BdGHPzJ7X8rq69dO3+Tcvw7SzEtxLGG86SIcEZAHfn64ru2bBry/wJGzawqhzGoyW2tjPGcH1FenuuatHGB5FNJIHFOUYHNIeO1MDg9R1bT7W3k81llYKcxqN3bvVHRtPsruyju1t2QnOC77j+uQKZF4b85cXUoVT1ROT+db1tbx2tukMQIRBgZrlOiw1YHQ/KynA43L/AIVQ1qSVLKOFVw88qoCp7dW6+wNa/f61j6o+/VrWLBIiieQgDPJ+UdPbNNbkyWmh534ogjufEVjZFPliiMjBueSeM/hXqmnwx21hb28ZXbHGqgA9OK4yLw1qV54tudUnjWG13Ise9vmZR7Dp+NdwVjbJKqfqKqb7CirIkrH1yTHloOyk/nwK0toyNhcewOf51hagZJtWEW5WwVXkY9z0+lQgkSJonnXa3LXBQCFYgirzgHPWr8Gjadb3DXAt1adlCtI/zEgdBU8RZEAMf4qc1Ik0a/ebBP8AeGKHJjSVh/TgDA7Uu2gEHBUg/SkJ5qShWOAAcc9BSnnjtUfWVB7E/wBKk6UAKBgU0g5yPxp2eKgnuo4D83LegouIlDqMkt+lJuZ+20Vnf2srPwFUd+rfyp0GrQy3Qt1+aRucDqB64PaluM0QPzpegpM5pMnFMDH18jZAD0LiqepkvbRqfXNWfEOALPsWmA/Kq18pMMa+9ax2MnucrrRNtpdzOmA0cZYZ7VwC+KNQUAsIip6My4z+Vep3cKtC4YBl2nII615vNceH70eXc2c1i+fvRfdz68f4VpG3YmTGL4qIUCe0OT3Rsiuz+H2r22oa88cO8OICxVhjA3LXEt4VFxG0mm6hBdZ5UE7WFdH8M9PvbDxbKt3bPHm1YbiOCdy9xxVOMbaEps9G1z/VN/1xf+teaMityQDXovia4itbKSaaVIUWF/ndgoBOQOT74rxay8SAFUu9hH/PRTz+IqUm1dDbsdGoC9BinZqK3niuk3wSrIvsakbK9RSuMcGIqdLxlGGww9G5FVMsegNBDnsBRdAaAaCXkHy29+RT0juI2DJux/eTkVlbXHIfBrQ02aSGVX39D8wJ4NAzQeFL+3ihu94ZJBKCnqK0gkYklkycyOHOfUDHpVLULm2+T5mWRuhT096pCS4HzRylx6g0gLs2nRMfMWNWZeme5xxn16V0ek+Lb3S8WcqiW0AKLGw+4vQAHt9OlctDqZXiVc+4/wAKupMk+CNrD2oSS1RpOtUnFQlJtLZX29Df8JyLB4ggI+47YHvn/wDXXqDNivF40KOrI5ALDvg9hwfXivYYT/osRwV+QcMckfjVoxHs5pjMaAcnBobC9SKYHKgkmnCmA5PFITjjP5VzHQSsw6d6bwT6ZqMdTinjNAhX5wOtIQvrSFTmlCgdf1pAODcjA6VzsBM+ru/oWP8AT+lbX2qOWzeaJgybTyPasHTp0hEtxJwNwUVS2JludEg4FSqMdua5e98UWtty13HGucYByT6DAyan0XxENXvmghjfYibmd4yuewAzz+lSkyrnQGNDk7Rn1AxTdmB8ruPxz/On0hI7UAMAcTthlYBQORjvTizjrH/3yc0vGTxSkigClqd8LTTLqcblaOJmGRjkV54+u3053CVUB5xt3cn68V2vi2XyvDF6f7yqg/FhXm5QlcYHA61rSgnqzOpJrYie7ur7UriGa9uDBEi4RHKDJz6Y7V1PgWzhi1W5kjjAIgwW7nJHeuLtFLXd+wJA84IPwUV3ngSJxLfvu7IvI9zWk0lHQmLu9TuFoJqPdJj7qn6Gl346ow/DNcpsY+vfNc2IPXeT/Oob3OyPHvS65MpvrIZxjOcjHrRMDKqhATgE8VouhmzNuuIJSf7h/lXkrDJxj8K9ilgWRWieWNCykY3jPT0Ga5qLwroMETzy3Ms8cZw5DHg/hitoTUSHFs88aBFO9V2OOQVODXbfDe5vz4ilhuLpp7cW5ZdxyQdy/jWv9j8OWC2riyV47oqInIDDk4Gc5NadreW663LpcdokZjjZ9wzjAIHQY70SnfoCjYofFHnwhd55O1D9P3q15z4j8MQWEWkLaRwrN5gsrwR3SykzhUJZgGOwlmkXaQOIs4zmvSfHGn3U+jumnRRtdEI6LtUZKyA/xcfw5weteXw6f4gsrpJNShP2O4v4ri5y0bF3Usc9Sc4d+nrWlJpRJluU3s9W0iUEwyxkfxgZBH1HFdVpE0uo6aJZcBw2044zXQyS2MIhQq6GdSY0AByB7UiWsKFli2Kf4lxtrOTvuWlYyZ3jhUeY4jXoNxxUIlif7siN9GzU2v6LPqFkIY8I27dl+Aa4i70LUrNvntnAHR4+QR+FEYJ9RNnZbPTn61oaerupG0Hb615zb399AR5VxKFHUMcj9a7nwjqE2oJcrMqBoyuWXvmm42EmaGvySRtbxJF1TccHg+lZsMkq/MMq31rc1qMsLVsA/IRWOSoONpzU3RROt0GGJUz/ALQ4NTIoJ3QSZI7ZwarRQXFxgQW0shPTYhP8q0IPDHiG4wYdKufq0ZX9TikMkh1CSM4mUn8Oa9G8FX9xd2NwzSyPDGyrGH6L1yBXm89tqWk3SW+q2bRlhkLIM5HqCK9S8Jvbjw/ELddvzNu92zTRLNppH7U07z1pDKc9aY0xNWK5gRsrHChj71GZCd2CAelLCip0Z2PqxyalXaOgA/CuY3sxqv5cG+ZsAdSeMVmXXiO0tmy8kaIP4nbFVPGt8NP8K3U/zZYqnBweT/hmvKZvENo17aXH2OUJEHJTIyWPAP8AOqjT5tSXK2h7bp9+mo2y3MIPlNkK394etWJMiFyeyn+VVNHULo9mNpGYlbB6jIz/AFqzcnFrL/u1Fir6FCVjb6NJvwCFxXL60D/ZFhATgyzFm9wBn+tdJrjY07yx1dwK5bxLOIrywgPRIGfH1IH9K0gjORzmoQ/6Tp9vkDfPuP0Vc13fg23SOS6lVs4UKf1rg3lM2vWoRWIjhkPA7kgD+Vej+E4nj0yR5I2RpJM4YYOBWlTYmCdzfbkUKoBzSdaUH5cnvXMbiISQScn5jin9TimKcRLSg989qAOc8bMToaxLktLOigD2zXIR6TfzEeVazMD6KcYr1DAY9BgUoq4z5dCZQvueX6X4P1vbKZ4FhaWZ3+dx0J46V23h3RpdGhnWZ0keVgflzgADpWySAwz2pwI7UpVG9AUEgBfH8NLk55pM80hPNQUY2s4bULfJ6L3rL1S3WXysggqMjBxmtHVvm1e3Qn7ygVJcWK3MqZ38DGFU81aehFiilqiaqytIoPl/Mwb0Xp3rOj0iFNK1N4ppA1yw3ZXIBwRmukFoyz+dgpKw25GF4pht4Yoikk0CLnO0uT+gp8wuU5q+0JvseiWYDSLC0ZkJIXeoPPU1bitNnjua/FuVia2KF1O5c7xgZ+lawlsQ3Mxc/wCxF/jTBdRq7BYLiRWP8TAD9KfMw5SnrepQRyRLiVpDGVEaodxP+TmuR12ZbnRR5SN5izjcuDkeuRWzqskg1b7Vaw7WCeWU39RxjBIptms6yTzzS+XLMRkAZAAHH41Makuax3yoYf6tzp+9but77cu6SWt/87KjNbxPrWiuGYCJJFIHOflGAcdPxq+tsrF13AlpMbTwcZ6GrLO+4EzRNj1iqBnkYsUaM88hDj9DWjdzz7DWgkQnbuG9toKnI/LpUBI3DMatuYqMcHjr7VY+0FG+ZSn1GP8A61AuInKhgvBOM+/XkUAY13oWm37hpFKMc4H3c49x1p2iaHHo1zcPG5MMqqFB5xj3Fafkp5aKuRhCBnnNM8hlkJRsDK4wcHFVcVjP8V/bRbWE9gGby5GD7BkYwOv5V0/g3RbPUtZja8QPGsXm+WejEY6+3NYN3aG7tEWS4mt5BLkSxcHvxx14re0TVv7LvRcRxecFjKsuSDgjk9PbNAj1aALb26xxIsaj+FBgD8BTgd/3ia5mx8d6bdDbcRSQN/eHzr+nP6Vv215aXq77W4ilH+wwNMZxPxF08n7Hegs6bjGVZzgHsQOg6Vb8GRFdPkclguQoXeSBxnp61d8cRGTw8XH/ACzlRv1Iqh4Nl/0OeMnoQf5imJnSs2OlQtuJ4FS4B5zSED1pkmB5MZ52gHsV4/lWZqWqHTCF+z3k5PQogK/TJrSM8Y6kge6kVGzxSjmRGHpmuU6Eed+NNT1DVdFs7aTT3ikkuGby4/nYqo4Jx9a5W28H65e3MZj02ZYxtBaRdoAzyeete3KgXlQPapASc85rRVGlZE8t3cEeOONEU7QqhRkY4HAouCDbPzkNgcfUU4N2qvdKgjU7P+Wijj61FyjO1ht93aw/7W4/5/CrK6ZZSyefLbRySkY3OM8elZt0Q+tqoY/IvrnH+c1tJ5gTqp+oqntYiPcmjiihGIokT/dUCpA3b9ahVpB1TI9mpyyfN8wZR7ioNESFuDilJbyz04BqPerdGB/GlkYhCAPagB3O0DNLtGADSE56gU7NIBeAuBTSeaXPFN6nigAxkk+1Azniil3UgF5zRjmkJ4o3UAYGsOBrtrweB270lxdXUUZlnd0i7s8m0Uap/wAh63Pouf0rA8R3U93dmH5RFDwFGeuM5q0rogbP4mhjkIWJpMHGSc5qpN4skIO23UCseaLy1ZzzgEmsZdasm+8XT6rVKL6Bc6WTxVe9F2qPYVTk8RX75zOwrLW8tJfuXEZPoTipCqsOCD9DmnYLlpdauVO7fk57iph4jux/Ep+orLaIehqJoeKLAbi+KJh1WMn6VLH4jjc/voR7la5eS0VzyoP6U0RiL7oxTsB28OsWj8LcNH7N0qwZElXcDFIPVTg1wW8gZpyzSKcqxB9jiiwWO9VQFG1pEHowyKcAxIwQw4+6R/I1xsOsX0WAJmI9G5q6niWUY8+3WQDuvBp2FY6hwrIqbiCr7sOCD3/CrekXKW2or5qEA27Ixz/sMOawbHWYrs/ukljJHfoKuZeRgRM303D/AAouxWFMcbfMpKOQCP8AvmpI5LmB/MVyTwQwPPbuKXD7RmRj/vAMKVcf3VJPXa2P0P8AjRcLF+TxJfXFlJZ3MzyQuBw4DEemD17e9bPg69iW/e3PzGRDjB9Dn/GuXcpjk7Qf74x69+netTw7LHbavHJuCBlK7ieKpMlo9LO0rURIHQVR+0N68etJ5zHuauxBk+fkYAxRwR82G+orMgu43gWTeu0jOScVPFNm1EpmYjYX3AjFctjpuSXipHayFVVHI4IO01hw3b2VsWeKRI0BLTySt+uDXD3fxBml3lbbdzxulPr7CtvRbq/8TaNesY04kCII3xjA3Zyepzir5GldkXT2OiGvMbA3kUrOgHvyfxIrJk8SvqtwbAP5TY3jOW6d/vf0qhqI1HTdLSxXTm8ssS0rTBiT6nFc7p0l1YahJqEkKbipjTfnAz9DQlEV5dTvYL6OPUmNw8SvtAGWxnHWtwa3ZIBlmJPHyLu61xmmTtfWtxcSJGGaRU+VeD3PBzVqykEt99neYKR83CAnjgUpDWh1Ca/ayyhI0mJ5/g9Pxqb+1O4iI4zljj+lU7fRkXDfa5icEAjAxnv3q39hQ5V552yuD8wH8hUaFaj4LtriYq6Rgbc9cmrRRTjAxk/wmq0Flb27M8aksyhSXYtx+NTGKPK/IvX09qCl5kxVuznHvzRl/VT+lR+WnbI+jEUvljszj/gRoAfvYdU/I0nmgfeBX8KbsP8Az0f9P8KQq4/5afmopBckEi5wGH50tQ4c5yyn6r/9ejy2HZPwBH9aAuT9qN2Kh2yAcEf99GkzMD/Cfr/+qgDE1iQLrkWc/c/pWBqLqb2c5HLf0Fbmp+d/biEomdnUMf8ACqCaVcy6s91KkRh3FggfJPpnjpVx3IZzN6VNtL/un+VedOMEg9RXf+INbWO/vD9kV4UkCADA5xzTZNM06VQXsowSOy4raLsS0efGkEjoflZlPscV2kvh7S3biKRP916qSeFrJidl1Ov1UGr54isznU1G7j+7O/4nNWF1u7X7wjf6ritB/C4U8Xgx7x//AF6hk8NyIAROGB6YX/69F4MWqGLruf8AWW4/4C1aFvMl7B5iKVGcYNZTaFdxk74J8D+6gP8AWtfR7fyLRkdZVIcnDpg/zqZKNroabFEGaTy0JIDAkcY3Vf2p2J/IVyWoCBb+cAyg7+2KmEeYbkbxg+opv2dj0Y1z6XbRfcmuAPTeKtprUqf339nI/oKp02JSNQ28uDtcj3pEW6RvmuDj2JFVk8QDGGtM/wDA/wD61a1rt1G0SaOFvmONu6paaGmRpc3MZyty4Ps1XItcuovvSpIPRhXQ2PhK22IbzfvYZ2K2NtXk8O6GFdRaSNInUvIQPyxzUcwznI/EsfSSMj3Q/wBKv2+sWV18qSDe3ABUgn8q05tE0mOL93aRbuvNV0sbWHBjhRG7MgwRVJ3FYor418YpLcW9hpemSQQXEltD57FZZih5Cq0oMjAYyFB5I45rr/h94mvfFegz319BbxyR3LQgQBlXaFU9yefmNeUapdaZf39s91qr2MumXE8csaI5llHnySh4mClQ53lfmIxtB57dJ8MdZFj4Uu7Y2hkDXjv5gcAj5EGAO/SuiVlG5kk27EGuaky+GpbRHYNIwCseuK6NmGieApEDDdFZYJ9WI6/rXF6gwkMSTxyJsfmNuDxW68r6lpUtptYCQLyxBGPzrFmquzzEnKKuDyRXsnw+iW28JRMcK00juc/XA/lXOp4XlCAblyB6iuh0oNDZiCOJT5RMZJfqR36Upz5lZBCNjoboQyD52TGO5rmtZ023mtY2VwpVjgY4PFaLGZUH7mP0Hz//AFqztYkuIbSIeXHuLf3yePyrKK1Kk9DDih1OOzRbe4jEZO5kEWDn1zmrWhWssF5Nc3L7pJGySB7YrQ02KeS1QbYRlc9TV2O1nyPmhHttP+NDeo1sbNveKqgZb6Yqz9tQEko3pWNElwwz5kQAJA+Q/wCNWQlwVCmdAPaP/wCvSGan21cj5WwRnNIb3Lr+7PAPesKyae9SV2nVQkpjXbGOQvc596tC2uA2Ptj9P7i/4UBc1DfkH7g9jn6H+opGvnxlYwSOo3evFZUltNvjDXcp3Mc/Kg4/Knopl3FLqc4YqcFBgj/gPvSA0zdSnoq56fyH/sw/WozeSgnIXGCenoP/AK36iqYtz1Nxdf8AfY9vQewqOO3RpJlM9yQuAB5uOooA0vtE5dl3jOcAlffH9f0ppmlf5vMKjAJA7ZBP9KpC0iyW33JPX/Xt659aX7JATysx4xzO3pj+9QBc8yUJuEjA4Jx16KD/ADOPoabJK6Fss+VDEEnuACP549xVIWlsZ5Q0bMAqjBkY9Rz3+lH9n2hOfs0XvuXd/OkBW1HaNWwz4CqRndyBjPX2NJdzQ/Y5v30SsccbwOo+bv0NU7yyhTVxiGHBHQRgelSapEkWhX8oRBtgY/KoFWkTc801pgoQAALNO7cD+ENtH8qn1ttVs5Ums5HW0KD5iQV3d+tQ6rBGNO09wgDMm4kDrkg8/nTbi1S3uZFTABXcoDfdX6YPet00kSVE13Vlzu2P65jFPPii5jAMlrH19SKbIjgLhhjHOfWqGoIfKGSBz/Srik+hDdjTTxSj5L2Z49H/APrVfOrKXCvbTqVK8Abs7ulczp0e4suAw3CteFI3jASMeZy27ecgjpxxUzjFdBxbZonW7JSVeSSMglfnQjkdalXWbKTGL2P6E4qaGwtbLYlzGLuQMSQ7gJktzjueBVG48OQXmw2cTRXGUCx7tyv1LHI6VkpQvqUaC3MbrndEwPfiq0un6fcMzPaozHqykg/zq9b2+y2RXwCB0NZniGBRp6tGdrCQfMg56U46vRg13I38P6e33Vmj+j5/nVaXw3Bn9zdOP99AazIricIAJ51PQEOama7v4cYviRgn51B/CtbS7k6E7eGphnZdQt9QRXQaFbSWVmYZdm7cSMN61yK+Ib9fvGNseqVdh8QXZ2F7aIhmA6kUOMuoJo9YhvYnWPE8QOBxnnpVgyRqMeYg/wCBVxCzJa28V3d4FsSu8qTwDTD4h02dvLgjPmFep5AOB7eufyrLkG3Y7O6mtxAw+0RZ/wB4f41SIzghlNcrHeQTTxjzlZgwPPAro5H8rTi8YyVXjv8AjSbUVc0o05Vakacd20vvM2fwpo1xPJPLY7pZGLuwmfkk5Perun6dZ6VbtBZxeVGz7yu4nnAHc+woZWgkhYTNL5rYKnBBGOo9AKstj0pxm5aM2xGGVHlad0+u2zs9H/Xzulx2pavoV/ub7PfwyschsZGfzp9nqizbVhaT5fl4Ug1zqWlwzEM6he3NWbWG4txIVmUMx6Vo0rHInqdhZapJHKVnZymepU5zWlpmoQpDiR9ru5fBBzya4bzb/wCUGZGXuCBTJJtQDbY44dp6kkf41nymiZ6adQt2dB5o4Oeh7VQ1e8idVKtkAHnBrhGF9KmDJBn2b/69Ojl1GDCxCLaOmXx/WklYLXPQ7GeKONcuBlcDI9P/ANdXBeW6ruMoHGfwrzaG81NEy5jZicbWbAFSLd6hklYovmOTiTvUuLKSPSILu3EajzUzjkZ7mpjdwIDmVeBkjPNebfbNSRuIEAHUiTvVh9SNtbs0rHaoJLZOamzuNI7Hw9cIukK0jFTJI8mGGCNzE1qi6gByZk545NeWWPiG+kjYRLdsoyciQAj269KnbXLzPzx3gYYx8+cH86pxYkelPdRG4hIlTC7iTuHHH/16ZJd20N6jpJGI5fkk+fow6N/T8q88XxFdKDtjvecAk5/xqefXrg2CSSNdbmlwAc5AHU/y/Kp5WUei/arf/nvH/wB9iq9vcW63N0fPjwzAj5h2GK89XxNKIQpmvCQeWw3PvSnxPuCl7ubeRjlG6UcrEelG5gznzosf74pftNuefOix/vivNG8QzFd6X10qrwNsZww9KjPiZkI/0h0B5G5W+ncUcrA9KiuYDPOfOi+8o++P7oqUXFv18+HP++K82i8UOuZHvyu3OAoHP506PxW8wJe9IDqQdwHTv2o5WM6+9mhOrZE0RAHUOKo+KL5V8M3Ygni3MApG4HKk4IFc8+tpKRKb8ZyCGJqhea9cak9zbvOJISoQfKORkH09RVLcixnXsk13Zw+XEjbcAL6frWjp10ZomE8Vsdnyneg4/SqMu0RqkUbYCg5Rhx+FVLiZ/sMjkuGXgcYI5+taLXQTVjoWS2kGxoLT32rj+VZr6dpk+oJbTmVIzyDHIME+mW6VQt9UvBHtMxY4xllz/SoZ5TOu2YKcHPHBppWe5Nkd9pWk+GrSHB05ZXznL3GT/wChD+VSXsWk2sRktNLto5AMK2/ccn8TXJQ+JPKt44JbCF0RQu4HDHHcnmprrX1vjB9n0+SLyjuO35t3HGeB0rNxk2O+mhpK9vAcO+6Q4zt5P8Y6/XHFAeKZXeGVguGZwBggbRgn86wxrFu0m9kwS2T7/MT6e9Rw3kUaIqSr0CsM442kUvZkNstxySJfR5f5Q+0D1o8QSR/2Z8+Thx0/Gop5llvRNGd0YYEYx0rL1K5klgkSQKOQQoznrW1OIdCor9APuEZwalMj7MKdy471VRhsXjOBTjIUbKmtHEjmL0lulyoLxordA4GMfWrC6LqMio4t8kMCBvB4/Oq0ExEfzHKsORWtpBlmneISgKEyrHms25IpNM1NSaJfDyQXBZWIUbR1JFYCJHGjFEZF/iLNkmpNTnkhunSVtwi+4vY571ntNJIBkkZPOKSTY5SRZFwrtgJgCt2y1zy7BrebLDHyP6D0Ncwkiqc4zx1zTknZSNh+U9frQ4diYzad0dDDd3r37CKIKgGQVycg9xW7ZT3JtnNwHLjseK5rRb25a4SGB9oOTg9M10CXnl7kuGYuDyOMCosorax0TrzrPmqSbfnqcmpGRk/rUgaMdHU/8CqzuC+pP0pwKt2X8q0MbEHynnI/OkKqT1/DNWhEu7nZ/wB80zYm7O1Tn1AoAj2YWjyxjr+VSmNMH93GfwpnkpkHykAPotIZE+ACvRjUaLmMH0q59njPIQce1NktkRGIT8jRckqWwbzZeTzx1rVa80+aERz2KsoABIY8/rWPCDGshAYEtngc1FbTi4eYGMq0abvmPBptX1KjoX/tNirlYlnjTsFYcfmKaJladFRpSGzneF6Y+lFrbxyREnG7rkdKWyk86eJnt1UpkE7uGz7dqmyLuy2ksCwlHtgZCCPMD4x6HHSgPI8SqZ+FGAPLH9KjF2WuHja2jCAkZ3EmleZVuNiwIU9cnNS0O7JNvljPn4AHPy4/rWM9/C8gcyQl1BAOT/jWndlN4TbgMvUday5tGs4toMkpyM54/wAKqPL1E5NbE6amo6TxD/gR/wAac2po4AeeNgOgLVGdFshCHSR2Y9iRj+VMbS9OAX95MCw56cfpRyxFzyLBvIRCobyiuOPcVD9utuuYM+makawsUCqZJMBQo6f4VEdF0wzMpnnGDycgD+VNRiDnIUaoqw+SrwbMY7cVALyNC8gkj3t1IIq1/wAI3ZlSRNNge4/wo/4RmzYf66b8x/hTXJ3FzyGQXW+EESZFI7wtGVdm2nr71MmiW21V8+ZRkqeR2/ChdGtZHkQTzgp64qbRHzMr/aYI1CqBgetLbzmRssFC/rSPpdnDAjvcyMWOCRjAqW30gSIXErohOEBHJHrT0FzMmikjluRBnIKk5ArRlVhE8aHBEYArOg0oWVys/wBoZ8grtK4rWJAdxj+Com7PQqOqOfl0XbEZMdAWYA/yqibZcfK8ldcccEgH5COazEvBLNIgCjZ/dOc1cZNkvQxVhmHKJKw+nT9KYL+RMqrZU8HNb0Uzsoz0PvVS60mBbJ540Jc8jBJyc+lWpLqJpmJISHOe/IppfIx/OpLpW3KdpBxyCOlQlWGDtrRWsYsuRuDGoIGMYz6Vr+G3xqjp2MRxmsKPcUU4zWtoLsmroWzjY1JpAg8QYGszEg7dqmsszZUKBgA9hWp4hR5dTVk5UxjvWQ6MmAcZpRsEk7gZcGnrMVIxx600KigM6bsdiSKsxzQrjdYxtn1dv8apsaj5l3w/IP7bg9GyCPwrrLlIzPJlRXL2dzbx3CSQWMKyg5Db34/WunspGvWfzYYgwAPEh5/SsakXLY0ilHqc1tHd5f8Avul285Dy/wDfdR/OR900g38fLn8aC7EpJUdZQf8AfpVUuBuLj/gZqMh8dcCnAsAM9frSCxOU4wGkz/v00I3eRx/wM1Fls5Jp+TjOePrQDsSqjf8APWTn/aNDxnbkyyf99U0MwOcZzSO52HNBN0Vg3lxHJPfknrUGnt5r3jY+Xaq4/OpJ/ls2bv0qTTrT7PprM3LyMCfYU7pRBbly0XAbHQLzTbTmXCnjuakg3CByeu2mWORMcjArMoOl0wx1NLNxd8DngUIc3RJHG786dJg3hyKQxl7n7QnHYU2+O1o1x1QZqa7QtMvzc0l6uSD3CgUAMuWCImAAC2OKrlAkigDKkng1PJ8yru4+fimshEqt2yau6EMkjUuIipAC5xUkao9yVZfujI9KlZMzhsfw1FEAtyxyOe1AGgjgI4I4ANAYeUCOxpkR++Pal/5Y/jUiM+QB5SpUnMjGmqWW5Kk5A6VMkW66Y88SH+Qp7x5vsHAFUBnagALQ4GOa2bXnT7fPdF/lVG+g3WjAc+lXbU4063B/uih7C6jrlgBF/wBdMfoakJ+cf9c6q3jYSI5/5bD+RqcNkoeuVqJI0iKH4jJ6bTXPW8wGpTlQMY6AYrcyDHHxnqK5wSKt6SoCkryMGrp7EzNNWx396sQ3B2OhIGCMflWer+amV64qS1XDuH68HmhgU9UB89WGMkDqaotkRngdMda0dUVQELDgEjis0qhQkOc+laR2JkizZ5e3GEVsZGScVfsW8m/ieQKq85IOcZqjYIGiYPJ5e1Sygg/MfSrsUfmF8SxDb3ZsZ+lTO6ehvRownH3nYm1UST3Pm2rBk24weAKzFs5uu3cx9xWo1u8RwZoPqJOKfHHcI25JY8+ocVn7SS6Hf9SpSjuZf9mXjsp8nIHbIqf+yr9skW7Yx0GK11/tDaH8tnX+8DxVrztUt8CS3dN3TKdaftZdjGWCo9Jfic6ukX6nDWz56gEVtaPY3VsjySxyJu4Cbefqa0bXUZ9peWJ2QHBxH3qC+8TfZ3MK2pVx18xSMfhVKozH6nDozF85VHP86Z9oj3Y+aqyplf4vxagQ5PKnP+8ao5i2ZFIBwSPepFKnAB4xVPyB7D8TSiBM8hRSGXQUztyPzppZAAdy4z0JFVfJjB4Cn8aTah6CM/hQTa5cMkach1z/ALwqtNcZJzMuDxjNMxyf3cY/Cq0q+Yy42DB6AU0K1izI6tD5SnLKwyK0TlbJRVKRQPK9T14q7J/x7oPapkUh0bYgdh1xSWL5OcYpVH+iuO9JZrgH6GoKEtmDy5zkE8EU5gTesfemW2FlwqgAHoKecfaifWgCSYD7QPXFQ30oE4j/AItoNSSn/SAB7VFdt/pSD1IoES3AD+WCuG7D1pShITgcVPNgYHemheF+uaAEZf3ijuRSiH/SBnAx3xUjAGRc+lGT5ufalcCOPG+T8qP4Ovemxt8zn60hb93+NUISIjzZR38zJ/IVPhTOxxziq0RyZDjnzMfoKnz++J9qYmQ3ABtTx3p9sf8AQoPYVHKc27j3pts/+ix+xxQwQuoFRFFwMGdanRh+54x1FUNUf9wntMv86nEgxF9aUloXEfuCJEf9s1hagDHqCt/eU1qSTBYUY9pOf1rM1Rw19GR0ziqp7ikOhYjJFSiQkkg4+WqiPtVh0AFOVxuAHcU2gTL4RZpY1Y5BOf0qcWNmfvRg1RgkxcRDqc1dk34/wpAznb6Fra6cIHEe75SeBTIpyWwzui+o5rVu4ppoynlsy+5rIewuV/5ZE1smmtSOaS2NKHUbMACVJCR3A6/rUv27S2K8sBj5gVOc1imC4UY8t/yqMpIOqsPqKOSLGq1RdTXOryqHRJgYgSFUr27Uf2zOw5YNj1JH9ax8sPWl81h1A/Kn7NDVeXU111i6C7VYKO+GNRXF5LdPulcM3ris4SnPQUhlcjG6lyFKulubBmbIAB/EUomkPY1GHJPU0quSKmxnccRI5Bx+tKEkB6j86A2O9LvA5oAnRCMElc/jUmwZzvA+gqsJfalDk84qRlh1QjliahdY1YYHOaQyngAc/SoWdjKoOeOaAZdl/wBag9BV1z+7Qe1ZxcPOMHpVyVsBBmpZSJulsaLc8N9KiZ8Wx+tEL4U89qkY+A/vD9acT/pHI71DbvlzQsmbg5NAEsh/0gVHc/NdJ/vCmyPm5wD0qO5kAu4+f4hQI1pCSB9aHOCtQvKDtwe9K8n3KVgJSxDrVLU9SXT1Vtu53+6vtU7P86msDxAd1/HnLAIOAevNVTinLUUnZG3DJuQtjhhn8xSFv3X41lxz3U0sMP2SSGKNgWLE8geuQKuNIPs/XvVONhJ3JoWxPMo6BwfzFWC2Jse1UI5ALiXnuv8AKpnfdMFPQipYx7EeVJmoY5lW1jODjdjik3gJKo9Kr27D7B1/izTArale+Yxt1Rsq4bd2p7XLC1hcYz5hBqzI4aN0H8S/0rH3kW4TkkPmrsmrCvYtySjfPHIx2rJkAfWq1+/79GHTINRSybpZW55xTp1kn2bFJwozxVJWJbuS7sox69ePwpqnac+o70kW/IKBgcggjtUy20jSk7gVP8TEc0nYqzZJaMov4AxGS4HNdo1jjsh+hrjkscyKzzANkEBVzjFbsNxMoAJJPqM1nLyKSfU0fsLdos0xrIZwYcH3pi3LFdxZhj1qUXMxHySAketTcLEZsV7pj8KYbCPug/KraT3WOXWni4n/ALy/iKLsVkZx0y3frEufpUL6NbE48hfyrW+0S87nQ/hTTK2OFTNO7CyMj+wbJs/6OOKQaBZf88BWv5zjrEp+hpQQ/WMj8afOxcpweUx/9egMoPfFU/NY9x+VHmHu1bcpHMXRIOwzTxKOm0fnWduPvTt2BRyhzGkJgB0UfWg3RA4KD86zvM45IpDJ7/lS5R8xde6cr95R+FVRO7S8nPHpUBkHqfzoiI3k1XLZE3NOFvmBzzV6aT5wPTtWZE+HUe9TyyEvWTRomXnlAtxmiOUeUxz2qjNJiBR680Ryn7OxHTpSsPmLNvdAPyD1pEuAZyD0zVa2bcTk02Igz/jTsFyy8ubkkd6SaT/Sox3LCoWbFweOp7UkuRfIQejCiwXNSRijgepzUzyfcFU53G5ckZpks3zr06VNh3Lrv+9XntWXrIElzGFUsxj+XBxjmp3m+dee1V74NcFFRgCB3704KzE9UaULkWyhuWEfOTznFY1pcSzXTq5O3BO3tWjGsrKSEIGODQLJxnJRWPcc0011FZjFcCd+e4P6VK0w85ctTDp77y28c49qnFki4Mqkv9anQrUr+aB5oz2NQ27N9kwAeT0xWmLbAykQz69KmEBxy6ge1FxGWsU5m3iNscUwaZIwfdgEnIrbVQOuSaeF54AFPmYWRjppMeSWLEnqB0q1HpcflfIPLYjhjya0ljz/ABflS7R6mldhoVktgF2nkY5z3pPsMBbPkrn1xVrYD3P8qAu09fzNIdxEgjVQAB+XWnhMd+KOfajPqaSQXF2+9AUelH05pSDTENPHQflQrE9AVP508IzD/wCvSLGc88UgHKrnqxpxVxzuGPpSBAOd1P8AlH4UDEVsZwQaRpH6AflSEjORgUhPoT+dArHm+6jeabSgE12GApY0mSe9O2MexpfKbvgfjRoAzn1o5qXyfV1FKIB138ewpXQWIKkj78011CsQDkU6MfMv1pgXIT+9H1qSRsyE5qCJsSZpQS0hwpOT2rNo0TLE5ykYznilXi3P1oeKSQKQuMD+KnrCxTaWUDrkVIxsJ2hqbC48weuanjtcAkuT7VOlrEOdij0zSuh2ZT/eNJuVGK5xkA4zSvBOZfMMbbQc1qrZqjYwo/3TxU6QqvB5pcw1EzngeUoUkjPGcBskU/7IXOXfp2FaAQA8AU5EGclQP1qbjsUPso8w7UVsDqTVqKHCjK/hmrCoFJOQMj0o2c9aNwIzHuYngUeQNudxJHoMVKIwD/LIqUDjr+lICFYlPVRUixqDnAB9hUgz0penSgBhX1OaBHk5zTyPxpeM9M+1FwGbPQ/mKdtHpT+/Q0u0+lAhgGR05o2DPJp/JGelNIPqaADAo6Dr+lNOQc/1pPwoAXIPT9KQgEYBwaXnAxz9aMHOc5oAAMDk5/SnZHamk9xSDBXJYUaBYfuAPelDA9AKj5GMEYNAyO/Wkw1Jfm/ixijPpVdpirYLdqaXb1x70rDLBBPemk9s1F5j+tNLMaYj/9k=", "path": "images/4pts_ADE_train_00001461.jpg" }
depth_point_38
images/3pts_ADE_train_00000052.jpg
ADE_train_00000052.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 174 y = 205),Point B is located at (x = 159 y = 158),Point C is located at (x = 308 y = 219).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_98><DEPTH_1><DEPTH_45><DEPTH_60><DEPTH_70><DEPTH_49><DEPTH_3><DEPTH_59><DEPTH_80><DEPTH_83><DEPTH_98><DEPTH_39><DEPTH_85><DEPTH_60><DEPTH_3><DEPTH_81><DEPTH_70><DEPTH_5><DEPTH_19><DEPTH_66><DEPTH_121><DEPTH_39><DEPTH_15><DEPTH_77><DEPTH_62><DEPTH_58><DEPTH_60><DEPTH_6><DEPTH_64><DEPTH_36><DEPTH_121><DEPTH_9><DEPTH_63><DEPTH_70><DEPTH_22><DEPTH_58><DEPTH_40><DEPTH_67><DEPTH_63><DEPTH_64><DEPTH_121><DEPTH_39><DEPTH_58><DEPTH_35><DEPTH_75><DEPTH_82><DEPTH_31><DEPTH_20><DEPTH_45><DEPTH_36><DEPTH_121><DEPTH_0><DEPTH_58><DEPTH_15><DEPTH_30><DEPTH_64><DEPTH_3><DEPTH_5><DEPTH_44><DEPTH_36><DEPTH_98><DEPTH_19><DEPTH_39><DEPTH_58><DEPTH_22><DEPTH_69><DEPTH_31><DEPTH_5><DEPTH_25><DEPTH_36><DEPTH_98><DEPTH_33><DEPTH_63><DEPTH_78><DEPTH_20><DEPTH_84><DEPTH_67><DEPTH_5><DEPTH_78><DEPTH_29><DEPTH_47><DEPTH_66><DEPTH_63><DEPTH_75><DEPTH_17><DEPTH_60><DEPTH_67><DEPTH_17><DEPTH_82><DEPTH_3><DEPTH_14><DEPTH_78><DEPTH_3><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_59><DEPTH_35><DEPTH_60><DEPTH_82><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
3
[ "B", "A", "C" ]
<DEPTH_START><DEPTH_98><DEPTH_1><DEPTH_45><DEPTH_60><DEPTH_70><DEPTH_49><DEPTH_3><DEPTH_59><DEPTH_80><DEPTH_83><DEPTH_98><DEPTH_39><DEPTH_85><DEPTH_60><DEPTH_3><DEPTH_81><DEPTH_70><DEPTH_5><DEPTH_19><DEPTH_66><DEPTH_121><DEPTH_39><DEPTH_15><DEPTH_77><DEPTH_62><DEPTH_58><DEPTH_60><DEPTH_6><DEPTH_64><DEPTH_36><DEPTH_121><DEPTH_9><DEPTH_63><DEPTH_70><DEPTH_22><DEPTH_58><DEPTH_40><DEPTH_67><DEPTH_63><DEPTH_64><DEPTH_121><DEPTH_39><DEPTH_58><DEPTH_35><DEPTH_75><DEPTH_82><DEPTH_31><DEPTH_20><DEPTH_45><DEPTH_36><DEPTH_121><DEPTH_0><DEPTH_58><DEPTH_15><DEPTH_30><DEPTH_64><DEPTH_3><DEPTH_5><DEPTH_44><DEPTH_36><DEPTH_98><DEPTH_19><DEPTH_39><DEPTH_58><DEPTH_22><DEPTH_69><DEPTH_31><DEPTH_5><DEPTH_25><DEPTH_36><DEPTH_98><DEPTH_33><DEPTH_63><DEPTH_78><DEPTH_20><DEPTH_84><DEPTH_67><DEPTH_5><DEPTH_78><DEPTH_29><DEPTH_47><DEPTH_66><DEPTH_63><DEPTH_75><DEPTH_17><DEPTH_60><DEPTH_67><DEPTH_17><DEPTH_82><DEPTH_3><DEPTH_14><DEPTH_78><DEPTH_3><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_59><DEPTH_35><DEPTH_60><DEPTH_82><DEPTH_END>
174
205
159
158
308
219
null
null
null
null
38
12
69
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCopVlypBHtTttchbatcwHEi7x/eXg/l0rpNOvjexbxG2AcE4wRTTvsS4tFzbSYqUDK5HekxQIjxRtqQCkxSGNArl9T1COLWJIJPlPGG7GuqxxXnXi9zHrz5HylRzQB0EcvTB/GtK3vAwCSHnsa4Ow1aSABXO+L9RXR211HOgeNgRTA6M+tRtVK3uyg2vyv8qu5DrlTkGkMYajapSOahekBE3Wn1GetS4oGFGKWigAxS0UUAFLRS4oEJilxS4ooGFLQBS4oATFLilxS4oENxRinYpcUANxRinYpcUDGYoxT8UYoER4o21JikxQBERTSKmK0hWgCEimkVMVppWgCErTStTFaaVoA5OK6WQBSpDepFdf4aXME3H8f9K4eMHePXNd74bGIph/tD+VZ4eTbN68UkaSr8goIqQDj8TTSK3ZzIaBSEU/FN7VIDe1cD4vQHVzkZygrv64fxaANT6E5QUAzkGjaNt0Z/Crum3Ti5RYsh2YAgng1A/POP1p2n8anCf8AbH86a3A9AjgTA4OfrVuGMR9M81Eg5qwO1NggNQSd6nNQyd6gog71LUPep6BhRRRQAtKKSigBadTRTgD6UCClxQFPoaUZ25IIPuKBgKdikAp4FACUuKXFKBQAmKMU7FGKAExRTsUYoAbijFOxS4oERSZEZI61JFGHlAPSmyD9230qe3H7xKEBY+yQ/wB39TR9kh/ufqas4oxVCKv2OD+5+pppsoD/AAn/AL6NW9tGKBFMWEH90/8AfRo/s+D+6f8AvqrmKMUCbPL0jw1dp4Z+5OPQiuVVAPyrqfDXBuB/un+dc+H+I7a/wmyBwfqaQipVXhv9400iulnEREU2pCKaRUlDK4zxYv8AxMFPqgrtCK5Dxah+1xMMDKd6BPY5CWJf4ePrTbT5b+L/AHhQ7lj1ptvxdxnPcUISPSl61MO1RJ2qb+79apjQhqCSp2qvL3qCiuetT54qtnmrGeKBi0uabmjNAh1FNzRmgCWHm4Qexq/jis+A/wCkxj1zWjigBMVVvJ4rdVaRtueBVzFZWtA+XEQFOD1JwR9KGND/ALZCFyd2PXaacLuLdgbifZax0KojYaViw9MEfjRawLbrIN8jBx/nj1qbjsaz6jbRkCR9pPZhipVu4mAI3EHocVkMHCgRKrDr+9Un9KlLxxIzyuyZGWycChNhYvNqVqj7Gchv7p61L9siAztfGPSsI3tuHAW5t9gH8TfN+B7VIl7YoGK3QJYYwW/rVJMTaNoXkWcDcfoKa+oW8WPMYpnpu4rHt5rGDfi7Vt4/vf5zT2vbYIFjuYcf9NDkflTswujYW6iYAqGIPQ4pjahbI2122t6Hg1mrfWXJa6XcRyA/FRvfW+4bbi3KgdXb5vwPalZiujXkuozEThsY9Ku2mGZCOhrmxeWaK5FypJGMbx/Ouk07BjhIORtHOc0IDRxRin4oxVEjMUYp+KMUAMxQRUgWl2UEs8zQAjmuo8Nf62cf7IrmVU4GeldToA23kwHQoDXNh/iO6v8ACbqrwfqaaVqVBw31oK11s4iuVphFWGWoytSMgIrk/F6nzbc/7JrsCK5bxcikW5YnoRxSB7HDTKuemD7VFEdtynI60+QfMQeeajVcTIRTEj0yP7q/SpTyF+tQwcxRn1UVYx8o+tNjQ1qqzGrTVSuWwKgorZ5qyDwKolwDyasedGFyXGB70hk2aM1XW6ibo/5ig3UI/jFF0Fixmk3VTfUIVGSTj2qwHDAEHg0J3EWLY5vIvx/lWtWNan/TYfqf5VtUwExxVDUvuJWh2rP1PIRMLnmlLYaKK9akWogzf3D+YqUMf7h/Osyh49KztaUm1bn+E1oru/55n8xVLVcm2bK4+X1q10EL4H8D3Pi+4nit5oIhAgdmlBOcnAxiu6X4HXw66hZf98vU/wAD/LFzqQ43mJMfTJr2aul1HF2RjGKauzxX/hSF7/0ELL/vh6Q/BG+7ahZf98vXtLuEGSCfoM1nXF7cEER28yg8ZCZNJ1pW2FJRjueTH4IX/bULH/vl6jb4H6l2v7A/g9enyXN+jbUju2GOWKmqdxPrDxgoLpW7gIeKyeIl/KZucV3PN2+CGq9Be6ef++/8KQ6VLo15/Z8xRpIMIxToeO1ek6NJqiXjPqM84h2nAkBAB/GuK1yRJvE126OHUvwwOc8VfNzLVWLg09UVNtG2ptuaUJSLINtOCVMEpwjoC5CEpwjqwsftTxHQSeS4zgcCun0Ndl7j1iH9K5zA3DIz9K6PRRi+h9Gh/wAK5aHxI763wnRoPv8A1pdtLGPmb8Kdiut7nEQlajZasEUwrUjKzLXLeMV/cW7e5rrmWuZ8WhRbQFv7xpB0PPpXXOCM1W3DzFwO9Wp1/eN6ZqBlAKmmSrHotmc2sJ9UH8qt4+SqOmtu0+3P/TMfyq//AAU2UhjCsfVZ1gCljjNbTCsfVrC4uvKaGLzApOeRx+dQyzEmvC67Uzz0IGajAkI5eT8sVcGiahkkrMfbeMU4aLfdomX8QahpjTKJEh4yx/OgQygZYLj3H/16v/2Nq54VEA9WZaVNB1fPzsjKeuWAI+mKOVhcoBRgjC89/wDJq1DPNEAPOLD0bBqy/hu7WPfH5by+jED9QKSHQdVDfvDCV/ugjFHKwuW9PuBLfQKeHyePwNdJXN2WjahFqsE7iJYY85w+SePpXS1a8xMTHFZuruI44ye5xWnWXrIVkhDDPzcUpbAtylFKHwAKupHxnBP41HbIm3IGCO1X0IPylQeOPas0UZlzcSwSKI7Z5ATyR2qe5trae3xPN5YI5Pp+dW2jZeSOMfhWZquBHg+laJrSwrHX/DoXOn3l0fD4W9dowJQ+MKM8HqO9ehveeMivy6faqfqP/iq83+Dd5Ha67eJJn57Y7ee4YV68+vWyDlG64+8KuVSMXZmSkluZLnxiId7SWcfcgAEj9DVKabxPn5tWgAPUog4/8drePiCzYEGFiB64qsfEenEkNZHjjkLUOonsTKfZnOzSa5kZ1yQg90BH+FVHTUHZhPrN3j/ebn9a6qTxBpYJVtP3Y9FU1E3iDS8Fv7IJA6nYlJS8/wACOaX8xztn4bfVrgxPqUvyjdlju/TNYlxpx03V5bPzPM8psbsYzXpOj6lp2oTuLaxELAZLYAJ/KuH1wD/hKrwAYHmdPwFap3RpG9tSAJShKmVKeEoAg2cU8JUwSnqnNAiJY/apBHUqpipAlAjxccuSAMA+tdBopP2y0JGCYyP0rnlI2j9a3dIbbdWWeg3AfrXHR0kj0qvwnWxj52+lPIpsX+tPutSkV3S3PPIiKaRUpFNIqBldhXNeMEJ0+EgEnf2rqWWuf8WADTEY9npDPNJ5GVyuOaqyMxYDir1ym6VmHQ1UkXGKZKsXtE8URaXbi1mt3ZQ5O9W6Z9q7u2uorq3WaFw8bDIIrx6RT55+vSvQPD1pd2EphZWa0miEqMAcI3cf59KFdos6ginREBTkjrSMKqXS7kqSi/lf7w/OjK/3h+dc4wINSogKg8/nSuBvb0/vL+dHmJ/fX86w9i+n60uxfSjUDb8yP++v50vmR/31/OsPYvpS7F9BRqBuh0Y4DqT9afisO3UC7gIGPm/oa3cU0xCEcVmauPlh/wB6tQ1masOIjnvSew1uVbVz5hB781p20Rkl47A1lW4+dm9DW1ZDLOf9ms7mjRoXkUbWSFRtKgZx3rmdVQFDn+7XWQBXaNHHytwa5bWMgOGAGAQOaaJN34TfZY/EVw1zP5X+jHZ7ncK9Ykh0KfiS6ViDnsD/ACryP4X6Y+pa7cqrqmy2JJP1Ar1M+FrgxIhngJT7r7cHHv61pJO5z8qfQc1t4cyVN7g4x97/AOtTm0zQLUDzJ3XPQvnn8xzUcnhe6aLYk0Ck9ScnJol8OanLBFC17AUjztyDnB7UknYXL5DJLTw0fmbUXAH+1x/Kozp/hlsldSdQeyycfyqNfB+oB9xu7YnGOQef0pD4Luw+4XNufUcjNOzDl8jU0Sy0iG4lbTr15XxhgecD8q4zWR/xVd4M5/edfwFdrouiXGmSyM7ROGUAbT0rjNUGfFV3kc+af5Va21KjohypwKftp6rxTwvFADNtPVeaeFBpwSgQ1UqVU4pQvFShRjigR8/2bztCGnAVx2ro9MYmSzPTEhFc9vyB71vaW/FsDyRMOfxFcNJ+8j1Ki0O2hH71foanIqGD/Wp9DVgivQlueaR4ppFSEUhFSMgYVg+K4y+jHHZxXQkVi+JF/wCJLKcdCDUsZ5bcI6ylc/lVSRD1NaV1hpNwIA96oysoH3qZJ0HhrSIWga5ntonZn+RmAJxXWKoC/hWP4cO7SE9mNbYHFUygI4qrOvymrhHyj6VXnHymsyjHkHzGpEHyCmyj5jUkf+rFShhRilxS0wEopcUYoAfB/wAfUH+//Q1uViQ/8fMP+/8A0NbmKEAh6VmavwkX1rUNZOtHEUWP71D2BblexXcshrWsjjzP92suw4jatK2OGPuMVjc1sbNsCs8OeziuY8RD97IO+Wxj611CkLPEfdTXNeJT/pU2Om5sfnVRIND4b6S+oa88RZgqwEuVOMDivR7vQ7+3uNlvbSyW+RjDnn9c1wvwsupLPxJcbSSJLcq35g17BLfSRxhi2SeAOnNKVRc9rMy5Tlv7M1NZIgtrMAPmLAZ57VFJo2pSP8trN83LFs9a1U1i93zb53QKxwMAke3Sqt14hulMYhvJDwdx2qOccU7xcrWZPUz00HVGT/j3mVgf4u4qKXRdSkmXy7C7Rehz0PvWsNdv3iMkV05AHOUHX8qrza/qqxn/AEsqc4ztH+FaKSb2Gmrmp4atZ7Se4E1vLEu1QGcH5jXLahz4pu8f89WrsfDN7f3kE0l3P5gwNnTj8q468JfxPdk9TK1adBl1RkU9V5pVXgVIq0CGhacq8U7bzTgM4oECinhTSheaeB7UEnzqG3EdOK3tMkUpEcYIlH9KwQMH8K1dNbOfZga8+Dsz1prQ9Gi4kj+tWiKqRH5oz7irxFenI8sixSEVJim4qBkJFZWvJv0S6H+zmthhVe6t1ubaSFhlXGCKTGeM3UDu/wAi5H1qubCdyBgA+lepp4chX/lnEPzNWI9FhTuB/uqBQBynhyOSHT2jkXaQ/GeOK3VZTwDWoNOt052k/U0vkog+VQPoKLhYziOAPaoJx8pq5Kv7w1XnX5DUlGJOMMaWP/VilueGpIv9WKkY6loxRTAKKWkoAfF/x8Q/74rcrDj/ANfD/vit2mgErJ1z/Uxf71a9Y+unEEX+/Sew1uR2I/cn61oRjEqD1NUbIYtx71ciP79PrWD3NTbbhY29Dj9a5zxNzcXGOuTW+XzCfZqy7ubbqcxZQxPI9qtED/h54k07Q9auJtUCxwvBtVnjLENkdMCu3174paRbaesmji3vLoyAFHiYAL3POOa4ZbvPVP1pRdqP+WY/Or63uZ8p6RZfEbwxPaxyXFzbwTt99Ps7tj9KrXfxJ0BXZbf7LIAOC0DYJ/KuA+18/wCrFNN7ggbKq/mHKdt/ws7TDCP9EtN4OCvlNj8OKR/iPpZIAtrHGOSYGPNcX9sP92g3eeq0X8xcp6LpPxD8PSG4+2yWtthgIykDDePU8GsYXEN34gnngIMMjsyEDGR2rkWufkI2iui0X5rxc/3TVX6Bax0qDIqULkU1BUoGCKZIdqcB7UuMCnBcUCFC08KQKRRUgHFBLPm8fe59qvaa37x/es1G3sa0rD7/AOHNebE9iR6TCcxxN9DWkRzWVaNusYW/2FP6VsEV6sjypbkRFIRUuKTFQIgIpu2piKbikMgKUm3ipiKQLSGVynFRSLV1k4qCROKBmTMv7yoJ0+Q1cuE+99KpQOPM4Oc9aQzGuIXdvlUmoVtrgdARXTSNtHHU9KE+4MnJ9aVhnNeTceho8qf3rpqTiiwjmvKn96pardzaXps14UMgj2/LnGckDrj3rsTXO+OP+RPv/wDtn/6MWiwzDXVtXtNUsIdS8P3tiJ7hYla5Vk5yAcblGSM9K7yuR1+fSv7eufsU4Mt74ojugI9RhukuE3S/vAIxmPG8YDEk7++2uup2AKxde/1UP+/WzWNr/wDq4P8AfpPYFuNs2/0ZatQtmZPrVCzP7j6E1YifDA+hrG2pqbHmfu3FZV1Jm+Y+oq8Zd8ZbPzY5rImfN2T7VZCLAanZ5quGzTwx9aAJd1MY/On1puaax+dKYE4NKDUWacCaYhzH5a6rQubsf7tcmTwPqK67QBm6P+5VITOqQdqkxUa1KKsgcBTu9NWn8E0EscvH0p+QKYPrS5GKCT5piO05Pc1p2LZmC/7NZUZ+79K07E4nX1wa82J7Mj0bTTu0qD/rnit1eY1PqBXP6K2/SYvxH6mt+3O62jP+yK9RaxTPKmveYpFIRT8UBc1JJERTSKe0kW7aJFJ9jRikMj20BakxQBQMYV4qCRcCrZHFQyLxSAyrheTWMIJogXDDOTxit+5Ws2cfKaTRSMO51CZcqFAPrVaK8uipzO/506+XD1Xi+6frSGWftVx/z3f86X7TP/z2f/vqohS0wHieb/nq/wD30arajB/alhJZ3E0vlSY3bW54IPf6VNUbs5kEaEKcZJIzUykoq5tQoOtLlTt1beyS66Xf3IxrLwjYWmoWtzHNcl4pkdQzLjIIP92u+rnIHYzKjEFlkXkDrXQ5ojLmV0KvRlRnyS8n8mrp/NMXNYuv/ct/9+tnNYmun/Uf7xqmZIgsz+6b61NGePxqtZH5XHvUyH5T+NZM0RfD/um9wKzJWzdH6VbDfu/wrPm5uTyRxVdBFlDT81WUHH32/OpAP9pvzpWETg0xj+8T8aZj/ab86aVPmL87d+9UBZBpQagAP99vzpQp/vv+dAiwTnb9RXY+HRm4c56JXDhfnT52+8O9dx4c/wBbL/uiqQmdQlSdOlQBsCnhsjrVEEoNKG4qPdxQGNMTJgeKQvgVFvxSGTI60EHzkv3x9K0LQ4uI/rWfzk49Kt2zfvo+OhFebE9mR6N4ffdpYH91yK6SyH+ioPTI/WuW8ONmzlT0fP6V1VjzbfQn+denDWCPMqr3mS4qlqb7LZRnALgGtCsrWwTYsR1Ug0mQioJQgXkcdzwBWjaXQuQ2MEDuO9c7HKJo8Zq9Z3a2ioqRE8fOS45+nFSW0bjcAms17h21CONGOAcGoLrWMrtQYJ9Dmp9KspQ/2mcFWP3VPX60C2NUjioXWrOKjdaBGbcpxWTcj5a27lo9rLuG5Rkj0rHmw6naQfxoKRzeoD5qpIwUHNaGogjJI4rLAJw3YnikMsBgafTFgkYZH60pDx/eU49aAH0x41fGSQR0IOCKN49aUMD0pSSkrM0pVZ0pKcHZoWJFjeMDP+sUkk9Tmt7NYI++n++v863KEktEKpUlUk5zd2xc1i64ebcf7RrZrF1v71v/ALxpkFSzPzOPep1+4341VtDh2qwp+RvxrNmiJwcRj6VTm/4+PwqyD+7X6VVn/wBfn2p9BD1NPBxUIPpTwaQEuaaT+8X6GkBpCf3g+lMRMDSgmo804GmBKv8ArE/3hXbeHchpvcCuHjP76IZ/iFdx4f4WU+4qkSzoQcYpd2Kiz70hbBxVEE+6l31X34o8ymJkxk4ppcVCXqNnyKCTwVDhmHtVmDh1PoaqBsM1WY2A5rzYnsSO/wDDbcXC/wC6f5111gf3LD0auK8NSZnkA6NGDXZ6acrKPcfyr0aOtNHnV177Leeaq3sRnt3QdSKtMKFHGTVMxMy20e1W1QPEA/cg4NKdGtj1aTH+9/8AWrTNNqbFXKlvptrbMGjhG/8AvNyf1q6BzQBU8MRdgBQA0ISM9qryEAGt2S3SCxkY4+71rzbxD4kChre1bnoWFICPVdYhhvplQhyfl68A4qpH5kyiSU7UPRPWo9L0bdi8vBlj8yRk9Pc+9aF3CqkN0pWLSMq6ATLdu69iPpVae03EhGAAOV9qt3XzRfiKsiEOqk4zimDMtZHBAKnPTinHe2cfnir0SbS2YGznGTzmpDkD/Un6AUAZMkKgZPBqjLMEk2x5b1wDWzcwvIcLGQPWq4snH8J/KpYFK3d5HiJDD5xwfrU/izWrnQtLiurVInd5xGRKCRgqx7EelWEtHEinacAg9Kp+LWs1g0x9QYCzS/jeYEE7lCuSvHrjH40ICjZa/r6eKbfRtXsrW3eRS7BASQNhYchiO2CO3IOCK1db+9b/AFNc5p2tweIPEWh3jRQwX8b3UU0MPmFShDSK+XLZJaSUEZ4wO1dFrZ+a3+ppsCjbcOPcVOp+VqrQnEif7tTqeGqGaImB+RaqTn98OR0qzn5FqrNgzAn0o6C6ihh6inhh6ioxj0p/HoKQD949RSbhvByOlIMego43D6U0BJuX+8PzpQy+o/OmYHoKUY9BTETwEG5iAI+9XcaF/qpP94Vw9r/x9xcDqa7fRTi2c+rU4ks2t1IX5qItwKZvrQkmL0nmVCWNML0CJi/FMaSoS5qNpMUEtHiO7LcelWFb5aqjCycDirSHvXmRPYkdp4Zf/SYv9qIj/P5V3WmH55B7CvPPDMn7+2+pX9DXf6ccXLD1WvRofAefiF7xqGiijtVs5xKAKXHFOUc0hojnnitlUyE5boBUtrqtohyd4/4DWDqVwZdUdAfliQL+J5pqMBiouWkWfFWvXM9q1taHyoyPvtxv9ge1cfYaYY3+1XWyR/4VByF9/rXYoYpFKvtZT1BrI1Swi0/ZPbzJ5chwYg2Sp/wouNAjBlLfxCqmoOXiBU8qtOtpQ44PQdKjnAIdc9V70FGcWLRpnua0t6qACw4HrWUuTGvPIOKxp8/2hLn1NMTOtMif3x+dIZU/vr+dcpRQSdSZU/vr+dJvUjhgfxrmKAcdKQzpg6ngMPzqpqWmWerW6wXsPmxKwcLuK84IzwR6msXpg/7Q/nWs5e5u5ITLJEiKCAhwW98+naonPlOjD0PbOV3ZRV2/K6W3XVley8MaPp12l1a2flzx52t5rnGRg8E46E1Hrh+aD8a0LOZ5YWLtuKuVD4++PWs7XTzb/U04y5oqSJr0ZUasqUt1/X9dSivE0fTpip1PDVXJxMhqaM/fpEk2fkWqs/Dj6VYJ+QVXm+8DQIAaeDUQPFPBFIY8GjPz/hSbqaD8/wCFMRLmlBpgNKDTEWrPm9j+hrttJOLP6sa4iw5vV9lNdppvFoOepzVRJkaW/jFML1GXphf3qiTgPHcl5HrT3X9t32m6db2kIk+yFmZ5XeTaAgZQSQjEkkcL34FVPAl/ev4xu7SXW7jU7UWXmRvJMzKcmMjKknDANgjscjNM+IWqwWuuPYX1q91ZXVnC7LFN5TrIjy7WVirDo7ggg5DHoeapfDy6iuvGl5NBapawmyKpChztCtGBk9ycZJ7kk0h9D1kvUbPTC9Rs/FMk8fDblJqeL7uKqbj2xVmM4Fecj1pHS+HJMSw/7Mo/nXo1icXY+hFeW6JKVdvZwa9Os3/0uM+px+ld2GfutHDiVqja7UtJSitmcotO6CkXrSmpZSPPtdu7i01u4kiYgMeVNZkniSUYDKSfY1veMoFjuI5AOXHNcDMf3wH1qbaFXNOfXbliVjJUkZHNV9IvLi8uZHuJGdhwBn3qjIQskePQirmjDyrpvcMaLKxXU6uycM8i06ZlEoB6FcfjUFiAJpec5GeKSaTIj9eRmkUiuBlAM8hqyL7EWpy5OBn+lbdt8xdfQ5zWBrgJ1NiGCDYDQSxjXCjhRk0hmb2z6VQheJ32yEn1JqdreMSo9s+CvUZ6igksCR+4qQPVaVnjBcqW9dvNRR3sbnAyp6c0XGaGeB9R/Ot6W2huMeZGGI79D+dcwJGBAPQEfzrqweKTipKzRdOrUpS56cmn3WjBVVFCooUDoAMCsjXDzb/U1rE1j64fmtv940yW23d7lJvvKfepouj/AFqBz1qeH7rfWoLJG+4KrT9sVO33KrzdqYhq59P1p+W9KYp4pwPFSMcC3939aTcd/Tt60ZpAfmNMB4Y+n60oZs9P1puaUGmSXdNy14SR0Wuys222qfSuN0v/AI+pD/siuvtziBPpVRJZa3cU0tzUe6mlqoQNcRLMIjKgkYZCFuSPpQXrmmFstnPb3Fuz6i7OciI7nbJwynHT8uh4rcjMiwoJWDSBQGI6E96xpVXN/wBfc/M9HHYCOGimm9W1qrXt9qPeL/rqlKWpjNTC1MZq1PNPJlblQKsp0zVZRiTpVlc7a89HqyNLSmxM49RXp1jJk2z+u015Xpzbbrr1FekabLmwt364UfpXZhnuceJWx13endqjVsgHseadmulnGiRTTj1qNetSDrWbKRx/jYc259jXm9xn7SoHvXpvjZf3Nu3ua8xuTtu1/EULYfVDbo4ETejVe0c77xRgnhqpXC/6NuPZgat6E2dRQex/lR0L6nTQsFuGC8EjpTHYtsBHc5xSoQLvGPrSRqSOOSG6VJQ60GJpOOtZOqWizXe5nwfL6Y61rx/LdH34plzwABEH6jFBJzUWmg4JHJ9CKsfZDEcLGu7HD9abc3Fp5zR/Z50mXgqsZYD8qrQO00ywbJkkbpuVgP5UKPmInK3I/iiIHUCqvlxySZaHZ6N05q81jdqCADnPpShZkJWVDwPvUSXYEnbUphDvAJzg11g6CueSLLA4710GeKSAWsbXOXtv941r1j65/rLX/eNMaKb/AMX0qeA/J+NQE8tUtsfkFSUSuf3ZqrN92rDn92arTH5aAQimnVEpp+akY+mj7xozTQfmamBJmlBpmaM00JmnpP8Ar5j7AV1kZxGv0rktH5eY+4FdSrfKB7VUSGSlqbuphamlqYh5aoy1NLUwtQA5mphamlqYTQB5hnL+1OM4iIBzz6VEx2kYqZMHHQ15yPVexetHxdRnsa9D0RvMsEUH7pI/WvN7dsTx/wC8K9C8NMS0q9guf1rqw7tK3c5cQrxO0s2zbJ6gYNWBVXTcNFID2b+lWm4bFdjOEevWpRUS1KKzY0cz42X/AECFvR68rvFBu1z716x4zXOlIfRxXlV6P9MX60LZjGS82kox0GelSaA4/teIZPIPT6U5l3wOMfwmq+hNt1m3z7/yprYrqdoV23ft160RgF3HcNmo5z/pSk/hU6LhpMetQURqc3AI5qSRCmMsM5J6U+OJY18xxg54rN1DVfIkjUx7twzw3SmIsLDtJxIck5PAqG6sEu1QSSP8jBl2nHNVRrA/54n/AL6pP7X/AOmJ/wC+qQjR8o4++aje2V/vMT9apjVx3hP/AH1S/wBqqf8Alk350AWPsijv+lT5qh/aicZjbr61ezQAuax9bP720/3jWtmsfW/9ba/7x/lQxopk/e+lWIeAAKqk9asRHBqSh8pHlmqs3Kc1PMf3ZqvKf3dDGhigU7AqNTT80hihV9P1pFVdx4/WlzTVbk/WgQ8BfSlwvpTM04GmI1tEAxJju9dNu4rmtD5iJ9ZDXQ5qkQ9xxamlqYzc03NMQ4tTCaQtTS1ACk0wtSFqYTQB5o4JQEdqfETxTN4ChcZpqsVmHp0rz7HqsuRthwc4INegeG5Styq9pEI/rXnY+8a7vwy2+e1Oex/lW1HSaMKq91noGmHmUfQ1cc/P+FUdNP72Qf7NXHP7z8K7med1JFNTKagU1MpqWNGJ4uGdGJ9GFeTahxdIfevXPFI3aJL7EGvI9U4lU+4oQx0ZyCKg0X5ddtwR/Ew/Q1PBzg9Kq2ZI8SQqB0mz+lJFHX3LAzJV+3H71mYZXGefpVK6X50NX5dn2KLa2HJ5HqKRRDNIJpcoWx6Guc1kYuYcen9a2TcCCBpGXJB6etc3eXMl1cb5MccADoBSYhaBSZzRQA6lFNzS5oAce31H86388VzxPH4it8HigBc1ka2f3lr9T/KtbNY2t/6+2P1oYIp/x/jU8Z+aqpb5+KmjbmpK6Es5/d1WkPyVNOfk61Vc/IaGNApp+agUn2pwLe1IZLmmoev1puW9RTEZiD060AT5pdxqHL+1Llsfw0xHQaH/AMeyn1YmtstWLogIs4s+5rWLVUdjN7js0hNMLU0tTAcWppNNLUwtQIcWppamlqYWoA8470u3PzfnQOtC5rzz1Swh6V2XhWXD2pz0fH9K4lT+ldP4cl2bD/dkB/WtKbtJGU1o0eqaef8ASSPVavSHEn4Vl2LYvEHqCK0pT+9/CvRZ5nUep5xUwNVlPzVOprNjM3xLzodx9K8i1TsR2r1/Xxu0S5/3a8i1IZSmtx9BkJOB61HZjPimI45yT/46aIXBVfpUlnGzeIoioJbYSB68VJR1VxzBGf4qern7QinumalhtJJov3mF5NK8KhxIOwwKB3My/k/dFAMDOa52U/Oa3r49awJT81IETZ4FGajDjA5pwYetAD80uaj3Uu6gB5PFbwPArnmb5a3wflH0oAfmsfW/9bbn61rZrI1r78H40mCKGfnBqRDg81XzkgdKkDc57Ui0SzN8uKrs3FE08Y6yL+dVzcIxwp6cc0mCJVan5qFXX+8Pzpwdf7w/OgZJmmocrTd4x94fnTY2GwcigCfNBOATUe9cfeH50jSLsb5h09aYWOo0niyh/wBytAtVDThts4v9wVb3VS2MmOLUhamE00tTAcWppNMZqaWoAcWpjNTS59ajL0COCB5xS5460z+Kndq4D1LihsH2NdDoUuFOD6GucxlhW5op2sB6imnYUj1qxkzcQN6kfqK1Zj++/Cuf06TdBauOuF/pW9OcTfhXpvY8pqzHKeanB4qsrVKpqGBDqw36Tcj/AKZmvIr4ZSvX77mwnH+wf5V5DejKn60luUUrJA2QemSRT4ZWi8SW7KD8rgY9sc1DbsyNgcGrdrC0+spIBkIMsfwpFI7GS/EJBRQd2cZqSRv9HX6VQZQbdB3BFXJSfs659KAZiXx61z90+3J9K3r08muZ1BsAj1NSxooiUgk5PPuaUTN/eamgUAYrHmZtyokE8g6SPR9okH/LRqaCB0pp5NHMw5UTpcyM6jexBIrtlPyj6VwsAzcRjH8Y/nXcBsjHFaRdzOasSVzfiskJbYyDk8iuh3YqteW0N4gWZFbHTNUyEcNFcyxEkEsSMDcScUjzzTffkYj0zxXSy+HrdsmN2Q/mKoy6FcR/c2uPY4NQ7miaMdU9qsRqO4qdrWSE4kjZfqKQLUXNEkAUelGPYU8Lz7UHA6UrjsIFBHQUiAY+6OOKX3pFOHI9eaLhYdwf4RRt9hShqcoyyj1IoA7G1+W3QeigVNmoYuIxTt3vXQjlHE00mnRxSTfcXj1PSrC2H99yfpTApFqYzVpiziX+HP15oMEY/hH5UCuZBamM1bBiUdhUTRr6CgLnmBOCKcO9MJzS964T0x6nJFammXCxSp65249zWSp5qxA+y4jYdmFFg9T1HSb3y7eNWPKtXU+d52JPUCuA02QvKvoea7lDhQPauujKUo3Zw14xi9C0jVOrcVTRqnVq1MB9181nKPVDXk1wm5iPevVpmzA49Qa8/wBPsfteqlCPlVyW/OpKRzj20kMwEiFVbkEjrXcWulWtlpBmiUySyx5LY9R2ravdOtLy3EU8KsFHynoR9DUUUQtbZYVbcqDC5HagLmNb2blQZFKAc4PWn3ONuKuytzWfcnigDCvj1rlbseZcN6Dium1BsKxrnymSSR3rOexrT3KYjpdmaslcCmhR2rE2IdlJtqcRgjOaCoHQZoAjtwBcxEjo4/nXYK1cnGuZVx6iunRwQDWsNjKb1LANIVVuoqMNTw1WQKU9KYQfSpM0E47UCsQkAjBAIqtLp9tL1jAPqvFXyqt1FNMY7H86VkCujFk0Yc+XKfowqrJptxH1TcPVTmuiKEDj9KZk8jvUuCKVSSOWdChwwIPoRUL8Mp/CureJZBh1Vh6EZqnLpdvIf9Xt914pchaqGIFPtU0CZnjGf4h/Or0mjtjMTqfYio4bGeK7i3RHbuHI5FTysfOmjowcKKfbKLi5VD9zPPv7VCTgCktnZI1kX7ysSa3MGdEFAAAGAKD0plvdxzIM4DH9aea0sQRmozUjVE1IBjVE9SMaiY0gPKSeKcGyc1GaAeK47HpXJQcVMrfMv1FV881IDwKLDueg6UwC7vTFdrHJvjVvUA155ol2skQXPJX9RXcWMm+0iPtiuqn8KOGsveNJGqcNVJWqYPxVmRMz5Uis+xsI7SWSUD5nqzvoLcUhjpH4qnK/FSO9VZGoAglbmqFy3ymrMrc1RuW+U0ijC1BuMetZjY6AVcvZA020ZyOlVGVgfmGKwqPU3pLQhIyOlCx85xUxB2c9akSL5QO+OahGkrFYp+VAUelWNgAwaaUpAiIqPQU+N5IyNjlacEpSvtQm0DSZZS9lQfOisPVeKsR38LnG7B9DWfsJ7UeWB1FaKozN00bSuCMg5pwasESOh+QkfQ1Kt/Mg5UP+ODVKomS6bRtBvelBrIh1iF+JA8ZzjJGR+dX0lV1yrBh6g1dyLFnNNPJ6ComJJGDinhuOetAClR6Um0UZNG6gQoQUYpM0FvemA1zzio4pfJmI7NzTWfJJqNxuGD+FAGgrbTujYYPVTVmO/dOGJHs3T86xEuGjba/51ZW5z3ppiaNkX6EfMPxHNL9pifo4/GsQyKecY+nFNMn+0fxp3FY3SwPTB+lRNisQzEA/MPwqJ7uUfxt/31TFY//Z", "path": "images/3pts_ADE_train_00000052.jpg" }
depth_point_39
images/4pts_ADE_train_00002129.jpg
ADE_train_00002129.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 139 y = 144),Point B is located at (x = 34 y = 156),Point C is located at (x = 313 y = 107),Point D is located at (x = 146 y = 219).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_31><DEPTH_49><DEPTH_70><DEPTH_30><DEPTH_70><DEPTH_67><DEPTH_74><DEPTH_70><DEPTH_59><DEPTH_5><DEPTH_36><DEPTH_69><DEPTH_38><DEPTH_31><DEPTH_69><DEPTH_31><DEPTH_15><DEPTH_82><DEPTH_3><DEPTH_31><DEPTH_58><DEPTH_60><DEPTH_27><DEPTH_72><DEPTH_74><DEPTH_29><DEPTH_49><DEPTH_39><DEPTH_31><DEPTH_29><DEPTH_44><DEPTH_58><DEPTH_80><DEPTH_72><DEPTH_64><DEPTH_36><DEPTH_49><DEPTH_39><DEPTH_81><DEPTH_31><DEPTH_45><DEPTH_72><DEPTH_40><DEPTH_25><DEPTH_64><DEPTH_44><DEPTH_29><DEPTH_9><DEPTH_24><DEPTH_82><DEPTH_45><DEPTH_76><DEPTH_41><DEPTH_76><DEPTH_19><DEPTH_25><DEPTH_64><DEPTH_63><DEPTH_19><DEPTH_50><DEPTH_41><DEPTH_63><DEPTH_12><DEPTH_63><DEPTH_2><DEPTH_19><DEPTH_19><DEPTH_44><DEPTH_44><DEPTH_78><DEPTH_33><DEPTH_78><DEPTH_8><DEPTH_68><DEPTH_41><DEPTH_2><DEPTH_41><DEPTH_41><DEPTH_2><DEPTH_19><DEPTH_33><DEPTH_50><DEPTH_10><DEPTH_68><DEPTH_0><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_66><DEPTH_23><DEPTH_45><DEPTH_41><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_41><DEPTH_2><DEPTH_END><DEPTH_END>. Since point D has a higher pixel value on the depth map, the answer is that point D is closer to the camera.
D
long
4
[ "C", "A", "B", "D" ]
<DEPTH_START><DEPTH_31><DEPTH_49><DEPTH_70><DEPTH_30><DEPTH_70><DEPTH_67><DEPTH_74><DEPTH_70><DEPTH_59><DEPTH_5><DEPTH_36><DEPTH_69><DEPTH_38><DEPTH_31><DEPTH_69><DEPTH_31><DEPTH_15><DEPTH_82><DEPTH_3><DEPTH_31><DEPTH_58><DEPTH_60><DEPTH_27><DEPTH_72><DEPTH_74><DEPTH_29><DEPTH_49><DEPTH_39><DEPTH_31><DEPTH_29><DEPTH_44><DEPTH_58><DEPTH_80><DEPTH_72><DEPTH_64><DEPTH_36><DEPTH_49><DEPTH_39><DEPTH_81><DEPTH_31><DEPTH_45><DEPTH_72><DEPTH_40><DEPTH_25><DEPTH_64><DEPTH_44><DEPTH_29><DEPTH_9><DEPTH_24><DEPTH_82><DEPTH_45><DEPTH_76><DEPTH_41><DEPTH_76><DEPTH_19><DEPTH_25><DEPTH_64><DEPTH_63><DEPTH_19><DEPTH_50><DEPTH_41><DEPTH_63><DEPTH_12><DEPTH_63><DEPTH_2><DEPTH_19><DEPTH_19><DEPTH_44><DEPTH_44><DEPTH_78><DEPTH_33><DEPTH_78><DEPTH_8><DEPTH_68><DEPTH_41><DEPTH_2><DEPTH_41><DEPTH_41><DEPTH_2><DEPTH_19><DEPTH_33><DEPTH_50><DEPTH_10><DEPTH_68><DEPTH_0><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_66><DEPTH_23><DEPTH_45><DEPTH_41><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_41><DEPTH_2><DEPTH_END>
139
144
34
156
313
107
146
219
null
null
85
108
59
130
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwC6MRAsxwoGSR1rNk1CaSYu5OSeB/dHsat3soVhACCy8uc9/T8KpPGG9644StqU43Oi8OeJblbpLWeUtIf9VI3Vv9lvWvSrS6W7tllHBPDD0NeJWsDtqFqY87hKpH5163orFUkjPc7h/KiUkpadSop21NiuL8Qu+ueIrTRoMtGrBptp6Dv+QrqdRvUsNPmuXOAik1z3gezMoutau9yy3DlY39u/68fhUy952KWmp1TlbW0WOAZRQFMR7ADtWLcSBsbclc8qeorSv5jnEuOPuyLWNOwZ8scEdHHeom9RxRHkNwvPseoqO9lIDvhTsGcfSpVPO5gDjkGoNonuoImKlGfczeiryc/lR0KPOfibdN5lhpS/eVA0ijpvb5j/ADFbuk2n2TTbeDpsQA/XvXGX9yfEPxCeQ8p5pb8Bzj9BXfR5GF9OlRW0iojpq7bLMS5/CpCMf/qpiEEelSgj9a50aileBzTCnHHWpHOOlRNKODnPNUA7ZjHTIpAgLHIxTfNyfanRvk1QxDEMcdKaqlT047VY3DpmmHHoc0xkZQHofzqOWPjipuAe9MkbC5PNMDC1e0E1pKoO0letcPqUUC2MZTE5jwpaNeMj6+2K9EuWDKVPSuC1FY4Dc2ttFIXDbzvYFQOmfXuK3pMyqdx6rrepWMd8dSZrdx8sLuwBIPcY9j+lMlDvYrbAI0igzADne6AlvrnJ/SqGlWMmqJKLi7trVID92WYqG6kAe2etXrJBp7hpLq2uHjZSHgbeMdCufxPFay0Mk7j9M1CG11WzjZi1tc5gnwR8ykY5P0IP41q6d4cS7hubW5Exns5TCwjgjZdvVTk8kkYNcpeWot7y5gSQOIJd8WD91OCOP90j/vmu9e4WHVra/wDs6zRXsItmQruPnIBj6Eqck+1UtrIFvdmVc2EmiavauVlaK6XypJGhCfMPu8LxnHH4VouMjO6l18fbbBrUaSImJytwpBEZHOeGzzz2qCxnW8so7jGHIw6cjaw6jn0PFRJNxUuxotHYikTuR3qm8YHGa0nAIPAqlJgcVmmDRQmj68jNV2UA8GrshyT0GKqyYzyK0RmxgPPXmpcjue1V2ODwOaFkwcVRJeTGeDUy8c4/WqAlHTGPcVOkwAHf3pNFJlogHFZGsaX9pUTQ/LcR8qR39jWkJBjqeaV2G3oPrSTaZWjVmctYahLDcCVP3dxGcOh7+oI7g13VqI9T0s3tru8iLAmhH3o2P/svoa5DWNPZ2F3bjE6dfRx6GmaLrtzpchvbRwG2mOaJhlXU9VYd62spIxd4s6KDVLWT5muUJPJ5q2t9a44uI/zri4I8KFAq7b28l1PFbwjdNKwRRjuazcEJM9N8K2iXLte5DInyof8AarvdKXJkcDAX5B79zWBplgmk6Xb2UAyVARf9pz1P510haPS9NZ2I2RISSe57muW95XNtkcv4zvnu7y10a2JZ5HG8D3OB/n2rtLW2XS9KhtoCJIYkCYPX61xHgq2m1fxBd65IAyxEhA3949MfQfzrsryXcxaL5JR95T3rRaLmJe9jPnkBBMTZTuh7Vnh87ihyP7pqaeTzGJGI5R196quweQK4Kv2I71kWOAEceIjtyeEbp+FZepXostK1W9KbDHB5Cc/xv1P5Vp3DbABImQo5Ydq4j4h3/wBk8KWVqrfvLx2uXGeQDwv6VSV2kJuyOY8Ew/aNQurxwSBwD7k//Wrvo2z04rmfB1qLbQ1cjDTEt+HQfyrpo8HAzWVd3my6atEsq/yjHWnKx7ZGahyQOwNLnI7iskWTPJkAdBVdmXOc8UO2Mc4FQuwBHTNUguTEg9Diljbbn5qg8znGRTVY7vUHvVjuXxKARTTOMk7untVIue5xTGlPPFMLl03I6/zpplyDgdaomTHPQ0GU+tA7iXDbif8ACuV1YbL+NVhjbzh5ZkPVf88V0EkmcjP5VgayJzCTGu7n05ArWnozOb0OZW083Vktrm4jgt5SQ83lk7PfGea02tdGtbqNdP1f7QUKr9nFuV6LgsWPvk1R1SK5kVZ0dULANsKZ5PXmtNbTwwlhCk2rXiXUrB38q2z8xXAUfTJrp3RkkUXZFuY7sMXgMzRSY/j2jjr/ALO8e9dJCi3kGq6flXkhRbu2wOdyMQygj+8vH41ikx3WnS20XEoi8+MgD5SnK/mAas6PeSafqtrqGSYxCsZLcZCkY9uVK1Kdtew7dDuoLbRNX021ufsFgwdFcA3bAqfxHUVys0a6Zr91aK0QinHnRhJ/MCnoR7knJrR07Srdr3UNMa3u5BA4ltjHIBiB/mXGT655qlr2gjT9P+2WcOoLLBL5zGYhxjGG78ADJqlbmtfRjb0uLJKccDNU5HBJPIo8wSxLKmQrqGBPBweRUDnrWNrOw27jXbPeqrt271M5wKhYEjIq0QyFuRzwaaXwKftJHFRkEHkVRAok7Z596d5w781DgA5wAaCcdP1pgW1m+XBNSrOMdazs/nUyHkf4UrDuXjKjjGa5zVLMRTmeNsBuJAP4vet1RxuxxUd7Zrd2+0cP1HP6URlZlNXRmpXc/D/SfPupNVlX5I/3cOe57n8P61xdtbyXVxFawrulmcIoFe22NjHpGlW1nbgF1URp/tMe/wCfNZ1p2ViKauzV0yHz7xpj/q4PkT3c9T+A4/Osnx3qZito9OiOXl5YDriuot4o9PsFXPyxLkk9z3NcNokT+JvHBum5gtz5hyMjAPyj8Tz+FZJdDS/U7fw7psek6Bb265juSvmS56lyMnI/T8KbdTLKxV/lk7Ed60LycMPLlXY46H/A1h3EgDbZenZ6dR20RMe5VuXGdlwpGOjjpSQq2/5mEkeMg9xTbiRgQCu9Mfj/APXot8RwvJCflYY2noD/AEqUWVL1ndPLhky07iIA9ixx+gzXmXxHvTqPisWkWDHBiGMDpheP55r08ShLp7uRMLZQPO/+9jC/1rx+0jOqeMtxJOxtzE+o5P61pT0bl2Jnrod9Z2otbGCED7iAcVbjTn/61RISGxjOBVmMfKTXGzcaTuPHancleMVMq8cgfWnbcgZA9DQBXMeRnAqN48Crb4GAKhbGcdjVICHysjNMVcHb6c1a244xTFXPXBxxVAVinPTmmOrd6tlB7YqNl4zntTApsDjkUFD6nPerHlH3xS+WcjFMZQaE5AyT3rO1K2kktpAgJbHGa3XhyMjr1xVWWDcpHt61SdhNHFCC+NgyzDydjgKWjBJBycc9s5p+jRaObed9buJ1lTcIvIiHQrjd9eTUv2LUotTmSOOQQuD+8ZSQP4hj34xWfCWj1BVvJzJb4y5EKl/w6CulO5kuzLXnaPaxyf2bPdS2rRgtJcqA5PTAx2/xNDRLZxalYjaPLBliGDnZjcPb7rHp/cp1ra6BqWum1tm1BH2gqskaCJQAACcHPcfjVzU45YJbGYB5OTbSovqmWGfXKGQfjQ9wSdi/eTBTo+rmJmQH7FODKY8g8pkjsNp/Otm7gjeF4Bp6yxOuGH9pA5yOevasCC2W5tLzRpCo+1IfJZm+62Qwb8h+tZ1pothf6GL2bUrGzumJ3rNlGRuhGAefy7U0lKK8idUw01XhnutMmULLbvkAPu+U8jn2BAqzLEcmsue1Giz6fdDUrG7Xd5ErQS7ncMSctn06flXSNEGAbsRmpq783ccNrGO0ZA5/lUDLhicVpSxHJ4+mKqSR7R0qUxtFNs5z2pjHnAzmpWwM8c+xqGQdeuatMzaI2Az1Oaj9cj8qXGzJGTk9z0ppY5681QhQcdOtSKxz3qDJI9qejcZxQwRcjkdeMVYA+XOePU1UR1zircciN8pPHaoZpE1vAGnb759TlT5UPlxZHfua9U0yEXN+07AlLf5Uz3c9T+A/nXO6Vax6dpcUMEY/dKFTHVmP+JNdlYWy2VkkbH7g3O3q3UmuZy553BLliY/jTU/sWk/Zo2xLOdv4Vc8C6Ulj4eW4+5c3R8xj32/wj+v41yF0ZPFHjOG2jUtAsmxiP7o5Y/0r0+fyjCEj+RkGFA4wB2rSHWRMuxn3k/mt5cow3YisqeQxriRdy9Mjn9KnuZQ7bJhznhhVOVpI88707eorNttlkOCDuiYMh7dRT5vLCqqsQWGTx3psCxmXcg+oH+FRalKIopJMA4Hy49ew/OmNGN4juzY+FLqYsQ17PsB9Y4+v61wvge2Ms9zeMQSTgH3PJ/pWx8Tb3yLe00pTxbwKhGf425ak8KWgtdDjboZMufx/+tiqk7UvUlazOhVh3zVuPhAKoSyxWsEk87bY4lLM3pSaTrdlrVsZbRmIRtrhhhgfcVy2drm1zUC84AOPenEDHC00EZ70bvm6npTARhz1NNOD0FPIBOSc+1Mxn8KaAQ8nOcHHemL708jA6g1Hkbs1QxSgximND0+YU4sO2fpik35XpjvTAaAFyDmlIKr1phc7uDj60bgRz+lMYpGUPeqr5z9fSrAbHFV5TgkfyoQHJ+IxeJdxTWxl2g/dXOOOegrmJr3UJ7xY1gQbzhUePGPx4Ndxrs1zDYtJbSOjpz8prl3ubv7GZZ53klkAK5bgL6fUnr7DHeuqm7o56l1LQ6Sy0mHT4pbv7ZaFjb+YxQMA2OR1H+c9OKx5LqbULOeIFWnkf7YEP8TIGbb7Zxirdlp+p3/hpyjIWmQhVL4yScZPp3qppkMuk6lDFdLH58cwaXB3DaRgD8iT+NFt2O+yJ4JwH024DoAkiLu37hjkrz/ulfyrbsH/ALN8R3kJuoLe1vkF6j3MO8FmJ3qPYGsE2y2GpSWbmNTbyt5ajqdoLI3vlGxn/ZrS1O5mSGz1K1dpLvTrgIWZf3ao/wB4kegOKcFeXL3Je1zW1e3tr7T7m1fW9EQSoVLLbhWH0O7rWJokzXWjxliDJESjc+hOP0rRuPGOrRWJuxcaPOgDfIAA5IwcYz3zXP6fqYm1kXTsm7U0MssYIHkupKhevcDNPkbi0NSSdzXlUA5yMH1qrKnGauyx7gfmHHbFVZEyDz+FYI1aM2WEHnK81VaMj8KvyoFJ5/SqzqMdeRWiZk0UnU81DtwfQVZfvzULYI9farRBGcetLuNNYcc0zPHFUSThueKkWTnk1U3cn0ppfB4osPmPfNKthJeA4/dWw/Nz/gP51P4q1T+zdFk2H97INq1f0+3FraJGfvfec+rHk1wXim5k1zxDDptscneEVQerHp+lcEdrGrOh+GuntHa3eqN87ufKUY5AHJI+p/lXV30iTjIOHH4GprO1Gj6XbWkWGihjCZA9O9Zt5+9JeM5IrafuqxC1dyjJMGJSYdO5qo5aLhfnT+63b8anecSOVkXYfRulVpPMif5cMh/hP9DWZY+HaxZwduOo6Gq4jN1qdpbyYKeYZX/3U55/HFWh5f2cnPztxgjkVkXN01np2sX+75o4ltYj/tN1/nTGeW+Lb5tY8TMVBJllLAZ9TgfpXeWsX2e3ijj6KoH5CvPNFRr/AMV+Z/DGxb8F4H616OOevX2p4jS0RUluyDWoBcaFexE7d8LDdjpXM/DWCWCxu7uZwsNxII49xxuK5z/n2rQ8WSRSeFdSuBM261kSNFDYBbIz9eGxXmln4jvo7zTjcXLvbWbYSPsinhsD6E06NNzptIqTUZLmPeUYFdwPB5Bz1pxIwTnNZnhu8ttQ0lVtpkdoHeP5ecqGO39MVfJP8Izn1rl6msouI7e2SF6dqQtgH1qNgPXk+9NO4H/GqRI/eNp9ajJA64H1pHYgdR+VM3nBzVAP8zBGCMU1pB6/rULsSBjjFRmQ45Az2qhXHvLgknBpBJwMYFQu3zc5xSBgBnPbpTC5OsoB5UUO6nqKrj73AqGWXDY3c0WHcsOkTLhlBB7EVzviLT1CRSQLCqbSpBbZk5yMcc1flunUkqM47Vh3eoNf+dbsCPK+cZ+uCf1rSmncmbVjNTStQvka3jjIwuSySowVc9eD2z060zT1QatLbMZI7dHb5gCdyr0GT/eOBn3NO0vWZNKnuPsU8JeUc7uenNT3XiDVL22hF9KnkyTExhEwCF75+px+FdNnaxjoaOvsftGm6tG6xxvHiXd0aWPJA9iVLCrltPHPqI0yadjaX0bQM0fHWNAD781jXPnXenjahWSGJr2DnJwCuSR3yuePem2sjSXelyJKhiil8veBt+6cqfbKsPyqIrZlSOs8OaXDqGlS2sqaZDeQTGEi6QhxsPYbh6En61naj4OfR9Hup4tSsZY1nF3iNzu3KDhRz05Nb8dylp4xhkhtYLxdatlby7ghQJEHPRTjIIP51uXmm3kqureD9KbP3SLhcj80q5SafMuoklaxw9tObm0iuAMeYgbb6Z7VHIcf/WNV7aGfStTu9KvIhFPuNwqI4ZVVugGBUzjOeePrWVSNpabMuMroglJPTkVSlGMVbkG7vxVaRO3r0pITKrjjk8VXYEcZFWXGQTVdwSPStEZsibj6Uxjzginn9Kbgdx+VUiWRMccCoywx3BqVlHpjNRsg3deapCPo7W75dP0qaUnBKkD/AD+n41z/AMPtM/tTVpdblGFhG1feQjk/gP51S8a6mZrtLKI5CnoO56Afn/IV6DoGjLonh+3tA2Jgu+Q+rnk/4VwU480ubsdk7QpJdWXLuRoQQ5BX1FYtwGz5kJBHcGrlzchgVkODWW7ywOWTDxn+E05yuzGKshsrxyNscbZCOjd6pbJIH4+ZP7rf0NWHZLgbTgMOdrdaZF5iSBMF1z91jz+BpIYl4YVtUYqygKXYN7dcVyXja5Om+DtPtiCJbgveSgnnnpn866jVUFzJHaR5Vp5VhVT1wTz+ma85+KWoi512W2jbMUJWBR7KOf1rSEbysKbsjP8AA1p8txdN1JCg/qf6V2qEhuORnuKyPDNsLbRIQerjec+/+RW1Go9+awqy5ptlwVoo878TC7TwjNHIW3HVJjIOvyjGM+3SvPs816540tLhdIuPsvyqEeaYt3U4BA/SvIz1ruwjTg7dzLEq0l6HdfD3WWtjPpyK7XEjiS32jocYbPtwK9WRXMS+YcsR8xA6mvEfAt59i8Y2DEcSsYfpuGB+uK9yxj0rnxUEql+5pRm3C3YiI6dvwpjqep6VKw5ApuwkHkmsEaFdiD0yabt3Dd3qxIo460wgBef51SAqFePamFSQccYHWrEi4OegI70hUY9femIqSIwwc0w9Bz2qwyAHqfzprJlTjH40wKxYhsMSPSmSYxkcepqcqSetNePK4zTCxlyAjO4cfzrGktoW1GNHKgyZX72OcYH64reuI5N5wAAO9YepWUkjRzb0jaNgQWPBrWD1ImtDJS2toNXtZZYh5ayqX+mea6jV73wXqVzGbhLtXwURLcFAPXChcCud1Y3gckPb7QM7QgYfgcA1oWujS3Og/b0TzLuWN0SNV2bSQV3bi3OfoO/NbEeg3TLiGO6t5H/1RfyiC3PlkYx+X8qNLtxHqr6dcyIxgm+RW4YCI5XPrmMkfgKqWtld2JaO/t9jtHshywPfLEYJ56D86u6q0yX9jqUKq63EQklB6l4QQQPqCeO9S1q0NbXNS78zU/Cbxwuwv7GRbhApOREEUSY+gwfwqP7HJcabBdW8+sl3UlAFkZdpB2nI98HjPWk0W6W38XtACBa3IkRt3TynB/8AZRTNL1LWtKnvdE0+9tUt7a4eKN5IQxKgnDZJ4GMc1pDWNkRLR3Ms2V/ZWcF7crcm8S4JuJHSTHk8YHIx1zWwx8xAy9CAQMVt3vhm6v8ASYr1ZjNcMhaQKecn0Hce35VzWk6VeT6pKk6usUCNIzDODjt9fbrRON1r0JhOzskOYENjjkVDJyCRV90HYc1WeMgkVgmbtGc468YFRGMben61ckjPSoGTHYmrTM2im4AJ/wAa52Sx+zWqJdeILiHUntBdrAyny9pTeimTfkOyYIG0j5lGcnjp5UOK5CbXrO5tY3udL83Uo7QWaztN+6KqmxWMe3O9UwAd2MqDjI52pmcjU0mWSXSYXlkZ2O7JY5J+Y1aY5PSqWjD/AIk0HA/i/wDQjVs9OKOoj17wjYHxF4vNxcLmC3PnyA9Cf4R/L8q9Tut8W5g2U9O9YHgbQxpnh1ZpQVurzErn0H8I/Ln8a07mZlJSU5Xs1caXLA6as/aTutkUrry5wdrdehHas1pJoflkUOg7jrUWqX0NjdQRiXM05wkY6nkDJ9Bkjk0G+jZmiuQ0Mo6qwxWai2riuIwjuEDxMG/mKmtGkDsrKHAUkbuoqpJbBj5kbEN2dDg1chfy7c+fgluA4649xTQ0Q2rp/bMl87furC2eds/3iMAfpXiGqSyan4hx1d35Pux5r1fV7pbLwRfXQOH1K58uNj1Ma/8A6jXl3hqNr3X/AD8ZCs0n4Dgf0ram7JyZnLV2O/ijSGBYkx8o2gdBircY+Tp+VQKp3ZK8VZiGBkEEZzjvXEzoKGtWy3OmXYcZjNrIp4+hrySawtFRsRKGA7E/nXoOv+KbCC9ltZzhbS4j85QMmVCpLAD05AP415jdzgzmWF28tmJCn+77124OLSaZhidbNM6DwJ4eXVtb+1G48qOwkSTYFyznJwM9hkV7GeeMjpgCvMPhjOqapqSk5DQqR2/i/wDr16cxQ/iKjEtupqXRS5Rp644HbijHy5ycU0HBx26nNOBBXAAx9KwNRjdD3+tNwCBtyAae6gL1+vek/hx68UwIWXgEg9OmKYVweD+FTSZ/ADvTGwR0J57UxWIHUdMnNJs4Ixg/SpnGPu5xSbRjnv70DsVsc8D8aR4ywyfwNTmMevShY1HTr3phYoTION+cVgawI3spkUksq5GfaukmUYx/KsO/t3LHbGpB6571cXqKSujmri6gbTYJJmYEIIztGeQSBxnPTFFjrt9Ha/ZrHVpIIxnCLIU5P9atCSO7t5h9mhieBwp2LyQc9fxH60eHY3TWJBBDK8hRsLFIkZ/FmBAroMFco3GpXgvwupXc1zLAg3PI245PJA9ucVqahFcQ2McF1FlrMm+aIHgrgbkz9DVm58PRrdyXlxpN0FjXzXkbVIGGFGRlQMkcAYFN0i8a61mKS6cuk6tDKD/dbA/wol3HFdDNvPMiWG6V9oiilhYEgkqFJTOPVXx+FO1pk1IabrDWqrA4+xthfvSg5DMO+Qf0oaCWOyv9NklWe4jWSMA/eXyjlR7gxk4/Kn+EoY9YspLC5lZVRxdQr2DqDz+IrSm7amVQ9UW6bT9OsEi248lNynrjFUNanS2t7+dVCLIUU49wP6tU+kX1jr1hujUrdpGqtA/B4HBx71n+J4ba48PanbXFyIHk3tDz94oRgc/QVhyVFOXM9HYtShyx5VqjClHORjBqtKuORz6VU0K+N9pMSq2ZIxhwauMjk4IGPUVMo8smmap3Vyq4yOvX1quyEcZxj0q5JEcnOPzqF0HYZx2ppktFMqMEdapyIvOB+Rq7MhC4xxnkD0qBwrcp/Kk6jUrHdSwMamHdVt6X6aKyvZvvLZf8PakQPrULcGrTqcHPFV35Hp+NdCPKZ9UTtJbgCPlQMbaoTSLOmehqzLcbn2OMNWTeiWMO8Zw4B/H61wyd2bJHIX15anxHM0k7kRqbWQRsA2MZ7+56d8Vc3TfZsxlNUsI/4eVki/8AZl/UV5DfTzyanNcGRt5kLMQe9aWneJrqzkUs7blPyupww/GvXhh1GKscjrXep3r6pDp8SzWt0zo7hTbyr86H6jgj34q9e+IdOvLR7e1mK3fkghNp6sdvH0Jrj7zWm1kR3DGLcuVdwm0uffHGaseBlTUvF6wFUO2bczZydka5I+mWFY16EYwcuppTqNyt0LHxPu1sbKw0mNuLS2G7/feuc8EWmIri4OBnCLj8zVXx/qY1TxDcyBvllnYj/dXgV0Hhy3+z6NADnLDefxrkqe7S9TaGszbXC87jz1qZGReWfbx1qsCMdR9DXPeI9UaFkt4ADg/O3ZT2z6f/AF65IxcnZHVCHM/I888RXCz63f8AkyFofPZwGP8AEcbu3qP0pdL046je6fbBCxuW8tVHGSSQP1qHWZZJDGx8soxLZVQCGP3gT1610PhrTnkh0u8EjIVkYbVyGHJ5B/GvVvywOCUXz2NTw3pM3hzx9e6PcnLJGVJP8XRh+lehnAGBgiuTm0tk8X2+pCSRy5UMWbJPGCcnkmupLhVJPFcVWSk00dVOLirMQvjgHge9WUwUHJqmMc4Oc9cVYjyFB7euKyLJGOBkg/jXP6l408PaTfyWN9qHlXMRG9PJkbGQCOQpHQit5uVxmvML600sePtdvNYktI7I/ZrMNdxs4BlRdzKFVvmEaPg8YJByOK1owU5WZFSTiro77Stb07XbR7nTZ/PhSQxltjLhgAcYYA9CKvdVxxXEfDO0lsNF1GzuFCzW+oyxSKezKqAj8xXasx29T+dTNKMmkOLuriNz04x+OaFGc9SeuaazFgAp5xQCT1/lUlDy2QeOlREjOccd8U4sAfQ+9MbJfcuSF6kUDIpFDISpNZs0O/PJJ9O1aUi8df0rOYMpPPemgOYl028gvruaCINHKOocDHQ9896xXj1NLkJNHHIGbbwo+vUVuaw722p20hkZI3BRwDxjOOR9DWdfJ8wx2rqg3pc53FapEmr2P9m6VJcDy90wRC0ZJ4Jzt5+hJP0pNE/0l5WMyxRW8e9iR95jwqj9T+FbO/we+lwm/iJlRA0gxM2Djno4H5CsjVZNLilt4tIi8uGRBM42upJP3SQzMenP41W6sTs7s1daLQakmow2wb7Vbpcsw/vxH5x+K5GPasvw+yaR4huG3ho40kaP3QoMfmGFXb9f7T8ETBmAexmWcknnaeGx/nvWp4UjsDeS20kdvcSKojVwocso+ZSD/unBHqtSm1EckmyfUoTFqPlWLNb3KgyW6A5ZkH9w9wO69R2rRykgWW/0y51EvAhGIfMUHG5uvck1pXkNu4gc2gRkcbZCgBUdSAafct4hmuRJp76f9jx8ofcGb68H9Kaq8ysyfZ8rujzyQPp/im5b7BJaWd/L+5SSPZs9gPxrXlTaTnkfWpfGem6vc2Ed/MtrC1gTPmOYsTz0AKj19aq2s/2ywhuCTiRAcnvUz1Sl8jSGjsQuqn5gT+VQyYHIPFTup5wBjNQtwcHoelShsquoIz/OoW4B7elWJBweMVVcYANWiGVpQfXiqrcHBxj1q25GMZ4qrJjnNWjNn0ze/vMlSDWHquoLb2Upug3lFSpdRyAe9aVyWiY7fu+hrL1CIX1m8alc45Vu9cPU2PBb7S57K6eawmF1bOxKlTnP41XS6SQlXBSQdQf8K7y90J9NmbbG8YbnA+7mufvtHhuZcyfu3PGQOM/0r06WIt6HLOlc52z0/V9REb2+s2lv9qv5bK0t5d4aWRAhwCEKjPmoAWI5rvfhQz2Xg3XfElwxM2wwQseOT6fjiuL0vxNp/h+JbG7RpprHVbqd4nsIZ0nRliTZ5jndET5TZKg/eB5xXVadfR6f8GNBtUOHvZ555fokjqP5D8qiu3JepdNJHK3Ob3W1iHPzLGPqf/116dDGI41UAbVXArzfwrG93ryysOF3SEn17fzr0dc5wSfTg1yYl2aj2NaXcmQ/SvKvEN41zJKyTKjK7CWIN1bcRkflXqK/MuPvGvOdc8J3o1WeWHZslcuAScjPJ7UsM4qd27Gs5tQcUr3K/hyzGoayFmQPbhw5LDIBIzXo6WkSPbvGAUR9uV6AnoK5nw3o7WCbnLM45ODxmuqhvjBpGpWnls0tzH+6YY/dtyM889+1OtLnnZPQUJ8uti29v5skTJyUkA6+tSFznBHfkVn+HL66srkSSp56LEUK7tpJOMEn8KsqCBzye5JrNRSNOe6SLkbDGMDHvUykYxnHeqiP8pBHFP8AMONvr2pCLDMuMjrXmnivwJreva7dXdre2qWczI6QyyuMMI1UnAUjPy/lXobyoiM7uFUDJJ4AFZaa0+I55LKWKykICTsV4ycZYdh15+nrVRqezd0a08JUxCfIr280vkr7vyWpT8H6PfaHpt1Dqt1HcXU9007Sq7OWyqjksAc5BroXZQMjJB7g8UzK5ORk0OwwAPyobbd2YrRWQ12BVQCMUiv2AHuRSSOAozio9xyecD6UgLIJwAWz+FISenrVcvkDH6mkZwR1/KmO5JKQOMfpVKVgGJz+QqaWRigIX5e9UriQ9NvbtQkFzK1SwTUQN8jpt5BC1g6r50nlvBchVIywKAjqRnpn8K19TYtaSbSVcDIYHB45rBhmNxaEO5Z1Yjk54PI/rXRTTsYzavYk0u0t7kSLf6paoijcV8psyj+5kkYJ9aydQ1COTWrmZGVowdoKjAOOMgdh7Vq6JeW+m6oZby3WaHawKmNZDn2DcZ+tb6eJtCmumjj0YgKhld/slsAqjqSdn4fUitb2IepSItLaxstPMzO94kf23nOCzglR9ABSaIz6ZKk6IY2tJzblh0kAPBP4YzWFDObiQzZw+/zAfQ5yK7S5eDVLK88gBJCqyDYMZZgP5ECklZ2YpS0udlazSX8ohFo5VI/MXnAc9ufoanurK51a2SKG4m0/DYBtznzB07/0rnNC8a2FhZ2/2tpzP5YU7EBHPbr1HT8K0ZfHWjXMCwCK5MYGwBYxj6dax9jNNPU09rHZvcS78N3FxZPbza7NJFtKsrQoxweoz1rg9ORtP1jUNN3O8cB+VmGOOgHoK7dNU8PW06JDb3Ecz9BE8Ssef96sDxbLFp8kdzDYXEPnufNadkJwCBk4YnvWqT2XUWm/YrOwGT29KrM5IPoKa1yHTIGQRwR3qBZSzbec+lRa25VyUklcn9DVSUZ4z16VUn1R4Lvy2hwgbac9cVakO5sAjHrmqRMirIccYqCXB7gVOSAx6VC/vVozZ9GeYJlOSNw/hPWsjULdjkqWjbGVZTjmrk8f8SsR6GqT38kfyXCbowcbh1rz1c2ZnPdsQIr2ISxY5IHOfcVQufD9vf4eykViT9wnp/hW28MM6GSJuvY1kapBcW2m3lzaDbcxwkhg20hf4iDkcgZI9xVqVldF0aTq1I077tL7zmJvB9pL4htrF9NtxLNKFYvAuTzkknHNZ/xQntLfXTpenW8VtaWSeRHDAgRFJyWwBwOSa6DTru0tfFmnXemETyK3mTvJKWMqbWMjtk/eC5Pbnseleaa7fPqWtzXDsS0kjSN9Sa2oSc5a9DTHYVYfls3r3Vnvba77aHS+CrTFvPcEEEsEGfbn+tdeFPofzrK8PwfZdHtkIxuXe3GeTzWwrZIC8/WuerLmm2YwVooWFChOQR70k0UUhAYHn9KerFRljj8aU9Rn0rNblFdbaNVIUnFOWCPOTkg1LnAwDzTR8vLH8uaYCRQRRuWjyCfrUmc9fzpU+bhRyfWlHBI//VmqTGAwpyKkJDLjHPsaRhgDGCe9JgkcL9aYXGzRLLA8bLlXXaQT1BrKGmXzwR2VxcQtZx7QcKQ8gBB2nnA+o54FbO045zk9qVgCMDt6mhxT3OihiqlBWh67Xs+67P8AroiN35z+maD7HDUkmV5/kaCMqOOfrVHOMdiox+J5qAneCeePSp5doA3VHuBUlQBj1FAhgf5B6dsihm+Ug4H4U0sdvOOvpURcZxjr1zTsA5nG0AknHQ4qrcMdpxjNTPu2DgYqpLIcYwBmqQmzMmYkEFOD3bIrE/s24jjmKPHgjJ+8Onpg9etbNzIcEZ49q56e48u/WTc4XIJGe3et4X6GU2jLnjkhlUm4kPIyc5rZvbjSLLRpFsZ5ri5uYwsvnJjYfQYA4GSe/O30qlqEPzEDnaSM+tWoNa+x6fHCmk6XNtBzJcW+92Oe5J+la7kFHQY1vtStLKR2WKWQCRl6he9dtpZjtdRkty2MFoSD264/I1z1tqM13phvJLDTrUeaBCbW2WNzt5Y5HOOQP/1Vd/tCW5ndiI1aQltyqAd3Xr9aTvzA7cpl6nbO90wK744Hy4BxnmtrThp2oWdnptvDJHqFxcAMxGQATzz34xUVtZ6ld30syFWs5W2yhiB7lvr046c1Y8LRXdt41tmugVs4pmaPcRgAcZ9a63JcmvQ5UrySOpT4YQHOYVBPBI2/nUer+AtQl0x7G1/490G2HzXUvyR1Oa3NW8X6ha3ktvp2kC4EfHmzSFVJ9gBVCy8VeJ3YyXWkW/kIys8sYbEQyOSD1rjUGle52tpnExROgitI1ZnQbRjqcVY/s+/TEy2c4Ibg+UetQtO32l50IyWJyOO9adp401TTwXa4Z1VDncew6UqcOeVmTWqezhzJXPO9Ull/tGRZgwcNkA5B5roV/wCPdM5J2jOa6Lw1YXesauvizWbG3m04yMGWR/mBJwGC9wD/AFqp4rjjt/EV0kShY2O5QOAMitZ07JGcKqm7GC+2qzNjI61PJ071XkGCMGoRTPoCS5MQxKDt9QKgYI8JeNwwbsau3MeRjGc84rFeIJJ8pKNntXnI3HktHkL8pNXba4WK3kkmTMQGGbriqIuPmCyoSD/EB/Sl1gGPw+wgcFrhxEo9S3GPyzVJDiZd7NDpPw31XVI1CS6vcFEIGCUyf/svzrxa0iN5qSoP45Av616r8X7tdPstJ0CJgFtbcO4H948f0P51574StvN1hHYcRqXP16D+dddNckHIxqSc56s9FhIWMKAMKBgdKk3MvCg4PoabHhu/v0p2XBPAI9zXAdBIoOwksQM+uaeyq3zcn3zRnCjPH0NIct6fn1pAATAHOQM8U8KrAcfWm7VANPXBJyMk0wHqgAGQAe2KCB35WlXoSBikZVYBWBOfaqQxBtAzjJpwUk9CPTihYyvA3AD1FIMsx4P4UwJAMr75pNh7AcU9VO05B+tMCLk/dGaYETKxY5GeaaVO3pj3qVkHUcgH3pCABzxmmIhbAj4GcHvUJLbgM49s1OV+Q7sY9qgPGSSTzj6VQDGJKEHI/rVWRnTo3J44q0QcZGM1BIhznd/9fNNCZGJC6kHOO+TVO4yCSCGHqDVkKA5bIwev1qvOHBJypGOwpokyZ3jXPWsS7HmP+7UZGa3Z0Ukgr+lYl2pXJGQa3gZTKd6biRMt+7bodrHn8OlXfDXhybXHZJ737LbnO2TYGLEdQBkZ6jJ96isrKXU7xYt8giA3SsBkgdMAdyTgD3NWL3VPsN+jWTfv0XykEZylvH/cH95vVvXOK18jO4t1iK5e3AxBB+6iHH3R3OO5OSfcmprG28yIuZShj5UYznvVFnYLzjHbNTQzsgIB4brnvUtDuaqNAUDvAzORziTA/LFaPhoo+oIY4Xjyw5LlsfMAOv1rLSKVkRY0DEKWIJxkAc4966Hw3Bu1NCvTfGP/AB7P/stW5O1rmcYq9z0P7LHnK4Xp90YzXM+N557DR4mt7l0LzjI6g8Ht0rqzjrXEfESUfZrOEn+Ivx+VZWR0ts4cEsMHqPSrtv4ek1Y23mHFk8mJXQ5K4GQCPfFUVYHuPrW/4c1a0j+12Mh3SRkTKoHVux/Crox5ppGOIqKnSkzqNbb7Poc1vaqqhIsKqjjiuF8RyrNqQlByTGoJx1OKs6zrR1LVbPR4XZpppMybPTB4qrrVjJZTwQSDDiFWx6V2YhJRseZgnKVTma0aMd24xn9MVWcYq0VOTxUEqHrjjpXGj1We2SJc2QxC5kT+6xzikjvoriRkmBilHQN/Q1pHyblQY3GetUri22j50BP04rzjcaIGLjbkinhVvvFOmaaiZitibqU+46frTLJJYZ18gk852vyP/rUQ3qW9p4n8RZGFX7NBj1AxwfriqQ+h5D8RNYOr+K72cNuUylF542rwP5Vd8GW6rbTTnqzBV/D/APXXHXbma/Ynkg16NoNt9k0m2XBUldx+p5rprPlppGMNZ3NbkMMgnntUy5bjHSoeeO4/WpEbcRhcfiK4ToJtoB6kmoxsPOG9zjiobmVidiP5Z7kDJ/CuM8RajqVhdxrYm4LEYEpy2T3Hp+lOnHmlyoTdkd7k7eAMfzpykK3OPbmsnw/q66xpMU+Ns4GJEAPB6Z9wcVsqC7bto/EU2mnZjTvqPiPBwBz+lP2jGQQMe1RqckjGOaduKqep9qBgCM9Mn3pAv0z2GKerc5I79jTSVGTu7ccUwHbWPUY/ClUYRiCRTBLyMMD+AqQZwMkD2zTAjUZHQ8E02RC46YI55GKlx12g/lSPkLkrj0yKYEGwbeOvcYqHbtAyMc1bKEg1A4VlKgj3poRCRyMntVaQYB4q1twCOTj3qvIcEjH51QmVASG5PX0FQSwksxGfzq27qeo6fhVabl8jOB71SJZl3SFDxzis6WIsTuUHnpnitpl4ySSOmDzVeVN33R14POK0TM2jC8m6jLLbHy43XbIVY5IrOubJ7dlbpk8HFdLLblhgkgHuD0rOmt1AYNuDA8cnBFaxkZyjYy/PnO1SByeTjtV6AZZc+tQOi9uoOasW/wB9R7iqZNzqIrZGAG0/nUV1eXemMDaS+UCRucAEg846/U+1WrB965OOOOaytY+zm+nFwQYhHGCyt80eH5OO/B6d6JbChuaT69di3MzalrDQuMRs9tGoYnjghueazNQuJJpJUmv5LuSMRlWY5wrAnB9xgVd07QLae0tj/blzLFCzSJAIjLHEG9GDYGevIBzVbWo7W0DzWqNI15cKHkwFUKAcfL1GeuT19Kz6nRqZ4cLGzNwFBJPrXIx6tdQXclxG+GkPNdYUEtvJEw4ZSOK4go0dwElVlKtyCORWtLRmVZXVnsa/ha9nsvFlpdnJljkLNv78HOc12Or3Zv8AUJptmwA4UE5wO3NZ+h+HbLXNA1rUzrKQ6na/vIlY481NvIPcHtxUGkuJreTDOyhyFLnLY96uo1yWM6dNqpzdLExT9aryL3wKtyAgEDmq5HH3elYI3Z7SwWBvlGSecUi3pz86Hb79hXPeIPEHypDYSMkpG5zjlR6c/wCeKzrLxW0YWO/UlenmKOfy71wcr3RpzpOx3knlRaHf30TgNFHnn9K5XxtI2h/DzSdKzia7bz5QO468/mPyrTf7Pfw2FpA4kGoTqDtP/LNTubNcZ8WdXW78Vm2B/c2iCEY6A9T/ADramrysE3ZHA2to02qLCeWkkA6dj/8AWr09I8RhV4C+vHFcL4YjWXVvMG5kiXIZuT6Cu581wMcH86eJd5JE0+rJV2hcjOR1qdGAXrtzxUKjKjI/KpUQuGAIJALYx6DPWuU2SOZuft1/eS3k15Ba6fD+8UmTa8owdqKM5O7vjpWhbajF/wAIja7YYP8AVnLZ5jPcnPqa47xPexG43bN0pC7CG4TjngdweOarxwaraxvDdafOInUiIkYXc3Qk+nBP4V2exukyI1FCTuXfDGrR6XrAtPtJezkIjVsZ+bs3sMk/hXpip/DtJGPWvMND0nTp9XtbVGF15cZe4cEhCxI+UY6gevevUE4PHQcdKzr25tB072uO42Y3Nn0GKCMRkZyfrS7ioGc8+3FKc4BHSsUWEYHXFHKuXK/iDTRyOPX8qQHJOf0qgJBIM9TxxSswbGck9hTB97sDRtwpGffnnFMDynUprlbm5u7rxXq1ik+r3dnBHEGeOMRmM5Y+YCq/vQMBTgKfpXV+BG1KPTdRttUuJpry01GW3czSGQqVCgqCe2c1wWq65p0V9d2F9pc121rrF3dxst0I0YyGNSrrsJI/dDoynk9Otdt8OLybUNG1O+uW33FxqMssrdMsyoSfzNddVL2Zzwb5jsfnIzwfrUW3DcqOBUoxzj6YqIkDrmuY3InGcYx+C5qvOoMmDxn0FWXYtwoHrUL7+Tgc8ntTEyo4OR8w/HioJMjBPOfQ9KtTMwU9+OgFVpG+VQf1FWiGVmPGwjA61A+BwB+GcVZkxklQc/Sq0v3u5HriqRLImYFccj8ajmtluY8EgMB34wakYjspz7gUquT93v1x2qhHOyJtfryOCKLc/OvqDWhcafKZ3ZMMrHPJwarGxuLdhI8TeWehHNappmLTRs6YyySeU5OCQ3HqKp67bSSz3UyJuRsIwPQ45BPrS2wlt54pfLO0EdxW+1p/aGnz2t3bsrxOWHGCVPJH170SZVOOpzfhRZxeyG1meO3ZCtxAWOGIORxW5p2lvJqE9xIx+zmIxtGzZHlnpj3XqPpVrRdKitYrq3ht45ZQ4ZWkycg9/fI4x7VuW8xkL2MEGmw3M0L7RGCQu3sQSehPas5ats2SskefSxPBPJC+N8bFT+FcTfXAm1OaVwSC/T2Hau88R65c6LItk1tbXTjlrjy+Qe4J6E157dS+fcyTEAFzuOPWtKF92ia3KkrMt3lzDJcySafut4JFAMRbkcDI9+a3fDLE2EoA/j/pXJCu50eMppNuVUfcyeKuq/dM6S1LciHcGz+lVpYmZsjIq4Du4GDUbgkc7eKwRs0aus3CPq946MChkIBAxkDgVlM2ASrYAHI9apNeK0bSlkXDhQmeTx1+lRXd0FsZWB/hxWUYMwk9T0L4Sv5wv9SuGzBpiOR6Atyf0FeZeIr19Q1SWd+WmkaRvxOa9I0HHh74GyzA4udWnJ99pOP/AEFf1ryedzJeM3YcVtTiudtFSeiR2PhG12Wck7Rn942AfYV1CAnABJz2rM0i3NrptvGQo+UEke/NaEahm4A+orjqvmk2bQVkiwVwCemKkR2QDBGD71Fkoc88j0xTt27BwPxzWRojhvE/hyW3330TI0Ly5bjHlZGBn27ZrCSyupNkJt7uWV+CrsdmB3z0xXaP4lju9QubaKL/AEeEASOeRIoPzAD/ADnFYfiPToLbVZ10iKdbFoFdmhlJTa349M8EfjXbRnJe7IipFNc6Og8J6MbO2e+nMYaUhIQnTaOSR7Z/Pr6V0ysN2ApxmuT8HXEt1Y2qBnkESytMxbOHYqAPyU8duK67YoT7rE/WsKqfM7lxasrEhOACM9emf/r00yEHn6CmA/NgE/nzQ8mQARjB4JqRkgb3xzSgH+6OvpUSOEOOzHjNPDBwV3j2wB/hTAkVW5z/ACFOZQM8fmKiXI44PNVdUE8+mXMcAzIU4GM5HcDjqRxQ9FculBVKkYN2u0r9i2JoZC6QzRMyHDhWB2n3/I0jFgPmZTjsCKwQLKW6s106AxSwyDzmMRXy1wQVc+pxj655rbLL2YZzj0pQfMdGMwyoNJX1WzVmv+H3X9NybjjCvz6VC3A+f1pQSMYbp1waZIwOctkfX/69aHGD9B97B9TioJTtXjj1xTsYTO4Yx164qJyGUnH14polkUgPQHB9W9KgdcJy3frUznnCjjHXGah5HLEkY/KqRLImcA9/Xof8KhY8bSOD3/8A1ipyMrlePYj/AOtUDp3OcYqkSyky/MQXP5UK2B1znvUrBt2dp575qM5VuhHHbmqEKv3gxU9KkkZGXkYyPWqjuA53L1qN58Z6496aAnZgUK8HPTNdlpszXWlW04OXI2t/vDg15805Y9fpXX+BrvzYLuzYjKMJE+h4P8hTa0uOL1NR7c2QMqSkOg+7xynXHTtXOeFpkvPEUJX5RbyvIXYYLA5/xrt5oww+ZQ31GcVY02zhSTesaLxgYUCpvZMpwu0zifiHpkX9lTTW0QSaM7ywH3h3rx9kzXvnjG1ddPnfBaNxg+1eJeTbwXMsF1uBVgAwPb/OKui3ZmdVXkNOi3BjheEhxIm70xXYWiG3tIYmGNqAHvWJFeQmOzSB8eW+0knOc+1byvt4PHpTk21qOKSegIVDYAHNDkhiex6c0gIzyRj1pGcsCGyQKmw7nLSTLLJlCYyQOc8ZqssVzfTx28LPLJM4RFHOSeKtzaW27daSCRPTuPwrsvhZoMtx4xjlnhKi1Xf8w7//AK8VcpqMbmMY3Zt/EyVNI0zRPD0J/d2FopfnqxGP6H868w0uI3WoQxn+Nxn6da6L4haqNT8SX04bchkKR/7q8D+VUfCdusmoGVsYiTj6niph7tO5T1lY7iJzgBSDipgdvX8xVcEovyHHvmnrKccqpJ9z1rgaNyz988sMA/57UjFEjZmJwoJJJ9qRSSuTt57cnFRTAyW8ke7bvUg9c0kUeZ2i301vcPZROwUqWkTIMZ5wc++SKjh1CQThb4ySKq+UF3lQBnocdq9A+HlvGnhi+mKhmkuNg/4CB/jXEyaDf6tr95DBAww8jFscDapbH6V306ilOUX0MZ02qafc9K8KWTx6TIiiJQfmwnH8qv7wAcuM/wCfesr4b6uNS0ryJcieIeUxP8WOh/KrlyXhuJUOcqxGCDU4pXaZOHdlZkqyHhs4+poMhLnn6+lVUfHQ8kc4B4qUFdwJLdMkYrnsdFyYNxkkjv1pyOcjgYPJpoaNFxvJyOQcf405NnGW29+CKBkiuC2Ds5yeopCwU8DPb2pE27urEn1NPLLkgk/iaLCAbiSeh9h/9akYOM5LEe6moy4IG04waac4+8enOCKdguPDfL83c9AKY55wAfx6CmqTtIO4fWmuAoDKwOOuM07CuR8g8dPXt/Oo23YJMg/766/rSvIzcZPXpk0isu0gAEj/AD61QiEvycntjPFQAkN14xznrU5wMHIPHpUXIwx2gn2FUQyJyrE4J47dKjcHaCBjH41NI4LHhSPoKgkUEHAOOvWqEQOAeTwc454qJwABhh7805mDD7uQO9RAKRwB+I6UxCDGznB+uahkXd+HXFTqBnn5h3xSSBCMjIJ/P+VNAZ8y4OcVp+FbprLxJbbj8kpMTfj/APXxVSYArnHI71WACnOSDng55FVuhbM9pFuTIMg4HbFWYo9jDAOPpXirX9/n/j9uf+/zf4037deN1vLj/v63+NRyM09oux7NqqCW1ZCodT1BGa8Y8a+G/sk0d7ajMMmVZOpUikF1cZb/AEiY5/6aGm5dzy7HnuSeaqCcSZSUkYGm27pdIxgZhnn5eldUBszzn61CoK+nPfNSpjHzY/Oqk7kxVhSOeSPrimFjuOOn0qTaQ2QKhY/Nlj9OKkox7G8S4lSKfCOzACQcfnXr/hhm0fwtr2uSNudVMMLnqdowP1IrwSR+Rg9+1e3eMpBoPww0fSMbJrkLJIO/A3HP4sPyqK0dUiYOyZ45qExluRznnJrrPC8LJp5kUAGRyc+w4rjD+8uGPPoK9G023W2sIYwPuoA3Heqru0Eiaa1NBNwHLjHvTjkEkMvP0qEucAFXx+FPD5IUg4PfPWuM3LG0rEMcnPPPSkOQhBIycjGc0ElsZIA7VDOSARzx3Gamw7mP8PruWIahpcYMhjkZ1UDLY6E4/AV2HhnRZp/EST5ZYoo5WdSOGLjHP44/KsP4ZWjf8LO1NgpCNYu5z/tMn9a9isNNjskIj5ZuXYjr/wDWrq9m3UUlsy41V7PlZ4NoU7eFPFWq6SybwlwGQjqPY+2D+lb+oakLy/ll4BPGO1WfifpCWmv2WsQIA1z+6mIHVl6E/hx+Fc2JX2qu1c46hq3qpOKOOF1No1EmUMM49jjFWl3MRgg7v8+lY0chPHbuM9TV2GbaR93A/wA+tczibpmiTtTkHP0p6HBGORjuDVbeGUZC/hUm8BR93A6VNirlpWbcGPOO5zTmk3dvyBqBZAD8pHr0FIHxwQM+nBp2C444HYtgcgim+cCSdvOOwPFMLAAbfvY655pr5GCMce3/ANanYVyYsRyQce9RM/y45HPJpoYhugJJ6GkZ2bnBGPRadguIxXjawIz3xQ3QEYAPvimOSowRn1B4qPPXHA/CnYm4nV8kfzppJyAUAxx3pGl2/KQvIprgHpyMY7HNUTcc4weevsP/AK9VzIdzEqNvrikLDHA59c0A/KOePSiwXIWOYyVBDc4xmq2W29/pmrZ2lm+UfUHmo2Cb8LH8pHHNUiSEk9FPPtSbWJGdvuKkfAbaOh6Dmk2r3XPfOKYFeQEqRtHeqhGWAI/OtFgjY4x7YqnIuyRqaBkYUf0xSHjI9OtO3bu2B60FcP3qhXF2rxu6UD72cjPahscA0hyDjqMUhjxxzuyfSpFORu+XP1pqyfLuJo3jHfrSGmSO568A+1QyY9j9BTzIN3/66YxB5700guYvhLTD4i8Z6ZYlRtlnVpMD+BeT+gruPjFq4ufFDWiH93aRLGAP7x5P8/0qL4Jacp1fUtblH7qyg2hj2J5P6A1xXiXUn1PWLq7kOTPK0h/E5qfiq+hO0StpMBn1GBMZy4J/nXosQ+RVKHnPPNcZ4XgZ7x5egRcA47mu0A4HIyPQGs67vKxVPYXeVcqCQfoakViuD83vxTAuMkuc+wNLty/DE47stYGpN85Y5GaZJyB7elKpBO3I/EVBKNrlf0ApJAbngOBY/GK3IYhntZIiMcEZB5/KvVJJQuAPSvL/AAMp/wCEhRiMFUIH416PLnzuK6aLurdiWjkfiJDHPoXmOQot545NzcAZO3/2avKW3LMBw0ZLeXJwA6gkZx9Qa9g8eWoufCepxsMhoAfxDA/0ryFRO0FukjjbBEIowABhf6n3rWd9CNNe5ZibGBgHuOlW4QevJ5zgEdPyqG3i/d5PIFWEZ8jCmsmNFxH2IACeR0Jo8wg5kORkdD0qBZQuQxJxx1Ip6MPvFto98kmosVctpOCMAsMfjzTmdmJxkn2zVYMu8Zb35Bp+4YDHn60BckZmxg5DYpBNgAHnnrg1CHXcQeOfT/69DgBiBtBxnLYppBccZskHbyevH/16Ukhc492yKiBxxvj59hTXbaTzntkEU7CuOds4VgOmeg5piuu35eD36CkyuPncH8elKPmBBI5PSmIZuV+uDjoc9aAU/TOMmkKhXAB479TSOSq4B3fTNMQmNxzux7e9Rn06j6HinGPk5GTjkCovLGMBWHNMQhKqeNwz6iomUkA8HOQf85qUxjfxwfoKjlBVM/KOe4FMCNwVGSBjoOlMZsqcfnS+ZwFYrjPpSlQBg4A9T1p2FcgLt/Djj2qKTGASKsblLZDEUx1zHj37k0wIVxgUjEZwenoaQ4DY7Hp7U2Qlh2piuKxBJBOaaWAOCajOTg45pDjHNMLliInpzz708j5SD+OTVZGZTjPFT/MAGxj8BSsNMQqDwBimlsADGBSbyWOf6Uw4DdfwosK53WgxDw18Dp7o/Lc6o5x64Y7R/wCOqfzryC5bzLg+xr2D4s3SaZpmi+HoCBHbQbyo9htX+R/OvHUBeUnHU1NFXTl3HPsdh4YgMdlv28uxbOD0rebdwq5X329aqadCILSKMD7qgdOPerhk2EqE6nsK55u8mzSO1hcMB1b8BUiE7CD0PHIFMWUn7qdeMbRUzABRwQTyelQUCnaTkKOfUVFJgtkgNg44xUoK8nODj0FJu2jIGT6ECgDpvAVsX1OWULhYlBJ/A/412upSyQxmWIgMvqM1zfgTCR3hZhukwdvfA4zW7rjbNKkfOMcZrWDtTk0Xa8opmDd6nPqXhDUpbsR/KzQoyjbv6V515IB54GP4Sa7m/t5V8ERncETcGYHuGbt79K4ooGBC5GByMk1bbsrmU7czsCoQAByPfJzUvfGzB9StGMbQEBz35peGwAoGfapFcGznnH02inLktgdzycDmhw2/HGMY4FCcNhVwM9SBTsFyUbgSQ4+uQaUH6Dj2pAdyZ3jpz0poycAsPzHNFhXAsoGRnn1xUYYgkk88cECnZ+XDLnB6mghTuKknPB6U7BcA+5gQw9+BQx4z0GOtKCQ+3cee3HFLsDoTkEjgjd1/CnYRCpAYYYH2zUmV/hHHUck0gYY4xuAHegD5jznP1NOwCSKzKpGMdyAajMZQk4/TpVlo2Ctu557A0FDgHYB2+7RYCrsYnOAM+3/16aUPzBhnPYYq0sa5PynnjgU14ArBl3AgegpiKYBIOVx6ZxTTGSOduP8AZNWfLIBJBznAGaa8YbPzdO39KYikYVB4JzQy9cE5PPWpGSQNwOnfNOPQHAzzwSaLCuVGRRj5c++TSMoYHDYxzip9m8lckEdgCaiaIqeCR68UwKR4A6EjrUZIII79xVp4wWyM4b1qIxDIYZ6+lUIh5Ht+FM5J54z7VYZCG5Bx0pjR7T35piuQNjr3zU6YOMg/nTTFxnr/AEp6Er3PPvRYLiEdM9z61FJy/AOKsFWBztIHvULqT90CiwXLPxM1f+0/GOoyKcxxv5KfROP55rmdKg82+gTAxuyc+gqO/lae7d2OWdixJ7mtbw3bCS4eQ4+QYGfep+GBW7OxgjLKDyMjoo4p/lN5mdq8c521Hu+bCkZ6DANSKvUkLk9TXG0bDvKOMhV9/lFKFydoHOO4Ap2wHA+Ud8gUzBIyQT6HbyTSsMnjjxw2057kikbaAwXIIPYjFRoMKMq/A9BQrYGWc8Hj5aLAWrDUptOvYbu3l2umVYNjDoeoP4iu01TV7XVNEje3baZW2kOcFPr/AI156wYhcPkZ74FaTXFtc6KIY5iNszLIq4Jc8Ege2T+lXHbl7suMpN37I0fEOqw3McNhavvhtzyc43HGOPYD+tc50OSq8j1NXJEMccTAnbgD0OarYYjPmY5/vVvWVpnNSk5QuyMZfbt6A9zUiLl8hVJx/dprL8xBfPpnpSooBzkEY9DWaKFYDDZU5PGNtCY/hGR3yBTSQEPyLnu2OaI8biQnH+7V2Fcl2HnGMjuMUD5fmAI9yRQBySYgB24peSPlB4OecCiwDgpcEmRefUZpvlFSMsCB2AqQgJgDg9uQKRSSPv4P+9RYBUHJbYR9F4pVhYEfOduegojDknn8Sam3ITgbc9+DTGRG2Jcsxfbnp0odNqEANnOealjYDAOW7H5TxTSBu5Ucnj5TQIiKEMuWIP0pux1cAjPfOKkIwoAQMc985p0keX+YDB+oxTAgdAw+UgHPZaa0eQPmc44+7VgJyCFwAckqKJdgjxubHXgc0AU8/Nzlc9cEU10IyB68YIqywBwccew600qWbcCcEeo4piKrx5YZIJ+tRmLIJAzg+pq2VZ17jHv0qNsqB83Xtu/wpiKjwyA7sAH15qNcncDhjnrgmrjh2QZ28Hpk9KhKZ5OAevegRUlTLdx2+7iox0IxnPerTrweOccZBqsUbKgiqSEQycEZOB3pGAKjn6VKysTjGPY1G0fpz3piuQHB5/pTASCMfrUxQ+hGaj24b1piuSkgx5wM47gmoH/zxUuBsIHao2GcgHIHtQByuC82cV1vh2ILACMBnJOc9K5SIfN65PGK7/S7UQWiKMqQo/Os6rtGxpHctBMKMEMOpG6noF6bBj/eNAXacbic/SkQruwGx7cVympPGoxuXaD2AzRhGPPUexqSNiqsN+M+/WoVEYBLM3sM0rDANhcbSR070pVgu7aCPZaAyOn3jx23dabLPGE4JPHQvRYBh29JMZwSeMYqh4Zgeb7LLIzEFHmCtwMs55/LFM1WRV0y5kA58s4OT1PFXNGfy9agtVOVa0cLxz8pX+lbUtJIzqXcWa12cwJzznPSqgRiAATtx6gVLI373aP4RgnFMbaM/eLDvtrWuvfM6DvAiYbCAXOB/tCnDbt4IJ9MmgkBv3Z245JIxUocsMtICPes0WIMDHX1OQcU1l3EBAnT+EGhjuU7nBHu1L8hGN4XnHGaYC+U4xuX6fKTUqqOmCB/udaBEgj3lieeu404RArhSME+ppjQsUZZc4f73YgVI0bbSuG5H98c0wLhD1J/3c0bBv4DZ7fKADSAWL5flIbBx0bpUo3KCQUwOOW5xT40dcZUgjjjHNBZgnCnk45x0oATYE2gNznOQTSsiZY8D3znFPG8kEK2cdQ1LLuVjlsZHdqYERGzn7xxz83WmFHKhgc/8CJxVpQFCZIAxwd1NcgDAbI/3s0DKyxNwMqWHUc03yUdSB19Tmp9u0clQfXnmjjaFVowCOcjvTQiuEAQA7cjjJFNVMDP6gfpUxUtx19TtNI6ALjGCMcFKAIDjpvLZ6dBTCmWPIQf71WiQzAnr3ATFVbhSr9wAeDtpiI2XBOZ/wA2qu4VMHO71O6rWSNzE844yBUUhD9WP0zTJKw2sTu69sE1BIo3sB1B6Yq0yNuDHgdstUUgAYche3HOapCZWxwcjPbpUbptHAGatYzgAAc9jUbjIOPujjNMkouMsOSf6UwoTwxx71YPDcH8ajkXI5/OmBHnHOTj0qKRgCPl4+tWCuFPGD2qGbBAOS340COe02DzbuKPsWGfpXfQKFiU7sewSuQ0CAvdmTAwg/nXZKAgAJAPT72KwrPWxtDuTorN82Mr05XFOWJ8ZP48AZqASc7RsznGDT0bL43J9AOtYWZoSlWVvmJJ9cAClKbgCVfP+8KGbGBgYOexNIFKnO3qepB4osBE6qi4GM49c1FO3TOMnttqxKVVTgAn3GKo31/DaW7TuIwqjLd/wHvTSEZ+s7jbQRFuJrhEwMdAcn+VTaJqlsfF9rAFYSqsiiVm+UKVOfr0rmtY15LhrWW0wrRsz4I+6cYH9apaBeuniizuGYZaTYce42/1reFPa5nKWjPTLplDMRIrsc5KZx+dVvMRsAnk8Y3UuoMyROOyknpVSCR3RWyT6YFbV46pmFCWjRdjAeQ8Erz0GaseXhQu2QH/AHelV1LFvncnv1xUqom0Z6f7/NYWOi41VAxjcR/u1cUlflwR3zkfnVZFYYyVAA71OsJY7lUEHvg0Ahzuy5AyMnIwwqUFuMoBz60uxgVU7R8392pFRjnHmY7ACgYwLuJLDJ9Mn+lNWJN4O0Yz054qdg68BX555FMDNksFO4ce1IYqgY2jBzTz8vBVcj1XOaeoYHJ3EfUVKoDR5+X6s1AEIUMFwOe4xxQ8LsMqCfoO1S7NpBGM45IbgU8AAdVf2we9MdiAIVGwFuMdVpyphckOfU4wac0akuQFAHUHIpfL4Ayp55AzQBCwJDY3gnnG4GkGwZDIcjk/PUxjDABdhJ5+UUxV28ZHpgpQBBIE67ccZ4cmohGp+QYwRwSelWyRj5jj220wKSOGOAegApiKsgGRkjOcGmSRrIxwVxjnINTtgHBDHcfTmkfkcIw7cHtTEysUAXlVPvimOhI/hz7LVuNW2/Nv6k8mmOjAZUMx6detMVijJGyMpYMVPTK/yqOWIFVZQevOatvGWOGQqvbgmmNEQOI1KketNEmefQYxntUbKVUkE4ParZiKnkcjrxUUiEAEDH4VRNihKoVdw61GPmGec+lXJYyV+6c9TVbblyOeBTJICrbj8351C+cZHGPQVPIDg8dqgcfOCcgH0piZ/9k=", "path": "images/4pts_ADE_train_00002129.jpg" }
depth_point_40
images/3pts_ADE_train_00011498.jpg
ADE_train_00011498.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 140 y = 190),Point B is located at (x = 279 y = 217),Point C is located at (x = 276 y = 116).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_48><DEPTH_59><DEPTH_49><DEPTH_49><DEPTH_49><DEPTH_29><DEPTH_49><DEPTH_3><DEPTH_73><DEPTH_0><DEPTH_48><DEPTH_35><DEPTH_70><DEPTH_67><DEPTH_67><DEPTH_70><DEPTH_67><DEPTH_67><DEPTH_82><DEPTH_66><DEPTH_48><DEPTH_59><DEPTH_59><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_59><DEPTH_59><DEPTH_40><DEPTH_82><DEPTH_37><DEPTH_40><DEPTH_67><DEPTH_30><DEPTH_67><DEPTH_70><DEPTH_59><DEPTH_31><DEPTH_58><DEPTH_48><DEPTH_46><DEPTH_30><DEPTH_30><DEPTH_35><DEPTH_5><DEPTH_67><DEPTH_70><DEPTH_20><DEPTH_70><DEPTH_38><DEPTH_48><DEPTH_85><DEPTH_32><DEPTH_80><DEPTH_2><DEPTH_22><DEPTH_3><DEPTH_36><DEPTH_15><DEPTH_38><DEPTH_48><DEPTH_17><DEPTH_0><DEPTH_33><DEPTH_81><DEPTH_73><DEPTH_98><DEPTH_47><DEPTH_57><DEPTH_57><DEPTH_12><DEPTH_53><DEPTH_38><DEPTH_58><DEPTH_69><DEPTH_59><DEPTH_60><DEPTH_10><DEPTH_119><DEPTH_65><DEPTH_121><DEPTH_57><DEPTH_26><DEPTH_29><DEPTH_74><DEPTH_44><DEPTH_83><DEPTH_5><DEPTH_27><DEPTH_73><DEPTH_1><DEPTH_25><DEPTH_11><DEPTH_72><DEPTH_36><DEPTH_36><DEPTH_69><DEPTH_76><DEPTH_14><DEPTH_82><DEPTH_END><DEPTH_END>. Since point B has a higher pixel value on the depth map, the answer is that point B is closer to the camera.
B
long
3
[ "C", "A", "B" ]
<DEPTH_START><DEPTH_48><DEPTH_59><DEPTH_49><DEPTH_49><DEPTH_49><DEPTH_29><DEPTH_49><DEPTH_3><DEPTH_73><DEPTH_0><DEPTH_48><DEPTH_35><DEPTH_70><DEPTH_67><DEPTH_67><DEPTH_70><DEPTH_67><DEPTH_67><DEPTH_82><DEPTH_66><DEPTH_48><DEPTH_59><DEPTH_59><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_59><DEPTH_59><DEPTH_40><DEPTH_82><DEPTH_37><DEPTH_40><DEPTH_67><DEPTH_30><DEPTH_67><DEPTH_70><DEPTH_59><DEPTH_31><DEPTH_58><DEPTH_48><DEPTH_46><DEPTH_30><DEPTH_30><DEPTH_35><DEPTH_5><DEPTH_67><DEPTH_70><DEPTH_20><DEPTH_70><DEPTH_38><DEPTH_48><DEPTH_85><DEPTH_32><DEPTH_80><DEPTH_2><DEPTH_22><DEPTH_3><DEPTH_36><DEPTH_15><DEPTH_38><DEPTH_48><DEPTH_17><DEPTH_0><DEPTH_33><DEPTH_81><DEPTH_73><DEPTH_98><DEPTH_47><DEPTH_57><DEPTH_57><DEPTH_12><DEPTH_53><DEPTH_38><DEPTH_58><DEPTH_69><DEPTH_59><DEPTH_60><DEPTH_10><DEPTH_119><DEPTH_65><DEPTH_121><DEPTH_57><DEPTH_26><DEPTH_29><DEPTH_74><DEPTH_44><DEPTH_83><DEPTH_5><DEPTH_27><DEPTH_73><DEPTH_1><DEPTH_25><DEPTH_11><DEPTH_72><DEPTH_36><DEPTH_36><DEPTH_69><DEPTH_76><DEPTH_14><DEPTH_82><DEPTH_END>
140
190
279
217
276
116
null
null
null
null
81
174
37
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDBQVOhxUSCpOiZrzKmx3RRsWLfIR7U4sRJntWakjmyYISCTtyPSrllCYiFzlW7Gs1JbF+zbTZqW7jFXkOaywhQ5FW4Zuxq0yLGgoqVRUEbZFWErREskA9qeBmkWpVApiGhKcEp4FPAoC5FtFJtqfbRsFAXINtIUqfZRtpBcg2GlCVPtPpShaB3IAlKUGKm8vPagxmmIq7RSOgqx5WKayGgZTaMZ6UeWAKnZcdajIxzSBlZ0HpULICatMaiYCgRWZcVC1WZMYqBhSYFdhUZFTsBURFICIimmpDTDUsBuKFXcwAoqxbx55x1/lSQE8EYUbscDgVVuZfMfA+6v61ZuZRHHsXqaoVnUl0Cw01G1Smo2FZoaITXE6tbRJqMzIUJyMjfnA/xrsbuVoLaSVULlFJwK4Eyia5MzZzI+4jsDXXh07tmVS2wjiMAMsZICnAHGD61prBFa6fFLNCrSy/NFxwOnJ/WqjCM3JjUkqUOWPr1x+tLNdSyx2ts+cQxlRt54z3/ACrpepnsdKtShcxn61GtWYxmJvrXJU+E7I7j7RcQvkZAOau2s0RgMuXY9lPYetZrXS2llM7LkAjoevtTYXcIjgbcxr8vbkk1il9o3u2uRHRRyBkyDuX1HUfWnbP4lNZqF4WBU4bAPFXYrhX6/I/6GmpGO2jLUU5Q4NaEUwYcGss4bgjDUqyPEc9qtTsJxN1GBqZTWRDeA8E4q7HOG6GtFNEcpeU1IKqrKKmWSnzIOVk4FOAqNXqVWpc4KIu2l2inLingD1pc4+Ui2U4JUgWnBaakOw0R+ooMXpVhV4pQvNVcloqGE0xoquuo9agche9MRSaPBPFQOoBq47iq8kg9KAKjKoqCTb2NWHYHPFVZD7UhEDCoW71K7e1QM+KTAiZgRkVGxpzN7YqMnNIBpNRlqcRTcVLGCAu2KvpiKIu3FQwRev1NJcybm2DoOv1qW+VXAhkcyOWPem0uOKQ1zXuMaaY1SGmNTQGXq8wh06XlQ7jaob+I+lcmIymmszxlWaRML6qAc/hXSatKiXkCEjzJPlUHpjNcxdTM96QMMANmQeD2rtobGVTciEEu8DBy/K88D3NX7EXMAa+i+U/NCpxkMxA6DvViIQiSeOZliMC9SpJPqOK2PD97Bf281vcQxpAqblXsOTk59ea15r9CbajFq3bDMT/Wqi1fsRujk/CuWt8DOyn8RBc2on0y7XblhtZfY5H/ANepUhyIEx2QVpWMAkjvMjgRZ/UVEkf7xfYD+tYqXuJHTTS5mXH06SWITRkHtj6VSZGRtrAgjsadDcz20peJyMnkdj+FaaXdnfKEuEEUn97+H8+1VZM5G7u5mxzMg2n5l9D2+lWPO3Y2MD7E4NPutMlhG5PnTqMVmyDnpU6p2YXsaauP41I/CrMRVvuv+tY0ckifddh+NWEun/iVW/DBockNSNtDKOnI9qnSZh1rGivVU/xp9DkVftrkTqfmDY9sGolNpXTNI2ZopP71Os9Z/T6UquO2ahVmX7M0hcgU4XQrPU57GpVU+lWqtyXBl9bkGpVnqgqGp1Rvb86tTJ5S6s4p/wBoX2qgVI70AgdWFWpslxLj3IxVGW6GaGkjA5cfnVSSWPJ+YVrGZm4kjXYPeoHuhTDJH6k/hULup/hb8jTcxcoPc+9V3nz3pHI9G/KoW+jUczCwpk96iZxQcehppI/yaLisNZh6Goy3saeSv+SKYWT2/wC+hSuFhhJ9KdGCzdOKTenqv/fQpY5Y1kBLL/31SEXXfyYMj7xqiOtPeTzWJ7dBTR61zzldlIj8+MzmEN84GcU5jis69u/sl2CFyJFyMY69P8KVb3zIULFdwBDbemafI7XFfoXqgnmEbpGOZJM7R9KcsqhVLMBk4GT1NYmq6nIskn2WMlkADSAcqM88URi27DbsVr22hZ5rq9m3Rj5UK8Yc+3tWPNaoJFkhLAOuSx7HHJ/PNaGrN58dvHbiQtCSNwGSz8HpUPmr9qXzs7VRoiF+nJ/Ek12wulcxerKjXs9vZTRxu7iblyRnA75PXnNdF4cWO5W6MUSxJIqxgZzg45wPTvWLf/ZEtk8hZCQw+V+/HWta01LOo2UEURhjjjCvGhyCTz19OlEn7t0KOjJVrT0wblmH0rMFa2jDPn/QVz4h/u2dtL4kamnDm7X1hP8AMVWxh/wq/pi5upl9YiKr+VuuVXtvGR+Nc8NYI6o6Sf8AXcsPbQXHUbH9V/wqnPp8sY3Ab19V/wAK9MvvBtpchntyYX6jHT8v/wBVcze6JqenEs0RljH8SdR/WuypRa3R58ZxlscxbXtxacI26Pujcirf+iarAXCGKYduuT9amkit7k4Zdj+o4P8AgaozW01tiCJt3mEnK8Ej0rFJrR6l2sDaVOvKYYdqia1uI/vRN+HNR7Lm3PymaP6ZFSDU7yMcyh/98A1LjFiuNMbhdxRseuKsWpK7mU4I7inPfmSBHEROAN2B3pUnieP/AFfllhkAduKzqUtNGaQ3LYvB5Z3FVb36Ghbxe8qfgCazplxbqSckjmmRiuNuxvdrQ2VvYx/y1P4JUq3yf3pj9ABWYi1YRDTVRoll8Xqf3Zj9XxThfJ2hY/WQ1VCcU4JT9rLuRYnN76QR/iSaZ9sk7RxD/gNMK8UzGOapVJPqSPe9nxgFB9FFQNdXBP8ArD+AFNbkmk21anLuQxrXFwf+Wr/nUDyynrI/51YKZqJ0qlJ9xFR2c9WY/jUTZ9TU7jBqJqq4iA5phFSmmGquSyIimEVKRTDTTER4oH3h9aU0gPzD60xGkn3acc44piH5aZcyLGi7mC5yFJPes1qyjmtaufnjjO4YO4FfT0qnZ3RZLjdINqP0HWr+rRJMhWJN0gyoAPbrn+dcpFO1tcbYWbM3B49+lejTjzQsjKV1K52F3OhlsSzbWBLbW6DjqfpUM9xBljCBtwQ869XY96ZOn2i1igjfLtw5HP45ret7BLaMfKJHwFJxjAAx0rnbUUaJNs5m0tWEltcQzOA0xAU/Mfb+tRXCySX0wV1kk3lUxxn3rZjs5by3mt/3UbCXKsoPA6E/jWVbIps7q7ZAzRzkAt3GeoHb0rRSv7zJcehUunj81D5O9FAVnB4z35+v8q1tHs7iK7ZnhaMSJ8khGeKi0WOKS7e3uUWRH4yedp6/rXVSFLeDKjdsGAq9T7UqtS3uJCS6mEOlbGh8vOP9kfzrHFbOgDM84/2P61nif4TOyj8aN7RU3ak4P/PJjVdPluQ3o2auaONuqH3if+Rqqw2uxrnoy9yPz/Q6re9L5fqezRndGreoBpSoYYIBFRWbb7G3b1jU/pU1fQM8NmHqnhuwvYnk8oJLjO5eK86ubYwahDHnJG8D8hXr8gzGw9jXl+rKF12ID+838q4q9NJpo3pSb0ZYGg6okYMls4PcBSR+mahbSS3yz2yn/eXH88GvT1+6PpQQCMEZrV4dNE+2Z4rcwLA93CqbVSSMADtwazojm7i/33/QAVv+ICP7X1MDjN1/LIrnUyPJYcH5v/QhXnVVZtHoU9Yl25HyGo4hyKkuT8pqOHnFeX0GX4lziraR1FAOlX4o84rNsYwR8dKUJVxYuOlJ5eO1CkQ0VRC0jbUGWPQetRPaXXI8nB92FalntS9iZgSoYE49K63+xLK4/fISBJ83GD1r08Lhvaw5jCdRRdmedjTrs/wJ+LipotJu3P8AyyH1f/61egroVqv8Uh/L/CpE0e1Q5Hmf99V2LAdzP20Tzx7ARS+VNe2ccmM7Wc5x+VO/sdZR8mp2P4MaXW9OF343gsoiEkkDqjNnjvzU914NvYLd5vtFu6oQGAJyD+XvULDLoh8yMa/0aW1Xe86On95BxWdcW/lW3nBww3AdPWuluPBWqwQvLiBlQEna/asG6UDRQfWUfzFTKko7od09jONMNPNMaudCGNUZpzVQvbvyVZFyHI4NXCLk7IXUsmmg/MPrWBb6jJNIQhZlj5Vs9RWxHNvWNiMEgHFaTpuO5NzWR+cVBqEYe0d5AcofkwcD8aS3JaYntUk6+Vbyu7rtzu5/lWSVpFHGwXjw3NyCjFNucEfdz3z6cVVub21mis2P+sDA7VHccHP5Ve1aZIbRyAFeQAEAY4XPX9K5iNS88RHQnNelCCl7xk21oeh6QgWyjRDkswOGP4/yrWtJZp1kMsQTaxXr1wTz/Ks/SIMLC3QhK3FjCjAAA61wy3ZtHYo6gswsZfs2FkxnPf3x71zUVzBH4amje3Mt2bhm3cYQdBnuef5V2MoxE5x0U9PpXLeFr7R4BFZa3ZySwvOWknUsSVIYABRzncRz7Gt6CumiZk/hC8t7aCWc2UL3asVMj5IKnGOK6C71u7W3keOK3VlUkARiuvTw1okVnqxjCWVvHNHJHcPGWKJtVmXB6cnv61Z8f6fYw+C2ksbWCNpGXa8UYyQQehrodG93chO2h5ItbXh7/j7mH/TP+orGWtfQTi+cesZ/mK4sT/CkdlH40dJpZxqq+6OP/HTVaYYzVnSYZZtXQRIXIVs47DGP61ot4V1SXP7uJfrIK86nUioxu+/6HdKUYyfM7aL9TvdEl87Q7J/WFf0GKv1l6DFJaaTbWk4AljUqcHIPJ6VqV9JTqRqRUou54M1aTEb7jfSvM9ax/bsR/wBtv5V6YwyhHtXmmtps1uIf9ND/AOg1liNkaUdz0pP9Wv0FOpkX+pT/AHRT66TE8d8RnGsXZ/vTSfzNYRbbMqejEfqT/St7xKoGr89GuZAfzH+Nc8//ACEVH+238mryKmrPWp6RL9z91qihOCKluT8hqCMgc15dtBmzbHIFa8Cg4rlbTVBIFMFpeTA9CkDEH6cVuW11qLAeXomoN9Ytv86mWHqPZC54m4qDbUMgxUSS6yy/Loc4/wB91H9aghvJLgTCaEwyxSGN0Jzgj3FR7GcdWLmT2LNvzcr9a7rTP+QZb/7grg7Q5uV+td5pf/IMt/8Acr3ct/hnHiNy3RRRXpnMcJcoD8RLRznKscfjmut1YBdMnIAGSpP5iuVuf+SgWv8Av/8AxVdVq4zpc34fzFYU9perNZ7omv8A/kHXP/XJv5V4gzu1vdqWJVZIto9Mmvb77/kH3P8A1yb+VeM3KIujlwoDNINx9cMKyxRVLZlAmo2IGMtjJwAFJJ/AU4mqV6eIh/tH+VcFKClKzNGWpU8tNxEp742AfzIrOuIYbht7qWyMAN2FSzYFshBGWz9cYqJlEhA7Id35V1Kkk1bQio+VXKFlZraxzShOrbC+MAipPNw4+tShs6bOueEmB/Mf/WrPLnePrUyTc3ciPwo37WTJ+tWLxGmg2hsJjmsuyl/fY9q1p+bY/wB7HFc7VpGq1Rw+sRlV2gZLYAUnn3/Dj9aqWdkzGNyvG7g0uuWuoSahJ/psFlaQwLJNNcAlVZmYKvyqzEnHAA6AnoCal8NtqT+I5dLvbmKeOG2EsbRBdrA7CrAgA4KsDzzzyAa9LWNO5j1sdM0Fzdw2ps5HXa+HRTgkA9c9uldVt4qvBCIPLIGByDjtn/69XkXeVx0JFee3dGyWo6fSroWDzEKobCrk5JJ46fr+FZWi6bqnh7xLo7tYefb2cT8yLkxl2OWIHPBf9M12Xia/g0fw7LNIDuUKsS4OC55GT2GAfzrZ0KWXVNAt9SnKNLdgSHYuAAeAB9K4I4ytCLmtjqnGkkk0PtrS41zR9Xh85baa5mIMiruCgooOB7jIrn/F8dtovhSy0k3kzPHdfu0mcsxTB4z3AyK6i01bTdEWWK9uVieRyyggkkYHoK5H4iXel+IrO08i4mZoJCVURFV56kkjnpjHua9vD1PaYdSb1scdRWqNJaHnS1seHl3akR6xt/Ssda2/DI/4nCj1jb+VcuJ/hS9DrofxEdz4SgH9rzMR92L+ortwtct4Ujxe3Tf7AH611uK8rDUvaR5mTjn+9aGxjEi/WrVQdCKnr3sDHki4nBIQ9DXnPiMY1yL/AH//AGU16OeleceIedXhJ/56f+ymtsR8JdL4j0OD/j3j/wBwfyqSorb/AI9Yf9xf5VLXQjN7nkPjRfJ1EY4/0iT+S1zcnGrRj1Lf+zV1PxDXbqOf+m5/VVrlbg7dVgPqzf8AoTV5U1v8z06b0ReuT8hquh+U/Sprr/Vmq6dK8yxXU6bw3ceTodjJjO1F4zjvXUJrpaTiIE4x14rjtCOfD9tk8bcH/vqu803QraaxillDl3XPDYxXUr3aRnNxSTkR2GpNePOrIq+WQBg9ciuV3gahqf8A19v/ACFdidKhsCzwbhv4bJz06Vw75TUtTUn/AJem/kK56krwsxw5W7xNPTW/06M4BwQcHp1r0CwKtYwlF2KV4XPSvOtJbN8n+e4r0PTf+QdB/u16uW/wjlxPxFqiiivROY4PVIBceObeEu8Yc/ejOGHXoa29S0Xy9PlYalfnGOGmyOo9qy73/kf7P6/411OqjOmTfQfzFYwive9TWT2My60W7W0mI1q9IEbZVtpzx9K8yu/+QEP+uv8A7MK9lvP+PKf/AK5t/KvGbv8A5AQ/67f+zCssSiqTuZbsAOTVG5miLplxhcngjrU+rLFZRL/aIMKkblD5BIHpWQNX8PqR++hx24JNcdOMo+8kdMYwfxOxK97ah9oYk/3ieP5VStLuW2iRfPklkAIZ1Q8g/Wpv+Em0GNsRsCc4G2I1PbeI7G/uFtoY5FdgcFlwBgZ/pXRzT3sDhSelzGOuSRWzWgtlB3kuxJyfwqm2qlCCYuM/3qv6lpioLi8E+4k7tgX1PrWGwMgQIpZmIwAMk1cFB6ownDl0Og0rUPtL71iYc4wOePWutBLQEhSTjIHrWF4U0XUbV/tE9v5QKFQJTg4PfHWuuhsGiO6Ry3oZMKB9B1rGrSu/dCKPM/F17YxXc+l6gLmG2u4ILhZYYw7xyRtKFypZQQVkcdRjg9sVU8DXFivjC7eyhljtBZ7UEhyxwYwWPoSQTgcDOB0r1G60vSLyVJb6wtrqULtzJApwOuMkZxyfzqKbStPtrZpNP0m0tCMB3hgVGZc9M4z1x+VbOX7rkFGHv3Yv9qQbcGNiBVjTtUiuNStYFjOXlVevvXPzLJHIyZX5TiptIlaDVoJywHlEyZ25xgE5wK4ZJqLOtU43Vjv/ABPaaV4kg+zDUv3tpNl7RG4fBCHcPYnj611mmaNaaDpws7ESLbrJuVHcttyegz2ryXwetzqF3f6vcH5kHzMfl8xncfMB+Br2S5m2wsQRxya82t+6Xsm7pfmRPWMbd3+hjazrb6JdRCDTPt0tyxVVX7wIGeOD/kVV8YXM954Kt7i5tGtJnmUmFjkr161tWwgn1uNpEV3jVmjJ/hboSPwJrP8AiIceHIx63C/yNexlrbwu/cwqWUkraniy1s+Gzt1qL3Vh+lY61p6I2zVoT7N/I0sQr0pLyZ00fjR6n4UI8y8b/dH866bdXHeF7kRrcEkDLAcn2ro2vo0RpHO1FGS3YCvEoVJQjZIMXBus2Xt1WF5UHJ5rOExb7qOf+AGrtrJ5kXcFTggjpXtZfOcpvmXQ4pxsiUg4OD+leba/kalDn/nqP5GvSq858TDbqMP/AF1X+tduIXuhS3O/s2DWNuw7xr/KpSGIwDj3qppJJ0m1z/zzFXa3jqkZy3Z5R8Rcm9f2uUH5r/8AWrkr3iexk9XI/UH+tdl8Q0zcyn0uYf8A0E1xt8P9CspPSdR+YWvOnu/Vno09l8i7df6s1WjNWLr7h+lVYzxXlmnU3vD6GXQoYwRk5HP+8a9VtiI4Iox/CgrxfR7rUrFooj9mNsjkn5W3lSSfXGea7tfFo3KUiIAGDlc/1rSUnGV4syqRc4pHTXj5t5D3Vq84uWB1bU/+vn/2Va3p/EDSpKqY3uOPkxj9a5yGGZTPJcSiWWV97MF2joB0/CsJJ2d2XSjyLU0tHP8Ap6fh/MV6Npv/ACDoP93+tec6Tlb6Mjg5H8xXpFhI0tjE7tuYjk+vNe1l38I5MS7yLFFFFegcxxOoSJF48tHdgqg8knAHWuk1S9tRps3+kw5xwN49a5jVI45/HVpFKivGxAKsOD1roNU0jTl0+ZxZQBlAwQg45rKF/e9TSVtLlm81GyNjPi8g5jbH7weleQ3R/wCJED/02H/oQr1i60LSltJmGn24IRiD5Y9K8luT/wASLHbzx/6EKyr36l07WdjnPie5J03BJzC+cnPZTXE6NbLcKq+VGTjJLLnvXZfElMPpi/8ATJv/AEFa5vw3HuHGfujn07/0q6XwCrfGTSWyxkAJGPolT6bGo1KPB7N2/wBk10eh6VDfahNBLiRVeJfTILc1JqOjWVhq0xtWcCNBhSc8ncDz+FVJtwbJgrTSMzxGoWybA6qc/wDfQrkLS/uNOmhurZ9kq8Z68HrXX+Ijmwb/AHT/ADFcK/MMdYYf4TqxHxHrHhjXH161MhRIZEk2Oic84yD6/wD6q3zZEnJ3HPqcVwvwx5N9/wBdI/5NXpLU5RSbMYu6OE8ux/sy7u7u9MOrRNINiykPG4JARRn7v0z1PPp15tydGZ7mMC4MGZFzkK2OQPxqwLaB7hLhoIzMgwshUbgOeAevc/nT73/jwuP+ubfyrOFPlTPSxmNjiOVJPe+rva/Rdkv6634e9jX7S2AOi/yFWdCEcWqCaRA0cUTuwPQgKeKo61cG3dyoy52hRj2FUi0puk8+JjA6FSqPgjPXNc04uSaMFUUWvkelWupwX3hKS7hwEkIKgrggBwP6V0FxfZikG7Jwea8p0/Uvs1i9hbw7LWR2JBbLA5yMH0wMVq6r4ourGO1mbDWxlQXHGCEJ5wfXFebLBzlPlibe0puPNJ7f8A7eDVPsupQ3HlSTHBHlxDLNkdhVLxprUmoaRFC2l3tsomDeZOm0Hg8fWt/QtIspbie6BkkMFyVhbzDjAAIPHXrVX4jn/iQwD1uB/wCgmvZweGnQouMn3OPEVadSonBbI8ZToKv6V/yEoR6k/wAjWevQVo6RzqtsPV6mr8D9DSn8SOgjvJrOXajNskcB1ViufQgjoauvdmMSSNeuQEb5Ji2Tx09D+dUL5NrIfSRf51cul2W0zEdEJ/SvGhL3UvM9W17vyOp8D5DX0cc6y52FmXOF69M9a7NVCqABgCuF8AMRd3y9iiH9TXd19Jhf4SPBxX8VhXnnir/j+iP/AE1X+Zr0P8a888UxlbtSTn96n/oVGI+EzpfEdvpP/IJtP+uS/wAquVS0f/kEWv8A1zFXa2j8KIluzzX4hL81wfSaA/8AjrVxV8n/ABIo2/uTxn/0EV3fxCT91dN7wn9Gri7tM+G5/wDZdT+Tf/WrzZ/G/X9T0afwL+uwXY+Q/SqkdXLz7h/3f6VTjrzX1Le5oW44FX33RWjyKSCAOQcd6p2gzitK7i26TcMeyZ/WslL30iulzQitlCZCAH2FMkixu4rWgVFTBqrcxAFivSsY1LvUGivp423cf1H8xXoWmf8AIOh+h/nXn1oMXSDHcfzr0OwjeKyijcYYA5Gfevocu/hnBiNyzRRRXoHOcJq5kHji08nZ5xOE3/dzz1xXT6jdI+j3AZ081V+dVPQjrivOvExkXxakd3JIkUQJaeIAEE5OV9cZxWTdPZXd+xsr7UJpkkDXPnR8MuMYwOhzj8DXMp25rFN3sex3FyjWJJDIZomKqw5+7nBrw1pGMF4pJ2h4sD/gRr0ee/gm0T7Cum6ukVuwaGRUJIxz949uo+lefXW0aGWCgMZhk45OGFFV3NKeiOe+I0vnPpp2OmI3X5xjOAvI9q5zQX2WzHPQL/I10XxGcu+lk/8APJv/AEFa47TZvLjA4wQM1dL4QrfEdxoc0a3pDSAO7x7Qf4sZzVrUr2A6pJGq4aVBtx/s7smuSM4LLsLBwBgipbK5lutWi8yRmKqwDOeg2mnKPusmD95Gnq1xbPE8UzSAZ27UHzMeDxn+dc9eWVlNpoubBZozER5kcrBuD0YEVoTyG7le5Yff2lAf4Y85H54z+NVrddmlXDE8CEKfc4T/ABNZQjyo6Kj5mdF8MtqJeSM4O+VBtHUYB6/nXorTxDu35V5n8PZIba3u5y5dt43oByoCkg/jk/lXbR+I9MnQNvdQf78ZqpbsyjexrJcxerf98mor+6gWwmyx5QgDFVotT06U4W5gz6Egfzqe88l9OnI2kbDjBqXsUviRxOp3cSXwTbvdipUe2OtR7eGc55HA9BU19HHc3ADJjBDYI5AGKbL9w/SuN7nRFPcS2BWNXHI6Ef1q5JAuoadPA3IYFRVa0H7lauaY24Tj0mYfypLR37Gb2aOs+G3iuK00H7Bfzr59tK6zBgxdhhRGVwOc8jn0q18QvEVlPHFpyyKJI5N5+YHjBHbpg5HOD7VwtzbS2V/9vtVJ3DbKgH3l7j/645FUNS1Ky2ziLT4lMshkysZDDP8AAOTwK7ubnjoczjZkK9BWjo5/4nFnn/nqKzUPAq7prbNTtW9JV/nXNVV4s7KfxI67Vowq7h2YH9ataqoGn3WOoib+VVNTk3Wz+3+NSanLm3ul9Ub+VeDSvyr1PXXX0N3wA2b+5x/FAp/Wu/rzX4f3UcNw0krhVNmCSfqtddbeKdPurjy1LKM4DkcGvpsPOKgk2eFiISlUbSNyuC8WKBOT/wBNFP8A4/XeAggEHIPeuD8WH95J7OP/AEOrr/AY0/iOw0j/AJBFr/uCrtUdGOdItv8Ad/rV6tY/CiJbs4P4gJmzuz/sRn9TXJWtlLqOlz2cCb5piVRc9TlsV2fjsB7K7H/TJP8A0L/69ZngOFJFurhs7oVyv4g1501eo15nfCVqVznL/Tpbe5aMzIWQBWGMrkdcUWibYJ1dYhJsOwGMHJ9qua44+1SHuXY/rWTHdAZDnIJ71hOktUjSE29y7ZQSjBMbD6itV7Y3VnNAZAgddu4DOP6frWNDc4O5QOB6Us13IRjcSTXMsKubmuU5LY6XzDGcZyCODSGYNkE1jR3iw6W00hJEOS2OTjGf6VUtPEMOoStHYwXFyyjLBExtH41hLCyU2orQOa6NLUZJ4olaEhRuUMc4P3lxj9a9L0Xd/Y9tvIL7PmI6Zry/TrqDWLdWCsI2fGG4OQRXqOkcaZCPQEfrXtZcmqbi+jOLELUvVFcSiKEkyJGx+VGfpuPA/Wpa5XVNMudXvzdabqEX7uVYpImQOo256g9wa7pNrZHMed+J9c1XSPEjNdNayXFrIGUsMh+M5I49elc7a+Lr+6vNRnWSCC8ljz5kC4LfMMg5z2zWr8SLdL/xDLIkqeaEVZPL5BYAA/T0rg7GAafcvdTSL5aZUox+Zj7AVlHS6RvJqy0O5m8e689pZaHGUlW5JglZ1yWJbHbpwR+VF64XQ9uek3/swrmtH1vTx4rsbydGgtLYl2LgDJwcYGeucVbufEGn3FiLWK4UymQkA/UH+lEk2lcE1dkPxDb95p/tE3/oK1xdk2UTABPTPpXWeKLldTNrLFCUW3B3K7Z3Zx/hUELadIP+PDAz1VR/Q0oz5I7XKlD2kt7GeIXwGVRkdw1FtGzyygAq+NmfduD+m6toQacwP7idB67Wx+lNe3s7d4vs7bS4dzuJ5IG0df8Aeam66askwWHcWm2iO9HyXRUdFOMdgF/+vVDUHNvpTpjHmSFfwUkH+lb1lZm6nEb4+eTY2PQyIP5Bq57xPIouorZOkUQL/wC+/wA7f+hAfhSgtCpvc1fAP/Hrq3/AR/461aVngQY9DWX4COLPVfqv/oLVowSKq4yM9cU5L3mFJ2iWtilhlQa0LYk6bcQKBtU71AHeqCvlga0bD/U3P+7SlsMpyRmOVg3L8Zx9OlQTf6tvpVy7/wCPqT61Tm/1bfQ1wPc6FsPth+5WptHbJvPa5YfoKitv9StSaKfnvx/09N/IU1szmZsgA05LWJnBZAT70iVbtly4rGcmloawimzhU+6Ks2jbbuE+ki/zqoh4FTQtiVD6MDXZPZkxeqOsv5M28n0p1/LxcDPVT/KqN5Lm3k+hpbyXLSc9V/pXiU4+78z2IvV+guiXflRQLuwJbMr+PatjSJVMaE8nFc94dMUwtUkdUH2aQAscDcBkD8cYq9p9x5QXniuzEXUbruzGik279keoaHqJ2CCQnZ/CT2rmfFNzbvLOI7mKQ7uzg9wafpd2WK4fHpXOeNvCEP8AaUOrpdJBbynNzCpwxYd1+vf0612UKrq0+WR5+IoqFS66no+ia1pyaLEZL63XYSrZkHBzViTxPosLYl1K2QY4YyDmvnXX9dmaQQwHyoIlCxonAX/69ZFtrM0Y8uRzJGeqMc//AKq7YyfKrHJKKvqe6+J9a0u/hvUt9Qt5C8ahMP1IKn+hqh4Fv7e2+2WktxCJZ0VY0EgyxAwQPevGrid7dwUclGGUY9SP8agi1O5huYp4pWEiMCpB5BrH2Xvcxr7T3eU9c1y1uBeSMYJhGTlTsJ+vSubaQCU+2a67XvEzXOm2TWcqhp4FkkKn7uQOPrnNcPqFy32aS5dgZEIycdQeOfWspRVzeF7GhHdguoB6YB/H/wDVTIr2OeWRVYEpywz0rlH1WTacER7jyVNVodQFtcbwwJPBI7j0pqmb+ydrtnpdpaNqGmyqzmKOZducZPTGcV5/q15qfg7xKmlaWkt9c3lv8otgQ7hiy7AuCSflzxXeaLqIurJSpwAK4TxTf22n+MbrVLp3LW+miK3jhnWKVnkZkJUlW6KznODg49adGF5tPZnLVm4x0Nz4aeJRq4ntDa+QbVlPMm4vuJz2GMY/WvoTTRGLFFifeoJG71Oea+bfA8lq3izXrmyZPs10YLpERwwj8wM5jJHdSxU+619GaH/yCo8erfzropRUZSS/rQ5qknKKbNGs+000Wt9d3ChE85wRsHJGP4vfJJzWhRjnNbNXMjwrxjod7J43MEEaPLcy/uwDjcWPGc1z3iD4deJLKK61GbTQlrCpkdhKh2qOpwDXpuuEf8LO0z2mT+ldT44/5EbWv+vR/wCVTFLU0b2PnxPhd4ruLdbhNNURNF5ys0yDK4znrWJB4cvrYpfS+UsaP03ZPXH9a+oYct4SsJFzu+yR9uxQZrw++AOjOMjcJeR6fMKKjstAir7mBcAtEwAycdPWokiCFQduWAIyMdqtshOPrUNxbRyvAZV3cbeT225rnjsbQ7lC9ubm21ZIoZnWLyN7AdCau2l1PLrFlAZCR5aeaSAcjlz+hrO1GBbe+RI8iMxknnJ/OkJuY7qe6ieOImEHaFzgP8uB+Bq4pNIcm02dvooijklmkIAijaRie2EZifzkWuA1mQy3bOww7Lvf6t82PwBA/CtOPUdRVbi2cROswKOUODgnn/0DFYl5Obqee4bgyMWwO2ataGcmbtjbatpdo7aS9vLHcoHk8xTuQ7egH4muXvL69N4JJJiJoxtDR/LxXU6ZfvDdpHICwaIKpHYc4/nXMy3DiUrwRjvWltTK+ljRsfF93FtW6VZkHG4cN/8AXrv/AA9qMWp2FxcQhghGPmGDmvLvMRs7ol/IV3fgR2NhfxcBF2FVHbOc1FRLlZdOTvY3Lv8A4+pf96qVx/qX+lW7sj7VL/vmqdx/qX+leY9zu6E9v/qkpdFP7zUP+vtv5Ckt/wDVpS6J/rdR/wCvtv5CmtmczL19cvbKrxuVIBOPWoP7dm2D5VP+0nB/wqHX42eKLaeRmuSlR4AzRyMpXjAOM10Qw8atNMJ1ZRa5XY1V6VKpwR9ahU8U8GiRUTauZP8AR35/hNNuZsv9UH8qqzyZhb6VG025UPqg/lXlwj7p6sZe8aXgjZPqdlHIoZf3y4YZ/wCWbYp8EnyAZ6VT8BSgeILNWYAee4590YU6F+SK6K8fd+b/AEIoPW/kv1Ny0v3gI54xWRruqT3mPMc4z0zU0T8jmsfVWwyD3qKGjsGIta5xmrzOmtvGD8jKvFUd5DE96s62duvA/wCwtVbobXz2NexD4UeJP4makUn2nTXHVojuH07/AOfaqtu+J0bOMMD+tGl3y2Z3sm/P8PbFTPc2DOXFo4z2EuB/Kiw0+pYF1PbXkqxzMvlnBwevNWZdflmieCREEci7WIHJ+npVF9VtnkeT7EhZjk7nY5/WojqiKcraWw+qZ/nU8l+h0vEI2tH0nStSlZbzVpbfnhCoGf8AgXT9K6aLwN4ceMOLm5lU9HEwwfyFefnWrhRhBEn+7Go/pUb6zesMfaZAPQNgVLpzezsTKvF9D1ixsdN0iExW9zIU7b23Y/IVzmt+EtE1vUBeX1/dhgmzEARBjJP8WfWuHOpXDffmdh7sasF40uFtZPMLnALh+hPoPSs+V03e+pvQpPEp7JJpa33d7LRPez8u7Oy8OaNpnhrUZxZ3bvDMkZLTyoSCC3HAGOte9+GdRs73TQttdwzMrMWCOCQM+lfJJlkjkZGOdpIOK3vC3iK68P65a39u5Bjcb1zw6dwfwrohFpt73OKej5GrWPrOio4pDLEki7SrqGH0NNbzQ+RsAOOprVmR51rx2/E7TPeeP+ldF8R7v7H4B1WTYWDxCPjtuIGf1riPiFPLaeKo54nKTIAysp6EYrjta8SXt7p11DqWpTPE0TERs3DnsPzwfwrJS1aN3DRM9s8M6mmofD/T7t8RFrLbhm/ujbn8cZ/GvDZ2JivhzjfHj/vo1BZak0unwRRXTtGkajyw5wnHSrVy/wDxIwfWX+opTld2Eo2VzOkmVJo4yDl84/CkuGxDGVALYGPrtNU5ZFOr2quSF/iI64NbF5pckTqqSK6g/Lk7SQAeSD9exNRy2SsXTlvc5zUGaXWYbcORug+ZQeCc09kkkuXcRt5QdA2R0VRnmtCG5FrdO09nh34Eo+bIHQe1Ymo3zLfXeN21yxxn14qop7BKW5YkLpZTTPwzcD8gf5msXP7n8KklvXlhjTnADE/5/Co4I3upYbaMZklIVfrVpGcnc0rOVIZw7ZIRM/TmsqZR5xOcnA4rZfTmWCRFnj85l2bQMkDPNVJdNumCmPyztGC0jD+XpjFVzR7kckuxmqc133gTi01I+8Y/Q1x8mmPawCSeeJR3YkgLXQ6Bq+n6LFcQG9guHnKlRHIO3b3NRUknHQuEWpanVXR/0qX/AHzVO4P7pvpU2i6ql9qMkphKrtLEOMjBNb8z2f2VY3iiMLfw4ryqs/Zys0elSp+0V0zBgP7tPpRojYl1H/r7b+QrTk0+JgZLdwi4GE/+vWNokgM2ornDfa2479BThNSi2jmqUpQaTLOuyKi25Z9q/Nk1zkzJIkzBcrGc5HqOtbXiLZILeNydgyzY64H/ANcisby0E/yNlJUIYdOeea9DDTSpoxqRbdidTUgNRjrTgaze5a2J5pP3R+lV1l/dR/7ops0n7sj2qokn7tP92uOMNGdynqWdBuFh1aEu21FuQSQM4HNasL/O1czZSbdQHP8Ay2H863IpfmOK0rx0ChI1YnrN1bnYfUn+Rq1HJjHvVTUuUX8f5VhS0kaVtYnD6+ca0D/sCobwb4Efrg1J4g/5Cin/AGBSA77Qj/Zr14/Cjxp/EyishHFO8wnvUOaM1oZku80m+mUZoAk3d6TdTM0UASBsk1bTUJVVQAm5QArlBuUegqiKdmplCMviRtRxFWg26Umr9iYGp4mwaqqeRXoHgb4cav4pmt7xovI0rf8APcSfxgHkKOpPBHpVpXMT27QtG1SLw/ps9jq88Tvaxs0FyBIgJUZHqKvPqmu6eP8ATtJS6QdZLN+f++TXQIixxqiAKqgAAdhTqlx7GntP5lc8N8eztretxXNpG6Kp+ZJRsYcYrz7xBDL5IjkhcHtleMk4HNe7eK40k1RkaMHOOce1ctc6LGQ20bR3wcD8qwblGV9zqUYTjvY8s0NisU0LDDowz+WP6V0RUT6WkZJH7wk4+oq/qWmaRYB55bqxErDBCvtk/Jf6isGx33+oxabo73FxcXMgWNZMYB9c46d+lD1ZLhyrfQy7qNW17ylkA2xgDf3J7cfWrqvcpLLHBI6xbtqjOVIHHQ+uM1oXekQ2l3KTIJ7jdteXHBxx8o9OKhEQAIyefSplVWyHCk1qZsuji6mQzTvGvby0xn+lSroFkrYcySD/AG3/AMKtF5ASoUHA465pjTSNJwrfzP60OUmtGCUU9URPp1jGSq24GOCSpNPtobUK0kCoPLIDMq42n6092cdQ6qepJzUMcFvGzNnZk5JHGaz33bNE7bJGvp3lZbasAxkszrmtTzoWO2G3STBwSAMfnWNbSwx8ssUmeVZ2A/mK0RO11G3lRkYOVYHCsRx2qJRuaRm1sZvjhV/4Q+9ZUQf6vPHI/eL0rK1nw9Y6brjPb6XZ2sVr4jjs4HtL3zyYtz8TKZHKt8i44Xo+RwKveI7XUL7QLqygiDu+3C7xnhgTyTjtWE1t4v1HWLa41OCJYzepdzvFHBFvfdku/l43HluuTycdTW9FKNNq5zYiblVUrHogUKMdEHQdhTJYonQApkDpzWPL5sc37mR0A5yzcE+1LFNOzAO/PuQRXnPDv+Y9GOLX8psJvjChDtA6DOaoRaaouJ51ldWllMjYx1PpUod8ZBP4mnwXG5SGHQnkDBP4UKlOOzB16b3ViveW6XN5bxTs+CjAOP61VkspLWFhgSI2ccYI/CrV9cqrjavPTOe1UZb1ZIVUFlw2QCeK7aPMoq6OSo6bej0K4608VGOtPFXLcwRWmbhhVGGTdEpHuP1qzctiVx71RjwkSYOc5P61nFaM1UtRIGxen/rop/Wuhmjaxv57SX76t8uDnj/Jrly2J3Ptn+VacWopPKJZJUdowQQo+6O1aTheAqc+WaRuRP09qZdndEfYGoo2I749aWVt0f1FcaWp2Sd0cV4hP/ExQ/7NR2rgxYqTxAM3qH/ZqpbPgGvUh8CPIn8bICPmIpPxp0g/eN9aZtqzMXI9aQsKMCjApgKG9jS5NIKXFAC5NKMnvSU8CgB0YAOa+mPh74x8PWvhDTtNmvFtJrW3AcT/ACgnqSD0PJNfNCjJx68V1Fzbz2UBXzkeNhgA9RUSbWxtSpqSdz6Cv/ip4Uschb2S6YdreIn9TgVy+ofG2MZGnaOzDs9xLj9B/jXkFvY3d0iurIqt0JNXV0JP+W1yzeyD/GpcmbwoX2Rr618RdZ1W7aZ5obfPRYU6fnk1zdzq99fH99c3E/szHH5VrRabYwjiAsfVjkU4tHGCqIqr7DFRY3VGSWrsc4ba6fJEe0eprrfhXfW+n+I/tVwRvaFkiY9mOP5gEfjWZOcxsVxjFZekO0cGVJB4OQelV6GU4K9jvfEVr5d7PPD81vJIWBH8OecGsBmAOMVqxazJcad59wgjG7yi4+4xwOvpn0PHpWbOy7tyAAegrmnCz0LjLuR/vW4jOw57DNY+tTS2yJGgkZy252x79P8APtV6bUL+2kBs44JUI+YNndn69qozaqZXU3WnyRsAeY23A5/L0rSkrO7Masr6IlsCZbZlnzvDbuvYgEVcijjHG0EehqhbSPLO0qqUQqBsbrx0rTWWN8eYgB9VGKzqbl037uxpW5AUDAwO2KtCdQ6p0JGcelZpmWG3kkXLbVJArAHiNlz88qZOShizRCDkOpU5TqLidY5UZIt0jHhVHLevFO+0NNA3ll+DhwVxg9xzVKE3JKXamKRmjA2EEEA8+tOAliMsksLM8hB+Rxxge9RzSUrHZLD0XhvaX963db325d0ktb/52TSk+SGLYJ4z2qRIABwvz9zVc3ODmSKYHP8ACP8ACmi5jGcTuuezcH9atyOBQZqRyHBfjI45oRmAAJA9RUEc+8RpGVKA8MDn9aVRtiLbWOeKlNIbTILxyx9RWXM2FI6VcvJM/L69yKzZtx5IJOeeK6qexhPc0QeaeKiU8/hUgNZyLiZ14cTuKohv3S+xP860Lq3nlmZo4XZQBkqpIrNZWRAGUqcnrSjYbvchdv3v/ATU1vbxxBz5jM79ARx61WkP7xT6g1AHvZJiETC5wDjrWy2MpbnWW83mR7iQWyc47c8VMWyo5rHtpHgnVZMgkYYfWtIyRumVbBx0NccoWZ3RndHL62Q8kTDnggn34rOhODitHV0ZHWNv4SazU4Nd8PhR50/iYSffNMp8n36ZVEBik70tFAAKWgUdaYCipAcVGOtPoAmh5mT/AHh/OujvJTLliTgZC1zUH+uT/eH862JZTtxUyRvRlZNGtYz7LGEbsYB/nVsXe7IJz+IrDtpSsIAzU3nH1IPuanlOuNWyNN58DKkjHY8VWaclvf3FVvNJGCxPekEnBAAFKw3UuSSS/K2R2NZ1g+2DjrxUzs21uSRj14qpaMBDjvRYycryR3XhnULQ2D295D5tuGbz1HXYwGGH0I/Ws7XNBudKAutOm+0WL8oc5AH9KxbK+lsblZofvDggjhh3BHpW1FqO6B2smPlnmS2Y/d+nqKmWhLV3cw11FG4lzG49f8aV5i4HzKw/z3qPVTBLEZI12sWGRjpWLGZo1DhiBng0KCepLm07HSRXMSrtfKn1I4/OrcTo33WB+hrmEv3Xh1z7jipBeRNg5Kn1qHSZSqnXxkEUfZ4SdxjXP0rmodQuE/1dwWHoSD/Ora6zcAjeiN7jIrP2ckWqiOkRgMegomkGBWImtp/y0idfcc1K2r2coA84KfRgRScGWpovLJz3NWo8uPuj+dZcNxAx+WRW/wCBVs2nKggcfSuapodFPUZJaROvzRIfwqP7AgHytIh/2XIrQcgCmphmGelRGbHKCMS7t5Ff/XudvTcAazpVl5yUbPXjFdJqUCn50/EVhTcA+tdkJuxxzhG48Hn8KkBqAHkfSpQa1ZlEuwXNra25lkDNMM7FEhGT7gHpWBqlw88/mMqKT2UYFaLW/nDeJdjA46Zpj6PPqD5+0guTksVrFOEZNtmzU5RSSObmb50PHf8AlWvHdwwWcSRKHm2jc3Yf41bm8E3cke5ry3VQc5II4rNuNH1GxUtLZ3IgBws3lMFb3BIrog4VdtbGbU6T97S4wzF5AxJLZ5/Op1kypDE429AetUFjZ5VXcU9yOg600XAjDDdu4wD61U4X1RKnZ6hqp3uGwe/U5JrKWtHU5NqCReRkceorOBBwVPBq4fCYT+IJRgg1HU0o+QGoOaohi0UUtABS0lLTAUUvQUlGaAJYTiVD/tCtF5Mj/GsuI/vF+tXWfvSZpAsxTbV2/rUgkPp9O1UQ4b3qQMV7mkjS5c8wgdOP504uQMetVFkxgkj6mn+ZkcLx9KCkyUliMcDPaqah4JME/u26H0qx82MHgD1PNMYFhgLke5pCY8YA4PBp3mFGDxkhh0wcVWVmjbGB+NSsSTkn8qVikya6nM8HzqN+eo6ms5Y5EUblyPSrcU3lzRtg/KwJroJLSG5jBZRu/vDg1nKfsxqnz7HKny3HIwaheNQeK3H0R5WdYHV2VQ2xuGIzjisy4s5rZgksbRk8gOK0jJPVGUotaMpgehp4mlToxoKFTyv5UgqiCUXsgGCFNJ9pB+8h/OoiKTj0NFkO7JhLHn7uPwqaK9li/wBVcyp/uuRVPijA9RQ4pgpNbGumt6iMYv5SB6tn+dTL4i1NR/x9Z+sa1g7aMH1NR7KHYr2s+5vN4i1KTgzK31QVA2rXTgh/L/75NZGW9TxTsv6mn7OPYTm2deDwKkBqBTwKkBxWMi47FiGIyBmzwvatWzeOAM8z7UAyctjFZENwlvE8kjbVGCTVVnl1CQNMCluDlYSevu3+Fc8oOTa6HXCShFNbmje6tcaowSBmhs1Odw4aU+vsP51e02bWZSVi1y8ggRd0sjy/Iijuc1UtYBMHkdkht4hmWVvuoK5vxF4lOop/Z2ngw6cjZI6NMf7zf0Fa0oJPlj0Mq03bml1NLxR4pn1qNLGyaWTTbdwHuZQN87+pOOB6CuVdvfiolkcCKLcSgbIGeM+tSyD35rsOTpcilkeRdpOQOlV1Pltg/dqViaikAKn1pkMsuN0Wfaq1Ot5QCY3PB4FNIwSKQmKPrS0nQc0m8UAOzQKZv/CkJz3NOwEvJpWXam7rzUYbmpN25Cp70DHwDMo5q02elUoGIYZ6irQOec0i47EgQEdcGl5XjOR6igMMdMe9PDKeOmKRYzBPOaeufrSZyeBxRkkcYHvQMkbCrwKBz1ODTQFB4OT69aX5uc5PtSGEmCBg/lTEYdDmlCnOTjNIeeAMmgYoYdhgj2ro9Mk8y1U57f8A1q5kE5xzjvW3okmEaM9jx261lXV4l0ZWkPu53tdesGU/K+VceqkjNWvE8Y8hZFxleRnuKp6im7VLJjwqh/m7A44qxrV0JdKjkK5IXZn0NKm9ETV3ZyO+QZOwjPYU5XJQFlBPcGnI5xnkmpSqEfOecZ4rc59SNIWmRnjQ4Xrg9KjxzjPNWLTcwlVeAq5+vNVJTluRzQPoSfMO1NJHcfpUa57MfzqXbhR82TTC4mVpCB60kh2DOOaIT5z7doHvQINo7NT1OO4qU2hAzuFMWAnuKV0PY6cHp9afmoc8fjUgNYSNIjZUVnRiM7TxntVy2QGN57iVYbWPmSRv5D1NUpZreFDJcuVjXsOrewrCvtUk1WYLKfKtYvuQr/nr71PLKWiNOdQV2WNd8QyaqwtbdTDYRn5Iu7H+83qayET5sU7AZyQoVfQU7o1dEYqKsjCTcnzSEfho/Y1IxBNRyqcLjqTxUps71ScwE464p3S3Gk9bIgZf8iom49qnaK4QZaBwPXFV2Ld0IppmbViNxzmpgMjOetRZH901Iv3AaYkRP98+lJS5BJJ70DFAgAPrTwPQ0DHtTu3XigAAx3pcCgClwaBgmAc+tTLwajUU4GkUidWBHOaeMHioVzipFwOvP0oLQ/AXnORTumD+lMxk560oB9hSKRIAMentmjjqV/Wk6DPQn1o5x0pDD72MH8DS9OKB7D8SKTcCDn1oARiF5BzVzSJtt2VPRhVBjhvb2pbaTyrmNh/eFEleLQk7M6q5QSoAR15FZs4Y2VxAx44ZT+NaIYtCpbGR6Vn6muLOVhwR/jXPT0djaqrq5hk7JcDsae5Y5IHQc1LaKnkCR1DZJ5NWHiRkJVQM9vWui5ylexUC1uGPUkCqMvLGtL5RakKoXnnH0rOcZJoW43sRKAamCqoz3qIDmp2GMfSqJRXuG5A/GrNjGFj3dzSi18+CQqP3iAFffrxT7Xi3Sk9hLcnb7h+lRR8ipuGGCcZ71EFMZKmoRcjYJ6/WpgeKrE9anB4FRIuJn64u6yXtiQf1rEVeMdq3dXGbBvZgaxQMCtIbESXvCgYoH3s44pjyBMZzzS79zLjhasTY5+NhPZga7S4hhLDCgL14ripeU/GuwLGSNMHjaD+lc9fZHXht2RSxJIvTCjoKx7i1AY5FbR4GKpXI35I+6OprOnKzLrRujHe3A7ZqRbWBdrMWLYztxxmpym45PApAoPXpW/Mzl5UUltU7qKabaNjwtXZBsGO5pqx4OafMLlRWFjEfWkaxj/vNxV4AAUm3JA9aXMx8iKQsMjIcinLpznpIM/Sr232qZVwm78qTmxqmjNj0u5kYiMhsVINH1DnEOcVvaWh3jjmuotLUyx52gEmpdVouNGLPPBo2qBS/2NyvsKYdM1IDd9ilx/umvXoLXIUADPt0qxvAVUVMk8mp9u+w/YrueLfZrxX2/ZX3DttppFyv3rdwfpXtIRHYkIM+uKZLa2zbQ8ETE8fdFH1h9gVHzPG0lkRhut3x34pPPcEkxvn/AHa9jn06yKD/AEWLnuFrLnsrbn9ynTsKTxFuhSoN9Ty83OSNyMB3zTGulJ5yB6V38llbA/6pfyqs+mWjK37hQcelNYldgeHl3OF8+MnofypRKh5ziuuXS7Qg/ulyD6VXk0mzaTmJQM9hV+3iZuhMkt5PMgQg9VBqDUQRYT5/u/1q35KQqqx/dHAqrfK72cyA5JUkCs4tc1zSSfKZtsmLCP3BP60FmUUsDg2kadCq4OaYx2kg9K3vqc1tCTyGbTZrkN9xwCuOxHX+VZTHmr0F5mCVI2O3OGHZhVCRfmynA9Kpbi6AKlHOKrZYHpTwW7CqEmX7KQC6kjyP9X+tR2v+oT6VUK7Jd+SCR1BqSEuIV2txjpik1oJblw9KsoguIwp4cDg+tUYZCHAc5U8dKtDMbcH6Gs2iy7nrUyHIFV89fpUqH5RUyHEg1TnT5Pw/nWEvKjNbuoc2Ew/2awk+6PpVw2FLcR4w7AntTxgCkoqxBJ/qzXVwDdaQue6Lj8q5R+UNdVZndp1v/wBcxWFfZHRh/iY12JJFRSLvwi9O9Svx9T0oUbEyeprBaHQ9SpPGFHHSoEU43Hp2qy3719o6d6SUBRgdK1T6GEoq9ysRk5NJjHWpCv6018AVRNhvfFOUZyaYmSCx78CpQOPpQCADkCpXPQUka87j2oAy+TS6ldDV0tdhLetdRaFlRQD3x+lczZ4BUV0FrJyM8hTmspFx2NeKUwhiv8C5xmnQyZBJUgKMGqZmAjbHcipFkzG7Zzn0qRli3ZRkg8eveh5WJyCpx79KhhYeUeaRiqtkcGlbUEyZ7hmX5xjHpVCdhnA9KlkbIPJINUpnyxFJxKUtStKwqB5Ao6daWQ9Khk+774osVzMiRgHPHWmSYyMUm7ElIzZNVYXMJKMr9RUDjK5x1FTkgxfSo9u4bQCSTwBTRDMmSIIxOODVeWHevGfTiul1a3sNEtI1uZPNvpFDGJeQma5eTU2Y/LGFFdUYs5ZNFi4sktdEtSgG5wS5HXOTj9KxySDyM1bkvpZhgn5MY21Tdvm6da0RmwDrnvUm8Nzgk1ECp61JuA+7zTBMZISZDntxQDsHy8UrKWfJ6mmsMdsUEliNhIPfvV62bzFMT/eH3TWTGSJBjucVfUEHIOCOlRI0jqX81NH90VXzzUsZ+UVDHES8+azmH+ya59PuCuguObaUf7B/lXPIcoKqnsTLck6mjk0nSlzWgAx+Q10umnOl2+Dzt5/OuZPTnvXT6MN+kxexYfrWNb4TWh8RJs5JNQTPVqZsDHbvVNRvfODgVzx7nTJ9EPRPLT3PWoSfMkxjj1qWZtq47mmIhCAd2/lVLuQ+wzGNzkfSoiCTU85GQgppGFJ/AVSYmiID24HAp5GABTgAMClVdzUXFYd92PHrTFBMg9O9Ex+YKOMCnwAFjnoKForg9dDStT82SOK2rUdc46YzWHA20CtiB8xYHXqKzkWi4sgBRevU1KHPlcHr0qnk725I2qKmaQKijJpAWllKwimNLk9aZI4VFyeKiMilj7UICRnPWq0jZckmnPJkVA7fNSY0QSsdtRM2VFLI3GKhZvkFOwXI3P7ymtmrdpp/2xZ5TKsUcCb2J784wKy/t0e7a/HbI5q+V2I5kWFPysKgk1D+zl8/AMg4QH19a0LKxe7SSZSFt413SSk8LXI6jdfarpiv3F4Ue1XThd6kTnZaEFxcS3M7zSuXkY5Zick1ATQT2o7c10nOxyZxSv0FNU/LTs/vU/3qA6DM81IgAGaScgXEgHrSp92gEOP3gacU8xeDn2pjfe/CnKcHg0gJreONRkL8w7mpHXuKhV8Nu7nrVjIxUS3NI7H/2Q==", "path": "images/3pts_ADE_train_00011498.jpg" }
depth_point_41
images/5pts_ADE_train_00008187.jpg
ADE_train_00008187.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 236 y = 165),Point B is located at (x = 164 y = 186),Point C is located at (x = 101 y = 111),Point D is located at (x = 321 y = 105),Point E is located at (x = 71 y = 211).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_3><DEPTH_59><DEPTH_59><DEPTH_3><DEPTH_30><DEPTH_58><DEPTH_0><DEPTH_0><DEPTH_1><DEPTH_1><DEPTH_49><DEPTH_31><DEPTH_3><DEPTH_67><DEPTH_38><DEPTH_78><DEPTH_19><DEPTH_2><DEPTH_2><DEPTH_41><DEPTH_31><DEPTH_69><DEPTH_59><DEPTH_67><DEPTH_85><DEPTH_64><DEPTH_44><DEPTH_41><DEPTH_41><DEPTH_2><DEPTH_31><DEPTH_36><DEPTH_59><DEPTH_67><DEPTH_85><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_0><DEPTH_94><DEPTH_31><DEPTH_15><DEPTH_59><DEPTH_67><DEPTH_78><DEPTH_72><DEPTH_69><DEPTH_82><DEPTH_57><DEPTH_121><DEPTH_31><DEPTH_15><DEPTH_40><DEPTH_5><DEPTH_40><DEPTH_77><DEPTH_45><DEPTH_1><DEPTH_16><DEPTH_94><DEPTH_49><DEPTH_29><DEPTH_72><DEPTH_67><DEPTH_76><DEPTH_72><DEPTH_19><DEPTH_81><DEPTH_39><DEPTH_42><DEPTH_31><DEPTH_74><DEPTH_36><DEPTH_40><DEPTH_11><DEPTH_44><DEPTH_78><DEPTH_29><DEPTH_45><DEPTH_57><DEPTH_40><DEPTH_3><DEPTH_59><DEPTH_59><DEPTH_67><DEPTH_69><DEPTH_11><DEPTH_11><DEPTH_41><DEPTH_41><DEPTH_40><DEPTH_38><DEPTH_5><DEPTH_49><DEPTH_82><DEPTH_60><DEPTH_3><DEPTH_39><DEPTH_65><DEPTH_57><DEPTH_END><DEPTH_END>. Since point D has a higher pixel value on the depth map, the answer is that point D is closer to the camera.
D
long
5
[ "C", "E", "B", "A", "D" ]
<DEPTH_START><DEPTH_3><DEPTH_59><DEPTH_59><DEPTH_3><DEPTH_30><DEPTH_58><DEPTH_0><DEPTH_0><DEPTH_1><DEPTH_1><DEPTH_49><DEPTH_31><DEPTH_3><DEPTH_67><DEPTH_38><DEPTH_78><DEPTH_19><DEPTH_2><DEPTH_2><DEPTH_41><DEPTH_31><DEPTH_69><DEPTH_59><DEPTH_67><DEPTH_85><DEPTH_64><DEPTH_44><DEPTH_41><DEPTH_41><DEPTH_2><DEPTH_31><DEPTH_36><DEPTH_59><DEPTH_67><DEPTH_85><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_0><DEPTH_94><DEPTH_31><DEPTH_15><DEPTH_59><DEPTH_67><DEPTH_78><DEPTH_72><DEPTH_69><DEPTH_82><DEPTH_57><DEPTH_121><DEPTH_31><DEPTH_15><DEPTH_40><DEPTH_5><DEPTH_40><DEPTH_77><DEPTH_45><DEPTH_1><DEPTH_16><DEPTH_94><DEPTH_49><DEPTH_29><DEPTH_72><DEPTH_67><DEPTH_76><DEPTH_72><DEPTH_19><DEPTH_81><DEPTH_39><DEPTH_42><DEPTH_31><DEPTH_74><DEPTH_36><DEPTH_40><DEPTH_11><DEPTH_44><DEPTH_78><DEPTH_29><DEPTH_45><DEPTH_57><DEPTH_40><DEPTH_3><DEPTH_59><DEPTH_59><DEPTH_67><DEPTH_69><DEPTH_11><DEPTH_11><DEPTH_41><DEPTH_41><DEPTH_40><DEPTH_38><DEPTH_5><DEPTH_49><DEPTH_82><DEPTH_60><DEPTH_3><DEPTH_39><DEPTH_65><DEPTH_57><DEPTH_END>
236
165
164
186
101
111
321
105
71
211
107
59
11
177
38
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDgiTKCnnMTj+FeM96fLHFexMillC/dyMVBbXdmYmb/AFXbGMGrMbWtyzRxNLHnJJxgU9mYbowNpSUqOxwa14Mtb7vSqN5ALe72Jyp5BJ5qzA7JEUbgGtoszNG2LFQWqUN2qvbE7RVpThs1pcBEI2H1FSrzGTVXd+8+pq2oAj+tAGKco7/WrEfBU+gpjjc5A4+anAds96QFiZtsBx3IqCRP3R96lmOyMd+RSuu6PdQBFGu4DB6LXO3J/fv9TW4jEMy+3WsGXHmN9aCZDUHFPKcURgk4q0I/kzjmk2JK5DGpXpVgYc4ck03AApYhhs5qWaJWLCqu3nimMoPFP2kjOaQDnmkMasYJzTnU+U37wIQOvrT+ETdnisvUbpVIYKfmX8M0mBmSq5LZUdT+NQx5EnCAgdavQtDLE3mPtk25B7VTA6Iw4zndjrWbNESzGOTb5QIb69PSn26b5sTNuROKegWTZbRRI0rnhl7CrcVmYJWtZflfrkjgj61Ll0JZQu4YlBy/7z0/lVNUDMBnirV+ES+YR/MvGD1zUE/Mh2xsgGMr1NJMtbD1tHZSwKgDr9KYwCoCg3ds0M8ituA4A6kcVLayLhi7oqg56UwLljaNsaUAPImNoc8HPatB9GiubgJ5wk2xA+Zuxj2/Csy41F5HCQSvtzkrtwM1rT+Tp1mryOJpmQKqsf1qWIzxYpYXaSK8cqjpu5warS3RluTIiIQBg8Y/Ki7aK3eNoNwkxl1IG0H2qi0pYknn60WuO1yX7SACojTYezDvUDMc4wPwpM85PP1oz0ySRVl2EycbRQCQQy/eFHVQADnNWrKCKa5An8wJg7tgFFwGi43SSPMN7lcCoQ23BTg45FWXtwz7owRGzYVj6e9OktFht5A4IlB4YHgilcm5JZRRXXmSXcpwg+4DgkU5LczvuTfNGASAeDtFVbWdYLqOR4kkUHkMK2I9Ss5LaQAMrL90HptpbiepOtrG6kqdqZ4ycmtC1mjt5zGHDBePvZqFrZWeDdEqFuVB6VBcWssciAxxKDySnQ5rQyNa7jgvzuQ7XHC4FVBG/lFSMlDyaSOKWzKMuGDngrV3zbeQ7V8xSfvD1NNMLC2wIQHsasgZb3psZA/dYxinDiXg5raLuhDDjB+tWUJKg9qrPwSKnhPyCqEZvILE/wB6ogWZ1AqaZG3HH96oFBD7sdDSAvyDKCk3YU56UrENgDjIpk20W2c8igCjO7ImV6twaypExJs71stF8oLfUCs1l8ydm9zUtiauJEuAMAVKeFxnmnYAXCik8sgZJpFJEY6809VwetGOaMYNAyZTgYp4A71EnNSjgE89OMUhkUtzFC6xS8buhrCvNqum+UuueVI5FX9YMQO2QPvC5BFZs919qtQkgBkXo56tUNjSIZFjDnBBXGRimAfLnd9AO1EhVmVY9/QDB9a0INNnVAHtpizcqy9/aobKG6TbNPqUIR0AU5ZicD6V0XiC4JtgMEqzY5TkD2rN0O4sLGWRL61kkfdgqeCprqZDbo8kTsrose8Bvf8A/XWUhHBcSXRVPkBxk4+7iieJommG7zDkZYnkitieKyhctbRu7sMhuy+tY+o7EkRo1CB1ywB6nOKENFWfcgC7gQfQ0h2PHkRgMO9REj3NKDjjFaFl0XEHkOzxK7kenQ1XiuGj3ZLYIxjt7ZqEMewoJyc+tFgsSSnOAQuepIqPoKCOcik74prQa0ClB7ZFO2psJ3c+lMB5HGRQBYW1ZrTzgwLb9pTGfxqFSUb0JBBxUkVxLDC8cbsquMOvY1COnBznrQBr2l7HbfubiJMMMMT3FVWuMkQuwEKksAKpc568+/NAwM5NKwuVEyPGWwy/KTknvinyvallEcbou3axznNRkpsAZMHsRUR6+1Ow7Hd/6XDC5cCVVTK4H8RqCPzzbr5ucAbcHtU1vfgwBEPzMcsc9KmhEVzNgltrH5m75oMQERESY+YhQcUyIK1xIFB4T5VPUE1o+WtvKNvKY27jVVokW8wp5x96i4xOUmiBlyQcNip0BEp9M1FGkcPGQWY/eqf/AJabgODWlNktDZMbjipYeFqORTv/AAqSLpzW5BRuWMbuw7tVdCSoPfNS3bfe46nNMgGFzjoaQFxhliMcACoLoE7QRxVpjwRVeYs7hccDpQBXUF9zk8YxVNEX5m6AGrUxKxbR61VKE1DGJvPbpSgFuT1p6R81MkYBzSGiEIO4pWUEdKmK80/ZQOxAkfA9KS6lEMYIA6gEntVnbxxTZIhKhTYHyOhqWBmmSG6dop2UxjpID0rCuI4lVTE5bHtipngdfMG3aFblahLArsQF5PQipKRZ0+yjuJg0pCxjkrnJb6V1kslxawqUs22n5oh5+4AfgeD+tcRHLJEQ8a4Knketb1jrUs8K2mwb1UbOwJ6ZOKykmOxqyQ6fdqt3qAzO3G9W2leP1/Go7e0tHectemSPywxdiOPbH+TSy6IzW/mySq0iPu+8O/QEfSs/VY0jXYEWM4BKJ2P86zExk032F2IkUoeGcDg91wPyrHnliKSGaNjK3KFTxj6U2W4byjA0Y/2WyarM7PyckjitIopIb0wOvGeKSl4xSVZYUGk704qNuc5oGGeKSj9KKBBRR2pQOeelACUUfTmjj15oAKKkEZMRl4AHbNR0AFFFFAHU3CLDKvksMkZYLT7WeaaQrHuTIz+X/wCuoJZCt45ZgecAqMVox26QTjYSY2UnOefwqmjnTNG1V5Lby3YvKrHBp00bNet8vzeWD6CqkM7JlQDtUA7l61eacSHBO9V/i6GoKKg80xkJGHAbhumKtBWEi7+DjtVZpStwEj5BYZAq5JtDDIIwDk9qpOwMZKSGB9qfExxUcvQfSpIeVrpWxDRQvfT3pYlyoA6nmnXajkn1plr97nNAixg5bPtTHO05qZerE1HMtAFeZQUHHPrUAQCrUnOBULjBxUMoagwasRpn0qJR0q3EOKkoUQ7h0FI0OB92rMfFS+WMUAZhTB5FRXAkWI+TxLnI9xWjJBliPas7Uo3jVZ4cl4x0NJgcldGTfL5jMspPK1XjADrlmQYzu71fJ+134a5Ypu67R0q5c6UtiFmVi7t8oUjvUBcyLdS12iorSBm6Ac4710T6LBp1017FPKli6E28oXcQ3uMVNpGjyxTC5SVkLIdxCg49qtzsw0sxwmUSRyZw4yuMHgComO5mWmrXLTFLkElQSjLGcEY5P9fam6hb3U+lfbIYj5GeX+8SB3zVSG/+zO7SxQrIeN3zEqO/GarrrN0scltHPIImOFQYwFznpUpAtSJbKe+je7wqRJwT36enWqz2cyEgKSOua3LV7pbky7fLlPDuy/KF/wB36VLBa2smqCKSVzBJlzK3AP09qL2Hc5k7gNpA5prIyHDDB9DW9JpwaZhFbttJ+RlGSTngGqk1nPdLLcfuz5PDIxwRTUh3MwnAApvParL2jo21gUBGRu44pnkhdwyCRwOetVzFXIzhjjv600gjrVme3lgiUyR7e4NQAAsM0riuAQkgDvSsfl2Y+bNWnhiJVYdxCrl8djSRQkyODHwf73BA9aLhcgSKTzjGigv6UxwQWBGGBwasuFhmJhZtqn7xqByGZivOT3pjRHnIxRipFiZ1dhwBUYORQMKKO9FMDqbmCENGyTNvP+sGOlTO08koLygYAVeMYWqA+SYPG3mDIX8a1pkhaT5Ms2MFm6EVbOdFxAuNgblAM47+lOAEk77WYAHkY9qrW3mEGR1yM/w+1SAKR5kbHfICxJ7exqCgjCpOWJO0d6vvOo8sBS0b9T+lUZXVIFjRSWPJNTwXAeMqw4XAAFAD5fvZH3e1Oh4GPWnkI7BFXAxmlRcHGOa6IO6IZTvf9SQBznrTLTOcHrVq6UFcY4qG3XDcVQi0iZfHUVHcD5s9qcSwbA70xsswGOlJgQOuMGoHBzV6RMr0qAxnv0qGWiJFyRVyNflqJY8e9WEHGKQxycCrMJyOahC4qeNc0gHtHkdPxrO1mHdpsilW2DnK9c1rKMqTg8d/SsfU9US2lmt54t0XAPHLA9ce9JjOaE32eYxnhJANrEcj0/rVm4ma/eP7RN5MaAnaPl+YfWsq4bzbidooj5acjcclB/WnTalLeWwtpEBUMCGQYO73qb2EkXI70Lb7J7sqgz80fViO1XLPXFl0z7IbnaRyZCvzY9Kw7u1KW4fykjUdVzyx9fpTtIlu5ZPLt4432DzD5vIQev61EtR2ILuMPMSjZA/ibgmp7ZJfkkliJQcLvGB61pzLB5TykhnJ+YheCfYVWu4HXSlfaRGzbiwPU+h9Ki/QRNb27STPct91RtKseuRj+tR3Vu8ssEW0KqrgEHjr3pFk+z2qmbLDgtGhxx2rXhshfGK7gZYrcDcwcfMMetJjsNW5a3le3lmVQqEEkc9KqXtk91CLuJVGV2BIz970JqxbGzbUVRw0xeTJc9/rV24kitI3VGjUiQ7UA+8D3qbg2YU+mXU+13h5jAjYq/OfcVBGkFlJK7gNn7vOT75rXE9wbnbsKjYZDJt4z25qvqdm99A15axebEq7pJCuD75pc6TsIyLi7We6Rg7fZQw6jpSuI5gTC+yFmycjk1CVMUYRkLM54z7dh+ddFpOkWQj8q5WXzni8yEh8AH34q7q1x3MQlZbeNHR1j6eYOCQOxqU4tYAJo1lcr8iKeQOxNRSSk3rxxICMFCuasQ280ZKzAeccCJuw/wDrUOVgZnxGzO0TBy2ct6fSqxETzMQdkYzj+ldBrWmx2aCS93JcSKMIi7eP73vXOPGBjByOw71UXctFiKS2WyeJ4madnBBzxtqoxyDz3qa3he5l2KyqQD1py2hf5RIm5eCDVjK2OetKBn5alkijRf8AXozeimoQT1XP1ouFztlWCE+dhWUguFUdDVGKR5XO08N0B7VAk7wqPKPzdCG9KlhYbiFUAnqas5r6l9XMUBSWQq3YKP61JayMsKGRONpwc/pSxQhVIZtylc8+tPgj8qNNwO1vmye1JmhF5ku8RZ2sw4GKsWkbrJkDbzjHUmmbpJLl3GDt4Vqetw8HzceZ0z7+1ICxb+Y+ZWkyQxG0DoKtqQWziobYmO3UMo3vknHrmpoiGyV57VpTYpIZMpIJqCDg81blzsPrVeFMqc9c1qSTFcHIpjAq31qYqQtMdSXxQBm6rq1vpQiE6St5uduwA9MepHrVSz8Q2eoXUdtFHOHfOCyjHAz6+1ak6ym7f7Hk6qLGb+z9v3/N3xbtn+35fm4xznGOcVgD+1D4p0oazg332Y79+fOx+8x52ed+Mdedu2sm3exqorludGseDxTwp3CphEKdsAHA/GhslDUFTJwcUiLTmXDZFK4yUsqRO5ztUEn3rE1aS31W2WGHDENzKOox7dxWncJJLaSRxuFY81wsiX1jdfJvix6d6GI0tIskvpj5NuFaMk+b2yf/ANVUNU05bOJ5gHjkDFcHoy+o9atwajqLXkNjPITC5GQGw351vzWBmvZIbiGJ8gD5eFc+oPY+1Yydho87d3aNVJBUfdJ61GhZHwnU/wB3v7V0upeF7yCaRo0Cwx8mJ3+bH+FZSaTd3Vo89vG21TzFk7h7/SmpIZALkK0ciqfNVueOmK3bLUfts8rvEVdh+7wOAawILYyOCgyQRhSeproVN3p0qi8iiVnGVXPC+/5UpITsNSwhnu8zQs3ZY1OBuJroJvs/kx2skUkflgblU8EjtWbcajby2bRRR5mO0gocbTn9akjgm1NTNC62wtl3SyyHG4j0Xuaz1GVb8xXiIyRLCqkh9pyWPb6U2C/tYgkMrPKR8oVTkAe9RXsc/wBnfZiRnbem3q3qQtUrOJbUSvfytDIYi8QQfePvScbisblhceUxiv1jNjG24oB1PbNbMV89xYym0WBN6mMgcqV71zOn79WuAsYAc4MszLwMdhUmrxtaXTNbSSxxN/EIwFz7c1zyheQiC5g36mtwNu5TmSInBB9qiurhLuV2VdzH5cBsbT2p0s7Xtmkl5A2Q3LodoP4etIIrZo1SNiuRuZf4j9a3S0sK5mJaLHNIssh3Y/5ZDJB961LTypp7cRKxkYhGEjYUZOM5/WqWDdzZtrcKrZwGbcvHeq6X01vdLIu0sp5JXIOPQU3Fvcep1PinS/EdysdrcxCa3tARDMp3Bl9FbuK41YEZCrsRIpxjvWrd+KtUuiryT+XsPyJGMKvrgVjtMXlebgMTn3qoppalg8BQ/KSR6jihYJQM4xgVZh3XEmEBOBnFRyyyuCyglV+Un0q7sV2dJp+m6VcHwrpcumRGTWLc+deiWUSxu1zNErgbtmFCISNvIB7nNcvHIjWQjKcqev1Jq7Br2srp8VlDJEsUELwRuLeISpGzMzKJdu8Al37/AMRHSs4AxRAZGSeRnOKpls18l25bmrVup8wBmyv9wVUYEtgjkVatZsuI1HJ71szjjubW+GSNlidlKryuKgtJmlQqgLYXBzU1taziBibiNOMHI56etT2UKJDG+8YKAkjuayNyqVaG3OcqPb9KjVHDCeSVSvG4HvWhKyOSgR2kP8Q6GqV5EeAu1x3x2/CmgLdvexMQSBt3YwO1XbbajMgPLEtWRaxR+YQQ5yuOeOa1Idv2hSFOQoXrRDRg9SxKPkJqCAc/jVqRfkNQQjH51uSWiM8CmsuH3YqVVBYCnGPJxTEYGt6D/bYgIuPJ8nd/BuznHuPSqel+Ejp+oQ3YvfM2Z+XysZyCOufeuoVZZN/kRoUjbDbj949wKmiCSQJIg4YdPQ1gpwlKyO6rhK1GmpytbS+qurq6T7NrX/gpkIAVcYpWjxj3q0sOTyKbLF2qmchXVcU7jHNITtbBppfJ6UrDFXO7j86p61bJc6a7YJdCGAUdcf0q1vGRjPXoBWUNfXFxF5ixTox2hx1FJhc5jclpMtwWdJ1fIbt9B6Vs22qf2kIrdHdfIjO5Y1wFHf69qLy40owD5FeWTl1DE8+uKh0e902O0cxQslwzgkSNwMZ79aykriRb1K1a+vIZ3nmhlXG45x8o7ketX31iMIFMz3BjOQsYAzkc59jWXIz3tsZ5LgENlgqn5vpnrUcRt7OJ5Wg2mNdwRySfr9Kh6DHTy2E4/wBHtQJV+YheevXr6VU1LToxbC8eYuknC8Asv4dqZbXUUkLk2wM5bcu1yAgz/d6VW1YXEjsvkFBjeue9NNiLNhJFZWiuJwVwWwT07YoN7JcQkRFnkzlFUZz6k1iRCRuADsC5Kk9ea3rR3gZJvNjjk24URcYX0I9c9aQypaWJhukujdeS3JL4/SnXxmubyNGDr5n3k/rTGtJ5TLKEYx7/AJN52/N9PSppJbiHdJNIoYqNo+8WNDBk0d4dLiaBJSzgbiU7Hvz69Kdb+WmsRGaVGV135J4Vj3NZE0MssXnoxkiU5ZuBg+wqozPbORuYg4OORn8KnkQHSanBq+oNCpeFowC4cPhXx/WuekO+KU+YSVOMHtXQSX2nXdh9lkUoqNuAYlePbFc1eGJLpxa8IDxtYn+dWkNIu6HZvf3MlukhAZc4H8XpT9d0q60a+Njex7LxQrFF6BWGR+hqja6ndWs2+3YJJjaGVcEDOauXerXuqag95fSmWcoqFsdlGB+gpNNO4NGVJG0ZyV6nqaWNVZwqAljVsxvdIFAG4HueabbvHBHPvAaYfKmP1q07oad0LazR20okZT5inKAAffHTPt0p80UlxdC1tiWLncU4HOMmoQsMUCu6t9oMm7IPAX/9dOsr0QXUjzh2imjaOTby2D6Z+gqZ3Sbjub4aFOdaMartFvX+v11t2J5LGe0gV1khkTOPMjfcM+lUpBsVhu3buvtV+4vLa2tJIIJ2uHmK7nKbQFGeBnnOaySxOfQ9RU0nJq7NsZRpwqJU+2qupJO70TWj0s/nY6O9XbcFgBtcZFNtBjr3H41NJG9zaKBgSqeB7VVSUhw2eK607o8nZm1JdJJaCLB3emKWOORLYJnADZ59MVVtI5ZlEhUbRxnIq5cRSSRLtJcgeuOahmqCK6dEDbgzMDgCoQ00bbnQKZOcVYFuIUZ4drkqMnptPfrVSW4Z8PJ8zLxQhmjbos0G7zSHU529quwRxqzzMwIHO0Hmsi0Ej5WPIB5LEdKvGC5M+2IBVwNz56ihbgaqZuLcOFK5PQ+lQxqAT9amjlWa1zG2/b8oI4yaRE/nW6JJ1XJGKuLFv24HIqFIzkECrSAx/U02Ar6aQS0N20SyHMiBQc/T0PvU8WmrHEqIfkUYzUkSuwycVciDAbOCT2rGNOMXdHVVxdarBQm9F5Lporvd2WivfQpLbBTnqBU0lirgMMCtEW4eI7U5HXFPS1OxflJB7UznObudOZj8vWqT2zKcMMV1VxEI34XGOtZlzEuxnZcAd6YznWjZdwHOOQM4ya8/1hIlunljkLbiSFOdwPvXomoR3SFZbXayqMlMDJ+hrkho0uqtI0Vq0Mu87WZvzFQxGMbS8Mb3AUkxqM7RzioZZgroxAZ8fOq8D866Ro9Q0MyJexYSQDccg/L+FSweGbTVLWS8id9pblBwBipsNGLpsxkJAjSIlsocd/qa0rqQz2xt55AZsiM4yOO3NUrqC4gSZEVpYLc5V9o4J9utMs7e8v7SQQy+Y2AxYAYDDgAk+xNZtASWjpZ6hLHHAWYKEV3b7pP061Nq80k3kWwikW4hGHxycA4qTTLCGBxDqEYN2TnyhId3sSQcYq5qaKxW4ifzHGVZPu7ePXq1SwMGSN4EeRWjKO6gIR82eO/Sny6beW7KZzEgl+d8nIA9Dj1qWNWkDou0MuGMb9CenWrCssltIkyF0bkKCBkjtk844oAotrzLbrFIHdl+8WGSR2wevSqq3omikbyS05OFI6KPb3q42itePhZQHXBOeMA9FHr9av2GlvaxIjtm33lpML8xPoDRoMoQW8LaesHml3J3FhwVPoDWdqcTed5yyyOmMBpCSRV2OxW11AFpikTZKntVa+mljZ/LIMbkkgjp601uC3M2WSSQ5eRiccZJPFMDYOev171oWE9tAspf77rtBcZFVJDCQp2Hd3x0rRFpkQYgnB68H6U4OwA2k9fWnrayCD7Q+FhLBM5HXGelWJIrWG0R0l3SnoMGkwbI/ObzAWGPw5q2EBA+RcY7jrVFZixwwy3rjpVlZw+Q74IrKSZk0x5tYlhyGBye5/Soxb/vdzAbewpnmqAD98ZqRnkCg8YNCuLUimjgVSejZ4xVZYmc8DA96smPI3YDZ7ZqIOSME8egFWmaJnSRSg3pOQF2Y/GqTxGG4aN/4Mipnb99vLBefSrd6odY5kwZDjnHWttjnerLVlFILKNSqDjJ5p5I8tmiLAj16VTS7ZSAeJAR83bFX7gxSpJtl/e7eoHHX0qXuaIz5LiQ4Q8k/wB2poYUaIs+SfTvUNvDI1xhomdVHzY4xU5wGKI+V67fT8aYye3mMkiQNlYwc5x37VcuLqS3kS1VV3THJJ6iqcVtPHLvIUkrwufWrrxyRgFcAAckjJz7UgLek4eKSFRsJPfvV5YgGGOlM0e0jt498jb5ZjuXJ6LWpHbkyjjvW0XoJkkFvvTJ4rQjsUCjdnJq7a2hXAYDkVaNsQygdhTuBSSyULkDpQPlJCgZq8q4Qqp+tVzGC5IFSNE9ngD5u/XFaKxL5fH4U7S7NpmACg4FdRaaep+/GMYqHKxLZw0lo8zMWBz2rH1iNrKxZMgXDcxI3RgOT+len3OloD5iIARXMeLdGa/0C6jFk09wuCqxMFcc5yP889KTmCep4dceIZo9TRsYMakMmflPrWxB4ksYWQywlWY4Gz0rj9TtpDqbKyvuU4ZXGDVGVLiDMTxlf4kyeaVyz0DVH/t7zI7W1nktguDJgZ3DqP5Vnf2oLPTSum2jL5Dq0hcEsQc5yKwtK8UXmnvKiyOUYEbB0z9a1ZNTvNbtXeWzWDehzJGOGXueO4/rQ9gLRaa8EV08SwySp/q4+V246t7modGsIogFtbxY4+S0dxjHrxjn86o6ddRxXEdoiTSzEYjD5UH35pj3r2z7Wi2bW2I7DO76+lZajNGRmm1Fpo7RSygYkKnLAjvjsOlZepGURoJGIKuG298f/qq5bW11LE1wrFIgvzOXxxnHA781Y1LTxZ2H2ua3nFszKolmQ5dsZ6+mO1KzAxWu5Vml8hodjgE7hn3GKybx7t7pftAaIAdMY4J9K1TqRN0bS3tlLkE5QA8kZBH6VDNbavNbNBLAHdU+YufmXnOBTsMu2M0wu7aSa4jZ40KpEq5AT375+tTNqchupSPuKNgYH5Mev1rm1cwxFt5R/unB5pbOC91HWUsNMjE085wilwoPGTkkhQAATk0ctxJXLt0kSboZ5ZCqDdG2MZb0qkLwPazRSR53Dlv4lPtUFtcXVvLK7n54cqyuMkH0wfpRd3EM53ovlk4yo7mqSsO1mUyeDnI56U8rwHI+Q8U+JyjFsAHPOfSmsxkc5PDHoKd7DuIuWAjBOOuKcqM7BFOSCcVowHTR5a3AfaHBYjqRTr77AlxLNp8pWMnEaN1xUuQm+xWeyhQKfOZnPXHaqzxiMkA5B7mrkYV853jaM5I6mmGJZrja7BE9ahSd9SVJ31KSqzAqp6VOmZVVDIc9CPao2UbyiPkZ61p6dot7qMEs0Ij2Qj5v3gB/Krk0lcbKiTRrGI9vKHIaiG3WW4VfNCFmwWPQUjDPMaY25yKYgTcQXOc4wBUiNy6jAuDtO7HWrFyG+xwSIDnJGOopl0IkHynLE/NnipbfebbYjbWwWUYzXQZsomcERJtBCY+Y9Sa2Rywkj2q54f0H0rAAwQW5OQS38+K17adQuUYSFjkj0HalJBFl9Y2kU+S7KR9/kc1D5CzMVQbCvI3d6k2sZCHYIq4yVOM5ouLaOdlS3lO7GBz/AFqUaMqLcTLPlgCV6YPGauh7gwxNvUKc7s84qraQvaT+W5LSk/dHNbSSywqUEQL4BG7pzTEaWl6eLdftMsrSyFcc9APauhsId7gMTj1Fc7YvOtzGbu5Rv7kcfOfr6V1WnEhwSuB6VrFqwmbYUYHHQVetbaNstjnGKhSEv+VaNtH5SBx0zQ2SUrmyVTuQHnrVP7MSQADjNdVMFaAbQD68VmyRZGFXnNTcaZa0S18uYkZORzXSogA4zWVpSGI5cdRW2g+QVnuOMbkRQMORWXdXQsWRpBtiaTy8n5cZ+vvW0F9awPFtrPPokn2ezjuWQ7/LfI6elKxXIed+JPh9pN7rDSW0t3KzEO5gI4yfug45Pt71g3vwrudVLfZL2G5u4kDeUTswpJ6g9enWta0s59Wtb/THZLfVDNutoJGKJkgBvmz1wOK5Ga3ntrZ1vIri0iWby/NLkjP8eOntgUDsUJfh7qsVo8q2UYtYjieQyDaMe9ZE8T6XLDp810xswQW4+6fwre1y7tbIR2my7jt5DvGZfmk+q9hVONNAk1FBc3EwuQ3KTcRhfdqdwYun6LNHaJLBdJJdljMsDryE/hIPuDVTSrZta1Mx3TrcID5rxRsFZfb9a1dfgsE0NEgSPmYbZo5fMJHYcY4rDuLyS0tCYEjt3VthMXAz3+tIRoa9qWn6ZC8OmQ3MMchUFXcHBB5zx04pPGfii38Q+G9PsbZZTfRyKHVTlSoTqAO+a4S8upJ5pCzlst371FDM0LiQAEg4weKCkaWiiW31QLIDFJ/fdTlDj9PxqzfXMjXhlWWQyDI3bs7qY+rJdNbocHAw4K4xxjg1m3YVJTslZgf4j1FITHG2leQuQU3dS3JNaNhLB4cnvZ7mKGa5a08u3hcvh/MbDsShBGE3jqD8w681kebJMw8yQkL05xU0RtduLqBnlJ4Ysen4GhOw07FzWry31DWL+/sym28Mc7qqsNkrrukVc9g5Yd+AKzYYZCgdApy2MHtVi9FlE7iyVgrH5cnJxVNXPmKxyAOuKY9xWDn7yc5ySK0NMhtZnXfJ+9wfl6AD6+tUBuTDjd1PWrUcH75DKCYwcMVXk1MrCY2RRPcEMCp6Knt6mpDaMsYdIi6Rnk46k1sWf2GK8keGMmIgoTJycdjj1oNiWijt3ljity52tnLGs3OzIbfQqRW17ewKirl1YgIB8w4/lWfNGqswfIcZGB1yK6e7F5pkUTx3IR9uzgj5h1BIrESFJ5WkmkAQkl278+gqFO7uJvUz4YVlUJuw3b1qdLiaxjdYZWUHhsd6fcR21ud0TvNHj5ZCmw/lVUPvt2BXJLZ355/KtbXKWo2N5XRgBx1zVyG2ZITKsWSGx94VUiiG4YfI7/8A6qey5b5HYqDk46UMGbMw8x2ZgCPX27U63mAlKSAksuPl7UyUjcAOBk8UsMsayIXTZjGDXQQyG6hjgn8uPdgDueams3iSRXUsGC4I3daivAiXjlGPzndn606xjc3O8YIHrTeqJW5sRCS+80uNhXHHbigec11GsexSB1FOllMrhI0Pyrnd70x43TY+NzY4GetZmhYMpgJLjEmcbqlhleeItyq46N3INZxjdBt43k5Bz+lXrQso3KoO3gfWhoC00ZLsYcrLxg+tei6TDJ9mhMg+YqCa82inWORWiyJE5O7+lenaRdJd2iyJkqcKDVQYM6OyUMwrX8lRHgDpWVbMMrjNaqEsgIpyIYbWRMDkGo4Yxv2sp5PWtGOENEM9aemCcYHFZ3AntrcIowavKMCq8S4YVZFCNqa0FrPbULGfUJtK+0L9qEe9oweQp4rQrzL4r6VftDZazp85iks92SDhue4NUWdRP4O0eTVDfuGEzpsb5uCP8awta8BWD3Jv7nU5VtkAMy3LbgFHU54xx0rzSw8awXOp2kviZZLs2wAM0Y/eFc8Z9ec8V6yfFsUOmWkuoWc8cc4IEs0W1fYYyeoxU3EeIeMvDei3/iu7GmC91WG20VLqOGxkHmPIboRbSdjdFfdwOwri763k8Na5f2Vms8eEiDw3aYkjLoGZG4GSpJXOBnGe9dx8T5oNM8Ug6LpkGoabfaPHBMrJIVJ+0GU5KMpDbkQ9ehrM8J6RrHizVNWhmsoo9Qkgh8i3njZMIilF2lsnaqhQScnpnNPoD2OHlZkAUuxXoctUXms3sASSM5zmu6v/AIf6tbawunXKRB1OXMTFhtA69Ocf1rGvNOsbycLpy3MbJADIJV5DDAyfQVJBzvksyNKYmKeoqa6Fqthbm2b5z/rN3XNXrq2njshCbabCrknOFPqRWMVUxJtIMnIPoBVDQgwO9K2FO3OR1p8FtLO5WLJcLkA1JaWT3cuxGCMOMt0B70gJLTAkBaMYPQ1tzrbJeJZGzWRJivz87j6kHsPp71DLawiCOO0UFU/1j9yfakMl7BbBBK4jK5GTyPoeorCtFytY78BiqNBv2i3t0T0V7x10tLq/LZ7GVIkL35iknHlJkCRe4qKFo0vN0SF4x0B70q25XDHDHsKX7PMX3HA54Gcc1strHDKSbbSsWF1AJf8AnvbhkUnCVZvb576T7TGvkRyAKEDdSOtV7KzZ081pUQNkAM3OO9QExxyMqAlFOAT/AEqGkQy7aNC80hn3YKkDb/erd0Wa1FtbyF45LiEl3RxztHvXNsgTcnMucYPpTFZ1j8gvhFOcVnKCasSaup6pLq2pS3jRRxRleEVcZXPFZaN++YKp8s9QetIH/eZChh3BpuGTczBhnkBqdlYCW4ZXCpJlQo+QetVUR1UsiHOO9XRcyqwuHYSyYBjkPRTmnGVpYTEZTl23N6Fqd7DvYoxtKvzDAPTirdulmbeRp5pEb+6BSBSECt+7Rjk47+lXtOvLG1sJJLiDzZi2I0b7uKbGtS08MZPzcEcgZquObiJHXC7sDPpS70IDBWLZ6im75JWKsRnpuPaukgXUoiuoYVeNo/GrEUJgGBhnIyQDwQafIjYtnfDMMjP8LD0qs8iFnjQFQG4BPIP+FJiNGGQJ8odigwT6j1pbra6bypCdVPeq1lI6tuGCwxyew74q5dn7c6NGpSH7uDUFopK0R2BdyuerE8YrQtXjjTeQ3+yM9feqS2zJJGWePa3Azmrc0Q8tY4WxjlSapsCZZ/mUsmSOOfSu78FyS+U6u4FtGd3Lclj2ryrV7iYWNywkYMAoDKcY+YVNNJ/wjfjOKwtdd1K7lsdT8idZovKjbZJtOMStkHHQgcUolct0fSEQCBTnI9a04mGAqkYrAtbpbm3EiEkcAn3rWshucZOap7GTN2HI5PTFSpEp+aiGPKD6VMke2sxpMkjQAVLTV6U6qR0JWQVxvxBMiaKPM097ywDqZVhbEisDlT7jPX2rsqq3Nu1xEqiaSIh1bcjYPBzj3B7ihgzxbwvY+G9R0u+m12NILozN5cYX7yEAKyj1zn8qmuH1++juLO71a2XSLcbijLhiV5C8dOMV1994IvpvEkV/b3VtHbk5lATafqFHGfen674J06/naa3sJ4LmNAfMtyFVxk7gMH7x9aQrHnctn4W1LUPta6gsVzOCskN4DgY/i34IBODj/wCuK67w14Y0OwmivEtNTh1F85MUh+QD+D6f4VzzRXHhzw/qOg3fh+4lmkDqk6INkgJO13IzyuAQvsOlN1D4tT6U1lDZtdF4YI47pb+MBnKjBkHzNy3U5NY0pyk9f68j0sdhaNCKdOV9Wt07r+ZW2T7PXz3t2Xii80zSLa41CDUHF7dIFME0x+ZRwQB+Irx3xPpd1FpgnS9SSYlR5aP85jfn5j3HA/GtC78X6JrWtjVL/S725ghy0oJBGT2AJ4H+Arm/Ed/o10jRaE1zGsoEjSXTYZvUYBIAzWx5bsc5qq3zhTcXJKLHtjVewHHIqC9ulOn6eVghVlRslVxu5xz6mq7TmNpTO0nnMu0N1yKqPNJJEkbNlEGFGKY0a0GwvFeIdvy4fB/CrJhjtmEsS74pPlYHk7vf0FUbKynSOGbcgjmyQPp/+qtEmO2Ztpk8xj8wB4NZSkQ2O2S2UkckTRzoeqqMbT7modTJnjj3FQ6qVO1zgfhipzdxpCylmfLAlG4H047Uuoyx+UY7baYXQGRXQAhu+0+nSs1Im5ivHsiyuS3bFAMihQOJM9SanjT5yURj25pvIZowMk87T1qkybsWRGxtkZQwPUnIAqp5pZ1LAZXgDGfxqVLmJnCyArzhsLmrRtDJCZUIMC5w+MHiq9S1fqVmbDAK5bHJwMc01sMOeT1qaRNucHpwcdKYka+WzsSF6fU1FyRPIfzVjABL4CjPen3ccpKh2LyAEAemOoqxbSWjw7J0LMeAVGWUetHntBehlBAEbKm3rggjP1oQyG0vGt4jGqR/M3zrLHkAe1VY286cLk7Q2Pl9M9qdKJLqXJdnHqwwaSMCPdEygc5BA5Htmr0K0LU+Y7XiNvMZsEv/AHR0wKrSBXtOSTICABnj8q1L6/s7qBFto9hAAJcAN71nC0lktZbuFGa3R/nc44pJsDSV0CszSc54AFKqMVdj+A9aYIXFsJACy+hqW1L5baqvgZwa6GQSRefLp6KPubupH3TQ0TtIW2HYTjfsqWFnePqoj2nchqWC5nFsqgbhx8m6lcCnJIVuBFGuFyoODW2pjiXjHlr1+tc/PO73jO0Sh93KgYxVu1lDuuQc54BOcUmhplqQOcZIK5OOKjWcqpQkIQD97vRcNK8LghlVmxuHQVn37OuPPH70DC+49aQNlTUpGFnPGMYOCcfUVf1rxSvifxFDdldSjaS/88RXWofaIogz5KouxdoHA69BVS25nC4ZyRwFrSt4mkh3sWVt+1gfQU27OxcW+W9tD1jwZqk15cRWSuHG3zG46KOv9K9RsbVVUN3Jyw968S8DahHYaxvlIKPEyog6sxxgV7bpsjSQIXjZH6kE/dz/AAn/ADik3oQ0bEa4AFTBajT+lSrQi4oUYpaaev4VUgvYpZFHmKN7MiA/eYjOePwNM1LtYtnr9rcC6E0kcMts5SSPzFP0PB9K2q4nXPBYvXkk0uK1s7l5dxlAyHTAzvHrnPShiZrah4p0uws/PeXzFxlUiXJx6nsPxrLPj2AGRo9JvrmBSCk9vGCpU/Ugg+tMk8HPNqUN1PcFoLdApt41VBORyN46EZ9eazdc1rVPDukNeRvZwWkpMSIOfKB6Fwf4s56ccc0hXJLO51HWGe5n1CDSNkwBt5SHJVMkEM33s5ORntXhXjMaf/a/2ixvpdQjmy00pX7r/wB36Ve8UapLqslvDaXTtbW8hEST4DBjjcwx64Fc5ZyyS3cdusDm2DhjEg5Y+pzSQmzKmuZygCu4XARscB8VX8tkIMwaPLY56gV2Wv6JJaNaSQ2skdsxbbEwB3YxzxXK6nGTchN7tIBjc55JpkFGckyEGTeo+61V8846VbmtWhEW91AcHHPQjg1WjRpDhRyOtM0TVjXsZrprBUDx+SMhc4BHOT71N9qQEYYgsOSEBJ9vWqFlbqjGWRQT0VPX1q7bstvNuaPfzuBHY9hWbSMpNC5e48tQm1OpJAyfrT1t5LyBXOCqgxjtzTY5A+oMAuBMNufftV0xiLTWjEqHDgYwef8AdqGhblB0KfxDdjjaetVRmRMjIfPJHU1Yu5Fgs1ihUblOTJjkZ7VThuGgmD/exzjHf1p2CxaWz32/2kru9VA6D1qK6na1jazTJiPOD61pXRaPToooJ1kQkFiDjr1/CqV9HDLAHijbPGZN3c1SXcpdmVTK8RVVZcOAfXFDyvMyK3KqccDFNhjBLKoBxzk1fhSIRB5SG3DCov3s1LshMrSeWsm6JsccGkH+tBOWK8VfurO3it1I3lh1A64/CqyIoZSQSmOAvWoTuS2NaQBAEXBqs4LMNxyM8ipCwBIxRGpZzt47fN0poSZGpiUAEY5rcuoLS0njtYpPOiH3ip+UE+tZEcDPdomVDA9QOB71bazkQSeRcxshPzOAcfyptmiZ0u2EnySPmEYJ+tY0TQwkkHy58HPPBrQYNHJLvDb8Y4NZT/ZlmDKWkU9QR0NdCJkWMlwzNGEjI7GpVReonCSFfkyQMjNV98SQxxfOcEn2qYxReUrg7wQBz2xQFyu0URuMM0gkB5A53VP5scEoaNQrkjaPWqizubsPGo+XgVoNbbpVlcKZCMggcChiSLE++eAxh+SNxRfzrJkhYny5pPmxlSew9K1Xh8iImNj5mR82OuetZkjzJcB/Izz/ABjOalMdhtkXaylitWC3BcZw2Cwwen061pRu+yNSRJOAVfDZA56H3rL1NEEskyKEBIAVemalsGVYWldyi9BtIA9zzWbpe/zf1956DzC+G+r26W30snzXUbaO+7vtfTVm5ZMI5UuFH3WGMNjae2DXsnhbxxpi6RGNRumhuUGCHUtkfUda8dijhuU22xYwqM4YcZrs/AOk2uo3Uram0HkQkeXG0gBduw6+1WjhPb9P1CO/tftMCSeSw/ds67S49cHkCryElQRzkdRVSJ43QBChIABCHIA/pVh3VIiTyFHYUy4jL2WSOxuZIRmVImZAOckDivLPBvimx/tiO41C6eXUr6Uo8TLhLTGRx2yzDHHPNW/GmvXNt4WeSG4jEhvNg8pjwmD1Oec+1eYW93JpE9rqS2sbFXMjeafvNuyOOuO9A2z6fyarXWPIdNjNv+TCOFbB6nPam6ddteaXa3LIA00auQDxyATTdTsBqdjJatI8ZbkOhwQaoo8f1/4ka7o+qhbaXztPViE3RKWlA6gnH8ua4f8AtXWfFniUyXVq2pO4INqDtXHbAXGcev516/8A8KstpdUW6udQnaAAuYVUY398AjpgCtHQfDugeG2uLPR7tZNSn3Mrb0aVcDlR6CpJPENQ0HUkVJdStLWKzj+RW8xcrjqBg7mxx61n6nLJY6fHPp9/ZysytG7hQGZOPmweR+FdB4507V5Nbe51uAWkQRWcRN+7BYn7p6ZOBkCuU0vQV1eOZJC8C2+TLNKBtz/CoPQE8/lQJkenyaxrF7aWq3Ms0hBS3SX5FPrycVV1bw9q1rqUqNZSCeNS/lohZgoPXBrsbvwjcQ+H7bXo79GghmMJdJBhSvRV9/f2rEbxLqdtey3n225a6kZ0dygxhjyBkZ5oEcxJd7IJIHCM7LkyIoPX+VU7W2keRUCjB64YA4rUmsJbaV5jGULDcVIztU1Xa6VTuhG9j8u0r19+OlBFw2tbuY0IOw/eODRJKp+6e3Q8HNQeezyj5QS3p0FOxhHV0BY92PSpJZNCsklwI7Zs8g5bGQavwXT2dpJA0h4kLSMyA9euOOOlZkMkSSGRsMcEfKSO1J50tyXUq+4rgIi5z6ZpMaHzxxSCIRkSM3L4Y/hVWaBraUbztcjhTSxyPbOV8sB8bj9KuWb2U/mT3jObxWBSM8o49PWgpFTZPHMkIVwznAVxgH0rQudKvdLl8u7HlI4DYBDA5HtWteqsixXFwiwKHjKK3B7/AHvQVd1+zsFiWeS5Kg4MawsWjPvzk0mwZyz2wS2Ty2LIeWbGMD0qSzigQF534wdoB5P0rfmdby3EdtGrqVXcyLkEnsQKoT23mIolRYUQ7f8Aazjt7VEncmxTuYtkIksiSjjEgLA4qCFxbkAxMr9QzdR36U0RPDOU2EAnPXqK0fKuNVIQmPeowG3AYx2qdtBMxZGJcvs4Y4z6Go1cDlievAq5NBcW8Tq5Q7XwRnOPeqjuXhXccBvugD7341olcpRJ7cxFyJJTGD1YelW2KLZEQqiRK2c+Znf+Gc1WtNMEljLe7o1WP7iseXPtU63TNcB/Kjc7ONy4A/AUmkgeho312DOXBZE9+pqiIg2/fkEnp0Ira1LQ5rPzDNA6rGzR788iRcblH0yKx3eSVQC6svCqTwMVvGREkxyFwoBQmNRwT61NCzCIRlQNx71I9rLbxkrtKgggk/LSTiZ5Y5ZYDtz99OlPcLDUCwltzBWPIIXirelSGaQtLICpOCTxz2xVeK1uLtnL7UjXodpqa3AiQQQ+XtDfNLIpwDUstE80yIzrcnB/hZentVaaT9x9qSTeIyCRnNW7Z4bicWotzhgd0nRSR35qK6MEZCRQxY6Pnv8ASpWgGQz3GoPJ5KF2QbyqITgVdspzb6fJGY4mdztBcZAPrRbNBDauS7RTSo43K4GR6H1qnYRPOhPO1WyRV3uiTZhuFeP7LahnUAEuRtJx14r0fw14asrnT/tV5dyx2zNtKqQuSPftXA2Etv5fmGPymPylvSus0K/js7kyyzNIhyUgB4U+uKzbsUj3PToY4bVY4BtjQADjB/M0mpNcxxKYoXkhJ2v5J/eJz94diPbGea5DRdZvL+5W2lnSMcsmxSGPsATyK3X1q7j065hureQXaRPMjxISpUcr9D0ojK7KizyDxt4gjmmk05JDJDBdsQCm05yQcjtg+tcxfi2kwIZXnuZO7nCqRycfhUV5qq6xqctxqSSYmYkCFhGQxOcHINZ8xCyDauIkJwGbJ69yKsZ9J/DK8W88EWR86SaSPcjs4xzk9PUYra8Qi4GlM1urF0dX+TqSDn8vWuR+EGpSX/he4SQrsgn2RqoxhdoP8ya9CbG0g8g8c9KaLWx5PP4s1KK2W7ur4QaiEZPsgIZSvO11A5znIP0rftH1TQLl5001LvSgoAmUr5q8ZLE9cHP6VH4o8HeH2ZL+8+2W/lof9JtyD5fc54OKrWni6a6u2t5Ly0TT4QyTy43ADA2jOep7e+aQivqV1rHi/UbW60m2iuNIhdg8U4GHkXHHt161wWpeEbnTYjPqN1LEpnVY7SJCu8DPODz9M+9ddcfEK20+wWy0KExyACeW5ueVAyeuMAmor+yhk0ldbub261KSYAKZHATnoRx2p2E2Naxk1q0t7JdPisLOIs6LksCxHLYB6/WuXvdBl0q2szb2ccuoorTMrtncBwSwP14p1x4wvNGtvKhmVZUAOW5GPSuXt/ENzqWpT30Usb3M2VKytwqdT+oFS2Rco3WqPG1209uEnlXHy9Bn61zjRMNgDklVyu0fzNaGtancajdCeWGESKAhMSnAAGPWs1JnYjYqgrzyevtRcTLDRmUsVYB1xnaOvFQusiNgna2PunoafE5VmZlXPfaalkkkVFSVN2eQSucVNyLjbe3luh5cXBHJ3Y2/nU5nlt0ayjuF2nl9qgAMeOvXjA71BDcPEpRTt5yMHGabJcGU/MCW74HSi40RfaVMTpIMsx2l15+Udalsrea4uktrbaTK/G/jP49qksLGTV7o2kGDIELqCME49KguIZ7K8EcyeW6n7r5zn1pMtHa31oJCtosKwTD74Vt/H1OaxpdOeNHktS0g3BQJGwR+BpIr250+QfaYTKzLlHRskfjWuxMkMd3E8bJMpDOfX/ZFSBRijE0odFAlBwy5KkD6CpJJYpYRGrRRuCwDM2Tjniq0sFvAFkS+gMwGZfL4JHbqazJbpppndlMTkYT5MA1Mosb2GXAZzmEO6x43uf61BHumOyMszsScDipopGSJogrbm+8OwPvUAcGVAr+SQcFqSRn1M+bzBKyEtkHnmp5CHiGX2jPK+lSR6fNd6gtrHhnc9c1WuIGiZgzglG24HtXQtjVbFu01KO3LeZAJFx8qk4A96qvcSLyHDdhjtVb6mgjPUFfajlQ7HWyXN3euy3F48vGw5PBUdqrxeTGWaYEqB8orZ8QaUukao2mBNvkKCpPBIPf9K5tgqHHOO5znNVTSexjJ2NNQREpZmweQO2KJnkkjSOXayoOoHJqok6lljEjKgXGeuTU0jlVWJwxdTuIB6inawky5Yrstd4OQSflLdKXziI8oSvOQAetOtraJLUzMVDc4jNOs4SvBB3E/d/u1D3LJ4be83L/pcaJLyVY9qjufD+oALskhNuCG3FtpHNaFtFeeY7NEzDGOD27VdSIsrEqC/Pyk4yMdKybaCxg3Wgp9kkFoRhOWaTqM9fwrImjutLmW2aUBZV3rtPJ+vpW5DfybBJ5yEKSpiI3mr6yPNGZDDH5ZBVXYfM2PahSaeoWOdsr9DIAGxt4c4zurZ0wi71ASOXjiQ4Cjr9TWB9ria5AtbaWJCcEM3BP5cV01lbC4gV5JBFCMg5OGyKt6jO50q9vJ74yWMTmQjJYLtA9ga19S8Qumj3llc2pke7gKuFkwq7Rwc9vpXO6NbzXyPbwJNtjTeH343Dj5sen407UZZktHsJ5IVjDNl05RjzipWjA86ht7mCCO5R1AD7QwbJ3Yz+VEEs0izRthvMJyT/Ec5PNPv7O4sFSR7chJlwrbuH+nvSWcMpt4SrZUBiQTwuM1tdWA9O+DN2tvrl1ZLcS+XJEGWIL8rHufw/pXr2uWEmpaTLbQzvBKxBWRTggg5r5t8MeIbnQ9Zj1V4cwRHDgjqpGCB619P20y3NpDOg2rLGrqD2BGaEzRbHluoeE7nVJWtGs3fUbVAVvPtGY2HUK4xyc54964+50XWrpnW2s0jE7BAzPzEAeQR79q9H8e2urWMyavo13KrDh4I1zk92z9McVyeja9r2p64F1KFY7fDM7eXtCsAKW7Je5Ythp3hqz/ALO1eGB5XOY1+8p+rVwPjXW31fUHVt0GwbVIOBt9CK6Txnrlsb57WVJPKaIKk6DIzz0ribqzupraSS42G1Q/JJjMhHuabJZzN3cNeyOCGlYYGU4/GliRraNk3KRJyT6VLb21rHqA3mV4Xzypx+ZqOaOKGTaEYqDnk/pUtXIZF9sO8D5SwGMnuKrq3zFn5ycipWAbb8oDHpx0pjbcgLziklYhsUPGiMmMN2NMY4GWySRikLLu+Y8/Sk3HnPJ96BoXDFtrnjrSPgurIPlHGKXaB8uDk87qcmfoBTQXNLQ7iS11AqBlpBhdv3s+grqLzTL2ezK3STIM4AUBl9smuKSRzKJYyRKuCChwa3tO1ad7RhNLMdj/AHVbjJ6cVMkXF6jjbL5aDNwFwFKkZYMe36VYVTFcMXZUxj90OR9SO1Tyxvp9wsysjwyEbVI3Or+p9qa0Q1C88sx26XH+saVv4l9Ae1QaGPqNlPPNmOSJ5WbOA4OR3GKzJLO5gKsbdnjJzlfrzXU3sNubtp2SUQbMxtCcbQT3/wAapXFpD5QggnmjBG4bueOvP1ptks56QxtnygyfN0J6/jVZ/nAXJ65wBVmZgeIwNoOTimfajuOThRjhODSRCKY3LICrNleQRU8ckRVgzEHHQ+tWI5YY0ZwASw4BPQ1USOOS5AnkESMcFwM4/CrRoiqTznHINK8jStluvYVK/lJK8a/vBnCP0zT3tljm8tnBdSMkdBVo0R3NxbaNqEV3dK2oxSDJjQRZCjsC2f6VybRuoBIJU9DXoOl/bZtJu7nzBAsYyOect329xxXManozafZrNJNHy5URo2cY7j2qaU0jCSuYavt5Aq5AsrSq7SYPdm6N7VUABIV+56j0zWhIUjbZHmSHAxjqDW8jNF4tIsagr8p7gZArTh064ubSQxOvBGWB4/OsgGRZI9zZgI5HeuisrxFtxDbqUaTkDd8p7VzTv0NES29pd6bbKbmdcEEiOM7n4GckelVNRv7qFobSRXaRl8xNwztjz2HbnNXmvEkUxy7ZH6YI+bI7LUUsUcl550UR3+Xnc/BXHUVBaMuKZLe5F+yooVCPlHXHPNNk12eS5DwyxJEwBHGRnuT6UPaxssTCBhb7SXCv94554qTZb3cEkSRxWqluAwyWA9PSm+4jSks59XhJgt7JCjKflkxn9Koxsum3bJqI/fAZDRrnB9Kbbw3OnMjp9odTwRu4Ge9aF6IZoPtflvK0Y2kvwxoTAkhv0nxHFuhiQ4YAY2gdABV6aeW+RGErrb7CCc4P0PtWOHWWCOVlkjKkZk3cH69+a1FkeSF1SMBiMgb8fl60SVyiwjaVNZPYzWCTSPERF5QyRzkAn645/CqVlBp1zfQiO2S3uApSSH+8QMEn06VTnt5lu0mjaVTHtV1Xg9s49afJbxxTi8gZiSTjdyxJPOfSpEal1pkdverPBGY2hAKOBuKnrwa9cs/F7eVGrQs6xxrvb3x3rxQaveFWjZhgEbT6Y9a6q01K5itU8sESMuSzHINUrid+h0134pmW6keCSQK5zkHgVjajeyPZt9omeQ53kk87awG1YysXdQzo2doXGaneSS4tmKMrHaSD1wfSqTsBl3HiG2VRCsHnRuu5GkHI9cjtWE7tflFt8szpzu44+lMsEl+33dxqNqV3KTgYVWx7Dit3Tb6xN3Pcqvlwr+7jKn5ix/8A1cVpe4GNHoUR0uaKJme5IBGeOa5y/haCZ4J4/LkibDYPANdRrhzbreNMxndyhnRsbSO230rkrq8nlGZ4gxxhmVM8+uaCWV1Qup2sdy5P4VXBG3cD9a0o7eR4GmJCqOinhiKi8iPcRgKrdMU7EWKojZ1wq7ge4pNrD5WT5verCxCI7AXZvqcUPHL029evPNPQCGMcZJOR2FKFJcqCc+lTrGU4fO7HBA4pjJGpPB2HqO+aFYGPtbIXcwhyqk5ILHFaltpsljM00vyhI87c8Z7ZrJjm2bFLFo1PTuK1ZNQeb/SThwpCtH7DvUSRUTW+yzRbUZZBKq52EfKD65/z1qpIIJLmZTFInAKqTgL71PBeG5spHe6AmfJVJOc1g6jdO8ZWQhZJuOE4GKySdy7jr+7jSyNvHJJKyHBZhhQPQetZk2oyecoiHkIFAwD7c06VpZ4kj8kfIvzFVqHyYkhSVjvdgcqe1XoF7jXlXzAQSe248VYisCkInuvlifO0r1NUSx3FeFVv4RVpVlZTGpEkeBxn88UWQ7IhLwonBbczYPHaqxPzAKTjtu9Ke8RErBFwB2NRkEDJB+tWi0IOB09jS56Dt1x6/Wg5HHakp2GepXGmxR3Bnu1u4ZUUCNuRsj7c9ce5rm9VnW4jkgtbVYbYESKWHzqB2z+Ndz4P8Zza6p0jVjFcTSjYbiRF3TRdk9TXLa5CLe/lheFImbGFil3rj6k5rmpXUtTNrQ5hUZ5QApz/AAjHWr8lncWbZI5VNwWPrSXkgRkMasqqAoOMZNNS+uZyFJJIGOBiuvcx2Lscy/ZElkw0jA5I4P4021k2hkYpliCWI5FUBJucs2QQe4xUkxiUKcl34I7AVLQ7nQ2V9FDd+bG7zSqMI2OnrVm4vJGhM1x5ssByQuOc+tc9m6hMfkOuZB97bx9Kvx6hf+UqTMmFHBCjis3E0TLElq5vbby0aHzF4AGCRVqKC1CvBNI8cuT2yffJrKu7+9lZpY2Jk2hd2eAPam2cs0SsftY34+6/f6+tS0Bqx3VxDL5AaIxsuNrcknsc1fs4pZrh7r7TMHjiC+ScbGb8+RXNpqIST5IFkmVep4z68DitnTbu0aVZQ6wS4wwbnAHoKVgI90n26582LG7GD0XHtVmK8ge4SIrubp5yfwn0qPV5kggUp/pAJ/gboT0zVK3nbygrJsJzyqgAfj70xo6e5CNp8jR4E7DAkbjaf71YRsNTt9Nd47hCj48wnO5ueCOMdferti/2h0e4Z/JACggZ4x78VcuvtN5HNahmFsgXyFGFyeMn+dTsxnPwR3YhkXy9pJG9yfmP4V2UV9bp4dnkWbzDbIpjLDBwTjGPXOa5sWq24KszyyA8tuyfzFRhUW5RIkbEmSwZiwYgZB5rVMktyK6wb1DNJJypBwQD2quWuGMkS5SDHzRjq1XipVlAQ4PJHPX1q7FBEVDOPmU5BHUVXLcZzaW95K7WeC1sRlxjjHv70mlWulz6itwkpjgj4IZsfN6+ldHFtubaRo0ZYyfnGfm+v0rOeLSbOU3ENr5kEbYmRRuG09cA8UkrCKeoeF7G4KOl9tup3YFs/KR2zWauh6nZl4G1e1ht4z0MjY/lU9w2h6nLdPBc3VhbKN0UZJfn074rCkuLI2zRrJczSbsP5mDlfrTJYt35IldJ7kzsowrRklT+dV0OWyACOw9KGeLy9kcGIic4J6UkZiDfKpz9apE3LSsyoCM5+tG1pMMSxb3qJ3wSQ4J9AOaWKUyDawI+poaKRPDazXcghTk7SzDOAoHeqbzeU8g2K5b5Q2On0qwFcEkSsrEbeDjI9KqSIQ2EIUL2pLcJEEi5HJOaWKcwwPCQcSEZ9qQh2QEcelCk45RjzwcU3uZoSNiZ+N7ru6E8Zqzdt5zIsmdv3gM/xdxVcSPHEQmB833qIYzO7ZkG8cqSeM1m1YtMs2sk9xPJBDcGLcvTqMelQXdkbXYtwIwm4ZOfmI71Elxc2U7yRFRIeCQMg1a+e6heQ7VJG4lhuwfQGptYpaDZbPT2vWNq0n2UAbVb7zN6VHNJCZv9HtWjjBCl1JOGptndyW85kCqx67XXOD+NPa9d7Y20cSorPvbBzk0XG2LFBAJGaZ28wHd8qjaR6UzVZV8uK1QQYHJaPr+JI61WmdgwUHBx8ox1NRSbWTefvZ6561SHEgxjODkUlPWPcOCB7mm45Awc55rRM0TNaMyWUySxOwkTDKwIDKfr2/CteFY9R/0uGN42U5Kkgg4rmmaQSZc/Me1aNjdS28bxIQCSGBP8qbim7mDui/q837yKMFQijO7OQM+1UowyTZ8zg9CKjncTybgoC7RkHue+KuQ3FrbQlki81s4KN2oWhDRDczec67gBt9O9JAYhIWaN5CBwAeKhMiNMSW2of4SOlIz+U5MUgZe9MCf7bOZ/3SnA/gHStdnK2ZS4j2M4yroe3TFZdlMkV0rbA+R07VJKy3qNPKXUBigXPy1LRSY83ZknVUk8sgcPj5SPT61fktYLmT5om4PzY9fWswQoEAZiYydwReu6tC1DosiM0m4rljnoahlofDaxWAEskbO75A2A9Pxqk6JKQtsJvMHc9fetW2eR4+GZuMqTyce1WLa3jUGRnG7OFb3PrUNjI7C/tJIGY2vlnOHBzgn/AD6VZuHha3aVLcpEcbPLYkZPqDVibw/bvdvLJI6xIc7B0zVgm2S0khcqSpBttvr33UlJDRZt4IxEiHax2/vFBIGe3B/pSzKmQszStsBKKBggVmahfPZWge5uBFC8nA25YtjkHHOKoadrBvFmDCSRz8oMbHco7cHtUyVwOjstOIX5GC+d8yI+QW/Gs+3wNVmn2SLFH8oUnv0NO0dZoY5IEnkmlkJ2KxyVH+90B+lR6dcGSe4VsLyVwx6kf/XpxTFY3DOjQIGxtzjzPQelRvKtuCp6lwoasmeaVY2jKl8vgwp3A5yPeszVdcaaGKCJCpTIaTuT2zWl2I27izNrcRzxSSugOGAbGT/hVqVLdxB9kKfLlniYnYcdQe/P9Kz9Ev0k07y5UaZwNxA/zmqmuxpe2rWtkC16SHV4dx/d+hxxmrsBW16zuVkkuY47L7Mw8wyWzAfhg81yAk8xixCqpHTpmrL2N8s5i8qXIG8x7+g75HrVYI80YEYUnliD6elBLGNcKXC44HoakHyyFtx2+lQOrH51QLt4K09CMgE9OtUiWl0LaIpw6HHsanSUEg45HqKpxkI/U57VLIR94swPoKbBFlZWcFuBzioJ5olbJHzetLECp2np1yakdlBAMSsP7xqQbIUBkiMmMYNTC4aGDYEDMTkfShWjkLJuA44AqKWRVk27c4GOtJ6itoRuYjE0SRkLnOCaYEhYAEEfQ1p2umz30Iit7fdjnex5rVtvDtzYxGeeNX28jpxXNUqxWg0jm/sFxGpZIW8txwWHar2k2F7fobezh3BM+Y5PGPWvYfDlzYav4eS11OCIJGvG2MZP5Vzd9d+HdJ19YLISxISBKMMBj6V51PMPaVJU+XYtI4/UvCl1ZWiziSCZcbtyE5Qe9c1JB5TbclmYZ4r0K9uLe51SY6ervZqecE8j6VjazoQ1Flm0l/ObGXjA2lQPeu2lWUlroDRy0kSqfNtzgxgHa/c96z+pOT3zVq7t57OYpcKyOe1VSD9SPWuxLQ0itCTywV3KwI9KfK1t9mURxuJgeXzwar57jg+1ICehY07DsXdoU5PNOhIDZJz6DvSmBznB+RerU1PLU7vM3N6AVqzHcvRw+Yw8xGH93PTNRRxyCYgY3And9akXUNqeWltGXH8RJziqodj3K5JycdaVibFuEyQS7wFJZSCWGc0CyKwCWdSkbfxiq6SSeWiEZAPBNTST7xmRskH7o+6RRYQyIIzYEkYU5AzwauTpNabYWCyYAdNrAj9KrxXEEDMxGT74wBTJJJrlvO+YpnaCBSaKRfgzFPHJbfMwbKg8/WtFrq4M2WUpv+8wTINVtKSRLlAIwwLYBPAH41Ndlo7p7WfaG5IKPke2DWTLQkV80ZOQd7jhVXr/AIU+XVlhj2Nas0bYcNg/K1SiLbqMYhWOOXHc8ZqG4Z4XaCdsPy/mJGSvPapsM29H1N7kmKWMox/vAlceuavu9vIdpjUAkrvUdcd/YVxoRi8UtuXXcMsN3y+9dDp8clxY/aQwfDeXkHGfbFS4jQ3WLGSSHy8pPGwCh25J/Lv71zrTwaPIpVNtxGxAeQkOeOQ3Yj04rZ1aWG1O9yykjZIN3b2ri7248+R9ilkzhWY5bFVBN7COo0/X/sSrEqGZ5W8w5OAn0q7ZXtulu0lyuZpJTtROSPeuLgvEto9/kg3IYBSeirVeS4ldy/mtksSTmtlFoLM9VmEkdn9sjgeSWPGAnBA9ea4by73UAZRsBZjIw/xrD+0TZ/10g+jn/Gp7O9eNZInZxG4+Zl68UOIWOxttXfRNyFIDcyKOgJCr6rzyaw3vFtbzZp08oZxj5ScSf4VTRpZZFNrKDGDn5j0/OlJBuFe4ffjoVIFS9CW7GpJJcYW3ugYZHB3BDlsHnk/hWID5IbgKucA5qW/ee4kDszGNVADDtVO8HCYZiD0yODQtRJXHvL0dePXPepYQjAs/y+lZ2Wxtzn2q1buMbSDmqQ5Rsi726g+9OVgq7s59ajRozku+B6DrTo4y74RcihsyFaVs7QeD0NOWJpmwG+tPWHcCAMY65pqZiBLD5jwMVNxixwrETt+8TipT5cmGcdDg4qIHM2PmBx6cVpW2mzXMbyKAsark+9TJ2Vykrm34cjEspZJDFHjuRir+oJc3dxJBayMVC8gc5qj4c0q0n0y6a7lMUioWj+bGa1/AVsJdWYSyKCoLAMeorwsRPeS6FWIdNup/DNh9olTcx42S5GK5nWNTXUrpribHmMM9MVu+L/Ecc2pXlvEFe3U9GHRh6VxVxfx3UxULtfH510YWlePtHuxtHTeH9WilZ4JljjGMBhxV+xuYbG/eWByNwKtxwR0rgPtAjj38jPy5HrVpdauoTazMiCNSRgHJatvqzcroUU7F7xodPkuopbW4LybcMCQea5Z49kAk3gknGzGD9a2b20vddvPPtrJ1VgBgDvWJIjRSMjqQ6nBB7V209Fa5rEaeCe+OntQRgkHGc4yeopM45BxUkszzytK4G8nOQOK1GWpsswjVgQO+cZp8cJU+UXCE8ls8YqJdoUEkbqWUSkBBklvT0qzAvNNDYyGOApKWHLkVTEpCEE5wOe3NQ4bYrbwdx6H2qUgSQ7SpynJIpodhZLhnVEwBg9qZ5xB565/So9pUK5OFNMYbsspyo70DUSUyGRhlQcHjiri3VwhLwvsAHK44NUlUiLerAr70/YY02yJy3IINAGja3TTSr5gEY3Z3J1rV2JHZTsW3Med78n865hwEZXVzjvUjXk6RtCJWMR56Vm4gjo4r9ZEdvLXczZGevtzV2BI5pHSYyO8g3MwPyr7VgR6lDOI0z5ZVcdOtLvuIlCRMu887t3NTyjvY3J4Ire6BtJC0IXqecZ6//qq9YwPcTmGKNsKfmZOFJ+lYS3ktxtWWWNSq7SV6GpW1JbSBjvLMwJGBjAqXEXMV/FF0s1+9tEdsEOB845Ld/wBa5uQ5kJAwMdquXdyJ8s2SW5JxjBqiWONvat4JJBEQcHue1IOOO1OJGMU2qKA9PfpUwijTbvkBB7dahzgGkIBwcUmOxYDiGQtGWB7FT/SpY5ZGUvhAPSqRPOAcVKI34UHk1DV0S1ctmchcF9uew6GoZGluCC7g7eBngAUqLJEMFuPpU4mlmQiMAbRyQOayvYhaFby1iwW++eg9aF3/AHyOvpUy26yrI9xKyuw+QAdfr6VWGAdoJxWkXct6ouRtzs2girkZEbfOpDY+XFVLSPMwBPSr0RiDlJGzIc4qZuxlYqo8y3DYyFJyalDC6mKt0A45xT3kjjnLF8AACnxSRyPlSScdhUrRDsVo5PLGAHZvrxWhBqEixFElCIfvAnms1ImckoruzNtUelLLaXESAsgJJ2lfSpbvoK50Wr3+dBtwmBKTxg4JX3rDtNbubG6M0cxEoXaOe1QPNJnzpDvjHyqf6VnyAu56Z61kqMdmWtSzd3Tys8jvu8w5JzzVTzCpIQfNTNygkHmtDQpLWLUY2vAfLyO3vW1uSGiLSsaGm6XHfGG2lR0z87OTj8q9D8L/AA/8N6tq6WU144gjjLsC4DE1j+JL+1NtBFGFQKw6DqMZrmNQ8QwzsPJXaQuwsvy/rXNCc6j02BHf+KryPwPqDWFjNFcQ+WHV1GSO2P0rx67d5bqWV87nYsc+9SPKHkJD5Hq5ycVf0mwgvLzFxvaNRkgDBreKUFdjuY6qGdVJwCcGur/4Q5PsqTLdhg2OB1roLP4e3GtgTaVZ7YBwXkbFU7nQ5dGn8meUs452r81Z1K3YTkf/2Q==", "path": "images/5pts_ADE_train_00008187.jpg" }
depth_point_42
images/3pts_ADE_train_00013049.jpg
ADE_train_00013049.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 195 y = 112),Point B is located at (x = 73 y = 114),Point C is located at (x = 107 y = 106).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_22><DEPTH_43><DEPTH_40><DEPTH_85><DEPTH_14><DEPTH_27><DEPTH_94><DEPTH_16><DEPTH_16><DEPTH_119><DEPTH_58><DEPTH_81><DEPTH_15><DEPTH_47><DEPTH_12><DEPTH_12><DEPTH_0><DEPTH_55><DEPTH_55><DEPTH_98><DEPTH_49><DEPTH_31><DEPTH_84><DEPTH_33><DEPTH_76><DEPTH_25><DEPTH_32><DEPTH_69><DEPTH_60><DEPTH_4><DEPTH_49><DEPTH_64><DEPTH_31><DEPTH_25><DEPTH_1><DEPTH_41><DEPTH_57><DEPTH_38><DEPTH_84><DEPTH_4><DEPTH_29><DEPTH_74><DEPTH_74><DEPTH_19><DEPTH_57><DEPTH_57><DEPTH_1><DEPTH_36><DEPTH_77><DEPTH_4><DEPTH_29><DEPTH_72><DEPTH_73><DEPTH_82><DEPTH_57><DEPTH_41><DEPTH_57><DEPTH_15><DEPTH_77><DEPTH_4><DEPTH_29><DEPTH_40><DEPTH_66><DEPTH_47><DEPTH_9><DEPTH_39><DEPTH_94><DEPTH_74><DEPTH_77><DEPTH_4><DEPTH_3><DEPTH_36><DEPTH_70><DEPTH_66><DEPTH_23><DEPTH_16><DEPTH_57><DEPTH_15><DEPTH_77><DEPTH_18><DEPTH_38><DEPTH_31><DEPTH_29><DEPTH_22><DEPTH_16><DEPTH_39><DEPTH_57><DEPTH_31><DEPTH_73><DEPTH_27><DEPTH_64><DEPTH_64><DEPTH_74><DEPTH_38><DEPTH_33><DEPTH_45><DEPTH_2><DEPTH_11><DEPTH_75><DEPTH_4><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
3
[ "B", "C", "A" ]
<DEPTH_START><DEPTH_22><DEPTH_43><DEPTH_40><DEPTH_85><DEPTH_14><DEPTH_27><DEPTH_94><DEPTH_16><DEPTH_16><DEPTH_119><DEPTH_58><DEPTH_81><DEPTH_15><DEPTH_47><DEPTH_12><DEPTH_12><DEPTH_0><DEPTH_55><DEPTH_55><DEPTH_98><DEPTH_49><DEPTH_31><DEPTH_84><DEPTH_33><DEPTH_76><DEPTH_25><DEPTH_32><DEPTH_69><DEPTH_60><DEPTH_4><DEPTH_49><DEPTH_64><DEPTH_31><DEPTH_25><DEPTH_1><DEPTH_41><DEPTH_57><DEPTH_38><DEPTH_84><DEPTH_4><DEPTH_29><DEPTH_74><DEPTH_74><DEPTH_19><DEPTH_57><DEPTH_57><DEPTH_1><DEPTH_36><DEPTH_77><DEPTH_4><DEPTH_29><DEPTH_72><DEPTH_73><DEPTH_82><DEPTH_57><DEPTH_41><DEPTH_57><DEPTH_15><DEPTH_77><DEPTH_4><DEPTH_29><DEPTH_40><DEPTH_66><DEPTH_47><DEPTH_9><DEPTH_39><DEPTH_94><DEPTH_74><DEPTH_77><DEPTH_4><DEPTH_3><DEPTH_36><DEPTH_70><DEPTH_66><DEPTH_23><DEPTH_16><DEPTH_57><DEPTH_15><DEPTH_77><DEPTH_18><DEPTH_38><DEPTH_31><DEPTH_29><DEPTH_22><DEPTH_16><DEPTH_39><DEPTH_57><DEPTH_31><DEPTH_73><DEPTH_27><DEPTH_64><DEPTH_64><DEPTH_74><DEPTH_38><DEPTH_33><DEPTH_45><DEPTH_2><DEPTH_11><DEPTH_75><DEPTH_4><DEPTH_END>
195
112
73
114
107
106
null
null
null
null
159
64
84
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD2QNxVmNuBVBWqzG3vXbOJzRkX0apOoqtGeasDpXLNG0WLRRRUWLCg9OOtH8vWjt6juaLBoc7baebHxjd3sTAQ30C74wf+Wi55/EEflVbwvGdL1TU9IRSLRZjJbv15P3gT+VdUQTjnA9axr63eySe4hjkmmSRrmNVfy1JwPlYjPHFLW409DZXHbGBxxS1UstStb+0iuoZ0KSqG5YDH4U+e+tbVA81zGqk465/lVCuWKKy28R6QnL3yDPQEHmoJfE9j5Za3dZSDjBOKkdmbdH44rnI/FsKhmuo44QPu/vCSf0oPjCxkiJhYFvr0pNhZlnxHbpLYrPtwyNj8K4G4x5hxWnqviU3R8qa6TYGwAq47Z5rnp76HJKsz/QVtTmktSZWWgrt1FVyarSak/O20LfVsVCbyZlzsWL/x6tXWgjG5d6ryKjIXdxg+4qg95dEYEyY/65iq7Szscm5nP+45UVDxMEJyNQnPC4P1p/lME3MyKPUkViuXYYeWRx6M+aqNa22/f9ni3eu3msni10JcjYuNQs7XiW8jz6KS1V4te095VCfanIP8EOR+eapAlRhSQPQVBdTGK2ZgfmJ4qfrbckhc7I1nWf7UcMqGY4DDB6VBIzs4CsVAI2sO1V7HLWjDkkuTknvU5jcnDYwOlbSkpfEbQbtc1ovE+pLbmItBJKoOHcdQBVSDX/EF+7bLiOPHX7MuCPxqk8J2sAcZjIBrc0JDBoJUEbjIclRjPA6152KhShG6OyjNvcLZBcRqL+4vZpi3zCRsr9Kp3Xhq1urppS7wxk4WJFr08abZqp/0e3VTgEkAHOOtEs1jpoBuLyK1HoTzj6VhTw8m3JOx0Sqxjpa5wFv4Vs5lCx2lzLnjLtgflWlbeBYEUP8A2XYD3lGTXT3OvaNbwxyzairrJnZsXcWIqivimzMtwkVtKy28XmOzZXA+laqh/NIlSla0YjI9BktkVIbmO2HpDHx/OrH9gxNgz3Uzn1BwTVG58VTHw/FqlnYqwacxvvb7gwcZ+uM1Ti8V6pFJMtxBbsTErIYh90sBg/rU/V6KZpGNaS1N9dC08NtEEsns7Z5+lWY9MtIB8lrbxk9cDHfHNcq2q3F94Lmka6dbyzm3SNGcFgW249utZBMtxb3sou5mjt4U8xJJCSxZuoH41paEdio4arNe8z0Ka9tLRGZryJEX7w3Z3D0FYuo4bXkDHJJXk96w/Df9k/2yE1O3VXEQEBc/JuPfFbuogjX17jeuCTnisMZJONkKNH2crHJ+CIwdGlXqPtD5GM556Uf2wt5qUEw+0Dy5wqwRrxtHUn1z/SjwTn+xbgg4/wBIf+ddE53BNwBCfdB6D6V5868KVaXMaxhzRPS9/APNO85gwRUYlv4hjA+tclY+NLLU9O+2WMTDIz+/fC4/Dn9KxB8VJJNTNjDptuGXrIZDj3619hKrA8CNKR6zbvkAbhkDnmpm1CyhQtLeW6ADJ3SAf1r5317xAEknubTUL1rqR9zBbgqiA9gAfp2qCw1i2a3SXUNMW4lZcs8qlxv9ORXNJp7G0abse/Xvi/w/p0Cz3WqQpExwGUM//oINZ0fxG8OTJLJDcSukZxuEZAb6ZxXgj3l62uR3tmjRxIMtBE4RSSMdM471prrGpMALiBSNpUKzEg578elToiuXueqr8VtMvJBFZ2V0XDfMZgoAGfYmpdU+JVja2jNDaSvNgHEmAo/I14vaQTW3msJlDSL/AAD0Oe9SSRhlYPM/JBwcEGlcaij0n/hY11cwF3uEtM4kVBGCCPTPrxXL6t441y/kj2agRCSSYvugg+uOv0rENzEYljMSSbcgHHSmtcwef/qVU9vkoKsjffxAkcSvDawJNwpIiGG96r2ur3sc8sltNLDJnojlRn+tZgebgBHO36CpP37HOxRu55akwsjduNcurlCswkdscHjr781WtLny1bzHCuR0HY1miOY8HZ+tSCBwfmc9O1IpMtG+l8sIZcux5YDt6U+N/MYxK0mewDY21Ra1aRNqsdx6Z7e9a+n26wRKCdxX78h71EmiJ1LGhFGsNrtxksc5Y5NUp4ucx5/OppLgMeOQKZvyfl6VDkczbe5ntwecg1Gcen41flhDqT3qi6FMjtWTIZG34/nUZBxjNSGmGobERtxUZBqVhTcVPMSyLHOKz9RYllQdB1rRkYRI0h7Csk/OxLA/NzWlLWVxpXI9PH+isT2Y/wA6uBN2CKq6cM2zcfxN/OriHaq59cV2SOqlorDGjYgA9+K2rKJodJZMchzwO/Ss3GZIyD/GK3Ix5duy7+hyfauLGy91HXRjdlnxlds2pJHE7gWEaSuq5wznqD+QqOwu9Jm8RahqOtiO4ZvmjSVd3HoorYl8KxTXNzLNql2ftAy8a9Dx9efxq6nhvSBaxwNaB3RNhm/jz61ooyaR2KtSirNHCx7bac3kaNHp6X6mOUD7q88YHStLxDq0eo61e3tlJL9nnEcYHlk79oO78M4rsNK0qz0vTVs440lUEbjKNwcdiQaEtp1hC/aUUjPMUYUHPTHpT9m+pMsVG90cBGLy40q8tUsp2SeVZQPL2gsOP61eOjXqw2EcGkunVp2d1BJzwOvauxSynwu+/uHCqo2lz1HepTaQvKJJELuCT8x65Oaaop7kSxr6HHReENZdrvdNbW0dwBtTeexB5wPar0Pg7JLXd8WdkCP5a8EV1IA6BV9uOlBwOuBR7JIiWLqPqYg8JaIbeKGaGV/KYlWJ56VW1IIut7YxtVCuBnsAK6EOvdgevQ5rm9VYDWJjnOB/SuTHK0SqFSU3qc74QjMWiEEffldv1rcaqmmwC2tjCOg/xq2eleFipXqN9z0KK0OEtliso/LS7kMajYQwxx26VDFDYxytMUWSQ8u+5ic/StaDTY4k24aY5zucY5qylk4yVt8g/wCwK+uujxbMylVGbelqCT0Plrz+NTMl5JH5bRbU9pD/AErXSwlbHyFR6GrCaa/TgfQ0JhytnMw2t1FJ5SwrsH8Zwf581dFpKwwbj8hit5NMAPLVONOj78+9HMHIc4unx55Zyfc1KtjGCPkz+NdELGJf4c1ItrGOiD8qTnIfKYKWgB+WIflUjae0wBMQYr932rfW3UD7ozTvJ4pczCyMUWMx6gA+9PGmOeSVrZ8qjyqLsdkZaad6uRT/ALAvqcDrWiEHpVC/uli/doeT1xUynbcznJRRWZUV9sS5PQmpySF2DgDrUMCbQWb7x6GpScnrWHNdnK3cAOakGAKjDD05+tG72/Kmri0HE81XlUGpd2OO/vTJATz/AEokxOxVZBUTCrDqw/hb8BUTcdcD61hcm5Ew4FN2/MMinNJEo+aSPP8AvAUz7VbByrTxDJxy44pWYrFXUjsiWIj75y1Zx5IHvU11I0tzIxJZQcKw6EVCPvD610UjVITS+bdf99v/AEI1bcYXHuaq6Z8tsh/3z/4+avEBm5HUV1S2NqYsXzTRD1kT+db8kZKMgHJNYUCYu4PeRP510ki4d/pXBjZWppnZQ1djrJr6zhb95dRpwO4J6VHDqdncy+XDL5xBwQinvXFXCKjmZ0BUKSM8/jVnTrgwarbmCZoNzo0jAAqV5ypz0qaOM57I0nQtdnalpTIIxaTMx6n5cZ7d6JVlhQvKojVepcjBrgb26vDb+IDdX7NBPNFJaFJdpWI7s7SDn05rL1GUHSmjhuLiS1Y3yRM07MSnmptySfSvUjBaXZxSv2PRL7V7DS4fMvdQtoVwCCMtkEZBPpxS6dqVtqkVy9hfiUWyq8rLHnCldwIyOeK8iu7z7Totu0kasYhbqEYZLFMBQc+orubS7mivfFk7RLZP5MTtCgCiM+R0wOAO1TV5YFQi2jWTxBp0um2epq1zNa3t59jiIwpD56kelR32vNa6jc6bbaW9zPHO8R8yQD7kXmkjnpiuDM0kujQWFvIr+TdxXKqpyAxhDEg/71WdEvZ9R1aK8l3GSW5uS3ByCLUqR+OKr3VDmEoybsej6ZdJfaXb3qwrCJoz8qjockVia1/yF5/YgfoKj8N3Uw8P2aQvuKBlKg553n8vp1p2rSeZq9z1BDDIPrgV4mNrqeiOzDU2irbDAYe9TNxUMDD5sdjUrcmvBxM/fPRpL3S2IE/uAj3FL5Y4+UVaC+1Jsr7Kx4xW8rnOKcIhnpU+3FKBVILkHljPSn7Fx0p+OaXAxQFyPaB2owPSn4oxQA3FIV9qkxRikBHjNGw9xxT8d6hup0tYtzkkkcCk5WJk7Ir6hcC2i2r989vSufmuooX8yd+Op4qxPI8r7pDls8fSqtxs8p8oGXPQ1yzmpOxwyqNuxKNYtTwm9x/sqaUatCc4tJnx74rKutMin2ujPE4HG04H4iozLdW4xNGsiKPvp1/KtoU4miRqS640WNmnNz03ODVd9ZvnXKW6IfdhVI3cM8f7tun3kJ+YfhQ0iqcn5R71sqYckSV7/WGPE0aD/dBqF5dUf72oYHsopvnx9DIv50ecnQOv4Gq9lHqNQiJ5dw/+su5G+hIpPsqn70kp+rml89fRj9BTTcD+6/5Ueyj0LVOK2JIbWABsxFj6nJqKazt5FCmAbmkwTyOMGnJOcHYp3H7oLYLfQUqvK7xs0W1C/XdnsaOSJXIim8U1keNzxY4HpUsUiyrvjO5QQCfSr7jcm0ntWNqaPYf6bAMMvBiPQ1HJroTKOhd00ZtUH/XTn/gRq9xuT6GqOlE/YoSwCsVZiPTJJq7HguM+lXPYdMktjmaAnvMo/WuluPvMBwO9czApE1uf+myn9a6m4GZWHtXn4/8AhHZh/jMjVVuPszGCPfHhhJ8wBxxjH61Xt5pZb23iQjyE8pnHGWyGzn9K0ZY9wYnsetUEstuq/aBJsXbkHoM+lebh6yhZs7px5tDIt4WlGlreSh4xFhotpXYq9VP5iptRgJgmSKFkheIogUHauSDnPQdK25ojMEDBdqZAcDnFRzWcn2d1E4ViBkdARWyxsnK4lTjy2KM3hjUr60j8iFY4xBb8uQFZo1GTntkjj1HNbV9o2s51TWHvLaOG4t1M8AUyFsJjGRxW/ocE8dnaDyjIUhkUGRSMgn5cZ46dKtPY3E2mTWk0UUKOhU723nkcn5SPrivU5+eN2cnuROMtfDqNqMbLqARPsUdw8Aj2GP5Bz0598Vs2PhOzeeDyVu54GRpw6KyBtwKnH4/5xW0mmGS2ghlu2zFEIllgUBioXAByDVaXwZYXDq7XerHAxtE+ADjjAAHFXGXcuM4LYnhtf7C02WNtqxIxdFMYDdPu5xyc965NWkYeZIxaRmLMf8+1XdSSO0jt9HtpS8FnJvkklkLM0h7Zz0xiqhlQttEgJHYHmvGxd5zska02kuYmthzIPcVM3tUcHV/wqU14mJXLI66LvE16XtRt4p2K+2PFsR0uKftFIRTQrDMUYp2KMUBYbijFLS0XCw3FKBxS0opBYgnmS3iaWQqEXrk4rmbvV4Z5QXnG0n5FHJrrMAhgQCCOQagm062kjH7hORzgVEo8ysZTjzaHKrIkoOxZH/4AaZcRS+Q/7o9B1+tbr6Pty1tKYj/d7GsrUxeWsLCWEOpIG5Oo5qY0UiPYpEX2dyvIxTDav/ex7gVdUgjBG0jjBpdvPAJrVxXQr2Zy2tWHl2z3GVSVCuDH1bJxTDp5QDzCW+UHk1ra8v8AxKX4AHmJ1/3hV5oN6oSnVR/KqvYqMEc0trH1204RBTworYktNnQcVSaIhmO0U+YfIrldQFPNB4NWfJkKgiMn6U1beVmXMe1cclu1FwaLOjwJKJiyglXXbnsTmmXD3H2OGdktlK6i9rIqqRyu739q09Fhjjjk3yxqxdTGPXg81kXdxI0Udp9imEIvXufNY9WJO7t0yaVy0vdLbIyyKhEfJOcVk+I1/wBDOB1/oK2Vjxchju64JJ46VneIIz9mPTG1v5GmmZO/Ur2fFtEMf8sx/KrUeQ5Pv/So7deIEHeFf/QRVrytpb6j+VE3YUFqOjbM1vj/AJ6L/wChV01422U5JHSuWg/10Xs6f+hV10mfM/KuetR9rCx0Qlyu5Q+RgMMTnrxSyQhmwUOPY4q5nPFJt965I5fHqbSxMirsdYyFTp0ywqOaCZ2jC+QdjAsjgncPwNXseppD0Pv1rSGBpxZDxEmaDa/coqrDb2saqMBdrcD061FJrWoyqRugUH/nmh/xqgV7DpRjArr5EjK5ZGp3ykYvZlI/u4H9Khku72Rtz3s7fj/hUfejA9KLIRVFtbqzHyEZ2bc5yTlvXrUohRD8qKCOM461JTQoAx2qXTiHM3oOh4eT14qWoofvSfhUtfH4/wDjSR7WG/hm6Rxikp5ppr7M8gQ8U007rQelAWExSGnZFIaLisRkUAGnEZ70KD0pXAAKXGKA3+NeG23hG2n8MWuofYNXbzdMuL2S/j+a3ieOSZVQqI88+Wgzv4L56Cqirik+U9xPNOf5iowfu9qyPDP/ACKekf8AXjD/AOgCtZj8y/SgT7liCwkulyrxpggfOcdRXjfxC0nTtO8U6jf6uLmdZrlLeKOzlWPG23hd2LMrZ4lQAYGcnkY59eWRo0ZVVDk/3c15J42n1dPFOp7vD41LTmlhliM1vKY0kESIWVkK9cAEEkHAyOKcdyZbD/hhZW8l3r8dvN51vHJEsUrLsLrmTDYPTIGcV3b2MStxuPuDXEeAIdUjvNbudStZ4ZrmRJGM0Rj3sS5bAwO57etdtk4PzEU2tRX0MvXoFTTFG3AMqDk/7YrUKF1VUUHCjnIrM1wb7WPccgTQ9f8AfFclPpkd0xuPLDHc49OhNJjWx3M4hjyJJogR6tWPNc6dvYNf2yf7zVyq20UTENEoYdRipFZVB2qAfUU1FMlyZ0TappEahTq1oCPR/wD61V21rRdxH23zQRzs5rmJZCGJzmoDL6uTVcqFzHaQeM9Ns4RGv2hkGcqLbPPY5z9eKJ/GdpqKC0iF2C+Nm6LABzn1riSwwcNip9PL/wBoQnzO/FDiilUZ1F34w02zu5ILm5aOYEbk8tjt4z2HvVWbWbbV7PNq/mIBIpbaRztJ6H6iqFja6YfE2rX2syWcdmTDaBrqNnAMoBZlCq3zCNXweMEg5HFVPD9lPZW97ZTrtmguZ4pF9GVMEfpSsF7nSxjE8IxjEMf/AKAKsLIAoB5PNQLxcwj/AKZR/wDoAqSMZdlxkkGpqbIcNyQJiSJh08xP511koxIfauSTKlBuziRD+tdZLy5Y9zgfXFShjcYpopx60lNKwxuOaQinUlADSKQiloosIbjmkIpe9BpjEIptPIpuOtJgEI+d6lpkX+sepO9fFY/+PI9rDfwzdIppwOtPNU9SaSPTLmaJwkiJlSRn9K+0seO3YsA56U7DdgfyrzDV/FPiDT7dZvtccheTaFWJVAGD3FZK+OPEcgAaZlz/AHTinYhz1PY/LkPAUke4p3kShfu8euRXi7eKvEUnBv7lP+B//XqE6zrszgHU5zzzkA/1oSJdSx7TJ8gyzqPqwqs19axnL3MQ+teNvc6q6r5l6zbicdqYxvTjfdMT7Mw/lTshKrdHsR1Sw3BPtcRcnaBzz+leNRP4nh0y3tI/C84lgs5bKO7FpceaIZGkZ1xu2HPmuM7eh9RmrmiiUa7p7T3T+UJgXLO2OvfNeu2mqWWolvstysjDqvIbtzg845HNS5qLsbxoVKkHUUW4rd20XzK3h6GSDwxpcUqNHIlnCro4wVIQAgjsa1OpH0pCflYe1GMfpQmSw6Vz+s6tYXFnLbQ3UbzAocLyD8w6Hofwrcniea3liRzGzoVVx1UkdR9K5a/eUaDDpsmmzQSQlA0pUeWpyBuVh1Jz29T6VnUnKL0/ryO/BYajWi3UdtV1Ssv5nfdLsv8AK+pJ/rpP94/zph+7V0+WJmDID87D9ahlRQcqvyk/lWx5jMfWB+6jB6faIf8A0MVRs7ffpxZcEi4kH61o6x80cA7faIf/AEYKr6dtXTZfT7XIMDr1qZ3HF2Rj31jk+ZwDjJrJjhlnmeGKGSWRPvBVz1rs5NOjkh8y4nKKRnCrn5RTbWC00X545LqQ3Chs+VngVUac7EuSvsccfDWsyNlNNuMH2Uf1pw8Ja0//AC6BP98gfyrvbe+S7kMcc8mV5O8AbfrmpiHcArPE6dAVP+FVySW7Gmux56PBmtZ+7aD/AHpD/hUq+FtR06aG6uJbMoHwRGSTz+FdwQ5QuZFX3C5xWDqWruspsLqFTuf5ZFbGQPam4NK9yVJN2scprvhTVry+meO7gFqzB1iaRgAwULnGMZ461f0bT72zjk+3zie4mlllaTeWLZj6knkng1vTagsimT7O6xHGHJB/MdhVZ3DOqg84k/8AQDWManPsdVbC1KDXtFv5p+q06rqt0OKhbuI9vKj/APQBToT+8LZ6g4ofi6h7gwx/+gCpFjXaCueA365p1XZIwhuB+RUJ4AKkn0+atdvEOmM2ftaYPueorFlBFo6nrsxmvMsTc4lbqf4j604LQibsez2ut6ff3QtrafzJSrHj2q+c968w+Hin/hKQSSdsD16hnPNUxwlcSilNJUliUdqWg0AMo4xSgc0Y5oASkIpcUHihjCLG+T8KkPWo4/8AWP8AhUlfFZh/Hke1hv4ZukVU1T5dGvGH/PP8+atmqmrf8gO8x/cx+or7U8aR5X4ojVdPhGBxcDnH+yax4kQxqS2DjpkVv+LQBp1vzjNyMf8AfJrEhR/LUgAjHpH/AFpSZl1HLD0IKn2+Snwq5l5iGOehTP6GpQnQtAz+/wC6pVEe/It3R/X5cfpUp3FUVkVZgzG22xEncxILH0qQBgSTEE56q0n+FPGxntw0bvy/3SfQ+lTZjydiSJnn5mmNMzpK6JNJTdq1sscRuCXH7pi4D4IOMsMDPSvQYGm1HWYLxbW4tYoUdWaZQrSZxhSM5wOuema4zwxvfxLZAMSBJnH708f8Cr03+M8d6zdO8r/1oetRxkqdH2fKutnropKz8n5dvusHhWPtTzyCPpTJAdhx6U7PH5VscYKePesnxFzpODxmZP8A0IVpNIqDJPX2rK16Rjpikxnb5yYP41SIYtycTSEf3yf1qFZGHcEc1LcPhmDpg5qswBQkHnFNLUzbMy7kd1jBbP8ApUA/8iLXLTahcW0F1scjbLKf/HjXUdTGG6/a4P8A0YtcffjdBeEDgyzY/wC+mqpfEhX0O2mdn0nYkzRPLCAXCliARzgCkuH2GIWmtXKeXEBn7O2Mj6irdmGFvBs3D9ypyvXpT/MlFzKvmttUD77E9frXR7GL6mbqWKFoIRdzyT3hmeVMNLJbEfoBir1uLK2t44YnTCf3IyM/pUb3qjqZM9+OMUqyeYgYHg+vFP6su5P1h9id54nDKm/52GR7VwmvH/iooeMANIeTXZCT51GcsT25rjddw3iEZ7B+fSm6ahFpke1bmpLRou2MMl3DhpVjiKBm78ccUmxotQSMnIKybT6jY1WNNiWbRUjdgC8SZP4CmNbiG5gQuH+SXDA5/gY1wqnGD0PRrYuriLc9ur0SWr3enV2Jpf8Aj4hb0hX/ANAFNjlIMgPIAXA+pqScYaE/9MF/9AFVkDB27A7P6UVdTKG5YnkDwv65PFedgSYbEeQCesgHf616CwwJRjJ5x37VwbxuHb5wOeR5APf3FKOxMzf8A7v+Elw0ar+4c5DAmvSsdfrivOPASv8A8JJnOQYHx+5C/wBK9JI+ZsevrTKhsIRSYp2KKRY3FFFFACdOaSnYoxQAmKQ0tGMihjGx/wCsfj0p/emJxJJ+FP718VmH8eR7WG/hm+wqjq3GiXf+6P51fNUdXJGjXH4V9qeM9jzPxgP9Bs1H/Px6exrFgMYQLls47Bf61teL2ZbWzw3Jl/oawIXdQCXA49KTRyylJPQ0UZVAxLLn/cT/AAp7SOf43IyOCFH8hVIB35E0o+if/WpwikJ/4+LgEdCY/wD61CSM5SnbUmjkaJo2VnQruJK456+tS/ai/wB4ucY6tj+VZ6rMyLm5mZjnhUB7+wp2y6XgG+P0h/8ArU9CISlbQ6bwphvFFmBG4+9yZSf0zXog6k15p4JSb/hLbXetxjD/AH4iOw9q9NHVvrU9TupOTWo18lT9DSjlQM44FI5/dt9DS/8ALMfQVZTKzFnkJUYx0qhrkjf2fh2HEiZ+taKdSvvWZ4gB+xfcX/WJ3pkMSfc8uSwOc1CSBkYqxJ/rBn1NV8El+MnYcVSIZlZzOuP+fu3/APRi1x18SYLgD/npN/6G1dZA5bUGjznZe24IH+8prk7hd1pMScAST/8AoxqJPVA9jqdW1W402HTYLU4lmgBOfQDio/C+s3Gs3l5Fdxrvj24YevPFY3iS7H9tWSnlbeyRcep5P9aveE4Et8TxyKzTSy+YgblAAuM/ma6G2loZLV7HU2DrqURe2iHyMYyXmRRn8TU4tbjzZIltIWKAPj7XGBjn361nrHpVqpaVbeBXO8l5du4n6nFO83RF+ZbmxwfSY/41hzz7m3JHsPtp1u7aSZYHhKsOXxk/lXFayP8AipCuODv6/Q13MMtnJbzCykhkTeu8RNuPfHeuF17C6/u3YYeZnHat4uTi7nLUSUlY2NGJbTLYMgcNGBgfSmFQuoFAgQKHwM+sZpuhnGjwEzbVVV+f2xUrAG/LCXfy2Gxwf3RrCR0LdFi5GXtwP+eC/wDoFR7Adgx1/oKln+/B/wBcV/8AQaMYSI5/vf8AoNY1d0aw3ZEUzE7ADOSP0rimikJJ+Tk/329frXZxM4DIw+Q5YGuJYpvcfNnd12n1oiZVZ8pv+B0MfiMA7cmF+jt/jXo+O3evNvBJU+J0wTnynySPpXpJ6/1qh0p8yDFJjFOoIpGozFGKU0UAJikp1JQA3FFLQelAyNf9ZJ+FPpqf6x/wp5r4nH/7xI9vDfwzeJqhrP8AyBpvqK0DxWfrX/IJlH+0K+3PEex5n4tY+VYjA5kPX6GsmMSFVxHGeP7pNa3i4ZFh6b2NZ6RqY1zayNgdfKJ/rUSMVuKomyR9lUj/AK5P/jTnRUGZIgnH91h79zThACp/0Vs+0DH+tMaMIrHy2QjruiK9vc0IVW3KRwqZPKCw+YvJ5Rmxz/skVOY8/etME8cQS/8AxVQW6I/ll4TJgEjCFsfkRUxt1BH+isO//Hs5/wDZqZFL4Te8F+X/AMJVbKI9rBJDgxuvQD1NehjqeMc9K868ExlPFluVjZR5cucwMv8ACPUmvRARzil1OtfCJIcRP/umnfwgUyU/un/3aeRwKsUivLmOTcoJXvWT4laAacjiRRumjBBPNbZwx64ArD8X4GkQFR1u4qZLJJ3Vsxx/MQTyKjaTCFQuGCnk1auOHfHHzGq77jE4GNxQ8/hTRDRzWjnfeSEnJ/tCA57n51rkNTl22E4XP+uuP/Q2rr9Hyt3gck3cJP4OtcTqfNpdEHjzJ/w+dqb3F0LniUN/bch5/wBUg+nyCtfwbEv+nS7QGLqM5/OsvxOB/btznOBHHj/v2tbPhRHgt5HZVCTsdhVsk7QM8fjVsUTqPs6zXdsm1CFVnw2CMjGOtaRtIWjiEUcClhk5Cj+lZsVxslWTcwwpAzxVldSKFMZAUYBWsm2bJA6qI2AWMDIB2Ywce4rz7xER/binvmQH3Fd8135ytkE88k15/wCKyF1ocYwz9K6afwM5Ky99F/SDENJjjmJELQ4OOo5HNWVeIXsMULl4kjk6+uw1R087tIUntEMfmKnsx/pkeTwRJnj/AGDXO2bR2NS4P+oJH/LFf/QKQZPk9+G/9BpZxzar28n/ANlpiuPk56Z/UYrOt0NYDI42BQEnA3D9K4yWA+c5zP1PCxE12+Rsbdzh84zjIwK4iZrXzXBjgByeHuOaUSKiTN3wOgi8SfMZceS+BJGUHb1r0TvXnfgQRP4jJiSNCsD5Kybs16IepyOe9WENNhaKKKRY00uKWjFADaQg040CgBmDRjinY96QjihjI04lk/Cn9aYv+tk/Cn18Rj/94ke3hv4ZvtWbrZxpUg/2hWkay9aP/Evxzy4/rX3B4ktjzbxXy9gvbL9s96zEWMLyi9P44if61o+Kz+8slHXa3Ue4qnHbsUQ+TAeP+eWf61EjJD0EeMgR/hbn/wCKpk0i+WQuB9I9p/mamFo3VreD/v0P8ahng8uMkwxqNp5VNv65oRlWehHAiu8ZZGYBD0j3/wBRU4hGMeU+cZ/49z/8VUNpGJWX5QwVc/6vf/UVZMGc5jGP+vUf/FUCo/CbvgyIJ4stiEwfKm/5Ylf4R3ya9A78/wA815/4MjA8VQMEwBBLz5IXt65NegKc8/1zS6nYvhGTf6l/pTyeB9aSX/VOP9mlPQCtBMibINYXjBsaPaj/AKe4632XNYHjD/kFWn/X3H/I0CLt199/941Xc/u2/wB3+lWZeXf6mqsgICjt/wDWpomRg6bGkN1CUbO66iz/AN9iuF1Ab4LgDkrJcYx/vtya9GW3S31C2Az81xGx/wC+xXnt2gKN7yzZPt5jU76kdCfxO7x6287RyeRMI2hftLhFBI/EEV0GiSrFYWKSfKwMrYPZSFx/WuZkuLy80cW8rxvFCwWI7MuB1xnPSrsWsanAMQrYKcAAG35/HmtlZmV2mdk0lvLsMm0r9aUGy2gBR+VcoPEeuYx/oH/gP/8AXpw8Sa5ngWOP+uH/ANejkj3K9o+x19q8CssUZGGb7tcR4rZZNYjwwzlyRUj+JNewSgsgemVgwfzzWM48y48+eZmn547VXMoqxEk5Sub2mnOkEjoI/wD2YVYtcC6j+b+F/wD0E1Fp0ZGk4DZHl5/8eFTQKBdRH/f/APQTXLfU3itDVkyz22Of3P8A7LVaNWLsNvTb/OrRGZbYj/niP5UqwsocseuMfnU1XaxdNEOP9KbjjBx9a42WacO/zSgbj6EV3LwBMv165/KvPp3gEzg+XnJ48jJ/nUxYpo6fwJufxDKZG3AQNjIxXoHc/wAq82+H8kX/AAkhCbQfJYcR7TXo444rQUB9FJ2pQKRoJilxxS4oI4ouA3FJilxS4ouA3FIadiik2CRXH+ukp9NH+tk/CndK+Jx/8eR7eH/hnQkCsnXB/oaY/vj+taxrJ104tIx/t19weJLY808VnF1aAZJ2t/MVkgkqCLUMfWtTxWR9utAeoVifzFU0a24GGJx70pGCYwZYc2lNkBCswgCHHUAZq0GtT/yzlP0JqK5EQUlUdVx/EM0ktDKrsMt4y74EYfCD70YbHPuanEIBANsnX/n2T/4qq9rH5khHl+ZhAfuKcfmastATwIQM9jDH/jTsKm7ROh8FRKvidCIlXEEvIhVe3sTXfISVBrz/AMCxsniMZjVcQSdI1Xt7GvQgKnqdkNYjZP8AVOf9mg9vell/1En+7SY4H0qymIcVgeMB/wASm0Prexj+dbxNc/4wJ/smyHrfJ/I0MkvTj5357mq7kgYB4qeb5mf6mq5xihMllGbIv7M56yoD/wB9ivPpwTBkDpJMP/IjV310SL6zwekyf+hCuMaIvp5bH/LSb/0Y1NhbQrabZreQyQ+YEENvJccjIbaM4pVyQCBx1+lO05jEJcE82sgI/A0ikcAHoM1tCxjIfwBSbR1wKNwxyaVfu5H61okmS7jSMfNkDHbFZ1xgPCQQTlu1aLZAyeO1Zs/+tj69XFRJIaubehOW0d8k8Aj/AMeq/b/8fUYPT5//AEE1neHudGlI9P61oxf8fEfH97/0E1g1qbLY18ZktB28mkJIx1POKB/r7Mf9MqPLZ2Gcjac/Ws8QtUXTHsWIY9iOBXBzSyrK4VZR8x+7OQP5V3SBwXJU4IwMiuGnifznIB+8f4F/xpQRNQ3PAxeXxCwZZSFgYjMu79K9EIAPFcB4CUDX5yRn/R2P3AP5V3wHHbn0FaBAWnUmKWkWGTS9qQCnZFIBtFLSUAHFIcUUhzSY0Qf8tZPwpx6U3/lvJ+FOr4rHfx5HtYf+GdASPWsfXnxbxDB+/TPPk3cmTrjtWVc3U0t80ErsUjwQDX29zxZLQ4vxXj+1bYDj903bpyKz1U7gpu2bjoC/H6VoeKudWtycf6s4zn1HpVdQyOXxtOe7Sf0pNnN1IjFkcXc5+m+mypsjOZJH4P3gfT3q75w2fLOqkdf9b/hVa8mWXO2bfweBux096EzOrsRW6b5G+9jYOFCn/wBCNTGPYMeWzfVIv8arWzbJGD7gdo5whz+dStD5mdquQfaLn9aZC+E6jwEB/wAJFgxKP3EnZfT2r0TH0/CvO/AFuU8RM/lsv7huu309q9D59anqd1L4Bs3FvJ/u00tyPpTpQTC/J+7TWVuMjp04q7ocmMLc1geL/m0ux/6/0/ka3yM+o/CsDxeCNKs8ZJ+3R/yNK6EmXpvvN9TVbr+n8qnuCVMrYJxnFZpvl/ukYApXRDZHdAfbrT/rsn/oQrCt7LfoIl45km/9GNWzNKJb21wDxKn/AKEKzdLnjfSY43+6Hm4/7aNTm72sUtUYtrZOp/hG5HT5v9oYqgVlt4hJIY1UjGcGunmZHkGB8oHSs6/t1ktBhTwa0i2S4oxPt9uo/wBfHn/db/Ck+22xHE8Q/Bv8KV7AEDG4VD/Z3qc/jVOTRNkT/bYBz9oiH4N/hVA3CTyqwdmwCe+Oasf2bgihbMxknFLmYWRtaCqR6NKMnLtgfnWhCMTRnP8Ae/8AQTVXSYdtiFx0kJ/Wr7LiRfT5v5Gs29S1sXWfa9q2M4gJ/SnLNIwViMKRSkDda4/54/0qMAhSc9xUV90VSHqW87liydfpXE3EqGeT91bk5PLB8/yrtVIzkZB5zXF3Esxnl2NJjeeAy/1NECKhv/D797rU52xrttm4Bb+orvlrh/ALStrV3uEmBbn7xX/2Wu7A6H2qgpvQAKMUoFLig0G0Yp2BRikA3FLilxRQA3FJin4pD1FJjW5Vx+/kpaT/AJby/hSnrXxOO/jyPbofCOPQD3zWO7D+17sZ52ith+nWsB5ANdulPUgCvuDxZLU5nxSV/tSAZJxF2+oqrvjBJDZ56fvT/KpfFOf7bjGcEQ8H8RWfumBP+kq2T05/pUs5epcGFGEhJ/7/AH9ahuQ+w5j2/KexHb3pUB77mHsJP8abebAF2oy4U/e3D/0KhGdV2Qy2cs7AOoAQcEJwf+BVZ+X+O459hEf/AEGq1kxWVwzgZjGMmMY/76FSs8m/idOOwMbf+giqIjrE6vwWVt7y5uxIXCRBQCvfn0rsBqSnrGR9K43wfuaG+LygjK8YArpNuehpHfD4S3PdpPbvErOpYdRWC11cxEr5z5B6k1pbSP4qq3VuJEyPvDn61z14yaumZ1oytdFX+0Lr/ns1VtROo6hbW6oJJUScOwVemAeaY+QSPSmfaZoMtC79DuCtiuKFSSdpM4o1He0mXG1b5iPNyec/Kfyqu1wrHcIgc+5FZscu7apkGep3YH61diihaUiW9tmXH3POUY+pzXXHnlsaXk9hpnlklH2ePdKpBUDoCOnNFvazRxJGNPUkE8+cB1JJ7+pNaoNnb2mBe2ef7q3Cf41EZ7Rw3+lwHb6SLXZCm0tTeDkkRpbk5P2CVccZ8xP8ac1nBKuyaK6VSc/KyVH9qXP7thJ/uyCkdbuTDICB781ooMbkPOhaSFBlubqMe5Sj+wNJUZW7uvwiVh+gqtPFchwdh2+hQml8q6ZflEka+gBFU4CuSnR9MJ/4/J/xtzj9BVDUtKs4LR3iuJCcgAmBgOv0qfyZwMBpRyDkk1Kt3p1rAEvrJpSGJMplcD24zWcvdVw5kQ2dvDBE6eb0fB+Uj+dLPGhVDG24gnP0wRSZEgEiBgrjfsY5xnp9aevXpgZrklW1IdQfE28W2eCIyPp2qRFSIfO26oIF3KpHfd/M1KsaldvU461pVd7G1B3TY8su7aBgkdcZrgLkq80uS2Q3P7s+v0ru15KgsMnv0xXCTiLzpPdv+ewHf61cFYmqdZ8OFB1TUmHCpAoU7SPXNd3yPp2rgvhyudX1AooCi2Gf3u7PX0Nd8Rk/hVMqnsKKUUgFOApXLsJikzzT8U3ZznNAwpO9O2+9Nxg0gFNMbPX2p9NK549aTeg1uVf+XiWlpOlxIfWiviMZ/Gke3R+Ac3ArmrxiusXLjHWuic52+1c1csGv7vPrX27PGe5z/iIZ1uJz/wA+/U9OoqJp5MYLQkZ7sv8ASo9UkdtWLO52rB0B9xTftVq33hP/AMDAA/lQccmkyUSK2VYQn/dDn+RqvdqqgcEZU/wsB/49U0TWYX5SMH++hP8AI1BfNC2wxbThT91SP5mnYwqyTQy0OXb5wAIx/GoH6irBuGjIyYef70iH+VRWKyYZgzqGQDhl/qKsNbPIQCu76yL/AIVRnF6WOq8IzB7a9z5eSV5WuiFc34SjMUNyNgA3dq6MHipPTpawA0xuopxORTWOAKLmjMueDzQzRjBB5rOYdQ2Qehrct8bGz3NUtQtfm8yMHHcVxV6P2kcFal1RlW+o6ho80jWE6R7xkho1bP5g1IPH+vQkK7QSBe5touf/AB2obhAy7scisySEP25ooVZLQxjUa2OgX4nazCMm00yT/rpaqf5Cp/8AhaWqSxndo3h9s/8ATow/k1cXLACCKtQ2hEa8V6WGftHqX7Z2Okbx5cyk7tA8P++IZR/J6iPie0kB8zw3pJJ6lDOP/Z6xlsyM8U9bQ4PFd3sV3M/bMuzatpU+BJoES+0U8g/m1QG60En5tK1FP+uV6B/PNRfZD1xUT2p54NJ0fMpVmuhbOoeH06WGv/8AAb+H+q0y41HRZLdkt7fWUl/gNzdwvHn3AQH9azWtmGcA1XlhIQkDmonh7xaB1rnQ2MgCMhcH+JCOh+ntVrzANvIrIs3GIv8AZG01odjXhSjy1GmK9yxA2PLPbDZ/M09bhXztDLg+lQR/dgz05/Hmq0l9KWdY0AUHFdVSLlax20GlE0w8a5YNk5AFcK5m81sAk7j/AMswe/0rqbWQmKQFs85ORXGTyRCVtzJyx5OR/WrhG2hNV3O0+H8ggvtSlmAGYFXiMrzzXbC8gHCvkY9K8/8ABO2UXq7hIv7vADcDk11f3DtCIAPYiqZdLY1xdw4+9zTxdxf3xWNv4+6v4UnmN/zzqLmptfaYM/fA+pp3nx4/1ifnWIZ1A+ZD/wB9Ujfc3A4B7ZzRcDdEsZ6SL+dIXT+8PzrCWTjoaXz2U9CRQ2Bu7ge4o7isL7Qw6vj/AICaVbvkESnI9sVLejBbmif9e9LUVu/mQhy2c1LXxOKd6sme5RXuDG6DFcrduEv7wYzluPaupznArDEaNealvUH5gPp1r7lnht6nD6qSuqPxg+QMY6dqjhcNGheY7u9WfEVulrqypExKNDk59sVmxkbBtxnGeaDzaz1NFIo2IP2q2z6OnP8AOq8zYkKZjICn5kGM0wMe+DUZAJP+6TVHPe5LG/zJEttJKcZwjYp7CUNhrK4T3DZ/pUC83CYz9wYNTCaVTxI4/GlcpM67wWT9mvMiRSGGC4rqc+vX2rmPBjO9nel3Y/OBya6Yk7cg5xSPUov3Bc8VG5OKcCSoJ6+lNY8EUGpDEOD9ak9QeV9Kji6fjiphzRvoK3Qxr618qTeoyjdfasSRdsjDoK7F0VlZWGVNc/qNk0ak7eAc5rllT5XdHBVpcrujFmjABxWvbxKYkOB0FZ8hDAso4xiteyQm3XOc134HcxewohU9RUggTHSrIj44FP247V65kU/s6elMe3QnpV/bS7M84oGzHktUIPFUpbNMHI4roHi9qrSQdRik33Ec+sRt3IHRjmr8T+ZGp6etFxATEeOQetRWrAgr+NeJjafLNNGkWW0YhIsDpu5/Os9eVkY9c/1q+mfLix02uf51ST7j/hWq0SOul8JNak5k69BwPrXJyzSLKwCTEbj0cD+ldZbEZkGDyAOK5OWMFm25zuP30/8Ar0rajmdX4Kct9sLrImSnLsG9fQCunAzzjr39a5bwUpQXfCgkrnA+tdUtTLc1pbBikxT6QVDNRhA6GkZ8FV7Gntx3qJ8maOpAcUBzn1P86AopWGWP1P8AOgD3oAZtHcUmxdwwKeRSDj86mXwsa3L1r/x6pUpqK24to/pUpr4iv/EZ7dL4CsGBBIPOaxy6vd3vPXnPrUzXAYgZ5z2rMNxGt5dJuyxA4Ar708PdnO+J3zr6IQcCDt+FZqoSFwyEYrcvbU39815EhYldg3HjFUzpc4bBiGKaRwVYNvQqCKUnHlk/7tDxOrEEFf3Z4PWrqaeVzmEj6Gj7LEhOZWU4xgjpTsc/s5dTPBIuF9AgpSwyM8VopE0ePJmjJxg5HalZLg9RE/4UcouQ3/Bjj7De4Of3grpVauc8LgxWV4WQJ846Vvh6h6Hq0V7hLnvTSQTUZehmxg0jViWzBg3OQHNT9KpWZxuHvVsvQIccEYNRzRLNGY35BGM+lLuyaRjj/wCtQ43Jmk0crf2r2UrRP35Ru1bFqkiohcKDgfxCrUkUM13Ks0MbhYwQXUdzVGbw9pE7ZktEU+sXy13YejZXR59RJOxogcnJH50uOOazIvDumxZ2fa0z/dumH6VYi0tLVClvdXkKk5wZS1diZlylwJ7H8qCCKrvHqLfKuskr6SWiv/M1F9n1IHI1kN/smzUf1p3DlLhXPem7Bu9ar51GMY2WU5/6aOY8/gAad5mqFcCx0we32yT/AOIpNhyle5hOw7R1NY5BiuSpFa5m1MFhJp8Dj/p2nL/+hAVQuob+5dZItIvAV46Lz/49XHioSqalcthw4gix3R/61QiB8p+/Sr8iSQ28AmieJyjZR8ZGc+lZuPk/GsrbHTSfuk8DYZs+mcetcu1xFk5Rwdx6HNdNASJQQcfK34cVyxzyftK/eb+Coe5NR7HV+DJEcXRQMRkcmupXORmuT8EE+Rc4O75h82MZrqlbNZy3OijsSetApM0VLNQYVH0lT61J35qE/wCvGfSpAmI+Zj7mkxmj1PrR2oGBpp6j6ilNNI6fWpn8LHHcv2//AB7R/SpCaitv+PaP6VIa+Ir/AMRnt0vgOfI29Av4Co/lQkqiAnqdvJpwY+tNZ89SK/QT54iEcY4EQUe3FRtbjORI30xmp/MQ8Up2Y+VqAKhjkH3dv4jFDIwQs8CMo9DnNWSMHg5z680BG46UxWRALO1wGCqC3UbcYqN7C3z8rtn2arTINw+X86PLTJPT8KQcqF0+IWEboHLBznkVfWZn5XJrP8raP9afxp8UssWQoDA96iSuawslYv8Amnvmjzx37VWFywGSgNNefcOQBWdmiie2kAyf9o1a80EferPjnjWMgDJBJp4kBGeM46c07gXg/vQXyOSDVPzBhc8Z4OO1Odgg68+lFxE0PzTynttH86m71VsmLGVmGMjHFWq9aj8CPNqfExe1JxRRitzMQketJRgUZoEGBjGBilwPSkzS0gQ089eaUEhuCRRilA5A+lJlGNqR3FNxAAyB/wB9VliMHfhsheBWlqeCiAn1H/j1Z0fywSA4GP1rirbnTT2I4yN7Y64IrkWyFPTv/M11qYGWOMYrkWILMPT/ABNZtXMqj1Ox8DcW11/vCuoT+lcv4IOLO5P+3XTpkda557nXRfuk+eKSm5pw5qDYXtVaTP2hcf3asZ7VA5xOv0pASKTjmn5pg+tLQAUh6gUZ9aT/AGvSpn8LHHcv2/8Ax6x/SpKZBxBGP9mnE18TW/iM9qn8Bz5QjqDUbhBwepq35gXjNMdowPmAOelfoVj54oHG7AABpwxzxmrIjt5DkIVOME0ptUcAQyfKOppDK3Qg4OKN5B4/KpntJf4WzTDbzAcigEM80554FPEikUzy8H5zikIT+E0DLAKEDhvxpRtzjH60xULKDSuqqBv5+lSAuOoGfzpCD6KcetN6ng/SnDPORkd6Y7kZGDuxge1N+ff8rkDtUhbC9AR6UpZTjK4pWQ0yAzXCEYmXGckEUSTyTNuI59qeyxYILYyacI8nAP0o5UHMWNJLmBy55B6Vo1T08bUkXnrVyvSor3Tz6vxBSUuKMVsZiUhAp1JTEIcA4oB5pTjGaTjGaVgFpV6j8KbSj7w/CkxmHqxCxRE9if8A0Ksd3OTz1PStfWG2wRse2f8A0I1nRQYxJIOeoFcGJkkdVJNix2+IGkcdjgVybYDMDGM/7p9a7NmLxnGASMAVz5srnJYNHjB45rKE7rUKtN9DZ8HN/oV1gY/eV0SvjHNYXhmN4bSfzAAfMPStdZQSD7VjPc6KK93UtBjmnb8VXEnNHm5rPU1sWM96ikz5y/SkDj1odwZEx6UASKeSD1p1RBsE5p4IPegQ7IPWmseD9KMikYgK1ZzfusqO6NOD/UJ9KcaSLAhT6Up618VV/iM9qGkUjCfbnPf6Z/lSbhtO7n9aMAnIzt9ev8qYWB+4Q2eK/RD50UYX7uQMdaVASeSDn04qM/KMEsKUldy9vegCYkjA3UoYgnuB3zUO4Hjggd6cCGQkNQAeYHYAp1NKY4w4BGfpSDABPf2pAW9AKQEgiXnBpGhIAI5HekUmlIPUMcjtSsO5GVYc7flpOeDg4qUkkDOf6UyQtxjH0oAiY88ck9PajlTtPzE9adg5+6B9KQgZycqfekNDWx93aB7t0ppyOS4PH+cVKCd/fOO/emEOcjAGe3rTsMu6cTtfHtVyqWnDCyA8HA/nV2vQoP3Thq7ig0uaaaBWxkKTSUUUxB1FA9KOlHvQOwUD7w+tLTc8j61LAxr3DyRAjOA3/oRqrJ6nt0qbUMiSHB/hf/0I1RZiIzK7YA615GKu5WPQoW5bkxz5YOOahaIEcDBqnHdST3SoGwmeD61plH3cFCvdiaqNNxjqNyTZHazG3yvQl+/StFrjndsU/Q1SAG394nf5RSGNfu7W8z26CpcSo6GnHNHIhJVkPv0qVUiYZ8zH0rJ3HOI7h9oGWJxik8ycLuJVweAG6mp5SuY05GVCAGzULTEXCjGBVCR59yqYwrjng8AVMk0ckmTvAXgtjIzU2Hc0hluRThv6YqjHqEcZIZ4wO2TyasrdFslAHP8As81LRSJQTkjBzTWciNhjtTPtBYggcg4P1pk0geJnDdRwOlZT+FjjujoFPyDjsKdmm4woHoB/Kiviqvxs9qGyMN9pHUE+3NMcgKMg/U8UrfMMlv0xTS2ANhGfbk1+hnzoMcqCM49aQE7hnp9Ka2c5J59TUgcgdRQAxmUn5RgilZ5GxkfKOpxilDqcjJUegHFIIVOSu0++6gQZYcA08OcDIqNlIOCe1OUEdTmgCYHPSlx68ZqPPHHFCtz3JFADz93GelNOAOBu9adlmHIB+lJtQfdb5j1zSAbyerZH93FNIycDjHYc1KYicd/pSFWx8yuR7CgYwhUHLBT6k0nOzPb+83Apu945Bho0jPXPJp2cZfytx7PKf5CmFyxZ/ek9cD+dWqq28pkdzvV8Afd7VOCa7qWiOOpuSZozTM5ozWqZDQ/NLmmE0oNUSOopuaAaBjqb/Ev1pc03PzL9aTAxtQIWWJjjbtfk/wC8aw7qfzxt/wCWY7D+I1o67kW688ENx/wI1mQWp2CWUFRj5VrlqUuaVzeE7RC1hdGEjrt5+UelapkVCN0QK9dvqapFvmViDx2qUMcbnB5+7UzVioSuWkm/jZCCfurjpTi67dgfDHq1VwWjGCreY/T6U5WG3ylK56kmsLG6ZMDEQSF2qOcdiaQMDl3+dzwijtTCyyH2WjcA3m46dAKVhjmicKNpHmt97PagRncAApRR8w6ZpDLJt3HG9ulDyloxHj585OKGkCkIQSTIcbeiqBzUUsYWMBo33v68CpzIjMFEbYX0pPOjbLsx29AD/n1qbIfMyIx7jGMyDYQ2QakZ5PLYZZgc4JHSnAgxcbTuPY+vFRug3rECw4ycVnVguRlQb5kdkc7V+g/lSU4n5QB0AH8qbXwdT42e5F+6j//Z", "path": "images/3pts_ADE_train_00013049.jpg" }
depth_point_43
images/4pts_ADE_train_00009023.jpg
ADE_train_00009023.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 31 y = 149),Point B is located at (x = 272 y = 198),Point C is located at (x = 278 y = 223),Point D is located at (x = 274 y = 100).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_17><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_59><DEPTH_76><DEPTH_43><DEPTH_30><DEPTH_30><DEPTH_17><DEPTH_67><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_28><DEPTH_7><DEPTH_17><DEPTH_2><DEPTH_58><DEPTH_2><DEPTH_81><DEPTH_80><DEPTH_29><DEPTH_85><DEPTH_62><DEPTH_11><DEPTH_11><DEPTH_3><DEPTH_69><DEPTH_31><DEPTH_36><DEPTH_76><DEPTH_44><DEPTH_36><DEPTH_78><DEPTH_58><DEPTH_72><DEPTH_19><DEPTH_45><DEPTH_2><DEPTH_25><DEPTH_25><DEPTH_44><DEPTH_44><DEPTH_36><DEPTH_64><DEPTH_36><DEPTH_19><DEPTH_19><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_19><DEPTH_19><DEPTH_2><DEPTH_2><DEPTH_19><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_94><DEPTH_42><DEPTH_42><DEPTH_42><DEPTH_42><DEPTH_42><DEPTH_42><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
4
[ "D", "A", "B", "C" ]
<DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_17><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_59><DEPTH_76><DEPTH_43><DEPTH_30><DEPTH_30><DEPTH_17><DEPTH_67><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_28><DEPTH_7><DEPTH_17><DEPTH_2><DEPTH_58><DEPTH_2><DEPTH_81><DEPTH_80><DEPTH_29><DEPTH_85><DEPTH_62><DEPTH_11><DEPTH_11><DEPTH_3><DEPTH_69><DEPTH_31><DEPTH_36><DEPTH_76><DEPTH_44><DEPTH_36><DEPTH_78><DEPTH_58><DEPTH_72><DEPTH_19><DEPTH_45><DEPTH_2><DEPTH_25><DEPTH_25><DEPTH_44><DEPTH_44><DEPTH_36><DEPTH_64><DEPTH_36><DEPTH_19><DEPTH_19><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_19><DEPTH_19><DEPTH_2><DEPTH_2><DEPTH_19><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_94><DEPTH_42><DEPTH_42><DEPTH_42><DEPTH_42><DEPTH_42><DEPTH_42><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_END>
31
149
272
198
278
223
274
100
null
null
64
84
106
41
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCyqjCkhenpTtqkDCilXIVeT0pe3Ne1c81jdg/uijYP7op2BRii5I3HbaKTaPRfyqTHtRihsQwKvov5Uu1fRfyp2D60c+tIBu1fRfyowPRfyp/NHPrTAaAPRfyo2r6L+VPGfU0c+tIaGYHov5UbV9F/KpOfWg/U0Axm0Z6L+FBUf3RTsUY56UCG4/2RS7B/dFOx7UY9qAsN2D+6KNg/uinY9qMUDG7B/dFAUf3RTsUY9qAG7R6L+VG0ei0+g+9Ahmwf3RRsH90U7ijFADNq+i/lShR6L+FOpQPWkA3YP7oowP7op2BRgelAhhVfRfypNq+i/lUgFIfrQFhoVfRfyo2r6L+VP5o5pjsM2r6L+VG0ei/hT+fejGaBWGbB/dFLsH90U7HtRigBm1fRfypdo9B+FO5oxQA3YM/dFNKjaflH3TUm3jNIR8rcfw0BYYo+Vf8AdpdtKo+Uf7opxHNI1aGYAop2KXFMQ3FGOaWlAoE0JgUYpcUUCsJRinYpKAsJS0Yp2OKBIbikIp1LigbG0UuKXHNAkJRTsUYpFDcUYp2KMUANxRinYoxQCEopcUYoExoAoxT8UYoAZijFOI4pccUCGYpcClxRigBBSEHsM0u2nJ5YYedII0PV/Sk3YaGgUHirs2nosImgvIpoz0IPNV/JYY6Uc6G0yLHrxR9ePrUq25duqA+pNPmSytI83N8pkb7sajOaXOgsV/X1opQcqMf/AKxS4qrkMbRjNLilAoAbjikI+Vv92pMc00j5T/umgZGB8o/3adigfdH+6Kdig0G4oxTsUlAhKXFLijFMBMUYp2KMUCExQRS0tAhgFLinYFJSEJilxQBS0DuJilxRjml70xITFGKWlpDG4oxS0UBcTFGKWloAbijFOxRigVhuKMU/AppFAWExRilooCwmKMUtFK4WExSbQwKuu5D1FPxRigCFLaGNMRrhc5wKsRRo7BSDwP71NxUsH+tP+7UNIpXIAoA6HjgU37NAW3mJS3qw5FSDO38aXFVyoltjcc46fSjFO7UlVp0EIBRS9KMe1ACd6afun/dNPxz0ppHyn/dNADB90f7op9IB8o/3RTsUrmohpKdijFFxCUYp2KMUXATFFOxRilcQ2ilxS4ouA0CjFOApcU7isMxS07FGKLhYbRinAUuKLhYZilxTsUYouA2inYoxRcQ2jFOxRii40NFLS4pcUXAbikIp+KTHNADcUYp+KMUAMxRin4oxQA2jFOxQBSAaRxUkH+tP+7TSOKkhH7w/7tJjRAPu/jTqFHyfjTsUXFYbjNJingUmOadxDcUU/FJincBo5NIR8p/3TTwOaQj5T/umgRGo+Vf90U4jmkH3R/uin1FzUbijFOop3EIBRinUlFwExRinAZpdtFwGYpcUpFJQIMUYpcUuKdwG4oxTsUuKLgNAoxTqKVwG4pcUtLRcQ3FGKWii4CYoxS4oxRcBMUAUuKWlcBMUYpaKLgJigiloouA3FLRilxRcBMUYpaKLgJipIRiQ/wC7TafH97/gNJsEyFR8n406vL7zWfE5u7mSLxLYWVu+p3Flaw3EPzM0ZQ43CIgDEiDLMO+fWuo8CalqupaTenWZC95b3r27BkVCm1VypCgDgk1EasZPlRpKlKMeZnUUmKdikrUyuJijFOAoxQFxoHNIR8p/3TT+9NP3W/3TQFyID5R/uinYoH3Rx/CKcetSWNopcUpFABiigHNKKYCUU7FGKAG5oxTsUlFxMKB1pQKXFFxBikxS4PrRQMTFGKWigBMUU7FGKBDcZoAp2KXFIBtLilxS4oAbikxT8UUAMxRT8UmOaAG4oxin4pCKAG0vucAe5penNQ3GwgI6OQecrSbsNJsl2kntSAcVWa9ht4IzJGyp0BNTx3C3ADQfOp4G2oU0NwY+nR53dP4aj8wg4MTU4O3G2Js4ockCjY8S1fUNFknubDU3v1ktNbvbkpbwoyypJ5Q27y4KHMR52t1B56V3nw4v5dW0vV9SmUCW71WadwvQM6oxx+dbdzo2hM7yTaLYyTudzsbZCzE8kk45NS2culaWBBFYiyjdt2IogilvUgd+B+VYwi4y5jec1KPKaXWjBpyvFKu6LMg9Vp+EAGUcV0e0sc/J5kWKKcSoB3IRj1qqbsGUCKFpBnB29qXtA5UWMHPSmEfKw77TxVJdWQXLw3Eb25H3TIMA1aK3ckRKOjLs4Kmk6tilTuIPuj/dFO70g+6P90U7HNUIQUtLikouAbcdKBS5pcUXAKMUtFFwsJijFKBS4ouAgGKKXFLii4rCYoIpcUEU7hYTFAFOxRii4WE20YpwoxSuFhuKUCnYopXCw3FGKXFLii4WG4oIp2KXFFx2GAUY5p+KMUXFYbijFOxRii47DNtSRkbiCcAKSeKbinb2S4KeWTHsOXBqJvQuC1Obm1O0mspliMztDJllK1baXS5YlvYVurdhjci9GNLpqZglPlsfMkycDrWhKys6qsD7U6HpiueN2bSaMVfE89tdrHJpNzcwHPzovKio7/xLPcWFwltpt3AxjOJHXAUdzkHrjNb63d8kg2j5PVuTileaeZCJi+D0CnFKcW4tF4erGlVjUavZp2726HLefplnd2D6W9xPLK4a4Bl3eYpB3bgD94ZyPfNbUmuROPLbS7qVc7RkcVctoobRWaG0EcjnLOoALH39epqylw4b5w+PapowlTT/AEOnH4uGJlFq+iteTu3rfV9lsv6SxJ54rIs+m2VwZnXhc/KD71BbeINeEZW58MySPn5XVsVv5iWQukUwJ7iniYhcHzz+Nb3kec0mY9vqVxdvFFqmkzxDdwS/f3qZtRu4GeOHRXcKeGRuprQfyZApaKRyDk7jmntOwP7uFgB70+ZoXLEyf7SuLvEd3oRWEg72dhWddnWIopE0DS9gXncZOorpfNdgQ0BbPXmoHhYqxSJ0+X+FsUczCyGgfKP90U7HNIPuD/dFPx1rS5VhtLilIxWP4r1a40HwxeanapE80OzasoJU5dVOcEHoT3obsritd2Rr/hS15la+O/FC6rotvqGnWEMGpvEY2VWJMbuFyPnODjnBGeQcYIz6eBUxmpbDlBx3G4zRinAUuKq5A0UtKBRincLBijFLS4pXCwmKMU6ii4WGgUuKUClxRcLDcUU6igBtAFLilpXATFLiijFFxBigClxS0XATFIaWlNFxjaMZpaKLiExT48ANn+6abS/wP/unNTN6FwKWmuskBMbg7T8wB6VdDEjqSPeszw+qfZbhkHzBzk+taYAHrSptWFNaiZIz6elNfJGSaeRxTZOEpyEhR90cmg596VfuD6U7FNWExuTjHOPrRk46n86XFG2qEN+maDk9SadijFIBoGT1P50jD5W5P3T3p4+9SN90/wC6aAKM0sNrEHuJVQYHWq39tad5pU3Cn6GuGkuJrvAlnLEjOCajVURC3y5PUd682eMfQ9GFBPdneRa5pskpQSkHsT0rK+ISRv4IvVadY4nMILkEhR5qZOByce1cuGllTKx4C9Mdc0X0cmp2Bt7tpGjIG6MkgHByOnuKSxbe5TwyWqMhdf0/W9a0yKG3itmtNag+xqgkJlgbahLFiQCoihGBtHJwK9mrznSdL8HWNra3r6cRfwzKyuJ5OGByDjdjqK7+zvba/iElvKuPQnmuqjUg1uY1YS3JxS0u0kbgRj2NL5b7vu9vWteZdGc6T7DaXFRm6tcn/SUUrwRmql3renWdu0vn+aynBRe1J1YrdlKEn0L+KdiudHjC3Kgi0ZU67j2qxL4u0eLH74sxTdj3pKvFuwOm1qbQFGK4S7+JTRREQWgJDcE07RviD9pmMd5Gu+RsAL2FP2iBQud1RTivyqy8oQCMUmDjv+VUpJkOLExRijgUtPmFYTFGKWj2pXCwlKKDzSDNFwsKaKWg0cwWEoopaLiEo60tFFwsJikc/u2PTg06mTD91KfRaib0KgtTP0NU8m4CA8vk1p/yrM0H/j0kYdWNaf1pU3oOotQpk3+rFSdqiuOIfxq29CUiVR8i/SlxSL9xfpTsUKQuUTFFLiiq5g5ROKD2pT1pD2pcwco0ffNI33D/ALtKB+8NDD5W/wB00cwWPEmNwohCvuOea2Y44nlUyIRxk81lLH5xVsH5etXfMltGEsOCSMbW5ryeaJ6UYst3Uu8q9tCfKUYJB71SMrbj5hZT35qB7q8WM+c6xqxydlRSXkhl5AZQvLDqKxnFz0R14SvCjU5p+fRO3nZ6O39WZM7AHaMn6fzq1BfyWWAJApYetYMNxKwmYSGUZ4p5jMjjzgVO35RVRpyirXIxNeFSq5wVlp5dNXZaK7107nSyarelVaOV2HbB70xdV1RcyNcFf9ktWOjvAifvcKOTmkuJnklR1w6Z/hq05LqcrcTR+1NFEZZcuznLYNUpNUVozcRkBS2CpqJ5/JjlnkfCngKap3Rt5liVAV/iOBwaag5PUl1H0Ln9tFlKEHB6Vl3Uz+b5hBNR/aEJbGS3QcdKja4lQ5Zc+mBmt400tiXJvceZFzhwxDdqs2d8dPk8yONGbsW7VSDSzMSSBxSeUwP3lOOTmtbCR2ieP9UaCFFCttYZA9K37D4hpLdlL6IogHG2vLBJcpIfKVdvqKmEzqmZsHPtzSu0DSZ7jaa/p18P3VzGHPRTWgkgdNwdCPUGvD4csglHGPQ4rRtNau222qTtjPIzzUSxDihqlGR6lc6xaWz7TIrHvg0o1mwkwFm+Y9q84LlJCzZPrk0/7S8ZWSJjz7VzvGyTLWHj3PR4L6G5mMNvKHkHUYqUC4BO5AAO/rXm0d5LZyG4hkcSN1INdFpPieNLR5L64YyIPlTHWuiniubcznRS2OrVmVS0m1V9akIPHGMjjPevL9R8VTXU+Q5SFTux0qpP4t1G4u4phKUSL7oHQ10e0Rkonq7OytgoRjrmgOxUnAz2rjLD4iLLII7m13kDkirA8eWhZlaHZg8UlVQuQ60Nk81JBDLdTrBCAZG6ZNZUOuWF1bRyxyffO0ADvWlZ6pb2N8k5csVGAFPNU6iK9maH9hannHlxnPo1VdR0+7srRpLkKqsMcVqJ4phiBZrS6fPQY61n67rUeqac0aWskQUZO6s5TuhwjqZWgxrMI7WNwHfuavSI0UzxSEb0ODisXwvMkjISdoSTJk9MVr3M0JvZ5fOUxyPlST1FKnU6FVIdUOzUV3xAT71Vj1Wxe9ktPtKeYgyeePzqW4lhkjCJOrMTnANaOaM1F9i2nMaHtjmnDnjge+a5DXPFMMNusVrMCy/I+O1Zuk+Ko7OOaW4kMmzlFPep9qkHI2egBsnoaPxGawtK1xNStmu2mTOeYx29KDrlyJ8/Yx5IP3iefyp+0j1D2cjcJHGOfWmPIqgMx4pkExkg837bbruHAPUVR1zU00DT4Jy0d5JMxG1TwKOePRg4S7F8TL5hGelO37o2I67a5j/hMEisEu5bLLyttCiq6eOJ7qRYodNwdp4PFUpobps48p8qSISFHUUye6kmiby4sAd6vf6NMnloSFxzioZLm0EYjiUB1GMSHGfpXg892eo4pIyLiO4VFfzCxYY2iqLWd80Y3pt8w9Se1WJXkEqNFE4Xd8xzx+FSeb5kigGQH/a6V1w0Vzkqdx1pZRwYgiJ3OMtmh0YuUkYlgf0qbc6RsZGRMcbhUMdpeNC16kjyxIwGccEVerZC2GAOwMbIWQnNS7VghXDeWu7vSNy7M0wC8YFVWt98xeQN5eRx61SE2V75ppbhoBIrqeRQsUkQxIMt6Cprhrd9wijKSL0FMe2klj85iQ46VomkIYDGQQYSoPU1A86R5WHL1Zwzw7pZjnuKgl05HffG+1cVaa7iZCzJgNhg57VE0cju5ZiqVetNJMlyHYloUXJrofCeh6fqfiNY5EaSNYyxh/rQ6iWg1E5SKZS6oueO/rVoPBIGMj8elesf8IJoU8oY6dIobgYevKdeig07X7y0giYRRPtAJzVpXJvrYsWjx/6tSSlX47SCKYzAncRwRXPWty1uCoBZ26CtWP7TLFuuMRjsK56kXcr0LlzPGzIDvBHX3qzFdg5UHCY61iwAyT7SxyDlatyBzkhgFHDY71g6abKTZObmTkJ8y055izJvC571QtJ5HmbEREad/WrMgiYbgearltsJpizoZMAqCM9qezI0YjjVV21XN4UbaE3R9z6Uiy2kwK+cTLnK1omQkCQ/Z5fPXJY9hVqOWKQk+VkjrmqAu2ZzF5TYU/M3rViOSKOcbgwU9KGOKNKC5EeY1fy8fMAO1TPdPu3CR2fPBzWVNeW8Vyw5bjripIrgBFZEBB9OMVDTNUzTk1HUGVfKmn3g4Klq6bQ01C3uLl74SGJouA5riEnn3qUIKhgW+bkCvRLfWbbU/wDR4QxZINzHNJNlq3Y5/WbmOw+zRxs6K5JOw8E1jzXy3JEcksisP9rgVoeIBGIbJ5AcKS1ZUl1bnZiBju5BC81V30IauyMQIspkiVg/dt3LVv8AhKUXGvLudz+6bKk1i28kl0zeXazZBx8y1f0oXeiy3eqPaHyoLaWRUJxu2qTjPbpQ+YSKTSW6390yQgoZGyT9aspHatj92vTk+1c9d6vqlvYPeXPhu8htLgh0uJFZUIblcMUwcjketdfH4QviABfRKgpOEuo2V432aBeG2VYysy8g9uKoR6jNJMY/MfCjli3DV0g8NQpplxZTamA0zhsqPSqcXhWwtdzxak8sg7N0puDaCMmhYpI7iHBQruGCd3SopbGMJA8lyz28eSVBzViT+yLO4ihmN0ZXX5hGuRViLS9F2BhNcshzkGojCUWa8yZUub+ybQbDyof3XnEbm/Cke3t7pAykghfvRnmrl7Y6UdLSFoJnRDlBmm21rpqWxEkM0Zxx81aOL7knH3eoJEQUCpu9Kq38trqLRtLw6LgbR1rWlsrOV1RLbf3NVpUZJ8paogQDaO5rmSUWbPVGdp4uRvDK20fcYnj8qsSzttEZXMg7VLcrLIyeY+yOQgMR/DWfqAl0+/8AsySCTGNrjJyK3jqrnNLcJtzp5W3nOcV22matbReFzbSRqrqhGAOvNcwlrdpGXFsXJ6H2qw1veLbLstWZtp4NXEmS0MqMyTTMfJzFnOe9RXF1cOxjjH7sfpUhg8QSgqlhIg9FHWpI9M1fyMHTZC+efersJIWOUBcsiZI5Y1Ytp1RFHEmewqu3h3XrlRusGjX0JrQh8K6pb2flxRhJDySW+7UyiOxPpcunPaal9tiKuqjyhjvzWLhFKKeh54rVttC1mOxuIZHjG/GHJzSWvhCLd5l1rDb/AO6o4pWsgULlAObdXWOX5cdPWrfh3VrjSNZhuhbGQyLtHPatGTQtMhUxtcySbeQwHWp9L8PxXMyyW6sXz/y0cKKSiVy2LkPxEdbm6VtPUG3yRk151eXp1DUrnUJUKea+7YAc16pYeCRDJJNJZQyu7dTMDkZrXu7M21ruj0azBTqMKTit4ysiHHU8UjdnuBOkEvljphDVnbqEzHbZXUg7HbXq8GqR24Ly2tukYGcBBUE3iS5lDpbGGNR/sgVnJtvUvlueeWFhqSK7rYTvntjpVuLS9XmQsNMlUDsR1rtoNeaGFla5RpD6Cp7PVJ5biOOS5OGP6UkhSXKrnER6HrkrKBYOinrzUsfhbXQ/y2IUerPXo1zKqRTOszOAMjnFc3Pqnn43tJg+j02iIT5znv8AhD9aLsSbdV4ypbrVtvBdzIsa+ZbRPjqG71bM0TISImKpk7nfArDgtNWvr8PDG0UEhO15Hwgqo07lSsjTj8GSQxYutViBz/DTj4XtXjPmaicjphaqWM09pKbeaRJmZ9oIORW/9gnwN0wHrmnKKQJXMpfCmnRxHN9K5NSroGlRJtd5pMD1rSNtEpw1xk+gpfLtQcbJHOO5xU8tytEUIbLQ7XO22JJ65PNalg9jula0tzG3lFSW9KarRAYW3QY7tzUscpZplIQDy+opOBSaHF4lSAfZFnXb/FzipUuEAH+hW8eOnFZmnytcW+EDfKdpz2q0IXZMsUCjjk9acYiciXUfEdlpdu01zJtGcfInU+1c9qfiW11myvxa+aqf2fP98YH3D09av6hcXixtp8em217ayc+a4+aM+o4qV7u81jShos+gW1haLG0YuoyPM2kEHt3zWmhC3OP1ufSl8P3s8c4F1daPpturx6jDKszIlvvjMKjfGR5ZJYnqmP4sV3OJ3+d2wD6cVyi/DPTChc3N4Fzx+8T/AOJrriYo48O5bFJtFMiEQY/M5PoMVIIEx9386Q3SKmQ6BfXvVeW/Tnyd0rDtik2gUWTiJlmeWO5ZNy7eKQNDbRhGcue/qTVXzrqcfMBEPRKnS2XGZMevPWpcilEhjvbqWR0a3Ux/wnFOe1XBlmOW7CrCHHCDHvTmVUjZn5Pv0pK7HexwWizL/wAJDtl85o9vAwa3b5Iw3mJbSZJwvBoupbqzu0iBiEmzduVV49qdeSXcWl21098S0z4EYA+UUTpp7Di3syhHayySY+xO6k5wR3rUhh3sD/Z0RLD7z4+U1Co2207tqEqsv3QG61BFPand5sty428Yz1qVFobRuzi9g8tClqPl+XDCoGuL0MAz20fHByKzYY7LzY2aKd129CTS2UcJuyZdPkaPnbk1diLGjJcXMUi51ODpyBUBvpvPb/iZqRjPCmooIFimZzpo2ZOAafbx3MJbFtAqvnbuA4qXdDSQG/EmZJdQkO3soNM+1xeUZGkuXYnjCnB/Gpora8WKVF8gbuvtU7QXH2H7M1wiqDnKjrVbhZIqFj5kZ8i43vwqdAaVYSLqWMWhyi5fLDirjKXaIvdNiL7pHrSQWVq2oB5LqQGZwZWzxihoESab4a1jUoEnttN2Rnoz8VBefDbxbdXHmb0VecKjba9YGowwzrDDq8KWwgAVcZJNNj1KUygPrVsMdmUD+laRdloYyUr6Hk9r4B8dWaBIhC+T8paQ5FXrbw14n0vS9UuNZIlmdNsMUcme9esS38SadI41C2MpztYtXl2t+KrmTVbezjIMSqTNID1PtVqbJtIxtF0m8v1WO6by4h95WPIqSTSyboqkETJHkbgcZqjJqcsFxOUckymr0TlIFLEknn71ZyszWKaQjaOCcboo8f3TVm2s4Vu4f35YjjgVD56qD8o59RmpbactdJjHHOAMVKaQppuLRv35X7HsYBowvO0YNc9DHbKoCW/A6bjV661ZZoGhT5mAPArH89im4xsTQ5oyoU3Hct39rHeae8EwSOM/3D81Zz6NFc28ME19dmKIYVEJAxVqF3a2aRbcsAecilW/utykRBRjg1PtGjpcEyCz0HTrTYIreZ9hyGZua1Hhkch1Tap/vmqqzXLI5dsZNI/nv/y1OKaq90L2dupfFsEG4zQg+iioyIfvPOzN6dqqBSqfM2RSqgOCCRS5x8qLolt1QsIWbH8RqvPM8kC/ZwAc/N9Ka28Dy9x201MICB0pOVx8qLaPGyn5xDtGfl/iqBruIctucYztqNUAGSBUirkEhPakpMXKhTqTnb5No6ZHGRwaxrk3t3qOPOlQueE34HFdAq3Eqruf5U4AqneaeXkDsxx1yDyD60p80o6G+FnSp1VKqrrXz6aO3Wz1t12MTUtbm0OJft0kzIxCgRYY9/Uj0qna+MdMvbmG1EV4ZJpFjUsi4BJxz81bV/a2cLWG51ed7h/KM5BBn8iXyd2eMeZs68etcbM2vDVfD/8AwkPm/aRe5T7Xu+1bN6ff3c7M525776qlB8vvFYypTnVvSWmnS131dlt6flsegx2WRwvyj1qcJAgBLDPoBTy5PQHFGYh8zmlZs5r2FMnIKLTxEWG5ziqs2pW0A6hT7VTfU2uDtQNz3qlETZoy3MVuNowaz2knvHbBxHSxwICHkVmanveiIELaOfl7CtYxIbKn2S2zukDFjzyaVhaALujyByAT0quqqSC7luPerG+ExhfJBA7k1nc6GiZfsgAxGgNO+026/KqoCPQVWHlMvEWD9ajLoh4jGaVybFo3y7fu8D/ZoF620MqsQeoAqoZmx91fypyTyKMLgUcwNEst64Usscn0qidQnkUq0bj04q358xOCwx9KVtxx04pOQJDoJpTEMKM98mlke6b+FBnpg1C2TzmlU8DJJpXHZEyrceXt+Un602WORlxuUevNCtk8Zok6jFFwVkN8mdnG65IGOgqYFRuEksjnHU1CCd+RmlYnNAaD1SBIfmkkxnoWNIv2fJKRc+p71F5RlYb2+UelLJKsbYH3cdBQS7EjW8UhEhjHBzTgfOXhcAVDEZJBuYFUP8Pep4g4yAhAoAaFIbPpS7mL7gcH2qT7PKx4GBSi0cdTgUCI8AZ4xn0o3EVYFrxy9PFsnrSBMjivbqGFoIdgif72QCTTHAWPPPyjoKsiBEOQualUI4xtxigdyjC4ljyobPoal2FjxVoqnqq/Smlo16GgXMQGE8LuAJPFSpbZJRnwRTJVjuNu5ipXoRVa2tp4btpGuPMU9BTsFy/JarjO7kfrQI4wmdoz9aaFnYklTjNKICTlmxRYLjVmiyVKncPan+b0woH0pRGgfJJPrQ0kKZPT61XKFxPMlJ4B5NAilYcnj3qN71Fxgiq7XshOFzinYlsq+IfDw17T0tjdC3KSiTf5e7OARjGR61ztp4Dj07Uba7/tUSeRKkuz7PjdtIOM7vauiee6mlaOLblQNxb3p9rF56FmyGVirDOcEUozTfKjqqYSpTpKq9tOuqvqm159P+Cr2Jb7nCDcT0FVGS5ujgkov0rQS3jTov51LjAxxitUrHG2Z0OkoG3OS596vpBGgACAU5C0kgjiRpH9EGaV98b7HRlYdQ3WgCSC3mmJEULNjv6U+0unsWc+SkjbTw9Miu54FZYpWQN1qu2SDk7uMEmgRhvKu5cECgy5BFQ7lIU5yafyw+6ajQ6CSJ8KaQtk0iq+3AU09LaY9BS0EMJyOlKGHQg5qb7JI3U4pyaezHBnIHpildAVvmLL1xU5Ix8tWBZRKQC7n61ZW3hAwOaWgGYScYxT442YfKCfwrS8lF6AGlUYyAoFIdyksMp7U8W0pPNXAcYHejJyc0CbKgsmJ5bFPFig5LZNWQcdSKaWCnrnNFmK41beJcDGc+tOMMQ/5ZigyKuD1pPOGc4NFmBIANuAq8dKQZz2pjSEsMdKaS3U07CuTiRc/McGmu6HvUQHPck05bd252GiyAd5iAdCaTzP9jFONsyj53CilCwAfM5aiwDfMIGM4pMOzYUE1KskSD5Ys+5prXLf3lQU7MWgC3kIyQB9ad5CD7zj8Kge5VR8zlvoaryXyL05pqNxXND9xH1G6gzouCqqvvmso3jEfIOfeoi0rn5jj6VXKHMarXYVTuk/AVXe9U9Bk1UEO7kk1MkCCmlYVwa5nbheBTSkj8MSasLEBT1XBphcgS0HfNTrAoFSZ9qXtQJsrSWjGTzIZTE5ABwoII+nrU0ES28exSTySWbqSe5p4PtSmoUIp8yN54qrOmqUnovJdNrvd26X26ByTik6H5l4pQcHikLc81ZzmxF4gNlY+RZWccMh6yYyayZZZZpDJNJvc9Tioy2KYz0AOLAGo3c4bBphcHrULyLt60AhEt4VCnZmpgqY4UCgABVpGbFY6m4vSnBiR700OMc0nnIlFguSYyBQYzjPQUxZyD0qRZ16MhNNRE5IF46mngrjrVdm3McDAo69KOUVywWA700zBSMDNREZ6kD60DBOAGJ9hQ0kFxSx83cCQPSnl2ZqcttM3SM89zUospF/1kioPrmloHKVsHPJNGAD95R9TVoxWiffkLn0AoFzDECIrZCexbmhN9AaSIFRm+5GzZqZbWfbyoT/AHqDezkfwoP9kVC0jNy7sfqapKTC6LP2eJFzJOoPoKQNbAfKjN9ap70B6A/Wke5VeM0/Z3Dn8i79pK8IiqKjad2HMmDWe10N1QvcknGOKagkQ5GiZQoyW5qF7tB/EPwqgXLDGDQsWT92qSC9yy98cfKKg+0SuelPERPBP6VIsC4piIBuPUVIIsnpVlIwB0p4AAoFcriENwamSMAYFOxzTwKQxAuKeBjt1pRSigAwPxpw9qQYp0UZkkCBgme5oYCOyouXOKu6bpF/q8irbwsI/wC+RxW1p2k6BZILjUNQSdx83lgU3VPGUjw/Y9KiEEA43L1NSJoj1Dw9pmkQ/wCmaiTcY/1aHvXOkpztzt7ZprMzyGSVzJIf4mpuR+NUA/d6Uwtk00sM00tzQA52qM/WkLU1noARm7VXd+Oac7Z6VXc8dKALu47RzTgpNCLkYRGb8KsLZ3DAERYH941m3FG1mVyCDS7R0Iq19jCjMtwq+wpB9ji+87SH2pKfYLMg+VTinKGc4RGJ+lWBeW6jEVqM+9Na/nPygqg9AKV5Megq2Ny3VEHuxxTvskaf6+7A/wBlKrM7ty0hJ+tMyKfJJi5ki7vsI+UjaQ+rUfb5F4iijUVR3gcZoMgA+8KpUu5PO3sWWuJ3zvk4PpUROe+cepqs9wo6tUDXijo1WoRQuZl0sAfQ0hmA6sKynuwzd6TeX6A0+VdCGzRa7XPDCojdE1WSIHqKkSIbulMLimRmPBpDuLAipVjGDT1jpDIPLLHmnrHg4AqwEAp2wCgCJYzUipipFWlxjtQAgSnAYoHSnCgBB7U4Y9KTGOlOA/OgVhRj0pfwpOlHWkA4YxR2pu7FG6gBwPtSc+pppak3UAOIHZRS78DAPHtUZek3ZosO44nimFuKaTz1pCaCQJzmmg4PWjODx3pC4PBHNA7AzAVEW46UrtwKjJzmgNhjtxULNxzTnbcfaoW5Dc00S2b51GcgCKKKIeoHNQvPcSffuHI+uKhB457fhTS+Oc1CpxR0OQ8hcZxk+ppwYD7vH0qAzY78elM84A1SS6EXLRbrmmeZge1UzOajM+O5qkhF1rgVG1wewFU97MeBShZGPUCmBM83GeKiMpI45oWEk81KIgOlK4MrMrv2NKltg85q4EO3NKoyDii4iBYFX+GpwgAGAKkVT3NOwO1JsLDAme1PWLGTinqMDkU5RzxmkAxUwelPAI7U7B9KM0AIFIHNKDxQeTSgZGKAFFKKaAacBQAUvakyKcORigQClAPrSDNGaBju1JmkJ96QmgQtITSZzTM880APzSZpm7mjdkigBe/NIXANNLZakJFAXFJzzTMnPFLvBHQU0N82RQAE9QTzTc4Oc0jEFqYzDpRYBXPHJqEuQD60MxB5OaiLkninYQpPGSDmonwBmlZznrUTt8hw2aYmXvP44NRs5I5NQBsquBTgCRima3HMeMhqYM04RY708JTER7WbvTljweealWMCnbOaQDNmO+KeEA5p+3B5HFPAXrjikK5Gq88inqhyfSpFI7ClIyDnikMaAMdaXbjnGKVRxTuoosTcRRk4p4C00cMadRYLsX8aUZ65pB1oOc5HSgLi596XikyMc0pFIYcYoHr2oA7U7gUAH40Z7GlGO9HBOaBCZAoByaTIoz6UwHE4OM80ZpueMmjOe9IYpNJnIprH3puR3agQ4HOaRSATkUEnHSmll2nmgVxSQT7U3IBzmmZwm7NDtimFx24ZppcdKQ4IowuwkDkUALjA5pvHrTScqDTQR0osO6HNjPWoiRnrRwTimZ25707E3Ec81EzbQeM0585qMkYINMLjflHPrURK/Ngc1I2MqKjIALUiWy2q/L0p4X2pwHy96kAFM2GbKkAG2jAx1pdvHBouFwCgU4gYHNIOaXkkDbSEwOPWpABtG6k2jPNIR054pDHgrjAFKAMGm7geFozgUAPHC8UgwfrSBsDrRwMEGkIdz0pQSO1IMdc0bs96BC8+lOGQKaT2oJPSmMdgjnNLmmEe4p3TrSEL70hbJpDnFA6c0AP4xQDmmdKNxHagBTSls9Kj3elIrcH0pgSZzQcYqIOd3GKG5Oc0gF5alIwM00HHTrSFiOpoAdvx3z9aad2chRzTMk9aGYAADrTE0P2kDaSMnoKYc8qRyKTrj19aU4XgtQKwh6Dim7yFIxTSTwcmm7sd6AHg/uySeabnC5o5I3Y6U3PGcY9qYDc7j6U1j2oY4PFQkknnpRcVhXYKemaYQcE0jZ6ZprswAxQITg/Wm8gc9KTIBoK/LnJpks01YlelSDB5NJgleCKXOOpFB0MUlcUqhSOWppbg9KFK4GSKQITaA3enknjbQDk5yKUyqvBIzQAhzu5al+U8ZoyCfvClIUdGFIAChTwacR6Gk3gcBgaFPUlhSAUgbcmhdvBpM9PmGDTt69MigLC4pQeeKQMMfeFAI/vCgkUt3NLwRTNwJxuFODqOrDAoAccelJv700lW6PQXGduRSAduJNDGm7h/eFIWBOAwpgPz70Z3D71Rs2O4pSQO4oAXdg4BzS7gFxURcDuKUOCOooAUkfwgUgO3qKbvwe1IWJO4n5aBEjSBeBURYk80cddwxRuB5DCmFxwOelNXBY5oDY7ikZlXmgBxYYqNnXjuTS+YFXPHNM8zdjGPrQDFJ5I4AxTTjGc015E3H5wTikJGMbhzTEK0jDBB49KjduM7utOJGMelRuRt/GgADc/ezTSx5FGQGzxUZYE0gBsAZJprMMdac7ZOOKaSMYOKaJY04IpMnafQUgI3ffH0pC42t8wpkn//2Q==", "path": "images/4pts_ADE_train_00009023.jpg" }
depth_point_44
images/4pts_ADE_train_00004936.jpg
ADE_train_00004936.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 205 y = 170),Point B is located at (x = 218 y = 195),Point C is located at (x = 26 y = 191),Point D is located at (x = 92 y = 207).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_70><DEPTH_17><DEPTH_69><DEPTH_64><DEPTH_36><DEPTH_49><DEPTH_74><DEPTH_30><DEPTH_17><DEPTH_32><DEPTH_67><DEPTH_70><DEPTH_82><DEPTH_29><DEPTH_2><DEPTH_76><DEPTH_74><DEPTH_64><DEPTH_35><DEPTH_2><DEPTH_67><DEPTH_30><DEPTH_44><DEPTH_72><DEPTH_82><DEPTH_64><DEPTH_58><DEPTH_36><DEPTH_31><DEPTH_33><DEPTH_67><DEPTH_31><DEPTH_31><DEPTH_49><DEPTH_40><DEPTH_38><DEPTH_69><DEPTH_49><DEPTH_60><DEPTH_66><DEPTH_17><DEPTH_80><DEPTH_13><DEPTH_60><DEPTH_77><DEPTH_31><DEPTH_85><DEPTH_74><DEPTH_70><DEPTH_66><DEPTH_17><DEPTH_61><DEPTH_84><DEPTH_45><DEPTH_20><DEPTH_74><DEPTH_81><DEPTH_22><DEPTH_30><DEPTH_77><DEPTH_64><DEPTH_27><DEPTH_63><DEPTH_33><DEPTH_63><DEPTH_58><DEPTH_57><DEPTH_18><DEPTH_35><DEPTH_18><DEPTH_40><DEPTH_45><DEPTH_19><DEPTH_29><DEPTH_33><DEPTH_9><DEPTH_65><DEPTH_47><DEPTH_56><DEPTH_121><DEPTH_44><DEPTH_44><DEPTH_15><DEPTH_15><DEPTH_76><DEPTH_63><DEPTH_47><DEPTH_8><DEPTH_119><DEPTH_119><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_25><DEPTH_64><DEPTH_119><DEPTH_46><DEPTH_121><DEPTH_57><DEPTH_94><DEPTH_END><DEPTH_END>. Since point B has a higher pixel value on the depth map, the answer is that point B is closer to the camera.
B
long
4
[ "C", "A", "D", "B" ]
<DEPTH_START><DEPTH_70><DEPTH_17><DEPTH_69><DEPTH_64><DEPTH_36><DEPTH_49><DEPTH_74><DEPTH_30><DEPTH_17><DEPTH_32><DEPTH_67><DEPTH_70><DEPTH_82><DEPTH_29><DEPTH_2><DEPTH_76><DEPTH_74><DEPTH_64><DEPTH_35><DEPTH_2><DEPTH_67><DEPTH_30><DEPTH_44><DEPTH_72><DEPTH_82><DEPTH_64><DEPTH_58><DEPTH_36><DEPTH_31><DEPTH_33><DEPTH_67><DEPTH_31><DEPTH_31><DEPTH_49><DEPTH_40><DEPTH_38><DEPTH_69><DEPTH_49><DEPTH_60><DEPTH_66><DEPTH_17><DEPTH_80><DEPTH_13><DEPTH_60><DEPTH_77><DEPTH_31><DEPTH_85><DEPTH_74><DEPTH_70><DEPTH_66><DEPTH_17><DEPTH_61><DEPTH_84><DEPTH_45><DEPTH_20><DEPTH_74><DEPTH_81><DEPTH_22><DEPTH_30><DEPTH_77><DEPTH_64><DEPTH_27><DEPTH_63><DEPTH_33><DEPTH_63><DEPTH_58><DEPTH_57><DEPTH_18><DEPTH_35><DEPTH_18><DEPTH_40><DEPTH_45><DEPTH_19><DEPTH_29><DEPTH_33><DEPTH_9><DEPTH_65><DEPTH_47><DEPTH_56><DEPTH_121><DEPTH_44><DEPTH_44><DEPTH_15><DEPTH_15><DEPTH_76><DEPTH_63><DEPTH_47><DEPTH_8><DEPTH_119><DEPTH_119><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_25><DEPTH_64><DEPTH_119><DEPTH_46><DEPTH_121><DEPTH_57><DEPTH_94><DEPTH_END>
205
170
218
195
26
191
92
207
null
null
57
131
22
97
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDZ1u507w94J1LTReiVIb4RWwLBiGBDBenOM5+leTeJV0W3hubZIpzfQgRh1lDRnuSPQZJ4967VfAup+IrzUrzXp5bGKPI3xplJmTPzHA4HTBxzXl2oaPd2ltJPJhlSVomO7uNv/wAUKXs5K12YJpmbBb+dMke5ULkDcxwB9a7DS/sXhu7kguHFzvIWdEw0dxDtGVDDpzzn6dK4+Ocwzxy4UlTnDDIP1FXbKbN5Gwcoed5HGQev5jiq0tZjle9zqdW0OEafbz6awVJJ91xblwfsjvgIrY/hx3/DrUMMkkOsQWMU5tzbXxdJX4C52rkjH+zVrQ7O4vrvXH0/MUPlCcgr/AGztPp/9ar2i31uWn/tG08q4uJBcQzEBc4z8m49AemexxURhLdszc10Oq8VyWx8W6TbwxhvPuISxDcPhv0r3ZVRsHGCPWvljUdVt9U8ewSQyXH2ZLlAoc4dV3D9evNfU0auqRqpJQDBLnLUU48sLM3TuxUaOVSUORnFeVfG29FvpNrb7vvMXI+nP9K9Z4Ar59+Nuph9akgBz5MWzB7EgD+pqKuyXmaw3PFGO6Ye1TFVKHDD8agT75OMip9yFfQ05FRKbjDV6D4A1d2Q2Zb54VYqCfvRn7w/DrXASjnNXNH1KTSNXtrxOdh+Yeqngj8qclzInZn0jbMY1ikUgoyjB9T/APXq4flUgdhuQ+3p/SsDw9epeWv2UOGCFZYW/vIf8M1sSSFODyUP/wCuujDVOZcr3RxV6fK7rZjJnGDg/K43D2NZExJkJ79RWhctjKqcj7y1nuwYj/a6fWuxHMyNjnHYH9DRGMtg9OtM3ZbB78H61YgUswwOc8e59KYWNC3gEeCSRjBLDsOzCtDI6MFBLEEdg56j/db+dRWwBRAgyQC0Y/vD+JKbNtRDgloyn/fSf4rWbZSVirczLuIJOPU9cDjJ9x0PqKypG2ttz/n/AD0qe6diSdw3A5J9fRvx71nsxbjuOBj+X+FUiSYOQcdqmWUYwT9DVNWyCO9Jv/MVQiW5+cb8fOvocH86t6PrNxp97HdptuguRslOGGeuDWa02e/IqnPcpaO04JKBSzKoyeO+KGk1ZjV0z2eFkvPD6SOFCOEYhjwAcVxEvhnSrO21fXEBs5EaRoWWTg4GcdcEZHSrcUniO48J5ht7SG0+zcQTsTKy47kcA+3NcReW0mo6MLB5pUt2PmeQzZVWPUj06npXFKk5ppHRKS0ujh31FNekntLqRIJ2kWWO4OSFIGCMfQCumTwmkUUl+L86iUwfLl4Xp1P9K56Twpc6fN5kTbkz3P8AWtrWPEKr4ei0ZcrmASSSjI3OeuT+NcWJp1ItKOw4uLZwmsTTXOoPJgbUO3IHAqksnm/u24AOeOlSpJIsyoVyF++SeDnpWiZjpkFzpdzYxRPOEkE7gs0asAQR9R/OtoRVrFvQ5+dgqEfNvPT0Iro7HRrLUprZWv0t1/s43U+7Gdyk/Ioz94gDr61zoEYkZWJdAfvEYNejeB9P0L+0NMF+ipDd6ZdJO75ILhzhh74H6CtFa+o5GRruiaPYabbTWd+biZrVGYLHtVXOMjPfAz+NcqzvO8lxM7yMNu7dnJ7Yz9K9V1Lwg2n2eq2UVxbJGsErW8kj7z5SfNx6bs4z6ivONRt2g1JEa0WNGigcqG3HBx8xPOC39aqUSKbNnVdJs9NGnSQyjNzbmd0WQP5eTwuR3wOafa7Vkto36qWGTxxjj8a1fHL6VJqmmjTYgj+SwmZVIWQ7uCCeTjkZ9qyLQILyJJCyqZOT6dD/AErKpZTZpDWB1ltLDdWLASkyv8u4gAlTwCfcGrUUs7rbkgrOY920DGeDkn8qqWVsskUgWNecZkfI6ngA/n+VW7F5I57T7Q5d1xGSfX5lx9Dx+dUzM7zxn4q1Oxm+y2FpII4V8y4m4UH5sDbng4r5+8R3Nvd3eoMtzJLK0odfk2g4HLEdj/hXp2j+I7a/8Hpc3i3UkUMZtmSS4BaZ85x075yOe1eaDSL7UrPVdYhsZWtrXeJpUIZUz0HPX61EU27l7PU5rG5evTtQNy4YGljYAEZxkelaUWlS/wBlrqjSRxQmXy1DcliBknHpnA/GtErlt23N7RPE13Z6dqVvbxIy3USxNngEDgZ+ma7HwPdWmviXSpdMEvmxosO1gWidcZYFumck+ntXlULOJViZSgyA+M811/hNZLe4+0w6k9nPE+6NdpVpUIAO1sY6E9aUbpqxhOPUfqukHTvHX9n3rrgXSRSOoxlSRz9cHNfT8F0tvfQ6bCrSxiMnzA2REBjAY9z+tfMHifV7fUNeF/FCRB5ijDtkuBgcn3x+te0/Dq5s2vtWvY5EgSd1ZLV2+aJMYHXnnFPVpmsZWsj0g4PWvk34n3/2rxJfvuLEz4H0GT/UV9S3V6g0+4uYpFaOKNmLDoSB0r468VXRutVlc87nZvzP+ArCXxpHRHZsw4+Bnmpt4K4ODSxYCjIp5jU845pNq5pFOxUZNzYFQuf3hHpV4RbW3c4HNN0vSLrWLvy4VwgPzyt91f8A6/tVxdyaistTu/h/rci25j3Ez2ZDKv8AfiJ5H4Z/lXr0wSWFLuE5SQAkj1x1ryu1sNF8JWQui5N1/fc8sO4x/SvQvC17BcW7WPmb4ZV8yBvVTz+lZqooVOeJnKPtIWCVztx3Q/pVdgD8vY8g1ZuU8qU98Eq2KpuDkpz6qa9dNNXR5jVhuNx3evWrtsu7A4BJ4Po1V0AY8dD/ADq7Eo2Bs4VjhvZvX/PvQ2BeDZwT8m89f7kg/wAf89arXcpxlflJbcB/dfuPoaf5pIO/o3yyD0PY/wCfaqk7eYrbjg/df2I6GoKKEzA/dHrgH9VqpnBz1BH4/wD6xVmUEg54PRvr61ARjOePU+h9askae54yePbn+hqNyT0/WlJ46d+n8xTQMHOc98/1piI9pY8DmopomIzglTwy1fVADvwNvv8A1/r+dOcgMG4A9D/X/PvRcZ6BousQaposyjAdIwrIO3AFeeN8kjrnkMQDRHcy2bsbVwjP044z6VHJKXcsV2luW54J9RWcVZlN3JtwIP61TutNtrmNlKBNwKnaOoPbFSeZ27ipA2RTa7iRxWp+CZYt09o25G5K5/ya5O5t760kL3SvvI2lm5BHpXsIcocg1Uu7OC7U+dErZ6nFZOknsaqo0rM8bcOkZQhQGPJHXI7frWlIt5PpOkRI0roZJYoU2ALuJXIB7k5GfSul1LwZBK7yW8jRueT3B/CsWK5vNKuLCwmix9kuXlicEgncAOCeAOKycGtzVTTWhqx6TqtwNRtH1Dm3tGkl3P8Ae2gfJgnpxjIzyBXO6zdW11fwGxtmhU20KMpbO5woy34ntXTWYXUra4EZljv50eSSTauyOPk4A7EnHI7VzF7YXMKadcylEWWGMqS4LKD0JA7cZ+lJ2S0FDfU6zxX4efQdS0uGeeOW/ntjNciM8K7MSFA7YGKzosNqEC4K5dck/hitTxrLpz6zarY3cN7NHDie7j3Ayvx94nqeO3as6DHm27SjYxAZj1BxnH8qxqfGaR+E6u2u2aOeFM5eJQqYxyDkfnn9KevnhCp3EPKssTLyVJ56dxuBqGycmxkOU82FwwyCCcHp9CCKuqVe6R42BM0BeLjOCD1H0DGtGZGp8UvDWjeH7mzuY7RU0+Yss1tAcEyHle/1+mK8fOr3NrpWp2Fn5sME8+ZUUll2dlJ6dfzr1HWmu9ciefUpr+9WC5VZI/JHlJHnjOMEHk+/AHevIb1QhuisjRh5uIsEAjk8/T0ojPmjctJKTsUARwGHFaunqksUsZudhKgRxEZErFgMeg9cn0rNHCglQR3q/YzpBfiaEBFVg6K4DYI579elGiHPY9A0bQv7NHiWfVIoLg2UEOFdvkZjgEZ9QCQD6mr9lr1vbXVlFbRR2SQrsW4uk3MFLblCn128ZI9fWsjQbi0upfEF1NPeSRS2jOY1UKpfA+/j+EMSR9K3Phzpmna/riDVJ1nhiULEko278DAIPc8nj0+lUm36GNtbdTO+KVtpdn4int7YoFfy5CYlwMlQT06Z6/jXsvh3XtF0/SbCzbUI57prfzEMpG8xjnDH1UfyryL41WENj4viit02Q/Yo/lAz03Afyrt/BfwzimEWq664upflVE6KUCgDj8vyqY7PU2d0zufGOpRW/gi/u45FKND8rL0bPpXyBqbF71u+CB+Qr6X+LNxDpXgmLToBsSRgioOgA4/rXzFI4kuyx7kn8zWF/fZ1Je6S5/d7duMUAD1xUilD/F+dadnpavbreXeUts4GOr/T296nc0bUVdle005riJppiUtd20v6nrge/wDKr11rNvpkAis0WNQDtUc/ifU1u/ZD4i0W++wSLBDpyJthA4O4kD+XWvNLhZVmZJQQ6nBB7VUbP3bmMm5+8ya6v572UvNIW+prvvAWuS+SlurZuLF/NhBP3oz95f8APrXnAGKv6PqMmlanBeR8mNskf3h3H5VcoJxshJ2Z9HXKpN/pkJzb3X7wH+62Oaz2DYK90PH0o8N6lDeW72auGt7hPNt2Pr3H+fepiPnyeGBwfrW2Drcy5HujlxFLllzLqMRc9OM8/jVsMpXJOFf72Ox/zzVfGDjGB29qUHAOeAeD7Guw5iVnI+9wcbWHqKgdyfmbqo2t7j1pCxBBJ46GkAOcjkqMH3FSBG8ZIz1I6e4qF4vl4546eoqwflOB06r/AIUx85HHXkfX0pgUivfPGOfp60oXjt1/AH/A1NszggYPb69xTSu0cDKkcD1HcfUVQhgbHcge/wDnqO/tTOS2G4/z/n8Kk2kjIPIxk/yb+hpRHxjBBHbuMdvw6j2pAQsu0lW6fy/z/L6VCT/CTgg8GpXO4be/bH+fy/KqzHdwDyOn+f8APpQMXGTjowpQ5Ht6imZ3DIOGXtTgSw3d+9K4yZWz3p3BPPAqJQVwf4TTw3PPWkBE4wDj8KxtT02C/jUSxhijBlz6+h9jW44yKrSLxjFD1Gi9eT2trpFpbQWtuDPGZo7WyLeaSFwct2AJY89celeYeJmtG0zw2bOIRyHT8TAMTucSMMmu/t2ggklae3MyvC8Yw20qSCAc+2a8+17SYNO0LQ7lfNE84nScMSQGSTAx6cEcVhURtSOl8ZeFh4dl0t5IRAbyJnMQOdo+XHI9yax1aXzLbaxT94flPIPbmuz+LE1vLNoEkTyMTYhmMgO4jjDf/qrmraJH0+ObfhixA74NctV+/dm0UlGxq27TYlXbnjdgDJwAM4rTtA0S2EsSkOwMYyvCk7skf59az7S4L3pAYoZISqEHGNwIJ/P+YrU03fBpsQu23yJNGBzkbSx7f561d9DI9OtPB2l2ckdouoSNcLOLhoRJt83GSNyjr3P1r5y8YQ2cev8AiEJIQV1CQRIwwcZOeO3NexfEzxDDpSaR4n0bUUmuZCUWFFyJEySW45Bzxn614hqOqy61dancSW4kuLuU3DlRjAAJPH6/hWjb6DsjEWKSVdsYLMeigZJp62lwDzG4IIU5HOTnH8jUmnxtPeQxLKsLM2A7ttA+pruNR8O6Fpekm7vNUdrwgPHHC4LYIxzx13foCeaFG6uOc7Oxz1nPf2M91bxeUQ9uY5VZdwKvgZx6g4+leoWV0fDWk6RY3wtb3SZYGaf7MRu3cbfMBIKlc9R/SvPLWxZtWmtbVGjuWtInBlJBDsUycj/eyPY16nN8L5f7Ol+zm5tbtoDLLDJKJUlYg5Ud8j196FFrYzkcp4+1C01fWxc2M8ktoLSJEDDmP73ygnryOvvXY+ErzxJYeEJpNRv5QzRxmzwN4VSCecDoSQOvavJ9TeS22x4d44iRluwByB9Rk/jXo/gvw/4tkg06K7cR6TlbhYZF3B0I3DocnsMdOaimnd3Kk24poxfiFcXFno1laXF7NdyNuuTLJkZ3AkYB5HavJY2HmEnpXpPxX1a51LXH8+BYHjUR+Uv8PJAH1wtczpWlDTZYprtVN3IQIoTjCZ6FvfJ6VjGzuzqvyxSLeieH4nK3eqnyoAu9IWOGk9M+gqpr+um8uXtbVV8tflGPuqPQe1ReIbjV/wC0ZrC4R0eA7ZMHOcHHB9KxbeMicKVYEnnNGi1HGLm/ePQfh8gi0rxDDu3MyRE+5+Y1wmvYbW7pgOC3H5Cu6+G9wrTa1EFyWWMj2ALD/CuP1OyuL7X7mO2iLktknsvHJJ7Cs4aVG32NZW5Wl3MI0qitTUrLT7WGBLe5e5uME3DKuEU9gvr9adp2h3eogSonlWw4aeQEL+HqfYV0J32MHZbnX/DrWdshsZpQHhzLAD/F6r/WvS7KZNXtm1GIHy3ABX88/ka8ystIt9FezlK4aSVUd5AC+CeoH8H8/WvQfCl1HZX4sQxNnc5eAt2YE5X+dY1L05e0iJNVFysuvkgqfvD9aYT09DwRVDxF4i07R/EL2M6zIojDmUJlRntx3pLPXNLv5GFrfQyMuMrux1+telCrCaumccqcovVGjwDhh8rUq9SD95evuKYGRx8jhlJwCDnmk3MQD/EvFWZjmUH5QcZ5WkwGBByOx9jSfe4z7g09eu4jj7rD0qhDGjGPY8N7HsajeM7STxzhv9lux/GroTj5hnaMMPUetDR7c7huIGGH99PX6ilcCikbBgAAGyQAeme6n2NRysB90t6g98f4irk8e1SPvDaCSP4l7H6iqE2Sxyec5J9+zfj3oArSfMenXqB6/wCHpUDLk5zn/P8An8aslevHtj+Y/wAKjK4OaBkHJO4dR1qQDJ3r+NBDK27t7/5/Ol+4c9Aeue1ADgR1wSD1FSiJWTKN09aiDhQc8g0wHn27Gkxkm05ORUUikHmr1usb8M2G9akng2gB1HswqHLWxSiYjr1rnvEOjtqdspiY+dCSUUnhs9R9eOtdlPafuy3H4VlyJijRoaunc0fizMtzZeFLsQ7HexPQ9B8vHv3rjLS3llt3AX99A5kAA+mOM1Y8Ualc3S6faXMwaK3Vlh3ZyNxHH6cVTsw0iTWmxhKQEx0ZgT/LpXn1VadjqTvG5upH5d5Gsx2sJEVfTbuzx6jn+VbbA/ZmCIH2tHKEI5K7+Rn8ayrbdvtHeEebDIEfBzuAPX8s/lWr9ng82G4+ZY1lRSAf4eCfrnj8q0XwmT3PPdO8R3HhbVJ3bSUdhD5Sx3oJeLJzlc/WsWEm4/tC9E+xUQgjftdt3HQdR6/WvpH4geB9M1TTYpZg73SSIkQVgCCxGRk8nPTmvnnWtPl0/XNchtIHiit3ZJY3YEqpP68+ntWz7piW9mtTL0q2F5qEMDSLGsjYLs20KMc89q67xh4Y07QWgTT9Z/tGVy3nocfuuARz361xCnYFIyD1J969Bkn1O7hiEkceryXMcV1M8UOWjQcAMw6emKnW1kipuzuRy6+v9uS3tpYx5i0+3tlCAbSyFDux/wABxXq+ga2mreGbrzNW83VL55JFtIWAa3JH3VJOQAR6143rdxPCbUS2UFubm3icxr95zkkM3ud35Yq7pGtQ/wBrxHVJsWz/ACzGOIBkXHBUgdf545zUSm+azJ6G3rHh7ULWyLahLE63kQaM7dhRhyCwPc4I79q9Q+GmuXFz4Ptv7WMMXlIq20hOPMjA9T3GMV5F4w8W3OvfZo7iJoWtovLAI2mRc5ViPUjB/GvUdJ1jTV+E+krdxoZPsn7uPaQCy8ZBI6g4NZxVuaSNVsjyPxFqlo/irU9RunVmjkJiD8kt2I9SMmuUtbi41HW7WeTOz7QjbfX5hVLXLg3Gpu+c5Yn8yTT9KuWjvrXpgSp/MVMU1A6LLn1Ou8buE1abIPmpO6u2Ovf+tcwJco7nkgZ5rtfieiR6uhjA+Y5PvxXCyttsyTxuOKwp6pHStFfyOx+F4HmawxYcJEP/AB41U8RafJDFarYxzedfMwnVCT5hU4Ax7VL4Dha103U7u8k+yW04jSOdwfmYEnCjqx6cCupkuZo2ijwLSy6yvK/+kSITz0+4D6Dn3rScVGfM2cak5e7FHN6d4Mjt1ZZ1F5dZU+ShKpD7SN6/7I5+ldHcRw2tva7Z4pJUU4LDCxD0RegHv1NV73xBZ27rYaLbtITzHFEhPPfPrTodFuLtBPrDhVJ4trcc/wDAm/wqHWdvd0GqOvvsxL24uNSlWKzhed4mDuwGAMHPJ6Vasb28hvJLC7SaGfPn2jyEfeHUAj2GfwNbN5e2dvZraW0YSMMBti6dfzJqHxFp1veSqILrbImGRs9D9ah1IJK5pGE29Foee67qU8k5u/Pdbm5laVyrHGM+n51l/wBq3BIMqxS+7oM/nXRXXhO4lkBLghRtDE5GKzh4TuJvMEE0buhwVVgcVtCpS5dxyU29EQW/iKW2G2Ez2wOc+RMQDn2PFbll46vogo/tAtjHE8QOQO2R61z934X1O1AdoSynuvNZstncw8SQuvPcVrGUX8MjOUf5onqNl4+kLZmtYJY8c+RNhs/Rq2YPG2mMvmXKXFv1DB4iQQO+RxXlEscdpoCAAGe4fJx1VR/kVnRXtxB/qp5E+jGtI1qj2ZE6FPsfQ1nrGnXDhIL6CZxkoFkB3L3rQUZxsOccx+/qpr5yXWrnAEgilx/fQZ/Mc1q2Hi26tBsjku4AW3YhnOM/Rs1osRLqjF4aP2We4TdAE4GS0ft6rWdKpBBA47D27iuAT4gahDOY7qeN+jYmi2kH1yv+Fa0Hjq3uQDNbjccbjBIGGcdQDg9auOIh10Ilhqi21OjYAjHPTj3H+IoCZGDjJ/n/AIGs2HxHpc3DXJgYtx5ylefx4xWjHPDOu+GRJFPHysCPpWqnGWzMXCUd0Rsu3IOcdf8AP0qMjaSp/KrTjIBzz6/1qBufX2x2x2qhEQGDg8g05Rtba3SndRg8emKdjIx+VK4Cvs4zn+oqSO7dE28Onoe1QKpbjuKlPlqnK4YH5qhlobLKXB2naPTNUnXdk1oG3DLlDkEZqnIpU7ccimhM4/xHGW1C2QHqh4x70y0jFtcqrlw0RwGHzEA9ql8S8albYJ3FCBjr1ot0eSSXMm1kViXPU46A+9cFf4zqh8J2ekRW41h1ISNJIzKeM4OOv86QwpI0c0jhtl1Gqg5GRzn8sVR0kymG2SNGd3+QGRvQZ4P51oaLEZdVKzY8ssZQgOcBQaqN7JGb3udFd6jBfWFtZai0kZvpHmmmtyXMZJBjAfvjivNEbSre/wDGqaxbi7kSARwOzKp3hsBhjv0PHoa9j1ixaSeVFe2tIrJBJcwRLtjO4ZPPY9OR0zXzZd6jLDqGpKiKqXWQ6lQ2ATkYJ/Dmo53KpKKHGPVmainZtxyelex+HvEWg+CJLOSHEE8LtBqkbgiRxt+UBckHByc/SvGkkYDI4IOR7V2eg+DbrxfMtxLqkQvLnMzrIcuy5xn6nBrWU1GOo5LVMreMfFNtrviWDUNNtZbSGGJFjjd9xBHcfpxVK91CVrtbySCMSyEStHswpz7fXJrN1azbRtdubRJhObacoki/xbTwRXUwTaRren3dzfah9lv3f/VMpbK5BwhPQdc/SoetmgkkrGJe302p3L3U7lpCBx7AAfyFd/pviubTfAP9hSaZKhu7drlLp5chk3fwjtyMYrkNP0i3ubXUrpZRttgEiU/ekJ5zXQ6hq1ofhpo9iiQieEOJHB/eD94cg+x4IrOcvcsjSnHVHmd2d96/scflxU9sNlzC2ekin9aiVAbk7z9a2YdI2vDLcF4kc5jRRmST02r/AF6VbfQ10WrOy8fWtzq+p2y2MTSsRkgDhRgck9hWNZWtlZOkcccepX6nOXGbWE47/wB8j06V1Vpb3N1bFtXlSO0SMsbJHOZMd5WHU/7PSqItjfurx232HT4/l3kbTjvtH51y05pPkjrY0abheTsihBeyQ6nFeXim6ugwMQYfdPYKg4H0Fa1xol/qDi51V0sbdvmVB/rG56Y7Vcg/snR7YtZxb5j/AMvEvzMfx7fhXL6p4rgtVVY7j7VOOp7D2zVOzlfdkpu1oqyOliuLDTopEt4FjiRiCx+8/uT1P51gan44it4hFbfOw6AfdFcVqfiG+1NsTSnYBgIvArJZi3U1Sw/O71PuKVRQVo79z0n4daxPqfxL05rggq5f5ccfcNb3xoQw21hLGSD9okXK8cYzXEfC4/8AFw9J95GH/jhrvvjdg6XbYHKXhJ/FT/hTlFRqRSJUm02zx+LWdQtzmO7mX/gZqzb+Jr+CXzVMfmdd+wA/pWMTmgVu4Re6I5pdzsh4+uJYhHdWcUnGCyEqamj8X6fOkaXNtImxs7lw2fzrh6SsnhqfRFqtM9QGu+E7m2dTDEZiOPMj2jP17VYTQ/Cd+qJHeW5cgAfvAK8pAxzTg2D3rP6rb4ZNFe2vuj0PUvAdmrH7JcDjtuB/UVVsvAd3FqiBmSVEIJA/OuVspbiOQPHJIp9mIFd94XMl5LbrJc+W7F03q3zA9e/tUTVWCa5rmkOR62MbU/A2reZLdGSBlYljlsYrl7nTL20b95C2MZBXkGvdzYSiMrM4dQMfOmQ1Yt7oTFQyQR4B3FY+n5VlDE1Y6SVy/ZUpbM8q0lb+6vI7aKaRVJ+YEnAHc4qaTWZLa+la2UeVuIXBKkj8MV6TZ2VvGC01q2CCMheRUM3hvRroHYVjPTYy8U3i0pXlFh7G8bKRxlr4yu4cDzrhRnOGYSD/AMe5/Wtm28avgSuYnjJ2tuUx89jnkdKiuvBcDTDyW/d7iNyHjFMvvBsgtoo0m8tFbaAVJBJ7k1tHGQ0tJoylhHrdI3YPF1nOuXhccE4jYPjntg5961Idd0ybAN5GjnHEmUzn615Xe+HNSsGJaPeo/iQ1OYrqx0gySmYyyMAiHJCgck4rpWJejTTOeWEXZo9fjeKaMSxSK3upBzTJCWJbGD3GK8Ti1W4gbcMZ56ZXr9MVtQeJ9WtbcTm5lVC21Udt2ePetvbW3Rh9XfRnpUckltIFDHy3PH+yfT/CpJH8wfMBXAQ+PJCpWdInB6goVz+RNaNt4ztZdqzRMuf4lYHP54q/ax6kOjMXxOF+2WxC5+VhnOMEmorebcJFDiOXysqCPvENnj60zWb2HUbi3WLecA5BGMZ+vWn2zoZommdPmYBcpgDHbP4YrjrSTldG0E1GzOntLhksIphCGkt5Eyc4zgtz9aS4nubfUEubZgJFbaSxOAhYhgR+PFM09WOk3j7QSWAA254LH+taF0MwLKowTGqL8mRkY7Hr2/KqUboybszL0TVJtR8O3NudSe8lkkzJHLLyItw+TJ7nnJ54FcTcWP8AwkXibVxa7I/leRBK6oFVeo44PAwPWpbIXun/AGvSHtvNDSkFUXkugIJU+1YtjLb/AGi/a7jZneB/LIyNj9jj9PxrGEWpSkmWihGQYiO9WY76eKNFjlZNpJyDgjp3/Cqsbnytv40rqCPkP3RljXU1fcbLVx5aiKUtIJ2BLBx69KRobh8yLGzADnaM8VVZklk3lmIPHzGtrQtWmsnlWKfyhMBGHPOzkHP6VEm0roVrCvb39jM8d3BLBIwB2PwTkcH8sVfubFWs/ssJLzKo3yM2FUtzjJ7D+tJeanN4j8RSajKmMBRtJyCQMAfpmnWd/BGlvMu64nLszL1Gdx5A9cVndytfoaLRFbS9LP20MY1POfPddyr7gHr+PFddYNbxTbNOt2vbvrJdzdQPduw9qSOzF7HPd38y28b8+VFxge59fpVSPVol1aLTNPlRVlkEUIbpk8ZOP51hOTlozaMbarU6O2it9MhlvJZftF0cgg/6sfhXNax4uEDKHmWQo2REg4z71zXinUdXtNRn027YJ5TY+Q/e981y5Ysck1dKi2rt6eQTaT11Z6LEJfFPgy+vZG2XEN2EQoSBtK5xj6155MrxzPG/3lODXpHgNS/gzV0J4+1R8f8AAa4HWFCaxdgdBIaui0pygtkOprBSZSzRSZpRXSYnW/DZ9vxA0cjr5+P/AB016T8aE3eF0lJBIvUz/wB8tXmPw9bb490U/wDTyP5GvVfjEFk8HSEEfLexHj6OK5av8aJpH4WeBYop30FNPvXUZhR9KUDil4Hf8qVx2FSMu4XOMnvWhPaQrbwmMP5p++W6H6CqtsrSzBEHzY4q7G73FxEjjOxssAKTlYfK21Y73wr4SsNRtgt1C8jFA27cRj8q6Sz+G8Wm3X2u31GUsGBRSR8n5jmuI0vxPrtpeLFaLFFCAFO5M5A967PSvFWq3uoKGmiyTt8rb7evua8uo6ye6O72cXqkzrP7H1aCMrHdxOAMgPF1/I1R1qyutMlhLJHdiWLewV/LKn2z1/OrTavqaDabMqOBlWDcfiQap/FN3hsdKntZZIwVIJRsE8Cs6NKU5csla5E6qgrrU5+4kuODFbXisACFwrfqCakN+gQJKSjg/N5iFR79awtSvWgt4JbaW4RmRWJlwR096kbXrq1g05Vjjma5DBnd2TBDY7dvwrq+rS5bqRj9Zi370TYig067WSRPLyvZGH8gc1bTTI5EDR3U6qTxufj9awr/AFu4sdStrPUdLjLzgMjxyrIpUnhsleRXoN6IrZNHiRURBBICOgyCuP61y1oygryaOilOM3aNzjrjw411IRHdEkdQR0xVLUvDt/c2hjE0JXI5II6V2DyRqWJgZs9dj5z+tBS3khLKZo36E7f5jpWMalndWNmpWs7nmN/4YuSsYezyEIyyEEEfzFFx4VMsWJ7SVRCpCAMee/YV3ssCbSY7yNZPVl2itqPUbZ0AdISxHJEgNaSr1Fay+5mXLHqzwW+8Oi3wRIVYnIjfg4qnf2bsYhEPlUbVQA9e/OPWvep7fS7ht0sSlgMA44NZl7oWhTKWZoUf1wVxW8MY18af3GcqSfwnj2ixyln4JOQACf0rrLZIfOniAxxyrHoQQeabrejWejzw/ZJklWUMzbJM4wR37daZbZkbzXJWUxsXbptPHJ/IGunnVRcyOWUXF2Z1Gl3Zg0qS2dFcT45OcjByOB9a1JfL+zfZVDmaNRMC3PPoaw9MlhubC03R7WJZpmA6kfT860YL6Wa+jeWBGmeVreXa33R1ycjtW0ZWOWW52nhzwFY2+p3V5emS5kR2QCRcIoJyePwFeR61BZaL8SPENu1tIyhZPI8jkozAEHntgmvUvA3xC0y80oR3up7L6NW8wSjaJOyEnvxjP514nq+tXreLdYvpY4TNcKysuAyYYAAj8MYNclCMuZxfY2aXLoc8piNjjH73zOv+ziqzK0b4bBBAOM9q0IbKdtCkvQx8gXIiYf7W3I/TNU18nbJ5mS23CexrvQiAsSQAAAOeKltkkcfIfmzwKiA+YKB17Vo6cCnmswKyBDtJHA96JOy0GT316LWFLW34Ij2sw7sfvH+n50aXJ5OmzzCN2EbDeyr90Hpz25rLIMzF2cA9ga67wlaibQtaBkVgRGCn4nms5P2cLmkVzOxz91r13JGYYpDHEf4QaTw67/8ACUaW3U/ao/8A0IUPopbxGNJivLU75QguDJiIAjOST0A7/Su50L4avHfafqCeJNCmRLhWMa3PzMqt2GOpx096JShGPqCu2YfxJIk8QNLjne6n6jFcYK9R8e+Gp7281O6hntIksi0zRyy7XkBA+4O5rjPDXhHVPFLzjThbgQAF2nmWMZPQDPU1OHnH2Sdy6yfOdr8N0L+DdcxtLC4i4PXpXnuvoY9du1JyQ/8ASvVPBOian4dstSstQhiQXKLMCsyvwCVHQ+ua8x8TrjxJe8Y+fp+AqaTvWlYH/DRkAU8LntSZA7UpfAwK6jI6LwJlfG+kMOouAR+Rr1X4szI/hGXapO6aJiQOByev515R4FZl8baM/wD09IPz4r1f4q2zR+F9QlVjskeIlewIb/69cdZ/vomsPhZ4OWGeKEG58GpoIVkTe33VcbselWLW1V7qRACAFJGfwrqbSRmtXYY0QNsdo6dDVHBFdNHpxNkwjIcqu4+2M1zsx3SFsY3c1FOd7mlSNrGx4Ut1udehibo1ak9rLpesTWy2x8xGKN6HnIOaqeBYXn8VWyRuEbk7iM1raoktvq93FcmY3KyNuUD34Nc9V/vWn2NqN+XQ0rDRZtQZA955DOAwCLkD2zWtonh7VNO11pXuYZYo3DR46tg9/SudsfFsmnXMMSWDyyqu1QW2+2a7SDW7u4aKJUUSyDB54B+tYNuMbOJrJuUtJHUte6lMgyttkk5G9h/Ss34khl8LaQzAE5IJB/2auk6pFCQtpbZxgETHr+Iqh8Qrhn8IaXvA3o6hvTJU5qcMkqitG3zMa+sHrc5G8tftPheznUklYwuO2ckVoQ+BNf1eyCaXFA9xp0jxyq8u08nPGeCKjtmEngq3wMlHOfwavXPAb7tZ8RL0zcK2Pqtd8He8X3OPlTaZ47rvhzXtHs9IbW7V18pZI45NwIUH5gnHpg16JqS2x07S2nRGVg+d4B54Ira+LlvHL4RjkdgGjuAVB75Vhj9a5vUQToGkzuwGJSBzjI2VxYpcrsjsoIpGPSWbhIlbPQErVgWNrIrBJSPpKT/WsOXWLmIvnTWcL0IOQf0qP/hIbVeZrCSP1LRjANcrpTfX8EdHtIr/AIc6I2rRwpErEhWzncDVaayjbakkSs7c8xg5/GqL6lYeXu3HaehwwH6U9b6BkPl3Krx3nPX6Vi4vy+5ml/X8CBtKijyPLiIJ7qR/KoWtPKyfs4UeqzMP51bWUTRiWOcHIzgSgmoi2oFSqy71PTcgOKtSfl97Ja/qxyniCNUv7bGVDK2d7A9xTNLgMzGNYzJgAEmXGB6/oPyqbX1uv7RthP5Z+RtgCbec9+ap6d5yTTSwu6yKmQqnrz/9avQp6wR59XSbNXTfLhKb2iKo4HXhQcfnmtqzVWvrwxsW2sH2kfMQR1+nA/KsO1KPpnmRiEEHcVfvkd/1rZtVaPV7K6RBOJ4tkpgIA6nqPQGunnaOVrc3Zvhta3uo291aYtLqBYjI0Lh8DZhgM8HgDtzury618Gz6j8Qr7Qby5W2kVHkLlQduBuUEAgZ5HTpXQ6D4g1fRJbWG6vCLeQb4pmIfy8rtUgA8jgcZ6dqqQeILib4ry6lEkM1w1sQNxykv7rr1GMjn2rlpOcXJb6PU0917HNaXDcL4M8RQlk8qG4gZ1P8Ae3Mvy+/9Kxl02Q2H2oxllfO3bzwOCa0bKO9uNI1+WKJXt0kje4J4ZDvOCP1zXQ+FtOuL7wLqc0+rW1pp8EpHlSLuaRyucDvyP611NuN35/oKXkeeMpDtIhyoPU+9aFgXvblIOc4zknoKpMeZcYA3YAH1rT8Oxh9Z2jJxGx446CtpfCVHcqG0LysgwCM13vgnRWg8JavqbzoUklW38oDkEYOc/jXIzxeVfMuCAeQfzrvPCA+1eDr6ASKoivN5QHlsqvUenFYV9aVzSnL94W1+AuoXk6zR63Zokq+a2Y2+TdyB71es/gFqWn39venXrN1t5Fm2iJgWCkH1r17Rrr7dpEMXlokKRqGLP6AA1Klg6PPKLyeS3jVnSN8YBPTB9Bjp71zLETcR2szyHxR8Przxtr80FhdQ2xt1EshmBP3hxjH0rzIeBb+Hxhe+HJryC3ntEMkkz7hHgAHPTI+8K9+8L3xtvF2qvcHIlgjK7eScY/xrh/EQYfHDX4ltgy3OnFXBP8JjU7v0p4Wo1Tt2NK8ffMbwZo02janqVpJd290HgUiSByyjluOcY6VyHjzR30/WvtLSxMl18yIpO4AcEkduRXd6HD9j1rUIVG0C3Q4x7muC8du0nimb5iV2rtz24rSlK9dvyIafs0cvjg8U2NdzgGrSxna/+7UdoubhM9Dn+VdiZk1Y6bw/p8+leN9Jt7oBHE8L/KwIw2COfoa9d+IdrNqXhS7hgXfI+Ci5xn5x6/SvGfD8ksnivS3kdnYXEXLHJwCMV7P8QY3j8KaoyyOCqBl55X5h0rirv99E2pr3GeR6R4P1mWWW0ayIkG2UruX7nIJ61n28eNfeIbiCGU+p4q74duL64e4EdxOZS0ajaxLEfNwKnh065tvF3l3NvNE2GOJV2n7ua6Kkkk/Qwgnzo2dK0ryLKTcQxdGxzntXnVyu3Z7ivZdIjjmsmKgjYhB5zyR1ryHUk2eX+P8ASuXCTbnK53V4rl0Nv4eceL7bHXHH5ivQfEKRS+JL5pAS2VwoHbaK888AEjxZb4ODtOP0rudQvjZ6/eJeSAFX+VXOPlPI/SssX/F07F4Ta5Wi0pZ7sSQW6JLjpJwcU+xOpQaztmtGWKI7t5fhv92of+Em0qC/ja5l+QBgRECa6UaxazW8TxwP5T4KbxyR9KiKtG84s0qTk5Wi0dUur3E0KkQqxYcgyDisz4kKj+CNOlXgtOCw9CVNMjunIUjTpsY9V/8Aiqb43DP8O7CVgV/0hfkJ+597jijDwUasWk16nNWvyPVfI4XSdTVNLuLCdsKQWiPocdD9a9f+GN/9s1fV5MY82OGTGf8AYWvBXwYT6kV6n8MdetdHTUr6/mjiijsEb5jjcVAAH1OK9WcVF8yOCDb0Lfxi1ZL3VrPR0uQghVmZB1Zyv6YH86jv5jL4L0qUQmYpOhMY7/If8a8ln1u41vxO2pXLkyTzu2M/d3DoK9e0gs3gvT5GA2rNGVJPU7QMV5+JutXudtG1zJt2hniDPpFxE+452oRwOnSrAIIwLbUIx6DJH5HNdMk7zH5IEBA9RVZ3lSV2eKMAehFcN6t78rOpOnbWxgv5wAEccsinqJYSP5Co5ZCDtezLY64Tdn8wK6Bb4Ln93C2B/fFQy615QJMEYB96lup/KwvDo0YO2wlbiN4iDyGtyMfpUDm3jvI40ZgNhJkCkDNag1GEySOYd5Y/QCqr6hbvkrprPjuGppyv1/Abscb4icSajCqzAlU47c7veqtsXjRnBztkWLanIYMehqz4keSbWYy9sbdTDwpOc8kVUsI9ty8UhkCFDk9sjvge9epSXuI86t8TNzS7m1W1jUyRxHyiYyw4lI6p9c5FbGmXdoL20u5Gjtmjt8vDwQxJ/pWBpdjbXF1LaXTI8LqxUrkBCckEZq7bTQolmxNukkI8sPtyJF9D6cZ5okpQTkmc7tc9G0nwj4eijsY7CF9Q0i+xtSRvNRCoJLc9M8D8K8n8V28un/Fu4DwQwC3jWSJI/uhFjyv44HSvafA9hp2n6Ja/2Xq4m0+63TQRyqBICQN4B+ueMcZry/xTBBrHx3NpJI3lzQLE5Uj5SYug9ulY0vdnK/mayj7uhwOl6qbe18R28joftkXJIzlg+ePzNQaNdypaX1qjHZIm4qPYHmjUdEmi8RazY2wASxaR23Hb8in0J+nFWvCunWV/qQ/tCRo7YRSZ2HGSFyBx/niu73UnIzlscu2GZiv3Rzya1PD2f7XTBxuRh+lV0to5bi5jVywRXZSBjOBmrehFP7StQM7sPuJ6fdOK0l8LKi9TtvBHgtPF2tag13PLBZ2hO5kHLk9FBPA4ya6X+ytP0KO7ttNlmMUpy5kIbBA5wcd6u/CDWIUv9V0dl3SGX7QoPfKgEfyrrfGdlFJZzXbFIliVuFH3sjGD+dck5OUXHyN1D3ubzNzQpYYbC3MKWio8SjzGOGJwOD61NearAivH5gDMjDnpj1rg31eC00i0s3jkeC6kEUxEn3Cccjjjv+Vdfc2MEumEQxxNGkf7tQSRg46Eda42moK7FzXk7HNeDVNz4wvVl2blt1wenQryK5fxaIk+PFzmTb5mnYUjn5vL4H6VreGwI/GVwSGYm0wq5PPQcYrG8eoLL4y6PIsKFpbSMEHkAkMufwrShs4rsa1t7lO3RofFd6rHczWQPpyGrivHPlm+tg20OY9zgDnJPevQ54ivjgIQNz2BBPY/NXn3jK2LXkVx1Mi7VG3jCnrmtoaVfkTFp0/mc7BFGwk4IAjJOe9QadCJNQgj/vNWtFbyq482E7WQkDGARxWdpcbLqlmwwMzAD866YS3M6isauiWrJ4n04DqGjk/Dg17R49Bk8KapuA/49+1eR6Kjp4p0zcByq4+lexeK0MvhvVIc/ftTjNclV/vI3No25G15nhWgkpDfspIZVRgR25NWfDMkt14ri8x2YneMsc/wmtLwjZrb6wqyMjA7SflyOGHbvWjLaWtt8T4fsiqqSfMyjGAxByOOla1qi1j5HPSknJWOt8P6TJY2chmbezL19hXj3iO0ks7owTJskjcqw9K9+sIpHgSIqN3Qnt2rxjxMj3V/O9xteXzmDHGOQcf0rhwdR+0bZ6U4c8GkZ/geTy/FNuw6hWP6V6H4hvLSbW52uAiHC4ZtoONo9ea8/wDD0Rh1pDEoEmx9uPXaa9IkCXt0fPRPOiRBzHkkYrbEte15vIijFxjZq5gNptpfSrPbqs7gYVlGaydYtx4g8RaNo6F/MMzRzCNCWRfl3EAjnABP4V10VzZQXUPmXUKAE7ssFx7Vi+NJpJJLS50W3+2PLb3EMkkUbSbFdVUkEeq7hz6mrw0veV2ycQtLKKI/C2n2/hz4hahaz2t35BsRJDFNEWlVX8t1DAAfMAcHgcg9K77xdPHdfDZJYo3iQXg2o6lT37GuC8ADUTrMY1GzmtYbbTXto5mt3BcGYOAT3PzED2A9K9N1q0TUvCKWW/dumzgtg4H1pVpxWIT9PQyjFuk9P8zxh/OjhSQghHJAOOpHX+YovbqVtCxuOFkVePTniuzXwnDIFieVQiEkK0vc9+PpVxvBFlFAVuHi8vIO07mGe1dsq8LbnIqcr7Hl2myhL+2ZjhRKM17PYSf8WxicPgJPE3J6fOBWIPDWjQOFCQbuo/ck/wA612nhj0KbSreMyLJtKOU2oOcnI64+lcVepGdrHVSjJO7LP2q5RRsRQBxnk04vfyNkPFjqVKnFU4p9QCpCktrHGAFAWJm/rVpIdR+aRrkknAwsWP61wuL7L7zsUl/SIpftzToVktkYdjETnP41FcNqMuYQ0KHplYv/AK9Ty2N0JBI1xKUxyMAHP5VCkUkkZkL3HoBzk8+wqben4lXXn9yFivdSeFNpiXGVZSo7HHrTfPvpJWjzbhu+AAT9KJNEhDGZ38pm5y8pH9acbOzRsLdwyMvG4vuxSSj0t9zE36/gcb4piuG1GCSWTLLGdoxnofSqdlIReiVNyFlOBnGfbNaviiG2OowJHIXJjYPhSMDI5FY9i0Uc4WQkwpHyducV6tH+Gjza3xMtWiGW+BRW+6GKk89s/oa6pEH2JIo0UmFmiJAwR16/nXOadu+1KqoHZFBAByGBGSAfWtBFLrc3EDYfzlfOd20jsffitZTcdEc0tdzL0EX9prdi8EsoeJiIlzxGW68Hjp1qhLqF5cfE+CczH7U8kcbuiBckgKQAOMY4q9psdy2qwzHkzFkweoOP8M1S02ZF+KmlTPAVX7THmPrzn/8AVSSV22uhnRqN6NkPiuJ4fH3iOK9CrMxkOFPc4I/Suds9ZXT5S6IWkG9OV4wylTjnrW/46Mtx8RNXZwwkMhznrgKOv5VJpo1ldK0Y6B/x6Zl/tMnPkeb5rZ+04/5Z+V5f3uMbsc5rWmlyL0OjRs5aFDMklxAjBV3Ag88Yq7oCML+N+BhT1H8qv+FpIV0e5VlDOzSKQTj5SgHWtHTbOIIxRMMi8H8Of0qZVN0Yuryysaeg6hL4b8d2upZBikyJAOoTAyT/ADru/F/jDS4bCVIrgXPnuMqrdye34c15pe6qZHaJQFXGzOOSPTNYsVrEk/mEkgHgGumOCbScvma+3aukeg6h4itdX0y3tosrNFgE427gG4/ECvQ/Cd4dO8MqzXAmCIIxGWBERHXj3614DdyGJBLGcc81vaJr/l2uZZ5FZB0B+925rLFYSMKdqfQw9rKLc+56HoAkPjKUDcc2jEY4xj3rH+I9xFZfErQb2T7hsBke/wA4H8xUd/dz2txDd2sjRM0QG4ehz+lcT4ru7nUNbtWlZnZRsQE5wM9B+JrzKEW5X8jtrVFzcnkdjp10154nDow3JasFLc8ZBrj/ABQzC9tkdj5MbHtwDnn+VdP4T0zUYRFrctq6WjhoYpSeGOfT/gNY3imSBn8l4mkKMXCjpkmtneNSzDDX9ml5mjBaRX+lSoWEksBMi4OTgjkfpmuK0bRb+41i2McQwsoYbmwODmtyC8/s+CK62lZVljUKrdSWH9M1sXlvd6Fr8ht1hWFvni+Un5T/AIGqnKUYc0dzaEIynyyGL4Xu9M1SxvriaAeQyjajZyvrXoXiUM2mXKA432zLn8K4S9ub29besrBDwSQQOPau41h2uLDbg4aA549q4YTnJpz3OqpRhC0Y7Hj0OmzxESLemN+2xgpq/ptrHba1BeSXLyzpIcliTkfX8aZBbyMQT5nHQhR/Oriac0jKWab5j/z0UYredRtWbJhQgnoj2HTolGkQy8ZdASe/IBrxPxBaj7fdAD/lq/8A6Ea9h06RjocEeSNtuDyfQV5VqCBru7BOSS//AKFXn4aTUmd1KKbaMnwzZ512Jyo2oGyc/wCyeK9HcqbhkbaMAYH4VxWhp5dzC3HLsD9MYBrqryOKS5WRkJKxKcljg8eld0pNz3OWrBLSxBrvh+x1S3W6kjBlgHzYON6e/wBKzYbi3ihkjWQKvllEC8j6V0NgS9yiRIDkH+Lj6YNVX0yKw1OSSXS3uTI7fZmGNuDjKnn5QOmT1/CirJ2TuaYKjTqSlCa13WqTfzemm/8AwLtdJZx2T2cLNdpIGQZC89vanSpY5IEczDsRG1UdDuTZ2cVncbMRqQ0skhAyDyB1GAflznnHFed3YvL7VZpG8W6nZi91m7srWOMs0MYjMZDM3mLtT96OinAUn2qaeGnUfvNrqc9epTpTlGFpJNq56UiwySKi2P8AEB86gED8617yKNBu2ggEIVPTp/8AWrmfhg8+p+HLCe6Es8qiRmuJXLs+JGxyeeMAV1N1KUt3cAZL9W9ga6IUfZ05b/8ADHNOfNNbGFJKqFZFhQBPl3YJH1qCUPPIrAkY/uJjNSS6jOw8sNCAQRtVC2c00XE6RbWMjY6fugPwrg9lbWy+bOpVPP8AAQtPHEBiQ455UZ/Okg8+OMhFMYc5JDAEn3pczMuZZGXIwMnt9BTdiRsA0sTIBkjOWPsKVkuxV2+424Wd1GLmUfNzibGKpG3hQhJEnmU9XMzH9M81cb7OArmJk6D5QKlT7NuK7ZGOM4yOPwqk2tvyJfn+ZmQRQPI2/TimDwwx/WtEK3VYl2YHUgfqKkihInZ1gUoVAw3JyM1M9wwTDMiA+iiru33+8zbXkcP4tkc6xau7hf3LYIHT1yfy/OsSz2JOGudojJ8tscjn+Yre8XKs19YlJ/OKIy4yOue9cu8PlxyEgjEgwuK9CgvdRx1PiZr2jJbQCWF3ZEfe20cjDcY/WtT7LdXV7dXke4Qu4yqEru4yCeMZ/rVTw8YpY2tSpHnLuBYZyQMEfoa1IJJbfSRJEFXlUcnIB6jmrnbqc7uZKajDDLGYB5TKWOAM49P61RtEe18WWuvRbJBDIJQkmcEgd6zsSbjJtYcfjUtvJI0gRtwHO0Y9qSVjlinB3Rpa5KuteILzV7yPZJc4yIVyq4GMfoK5g+GFnkeQXoRWJZQY+3510At22sCxz256UtxbssGFxuxnPrUe2UfdR20cPiK0HUp269Vd2V2knu0tfu6tIoabZLp9o1vv84NIW3bcdgPX2rRgbynVRna3H1yKjSOXYm5cEClgbOzK9CCAaabb1OD3m7swLmUx3RY8/NThIDk1HqMbs5ZAW2tzjmoYASNzdK929nY6EtC27rIFibHznBFSQJJp+peVG+9VbjjrntUNugN5CzdN449s1fdxd6qCi4ywHpgCsKknz67WZN7aHXancJdxRKp2GKNV259v/r1yGp6pZ2GrWrzJLI8YEnygEdenX2rsbmDzbeAKh8wwr0HJPFYaR6lFqHiGLSUu01FdFTatoGEoP2yAnG3n7p5x2zXjYdKTsdM/4i9Db0Xx3c+J/wCzvDtnbyLbWivPIRGNzkAgdCeMtWHrttPNdb4jhjkHcMAjNZeoNerqtp/pBh1b+zANSbcQxk8xsB8fx+X5W7POQc85qr/bEj2y21xmXycgPnrn19a6KtFv30a0p8r5bmrOohmtklaMfN5gyMAsBx/Ousulm1TQdkjSQ3ljywHBKf4cfpXnut6zd3NrY20iwEWYO2RI8PhiDtY98Y4ra8I61cvrQQvvFxhFiY55I4AP5cVUMOnG3Uc68lLmRdjD/ZwovZtvpuA/pXpV181lbqSDvtsZz1+WvOryG1hv54IkXywx27h2rt1eaaCzkU7Y9gG3tjb0/GvMnDklZne6nPFM85gtbaJiGuJenTzD/SrK2lhJKBJKWHoZT/jTRHYFmYKhOcfhU5s7FghjVGPQkE1T9QTs9vxPTdEBuNAtyudqRbPXOM4rh9d0Z7DU5o5SCGUyEqezHI/Gu/8AByqPDaW4GApIB/OuP10vJeSmVt7BiBuPYdBXlxbjNnoYfWdjltLjaPVYZMZVm27T0xXTzW63Udu6MwDQjawYj8KpgyZRtyBVOcKoH9K1dA1eCx0lhcRxu0lvOPMYDOcAKq/jmvQw96sjmzGSpWdjnLqz1JJ44YruaKMPkkNhvzFdZY3yNF5VyTIIh99+TjoSa5q28QaJZahbm/Sa4QESKImLLheSD61x3iLxItzqlxNZtKlvJIxiiJ27FJ6ED2NejChKUdbI8udSPNpc9gXVIdR1+2tYGiit9Oj/AHzhgfN3D5QAPQ9a8wm8cyeHda1G2tkvd9vrd5doYb3yopt5Rdksew71/d9MjIYjjrXafDuRI9AaNSonUh3ycHBAxXXacq6lePHHcLN5bfvAjA7Pr6HtUp8lbkvfoJRbpuaWiM34TxmD4aafMpG+bzRj2EritHW5DBEkULxhl6l+hJ64/SuknaMWoQYXAJLegrgbye/nu5ZGtIwm7CFpP4e3FaYjSFrbmdLWd77EMzXJIJv0jA6eXBk4/E1XlkcyqovJz3wFC5prwy7XMtzHGMY2hcnFUnfT4HLPNNIT1+fAriVBdEjpdZ9WyZAqKfNkaRxwS7tg/rS/aEWRWgtUkZMjbCvzHPXJqmdWs4sCG0Dn3BY0HVNRc/urJlU/7IH862jRZlKqn/w5pi5vnJP2NVB6ea44/LNKkl/FNLOzwx/IEUjkEfSs5rfUrhN0s8cQz0LZP6U9beGKLEt20jZ6DgVSpR1M5VJEsmpXgQhpQwHJIbFRfaYpYY3f5mdQ2OSelIbqzh3bliUDqW5/nTlvHaIG2gdhjKlEwCPrSUEtkJ1H1Me5uoTrdsSjALtzxgY3dMVn32JdVuLeIcTuoUAZBOateJ5XN/E5RQ3lAYB6HJrFicuZcKxkjZXG08qB1/St42RLdzVsI76z1CKCeFtsUh5I+XDDn+VaKOBbyxRSKNzqSDyoPTnPtz+FUNL1Ei+NzM0jgqGYDnLAkjNa0GySeKZ0TEwKzRZ4bkjd7fh61M9b6ENnLxthlV1THQ89PepFdI5Wb7wHcGqQiuHbDfkeM+9SjSZ2AYMQD3U9aXJcxdO5e+0RBMk4xx060qTws4DN1FU7a13M+xi+xtp2ckk+laJ0TMqCRnKAZOODn0xUOhFu500q1ajB04S0fkuqs7Nq6utHZq6IDcJ5vygHnnnNXhYrcBD9qjjIyzrEOFxyByR+lNtdIjuI5RZ2sx8ptrlQev1qpqlqqxeXtKyrnODhvcD3rWnBcyRzqnfQoWFi11rlvalpPKklAfyYy7be5AHNfQF18NPC13o8cH2DymEYCyI5D59Se5+teK6FqV5osKPYutpdGMq8kYBY57ZP9K9R8EePLXUTbaTeh4LpEAWV3yspUdOehNetKFSMeYXNBux5NdWEHhfxtHaXyPPFZ3aiZSMb0zkH8QRXpDeEvDt1q82o2cEixTKCIs7VB7kD34rkPjPJGvjaGZQA81ookHuGIB/Kt7w/4vdrCzjmtbjGxUEuzIbjGeK5a00tZMtRco2SJdDlSHx9bWKDKJK4GewAJx+Fea+P7Jr74m6vE0+N10UVmGcAAYr2rR/CaXHiaPXlvUJjdnMW3B5z69OteTeJYrK88YXV5bTzyPcTSTJI5DAjcQGIwCMgcDr615lKpTjUcuh6tDB1sRDlgtVZau2r2WvVmDdaLZ+Hj5jagt28ibRGiFdpyOTz04qG7zaQpDDdrcW0jiRkj6ZAxwetehaH4DTxB4f1EhDLciImNmOAZMZXn/PWvL0HlyMGGGX5do7Gu6D9rZrRGdeh9VvTnrJr7mdFZXkR1CWyh06EQalD5ETzDBVmPDgnPIPAp/ge2jHjrT7WaDcImclt+3btUneT7Yz+Fdb8IzZXGtJFfRwz7QY9syhgFPQjP+1Xb3On6zY6zvn0fw9bWO5opblhsYwlvmCjJySCeMd62jeTfkclWHIk1qmjzPU9SsJtYvU064Voo23Yx8xHfb6967q3ljl0fT3ikDIVUhvwrgYvh/rreJ7q+0e2aHTobh3t5bj5d0eTgbTyeOK6MyNpOmh5GAtizbQEICNxwCTyOTXJisNePMty6NfXlvoYc+l3IncR+S65zw2D7itG00N54wj2x4HVdp5rp7e1sGijZY1cuobhc9RV+KMqcRwbDnghB/Ws5UrrQlV31NHQDDp2npDMyRorcFzjFVn/ALPilMcNva3rvIWe4mT5UB7Dnmojb+Y4eSIO46F2ziopsg5eWKMHjtmuaOCUXc0eLqPYytZ8XaZZrd6fDLuuQjKUtrFQqcdWOSQBXG2EtrqmlPG2+2ZVZYrqQgRMxJypxyAeMHp61119a6RIksdzcRkXHzSYIBfHqeK4zxhqemQaJFo+kBNgI3MuMBRzjPck13U6UVokQ60pPU5BL+70ueC9ikiLwv8AICM9M5X6YJFZ1vbyajdHC4XO5iBwozR5CvJEpm3K7Y46gmvdfDfgWy0fwtLfMytdFD5Zbseefr1p4ivGjG7KpU3N2R5l4fvJpNVubVQfMuEbYu3PIH3QPp09xXqtk+nyXukpoloYr+3nzcyeQy+XHtIZHJH3iOAeeQeR35nwPo0Vs9zrV4VjZiVgLdge49zXoUEghiW6knItrdS7yYwOnT/PrTeH5/3jf9bnVSzP6vB0VFve2tlqrPmVveVtldde9hfEWpmxt0tIlLyy/M+D0X/65/lXGz3V1KeSEH0Yn9BU954hbUrqSSGOeQsflEaFsDsM0x7DW7lfls2iUjrM2D+QrOXvO9jz0+VWMj7HJdXSpNe3XzsBxEFAq3q2h2WktZTL5r+ZKVYyvuBG0np064p40u4t7hJbq9VXQglI16c1d1BLCe2jN24kk35UO2Mds0JolzMR9TiX5ISNw/hjXJ/SpI11S9z5VtNj+8/yitCHULG0lVbeFCxTcoVAoP8AWmXfiC+lO8MlvGcqBjOT70tBqTY2PQtUZC080Ua4B4yxqxHoNlFJtvbksQNxUvj9BWPNrF35Cxi6d9vD89vSqn9pSxSK0Evz9eme/c0Nj5ZPqdBN/Y1p/qXizg5Cpkn2qi+vxJHtEBCIuFVm4rHub6SdCAke88Ajjv7fhVL7RNENmxe+SwyRz6mp3GodyPW9Ra+u4mJVVC8KnA6nH1qnDILdjKoRn+ZWV1+UZ4/PrSXCtPK26RiMAknnmkgaIxzxMGD7T3wM54qnohmnpCwyJNDhllyGj75wckfjiuhhsXSVJxE3mDlQ+TtYHpjH4VS8M2ZuNeis4wApbDso7Dqc+n+Ne26dZ21rbKltCqrzyO/4152Lx3sJWSuaU6Dqa9DxNdEFwy27XDsX42gHP6Vt6b4D1S/SR5IJoIEYqrS8eYOOQOteqQx2FhEUggijAHSNQKjk12K1jZ5WRI1GSWPFdsq6RnGk+rOB/wCEFttNUKJCATkpGuPxzWra6Ro1pOkrRIwxz5rZ/IUuueIp7uwY6VZz3U8mNhjjO0r67jx0rnjp+t3sf7zyrXAzh2Mj/kOB+dJVrobpWO9k1Wyi050tIU8osAVRQo5rxLxVstNavxv3N5mY9pyAD1/rXXW9ikP2eW+v7qaFW3yRghFwOvyjk/nTPFF74M1nSri1gmFlPsXyZWtSPmHOCR69PxrbDSXOpN7BOnJq8YtpHncV7gcnNQS3cm9WicBlORn1rHa5MEjRuhypweaZ9rLHCg5PevaeIi1Y5VR1ubXivxD/AMJHqdvcup82OBY5GPcj/J/Ous8LeM7GwtLaK8imVIVXLKu4cYGeK4G2ht1SQXQJZuVKmpo57WOBo45WQt1LKf6GuCtS9pHlZupcr0PddX+JukWmgySaRMlxfXEe2FQpHlk/xNn09K8u0y1e8micxqJZCIw/TP1rF0tW87JkjeLOTz1rpdJ03UPEeozrpTxR2lrgBpWKguewx6VzvA04UWkrtndg8yqUMQpJ2j10v/T7Nand6j4xTRNJsNM0Vdr2uGeXPD9QwPrnivGvEUVrBrkklizmCcCUB/vKx+8p/HP4EV1Oq6TrGkqXvYInjH8cU6t+hwa5aWeO5uhcWqLJLGp3JIuRjGOnrzn8KxpOrTn+8Vkehi/quIpXoSvL8X3GaV4gk0a6NxbRo1wEKoz8hMjBOPXFeueDvElzd6Il7dW0moX5J3yswATk45PTjHAFeMLFYf2G7lnGoC4AQZ4MeOePrXX/AA2PiC6u77SdDubWB5oxJJJcKTtA4+X3+avQhK0rngVVeNux7Ao8SanGGaaCxgf/AJ5pufH+83A/KuG8Zx6fp13aWS6qt08gZpi0nmFCOgxnABz6V1EXgCWVAfEHiDUNRPeFJDFF9MDnFZHiPTvDmmzWGn6ZZW1teeaXYquWKBDnJPOOlVVu4O5lRlyTTjuiC01m/igihi0+SRkUKrAfLjHHJNWRN4kvGGBDbL3y2T+grCj8Zp9tj06wtvtEzNtDZwtVtd8U3Pli0/eRNj96Ym2jPpnriueNOTRpJq51CaXqk8hF3qrBD1WJcH8zmpR4etMO9xczSRj52Mj4A9+MVxuj+O7i108x3EDXDK+Fk3dB6H1qXXfF9l/Zc9vJcvcXM6gBYGISP6+vPamqT6ib6GTrHiKC4untNMtxFYoCXfbh3HTPsM9B3rqLL4eW99YJdXe2JSimKPOcjg7nPqfToK5rwrpMt8dTlmjyktjI8ef7yYP9RXsejR/bvBFrNjdm0wcDPQEf0rphBRRMpPofP09tpukeIri2cSXKWzDaR8uHBBP1AwRWofGmp6pIlm07Wulq+940OSF9Nx5yc4/GsPXbW4svEVzb3ETJOUXKYOclRius8EeA28SboZp3ggVwHdFyWbHv2Gf1Ncs6UakrNHR7R003c2bLVJLt9PtLO0N3ezSs8MEfICkBQT6AYP4V6jp5hhsdU03VFi32UOJDx5bkgHI/HjmuW8Sy6T8GfCyWekDz/EOoIR9rkA3qvdvYdgPX6VltqLzaSk8Fw6PdIs6lvmDYGSDnseB+Fat8ytEwcVHVnT6ffW0Fo0aIIthzuVD82ec1A3iWxlUASSs2epUrVq18Ka5d2Xm7UjPkiVRuyWz2HbNcjoR0TUNZn0m0s7l9TnJL3KOSkLDqxyex7e9c0ISle+g2kkOuY9S1fUxDYQb2I52n5uvX0Fdbo/wztzN9q1eZ5pD83kK3yqPQnqf5V0+naZZ6PZs+Y4Y1GZrh8KXPqTXIeI/jHo2jySQ6WrX8oG0FTtj+pPU/hxTjBR31YKNzhby48rxYFWMvsuTGqIQAsYPzdOigZzWVd6ibiHaiqIS3ygckj3rGvvEl7qlzNtWKzjuGJlEC4LZOcE9T9Oldnpmh21xaRuSzcAE44FOstE2rFwSjoc4srMdpABPU+oFWLMRyGQSoTwACOO/f8K6mLQ7DcqSKW564xmtNdIQ48oqVxtJKDcK5m+xdzjxpsUm4IzkHoFNT2+lRlxmJ2HJO7jBrsLPToYlxIA2Oh5yanZLKYtHtjTZgkEcr35oFc8r1eJba6eDYwUY4xweM8/nWRKxflRksBke4rX165UX1zIZGMZlYL7jkf0rnZJTdMLW3GN3Gc84+vpW0E2VFXZ0lhrbaJN9rt4vtE24K208EHk817l4d1o61pcF7HBJDDJxHvGN/+19PSvmJrkacDDaybhn945/j9h7fzr3T4Z68bvw/bW7ndHCNkbemP4fyrxM4o8sFUS17nbQavyHKXPjrU7htgYRAnnYOQPxrEvLy61HdFK8khkBQZJJ54rtNL+F17JG0mqXcUGcnbEpkf/Cuk0vwn4dsYI5/s0k8wAZZLhuQe3HAFdrnCJ5UaVWb1L97fWuk6VaQXEyRxRxLGgJA+6MdO/SsZr651GBhp9hPIGOPMYeUn5t1/AGte+ubBZVnaCAygbQ5UFvwPUVjalr1rFBIjTPuIG1EJJ6+g5PSuZTuz0WtDn9Q0O+8qYXN/DFKUbZHHlvzJ/oK4T7TJPcRWbzBxE7GX5cYIOBz34Fd3PLqeoSiWDSrhYwp3Szny8j2B5NeYSSNDcTiZzHJJKSSeuM9a9DCRTd5LYz9tUUXTi9zoL+y0S8O5bfZJ3KsRn3rPXw5prKXW6kjx+NQ+UiabPepfRsscixiMj5myCcj6YrOa+crwxr11UjJXscMqU4Scb7CajbwWb7Y7rzzn+7jFZby7xwOasCQvcIxG47hwRnNW7gJHdm6exVbafKpHGSAOnI/PjNYyd3psarTcq2lremVVRGQv0zxxjP8q6JPFOq+HrBNNjtoYBy29c7mJPJJqml55uqbrfznTIESMwZgoyAM+oBx+Fa2meGvEXiC1S6itjNBbP5JWfnHzEnjqAO9UlpoQ3r7xi313rGoRRSTCRo5vuYJ5/Cu00f4e6ZZ6fa3uu61PYzThWMJsnypP8JJ61ce90S01yMtoM0N9byLJ5UE2EG05JRO/Hau+sfif4e1Jvs8kd6ZAMv+4LAfUDNKyYKclrHQ+f8AX7W0s9ScWcgkgEzqjbSNyhuDg9OK3vC3ie28N+M59TMby20kTR4iAzkgEY/EVH4wOjX/AIwuTZ3yR2UjFw2w4XjJx6810HgvxDonhEXFwulpfkQiYzXCgkAMANoPQnIFLq7DWtrnWxa5428TW6zaF4fW1tJCVF3euABjvg44/OuQ+IdgmgeIIna9Et09jELnYxLSTEcn6Hr9K9gvfGOm3fhgX9ldQ38NysjfZ5AFBjxlo2HZgMgGvPvGHhuy8d2Oja54WuFmhtIhbXMcrYkiUH5N2fQZGfQCpcm9ylCK2OesPD4vpH/sdPJn06MASleZpGGSrHt/TNcPrN5dyXr29zG8cyNtdGHzZ96978M/ZdH8NosFjd6gyliz2kQZXbIydxwO+OfQ+lQyXOq6tfrLN4esdH0/gS3908byhfbsD+dayaasjNaM878DQ2t3pk9q8MjXPzH7nG3H948CqMPgazlDfaNaQ3RdsWVlCbiQDsSV+UfjV7xNNFaXkzjUY9QtpLZ/KdMtEZRgEAAjaRnPTv3qX4f6vBdzHTmihju75wpldyFcgcKQO/JwOO9F+ZKLC3LeSKlrqmo+DQ92lg1zA0MlmTcOCEzjPC8Dt3NZEHjXxE1tbQQ6jPa2VmrKoiwo2sec+p5NekfEXQY9G0HR7ZrgfZpbvZJEqhEI2k9Bzx9a82u7WTWb86dp9tJI5KBI4hxgZyfQUnC+zGp+Rv8AgTwzN4h8XXeo38011Z2jGNZpWJaRsYUZ9l5/KvZPBaWGlatfaXaW6QwBMIB2I6/zrn/C9lb+C/CUEdwMSl90uDktIff2x+lBvo9L8QR6hv2290nmE5yFJHNJOK9zqZy53+86Hn3xpeWb4hLbO+fLsoEQuf8AZz/MmsE+LNugDS1XMkJUKRyCuckD26/nW58bXjuvFdhqUBDRXenRurDvgsP6V5okzwqWQjLZBJHapbsb2Ulc+npPizbaTY6MZNPke0uLeNpXVvmj3ZwB2PCk1Ul8TeDPB1le6lZSI8k0xYWsRJd3I4yT0GOc+5rwLT7iO9LW+oXbxxLCCjgljlRhRj6H9KdHCt7ZSmN2lnUdD1IH+FEYtrRidr6m14q+IOr+KrhjdTtFa5/d20Zwij+p9zXJvcDPJzTYYTNMkbOEBOCxGcVYXS3lmYQsioBkGVgCf/r0krLQu66jYLp0+VT8p556CvV/AOqpf2Elm86LIjlhuOCyn0/HNeXWttECDKHkJONqjjPpmteyniF2I2mjtC239712KDwB+p/EVTjzRs2Q99D2trVoZ98asQfvbmzjjsKj8q4V2eS4JQ8gAbP5dazNB1+XVtDhvWZd6/u5McfP9KhvNQvjckP5ZgdcLg42kf4/0rgl7rsWlc0TqIhQoWHHIJ9PrWDq+rRPbSqBG8rqRt788VnyCe6mOJJXWI4dwoCsT/hWVPG8Tu+xd+7aGIwdv+RSjqJ6I5TXLk/aVt9wIiGDjpnvVJJDFBhT80vU+i+n41e1+wihf7RBOJSW/eqOqE1lbtzfoK6abUloaJ8q8x5XcMGvSvhhqdraadd209ysUqTiSNWP3gRg/wAv1rzQHkZ705XKEsMg5xx61OLwscTSdNuwU6jhK6PoDUfiTY2waK3uRnHUc1y0Pjd9U1u00+1jcieUI0jHkDucfQVwSaNLcRRMJyJCT5ibT8ozxz371uaVpkdleh7fzBcRowDs3AYjr+Vcjw0Irux+1PVGj0pInk/1zfeJkbIH0FYsviCzs4WkgECDP/LPAJ/rXMRWtxsIaSaQY+Yc8n0wO1X7DQ5pmVTAFC9Nw6U1QvoiJVC4viOK7tpi29hggZOOcV5p4xtTbXVu5ZCXjGdh4B9K9LuNHijIZ13JjDbT09ziub8WWdhBaKhhQkqZS/XPYfyNdFGk4NmXtLtHmYkYcZqRZGYYAJPtVvSbaC41WCKfAjkkC5JwB+Jrt9R1T7NbRaZYW8EjxKMuFUquOCRjrya6FcuUrHBJviaOTB2Z5YH/ADirTzPAPJQtLAMkblzjIx+dPs9NubvUVtIEaQyHBROcj617j4I+HVnoFqmo+IJBcShBstz/AKtecjP94/pVxi2iJzSOG+Gfge7vdXXUtRDWmnQLvLOxjaTIONvtmvZkuND06wt4/sgCOx3fvQN57EknnpXMzeLbDUPHRgjzsa28rgZQENleOnqM1yGtPcXniiGKyillgdnczzFiIWGQQFUcD09dwq2+WOhi7ylqafiGe3l8XWNzpiQNcQRSkgDavy4IyffJ/OvM9T1W7vdXubq7jaKTcV2xYAXHb3rRZrDQNXeaHWPtt0u9GDWr4QnjoxGT9ayo7O9uZBItu6rvH72UYA564/8A11nz8xsocpVks7i7S4lRSwjQSvkfMo6Afjmp45TJo+oYbG1IVPuAen54rsLCwWwM0hcNPNhTs4G0c9z1rmNHtVk1W90mQqouUZF3diDkf1qVLVj6Dra/ItrUtERFE4VkDcPgjOR9K6DTL+N/FF9dabJeaZpzoQVhfbkdlNc/aSXmlXM8UtpFKUOR5iblOBjII9eK9c1fR9C0nwpp5tjumuwskIY7sjaM49R39c1m+azbZ105Qk401H+mc+vjDV9F8PC6t7xStzv2B1+SJQ2AqIMDJIJyc9a4y9l1rxFcLJql9eXMj/NHbrljj/dHA/Kt/Wbc6lJo9taRhlR5Y0iXoZS64H/j1bmoRto2jyWmjy4nVwtzOn+snbIBPrsBIwK6Xy2vY4pc0ZctzmNL0Sc+FdQgNrJFcRPLIBOm0geUD3H+xXFQyPb3IlUNGwYZ2nBVhyCPxr2y+0O/s9IuGLTzo+8eWzFnRDE4JA64yVryrU9Lex1GOEv5mWTEijiSM4ZXH4f1pbofMdL4n8WjxJ4XtI7+OU3lsUcXBYFZCeDtUYwCAevOeKZ4YlQeI4hY7ba53LC25yrFQASdreu3P41QOl2enRMt3LI0buGUFQCAMnaQM9eMH616fLp+h6jrGj67ptqkbta8YPQABQT744q0rWRlOWlxfE2+5ks7NM9Gcgep4H9aivdNlk0W3tpGHnwx7cjnFbc5h85XCIZVXbvxyOv+NVpXDd644UZKtOrLrovQ1q4lSoQox6av1OU1bSbbxboNnpc2y21bTgy2rMdqyoTkxk9uehryfU9Cn0+7kt5lkjnjz5kMiYZMfz+te8z6fb3qfONrjo44IrG1nTItTtlstdRmCLtt9ShH7yIejf3l9j+FdVk1ZmMKttGeHxQvHbm5YEKcrH/tHv8AlUun3clpMsqZyDzz2r0HS/h7arq0el63d+VDOf8AQryNv3M/sG7N7Guxl+AFjIP9H1S6if8A20DD+lL2bVnc2dVbNHjF1Mk063UOAH5aMdVPQ0tqQJCZI0xtIG7OM+tbviLwzL4W1OTS9QVi8RyrIcKwP8Q+oqxoXhddcaG2tYWkuppDEqlzgHPU+2OarlbeoudJHNXLzTJGm9QkedoVAo569Kr3ETQlCWz5iZ/HJFe1aj+z/fW1gJNN1eOa7C5aGRdisfRT/jXmt94R16OdbO40y4inhZw4ZMDHB4PQ55xU8t9tSua2+hp/Dq6likuxPu+ysowx+7uBH9DXXXgj2hYl37geR0z1x7VDo8GlWGi2QhEpWRQBtGTubOd4HQ1cv7C6EkbQwhoi3z8nKrjjA71wz1ZaMxoZmjmjMixBQSoU9T700WaTCNpT8yj5iRj8frVwRuFLP/pEgYqW4XjsMf56VJCk8VxJFdwI0TENHIhxjPAGOtQtxeR5x4gCaXr2YwJILiMGVCvBPII/kfxrmgfmr0vX7Gw1eBCJUhkjcSeZKCgxnBHPf2rzi9tpLG8lt5Rho2x9R2NdFNq/mUMBO0qeo6VIGBP1/nUBY9e9KGre4rHrj2UMKY5C45JPFWNOezRHkfywVO3Lnge9aKafCsaiQhkIOd5zzVG5tIWkMiyxNgHK8cn6dutR7NLU5ee5aGuafbNtVvNfHReBnrT5NWvJTGUg+U4Y8hiB6Y7HFU9LuNKKuUWNGDfOgAyGGOpp8et6fJK8RuCqg4Ldx6gf40m7dR/Iml8y6h3FJQxJBjkfoPcDrXn/AIxgurSUNJIGhbEaDdyoHOMdq6+41iyjl22rBsDGSS3Fcp4snN5ZKxIOyTPAwMGs1NXsaR3OQaNxgFSOAw47HvXtPgGD7JoqWX9gywXc8DNJfNKo3Rt0I7jjFeZ3UX+hafeofklt/s74HRl//UK7LT/GMM2l2sc80tpc20YiMkQPKjjFdMdHZiqNuOhb1gWvgHxNBc2HlXF5eQOpNz9yJgVIbH0z+dVtQ8X61401uPTrD93bgB55m4VU7sfRa1YNP8M+JrFhFqUTTBg7OwIkB993J9Otchruu2K3p0XQyItPQ/6TcLw1ywGOT/dHYfjTk1GO5MFd2sdNd6lYIFgsD8ifK0sa4kmPqcdF9BUNm8XkyySzeQkrEsFY7pD71zNhqixwPFBHtYNlZM5Lf4VI8jSOfMdnbjk1yXk2b8sUVbGGK11++VWErE5V5FBPIBJrpBOvkqGDOoGADXIzb7fXAH2sJE3cDHY4/lXU2Nr9qjACsAD1PFU2S0R7Jppg6AooODk5rnPEdnLpuoQ6jbkhSR8/ow9a79bJY5RBHh2I3Fc4NSanpH2rT3tmtQVbglv50lLUNjD0zUPD2pWEFxNqEVjcwljLbyqfmyP4T3H5Gsu71CC+1CeRruSawtwogMhO1flwdqnpVOXwLeW9xulnEVoAWZz1UCtW7ewtfDFnooimNyk7uZd2EkQjIJA6mt4TSYpLsanw9ubea4IuIZ2e2aSeEx/w78J+YJBB7Yrr9MgmuZrtLS2Ol26R4R2QmaaTdjlj82MKCcY7Vxvww12HR9WurmVI5QsRjMbHBIPQ5+vX616Jc/FOwgX91BZo2cAY3HNW5Ilplybw+Uv4bjTpnUlJRIAWIDMhAYE85BwfwrntS8KazIkX2zTlkKIE+2267ZDjJG5QMbSx6cfWoNR+MN7FHI0KyBFHJjh2gfjXIah8TPEU1t9uS4ulj8wJkyYyeT/Q0vaW2Qcl+pH4h0TxO1/LqkugNDDHAVVIPmXOMbueTzya2fAcl9JaS3d/K29f3EUTDBQDGTj8h+FczN8TvEFwkKf2hcKN48wKxJ29xzWwfHtxf64ZZ7ZLbTVXy4o0+ZlA/iZv4ie9CmKcHy2O48zOeaTzPesy21W3uohLFIjoejKcj/6341YEoPORinc5mrFpXwetTl1lTawBB7GqCyAk81IrYp3AZJZCOKWOONJ7WX/W2kvKN7j0PoRzXXeBb5xdizF7cXMTKQYruTMlvjoB/eHv14FcyH5xSmMPIsqO0UyHKSIcMppvVWLhNxZb+NnhpL220/Vl+Xy38mZgOdpzj+tZPwqs7Wx8QvKzH93A8g3HkscL/I11bau/iXwvqWh6iFOoJbmWGQDibbyD/vcc1574HvNvjKwikkA81HjAJ65Gf6U4K8GmazfvKUT3iGVpmMjd+g9Kdc2sN7ujmjVspwSK5HXfHemeHo2hRhdXg48mM8Kf9o9vp1rz9viHr1xq6XZufLVMMtvGMJgHkH1yD3qVBvVBzK3vHCau9/4V8X6wlo5VIbxx5Z5UrnIBH0Ndbo3jOz1pRbyTm1uv7jdD/umoPiJFFL4o/tWBc2urWyXcf++vyuv1BArz3U7GKFWmiLZJ3Lt7CidBSXMilPXlZ6lqUum6axnuZYImG4As2WJPfHU1yt342hIaDT4z0OJZR0+grz6S7llYmZ2dv7zHJqJpjgYP0IrGEIrVmriXdVvbq6n3XE0kmfuljx+FZ89w9xKZJW3PgAn6DFSNM08QVly2eGzzVaQBWwDVSSvdFR7MerClqEVIpzU3Bnt8FtFHbKk9zcM7ruZV+UDPY9a1P7C/0ZDbC3aNsqrAZ+h59KoR+HpfNjuJbyRHzkImdq8Yrct9MhEKJ50siEcl2zz24qnzPZHE2jh9W0u6juktrSTzGdvn8vqW79Bx0rIuDbwBY/J3T5wyOe+e5r0bULltOZY7O1eQkHIReBz1rhtc0W7aVrmO2aFCcuByVHqfrXNUpu+g73MKaaTmRFVVBwFP4Cqk8k9yGtiNsJX5ieckdP1q8LQsyiZup4X0A71b+wSLmSRY/KBwCOVFRGy1N6cbamf4Y1SzgMml6xHmxmbJYjmJvX6dK79fh9o90hu7fXYTaMueqnH4g4/OuD1PQ2nCPBj7Rtzxzuzzg46GqkPhvWZW2yRxwrt+8zcfpXXGomtRuKve9jrPEmu6D4c8OP4d8NETSTZ+13vBz6hT3/DgVwGn2Uty22ONmZuwFdRY+DLcSh76+En91YxgfrXRQabDbbzHEgReRhgMHtUykgvbRGHp2hvHcLBLE+SuWI4C/Wt9/D+mTtHHKoJQZxknFWIVmd85IG3gqM8Y4/Wp7eyv5c7Znjz1LJ+fesrsPUxL/QLPfBcWFm80yTLvA4BTkHr9a620to7a0VDEI+ANo71FPZ7JUka5eNUBDAnCH3+tTG0jcqZQJGH+rzxik22AourNVEoMeB1YHGOeBmoH1kMZREu8xjJwaS70u18qYoojlddu9ecH6dM1B5MFhGI+vyhcBcZ+pqdR6ET3ZvYGWVV2kYdDzn29KwtVmiW3aM88FV2gYX2rdntXMKx58tVHyrGentVT+xLcou8lyex5ppu4aHE+Goml1i6s/wCO4idEwerfeUfjtx+NSWMdrY3jx3ccq20mFEi/M0br/GPYE4P/ANaqdyJtF8RF13xskm5GIIwQeCK719CXxdAmo6GYBMwzeWZbayNnJK+qE5P411WurolvuYWuazHe2/8AZsbi4iGCZoovL3YB4wepyKXxNpy6X4e03TyMTMGnkB6gnCgfnvrqtL8HLokh1jxBJHBHBzEgOSe+MdznoB+PFcxere+NfE7LaWzNk5KZyIkHCqT9P1zVRi9ybpbbGCllbxyp5eTIRjGMlq6Oy02C7iBMRUqBuWRcV3ujfC24hZbiRAZduOeg/Ort34FurOHzfM4j6gnrWbpzD2kTi9L0dlkdxB9nRc7WQ8stUte1GbQ/szWheWSeQoIDzux1x+lb+tal/ZOlXNyrqssUZwCcHd0GB35xXC6TqU3iHxfZXCKgFnAZGEp4B7n8zx9Klc0b3KspanRaD4pg1cANDJC+cZKkrn611AVgAeqnoRyKn8C3yW8SK9jbhZHMxAjA+VjkfoRXdy22hXuTLZ+S56vF8p/SuhWsczjdux5/upfMxXW3Hhaym5s9QTPZZht/Uf4VkXPhfU4AWEPmL6xncP0pkuLRkNO8TR3MJPmwtuX39R+IzXlWpxtomvOYbuYSI/mQMBg7DyDnPocV6nLDNbsVljZD6MMVwXjvT2axjvI+Gtm2sf8AYY8fk2R/wKnsVTetjnzrDvKWduT3Jqxb6whuI8yDO7B/Hj+tZFzPoRFsYrS7MvlKJlM/ys+OSOMge1dn8PdK0TxFqiW8tpBa5fYHfMjBu3BOKSm72N5RSV7F8X0Ot+B76EMGutGYX0Of+eZIWRPxyD9RXHX0cc1oHB3wt8yEHkV9MQfDXQH0qSxuEllil4lCt5YbnphccV86+PPD8/grxNe6OA5sWPm2rNzmM9OfUdPwqlUV2Cg7K5yP2UMCRjNNXT2ZuWCj0przMDwahaZz3NZOUexqk+5eeKG0hO5/n7Dv/wDWqDTtJvdXnaOzgaRlGWI6CqjEseete1+CvDy2elQJ5wSTPmSFVHJI7n26U4rnfkRUn7OPmzxae3ltpmhmQo6nBBGKYK9F+IFrb217asYZLhLiMuZM4bOefoK8/kRfMPlhgmeAeTUTjyvQqnPmV2fRkVw/mNKzKkf8JbnJzTX1SzjRmJLqpySf8iuXu7vUrycR2sErRhgQeikHn+tTQ6XqFxES5RATyJM9fah1LaIwVPq2bB8UwS2sht1VZc8AjqP/ANdVElZ0DOUdjhnZk5PvjoAKr2+iyRsrsqsuecD05INW30jzVkdHeT5Pk52gH6dTUXm9x2itjHvBo8E2wp5gbkHJHQ889KrXMS3bCaGOFYlwFjDHnjmrTafCqxRyoeCTyvrTV00uMxhCBwAW7VHIVfsVlii3RO7N8nKgHIH5VYS/lXcywBkbOS5p0Ol4dPNXqeq84q79gxAD5mAOseOn5UWYXMr7Os0guJF2ljwoztHoBWrEltZ2wxkkn5i3v7VXlhDR/I6rg5Jb+lTxWYlQFBGzkAKG7YpWsO/c07W2BIC44XPAxVmeO427YkVeNzSVHp1hdxRBZXTc3UKD0+taltpqkDzPnBxwx4/zzTSEZGoeYunGSR7fK4wJFLAHtx1zV77EjopkbfhdzZBA/wDrCteC2t4mZViRR1Jxx+FSmGVo8RAgk8bu4pcpVzm2tDLfR3CSFYljIMSHC5PQn/61Tm2tZv3TJ84xjI6GtsQqgVAiM5JyQcYqhqc66XEkrwSOSwUmKPcee/FLYNypLYDBeEfMB1br9az5jbi4CmSMThd3lg849cVoOJZYI2WKaKNm3N5pwwAPWqdyyyXclzBYq07Db5nqPr2FIqxwfi+ye8CsE8x16OueR3FcnYavc6bMNsjo69GUkEfiK9pkjjezhgnCmXGXCAdzVD/hX+lXNxHJMgYDJZSuN349a0hO2wep5w+t6lrU4ijNxd3B4Uks5H59K6bQtfvvhvDM/lwz3lyymWGQcKB05HIPNdBcong7S57pbO0gJO1DFn5sdM+9eSXV1d6rqBA3zTytwBySa1UnImyPeNF+PWkzbY9U0+a0Y9XjO9f8f0r07TPEOka3ZxTWl3DLFOPkyR83rXyxp/gi4uH2XFyfNH3obaMyMv8AvHoK6HTNEmsD9lh1GRFtpPtBSeJlZSMZC9j0FHLcHNI0/jzZrZavYQWkfl28sLSsF6F84/lj864bwrJa2thMqQTTaleOsKKnePqQPTpya9S154vE8+kWupyLJBqUqv0w0SLgbgf9ofzqn468Imwkn8R6BEkUGnSpA0cQwCqqMv8AmcH2FKMlVjeLv/wAd46WsSaVPd2V+Gv2j3zIRsiXCxgYwo9cetdfFdblDZzkZrgW1JNR0qG9iwCPnwDkjswNdHpl551qvOSK1pPSxzVFaVzooZIWlCz3Cwpgkux4AFXbeEXC79L1W0u17eTOCf0NcN4mjN3pE8QbG9GQ/iMV4n4du3stYiO5lIbBwcU5NplU4xcW2fUN5JexKUvbbev/AE1jDD865HxLp1jf6ZOiWqxPIhjOxjt54HB9Dg/hXl+r+KfEeieI5VtNZvY7ebbKqeaSuGHIweOua7/RdXuNbsGF3MJHdPvbQOfwpxd9BTjZJpng84kiLQvlWVtpHoc8/wAq2vCWqtpmu27lyqyEKx9D2P50/wAY2zQ+JrgMuElAlBUY6jn/AMezXPsrxlNx7ZGDWT92Wh1K04+p9t6Bqq6npVvd55cBZPZx/jVvUdH03V4xHqNhbXSgcCaMNj6Zryb4PeKVvdNEE7jDjY+T0cf4ivWE1C3jZo5LiMFRkEuORSkrO6JhLS0jjtU+DPgnUtzDTGtXP8VtKV/TkVxeqfs7ae2W03W54j2WeIOPzGK9gm13TYvvXcefbmsu78W6dGPlZ3+i01zPcJSitmfPOtfBLxJpavJBNZ3kajPySbW/Jq2vCuo3lxpr2nmwRXMbeVcfaG2mNcYJAHU9q9A1vxqhgkEVvxjq7V8869qYm1ya6t2UFmzmPgZrT4NTLWroe5QXem2VulvDifHBlkO4k+1eW6tq1jd/EiCS0tYobeBxEVCABiM7iR9TXMDxBfL/AKuV1JGMk5rNillinEqMd453UpVL7FQoWvc+jJJlUDylXdxggYA75/8A11CZsuIyOV52nnnvTfJKr5kbvKVXOAOc/j2qHNw4dVkXK8AkZwKm1jLct/bfILOxCgccd89/5VNYLYSxSSyO/mA4+ViCcHjNZsekRiUPJPI0h5Cs+VBHbFW0i2yfZgJACC5ZRkn6mpuytCldNAdRmhiM+UA+YIQpDZ4DVEWSGTaiIgbgMx4565P51rqIYUiEmfNAYFc8ZI4J/A1QgtkjbiUtuBU5UEDr1qWhpmVPKZZpI1Zxs67RwVHU5qkss08byQFhEDgMUyTx6Gt02aCVBuBVgMKAeT24/p70LNLb5EcSBWJVhtGTkY6Y/wA5rNoq6M3+y5p9LW7mu1RyxwpXgqB1zVGC6mSQ5l3eWcMFIznsatz/ANqT3CizkigAbCh13cYwar2/hm9tIkdpo5JXyW2fxEd6hx7IpJdTqdMlup3EkUjMejRkcjj9O1bVzLPpsYjuUcTNyucYxXHebqFtEv2UGCXHV25x6/zp8eoPO8K3U00jyEohyWHHOKFKw+U7D+1rXylZgcnggjgGpkv0kQMykyZK7Txg+tc6tsmWWOQLkjpzz71oxB7OKCILLPv43behB657Cqu+oWRth0IxgKTyQP8APNUrm7uSwSO1TaG5kZuAPeo3eTzUHz78jlumKo3ut2VjfpavJK9xtBEY6HJ45PGabBJtmvI4mDIcYPTjmsDUWiCfJtk3ZB3ZzW7Dbxuhl3Ou/nae3pUDaVbCYSYUYzwScfX0pNNgjPsLVlt0e0hSFyDlpeSD0/xrTdhCoDISQPvAUzyJS6tGfkU/gT/jVoGWRt3zDJ5zQkDZ5D8UtWLX0GnpkKi+Y/PUnp+lQ+CvD8kkcbKQl1dJveQ8GCDPb/ab+VZXihG1n4iz2gJO+6WAfQEA/wBa9S0G2QG4ul2iN2MYB6eWowBW60VxS6IklvdM0DTHxCGWHGEhGD/Pj6muP0nWp/EPiOXT1jXy7lG3uH5jDH0/KqmuaodR1G5gs0V7PIVdyg9OpB68mtXwzpsehaLf6+saw3IGELHcG9ePxNZzTcXybjjZNcxDqXiS0t/G14xmCx2EAggiYcNt64PY5/lXo3w28Q6d4n8M3mmEEyRs4mhkHOHJP4ivAL+6tYZGureTzpp7bExP8MhYk9fYCt3wj4ibQvEmka4p2wXn+i3gHTcOM/yP50UYezgodiqnvycu5twWTaH4k1LQHA2q2+J2/uf14P6Vo6JdPbzPbSH5kOPr6H8qm+JkQt/Eul6vH0l/cyEdwen8zWLPI8bi6yFlBIIJOCvYfWtb8sjna54nU6hcK1lIGIGRx7mvGr+2MOvOYoyEd/MQgdc8n9eK6vVrp7u0tbm5XygrusfOeR3x+H86sWdrBPId6RLKPuSuxAKnnb6A555rXSViVeFzE8W2zPpen3uPmiJif6EZH8jW34Jvj5ManscVt6l4XOpeH50Bdoym4mIB2UryCADg+nXvWR4c0aa2sjKgLAHOR/X0NXye82iHNciTIfH9jGCt6EQtHkfN93afmA/MNj615xJM11c+dLFuUYBWNcDAGO1eveKrY6j4ZmVAdxiPTuV+YfyP515Na7liJViDnsaynG7OijL3Ta8JeIj4Y1GZJFeW2nUEbOuex/pXWp8S7KSfesNwAqnOccj8684nDTQBc/vYzuQ+o7j+v51r+D7e1uNbd7hI3jaEsFb+9kZH86Ub35UOpGNnJo6+T4oWxJ8uyuCB7gVSvfiRLDI0T6bJHIMZV3wRnnnimXd3pmkT3mqNFBJIu1LG2wMF8H5yP7o/WvPru5lup5Jp3Mk0jF3durE9aJyadkwhTjJXsb+r+L7zVkKNiGEdY1PLn3PpXNM5LZ4H0ptIaybb3N4xSVkSqwJya0Y0tXQcOrY556mspetW4nwPargxSR9AW75tV2KQVUhi3cZ6UgZRKIhNgt8x29jjpWTbXbXCCSVhjqgJ7d6nvFdoSiSKHzlWY4BGM4ptnGacJh3I27c+3A71KL8ZaOMlSo5OME1iWkHGd2wjAU8/5NDSLDIsbRsHRefm5x/k1LY0S6leXkUiNCkdxIzDczNgLnoMfSnyPLNvKrsGBwD3A9RUSj7RasTADkglc4wPY+tMtrWGzjJPmmVDuyzn5T9Kh3LVi1dXkVpgRmT51zuPVh3/AAzUVndC5l8545gm1VH+16n2FR3F2s6KjoSI88JyMnGalR7i6Yc4jUfdBILD0/ClcdiZHhe4WHJHlknGOtLPqzNhLWNQQeDjn8KigsHjLny28wgkMpyR+NJDpjyXCBH2SsoJznOD/LsKl3KVh0226eKFpI3fywGJX+L61q2Nuqk+ZywHUckfjVOQRwlTcSNK8Q3AcKOOmPXmr9rL9mjVCjIHzhG657HPf0pddR7ly2+zRHMKfOD37kc1NJdw5ZXYeaBu2KRvI7nHWpVtnZcnjb05/nWf/ZyNe/avIiS4A+aQjll/Gqd0SrFu2KPGrYYjpljkiiSwtpJAzwJNIpzvcA4P9KV1SNOZSGHp1Nc/PrN7MzLp0O+RXy4lUqNo6mk2kUk2ad82oRyErKqxsAuzHc96bp5uVWTzZd3mj5tw5yOwqzCbmSV2do3VhlQud2R2qa4ljggwkRZugHTBpW6hfoRxSoJNwOBkZz061fM6bAN5ODVaCRGjeQJkYyc8AU97dMqzRgtkY571SEzw/T/3vxWkZucXcz8+wYiu3udRfTvCUqqih51MYKt3Jxn6461ySwiz+MJR/uPekZ9nH/166HWYtug3tvs+eORZcY6A4yc/XIrX7IP4kcy8M5MNhat5csmGZzyfYZrqvFsUmm+DbXSony6w75STyx7n8zWfoSB9WglZkWICORnxk7Oh5/z1qn43uv7X8QTQW9yTFbRlSyfdOTxj8KpKyJ3ZwrxI0MqdSAGB9Pat59M8vwRKu5XMLi4DKenIB/Q1Tu9PNqoRVLO+ByPWu0ms4h4LudmGItnDPjDHAyNw9aW7KbsWddvTrXwz06/LZljVCx/2lO0/yqV44pbZBgszKuMnrx19+9c7oVw0/wANb61Iz5Ur4HsQD/jW/wDOIoSshXES8E4wdvP0pT1SISs2vMy/F0K2nhK0kx8wuQMAegORVRdX8NXssL219e2Em3DoYyyk+vGa0PEqxXvgucrKCbZt65/i5wa5/TvAWqzWcOoWbKyyIGHGeCPars3sNctveNy31SaBw9lqNjdgf3ZvKk/pWzp/jH7DMBdWzRs3XzEDhh9Ryf1rg7rw5q9qgjns0kKtk8YJGc4yfqax2W8sb1Z/s8kaqeU6j3ovOIuSEtme03c1pqFk89nEERhv2q2VJHp6fSvFbu2+xX1zbA4CSsB9O36Yr0rwzdqymLPySrvSuN8X6XN/bkZgiZ2mUjaoySV4/lirk7q5FJ2k0zmyGklQK21tww3pQbp7eaRFRY5QSDImQf8AAVraV4T12+1KGKLTLk/NkllwAByeTxVq+8KXq6tJY+QBdSHcqscFQMnH44rJ33OjmjexmKV1W/sZLu7TL7Ulz8ojRcAfpVXX0gTXLpLYqYVYBCp4xgV0h8Gu8KThWji3BH38biR1H0PFZX9gGyEt1qu6O1jkKIg4acg9F9vU03e1rCjKN73OeINCoWNdJf2899pqzzxRW+ObSBRgmPvgenfJ681i7BEArLk4yahqxopXKoXDYIxip16YppT5iQKeqn0pIbP/2Q==", "path": "images/4pts_ADE_train_00004936.jpg" }
depth_point_45
images/4pts_ADE_train_00002335.jpg
ADE_train_00002335.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 148 y = 108),Point B is located at (x = 120 y = 219),Point C is located at (x = 304 y = 98),Point D is located at (x = 163 y = 135).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_5><DEPTH_59><DEPTH_70><DEPTH_70><DEPTH_5><DEPTH_67><DEPTH_70><DEPTH_5><DEPTH_67><DEPTH_17><DEPTH_22><DEPTH_70><DEPTH_60><DEPTH_20><DEPTH_38><DEPTH_59><DEPTH_5><DEPTH_35><DEPTH_70><DEPTH_59><DEPTH_30><DEPTH_63><DEPTH_29><DEPTH_84><DEPTH_49><DEPTH_20><DEPTH_39><DEPTH_53><DEPTH_44><DEPTH_35><DEPTH_60><DEPTH_61><DEPTH_74><DEPTH_54><DEPTH_27><DEPTH_71><DEPTH_39><DEPTH_76><DEPTH_71><DEPTH_30><DEPTH_76><DEPTH_78><DEPTH_64><DEPTH_73><DEPTH_0><DEPTH_48><DEPTH_53><DEPTH_2><DEPTH_58><DEPTH_85><DEPTH_30><DEPTH_78><DEPTH_80><DEPTH_69><DEPTH_15><DEPTH_41><DEPTH_63><DEPTH_32><DEPTH_25><DEPTH_77><DEPTH_72><DEPTH_66><DEPTH_44><DEPTH_64><DEPTH_33><DEPTH_57><DEPTH_45><DEPTH_33><DEPTH_15><DEPTH_3><DEPTH_8><DEPTH_80><DEPTH_39><DEPTH_78><DEPTH_41><DEPTH_57><DEPTH_41><DEPTH_69><DEPTH_72><DEPTH_49><DEPTH_8><DEPTH_68><DEPTH_1><DEPTH_44><DEPTH_0><DEPTH_25><DEPTH_80><DEPTH_3><DEPTH_69><DEPTH_74><DEPTH_66><DEPTH_25><DEPTH_69><DEPTH_29><DEPTH_64><DEPTH_36><DEPTH_30><DEPTH_40><DEPTH_3><DEPTH_49><DEPTH_END><DEPTH_END>. Since point D has a higher pixel value on the depth map, the answer is that point D is closer to the camera.
D
long
4
[ "C", "A", "B", "D" ]
<DEPTH_START><DEPTH_5><DEPTH_59><DEPTH_70><DEPTH_70><DEPTH_5><DEPTH_67><DEPTH_70><DEPTH_5><DEPTH_67><DEPTH_17><DEPTH_22><DEPTH_70><DEPTH_60><DEPTH_20><DEPTH_38><DEPTH_59><DEPTH_5><DEPTH_35><DEPTH_70><DEPTH_59><DEPTH_30><DEPTH_63><DEPTH_29><DEPTH_84><DEPTH_49><DEPTH_20><DEPTH_39><DEPTH_53><DEPTH_44><DEPTH_35><DEPTH_60><DEPTH_61><DEPTH_74><DEPTH_54><DEPTH_27><DEPTH_71><DEPTH_39><DEPTH_76><DEPTH_71><DEPTH_30><DEPTH_76><DEPTH_78><DEPTH_64><DEPTH_73><DEPTH_0><DEPTH_48><DEPTH_53><DEPTH_2><DEPTH_58><DEPTH_85><DEPTH_30><DEPTH_78><DEPTH_80><DEPTH_69><DEPTH_15><DEPTH_41><DEPTH_63><DEPTH_32><DEPTH_25><DEPTH_77><DEPTH_72><DEPTH_66><DEPTH_44><DEPTH_64><DEPTH_33><DEPTH_57><DEPTH_45><DEPTH_33><DEPTH_15><DEPTH_3><DEPTH_8><DEPTH_80><DEPTH_39><DEPTH_78><DEPTH_41><DEPTH_57><DEPTH_41><DEPTH_69><DEPTH_72><DEPTH_49><DEPTH_8><DEPTH_68><DEPTH_1><DEPTH_44><DEPTH_0><DEPTH_25><DEPTH_80><DEPTH_3><DEPTH_69><DEPTH_74><DEPTH_66><DEPTH_25><DEPTH_69><DEPTH_29><DEPTH_64><DEPTH_36><DEPTH_30><DEPTH_40><DEPTH_3><DEPTH_49><DEPTH_END>
148
108
120
219
304
98
163
135
null
null
53
107
26
131
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDxll5ppXipDz0qLd61AgfqM80gU4pT15pC21sUwQYIppLCnMwGDTSwagYqK8jYUZ4zSNlThuCPWprQDc+W2jHr1qOSTdIzdR2zTE0B+XGSMH0qSM8Zqtk5HpUm/G7A7UXFYs7hjnFRk4NQbyRSeYfWkLlLQIpRyaqB/ep4mJzg98UXBLoTMACcUw9hTJHZHwaj8wk07hZ3JZowF8xevepLSJrhxGOuM1VaYhWA70yG5lgcNG5VumRRcaRqPHF80eQrqcVUYZYDNRMSoUk9fWmmTcccdad0OzRqaRYC+1W2tScLI+GI9O9dF410i3sfsV1bQrGsq7ZFXpuAB/x/KsrwYI5fEFojSSKRIWJUdAFJ/nWx441GzeC3s0vJpruKUs6N0VCMjoOvNIZybwvGkcjoVWQbkJHUZxn8wa0dZ0oaZJDH8xMkEcpJ7kjn9c03Vn2ado+6Qn/RSQD2/eNWx41RIbjTVWdpAbRAC5BI79u3NMQ/wDfw6RrR1C7cJaRxFZX67QWGOByea6DV7LS/FF34h1tNRhhhhaBbeaQ7Y5CV5U57n9MV53b6olnY3tt5CSm7iVN7HmPDBsj34/Wga5KvhqfRDEhhluVuPNydwIBGPcc0NAm1sWXil0+4aGZCqg4IPY1WvAJLxcHjYDVu58VNqOnpFqFrHLdQKsUNxGApZBxtcfxYHQ9awjKxlMi5GDwD1A9KkvdG9ZHEi46Kmf0rudNuk1zRrnTLohrh48Ju6uAPlI/2l/UV51a3Ck+Xvw7fyrSgmMModJXV1YFSp5BFMVjKVWMwQ5LZ24969S8X6HHoXhbwvp0UeX+3K05UcvIQM/4fhXl9nO0mtwFzw065Pf73WvX/AIoX62OmaTcC5aeVL4TRqyqBhQSeQPpR5hcyPiXEo8UGdTlZrZJB+RH9BXnLR+XIMf3Qf0rv/Gl1DqGl6LrMLv5V1A+Q5GUJ525A7ciuIlAa3MowR90H8P8A9VJghdGsvtd1uf7qDPPeuj2eU4z0PBrG0PKxykSFenQda1XYyAq0xwPYVw1XeR001ZHP6mqC/cRoqJtGAKoyHao+tXNQOb6XDZxgZ/CqM5OxfrXbD4Uc8/iYqEHJ9q0tNsZ9QuoYIV5lkWMMeACx7mqAEcMW6TJLDAArv/AsK3niGwO8i2j+ZmUDgldq/qTQ1cXNbY9C0L4c6fbzltSf7YYQF2LlY93f3OOPzqj8UvD9nFpem6ja28ULWtysJ2LtyjdB+BH612kMccDRW8eqThAjE5ZCScjnOPc1yXxO/d+HrRBezS+ZfRDa5XHGT2FUoRitEJylJ6nz1kio2PFPOKjJGalCFbB5p6YckntjFRkjBpEbAI70w6DpcbvamEY9OaaW55pC1Ax2c9qkQAjJ6VDu7VZhA2/MM0DsIy4VMDk5OKjbJUnrkU64c+YGHGOlOZ4pDuQbSU+Ze27vigOpADxihjyKbuwOaC1BImcGp7UnccdahVDK21BkmrdrbMwmI4aJdxHqueTSZUd7kV1ITID6io+dm6knBL+1OD7Y0Rhx1FAaXGPnBJ7U1eXGeAT1qa4QBQ/c8VDweKAehd2Db85yFPFVG+Vjuz6ir9uouAiZAycEn1qvfosd26gYwAKEmVKVy1oOrSaTq8N4kQlZcjYSRnIx2pmsXsmo6rNdyKqu+MqvQYAFVLacW0vmYydpA5xjNIZPMkzjnvVEdS9qE0ktppwkVcJb7UIPUbm6+9QSXFxNJH58rOY1CLuOcKOgHtUbKSmQCcGkZypU0XHbQa+d5PNBSQqXx8o70nm4JPBBGMUjOXVQT8q9BQCHEhGQ7QQDkg96u6veRahqkt5BbrCkpBMSZwpwMge1Z4J3DcOKlLbYwMdGBpIodAQLlGYkDP61qvMqKXLEY6D1rHPBp0km6BeeeaEJk9jI32+ORSQ4YMpHY5rsvG+vrq2ladFLGyXkPmM+AQrAgfMB7n+tefq7LghiD61O1zJcMTPK7kJtBY549KYkbuo+ILjVNJ0yxEQht7KLYEU8M397/PvWUrPHxuOG6im2jFx5YGcc4p0jhHGQGJ9e1SyraG1pUyxwPk8kjFWzcryc81hmc2+nsy43FgAfSorS7JSXzHySPlz61yuk22zaNRJWLM7+ZPI3qarzsFCZ6ZNLAS0IJ5JqK8I+TFdcVZWOeWruMklMjDPQdBXpnga4/s3SBcPHkNNExbcAQoY9B3ySa8sDCvXQIrT4fNdeRGXis4WXKg5PX+tMlnSap8QtE0+WOWFnvy8eAqoF289ya5zxr4r0fXdL0sae5E63QeSFoypTjA56HrXmxv2vpfmVEYAn5RgGliz9oh5z+8X+dN7aEpmeRzUbD5qtbcjNNKDvUjuVmBC1GDg1bkTcpx0qBogDx0oGiInLHFC/O+DTtnOKdDH+8GexpFJEywqO1SqmBS7eKkA/lU3KIWi3DBHFVZoWj+ZRwK0MVHOuYWHtTTBozSwYk4wM5pvU9eKeyERBsEqeCR29qs2kCySHIyq81VyUrjrON4VNztOzkZqAsWkJ3Ebjgn2ret7Pd8pYjjOBWNeRLb3ckafdB4qU7ja0Les2kVldosS/JJGGGf51lOSxAz0GBWpqk3n6fpkhOWETIfwOKyW61RJNybYDk4aohwTTo5mRGHGDUeaQ2W7W4Me1f+mit+VJqL7r+bHTdiqqth1+tS3Lb7qZvVyf1qugEWacrYbNMoU9u9IZ0mmRwi1DyOilx0Y1DeaapWDysfOzZYfmKxnLNLg5IX5foBW3BMzaNFMx5j34wM5wP8/lQN3sYWMHHpRmm78n3NNJ5oESU8tuj/GoAetTxgmM4Ge5NAG8fD2VUm7Vcjoy/wD16p6jpElhbea0qOpYLgDBrblubC72hdRiCgfdYAgfnWf4guFNlbxJcRzkuSzIRwAOOB9aLD0OfxxntSgEDOOtIG4welK5+RRQIekjxsrocMp4NS3TrLPuX7rDIHpVYHilDAdRQHSxbcyS2yp1VORUC4HDcU6GfCtGSRnofSmHG85bI9aCTThXbbp6VVvv+WfsKvxj/R4846VSveoPYAUDKnatGLXL+KwewNw8lo4I8l2O0H1A9u3aszdnp0p1AiRJCjbhWhaP5l5C2MAyLx6c1o+FPD9trguvtLyqI9oTyyBknPt7V1UXw7iWSNorm5GGBGYw3QimKxwqIChOccZxVRnJzVmMlVAx19KrbSxc54BxUobRKvzxDIGar3QCABSffjoasAsIhk9yNo4wP8mq1y6vKwQ5XrS1uNWG2ykzKT09SasKu3HA5bOahjaMb8t8u3A+tTxkERpnkLk0PcpEg561KB/Ko0C/MCTu/hAHHXvUwFIY3FNcZQj2qbbiowM5FAGr4SSP7De+bt2CXnd06VuvounyxPKkKqxG7dGcZ4/KsnwnFHJBeQPsYtLyhPJGPSulisorWCdolZQyEEEnsCBjNWldCRyli4yAwyXwo9qxdYgKS7x2O04rVtMFBJtzsIak8QWcoZwuGLAMcdhWSepbV0cyZGaNUY5Vc49s0+3SNyyythcdaY8ZQ7evbirJsN9nFOj/AHmKOD/CQf5VoZpalCQBZSoOVHQ+tNyc1JNEY53XrtOKjzTBijqD6Gh2yzN6mnRRvM4SNSWJ4rRm0cw2BmL5cDJA6Clcai3sZsWGlQOMqWGe3Gan+yM99JBCQdrMAe3BqIQStsxG3zdDjrWx4fktjM0cy/vedp7mhsqMbvUoHzY1k83guSW4pqTS/Z/JR2CEH5SeOetdHeW0GTAzqZg+6RAuQE9c/XtVSC02wDBB2sQuBzkE4qebS7NeRN2RzhVlGSCB7inIm8jIPPGa39bsZI9Jiun8o7nAOxuhweMVnx2lwISqxnKleAMkk8gfXFVzXVzNxSdihtwcEc1ofZ1txCZOBIvB681WuhGGBUne3LD0p9mn2jzI2YgqhdDnoRzQ3pcFZOxdi00yrJtKqeuOnFZ06JvfYAm07cV0d4DpumxXAbeZY1Bz1Lc81yzMzklupOaUXcJ2WxMkG9TzyelRyfexjBA5+tLDK0JyOR3FTXssMsytCMKV+YHscnNMjSxXHSk70qjcvFOTAcFulMQJG7nKg08+m3gHp3rSsVQIxYY4qrOqHcR1zUqWti3CyuKt64AAT5Rgc027l84psHDKOKtvEn2PgDIFUoPkJYjpxTTuJxsEMGHYSKSAKYE3SlV69hVhpVIOR361VY/vCynHORQgkkloekfDyD/iWXku08zBc49F/wDr13drNNHIpDsMEA/N614TZ6tqNoxW2vp4QzbiEcgE+uK27bxXrsF3Ap1F5BvX76KTj06U7mRkRb2Xgj8aUQbmKk4B5OKVJ1EOWwW9qYbkAnCcmkmVuOeARxuVyTjvWXg5IweOtahusL8y46dKzznzSVyQTnNDYWHRKo+R93JGNuKsiLyrkZOcrgUXttcW0sRmUHeocY6fSo0mdrlC474pDWhYXmT8asqOOlQL/rW+tWRhV3McDuaRaE7e1RxKzzPtBIAycdhW7/Z1s0UbgSFT1bPWksdImt78zB90Z4CkfeB6Ui1Tkzkbhil9uiZg2RgqcGtrT/E2srci1aVZkk+UrMMkDvg9elZupWVzDqs6CEna+4YHbNRCZ7a8ExXDq+dv86q5ly2fvHTwW8luhcqfLK8jtj1pLi8+xwqZAJoXGFkU5GPT61ZWGTUbAvaDzDtJUbunb/Iqxp0FveW0dnqEkKopBkZWxj1GD9KhI6JKK2Zw8ql1WTdnnp6VvadaRSR3Kn7ykvgnjBA/SsXUMjU51SLyk8wkRpyFGeldloEEM4YSCM4YBkZM+aOOGPp1pyfKrszg9bo4u+TdI8q8hhkkDitKfRhfxrPbosTbQCAeCcdfaop3htZLqykKrteRDhScc9vpXoWk6PZ3XhuycR7pZrfjax46gcetJyZVPlWkjzmC1t4rYTwOzzIwWRc8qfUe1bF3dWM1gbaUvuKgqY1G8scHB9QMH865fyJIrloZFZHB5yMH/J4rfi0NbieIrKw+UZ9QabVtWxQcpe7EfpQtbwCzdhDcE4BYcEAfoazdP8pdeTEO0bm+TPTg1Z1DSLjSpknWQEKcqRnNVYmX+0IpOd8gIAA6kggfrSTW6HJSTtI6KTTPs8sl1MSW8pBhe+T3+nSrwsY7fwzDcRiNbln4J+8evOO/Snakdml3G4lWNuCuWycgc/qM/jTtWza6Bp8bnBES5J9dvNYRk23fuVJWSsUNTslNhbWsoLPJOkkrjpycVg6xeT6dqd1b28mzc6yZA5U9sH8q2fEV2RYWF5CTkAZBB6gcfXmuOu7qS9unuJiDI5ySBit4xbd3sZNqxC2WYsxJJOSTU1lKYrkHk7lKnAzwRUR6UsGRKhBI57VtJELQ6fXZQ/h2yIGAz5HsMGuWxitjVdQjnsbSyjU/uBlmPc+1ZHUVEVZBJ6iU3nNONOjhknk2RIXbrgVQiWFBsPvxTo7YuplyNqtgjv0q5b6RdSRsRhNo5D8YNQzN9khe3DbnY8+1RzXehooO13sW7fHkpnrjmm3VjcJEk8kflxSZKE/xYq1odr9tWHLALHJtlHt2/wAK6vX4YU0xC64aJSwTPAIB5+lTflkapOa0OPJBtM469vWqqBXJXA5OeK14rWOecZXjG4gdeaqalYJb2DOrE43DOOvFOD1FVhK1yjPbBbYuM5qvDEZnCg4Hc1oa1pujaXNqGmCS8Gp2DeU0rurRTyKwWRVUKCgHzEEschegzxWtB5cAOOqjn0rSWiOeOr1K+BHLzyB+tT27+ZewEj+NR+tNuIiuzAzkU+0DNfQYHzbwf1pEvQUAhSNuc+9Jg54U5znBrTj0m4fG4BR7mrKaL3afH0FYOtFdTWNOTMuGF57hEZcBzggVr3ulLYWEiyoFYqHQjP8AnvV+z+y6XaXcclnBeNMgCibAZSCOVPau6l0e3voYLq6CO0mA0A+6jKOnuOBVRmpK6NEuVNM8+so11PTbUC3SSRFZdznpjFZ9zociWz3MLblQ5IHYDrXTaXaLb+KNS0/yyIdwmQ4+VMn/AOv+lbdzo8ES3G8jBLBgARnGfl59+fyolJRXMxpRkuVLU8vj5lPFXQgZCDkAirGiab9puXLn5VO3HuK7P/hHbaS15TnHUVE6qTsaUsO5xuSaFo32jw9EJt6MYht2rnccH5vxxVK0haVpoJHZQjlVm25GN3HH4VsaHqlxbxf2bJKWe1jJt39FHb9aggj87T59oAKkAkdeSTUOq7qw0pRum9jntds1gv8AdCrhZGO1TyeMA/XmsCfRb66SCSK0lbZKwYgc43V1usaqYb/SllGVbcgIH3N5Ukk9+f61iWeqatZ3Lrd3A8l5GUKpVCrbjnBIwOfWt4RTfMYVJt6MszM+n6Ha28SlJ3Zuq4MR6k/Uda5x7MzztK8sjyOxyxGCTnr+NdHazTX95ZTzMHVYixJH3nJ5/wA+1d9b6ZFLb+Z5EZOM52isefkVmawo86ueUw3txplyIJbeN3aVQ0rjkg10+j3P2rU5omWGNoWcBVzuYdmP5VX8TWcbXcSsAjbx82OnNUE+22GsXmoRQhjg55yQpxnI7c96uf7yk7GUo8k7M5XWVCazd7SWHmE5Net+FcHw5p21t22JcH3ryfW/Kk1e4kt33xvh84x1HP65r1DwI7v4atcksQ7LzzwDxVy0gjOO7PNV0y9v/EiWEU8MDzF3Ms/CIqbssxAJwAhPTtWt4Xmul1G+t78nzbdxGykAbWywI49xTNW1b+xtY1GRUV7yW3NvAZIUlRV807iVcEfdXaBg8MataPfw6xr2paiisrXCwyT7lC5mKnzCAOMF9xHsaqr/AAzTDX9qkdBr0EM1gM45HFYulWdveaZbO8aLLbZZXX72Vbgn29qt38rNCysflUcVS0y2j/s+KM3+yWUeaY0GSB1wfbFZUep0YzdF3xYIpoLFbZ1YmZ1bYR3bv7c1Y8WRxsltEMGMkjK8jI6VkpbyzlnjiURljtYtgDnsO1aVnZCHzL2dvO8oBY0YnG4+tX7M5eY5+/s9S1Kyt4RbiGGLJaV2wG9K5y6s2tJxCWV39V6V6Hcg39s8dy3mLI4BU8AD2Arm7zTDd+ILSOBcNIST7AVqQylF4cuJIRIjeaCdpEak7TjNdFB4HhMKvLJskIUhWJ4PpxXXaRo8kVvJZwnbEw+Z/wCJj/SrL+H5bXayzEsOxNYyrK9mdMcPKSuedat4bjtJla5dguQiLEpwxPTmuUlVVmdUztBIANe7XumtfaE5l2tNB1IGSEPb39R6EV55eeCIYdRtYobqSWGTG9mTGfX6VamrXMvZSbsjmtJsI7uaWa5LLaW6b5SPTsPxrW0aw+1zvJBGsUU0uELNyi+gHfg1v3tppd1Y6ylpL84Yeakf94HCjp04qbSLJFtUj8piGYKMfwn/ACKJPTQqjBOXvFzUNFQv5C7oVyNxHPP4+ua5jXvDv7ofYVkmaP2Ga9Je3aQ+TLFy2GbLAll7D/Guj/sG0l0zzYo1RxwQKzRrVnfpoeAeHpZLHVfsVyjxrcEIQwwQ3Y/zH413N1pr3ULu7sMpgbxnNa3ibwtHLHbXTLtkikDeYBztByfrVy71CyfTJP8AR3P7hmjCgNhwOOfbg8dqcmmZU5SinY82s90OoWtqE5ZQN78bT2z7YrS1nSopNJ1FpLnFzCm9IY1yGJA6H6E/lTLmz3avdTMGR4xtI6YbqR/StKSxEnhdZmY+bcxOC5OASAdo5+pFVUtC0i4OpU9xas4K91+81KCeNtPtluroIl1dRxv5s+0gjdlioJKqSVUEkc98zxwxLBBbuHW6kCBFyFUHGPmJ6VLa6a1tqkQlxxGCCoOC2Mkc9SM4OOOKk1K0uUnN/EG2ROq7l6qevFa3Uo3RhKlOm3Gas10ZQdgVhYFWlLneG6cEY7cd6fZyBbqGP5DmYOW9O2Ks7A8kVkYirRs7tlu5Ax/IVoS2NmukWNzFbYnllILKewbHftSuY9Tc1K0W0v5I0Py9R+NUzx+ArW1C6t7+MNEifahKEZATuAwOffOayH4R/wDdNeQoSSXMehKau7FzT9Hj1m2leeMBVI8ph1BHJrtIkVBG6kgFwcdev/6q5/wjPDJp0saqFlifLvvzuBHy8du9an20RYgZTlBu39uDVxq2rSh0RFrwUupQ8rOqak+z52hTD/Qnj9KvX00YgFxK+ELr5hGO5Hrx0I60/RWF/JLGSDLNwMDqASM/rWLrd4IbAxbSzfJlccHa3P6AV0y97QmKsY/h7anm7gQRK2cjnrXf2jRTWeQRwK5q9hQ6y6wOHQxody9yVBq2hktImQE/MKzaTdz0KacUkjN1WRbTVbaeNgCZNh54wykVqeHFFxql9DLlVVgzj0+Qc/rXPXsMhvrfzC3+uBHpnnr7V0/hmMT6rq8hLBSiANnIJCn8uarlVjlrSfMc1q8SSwCRnAEbMnPTrgfTkCq2raNJ9nSW8dEWQtICOcE84NaWoW0L3t7aZxG0jAM4wWGeD7YBqn4m1ey1CxtorV9xT5WOc9Bz/KuqCtE5Jasp6YHjktFAwm0d+h64r0vTtTRbNkI5ArzPw3fR3EtzE+Byjx5HpkH9DXoLRIbWMx4GRk1zT+I9Cirw0OS8VxyXUazIpXa5Jx6AE1iz3azzLMWbzGUE7XwRxyP0rqvFkqw6LNIMDEZH3scnj8etc/4f0t9XsjMZIkjDYJwd2fwrWjqtDnxSSkYd5pltNMHDvF8oBCoT+Ocda6TRfFek+HNIFqZJLiRXLKI/fHGe3SqPi+xttD0+JYJpTcXDkZLcBQOcfiRXEYyM1tKN9GcidnoaOs6mur6hLci3SJWYsB944JzjNdlYWUFiGSOJEEgDqyqBuUjIz+dc8i3CXkFvb26vpzBDkxDDjAyzH1/LoOK9G0u20XVfh1a3rTNDf2sj2sTjJMm0/KCv+6RzXM5+0Vv6+Z69XC/U2pN31a2tqrarV3Wu+npqjk9UmSGOUsf4cAVYsryzuLaSOznVkCKmzo3OAcj86xtdv9PttRlsr8XTSxhc+Wi45UHuw9awFaGZmnsfNR4yD0wR15GCfStKSstThxE1OWnQ7aSQAsQeNxNaDAp4dU9GabmsGxma5toJWGWZQT9a3L1vL8NQFjhmmJ5/GtjmJNBs4b28iiuA2HdjjOMkLwD+tamtaLZ6dfpqSRlJDGIlAOFGDnp6nNO8Jz2tzBbJMqJfBS8at96RQcEg+uO1bHi2D7ToAKgFonVg3qM9aiTZvSSb1LHh2NZIBIeprQ1JE2ZHUVieGrry7YI3YVZkuHmmZe1cEup6cbpIk0+RQt0j/dePBH41RksHv7WOWLcQoPA7MGPPvxVa6uY7aURzEqkh27h/Cexq1Dqi6N4O1KRygu4Z28hHbAm5Xj8fm/nXRTXNBHHOTp1GzgNRs5NE0Se0IR724lI3KOWJcEZrotGv4Ps8iQNE9zGwjkKt9zA5/XNXNZuND1ixwLq3lu2XdFbSNiQN7gc5BrD+H+h3FjfyyTyFbibhVdQyuQW5Oe2dv5mtpp2Mqc0p7HZaHCbu9kuJVBccDI6V0sqyW8YcEjPXHeue0e5xqVwsaYjY5UentW0b37VE0ZGClcvW51u0lsN1GNZdNG5sdwK5MW0dvocVxLDI+4zGMRkKc5Hc8Doa6K6uVaMRNydpKgH2rH1u3a48BzxpGzERSbVAyTz2q73scjjys820qaS4tZ5pXLszEtzz9a6+5tJR4F064XDJBG29G+7hlwGP0/rXC6fM9pHLJs/cH7xA+4x6A/WvWYbI3HgoWvGHsQvTvs4rXEWlBIeGrujU50r7/irP8GeORSJaWcUZuFnlilBJXJCrjoD+VdPowilWCWXKpLdblZhhSAh7/ga5e0sArs0k/wA6yAhR1IHc/wAq07e1it9mJrkxrkqhY7Rkc4HbrWsY8sbGdfEOtPmtZJJJeS0X9fpoVdRDz30xYxIM9VyW9B+hxVnzj5NnaFcLG4C5yCBnJyPrRbxWEM8hHlysTwsxP+P5VcNk9xcRNDaGMq+T8+VI/GlL4TGCXNqJol5LPr6Qp88Dzh9p6rjBP/oIH4Vr32iyQ6fJdq4cHJKKvKj3rFWybTbhvJkCbXKMy/MwbOOfTv6V3VgM+HLlN5BGeWPJOOD+ppezjJWY+Zo4fQr+TQr2cvbyOkxEakHAJ6j+tdMr219JGmWebDb1PGxuuPfH9K5mTT3hvTKZszCRcJnlT0GMfhW3YMkKSzSxrJcSncZOmOeQD3/+tWcqMedztqzSE3ypHU+H4DFeO4YMyxKNoxxgnnNcLqFu63GqO6iRoy+1G6HnPNdp4d1W0toLq8u5ooYVwAc4HfOa848UeJEvtVu10pitrK5PmEYZxjBx6CiMHzDc0kbnhmVrm0idyWZIwvPoOlac9ySGdhWX4XgaDR7S4BykgbPsdxGK3bmJDbM2OKzcbSdz0KUuaCaOb8Q3WHsyg5aQcZ9jXT+FHnkt5wU2Rlg29gfm7YH61w1xrNtF4igNyGNtGdr7RnAPB478E128etWkOiLPBMk0CDbmH+I9AD6E8da6adO8Tz8RVvM05bGyW8eVokadxuLOM5x+grz7x5cINQtIEUKpQn5RjqcV1Gky3FxdT3bs32aWLMals4Ncb49y+o2zKOQm2rcdLGN9TNswYZY5Izgk4x6CvS7ZzeWcIjkwQvPNeeQaNewaZFfmGaZXYrtQ9Mg7SPX69K6XwNI0q3elXNp5ktuS+1hkxnOCOORXJUj1PSo/u7J9Sv4mlW6SOz3ArG+TnvwRU/g2S30vT9Qm1GYQW1u/zljkA5wAMdSfap/EFjJp8dkiWo8+6Sfy1ZeA3UD67R+tYdkLbT9Ws7R3kvYCVOJxsCSYI4U8EjJ/OqptR0ZlinBpW3Mvxt4gg1/U4TaQSw20Ee1BKMMxJzux2zxXODpV7W7n7brl7cE5DTMB9AcD9BVIe1dJwE0HnSsLZJWWNzllydv1I/CvQ9Chlt7VFtYj5afP84zn/a9s4rk/C+nC91APIuYk5b3HpXrmnyJBalBCmWByQMVyV52dkdlGLkrvU4SefX7m28Ty6Kb43p1HTw/9n792wQXA5287chfbpVKO6t7fxdqBVYXieOBbpYguwzeUPOKkcD95vxjj8K09V+GsmoXE+pf2nsEjf6vyM44x13e3pSaV4F/swNKb7zyzKdvk7cYz7n1qnVg6dkyVRkql2tDe0HwyZYJ5LIxSIsh2LIcHBGR/M1W8RWLwWlrbXatHIjF8H1/r1qDUdYvvCSefp0igfLuRxlWX6V1um6lZ+PvCf2+W1Vbm2kKSp12tgHIPoQc1rTlzRuZ1FaVjyee7vbnUobCBPKuN6Jbuj4KnO4HP1Ne73WkX0HhZo7ieK6kWEeZKFwSe5A9+teL2Mia54ugthB5NxbOCkoPLFGH6YBr6I1HP9iXHc+Sfx4qKj0sOm7SPPbW38jHvWsloAnm4qhEd9yB2xWzE2bVh7Vx2PY5tDnTZx3mtWyykCNS7EHoeOK5HxDcz6nCWktzDFbyO8ADH9584BdvbggV0er3j2KPPGQGAYAntkYpfBenXGtQ6u6zkLaWyQgSYwTjcck9K6MPdanBjJLRGJrGnxXbaWLd2illkV2fuAA2cY65xiuq0qy3axZQIPm3+Z9Mc1xVjLcp4jsIpI1jEFttUK28PyefYn0r0LQCr+KLVk5xDKR9cY/rXdLWm5HMnqQ6Qqx3DRnG6N3U/Xca2JtkVu5XhjXH2VzND4t1GyY8i4Z1+h5rq7hSVwTya8uWh6NN3imYst3FbxXMr/NMwWNB6Ank/yq3bHf4T3biNoZlbPXms1rZbrXYrFkyJVYNk9QACMenIrY+zJB4X1GzHMcJeNef4QR3q6Opz4l62PLLPS7iOUrdTogRuUD53HnjHvXokPibT4dPjEO2VY0CPlgBkDBrkYNCsku5jIspiI3wlH5Ru4OT39atx2JGILW7hhTb8sU6befQHpXXKF9zjTsYCafCL2Sa1KGJwfljkzg9uRVgQwMEjeG6WTpvjl3A/pmr76PcMVkmtrM4bhlUI2PUY5q66pBCxjBA4AJ5J/GqRLMWXSmWJcXTSOeqTRqcVZDraqgJGVOcAY5p8WZ5WOcKD196zGc32ohEOBn8AB2obS1EouTsi/rSJb6zcCJfKju3LeZztJ64IHvT7eW9ijeJbiJkYDBC4I9snrXSR+Gb245mkSEf99Gr1r4Q062GX3ynOcZwv5U0mNtHAzJcvdKRHI2BjaVG1j649adqs8mhWMc9+kaO/MNvn5298dh7mvUora3tVKxRpDEi7nYDGB/kV4D4n1I61r95elmZHkIiDcbUBwox24p2C5QvdRuNQlLythCchAeBUSDnPpSCPAp3QU7E3uewfC+GDU/C17aTrkQzkEgDcqsAcj6EE/gR3q9qvhi4jultfmzMeHUnZgclvwHOKxPgzPi91WMZyI43+oBIP48g/hVzxpaXM3jjSZZbh1t5LiGK0Ctt8oBxvBHU5yMH8O1RKClqawquCsjyDVDjV7sLnYJmC5OcDPFMinlgJMUjJn72D1+vrU+rxGLVbuM9VnkX8mNVFGRWljLc9c0icyaNFeACOBrUEIo+7gc/XkGuU1iyvdY2XKnzRkiOGPgnscHuTn8ga6LTre7vPh8s1uBDCIVgWVzj5i+0kfnWZoc8VvKNHuUIvrfzt0pkwhGcZA/ibtj2qJSTlynVhKdOTan8ipEA1na20q3NtdRRAJHIpXI3Y+X1PJxV/wHGNO8QX9xdSN5Pkn96GJyS/XKnPaodfjuX1Kxgu5Fj8zzAzM2XVRwPoeOBVPw411YeJZrG/LQtcY3iVcF+pHPucfWsKklrbc7MRJc6pvp1O08U3Cv5EmE8tMeTK4OBITxx156fT3rmRpME2vztqUoSRws0Kq2CsgO0gHuBxx9K0/ENnDciH7XMsMUYZ1kOc5yoGB7Alv+A1h2WuQ20c5v2aWVLgGOTysl48njJ6cmuWrGbipR9DGurtJLY5DVoPs+sXkOSdkzDJGCeap5wwqe+x9vuMMzDzGwW6kZ71W/iBrvjsrnC1Zne+HoFgiDqrKjYZi3dscCvQLNFFqZ5DtjRS7HGcADJrzjQp3vI7WIkkq3Qfzr1/QrZHhCSxq0bLtZWGQR6GuGrFybPSw7ikr7FN7rU4NBj1G6sbRNLlCHCykzRKxADtxgjnoOeR6Gs3cRdeW3C5Iz+FbkmhSQrFZTarcz6ZCVMdq6rztIIDtj5l6/Lj09Kh1XT1W1nnUYKjePw5rGzW56GLdCVlSt12vtpbfrvf9dzifGNqJI9wAKEEYP8AKt/4X2sEFrrCWxzbTwwzhc52sdwYfpWJ4iuVltFcMCrKCfUEcVtfCJF/sjU2UHcyYPp99ugrsw7drHi11qmcB4Z3RfEy2VVyTeMmPXJNfRGoX8MFtdxPt3LASNxwOQa8B8N7rb4ox3AhaWOO9KkqMgM2VXP4kV7zqSol5PHM6qk8XyZPXAwauoZQPPtAvo73cwIOK3pblVjYCvLrVr/RfHEmleY8UUv3FY8EEZB/EV3+oxPpHhq51m+lPkxriJTwZpDwqj2zyT6A1g6bbsjvjWXJdnB+N9ddImsbfaDMCryd1XjIH1/l9araL4uv4Wmgs7mS2jutouwBntg4wPb361y15cy3Lma4kZ2HJJ9apW15PZ3aXUD7ZVOQa9HD2pbq55mIbqu6Z6DawoZITBO/lxSB2kVTxz0HSvRvBwjn164uE5MVuVYL0Viwz+n864Pwrf2GuRssN01vqpXEkTxgqV6b1PGccdenvXr/AIQ0eOw0t2CIJJpXZiAB1PA+lZyk1Fx6FxZ5F401S98P+Orq+tIY5I41XzVf3zj+VdVo+sS6s0JdFV5FVgo9xXE/EPWLbU/E17ZWEaMTMEkuP7xUBcL7ZB571ZOrro+neeoBcIkKL/eZVAP4etcdWN0ktzuw8rXb2LHizVVsbxZY52S5zvjCdVx0z6f1re8OeLI5PD0P2tX5z5jLEXUnPOcZryK8u57y4eedy8jnLMe9dV4FuLie4l0+G4MZKmVBn7x6EfyP4VrRhyaGOIqe0d+x6TbS6JqfMLWk3qEbDD8OtQ31nbWYBhiQbuVPXFQQaSS5l1BIGlVvkKDnHuaW9bMfyjCjIA/KuvocTM6Q9T1PrWZqEmy2XuzMcD17VoSn92T71US3a71BAFLJAoOPVjyBUNDRVnjeG0S3jG6aX92AOpY8sfwHFT2ml21lcRhD5u1gJHz1OMn+tbtxp1poMY1bVbgARIcxbc9ew9WPf8qrXvn6vNpTGGa1FyDLJAGGRAgJ5IHyk/KOOm6saicjoozjDXqdek4kjV9pG4dD2pkkpBUdMk/yqK3ffAG9yP1psrDz4wD6/wAjXWkctxbiaOLRr6eblI4nZx7Bc4r5zd/NmdyMF2LY9MnNe5eJrtbbwVrZc/ei2Lj1bCivDFweRU9Rp6inrTduTntThgmlGBwKAR6D8I326/fQ/wDPSybj6MtbvjmQ/wDCb6VO/m+TZRxznYuQC0wGW9Bgda5f4YS+R42gGeJYJU/8dz/SvYEtoXv5JZFDmaJYWDDIKqDx+ZNNRvoUldnzn4gRY/EWqR/3byYf+PmssnArqfHmizaP4rvVkBMVw5uInxwysc/ociuVYYIoegjttB1qZvh/q+km48vy7iCSJj/ArP8ANj8QPzqHSbNZNbt7zUmSWCRwkZmJ8xiVJDgDtuX9a5qwvGsbyOdclVI3J/eHpXSWVqZ5rQahdNa2DIfs86AEB2+YKT1IFc1ZaS9DeilZtjbyLULjTr7UZblJlsr9XxjcWY4GSf7uFUVLrV6XtrG72B5LgkvIHJ2ZIYIPQDJxUD6wLbSLmxhjVra4RLYyomEJUHLe7E4P0NaMV/pFtJp4ZxGrSLNJC/zKuzIGT0IJrFJ2cpq9tvuOinyWk27O2hJ4h1lbzQ9NnMTxvKsgXD9xwc/Xmsqznj/4RiWae0NzcyzMTIx+6FAOR6Ekk12fh7wpbahrs8kkxutPsnMqITlVkLMwQe2CCazZdHxqF3ZRpE1oHdljI2hB1AJ9h0FVSuqXP3JpStNt9jzO5dpbqV3xuZiTtORmoec1b1C1azvZYjggHAIOaqqOTXQtjkd76ne+A4gVEhXJaTYPYdf6V7VaqkMEW3qRXjPgBWFrdluPL2zp7rkof1r1ezvBJHCc8EVxVLqTPRw9nE6DyEnQMaxNVKvm3xww2kVqJccbV9Kwr2Yx3iyHHynd83Tj1rKWuhva12eb+K7aXSr6W0YfKp6HuKu+GtTn0WzuoIpJYw6hpWWMnGSTgEA4qnqs0uu6Tqes3G0O9ycbc4AAA4/DH511PgMWOpXbW80ImJi81t7deQOgPTtzXXh1ZnBiWmjStPB9nFJa6yTbSSI6S/LEQxAIPBz1ru9QspLt4mieNGDbSzDkA+nvWVdSfZrtbdRHHaoFymOc54x7YBrUu9a0+z0iXVJZR9ntwzyEdRgH/P41pVVzng7HlZs7DXvHMIsUM7WMzoxUg/IGK4bPfr+ArL+LvigalqdpodsxFtYLuk/25CP6Lj8zWx4buTp+hax4tukjS4vy90yEniDJVVGBwScjOa8evr2a9u57udt008jSOfcnJqaV3JlzfuognfcNvbNRpEXYLmnOMFR361JFwQcV0JGLLdtm0lSSJtsiHKsPWvZbbx1L/wAIGdS85VliiaIogAxL0Ax+IP0rxcnIxT0u5vsj2nmN5BkEhTtuAxmlJJocdy/o9uXle5c/cBO4+vr/AJ9aj1G7N1cDbkRqMIPQf55q3eYsbSKxRsybQ1xjsx52/hxmsrO5iT61z21udblaPKNcYFa3he8Nhr+n3AOAJgrfRuD/ADrJkPy0+xcrcRkdRIpH51ojKXY94JMjlRz61n3rAowHQf4//WrSt/uSuBljwoHrSR+Hb26h/er9nQnrIMsQPRev54rc5zm7khbaMngEnJ9q1fCHk3LNLIyp5amYgnn/AHvoBWjd6VY2qLb8S3JU+WJMEk49Og/HNYkUerL4Yn3TpGupuLKBQuXcs2GkLdgAGwBx3rNvUpLQwJpbnx14mjIBTTIpsov95QeB/n1rupIl/tS4nJ+REWBD2Crhm/M+X/3yaraB4ePh6WTfLHKkUe5CnoPX3zin6wJV0mWK2RpZ5v3MYTqSTlyPzb8qnca3LVsdtnEO+wE/jzUTsTdR444P8jU4AUBR0HFS6ba/atUjJGUTLN78V0bIyON+JVvLZeDYzK+1rq6RdnsoZuf0rx2L5cg9K9i+NV8hh0uxBBkDPMw9BgKP6149tO3io63KDJVyKWHqSe9R/N39KfGcAUIZ1fgOXyvHGmkHq7L+akV7tGu27Qjplj+fNeAeBmJ8caUewuBXulpqlrcR221ybkeZFMApwrKSME9M8Zx6GtqXUuG5yfxasRceG4rkD5raZWzj+Fsqf1214bKcSYHNe5/E3Uox4UmtwT5ss6JjHQA7vzOK8LkRxJvZGCnviorKzFLccDjrzXQ6brTppRspGhZYo5ljWVMgh9vA/wBrIOK5rJOK2fDenHUdZiiYgRr87segA/8Ar4qU7tWCM3HU63SJbaO2uNLvVjHmnzQD027Bn/PtU+l+FdN13Q7a0gYJqG3/AF0mcx/MTgr6dap39pFdI95CxFxp7K4yc70zjv6ccV1/hW5+0z213KzebJLgccY2+vfnP51w4ihN1+ZPd3LopOJ3Ok6RbaJosOnWgPlxIfmPVz3Y+5rze0svtviCSR3jeNslFc4BOPp+FeqzMRA+OCVIB98V5rJBZW+teRbyTQXKySSpwNhGARj/AMe/Su2vF8tkXF2ZxWueFprxhLpsO5N3zvuHlqMZLE9gMgH8auaX8Ootkct7di5D8qtt9xvT5+/4V3Olwx4fTrcbo0XzJiU6SN745H+FasXhOaztxcw2IUIwYRwPsyMjJK9Dxk1ENtTGe55x4o0+68Fzae8dv9nhlEkYj3Z3RkAkH8efrXReB9YTV7VVDfMp6HqKd8bY1ex0VlbKmRxn2xXlvhjxHP4b1A3MMayg8NGxIB/KsqsE9tzWhVcJH0kqLEuSecVwnjTVFtLeVRyWGCAeozyPyzXSWN5eanaW1w0cSxzoHBQnAGM85ryHxZri6prFwsGDbROVR8/fA71z04c0jrrVbRuXNW8R6Y/h9NOsVmhZmAYP1UDnr35x+Vdn8MIrGK3juoPtMk0jMkjuSwUDoAB0HArxiaSQjcoBA7GvZ/AOt2c2iIbOKNJUws8e3BVv5ke9dlOmovQ4Jz5lqdXq80B1A70csdqopXGfcZHauG+JeqLD4Yi063cf6VOFwDngcn9dtdF4ovY5dOa5lR08vAd4D8yxk/N9RXmviSISeJdGtGmW4XBnMwIG9CxI6DAwFxgU5uyZMVdmv8RNWWy8J6JoFrhAYFE6gnOEOMdB/Fk/hXlyDfJjtW74y1Yav4luZ0bMMeIYucgKoxx+OT+NZ9rZO1jNdiSAKhA2NKA7ZP8ACvU1FGNooqbuym/zSO3YcU+PgCkZdsLEjBJoj6VqQWGGMEU1cB1PY08HOPpUb5VvbtTYLcmaTHUkk0g5GR3qItk1YjUnrWB0LUik6U+0O2ZXP3Q4PHoKSXoR6V3uieFYfDumf23rsfmXSwme208HnHZ5PQcjimiZM9c0q80u20OO9iEi7wc+YMSEjrnsBTNL8RR6qt5KpiWG2UMwRslcgnk/QV5JbzeIvF8DLEBFZ5I3Mdqfl1NdjY6E/hb4a6lAkolu76TYGAxy2EAH4FjV30MrBpd5c6lpt7qccZR5ZBa2pPJMkhxu/AZrR8RiK3vdK0+L/VWkDSBfc4Rf0DVe0+zSC90nSEAC2Nub2cAf8tH+VAfoNx/Ckn02LUL+51N5mGyXykUDhlTj/wBC3VLKFSFY9LYSk4b73PJVRuI/HgVQmu30/WLFnh8yCFdsrhseWz8b8dwPmz9a05YxcCBTn5WAA+uST+S/rWRrGn3he6u2kT7HGu9xnnaByP0oJLQDyOAMCtDSZRDraQFuXjYD3OM1TjZUcFjz6VnX+onTtd0q7b5YxeJHJnsHO3P61vIiO5558W5S/jJwWyEgjAHp1NcGjjHP611HxIZ/+E61oPnKz7R9ABiuTVciouNDmJY9q6Pwh4TvPFmoSWls6xJFEZJJnHC/3R9SeKxrSyku7iK3gjaSeVgiIo5ZicAV9K+D/DUHhTw9FZxqrXD4e4lH8b45/AdBVQV2Ulc8H8GxNaeNbKOfCPFO4fPYqG/qK9f02/W5jMazIYRGZgFTlZMnfn1Jwa88vtOfQPitm63RwNcNco8Y3ZRtxH68V1fhiGDS9XvZWMsMEsxkInI4LZwP51UJqLsXGMt7GH42EUvhqyuXuJZJnnkkLkYJOQOnbANcUNPiuWt0iuGldkI2lgBuyeO9eh6rDZa3Zx2MPmzgtKIwBg/e3E/T5aq6JoFi2o6VDZRMbgEmdmPAIPDewxis61VcxapOWp5fqOj3ekuguY8JKu6KRTlXHsf5jtW34NPlT3E7AbQUTkZHJPHP0r0/W9Ag13w7PZLte4aXNq6r/wAtAqjA9jgg/nXKW3gnW/CdpBLrcTQ215OpMduRLINoJ5AyO9VSTk15nPU924kMkcN81u4WP7VBJGQQQCD0J9ScZFb/AIUkVJLaKdXWcXAjhKnMbJtY8+hyAMe9VrtNG1CW1sLa81C6vUA8tbhEhWFcnk4XJAz+QxTZJE0mCW3mtma6tZMxuGZTjduGcccc49Qa0qQ5WmxUp32PV5iDDkelcHem1nkvVkMiTLJ+6dVI+YZ6HBrpl8QadNZQSm7RVlwEZj1J7E9M1zum7rm8nZiAsjEbSuOT1A9WqalmjZsrTa7aeG9CWKOW2mnuHB2vIyyFiefl29vwFep3DMmluyk8Rkj8q5OC3tnuoblrOC58vIicqrFG9Bnoa6QyTyaLj7K/mGPGwkDms7WM3qeN/FaaP/hHNGjRo1lErHy1Ysc4+Y/mf1FeWWkOMyHqBgfWvWfizIl/ZWM52qbedotvckjnHsNorzGFTKyRKMktgCpa6j7I9NfWZ9J+HMCuwWWWAQxYYHr1/EL+VeZMcDaPxrpfFeprfXcUMJYw26BcE9XP3vr6Z9q5wpgjJyc5NRShZXfU1rT5ml2GDA56mtfw9qsmj6tHdDPlH5ZlXjcn/wBbqKyhjPvSPkDcWO0enFamJ7yjieAMNs8Mi5BA+8pH8sV5hqjWtn45vXhj8u30+12rGDgK23p+bdK3vDXiiLS/Ak11cgymxk8qNM4L7uVH8/wFcCLx57LVtRmIWW9lwFB9TubA9hx+NKtrG3cdPcxpCSSx6k81PEMDIqsxy3tmraDalOwXIp2+XHvRFymfeknHy/jToeVYUxEzDEYNMkPy59KlPMdQvymPXFD2Bbj4sM249vSr0MeY2eqaDkVoRkC1NYM6YkNpb/a9Stbbn99MkfH+0wH9a7zxM95qnjC+0uxLFQiWYVTwSSGbP5H/AL5rnvAtqt5470pWGUhkNw/0QFv6V2XgBBdeJtS1+5cJAvnTeY/Qc4z+AJqkZS3NzS7KHSNPis0zlByx7nvXR39qLm60bTm/1cf+kTD2Uf4s35VbtZNK12NZIJILmMkfvImBI+uP61R1S6a5F+tsrLN8tmr7cZeT0PfaGFUTuxmhStLY6r4gkB3X0zyRZ/54p8kYHscE/jUNlO1rAtttEgJ6d9x6kfU5NbeoWLx6F9isYh+7RI40Bx8oxx+Qrn4be8tbiN7yPyo1YElu/pSBGF4r8XXPh68t47GxW7ZhKzK275UXaobj/gVZtn45m8T+D/ECz2sVtLBHGAY2JDK7be/0/Wk8V3kn9kNqNoTE4Y2bMOd6NkkfnXGaNcC307VITj98sQx64fNKXwtiXxI9bku4LRRLJLHDCn3pJGwB+Jrj/HGrrJ4fFzZMsqTTJ5cnPTlsj8q4O9u77VX8zULt5u4Qn5V+g6Cug1rafBmmQgAAt0+i/wD161buQtCv8Tit14kj1KMfJqNlb3QPqSuD+orj7aF5pdkaknrXe6uttqnwh0i+fAvtPuGsge7LkttP4EGuU0YpHaXryA5UpjnHHOakq2p3/wAJtOt4vEM8tysUlwLffbkHOznDH64Ne1A5izXkPwwnhl1aJ0s5YtlqyCduRId3IB6dMflXriqwUjjk5FbQWhrHY8/8UWvmeK4rp4y0cUKqMeuT/jWQYU/tZyzlXGeJvuuOMqT29j9K7q8s4r2/mjnZwNoK7Dg5/wA4rDu7eO11RAZ0+1QEOHlAUMp6Y7E8VzTpS52zqVaHJyMztIeeKKWeCGKJkDeUz/NgjHHuDnH41W02aefURDo9vJBcTnEzTcmMfxAcYHP5YrpdHitrvUZre2eObyWMjS9Vj7AZ6E5LGtbT4La08WMkQYySwruc8hsZ/Xj9KlU3fUidWPLoc7beEbjS9etNXm1q8lWGQKIpIwI8MduABjH3s5rX+JCj+w7R3vEtSs5USOMqcqeD+XqK7DWHMWlTyY+7GT09q5PxRsm8L2izLNcbZl3EIQx4OeB+XFddJe8rHn1NYs8006zli8QxNaX1tM5h3NMqb1ZQR0yT616JLaR3F1bTmFJJFRlbcvJBX9e/51wumRvJrKzRaPqcUflsqKOBIS3QkgYGPftXercSAKjQbmjAGFOBu7gHsBzzXXifhV9zDDpq5xOvaPf6RoOqw6cBNaR2s0v73GYkKk/L/tL659K881CO9s7CR4/FeqPd2tla3jQybkTE6xtsjfzCSw80cbRkKx7V7R4tllPhDWDEg+awnD+YcFRsbPTqa8Q1LxzLfaBJpaR3qxy2draPHLe+ZAohWMB44tg2MTGDnJ+8w75rz2dep9HWUEFkzMyqC3JVcDP4dqvfb4gnywL+J4rAt9Qs7y5ltobmN7iJiHhzh1P+6efxq4Fq7E3Z5b8XIrRdTsJ4TmeZHaQ5zwCAB9OtcHpmY2kue0Q+X/ePA/r+VbXj+3Nl4mmtFuGmjUBkDHJTd8239ayAPKsoo+nmN5jfyH9fzrJ66GkXZ3I2JY5PPOSaavKO/wCArZ1W/tH0yGzs4UUkgMSuWwo4IY9MlmJH0HTFZLgLDtX2FOLuDsiuB39am+8hXtiov4sdsVIuT2qiSvLqFzFp0mmg/uJJFkcY53LkLz/wI1LqObaztrIdUXe/uzUJa+dqlsG5R3AIJ9Kp3lwbu/llJBy3GBgY7Vm1eVilsQgfMtXN2FFOewZNNh1DzYikkrRbA3zKQAckehzUTEbK0TuSMuG3r0A57U+LgcVFMflx6dakhYnHGR6il1AsD7lQt0GPWpjwKruwDLuOBnvTewLckU1KsvloxYnbXVeCPh9qHjXzZ4LiK1soJBHJK4JOSM/Kvf8AOsPxFpEGleI7+xtp3litp2iR36nbxkge+axNubojd8C4tY9f1g/8uunOFJ/vSEKB+Wa9B8PWy6f4Wjj2gMY7eNh6k5lb/wBDA/CuW8DaV9v8I3VrvTde6jEku4HiJAD/ADevSl061u9M8m5gV4pgWKnIwGPAyPQYH4VSIkyhoVlYT+Ije24jW4gjcyNC2MkgKAwHX72eadrGtPYPps2n2Dairyy3nlxvglAuN+T/ALwx9KseHvDlj4a03UvsAZUmbIDHJBx6/XFVdUuo7C61a8KhotPsorVF9Sx5H5babJjsZ0Pxt8PvKIrmxv4CSAzAK6j34Oa6rx3dG38C3mo2212iRJYyehywx/Ovni/toLq8uJjAgMjs+FGMZOa978QnzvhDISc50+E/olNLQV9Tz66d7z4S208pJm8zc5I7iQj+tcNb5D13NofO+Fl0n/PKZ/8A0JT/AFriEUrIM96ifwscH7yGFMVuawP+JDpK+zH9FrdXwA13GLiDU7fy3Y5yh+Qf/Wrt7LwZpsNrAZNt3NChELyrmME99ueeQK1WonoeQaXofiDXLJtKsLN2s/tH2jzH+VA23b948dK7HTvh3FosGdQlhu7u4QiOLBEaspBxk9SckcivUfD2g63HYFdburF5A37trSMqNvuDwPwqn4qsYzYtvkIltzviYHBJIIx7/SmrE6nM2cVrp9xptxHDsma7KOc8CNgQoHoM4FehR4aMH2rze6vbaTSWlt7ctqJUKkbbm+cHO8EDqT2rutD1GPVtGtr6EjEyZZf7rdGH51cX0NYOxzfirW30G5F4luZ1jZPORR83ltkEj3GAfzrRlsrHXbO3vY0WVdglhk9VPP41gav4k0u38RXX2/DWVtJGjSDJPmJk4AHX5jj04qzp3iXR9cxaxyrbLE22OIsFRx2xjgfSk3dky3NaxtUtZLhojCkJIZ1A5zjqT3NT6bb/AGrWotTWdo4osRCLH+sPzcn6bqmis0VmmKZdySxBz+dWLfTY9+YyVyQSm7jPqKVhXNnU2UWZ3YA4zn61zmvIJLVI7QuWRgyICSBgHoPxrZ1FV+zorqSufv7iwWsO7vIoLySCCdFZQBlEMkjd8Kg6D3NEXZkyV0c42rXGqRJBZkvdQsRIkjY2e3seDW3Pc2+nRW0d7KglciNTjJZvasyGB115NRfTHErBkR7hgbiQ4/gUfKg9Se3epIvD2qahrg1XUpYYlhOLa2Ubyg9Seme/5VpOVyYQsXTZQ2+6WRysaHezO2AMDknPH4/WpSY7+zJguQY3BCzQuDjtkHkZBrO8T2gibTJrxZLnTYp2e6QIXIOw7XIA+6vOe3PQ1W0WawXXLq+sEW20eWBELNEY0mmBOCmR0AyD057d65XWtU5bf5+voeqsBGWF9vd7X203tyt/zPdeXzar32g6hdMv261stZjjP7udWNrdR/RhwfzFSS6vcWk0aJ1A2myv18iZj6pITsc+1dSrW8yiSCaNwQCCrA5pl0sTWcy3caS24Qs6SqGUgDJ4Na27HmXPnXxHdvq/iu+nCOplnKqjj5lx8oBHtiq1wym4bafkTCqfYcCrOluiX13qKoFSCN5I17Bm+VB+BbP/AAGqQAxjtUruVfSwqruO89+nsKZI2TjsKUycYFR0xIQjH58/4U8dM55qF5BuVPT+dSDnigYsgEkRUn5u2KzYlw7bhg9MVrDodqZxVKbmbfjaW6j+tAkQnhj7Cl+6m5jSHlse9SICsoc4O05AIyKBkZUiI7up5NWoUCr+FQOu6QjnG3P41JC+5Bg5x60CZI5rp/AvhS38W317azXv2SWKDfC2AQWzjken0rlGcdR+VeifCSKITazqM8fmpBCkaxAAl2Yn8eg7etDGj1f4Z+Hrrwv4amtb8xmU3TyFo33KUwoBB+gr531a5+2aveXPUzTO5P1JP9a+q9GhMWi2iHJZo9zbxg5bk5/OvMPHGkaEjRH7LZw3N3nAEeGGGLAjGOoPJ9gB1rOSLjLUZ4Ds2tvDVqzfKrxSTHPfexAP5bK60XKgbRjA6VY8P6RbXNhPA0flxeWkSrHxtC9Mf98j86vv4WtolLeY7IOuTTsS2VflfS4B186Ycf8AAv8A7GuE8ayfZfDtyp3CW/vUlO7uoXjHt8oru7y+t7HTI5Q6wQIoAZ2xjPHU+uf1rlPibabfDGmOV+eKbac9RlT/AIUxXPImXmvbrw+b8Gc+ump+mP8ACvFivPSvZYW834LNntYMPyYj+lNi6nC6L+8+H+sxf3ZC35qD/SuLBJlwT0rs/DfzeGtdhPTYG/8AHWH9K4tGDXB5Gc1lU2LgtbntGj2Yv4UuWDKyOHKLgbxjnIronj8qHKTxwh8CMyD5M9s+g965bwPcMLpTNcAgfLgnlcj09Peuv1BopJpdPmg82OcbNu7G8Hqme2Rn/EVnQqe6bVqdpHUW2WiAJzgY4rz7xb4d1DWfiDodxCHjsLNPOnlBwCVfIX6n+Vd3pyJbWiwrgJGoVR6DsPyqtc3W24lRVJ+Uc44rqsc5jNpqrr6Xar+7MZyuSVV+xA+mawbi21Pw7qU0enpv0u7Y3Cov3opu6D/Zbrx3HWutV0RUM7bdo3S4PKZ6Z/wqS7EBjQRqW53ZbgDHrnmmCdjxZY3PjG6tzb2PyoPIW4OAFZQSwXkE8n1qG68MTWer26XctpFa3EnLQdUHUA56Drj8a9R1fwlaeIYBBqMCDyx+5kQASQjHY+mex4rI0n4a6Tp8hlv5ZNSlz8qyjbGPTKjqfqce1TrfQtctrtlXT9U1lNbt7PS7RdQ0oIBLKGCiL6P0P+6M13OWZWSM+XkEAgdPemrEIkWNFVUUYVVGAB6AUuMVojNsxDoniCO8jmHieVbYcPE0SNu/HGRVfX7qbQtKV9OjSIM+1m25JOM5PqTg9a6TFVNR06HVLCazn3COUY3L1UjkEe4NFguZ+i2cS24vxdS3k12oc3Ep529QoA4UD0Het23kjKhHG0/3vWuegsh4UtoQs8sulD5ZjMQWgYn7+QPuZPI7dfWt7GQCOQeQRRvoIh1i2uTbKLJttwzDa+zcoHfPtis9NEeVgbt/OOed/wAx+gHQVuQyOny9R6GrjWkU6jzVcKeqg4z9cc1Dir3KXYxbS1t45BbQKu8dlGSv19KpeO3j0vwLq8xbMhgMan0LEL/WuoRI4IikEaxoOyjFedfGS/W38Fx25Lbrq5RRj0XLH+lJXtqDt0PFxDJa+GY5zjy7u7ZPc+Wo/rJ+lUXG1Oep61u6pdW83w70SOFgZLa7mWUZ5Bbnn8AKw2HmKrk9qEK1yLIUZ70zOTSscHnrSeXKfRR6HrTGRSRlmVlHzKf0qyY0CdW3d/SnRgJEw75pKBXGAY5B59amitY7uZEllEIwx3kZ6KSPz4FR45qRHWBxM6CREIYoejAc4oauBnqijmn06R1lkeRVCK7Fgo6KCc4qvJIQ3yn60DHyghVcdutQFmhl3ryG7UGZ9uOK0bTRrq80e41Iqy2kDhGlK/KCff6kD8aVwsZjOSQDkA16f8LrKewmN68YkguLhYYS+4K7gEleOOmax/C/w+v9SiW/uiIrM/6tkG9pCSFGB2HJOT6V7do9i9nf6BpluI4ktI5ZpUhcYCY2jOc5JLc47g80gOi1zUP7J0qS4XaGA2oGBxu5wOK8m1DSrO68YWpt7byiNslwzXBcjKFsYPOTgk+gx616B4923Fjb2ImeGWSQSpJE2JEKkYKjoe/WuZ0TREW6uLo72cKIVluPvAuQMfgoPSk9x9Dn734n6v4Z8Q6hZW1nbXGn27rkOrbt20Z+YH+Yr2m1vk1Tw/HfQgrHc2wmUHqAy5H868r8QJZ6Npms2QDvJqknn/MvGGwCD9MH869C8K4HgHTEHRbFVH4LimhM+cfEt3rWv65cW8lxL9jtpWSFS2EQKccD1969X8Tu958LNLuJWLy7LdnZjkk7cHn61wF4gW+uBj/lq38zXf3P7/4QQeqIo/75kIoSDqeXFea9Z0w7/g1OPS2mH5Ma8quJBbwvK4JCjOBXpHhu9+1fBa+mKbdsVwCoPoSabYW1OT8OOsdhrIZgENtuJ+mf8a4BH8tySCWPPSrc2oTXMckSZjhYDcufvYOeagjRlk+U5X0PasZO7L5Wtz37TfDzWe+4AIYEocDkf/WpL28uIrV4LhV3n5Ekb+X5dK79IkjkdSPlkP61z/ijS1udKnijwHK5B+lcSi4+8jt51LRl7wwRJpcflKNoAADtuOMcEk81stAg+eQ8/SuE+HmoStHdRzviSIKpz0wCea6m41WIRyPCs10UGSlsm8n2z939a9GErxTOOceWTQ9raISb0ij3dN7DJqtMkxnGSq24OGVh973rBHi+eBrma+sAsYX9zaWpNxPkdTIy/Iv0zxS+E/FGo+JZpDJpkdvbJklhIWxn7oP+164qrkNG9bR+RCXaXK43En27/lWJf+L9KtV0+6LGXTL0lRfxHdHG3YN6V1ODmuI1rwbcWrSXPhxIDHKSbnS5h+5nB64HQH06YJ4IqhaXOmG10V0ZWRxlWU5DD1Bpdma4nSL59BjdbKK4awgGbvSJ+bizHd4yfvoK7Wyu7TVLKO8sLhLm2cZV0Ofz9Kal0BqwbaNpqbYfSnpA0jYVaq5JTmtYrq2ltplDxSoUdTxlSMEflWd4U8KXmg2z2bak91YA/wCjpLHhohnpuzyOldXFZJHy/wAxqZmAGBwMZqW9SkmVkgjhXKgFvU0hYk8mm3E8cMLPI4VR3NczqPiVQGW3+VRx5jf0otcGa+oajHY27OfnboEHUmvn34meIrnWdeW2lZVhsl2rGp4DHk59+grt9b8UwWFlLMHLyIpIDHq3b9a8UuZZbiaSWRy0rsWZj3J60SSWhKIdpHc4Paun8MeH7jxFci3hOyJMGWTGQo/xrm7a3mubhLdVDtKwChepNfSXgjwxb6JosUCqNx+aQkcs3qa5atRx0W50UYc2r2R5R4w8HS6Jtu7W0dbFtsZkzu+cDk+wP8wa43OTzX014hhS9tJNIaDNrfjZKy8GP/aHrjrXzdqNhPpep3FjMQ0kEjRsR3wev406NRyVmKrG2qKp9KQCnE85xzQCx4VAffNbmLHomfpTLkgQSKOpXFSfPLaSSW+difekC5x0/wAetYZupWY/NweKL9BpEqzFvlFRsf1q3pNml3qNtBMzCOWZI2I7AsAa9U+LHhLQvBvhzTINKtNs89y2+aVtzsqr0z2GT2obA8hVCQWfhRXsul+GkvfCWi+G5J1giuyl3cyA87QrSsB6nBjrxyQkR7O/U17NJ4ut/DkEMBWSS8OmRRQJGoxk9dzf8BXjvUMD02zs4hZwx6UqBY4lWIEbSVAAyxH41paXpclrc3F7dNHJeTqqExrgIi5woJ57k15n4c+N+lPCY9V0u4t5V/1k1vh1c+uOCPpXSJ8ZvBLgE6jOuezWr8fpTuNI39Z8OyaxdRzNPsjjULt25zzk9ayNXtrbRY7Wytj5bXV4gTc2eegH9a6Pw94o0bxPbST6PfJcpEwWQBSrIT0yCM1wfxNinHjPwpPGxWGCUyyen30/xNDC5nfEOIpf2eOnlMv5Gu/8JHd4E0//AK9iPyzXGfEaP97ZMPWQfyrsPBhz4Gsx6RyD/wAeamhHil4hN7Of+mjfzruLH998J7pf+ee8fk4P9a427XN5P7SN/Ou08P4l+HerRddrSf8AoKmkHU86ki8xSrDIPau88OReT8I9Yt16AT4/FQa44R56jNa9rqF1aaVNZwzMkEud6Doc8Ghq6GnY8+FsikGUOcjsOhqsY5UmztLx9jXXy20TZzGp+oqqdKiaQuhKN7dKx9m11NpVYz3R9GX10EtHYHDRsOaxb7WUlsndXG5MjIqbVJQ1tOB0ZCf0zXmkmpNa6k6tITBKMgHtXnuo2dcaasbGn6uukXaRPp6XUM8wPL7QOOp45A9Pxro4b5dTXEUn9rzjhimRZwn+6qj7+PX9RWB4d0mx8Q362eoRedbxR79nZiDxn869Ngsbe2gSKCFIo1GFRBgD8K9Cg7wOSt8Zgah4Zi13So7O/vb6KLOZIbd1iR/YhRgj8TWxp1laaXYx2VlAIoIhhQDkn3J7n3qd02D5Mlvfmq81yltGXllQEAkD1rbmSMrXLgIJwQKDGD3xWVaa2t0XU2dwjKATlcg+uD3+tasTl15UgDue9UpJ7E2MfXvD8es24kidrXUoQTbXadUb39V9RXEfDjS7zSvEl9Z3+n3ttdMHJaP/AI9nxjPHTqcj616xHFuGT0NTBAnQcUnuO+lip9iBwSSPUVMFWNBtAAqaq11KsZTccDlqYJCFsE5PAqjdXqxo2CGYLk/nUV3e5DYOB+tYlzd4gJPWTn8O1MCpf3Mlw2ZHL8529q5fWbmK2gZ5nCgAnJq5qusQ6fBvYNJK3EcUYyzn0ArjdTs765srjVtTeAvCvmRWTZaNQP75H3j6Dp60nViinSk1c5DxDdyXM8beWyQSL5kZfgyDON2PTg4rF4JqzqGo3mq3T3d9MZZ2AGSAAAOgAHAA9KrqOM0m76mdjvvhv4ba5u/7XuF/dx5WEEd+5/p+de828flWYB4+Xqa47wZahdA0dWTarW0Z4Hcg126+XcHaqiRANu08A9jn2rgSdSbZ3tqEEjy2wXxh4o1/VpdPuHtNALGK3vbg7VVRkEoOr5yfbpzxVa5+D2qahqM0ya3Hco75NxcQsGYY6n1P0GPeu38ZeOtD8E26rfP9q1DbmGyiwCo7Ejoi+55rwfxJ8R/Evi64O+5a1swcpbWzFEH1PVj9a6oQUdjmlNy3PSZPgvaWVpNdXutSukMTSOsMIXO0E4BJOOnpXgck8szElm2k/dzxX1t4muXtvhtqFxIT5g0w7if7zJj+Zr5z8I6INd8W6XpzLmOW4XeP9gfM36A1oZnc+K9Pt/CXwbsLBYUjvr5IxOyjDOx/eMCe4GVH4V4yIH4JGATXrfxw1UXniSx02M4jtoTKwHZnOR+S4FeYsNzqPxoj3B6FnTRs1Cyx1+0R/wDoQr1X4/Xe/VdGtM8RQyTEfVgB/wCg15r4es5NQ8V6RZxDLSXcQx7bgT+ma6n42Xv2j4hTRA5W2t4owPfBb/2amxHn0EZuL2GLrvcA/ia9+0TRrH7Pe63cQLLc20RihZxkJtTkgeuc814t4Vsje+IraLGW5P58D9SK96jiez8B3glG2Vy+8ehZsf1pdQOJtPB2i/8ACDaldPbbbmSUJFNuJKH5Rxzz1NcafA65+XUCPrF/9evSZb6P/hGItOVCGE29m7Ecn/CsfZVWFdmt8FtLm0XxPqMDTiWK4s9wIGOVcdR/wKun+KS7bjTJB1VJD+RU1l/D1vK8Xwj/AJ6QSr+gP9K3PihHuh05veQfoKTBFDx8gltrKTOPnP6rmui8EnPgmAZ6CUf+PGud8Vf6R4a02b1EZ/NK6DwP/wAieB6NKP1oGeUXS5u5jj/lo38663wn83hnW4f9knH1Q/4Vy9yv+ky4/vn+ddP4OP8AoesRnoYQf0aiwmccqcDmpSCExTlXgU5hxTBlNl5PFCJz0qZkzzSKhpWEes3sgWF14PluyH6f5NeRaxE4mfDcoxWvR9QulinvlL/6xlkX8QK4a/USajIcZSUDI7g9M1420j147HZ/DKylkka/b7oj8vPrXpwQbea4rwLJBBarZLIgn2CQx552kkbsenBruFBxXqUVaKOCq7zZhavDPd3EMNnNJHJE2+RlHQEdPTJ9+KINIMTZ3ck/Mzncx9OfWt3yxnIGDUbIScA4+gyauyvdmZWht0iY7F5Pvk1YEWeB1qVIscYwP1P41KFAGBVNiGxpsUjJNOopGOBSENf7vFZGqSZnUjoowa1JiRCSODWLd/OeTwOTVIoyLtmb92vVv0HfJrlda1F45/s0TiW6YZ2j7sa9if6Cuivpy8r28LbSq5lk/uA9B9T6VyVstvbzXF3OdheQ8Hljg4/HpWGIqOMdDpw0FKV2LY6Y/wA0kpLyN95j1P8A9b2rO8d2k9v4OkeFPllmSInucnoB35ArtdDtptVYz/Zjb2CZLTynG7HoP61zmt65a694zs9MtNp0/TgZVGf9bKeA34AnFc8ItLnkb1J3/dx6niEsUkUhjljeNx1V1II/A1GSSwjHfAJ+pr1j4mabato0F6IwLmAhd/dkPY+uO1eVrEcMTjJ5rppz9pG5xVKfs5WZ9QWeLXTbKJEUpHDFuJOMLz0rL8TeNk8JeHdRu42SWcAJaoOVEjE7c/gCfwp2mxXl7o9nJbRSXMUltFgrKFMZK9GB4ZfzxXnvxgt00+bRdGVg5SOS8uGAxvdiFHHoApxWNKL5rm9WUVGx5dNJc6neS3+ozyTXEzF3ZzksT61ZtYTJcRRKPvOFAA9Tiom69K2PClt9r8W6PBjPmXkQP/fYrrSscZ7/APFGYWfw21NOm5Y4R+LqP6V5z8FdMEusahqsgwtrAIkY9mkOCfwUH867D42XPl+DYIFOPtF8vHqFVj/hWN4aH/COfBW/1H7k94ssqnvziJP5k0hnlXi/Ul1vxfqGoxtuikf5D7f54/CsVFJdmPTGBUjnaWoGBHimlYV7npXwR0Vb/wAWXWqSrldPh/d+nmPwD+ADVx/xCuxfePtbuScr9qZFPsvy/wBK9l+CWmmz8FT35TMl5cs6+pVBtH67q8Y13w7rdjf3Mup6TdxSSys+54iV5JPBHB60rAdD8HrGC71+7mnB3Qxqy/XJIH5qPyr1TxhdMlubIKAsoDk554P/ANavOPhkBpl1a/alaKXVL1beJWG0lEUsx+mSB+NeieNExdWzdirD9RTS1A48qfLxUfl96slabsyaok1fBzCLxdp56ZZl/NGrqfiUmbCwbv5zD/x3/wCtXI6AfJ8RadIT0uUH5nH9a7f4iJu0e0OOlx/7KaQ1sc9qv7zwNpzdSqxj8siug8EH/ik5B/dkk/lXPy/vPAcI/uSY/wDHz/jW54JJXwxcg44kf/0EUthnnM4/fyH1Y/zrV8PX0enm881SRLFtAUdTWfIh8xifU05BgE1RJW8kqe1NYVaI4phXNICqUzQFANTsuPemhOeaBGn4i1IwX8LDBV4EBI7GqJVZZxM2RGBwcdeadqlmb6GJcEuE2Zx1xVtdMuZrG0gt4d9yXC7CexryYLmZ6snyodL4b1TxLJY6voFz9l1G0PlqS+35M8EH25yO9ez6bHdpp1ut/JHJdhAJnjGFLY5wKh0XS4dK0i1s40A8pAM479T+taIGK9OKsjz5SuwK5GDQFAGBxS0UyQooooAKY3Jp9NxzQBBdnbbNiub1C4KoVQ4Y8A+nvXQam/l6fK+M7Rn9a5aGyuNUm6Yi7npn/wCtVIaKEKhY2kSN2giJbAGWmk/rzT9L8J29rC2qa+yRKCXMTHhcnof8BW1qOq6T4Wt4onBnvG4htYRukcn27D3NQaO1xq+7U9V8ppo3xDBGd0dtx6/xP6t26CsppSZpGcknYpa29xrFuLEK1nYyL8lvja8ij+J/7q4HC9T39K8q8LxR3PjjWbuLPkQyiKI/T/8AVXbz+JkvtW1prY7o7K0kYvnqxIRQPzNYnhTRjp7zRg7pWuH3+u7/APUM1zVp3izro07SRa8Z2bX3hm+Xbhli8wAj+6Qa8RVs179q86PY6vbu43xWpJUehDc/jXz+n3fwq8K9GZ4xWkj6o+H9jNaeDtNe4lEjy2sRGFxtXaMD3PPWvGPjHcGb4iXCE5ENtFGPy3f+zV7/AKBH5XhzS4x/BaRD/wAcFfOXxRk8z4jaz/syIv5ItdSSSOVtt3ZxrctXXfDKD7R8RNHXGQkpk/75Rj/SuRI716F8GrfzfHaykZEFrK+fTIC/+zUMk9Y8Z+EU8WSaXHdXJhsLR3lmVPvykgAKPTocmuW+LcsOl+DLDSrWIQwtMkSRr0VI1zj82Favi3XdSn8daL4Tsf3cFyY5ruVPvlNxJX/ZGFOT71xnxsvvN1rTrQHiO3eYj3dz/RRS3GeTTf67FIc7OOSeAKWQZcscUKzeZH5RPmBgV29c9qbdkI+ufCWlrovhTSrDGGhtkDj/AGiMt+pNb2Ny+3pXzvaj4mXVvBcxXupnegbc9wF/Qmvb/CWoXmp+GLK41BCl9tMdwpGPnUlT+eM/jUxmpFSVjyLxZHO/xyhunkf7PY/Z2QdgSASP5k12fjkJHFaySOiKHYZY4HT/AOtXB/FjVLzTvH8scEmyJoYZCAoyeCOv4V0fxhjW58HWlwBkC6jYf8CQ/wCNTGdrvsXyXaXcyQAyhgQQRkEGl2jB+lc/4O1L7XYNZO2Zbf7o7lD0/I8flXSBM1qndXRjKPK7BZEpqFtOeAkqMP8AvoV6J48XdoUR9LgfyNefAEDI7c16J4wPmeG0fqDIjfmKYJnKQfP4OnTH3Jj/ADU1Xsry5s7V0t5njVwQwU9asafcwro15ayg73bKAfT/AOtVIrtTFKwXM54/mpu3irTISTimFfWmIrbaaVqwVppFICswxTcVMy1GRjNAjqLqaCytnuNolCkbIwuCGPQA9zXU+CtOnS1kvL+LbcStuAZeVFUtJ0CHWbpWkZxY2cgZVU481/f2Fd2oAAHpXJQp2XMdVab+EFGKcelFFdJgFFID1paACiiigBDR0FIWABJOAByTVFr55yVsY/OP/PRjtjH49/wouBNeeQ1q4uWVYMZdmOBj61iahdX1xpsw0YJZoEIjuZl5du21T2/2j+ANaiaaJJVmvJDcyqcqGGEQ/wCyvT8Tk1458WfiPrGieJJtF0+OKARxowuG+ZjuXPA6D9aQG9eaRaaJ4e1C8urszag0YMl5O+GZs8gZ9fStSO+/sj4Vy6iDtdrZ5VPu3C/0r5w8/W/E14BLNdX0hbqzFguf0Fe//FDGm+ALPSIBzJJDaqB6KMn/ANBFTL+Y1g7+6jjvC1n9n8HXlw5/eX93bwD/AHQSx/lXWR2sZubiUPtdrknOeQWVdp/PNZlrpN6uleH9OiiHnTX0kmCwwFSMDJI+pqr4ulv/AAhqtnfXkJ+yXKG3mK/NyOQw98E8e1crg5bHYpxi9TW1aCN9M1e9UHe9htZf93d/U14JEuSo9cCvXLXxrpGoW1yHvBAjZR4Z1wJVPp6ZxXmdjCl5rsEUEZWOW6VUQnJALDArWgmk7oyxTUrNM+ubKPyrG3j/ALsSr+QFfLnxDk834ga6w6famX8gB/Svqvbj5fTivkPxPcfa/FOrXGciS8lb/wAfNdJx9DJzzXrPwNtt2savcnpHaqg/4E+f/Za8n717d8DLYjSdZucf6yeKIH6KT/7NQwSPQ2j0y2115VWIapcQZYk5kaJBjj0UEj8TXgnxTuPtHj69XPywRxQj8EBP6k13ng6RtS+KvjG+LFxGDAhJzhfMCgD2+WvKPGV0bzxtrUwOQb2QD6BiB/KkgZzV4rMoCDJzUukI+navYXV9BKluZQdxGMgdx9KjusiPI9afd6hdajb20czAx2qYUegzSkrjTsfTC3UcMtsqsu11VdgPAB7j8f511miH9xOg/hmP6qD/AFrzPwss+seHdNu5FaGRoRhscMR8ufxx+dd94WvorqfUo45FdopED7TnB24/pWFG8W0aT2ueN/G+Lb44iftJZJ+jMK6bxo/2/wCDVpc9T5Fq5+owprI+OkQHibTZP79mR+TH/GtOEjUPgMynnyoGX/viXP8AKq2ckbW92LPIdIvzpeqQXYztVsOB3U8Efka9YQpLGskZDI4DKw7g9K8hVBsOeuMfp/8AWrvfBmqi4tDpkx/fW4JjJ/iTP9M/lRQqa8rDFUbLnOkC13evHzvBNu/qIT+lcRtrtJ18/wAAxdSURT+TYrqZwo46MYSlbkU9RgUFeaQFYrg00jvUzLzTCKYELLUZWrBWmMmKQFZhgVA3Bq04Iqs3WkB7ToOnJplgbdXZ/m3Fm7nArWqGCNo0wxBJOeKmrKmrRSNZO7uFFFNxtYnJOaskRTlm46U+mjlmp1ACE4FVGu5JCVtovM/2zwg/Hv8AhU7p5xwfuenrUgGAB6UAUxZef815IZiOiYwg/wCA9/xzVoKEHHAFQ3F5DbqdxyfQVyOueIJ5AYYGKA9QvWgLXOuguYp3lWKVX8s4bB6GvHPif4Wsr/xsupXrkxG1QGIcAkFuSa7jwI8m/UEk6kow/UVwHxzN+2taVbWe7E9u24L1OG/+vQmEl0M7wpe6ffeMdP0OyCQxhxJ+7X5WKHcVP1ANdp8RUF3rui2rMMIzzsD36Af1rm/hJ4Maw1+LUrnBniicgHtkY/rXe3dvHc+Mb2aVUcW9qkahhnnO7+oqKt7WZ0YW3NfsS6TaBL7T5WGfs9mxHsZHz/Ja0vEvhnTvFWkmw1FZDCWEitG21lYdwfxNPtrYgyHuEjj/ACX/AOvV60mWRAmQR2IpwSSsZzd5Nny9428FS+G/E8un2cdzPb7FkhcpkkEd8DHXNSeA9IuZfHmiwXNvJGftKyYdCuQvzHr9K+pShHQ1l3GhQ3niLT9YkkfzrGORI042nfgEn3q7EF68nFrZT3DdIo2kP4AmvjiV2mleRvvOxY/ic19d+J7e5uvDOpW1mu+5nt3iiBOMsw2jn8a+drn4ceJrbG7SLhuOfLXfj8qEJ7HFBDX0N8FrbyPAjTEf668kfPsAo/oa8fPg/WoziTSr1c+sDf4V794D0qfTfh5a2ckTRXGyUlHGCGZmxkflQwRwvwhbzr3xRfn/AJaXKHPsWdq8bvHM9/dTnnzJnfP1JNfS/g3wOnhHSbi3e5NzLeSK0pC7VGARgd+5qr4v+Hvh6PwPqyafpFpBcJbNJHKqfOCo3fePPakDPm6Gxk1K5js4Npml4QEgZOM45rqtG+HVyZAdSuEijzkrGdzH+g/WuV0BXtPENhOATsnU/rzXvCwYPTirirku60NBpo7fwhLbWYWOa1jWKAKexIUEH8a2/BekR6U10sa43hQ5PVmXIJ/WuWuLRrm0khDFCw4Ydj1B/MV0nhbXbu+1OKyvrB4bhYXLzA5jkI28j69axcOWdzWMrwscX8crUSXWkTD73lSKPfkGo/Bv+k/B3WbbqYvtAx/wBWrpPizp326203MDzKjSbgpxgYH6k8Vk/Daz/wCKS1y0/wCegLYJ5G5COfyrNr335m8WnSXkeNxxFpQFGcnH6mtHT4pbC7tr9HwY2B47ggZH9KuxWpiKLbxNNcE/KqLuOQSc4rZ03wdqV1dRS3wW2gRwxQnLsAc4wP61hTjKTujuq1IRjaR2AhBOe1Xd7rZmEO4jPVdxx+VHkEtmpTCdmMV6R4hmMoAPt60mzjOavNB7Uz7OR2oEUmWmeWCM1daE+lMMJHakMplAKaycZ9qumA+lMaIgGgDLlHWqT9a05oz0FUJIiD70mB//2Q==", "path": "images/4pts_ADE_train_00002335.jpg" }
depth_point_46
images/5pts_ADE_train_00017769.jpg
ADE_train_00017769.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 134 y = 154),Point B is located at (x = 16 y = 223),Point C is located at (x = 68 y = 221),Point D is located at (x = 133 y = 111),Point E is located at (x = 215 y = 215).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_76><DEPTH_15><DEPTH_3><DEPTH_17><DEPTH_5><DEPTH_17><DEPTH_31><DEPTH_31><DEPTH_59><DEPTH_3><DEPTH_29><DEPTH_66><DEPTH_66><DEPTH_17><DEPTH_5><DEPTH_59><DEPTH_31><DEPTH_3><DEPTH_59><DEPTH_3><DEPTH_29><DEPTH_49><DEPTH_78><DEPTH_38><DEPTH_67><DEPTH_3><DEPTH_49><DEPTH_59><DEPTH_29><DEPTH_49><DEPTH_64><DEPTH_25><DEPTH_44><DEPTH_29><DEPTH_20><DEPTH_70><DEPTH_59><DEPTH_49><DEPTH_29><DEPTH_31><DEPTH_69><DEPTH_58><DEPTH_78><DEPTH_49><DEPTH_20><DEPTH_62><DEPTH_59><DEPTH_29><DEPTH_59><DEPTH_49><DEPTH_15><DEPTH_36><DEPTH_49><DEPTH_11><DEPTH_49><DEPTH_35><DEPTH_70><DEPTH_31><DEPTH_59><DEPTH_69><DEPTH_15><DEPTH_69><DEPTH_49><DEPTH_29><DEPTH_58><DEPTH_69><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_49><DEPTH_36><DEPTH_64><DEPTH_44><DEPTH_44><DEPTH_64><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_25><DEPTH_44><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_2><DEPTH_41><DEPTH_94><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_94><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_END><DEPTH_END>. Since point B has a higher pixel value on the depth map, the answer is that point B is closer to the camera.
B
long
5
[ "D", "A", "E", "C", "B" ]
<DEPTH_START><DEPTH_76><DEPTH_15><DEPTH_3><DEPTH_17><DEPTH_5><DEPTH_17><DEPTH_31><DEPTH_31><DEPTH_59><DEPTH_3><DEPTH_29><DEPTH_66><DEPTH_66><DEPTH_17><DEPTH_5><DEPTH_59><DEPTH_31><DEPTH_3><DEPTH_59><DEPTH_3><DEPTH_29><DEPTH_49><DEPTH_78><DEPTH_38><DEPTH_67><DEPTH_3><DEPTH_49><DEPTH_59><DEPTH_29><DEPTH_49><DEPTH_64><DEPTH_25><DEPTH_44><DEPTH_29><DEPTH_20><DEPTH_70><DEPTH_59><DEPTH_49><DEPTH_29><DEPTH_31><DEPTH_69><DEPTH_58><DEPTH_78><DEPTH_49><DEPTH_20><DEPTH_62><DEPTH_59><DEPTH_29><DEPTH_59><DEPTH_49><DEPTH_15><DEPTH_36><DEPTH_49><DEPTH_11><DEPTH_49><DEPTH_35><DEPTH_70><DEPTH_31><DEPTH_59><DEPTH_69><DEPTH_15><DEPTH_69><DEPTH_49><DEPTH_29><DEPTH_58><DEPTH_69><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_49><DEPTH_36><DEPTH_64><DEPTH_44><DEPTH_44><DEPTH_64><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_25><DEPTH_44><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_2><DEPTH_41><DEPTH_94><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_94><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_END>
134
154
16
223
68
221
133
111
215
215
26
87
66
3
46
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCYYGB+FZs6GLVt8SM7YWRl9Aflb9Oa0F45PWjyozcpKR8wQpn1B7Vlu7ncnYnzwT6VabSpo4/tHyliuSo64qmeMgmukUyzWcUqEMHRSCgwQfx61a1MZOxzvykFWAZSMEHoRXb+AtXLwPodxJuktV32xY8vD6e5U8fTFcdfCKC9Kh1QPyqt8pyfrTFe4t7m3vbRtl5avviJ7+qn2I4pp2ZEkpI9rHSlqjpGqQazpVvf2x+SZcle6t3U+4PFXqZjsFFFFAwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPLvjO4hs9JmbGEaY8+u1a8k0yApZIGHzyHeR9TXrXxsh8/StJi7NO4P02ivLon3SEKBhW2/liqi9AW5lPr0YLBLOdipx1A5qGTxBNj93p4A6ZeQ1A+PNkx/eOPzqCUsEPzHGKqxHM72NjVb+5spYkt4oWDqSxcE96zDrGqEcPBH/uxD+tX9ZBEluSedh7fSs0qPoTRF6XHN9C7Y3l5cWV559wzuv3TgDb8vtWaEndB5t7MwPbeav6bzDeL04H8jWerYQUdSWR/Z41mics5xIp5Y+orU16KOW+hZkziMjj61mu3KdsMP51r66Nt3Dg4+U/zob1GtUY5t4V6IBWp4fAU3QC4+ZD/OqJBI+8SfYZrS0KN2mnTawLlApIIzyaUnoOOj1O20GyjtLF5EXa1xIZG5zmtQ0kaCKNI16KNope5qCwqxB/qvxNV6sQH91j/aNAHLmeAfc8XXY/3rFT/7LS+cpOR40Yf72nr/AIVhB+1PD9OM1z8/kdLj5m557tx/wmcZHqdPWrtrqt7a24gi8aweWCSu/TlOM81y56UqsQKFVE4X3NzUY01hw1/4rtZ2QYX/AEBRt78YqZZmTAHi+LgYH+grXPhye35U8Nkf/XqlVYezR12ma9qGlRSx2PjCBElfzHDacp+bA/LpV7/hNNYz83jSP/gOlJXDKePSl3c0/asXso9TuP8AhNNUP/M3zH6aYg/pSP4q1u4hlNt4knuWhXzXhktVi3ID82GXByODj0BrilYdq1dGlMV2ZVwSq/dPQjuD9RxR7Vi9jE950S9bUdDsLyRdrzwI7DOeSKv1znga/jv/AAnabF2NbjyGTdnG3p+mK6OtTFqzCiiigQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5p8Yzs0zSX9J5Ov+5XkNkeCx7NzXr3xnH/ABJNLPpdH/0A15DajbCST1JNNfCEfiKD6bMZXO6MBmJGW7Zpj6SzggzIPwNbISRjgRNz7UCGTAHlnJ6ZIFF5FNRKl5bC68tvNIKDHC9en+FVTp0Y+87n8hWl5TtkgAbeuWxQLaRmxviH/As0JSFJpFOC0itw4Tcd/wB7c2fWolsbVdoEIOPViavyxNFGrEqdx7CoykQLDzZcjpiMD+tCjJsmUkisLW3IwYI/xFWGXLchSR0JGSKt29rZzSqq3MzHGSMBRVRVHmHIYgMAcHtQ4u4cy3G8jitXQoPO1AO2SsS7vx6D+tQD7AHyYJSoH8eeua2NDMTQTNFEIxvxx37/ANaORoFJM1+1A6UnWndjSKEqaA/uvfJ/pUBqaEnZgHjd/hQB5x9st8/69MfSj7XbDgTJmuaaCPJwkY/Om/Z49ufLXg+prL2S7m8ps6j7bbcZnQVNbTC6kZLZvOZRlgik4Fch9nj/AOea/TJrqvAkYj1C+KqFBgXoc/xUOkkrkxm2yd5kilaORxG69VYHI/Ck+1Qf891/75NVPF9oh8QNKT96BGOPxH9Kw/ssZz1H4Uo000L2judSL22x/rl/Kk/tCzH3rhfyrnRYxZB/pTjZwg52jP0qvZoXtWdXpzQalO0FpcRsypvIIxgZx/Wty10+a2EkrMjqAAQueMmub8GQpFqt0y9fs+M4/wBoV2Vx5v8AZl39nwZP3eAeh+cZrKUUmaqV0dB8NtaWPVGsyrpFcoEDFeGkUH+mR+Ar1WvDrKVreG0mg4eJVlTn+IHNe1Wd3HfWcN1CcxyoHX8a2hK5nVWtyeiiirMgooooAKKKKACiiigAooooAKKKKACiiigDzX4zAnQdLx/z+Ef+ONXkMcilpEXqny8euM17B8ZmWPw1p8rfdS7JP/ftq8Q0Yu8Lzv8A8tZS4/lT6AtzWkuTJtyrcDA4qLOQD5bnHtVnzUzjctIHVgAAzZ6YU80+d7FcsSsWAxmNjkdM4pokG7/VAj3apHBdyVVjjr7UwW82cCI9M9RSUpdBNIa8kjxqhChV6CmNJIzFv3Yz6CnmNlOCoBBweaTyj3I6UXkS0iMs5IIZQRxwtA5GA5x3xVgWbYUtKgDH39KZBEsrSBpUUJ39aPeDQYAw6MfzroPDgxaz9f8AWA8/SsdorZD8111H8IBrZ0AxmK5EbFgHHJ+lGodTbXmg0L0oJ5pFDSanh4jP+9Vfqc1PF/qz9aAPFmb0PemA5BHvTS2TznrTM+7U7FyJeh5xXV+CMC8vTgf6lRx/vVyIx2rr/A3+vvzjP7tO3uamWw4ajvGPGpRtnrbJ/wChNXNFwCeefSuk8bcXsWP+feP/ANCauXDcelKOxHVk/nnjC0CZm9PXmoA4J6/pS7xnrVCsdb4JYyajdnt5A/8AQhXbocWd1xn5V/nXDeBj/p95z/ywB6f7QruMf6Hc7ecqBWEviN4qyGxxmCC1QgAGBGB9QQDXoPgHUDLY3GnOfmt23x5P8Df4HP51wkcsepeGbG9t8sYI/KcA8jbwR+B5q/4b1Iadr1pcMcRu3lSf7rcZ/PBpRdpBJXR67RRRXQc4UUUUAFFFFABRRRQAUUUUAFFFKOooA5y58baJaXU1vLLOJInKNiFiMjg8iof+FgeH8f664/8AAdv8K89ucm6uD1Pnyf8AoRqAITng9aXMVyabnR/FyaLVPAenXEBLRXF0hQkY4KN2ryCDy9zwRgYhUD9K9P8AH9/bW/wy0KJ3/fB0kCDk4VGz9OoryHRWkkinuH6TOW+vH+fyqmSkbgvCFUZQYXFQm5U4/eN16DNNyg/uj603eg7j86OfyHyh5iDJOTkHHGe9J5+CPKLqeQxHem5Htj2o2t2Vj/wE80uZhazEDlny5J7kmn+eiZwKa6sq7mRwucZKkUgtbl8kQP7ZA6UtWO4vnDP3KaxDknaB2Ipy2k7OFCgknAG4ZpBDKJGjK/Mud2T0oswuJ06YHvit7w0Ttuv95T09jWGojc7Rd2ucc4kzj8q2/DoRXukWWOQjb9zPHWizRN0dBSMe3rSjpSdTTKEqeH7jfWoPpUsX3WoA8Pz82Md6QU5IXlJ2fMe4zTOh96oJJjg2Bmux8BsWl1HHZI/5muM3V2PgHh9SPONsfP4tUVNiqe5J464vYv8ArjGOf+B1yW7iuq8dN/xMI1zz5MRx/wB9VyO4Ac04fCR1ZLu4yeDQOnWotw9aUSDPJqrBzI7LwGuby/J7Qp/6FXdxjFncgdcCuF8AkGbUmBB/dx9P9413SHNjck+g/rXPP4joexX8DQrFo1wD8yy3DswPTmpriHyLh7YngfdPqD0o8Ggf2Gf+urVbvHivLcXcR5gkeCUehU4/z9ah7jueo+G9QOp6Da3DHMoXy5f95eDWrXlnhzxZZ+GkuzqTutpIFcFFLEP06e4x+Vd5pGv2viPRjqGlb2QsyJ5yFMsPUelbw1VzmkrSNeiqlhei8txI0bxOGKvGw+6w6jPf61bqhBRRRQAUUUUAFFFFABXGeI/HFxoery2UNhHOsaKxZpCpyRnHStu68SafbXGoWwd5Lqwh8+aFV5CnpgnjvXkuvX7arql1fYZVnO5Fbqq4wBT1SuCs2TGVpWaQ8F2L4HbJz/Wm7iCTnvSx4Ma59KCyc4BrFm2xyGuL502oRjr5iqM84yDWVD5SO0EY/wBSgGB0Gc/4frWnrEqxXWpykZ2SIxA78VzuiNJK11cyg5lbPPt6VqtjNvU6jTJYombzreOQFBtLKODmoPMVb4OxjRGkJA4wBVcRxk8rnilEKY4Ax9KpTQvZ9bj5LoJcSlJlUHOCO/0qP7fIdu2YM2MYNMfCkYUY+lRlug4qebQbjqLNK82fMckZzjtTmuWYgNMcDgdqhdhjr17ZqPdkcHP0pJsWhOJtj5SQhhzkU0yAsxDHLfe561CPXDZ9cGmmRY1JdtozjLcc03cNB6RQJ92FAT6KBmt7w0VEt2FUD5V/maxrWI3vzREeUDhpCPlz6D1NbVjJFp7OYYXeR1AYtJ1/DFA1G+x0RPGPWl6VjnW5Ac/ZF/77NJ/bshOBZL9fMNIrkkbHWpYTw9YB12UjAtouf9s/4VXh1y5toEjjii2hcDcSTx70w5JHA2bhNwZMOPmyT296p3LAXDhcY3Z6004J+8M/XtSFFOMMOPSrsS7jNx7da7b4fljHqQzwPL4z/vVxmF6blH/667bwAm2PUmBBy0Q/9CqKnwjpp3IfHpA1eL/rhF/Jq5RUjkHzTqh9CCf5V1Hj4htaUbhxBFnn2NckyjHXiiGxDv0FIxk9QO46UmcenNPiAUnOCCCMY9qd5BJwAT6fKf8ACtLpE8r3Oy+Hn3tTPH3Ix+prvB/x4XHP+cGuH+H8bxDUt6suRHjKkZ+9XcEf8S25/wA9jXJJ+8dS+BCeDjjQycY/etxV3SY4hDexuAFmvJs++Xx/hVPwgMaJj/pq1LJHv0m8XJBN8SCp5/14P9KnqHUyPEEiWOmXDT4xE6qcpv8A4h2q/wCFfiLL4b0f7FFp8FwskpnD7zHjcBxjn0qv8QYP+KeubpehdFb/AL6GK5JyFjttuNptojgdztrektDGe57RD8WNKt9CS8vrS5W6I3NbwJuHLY4Y4HvzXfWtzHeWcF1DkxTRrIn0IyP5181OBPoyxlguMLju3I4H4HNdBba9rWnWMFnYeIpntoF8pVVVymP4c7c9KptX1GoX2PTPHPxG0jwB9g/tW2vpvtvmeX9lRGxs25zuZf749e9ZHhf40+HPFviO00OwstVjubnfseeKMINqM5yQ5PRT2rz7WdX1TV5vD5Nxc3GpQQ67FFIh/elvsYKY2855GMc1R+HZvP8AhYvg0az5v9tb77zftGfO8jyD5XmZ5zu83G7nbjtiglpp2Z9K0UUUCCiiigR4/wCONQvLDxjqa2fmZuYIopFjVSWUrz1rDlPyLjvGDWl8RvN/4TS7ECln8mIgbgvG05OTWXKQI4885iUj8qcthxNBPu/UUhU44FQq2SPWnsTjg1ibHI60u+81SPOCzIPzFZcPlxYgjP8Aq15A981pavOg1PVwMs0Qidlx7DFc5pDSzzXVxID+8IGfz4rWOxk3qbayRYTMbFscneeamTaXVDb8lsElicc1Rx0+Z8fWkMY7lyP941pzRItLuW5Yf9MnVVXCrkAjPp0/OpLjyo4IyEXORnbgHpVARoeCP1NN2Ih4QZqOdIpxHySbmICBQT0zTzLLkdMAY4qAhSOlEFvLdOVjHAPzO3Cr9TSu3qFuhbF9OFRF25BG0c5NPXTUkYvegSEnd5Xb8T/SrNtaQ2q/ugWk6GVuv4DsKkI44FDkaRp9xSNowAMKMKBwFHsO1RHG5gcZB7U8kHvk46D1qu/LMOmOtS2bLQkVxtbdwewANDOjAlU2YB79TUHmMM8n0oHB/DtSuF7jzJg5zn3pjsMAkcGmEdivXrk1GenHXvRcWo7+2pQMf2Fpue/yU061cZ40TTcf9cqg4pQOBxVckTueHiTjWrvjGjaaB/1zFPTxBqsSkR6fYRgn+FMfyqqOmKcF9KORCWGiWf8AhINVY7jY2LPjG5o8n9TS/wDCQ6wDxZafj/rkKrge1Lj9KXKg+rRLI8R62elvYjHpEKD4j8QY+VbVf+2QqtgU7H4U+VB9WiT/ANv+Im/jtzx/zzWtLStavJoLuDVTGI2jyssaY2NggE47E8VkL9KuadMtvfxNIAYnzHID0Ktwf6UnFClh1bQ7Dwn/AMglx/02epAB/Zt1z/y/H/0aKk0bZbySWJAV874z/wA9B3/4F6/nTF/5B15n/n+P/o0VjY43uPvAZJ7u3mRZ7RrdSYGXIY7mz+gH5V55fLEssX2cEW5iXygeoXkY+o6V6JfWyXVzcwtkB7dBkdvmbmuF1S3eMSI4xJESxA7f3se3RvzrSnKzM5rQnt8S26LkE4GP95f/AK1LCTBe6jCx/wCWomXnPynj+RFR2rsFXqOjge46/oadO+dQtLlAoW6heI4ORuUkD/0EVUxwdjVsfh2PiNYPENW/s9tPunk/49/N8wSpGP764x5Xv1qz4F+G9t4T+KlrONfW7SyDqCLXYJJGjZCmd5xjdnPPTFXPh1d61Hq2qjRo7KchEkmguGZGkVWOAjDgMckZbgZFZOla20uoxsp2u90G2BskEyZx+tRGrFqyN8Rg6tP35baddU2rq/a6/q6Z9C5pc0h6mitThFzSZoooFqeQfESE/wDCV3DxRxySvFEAJWKqBgjqKwJwCBwABGBXR/EK3kufFrwpJBGzQRndMCVGA3pXMXLYSPH/ADzFJmkS9Gy7F4zwKkJHTFRRjManjoDTzjHUVmyzjtWgP9t62+7AmjhA9vuj+tZsaRwKsEZAKrnHfHrV7VpSviPWurIkEDKvbPy5rntKmluLu7nmBy20Z7D2rWPwkPexueTtgjl8xvn6gLUHmAyMgc7l5K98UwvLgASYA5AxUOzbK024+YwwTjtVpxMuWT2LaMokbfuK+xwa1tH0JtaEphkVPK27lkc/NnPTH0rCtVlupCiAu38hXS6fJPplvNDFLtMoAdlPYZ4B/GobRpGL6kN3oMVlKYppY3Yc7YpCxH19KAFRAiAKg6KOlKSSPr3pOB0FK5vGCQEcdeKbn6cUFgwwRTCT9QPWjQuzBmzgE8egqu2A5/TJ9qmJ4zgCoSW8xgNuPcVLQMNzAYzx7GkBwc9OPWkBxxgZFMVzvHX8KlCBjupFRnIVQSfQUhYlvvdatQQBY/MJySPl2nis6tRU43HGLnKyM09TzSjpjNHftSdcV1HqDwcnrTgaYM+lOB5pDSH9+tHbHFIOvPFOH8qBWD8TTup6mm0o5NAJDjS9eM8U3rTulJlHYWFwbzTbeUMVmj4Ljqrr3/Kr0cgfTroMcTCdXkX/AHpFOR7VzXh652XT2zHiYbl/3h/9atyWMth0/wBYvTnG4ZB2n24qZK55taFpM1pFEmozDOMwLg++5q5jxNEsbQXrERqSUlz6gEfrnFdJBcx3V40kXRoBkHqp3HINJNBFNcwxzQpNG+VZHXI+tZrc55HCWrBFhdxlVYFgO4HX+tOsQJrJiwJ8i7bym6YDDJH+fWkZQLdSF6gnipdEOLVjkkGRyR7/AC1tPYIPU6j4daZf6lqurpZ6tJp0apGs5ihVpJEYtkKx+4eOCO5q0vgy003426TBbqRaiyW6XMfVohsOSBjJIDE+tXPhdvHirWgpHlG1iLDHO7ccc/nWhqUt2Pj5osaRr5P9lyZO48qS244z1BC/nU06cVdo0xOKq1GoSei8l26vd2W17no+adTRThWljiFopM0tIZ4/8SUEnit0M6QAwRfO6bgPvdq5yU4hiPHMQrpPiPHHN4vMctzJbo1vHmSMAkfe9eK5ucjyIcn/AJZDn8KlmiLin92MHjaMfkKjflfepUIEaD/ZH8qazDHIrNlHH6tKH1rVLccMLeIlu3JWs6OKOBRCgAwM89/etLVowmu6nOOSbaIbexwVrmtNuJ7i/uZZupTGOw9q2jsZvc0ywH41C54bJJp2W29/aoZM4PFBXQ2dAkzazoDwsv58CtLcB0OTWRoOVtp/9qXOPTgCtIMeAMGpZrT2HFhjH403cMZHb1phJJxmmlzRcscT370xj6kc+1Jv5wB096ax46jPtSuHQTcAeRz9aaSCx96M8cDFRsTk+gGaCQwR3P41JCjSNwxAAyWA6GoDkHjBNSwTOr4ZQVJzgnoaxqykotx3KjFX1B4pEGCCVBxkDrTreSTO0ZYfyqT7URkA8Z544pECqGEbbS/OD3rgqYnmpuE0dUaNpKUWZAvY2UsqTlV6sIzgUjXsaxiQxzqrdGKHB/GrOnNBHAdNll2+bAWkYsNm5vf1AxVO9O3QdPg8xWZHbcqsDjr713qvJy5bHS2u4o1KDoBKTnGNvNSveCIAyQXMYbgF4yAfpVXRJ4bbVYpLhgi4IDN0Vj0NWPs1355F9cK9ssvmnMwYvjJ454z0qpVWpcoc3mSC8CypGbe5DvyqmPBP0FSGeXIBsrzJzgeX1qZriG8fSr4zqrxykOJXAYD14PtUVreqfEEm54Y4UMh3h8K5PQnnrzWH1io1ohXXcjm1Bbdgs1tcRkjIDqBmov7Ygz8sU2Pwqlf7tsZkkt8nP7uBgwUDucHgn09qgFvPjmIj/eIH9a64SbV2J1Et2a8epCVsR2s8mTj5RnnGf5UJqokIEVtOxJ4AGaXSZ4bWzYTuiHzDnLKQuVxzg89+uKfpl1b2pW1ygPmthhnBUlSD1wOAfyrCVaabsthKpFuyZEmumGRJo4WDowYZb0r0iKaO5j8yM8dx3U+hrx9OYwOpxXpMEjI4mhbDhFBB6Nx0NbOdtzOtFSWhsxyGzufOVdyt8sijqR6j3FWNTvWsUjmRVYl1RQzYB3ECqySpcw706r95T1FZviWRn8NuhYjZImD/AMCFFrtNHBNWKtzYvbSyWUwIkgkKN9RVPRiqxOqnJ81yRnoPlpllPK1yodmcvIRn1OeKTSWhdi6kq5VlIPfDk5/UVcvh1M47mD41inuJEtYAzNNcxqsY/jbawX8fmP510fgfw4vhr45eHoIUu1t5orh4zdJtc7Ypo2OMDglCw4+6y9etYniae7s9Vt7uygE9xBMkkabC2G2nDYHPBwfrirXwbbUH+ImgWMlk4htHvJ/MMTBlD25Ugnptyq492PrSjsKpufUueaNxphODgjBoz71sZEm40bqj3VxHj7x8fCYjsre1le+uoDLbzbQ0akMAQwyO386UrJXY4xcnyx3OZ+J/PiZh++5tYv8AUthurVz9wSYLfBP+qX+VV/EvjHS/F18t2WktH8pIpYWk2PlSeQfQ5qaYn7Pb4/54r39hWTNFpoy9GwESZPO0fyFDHjrioVJYKeeVX+Qpzg8VmyjkNWUt4n1I87GsogD2zuWs+OFLdNiDGepxyxrQ1WZh4hvosAgWaPk/7w4rnLC6nutRledv4OFHQc1tHYybszQLccg59KrvkH2+tSljjqKic+vP4Uh3NTRXHlTAf3x39q0d3IrI0Q/8fOT/ABL/ACNaYYKCetSzeGwvPQH8SaRuOp5pgyBknj6U3I3VKaZT2DfjOCCOlMLc0NnHUetMycdBx14qiR4OV4oI64OD6Uhf0JJpGcr+XU0mNA3GeOnWmxnJHrmmltzcHJPQClVZQ4JVh1/h/SoehS1JUY/6stgHqOuaCAGzkqx4wOhpqLvy24qR7VE5kLFAQT1J9a8uvaU9Drpvlicc08h4LZ/AUguJO0hzTMEHv1ppXvXuWR5ntJdyZZ5WcL5jDJ9au/Zj/fb8hVCEbriJeuXA/Wuj+zN9PpWc9CoTfVmYbc5zvfP1qY20eMENj/exV8WvTjvT5bVkIwPzqHIvmfcx5mtreRVZZOechj0rXs7zTbdYvP0uGd1Zi5d4v3mScHJ56EVk6hYXVxIHgt5JQowxRS2D16CsuSJ4iBLGyEjjchH861itDCUpN6ndpqlvpkM0NxpcEUksKmOOV49soPrtHSsARW9wgCFlkjRVLIcpkDsPSjWd5t9JZlcB7TI3DjqBx6jik0yIy+YAOmOtTJ+6Va0rEDO0YMc8e0f89Y/61v6R4ims8Q3x82A4xcKMkf71Zeo2zxW0zYxhc9elZaboihj+U+XuPcH8KVuaOpSqODPVYrkMY7i3lXLDh15BHv7VLqKnVdBuI4uJgok2/wB4qc4rznS9TuLGYGBwit96Bvutn09DXZaXq0N2oMDlZEOSh4Yf/WoinFmzaqLQz4XwqMCR+8JBHbk03RSft0gwcBTz+Nap8P6jLGLlLdvIkdnVvKbaAT9PeqenwPY3t1bT7VkwjYB6j5vWqlJOOhlGLUtRbqZoNXNwoyyAenPFZjTK2uzSJcXEDPCxQxkqQxIOOOcdat6witPIHYBGUZ3EgY464IqpYrFPr8S+dGFMYV5gchSSeD7n61jSnLmt/X9M9DFYajCgqkXrp1Wt1qkt1y9W9PTS/ufhHxxolzpWnWD3ksU8dukRkuUKq7gcjce/1rs2niQxBpYwZjiIFh85xnj14r5xhaaS3/cXMEwSR4wBnbIoIwcHr/8AWrRF7eaVJY3zEB4vnt1YFhEV7fNxya6Oc8twT6nv/mqHCl1DHopPP+ea8W+ONwINa0bKRkNaTL87Yx861TvtdvddYPfXaedHJ5gjjXYQwAXOV6/dFc18RNc1DxKmlXd6nmNDHMrMkW1VBcAZx9KbtP3WODnRkqkXqjB0nSmvdQSS4hSe0jO+QRyAh/QD+td7JgW9vkdYhwO3ArzOw0+a9GI8IqL8zs2wYz0zXpJObW25H+pGPyFTJW0EpNtt7suLJtVB6Ko/SntJkdP0qFMKic87Qf0p5YYyTWbKOT1jyzr14wx5ps1XGe24dqyYLeK3BCDlvvMeprS1hD/wkt3KPumxVd3vuBqiVdgSM9PrirukiUm9iux9vyqF2HqavxadJIcMQigZzS/2Tw++TJ/gx0PH6VjLE0ouzZsqE30G6Nlmucc5ZMfrWwsOAC54qjYpJbxNEy42kYYfx9f8amlaWTgHhTyc44rjr4mUnaB0wpqCvIsMRgBVGO2ajfazEZG4cdcVV+aMEtPkEg5HrTtjArucnPGQelZUuZO9y5STWw7oSCAT+dRGQc/Nz9adM23Azux3FVg2WySMe4r0acuaNzmasyy0qDoc89qYGZnIwQPeo93A4z34NIpzkLjnqKslFqMgMWKBscA7sYNPEimQsMDdwc9BVeS8gd1hj2llGSQv3cdv1qMygZLk4FebiE3K50UnZFp1VQ5DBuOoGM1XuHwpKna2OmartcZBwCBmo2kicL87F26DbgCsYwd7s0lK60OeBwB8oPNM8wA/cFSyKSARUWCcYBr3jymS2bbr+3UKozKv867f7Odx4HWuN05G/tC2+Uj98vPpzXetJECcyx4yf4hWVV6m0I+6QC25H1qS6tckYQfjUont8j/SI+Tx8wqzNJCAcyICemSKxuaOOhxWsXVzpt2iwz3EIdCSIZCgPPtWJd3dzespnuJpQgwvmtuwK3fFqCa+thEysPKbnPHXOK5nHrXVDa5yS0kdHq8ksmmaF5jhljtCiDH3RuzjP41f8K2xuGuOOAVB9utYM2oT3Nva2srqYrVMRfKAQGwTk9+mK7HwIEaO+JYAZjH/AKFWVV2ib09ZXRJ4k00Jo17IMfLEWrkns2D2wwMtYtJyPTNej+JlH/COanjk/Z26VzMkAWS2GPu6JI3T/eqYSsiZrUwrG1MtwqMu4FYyRj1xXod34U0WG4RLHR2kuNw2hblkLAk9Dng8VkaVp0bXcmR923tyPb5c1188iLJA7XBhAkTdICBtBOM80m22awVkPj1d7OOG3OiarCAuFEciSYxzkEHPc/WuU1i8N94va8a3uIvMhA2Sr86kLzkfrXSSz58iaO98yQMyhdykY+Yc/gBWLdNpd5PdPqWpi1vUlO1sgF12AYIx04P51otCppNXRzk915+rz25yYzJGOTgjoCPxwKsWqQxeLI40hTabdjnJPPNMupbR3sVtQm9ChldTwTuAwD+tTW+3/hMY1YNv+znB3YAHNWtEc71aLGoiCSdhIwjKSMqnGQOh/Co724lFpslZLiOIfIm4kMDjrSarLEl3MjRlx5mcg89BUumWFxfGRbWWKLcUOJfvHj6GpclFczBJvQTTrsNCo2RRDa2AF5496rapdv8A8InexxxFmLgvcZP3QwO3HbnHNPtZBiWMxvvRnUuzDqOOBjpTL2Vl8HXihhtbfwo6crVdbj+yL4h86ewht2hW1XyI8KW+Xjjd9ccVtRMTptngDAgX+VYuvQ77WBGMW0WkW5lHyA+35Gtm3fOn2hAxmEH9Kb+ElbloNu2DIz5anH4Ush2r97nsM9abBMzXSwCIjdGu2RnUKTjp1zWJqd/cQ6k9tO67UP3ExgZGRzXPUbijSNrla9dJr+VW+Wd4RlSOi0RfuowrKoI6hfWoTNG873GD5mAn3uAPxqMSFi2WDNnt6V59SUpaJnZC0dSy84IKjAXvQZFjGNw3Hsao3UjQgEAbWO0kmqy3LugRSn1ByfwPas1Q5kae2toa0cqvKBsZsc5XtStKIiSE35GCT/KqMN5KmUcyu+SeR0P1qKYuy5JYE884xSVG0rMmdS6ui3JNbsFS43R7TwqDrTop4T8kZk9GJArOaR402bwzdSAPlH/16qzqTGm7Ay6j9a64YfmVrmPtbG8ZFOYznBHXjNZ8nlRvtXEv+0Kznl8uLK7iARj25qRB845PNbU8O4O9yXUU1oXg+QcHA7+1OU7QRnofSoV+cDnHPanhiwODkY64ra5JWhkddXulG7yyg4x64q1I3GcDI6Yra060sG0O4m1C4e3U3UQR47cyscK+V4IOORSxSx2eY7G+kaJhuLPZupB+h/xqKtPmV4q7Cm0t2YEVtcXM8UUFuzSynag6c0otbpgFW2mcn0jJGa6iLVIftsatdQ+SMmS5kZo9px/dJqnHrrpc7VjSeBGI82CYjzAO67hisPq1WyuivbQvucUsYIQHPLYqzFapIzjrg4wT7UwDiAAc7uwqyb9oVYlI8K3B8oEmu9t9DBRj1ZHaxIt9bhVIDPg49MVufYYD2b86xdKjnv7wXCAFIXEj5ONozjp+IrpwnBOQMe/Wpkr7lJtKyK8VlCHThuo6n3rRuLGJ3JKk+nNQIPmUf7Q/nWs8eSetZ8qTLTZw3iqBLf7KibwGDk859K5nHHT8K7DxrB8tnt7ByR6jiuO/CumCXKclT4iwDub0+UV2/ggH7JfYYqPMTp/umuJjP4jArufBA/0K9P8A01T+RrKqlY0oyaehtatJImj37rI2RA55AP8ADWFEWj+wjOQNOmPzDqPT6Vt61/yA9Qz/AM+7/wAqyFGPsuOg0yX+tQoqxcm7mho8s6zABlP+jQ7uOT1x+la3iiSCHQbh7q0FzD8ilCxXksAGyOeCc/hXPJdG1kjSOaFJpI7ZQsjdV5zU/i8rNenbKGhawRwVbKn9+vPpRy+8Ny904KdEhu5EjYgo2Mg45q/YmaRyp8mTeeWnBfAXOT696pajCE1a7jRi6rKwU4wSM1uLp9xZaZFdvbXCFmdZGaPKruwyjPuM1s2Yq+7FQxxaVeG5WzDTBQggGHGCR07dc/hUEMPl6/sIILg5zk9T/wDXoNxDNaXN6gMjNF5aoyAiNvWnRx3OoeIIooUkluGBCrH1OD7dOlXJ3ViYKzua9wbuyXyUcbgSWVF6ce9IdU1DT4o7y2UG4T5X3HHDEAf0qRvDur2oVdU3wxD51L5IcjsT60WqLqLG1tNOaB2I3zGR5mAU9WT07fiKzasrGiV3cv6bHBe3rQOssMQZ3nYyA49SpPuOlYl4gbwlemTI8slgnT5jjB963YNNn1K5MRvLmIOgPFsSVUcdOD1z+YrO1XSZItA1BI1nf7ND5kzXciIyDdgYXqfp15p2FfRXH6/M9vGsIRDA9vGQPTCnt+dWrS8t2s7WLzQCI1G4jAx0z+hrI1C0maYmOzuZAlmI389t+C0ecg5xx2qj52otZ2cUbubdbZSQFX5TzxnFVZW1Jbd9Dr4o7byVuWt0zLHhW8sEmuc1B4vOkKQjAUckbeijoPrmmS6xqslrBbpNLGkcZJkQYc4GOT3HNakvkTSzs025vkCgjdjHXAHOKwlFTVi7yjurHPG43feTauM7RjntmnxXrEHJUBfTpUerXVrZuHImMvl4JaIqQDnGAccA1iR6ojAxnzCXIA4AA/WoeHT0LVZo1buSScoA3BYjJHX8KaitHIYpISnGdw/i/wAKTzVly0cUUKCNUIDbssAMsPckZqtYzu1w6k+Yi5LZ5xn37c1XsXGNkJVPeNCRwVx5rBl6jJOeBTEmZ3jjJOB154NRQxo96oeTy4ifnZeSF7498VowXWiSyrEukTfMdoka8Jx7kBcUlQRbqMpNDuR0YNuOehwc0l02bWMqSBleorqrbQbJkLKhUjsJCai1jwmyaV9osTK4Qqzwt8xIz1BrVU2iHUi1Y5zVNOawtbNnkWQXdutwAo+6CxGP0qJc8bScnrSXULRkQujRuq7WVjkqQx4NNEir95wCab1COhNBeQMRH8+4nH3e9WUmEwkMYIAODxjmsqN1+1J83Abn0q/a7trblIyx6jGaUoJBGbe5u2kmmRW0AnMLXOSx3E5BPT26Vf8AOjkXMaRkewBriSY3d3Z8FmJINKhSP5kmKf7pIraLSRySu3c7Frm0igkmulh2Z2KGHU+w79als/s1xZRyrAkq4PzAdMH0rhZGMwTdOXVDlcnhc4qELHGOJnU98SHB/Cm5XFYvpBG5ty08aAvtZe4GetV9QjhjLpHN5kYYlmCjp7c810P9lWZP/HvwPUmq2oaXYx6bdOluFZYXIOTwcGsuZHVKJR0nXdC0qN8R6hNJIu2QsqAEZzwNxx0611wn07AzaXB+stVPESXA8JXTT3mpfZzo2l+RBdWx+y7vLt8+RIXx5n3icKOPM+tR5xTSuTzM1LqGKN4vKjZAWx8zZJq8QdxyTVa7GWg/3/8ACrbA5P1rGe5tF6HF+OjtexB7pJjH4VxxOQBj8a7Px2hZ7Bs8LHIf1FcXitofCctR+8y5Z2V7fSOlnHEViiDyySyrEiDOMs7EKMkgcnkmuq8GzX1nrV7pF5AkRWPzmA5OflAwQSCpDZBHXgg4rn7C4s5dGv8ASbq7Sya4eC4inkR2TMfmAo2wFhkSZzg8qPrWx4P+znxfdLa3UtzClkEWaXgtt8sHAPIXIO0HkLipnsaU3ZnYapC8+l3kMK7nliZFHqSKoR6bMWt2kwgFq1uw7gnPIrYkkSPksOtUprz/AFYVcfN3qUtDV2OV8RWT2+pwzXakwOnlQlRgkIBz+bGqZjvpdOlmSRPsttENyluREZeB/wB9c11OovHf39rb39sbi3TaIYt38THBP8uKsat5dnrerpHGkMUWnxsEVfl4kUdPrmtJaRTMo6tnCsVS4jnmG5cbgO5IIPPsc16Df+JoLbwYSJEiuXDKLZSGKPn5GOOOw/CuO8YXh1PW2kUHykSKMNsxk7Vz+tJYbYPD+ovcQF0kjKpvTIyeAc9iDila9mNuycRnh2K2vr2S1uHkjEsRICEjcwxj+tbepQx2Xja0lhh/1kCSyRxsRsJ3BmAHIGBnFZvhuOCCJtQ2hJo5hEjSSALyuTx3rqNSt0+wQ+Ink867hkj8lWC7NpKrggDLL1rGU+WpboaqHNTv1NmHUtFGkG7k+3KUIBRQmdxwB1OecitWSbR3MU7aZeS3YQi4meUoZDngnDdhkVwOt31vaxac1kmTOv2i7gcHCuHyu1uwOP0rshpM0TFZ7mGAv82Gkz15/GuhJPUwu9hL+DTdQhA+wyo6lmSQXLbkz6HOewOD6VyGvW15pPhfUElnu5HlxFK8gUhwWHU5J7cfWu1jsIIEZ5NRiZQN2dhIrkvFumouj6iTrLXUhX7QsaSAptDAbcdRgkdSelN73Em0rC6ZpUFxNIRYPfRGKJT+6d9jFcnGCK0dT0h/7NuQmmTWzLGWQ/Zym7aM4+lYGpeKNT0W+jgspmKvZREkylAvHIXnmoR491KGCM213cXu9MSi4Yjy26kL6jqM/SjoNOzuitazfZbiFhpsl2XV4gs3yoFZeCSM9/5VDdajLYtZQqr28ltAAdmWLlsksSOeen4V2yxBkGy9uACOdyKRUb6SkpDNcAuCpD+UARjp0PbNRG0ehrUlKesmeca5cSXsEk0rQTu0YkDRyM7RAsBtbPTnt710PxBXUIvGs8l5NrNxZ/2vKUi1K2ZLYDzDgRkuQy4yOAvFamo+FBe2Mtut1HGXz87RMSMsGP8AF3IFcrceBp7G+tRHfRyq7EmQxMqJt5+Y84zTvcytY7Ka08NCwtZ7zRD5lzCG32cbHnHQYPBpsWo6ZFD9h+wO8BwkZe2MLfLzsYgfMwJ61y+nX+seGr2efS7kL5RRWU/P5hGDlAR0yK2dR8X+KdV0xbDyJEiuJGeVoEDs0j4LMB1X+lOUmEYrqZ+vadDYXPmGC4hifkq/zKuR/eHU57VjC5tIPlt4Zkkx99Ziyk+645rauNCvbzyoUGqzByAVu4jlWBySuOMYzXORsJbYSYjA29SjdvfFTYpNbM73SNROv3LMpigniVVkuJ7lvLIIwuB26Vo3mnHT7iezl8SafbS52SoGc7sgevGMHqK87iePSLx7SdpEdgjMEO3IKg4PIrZs/FtssipdX9yYViwoa3jkdWB4G5s5XH5U3cpVIroXNY8Dz2mn29/Z39tfJNhhHExDhSxG8g4wueM0aNc6ZopKPNpT3bv+8kkZpmCjoqhVIH1zWc18utCaPdc3cghLSBs7mC44CgnjOOPastNJvEMT3Vt5UJKs/wAwVtvU8daI+ZFSXNsdbc6jokq3KW+nQ3zgs/2hGWFou4B3Y5HNZstyxvYYdQh1C0WcAxYUSEg9PlyCR7iuagN7PcT/AGdYnVSQBcBfu54+91pVe8h1OJbgNHJF+9DxBSygcjBzjAxTsjP0IluWV9rSEYJBp7XeB8sm76qKqXE5u3CrGmXbPyx7WP5U66s5tNnEVzAUZlDBWz0qvQzaZI10xUbdn/fIpnmhuscZPf5ajM0JA/cAH2c80vmW/eOUe4f/AOtTJszsPt03ovPtUdzPLc28tsSqiVChbb0yMUz5eD2qRE3EknABrGTUVdnp06U60lCG/wDlq/uRh/8ACJc/8fv/AJC/+yrpxTe/40oNOMlJXRlWoToz5Z/5pp9V/X4mpqs0kItShAzJg557UrXtxkgMoyf7opurgFbQ4/5af0qP8qLCic34unkl+yiQlsRvg+nIrk8jPHH412HiKDz5bYZxhW4/EVhNpueFfNUn0M5QbZSaBGWNmXOR6+9dT4Qs4FS4uVjxKGEYbceFIBI/MCohYbJI7dbKOS3XAeUghie5B7D2rV0DT7jT4LiKVMBpcoc9QBjPtWMKqn0O/EYGWGV3JOzae+jXrv6r/K+x2AxzUTj54+O9Tqh+UFe3X0pDbM7KdwG3kY5q7nNYVYt93auuN0cisOeevb3q3qNpDJd3rzwyO0oMbFRyyh9wH51Ture+m097e1ljikYAedyGUZ7Y71oBHCKokkyoA3Mck47/AFpOV1YSjrcyfEtnbDw/dtapIIxsMbOOcbl71TuLa2Pw5iQRyJct5bPIckbfNOfbup/CtrWbeW/0S5s4smWVQFYnuGB5/Kkntt+gLpOWcCNITI/GQCCSBn2pp2sS1uYul2kUFhcWO990F5MDIsZO7acD9K6LULZrvwU6QbcuyRIX+X5hIfyHArItbVrdLhHldZJ52uG8sj5ck8defWt2a+dfDtkltaPd3D3ahbfaQXO88GuKcm6tvM7YwSpX8jzm8muHU219DJDcW4RBGeQykkHHtzUU2tEoNiXIlDmRXDYI+XGM5JA5Neia9o1he6fI09qqXEIwjx/ejbcAQPUZzxXL3Hw9uIS5/tiLAkKxp5TbmTPU9q7otWOCSaZDeXklpa2bwavJqcjgeZAly48tcZ+bnB545FRtrM95bXVvPZpElwm07JN7AFlLHJPXC9PepE8BjGZdTP8AwGKoL7R4tKuI0gmaVpVLMSoXHYcCqbTErnZWN1Dc6fbuIE4XaN6q3TirImm/hCAeyL/hWD4aWUafPCVH7uTf+BAH8xWwCytxuH4Um+hViQyzY5bHvgUhZm7n8KQ7m9TTSnqM/jQBDNLMsohhyZCu4lmOAKWC8uSXRpCsiHkA5B9DTZbYuwdHaOQDAOM8e9JHbtHuO7czHJY96xtPn8vw/wA73PRlLCvC2Vua3ne99W3ty22W9/m3cF9dAcyA0w3kp6j8qi2SDsMUoz3IrbQ88jnkkmheIvKiuMExsVI+hqla2txY2K2NlrN3bWihlEZjjcYOc9RnvWkSp7UfuejAUhWOcv8Aw2dQnnnuda86WdURnktMnCgAYweOABVyLTH8hIJDpc8aIFG7TipI6feBzmtgLH26etNOzP3jQHKYOn+ELSzuppzMzh87VjdovL5zgHqfxrT/ALHhX/V3epRH/Yut386tHjuajYSH7r4HoRRa4LQhawlA41e8+k0KyD+VR/ZrpBiPVLRvXzbYD+QqYi4Y4Ep59BzUw0nVJkDeRdbT/EUKj9aLWDQ5/VNLvJ7m1v7y4sHs7OQPIIBtYISAT7461i+J57rVtZtbPzoLy6A8pZIOQ+T8oyOvGPzrspPClzcrmSPKMMYMi/8AxVVU8AwxuJFVIGXo63KoR9Duqk0iGrs5a48Gasjo0VldtEFHnHy9xQ98Y6iszWbCHTp0Fu87xuDxPEY2UjsfWvQf+EauITiHxHLB7DUAaq6j4Y1HULcW9x4mhuIs5CyzI2CKVxchWfTLg9CuR705bCaMFiARgkjrV83qBdxj/AEGqU+qTiI7bR2U8fKtRJcyszshOVKSnB2aKvmgnG1gPpTjIF/hbn2NRW7XCpjyJmySfmXG0elTFZ5FJ+zXH0Cg048sVZEVpzrT557/AHfgtF8jdu7d7tYQuVC/MG9eBxinCxY5+Vj9am0x5JUiaaOSNdvdQOR/KtLzY1cqSMdjuFS5C5bGJJoqzNl0jb03LnFOTRgn3Sq+wUVuB4yMggj13ClLwdC4H0daAaOdtNKD3V8Hcny5woGegKKf6mtJNLUclzipLXyY7rUJpZkRZZEZP3gOcIAf1FPa/gPCzRADqS4qUknojWdWpUSU5N22u729Bq6cMjkke/GaupZLtGYh+ArPOpWQXJu049GqrK+n3B3G/mXnHyTEVVzOzN37GO0f6U0220/LEn4msRP7NjY/6fOTj+KY/pVpdSsIxtF0OPV80xGp9nU8FBQLaPn92p/CsxtWsgQPtS8/7VRtqdm0nF8FPQKGosBqNp9rJzJawMf9qME1J9htvKEZt49g6LjgfSscahbY51Ij0zVmC/tnQKt4jn3cZpNBctyWsUY2x2pI9FXimlUdcMjfQigSb8FZ/wDvlqU4HXJz3LZoFuRNDa4w8IH0B5rmPEFlPcapbvplvGypHscSPtwck966w9OP/HqVlzgZ/A072Cxz+g2ku+Zb9Ejbau3yXBzyc1stZwL/AMtZ+v8AdzUoIGOQPqabLdQwEgBpZB/Cp4H1NGvULWWhCtooTczsF6dOaT7NCWAjE7segAAqNmlml3vIeuRGg+UVct4Ip/8AXzTwknjZDkfnQFisbCZjtWJ1I6+Y4FJ/Z8yKxZoBj1mWtFvDU1026zuhKB6gBqgm0S6sObp0jI6O6tj+VO4tCOKK0CqGGnmQDBZ7p+fwFTpbQynaj6On1L/zNVXsLVjl76Mf9c4WJqQWdiqDOqTg/wDXt/8AXpXYWRoNpM0cCSBdMdW6GC1aY/zqg7xK2xr2NSOqrpoB/I01Ls2MubW+kx/eUFM/UGtRPEC3CCPULS1ukI5fHzUXYWKUemaTdvuOtESt/C0Ih5/lTrjw/LboZFtbm4j/AL0E8bfoBmif+wnb5Ib6Id0V0IH0zTYZtPtXEloupqw7rcKP5Ci4WKSHTUlCXUF9EPZhkfgRWhHp2jXIzaXYdu0dxOY2P5Crh8TAxeXLpq3C/wDTeQMT9eKzZL3T5GJOhW2T2Mz4ouFgubBLGRftOjTmM8h0unKn6ELxQk3hmUbZLe+hYdC1yZVH4ZFPt9b+xN/oenWsJ9FkkI/Ldimz6/ez7t1vYAHt9lU/qead2KyLC6NpFyA1hNpUrf3JnkjY/makXTGseZ/CdtPH3eGRpM/qaxri8+0Y/wBEsoiOhhi2/wBamttZ1Gy5t5xHjsI1xS1Haxpfa9Hb5Fik02T0eyjkUfpmnxwXTndY6po11/0zkhSM/kRWXea7qGoRrHd3AkUHOAgH8qpFg33hxQKyOWXTY2+9eRLj3Jpw062PJvVz7KSKuf2bL3eAD3lWlXTGP/LzajH/AE0p6Ftsqiwsz1vC2euIyf60os7NQR9ruCMYCpHtx+tXBpoByb21A9nP+FKNOhHW/g/AMf6UWRN2UltLF1+dronvnHP61KlvYqFCCb5TkblUjP071cWwth1vkH0ib/CnrZ2QPF7+PktRYFd7kEz2k8hc25QNjIiVU9fT6/pTFt9PXpazYPrNV0WtjnBvG/CBqk+y2HeeQj/rif8AGnoGpQEWn5z9iYnvmQ804R2OQRZD8ZDV4QWIPE8/4QD/ABpfKsRnL3J9xEv+NL3QsVorWEruTTomXqTkkfzqPyrPIH2CPg5+UN/jV/yrAHj7Sf8AgC/409TaelyR9VFAWLWh2Ol3U0jXen5hReBHAWyxPtWlrNho1tpqyWujyQymRVEkluVGMHI5rX8MW6x6R5sKMomcv+8OSccDp+NReMpdmn2URP35WY8+i/8A16hbjdjjw8SqQIYwD28sU/zlKCPyo9oJIAjXvUYK07cOlUGo7zRn5UGfZRW/4avoRdtZ3UMbCb/Vu6Dh/T8a53cPQ08P3BwRyOaTGj0O7sFkTMUarKnYfKGHpwDWLfNdWcYk+zM0X8RbI2/mtbmhakNU0tJmI8+P5JQOuex/Gq+saR5gNxAtuqtxKPsfnSEnuMULzE9DmDrS9DZg47+b/wDY01tZ5ybCNj/tSH/CtEeHFZQdupt/uaYR/Nqin0axtCv2uTVYtxAXfaomSe3JqrRJUmUzrZxj7Bbj1+Y0iayFjCvYxSY7mQj+QrWPhqBFDNp+ssD33wjP4ZpD4dtwSDY3gx/fvoB/Wl7o9THbWGzlbREXcCVErdPSpV1RCGZbG045Akd3P4Z4rSGiWyDJ06JsdfM1VB/Kg6Zp8a720mw24zzrXH8qegamX/bGpqreRFHbg8YijVT+dWrfxDqTShdRIe2IwyIYlP1OetSNBpiAbtG0kHpltVz/ACqW3mtYSsKweHI87isj3ZkwB2OPrS0HqNvIfDUlp58d+1vIOfKQgsT/ALucVzz7VfCmQqfusyFSfwrqDPZDIOoeG1/2UsmkqwurRttWXV4ZoVGNkWnyDj2Pai4jjyu4cbWHuaaYBnoB7it59DtNUL/2Pfy+YOTHdIw3fRiBXO6ha6hps5hu43hftkcH3B709ybk2x1/5agj3pRKed2PqDWXvf8AvClDHPJBp8rHdGmZkx99fzo3IRwwJPbNZRKt/CKTfIn3W496FEVzW2q3ekIIrPS9KH5hkVbiu4nGMjP1oasO6HnPpn8KMcdKfvUjimF/akMbt9s0bceooJJpu40CMXzj/dx+FHmselNHufyGaekMjn5Y5Dz2Q0yrsPOftigzMTkmpBZXPa2nIPpE3+FSrpt22MWdyQemIm/woJ1KyvnrUgPvVtdF1Jumn3X/AH6NSromp4z/AGfc4946BplDJxj+dAxnpWkND1M/8uE/4gf40p0XUE5azYD/AGiB/Wi47mcGIpwZuwrQGj33U24A/wB9f8akGh6hj/VRY950H9aLiuZu5uATTgzkHA57Vof2JedP9GH1uox/WrFnolw19bh3tSvmLkLcoxIz2ANJvQaO+s4fs1pBbhcCKNU/IDP61zfjlj/xLVz/AM9D/wCg11QcElmJQse9cr412yPp+2QNtWTv7rURFJ6nJZNAJyafsx2/SnBD6VQ7keTmlDe9P2DrShef/rUwuaOgaq2l6pHI7f6PJ8kw9vX8K9LVsH7+ePzFeSbRj2Pau38K6mbiy+xzNult/uk9Snb8qhqw73LV9YRxSDy9O1a8D85gviAD6YLVnvpyyjEnhHVJQOf3t8Dj82rppYlnieJyQrrglWww9wa5q9s9J02UQ33iPVIpCNwVpScj8BTJIzpQPI8Cu+e8l3n+tPXSrrongjTU9POnBxVYzeG1bDeItUceomYf0qIy+E2+/qOqzc/89ZDSHr2/r7zU/sq/I58OeHIv95//AK1IdOvFY/8AEt8Jxj/aGayd/gwfehv5D6ln/wAaBceDAPl0m5kI45Vj/M0wNKSzuBIJAnhJJVUhQq4Bz654pEe9kTf5nhSMBirIYh1HH5VR+2+FcfJ4bmf/ALZn+eaptc6Ql4rf8I1IbVSSg2kMSezHuPQUWEbwe9LDZqfhi3wOsScj9af9vuogRL4zsEHpHEDj9azBqOnSD914OZvTEX/1qnjvpnJ+z+D1Qj+8mP6UtR/10J5NVtmG2XxpcN7Q264/lSw6npZjaCbUbzU42yfLubXIz7HAx+dOW+18Jvh0O1iU9BwT+VSef4raMYgskB9s/nTFoYs+gaZq4kOj/abS4H/LC6hZVb/dauXvtNvdPl2XcDxNngPxn6etd3JZ+JZ2I+02Zx1VQcD9KlsNK1CGXddPpdzHn50mjyyH2J6U1JolrseZHOOh/nRtkI4VuvpXsIstKZ1XZYI/8KsVyax9R8Naa26WG6gsyT/z0BQn6Z4/Cq5xWPOPIlYcRtmk+yy9dmDW/fWRs5Nr3NtKvZ4ZQwP9aptIg4DijmC1ikhuYwA3zD2PIqwsr7uQcVLvUj74/Ko2KH+IGgY/cfXikLj1qBpNvRwaBcLjDHFCQXE/tPU92ft8w+jDFKdU1I8HULjH/XUis/d+NPkmEsjMkSRKeiL0HHvVF3Rd/tC8PLXtwQP+mrU0XUx/5byn6yN/jVMu3QUBjnJNKwXLnnkn/WSHP+2aUuTzuJ+rGqmeDz1pQSetFhXLW5e/T60vyEn5RVUEA0vPY8UWC5aATsoB9hSfJ/dX/vmq2D6/rS4PY8/WlYLlnK90X8RW14ZjSTxDajaPk3PwOmFNc7tYn7xxXT+CYlfU7mVpdojgPXpywFJoaZ3YXIxx9Mda5jxsiKunMEAP7wcD/droViTcBkHvw1cz442qunjfwfMGA2R/DSiJnMll5HH4UhfjA4qtkA8H9aM8/eYinYd0WN3b+VOViWC+vvVfcP75/GgSBGByDRYLouMyq23AOPQ1ZsNQk069juo1BK5BB5yD1FZgc+tHmDHJPPSjlC6PVoHaa1SeO48xJE3oRGBxVXWL+PTbTz5rVrsD7pkVNvPb1FYnhLUVmtmsWlk82IkovUFD6fQ1Z8VAHRS224cq4xiPIH19KlIT0ZT/AOE1jC/LoVqvuWH/AMTUZ8bBfu6ZZg+7/wD1q5YN5kZU9ccVXAx/+qr5Cbrsdf8A8JxcDOLCxA/4FTW8d32Rtt7QDuAprk+MDFBp+zQKXkdYfHupdFhtx/31UT+N9TkTY8FowHJ3KTz9M1zHSg4o5EHN5HSt431Y5/491B6AJ0/Wq8ni7VJQQZIhnuI+f51gZpM0ciDm8jaPinVscX0i8fwqo/pUEniHVpfvahcn/tpj+VZZY8CjPtTVNBzstNqd84+e7nb/ALat/jVdrh3YlmLHuSxJNR5JOKTP50+RC5mOMnfg/hTCQ3/16XJ9Mf1pCfSnZBdhkgcMcexpASR94/nRu7UmaLCuLjHc/nR+P603ccUmaLA2OPPUZ7UcdhSZP4UmSTgUxDSw+h9ajLDPBb8qYD604EemBUFt3FMpGDzil3Ht1pp24HFOAUj+tFybsUN7U4PnrkD600BeeTmjC5+6G+tFw1H7lz1Y/jShgD0B/GkGCOmPoKBkfw/nQMduXIyMfjUgkQcfpTcKegGfpSgY9M0wQ5ijA4HHp0rsvAdvsgvbkIDuKxLk+nJ/mK40A8V6L4PtRH4fil5DSySOeffA/lUSLib6tx90flXH/EGTEmmqMD5JDjHutdiqAEHf26Vxnj6FRd6e6kbmifOPQEf40o7ikcdvz/FTwSB1B+tMAIbI5p4U+nJ5qxDg/GMcGk8zjoaTHc07aR09aB2FD4pCx68/lQQfX8qMYJ4/HNArGhotxJb6rb3EUkUZQ/M0rBQV6Ec16QJ/Pi+R1KuvUY5BryfHI+UH6iu78KML7SyGlYTW7hDtJBCdv61DKWxzGr6dNp2oNBKP3bfPG/8AeFZDsVYhsbvavVdQ0a31OJY7iWfCnKlWGR+lc/ceCAG3R6lEsWTk3Ef3fTJq1JGbucUDx2pd2OtdI/hI4Y/2tpOFbacyleRVV/Dsced2r6TkdhMx/kKfMh28jFz6UVbuLGO3OBPbzDrmJif5io/Kt2jIO+KTHDLyPyouhWK9JThAxQ/PyOxHWkEMn+RTTGNOTwKTd69qk2EcEHP0pAh67f0p3EQk+/5UoyR0NS7cEYH409SiuGby2x/CxyD9aVwK+VHV1H404Qu+SiOw9QpNa1vqd0pAtobdD/0ytFY/ng1eWXxNc42HUSOwVPLA/QVPMxnPjTr5vu2s5PoImNQG3kjfbKrRuP4WUg/rXVHRfEkxy63PPeS5wf50n/CJ6rIcyCBT6vMSaXOKyOZNpKBuO4A8jpUfk8/xn8K65PBVyDmS7txz2DN/SrUfg1B/rdRYH/pnDj+Zo5wsjmbbw3ql5AJraAPGeh8xQfxGac/hbW48brJz/usp/rXaWPhqHT5hNb3t8r99pUK3sRjmtchn3eWA7DqKnnfQdjxcqB059qAvQkfhUgikckLG5x6IamWxuym4W1wQO/lGqugaZX2knj9KXZ8oBzV9NF1STiPT7luh+5irMXh7WJQdtg4UHBJIGDRcOUyQh6H+VOCcjnmttPCmtsP+PeOMHoXkAFSf8InqKMokubCMn+9PQFjE2jdjBHuKUrtXdlcFsY7/AJVuDwrKoxJq+mIR/wBNs4oPh+0Xg+ItPAHXAJouhmHggd6Uelbi6NpYJB8RwcdSIiQKkXRdDbg+J4+B18nFFxmEEwCRnivWNKh+xaTZ2mMeVCoP1Iyf1NcVHpXh4usa6/JLKzBVjWH7xPQdK74LggY4AAqXqUtrEu4Z6AVwvj11OrWiDGUtifzY/wCFdsOvSuA8aOD4hVecLboPpyTREmRzoILcd6fkAEZJ5pgI65OKXj+vNUSPwc8Cl2nPrTP84zS5J6Hj0p2HcftBA6j8aQA9BjIpACByadtwfX8amwwKHvgVraBqv9k6kkkmDbynZKM9Bnr9RWTnt+tLk4I5GaLDWh7A3BGCT6HPWkdVkiaOZFmicYZJBkEelYHhfUvtukLBLKPPtMIefvJ2P9PwreBUqMPn8akGjh7zwTei+mFiLc2xbdH5koyAe2MdqaPBOo5+e5sY2648w/0FdvI2VwhMjjlVJ6n0rmJPG8aMyNpMwdTtZXlAII6jpRfyBJ9yqPAtz1fUYMHk7EJxUq+BgB8+qPjvtg/+vTW8buSdmmKq9szE/wAhUJ8bX5XCWVon+024/wBad32DlfVl4eC7EZEmo3DH2RVqRfBel4+ae7f38wD+lZD+MtXc4UW0fusWf51A/ivV2OTfRp/uxKKNRWXc6QeD9JUYK3LH3mOP0FPTwlpCkH7AzY/vyMf61yLeJNVbP/E2mB9iB/SoTrOpSH/kJ3Rx1xKePyo94LR7ncP4W014/wB3pcQkXlchsZ9D7U+x06we2SVdMtoT0ZTEPkbuOa4Hz9TuBkT6hJzjIL1DNY37AyNa3xGeSUfB7CizF7p6XJeWdmhaS6tYlHo6j9BVR/Eejx/f1JG9kVm/pXD22hanOqvFpz7SSN7EAZHXqa0IvCWrM2HWCLPXdLn9BRYfunQv4v0dBwbqT/dhx/Oq8vjXTduI7K6Y56MVXP8AOqKeC5AMzajGo9FjJ/U1YTwdYoyiW9nYnoFAXNLQLoa3jdT/AKvSQD/tz9fyFVZPGN6ciOytEHbdubFaieFdHj5eOaT3eU/0qyPD+kIGxp8DemSTQmlshXOZbxbq3ae3j7fJEP61Wk8RapMwLahJkHI2AD+QrtU0uzTa0enwf8BjBqwsaIfliVW7YjAz+lHM+iC55oPFWrg/LNCmeu2Ic1D/AMJBq7sGF6ykZIKqB1P0rLxkjjkdiKUY45H+Na+iFc0JNb1WYnzNRueTyQ+D+lQve3cvD3tyw6keaearBgTRuHOM4+lAXJcuxJaWRue7E1PBYT3IzFB5gzjJbvVbcuCBuqeLUbu3j8qG5kiQEnCcH86EPmJrvSbjT4o5LmFEEhwvqarAA9B+lJJcSzSB5pZJm6Zkctge2aaZPl6Y9qeocxJk9CtO45yKh80n+EUu/n+VFg5jZ8NoJPEFiCu4CTf0z90E16QJ5TjC9euVrz7wf/yMEbYjyI3A3ttPTt6nFehtEHTAY47hTjP41nJalJ6CiR8fxA/SvPvFOf8AhI7gucnYnXt8orvguMhmzx681wHifa3iK52YIAQHA6HaOKEJmMACKXgnH6UvsT+nFIRwePxFUIcBjsPypCAw6jI60wdDyaftB4LHntSHcCMdMY9qdvymAKTbjlQeOoNGRgAADAx9aYgDk9QKcrAnFJgYHoOxoDEYxg0DZf0i/Om6pDckZjztkT+8p4/+vXpYKLwrjGcjFeTYAYHn1Ga9H0PVY9X09WeTN1EAJl6c+oHoahod7mtvbPy5x9axtR8M2Go3pu5TLG7D5/JYLuPqc5q+91HCpLxzAAc7UyaLW5iuYiR5qA8fMOfrihCaRjSeFtBtk3yi+9z5hP8AIUR6H4Yd8bST6PcMAfwqre+J9TsNQmtFhtGEbYWTa3zDsetZ/wDwluov8z29kT/eMHP86NQ5UdIPD2iIcCwgwP7zMf5mrcWlafGf3en2mMY4jBrjv+Er1cqf3sCe6wjiq58T6wzbftpXjjCKP6Uahyo9AFpADlbaFT7RD/CmGC380SPbwrNjblVCt9MivPTrernGdRuME5yHxTJNW1GYfvb65OPVzRqHKj0wRzkfJLKB6MoYY+tRSJcnf5kieWwwGDFSP8a8xM05GPtFweOcSMMD86i+ZjzIzD3Y4+lFh2R38l9BYarte5t44ZV3ShperE8Mo/Dn60sviHRoic38TN32AsT+Qrz/AMtMdFGOwqHcEJ7fSmoiud5N4v0hVJWK6lPsmB+tVJPGsQYG305uRj97L/hXKRW09wQIYJHJ6YQ81oxeHdWlAzaeWD08xwKNEF0XX8ZX5YmO1tUH0LfzNVZvFutSHiaOMH/nnEoqdPCGoMmWmtlHpksamTwixwJdRVG/urHyfpk0cyE2ZT6/q8jEnUJgT12kLn9Kgl1S/YZe9uG9jIa6L/hD7dCu68upF6EJEv8AOrA8J6cvMj3Lr2JcDH6UvaMNGf/Z", "path": "images/5pts_ADE_train_00017769.jpg" }
depth_point_47
images/3pts_ADE_train_00013464.jpg
ADE_train_00013464.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 87 y = 221),Point B is located at (x = 315 y = 158),Point C is located at (x = 169 y = 100).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_70><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_70><DEPTH_72><DEPTH_58><DEPTH_58><DEPTH_72><DEPTH_64><DEPTH_72><DEPTH_72><DEPTH_72><DEPTH_72><DEPTH_69><DEPTH_31><DEPTH_49><DEPTH_49><DEPTH_29><DEPTH_49><DEPTH_31><DEPTH_49><DEPTH_29><DEPTH_29><DEPTH_31><DEPTH_11><DEPTH_74><DEPTH_49><DEPTH_35><DEPTH_40><DEPTH_36><DEPTH_74><DEPTH_36><DEPTH_29><DEPTH_29><DEPTH_83><DEPTH_67><DEPTH_36><DEPTH_39><DEPTH_62><DEPTH_67><DEPTH_59><DEPTH_3><DEPTH_15><DEPTH_49><DEPTH_47><DEPTH_63><DEPTH_94><DEPTH_32><DEPTH_24><DEPTH_16><DEPTH_45><DEPTH_76><DEPTH_38><DEPTH_59><DEPTH_39><DEPTH_57><DEPTH_78><DEPTH_45><DEPTH_47><DEPTH_1><DEPTH_16><DEPTH_42><DEPTH_47><DEPTH_42><DEPTH_32><DEPTH_2><DEPTH_41><DEPTH_65><DEPTH_119><DEPTH_66><DEPTH_2><DEPTH_1><DEPTH_57><DEPTH_57><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
3
[ "C", "B", "A" ]
<DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_70><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_70><DEPTH_72><DEPTH_58><DEPTH_58><DEPTH_72><DEPTH_64><DEPTH_72><DEPTH_72><DEPTH_72><DEPTH_72><DEPTH_69><DEPTH_31><DEPTH_49><DEPTH_49><DEPTH_29><DEPTH_49><DEPTH_31><DEPTH_49><DEPTH_29><DEPTH_29><DEPTH_31><DEPTH_11><DEPTH_74><DEPTH_49><DEPTH_35><DEPTH_40><DEPTH_36><DEPTH_74><DEPTH_36><DEPTH_29><DEPTH_29><DEPTH_83><DEPTH_67><DEPTH_36><DEPTH_39><DEPTH_62><DEPTH_67><DEPTH_59><DEPTH_3><DEPTH_15><DEPTH_49><DEPTH_47><DEPTH_63><DEPTH_94><DEPTH_32><DEPTH_24><DEPTH_16><DEPTH_45><DEPTH_76><DEPTH_38><DEPTH_59><DEPTH_39><DEPTH_57><DEPTH_78><DEPTH_45><DEPTH_47><DEPTH_1><DEPTH_16><DEPTH_42><DEPTH_47><DEPTH_42><DEPTH_32><DEPTH_2><DEPTH_41><DEPTH_65><DEPTH_119><DEPTH_66><DEPTH_2><DEPTH_1><DEPTH_57><DEPTH_57><DEPTH_END>
87
221
315
158
169
100
null
null
null
null
77
44
17
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDWxS4pwpOa9y55wmKMUuDS4ouA3BpQKcKKLgJjmjFLilxRcBuKXFLijBouAmKMUvNLSuAmKTFPAopXAZiniiii4BRilooATFAFLRSAKBRS49qBhS4pOc9KeCKAGFaNuTUu3PShV5pczBIj2GgocVZVQaXy8ijmHylQA0cip2Tb1pmKd7g1Ycj4AFOcbhxUeOKerbanqIjwVNJjmrOwSDioipDEEU7jsMxRTsGkxTuTYSlFGKUCgEFGM0uKUUDE28UmKk7UlICmetGKUilxTENxS4pcUYoAQUYpQKXFACCjilxRigAxRilxRii4CbaCppRSnrQA0ClxTsUYoAbijFPxSYoAbijFOxRii4CAUYpaMUAJS5NLilxQA3NLS4oA5pDEBYGn7getGKUJmgYqtg8dKnDKUAzzUIhbHy4pwgPXvWbsUrjZASeeajwasCNulNaIimpDaIaXkU7ZSogY8nFVdE2EDFeRml35HIqUwrjhs1H5fNIBpxikxgZqTaKUAdKOYLEWKMe1WCi8UBVFLnHyoh2n0o2mrQKDtSko3ajnDlKnSlHNTlF7CkGB/DRzBymdiin7RSlKu5FiMUtPEeakEI9aOYfKyECjFTiFf71BjUd6XMg5WQYoAqXYvY03Z70cwcrGYpccU/bRtpXFYjxSgc1MsamneUnvScrFKJBjmj8KsBI88g04LECcClzofIVevWjFWQqZ6U7y4yOmKOdByFXbRirBiTsTUZWmpXBxsMAoxTsUYNO5NhuKKcB60baLhYbSjrS7R3owB0ouFgPSlFHWlApXHYUE9KkWQgY61FjmiiyHclMme+KAxxyc1HmlyaVh3HNhqaV6YoyaPqaCQBI+lOBzTfwozigB2aUN7ZptKKQx4b1GKM+nNNzS5zQkMdj2ozjtTaXJFFkA4EU4MvcVHjNJk0gKg4oJ9KdtPoaCp9DVXCw0MaeHpuPY0uKLhYCxo3HFLijFGgxM0Uu2jaaVwCjil8s4pNh9DRcVhwA9cVIEyM7qi2+xpfmFJlIkCc9TS4xUYZhSbiTzSQEvBppNIGFBIx0osK4u4Y60nFNyKWnsG4Yo4oop3FYTFA4pcGlxSCwowe1KAp7U3FABoCw/CDtTDxT9ppCGB55pcw7DOKXAp2DnpS49qfMKwzApcU7FJRcVhKUCjHNOApXAbgUu004DmpAOOlHMUkQ0uKl2ilCilzj5CHFOAFS4ApMZ7UnMaiM20hXmptpoxjtS5g5SICjbmpfwFKM+gp8wcpS3ilDjFRYPpRz6U7ILskJHajNM5oxRZAOyM9KXcPSmgGg0aAx24elG4elN60Yo0Fdi78U4SDuKj/CnDpRoO7HlwegpNw9KQAGlAGaVxicHsaNvtUgzS5pXCxDg+lGD6VNn2oz7UcwcpDtPpTse1SZFG4UczCyGHr0pelO4NLihyYco0N70ox6U6vFF8T+NvsSyt4is0uXtjdJZNAglaIAtu/1e0fKCwBYEjkDkZzlUsVGJ7UBxS4rnfA+p3eseDrC/v5fOuZfM3vtC5xIwHAAHQCui7U1K4WFIPtRg+1NzShhRcLIUqT6UbDSdelHNHMFkKUOKbtYdqdk0bqOZhyoQL607ZQGp2aXMw5UN24pwozRmldj5ULgUYpM0oNA7BilxikBpc0CsGTRmjNGaLhYAfal3Y7UUUrhYz80tN5/rQM9K1ROo4UuKaASMjpRz1zTFZjqUc02gZzSHYdijFNz37dKXn0pDSQvFKAD3puM59qMGmIfgD3ozUYJp3PpSuMeDSHrSDPpSUhjwcUbqbjjNBBFMB2TSYFJg+tGD60uYkcOBS5poU460Y96LjJM1833mpaNqEEV3dR3h1COxS08hUUQsyRiKOTfu3DCqpK7eSvXBr6MGKyv+EW8Pj/mBaZ/4CR/4VE482xUXYyvhr/yT7S/+2v8A6NeuszVe2treytlt7SCKCFM7Y4kCquTk4A46k1JuI5Hoaa0VhN3JM/yzQBVa3kZrZHYjJyMVNvA6mmJIlxRgUwOPWlzQOwvFLTePWjNILDxS5phOBRvA470rjHZpevIqIuT0qC5Lr5DK5AMoBHtg0xaFvNG7FRbjS7gRSHclzS5qPPApN1AEuaAaYGyKQuaTYEwajd7VEHPpTstzx060gKuMcSDaDzmsyxv7u51C7jnt9kcbERsR1FZD+PpGPlPpSF/R5CCPwqEePr8kqLS3U4wAR6UKTDQ1dRvLmLWrOKF8W7Llzt71rLcxSMTHKGCnnnFccfHd+SGFrbYB5+QGsOXU55rieUkqWbdtQ4AFaK73IckenNMkfLyqB/vUw3lsDzPGCOmTXmcs0+AzyyEEAgE5pn2pc5aLzTn++RVCueoC7gLhRKjOeig1Ymje1LLc4ibarAN6E4H615RPfFpA8AaCRRwyOcitGTxRqFxGResbpwECtI2CApyPypDUjvvt1puZTcQgx/fFRzapYwErNexIPc15+dYEjsDbQAv95u5+vFEetGPObO1l55MqBv5ii4XO5/4SHRPu/wBpQfgD/hS/2/oxAA1CIfUHn9K4ibWoywJsrFD/AA7bdRn9Khn1g3AXNta8f3YhSuK5341rS92Pt8WPqaeNa0srkX8ZXv1rz5NTbef3FsOO8INN/tIkFQIV9QsQAouFz0GXXNMiQOLsMOwA60lvrdjcuVSXBPcivPTfyOv3oyV4A2Co1mYyDzJWQ8nAHWmFz0ka1pm9g12qMP7wzUX9v6QXwb1Af90/4V5y0xaPy93J53d6eLmRcDzMY/i25/8Ar0CuejrrenSE+XcliB/CppjeINOA4lkb1AWvOl1CdGJS5Kn1DEZFAup+MXEuSD+NCsF2dlq2vwS2SJbzTRBpkE0ikqyR55Kn16fnVO31Kw0/VYhpQdrZkbzoi5Kg8YYAn73GPpXMi5kKg+ewXqCzHmo1mkQbUkZRnOAcVzyo81Tmv29dO3r1PSoZjGlhnRaet+ujurXa6uO6/TW/oB8RxCbAgymMlicVbn1OOFgoIw6bhznqK84NzLz8zkYx97rSm7mJKvO7FQOrdBW7R56kj0SxvY2tEP2iBevTg1MbuActeRAexrzUM7xgncY+x6ikPHXcR9KBNnocuo2aMoN8hJ700anYMTjUwCOo6V58rDJYjgdM9qOvIHWmK7PQ/wC0tPA51T/x4006ppyj/kKH/vo15+ikn7q/UinKiFjllOOvFLQXMzvP7Y0wYzqOfxNH9s6Vn/kJY/E15/jcRswR9KCg54wAOeKNB8zO7Ov6SJSn25yR0xnmop9a0+V4lW9lAVwentXFoTwUPOOtKJAg3O2AehPUmldBc6+fxHDE4WGUzA92JGKgbxNNjCuvtnmuX8xBGWJ4HDdyPwqWGKWfaEU9Cy+YuzIA5/SqukFpHQP4juXXasqLjvikPiW64HnLke1c7GzSQJKqFUkyVyecA4pu45HLZ75PSi6FqdHH4nuxMFfDJ/epknia781tjsy5+lYYkwNuAR6mmgBiSW57UaBdmxJ4jvXJAmkQn0oGv3qhD58rbevzdaxOc4zkUpTnjBptILs3NZ1PRzDczLDbzXZB2Ou/nH4Vg3j6aLq0ZLhhE0TNMUQkq/GAM9utVkOBubK4Ham7h/F9wc9uTWcabRUqiYihim1eBjkkUuWFtMiYMjJtFPCqMkHcTzyaYx2Nu2jA61o0QmmyXzRIlqiwTCRIQrr1ycdqhIZXZCJAwPKuNpFT6FO0M8Nw4mwZTk9dozxiug8YXH9ravbgxLGIIQhICrvyMhj3PXFZ3NOW6OdNrOto92YpDaIQrS7TtBJwATUaANg/Lx3Y5NdnCyDwPqccN4DKzIot2QshHGT06jrXGgbR+7Tdjs3FUtSZxsOFvkHazEeuRTG2I2GGD6UuyRl/1eFP9004Iy/66EgdiTT0IsIz7GXBDADo3amquegxn0oVmJA8gkDvUvBIxGcdxSbQcrI1DEcKwPrSmMjk5H9aGWXdjyn2np96nwW/mrne27OAM1LlHuNQkNwNvJx7ik3HoTx71YNqzptXls1TlvrW0lWK4ZlkI4BjZs/kKPaR7j5JEsZbnADDNMngeVPL814N5/1iEFhTluLaTlJG2+0Lj+lWbEWEhuJb+6mt40UombdjkkcHge9S6se5UabLWmatY6Vf2T6nCs9sYzbnEa5Ynox9+a1vCqaB/biGZLgh2IVZW+TB69DkVhrosd9HEXnmj2yhgvl8YHfpVyy0ie2u1m3SsEkyOAcjvUOvBGnJ0K2owWaandrZrK1tHKwDk5GPbNUYpLe6iE6yOYz3wK6i1tr6OImaKA5z8rBRgmotKtI9Ntnhnit5oZDwHAUqf+A8Vl9aQ/Y3MKG3SV8RCVwOSOOlT6TeWUE2pRSRxzXLRKRFLHuIU9xx9K3nntbZCUEcSDj7uazWmtf7QS7tJI5D5Jjbao5GQfr2rP61d7FKgV2gUKYlSfYOQhY4/KhLRiWXypcj3rQOpW0zOFEySpgnKHGKV5WB3bCzN0y1J4qXYfsTNXTXZt3lSbweVYjH50stndSy5W2WNQv8Lg5q5LeSqASiKO480HH60Mt0xXy2hIY9g3AqVXqMPZIzo7G4aXYSUBwMsRinzaa0TKqSo5bg4NXEj1VyY1ghcKc7tp4FNFvqLSqrQxZPpwa0VaXUn2SKi6awIQF9zEjCZODTJLSaLEYjkZ92xtxA+b05rTt4bmzv0uizb7eQExbsAkduKjuo73UtSuJrUL5kz7mQg7VrT2rsHs0Pfw5qFtf3FtexJALaPe/lvubB6dKoxLZR3EItbgXNzGwaSCSNvkHc8jFatjZXEcsl1qGptBM+Ucq4YsO1KttoCMRLrkgI6lYzkn3IGaTmx8qMnU9R08+IWFu7vKs2XWKIAEA+/FP8V+JW1/yI7O2MDR3qsowFIQRlW/U9KkebSIJJCttPPIMFcYGTnk5qUaxEJGMOiwtGckSTZJP1FCnJguUx/EeoCNoIoJ1wiIm8LtOMgnikt7mS5ldYLZ5WGBxG/OfoK3P7RuprbP8AYliquAPuB8YPq3PalWTUmBRrxY0c8eQRHjj2x0rVc7JcoLcz3ttStoZJbjTnUAZAPAP50yzgnu7Ka6SKBUi+9uk59wKvS2UjEJNqFzMMYAeckE/nSLp0USukkaIh+YEHgn3rWMJbswlJdDOWZAoYx7SeMGpC8ZZR0PtWiLa2KgbwcjGQBUX9n28bE+cST0ya25dCOYx0eLcAiM475U1K1pdyAiGzBQ9NwxXWqAVLEIB/CNoFRMI413MSoHJ5ry3j+x2ewRzMWm6i0jD7LwOpzgiqyxP5rI5jJ3YwZBXVPewpE8iktxxjJNU7WGxltb+FbMNqc6iezO0lmIILZHfjPSp+vNoFQW5kLo+ox280DTIse8+U4z8oP/66vf2NcqyrNerM8cYQyFSe1XLa9uJGSIW+93G8qBnZ7Yq9KNQO3yLMYPXewrN4qbNFTSKj6JBFJDFDqc6wmL9+kaH72fcVANCgE5AuZ3jz8uVGfx4q3dSanbQsWspRyPmxhck8fMapLJqKXgiuIgI3+7JG27n0JHFQ8RVQ/ZJg/hy3lJBkuAB/dYClj8OWW0kNM7A4IeWr62KtuLXjMuDuUKQV/GoU0jSZ7byY7+4Mm47TuyQfwo9pVfUPZRQLoVtEQSrr/vPxU6abaR/MhV29nyRVawWTTYwl3BLqcAJwwkANRJpPh++umutupWUiknYd20fj0p81Tqw5IlqG/gMs8LyIpjOAGFDT2NsshYRrtG9+OvvVC60fRrW/WQXDidvuvLIFDfnwaiDQPqmBbSPNHlcsDsIH9KLSfUa5UaCX9o0PnQxtLARuGxM//XpqXsc7xmGz3jbjJi5HfuM1V877HNBAYUjNw5B2twOpqzcXCQRSF513jABHQ847UcjYXQ9L7nymtmjdf+mf/wBamLqTvMsawJtJ+beDUU1za25SX7WXcc+WTlT/AFqN9YsCjRPJ8rjPyoeD9aSpJic0jVm1GG25nvlix1AhJx+OKoXd3NBgLqiOn3yGwvy1lw6w23y44srkkBlzn86lfUrt/mFlCW2bcsorSNF9ET7WJsG3t7iNXeC625DBvM+99OazhYWF8zrb/a2zhgpYgBhVe2vtUgt41yiAAjrmoT9rd8tKw/3eK0WHl2JdVdDWtNOcXkh8sFWU4+fcAfQjNWRYrZgzTJEowAShUcd+lYCxSAFVkm55wGwKkCkYQgk9wXJzWiwzJdYmutVtRMskdwTluUK5Ur9abHqiRsdtqJM9AN2PTvUbRDjMSAduKE2o3U/98mtVhO5HtmSTaiEkUyadAgBxvfJA79B1pby6lungfT5BIAwZyjBFA+hozLkYj3j3H+NBXahDRFc/3QBVLCpE+2ZQ+166t1IJrVDAWzuS5w2PwNaem63f6bEwgtrdi+PmuX3sOe2DxVUjA7Y7560jS8YCD2yRV+wiiXUZY1GWTUxG9xIsfzZJgYgn8T1qCOBLWR3S/ulV8ZDOO1JsuWAfy02/WpkGfmaPPbqKpU4oXtGIptWl8xndvXcc1K01jtO2MB88EiozIBLtEcfAwOec04rnJ2rn0qlCPYl1GWTcp5QXy0JbuBg03DDiOBmUdearMg8seYGXvlTUTRpJjbLP+HFOyWyC7NWO4XbtEEnPbPFNN3AU2mBmYdgpH61l/Z/LJ/e3GPxp8cm35XmlIb/Z5qkSy5NdAOuLN+epLDisa51W/m1C6tNN0DUtQW22B2tyzBSy5GQqHGecc84NbiyoqhFLsB3YVgn+z7mTX7e+VHJ1DT5lhGpQ2TFVhmDMGkBBA3KCBz8w5qKsnGN0aU4qTsy1oN7/AGxZySmCS2aOYxFC27kAHngetaMtjJkllYgetZmk3DXd5r91ZzrcwS6pPIs74UyKSDuwMYyMHp3rTEc+ASQd33fmJq4NuKbJmrSaRoraHYUuZNnYkZbHvx2qeK1iiCys4miA6eorlLvW7e4nlhl8sSXMeGiOfLV/Uc8fnVSBItJv2mMhWKVSHERLY+g7V4Soo9JyR19/qWmafCZWhkhVxuVjGWH6VgHxNplvObm0jmaQoTGyqSw+ntjNU/7dhiijn8x3itwQARktn1qLRvEzXtwQ1tiO3DG2ZAARn149DWkaSXQXOdRDqMcstmI50M17EZU7dOoPoeDTpNVQhEW5nJkiZ/lX7pBII/Suek1yePCwRIpGeSvIJ71mXWoaiymQoTtXOQOafsm2S6lmdNrSafqGjSQvqd75waMohznkjNallpV9I0YtLbdbKu0tcSbecda8rPinUklV0k8sq27hefpXWXPxHvX2XSW2WWMArI2VY464GKcqbLVRWOnuPC2pyXkYiIBCje0bHbuyfzFav9j6bbQLBf306nzBMGhK7gR26dK8rsfG+vtq73cChpHQKI8HYAM9vxq9Fq+v73lNqqyOeu/tTVKVyHNWNJ9bi0+4ZbcTNtwVLqTnr2pI9bupYwxs95IbJYlc59vwqGBJ7iETXA+c8NgjipGSJAgPmH9TXTHDXV2c8quoxL/UGkZo7SBQf4W+YfrTmn1GUAPOF+XGFHSlGFHyCQfU0pcAAMD9a0WFj1J9oVmt3ITfO+VYcjmnPZwHd80js3IDdBVkSpjACk+9AfBzhffitY4eCJdRkYtQigmJVXjq3WpwrlDthjC/Sow8IJDKdx79qHmiBG7j2zV8kexPOyXY+f3SKT9QKkjidjmRSD7Hj86o+XA7ZVhnOPv1N9njTGJG/B+PyqrJENsneNdzFYzn2NQLC5P+rJPqDxRgJlluMD3qMuqgMGZmPcGhsNRzYQjK59jmmsxI4UKM0ksgQE7ieM9M1D9oQEHzgCR0YUirk+HJ6MR9aTcwGCWyPWlS5Ux482Mt+VKGVmyXQ46/NSBD1yVyZG/ChkaVlbL8VEUV5OHX8HqykAVSQSxI6buBSAiZ3L7AcfQU0pG33pWLjtxSPZSAl1Iz6GQU0RSAcbcHg5NAxxgKyhleXB5x2p3nSxnJwF+lMMckXyuqH0w2aTEiIA0fWgCyt0nl7XB5Oc45qVZbcoXO4fhVHcXOGG3bzSLIz52livSncRZ/dNIcmQKehFSqDGoO4lc9xzVBVGT87EjtnpT1kXZhhIfxoTA0hdWvJaa4Bx2xj+VSRXluI97TsD3ylZWFKbtj8deadlUXcNxz1FNsDaEtk6M4uHkBHGMCue1DwppGo3Ut7Ld3QkkA4QqFBAA7g+gqdpCYwUKjHbpUe8y5ckHb146VhVqxjpJX6+nmduFwVSurwaWqSvfVvorJ6+tl5kml6Uul2bWlq5aN3Mjb5FLZwB2A44q8ktxaxYIVgOmDyKh/0jCbdm09iMUMJnZo1WIN7vWyaWiOF3ZzjeG7N3ZyZWfqT5nT9KsW9gYWSMM5j5GGfOa1TkkKO9JNGOMuV+lSqMTR1GUf7Js1iYJEBu6gikisbe3Y+UgCcbsHvV5thA2MzHGKNskQDsB6fKar2URKbEh2qGZFXJ6hhzUkkuY2QIoLDruxSqZeSAB9TmgSoDh8Z9qahFEuTZlT6RGxUNFGSec5q/BZ26KrG2jIXjipXjjZSRIv4mmlIwPmk4x2NKVNMpTaHxiBSzLb4Pb5cUSsI0DtE/XtzUPnW4+YTMCBimxtErb0mG7sSeaFBCcmPWVGi484ZPGVoUsSBn81pytB8plnzJzjnim+epl/dTsSOxTj881WhJMfNYjABUUYfJVWfeeQM8UxJZFOZYwy+y1M5iOGWNVGOfWi1wuRpE3mgOTuHXmnyGQK20Zx75pQUMZwVVfU1Xk2LEWIAz6DrRYCXzFKZlic/QU1Ht8ndHIAPQZqLy0kwWibHqDigjBKAApTAcZI3UmEt1/jXFRjJbczwH2JpxkRI/LCHHXFNT9384g+XpxSAmzGsWWMf/AeaiRo2ACbWHs9WN0cuFEMoXvg4qB0iTh45Nv50guOcKGB2sM8ZHIpBEhPIJK85xQqwup2JLg9OKjjjjhfMgbJPHGaALG20JyzMuR/dqEQQs2yLBJ61dZ0nwpZQAMcrUD2aMNm1cj+61ILlZrGLew5B74NM8q3jwA8gI9TVj7HtXlihHc0iR3AyY3jbHeRc0MdxhgVxlHBPuagkRBiNtmf96rwa5AzM0OPaOmtCjruwvPcDFLcLlJ9kRG4jrgYNWCdrj5uCOMtQbfJ6gAdKb5MgDbSo9Ce9IY6WGMgSFmz7Nmi3CSDI8zb04FROsowrTAN7Ck+zSygMJN31pXEXsKIyo8wnOORTRCBxsIP1qqbabG3hmHRVXrQ2nkqGmV1P93digZZ2OoOI2YemcUESbwsUQBPYvVaNEThi4X2bmmG3i4ZZJd/bJouBdIlQnzoiR7NUaKhYk27/wDfY/wqAxyKRhpD9DUyvPFkGUAEd+tKVOM7OS2NqOJrUU1Tk1fe39f1d9xTbBwWFv8AL25/rUYtArg+WFJ9WqwkZcDFwD6jdzUohcuDHOMj+/yKuxgVvNkYhhDgj3pPtUkWWMRP1XIpgvo04KMB6jmnC8glU4kcY9uK0uJjTfbsBbYjJyakikhZiFGD3BFK0rlVYyR7e3FKl5FgkguV6nZgUxEiRwxSAhfmfkEdBQ6hizRRK7d9xxTTexld20eWemBzVSS/jl+RFdcHgkUmMjlaXcRJajHoDUiXECFVntH29tlPN7MSE3hVIx0zUiSAkMdwAPUUAVzcQNLlbKQJ7tVuOa027UjmQ+9NL27nByT6nNDzW8HJyfbbmkA+aa2jKhpXOegHP505DZOuXOfYmoI2ic5VOT/s4qeUkbcQqR345oAVnix+7OF9kzSPsLDlTx6Ypo+UHcCAeynmomYM4GTt9xzQBYXYUKFR17Go1Dsx2Fs9gTUTwkhikiAdeeKgMtwo3eegA9iaTYItnc2FkdvoRQsUcnyNIqj2JFNinuGjCSOrnsPLFCyZdvMBG3HSkPQkfTmVg0V1FgcYkY0yRLqKRSrRH3WQ4/lSziGQA+aqk8DcM0zyJ48ARpICM5HAp3JY9zfEhi1uR9f/AK1LH9qVQ6lcnrk4qFUXO1lIb2JpySyRsVklVk7ALk0wHyNeliPNAOM1GyS4B8xc+rU8XNqM5Vg54y1NSbawUHdSGQvvU4d1JPcLShCApQkEnkgVakHmDlDt/wB6ofs7hQBEGXP8LnNSA4iXlfMLD3A/xpwDrHhmIHbAqvJa2yEu8UyMe5OadCsIUMZnC9vk60WAepJQl7hxt6Y4qf8AtWVY/LMzsn+5k/zpqwA8ZQq3dhg0kkaDCeU7AdSrYp2sNDBeqGJO5ge5Sni6hYgYZSP1oe1h242yAHpmQn9Krvboo6KAOh28mk0wHyOzyFomGT6ikEUhXAIB+tU3gxJhHYH1C1JFHcY2rcoCf71TcC3BBKdxA+bON2aljW4gc5xIPQ9aoq2pW4I8+EjP9zNTI955hH2iMH2XGaOYZKzqC3nRuM9lFNCRMSEV8erCo2SZjkyMWJ9acftSqwRkcAcgtzRcBz221FfLY7gNimiVoSdm4CkjlidwJ7ecEejmrKCLdmNrg/mcVVxFXcJGy2w57kc05BGZCnmFf+BEVYdst81tI3+0TimLFLIC0QVT6E0rgRlVUYEZ+qihGtwG81ZORwSoqJZJ42C/aFI/3as+fyMsH/4DxW2gmMWKAwsxdTj+ELg0jXMewxxwyOO+8cVNlWYMWAPoFpj3CtJkFto4Ix1ougSGvc24Rd6sp9AKjE1rKQMOD6EcVM/k5BVvwpVtwuWLryeMmldAM2xjlWUD121BMrv8qXIC9elTNBdoW2SxGMnjvT442QEyvGT6bTz+lICujqgCvO7n2XipNzMwEJTPqxwKeBGcgRMPXb/9enHypY9ixsuOpbFAGfq95eWGny3IeFnTHHOOSB/Ws06prlpPpi3trBFHfhJIXJJJRjjPDHB74POCDjBFaGv26/2RIklxHHEWQM5Gdo3qCcDk4qlqWvafrrwwQQQ2rWupoLJUEhMsDAJlixIBURQjA2jk4FYVJNSSRtTinFtm3Gk7SljPDgdiamaaUKdrRH6DNQfZtqH90rn2oVGgTptz2IArcxGOXyNzIc+3SnNCnA3uR6JRGQTgzW65/vtz+lNw6uUBLKe6EY/OpYEyMI1+Rfwkk5NCTJu23EQwwPX2qpNb5OTC4PqOadDDHI+0pKB/tZoQD8W3nBF2R5BO/tUkAVGZo7gkYx1BzTGsMZO0Segwai+ySD5QkcffBXmlfULGhHLKp2FNzHowUUJIxyGdsenlis9Y7iGTcsrKfXPFPVndMO0oY9iKYmWnS2PIhdj7kf40jMhUKLUgk45P+FVzCzRjrt9elRyuVcRK8hIGcg0ndFFtbVQCFjKH13k0BZ3IjAYnuQSKom6mjG1ZZc/7uaT+0r4DgyfL04FLnfYLXL9ws0SbSGCjvndTYrsPEYox83qRxUH9rSgANbsc/eJPX8KlTUIWzmF1AHYYo5kOwx0mWVcxpIc8/MaARFKTJANp/hDGhdRRXy0bbB+dWftsRj3xNgn+FkOf5UXArvcrwY45lHomf60huCwPysSPVeatR3RniBdxEV77aUyDarRzBj3GOtVcRUW+GcESAnjleKVnVmBUjP8AuCpnkZHzIo+bsetG2NCHKHJ6fKT/ACqXqBTW6kimfBBz2K0sl0wO5rQZ/vZqysbGRmVR7Eg0i5585Ax9h0qbDKy3tsAUkjLFugxVmG7t41AEEiMO4UU5IoWPzZFEsYdtqsRu4NNASfaw75Bmz/tDilF55QZY2uPm6+WvGaiFpcp8kd5GF9GWpFi1GE/LeIB3AUUxDTI9wApllUj+9IRTJo32bXSWRfVHIp4jlnciYsT2JQYqXyp0UiI5C9icUAZYuImI8tXQdyRSPeBGCKGbPQgdKsZZiIjsXd2cgEU3bLGSqopU/wAQIx+daWE2Qi6mlRvkKsDjOOtKRc+WHEqhx6inSByw3BwvTcmCKY8bowEQmmJGQAtFiSSFbp23PcwqT2YAZp80JkZf9Mg464PFVZIbtx5knmqV4AZQP6VGtkXbKwFs9WY4FKxdy6WngH7q9gC+gwalN3LIoXzUcgdcYqv9mSKPGIUbueTUTmEDDHccfwDAprQC4LwsMlXbHGFxUJmUsd1pMV7gMKZbXUUR2xRIv+8+SafNdXBIKRAcc45qbgRTQW95C8ElnPtbHBb3zUEGhafbSxym0dXRgysXbgjp3qws9w8Ydly4bAHoPWrbXjoqqzK2PWud14upyteX6noPAyjh/a8y25ra7N8qd9r36dvmk4zqU4D8elVmNnOjGRZic4xk06TUFyQssScdBSxanZwKF8vc7dT6n1rWVSzPPsVQLNAUWxkJ9e9SJdzR4C2rqvbdjNTyXsTurPbnkZBDYp4mjlZd0Jx2feDim5xYWI4tSnLENBIFB4NK9/cxuGVOvbNF1InlkRSLtByRu5NPaJJmilEZUAfcY8msXWinZMdipLf3xIyGUnnIqP8AtC9B6q56fNzWlJbuRxtOei5qu8UMLqshVXPbPNaWvqK9ig95eSJglBzV611Ce2AM5WX64X+dK9kqrliducggZpF07OeHkUf3hTUX3G2i099Yup3wsGPXY+7+RxVf7ZDHnbHJ5fTBxmmrHEqHCHAPRVpo8qRSrWrk9iSaom5Il5Hk/JIwI4GQMU2SSKVceW29R2aomiiONtsePRiKYqjeQsBTjGSSallExmBZRJbY45OaESCRsGTJ9ATTczL2DD6Gon81eUTb/uqc0AWGjKKQr5x045FNRmHLOzGoA+48mbdjk44pPORGwzv/AN80gLYnHIc9T3qdJY04ym33YVQzGxOboop/hZRSpaWJ/wCXxMnruHSlcRcCxGQOBG5z/wA9CSP1p5lnjPy3O0HoBjiqwtIw37i9jVR1wAabFaTOzGO5BA7kCncCw8kjAFrgs2fXFDTNIdokUH+8e9VXSaMkm7hJ6dBTSVRBumWT2XApXGTPPdjKsxC9j5Y/Tik8+8LHfL9MoBUbTzHBJuCE6YTIH6UhupZW2ywyN6FsCi4E0V1Ikg8+4Rx/dCipRqdqjFSrFiePm6VT3rGwzAvmeueKV3tGIE0W1ifvVNwL39oiRTm42svKgY4p9tqAmhdpZ8kdyoBNVFghwQsgdT6AA1GbBkGSvydiTzVXGPW/jknKsrHBGGXBFON5Z+WAuC56k5wPwqCGaOSRYVs2DMekbZwa6P8AsCGJoZr212mb5ljzyfY1c6yiUqbZhSahamMQfZt7uMKY3xupYnQtFi8a1ZFx5BIJNdUdGt9TIgjhjgCcCZVz5YrkLpXsrt1dGm+do1kAxuIOM1FOupOxMqdi88zkbcu+f4i4NRyIHG0zybsfdxn+VVzlmVWQx57safshB3SNFkcAmTt9K6bkIhP2dDtNrK7nu2efwp4aJ22+QsYHqDSqkgYvFIzDPARe31prwzuhIMsbH1WpuOw5rNjL8sUIbGRhDn8s00Wl7IMNNhc9WQgCo5RcOdzSSBlGMgU9J/s7AyTyMuMbSRWKn3GS/ZZ42UfaC6r2VcinTwfKGCO5JxwvSmNPAEDI7k99jdPrTTNIzpGJJCrHlc5zUTpxb50tTX29V0/ZOT5e19Pu2IZIHVyfKK+5WrEavcQCWQwkJ8qqBgnApB5BZjsLs7cB80oIiuYGisHZFzvZVOFrKU1JWM7WIphvhULZyMyr0HPerctvHbWhQxmMcMSOetZ1xcuYJ5IVIEb/ADFOc57moLW8u5zMrq8yqV5IwF4rnmpLZlRVy9DbRSBpduxoyeT3qKU3Svhz5rHlZB29qs2sF4kEqyb0MmCquRg8564oA3vsZIo8Z+UZOf1rOnZT1G1Yrw3c8Abeme+40rXBnkBMA3Y6nirixtgIyRkEZ+WontboyHCEf7oycV6alF6RZk9yCWa9EY8pvLx6DOaWO41Led05+m2hxIsmPs0uR/y1bgU9ppVkZFCxj+8OaOthliCS6QAFXbJPITIqX7QIgxmGTnjFUBPMymP7bNwCfu8U9TCQUcQyNtByxP8AjT50nYRYe8gkBZo8f8C5pBJAYg+Np9GbFQSRL5WYjGp3c4Un+tQKgck+QZM989KbkBprPblQSy89gwpQY2yUccc4as1EKPgzCID24H41bV1IzHfwuV6r5iincZZERkUMHgJJ5CnJqKa2nDZ3IV+nSqyzymbdsiIHoc1H9ougzMpRAT0BzScgLQtCxy8Qf39aa+mqVJCKhPQEZqubi4YkFRu9cHmpBeyqmHjwR/EO1A7B9iwoAOWHZVIpFswsmEZmP8ShqcLu7bJjcOMdlyacL5Y2y4YMRzkbaV0Kwq24RuIUQf3jzTJFdMnerjPGyI1Z8638sO9zGvfAYZp0V27NlZv3eflKgE0cyDUpOybPmjumz1AGBULrFIwb7K59NzGt3KTMd0iDb/f4JpjxpuDCASg+jdKrQNTGMRJBMJXHqaay7pBgIR6A5rXltzLz9n4X/a61ELdNu37Oy854qXFBqZrRtk4Vl+gqNo3YffkYegrWaZh+7S1X6k809HVxjYrY7LRYZ01ppVvosU8a3SXE24BpMc7uar+fdsJJIbaSd3fYWVeM9+e1TR6Q8NyZLyZ4pLnmJcZVj65qz/aTabPppeJpohGFnjQf6xm7t9MfrXnybOq7LqmOK1Hmq1rbW0P7yTbmKRz0JPaqml6bp+r+Hr3SdQVIpXl82G4YZZiTn5fUVRu5vNa8tILv/Qy7PPATtXdnhT645/Km6W8lvnUizqUUJGjLksW6Y9sVEW4u6Jeu5zGtaHPod4LfUIZSp5ikLfK4HoccZqnBdW5fyzGyk8cP/wDWr1i2kbX5X0u9b7VaRx+Wzypgqx5yOecV55qOmTaXrElnI0e2Nj5b7MFl7GvQjWTiYyhbUz1lyoRC4YE9Tzika6ubVSzFnzwFNSlZ0JZiAB0JOepp32ecRFpQsmDk84xWkZogrzXkkqKHhxuA71X+WN/MMZHljklc1oTWby3SIBjGO3FVLlZXt2jWQqGbGFOeBXLUleWhQ65juI7p7aOaSQKuSESiwl3zRlmaORThldKrb5bVpd7meeVcBjxtNENtNaBpJIVaWcfJIe1N1OSILcveWxOYSAEGN/bPeq0VywnP2sM0fT92cF/YCmSI/wBkPlz7VY4Ix0Pc03dIWhDsu4N8rhcbPxrNU7x5htoW5mjngnht4ymQRgnk8+n6VJDcJp8sUUiF/OQM7FtqgBehH4VnXcu272M+SzchRy3egWsot5rsxo8YP3A2NoPrUWutC4G296v9lTRSQBdwVlmL/dBbtUEErtAbSzVllc5DdTj/AOvWYIL68gZprlVURB13D+EHjH41d07yZLdXt3mW8B2gt8oz/nmsKkLamjjc03tpYI2VopPMKjaQMCmT3F405kiRhgAbF7mobW8urq5+zPcTTS7jtTHp15okZ7TONxYDcWI659vwrKNSVOVzGUR0l3ebEMkchDnGMcZ9Kvun2eNZ72OGNHYoFYYPsaxbu4JO1PuoQQmOrHoQasmJ72NBc8y9AQePrXRPEvclIe1559t5sSIhxt2LyaWSKaNYxPBMRwCxXvjNQLJ9nlZ2kkiKDkKc59KfdXdyQ4ckXEmPmPIUfWs4VnzXYmNe9ke58i2ml4j37AmDTodRuInXKSyZ6hk4/Olt4Vt7vyXkiln8vO8tnip4hH5TSSWeAxwJFOT+Vd8KiauxWI7i5tWYl4kJ/uBc/rVFpLaQjZprgA9egq5IqFOJpRnoSKI4HEgQXuSexHUUqtZK1gEijaIDydOKnqZS/ApXWSUA4Rzn+F8UYlhZ/OucD038fypsS20kgiQszN/EGrWMrxuxMkdgqgTSBMesg4/ShPJlfCXKOPQNnNQ3VlawTATOh5xtZuppqosL5tSiL3ITOKfOh3HOrGQj7S6AdqheO6EgMboR6k08XXl/LLvdj/EIsj+dRYgnJDuxY9Mptx+tF1IVyZYJpQxfaSOsa8lqSXehQYFumBhPSoVtxC+UkdSO6HrVq4ikaFZnmRUIxzyalp3HcikjSUZdyx/vYqNHUZCFj69qXNomMzysT2UUoghlUbWmYnqrLjH41TTHckS+ZM+YAVHQK9SR6rBjaYJVbruD8fyqH7FFCQRGmPSmNHHvybZfahCuXEvIpAWkCjtyeaEntkZlj3c91qosqbtv2Vc9OtPEskeQkKR49T1p6hc9N1u7a+8OrpnkGTUJ42MjAAgMMcj0zmsjSr97bS555IHBsJw21flxIc8Y7jrVnUtHhldbhpLmBixQzKp5bsT7daxYdE1aC5t7+2k+0SA+Y6uMc/Tv3rhkdTZLezf2ne3ccFvzKfOnDnG09SFq1BqcyWEczhHu5k2Wqf3BjnP4Vzd2Lvnzo9rSO0kmT0z0A/Olgmubee2aQqJlUmMDjaOnP55rJiO68PRiaB7azEsUAIa6uHPO7qdvtmuf8YPc6jcR+YYTMiFFWP7zAEkH8qkn8RXt5p/9jaWwgAB8x5Dw7d8fjTVurJLK1coVtYEMcgJzI0p4JX0BNaRnZCaucpujNu7PG5K/KQR3psc0LBNynG05OOCagubonzFjwSztkNySe36UsDJDaOSGMjcBQfzq4ybM3EsRXKNI6RFt+MkuvA+lNjlMQbYilEHze5qOGW08srFHLJInOW4/Ckuz+5iCIhkc7sEnp3oc7MVhEvLcJNcusiSdI+M/jUsVxvtJLmZD8o5API/Clto9Mm06GMC4W9aUx8udmOxpZoLyB9qJE0YyHIwcj1qKs+YaXUsR3UZQMyZOc5xxiqt+JrmKG0gCB7h/lLcD1qG6iLy28CNNtAJkG7aD+VT6n9mj0yT91dvMI18kpyq8jKk5pwqaco1HUdHp62xFpdiJJGfc21/w610t1pttMsGk2irKoXfKI2yWO3djNcjpWlXxm+0Tx74fKJCsSAu7gZB9M1Ym1i/0O7azjZYzKgBliHJGMHB+lRqnY0Vin4h0nUdJWC3ubiGUMpeJInJZAT908Vda306SKJLuG7Fzhdm1s8GpLzVEm8LzT2NtLHArLE80hyzHIJxVlLhERGilYmRAU3HPljGGb64zU1L6FrsP/wBEvLwfavPV42CqIpMYVRkU2a9jWSRkjLkR5hynzLnrn24psFnb3Vmb6EHyfPMQIchmbA9Oe9Q6ncXFtHFMsEsEKIF/eJy3JrOcLozlHULu1iuo4biJcg8EHjb7fWpdOjLMiRuAqoWDdWP4U6U/Zrh7Wa7zEFyiE8H3qOEGzg8wueSUAXk4rJxezJsQ3EMwPmmKORccAnO0+pFSWmz7P/Zc26VIlMq7uBuPWqZuZLO2lv0V/wB8BGqg8AnuaiSD7PM0Essdw8WVYxqdpPY578ZrVRtG4KJLLHZMitAjGRuqvx+VT2ltCABbOUl6sJOlVwpQxusiSKrA7H7Ain3aRgx3yleSQVB5ppyasTboXvIhZFbcPNILNzwCDxxUUkiqitIpZQuNy8e9Q2l2Li4RrWBDIvyqZK2ItPvLh3NwyIVw3TAX3+lZTk76jcDIN7cqoWFAyMMru5NNkkvGQectvg9tnNW5EeGd9rB0ZsOw6N6Yqu86ZFsACpOScdPWuj6xpYixHBM/nLGjxhFbIK8Yqw9zKZmRZVYj1Hr/APqqptKu2wLt+XaAOe9MFuGQuAQN33y1EarloKxfa3hkRZHjk8wnLiNu1RhNNbjEmfTqabHFc2bhoxCVcdWbk1fs7G8uNQ2WdxaxKi5lIAyfpXWqipxuxWK0UFiGYLHLH/tHvVhI7aaLyt24gbgWOBSRC4eQyteEws5VVPXjj6frRdQyKrEI2xWAPmKOfpTdeEth8rKcsN1OAEe3CHpk5/pUcNvL5bB5UZu5A4qxNN9nVbgSBYZDtUInI+v41aR9sUGZPMlcnBxwPrVRqIOVmaqs7iIyIfcVKLWWLlbiMqem41ckCGScyTrsUfuvLbAz3zVVYMtG4SPc/dTn8a1TRLRILa9RC4ltCewzzVUy6jGD5hj+qjNXJNNt4fMZoxvIzlW61FHHZsgcpOpUc4NP3RHvMgknQRSSYgLYcKOXxWJqGja1Pd+dZalbiLpHG67PLHpkCotN1uVookv5IfPkXAkhfKkjrT5fEtj5gjRHlXcVmIB4+lcDij0Gkzip/DM5vI5NWusSJMR5iN8oHXoP61z+pqbw6pPeeZPJG/lWzxDbsVTgFu3QV3EWnaFuvJZnuIo5JNyRyTsc++AeB9a0ZV0b7NDpzQ2zQXCZlw4If8eoOanlsZtHlunzKkJaDYJQDlpODjuAKtQQpMGmeP5Y2DEE7QxP863tc0HT7u3lj0i3iSWGM4CuXxz3Pbis+DT7g2cE015BstlACuFGT/OsrXYWK48I33li4M1p58pykW4K22sqE2r3yRzHy7iGTh+Cvvn1qnrOoX8t0HuCA0QO2SFRgDPqKrReZJeCS5jYW8YDkqBwT0H1NdF7LQVi4Vltrjc8LSQuxwSPlB+vStzTPCWp3V3EftUMCBdwfqBntWRJfefpL2MQmW3Mm/ymY4zXReD/ABFKZhpt7tbZkpnAIA6dax3eo0rk9t4Ut3u4opJ3kQv+8ZDgY/pS6homn2WyzsVUM7lCZG3Hb75rX0cTG0uZ7tgJRI7AL8oAGMfU81mLJBrHiTKxZEBG9+AA3v79abSHY0JdE06LRoRBAn2iZAolc55HfB9s9KhttGhh0mSfTxN5sbeYqqMbm/vYNaMcVxe3Cv8AaID9m+W3Rlwcfl7VeW5e4gE/EYj4Ylgp3d8Z7UJ6hY43XbXXRE+o2zJdSSQjeOrA5HBU1l3dml5aRPMkkVygUAuSADj5sj0612P2i6uBdzm4SBLZtvmYALn0GK529kkvr5Wiu4ZQuBgcZY9QfX8KuSuLYrLPb2/gq80yPTVurdZg005Y5VzjG39OlZmj6ZK1lJfGIxQRkgeYdpHHp/KteyKmaSBLcRojHzCZCELdhWxdada22jt/aiyTiSRXfyWLbeRgU0tNRrVh4E0aONUv3+ZYwzxqvBJPc+9ekyaZBdWIsdSjW4tZCGaLHzc9Oaz9Ds7KxsBFGp8sgFAO5I61pTySpMBPuICna6HH05qOpq4HjWveHYtJ8WyQ3kUktpGCUK/KSp6AseuPSq0MSWIjwSd5zu7n0r2nxHpFn4v8KNbTFizSAxSBQHVl7EjtzXlms+GtV0aAw3biaHAaK4jU/u89AePrUSjd3MHGxzZT7ZczW0hP2eOLdtzgg/WnWJuYNPS0aVDbsSygdRz3P41a1GxxfS3MEoGUCFP71PS0iIAKAqSG2Kw7VlUn0JTK+qwQ2uIraJfP+Xc4OcIRWStnJJqSpEN0GM/MeSepxW3dWMrGW6UG3g2sJEJBYj0rIga1W3hmh84MhwvbPqP51pRa5RJ6m5b6XHODI8qRLD88YXqWxnn2pmu6/I4SGOYSSvB5cyR+v/6sVV0zS7q+vp7vzjDbN93cxO7sRiqusafPpMguII5XWRsbwi9B0paNmiZbkeWz0GxlY/JuPyfxKKuafZm9tmnjkU3GC5UjAPoBWRqU7zWthajL3Kcsq9B35q5Dq50izgPk7pWOVwc4OazlAhxHCLyV86bJGAWXd0qghEkmPKZbcchecnP0q2s39q+biNoppTgseApPcg9qYn2yIMkXmyTIRH+76fpW9CKvqZNMzLuCZWyYi/8Ad4rSttDubQW9zK6ssx2bFJBX3NQNfS7d08cqfMFAHPzVcie7EiR3k0o+c/M+QB+Aq8TJctkENzYEPm6Z5IkU2yMwaJsYBz1FVYp1SFI75pXijG9EX5lHPpUqborJobeWF0dmVspnI6g81S025jtJBam82swKkbQcg+/pXHShfVmrRLeyWiIJrRNvmkAgHjB54qKKR2WSOIttC7vmXJ684q1faPHBIAio6rFu3I5POcnGOAarW1ygt2uFHlsA0ex3+bPUcV1QlK2gMpSXcKRyQmFnaM5JxgHNKbkwKrxNsY4ycdE9P507yFeFJZVU2zNhhvIbPeo5ug+yCRQoJ3SrxirdSSIaLEt1DcRxM7ADnacc1cgmt5dPzBeJ56AZQjG761jyW5ufIELKzOdp2/3u1V54fJmKhB5kZw2O9aNSmhHoj6NfQCdYvKMbECPYf9WtXnWe1tEWJHllIAQQrkp/vdqlmvJ5EcZVVAHygYzVW3vDaG5S1kliZgGc5zk+lZHSRxeH7y4Zpri+aOJ+ZIxGOfqcVYjtNOgtPsoS3icA7HJy/wCVbN04GkPltxeMO4z93NczqNmt75Esb+RcRJ8kpXIxRfQGWNEghSCVQxillc7jB/EOmayNa8JvaKZDKn2dmDFy2duD3rRsrlfMWJfnuEHzSqNoJ+ldBZwW+t3MiXaH7KYTCUfjcfUY561nFpgkcre+EHn0R5bC4RlMYYsoDLwc84rzZbqcOYEyjB/nXscdM5r0rVNGt/D6y2lndXpgOCbWCUFgxOO/OKxfEngzZok2pWV2Z87S8AAZ/f7veto2EznzNDnGJMH/AJa/wg+lSTLsna6QhlZR04P19ay918tu1tLIscMrplmGArZ61b+yapLcXEVvZXd2obYZIoiUOByMgcdelTKALQ7DT/EUrRs5nS6tIzl7dsCQjuARWpp9rEbF5oRGkN9I0vls2GjHbcfxrhTbTWVq13LbSI+MLIsZTAHsetathrE8UUBDRypIv72OQjMg9ahpoq6Z2mjyS3s7iWENHauUjcdD9COtV/ErRxCNW37cbt7DCLjoDiquh6/pkH2dIvMjgdSt0/JRW7c/w1zfi7xVcavcGztSFs0JHbDkHrn0q4RchSfYmvdbsFtY42tpJWABfbJtVz375/GqmkXsWoa2qLAsDDJgIHyRYHc9SccVgsThd7BRtxk9B/8AWrtfAvhW51KK5v7hZLS2jHyCVcGX3X2rdqMUTFXNnQfDjxiZ7iRJUkcv82SG/LpXRajZeVrcMVvZzravGN8ajK7sfeJParWn6bNBostsLhAzMGVwOB9fem6v9qmMZiungOFG7d8pIPNRzItKxV0I3DXAVw8YWRlKsDyo9K6q9txcQxKqO8HfGcqawtEaa0MsV9cJLNE7FACCWBAqxa6pfxC6MkJiQyAKS3TPtWT3NU9DRUmzkaO3EiIWfGehPHOTSapZtq1pdWyNhZYCQM5GR0rOV7q4jBd3KqTtYjA9uKltNTa3vYVnibys4YIcNnsfpQiZJHhLS3D2MMkhkFyJSpjVG3LjjJ9qsI+UJ82PzweWUHcRWp44vVsfH17LbWyxiTa4BfGM5zxnHNYVp515qckpidY4RlcDG1h6/wD16yqQRzs2XS2vbMiVyj7Tv3OKwIASgjkOY4vmjdehyen5VqvdQTxpPAi8kq67cvn1Paqc6LJb+UrRwJAzMVdtu4lSRj8eKypr7JFrFuy8S21tLLbopWEj5Q38+fep7q9nvLNnSZI0k4VTzxjmuYt7uaMolzbi4gRDhVQHGeeWHPep/tlrcxpshuYEHyHHKCtZU7bGgyzVkvHL3iQLGhVmbksx9PwxV/S4xPMPO8q58sZhdWwc571mavdpcCGOKBEKkgvj7/Facb2klkZ7W2NrJFCz/uwSQ2O+eO1W1eJVzXkRQt09y8Tuy/u1jb7h/wBo1zlnrdxp987QynymkUso53Yz/jV+xv7O4tmjDGOWVQBPMVCxse5HeqLaWI7W3eGwlklYEmRGyufUetTCNtyGtTX8yC51J3XENvKSyNN0z7U2+uHuLT5pt8gwNwxg460ywGoy3DjVYcxiPgFANoHTjtWbbed/aksCahA8IQMZHXCHP8IHrS5G3uJJXNiKSWe3EKlUjkKkynHAx09qa+lrHdSx26r5gAYrnPy9c1W1C9Swv202GMRvIEBZ+VQdAcVp3dnNpdyYmvYNS82IL9ot2C5AI4/TFTJNGkkhtui28MjwPKWYNgDOF75NUUnhjfcUiadiCZd2S2PQfpT57l3IijuFgRnVXiPDKuO/t3psVza6cblYGiaYoyrM8ed4I/h96uE2lYzZZWOBolurld8Tvv8ALJwV7VYgle/SUyFCk2Rb4IGzA7+tUtOFrfaPNblnFwqO53euO9T6QyQ6dFbG3+0NEGYFWG0ZqJScdSXchit47VJ1iBM6P88/YE+gpkKefNJayDbKGCFz3z3p5kVmmbY0D+VuZTk7mGen6UlpItt5q3gMkjBTG442gZz/ADqvbSS0Dkb2O/ZRuIBwcHr2rltT1I2epFxZXqWowskwH7pW7EnH1711Rxs3H5toO7HeqF1dTWsbtdsosJD+8DYA/Emqi7ux0yGnV45dDnnhlSQyKAZVbIznpUNxJctphliLSqEGI1B5GRn9a4q4mNrrk1npkhe2lk8wxwsHRs+mK07HW7+aCXT4HuLeTz9oBTJC8npjParkrK5mzp4YZIYVv2CQhSP9H6McjGee4rotJnd4EaSHHPyFnCk85zXI2GmXmsMIX1OO0cEk3cw3BSDx8td5pFvZWLpp9xctqFz189iBnjOQB0zUU43HFmR4hsri/wBWil0qzlkvWQb5ypWPrjBPT8qox+C/EFzqhtXu7e1Rk81lRWKyDuuQeCcV6KHZIWCbtobIQd653VNQ1JYp/LthbSQLiFnb7xznIbp36Vvy2LtcyovhZ4fvEkuJ45lmzg2+5tnHt1z+Nb9rp+oaPbi005oPIUFtmwgMe+SeawYvHk9/a2olUx6hvMfnxEZyMdR/WrNz4w3xG3W2e6uNhImt3BQH0J9aOdMbp2Mu91uyigmsb60S90mZNxVAcRbvvLu6gjA7964nXNL0W11CSXRlnSAxdJDnySemK6q20w3dvd/ZpjEEJaS1Ycvu7+2MfrXM+Ib8iD+znto47rdm4mEgcgdlwOh69aEnJkySSMJrmSOza0hfEbgCUjpIf71VNg84KpbB4TAyKXJUhfur0GOmPSrFnZzXtx9ngB9WdOQg9a6lFRRirs0PD+hJrd40VzKsUK5UKTzIR2r3aEfaNItLS3jWJYYVj29cAcVy+j+FrQ2cBiQwyJHhZQM+YdvJH41p2EF9Z2wgYzSMSfmPBAArlk7s3grIvySJbyPHjkYOAcZ/A1RndZpVD/Ng4z6fhVy6uYX8mdPLSaMbSrHBYDqTmqtz5jXkcaIjM67i8fBUe4qbFCRyRyhf3aiQSYyPvYpi3MstjKhRmBkDbpFIx7CnQXtnbnzhCZJQxXIbn61ZaaSeNVZQTLyobt+VJgS2zXCJDucTITu2bSGXP/6qzfEGoQeHNLudXvXZ1DBI0DD53OcAH2q/pxCXUkDSIOMFa8y+I+rx63PJZWkv7ixYLtAypfnLD3poibOOvtaTWrw3d9ExuXO1pX4VfQfpUenT3qPczhliJjKybm75Ham2DWU9hJDdzCKTOcnvjpWdNN9pusFss5w0mcAj3ptJqxkdFpTQPA1xKq7MhGXdjJz1puoSFp7mwigivItvySIC23nJIx17iqNpFJc3CpFDtjyVcg7sD1wKek8kHlqsc09rA7LHIox356dayULO4Iqx3d5p1tJbxgwq2C6yJg+3J9qtvNaWliqQESSz4MiCQEI3rxSvNNqX2omaUp1SJgCw4xk8VkRRRKsYZkRxJzuOCK1smDFVpJN5kUnHoOnPWtaylu5rG7WBZDbpGDcKrLkoPXuKyHeQzyKh8yPoSDxXQaVcLF4euobfbPc337oQxcui9Pm9qLW1Arx6VZRWkFxvtpRepujjbdmH2JzW6ssZ0RZVR45LciO1RH4we+O+MVDa6DFJbrbxwvDPjBJbKg1PbWknh6Vrm4YXUS/u8Yx97/8AVWM5XY20WYNSa91ub7R5MK+Qv+kOCQgHY845rNvLKx3TNbRwpIFUKkbZDH15NAWS2he6YsrzgxSW7jGwfw5/Wsy8MdvdNF525gEQ7edp7kVmoNO6I6liSaH5BdIJdRPMzOOi9AB781PPYBJlhtblIYwu9htJZM881t+VZQXE9pFsmmhQTiScZYkfwDHc5z+FZurarDd6o9xsDTzxRgJ90ZwMgnueowKLuTK1ZLbaZpV3bJdSXcb3BVg7yuFzjIrnL/zY2ghgWQRRufLZwDn9OlWV0e7u7l1WRbAoC0UMvUkduau6jcSfYojPauFMQDMCOSDyfocYrRKzI1M2O5kimWcxtJ5jfPJjCH1xitzRblILZ1aIMEO526eapP3VrDsb2W9uyixBIApCoik+WPWtvUbKc6fbFJUljVy5I+UqOOo/CoqroNsfdvHcyr5H7pZwfLZ+dufX2qSe1VNJE0piW7s4WLAniYcfd9aDFGljYOjxbQhLx7uPx+tLdwSXlpFD5DOYsnAH3QeuT6VhzpFU5WZ18pxEcEYxXmfiWeWTWr+I3LeUjAeUT8p69a9KlyRjIywNc7cHw0dQaK/itpbiRslZBz+ddcH7xvJnCWun3FrdR3EDrsUB1kQcDPbNdbp0McN49w6N9vYhkkzlm45wKk1HU7B2eysNPjigVvLPlL8ox3z+FJp5kmuofKUmVV+VD94j2qJzk3oZ9TptOvVedLWztG85uZZmXOG7k1rQMmm3CSW8BvL12Yt7AVDbwQ22NqtEzANIrdz7GpocQ75SzCTJwTxitYyaWpaiMtL3xPqcN95dzJayQSBljWHPy8EjNY9xDqt/Oto2o3UNwzBvJnjyGAPYcda1Zb27d/JjMtsJRu8zse1U9b8V2GkMs0qC51CNAsSE4Yju1UryLukSyeFpLC6SSC1E19IeZbdCCgPXPWsrRdStNMvJbPU7kQ2b7y6kgfvB0/GmWHxYnErC9tmmDD5GjfG3P4VznxB1az1W5t7vTomj3qrSLnOX7girVFon2lzrtG1qxs/Deo6wCiiJBEkZb95MRnnPt9K80NxLfXlxdsp82WQsx6lya3dD8I3ktm17eq0C5ykDpw5H4+9dfCktrZwxwyRWjRYXhMhj3zVcygRJXPMAvmk7FLSA9Bzz9K67wZppufEcVlOdts2GuWP8I64/E111x4W0fX7SPzYUttQ+99ojj4ZvcZ+tbWh+FrDTtEnQSxvM5y84XaZBnj6Up1roIwsXp719JvZwqMligHlN/DEv1qWW8KxJeLcGYhcqV4DZPY0upP8AbNKntcq4EYjCZzuGR1/CqaeXbWUSxKJYyVB/ujHYflWaNCwWh1CZJWhInWP5T9eD+tZ0ckd1c7/tCrIP3e4D5W56VJa3OXdVhywc4IPQE1WvV+yRebESZPNVNqnlST1x+NAFm3itI4DbmQBy55I4/OltWjkkCNcInlHgZ5NQT2hs7RzMzblIZi3JOelZdm2sXsgutg06EZQsy5LY6EUWFc6DTfIudVeVnUEttBJxuPtXjnjcy6X4t1ED90rzkNbbcbR616fps9oNFbUby6ZlilKeaBgSP/Cg9zXjmotq+u38+qXNvLPdzOcqR0XsauJEyhdW1oJQsLB1QbcduO+arxWzyMUjCs0Y3sv+zWlaR2gtiI3SSWSM5Q/erMnt73TSTPHJbGVNuG6kAjP601qjNF+Cb7NEYQ5t5TktMBgMCOlVPOmEccEbARxnco6detOsbG81a4ISMkADe7n5QPWumi8E2k26efWVPH+rhjzn8c0rWHYyLO6iTzRcSRbmiZBvOAMjt+NURoupyxkW9pNPFHjEgT5eeev4129lp+ladZN5Wlx3E8Ry00hywz7Usc9xqdzJaxYCgAu542+nFCHY5zT/AA7dzSeU0crqxAZV6D1zXcadommaOIpfs0Yn6OyZBI96k0mWOKW4skjVZ4QobaPvg1qwadJMsYd1hVSSw6k0rjSKkZhEbLCECk5BqK+it7kRwzEEFgVHXGPb8a2IdMVbKe2gQSXDxsIVbqT2IrM0vVLCCeCw1e1ggvhFI0iucgYxjPv1xScE0S0cfrEsU999gkt5ZpZNpa6U5BPOOKqQaTJFEbi7ikjUSFFmZcA47n8qmvNThn1OWW0eS1iHAcDcZMds+lQQapKts1nc7GtDlw0zcl/apcehNhj393JZ72JuLl5SjFBglOeTWlpcOmxX8q3Ski1jRrcTtkM5AIPbp61nwOrwWd4uoWdvI8p3RLJtZRnkY/StTxNqdnqLRTwaUtvKkirHexnIdQMYIqLJDRi6xqd+uqNNLMhcHiVR14qzdvJqWnaU0cH2ia43JyeDgk4x+FWIks4Lm6uZVW5eaACJD/z071LBqaz21rIdEWG7tW3rKHwVA6nGOad1a4jP0pxpd1epe2qQyTYUEnHlYPpTbjUhpsu4WjNBICsru3Eg7fSku1fUrqW7nt5RaFWkWRf4icjP51Rsyb8W2n5WRAcsc/MQDyR+FJR5tWFjeikt7iCxVPLXfIuEY8BSeMn86fquoX+kalCsCSFVbDR4yJh6U4w2DCT7EnmwL8kanpx0x+OaZrtw0lhZwRny7lQ32hQcGNuO1YpLmEtD/9k=", "path": "images/3pts_ADE_train_00013464.jpg" }
depth_point_48
images/5pts_ADE_train_00002341.jpg
ADE_train_00002341.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 58 y = 200),Point B is located at (x = 159 y = 176),Point C is located at (x = 175 y = 106),Point D is located at (x = 24 y = 161),Point E is located at (x = 266 y = 192).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_64><DEPTH_25><DEPTH_25><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_69><DEPTH_59><DEPTH_3><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_70><DEPTH_67><DEPTH_67><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_43><DEPTH_17><DEPTH_67><DEPTH_17><DEPTH_70><DEPTH_30><DEPTH_70><DEPTH_35><DEPTH_70><DEPTH_73><DEPTH_74><DEPTH_59><DEPTH_38><DEPTH_80><DEPTH_4><DEPTH_75><DEPTH_29><DEPTH_60><DEPTH_61><DEPTH_60><DEPTH_25><DEPTH_11><DEPTH_71><DEPTH_119><DEPTH_83><DEPTH_82><DEPTH_22><DEPTH_82><DEPTH_10><DEPTH_40><DEPTH_27><DEPTH_15><DEPTH_27><DEPTH_119><DEPTH_66><DEPTH_63><DEPTH_2><DEPTH_46><DEPTH_94><DEPTH_25><DEPTH_9><DEPTH_2><DEPTH_14><DEPTH_65><DEPTH_121><DEPTH_41><DEPTH_1><DEPTH_14><DEPTH_81><DEPTH_62><DEPTH_44><DEPTH_58><DEPTH_47><DEPTH_42><DEPTH_0><DEPTH_47><DEPTH_98><DEPTH_50><DEPTH_61><DEPTH_119><DEPTH_30><DEPTH_72><DEPTH_42><DEPTH_42><DEPTH_78><DEPTH_121><DEPTH_42><DEPTH_34><DEPTH_98><DEPTH_32><DEPTH_43><DEPTH_78><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
5
[ "C", "B", "E", "D", "A" ]
<DEPTH_START><DEPTH_64><DEPTH_25><DEPTH_25><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_69><DEPTH_59><DEPTH_3><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_70><DEPTH_67><DEPTH_67><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_43><DEPTH_17><DEPTH_67><DEPTH_17><DEPTH_70><DEPTH_30><DEPTH_70><DEPTH_35><DEPTH_70><DEPTH_73><DEPTH_74><DEPTH_59><DEPTH_38><DEPTH_80><DEPTH_4><DEPTH_75><DEPTH_29><DEPTH_60><DEPTH_61><DEPTH_60><DEPTH_25><DEPTH_11><DEPTH_71><DEPTH_119><DEPTH_83><DEPTH_82><DEPTH_22><DEPTH_82><DEPTH_10><DEPTH_40><DEPTH_27><DEPTH_15><DEPTH_27><DEPTH_119><DEPTH_66><DEPTH_63><DEPTH_2><DEPTH_46><DEPTH_94><DEPTH_25><DEPTH_9><DEPTH_2><DEPTH_14><DEPTH_65><DEPTH_121><DEPTH_41><DEPTH_1><DEPTH_14><DEPTH_81><DEPTH_62><DEPTH_44><DEPTH_58><DEPTH_47><DEPTH_42><DEPTH_0><DEPTH_47><DEPTH_98><DEPTH_50><DEPTH_61><DEPTH_119><DEPTH_30><DEPTH_72><DEPTH_42><DEPTH_42><DEPTH_78><DEPTH_121><DEPTH_42><DEPTH_34><DEPTH_98><DEPTH_32><DEPTH_43><DEPTH_78><DEPTH_END>
58
200
159
176
175
106
24
161
266
192
214
41
6
122
89
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD1i0aKyQuqRu8n3iHqu7GWQmNXQE9B0rAg8Q2U+A9wq+u9CK1oL62ePMc0T56eXKM1hz3VjoLgGwcsB9RTZWiWJppzHHEg3M5bAUepJqpqGqwaVbfaL2VgDwibQWc+ijvXE6nqN5r0ga7AhtVOY7VTx9WP8R/QdvWlfsNK5a1fxHJqu620vfb2fR7jo8o9F/ur79T7VlwwR28QjiQKg6AU8RgdBj6UcjvUlpJDieKbmkyaaSf7tAxSaTJNN3cj5W+uOlPUr680IAVcDml4AoJ5600nIoGKTxTSaDyKTYT9KQASTRgt0/OnhR0oJoAiMCHJYZJpwXaPlJH604mkNACfMB1BpCTn7pP0NO2k0oGBSAZvBHPH1FKBn0pSB0pMUmApFIaMHsTQd/bB+tMBN1JnmlH+0CPpSjb2xQA3BPal2jFOJ/GmE5oAdxTSRSc49KNoPXmgYm6k5p3Apu4UhCFQWDkYZejDgj6Grb6pqTwCBtRuDGP4S/8AXr+tU9wNGCe1G2otwXCk4HJ5J7n60u8E0mKYyg9elAxWb3qMkmlChT8tKTigCJl9TUTKBUpYHjNRkU+oEL4Haq7+1WmXNQuAKEI2l57ipAqnGQD7Y60xELfT1qZYkx059a1sA5Y1LB2GWUYXPOBUlRhcdCaXOO9IQpPFNJo+YjjH40mHB+4Mex5pDDaSeKdsx15o3kfwEU0yD3H4UAOJHamZ5ppcdNwpyoG5zmlYBuN3al8sHufzqUADtSEgZpDIxHg8E/jS5I9DQWpdrGgBu7/Z/I03eDxhvyqYIB15oyB0oAiGCfvAU2WQRY2xs5PcdKkZlAycY96t2mmXV3hooSEIzvb5V/PvS16AZwmkYY8vBPTJp8Zd+GTBz2rqrPwojqHnuS/+zGcD8zXQ2uk2dkAViij/ANojLfnVRpvqyXJI4SHR7+ddy27Kv95xtFWW8O3gAKNG+e2SK7pp7aBCTlgOrM3A/Osq68UWESFRIJSP4YY9369Krlihc1zkptHv4OXtXI9V5/lVJlKcOCp9xitW/wDGUp4tbAJ6PKSx/Icfzrmr3Wr+/wArcTMy5+6OB+QrNtdClcu9TxSYz1FY4nlXkMVPpViG5unPCFh9KlMZfMa57j6GgLjvn601DIw+ZQPxp+AOtUAmaafyp5YUzOexoATb78Um0YPFKQfSkKn1xQITpSbqUDHUflS++KQDMtTcE1JjPSkKmgBmPWkIGOacVweaOAOlAETAGo2HBqc89qjbNMCs289QBTCo7mpyKibFCA3FJA+7inA8elN3cU5QTW1xCZ9x+NPVQe9OAAFBI9BSAOAOKaTijqaXy89SR+NJsZGST0FKEOeTT9gHc5pM+9IBMKKQ7fQUpVj0waXYy9QPzouAzk9BQUz3Ip+e2CKkjgmnyIonfHXauaQEAUr/ABZ+oo3EelTvZXKH54JV9ipqMrsPKkY9RSAjJc4wufxpMeuaeWz0pso852Zo0BOPujGMDHFKwwzH04/EUqy+WwMchQ+qMR/KmbQOCaPl9BQBoprOpKoAvZyO247v5ilfWtQKYFwEP95VwfzrN5PQUEHHXFF2KyJpbia4O64leVvWRi386jLcUw8d6TcaB2HdfamNEh6qv5UFm6bePrR7k0mAzyYkOQop4J7YxQGUdKXJ7UDEy392gDPU4ow3WlFAheFoByOKCRnFaFvo91cY2eUAe5cf0o3Aztrc0xs9se/NdLD4XLf667Uf7i5/nirS+HtKtgDPL05O9woqkmTzI48HH3kb69RThhhkV2LXPh6zX5BCxH91S5/rVa417THG1YXkX3RQP1osl1DmOY2/QU1gccGr11d28wOy0jjJ6MGPH4dKokgDqTUjGDPc5pCQOoNLu9qQk+wxQAnJ6VGyn1p5PvUZHfLUARsq9Sahbb25qYhgfu/jTG9ximkBsrGDycE0/aB0A/CoRIBgcVIpB6mtLiHYJ4pwj9TikDKvQ/rS7yehoGGNvekye1KVPUhvyo3dsc/Sl1Abhu+KUYU8ipvIuWUMIJMdjsODUZhkU5eNvyNFhjS2exNS28aSviaYQoP4mUn+VR7ucBcY9aQkn2pAdLYw+HYSDLcidx3l4X8q221vRraAH7VAqDgAf4CvPWXORuI+lV3tFkPLvn1p8zJ5bna3fiqxGRa2pmPZmOwf4/yrCvNZu7vO5ljU/wAMS4/XrWINPQH/AFrYqZI4o+hJPqWqXJsaiOO3jC0mD9KXHoMU0rkcufwpXGBQZ++fwpBgdOfwoC+hJ+tKS2OoFK4CkNjtTcetLk9+aO3TFFxhj2NG0/T61ZthbkgzXDx+yx7q1Yv7DVT5lxNJx0YEZ/IUtxNnPlQDy1LgY4rpBrOjW8ZSCwDjsWjX+Z5qjca6srHZZQDP94Zp2FcySPam4FSzTGY5KIvPRFC1F0GP50ihMD3peaTJPfP0FBzjp+tFxC7h60bgOeaQZ9MUEYHJNIdiQX1wE2CeYJ/d3kD8qiLknOR9TRt4PWkKg9hmncVgL+9GfQfnRtxwCfwFKFwOc/jQmAwnHoKQkkcH9KdjPIHHTNBwKAIH87+Fh+IquyXjHGQPxq7uGOtXrW/EAH+g28h/vMpoEYyWt1n7/PoOavQ6ffy4CwTN77K1v+Eku41xFb2sQ9kFV5fEOoSqQ16EHomP6VWgajF0DUHGWgKj/aIFV7jSLm2GXEZ+jj+VQz6jJJ965lfn3qnJcpknazH3NO6DUvCQdB1pwc4qkr46cmp4fLeUCeYwp3YLu/SqH0J/MA6/rR5pPQdK2bU+EkQCWW6lf+8yED8AKZfXPhiJT9mt7qd/98ov5nn9KGvMVzNWcgguXKDrg44+tbFl4hsbPDR6WC//AD0Z9zfmRXNST7pGMMexD/CWyKjMshAyVH0qea2xVjuJPG0Ww7bAmTtul4/lmse68S3t1kGQRKf4Yhj9etc4ZD3JNL5p45Ap8zYlFGj9o3HPrznNIZh/erO80Z5yTQZcnsKgdjSE/PGKQ3B6ZFMtdNvbvBit2wf4mIUfrV1/Dt1Cm+a5sof96bFOzYaFXz19CfqaPP8AXAqrcotucfaYpjn/AJZMT/Sq4m+v4Umx2NiC3urz/j3heT3HT861YPC98/MxhhH+02T+lckbgg4BYUjX7KuGmbHpmmmkJpnXT6Ja265k1i1Ujqu7n8s5rHlWFGxFN5vvggfrWMt6D0cGpVuScDI/Kk2gs+ppbhj73NAPvn61UUzMMrG7D2U0xpXQ4dCv1GKkZfB9CPwpSaoLOT3Ax6mnLPyNwYr3AOKGwsXNw9BTSQenX6VYt77TIwPO06d/rPx/IVOPEFlFxb6RbL/10bcaa82J77GW4dhhZAPwqJYpQ3NycemKv3OrNcDm0tYwf7kJ/rWcZ1DYwx+tS7dBlgZH8dOz71VExzwgP1OaXzJeyqPwouFjSt3tRjz1mb2jYD+dXxcaKqj/AIl9xKf9t6zUhJAJkc/pUN/Fstwyk5LDnNVayFY2f7atIvlg0q3T0MhyaqXGr+bnMVov+7Hk1hQLvnVS2AT3p0wdLlVVVaMkAn09alyDlRZe6iyTuOT2AwKdG3mLkA498CnwQQPJjyXcf9M1yaeCsbmMwSIR2ZcUdNQGsvGcD86ruZCMKv8A47V4TCFWkEYIHPzAGkGusCFjWMMeAFhGf5U7gUUhu3+6rfgKU2V0B86SAe4Na4vdUlGC8qL74TFY97rDxXUsBeSYodu5SWB+hHFPpcNRv2U+vNI1t6k1VOpSv923f8R/iaZ9quj0iC59WH/16SuOxZ8gf3D+JqKSKUfcWLHvmqKXV7Mm4bFUk9WOev0pj/an+9Mv4An+tNJhY6VtY0Rl+XSsNjj97gVnT3STPmOBYlHZST/OmJFkAhB+NSBMD7o/OrsyVoRBz9KehLNgr1z/ACp6jn7i1agnaH7sUBJ7sm40ttx3KYJ75NIzYHYCtKW4luPvrFj/AGUA/lVaSDepyAR6AUhopb1YgeYME9c9K07e20sKGudU2euyIn9TWeIEU/6sZ+lTRQ27yot1GGgJxIp7imOKu7Ely2jhz9nvZZz04CgfzqlxjrS6vYWDasraPbrDaBB8oG35snJ/lVtYzsHFFrjkrMpgk9KTazHkE/hV7ZQFOaLElLyXYcRn8qQwyf8APM1o7eOtNx70WGUBbyf3cfjR9mkzwq/iav496MDPWiwFDyHA+6PwNXrW8vLYfuvIT0JhUn+VNI96AMjFKyAlvdc1ZYdxvpcf3UOwfpWJp+q3Gq2iXMnVs8MxbGDjvWreW7PaEhf84rn/AAyv/EniwOhb+dD2J6mwHkGM4x7CqWt2cmsaX/ZkTYlu54IEZugZpUUZ/OtAJ0yDVDxEl2mgzSWCSm7jeKSLylJYMsikEAemM1mn76K5U4u/Y801JdCNu50xr1Jo5ggW5ZXE0eD842qNhBA+UlvvdeDXs0Vxo8ePNS7Zv9kgD+VeUan/AG1qFu8K+GzZJLN5832a0lHmyAEAncTjG5uFwPmPHSvSTD8659a2xDTtY56C3ua0t5piphdPk56F5yf5Csm4vrQSDIaLPQBs5/Op7mP5FrHulH9oWmO+/wDlWUUmzc0Pt8OBtVm/An+VK2p4YKLdiSDjj0qJV4FNK/6RH/ut/SnYqyOoiG6NGIxlQcVW1Jf9GH+8KvxRnyU/3R/Kq+oxn7KP94VpL4STBcOI2KHa2OD1rOnS6ETubtsgE8KK1mU7T9Kp3K/6PL/un+VZxGjYsPFmqaVHsshbw5UAkRbifzNTC/utWJvLyQSTMcFgoXp06Vzk7rCgZzhTxmtzQg0+kpLt4Zmx9M8VTk7WJaSJ51/0WT/drnb8H7LMQcfIen0rrJYSbaTj+GuZ1FCLOcEf8s27e1SNEMAJRfoKW0X/AEZPqf5mpLdf3afQU6zX/RU/H+ZqrlDgvFLtqXbxSbemaaEZ9so+yrj1b+ZpxAp1ov8Aoifj/M05hT6gaAQAYxQUH92rBETS+WkqM+M7QwJ/KgQEtyDVozuQhOfu1ct7N5SABUtvaZIyK3bK3VcfLUMLmYNIcLnFJFp5ExDdNrfyrrUgUp0FVZ7YIxcAcA1OoXOHubby5GHNQeX9a1dRkZLvyxEWyM5FVgkp/wCXZvrkU0myrlRYqm8v5eQfyqysUpz+4I+rCni3nI/1Sge7/wD1qdmO5Q2Y7UbR6Vckt2QLuABPYHNQFCPWhsBmOOlN7jipSvFR8BufWkMQ546UyRhGjO3RQSak2/U1m6ze/wBn25YqpUqc7j0/DvTW4m7ENzrFvbBHkcBWViFPXI5xVTSdal1G8EabWTPJH49K5HUr1LyR9oIZyDkDHNafhSbOtRwlmEQPCqepqpQtG5nz6nrC2IfTTnqa4jw3Af7IX2kcf+PGvT4I/wDRNuBXCeGLf/iTvwOLiUf+Pmsb6FdS9Y2hmkIPatS4Sw02ASXdxHEOwPJbp0A5PUdKrT6Xd32myR2UzwziRGDI+w45yM1CNF1Cwe0vLz7ffBEdXEEu6SEkjBX1yOCB6ZzWEtNjpwtONSpyyffra77Xeiv/AFqaSW1pfWwntZ45Yz3U9DjOD6Hnoayp7PypVxjGam0e0lDXlxN9oiSaTckLvg9OWbB6nuOvFSQWRGqXWJpXTYjKsjltpJOcZojK4YinGnUcYu60/LbTtsVrq1PkK3eudvYyNSswfV//AEGu/urUGzXgVyV/b/8AE1shju//AKCa2joc9yJY+KYY8Txn/Zb+lai24A6U14B58fH8Lf0oTLOmigzbxHH8C/yqvqFv/onT+IVswQg20PH8C9vYVFfw/wCi/wDAhWrXumVzjZ0WGCSR8hVGTxmseS5jl3xxxyklGPMbAdCetVPH7zi5tLeORlQRtIwBxk5wP5Gq3hy4uL3R5FMvzwO4JPJMe0kj+YqVC0blJ2M7W5WtpJEZitsy5A3Zw3r7fT3r0fwKBfeD7WcDgvIB9AxFeR63K9zOqMAoH3sD7w6jP4GvZvhfGW+H9kWXBMs3GP8AbNa8q5UzO95Gu9pmBxjtXDeI5Y7KEo/LTZQe3vXp8kQEL8dq868XWUFzhJCRjofSspK2ppBXdjmjqn9n2wFxMrMDgELy3qMdsetbWmL5+nQSgDDru/OvPdXSWO8+yAFtoyPcV6D4Qib/AIRiyL5JIJGfTccU+TljzBd3sXvs+aDAa0fKzSGLnpQh3OVt4LmVdsc4iRAONm4kkk9aebC653Xz/hGorQ06MYl47L/KrLxe1O4Gl4W0eKXQ5Lvyl8xZHG7HPH/66sG2APSrXhOcRaPc2x/57MPzAqZoWD9ttOik0zOb1K0UW3rWhB8o71CFwamTgd6txJuaMMgx3qhPrGnzSy2cdwjThT8uepHUfUVIr4HWvP7HTnPjMTSbo4UjeQDP33A6frn8KzcXbQtW6nRTxb7xWx2q0IlUA468VD1mU+1XCCYwB1pK9hkcipDbySuMKilmPsBms7S71r8qSi+XJF5sbLxxnGCP61D4k8Q2mlQGzkG6aZMMucbVPBP161W8I61Zaxf3vkHDpGmxMYwnt+OMil73MrF8to3Zr3UPK9OlUHj+lbl1HkLxWfJFjtTe5JntGaj8s9DV5o/ambOelJsZWWPmue8VW6zafKm1mkx8pAzt966dhj2rD1eKSezmSMA7lIIOentTi9Qep5ZNmRiCwXnDDtnsfat3w9bv9viljLbmYBeON3se46nP0rBmjeC8MEuEcNjJ7e9b2k3scN1bhpiFVSFZV5QDnNb1U+XQ51oz2+wuUe3jTepcryAe4xn+dcz4TjDaPPx0u5h/4+a5bwbrMsviQvM7CIqwCrkgHgZ/+vXX+Cxv0i59r6cf+PmuTyZonfU6XTkCeZ26UZb+3EO5tv2c8Z4zkUlnPDOrmCZJVDbWKMCAR24qcLG8/mjBkUFMg9PUVDH5mFNPiV1BP3jU2m4kublsE/u1/mazLqTFzIcn7x/nV7RJVeW5Xd8yxrkfiayV7lPY2pkBtgMVyuoQf8Tax4/if/0A11bNmEAmsTUIs6pp3/XR/wD0Bq2vqJESw8dK5fxDe31vqf2W1RsJCsilerMSeP0FdwIvSuS8Xa1p2kSJJ5ym9Aw0Sctjtn061UYt6JFpq+p3nhy8fVPDWn3ske2SSECRfRh8p/UGrd+g+yknAAIzk1l+Dda03V9AtlsrhWlhjAmiICsjd8j0znmsz4n3T2/hNVidlMtwqnB6jDHH6CujlurGNzA8Tah4e+/dEXkqjaI7eQA9+rdAOax9Cv8ASWS4S1hNqWDfunkDZBU8g8Z69K4aSYuxJPFM3lTlSQeoqvYe7YOdmxr8jLd3KtGY2dV/dx9ORkbv5/lXr/wr3H4eWIc/MJJgc+zmvDHu5JreaOSQtuXk92x2Jr3D4WSZ+H9mc4/fTf8AoZocbRsQtzs3jZ42VVyccCuG8bWs1tawSFVI835lzk4rs2vTFKy5OMetcf4zuv8AiUs8w3KH3EZxnrWD1djop6SRwc8MNzPh1wZMKXUfMF74/DNdtptmLbTbaFUKoiBVHtXJ6BG17axs0ZWRpcFv9kHtXpthFA1v9nkwQoB46rms7uMrMuruZYi4qK4s454tkgJUkHAJH8q0polhmMW9WPbHeo2TitdDO5zmmR5Ev0T/ANBFW3i9qq6dcwRXH2eWVVmm2+Wh6tiNScVqMntQFyHSJvJvHjzw0yn8wK3rq7s7e5it5rqGOeXiON3AZ/oO9cDb+ILVro3AJ8tJFBIHXHJo8Q6noOo3A1hHXePkEpJ3oV5AC9Pf86MO+WLv3FKN3Y72Z47eF5ZpFjijUs7ucKqgZJJPQVmjxR4ex/yHtL/8DI/8awtR8Y6Rr3hzW7W2kdLj+zp3CSLt3fu2zj6V5tc6bpUt2+kx6ZFA6aJFfLeRyylzKLNLhtwZiuGO5cADBYY6YPXa5zylY9m12+C6GJ7aVXSbaUkjbIZSMggjqDXEW2tObsFLgtIOoxjGP8/ypvhDWZL3QbeyvpA0EAiVCTyFK7MfTBzVCbQbnTta8yAie1eNnQKctj3/AJ1MbvRGltLnfWN4LmBJpCqc7SSeK0/t1nGAJLqIZ965Lw9cxJYul5LGqrJlVfgjI9D703UvEmkeXc28S4k8tlSXAAz0yK55Jp6F6WOe8YsdQ8QSXMEyeUjqoLcAgLjP0qTwJeJb+Low7KiSRSRsce2R/wCg1laVp08spmkkJtiHA43HgdcV0XhjTbRdY0vVYJ5GMsrKysoC8q2Mf/Xo5re62bptx1PSJJIphmJwyjgkDvVRwhJzIAApYk+lZHj64u7bwzmz8wM8yI/lcNsPUZ7VW0e1s4hLFaedBbuAJDMdyqw/u55JPp3qJuxEFfUfqOv2VhfJbSFmJwXcHhQehrRK1wOs6bJq3i+wltZG+y3HlbmbgqFHOR05AH516Gy8nPFVKDjuSmnsU5V471zEl7dQ6t5F1sWJxwo5256c1W8bi7gkW6tLq5BTJZUJCx4/znNY02updNBHcKRIUAlYEDk8mhxbV0UuW9pGFrdoE1eZUt3jgjYDoSR/nmpI1VTGRBvM5KxD0H+NTalqc8MstoUDhmyhxk47YqXULgafbadIv+se2EuG52s3Bx+QP41v7zSRjZJtne6EsC6FbW6qhlWQgEL8w2npn8P1qpYXWoQ+HBFp58t59TuFklxnYu45/nXEWer3gaW6F9PE6r+7kUDbksM549N3Fd7pmlXuneFLXULu4/eXLyTxw4x8hOSx924OPTFYTpOCbNE1JrQi0hV8O2+pTST+Rb3HkgM3yfOd24KPXkfnTr/xPf2MS2GlSR75pAzHbllBxk57DkfnXJeJL4XtoysclJMqCvIzwavabpiWbWNzEX+03C7ZFcnEYCg4/MH86lQTjzyHf3uU6q2muJbbddTRSyljl4hwaEulh1GzledYI4GZnY8bl2nIJ/pVa3lWKNIpJWYhvncpjAz0FWtbW2u9FnnSyBljTbE2OMeo/EkVjGLbbRXWxfTxRFrNjPHpkkkE8bqsjSR8opB+YDv0xSaXe3N19hN1KJpIrmWMS7dpdfLJBI/HH4V55pGtajp9zMjWxMSbIJjt5Xk4Ge3Oas6D4kvrzxHbK9ysVoJjtiwMcqR19a6fYS3M+aKVup1fiHxs2lauun2NvHcyx4aYE+2dox3xXMeGLC117xHqGoX0QlhEhkEcncsSRn6AVq2vhxG8W32p3QMgaYvEDnjjOfer6xWGmyzfY7ZYWbAcjgNjp/OmmoqyBRu7swfGDQaTe6fe+Hh/Z8rB45DAxX5uMfhW1431Ga88CaF9rlWS7kYvKRwSVBXOPqf51QS4t7zxLa2k8KuIo3nO9P8AV8gDH5GuU1jVZdRvLhpQiLEPLSOP7qAcYH8/xq6bk2k+gTSTujEQkhsf3qV25zUcTZUn/bpWA3da6jAlsR51/FCzBVdwhZ+gycZPtX0D4R02fw74Xi0+TbK8cshyvAwzEg818/3Fp9ntbO7DE/aQ4IA+7tbGPevdtE8Zabq+lWkDyyJetAibCm7zHC5JGO3WsKybV1sVFq5eurx/tkRbA3A5x61heNtraSFY5DPyPoM1BqGqJFfwhiyqjMG8wYYnHp9axfE+rJd2EMUcm5izF8dR0rkp6zO2jH31c1vCtuBptq+OCu6ukkuDCvB5dgOP8+1YfhlWi0qBGPzIhBH/AAKpNRulE1vEGOZJcDHptI/pWc3qRU1Zz3iy/e0u49TQgXAkABP8PpXcWt4lxplveSMsaSxI5LHAGRnrXFarZ3NzNHbvGCCGkEsi/KuO5/E1T8cRzaL4esIEu55vNOzeZDsZVUYwvQdq1p62RlK25b1W5g05jdhPNvbeMNA0biRFygQkkEg9DxV3whrV1rFpd/aSJXgdQGG1ScjpjIz07VwPh22nlmlMgdUMeeTgEHsfrXWeHsW+mXTWDfZoQ26aNiGJJGBgkf5xWj7LWxPZjI9Psp/D15ZqfJmil85OMlxjkfoK5/wrbQXWrMt5EGijySjjgtjjIrVMxWXI6irdtdhZ2keJWkZSAxGCcU29LDg+aWpxuvWrRau8VhEALkmKMA4yTxjJ+tQXs3iiWKTTrhIlKRR2shjigSRkjCqqNIoDMAEUck/dHpXUXsixajY3KxKwt5AzZx8oyCTz9KuWumHURqF/A6uwfe0WPm2nJB/SpVdKPmazwc5QdSz5V1Mzw7caVHp39lOlxDcXHlebNLjYrAYIGO3JOfatrVWbRbuW1hcrGrkpg9EPIA9ua4e/gmi1KZI0cru3KVBxg9K12u7jVLKGQhpHWHYSevHAz+AFddN6XOZ3bsdlbQWV94de9kVftuWMYzzwOcV5XqFwz3Mm89T6dvrXqmih9P060tbo280jLyYWDBCWA5PryB+FcV4v8OTW00l5BGTC8jEKOSozwfpWdNpyZtUh7qaK/hrX57GVQkhVi4299vB6Z/DNddptxaQy2N5CX2R3puHQdFLAg/QckivPdKiKI07qx8tgceorv/CmpDT71G27oZCkZjAHccHmt/YKSujndXldmafjrxDcfu9MsFQIyrNNM45xnKhfrjOa5O91y9u7GKzXZFFGzSDb1JYYyT9OK6bVIbfWvFV0JYTEsQRNhbjAXaMY7HFVdU0Szht3MSL5ijjBNefKooy1R1xg3G5S065aXTo/LUhbdApwc7QB1+ldT4e1xtTjkgLbZ4vl8xk659j3xz9K5rwhpy6hYX8okCqAsQO8LznI69a2rnw5dxX8psDIGZVaZCRu3DgbfXK5ru5oVoqMtzld4O/Qzdd1W1uJ7qzZmyqkL/tbj90f56VwlzbM+oCFFbzGYLXT3iQvcNMQyuGICn1960tMe21N4YvskaXcIA8zsw6Z/SsKrVJtLU6IwlOKlLREMPh+1U2t20pZ4YCqgjryTkn8cVheKlSfTRLMskctqixxJjAGT82fbGCPp710PiCSS1065aJcSxR7ZkPcEgBh+eMe1R6tZSat4VwPmmtrcbyRyV4IP4D+tYU3JNSYSldOKMvwbea1p9mY4NN8+2uGA3EDCEnGTn/Jr0jxvcW9jYRXl3LthhGxuCQASBnAGeuBXnPhWdIhpdp9r/dpqAkmfdwowP0GP1rpPibceb4cvkyrIoQowOc5kWulUua7Zm58iTW5hwan4a1Z7uxW58y51CFLe3UROCsu9SmDtwOauD7Xbz/aLyMs5J8yRRgbh1469ai1a1tLfxM80J0d0s/FcUEaWVr5ElrHvkPltiNQ4Owc5bBTr81eha3Fp95ZTTXreS0aFjIoz0HTr645o5FGFkRCo5S5mebPqTS3yKrfKcAjPXtz+ldwYLhtCs5NhCSIFLH1BrgWvLOS6Hk2zKdy7Tu54Ne4ajBC+kWsCEttWKJAo4B45B/Oufk95nQ52szl/DukLZLqVxJbqyXrgtuGQwUY6enWvLdc0ldI8XxW1rA0VpI4eMk53AHnB/DH1r6EtrY2carK25VGFHp7fSvO/Hr6Pp2n+fDakXzb47aXJwgJy/fgYY8YPXiuik3F2fUwnrqU7LWJLmNHygK8MAegFVNYlkubfyI4wzSsAuPvZ/zj865HS9Ya0E4kikO7btODjPPX9K6Lw9fSXl5NIcJBagbm7yyHOP8AgI5NRiY2vJbI2hJOCj1JD4V8RpYtMkaG7a18l18zL7VP8J6cgD8zXmr5txOj7lcNtYMMEGvZF1t4XJjkPPbPFcJ4+sopHTWLbA88hJwO7gZDfiP5Vjh8RzTtLqTOnZHIxHEC+7mpmHzjjvUMX+qgHqxP61PP8syAe1egzA6PVI7c/DvRJ4ypnjvZ45B3G4ZH/oNdn4U0+B/DOn63KY4/sUDoNuQzHecsT06cAZ7mvP7u0VvBNveqrKyX7RO2PlOVyPxr0jwwbVvhZCsuR5gkGB1ZhIcY/IVjNXjZFR31Oc8Tai15rM86RyKUb92ijcNoXbk/jWRZu166oVwwIycEYXPf/PetfSY2kmuZpcM5kI2nqBWfrzJbTBYfkdk+bH1/+tXJG8ZcltTrvy2mjvoriGKaeGF06bogGHzfT8axNWmkN3YkKSsbEn8sV53HeXKOjpKySjkOG5x9a7fQNS+22Mk12+4QrKjyMMk/JlT9c0qlGUdTFzuzqJFiksBcyXTTRgghORj2/lxWBr1lL4njhsoD5UVo5kbcOORjgds1uwR+dpTvGsqM8eGQYKnjr71oaHZJY6ciTf62X53/AB6D8qilJx2EzkZpo9NYxsqsUThSPvADgVyT601hIrhV3s24KRwOeK6v4kaRcW1pFqNjJuhQkS46qDjH6/zrzGNbnUGCIDI/Yegrtw0UouV9xVJc2h3aum8FiMDJ5rK1DVmS5imXqjZC9j7VtnSZ30uS/MkYgCg8NzycelcjfxlJ/LPOfm/xqYpOWortI07eea/kmLR7YX5GOSD2/CtDzL7Ro4r21PIbc+ONw6YI9PatXQ7KC28PQXDJuaVQ1aMpjuVjtfIGxx1xXNUaU7rY9GNaao+zsr2tfrZu9t7b+Vzkru0TV5LOeNmjhfLMA2OOuPzzUkW6S4C2yL9njyqr9O9VlMttavb/ADKIZHQgem4n8On8qoi/lt1ARwCvX8q64QtGyPPclc3jMbV0le/dSx5HBGfYVZub4XtjLEtyWTjcMfw98VwlzeSSA5YthiwNOstXSHzFmlwNpGNp5NL2LWovaWNJZoVuN8eMA9DzXZ6VqGmQ6d59wgkkRtyGSYgg44UALgge5rzQXAdt6cqT1rWsbsY8qTlG6+lbO62ZCaPTp20nVFjvNPzFMwC3AJySw5Bz6ckfhUEkMP2t5mkJUdvWsLw8z+ZcRfwhQSfTBx/WtW4wqcOCzdga8yutTvptOBNZa1Z+C/DLXVwpdbu6YQ28eMnAzuJPQDNWbv4l6XFYLeWq20k8qBPKDP5inqAcpgcnrzXEfEaYldDhGQEtDkfVsf0rlIYUjktpWY/f+cEdO4rtpU1yJnJKV5nU6zqT3F/PMQqGRyxVegJ7VDouoSx61bKGwsj7G+hrHu7g+dkn3NTaZJIup28kahpFO9QeQSKrkXKbyqX0PTr8ieyM0aq1xCNpZh1Q/wA8HH61S0uYoypcqJNwMTx9mB6Z/A03wfDq+pTSiawllt0Y+bMV4Yn+HA/l6Vs23g/UUvp5LV4pMN8kUmQUXng57gcUU5wjTcJrVbHLOL504s53UfCzaa6RWFpuMjM6BVJZo+Op/EDHXvU2q6Dfaj4VOmAxpcskSoJMgDDgnPFeg2dhdJIP7R8qKRV+VUYMxH+HFV76TysWdvZtf3sqtNF5bKuxFIILEngZ9uSMVnDENR5ZbGscM6s7Q1f3fi9EeLTWPiJ761v9T1tr9bS6Vx51zLIcg5JG4d8Vq317cXrtJNMzFjnrx+VW763+z+HZ1uFKXS3YDBhgqMZ6e/8ASsAz4XjPt710XjK7hsZyozovlmrMCJA/3/l9K0bbVrq0CtDdSqy4IKuRjHSsVpmz8zc/3RULyOmWY4FRKF9xI9n0jxJfah4Ut7qYlpdzIzY+8AxGT71p2OmwatqBkvtklvDzDEV3DdjBb9SKqeEYGbwNp+yNhG9tgtkZBLHJx+oPvWrZxxWFsIFl3sFALeprNOzaLSvYfe2lnt8tbSEIvCjYoFcrqVlYxJKbSGO3lc7nCDAYgf4VsarePDHlDx/WuIv9TaQ4ZuA5BPp71lUi3e5aZmySMzSBeoY1X1IJN4TuhMyjbtZSfXOP61k3Wp3cOpSwLGdrScOferWpaRfX/hnz7RzKYnLXEAHzY7Mo6kev51iqElOLbNJSvF2Rxf2kRrGEXLJ3PSkN5I8m+TDc1DtJYAA05EDgjHNepucGp6l4YdB4DvLa8aG2We53rHcHDSLsBBUdwSMA461FL4x0i00aPSEu8JCHQxCFsKSTkZxzWKlnd3du92FLRxNHAzE9DgBRj8KW7igsPDszxXGlW8p1jUIi15ZCeSZUSDaqsYnxjc3Ury31xjGK53JM0lNqNiHTtfSxkWVg8lm2V3qORz1waTWbk3M0V6AQssZ+Q9VwxAH1xz+NVtEhSXSY1kUFWyee/wAxrU1DSJ7/AEWC5swpkh3CRC3JycjA9fWrdOKkpdy4Tbhys5Wac7cHqOK7/wAI2Hm+EZJJePtUx2Z7hcD+YNcBBYXl7fRWcNtK1zKwVE285r2zUvB0mj+GEtdNuRNKiBdrLt+buc59c/nWeIV42RMdxdHDG2eCKZXZCQwPcH+79au3kxj3yFSMDBHcYrifDeqXOk6sLLU5YoVw7SB/4eMrz+f5it7VbtnleS1kLqygkHlT+HUf1rjUXGVmablmcC+tZbSb95HMhUqTwwNeW3emtpVxd2q5BRwASOo6/wCFdlp+oziWaG5t3jQHcnX9DT/Ecv27w84mCvIjBlkwAcfXvW1PmhvsxaMhMT/a/sV1ELeGLyontw5K5Zc7u3cZ/GqM3hG8/wCEhhmVUayQl9zAsMf3SBzz0r0mw0e2RvtM9okdzvLs8nLEdV3H2HGBUyiO4vBFcXG53IZQifKMcj65odT39OpvJqUU2tUc/Lbx2Fh9jC58g+Xz2xVSS92SR7YwNnHStXVnhGo3PzAl5CzD3rNtJbS41GOJmBQuAx9KyqQadjRTTjc5HUSsWsXxZSNzFsH3AP8AWuU1Nj5z7cBTyMV6T480hNP17y4F2xNboU+bdkcgc/QY/CuF1C0j2knqvFejD4UcDepiRqHjA5yK6bw3pFlPpN9BdtaLd6nNJa2SzRs0heNCwEZCkKWkaFckrwGHPIrBgh/frzwG5Fbk3hTXJ9SE1vfRxrHK01sTM4MWW3DbgfKc88d6idRRdmJ05SWiOUhbESD6nrXU+FvD994j1FbWzT5VwZZWHyxD1P8Ah3rDh0y4/tf+ziQ9z53kgqchm3Y7+9fSXh7RrXw3o0VlZqpxgzSY5kfoW/wHpSqVLKy3CKOeGkW2ixpaQJuRl2vIw+Zz6n8ulYlxbWsOuWtk8oX7ScgY5+mffGK7zU7TzY/lHOOD71wRSOTxssc/TCx53cKwHB/Nv51xySa1NIya2O1bQNO1fTWtdQtklhbgZXlfdT1BryPxl4A1Hw0xvbZ2utNU585R80XP8Q/Lnp9K92t1VIlXOcYGfWlmaPyXilUMkmVKsMgg9a0pzcCGfK8kplQOPvfxD+tX7G7lsrtLqBA8kQJCnnPFW/FuhLofiK6sociLIltz/wBM25H5cj8KxTdyQfIVKScN+nFde60KUras6q38R30ree808URJxDFMU2t3Ye/A6+lbbeN7qz8lrGe58xSC7SyBlcDsVIyD/wACrh7SV5YSZPvbqs4BFFo9UK59AeGPGdlr2lxyyW5M4OJk/hRvbPajVUlv9TTUtLkit7yGEwMk6sVlQkEBiD8uOTwOeh4rzf4b3Oy8voCfvIrj8CR/UV6bbIplZgeRhsVzTSb5Wb0asqUuaP8AwGuzPO/HOlXdjpJvp2imuJpy0xhDAKNuFHPYHIz155ri5bR7aLMrp5m0EpySMjI6dPp1r1nxjd+Vot50+dRCP+BHn9M15HIC7s+DuYkk+9aU7RjZEVqkqs3Oe/8AlovuRntNGXx5qE+gH/1qsiAbCrsokJG2MhgWz6H1/Kpl3qGxgEjBOBnH1qrKhU579j71d76GdrHu6+IYNGsY7F2tQLaBV2uyghQP7v0FVrTVotXsk1GPIWUblBGOPpXLeCfAGj3Gn22t6qGubmYvIYp2+QLlgDjvkDPNb/nxDUrmEMCFVdvvWDavY3pRe7EvZR9meV8kbhkfXiuJvYNrSYPBYtj8a628illify+u3r1xXP8A9manfT7Le3dht5d+FA96U9RyXKjlbplFySeuB/Km2+tSWF3FLCxR4zuBFXfEug6jpE/mzxlrd8bJk5XOOh9DXLShnlHNdEYqUdQc2lodRr9jbX1onirSYEWSFh9vtgvygnpIB/dPQ+5rB0PTLKa1lu9Rd1VSFhjBxvPc+pHsP6V0XhW+WxstZlnIMKWDq6no24gAY+prH8OWN3qTR29qqmYEdePlxnOadFqN1PZHNVWvunUwC4itGjtURbAus03mDJZgRjBrn59N8W2322Wxv7y1s55pJxBDPIgcsf7o4JIwPwFdPf6fqOnWENvfGKOSSUtEPNB3IvzH/PrgVu3d3d2sdpBcWLWkUq7oWZgSw7ZH8J9jRVrUoztDqaUcHWrU+dLRea6a6Ld99DlNA8KXMGmQrfsItoJ2Kcsckn8K2DZ/Z4xHBiMZ575q6ZWOWJzVCUb2JMjevBqbt7kJJEUUcsE4nEg81GyrKMFT610cGv3FxZPBebJGK8PjGfqK5fyAhL5cknOM8Ueeynn5VFZzKRR8U2Dm6TVJrUfZd7Q7Y5vmbqRkdhgH6+1TaD4gtbQeQbF3MmMSSPgqegAxVl5Bcw/ZJJAI5iELEZ254zj261FP4Qk03xOulw36T3UMiFQYiA/y7+2cdP1qYrnj6FJpbmrrRiit2eF3ZZTguTuwcevt6Vz0+sQT2y6aZt8q24EhAxznOPqK9cttNt9Otm8uF1Q5JRhnB7/hXkt14S12LxK2ow2f2u2ubgyM8IyFDNyMdfyrb23NT9nYyUUp86PXb2T/AEcg8BvT0rA1HU2t7N2ST94vAX0B4xWjqRd02Rt0zkjsBXP6jaxW9qqSXCyTynPlp8wHGeWBxn2rCjH2lRdkdM2oxOf+1tcQMshxMjcEelV7bVFXVoLWdgjuwG7HBPYfpU1vpt3fX8VvZxtJPI21VHc+/tXrHhr4caZoztfahGl7qMmDmRQyQ4GAFB/n/KvSqwg2m1qc6k0tzhdT8Navrf2R7WGQxNlPMYYUfj6VT1H4VaukCn7RFKzdlPevd2aOGDDsFVeBxULQBiZOrEYBI6VE1e5Kl0PnZvh5qWkq1/feX9miPzYbn0/WtRbooyiaBolPCMSPTv6H2r2bVtHh1XRruwmJCzRkBgM7W6hsAjOCAcd8Vzlx4T1fWHjbVbvT9locwm3gKPOQCAXJ+7zg4GRyfavNr0qjmranrYOWGVGXtLX173tbS1tG773/AOCvKdA8Pz2/xAt7q4ti1upa5DqCVLYz+eT+lenT3i24mjLfeU4weQf84/KsLUVu/D80suoWs0cdw2zch4wScEEfhVGO1s43lnkv3Z2jZ1VQc4A6ue1ROpJuzRxulG10zulzIgzjGBg15Zqc6x+KbqVWYv8AaeACQchgOB9P0zXosV9BNbbLd9xHJIHBzzxXmeqecmuzSMm0GYsu44yucHH1yOfrVW0sYLc9ehcSWauDgMARWVeTyQ3wQMX8xR17Ef8A6xS2U6tYwMG+8MfjVaaF/tyzFspyBzzmpd7AcD8W9PLWWlaqqn7z27keh+Zf/Zq8sO0kk5Pua+ivFunxal4RuLcg/IvnIR1BTn+Wa8j0Sx03U7pttvJcrGQCBk5J6cAdOK7sM+ZKJErJXMKHzrOza4mhYI+CmeMj1+lOi1ONuGjfPtzXceMNKuIrO2nksZUVVwoMZA29zjHb+lceklmgK+V5fritqkVGVlqFO8kdH4Q1ezsdYWeadYoWQo7PxtzgjP4ivYdMuI5lZldWULwVOeO1eB3UcdthWZWDRJIAB0BAOD7810nw71KRPEbwoXED2zhgM7cjkf1/OuadNp3NTd8eXzSw21lbhpJpXaTYgySei9PxrFHg/wAReWHGiX+085EDf4VrWd+2n2uq+ISVa93pa2O7rGDnc4H0XAPvVS38W+KPJZ4NavFAzzvz0GT1pqDaSaKS0vczJfD2sQnEmlXqn3gYf0rJvbSeD5ZoZI27B0Kk/nXVwfEDxjC6s/iKZ1/umJOf0re0PxJrHjW6n0rUora8tvKLvJLGAYcfdYEd8496XoOVNpXZp3SCwsbeALtEMKR4+igV5pq/iVJNaWHSljeXjzrojdkDqB7e9ekeM7eb/hGLzddr9pSMs83l7FKbcEAA8HOSD71434W0e41HX0sIFKvdHy0ZwRhTzu+gAzRCl7zciJVGo2iezeFiPEdhDdqpjhYfvO+3BwV+px+VdXLZW0S4Q7arabY2vhzR4NKswRHCuCx6yMeSx9yapz3pZuGrVxUVoQ5OQ67s4Lm3ltbiNZbeVdro3cf414R4k0S50bXpdNVTIB80LY++h6H/AB9wa9zS5BYBjWH4s0ZNQS3v0Uma2BQ4GSyMRx+Bx+ZrKMuUuOr5Wecab4P1PWdNmhtrlUlyu+MDCsvUgnuelevWugQaRo8FnoekJ5JAE0xXdLIw7lv6VyEt5deHooYbSLepP7xxzhwCTn1Bzj2xV/QvEepxeJ3gkl2ltmUH3cY9KwcpSdnsaTppanQ3PhxtUt9t9p0ol2MkUnzEoT0IUEDrjqe1YHie21VdTt01eW2kaNAyeQpG7ry3YNxkgcV6ZBqLyrtk+Vj/ABJ1/WvLPiDqiW2vO0lw7pHsjZ3xwMc9B6mqjQVzSli6tODhHz6bX0du11/VyhLdAAKMZNVDtOS8g9smqy6tp/G/zFyM73jIFCmwuSWF2j56DdgVu9Ecg5tp/wCWmPoarPIFY4ORz0Oaklhsgm55AR/sNWbLfWEbbUEzsP7i4/nWT12KJ0uCl1AxGQsitjscEf4Vux65eL8TxPctAs3neS8nVQB8h6dciuLnv1eYKIpEznhx1r03S9JsZdSsZDDHIdsTNMRkkYBz9eKPaezTutyXHmO4tbi5a+WzaJ8E7t5UqNv0NZ/xMvrvSvAF/NYN5UjFI2ePgqrNg4/l+NdKk3n3TyRSxsRxhhhttYvxAhW68Aa2kg6WzPwe68j+VVS3QdTmb28U2ss8TgoEOCpzmuOurz7JKzElon+YY7MOePrWRFqE1lKTG52Nw0ZPDfUVdihbVVht1Vv37BY89QScCunBR5YtG2Ig4yXY9l+HWix2+ntq7qDLdf6on+GP/wCv/QV2Tk7gB6UyxtI7CwgtIhiOGNY1HsBinuwUE+grVu7bOZ7lC8LTTLCvIU5arpA2hhgZqhalprgNgBMlj71cYk/KOAKhdwYxnC1E1yOQeaZIwwSOlUJpSD1rKehSLjzqVKkLtPUdj+FcL4v0eO1gOoWir5LDy57cdCpI5H4gcV0bzknrVW7xeWzwyZ2SIVP0PFYRklJNoqSbjZHI+H5JGgLDgF2AC9h2rM8VPEdR02ORiFWEMcd9xwf5flmtTSNNn0maS2upDIUUOZU6FiMjArI8W281pNZ3LlfL8so7FsAHt/PP4YqajTu0ENjshDFZwyxFvlWTcvtnBxUE0wZ4oWZU+Z23McDHesO21TUr3U4nclbSWPfs2/exgf4Vqyacb63s5NrNJ5pbYgwTk/14rnTdjedLlinfc0VeOUSO5/0dVIPuoGP1Oa5T4HW4s7TXrsQ4laZI1HGVUAnH6/pXUXVreLarClsYxv27WxwBz8xP1qD4b+GdR8P2+rfbiuLiYOiB9xUDcDn06iunD32OZ9yz42vnbw1fSSyyCNFBI7/eHFfN2rXC3WrTyw7trt8oP0xX0r4qsZNQ0S/tYQDJJGdoJwCcg9fwrw60+G3iyaSO8XRpXtxICXV0xgHkjnkVrDRu4S2sg8OeHp9b1MW+5BmPIL55AxnHHYfyrRm0vV9D1m/uLU+TDaoygtIuCu8KOB3w3p61o+GWuNN+ICWcIZ4gZIlD9gV/+vWl49XU7RXuTHPFDduVbcwKuBg5XjjkD8TSU/ftMuUbr3SrpzPPoFvcyRAQSF4gT0LJjI/DIrMKvbXELgIbcIWYZxjI5rsdG8N3epfD/SIFlFtOJbidhIp5Dv8AL+gB+lYfiPw42j6U7z3e58ZGxcKcY4JJ75A4rvWJgoW6nO6UnPyOQeUEkKflzxnriu0+F7geIJi06xpLF5WCcZOVYY+vNcLAjXNzHCnLOwH09a6O1hGnRSNDIzKJctnsAP8A69ZUKLm3JHRiKyikup6N49FrN4Y1WKInIgbMgJxn0/pVbwJavp+gW1/dafAJGH+j3BUeYYyoH1A6/XNaENvYeI/CiW928ggkiVJZoHG8sCMjvjpWuVt5LVYLedPJRQiAfwqBgCocUpamN7rQo31/9oyAuM9axzMfNIzRfXcaTNGjghfvNniobfMqNLjG7hc+nrUt3dkWicTc1dMjTWcscbbZGRlVh2OODWYwwcd6t2rbTmudrUq9tTxqbUtRuAUmu5mO75l3Y/QfStLw9dzQ+KNOklmLK0qKWZu2e+ah8R20ekeI7y3UDZv3oPZuR/Os0ia5s7loEJECb3K/wj1rayaNXqtT1XWvizpmlSvb2Fo9+68NKJAiZ9uCT+lcDqusw67qf2q/MlvbSASGGDDOzHBABPH41z+nSJJIiXqSCM9JCNyj6g9vpT7oIJVAzgR7V2nOcEgUJWdjF6mzqWvRyPhLNo4lGN0oWQ/njFY8kltKdzMM+uMfyNEE0lu4kjbaw7+1QtFC3zbAGJxjHGKdwLdtBHJKoh1AxOegY8Vdubq502b7PdSRynAxuTOR6gjgishI0TlUUf8AAetXTMHtVW5VpVj5jXPIBNQ1rqBDdzPJcws5wMNhR0HTpXaeHZTcWcXmGUFeARKwBx04zXCXICiJxkKcgLnp+Ndr4YmWTT7fHBR2Vvx5/rWdWK5UNbndWWu3ETCHyogqD5Wx8359aoeKvEWoXHhvUbRXyr2zq3yjJFVkYi4c9anLQxWFxc3JhSFRtd52wvPX6/QVlB2ZVjzcRma7WBZAzOwCjGDzXqng/SYrjxDpsYX5bY7/AMFGR+uK840Aedqkckij5FJDH/PvXsfw6h36veTYP7qED8WP+Ar1KK5YNlYiV5Ho5HGKpXhPkSY4zhRirrHCk+1VJV3mJPU7jUvY5kJbx+WgUDnFJMf+WadT941MzbFOOtUrqXyIjg/vHoeiHuQSyBpPLT7q9T6msy6lwTzVyQ+RByfnbrWTKxd/xrmqy0LihrsSOvLHH4VGzfOQOnSopp1EhI6IKSNy3zHr1rnLJ0to55CBEWkdccNjJHrWL8RYFtPBhBhImd1XZ97kD/7HNdFp8vl3Iz0YYrF+I94n9iW0aYabzw6/QDBP/jwH401Pk97ew4x5pJFfW9YK+A9D1G24u/KiXO3opXBH5qPyrJ8Nape38yzyTuGhuYh5YJ2lBkt/SpGvra++H9hp91K0PkT7GXHJIZske2DVzwrpcelavDbCdbiKaV2SQDhgFFQ7tqTWjOtThGk4dTvbjTILsebvkiZiH3ox/UdKtLAsMMpjVVBOXI/iJ71nRLdTBoN5UDOzuNvPp/KrW4xQshDnYACxxzXVTsnc4JFC6VS7AgHPXitRS0lkCqjDR4A9OKyJW3tkVat7oW0IU7Sc5wTgis2/euNHkvhq0udR+IxvbiKa3kYuZSIG2qQuByfoKt/FBpv7a0y2SISu0LCPLHapDcnHTkY/KvV3vhj50BGOSD0rx/xfrVpd6u0kWWEBaOKVz8zAgZ/VTz71pQo+1mKpU5VdHZ+HprePToLCN086OPKx55C9jVPV7W01iJ7G8tJbr5uNkTnYfUMMCuL8Mar9i16K6mOY2BjY+gPU/wCfSuvn8TeKre/uILCwuZbJJCIXFpvBTsQ2Oc9c0V6Hs5WFCpzK5xdx8MfENjKL3SCbsREOqSIYpPpg8H86pTiaH7ZFNBLBNhXMLqQ65HII69q9P03W/Ex1awXUI5Pss7EOGgCFeO54PBwaXXPCemXeoXN64kE8rZd1kOGxxW+HxXs07kVYc9mcT4DuJRJLOzlLcR7XQ9HPb8v61qahcNbsdrFQ/IGafJaWul27Q28bAKd2BzvJ7euf8K5++vZDcq08bl3AKxkY4PT6DFZSq+11KjHlL0bIy+dO+y3XnJ/iq+NcSSMJaW7txgEjAFYkFvJfSD7a/l/880H3Qauxxx27eTcFkK/w54NRrHQrc0YZXf7xy3fFX432AVmR3UIAWEcetWo2LqWPAFQxnD/EvTbdb201KKVvOuQY5Is8DaBgj8+ag0bTjH4c1ry/KHlWRdy7BWfJ7Z6/StTxW9pcWkCzMDOk4kjHcKBg1WknsYvhrq08zbb2a4WK2G37ynAb+tUvesjSyUWzho7gqRk9qleTzWVj2GBWajZ+XHPYVtS2htZUhwS6oDJjnBPX+YraRiiLAo68EU7aRz+lJtJ5xUjEx6/pT0ZlYEOqnsWGQKjINOVVkcI5wp4pAGqs5tkchco207OldN4UkCaGlww/dPMyOx/gcYx+BBH5Vy0YDxS28h9sf1re8HaxZ2mmSabcNukkuSxi2k5XA5/SpqL3bIE9TuFKRhpGIwqbq888Z69Je3cVgDtht+WQdNx/+t/Ouk8UXlnolkk0MrySyLiCJmyo9z7CvK3meWZpJGLOxyxPc0qUbO7CcraHo2kEPOwUoCFBTtz6fiCa9p+GUL/YNSunGBLcKi/RUH9Sa+fNs1rPDHdxtG4UOpBxlSAQeOtfT/gvTjpfhHT7d/8AWGISSH1ZuT/OuunL3OU1rpP3jblJK4HemYG8nHIGKeTlqazcVRzEUjAcnoKzWPmzmRui9Ktztxis6aTapA71nPQpFW7m3ueeKz3baC3ep5TnPNULluCAa45SuaJGfPOFMgPQ4/U1at3ymRzxXNzyudYeBW/d4B2nt3/rW7ZsXH+yazTKNNG2kH0NcJ8V3vrex024B2CV3Vdv93g4/lXZGdWIVeQO9c58QbhJdF01WKmSGV9vqBgYNa0oqUrMmTcVdHDxPeSWNrFIW3AHO89MknJr1fwXYPeaNpGoRoSIfN4zkuCSoI/75rxBb943Ys5bALDJ/wA96+j/AApHHpXhKwjBDLDbRpnplsc/qa7MQo8ih2Mad7tl+KzkdRJKxTaT8hwePqKqtGX2xg/IM5ByfyFXGuZJztcAKf4VH9agkWG3PmsVVR/eNcnNE0szOEUok+YfLnkkVYWBN251XeOhrTljF7bKUfyywDAgZqnIGmla2WONZk/iPOPQn1/+vUyGisNIsZWKz3F3IzcKJZcpntwK8Nvl8q/mt76P95FK0bgjncDg173BpsqyrLdXbSFeQqrtXP8AOvOviV4ZnutTF9pcStJKA0y5x844z+IA/KujDVfZt30uZ1YcyPOneOyvBGrk7mH3j717n4X1Oxu/DVkHla2kQFQWJBIB+8Cex/KvK9C8GXmpeKrF9RhUWiyfvFDnLDriveFijijSONFWNAFVAOFA6AVdevGpohQg1qc9eS28FwqBri5Vju3REMo+qqOPWqeoatYomwSMgHBVo2BH6V1pVSMbVI9CKa0MTjDQoR6ba5Grmpwcd+PLee3RnjhDOXMeAOPeuO1OdtQuW1PqW2vg+lem+IHt47WazgiRZJ0KuyjoMcfzrzO2t2GlxwlgzrAoY+pA5op+7oDNO6iS7tEcDBI4IqK3mjmxa6gg3LwjnvRpknm2IQ8lRipHWN0w/UdKuUm9xLQlWzWI4UDbRcy+VDsU8moVumVQoJOO9VbiXrLKdqLyaljRzXiuSKK4ggTmQIXkPueg/Q1hX99JPpEOmsMxqpkGB0JOf61DfXkl9qNxMwO6WTCg9hwBTZp0j1LaQcKjKf0IrVRskVJ6WKvh+2Et811LnyrYeYfdv4R+f8qNTuZgTMJGVmc59+nFMsNVSys7m2MRYyuGDD2zxVe7nW5giwMsXJIq7amN9NCSz1OFZVF4kzRk/M0UmD+R4rXnhinRTpVxNKrHIEmMD6+lcyY8ZB4I6g06Gee3YtDIyHGCVbGRScewJtbmqHuUBLwh1BIyvGaekySHAV1YD5g31qaz12zht0jmjmdlXB4HWi4vrS+Be3R0ZV+beAO/HSp1vaxWg6TJff8A3uGx61JoMKxX8966jA+RM+vc1EjjdhujAEUkOqIq7Oirn8aJJtWQ1a+pU8RXhuJoYtxJjDZ56ZY8flWTFH5h25we1E0hlmdz1JzUsYhQKJA5J7jtVpWVjJ6yuztdLtZ/EUtpaJKTPEUjWItn5C3OPpnP0zX1XGojiVB0UAD8K+ZPhVpg1L4jaeUB8q0DTue52jjP4kV9OdFrWCsrG1WV7DSeajkNBPJzTJCQKtmRVmPWsq4fmtGXJPFZFw5Z9oOawqbFxKsrZNZ9y2eO386uzkLkdxWZMxklCj8a4pGiMzU7eGKytLtUJvJppBx3jGMZqE3rrthDDJ+9joo9K19XsXl021niAPklgy98E9f0rD2FRxHj1NJ9ika9vIAoAqDxVosur+F4zCyJIlwCGYckben0pLV8gDNbEkd01njz/wBwM5gK49MNnuTz+FEZOOqE1c8si+HuoXU0SvcxRqOGIBORnPfFe8acIDYJYvECscYUhujVydoxklAIwBhQfSurjvxYsJDaCQqhyVfnH48dquNV1H7zI5eXYRtBs8nyzcRD0jmYD+dOh0WwhcSGJpHHRpXLkfnVwaha3TmKBXEyYaRSpG3PbPQ/hT6qUUmFxSTsO3rjjIrGuruaxQ3NwxTkAuFLBR7gdq2OnSg4YEEZz1B70mgMs6zEDBuVnSYErLGNyjHrjoKoauyTDzVB4+UnpmrlzoMHMlmBA/JwuQvPXGOhrnp49f8AtP2aS1hnhU/61sqV96znexSI7JZTehY2KBlPOQO/X+ddRb35w0bOZWj5LFD09yM8/hXMG2v9xwbOE4wWBLnHsKvWt9Lp8RiikMjHlmYdT9KineI3qdIl2rKGKsqkZDnG01lanrhjUxW33j/Gf6VhXF7cXM+ZpWb2pJTllPU4q3MVh8rmUq7cseprj4yIr8RL9z7vPoM11uflH1rlvsk6ajIzRkp5rYPtk1UBMisWMF40Z+6SRWg8KsT6097eJcPxkHNRTXsUI+ZhViI5EMY4rL1BWmicv9xVLEVd+0ibL5+XtWfqVwGtJEU/eGMihbjPP7RfN1JQezlz/Os24m826mcNgmU4+nT+grory1fTrmWfaQrQAqccZ7/y/WuWSGWRWKRu2PvFQTit466kSIm5Jrc8QJb2l9ZLbxKgS1iLFR95sZJPvWIVIbBGD6VY1CYvcqWJYhV+9VvV3I2LUJiJuJpCNpc496pSBWLMp2gnpUBZjnjqc0gVzyAcUloNyFxnvU1mZHnEES7nmIRR7k8VCysq8jFXtAz/AG/YsACRMpGRnpSlsT1L8x8m3KSBkmjYxlWGCrDqDWK58s8Hk961tQdpftUrZJe5kYMe5zzWK5yelCKk9BorRaQ2t9FII4n8tVIRxkHjuKzhycVZu2Ium2nsBx9KCOh7n8CtOKajq99IhDRxpAMjBG4lj/6CK9reQY6ivBtM8S2aPvhintHPVrOcrz/utn+ddTa+LLlsbNYjc/8APO+gKN/30uR/KuhXN3TZ6YhBJYngdajlYBTIxwo/WuVi8TzrAPtNoPKzlpraQSr+OOlbAvYrlVuGJ+youUyMbjQ2Z8rFupTFbNI/DPwg/rWfBHsgkuX/AIR8ufWnymW+nWRxtVuET2pmqSLlLKI/KnLkdzXNN/aKXYyZn+VpDVa3jLHzG/i5AqxOnnTLAvQcsfanKQI5ZBwqjArke5oZFxrMcZeFZWR1Yg8ZFUjBLcAmFt+ezHaK5+SYyXTOTy7k/rXVW67YlYD5WX9ancZLa6XL5eJJkiY9k5/WppIdWito4pGgu1HG9W2fn1qC4jcKJEYjI5q5ZtutdpycetHKmIhjS/AAW1gTJxmSX9TgVuJZl8SNqYLLE6iPohJXH1rMuTuj2knjuKpOzcMCeO2aSikM6+1mMToZrm3ZfIVGKMeXBPI9uanl1azgALzDB6cVxLajBpy+bdb/ALOCCxU44Pb6+1VtU+I+hQMFtNHV1UffncAn+dbRTauTY7dvEViDhC7n2FQS+JFjzttz9WNecr8Rry+cpY2+nxDsWb/EgfpUF1rWstHvuNasrdRyBCFJ/JRSbKUbnpZ1q5lQmNCARn5Vzj8a53VdYkiDSXdyqqDgK0oz+A615XqOsX17Iyx3c90AcF5nIUfhmqe58fvJCW7lRgf1p8oNW3PW9PvILt90M6yADOFNWyc5ryPSdUn0zUopw2QrZ/3l7g162SpUMp4PIrNq24DBy+RinN9+mIeal6uKkQMAIwc85rz/AFzxqNM1q6sjbOfKfaWHfjOf1r0G5wqKOnNeK+Om8nxleqV+8I3H4oK1pJN2YMsX/jyabiGJwPU8YqO11yGdt9zOzv2XoK54PGw5Xmuo8GaPpV1fi/1xXbSoc7kTgyt/d9h6/lXQ4xFqaFrdyXzbLSF5e3yDIraj8P3LIr39xb2cIOT5jjP5Vjav4kto7gxaJZy28KEgJCMkDPA44H86wZNTlnmzciZX7+Z1P51jZt6DS6M726l8HRIq3QuNTeMYCL8qH69KqyfEhNNt2sdG06xsIWG0xxRB2Ye/H9K4V5J7t/LQhI+7dfzqxBBFaoPKUbu745NO3KNpdCvqiw6qWuljEc6OPMUJs4PqtYmqKjahMQcYIAAHtXRFWe6Of4kAJHXrx/Wuev7WU3k7BGKlzjArSD7mc1col+KBKwNTLZyEEspX60x4CvTmtbmdpETsXOT2rT8NZHiCz/3j/I1lkVreHBt1uB/QMf0NJiS1Emk3o57b3J/Os12yemKs5cRZ6K5OahKdaEWyFfvjjvVqSQyXcswVRlicAcVAFw4pVYqxx3oSIWh6fHZ2d4zGeY20p5EqplSf9oDn8R+VWik8KLG2oxTx9ihLkfmBiqSngVLuzjOBxjgYp8yttqdSm1oaNtPZxQbWN2J+0okUj8Vx/Wuq0nxDNeJDbXE+VtU/1f8Az1Hb8R/L6VwwyDUsbSL+9iD5jwxdR93nA57c0py5kTe57DbXeENw23eV+RRztFU2fZG8p5LHg+prk/CurLNbyWe47klwxJ5weR/Wuv2LK6r/AMs0/U1zNvqJqzKuxo4cf8tpv0FUtYuRY6NcMvULj8egrUJG55iOcfKPbtWHrEkP2VknP7kDEgbowPH9ayegHmyapA17tEqnZxgHvXd6RqEFzbBFkVmA6Z5rlE8D2UM7SQPIAwIBJzxS/wDCPXelzpd2cxJQ52+vtilzR6D16ndS7hAwI47UWj7cj1FVbO/W/sNwyG6Mp6qfSprY4lA9adwLsnKmqcjeXGWJC9sscAH3q6/Q1z/ihzFocpBx8wFUu4WOO8QatLqV/sR2+yxErGOh2+v1PXP4VlbiqlUwqnk470zOWLZ79MUFvWre4CMkUw+eJc/3l+U/pT1MKfKIWJA+8z8fTApmSMUpHfPXnpQ0NSYpYkccd+BjFRn3NPHC5xSFRmmrCIivzqc+v4cV7IXS3sY3ldUVEG4scdq8dOd4GB0P9K2p5rm/kD3Fw8jf7R4H0FZ1LaDirnSp4207+0pLV0mCKMrKF4I+nWrg8beHY7wW8uoeWxGQXjYD8TivPzbbNVfJHEQx6VleILF5lE0a5MSbmI/u5xSiot2YO6Vz3B5YryNHhlWWNhkMpyK838by6Za63J9sVpnMafuwO2Mc/lXXeEv7PbRILuwk80PGqyHOSrAcgjtXnXxNx/wlb5OB5MXP4GqpL3rMmTsZlvDo+oTCK2Msbt0XP+Ndl4hkg0zRrDQNPZNkcYkmmUfM7NyM/wA/xrz/AEC7ktNScQhcyxtGSw5UH0PY8Y+hI71vTyF5iWOfTNbSdtCYu+o1FCIFHAB4pSdww3zDtkZpD06dadjHWs7liEgn5QAOwHQUgHFO7UoHFFwsRRj99nvuC/kM1XkGWZiMZOf1q5bEjEgJzuPT8QKgNiy/fJc+tHMk7MLFGWMOflFVms5H9cVr+QwP3aeIyD8ynFV7SwuU56SwcDO3n0q9oNtt1EkjG2Jzn8K1fKVunX61JpsPl3Mx29IGP6U1UuhcpyuCUCgAKDkD60xl68VuS2sWMkYqq9iW+50rRTRNjMCJvBcHb6CmGMVpfYWJ6cUpsW9fwp8y3Cx2Kkk/0qUGq6mpVNTzGtiwD7UuSFZQeD1HrUamng0JiH6LP9l15wGx5yhse4r1SCXdbL7jmvGppDb6jZTjjD7CfY16lp10s1lHtcdOTnoB1rGWjDoX55cRk++B9e1YXiW+s7O2jS6IbLD92BknA9PritCS6jBFzIwS3j/1W7jce7VzO3+09de7njDIFCxhh25//XWM2Oxctb61vI1NuSAh2sjcFauNjvWHCqJq120aYWRyQ2eoGBWuWyufpWLGZ9639n3S3UYxHJxKo7+/1rTt5Fdo3RgQSORWZqpDW7L6LWfoF9tvlsZGOCcx/wAyK0gxHbtzmuX8aOE0PH96QCuo7GuP8eSbNOt1/vSE/lWqEcEhxnPepQM8VAg5UfnU+AOK0fcEOwAABSe9O9KDyRSGNOTgYx60beMU7GDk9qQEkdKQiuzBXLHooyTV+GctwWwPas+XneCvBXGDUdlLujKZyY+MnuOxpzjeNwTs7G/HJEuCPzPei5ubdYiJflV/lxjOfwrJa5YHYhwfX0pUUtyxJ+tZKm92bRi5FrwrdyeHRchCzlpcrj7rqBjkVY1S9OrarJeyjargAQn5kGBjoaqKnOafjAq27u6NoUYroRrBaW7+akMaMTj5VAJ4P+FVVGZDn86kuCTdRjqFQn8+KZGCVz681etkc9W3M7D+nSgniig9P0qTMM8d6RjtQsegBNL6Ypk4JhYDvgfnxQFyzaJttk+nNTbiVA70iOBCBx60nmZHr7Vi9WaIYRjIP60duopx5PUfnSYyTwAfShMLDCoPy4FADRkgSMu5Spw3Y1J09/pTTk5PGPenzdhWRF9mQcn5veplhjyBt/pxSDqecc9TTwDkYGfak5MdkBtkxx/+qoHswckDFWwdvGaGcAHj8PWhSa1BpCI1ShsCsfS5rGfUo7V7m5dnkEe44UZPfvXZy+EZo13W15uH92Vf6iu/kdtDLmRlK2akDccUXVjfWshMlkdhJI8n5gPw61XSVX+63I6juKlqw73IdTUtauR1Qhvypln4z1Qkadp9krsG2gMSd34DtVmUCWIqejArU/g3yEUt5SiYkq7Y5OP/AK1Zzdohqbdlo19cTLf61fvcTlceT0iT0AA9K1Lh1gwUGCckflj+ZFSeaJBnPyZxxVW4ZpHyBy3yqPQd64pNvVjRXgfDyxnkq5IOP73IFW/P2phup7egqF5MYxjA4Qf1qnc3kVrG0krgDqSaErjJr6b/AEaVjxkVV8LWxuNRlvSMrF8iH1Y9f0/nXNalr0l1mO3UiLpuPf6V6D4MgtrbQ7SGVttzJl3Q9ck5/litlCyuyb9jfiTenQ5rh/iMdgso/UM1dffeKdC0otHPfQiReqR/O36V5t4w8Q2/iG8iltFkEMMZjy4xk5J4/StYppiaZgRH8ulTA1TaeOA/vDtbsByagfUZTnyowo9W/wAKtxbYI1M8dRUbyohzIyp6biBxWLJPPIf3krEegOBUewHnbn601T7jNl9StUwPOB+nNMOrWxGAXP0U1npHxgAYp8kJWIsO1PkWwWZbadHjdoyxXjlhg547VUEoSQuh7fMPY9/8+tIzbdOz3Zs/5/Ks8TkSDAyO9NK5DZtWUwkkYN3PFaqjA9K5u1P7xmTIUHv2zWvb3m4+XJ1x+dKcOqOqjUVrM0F68nihjx05pgYdRwKTcGOOPpXPre513Kjyb55iO2F/rTlFRRYO92Jw8hbj8v6U/BAG5iM9hWrOCzm7oe0ijqeewHWmlnYDair6l+v5UgYL90YOKjknVBknGKFHUv2aW5P5e5W+cs+OB0H6UyYKk9vEB82Nx9c4FT+G7Ua14jgsWu4rVXDESyfdBAJAP1PH41C8bHxFcRnrABGccjOecUnFxfkZycb6EzLx8ppm4jtxVplBBLZ9jULJ6cjHFYxegNDQ+MZNO8zGADyfeowhPsKAuBjp703Zgmybf0ycH+VOPfHIPSolBzxyfrUq4ydwyal23GOCjbn0pfQnOcc0oHTvg0pOBkcH0qRgPcd+M00nHWnHn27etMYn+H07UJAf/9k=", "path": "images/5pts_ADE_train_00002341.jpg" }
depth_point_49
images/4pts_ADE_train_00003805.jpg
ADE_train_00003805.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 76 y = 160),Point B is located at (x = 12 y = 173),Point C is located at (x = 232 y = 198),Point D is located at (x = 111 y = 215).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_44><DEPTH_19><DEPTH_25><DEPTH_44><DEPTH_72><DEPTH_81><DEPTH_25><DEPTH_64><DEPTH_25><DEPTH_64><DEPTH_3><DEPTH_49><DEPTH_29><DEPTH_70><DEPTH_63><DEPTH_50><DEPTH_39><DEPTH_30><DEPTH_49><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_70><DEPTH_59><DEPTH_66><DEPTH_82><DEPTH_5><DEPTH_59><DEPTH_49><DEPTH_59><DEPTH_74><DEPTH_3><DEPTH_31><DEPTH_67><DEPTH_17><DEPTH_6><DEPTH_3><DEPTH_29><DEPTH_29><DEPTH_85><DEPTH_22><DEPTH_38><DEPTH_35><DEPTH_40><DEPTH_59><DEPTH_67><DEPTH_70><DEPTH_67><DEPTH_31><DEPTH_9><DEPTH_26><DEPTH_75><DEPTH_7><DEPTH_81><DEPTH_11><DEPTH_35><DEPTH_30><DEPTH_2><DEPTH_3><DEPTH_40><DEPTH_52><DEPTH_12><DEPTH_77><DEPTH_72><DEPTH_11><DEPTH_33><DEPTH_15><DEPTH_2><DEPTH_29><DEPTH_41><DEPTH_98><DEPTH_42><DEPTH_54><DEPTH_81><DEPTH_30><DEPTH_73><DEPTH_36><DEPTH_63><DEPTH_40><DEPTH_71><DEPTH_98><DEPTH_94><DEPTH_39><DEPTH_82><DEPTH_31><DEPTH_60><DEPTH_63><DEPTH_58><DEPTH_3><DEPTH_56><DEPTH_55><DEPTH_23><DEPTH_14><DEPTH_66><DEPTH_43><DEPTH_74><DEPTH_74><DEPTH_29><DEPTH_74><DEPTH_END><DEPTH_END>. Since point B has a higher pixel value on the depth map, the answer is that point B is closer to the camera.
B
long
4
[ "C", "A", "D", "B" ]
<DEPTH_START><DEPTH_44><DEPTH_19><DEPTH_25><DEPTH_44><DEPTH_72><DEPTH_81><DEPTH_25><DEPTH_64><DEPTH_25><DEPTH_64><DEPTH_3><DEPTH_49><DEPTH_29><DEPTH_70><DEPTH_63><DEPTH_50><DEPTH_39><DEPTH_30><DEPTH_49><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_70><DEPTH_59><DEPTH_66><DEPTH_82><DEPTH_5><DEPTH_59><DEPTH_49><DEPTH_59><DEPTH_74><DEPTH_3><DEPTH_31><DEPTH_67><DEPTH_17><DEPTH_6><DEPTH_3><DEPTH_29><DEPTH_29><DEPTH_85><DEPTH_22><DEPTH_38><DEPTH_35><DEPTH_40><DEPTH_59><DEPTH_67><DEPTH_70><DEPTH_67><DEPTH_31><DEPTH_9><DEPTH_26><DEPTH_75><DEPTH_7><DEPTH_81><DEPTH_11><DEPTH_35><DEPTH_30><DEPTH_2><DEPTH_3><DEPTH_40><DEPTH_52><DEPTH_12><DEPTH_77><DEPTH_72><DEPTH_11><DEPTH_33><DEPTH_15><DEPTH_2><DEPTH_29><DEPTH_41><DEPTH_98><DEPTH_42><DEPTH_54><DEPTH_81><DEPTH_30><DEPTH_73><DEPTH_36><DEPTH_63><DEPTH_40><DEPTH_71><DEPTH_98><DEPTH_94><DEPTH_39><DEPTH_82><DEPTH_31><DEPTH_60><DEPTH_63><DEPTH_58><DEPTH_3><DEPTH_56><DEPTH_55><DEPTH_23><DEPTH_14><DEPTH_66><DEPTH_43><DEPTH_74><DEPTH_74><DEPTH_29><DEPTH_74><DEPTH_END>
76
160
12
173
232
198
111
215
null
null
25
138
3
45
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCsRUbCpmFRsK8FHuMhIqMipiKYRWkSWREUEU/FGK0RDIGWmhcKx9qmZaCvyBfU1otiWM4SDGevvTOVVAB9adO3zogpke/buLfXNRbS5Vx8x2KR6c5oghztTueTTCS8qocYGM1pWcfLSkewpv3YC+KRbRQqhR0FToKYoqdBXK0a3JY1q7CtVo1q9CvSsZIZdhHStKAHiqdunTita3izis7ESZctiRitSJ+lVYLfgcVcSIiumlGSOao0TiTigy1GVIqByVb+VbOTRgoJksjEjriqMwXPJz9aWWc4JJwornNR8RRWc6qN0uegX/69clSpzaI6adNo3UCbquxMAMA1ytpr8Ny/zBocLvw3PH4VsxXPmIjoW2PxhlII/A1nCpyOzKnC5q+bg4oMhqG3DSA56g4q2LZiOldkeaaujnlyxepRlckVQnya2ZbYgZIrPuIgBWNWnJbm1OSexhz96zZx1rWuQBmsq4rn5TpizNmHNUZBzV2Y81TkNaxQyrJVZxVmSoGFbxJZVcVA6Z6CrrJjrxVaVwMqo5HYVSl2Fy9yq8aqCW59qqTTYOEHbpVqVGbJYhfUe3aoDCQSVHB61ql1Yr9EZr5JO7nHOB60xI23Fs5HvxV9oUTnGTVeQs3HatU77GbVtzqyKiYVYYVGw61xI6CuRTCKlIppWtYksiIoxUu2jbWqIZAVyaVl+ceiiplTLCmP91j6mrexPUqY+Z3YHOPl96FBCoT2JOcVZ2EYUqMd+aa0Zc7ODk/pS8g8yC2iLMznq5wK1412KEHaoIogrZA4UYFWlUipnq7FQ0VyRKsJUCipk61k4lJlqOrsFUYzVuJsGsJRKubNsRkVt2mCRXN28uCK1ra5xjms1ozOSOohxgVdVFxWBBe8cmryX3oa7aVaC3OOpSk9jQdF21RleFujqWA6A0pla4UoGwSOtSiySO3CjdwOSTVTftW+RaGaXJuzHlliEhgZl3YyBnnFchrFsLzEtq5Mhcx/OSSR2IP511OoW7tdzrFFklQpIOCB/hXO6sl1YwRS2lsd+3dG4ySQRwfz7V5U7p6HoUmnYWwSCytHec+ZfHKrHgnb7eprd0W6S9toygJKAADHU461S0y21Qxfa0tInnfmQyPsJHGAOKk09zBdzx+UttIeSgPIPPGeh65ojfSUgm73SOst0WKPk+5NI1/GhPHA5yTjiobaUzhVIxuHIz2q0kaq7gKNuAOlenTqSSXJsefJJP3hJ5lKYHesa7mAB5p9/O0DlCeB0+lYNzeZzzXNWrubOmjSsht1MCTzWRcS+9PuLjOeazpZc1gk2diVhkslVHap/LeTnoPU1FI8UWBnLVafRDsQlSeTwPeoZJETgHn9TSPI8rgAFVbv6VFt/ekhOAfvZ68Voot/ES3bYildm3DJHpg8/wCeaijXaMheTzk9qsMqr97Hr9aid8/dH41stdiH5kRiVefQd6hc5+6O3WpiMnJ5ppSrSXUVym8eevJqBovatEx5qMxe1VzCsbxSomSp92aDg9q5UzYplOabtq0UBpDHmtIsTK22jbVjyqPLrVNGbRXUYyfamGMnA9Kt+VR5Oau9xWKQRlO49aVVKuCq5OOlXPKPajyz6UXaCxHC6qv3T+VWUaNu+DUJjz6jNBhzjaBUNJjuW1jDchhTxGwPSqmx15UsBipY5pVUN1GcdKh8w9C0uRU6Niq6XXZ0qzHLbv32ms5N9UUWI5cVciuMY5qmsIYfI4NPEci9sj2rJ2YGvFdH1q7FcnjmueR2B71p6cFmnCSEhcE8UuUlo6zS1aSMv15x/jWsVyuDWNp9/b2pNo+VAPDnv9auDVIeTzsBILdq9PDTpU6fvPc86rGcp3sVtVj8lDOGCkrtJPesDW9QmtvDumfZh++3qhIGcLtOf6Vf1nVxNblY8bApYZ7ntXJavLPeeHntouWzgovVlB5A9yM159ZwVRqGzOqjTfKnLod1HcrFZxR5GVQZ9zjmubuJQdZnlywAZT8q5PTtVazu5YtPt45nJkSMBsn2qnb3bSX9wWPAfGcdBxWNWTkvQ2pw5bndaGm613pnbnAJrY2jGK5DTNdWzR49u9OuScc1p22sTXc4CY2k84BOB/KvQw1ajSppPdnFVpTcm+hH4jthHbC5DH5TtYex/wA/rXET3PJrc8Qy6h9pMM7EqfmCg/LXOyrFCN0rAn0rjrcjleCsjsoRahqyE75Tx09TTXMNuMuwZ/Q/4VHNeO7bEXYvTPeqJVpGDYJPXJNQoN7m1yae5lkJA+QepNVcMB8rZOTlj6UsskanMhDN6VDJLI4+UBR+tbRj2E33HZWNcM3196ge4J4UfiaaFJ5OSfU04RetaJJbk3uRYLHJJJ96cIzU4j9qcFp8wrFfy6PLqZiqjJIAqqbjzGKwo0jf7I4/Oi9wsOKgVWmmjTqwz6VcTTLucbppBEnoP8asRWNpb8ohkb+8f8alziirMYLpB1DD6ipVnjbo4rKTUbeQYEqc++KmV436EEVlqtzWyNMc08CswHB4JH0NTpLIOjn8Rmi4nEvBaeFFVFunHVVP6VMt0p6xt+HNWpkOLJxGKUQ5pqzwn+LH1GKmUq33WB+hq1MlxGeRS/Zz6VMMipA5HUA1SqE2Kht89qT7N7VoLIp6rUgMR74qudAZXkOOlL5bDqua2BDGw4Io+yj0o0C5j+WvGVxT/KDZII59RWmbT2qM2g9KVguUvLcMCuR64NTrczxEfNkZwNwqT7OV6E0uxx1GahxuO5Zhu9zbZI+n412Oh2MRszP5Q3PkLkdBXGwBTIodSOa9OtbdLa3jjU8KoAopYZ1JW2Rz4ipaNu5ha5apHB9rHyBR+8P9axR4q0bclsbZ2ZyFMzuFOfXFdlqawtp1x5rYQxsDj3FeG3MVx/arb7U7VO4mTgMOnX3q50fZSadiaL5469Dr9YuodOc2txcAytLtQAE5TGc/rQyx+TLcpINhkxH6MGzg1VltJBcW9tcRyAzxmSB2IKjAyRnGc9fyrUluLBPCETIHdYpSGaGHIBU8Ak+/vXNKndaG6naxjmY596qXtz9kh8xdxdmyVVd2Qf8A9Va3h670251WJZbWWXzCdoYrg/hu5rVm07T9T8RT2sZMTWo3GNk2gA+nqMirhBSQ5VOV2Zg2FzHeyQAo8IIAcnowAzuU+hH61PN8QpbO/wD7PtIbdbaOTywQpbIz1zn8ajnuo72/mS4SJYYXWOaOJ87Y84ByO+Mfiayv+EV1G5u3vonSK1j+65TAYKABhT94kD9DWkUlch2lbmO91Mzav4ea9QDfEzFXUcMg6n/PpXASr5jngsOcsT1rp9T8WxjSDp1rAqRhPK3D+LHXA7f/AF64yWeWXjO1fQVHLG94u5VJSUbNEs00SNlvncdAKqyXMkvA+Rfak8unCOqskaESR85qZUpwTFOJAHOBSch2IwgpdoFG5nOI0Le/anizd+Zpgi/3VqW+47EEk8cfBPPoOtIkV3cnEUWxf7z/AOFXooreD/VRZP8AeapTI7DBOB6DgVDqJbDUSmmkwqQbmVpW/uj/AAq2PLiG2KNUHbjJpkk0US5dwB9cCs+fV40GIgWPt/jU3lMaSRffJ5c/i3+FVpriKMZZs49TgVlPeXMx7IKp3U9tbjdc3ChvTPP+NVGk2xtpFNZ9Mm+7dR5/2wP64qZLSJuYpEPujEf41x2KUZU5GQfavQeH7MwVXujthDdJ9yaX8w386es17H1KN/vIR/KuOjvbuL7lzKP+BGrkev6jH/y2D/7yis3h5eRSqI6pdSmVsPAD/uOP61aj1SID95FKnuU/wrlY/E9x0lt4XHtkVbi8SWh/1tk6+6MP/rVm8PLsUpp9TqI9QtH6TAH64/nVlWifkMp/CuZTWdIm+9JNH/vpn/GrcUmlzH91fQA+52n9CKxlTa6MtO50SFh91yPoxqZZJR/ET9Rn+VYsVvKRmG53D/Zlz/MVMv8AaEfQlvqoP8jWe3UdjYFww6qv4HFPEynqrD9axxfXaffiU/iR/MVIuqD+O2ce6gN/Ki8hOKNYSp2cA/lUiyyD7rmspdUsm4aQofRgR/Op0mt5OUlQ/Q0+eS3QuRGkt5KOuD9akF8P4k/Ks0Fh0c4+uaNz98H6iqVUnkNZbmB++PrUiiN/usDWMHI6r+RpyyAHqR+FUqqJ5GbaoF56mtewuLiQhPtIjReWaR8KK5Nbl1+7Jn8ay9YmdSbmTzWXYAojXJDA5/DIJ/SqTUtCJQ0O61n7TC5jkm3qejK2RiuKnuZbXXma4QS21yFhZS3AJPynHsf51o2uqvcwkyvOTu+ZZUxg+x/E1Bf+ReKLZwNrnJOORjvn1oTS0Eoux073cUunSXpjMt1HbskC9goXPyr26de9cJoWs58MXelSOf3geaIOO6nJ/r+VLZa7fabd2wik8+FSVVZhuKgLkHjrnnrXGG6+zahJsHyMWI29g3YVfs+aL1JirM1rHVmj1GC7yU2SgLwC2Pw616UmsWcN62pBpTPJfLHKT90oyhR+OMn8K8b8uRjGY2PytuwT0rsdK1CXUTa2YwrQztc5HILAYXPsOfzocEpXRU03udte6RpyX896m9WlTMyq21TjuPyq1a6xp9tZwmaZZ4FHliEYK5PBLHn6Yrl725P9kfbZppZbpZxGQxOwgg5+VSB2JpbfTNRud9taKsMT/O7unOO2D7H0ovbVEcl1Zsi1a6sr24hmsoRAJY97xBshDkjGO3SqIjqwNPnsZHhuZjNMpwzHHHtxSlQKzlKzsjeC0IBHQQBSyTBeBVWSVm9h71Fy7ExYdiBTQ0YPTearMwUZZvzOBUZu0HC5Y+3AoHY0RM3QYQe1NaVIxudgPcmsuSe4I4IjX1rLn1GygYma58xx2U7jTVNyC6RvS6vCnEYZz7Cqsl9dzDjEY/Wuan8R4BW2twP9pz/QVlz6neXGRJOwX+6vA/SuiGFfUh1UdNcXdrA5Nzc7n9M5NZ8/iOJARbW5J/vPx/8AXrnaMV0RoRW5k6jLlxq17cEgzFFPZOKpEk8nJNLShc9q2SS2IbbACinYpNpouXYSjFLilANMVhNvNOxQuc8gj2NP2EgnHA680rjVhuKUUuKOKQ7D0YqcqSp9QcVci1S+hx5d5OvtvJqjTgOalxT3RSZtw+KNWj6zrIPR0B/lVtPF05/11nBJ7jI/xrnlWlK8Vk6NN9DS7Ooj8UWT/wCts5U/3GB/wqZdW0WY8u0Z/wBuP+oFcjtpuOaj6vDoF2d1DLYSf6jUUB9BKV/mauIt4BmK73j3w1ed4pyu8ZyjMp/2TioeG7MOc9FF1fx/ejjcfQj/ABp66mV/1tsw/wB1ga8/i1XUIsbLyYD0LZ/nVyPxLqUYw0iSD/aQf0rN4WXQfOjuf7TtSPnLp/vKalWe3njZYrlQSMAq3SuJTxQ5/wBdZxN7ocVOuvWEoHm28ifk1ZvDTXQOZHVPd3abIgjSyJ/FtJD5569+9OglljLzXMIVCpzzlgexGPyrlZtRtCsMlnclXSQMVbK/j+B5rajneTP2fUI5B6blNOSlFJ2ISTbRamt2S1KxmXlSrAfeI6jHuP5ZHeuGeIb2aQn5CccYz/8AX9q7U3F8g+aNHHtkf41SvLa11Fv9KtWicAnzIyATgdPeinVadmW42Why0MkrzKEQegDHj613GnWUVnECmTIyjfIRjd7AdgPz71m6fbaTp3KBhJ/fmU5H07CtQXMcg/dzK30YGipWvpFCUHuzc1M26WkVhE8U9s6LJICM/P16gjGOBU0niG5WGSB1jBZcErkbcjjHvg1zbSELktimvqCGIR/ffcWyByfx71Km2ifYq6uW5LgsSRkk9STVeRyRlm4qrJdFV3OyRL6ucVmT67ZRttR5Ll/SMcfnSjCUtjXRGo8yjgDJ9qrySS4LErGvqxxWaLnWb0YtbRbZD/G/X9f8KT/hHpZyH1C9klP91TxWigl8TFfsMudVsIT80xmf0Tn9arrqeo3Py2FjtB/jYZrUh0/T7Qjy4FLDuRuNWy8m3CJj68VfNFbK/qTZ9TmdQ07UvsMtze3WQgB8sH1OPpXPYrsdXvo/7NntZG/fyYwApxjI71yfl+4rroSbjqY1LJkVJtJ7VOEA6KacpIPQflk1tcyuQiJj2qRbcH7zYqVUaRuAx+tX4dNuHUulu7KBknbUuVtxpNla3t4A43KZPbOB+daSLGq8CCEeqruP51VVgDtx9M1LJFMEZ/LfYoyW2kAVDbBGEDk09omVl8zjcM/hmkSQpIHQ7WHINatubXULyJp5o7djGBK0jcMw79O9VKXLqU/e0M0QgoxUEtkAY781C2SpA610x02xSDzxqFsQsqnCOC4AOeB+FYN9cpc3jypCkSMThUGOO2fephU5noNx5VZjLSJ7m4ZUSQ8An5dxAx7VavtN8m0s7+GRnilysi7eUZTyP1rrvhoUuPEs0M8qQB7UgZYLuwRgZP5/hWTqF1cRLqlkjxSWyXcjbl5Gc4yD71PtXz2CMLxsc+Bk4p0lvLGN2Qy9yOx9DSHgbsdfapILx4I5W2q2APvduat83Q0dupXBx1rstM8ESXlpHLNc+TJIMhcDj6+tcbc3fnXCylQACAQO+Of5V65Oj3MFpLZuyBwMSp0weQMfl+dc+JqTglbS4UuWTZ5xfadPpl49tcLh1PUdCPUVBjNdp46txutJDjzOVY+vA/z+NcYXUEqTgirpT54KRrotxCuKbtqQ/dJHP0qOJw5KkEN7jrWhLaTsGOPemMMCpipA9aiZTuCgZJ7UIUhlFOMbGQIiknbnA5+tRPvWZYipDMe/pVKxlceATSn5etRI5F5JHvLBWwKtRwm4vkt1+Ys23jvTtbcSlfYc0bJGdwwRjioc4rQureSPUfIIbKSpGSemce/+NUJFKEk9MmoUlItaEsV7dQ/6q4lT6OaurrupIg3XG9cg4dQelZakE81K53Yx0FDhF7oq9zVHiefH722hf6ZWl/t+0b5ntHRvVSDWE4xULnmpVCm+gpTaOgfXrdRmOOWQ+jHAFVpvEF64KxbIF/2Bz+dY+cGng1SoQXQhVJMtQs91fQid2k3yKDuOeCa9Chsba0O2C2RcdwvP5157Y/8AH/bf9dV/mK9VijJuXx6Vy4n4oxRrF2TZTMUrjoBUEltyN7ZyfWrpvLeS+ns0lDXEAUyLjG0HpWNqGs2dtKYnm/eK2NoUk/pWap2dhc7kXWhjQ4UZpHXCHC/lUB1C1iUPNMiZGcMcH8qVtTtZYGMUoYBthwD1Pbmt4pMxldHOaqQJJ88f6OP/AEMVR0/Sri/RmihZhnG4cD86s60/lzShsZMAxz1+cU7QfEdvpFpJC9qsztJuDu5AXgdsc9Ku81C8Fdlrl5rTNCDwjLKFE8scYHYHcf0plrotvH4lTS9jTbgefu9ATj9KSTx/qOSLeOG3HYxx5P65rnp9QuLm6e4diZHJJZjk1EY15X5nYqU6K+FXPRzZaTphIlksrcjszBm/LP8ASqWqa/pkVhNHbSzTzYwMJtjAyO5xXnzO8gAZhgdlGKPl/jYn6mpWEV7ybZTxUl8Ksbnhy+srW/e61F49kcZKRlSxZ+w+lamv+KbDVbIW1vbz5CgBlUIMj/JrkftFvH3WmNqcK/dBNaywynUVR3ujnVTlVrlJH3D/AFbD8/8ACkaUr6/iKmS4uEGBKf51FK7t1OfwrrsZOLRH9qPpThdf7NQ7MnpRsquVE3kWUvdjbl3KfVTg09b0BCm5grdRng1T8vmk2e9LkiHPNF77TGRgtwOlSx3SKu0MuD6qDWZsNGxvak6aHzt7mmyW8o+8AeuRxXR6H4nu9ItRaxsJYh93eeR7VxQVs08Bx61nOipqzLhUcdkdlqeqz6xOJJAFVRhV3Zx6msc6fM0jPuQ56ZJrJRpR0Yj8auW8kuRl/wA2qFTcFaJr7Tn0aNKC0lUqrlQM4LdhV19OcKHS5tZAARtDkEfmBVNXlCjb5bf9tM/1qZDOBuMf5OP8alqTNBPIUonLq2fmBHHb/wCvWfdoVAxv474q5JdyKT+6f88/0pq3Ukg5Qgf7pppNCbuRaTGTqLLuyBATz6ZqzdwhL4zlk2xQ7ufXNQSXSg8oc/TFQvcQuDvTP1pWblcle6rFzVNFt9LhtLu2uvtAuWbzMkfK4xkY645qpaXB/tRWMrpITgNFwQfao3ubeThwTgY554pqyW6tvXgjviriny2lqZt2eh0Ja4W5O+4SfbMz7JRjL7doII6/yrH85bm4htTHGu4rHlfXkA5/Gg6qzNkzDOAOR6dKia7VrqG4Vo1kiII2rjP1qVTsV7RsV7SS2hRpgVkdmwM9gcfzzTc8VPcag9zbxxOVYIzNknJJNUyxpx5n8Q4yimLIGbG0VJDp5bUIIJWXbL0Kt0p1sbYPE9wzHDjegHG3Izz64zVoTWMWt2ssLAQJne+D6+hocmtEO6bux2raPFZWxkikDnfs61iqecHqK6fXb/S7qOOKK6LqZFLlUIIHeseSbS4IMWguWn2ldzhQpznPqehpUpy5dbhJRUr3G2B/4mFr/wBdV/mK9ciZVnlY9ABmvF47kxSJIpAZCCOM8ir83ibU5yxa+lG7qEO0fpUVaEpzUl0D2sbNM2vJ1B7+6MUrJFdOD58q4LDnbye3FZd1BIN0kmpwNMZisgUliR65HUVkyXbSsWd2cnqTk1GZmP3VNbKnLch1aaTSRp+anmtundk7eVGFz+dOi1ee3VljlYhm3ZkIJBwR/Ws1I7mT7sTH/gJNK9lcD/WbU/3mAqlTXUiVeTQ+4uhNKZJpNzmq5uYx0UmoZY1jBPnRs3opzUAYk1ooKxk6ruWzdk9FFMa6k7YH0qNYmNWIrXdin7qGlORB5srdzT47eeYnCk4GT9Ktrpt9JIRCoC54JIFa1pol8YGjYQh2BG8sx/SolVjHqaQw85dGYqac5GXYgfSnR2AYnad+PQ109t8Pbi5t3nN+r7QSEC/M2OvXP61JbaLFZRFVdpOBgtj+lYvExezubU8K5Ozjb5nLbQBUTirLDINRFPWtrilEg296MDNSkdqaRinczaGYBo208LS4zTuKwwLTtlOxzinAADmlcdhqoAeQKhnura2fZLJtYjONpPFWOBT9Lht/+Eie/vDafZrG0MzfbI2kiLk7EDKFYkb3U4wcgHtTiruxNSXJG6K9tPb3W7yX3bcZ4Ix+dXEjHpVf+z4tN8Q6tbW7brUSK9u3PzQuC0bc+qMp/GtCNckVE/ddjah78VJkkcKkZFVWkO9htHBxmtGJSMkdK6TwJZWl5Hei7t1lAddoYnjOc9KycrK5vVvFKxxBlAOactxt7n869ik8M+H5B82nAH2kYf1rKvvCuiR8x2jjP/TQ/wBaPaLsc6qM82SRZcgE5xUUkJPGa2NTsoLTVzDbptj2AgE5PNUXQjnvTUuxulzRuzNaA9aaYTirrj86RYt5I7YrRSMZU0UDCab5ZFXdmTgUxlwcVXMZumiBRjqDUisOgLg0u2lVelDYKmNcSHo/6VA7yJ1Oa1Vi3JmqEy5c1Kdy50rK5XVmal+bnJJqRE4p23BqrmXJoVgWZgFRiO+BzWjb2qOAfsrHnHzy4/kK0VXcwbHQY/WtfwxbLca7Zo8YaM6hGGyMjqOPxrP2nM7IUqfKnJmNFYO7BY4LcE8DCM5q5JpF/DF5jiaNM4ykAUfnivco7G2j1KIx28SfPn5UAqp41UvobqegfOPzq3FqLk3sZRmnJK255Tpvg7UtWiMsUNzLH03PLtBrM1Xw6dK1N7W6t1RxGrAZz1J7/hXuXhCMJ4dhBXPGf1Nee/EeLb4mVwMB7Zf0ZqJQtS57jhLmq8ttDhk0+3VstEh57ioNSs4Y442SNVJPYYrUnTbBv9Cv86ra0uwW6DuCa5ITbktTt5ElsZCRjGMdKuW8fI4rLeabzCEIAHtT1e8xnzJQPULiupxbIjWjF7HX2aDgit2IIsXJA/GvPIY72QgB7p/Zc1fg0+7+8bS4cerBv8K5Z0fM6445W0idw0rC28tXhXKlPN3ncqnrgDgnqAT0zVRrixhGwTx8DgBsmsyCG/jiCLpS8jIJQnj8XoGm6qXLJaxLj/ZT/wCvWaooh4u13Ffmc+8G0AkYyMis+SLUbq8mh0+O2KwW4uJnuJkiVF3hMlnZR95lGOvNeraz8PbmWImBI0eGLaoiTAfHc8nmvMrS7sLLUNZttRktVFxpogRbxZjG0guYn2t5PzjhGPHcDNdeHmqjMMTO1O8TPRb2G9uLTUIUimh2HCkEEMNwIIJBBGCCOCDmpO9SXd7Z6j4gv7iwULbeXboiqXKgpEFITf8ANsyp2g8hcU0kGtpaMxpu8E2Jigc8CmF8cDkmnr8ig4yCeaTG5WFKsflBGfWrSwp5Kd89TjrVbquFJxntzzUqy/IcZGONuOlSQ2yPZgt6Z4qhf2d5O7JFPshdVDoXIDkEkEgcHGa0UIKEHK84ANWvs4YKrOBIeQDUuryPU6aWGniE1Ffil6b9X0W7M3TLe6hkka7n81iiIhLlsKowBz2AwAPataMHOO1VFJU4IIIqzA2SFpSbbuXSioe6jTgQHAPA611PgGMIt+Mfxr/Nq5yxhknnjgjXe7naoHcntXpeg+ErzRbZkdVeRpCzurcY7DGP61zTmlozbEW5UWpVCo0hyFVSx49KyjdR3iMUzhWwO3Fa+rSpaae3mMV8wbBjnBI6/SuPsvPhvgu8Mu05UH1AP+FU2cUY3MLXIgNdfj/liv8ASsace1d/beFLrxF4huJEzHDBFGX3Drnt9cA1geLvDV1oF2vmjMUxYxkc4weh9+RShNaI7ISio8nU5J/WjfiMgdalureWAKzgbWOAQQaqY3NgnCjljXQmmrmU2NMmzmnOjgKzD7wyPegxhmB7noB2p48zy9mG2Z7jpVXOZydyHvipYhk4NRkbGweh6VNbje4FEmbU3zMvJEwhIxWbOmwn1rr9A0O81y7SztiuGBJc8hQKm8beBrvQWt7hQGguZCigfwN2BPvzWEaq5rHVW5UlHqcKg4pxXJFTz2ktlN5UwAbr8pyDUWPmFdF7q6OWxswj5pF9HP8AOuj8Gxf6fbSn/oJRD/x+ufiH7+T/AHj/ADrqfC0brZ6fKoyX1WPH/fY/xrmh8SIrfAz1YJ/p8X1P86zfGK/8SeQf7X+NaeJvtkJwvfv71meLhJ/Zcm4KBu7fjXbP+HI4afxxLXhZcaBb/wC5/U1w3xLh23llP/eUofwYf413PhpZ/wCw4NpQDaeo964n4lToRa27SqZ0LOUUHhSOCT9RRP8A3dfIul/GOCvDiyl9vLP61X1zHmwe2R+gqa9P+izj/ZT/ANCNQ69w8J/2j/6CtedT+JfM9EydLCNq6+YCU5JAOOxrrkiSGNC6hnf7qZ4/CuP00Z1ZR6n19jXVmVZFVn3ZjO75Dgqfp3rpqr3jmjs7dzUjkS1hjVoC9xJ/BESSFrVXUrSGDeIDvGPkZNuOSM85FY1qRLqMMbsXRxvWUZUken1FW54DGj7pHeJjjLDjHofQ1zzhd6msJdDZiubCUGQRoiqRsUDkZ9fX/wCvT8+dEsghxg4Yr/FWZDDbK4KwlG25bDdTWsZMoFJVYwc7SOP0q6cERUkz1B1jWUnivkjVtKS58R3qvGrkXLqP3nH3umR7mvftFvrjVtQ1K2uppttphWcFk5J4P3jn8q8JLmLUvsogG3IO5s7ifXP+ehpU5uLZrQwHtX70ktUuu722v2Kc9lb6dNItsgQNwQGJ5H1NRRnzMnniti/015LlXGdssIlViwbd2J4981mW9u5coisxJ7CumEk1dmNSEoaCLCyk5VQfUnpT1jLEHHyevrVg2+1yZNuSehqVVZgQh6jGNpolNdBRg3uRTQgoGC7WXGcdxUKlQoyTn0FXhbzMFDbyB2xjiqd+ptXV8FcnGMVEXfQclb3h8aozYJ6c1YZ03LIysXHYHr71DanzwJCoz0LHjmrqWsWd3mIT/vGomlfU68NXnTXuW76q+q2evVFEqxyxXfnvyDUuHBLogUD3q+lrEOkkX5mtfTNBbUknjXy0RYmfzFPQgcZ9ql1VFCUJN3b1Ok+GWnJd65aySjItIzK2Rj5uAv6kn8K9pxHknAry3w9oVla20FvqFy0V6XwzRSkAqykqSw7cHAqteXENteXEU91Olsq/u9kzszNuI9TxgZ/GueM9dDKtS9o732LPi6R7fxE9qqh42CyqCM8Hr+AwaqWdxawztNPb+SHOVLjHQfyqxoOh2Go6DqV3e77hwpMUkjEsmFzwfqaxdM0K2uNUtUuMMgO8qe+O1OW1mdFKheLd9j1zw4lrHpgnjKbrg+YxyPTA/Ssf4lafBfeELqYFfNtAZ0Ix6EH9D+lcfqF9ppln8iHyJY4iFIHRxx0B9ax9Yhtbd3upZJp0ezctCXOwvgryOw4zTjUaShY5lhm5c6eu5wKozWyFirZbLcnj61AVZ+CuAOcAYzWp4es1ubkRxLmaUFV+YNg/SrV9YfZ5Wjk3SSj7wU8D8a3dRKVio03KFzEKEcgYIwRTUY+bg/MqEE461baJuogGPU5qlJEVuvuEF1O0A9xWi1M5KzLbRw3OGGGP93OP8mo1QQzHAycA9OaUIksYdiFb+6o5FXNOtLa4uVSdn2twckjP480nJJFRi+a6PUPhGpt9HnvGtpCC2wPweM5PX8K0PiD4t0C78OXemyysbhgGiwudrA8H+dc9Fqw8FQC2t4w9hcRb45XOW3fxKcdcf1rk9VvorzTJJfLAAcsAq9ATnjP1rnjq9OpqsOptzb1S/I5mURlgYpvNHP8ADjFNAbPStXTreC534U8Y6qB17cVdl02MDKj8a6OdLQunRcoKRDF/rm/3v612vhuPZomgnu+pxn/x8Vxt4fsdvdXIXcIQz7c4zjJx+lR2vxB1DSdF0iabwrdCzt7lJkuXkZI5sHIAYx45we56UqEXJ3RxYmSirM+iyv8ApMJ9j/MVj+MhjSZP97/Grujaj/a+k6RqfleV9stUuPL3btm9VbGcDOM9cVU8Z/8AIJf/AHq7Kv8ADkcVP44lrwyv/Ehtf9w/zryT4jsT40ZGRsGKMAhsg8Hr6d/8mvYPDQ/4kFp/1zP868T8e3EbePb3bNja8aMrqOoUdDSqL9wjSk/3zMe+/wCPeYf7A/8AQv8A69Ra91hz/eb+QqxeDMTj1T+q1X8QH/Uf77fyFedT+JHovqZmhtt1+I+hP/oJrqNSjSbaQ22Q8hh/WuT0ltutI3Xr/I1vmRZZQxYqR2PeumovfTMKdrMn0W8uIZ2RvuqckNzj3Fa892jllkDYD8gdT7/59awrcJJJkuUPRSB/nippzMLhQ4Occ4PX3H4VDV5D+FaGzb3SPGioxzggpjp/9etNLknA3HkAbh/nrXO2zxwSoud7LnIHHOeOK1vLIjCgt7kLxjtW8UkZXbK1l4rltbe6ijuIz9qYFjli2Rx1I+nWuAGo3C6hKkili0pLLyNvPTHUD2FW2NxEFMTAbc9gc59fyrKt7kLdmSbJfJJ45J44/nWMKUbN2udM61WlO8JON+xvoRBctvZiGj/djBCj1xn8KtaUbU3y2ETZjmQebKeNxzk/hjisW9uFluIpY0MWRyvYHnpVrRpoFlaHySbhvuylvur34x1pOD5QVRaLsaeq2ognb7PGEizw7d6zCpJ+ef8AIE1takqjCgDGPSsQBAMYG7tkc1MdrFL3mSIIhjMrH8BVXUURlj2uzruGRjmppJ9h2rDtbHQ1Ztbq4t8nyA6k88jg09VqhSSa5TMhAikkRlJKucLWzbiQqMQLj3zVf7TILtp1tVQsAGXI5NSyTXEyh2jjTyx65J+tKbbCnFxLyROTzbqR7E10+giK3hkk2mJ1BJB6MO4/H3rjLa7LgtHCH4AJJIwe1XYdYuA6wK7KAcFRxXPOEmrHUmkrnQapr0Uzy29pvWSOdtm2IHJC4GT9azbGLU9Vsrsu6NcJLyoG1gvPHoelSQPNOwZyzAcDcORVW/jm0XT7vVJ5iLVHDMsaZY7mAGBuA7+tEI9FuDjeHOdnYahbWPg2eAXMXnMpXZ5g3ZPXiufs9XMV7DJ12tgkelcunxF0oJsZ9QAx/DbJ/WWuhudKljSd31BwisxY8AABsZq3SlF+8OnWTjJQenUl19UuNaEkc21Agf5Gyrc85HTvWVcanP8AYblnSPaYWiET5YIhPr1PXNRi38pXkjnMwdMKSRVZn8uCXerOAmGweOfU0KI3Hli2+zJPDVzax6pHFby4klVojI5+6Dg8fliug1WIO37lVhiIx5r8cevt/OuAhjMESXUHm7opA/3eOvrXa65KtxpXmythmGY4l5xnmirH300YUJe40zJu9JwgkWdpBzu4z/I1kTW0YZNsjB1YHAGeK6XTZFvdLRsEkdQDWW6fZ7qXCqG7e4x+tOE5JtMTimU7WNizPbKCN3O71+varPnT+YHVI0b1ViaqxPJb6jiMiMTdvxwavIjIWRDlt3zMO/Haqb1CCTLFzqtzcQpFchJUgIKOV6E4/wA81X1Z2aImLrIofgdfWmtGBKeVUgYx1pt4G/s9SQMxuVIyc4PNOKV9BudrhpcszIzz8MMKBtwce9XmuOMZ6Vhi9EK5CswP+0T/ADok1GKSF1DMrkcZFVyNu5pTrxjT5exrayc6Hf47xyf+gMa5jxIxlu9b1S21e1Gn3+37PbxzI7yR71ZIjGDuj8sKOSB9wAZBrqDEt1YpazkhZkKuVPOCmDj86sWvwq0Ge50eJrvUR9tnEcmJE4BB6fJ1496vDTUbxZ5uLi5NSPYvB0CnwV4XPIzpkB4P/TNKq/EQta6IHjdgTPGpyexPNdFp+nw6Rp+laZAztDaQLbxtIQWKooUE4AGcD0rI8eRJNpG1xkBww+oNdVWyhI5KT99E/g1ZLnwpp8xmkVnjY9enzGvFfF+pw33i26vmjXKOYV3ghsL8uSPX/wCtXfav4n1Hw3ouhWGjCISPC0jmVNwxu4H868vvjcalq1zeNaFHmnaQrngEnJGayqVI+zUUzoo02pOTRLdNwfTH+H+FU9Wf7Uy+XyEJOfXOK2bfSZJ8NdAH/YHQf41fOj2ioQsKjPsM1wKpGLTO7lbPPraQW9/vclQP8K0RqUJcNvGPcGtXVPDqzKWiQBscAVyk2nzwOVOQR2PBrshOFTU5ZQnDY3ItQhEgIlTr61prqFvdoFkdPl6Hfg1xj280ePmzn0NM2zdME+2Aav2aeqZKqSW6O9WParMl3vGOhANRyXszAoZCMDPTrXG3sc9pdtG0ZQjHG32qEXUo7/zpqLtoyXJX2N5HMjKi9ScCsqZoX1N2+cAHa3qSOM+1W11K3G8Qo6SlCEfdkhscdv1rJhkZWPc/7tTGLsbVqqk0jQvGXzV2dB3NSac7JqMTqcH6Z71XlaW4ZFUF5H4RcDk/QV0dpo62Vs91cuA8cZyvZc/zNTJqKswjFzdzRvFyiuzFnIOS3H/16xIlGSwTdJuK+mK10ZZLMMHOMZ2k5H4k9KxZpHjKlSTGWORjpz/Ks7F03a5BdCWOZXy2VOGz6/5FaD3AudkcahXxk9snuaZ+71C3AbO6IEjaep9T+FJ55gtm8whUh5TjnPH59TRe68yo6NslbZGACgkIHLHvxTCzQRT7T5gdGAPXHH9OKrLfIR8pVQBkfL61at8zxyFSANhBGPzqGrbmiqKWhFbhjEAo+VRnAPJ6f5/KrBDRupIUsjKMg9s85pLdfJt2k2jeu3aRVZWDEySnaVGNp7t70t2ylorM6aCS3t4WuWiYsn39hGcetZPi7xDaXfhS9tI4pPMk8vDNJkDDqemPar0EkUsIR90nfbETu6HPU4x7VmXPhy81Wxlt4lVI3IAckHGCDyM+1RT5VJOXQpuUqbhHqmR+NjqovfGX9u/a/sZvX/sv7Xu/1n2jjyd38PleZnbx93PatW78U3V3HBCEzBC4aRJYlV5HH8Rx15P61yM3w7voZFQzFy39yEnH5GupOkXoRdmnuX7kxtk/niuqrVpzSszgoUqlNvmRVudXnkYhbeNPYKBWXJLeXCT7kxCAGLD16D+ddG2gpGokuJWjJ6q7ouKyL6xtraGdra8WXjlA4J9OxwawpyjeyO2tzOLuyrow828jt5SXjY8qWPPt1rptaeQ28kcMUYyobfI2OOmAO55rmtCIXV7dn4XeMnFdhPbxx3TSquJCMdamu7VERQ1hYxPCs8gWe1bJYNxt4GDS6p5az/Nu9u3PtirxCQylgpDEbSevH0qrPYxXbEyzMEA+6vH/ANep5k58xooNKy1MGWTzruDc+5iwG70B7VvTiGOMpu+VRlWzyDVKXRbVGLxtIGByMnp71JcWfnR7GnfdjnC1pJxlYShNXZVvpI5GR4+Nygt9aWe5SS3XA+bb82Kb/ZD79ombb2ZhjNQz232SMuoZsnjL4/lVrl2Ri1NXbRWuG/dAj1qqxya29LEjymR0KoBgM7bgfarstrZZBeCI5H93BPPtVe05XYI03NXRH5wSKEKeQAv5gCujj1u40zU9K+0bZxazpMhVdpYc5B/+tWE8URcbVZBgAcEYFSbBKEXLeYHWQsxyW254Pp1rm95TUkeg3ReGcGtbdlvffm3Stpb/ADuvVY/iNp8kkD3FrPEVJ3Y+YCjxP4j0zVtKAs7kO+clCCCK81N5FGfmcdcdatxXEEsZKMjMB261pLEVHFp9Ty1hoKSa6B4kv1l1nTo0cN5diqEZ6Hc9VdImR0cyKGdXIrL1wmPXIJFz80X6gmptIZlaVTjcHOaifvRuaw0djpd4xx+FIZVIxjp+tUvO474+tBkI65rn5TUuHYevA9qxtUjtRLGCqyFuoYZq6Zu36Vz9/cgXbsx4AIFaU4u5MnYxboqwUouBlhVdJGhkWRfvKcio5HYwIQf4m/pTEkfeA1eko6HG5ovX9/Nf3HmzghgoGDVPirOpXaSXRlSPYrKo2scngAf0qklymcsgoSstBc6CMASpx3FRRnEjfU1LbKJJhucIqgsSfYVBGfnJ3AZOetadDLqdDpIjVvOIG5SAuff0qzNKt3LJ5sk0g5zH0FUtJC/aVwwfjdnsDW2YRLKrjauw53N+fA71ySaUjvppyjZFm/nWGyhhBAAAG0DBHHXnmuPlvCJXAb1wMV0h0w3zmeS6kdfRQBUZ0+3RiqRYwcdev1pqcUyVRm12KNve7bG3b7q7XXaDjmoGWW8yGH7s9APvFscYp9/CYZI4FOM/NtzkD3rW0a1eVty8KOM5wT7USkormEk2+VmZaWcskitDA2OmSBlee/ap547vTVLyIHicH94uMjPriu5h0+2jUEYfd03Dgfh6/Wprm0hnhdJIlHGAQO3+FczxCb1WhooWWh5tHduw8ogHdjHvzQml3ThpGuIlGc5c4GTWze+HJ7SXzrGTb82QpGV/D0rmb1LyW8dLmTkH7qnj8hXRBqXwsiUrL3kdNp0UhYRw3tuzAdEYkn6DvV67iuVuIvsshhulQvIYztBXtkEYzmuIEU1kyyoTwc11lpdf2nCkuXFwB9/Gc/XP41jWptao7cDUpOfLUVvvtfpe2pSvtc1uMrG99OiAcAYjI+u0frVKaS8uE3y3MkpPZ5WbP5muka0huIJRLCLhySc5AOfbjp7VjajpNxbndbsZU7qDyv8AiKcJ6We5OKpwVRyp7f1ffW19ii1tGsRkY9BztQf1qvOuwhUJOVz1wf0pxW5C5O0DuSaYcxMRLgswwNtbw33OGpa2iLGko013GhjkC7hyHJAx3rtrmXdyefeuI0+7WCdBtcAtggHqDx+ddS1yBCW6jGAB3rDERbkjXDy91jZZQWxwcmq0jgD09ai83azPnpx+NQPMWbYvLHqfSpjE0ciUzkEE4OMjntT/ALYSpYk56g+9U2YDgH/69R7/ANKrlF7Ro00nVI2O4KSP4Dge/vWdq8pUJjLYPJPb0pglPJXr6io5722kRI2hZJFJ80l9wY9sDHH61UYtSuTOfNGwadeNHI6FQY2GT6deKum8YseMdhVIy2sUexGGT2HNLuPfv61Uld3IhJxVrluS6nYgGQ46VA0pPVj9M1XMuOM0x5Dn3pKInMc0208GmC+dDkMcj3qCQ8ZqFmHNbKKaMZSZtQXcuo3ULSfM0fyg+tXrQss8wUYPmHj8apeHYGM8fHzZLc+mKuQki8uCMf6wmuedk2kdENkzUD/L1O3HXHam+YSeeCOgNQLKSdgPy9j2JpXkx83QDk1lY0uPll2LkfQCsKf9485IzhQRntzWo8m8bugIxn0rMZdz3PB+6OtaU1YiWpgO/lxRjHXJ/WozKpIOSDUl4PnjA7Jn9TVbHoRXoRV0efPcn3RydXJ/SholP3QuB3zzUG0gZIpeAvvg07E3BZGRXC4+YYOaIWYAkRg9s46VGTgVPFIEhwO55oew+pu6PC/2rM0hyF3Kg45POcVulUdCp5AIJHcDHWuWs7jdqMBDMxxhs/59K3zepkpkJwCCcc+1cdSLud+GkjQM4VDGApH16flVC5uVhRnwcLxgHGD6f5FUpNYt7dWcsJH9A2cn0rGm1iSaTcIwoHQZzilCk2XPERjonqaEEUlzcZbmWQ/98iuy0m3WFQFHyKnG7vXK6DqMf2jypwq+d8qy9vofSu4iGwo4G9V42mssQ3sTSta5cQkBpI1XKcsT6GnPJv8AxHTNQl1aMKw2ZYfKPQ+nrTZM+YqoRwvrXNymlyQcA5PB5xXIeLbJLa/iukUBZuGI9a6wuWBJGPc+tYPiZfO0xx/cwwz7f/WzWlJWmiZu8Tmwvm2zrwSOlQaVcm386LAPoCeP88CpLZyGHoapKSl42B3xg12paNGN7NSNz+0pFQJjb8uMg7f5VGNUnjIbcCegzzj3rP8AOBzxwf0pWJJ4x6D3qORGjqyJ5nFzEw3KJD3I4P4U2XT0/s2O8+027jcYjCHPmK2OCRjpx1zVN3KHjoPUVEZiZgQRnjt1q4xsZTnfcngs/NiYlzv7YPNW0vLm2RI7xHIGSrgc/j61U+13GMC5KL6IQv8AKoorxEmaKUnr98nNNpy3CMox2NYyiTywhBjAyWB61FEx2vMRwTwe2Kr+WAC8T4z1wPlP1FJJcF1EUh8sdP8AZNQl2NHfcmjcysWzwByab5gdtqn5V6n1NRTyYRYYgQg5J9TSwphCzcKKdupF3sSSPsRiD0P5VmFy7M2eKnv5DHbYHVjmqkf+q/CtIx0uZzleVjRSQ7FJjQgttyRzT/M5OQMHpg5BFRhgIE/66E/zqoGB5T5HGeAe1Slcpu1izIwJBpszCJVDEgkZwOuKhScKN7As49egpkkzYYvzvPJ9R7U1HUlySQpumdGAA2g/KD1x7kVf0oRyP+7jWScDO2ToPpWMxUnjIHoe1a2h8XaN0yDmqqK0SabvI6q0DJJJcTjbIybQOn8qyopilzKR3fkjtUj3LMxBJ44xmqVpIrPITyCxwPWuRR3Z1tmvu+QLj5hjvwMd6TzVlIOOBx0/KqySBl8vuuN2PSnFgrDngjkD07UrDuPZ1Rjn7vc+9VE+d7zg/cAFPlYOSOSq9B9arQSun2plPzKOCfarS0Ib1MTVFaG6ETAqVQcEc1E5kiQASK/UkYzjH1p+p3ZvLhZGOSEC5xiqpmJznGSCCf8AP0rtinZHDNpSYpcEe9LgquDwcVH2oLbjzirM7hgngDJPSntG0Upib7ynBAPeun8Ix2UVlrN7czWyXMdqVtFn6tISMleD8wGcH1xXO7GDl3cZJydzcmpckacruXrCHymMjgl8fL6VJJOWPJPHaq7agDtywyowSMkmmmQOxK8AVlZ3uza6S0KzRB5GycEseMU9YFx3pyk7mJ65qUZAzV3ZnZDLUiOcxSZCt0b+63Y16Houpvc2auf9dGcSjryK86uFyqsOorpvCl3tvZYyxAmiDY9xWFeHNG5tRlZ2O3SQSnco+QdHxjHtTNuJmRAzNsySecc9qiDyRzAgqEkG8KBx6dKRCbg71fa3RsfWuTlOi5IW2kfNltpyvpWffoJrd1IypUj9KtyS5RmYYYjH6VTnyFxnIzVRVhM4y3yiZ6kA/nVJWJmYk8561q+WFN2vdd3FZMeMu3vXWjBlot/GABgYxTPM2jrgDkVC8ypt+nNCEOuWYAenenbQXNroTwylZN+3cw+bkcD3qHUL+e+1Hz53DyHALD+LFMkGD94+4qq2BKu3OM96qKW5M29i3j5CcVTuQftD8VdUfuj9K24ND+2WEUwHLAnP41Dqqnqy/ZOorI5eG6mg4ViV/umr8d5FOMEbG9+Qas3mgyxAlQDisWSF42wwINWnCpqjN+0paM1QxiOY8bT2PI/A1YWVZQFAwoOSDWLDdSQ8feX0NXI7lHIK8EdjUyg0aRqJjNRfzZwo6U1VxGR7U513OxIzntTekbYqulibatltTmNc8Dcf61T2nIYYyPUVZz+5X/eP9ag3DHNTEuRFnccH5T6dBRJtVQM7j6A9KVhzzUTnj6VaMpaDcZOK3tEVIh5rn5QGrBwRggg11umWlrDGqvcI7459AetRWlaJVBXlcRLK4uB5jERRnsfvEfSp4dGhjX93NI2fTFakSg5IJZc4BBzigo4ywIU9wR1xXE6jO1QRmrpbK+YpWDDruHP5io57a4A2DYV7gNg/rWq0aFNz9OvJwRUYYAFSp3e4GGNCmwcUYTl4lKyIUK9CR+lVbYkrPjnIro5VIjIIQpg5yeRWJJA1rKykbd6nGPWtoSuZSjZ3OfuFACkcZyKrmr95byGNCqEhSc4/Cs/ke1d0XoefUXvDgBimjvTgeKaKogm3gj7zU35c9KWSJ4lywAz705QAM1F0a2d7MRAMg8dcVclazQRCJ5WbZ+8LgAbvQe31qlnGcdjSFiGyOKGrgnYsgqZGKHIqbI6VUgYkk5+tTg5qGrFJ3HScxkVo+G5Qms2244U7l/nWc5/dtVnRcHVLYMcDJyaUvhZcPiR6H1M0pYllDKuT0I/yaijWSOPzF2tlfmH90HvUbKRbltwVQMnI5fJqywQB/NXbGAcA9R6AH8q49jpHzfJGDkOc8P8Aj1qncALxndk8EdMUu8K0cb52suCPQ02b5QQOg4A9KaQHM3qlLm8UfxDP6VjRKzKxVkUg/wARwDXRTLu1OVD1eLH86wlhBFxEeo+YVvFmLRWa2JO6SRcegOaco8kAL3/OhtkYyF57UqBnySTz2qr9ybJbAkeetVmH738avNx8oqi3E3404O4TVi4BmI/Su70Fd2iWw6Ag/wAzXBq2Ij7g13OhMBodsM4ypH6n9a48X8PzOvDfF8i5Pbo/GOn+fyrA1HSEkUnYPqK6EsuMAcdxUL4PfP8Ate/vXLTnKOx1TgpKzPPLvTZICcDIqgVKn0xXfXdmkqkgAe3tXN3unbSeMGvTpYjmVmebWw9tUZUdyyja3IqUNuRsdDUM0DRnpx61LEDtQBNzEdK2lbdGMW9mT7/3YHoTUIVjzjj1PFStlCUK7GA6VXaUdssalLsW5dx5AIwTuPtUDZVuMCgyOfRR7UgXPYn61aVtzKTvsLxkEciryzbfmUkeoNVEhd+g496tQR+azMSePQ1M2ioJly21KWFgwcrWzba4WA8wKTxntXPSKkI35G3IzmmLKqSFgjk9+axdOMtbG6qOOh2cd1btknjPXJzmpyYZBjzBg1xa3i8YcgjoG/xqRbuZSN3JHI54IrJ0TT2p15+ccOnXsecVR1Cxaa3xGxL5yoY55xXOtqEqsDzwe9TLrVymCjH8RTVKS1QnUTM6/lljaPBZGywPbpiqv2st/rY1f3I5q9rU/wBolilKgO67mAHHb/Csk/lXbFaHFNu+hp2Ftpl6zJPdfYz/AAu+Sv44GapXVuttMUWVJB2ZDkGolGWxjk09oXVclGAxnkU0rPchu62Jbj/VLkjOe3WmJ92pbs/uE6cHqO9Qp0qVsav4hB1akxmgdWpFPNUQSRZViD6VYUY71Av3hU69KhloSUnZirugkDU0JAO1T+tUJm4FaGiL/pDsB0AH4VMvhKj8SO0LrcRFEySDk8c5q0s8smFuDuYlX4P8Pf8AlWHBcOlx5yk4BGTjPFbkTm4QucmEn5Cev/6ua5ZKx0p3IWCTSO5zjAUEfTn+lRlwYiFJ3cg56n3qVdkgkwVTEhxGPTA5FVZ3fcHIwzEtgUIGZd3KIdVt5R9wjkfjWdqUYtNT8wAiNj+h/wA/pV3WMeZBIPUimXqJeWqcfOAAcdcdq0TtYhrsY/2SSW6MaIXbPAHpUxtLmAYa3lU+6GkjuprYqpOxl6OO9Xk1y9CbRMSPrTlzdAjymYRsYAgg+9UX/wBaf96t/wDthHjeK5iWZWzg45Q+oNZeLUtuMUnHYPxVQbW6Jmk9mNQ4iJ7V22hn/iT2468Nx+J5rjWeIA+SpGem49K6zQGB0uMFl+ViAB1xnofxrnxS9w3wz981XII4GV9c9BUWMHbjBPpUmR6c9CKYTgE4z6j3rhO4ryF9xHl57kVTnhEmQVzjjPvWowG3u3cH3qJ1AB9V6H1q4ysS1c5e7sCCSoytZGAJHXGOMV20tqSpAwe3/wBeuU1OwuLaZ3Mfy7vvL0ruoVebRnDXpW1RXZQuwMx6ZJzzT4tPLck59cVFBFNPIoWJ3BIziuiS32gkdOnHWrqVOTRGdOnz6sy/7LGwngcUos0j7VstHwcngnriopYlGQCBzWCrNm/sUjN2AdB3ptpamMuWDZY7gMZGKnuh9niMjc89Kghu3LF1fyg/A9/rWqu1dCtFPUuvbiWFV2RshwMEDIqB9Oi3ZMbJ7qf8aIb9TIGmOWLYOTg/WpWvI50UeYAN3XHI/Cj3kynyyM99Ml3sIWEgHJA4P61XCSxlk3smDyvStZ0xKvG9TyDH1AHrVK/IaXzAzZJIJPWtItvcwqQS1RElvC33yxPrmmXEAgRXjduTjFKnb5qLtCIAwcFQeRT6mWjRKbU3UaSFgxK4+b2qlNYFMkhh9ea2bRcWsQwegzUmz/D8aj2jTNPZxkjmTGyEcVMsrGEoQSOgJ6VtS2sbc42k9Soqs1jKkWxSGi3biAORWqqp7mTotbGZd+b8u4fJjg+ppqfdqS8P3RkYH8IPSok+7+FadCPtDc/M1A+9R/GaBy1MkkHBH1qdag7c+tTJzmoZYkg5FaWluI0c+prNc/OtX7Jv3BH+1SlsVHc6myPlRqrKuerAjIbvz+lWi81qLhSwGw/KFHHPOP1qlZtHjejFii7icdDVqSJzbqC37yaQbiT1BGa5nudC2JQI5E86NgHPTPb1FMkLBvm4AX5e+R6/pREqQSBGk3RtkoAejcZJH50juRMTjejAfN6DPWkMxNbJ8pOg2P2qnDMdoGeavawubNyD0wx/OsZH6YOK0WqIejLUyJKAe561AbUE9F/KpVf5MZ70hfvSTaB2YxbYDsv5VBcptUHaAehx3q4jZfGai1BNoHoSKpN3FJaFZfl3ngKqj3rofDZQWLjq284PvjiublIEchXqSAQK2vDzk/aNuQhK44796mvG9NlUHaokdKHDHB4PY+pp+ck4zuHT3NVQ3lgg9vu81Ju2ggnITkHivOaPQJT1yOq849TTSeDsI45IpjSMvB6j5s4/z/kU1XLEZ+Vyd3XtSsAuCpA6gfMQaCiuoDqHXqc+lNJzk4AYnjgcigNlmwCGHA6/jTAhNtGqLsAVc5+Xgf56VCQ6sAwI56+tXcjccHGB07f54qGQZdQhHAPBqk2TYrMSAOiktTGXAzkA7qsbSVTaOCc4IqnPnGAT171cdWSynqzo1iyFsNuGBWCZDkAE8VoankRAk/xdPwrMBO3pke9d9GNonBWl7xOki+YSwBPAG6pluEiVkCKfTPOfrVI4YjkigDHTn1rRxTIU2jXt5lSfAOGxlP6io7thIVx09cVRtSTdRdRg5NatrGs7yEjOMGodo6l3c1YoqoIouQTZr6bhmtR7AAHbx6VSvVWO2IK45zmkppvQTg0tS+oGB0Axg+lO57njoahgO+BGAOWUA4p33Tk5HXNZPc1WxKPQg+lPVecYycfmKVRkA56frUgHHBHt6VDZaRyN0+8ngjBx1pkf3adOSVJIwd1MQEgYFd9tDgb94T+M0L96j+M5FA6mmImcfJkU8HAqHdhSM5+lSLyo+lSVcH4ZT71pWSjyzk4+fFZsn3RWlYfMs6jrtDj8Ov8AOplsVDc2rQDAKsAcEN71rIjebESoKFW8tVJyMDGT+FY1g4zndhz3zwK1leUXKSwNhyCoPbB4zXNI6Ik0pwU3KS65dmI6DFVbaUmMxkZJ5UY6jvUrz74m4AaQBBz3xg/hzSPuADJtGwgE45x0wPaktimUNSQNDMuc5TmuXjk+UCuj1GUMHbPIyD71yKybSee9bU1ozGpKzRpq/ang5GCMYrPSUYyTzU6TBupFNxBSTLQJzuPFLeHfaJ6ioRJk4yKsuUeHHQgdv1qWrMroVUsJriTcmQhHXIArd0y1aziMRfIk5HGcVQ0qVVfyJfpWsrcgZG7OAc1jXnL4ehtQhH4upcDY+8flxgcmgSDKqwJA6k4psZADKScLyD+tKUbG0jh+c4rksdY8nIAcdT1xzioySmTu6cKc4/T/AD0pc7WJbaFPyj0pd20qG5VeSc0DFXupPCDgg0uBhcgHPzA44pjcJgqTk8ZGeKTdtc5UBex6Y/GlYB5OV57tweeKR87n3dMYznoaFIGzaRg/N15Bpu47XOSy52kZFAhDkMMjt94Y/OqcsJwCc9ewq6wYSErzx0x15phxtTGOvcYqk7CauYGroyWrErnBGDWGrlk9CD2rtnjR43GBjuCelZs+jxSH5ECNjkA8V10qySszjrUZN3RzeMjOcUdeATWjLpUyfdXdzjpVYwMhIZcH3rqjKMtjklGUd0R27t5qqO/BrYsUljLs64VuByOKyrEK94mfl549Ca6DawTjgj8fes6r6GlJX1LKPlVZlPB7CnvCjoQQOP1/Oo0XPA/i9O9SxO21Wfg5IPOAa5H3OtaiGBCPlCgHkECkaMBclcHGGOKkZyMjkdweMU0suckYDcHildjsiPbhiBxj0z0owMjnr0I9ae3PI4YHjBpp+YcZ56GqEcbM+Rn1qNQrcA4NPkZdhByM9CKjwQOhGeQa9JHmy3HNkH5utIB69aXcGAz1x0qztAQcYI60CK+D6H8afGcqKUjPSkQY/Okxrce4BjPtVzS5/KnjY/dIMbfQ1VHIx61LYFPnR+xBqXa2pa3Nm2Ozf7AjmtTT7sojRswA2/KSM85FUYWtLnASRhkcnHfFaLQJDb7tu4rwjqeC3v8Aka5nJbM6UnuWJzsiy67WJAYf3Rnt+VRzSRbQyMfL5bGevOKY9150qRSsDuXPHrWfqNzHFGWDcMchfX2pJXG2Z947u3ko2Xfk+1Mg0hCmQodu9aOn2qgCSTbJKxGVHP4CtVUVZHDYUEbmGf1pSq20QRpp6sw49KjdMiNT6j0p39kQ7uIwQR2rZn2KQ4iDAjGQcVIqOwUttXjIAGaj2rNPZxMAaLHvB2sPcGpBo4LDEzKDx2Nb/wBn3M6MQdvRgP6U+CMY2LgNkj60nVYKnEzbXw8pcOJyXA4OMVam0y4RmI2sQOMEZrUh28EEZxjpT5AWHPX+dZOcpPU0SUVoYAwSI5MA/wAXapVc7CW5xwGU+9F/JumKnhlHXH86hBV3wSvAzkflTcSoyuicKQ2wlsDkHqM+9AOFJJ+V+M4qGFj5Jdhhj3B9/wD61TICriLLccggZqbF3AHa4BC7VHOD+FIVKodoOGPGDkf560btgLlvlbgEjjikyVZANhC88elKwEnAckZ2HqMZFRgfu0IIBzyCvH1oGfmZVPzf3TSqW+T5WUgYbFFhXERQXcggHaO9Ls3KnJUEjgHj2oU58w7ipGDnH6UFlYxl9ucjPHNOwXFwcNncD+YPH+FRSISU3EdODjOamVTuZcAt2KnBOab0WPaGZe209DRYVyARkiRXC7c8deDUc1hHKRuTKsCM5q1kqzbWyNo4wOlIGwqlGQ4IAJGD9KpNolpMyV0OGGTzkZzySB1FWPs+DycqRnpzV1gfMYKByeQDg1GQ+0Egq4ODjvWntJPcz9nFbEUaBF4O7b1AanlRvbkncOhxj6flUbjDYyBnpx0poJPPBZT/AAmgZIflBK/w4ByO1GACV4Ge2eT9KQv8wwCcnKkc/TimBxtIJzg9xSEPBJOTkHOCPWmsdrY4GTnp09qQt3XaVPU0Dpx0B7HJpgf/2Q==", "path": "images/4pts_ADE_train_00003805.jpg" }
depth_point_50
images/4pts_ADE_train_00015755.jpg
ADE_train_00015755.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 94 y = 211),Point B is located at (x = 51 y = 199),Point C is located at (x = 233 y = 123),Point D is located at (x = 322 y = 130).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_32><DEPTH_33><DEPTH_33><DEPTH_32><DEPTH_33><DEPTH_33><DEPTH_33><DEPTH_33><DEPTH_0><DEPTH_2><DEPTH_74><DEPTH_39><DEPTH_41><DEPTH_41><DEPTH_2><DEPTH_2><DEPTH_45><DEPTH_63><DEPTH_38><DEPTH_3><DEPTH_59><DEPTH_82><DEPTH_38><DEPTH_49><DEPTH_29><DEPTH_29><DEPTH_40><DEPTH_40><DEPTH_69><DEPTH_74><DEPTH_70><DEPTH_5><DEPTH_5><DEPTH_70><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_49><DEPTH_29><DEPTH_74><DEPTH_59><DEPTH_70><DEPTH_5><DEPTH_5><DEPTH_60><DEPTH_60><DEPTH_70><DEPTH_31><DEPTH_74><DEPTH_74><DEPTH_67><DEPTH_3><DEPTH_69><DEPTH_85><DEPTH_67><DEPTH_11><DEPTH_76><DEPTH_74><DEPTH_49><DEPTH_74><DEPTH_35><DEPTH_67><DEPTH_19><DEPTH_23><DEPTH_85><DEPTH_45><DEPTH_41><DEPTH_36><DEPTH_59><DEPTH_40><DEPTH_73><DEPTH_60><DEPTH_49><DEPTH_66><DEPTH_2><DEPTH_44><DEPTH_29><DEPTH_31><DEPTH_3><DEPTH_31><DEPTH_54><DEPTH_82><DEPTH_74><DEPTH_29><DEPTH_49><DEPTH_49><DEPTH_29><DEPTH_74><DEPTH_64><DEPTH_72><DEPTH_46><DEPTH_58><DEPTH_25><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_19><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
4
[ "B", "C", "D", "A" ]
<DEPTH_START><DEPTH_32><DEPTH_33><DEPTH_33><DEPTH_32><DEPTH_33><DEPTH_33><DEPTH_33><DEPTH_33><DEPTH_0><DEPTH_2><DEPTH_74><DEPTH_39><DEPTH_41><DEPTH_41><DEPTH_2><DEPTH_2><DEPTH_45><DEPTH_63><DEPTH_38><DEPTH_3><DEPTH_59><DEPTH_82><DEPTH_38><DEPTH_49><DEPTH_29><DEPTH_29><DEPTH_40><DEPTH_40><DEPTH_69><DEPTH_74><DEPTH_70><DEPTH_5><DEPTH_5><DEPTH_70><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_49><DEPTH_29><DEPTH_74><DEPTH_59><DEPTH_70><DEPTH_5><DEPTH_5><DEPTH_60><DEPTH_60><DEPTH_70><DEPTH_31><DEPTH_74><DEPTH_74><DEPTH_67><DEPTH_3><DEPTH_69><DEPTH_85><DEPTH_67><DEPTH_11><DEPTH_76><DEPTH_74><DEPTH_49><DEPTH_74><DEPTH_35><DEPTH_67><DEPTH_19><DEPTH_23><DEPTH_85><DEPTH_45><DEPTH_41><DEPTH_36><DEPTH_59><DEPTH_40><DEPTH_73><DEPTH_60><DEPTH_49><DEPTH_66><DEPTH_2><DEPTH_44><DEPTH_29><DEPTH_31><DEPTH_3><DEPTH_31><DEPTH_54><DEPTH_82><DEPTH_74><DEPTH_29><DEPTH_49><DEPTH_49><DEPTH_29><DEPTH_74><DEPTH_64><DEPTH_72><DEPTH_46><DEPTH_58><DEPTH_25><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_19><DEPTH_END>
94
211
51
199
233
123
322
130
null
null
81
7
32
58
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCJaVZGpiuO1G7b3rI0Jw+OtKZVqm0wPSmFs96dzPlLbXBxgdKi83uaqtIV71G1wMc9aLhyl0zntTDOfWs8zjsaYbjgnPSquHKaBmx1o8/0rPkn5HPaozcYouHKann46mg3IHesh7gtjmkE2OrGi4uU2BdelNMxfg9KyhcAdDThd4pqQcprLKFHHWnCc5rI+2UovBnrT5gsbHnmnCcYrH+1j1pReLinzBymws5p4n96xBeY708Tj+8aOYOU2Rd7elOFy1ZCXKipFugT1o5hWsa4mzUq3AGKyFuRTxOM9aL3A1/tIzUi3HHFYv2gZ609bnjg0gNwT5XrTvPGME1ii4JHWnCfnk0AbKyrzThOe1ZSTDrmpxcAY6UDRoiV24BpVCA5PWqCz56GpVmA6nNAy6GKnI6U7cDzVQTD1o8305NAFwNk0cg1VEpPAxmnBvUnNSBMzc0xpBSZB5oPPYUARsxam7Sp27uKlxjtTHGRjAoAheML0pjdKeSATk9KiaQUFHPeZj7vNAlLfe4qBWp28Vlcsl8xV6c0xnzzUTfWomz60gsSu9Vnemu5HFQNKB160Ej3bI4NQh8kLnkmo5JO4P4U2N281M7R3wRVDsSzy4lYA8VF59MYPI5ZFY8/wik+zXT9IZD/AMBoHYlM2RTPOyetNGnX7fdtpD+FKNJ1I/ds5D+FMkXzgKabnjinjQ9VPSyl/AUo0HViebKb/gQpoCH7R2pfOPWntoOqj/lyf8qb/Y2qL1spPypiE873pwuBjrUZ0vUlPNpJj6UxrG+X/l2l/wC+aAuT/axUgu/eqH2e6XrbS/8AfNM2TL1i/wDHaANRbo/5NKt2QeayCx/iUD8KXzXyMbh9RQJm6t61OF2c9awxcf3sj3p63PoaaFY3lusjrUyXmBiufFyexpwuyDjNFwsdIt4MVILnJrmxdknrUqXR/vU7isdH9o6c4p/2npzmufF0e7VOl0O7U7oLG6tyfXFSG4YAc1irdDsalW7DcE0Bc3458qOc1YSbHOK55Lkg8NU63R/vUMLm8Jd3saRbjaxDVjpdNkfNVhJA5+ZqkZrLcDH1pwkJrOjnCHB5FWUmXFK4FgufSmNn1pvmrSbt1Fx2BlyTzUI64IpWc0yTpweaVxnIrIfWneZVVZBQJSTWZZZaUKMmozLk4XnPPNRFwRyaktYTdXUMCdXbGaB2FRJbhwkab2PZRW3Y+BtSvyrSqIFPr1rt9D0S00+AbIlMpHLMK6JVJ+8cii47HFWnw3sEI+0ymRh1A6Vsw+EdItsFbZSR3IroFG30oYHqSaokxP7KsYziO1jH/AactrAOkKf981dl+9yQah3Jzlh+dMhvUYsKDoi/lTxGv9xfyoEkeMl1Ge2aBNH13D86pWJbY7YuPuj8qUIB/CPyo86IDl1o8+H/AJ6LVqwXYFB/dH5Umxc52L+VBmix98UCaIn74p6CEMaE8ov5CkMMZ6xof+AinGWMZPmLj1pRJGRkOpo0DUhNnbt1gjP/AAGo20yxb71pEf8AgNWwVP8AEKXj1FGgama/h/SX62cR/wCA1Vk8H6LP1s0H4Gt1ffFSckdaWganKS/D7QpePszKfY1Sm+GGkvny3mj+hrt9pYfd/Wl7Abf1NPQDzib4WQ8+Rey5/wBqs6f4Y6jHnybqJvTdXrO3C/0ppB9MfSiwXPFbjwF4ggyRAkq+qHFZU+iazatiXT7gd8hCw/SvfcY68/jSEBhgjI9DStcdz53Zp4m2yxSIfRoyKcs57kD6mvfpdLsrgYktIm9flzWZP4L0O4BzZLGx7oetLlsCZ40tyV6H61YjuQ3Tn8K9DuvhjYPk29zJGx9elYVz8ONSti3kzrKPTFIqyMBLggZJ4qdLoHvUVz4d1ezY+ZayFRxkVRbzIjiRGQ+hFArG2k4xnPNWUuMisKKRwMnIFXIpW4oEbUc5OM1YWb3rJjdyKtRZxyakDTWdT1NSG5j7VRRBVhEz2FBQ97n0FRGSTstT7B6U3y/ekBwwZaC2Kqeao70xp8d6nlHcttKK0PDsn/E+tVDdWzXNy3Rx1q74cvdmv2pbnByKOUq579ayCOEPK6getQz69axZCZkYdxXJvdzTzuJGwAfu+lJvB6UKIXN9/Elw2RFGFX3qrJrF5L1kx9KzA3FKG4qgLLXVwx5kY/Q0nmOf4mP41BupHk2ISOvSgmw8SNLcbsttX3qcSZ+6WH1NV4hsQD8al5IO0An3oCxLvbuSaUPg9SK29FTRmtCb6Vllzzisa68pb6VYBmDPyMaaYWDzP9qjfj+KoztxyeKhJ+0HC8KvWncLEvmNK21WPlDrUysUXCsajACqAKdxRcLEqu//AD0NO86T/noahzSjJXii4WJhdS/3zTjeSovMpqk8mDtT5mpUXc2+TqKLhYuR39y2CH4FWF1KdTywqmkMsq74o9yd229KYHOCQQaaYnE1F1aTPK5pw1b5sNGayQzHrQzqOM5b0p8wuU2hqcJP3ce1SLqVvnBcLntXPgyPzjC1IiqvPejmDlOjW5hbpIDUi7T0bNc2X3Yx2pyylehxRzBynTkDFRPnHLn8Kwft8iY/fn2Ap41W54ygK+tK47Go6buCoI/2qzrvRdPu1O+2jyepxUy6kpxvTB9qmW6hfpJg+hoA5K88BWTsWtJjAT2fvWHdeF9Sss/J5qD+IV6XlW5Bz70yQD3J96kDytEaNtkkbKwq3Etdxe6fbXI/ewgn1Fc/d6MbcGSM7kJ+76UElONatpGKZBHngirSLikURbaNtT7aNtAHjEs5FVpLknuafM3tVdwpqtCSN589zRDdvb3Ec0bHcpyDTSuTwpNTQadPcMAkbAHvSuh6noPh3xRBqUnkzkJc4/A10+7PIxivNdO0UWjrPI+XHQjtXdWFy0kChvSpLsaQYYpwbiqnmD1pwkGOtMZaDc4pmd84A+6vWoTIFQsTj0ohbbH/ALTHn2oAu7iRx2p24HHzD6d6it18+5jiDhCxwGPQVo6zpL6R5Ze5hlD90PNICorkDGaUsSMseKrbjwfxqN5TIdqn5e5oGiwZPMbap+Xue9SghRgcf1qsrBRgGl3+9AMsh8d6crkn2FVN/vQ1xt4HJ9KYFwyhRlulMaV5DhDgVVDBjlj+FXGtp4oBK0TIjdGI4oCzBCUGFAz607fnqaqmUjrTmnCgcUJoEdBbeI7i1sfssUcQQDGSvJrH80bixYlickVUMsjNj7o9aepVDnv602waLG9n9hTl2KcdT6moTNx2x603zkA6gmlcVi55nbNLvAHNU/NZhwp+tKh9WzRcdiz9oB4UUg3Mfm4HtUe9ewoMmOp+lFxGhYWaXdwI/MWMd3btUmo20djceVHMswxnep4rKEjE/Ln+lLubOSR9B0ouBY3gHPSmmQ9R196h3jvSecvSi4rFlZZgeJCB6CrCahMmFbDj3rNMwHNRm454bHvQFjbF7G33l2moXIcHYQQeuayTOgPzbmNSLck/dU0EEhjUSZwBTNtSBiy8jBpdtAyPmlxUm3PanbfagDwwWs83UYqaPSlb/Wk/hWkEJ6DFTpCx9KLisV7ext4gNqZ+tXlVVAHCj2FPjiC/e5qdQueAKWpVhkNvvYDOVrXgZYVC1nLKBL+FSLMKC7Gn5oPSlWXnFZ4mx0NL9o2jdmgC60xeQL2FS+arISckA9utZySHJIIJPY+lSxXHkzJICAUORuHBNLmAvmX+8do/uuMEU4z7wCQMdM5zUWqa1JqtwsskUUZVQPkGM1mtd/PjcB+NO9wsaTTmRsK2AKkWUKMCsoXCIuNw5560ou17MPzpDNXz6PP285rLa7HTJpon3HG4n2p3CxqG4Lng9acH2ck5zWalyI2BKhgDyp71b1TWbK6aM2tpHahVAZUz8x9aLjWhaEwBBzWhda/e3lmttNIzxL/yyA5rkzfqf4gKjbVIlzl+vvUtjL11rTRvthjJHqajTWZB8zW5NZz6xABjtUR1hcYSMChOwmbq64P4oSM9KswaiZmwIiPrXLf2lubLICatQ6pJwAVA9KTYkdUHJPzce1SZAAwRWBBeyykKGwavKXYfMTQhtnU6ZrFpYWkyT2oleQEB/SslrpSxIPBNUVXJqURA9qdib3J/tS0fah2FMWIDoKkWPHahBYT7Q56DFG+Ru9SBM9RS7faqEyLL9zShCTyeKl2Z7U8IaBEIQZ6mnBMkVMIyalWJfTmmFyBYMnOKnRAB0qVVwOlOC8UEjFWn7Keq+1OVc0WAYq07ZT1WnbaLAeYeQg6CkNuvYkVNin4oArCPHWjaQeDxU+2jaKB3IPLO/dkdMU4DFS4pMUDuMyKRmB4wacRzSFe9IY7zAB07YzVt9UEunJZmKNQhzvA5rPIBqGRRtODRYLkpuCSQWz71VkiiLFjKQfrWbfXJjlMStg1n+ZKTguTQNG07Qr1nOfrUX2mFW4lYmsnax5LfnS7foTUuSRXK2bH9rKgwoJqJtWkJyoxWcF4xjml2YqXMORlxtSnf+IgVH9rlYLuYkioVFO2ipdTQqNNskMjP1ZqXaWxknmpIo9wqdYG+WsJVTpjQK4TPUCnbQOBmrCwUPHg1Lqsr2NiFR71Yt0y9MVeat2iZlH0qfaMfs0ixbArdx4JAzg10sacVhQRgXif71dLEnauilK6uc1WFmLGtWFjJqWG23EVpQWY21o5aGaiZywn0rxqSS/trVEuvFuoQ6jJaC7WBnfytpTeimTfkOyYIG0j5lGcnj6CS0Udq+bJtes7m1je50vzdSjtBZrO037oqqbFYx7c71TAB3YyoOMjnSi73Iqq1j1fwPLPeeDrC4uZpJpX8zdJIxZjiRhyT9K6LyzWL8OIg3gHTG/66/wDo166Xyhmi+rC2hVWPntUgTBqbywKNtMkaqjrin7e9OVeKkC/LTERKvFPC4p6rxS4oEIopVWnKKeopgMVadtrwjXLDRYry8v8AUo79pLvXb62L286KsSRmI7thQlj+9PG5egHHWvRPhhp0mk6RrOmysryWmrzwOy9CUVFJH5VTQrmD9og/56CpPPi/56L+dYG0elJsHp+tQM6EOrHasgbvgU/bWVpozeL7itoAmgoi20m2p9mTSmLmgLFYrxUZWrnlcd6jaLHrSCxTK1GVq2UNQspoKRzOpr/pzfSq2OBV7VF/04/QGq23IrKbNIRuMVacFOakSPjNPVCay5jdQIttG2rHl0hTFJyKUBirxU0ce7FKkeRVuCIY79aylI1hAltrbirywL8tNhG0Vb4G2uaczqjGxW8ioJbfmrw5J9qjlGcGoUhyRnCI7jVuziPnClEY3H61atExMvvxWl9DFx1JoYT9sj/3q6iCDNYkKD7ZF/vV08aAV1UH7pyV1aRNbwgAVoxjAqnHwKtxnitmrmaLFQwXFvexmS3nimQHaWjcMAfTIrL8SxS3GlKqRPNCJ42uIY1JeSMNyFxznOD26HmqFg1jd+Ira50OFY7ZIZEupUgKI/Tag4+8Dg9uO56Vk5WlY9Glg41KDq3fXporK9m+76f8PbonTFQsvNWCeaiauhHlSK7LTdtTlabtrSJlJEQXmngc04Dmnbaomw3FGKcBzT9tAxiinKKcBikLrGjSSMqooJZmOAB6mgaV9EeIaqviGDVr+CPwk99DFq11eWtxLZzvtaRlGRtYIy4jQgEEfUGu7+FtrqVv4dvm1W3uYbubUJJm+0xsjvlEy2COcnPNdVZa1pt9cvb215FJKpxtzjd1+7n73Q9M1pYpqaktAqUalKXLUi0/NWPDduKTbUrLTcUWILOmD/TFreROKxdMXF7GPWujWPmkNMYsXfFSeTntU6x8CnhOKRoir5Bx0qN4fatDZxUbJkUDsZbQn0qtJFjtWw0WQaqSw8GgVjjtWTF/yP4RVZUyOlamtRYv/wDgIqmseBXNVkkzqpLQSOPjpUixY7VIi4WnAc1zuWp0pIY0Y4qMx+1WtvIprLzU8xSSGRx4xkVOgAH40KvApVHH41L1KVkWozU+77tVk+9U5/hrGUTVMkU8mkcDC0i05l+5S5QbGquWNWYBiVD71Ci81PF99frT23I3NC3H+lw/71dQgrmbcZvIf96uoWuzDrQ5MQtSVKsLVdKsL0roMCQGl3U2igA70006jGapEMaRmk21IF5pdtWtCHqRheelLtFP20BeadybDdtGKk20baYiPFUtZsp73Rbu2t3ZJXT5cHG7HO3qOuMfjWjtp2KJLmTTLpVJUqkakd00/uOa/wBI1S802KPS7iwFlMGlldVUIApBjQg/MrYxkcYxxXS8Uu2jbRCHKaYiv7blSjZLZavd3er/AK+d2/EmFMqVsVHiqOQuaZk38VdSF5rmNL/4/wCL64rqwtIqI5RxTsULT8ClY0ixmKaRxUuKQigZXINQvHuGKtEVE3fHpRYLnJa+m29Bx2qgMYH0rrruziuBucZIFZc2noCCBxWU6XM7lxrcuhkqPlx3oAbdWr9kTGRSC1AOeKy+rmv1pGdzj3pSORzWgbUH0xQbRaTww1ikUR0609ByPrVwWi09bQUfVgeKKq4D9eKkyPWrItBil+xik8KV9csQBhTi4JHtVsWi05bMZ6UfVBPGt9Cqh5qWIjzByetXFs0Hapo7VAfu0/qi6kvGNjrY7rqLb2cc+1dOvJrHs4FWRWx0rYU81oqahsT7Rz3Jl61OvSoF61OvSmxEgpcUgpaEMMUAUU4DmqREgA5pcUvSlxVEDcUuKdilxTsJjMGjBp+2jFMkZg07FLtp2KYDOadil20uKYjw80ypWqKQZoMy7pf/ACEIf98fyrr1HFcfpvF7b/74/lXZsh2Hb1IoLiCjmn4qC1Rkh+frVgDmgoTFIRxXM6x490rRNVm0+5t71podu4xopU5UMMZYdjWpoOvWviOxe8s45kjSQxETKAcgA9ieORQ0NNF4ioytWccVGVoArFM8VUuoAAPrWht5ps6Axc0+hLRjBOMUvl1eKqQBS7ExUgkUBGKURDNaAjT0zS+Wmfu0mylEoiEVIIRVwRpkVJ5aUuYfKUhCKcIRV1Y0pwjSjmDlKohFSLCfSrSrTlXmjmDlK4iqRIj6VYVamRaLhyjYEwRVxetRqtSrUNlxRMvWp16VAvSp4zgVJZIKWkzRmmgHClFM3UoYUxMlAzUgHFRIwZgoOPxqwQEHIIHQMTS5kibDcUYpxUKoBOT2pK0i7mctxtLiloqhDaKdRQAUUUtMR4e1Mp7UygzJYZXglWSMBmRgQD34qUeObhWxLaRgjg7c1DDxKnHGefyrnZtwuZMn+I8UpOxcEdfH44jIw9o3PQg1v6frKX8qqkLLlcnNeYoRk5UHj1ruPCz5kI77OgqOfWxvyaXK8qXb6p4oFpc6zbONR0wu+kwGaXb5E+cgOvy9OcnnHFXPCkkEf/CQuJIDCNaudrW64jI+XBQdl9Pas3X/AIdjXNZuNT/tbyPO2/uzBuxhQvXcPT0rV8PeH4PDuh3Onverc+ZI0u/y9mMqoxjJ/u1q2rGKi7m0L61YZWdWB6YNILiNs815yC8UjBHIAY45q5FqV5FyHBx2NRzo05Gd4rIx++KSUqYSQQa5q01sTFUlUBunFZfji7vbfRoBZzzRSPdKn7lyrHKtxx+FNSvoRKLR1hG7GMU5R2rz+2h1HSfHFjYPrVzqFtJG7K7O21yodGGCxyBIjAHvgHjOK7Rr4xNtdaUtGOOqNFY/elEZz14qiuor12/rUyagh/hNSzRFsRcjg0/yqhS+hxzmpUvLcj7wpWG7DhH7VIsR9KBPFx845qwkkbdGFAIjWM04RkVOhDDgg07j2pN2Bq5CqN6VMqEU9RjtSGaNZNhcBsZwaE77Ao9xRx161IvPNIJEPHBpwkHQCnytjukPU1KDioc57YNLkjrQ4NC5kTbqXcKrl8dTUbXCKOXH50KIcxaMgHcVE84A461QfUbdesqk+lQPqqYOxef50+VdyeZkk93cOjK1nLjPDK4FZz32rNPEv2cRwqeXaTJ/nUkmoSOQVjx75z+lV2Msp+YkZ9sVnLkuO0mdTpd00ksiMSwA4JrV9KyLCLyY48HHyDPvWshyBWqVloY63HYoxRRVDDFGKKKADFFFFMR4e1RZqRzUJNN6EWJ4m/eL9f6Vz9x/x8yf7xrdiP7xf97+lYFycXUmP7xrORpBiA43fSui02/+xoj7yNwC4Fc2DnNa1v8AOig8gdKw+1odcLW97Y1hrkjSnjPbGTn86a+sTuMCE4IxVcQgZbsOTSqxkiBA55Nb04ys+YvG1MO5R9hbrte1tLLXqtbv01e5QDdSVwc81JGw71WDgMQ2Qc1Mu3qrZ9awcWQpKxbsli/tCIynCA5NXPF+oW+nWmn6hGgnNvfpKse7GWVHK54PGccd+lZSyYPGferMDsZVy5C/WnGXJqyXTdR2j1Mjwvrl3rniPRbbUJ5bi6t5Lgi7uZi7GNoshDnnAKsRz/Ga9ObTLeRsypAT/ezWPawSEcyNjPrV1bdtxzI1W68GZKjJFg6HanlXjX3DYNA0eFTxOCfTzc0iWp/vmpfsKlGySTtPT6UvbwuP2cjlPEupvo1/Hb2oEqsgJIPeqkfiG4wvmW/XmsO6guTcO00c2QxClgSAK0EIwmV3fLjjilVq8qui6MOZ2ZqHxSka75YDgelSx+LtPbqzLWHcqr25XbxXNTxfOwwadOfOrsVaPI7I9Ni8T6fJ8onI/GrcWu2h/wCXz9a8mtoj54Xa3StHyynUkfQ1o4oyUmeqQ61ET8l4PxNQ38/2jy3ilDSbvmIPavMlaUZIkbHb5q2fDkkrX7K0hI28c+9Z1HyK6NKfvOzPS7CSa1haNot+/lSe1WHv7nGFiC4qwkalQdvYUGEEZxWP1htaGnsdSn9rvCMFsGoZJr0jBl4rQEPbFNaMDtUvETKVFIygkzHBuG+lO+xk8nd+daAXrxTtvHSspV5vQv2cTNa06fLipFgQDpzVhuvTFNqOd9WNQj0Idi5xioyP3oAqZuTUTcOKqOrTFLY6a3X93H/u1dTjiqtv/q4/92rK16Sehwv4iUUtIppaoQUUUUWEFFFFMVzwx8/N/snBqEg561NP8s0g/wBqq7H5qchEkZxIp9DmsK8BW8lHoxNbSt81Yt9/x/TfWs5FQGL61sWRyFrFU8Vr2ByyVjtI64bM1hg8Y46GlVNiYUdjSqOacxUDlsda6bnIo+8YTDLnIHWnCMcEEg01yPNbac81YRflFcbcrnclGxECS21gPY1dszGky+d90HnjNV0h82UIOpIxWrbWUkd4pPQGnKLnA1w2IWHqN20ato7Po9Hrbb7jc0eBhbnKFVMhKIwwVXPANayoQx+WoLH3OKu/LuPzVxqnJaGtesq1R1H1FRc/w1Mq4HTHuKRNvduKlwpBCtzjiqjB3MHJGU0SMMuiMc45UVWm0uznH7yBMnuvGKly+9hjOGqym8r9yu9U+aNmcvPaV0YE3hS3lBCSOAfWs6TwFG7Ei5xmu0UN6Uu2T+5VxpW0Q5SvqzjoPAEEMgdrhjgY4q8vg7Tl+88jV04t5j/yzNKLaU/w1fs2zPnSOeh8N6TD/wAuu4+pJ5p9xY2dpGht7dImLYBHpmt/7C//AD0Ue1NfTFlAMsy/Kcis50HKNioVUmaES/u1wDyBTijAdqiM8CqAbkDAxiomurTJLSM59qw+q92a+37Em4DksKiaVT0OfpUTX9uP9XAzfWoW1GUjEduE+tJ0IR3Ye0kyYyODhY25o2znkrtHuap/ar18guqimBJWYFpXP40v3UdRe/Ivsh25LDioqAjYA5+ppxGBiuafK3dG8ItLUhPWo25cfWpD1qM/f/GnDcUzqIB+6jP+zVkcCq8P+pj/AN0VY7CvRXQ4XuOU1Jmo1p9WSLmjNJRTAXNGaSigk+cbzVZrbUblG+ZFdh/49SJrELH5021W1eMrrN8vbzWP/j1UGhdvetZRSmyISfKjpILy3lZdsoHNZ2pFft0m05561lrBKpBUY5qwwkViW5J4rGSRpFsmQ/PV4XBtLUzJ1zWbHjdyauSjfp7KO5rnn8R1U9mMk1u5kyN5XPYVUku7iUEGUkelAgKcEE08RDuK3v7phY04/mjX1xUqoxOR2pkJzGvFWErlb1O62g1ZpIpAwOCOlbtnrz4RHiDNWIwBPTmltwftqLkj61Sq2REqaZ21vrSgf8ewzVr+2AelsKo2tsGQHGavrajb901ksV3D2CHLq5JH+jgVN/aj8YhFRx2ozkqamFuD/BT+tdhOgMOoynpAKUX0/aIVMsAyPlqX7N6AU1i5IPq6K32y72/cFJ9svHblquC3JGCn5GkELebgpgfUUPFyD2CXQhEl2/V6MXD8GVqvLb/Q/SpBF6Z/Kp+szY/Zx7GZ5Mp6ytTktQThiT71qeTxyNvuRSrDzjHXoaXtZsOSKKC2ag0/7MAxGK00tsHBYE+gU1Mtk7E4jb/vk0NyYOyMUW4z0pRbjn5c1sGylTJMWB6kgVUkdIgQzoD7HNZOnJlXjYz/ALNhuV4p/kRqOoJqKS8jDHazt9OlQtcyP9yID3NCp9wUr6IsFgPugn/eqJpAx271Wqr/AGiTG+Q4HahYVByeTT91bFWl1Jmwvv71Fn5x9aeQSeKiGDMADRHcmWx1kP8AqY/90VP2FV4SfJT5SflFT56ZOPbFekuhwP4he9OptOHNUA6kzSbqbQBLmm5pM02qJPBNXtVOqXRbjMjfzqj9nRTwRW9q1un9qTZJ+9mqkcEOeY6VdvnZVKKcEZy24OMdc1M0EQblcnvWkEjBAVahn2iRsDnFczbZ0KKRVVIR0hFSC3jmGwAKCOBTkVj6U9FdZAwxUPcpFH7Ew4zyKjkgeMHK5HrWjNkyncMZ5qNkym1eavm0J5SvG37tcjGKsIeKYqFTgilIZW6cGsnFnQpaEmfTr2q9YadPPcx3CjzEU8gdqoBgMVJazyQTBY5WUMaSVtxSuz0OyaN1x5ZBA6Cr4jBGBFJXM6e92FykrYPdetayy32P9fKKyUYFNyNWKBj0hkNWVsZ2GRaykfh/jWMk17gg3M2KkDXpHFzP9KdqZLczWFnKpGbaQfUj/Gplt3HWHH1IrFCXZHzTzn6mnrBIw+Z3/E01yCvM2RZyN08lPq1OWxG7Lz2yn/erD+yr7fnR9ijDfcU/jTXswfOzoPJsl/12o26f7uf8Kf5+jp96/Mn/AFzFYaWqj+En61Mtvj+EU/aRWyJ5JPdmodS0VPuR3ch9wMfzpBrtpH/qdMyexkrN8oDtSqoz0odZdhql5l9tfvG4jhhjHbCjiq02p6lIv/HyVH+ytIsYJNIy44xUOs+xSpdyuftExzJPJJ/vHFR/Zl5yoz9c1cRc9qRlHfpWTqNstRSKKwqM8D8KXy+DUreShJLZNQSXQHCKTS16j06Ebo2ajZo4xlnGfSmSvcvjkBahMY5JOTS0DUZJcMxIQcetQG78k5xkjmpCAAcVVlQEnNaxd2ZyskbcHi+zwolhmUoMZWtKHxNpc2B9pKH0cVwzaezEsh5qL7JcJnIG0dSa7ozZxSi7npceoWkwzHcxt+NWUkVhwyn6GvKfKI6gE/7JqRLq5g4jlkjH1qucVmep5z0pc4rzaLW9Qi+5dE/WrkfivUF++wlqlNMHod5k0c1yEfjGT/lpAPwqzF4vtHOHQiq5ibHA618mrTcbuF/lVT5yBhBV3WNw1aX3Cn9MVVDhRy1GJ0qMuh8CBVfk429KSe1LTZDEZ61IJFYYIbmi4uwsgRUPAxzXMbkSWfPLnNTx28Sj5sk1W+2OOMc1JHJNIwqSh80e58jdsxikEGB8o/OrUkchgyARjrUYiYEFm5xQBSkhlY4Cc04wO8eHAyoq4SQM55pqr5mckilzNDMkx7fvHvU1uQbmLJyN3SoLtSkhUZPNLp0qLcr5oY4PFDTaGp2dj0HT41MXC4HtWmkfHBNZWmahAqlXOAPUZrYS+tCP9aB/wE1x8jN+ZCJGRzUyr7U1L2z/AOew/wC+TU63ln/z0z7YNP2bJc0J5fynGc09UO3oc0fbLYDhXP0pPtkJHCTfpTVOwc4YP8XH0oSNi3ygj8RTvtsQ6QufrilW9Xdxaj8zTUEHMxfLZugFTLE7DhSaZ9uk7RKKc17ckcbBVcke4nJkv2WUj7r06OxkzlgVHqWFV3uLp1GZiPpUChnJ3yu31ai0ULVmk0EMZO+ZAPQHmonmsoxxI0h/ugc1UEaE/cH50/AHGPl+goc4gosRrjcf3UJRf+mnWq0nnMTl8D0FWeO4P41E4ABxWbkuhXI+pT8jknrS7AoNP3bQc8fWq8twiA5PPbFGr0B2Wo2Y4cDbxUEkqLwTiop555P9WvFQpbSOf3taRo33IdXSw8MJGOwDFRvayNyHP0q0bcRqMAke1C3KA7e/vXRGnFGLbZWWKReCKsxxErjP4U/dvXKjmlEbHljj6VT8iWV57VDyTg+1VjaJn7xNavlhhjI/GmGMoeEBosxGRLGY/uxhvqKrNA8v3lAroDCJO2Kgns09T+FNITRhfZ2T7ygfSlaBGxsYk+lbP2WIdST9aHtY1+ZQBVE8pz2sws9/uHdFqoLcKOWWtXU0DXQP+zVXyCy8Ltroxcf3rIw8v3SKy+WNoqw9lHIwfHUZpTZttwApPBrWCxxKm9gDtGRXNI6EYn2RFAwmTUiQv0CAe9aheEnhc+9GUAysQzWVmaXRVhgc5jZuHFNaFFwCckVoROzMrGMcGnNCWkJMfU54qhGcsMbnAXNE1uQvCfN2rXitOc4xUr2Ycd+KljRx91bKYyWXDDrWVDGv2mPthq7G50rc3AJ+tc7LYXEdz90gBqpbEP4jrNORCCQmOnOK1ViHU5x/u1l6a2Bg8ECtbORyc1xWlc6/dFVFzxn8qmEecA9PpUcW3PSp1Kqq9Ovel75L5RwXaMALShfakLjHVfzpPOjX7zLn607SYXiiTb7Uqg7ulQm6jXoy/nSfaYgMhqOWQ1JFtc+lOxVUX0W77xqT7WgXmqUGJyRMfu1Eh5NRNfA5CIelVN0kmT5jr7CqVNvclzXQ0w4AqKS5jXq2DVFIXYDdk+5qx9jVkOeK0jSXUh1B8l0AuUG4etVGu3k4xip1tgF6ZFHkxr8ypV+zSJc29CjJbPKM+Yx9hQkQVdpXB9TU0lyUJG3FQF5JO+AaHYSi2TJbsw++OPSpVWIZDHNUv3cRyJWDe3erMN1C3yyJ8x71S2BxsOZdyny/u1UNkztnZj3rYj8iM8LwRUoKnnb8tMkxDZTQJnPBoWUR8Mcn0rZYJjIXmqcsMLnlcGgCsJt3RcU9ZOxFRvakHKdKkWJwv3easkVw3ammdQdhTmpo/MX79DhZOqUWI5ii0ibvu04hWWnyQg/c+WoFgfPzniq5Q5jMu03TLgdsVXWNxwSSKnvJlhKbiAT0qm97COgbNdOM0qsywv8ADRPHGoLMXyemKLhQZs5BAHAqsl8u7CRck9+9a7BX2vsUMyiuM6CvBGH7YHarBhwnIH50yRmX7rKPpVZjk5Yhj9akuMbllCi5BYDHvVt7qGERgknK5yKzRtUfcA/GnkCWFSAPlfB+lA3oXF1AY4QknpQ1/L2XbVUsI8DB3dsUoEx5VGOf0pWBNkrXEzdelR3kJkiWYY9CBSi3u3BGCAamgtfL+WdyUbg47UbCKKSBehIz3qf7R283HvViW0t0lMe1htPelaOFFyIhn1bpSsh3ZWE84OBuYeoqaMzXOULspHTmq00s2cLhfYVAJZA5O9s0JIepfEb5/wBYeDyCadhM/Oxz9ah3eagmXI7Ef1oBwwDHmhpAWQsZbaqkn3q5AqldrrVKK4VW2hefWriSFuiGjluTJ2Jls2ByzHb7VZhtossN5IA4zUVv5p+RsketTPCsTDBOTRawr3HgIF+UDOMVGSy7SvJ9AKmSMAcc0x/NZtgwAOmOtXYTuI5ldQQuD3FRM0irhjx+tDhom5djUgRXAJb5vehgiJbtANvzZ96FuZC33BipHiSPllGfWhmjRd3GKRQyWNZV+YAfSs51eKQDG5ParrXSswXGc+lQESBztHHoe9Kw1KxEkJeTI+UGrQsjnPHHepYoo25Y4b0qwCI+NpY07A5aFE+ZGfusanhaRvvMFHvUrOZPl6VAbPfnls07EXJy+xTvcY9RVczRscBs0i25UFWBde4pBZgZ2ZBPalYpNDlfJwKf8571EY/LFSxjI60ajshxBHcH61FJLtGTgVOIlHU81DO9vgiTDEelaRMJLsV3kVhydv1qAl2+7lqsRizxja//AAKn7to/drtFaEHOXkPn7D/dqFbGJGyeatSzeWgytQm4c9Atb45fvWThNaSJEhiLLsTBBqxcrNldvpVPzZiB85HPatMqfIiJPzFRk1wnS1Yy/IuJGIZfxqZLMLw55FW32bM5quXAHDVNyojhBDuzjNXbNYC5i8rhhx9azsr97Jp1vN5d1E+/gN0NA2awtsSY8sD61ZjjVMggVHcNJvJUfiKhQTuT8pye9MLFwoG64GKiYoMgrnNPEZCgSNg1G+1T8xJHtQIgnQSBJsc4w31qu3zDuBV6K5gMghZdquep9af8u3AjCsDg1L3AzltWl5XJP0pv9nPkseMVtIWTAz1odN75HGKYXM62tY4/mkkyG4K1YTRbYOW3lg3NRzRnzN2eans7hVPltTaBSJ4NMgjOUiz9auC029FFTIy7M5FI1yqfeZR9Ki5pyoRLTb2pJYVMYVuD61Il6j/dJP1pk0kTL+8fH0oTuJpIhCrACuS2e9EW3cc/hTUngDbNzMD0NK8kUbD5GbPQ+tXciRHKhc8Co/KfPKfjUxkkDfKuKcSNnzMWNOxCeo5IlK7WqpNDGGO9SfSpfM2AkZAqKa53KDt3LjmlYbZEoWNvlQAVKPmPTNN2J5W5TkHr7U2KZUyNh570IVxJUCfMTz2psd2cgSj5TwDRLIjEc5PoKYYSRz0NUK5fIXYCjA0K4HBqpbReU24khfQVcR4JcnZyOxp2AVH2yH5cg1J8inceKQOAcKMU1jkgmgSTImvIEBDc8+lQPcsTmIACppId4OAKpPGUPGaErlakglaRueKjaMK3JzuppkIOGXJ9aY7MABjOP4qpOxm7jmIU9KVrpQuMVEGycOcmmmEuflGfrVkmTcEGNdxAqupXOMCp50EkS7qgVFQZMZrozHSqyMF/CQ8ZLgDsavXDPtj29Ng4rPjmbf8AIlXJjI7RgnblBXnw1OuRUPnHIINTxWjPgEirSWZIzvz71oRWeIy3pVOJCkUDp6EAEt+HSrUVjCikhCxxkFuxq4Y9iDjtTWkKjpRylcxO82Y0bYBkYxQsh44xVaCUS24LdVfAp4mP3T3NS0FyV4xKQck4pkqBQRuA4qwHiEYXOGNNlikkwqx596Box5LUyklWbP8AKteMb4YpG+8w2sfTFJFayLIFyF3cVoQxReU0e8EScD61PUZT4DjJBwaHOW+QHBqyqwIcEZI+X8alXZ1VBVc1iVG7MeWGRjkKajW2Knc0irnrmtWWMsc7tvtVaaFccjdUuojf2JJCYXh8tWYuP1p8UcZ+8ufXPaq0aiM7lG2QdPpWhHskVJV+633qE1IVrDjGvl4AAPtVcQZ+8N1SyzoFqI3D+USgptCa5ivNGIm4OPb0pY7sRny3bIbv6VDO7ONx69TVJiWPTmkLksb+VhiARt6kfeNV0k4O0fiaj0sTM+ySMiI/xGr0tqinBcZ9q06GbViqJPMQg7Qaj+zu44HTj2q15UaHIGTVgfc4+Wi9hFCK0kV92VB9D0qy1hGw8wk7u4XpTsEk5OaegcHO78KLoTM90SNvkjXd39arP5pk5wB2Fas8Kycj5Xqo6BeGOXFAIiRiPlamEOWPJ59KmVQ/SpVCo4zTsVzISGVkADr8vc1YIV1yvNRlVcYBqZCkYAX7vegkrM5TIxULtu5OKnl8ttxBLcdPWqElztJAAT2NOJPMOcA/w80iAZw2NtQ/aGalWQmrsTJlkQQqMp1/2qjcMOgH4Uwh3O4HinLIytzTEf/Z", "path": "images/4pts_ADE_train_00015755.jpg" }
depth_point_51
images/5pts_ADE_train_00009518.jpg
ADE_train_00009518.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 76 y = 201),Point B is located at (x = 242 y = 144),Point C is located at (x = 41 y = 212),Point D is located at (x = 168 y = 173),Point E is located at (x = 104 y = 130).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_33><DEPTH_1><DEPTH_1><DEPTH_1><DEPTH_1><DEPTH_1><DEPTH_1><DEPTH_57><DEPTH_1><DEPTH_57><DEPTH_63><DEPTH_49><DEPTH_72><DEPTH_36><DEPTH_36><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_64><DEPTH_77><DEPTH_29><DEPTH_11><DEPTH_49><DEPTH_59><DEPTH_59><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_59><DEPTH_33><DEPTH_67><DEPTH_60><DEPTH_60><DEPTH_49><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_36><DEPTH_67><DEPTH_54><DEPTH_43><DEPTH_24><DEPTH_35><DEPTH_35><DEPTH_17><DEPTH_3><DEPTH_35><DEPTH_119><DEPTH_0><DEPTH_23><DEPTH_8><DEPTH_1><DEPTH_50><DEPTH_5><DEPTH_69><DEPTH_67><DEPTH_30><DEPTH_119><DEPTH_98><DEPTH_42><DEPTH_57><DEPTH_0><DEPTH_84><DEPTH_6><DEPTH_63><DEPTH_33><DEPTH_94><DEPTH_98><DEPTH_42><DEPTH_94><DEPTH_1><DEPTH_0><DEPTH_82><DEPTH_11><DEPTH_11><DEPTH_49><DEPTH_69><DEPTH_121><DEPTH_16><DEPTH_57><DEPTH_41><DEPTH_58><DEPTH_74><DEPTH_64><DEPTH_58><DEPTH_36><DEPTH_69><DEPTH_16><DEPTH_1><DEPTH_2><DEPTH_25><DEPTH_45><DEPTH_9><DEPTH_41><DEPTH_2><DEPTH_2><DEPTH_41><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
5
[ "B", "E", "D", "A", "C" ]
<DEPTH_START><DEPTH_33><DEPTH_1><DEPTH_1><DEPTH_1><DEPTH_1><DEPTH_1><DEPTH_1><DEPTH_57><DEPTH_1><DEPTH_57><DEPTH_63><DEPTH_49><DEPTH_72><DEPTH_36><DEPTH_36><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_64><DEPTH_77><DEPTH_29><DEPTH_11><DEPTH_49><DEPTH_59><DEPTH_59><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_59><DEPTH_33><DEPTH_67><DEPTH_60><DEPTH_60><DEPTH_49><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_36><DEPTH_67><DEPTH_54><DEPTH_43><DEPTH_24><DEPTH_35><DEPTH_35><DEPTH_17><DEPTH_3><DEPTH_35><DEPTH_119><DEPTH_0><DEPTH_23><DEPTH_8><DEPTH_1><DEPTH_50><DEPTH_5><DEPTH_69><DEPTH_67><DEPTH_30><DEPTH_119><DEPTH_98><DEPTH_42><DEPTH_57><DEPTH_0><DEPTH_84><DEPTH_6><DEPTH_63><DEPTH_33><DEPTH_94><DEPTH_98><DEPTH_42><DEPTH_94><DEPTH_1><DEPTH_0><DEPTH_82><DEPTH_11><DEPTH_11><DEPTH_49><DEPTH_69><DEPTH_121><DEPTH_16><DEPTH_57><DEPTH_41><DEPTH_58><DEPTH_74><DEPTH_64><DEPTH_58><DEPTH_36><DEPTH_69><DEPTH_16><DEPTH_1><DEPTH_2><DEPTH_25><DEPTH_45><DEPTH_9><DEPTH_41><DEPTH_2><DEPTH_2><DEPTH_41><DEPTH_END>
76
201
242
144
41
212
168
173
104
130
211
2
232
116
44
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCqQM/dqNoVI2soqcfOCVpCPavP03R2aoovbxknCDNRG2ReRlR7VfK8Y9uajKnpTAo+SR8okYZpJI5AhkEhZhy7HuKuMnXOfzpANh6ZHoaAKYWXA2urKfUUoE27cVVjU/l+W5jzleqE+np+FOCDrj60ARBpl+9F+Rp3mMOsL/galCcdKkCkcigCATqOqOM8U4TRepHrkVMM+pp2D9frQIh86M5+cDPqKWVlaFlQqWBDCptg4JUEj1FEcMbkoFA3KR0pgRKVbHIBx0zT19MjA9DUMEUbwruQZHHTvmpPs0Wfu4+hxQA8DsB+VP5xkZzUYt07M4+jU4W/pK/50AS7TkZz7U7B9OnAqLyJM8Tn6EZpypOMYnUkcY2UASgewpCQEJPZeh7UbLkA/MhHrtxUcwnMBSRU+b5Bg4yTQBNari0jLD7w3ED1PP8AWrIA4YqOOlQA3S4H2ZSMYwHpwkmBw1qevZs0ATgktx0HNSLuP4MTVcTsB89rMvPYDn9al+1RgAmOdTjP3aYE6DKg9DwDmpAM7Rux2qBbq3JOZMZH8Smpo5rdhj7RF+Of8KBEirnp1PJNT2tpJezx28YALMRn+4B1J/DmkjWNj8txF3JO7FaVzbvp2meSpVbm8GHYMMpDj+bdKaFcytRuEvbsG3ULZ2w8m2X1Xu3/AAKqnl/Oy9Tn9KuG3UINuNq/KMMOBSGHaoUMpPPfmkxopmI52nqcHNG3KcjDD9auBOAcA8YPNMMY2nIPzdMdhQMp7efUcZ9qTyyowFAzyferTRsAABnjPSoWB3cA89qBFZkCucduTUWN3Azyc+1W/KZuFXceevH51XZQ4CKzCAdWH8Z7j6e/egZUf9/lFb90DguP4vYe1O2AAbVwqjA96t+Wq9AAO2B0pAgJxweOPUUAV9hG7A9MfkKYQwI9R2qz5YIxknFJsI7A5757UCC4tiP3kY5/iUVX4Iz2rXdPfBJxWdcxFHLoPqtckKltGdU6d9isc5x7c0hHbtTjIrZO6mkqT1H51umYDSM5phXI96kOD3H50mBVCGGLenlj7w+ZD7+n40ijcMgYzwQfWpQpzz+FSOvIkxw5w3sfX8aAIQvNOCfnUoQdKeEoAhCCnbalCCjbz0oCxDg5pw+VlPoak2CjZx0oCxWVBHNLH6Nn86eFxmpJE/0lWx99P1FOCUBYjC09Vp4XHFOwKAsNC8dTT1X+dOC1IF6Y696AsMC5AzzUUqhri3jIBG9nIx6DirSpjmo0TdfSN/zzjC/iaAsSBBxxUipg/wD16fjPNO2549uKYhEU9emD0JqTa3UMenPNOCn8qlCg9Oo60ARbSTwx9z1pGXpn5h61OI++Mk1IkLZUAZBOABzzTELYWMEkzzXMSi1thvlfA59Bn1J4qKYm/uJLq5ijaSToCv8AqwOAo9ABxV2+jEQTTY+UjO+4OeGlx933C/zqJYgB1JGBz/n0pvQSRW/s+3dd/wBmTHpimf2db9ViIX/ZYjFaYjJORkqMc08QZCrtwP51JRjf2dED8rTKM9PMNIbHH3Z7gD08wmtgw9Qfwpph4B9eKAMY2jj7tzMPqc0wWs7YCXb5BwQVHFbS2xlcBRlvTpj/AAqCWFZSYkOYRwzDjzPYf7P86YjKxNJF5STgryplMYBf1/DtUDQ3YXC3K4HbyxW08QHYAdBj+VQNGNpJXtSGZPkX2SBPEf8AgGKZtv8AjDwMT9f8K1mi5OODgCm+R+Y9B1oAyib/ABlRb49Mnn9KaTfAAtFbk/U9PyrU8gDce3amsqxgtIwCkYGaBExX5c96qzqMdKvkcZ7ntVeZRj6da817noIwZYzG7MgBUnpTAynnaMDvV+VPmPFUpY/L+ZR8vcVtSqdGZ1KfVCZQ/wAIFGxD0DD8aYcH3BpA2OhrpOcl8odmP/fVSJGOhZiCMMKhWQr71MsgPGMVQrDkVwxRpOR3x2PQ1OI5T0dTTM713Kcug6eo9KmQhgGHKnv70AJslH9w0bJv7ifnU6naDxWvpfh/U9XtftFvCixE4BdgCfwoWom7GBiT/nkT9KMP/wA8W/76FbmoaJqGmHN1blUJxvQ5X9Kz9pzQ0CdyhL91G2MuxyOfQ0u4d1cfQVbljJtZB/shh9QaQLkAjvz+FAFYOvqw+q05Xjz979KtBPanbB2A/KgZXV4u7r+dSBk7SR1OIVJ+4v5U4QRnqi/lQIiUKTnKkfWm2iEiZ25Lv/LipzbwrGzmMfKuabBaoYVMincV3E5PWgCUJk52k/SpFjOeEY1H9ji6DcP+BGpFsVxw7j6E0CsPWMg8rj8akEZzg8GmCz4/10w/Kp0tnXkXMuceg/woCw5Y+RgZ96v24+zQtebQZSdluD0Zv73/AAEc/WorW1uGmVRcE88swGAO5/Lmprl5biZZITEkKrshVgchf7x+pq1oSVktVB2q27qcnqepz+PU1KIAMEdaUR3eV+a3Jx/dNPWO9U/dt2/P/Gp3GhQowQOgPanbQVHPIHFIRe/8+0R/3Wx/WlV7gHLWYP0cUAGzILDGDxQtuzkAD5u57CpY5ZGbb9ikH947h8v/AOqlu5V5ihjkeM8uyD759PpQBUdQyNHC2ICcyOfvS/T/AGajMe0EbQuMYX0HpUpnQnBt5voENJ9qUfMbe4x/1yP+FAyu8Od2cYxkVG0HBB7Yqw10hxuSYD/rkaiaeE9PM/FDQFiuUPXHXrTPL5xg/hVgSwlgoL5J/iUiomljkZlEwjVThmI5P0oArSEg7UUPIeoHQfWkWyw2+f5pO391fp/j1q+GtEUoksajjjPWlLwE8Tx49Sw4oAqFePeq8yjb0/8Ar1bI71FIuV+leaz0EZMqneeKryIOeOtWy8cu5o5FcBipIPQjqKikWl1HYw5i1vIe6Hp7UwTgnAFXLpMkjHBrIfMJP9zv7V1Up9znqR7F1ZhT1nU9TzWf5q/36XzcfxVvcxNZJlyCCRiplmCNw3ynn6GsdZ++7inrPldp/CgDdS4A6n8fStOw1q7sDm1uniB6gHIrlY7skkH73Q1Ot2O4pXsG5115r9/qcQiubjfGDnaOAaphlPesNbtPUipVux/eqr3BRsbSpk44IPH51BAhEQUjLA4/KqSXgAzuI+lTxXCGaRS525BH5VNwsXAntThHjsc01ArcpMee1SiJ/wDnofyqhCgAGnbRjrSpHJjPm8e61II5f74P4UCIbhP3JRerkJ+tTeX9MdhTWWQvECQWBLj+VThZh/Chz70DECjPIqXZngA0wGUf8skP/AqeGlyD5Cfg1AhyQknBFWYoRxjk0yJ3zn7OM9uau2zdSY9pUZHoT6UANddkItlBJlAMp9E6qPqe/t9afHEcc06KI4LPIC7Elz6k+n+elTYCj72fpVXJLFnpj3S+ZuVI+mcc1cfRo1XcLjBHcisxbtIgcSup/SnNeQv9+djzzTQrMhZT5rLuV9pxkcU5IieBgDqSemKlSSKU7UdDgFj7D3pskkMnymVQgOducb/c+n0qRjDl1ULnyc9T1kI/pT8cAdMUomgz/rEGeeD+lO82MjhlP0NMBhX1zTSvGDkCpN6nnIIoB6n07+lIZAUBOcE+lQuyqANoZz0UVZO98rHwv9//AAoWFUGADnqx9aBlA27Od0oUsOQoHSlMIIwVXH0q8Yzgn86b5ZIwBzQIom2jJJMaHPXK0htIiBmJPwFaCwluKmjtS5wgzQI5bFRuuRU+O9NZePpXmSPQR51JfPpmpXIhfH7+QmM9GOTXQWl/BqMAeIhHAyyHqK4/W4pBfXWyPzEFzKHX8e1VLS+dGSZJGyn8efnT2I/rXTyKS8w5raHa3KfMay54xkgjIPWpbPVkvVWOcqk23hh0f3/+tT5k+fHT+RqIpp6ky1MkQiniBf7tWFTnpTxH/wDqrS5nylUQDOAOKd9n44FWREKkEfvS5mPlRVEHt25NAhPZjVvy+MdqURYo52HKisIm/vmgRuP4zVwR+1PEVLmkHIijslxwxpR56tkSH0q+IqPK9qOdhyIqpdXsZ+WTitC21nUIyAyRyL2qLy/alEQ/Gj2jDkR1tirT2kczIFZlGR+Aq0I2A4xmmaTEp0qEnOdo6fWrfkqepYfjW6ehk4q5TEWbmRuBtAUZ6df/ANVSrFkfKBg9CDTlto5oT5m8q5PGe3T+lLDZrb26RIzhF5HPrVEAI/UVIsY69KUQ/wC21PWA9fNNMQqr71ZUZAVeneq+x94QP7sfSp0ikHSZT9VoAmVRTwB/d5pipMOkiH/gNO/fD+4aYrjuhJGB+FIpwCSQFH3mIpAsvRlUJ3OaWTexBEYKg5GPWqJuxMlzlsKoOAuOc+powvcD8qQmX/nn+tJmTH+roGKVTGcL+VNMULdY1NOG8jGwj3oJGMqhJ96AGNDDxuiGfQGkEKgklVUHoM08EZJCMSeuaXdj+BhSsBEbWI/wdO4NL9mj/ut+dSbhjoaTegGefp3osFxBax9t+frS+RGvG+TPpuo81T9449BTxIgHBxTsFxywbVKvM/JyAGqZQQNoncewNQiVB/H+lKJkAPz8fSgDmgOaRh8tSAU1h8teUzvR5xdoP7YvvUTN/Osi600ODLF8koOcjv7H1Fbd2P8Aid6j7Tv/AEquV3A5HatOZxd0DRyqXTq5jf8Ady56dAfoexroNN1YyuttOSxPAJ6g+9Ub+zjmO1kHQkHuKzNDMy61BHI5cLLwx611RtNNmLm09TtQMk8U8L+frTgOTxTwOaxLI1X2p4WnAc9KlVc9qTYEe2nhPbmpliDVKsfA4qW7IaVyuEpwTpVkR9sUvl44I5pJoZXCYo2VY2D0o2e1O4WINtIUxVjb7UhWmB1OltjTrdQwGEwQauMxWJmO3hc9a5m11ExKsRXIUYyRV37czqikffYZH0NdCWhzt2ZtxqyxquAdowDnr3p+18fdH51XjuSwBwMZ6VYWYen61VyRQr/3F/Ont8ilin/16VZFP8P605XWVwxyUHQe9O4rCRIyrlkJZuc1MpI6o1PBU8DP1zVgOuzaFA9z1pksrg/7LD8KeNncH8RUw2qOSSew9amiiU/M+T6DHSmGhSADHLDH90Yp4Vf9qtHy0JzkfiKcIkPGR+VO4jM2J7/hSlEUZJP4VqeWvRQM+uOlC20Y5+UmnqIzRCG5LAA9BmniEdNy4rR+zx+iUhgjHVVo1C6M8xDn5hTSgHcH6VoGBW6KAKiktwiArHvPpmjUZQMJJySAPakEQXpiriQMQd8Ij+rZNDQLjp+tFxFMx+y0nl/T8qsNEq1Gyr60xkflj0H5UBADjaPyoIGeppp2/wB4/nSA54DihhxVLStVttUh3wEhwMmI9avH7v0rymegk7nnl8hXXNRU9DMTn6haruuFOKvaqQ2v3/8AsuB/46tVHHyk+tOQ2Z1wm5sj0xWNpYxr0fHSU/zroJR8oPoawtNGNeT/AK6/4V00HozCS1Oy28mnhaXb8x+tOA/IVFyhQozUyJTUSrKLUNgCIBUF/qdjpcZN1MFYoWWNfvHFZ3ifWW0fT0EI/wBIuCUjJ6AdzXDabpeoa/dmO3jkuZictJIxwq+h9PWt6VLmXMzKpUs7I7CPx3YNIsbWVwNwxgEV0dpdW9/FvtpVkAAJX+JM9M1xOp/DrU7HQr66aa2byLd5ZFBOQFUk459q5PxDoEGkafayw6VqwWa1tZvt8sgNuzSwpIyqBEOhYgfOeldH1WE1ozJ4iUdz2jy8HmmlcGoNE1SHWtMS6T5XHySr6MOx9qvFK4Ho2mdqd1cr7eaCvqKm2c0BTkdqLjsZkk8yTSAMNqniplvLnerblyCRjbVa7ZYppHIyobkk4zWTe6ukunR/ZHBnm2/KQcxrjJ/EYx+NUud6ClyxWp066rerwDH+VSf2zegdI6wtL1SG8tE82UCY8YIxntWptBBxUycovUcVCSuiwdcvCCAsf61JHr96gx5Sce5qnsGaBHzU+1kV7KJojxPfL0hSmP4w1JOluhHtVQR1HKoQZxTjWkS6MOxei8a6jG29rYM5756CraePr1fvWZP0Ncsb05YpbboxwDnqeae1+EL/AOjH5TjHqar28ilhk1sdavxBnx81lJj8KevxBkY/vLaTb6AVyS3iYbMDDBxj3oOoW6lh5b4AzwKftpC+rRO2X4hwj78Eox2AqVfiHZH70Mg/4BXCfbrUuFKtnbubjpQl7ayFcbgW6cdKPbyF9Wid2fiHZE8RuoHcxnNSJ4/0w9S31KHivP3vLYAn5uDgcdc0n2qyAclj8oBPy0/rEhfVYnoo8eaUf+WpH0U09fGenSnbFJk+4rzr7RY7gpYgsAT8vSp7WS0ldFjIy44BHUCn9YkT9WR6AfE9qTzIv4moJPFVgvW4QfQ1x80K4xgflWZPbL/dH5UliGxPDxR20vjCwB4nBP1qA+LrNjxcIPxrg2tlJPyj8qh+xoT92rVUn2J6B/wk9qx4uE/Oj/hILY/8vC/nXBLZrn7tSCzX0NP2oeyK1rr66VtfZskZGVHH8RHSuj0nxnDqNwIJrfyVKEiTPGa8yuA8kIjlJKgEKf7tWtKka1uFuBcuzDsBkflWbhG2p3rDzex1mpj/AIn+odsyDn/gK1Xk4j+lOlnjvdTuLmIEJIVIDf7qikk5U1jLoc7TWjKcn+rb61jaev8AxP4/+u3+FbEh+Uj3rJsf+Q9H/wBdf8K6KOzMZbnZsMMfqaUU5x85+poArMZIgqdFNRIM1Yjzgcd6TA838X3rXuviCN1eOECNM9Fbv+teoeGdIi0nR0to8LK6h5H7liK8fbMnilw/AN4cr6817lYkyWih12/JnPfiuur7sIxRzU9ZSkzH8RyzS6Fq9vGXkmkspYhGi5LEoQAB3JrxjVY9Z1K2T7T4UaKeG3hhN2lvcB9kUaopILFPuoM/L+Ve46hcx2paWYpHED/rWPLe2O/SqD38d9bS/ZzHLAyESMGwy9eoPI6GqpVuTQueGnOHtbPlXW2n3nK+Br0pfT2YWNEmTzMf7XYD14Ga7nHJry3w1I48RWUQAMZk24X+HGf15zXqxHP41z4hLnRpQb5SHbzSgZp5FKAOlYm5wXiOS5vdUuLG3jlkjhbMwiU5XnAz+RrJ1pL9jZqkTo7KWVdm0lsgce5GDXZ2umCW+11lMiM8zMo3fe+X7p9R/jWAmdVbTory4mWJbkoq+gCjn19q6adRc3KjGdO8JSfyMxJL63nhd7GSPykAIlQoSRyDzXoMMTi3iLowZlzt78j/ACKw9T09pNV+zW0ryDOzLuG24x1/PiutWCW4jXefmQBR23f/AK+tXKCrK5jTk6TsUFKONyOrDJB2noacAK53wYmbPUHJY/6W4wTn/PWunC1xVY8krHfTlzRuNVar3RATNXgOKqXo227sOyEj61lHcuxhqEESATE7V3Af7Z7frTseWcm43eWNxHqx/wD11JGJI1iQxL8o3O3vxim7SgAeDKxje7ep44q2jdXsKisqN+/zsBZs92I6UiJJ5McbOmSvmOR1xjpUgTKbDbkA5kkI+gxTI4wbdAYW3ygZPooo6C6mFceLdIhmmhlvkjm8wpIPJc7cHBH3fatWyvV1C1F7aPHJDLlIjtIzjgnB57GsXSrK0ubm2jf+x1N34ivYJIr613vdIBBtiWQRsY+XYZyuC+ak8F7B4Ws3ZGbYsuMeu9q66+HjTpqS6nHhsTOrVcGlobu2QXT5ClYUBP1ppilKiNkTp5jn6dqVYk+1tGwbG0PIPf0oIR04WQGQ5b2WuRpnahhWZzzGm+dsj0C81c09Wa9icxqEHyJj6VTJiAZh5h3Exx/Tuau6cIjqUCoW2xfKPc7aXQTNmUfLzWfMAcitC5JAx1+lZ7cmpic8iqydeKQIOhHJNWdvX8qq3k3kIAjKJCRgMcZHTj3zWkXfRENWWpIsQzx2qUR+1VLK7keXyrh41yoKrnkk/wCTWmFzVbEnFp4I1uSSTywpKSFXUzfxY+n+1W1pvgK7dUe/kSNlcZAfO5eK7Sx8uaW7uImAidlfDNg9Av8A7KKtdVJ6io9tzI0VaaXuv7jg9Qijt9fu4ol2xKQAv/bNf6g1C/3W+tWtaUDxHeEdwh/8dFVN2c05dPQz5m3dlG4X5DisqxI/tuI/9Nf8K2LgZUn61k2QxrUP/XQf0ropPQxnudq4/eN9TQBQw/et/vGnAVktiiVBip145qBMiplpAeZ+JbX+zvEErRxkk/vlb3zk16rpF9FeaNHqUbl18kDaOzdxXI+ONKlvNOjurdd0tvuJUehrlfDviW90MPHCv2i1k4lgY859R6V2q1Smu6OZrkqeTPTNUE0hsrgRtN9ndne3XHII4YZ6lew681ianePaxX2q+VLbxTRCOOOQjdI5yASM8Y7ZqsfiHpuwsLa4M20YXbxXLatrN3rk4e4TbDGdqQKcENjP4nFTGi+a72Ov68/Y+ySV7Wv5N32236/8C2t4Ls1n1uPCmMxp5p969LxnNc54M02S00x7mcETXLB9rdhgYroyKxryUpXXQmiuWOomOaRiq8MyjPY96d3HtWPr9j/aVh9mVQZ2b936Ke/4VlHVmjZo2MQikvJWlhUzPuUE9OKyh4eZobWOVkuovtAZXT+7tPX6nB/CuIlsdQsQ/n2rqsTYeRW4JwK3vCDSRX8F5PM6W3Kr82Q59/bqfwrpVJW5o7lyTUbOX4HRW9hFZW1tchADNudth+9wP8Kn/tdo50K7cf3TT7p4rjRbVoXVwqkEg+wHSsSaPJA2nOe1VhmzirpJkHgnLaTdsepvJCf/AB2umAFc54Ex/YU2B/y9uR+S11GOK5sR8bOqi/dREOBUc0IkjaM9xirIFNYcVhsbpkWmaJa3c8cM7SAMw5B+ldOnw+0uWNW+0XIJIY4bvWZo5xqUA/267e3uojGq+YoZRjk16uBpxqxfMjzcbWnTkuVnJy/D+3kmuIo9SnAGw7mXPHPH6UDwHbgA/wBoyHcAudmMfrXRtfxJdXGCG3BOAfrVO91mOxtpb24ZRbwoZCARk47DJ6noB6kV2vCUoptxOWGKrTkoxd2zwxvh94uuvEWt6TpOvx21p5805ia7mjRwx5yqqQWK4B+nWu38P+AJdF8I2dveXyfaYS5fyMlDliRgkA9CO1Gka3jx1ePPby2n2wlEExA2k8gN6E4xjnk4rq9XuGi0x9p4Bz8p71MIQrRs+hpOFbDVFzaX7NPr3V0cxp+gm/nki+2hWcZZivX2q2/hYee0RvgMgKMJ2/OrXhwD7SjFdpZOSavTFm1dyj7cPyB3rL6tTXQ3lXnzbnPf8I4wtzd/bQAhMaqY/qM9aqwadLDNCfNDJGdxAH3iRXVFM+HVf/poQfzNY2Bg15WLShOyO3C1ZThqZWrajHaTrEYZpXIziNcgfWqcU+p3KeZZaPJcjOGIbbt/DFWryKS41BYYydzY+lbdxJbaVp1vay5VHGSy/wB4YNFNRa1FUT5jibnxBNZTtFcaRcB1O0gNnB/Ksq41SeRkkbT5vMQ74w3Tr0rc1A3Er3LQOUhnbdJnvWeGkLtBHEuEGVPfPNdSjBRutzns+bV6ENtfXV1c70026a5QPsRFzkY5z+f8q14dYuI2ME2k6gZYwN2I/WjTr2S0nklvY2fzEeMiE4OCR/n6VZfVEe9HyTbAUWID+AYHX1qZ2totQs1PfQp2XiG1tNeme1iAsDtwwbnH0+nNdtZ6gmpwfa4YykTM2wHuo715Romnfar+2Wfd5EkqxvsHzDdnH8iPoK9ZRViiWONQqIAFUdgO1ckoch1TVOOlN3Zx2vD/AIqC59diZ/Kqajg/SrWuFv8AhIbo44KJj8qpq3yn6UPoZXK85HlnHvWVajbrcP8A10Far8oSRgc1k2+f7Yj2nnzBW9LqYz3O2fAkf1ycD3pQOfr+lMeIbmBJYgnk+tLyjjn5SMHPrWS2LZOhz0/XvV+OwuGi3qq9M9aqIrI8b7d5J+6a14b+dIzgQKoJG09TWtOnzIzlPlM/bwY3UZxgqa5nWPBtreZmtgIpAMkJxuPvXWXciyT7ggU7ckrSJzggdalSdNtIvlU1qeXp4J1VbgjYBGPmGHPX611mi+DbSzImuh5snDAPyqH2rp09MAU8H6jtjtVyxFSS0FGgkxV4AHp0oHJGf07UmR36+lc9q/iWbSdQEBsUZcBldjjNYJXZsld8pdl1O7WzmvEtV8iFyhAfkn19qv2qy38iFkjCmbYCp4GUJwfbNckdYvVgn36ftt3IZkPAyemT9aZD4vvLUEW0UIQ84wfz6e9d94WXumkcLKUWdZNZobSWCc7xLKTsHOzK4/SuG1TR7bQtRWMai9pKwMiyKPkEfILY+vH4mteXxTPdaZdyXaRRyBh5Rt8qzO3OTjqOMmuf1m9nv7GOC4USeVAdsjDB25Hyn8cmnSppM5K8JQWtiGHxTc6ZbTDba3e2CQK6kjacHBYcZ5x3qvP4i8XWlp9qksdMKCGO5ZI5leRInVWVmjWQsoIZTkgYyM1mz2itp9y0cfmOLd2faMkAKeT7UXWp6VDdPq0WpxXEj6JFYrZxxShxIbNLd95ZQuFO45BOSF9cjrjShHY4J1JS3PR/AiSr4Ttnmj2PKTKP9oNgg/yrpu1Y/hls+F9Iwcj7DCP/ABwVrA8V49V3m2erS0ihaaQaeBxTW6VibIt6OA2qW6tggvzW29rASc28ZB6nFYWjn/ib2w/262p5Xjlkyh2qRg+tezlr9xnlZgvfVinHaWv9o3GYgAETj86lu9BstSsJbAoEEyEK+M7T2PUZwcHHfFVUu0N5cOw2gqq9D2zWjpN0txeRopJYDng8V3TtJNHJSnOnNTi7NO69TgtN0uW68d3UeoTLO1o/msVTaJWXhW4Py8kHHTt0rsdWt4xZvj5Ao3E54rA0vJ+IetE8EE9PqK3vECSPo9wqqxbZwPWs6UVFM6K+InWnHmsktklZd9l/XysZnhv99qDeY55QYGeOlX5yq6tOF3AiVe9Z3hQFbxQwO7y+VI6VdmQx6/MzeYfNkG0AcVEkkTzXlctg/wDFKp6mY/zNYvY5raYFfDEIHeQ/zNYwHBzXh43+Ierg/gIrZkTU2yMsQMfSpPFFuzWVk4+4SV29+gqKCItqxLISoUY4zWtrUdxLBAkEYKR53MeADxU0ItmtaWlkcBcXaJpTXjI3lqnC55x0FVhKkNzDvR907bEx26nk1o6lZf8AEkm+QmPAGCPcVo3Xg+aDR7PVWm3EhZli24I3DAz9M12xjFanJJu9rGKJx9oW3VCX2B2I4HJOP5VCl5DM7z/Mqwuwbjn5T/8AWrb0/wALXOs3d1LDP9nMSInzAjPUiudj028khuI4QQ7NIpyP4skH9f50LluTeTE8O/aIdPmEjrMIJVkWZepIUyfXlQcfjXolzPHBC8rHEajcPU1594Wudll9nuYora2Dqsjs3zNlXUfoRj8PWujimu77TUtwI1AjVC7Z5Ixz+lceMqKCuzfDUueXLHbqRXlpBezPeNIY53wAo5HFI3h+Vog0E6N1z5gx/KoLWG+mnJ8sKUJXBPetO0luZJXgZWjxjJPcV5DxNWPU9V4WLRysyvCWjkXbKpIYGsi2OdVU9MOv9K3deeRdauY5nXzzhsKOCvTP6Vg2nzaoH/hUgkeuMV7eHlzxTXVHi1FyzszuZOJG+ppr/wCqbd061pw6dbXUaT/2gke/OUYcjk1X1S1trGz8yO8WZmOMAdqSg7A5IfbEvdQMDnCg1anCncWHPUU3RUE9o82QyqoVSPfrTL/UtK09jFe6jaW85G5Y5p1QkdM4J6cH8q6aSdjCctRGBDA9iKsW9tPckiCIyN3A6CqVtf2OoQyGyvba68kjd5Eqvtz0zg8dD+Vc1421LUdLt7N7C9ltS+fMMfTHbNZunerys1U7Q5j1C18NNJCrTyPG5HKBM4pLrQDEVMMpdmbGCMYrw1/E3iUzRJ/bVzyOMHqOtYcvinX5Lhi2sXrAE9HNdawkLHM8Q0z6PHhudo8+eiv24rzjxRri6T4ibT7vRra8+z42vJIw6j2rjptZ1YWsDnWrwEqCcSHuOtJrZY38bSTNNI8Sks7ZPGaqFCMWTPEScdDqJvHDy27RS6LaGNx86mRjuwehqtqdrFcWemX9raGzM/mCRYmZkUKwA5PQ/N+lc+R+5X612El41p4K04qAVkdgQfdj/hV1IqCvYdKtUb+IzXntrTVxpMbxNFbzYa6BBExwASP9nsPeuz0y2sdShV7wJGQRjzI/vE4GcEdO1edwaWtyQbExqxwDK2OhPII7VYtPGN/DF9kuWhLR4Ta4ywCnpkd6yvFnS6cpu0nudDf6PrltqM+n2Gm6e9pc2zxlwdheJiV2luOSME4Nclpeg6W91fQaj4aRHt7cTCNbmYMfmAHVumDn8K2rrxbf3FsqiUIAoG6M9h6en1FWvD9/JqQvPtS/aJHgG2Vn3OF8xcqT1PJHXpj3oVZX5dToqZZONL2rkr2vbyvbfbfp/wAC/QaXax2MS28UBt0WCLERYtsGDgZJPtWgDVZZN99cTbSnmEcMen3qnz2zXDiLKegqGsLslB4prHigdOtIx4Nc5uiXT4pJtQhijlMTs2A4/hPrUNxpWsJPIf7ZmYIccqKu6KD/AGzbY/56Cor3Uka71AZDJHKeVJzkHGMdjXq5f8DPMx3xoxDBq/nlP7VkBAGSYx/hV/S9N1q+v9sWumJ2BO4RDjH4VKJomuQWlC7lUc9T1rd0Gylh1eKR1+R0JXH0rsszkdjzvSVvr3xNNGl+YriRmV5wMltp64roL2x1a2uip1uSQYGcoP8ACsfQP3fjVlUjJlcY9smum1u9MWptHsUqFWojezNFByloU9Ls9UutQaEan5Tbd24IOn5Veb+0IL2aKS981o+dxX0qTw/KJtXZyMZhFOvruA6ndQmJvMBYZHfil0uxyg+axNBL5vhO2JOT5nJ96z1Hp61atMr4at4+zPkflUAGB+NeJjH7562CXuEMV4tlevI2NnXntVu+1y01rw5c2bSrb+aGy6SBWBQg5HPfFYE+o2DX9xZ3aOCGHzjtWVe+F7q8AfTLiG4LZ3K6lSPTngV14WlJxTMcRUsyfXtTV7SxeGVQYXXbErgh94A+Yd8fzr0zxQ5t7KQqBiGDIXHHCgj+VeATwrpuuxQXs8aywXKecuCduGBODXq3inx54bvbO9httTSUvbsiYB+9tIx+ddEqTUbW6nMql5XL/hG4lm0OaYuWeaeRy2RwOwH0rgPE+tzW9xf2ccgiEd1vBjIBOOx+uc/hWv4P8VaFpnhWytbrU44rgKxePByCWb/61eceJ7uG/wDFl/eWs6tBI+5SAeeBUKldlqoi0+nXFvpsySShZYGR0Q5DSFiBjn0BGPwptn4tv0i8tLwDoMFRz7D9BVvUbeymhmi1C5ubeYzCOIxkONqY3ZOPbj8KoXWv6ddxNbXOjS3W3b+8i+Qggbcjj+6APwrHkjWXvK50xrKg3FNW/M1LTxdqcat5RifIznG7H5Ux/Geplsm7iU/d7ZrkLq+0+JyLbT7iEYwRJLn+QFXtM/s65kLxWziRRnEnINRLBUVq4m/9pXVkkbK6pc6rdfaZ5d7RLtDhcEiq6N5OpYGQM459+asklgTtA+nFc39m1l4Vu5NUtFvGtzdpaOMStEATu+5sHygsAWBI5xyM9FCle/KrHnV6ycryPZbSMS2KyeZhGBIG2quoQhNNRgzMSQMYHWs/wV4hE/g+z+2CeW4JkBdI8jG446D0Aq5e6l9ptYYFhlTDg7mTHSrkraGO+puaAVWOW3AwQoIHrjrXAeNNOtr/AOI1s15DFPZ2ulfaJo5bgQK+HcKpcsu0F2QdR1rqdOe4F2kiShNpySf1rlPiNput61rRk0qBGs5bSOKfEsa5KyOwHzEHHIPHHT0p4a6eo62w7wBp40jV/FGnh96QzwpG4IIdMyFWBHUFcH8atfEG4kt9Jto0ICSuQykA5xyKoeD7TVtPmvZtZaOOR47eKI+bGcrGpQD5Cei7RzzUnjKNtRtLOO0kSV0clhu9RQ4t179AUv3NjkbiQRXiOSeMZx7isJ8iZxzjJ6V09xpN3ctG6IgJxld3TFVl8LTPJuMoUn72ORXamcklcLnP2K3OD/qV7d8Vp6+YlubPaUBMR3g9juOP0qd9KZ7SGDzhtjxzt64rWBgaNBcW0csgTazEdT61FthpaHPuwW2SRvlQ4IYjA/Oujurkv4QsY0t1uLYRsXlD8oxc/wBDV+w1qOytTbvplvdR4G1ZxwpBJ/rUOqa22oxiJrW2todoHlxDA4pVE5Fwsjj4bjEc8SW8mR5YidT09f1qa00STVdVtrYW8k9wYiJNrAK+MnI78d60o5LaBGVCgz1qeC8ENwJIHKSc/Og55/8A11KhZ7Gjmmkc/b6c0WoSxSyT24hBOE5LMP4fxrrNBht9lxLBFfLcsApM7DaRnooAHoKmtPn52ZJ6sw5Jrc02MSTLucqR6fWjl1u9y/bVeT2ak+XtfT7jR0vwzq2qOzRxrHDxhpG/z6mrWqaaNIuEtDcieQIGdhgYJzx+ld/oVtBDY/IMnAJJPWvMp3JupiScmRyfrkj/AArkxaSjdI1wrbla5Kp4p3WoozkVMvSvOPQRd0YH+17bAyd/ArMuPEMiatNCp5N68TKI1+bGOM4rX0T/AJC9tg87+9cfcFW1+fzFwDqM20Zwcgda9TL9YM83H/Gjet9etL5o2KohkQugdB0U8mtnTdfiN5bqDvaRmQOSAvTpj1rjNGsZLmzsbglPKEEiFDwWya6xp/7P0uxiisraCFnADoM+S3fOT37mumrVUTz3c4XwnPNeeOrlLcRho3ctvYYxk9D3rtNV0i5u76SQG3J4yBOox+dUL23SwlK2NpEl1dSLJG8LfvJEySwx6e9aMhe4nlAxCSMMMYYZHGfXFKEk1c1U5xd0JpdpeWc5miSJtsYUfvlIP5VIdKLS3F48v75lZnXeCM+w9Kgt4jaW8MUqlXUck57Vgx3mq6/dTf2bItlpzvIiXDcvKVHIA7Crtoyud3TOrhTb4bteMfvDgke1UyAR6GsmOy1eHS7Iw61IwkRnCSJkAjHFR2+uXFvNDbazCtu83+qnQ/K59D6V4WLjzTsj2MHK0LsxNSH/ABUdz/vD+QrsNFTMajHeuRvxnxLcg/3hz+ArtdCX5Ux7V6mDfuI4cSrzZ5J48jQeML4hANxUn3JUZrmfKjGMIBzwQOldV45B/wCEy1Af7Sj/AMdFc7tI5HX19K2b1MLCS6dHCbrnJt3Ucj72SRmqrRqDwOKtvLI5lDOTvbc/ueef1qDGSTQmRJHXJaQiJolVthYEhjkj6U0aRYkZNqhJAzu5qsNO1Bjl9SmH0FKNHum5k1O4b6VSSWyE227st/2VZFsi0jz6gYqYW0cQwsSqOmcYqh/YO4fNf3Tf8Do/4RuAj55bl/8AgVHKrWYXe6LxCKvRR65NcFealo2oQRXd1HeHUI7FLTyFRRCzJGIo5N+7cMKqkrt5K9cGuxHhrTzgFHf1+emnw3pSf8uUf4804qwpalDw3qQtvDttF9tEON5KhsEfMauvq9rkBr9CB/tZqZND0+MDbZxAf7tTLp1pGeLaIfhRbyC3mUDrFiB/x97iPSpReQMAQzuWG5RkZI9etXhbwqOIo1P0qIwSIpjCKQc4cmsqkpR+Ffhc9DA0aFW/tn2+0o6a3d3u1pZdb9djPOqxlfktrlj/ALlH9oyucx2Ex9zxWsEVVA44GOlJtH0+lbRfWx58klJpO6MsXV8fu2GB/tP/APWpwk1Q8CGBAfetLGBRgUxFBY9TflpoVHsv/wBenfZbtvv3h/Bau8AU7PFAyh9gJ+/cyNThp0A6hmPqWq2WGelBNAEC2Vupx5Qz6k1aiRIzwoH0qMGlUnNIZpwvgDBzWnp0u24Uk1hRMQOtaFmxEgOallnsfhu6D2m0ntXm0zZu5v8Aro//AKEa6zw/ckQEhugzXFs581zjJLH+dcOMeiR1YRatl2I8VOpz2qqDhsYxkdqmQnFcD3O5M0LFVkvI1bcAWxlOtN/4Q65adJVE25ZGcBkznPHX6CqwZlwVzn2p51e7tOVd/purow+IdNWsc2IoKo732NLT/Dlxp9hBamzmmMQPz7cE5qPVNOu49HuoLe0vYiYyVc9j+Valvf8AiGONHbTjLE6hlIbnBAxUdzqOrOpB0qcMRwBzW068mvhOWNCN7cx47q0k73McwSe1ljURmQ5B3Do31IrofCLXusXc1lLcNDdLFviVzgSEHqPf1qbxQ11fafPDNH5bxjeoPB4rC0yaPUZ7aOeVIruOUGJ2bbuUjO4H045p05ycdSnTW1z1PUNCuJdFuoVO+7NvIIhu5dtvaodL8M3NtZW5+ySjb5MnlsvK/LtYfXNcW+vaZrNif7RdN9tKURA58xW9V46GqUHjzWtFVf7N1S+uSJNvkX0O5AOow2fT2rphUlszKdJdD0m702Sx0SyWRCPLllXp0U9DXMSQ2l1awW12V8po2Vtx5U8VLdfEa/eyEGt6DKgIBFxaHevI444xWDHr+hXjgR30asTjZKNrVwVqSnNSWp3UJuFPlkZdrBdR3rCfdIQ2A/qo4H6V6PoksSRLuYDpXGG808XJzf2wHb5vStux1nS41XOpWw/4HXdQvFWOWq03c4TxjZ3Vx4s1CaG3kkR5BgqM5GBXMTI8L7ZY3iYdmGK9CvL+2m8Recl7D5e8HcG7VN4j1XT4rZpHnhnU5AVMHPvWslbUyWp5iMEkDqewqeOwuJhkRhRjOWOK2LZE1WZ3tDaWEPUyyHB+qj+I/lQ+j2Jim8y88943dvmbHyLnA29snB61OoWibAWlDc4pOcUvRT7VoZD+5o4HNM7DmkOQevFAxt0xWLIJUFhuYHkCoECJcKtuQVIJZQ2QPf61Y+bHFNXamFUAfQYFZyptz5v6/pnoUcdGnh3RafXro7q12u8d1/w93dOmMUHGM5ppHX1oGRjNannDl46UhGc05R1obrSEMJ4phbBpx60nGaYDSaaDmlbrScY4pjA0AUHmgfWkAdqM5HSjHFHQdKAG55ozg0Hg9KbzmgZahOVFatqmQCBWVaqc4xXR2MOVH0rORcTZ0m9MClSeorHGCzZAwSf51Nc7rcBgcVRW8thybmIE9AWrjxSbSsdeG0epoRnFWUNZq31tnH2mIe+6pF1C1HP2qIj69a4uVnVzI1V5FZmquogcexpw1S0A/wCPqLnp81Y+p6rahGJuE6djVwjK5E5He2PiWUaNp0Rh8z/Rx8+/HIJGD+VWU1+aQ4+zKPfzDn+VcBpeoSLo0bxspEbFAevXmr0eq3APVT/wGtp1Z3M4UobyOkltLa9n3z2wwwIYZ9a8vijjt7iTTry0ikazvGi+cZyh5GfyxXbpqtyQfnXOf7tcN4nd4PE8lwpGLyFXGB1eM5p0ZTbd2FWEEjotMK22qfatHtIYtRtLxkgUjCyRuu7yz7dQPSsi91yC91qLUr27+wyoGSaBotwZ8FTgdDgHFV9Kvrs67bGFXk3XaplVyOm5fx5x+FLqPh3WdQ0m6M3+jJZXUsjCTjlyOMDpwc1tDmvZmcnG2hozeI4YNPJ0uG7vGt44mmlljWNFxkK3BOc9PwrPitL3V9etYNQs9PjhDSSufLBfaDyM+vpV/Wb7UtFtL22l8NWmJbSGOWaMbhGNuQx44z1rD/4WDPBe/bE0WAP5QjxtI28nJ6fxfrUulq+UaqaK5n3mi6fJe+XBHBEx5zIflJ44PHGeao6Notu3iqGPUYY1sWdt8Zb5RxgYPpnFXZ/GEV0246BBuA6qSM/p7ms7TITNrNtaSsyxSymP3QZ42+nOK6IKUUrmFTlcrl/W9I0my1K4KW+y2R8Da33l9BWQFW9lT90IrZvkSMcY5wBW/pXhy68R6zbaaboeZIrMpl6fLnOTV668D6rZaxNbMYmaEpIzDJXaxbH48U+YTics9nCRGzpyJSAQegAU/wBajeHaJJo2AM0ZU4HJy3P8jWv/AGFqLWMMwg/dSyOqupB5YhRVW5tZrYRxyQmMiNTIpHK5JI/rVKRLjY6wNkcUue2etNJHalyDgDp61ZkLnpR6ehpoI49qXPQ9x2oGIck4FN+6R3HpTs4OaTI7c0xCD7xyacGwD3pmeCfwoDCgCTfxmkL0wnv2ppbPTikIeW5ppPFJnjHek5pgBakzn2pTikpjCkpw6U0kZpAGfl/GgtyKCRik+lAC5zjNMJOaUmmnjpQMu2hw45rrdKUOMVx1u4DV1OjTgEc1lI0iaGrwA2RfuO1eNfYLgXLseRk9T2zXtd7IJLVkHPFcUNOjMhLL+P41z1ZctrnTSjzNs5RbeYoNyDj3qSO2mMKqVzj0NdeumxAhWHHWrUWlwrjavWufnN+RHELp928m6NQQFwAaqXGjX7AkoPavVLbS4FYOFyDwT6Vqx6VbSYJjRiCflbvWsZPsRJI4DRb21g0h7a7ultpFkDEMD6VaOr6UGONSLfRG/wAK7K90SwuBuktIAPQKDUMPh7RS4a4tML0/d9qzlq9SktLHJnX9Kjx/pkhz6I3+FUdaez1nSzd2dwzy2EqkxFSGdG4bGa9UtfB3hmcDYJCfQgZFZXjPw3ouk6EVtLdze3Ui21vjIyxP+FVCNnexnNp6M5TSvGWmW1iPKt2glhNtchQozvjOxvzU5rU1/wAU2V6fEQhU7blYp0y3faAT+lTar8I4IrZ7iLVpY0jiMjh4wcEDJGceorkrPwXf3tvfyxzw7bS0WeXIPORkL6ZA/nW7qdDJRW5saj4zQW2rwCFG+0WkCEsw5wB+dc7qF5Z3+pXd5IwjAVVjSJyA/wAhxx0ODWZa6dcy3I8+0lnTy45WS1TcxVhkfStnTm07TFuUuPDt3d3QD7JHUjyVII5X1ANJyZaRgx6LqUSx3ASR0fa3zKfypXt5LHxAZ5CB5Nz5hAIOMMMjI+tezeE/FFvdaZb2V/olzGI0SNJvs5ZXXHBzj9a8X1OMPq12bFZtolZdhG48HnI+gHPvVQnJ7kSjE1bG4uLPWra9sZminWScI23I+8OMHr1rZufE2qXOoajMreTJsiEuwZViqN/D071zlhqsa3ts8yFMXTszg5UKy4/nWt9rs3s/EU6Tx7iuIwTyf3YH86V2mUkrFOOe9TTtKijYKxdHXjrtG7+lZepazcTXV2kqFWcoW3ckbV24/wDHifwrtBZRnWtLt96GOCzeVyD0+6v9DXPT29nPp9pLeFVEiXGoyMv3iuSIx9CSOKdOWuoqkdNDSHOfekJ7Up6gd6QnPArpOMbRmg9OKaMUAOzSZx1o9xyKCc9etAxD0xSHrR1OelITzQICTjFHQZFJnmmnpigBSeKUHNN5NKMCgLClsGkzR169KTHPtTAAetBo75FIQaAAnmnZpoHNBoAaTwaYTinE8YqNuRSHYlikwa3NMuSrcVzoNaumt+8AzSaKR2CbpoufSsXDfNt7+tdJpcJkiz14rAYBSfTP9a4sX0OvCu9xUDMoz9484q5bEM2NnTj8ar/dIZcDNWoZlUHCgE8msIROmRowQt25B7DtWlFbvg8gA+tZ+nysblY1QlmP51tiMkhWRkx3NdMUc8mV7lUtoA5t2cYG7afuj1qp5sTnKxYU8ghutdBNCszLtQ524JzgGub1LS7jT5DNbI8kDfNJEBzH9P6jtVOzJTsX7Z03AglSemDXL65c6xrvjiCz0j942ixiY73UKJW9c8Gr4vkit2mZgIokLse2AM9aq/D+N49Ln1W4LLdapMZ2J67P4RSUEtbDk7l/xP4tvhokmn3lmttezIEljwWDg9TGw4I9uTzTtBi1G00hreSO0tZNShaR47hHyzFcBQc9cdF61R8d3Et7qHh/S1iFw8splMe4IWA7buw4qeTUvE0ayWb+Gprqw+7CjzqxjHswHb861SRD00KvwhH7zV5ZW+dBFb4OOig/5/Ct66MMHjzUbZ2G3UdOZlGOrKpH+Nc14W8Ra3ajUJYfDTXQebZKyMFKunB3cYJ+lWNf1i/HiDw1rN5o8mmolx5Db5Q+8N24HvUShfYIytudxoFoiaDpvlXckeYUBGMg8dK8g8G3tvZfFGNLhBLHPLNHyoOGf2/ACvZLie3sbWa5jYJFbxtIyA8IAM4x26V896CJrzxBPq53KbU/bQQOHKupYf8AfJY04U2tRSloeo+OfCnh6e70yG0tGtr/AFC6EQMP9zq7YPHGRXDz/C/UL7WNX0/S7m2ufsMqKzSHazkrnsQPrXqBeDUviA17JLELfS7JUiLuADLL8xI/4DgfjWV4e1W3i8feLBPcwRRtJGVZ5AobAIGD34q+XqK6R4/rXh7X/Dt8sF7BLHPNbs8ZinD/ACJkseD0HWltfCeu31gl/FYvJaGENGzXC4ZRklQM89M4ruvilKdW8QaSmmXEEp+xTwl0lARS2Rgt2Bps3ha+h8HRalb6yrCzt4zJZhT8pUjIGD1GTz3qrLcl72TMgnnPemk5XPSgtSHPAqzAQnjimnOaCcUhz0oAd1+9+lJ796M7qN3JNAxc+vNIQKQH5c0ZoELgUhFL35ozQAgBFAwTxSjpSjp6UDEAzxSEe9OA4xQBk0ANx0ApDmnk45pCRmgBpGMGmmnk1Gx4zQA1uOtQuakYgjg5Pp6VA5xQMAcVp6a377n0rJ3itLS3BlGemcUAen+H4yYgK5chG3bj3JH51uW9+umeH5rlz8xQpGPVmGBWDCRsUkZ45B9eK4cVukdmFWjY4AEYz0pyYUkHnNRB1zu2nANOD5KYYYHX2rOCN2zrPCyJJqUbOA2FOBmu2ZVIGVB59K4nwnxqEbDG3acH1NdxxnHrXVGxxzbuRMi/eGPyqlqB/dBV4brV+T5c4+9jmq7W+/lvSk9GCdzgfFWiTXGj3P2MbRNgTxKPvJnLlff2q/ptzZSWSG2K+VtARR/CBW9FGZQy55XOD6f571yepWH9mXAvIE2Wlw4WVF6Qyev0NPcpMpQsL34pmVjui02yAHfDNXb/AGldoYH5a4HwzKj32tai3+suLoqp/wBlRiujN75ah1Bckc47UX1sNFZbmLwz/acl3exQ2Rle7BJ5O48qB3OTXE+K/HOg63okltazXP2jeskIZMDIPr24rqPEFlp2uWvk3sDSqDlCDgrXMf8ACD6YWICyFT9056Va5TOXMVNV8cRv4dv9Phu5J90ccQaZMSQg/eG7oRwe1cz4Jgt7nX5lvI5mtlibDxtgxt1B+vHSr2meGYtUu7azG5SqSvdt6lGKKKut4QbSJmksJ3gfpg8g89D7VrGaM3CTMi61jSEvrhZYpbxcFY3n3I3H94Z5PvxWfqVwSZZojsDuuAmcAbe3510M11bG53atpqG4VTumX7smP58Va8Lrpt/r2pB4FFs0atErc7ST/gamemo4JvRnN67pN1olvp1217FdRX0RmhMRwVAOSDz19q73T/hlrq2Pz+JRD5kYIjjQkEEAkHnucflWX420Wa4j042cTSQwl0k2j7gZl6/rXdw6xPsURyK6gY49qzc9DRU3zHCnGc1GQM5HWnHkYFNI+atjmGkHrTR1p3tSDFACdc0ZHHegfr6UfpQMXAP50oFA9O9OAoAQDqaQ4B4607t0oABbNAChQRzSgD8qKUc5oAbwRijFO2kEn16UhwKAEKg01iOmKd0X3qM9SB1oAQmmHvSt69hTGb8qAI3xmoH6mnufSoGOOaBjTjOa0dPYLOBySMdO1Ze4ZyTgd6gW6e5Z44N3lAZkde/tQ2krsEm3ZHa3WpDUZUihObaD7hHRz/e+hPA9quDccLkBx+lZuh2/2iSFEXH7wAjGOOn8q1JY2FxIeMg9a86q7yuejSXLGw0bsE7cDufWhZOeelIG4wSeecChM5VgAfSlDccjsfCSj7XkHjaD/Ou6yPwrhvCXyzs4XC4+XNdsGAGM8V0x0OWauGSSQetOAwje4qLcAxU5yDxUwPyk4qkyWjLs1UzyFR35pJbSG4FxZygGOcYJ7in2h23MiDuc5FWJAgnRyPbNIs80trV7OeaAIA8chDoeufWr4lVjl1+909qteIo/s/iUyxj5biIOPr0NUbglsMi7SBjHvUS0ZcfeRKzIw2YXbjC59agDZIVXIK9x2NV3n3gKB84HPHQ1HJK4AZW2NkE47mjnsPlG3FnHFK8lsFQMfMkjUYw3qKaJZnRS6efGeSejKff1pzTSbd+3cp60jMwIZcg9Bz0FPnFylC70y2umJQ8OcsprltKsjZeJ9QtbYmJIVTjtyK7eXa4CYw+eoFYcFq1t4j1Sa5DeVPHEquB1I/8A1U1K+hNtTUjmZG2szMT1xQkfksJIJMI2c8ZINCwF8BH5AyPelEcoQBlAIPbualou7OdJ9KQkZpxAx0ppABrrOAQ8cdqQgYz2p2QeKT2/hoAaRxj9e9HbPWl75o7/AOzQMAPzpQDSgij8aAAnrSA+lKTwfrmkJxQAuDTx7UwNxRnPQ4oAfnA55NMPc0E4HWmF+M+lADiahZuaC3OaYx6+lAClvxBqFjx170m8g4FRluT+tMEI5wD+dVbiZY0LOwCjue9Vb7WYbc+XFieX07Cs2C2utVnDyuSvv90fQUnorsavJ2RI1xNqkvk2+Uh7mut0nTltrcALjp+JqKx0mKBFCqOR16ZreRduFXCsWzg9MdK4atbm0R30qPIrvc6Hw1ZAF7qQAAZCjHrn/Gs65JLyEdQScetdHpjA6bgAKNp4HrXNPtE55B9ifes5rQuDu3cacAjbxkU5QBIvy9u9A2jJToeSDTl2MmWPzKPzFVTQpM6jw55huBhhgcYHpXZxo2zae/INct4Uh33KOVwAjAmuw2uOB/DwK6LHPJkQWVpCcjjtU6FwDkUqsd27H1odtqll5p2sRe7KUUeJiQenWrTr8nzAYBByaihKiVvQcY96i1STFmyhsMSMc9aRZzviooj6fMepMicemcisa4bfjBxx+taXid2j0vS8jLGeTg9egrClkSNcYOT+lRUKpdRZjhAQFDsOc96qyT4JyoOP0qYukmC4JPSmbNqHaAzMc7fUYrBm6GpPtRQB8pqRZEGScDI71WbA4CZX0qNGZMKfuc5JHSlzA0XIV+YlXypHQ9qil5yvmgg8gYphluI5c7AVxtyKR5FBZSo2+tWn2J5SNUlhYAnJAP3j1pRcFZAjHGezetSM6spG3OB/FTWQEMrYJOMZ6CjmYNHPDPrxRxmot/AFG/2xXonmjjik4zimbulAbqe9ICQnikB5xTN1Ln86AH5xRk5puf8AGgtjnP4UwHE9x0pCaaWppbikA8txzSFsdetMZxxmozKKBk5YdqjZuOD0qJpMAHIAqN5dqksQq+p6UCJS3FMZj9fx4rJu9fs7clIy00novSsWfUdQv+GJihP8CdTTA3bzWLa1OCfMkzjYlY8l5f6mQigrGT/q04P496kstCkc7pAUXqSeprpLOxjtl/drjI+8etYzrRgb06EpGJYaEQVeXGSCwT3ycV0tnYrAYvlGWHIqeKBVRNyldvBI9PWrMRaFkSQZKrkMO9efUrSm9dj0adCNNabkqoqxE8FsDinA7pSx5AxgUucnGByO9OCDcQBzjnHSog0mVPU6XS5QLKQHjHYVhTsNxwAOMZP4VesZyIZFJ6rg/wCNUZSGBDDAHIaumWqOdKzZICpUSAZ+UdKSIAS42liOnvTAxVNyngEAAelSw4ILNkBQW49KIEyO48KL5KsATlCeD3HH9BmuuaQbA5rkfB9z56gcZDHaT3zyBXXfKeM57n2rpWphIjRiSfQ9KYxw/J+XpU0e0IF6ZPGaimIaNlGCcngUPYlbkEJyx4wdxzUF3mW8ijI+Qdc1OoGHzxznNNQpNKApwScDPaoWpo2ct4vfde6VbntG8pHoScD+VYZzkquDxj5queK5GufE108Z+S3RYQPTHpWduKMp3Ag4wPWoq7l0loKI1ZDknOcZHal8lsYUEMOAR6U52xlXXaAeCOhp24Jhi+D6jvWDNyqEJXYDhwT1pqBIiu9we5B9am2pIQUcliSw96juBETh2wyng1Og0KSDIWDcZ7U0CNoj8uQM5JqPYC52ZJTGcdKVXyFBYLJgkqehqkJkuxXO0kEN0PpxUb7VkaKX5SMYftRvRiy4xg9G6d6VXjf5NhYdwKZJyG8c0b/WoC4ppfNemeYT7+lAfg1W3dOacHFICxu6c8GgNzUIcYPvQHoAsq2elJuHXPNQb8dDS5B/CmBIX600t8ueo9qqXGoWtqv+kXCp6Lnmsi48TwLkW0Tyn1bgU7Abzv24H1NVLrULa0UmeZVP93qa5mfVNSuwQHEUZ7RjFRQabLO+VDOx75xS0QK72NK58TEnbZwH/ff/AArNdry/kPnysefurwK2rbw44UmchQB90HNbNrp5t8GKJAoP3TyfrWM8RCJvDDTluc7Y6E7LukXy0HOe5rftdOjhQFIhuxwW5q3BjZtKlixq0IzsJB4Ug/hXHUxMpaHbTw0Iq5DHESx3HLdPY1MqABR7c5pwAxkA/epR3BPTAFc+50bE6yKSAM5AwR61JLgIg5zUBI8s4yDnk0wM7b0LZ2n5ff8AzmjlBy0LZKlNwwy5xn1p6YVmDEgCqxjfZIoG0McoPcCrAcCUYG48Eg9/pTILUUoQsVzuJGPpRIdjDJ3DIFQkYlJOQVUYH4mplBOB1zyPr/kVrfQytqImWYjbjIxS2jCGcHOT91gehzTUIcAg4OMGo5EPnl1+63862gjGTOs0G8FrcNE2F6OpH+frXV2+qoAo3Zwea8+tpNyJNjaRhf8AP6flWq16Yjknqcg1siGju0uQWALKRnKnNNDq6M4Pz5OcelczZ3rsnIBK9ya0DdjaC7hVHUDvQxWLry7iUDYHWnLLHBvupSALdS57Y9Kz47oGTdngAkEVgeMNZ+z2cenw8yXH72b129hQhsw7i6e7uZbpmy8jFsKOtWkaNl2KAp4OG5IrKtJTJEAuOei+tWhcZb5AFdSAcc5rnm7s2hoiwc7CCc455PemRvu/dsuAeRzmk8xDkgHJySKYmxiuz5HGOD1xWbNBss6xFU2Y4OOf0pHlVmJIQnrgDpxSTmF8qykjrk1CMSFlVM4Awc8GlYZOija3zfKcHap5H1oVo3B4G4cnPXFVcSKxVyVOeCBil8xxJ+9UE4wGHak1YLlucRysGVjnOOnFRxtIQWBGQTnAxTJJ2RgjdyAMU5X/AHmNhBA4PY0XFY//2Q==", "path": "images/5pts_ADE_train_00009518.jpg" }
depth_point_52
images/5pts_ADE_train_00010354.jpg
ADE_train_00010354.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 68 y = 167),Point B is located at (x = 115 y = 146),Point C is located at (x = 74 y = 221),Point D is located at (x = 147 y = 192),Point E is located at (x = 261 y = 118).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_49><DEPTH_11><DEPTH_3><DEPTH_70><DEPTH_70><DEPTH_49><DEPTH_76><DEPTH_41><DEPTH_0><DEPTH_1><DEPTH_29><DEPTH_64><DEPTH_29><DEPTH_31><DEPTH_31><DEPTH_67><DEPTH_15><DEPTH_2><DEPTH_41><DEPTH_33><DEPTH_29><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_59><DEPTH_5><DEPTH_76><DEPTH_9><DEPTH_39><DEPTH_1><DEPTH_67><DEPTH_70><DEPTH_67><DEPTH_5><DEPTH_67><DEPTH_70><DEPTH_11><DEPTH_69><DEPTH_82><DEPTH_78><DEPTH_11><DEPTH_29><DEPTH_3><DEPTH_20><DEPTH_35><DEPTH_31><DEPTH_3><DEPTH_29><DEPTH_74><DEPTH_44><DEPTH_64><DEPTH_59><DEPTH_72><DEPTH_85><DEPTH_76><DEPTH_78><DEPTH_82><DEPTH_77><DEPTH_64><DEPTH_76><DEPTH_30><DEPTH_11><DEPTH_65><DEPTH_55><DEPTH_55><DEPTH_55><DEPTH_55><DEPTH_55><DEPTH_32><DEPTH_81><DEPTH_30><DEPTH_20><DEPTH_29><DEPTH_119><DEPTH_119><DEPTH_8><DEPTH_57><DEPTH_25><DEPTH_27><DEPTH_98><DEPTH_31><DEPTH_3><DEPTH_53><DEPTH_42><DEPTH_57><DEPTH_9><DEPTH_41><DEPTH_2><DEPTH_36><DEPTH_15><DEPTH_74><DEPTH_31><DEPTH_43><DEPTH_39><DEPTH_1><DEPTH_19><DEPTH_64><DEPTH_74><DEPTH_40><DEPTH_31><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
5
[ "B", "A", "E", "D", "C" ]
<DEPTH_START><DEPTH_49><DEPTH_11><DEPTH_3><DEPTH_70><DEPTH_70><DEPTH_49><DEPTH_76><DEPTH_41><DEPTH_0><DEPTH_1><DEPTH_29><DEPTH_64><DEPTH_29><DEPTH_31><DEPTH_31><DEPTH_67><DEPTH_15><DEPTH_2><DEPTH_41><DEPTH_33><DEPTH_29><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_59><DEPTH_5><DEPTH_76><DEPTH_9><DEPTH_39><DEPTH_1><DEPTH_67><DEPTH_70><DEPTH_67><DEPTH_5><DEPTH_67><DEPTH_70><DEPTH_11><DEPTH_69><DEPTH_82><DEPTH_78><DEPTH_11><DEPTH_29><DEPTH_3><DEPTH_20><DEPTH_35><DEPTH_31><DEPTH_3><DEPTH_29><DEPTH_74><DEPTH_44><DEPTH_64><DEPTH_59><DEPTH_72><DEPTH_85><DEPTH_76><DEPTH_78><DEPTH_82><DEPTH_77><DEPTH_64><DEPTH_76><DEPTH_30><DEPTH_11><DEPTH_65><DEPTH_55><DEPTH_55><DEPTH_55><DEPTH_55><DEPTH_55><DEPTH_32><DEPTH_81><DEPTH_30><DEPTH_20><DEPTH_29><DEPTH_119><DEPTH_119><DEPTH_8><DEPTH_57><DEPTH_25><DEPTH_27><DEPTH_98><DEPTH_31><DEPTH_3><DEPTH_53><DEPTH_42><DEPTH_57><DEPTH_9><DEPTH_41><DEPTH_2><DEPTH_36><DEPTH_15><DEPTH_74><DEPTH_31><DEPTH_43><DEPTH_39><DEPTH_1><DEPTH_19><DEPTH_64><DEPTH_74><DEPTH_40><DEPTH_31><DEPTH_END>
68
167
115
146
74
221
147
192
261
118
31
1
185
119
71
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDlbQjI5rpLDnFcnbuVIzXTaXKCQM183iI2PXg9TbljPlZrAvFwSK6hlDW+faua1DAY1zUXqXMxZRzVdlz1qxKeahJFelDY52Vyoz0pmzuDU7AUzHvWybM2R7W9cU8eZ60uOaUVfMxDldx+FWI7gg8moBTgMmhzCxoxXOepq3FKG71joOatRhgcg1nKoWkdBbRiQgVu2mgyXQG0jn3rkYZpo+RitO3126tsYLD3BrnlUk9mapI6WXwrPGuTisa7057cnNIfF1wyhWkP41Qudf8AMzveiFSp1BqLIpcpVGaTHU0SXxm+4M+5qs4LHLc1r7foZumhrTkH5eaT5nPzGlWMVIExT52yGrCKoFSBelAFPApokcFpaM0AFjgAk+gpiuJxToj+/jH+2P51MtlM3LAIPep47VI2ViMtkcn61aixXL8gLNtHTrSbAvPepP8AlofpSN0roEQsKjYVM1RMK0iTIgmH7th7GginTf6tvpQRzVozZGRTSOKkNNIpoVyM00ipCKbjmgRGRVe5H7v8atsKrXIGwfWmIoMKhcVZYfSoXoGmOEanGQKmjQoQUZlPsaTBwoHBOeTUqofrXG0nudKbLsV/eqmwXDFemCAarES3aks4zkjp70+POcHqMU+1Xh/99v51j7GnvYtTl3KZ0uVvuuDUbaXdDogP41tqwU+9TJJ6rRyLoVzHLSWFyvWFvwqEwSr1jcfVTXbLtbpTI41aWYEA/MP5UcoHE7fWgCu2e1hb70an6ioG0uzf/liv4Cnysk5IU8da6R9DtT0DL9DVZdFZD5kM5XIIwyg8HilyMLoykHIq3HU50a4Xoymj7Fcx9Y8/Q1jOEuxcZIljwRxTnXiooxJgHYamCSnoprndOd9jTmRTmTNUJk+YfWtdrSd+iioW0m4dhkqozya1jTn2JckV4RxT3q3/AGVcRDgo304qvLbTp1jP4VHspp6ofPFrRkSHmpO1MiQs2Mc578VoRaeWI8x8ewreMWzKTKeRVqGxuJuVTav95uBWrbWcUQzHEM/3m5q8kJPJP+frW0afchyMuLS40GZXLn0HAq2sIRcRoFHsP61eWEHlVJ9x/iacUVeSR+HJ/Ot4030Rm5ozjCSM9KhePaQ2CfmHI+tabDf91M+7c/8A1qbc2V0LYTtE/lB1BfBwOfyq/Z2WolK70K38f4UhpW+8abRYq401GRUh60096qJLIJR+7b6UpFLIP3ZpSOtaIgiIpuKlIppFBJGRTSKlxTdtMREw5qvdD5R9atsOarXI4WmgM9hULjg1ZYVA44oAmxyn1NTpUGPufX+lTqK5LHSSr/rD/uin22Myf9dD/OmL/rP+Ain2/wB+T/fNTYZahxt7dTVleRVSPp+JqwpqWikyQALIMURN++m+o/lTc/OtEZ/fTD6fypWHclwSTz+VOCccH86anf61IOlOwmxAPXrSRr+7FPH3qbH/AKsUxMTt0NDKPLP0qUDikYfI30qkSVEXgU4bfWnBfkFPC0rjGjHrTmXKf8CH86eqgmgDKD6j+dNCYjrVWZeKvuvJqrMvFaEmNIubkj6VcinKOqEZOOtVpV/0hvwqaIfOCa5W7SNEro1o5ApG/PPI71ei3vjy4sn1PNRQWnm3dkrHiTI/8eH+NevWum2dlGqQW8aAcZxz+dd0Yqysc7eup57aeHtTvcHyX2+r8D9f8K3LTwSBg3U4H+ygz+prsKK0sTc50aBa6bcLOkImhAwwkGSvuKZ412/8Iw23G0yx4x9a6QgEEGuN8YubfTJLQyEo8qPGp7c8gUpKyY47nAOeabT2HNMIrI0Gmkp2KTHWqW5LIpB+7NLjilcHY34UuODVIkjIppFS4ppFMCPFJipMU3HNMRER8xqtddFq4y8mqt0OV+lMRQcVC4qw4qJ6QDgOEP8AtVOoxTCvyr/viplX2rmsb3FA/eD/AHafAMSSf71AX94P93+tSQr++kH+0P5VLQ0PQdfqanUU1UwzZ/vGplFSUJjlfrSR/wDHxL+H8qk28r9aET/SJPoKLAOXv9akFIq8t9akC0Bcb/FSR/6v86k2/MKSNfkP1NOwhQKD91vpUgXigp8r/SqSAqKPlFPxQo+UfWn4qbDBRyKfGhYqB3Zf50IMsv1qezXM8I9ZE/8AQhTSExbiAxnmqEy8Vv6nFhzisO4GKtkIxpR/pBqSMfOOKJh/pBqRFwwzXI/iNVsdrbWi+VpcxHz/AGkp+HBr0yuDt0/0LTP+vs/yFd5XpR2RyvcKKKKoQVynjv8A5BEfA5lXnFdXXK+O2/4k8a/9Nk/rUT+EqO5501MIqRh0pmKgsbikA4NPpAPvfSqQmRsPkP1H86XHBpWHyH6j+dLjKmqJZGfpSYqTFNIoERkUmORUhFIByKYiJhyaq3Y+ZfpVxhyfrVW7Hzj6UxGe9QvU7jFQPSGWiv7tT/tip0T1FDJ+4z6OtTKvFc5qJs/eJ7of51JGgFxIDj+H+VKRh4v90/zpsF1bi/uY3cA/IRn/AHRSaKuW0jHrU6xCnIbfvj8qnQW5/u/lU2RVyrLE4QtGoLAcA+tQt9oQhlhBkZUyuenJzV54yJDsKbfrSiMmbttzjIbtSsFw8jJNHkkVJDE7SYc4XHXdXLa5f+KrLWJ49O0w3VkNvluFB7DPf1zQog2dKIjnJoijO1vqaboq3t7o9vcX0bW906nzIiuNpyexq/BARG+7k5amgIVj4HFBT5JPp/SrflcDjtTGj+SX6f0qiWZQX5B9acBTgvyD6ilApDFjHzr9asWAzPD/ANdE/wDQhUUQ/eL9as6cv7+H/ron/oQpgaGqpyTXO3Arq9VQc1y10MMapkIyJeLgn6VIvL5pk3+vP4U9Otcj+I1PSoF/0LTOP+Xv+ldrXKWEe+xsOOl0a6uvSjsjme4UUySRI13OwVemScU2S5ghGZJo0/3mApiJa47x2/8AoUa+kyfyNdBLrulwgl72L6Kc/wAq4rxdrNpqKpHbMz/vVOSMDAB/xrOpsVHc5hugplPboKZUliUo6GilA+VqtEsYw+Q/UUv8B+tBHyfiKXHyH60ySOg0402gBppB96nGkX7wpiI25z9aqXf3/wAKuY/nVS7H7z8KYihJVdqsSVXegZruv+jN9V/nTmkVKHXNox9lP61HJEx6CudmpHJK0jKOgGcVmSjF/N9FP6VqeS4ZeOuaxdXlktL5QNo3xg8jryaS3H0N/Qy000kTMSoTIB7V0CW6+leZxazdW8mY3VSR1Ukf1p1x4j1hhiC9aL3Bz/OhxTBXPUFtIz1X9amWxjPr+deSweJPEQGf7UZs+q1Ovi3xKjYGo/mg/wAKXIh3Z6wmmp6t+dPXQVnfKvLk+hrzW18a65Cp86785vUKqj+VacHxH1mNRtkAAHdF/wAKXIg5memWvhcAJ5krgdPeorizSF5kQYUFgK4WL4k+IZCCJ4AvYGFTXbaZfyarpi3kyqJJFJYL0zSskK7e5GYhgcdqheP5ZuP4f6VoFflH0qu6/LN/u/0q0Bz+35B9RShafj92P94fypQKRQsK/vV+oqzpi5nh/wCuif8AoVRwj96n1FWNNGJIv+uif+hU0JmxqafK1cheDD12N/yrZrj77/WGqZKMeX/j4b8KkTqKjl/17VInUVyP4jQ6e316/wD3cduTtifeiqueT61ry3vie5jWQrNHG44IAUGqvgu3SeS+DKCRGmM/7w/wrs78hIoYQwG1RxXbFNoxbSZxb6brN3jzZWbno8meakTw1qE2S86DHXJJrowwUqSwBDHPNTpNEWALr+dDiNM5dvCzxsPNu1C9yq9K57VbdLW9EUchkRWGGPevTJVimjc5z8vavNdYj8rUFTsNv8qiRS3KrfdFNpzHgYGab8392rJClH3GpMN6ClBIUg45poTGn7n/AAIUv/LM/WsLxBr11pE9ja2WkzalcXZkKxQsd/yAE4AUk8En2Aqvonim71TWJdKvtEn02ZIDPiZjuIyB90qD36+1WSdGabSnHqfypp/4FQAHmhB81IcY6NSdOQpz9aBDaqXf+sP4Vcx0FUrv/WNTAz5DVZzU8veqjHmgDqYFBtwCAQyjOakECf3RXBx+KdTxtQRDA4+Q/wCNWYfEmsuxAEBAwfuH/Guc2szsJ/Lt9reW7lQSEUZycVz3i+FHuLCTZjfb5wwwep4psevar/H5H/fB/wAaivLy41cQPcBAYlwpX35qGxpMxfsyeaoKL0PakktECn92o59K0zbl5Y+R3HFaCaFPMoYlFX1Y0uaxVjmIrJSB8oNP+xxrMo2Agg5Fby2UcKshkXKkjOfeqExRJ0OV6Edaak2xNGcYUUt8gAxxTlhQxA7B0qd9hBwy/TIojIESjco4HOaYFq1UBFA7AV6r4WvIBpttZEt5roxwBxj615ALxonZUaMYwRnmuhsPHWoabZxQRx2pVeCTnJ9+tFtRdD1losDAdqgdNqSknOV/pXmrfEvUskeVa/XJ/wAaWP4lXLRnzoYc4wQv/wCuqSJ1OqABTGcHIIoCn/np+lcYnjhCcGIjHHUf41Bd+PZYiBa2yS9cl3x/KjlZVzv0UqwYSDI5+7U+lSI9wEVstFMiOB2OQf615rD8Q5mkRJ7aIIR8xRiSPzq/D8SLe0lVlg3fMG6DnB+tNRZLZ6rqDAI1cdenMprHn+KMV0vNqFz6H/69ZD+MHnlP+jRhT0+enJoIpmzIf37U+P7wrFTWBKS7Iqk9t1X7S8EtwseBz6H2rke5rY9J8AjM97/up/Ot3XAftq4/uD+tYnw/H+kXv+6lbuuK/wBqDBGYbRyPxrvi9DnluZODk4rUsdKeYCaUYjHRe7f/AFqfpGni4QTzL8oY4U9z71v4AGKokzLiyIjnlVgHVSRxxtA4XHp/WvLtVz9vXPXj+VerT3Hm6ZcSqpVTG2M9+ozXk+tjbdOQcFQD+lYzNIEGKKwv7QuPUflUY1G6cHa4GDjkD/CoVSJfJI6LtUF1HJLbSRxPsdhgN6Vzs2q30ZG2VW9tgqpPr2pjAiMec8kpmrUoyRLjJE+uGGHXNGS9ljEb2WpxEtOsIYvbFVUO+QpJIUE55Irn/A9rFZ+NbqOFBHGbEkKL2K6x86fxxgL+GMinasIvElzbJqD3Hl20bEmEKDubHqOny0/QrXRtCvHu7O4vTIyGJvNCkDJB7Ac5ArVWtYzsz0Xj1pDj1rnRr8J/5ayD/gFNbX4wBiSUseg20aBZnRkj1puR61yNzr14HbyXwmeCw7VW/t7VDJtEq9M/dFJSQ3FnbZGRyKo3oxIa5k6zqfGJuvsKrS6tqgmAacMrHHKjNPmQuVm5MeDVJjzVFtRuyPmKk/7tRNe3BViPLyPUUuZD5WXrLQRJgmMnPua04/C6+Yw+UZXIBJrp4LQIm1VAxT2UeenqVP8AOuFyZ1JGHB4TVudy9PSren+GrXyImmVWJHQCtmMug6dOlWNJhaewicjAw3Hpgn/CocmkFjPXSrOBodlvGoz/AHfY1dS0hKg+UnB5+UVJOFJjIxw+MZ9jQXEXO5efei4WOXubWMmT92n327D1NYV1ap56fu0IOeg9q6K5nRJHVnUHzG7+5rNuHhMsZ8xPvHv7GtIshmMbRDuAiHT0qOO2XyUO0fdHatzdbEcyoD7GqqPEEVeSQOymr1Ay/sokuX+QcAdvrSy2YXaSoA3AdK041TznIzyo/hPvTbllYBQHJ3D+A0ajMmS3UZG0flUPlgpH8o+6O1aMy8NlJPb5DXO3UUs0kkiyOohjUgDI7UJ6DtdltVAd8qPventTHRfNHyj7tRWvh6LWpdWu/wCzNV1GeC6tIEt7BwrBZI5CzNmN+hjUdh83Wq9naR6deanZQtJNFb3ksSuybGZVOASp5B46Vty2VzNSu7E8qLleB1/pVeRAHX0qeRyzKQh/yKgmYl1O39aQyaNRgcDr6Vft4AzD5R+VZsTkfwtwa1YJF2M3IIU44rKZrA0Y4FEZJUE89q1NOjRbmLCKDg8ge1crpE0q3cySzmRdmQc5B6V1WnMpuowHB4Pf2rJDkeqeAOJr36R/1rr74lXB25GB2rjvAUscZu2kkVN2wDccZ612V06SMNrKw9jmu5fCcb3EhvEjQKY2/KpBeo4I2OKp4Py/Ke/agN0HtTuKw5zH9jktoISFZcY7c15h4kjaG/uY3+8o5/75FelCTGeccYrzjxaxbVr1j7/+gis57Fw3OJ+zxY5QZ+pquLaEk/Lk7j3NXlgldN6Rsw9QM1CsEkQLvGw5PUe9c+puVJLaEMu1MZz0JqubWME4B577jV+T/XKenB/pVeQfISOe1VFtMTWhkx6ZE7SSh3BdQv3jxj0pxs4Vij2hlXI43GriRgxxnkZHOO9JKOUXBwDRBTUrt/1+h24qrh50VGmtdOiVtNU39q71u/1soVtl3H5pMf7xqOa2XeBvkGF7OfWrqDHHBqNlLTnI/h/rWlzgtqQfZAFz50p/4FURgxPgySD5fWtBI8Dpj2qErm6ZiOdg/rRdisVjbkjmeUe26oJbciSMefKeT3HpV/G3OcVA4BuE9MH+lNMGiHyGwT9pl/MUx7crGzLcueD6VaEfzZ6CorkBbdyp/hNNMLHq62q9DJIT/vmoZbaNJxvJACE5LnjpWl5WOT6VzXiuVo7LAOC+VP04Nca7GrKuqeJNOsFaO3U3Uo9HIUfjT7DxuLHRrOOSCL/SQwVWbjljkfriuAmyehzU8VpDe2Onm4l8soWVdwyMBic/ga1cI2JTd7Hbr4o82W4t4tOg8+35kiKsSuOORnpmoF8XGS7FpHYWz3PlmQokRPAGT37Vz0B/0+6v2vZ5bqYESEKcuD1Ge44HFVoReLO13Z294kzIVJEJzgrtODjuKyt6mlo9bfeb0/iUt5zx6UkhTJbYACeMkgZ5FZs3iK/YqTpRijBX5ygwN3APSoYbDVmify7HUFKoVRhAQVDYzjnnnJ/E1LNo2sNb7DbXrYYBgdi7sHPTPTNdCSsYPcbFr17cxytF5QWMgOfLXI3ZxjI56Gohr920crLtxCRuXyxkg56Dv901i6ndNoNwlteW80cjqJQgIIxkgd/UGrOiqviBbgWdt/q3VpfNcKDuzjH5GizSvYq8b2udbpDyXcEsjmPf+7YbVxgMCcf571LMD5qnnAYZ96NEtJrN7mGZY8uFZFR92AM5yfxFWJ4nPQAYIPWk0+gXRRuk+XrXN3djeSOTAE8uWNQ2T6Curkjdl6AH1zVE2rJGFyOBilyyZSkkcbc315YXOo2g0aK/tbiaCfMyTfK8aMFKmNl/56NnOe1Fhc3d1JfXt+GF1c3DzyFk27mY5Jx9Sa35lG5trA/Ss2eIgkg9a0jPmVkOpQnRd5pq/dWI0gubm4jhggLyPkogIBYY9Kr3cctvIEmTY46ruBxXQWawSvbTsVV41K788r+Nc1qbEXp+Ytz19azhNt2NJU4xTZPA27A9TWrCP3ZHcggVi2mW7iteEnGB17U6kWRTaI9K8/7XM88ZT5NuMcZHYV1VgA03GAdvpWNEcqFIOSa0rZZ2m8m3KGbds2lhnjtyevFZWbHJo6C3lEWQJJE5/hcir0eoTL928lH1auZe7ube4MMsI3rncCCpBHYinpqQ3BWhdTjPBBrRVGtDJwTOtTVr9PuXr/oasJ4h1ZOl1n8DXIjUId+0l1PXBU/0qZLyEt8s659C2DVqsyXTR1o8Uar0Jjb/AD71gapfz3zXU0ygOVPQ98VEszkcOSPUHNMuCPs8vBzt5oc+bQFGxFp8kkdvGWKqgDFlz196dqlztsX/AHbth1GAPxqK3nhVUG1jNgqoxwc80TO1xCysjptYEjaOf1pR2sN7mDJeJ5wLJIoweqH2qNryEg/vcDHcEU67fZc7drABed2P6UxpAU6gjGam2upYyG4i8tR5qdAME1IHDSISynnsfY1EYYyg+RTwOoprW9u7KBGvU5wMdqtWIsW1Tkng+lRDmY+yj+tNWyhPRXUeoY1EbZllZVmkXgdGz60DL4gY4bdjjpiqLOfOc47D+taQAVM7yWEfIz+tYipcNu/eIcBRyvXilHUOpPkgetZuo3rWUsZRA5YHqcYq2/2lQQViI74JFZt4puL+0SVAFY4xnORmqAba6zJJKFliB3HAK9qv3RzbOR6Yqjc20VpqcawxEAKGKryc5NT3Fwpt2UpICSPvL7046ks9qLMRhmP51z3iW1W4tAApdgeOTxWvNfRhcxqWNZFxqLEklMD61kkgbOAurRYiQyYI9a7rwXbf8U4hEwjTzXHPHOa5nVomu7glGRQfWu08CXMFhpS2l0y7zISj4wpz2+tOq1yaBG9zet9NMq5E5I9qtLosfeVyaraz4qt9FT57O5lbjiOPgD1z/hmuQm+LyIx8vTU2g4+eYgn8hXOoOWxV7HbvosJH3pD+NU20m3BIIYn61n+H/HS+IGeNLB45VGflcMMf0q9Jq4a6EItp1fODlePzoa5dx7nnfitING8djWGlmt47DSleOWKMSMszyPGmFLKCRkt1H3Kk8D6dbxeIvEgtoQ1pK1vc2wcYxDKryIMDPIVgD7itHx78PLjxFqSakb/yWht1h8mOAzE4ZmzkEf3vTtXIaf4M8T6KJxp0WpOszAHyISu7GcEgNnua61KMqfKjJpqVz0W8jgt7zokbNEOnfk1nyyx56j8BUGl6D4qu7eC21HQ72VUJxNMm1lB59a3h4J12FQ8UPmJjJSZ1yPxz/jUqfKrFctzCaVPf8qq3Dho2VdwJBAIHSuutvDjy20csoSMuMgA7uPXNJLoFtH9+dc+gWqvcE+V36o82lWXAXyiNo6eprPlWfn9y1d9q9vY6fbM4cSS9FTis6CSylA8yJkz3HIqIwcHudeJxixFly2V2+u7tfe/bY81S5vYpwxtphhSpABwc1DKLu7nz5DICe4r11NO04qZUIl2j7iDLH6DvVa007TdU1JLKL93cSNtVJh5fP41e2yOZttWbPPbaKSNQGXmtOHgDPWvSpPANpBKYri9gikHVdrMR+QqxF8OLCRN51EBf9mM/1puM2JTijzmNuRU6EegrS1TSbOzvLyC0aWYWziMucDJ2lun4VgGSUO210AHZqh3TK32Okmnj1ayjWdS19bJtSRRlpox/CfUr29s+grL8l0QTq0qxklQ2cjI5xzUdjeSxysVk8qTYQsiHlSe49Ku3InvWilJhYJkuUGCSxGeAMe/507J7k3aGwqQzmaVvMIGxtg29+uOvbpUatIJd5jUgjja3+NNnuYPtNyZN0iKXMexjwcfK3X1wakVxhaORBzMe0oyhKOAM/wAP+FPNwNoCTsASAVLe/oaFapCAwweaXIHOWLWJJrqJGGVLc81o6fb7NKuVeR/9YwLFugDHHPaszT0VdRhYKAcnp9K6aeJRplwAnboB7GrhT1uTKZzS6MrO29GdwcFt+4/qDVa+0tbeOQiFuM8s2P6Vv2FlDHbiTywZRklz1J9TXP3lq90ZmnjkeRlZsMCOf5VNrWuilK+zMpCzDG4YHY0obbKOhxmt2005GhQmGN8gZMbjn/x6qF5aokgAtTy2PlOWx7e9CTtcd0Rqd6+majQDzZOemBUUcm5WXOcfnSRhi0nX7w/lTsFzQadDEeCCVwOKoRL80o9GA/QVYx8mB2qCAgtKT0Lf0FJIGJIDnGM8ViX8yW+q28khOxBuOBz1rdZ8PgVk6hYR3kzMXZWChQR0/KnYXqRRXSXmq+amSu1RkjGOtXbxR5Ix3YfzqnYaY1pKHefd2KhcCrl0OI/UyCmlYTZ09nqjTWkbPH85HPPenSzNMuMBazdKtlun8t2cKOQFcj+VbSaLZj7yM3+85P8AWoXLYGnczzZI5y0h/SpTNHZ2rIH3Kf4SQc1otY2cMX+oj49qxpo4i7MqgD2FO8exNn3Or8NIuueE5Dfs0u2Vk2sx5UHgZ+hq7ZeEPDoOH0q3Yejgt/M1xmieMtO8PaU9neyFTJKZFCoWOOnarR+K+kRn91FdSH2iH9TWbhLoWpLqesaZpGgadDut9JsoHHAdIwDVwJbBsxRRgeoUV423xdlkTbb6RdSD3Cj+hqI/FLxEIz9l8Puoz96XcwH4ACoVOXUbkuh6KPE2sy2M+tWGnWUmjQeYQrTMs06ISDIpxhRxnaRn5T6iuxtbyK7tYbmB98MyLIjYIypGQcHnpXzjP4s8Q/YrqxtUFrYTuzeSXVVUMclQMZVevyg459zVtviT4qSJYl1PSbKNFCqkUK4UDoAOaUKc+p346eFcV7Hu9r7dFK+781p+CX0SJB60pkTHzEYr5mm+IOvyZ87xg6+1vbgf0rNuPF804IufEut3Hsr7R/OtVTZ5raPov7PZCExNHHKELBWPYbiQP1rJupdKhB2w2uf90GuT8Aa82oaTMGeV1jdVVpSCxBGecCtW+1FhbbFVAzcZCjpW8VZEPVmTqDQXUztHGgQDA2qBmsx7SEJnG3A6irpOUOfeo2VJIwrqGBFTIpIpi3O0FHDdwaGkmCbZV8xR2cbh+vSri4VAAABjpSEA1JVjEl8Zadpd48El9NbTpjcqB3AyM9CCOh7GtfRvHJ1GbEOoreW8RHmx+X5LYOe5HselcTrs32BfEl5FbWclyuoafEr3FpHPtVoJywAdTjJRc49BV3R9Mhi8QazDbxrb4jtXeAdIpHi3SR88ja5ZcdsVrayuZ31sdLeajKks7w6XbBZn3szBmLHkc5bHQ9ql0++iXH+h2av3ItUJ/Mis7yLu3+7ux/snI/KpbTVJrNztVc98DaalPXUpos6gNR1HW0XyZmtktpcbY8Ju2Nt6DGc4rFXRNbe/z9nKxbVyZJFHYZ6n1rtLDX7OZNk8rwue7DI/MVuw2kV3CHgmWZfVGB/lVcqkLma0OBOjTQXDTK0aOylS33uCMdMGs7+yhbqAbpnYeg/xxXotxpOXJIxWTPo2CcAGh0+wKRxrCWJvlO4e4pRckH5lI+lbdzppQH5SKyZ4Np6Vm04l6MtaXOkmoRBTzzxj2rrs/wCiv9R/WuEtt8N0skR2uvets6xdrbkeWhH1q4S7kTj2Ne1UGED1rM1KWX7VcxAAqnyqCOing1Pp2qW5gjMjhGGNwbis3VNRtku7mQyrtkIxg571T1SJ7m1CtrZxibYIzGNxZFwR+Ved6nrEf21pLOFIcE4fBD57nOeK9HEcc1qynDKycgHrxXkdy8yySxj94kbthzkjBPHHasayaSsd+BjGbfMrmjbSCaMyCPL59ufxo+3xRknZMvPJBzzWfDO9vb+YVIV+PYtjpWvdQwxaXZyxnFxLyQwwUXnqP4uMdemKmVR2VhSoqMmmvQVb5HUMJSAR1dMA/jUkTHadvlyKTng1nadNE8n2ee5RYjJtLFBlRnkj361etY9iswbeGY4PsOBWsbSMJpxRIXOOY2H05quNolYnjkY3DHarfelxntV8iMecgZUcDDLn1qvcR/vIcnjcf5GrbQoTkqD+FRSW6Ej7wI6YPSjkDmNPQWAnyem3+la1zqccWUjYF+me2a5uxaTyf3bBTtGSeaYkrByHVX9SB7nmuXoaSZrrdXMPni7l3oTkAAcfjVf7VHMjGM9OCKjkYzR4PzN/6EKzY0SG6lV8gbQc5NEXqJMwNSnEF1KxiSTAz831NU4dfuLd90Vvag9t0Qb+dWNZx9ol/wB0/wA2rBrpUU1qZ3aOqh+Ivia3jMdvfR26n/njbxofzC5rKvfEes6ixN3ql3NnqGlJH5VlYyaXFNQitkDk2PaR2OWdj9TTCaMe9GKokBS0najvQB638M5tmlXeTwHQ/wDjtdFNL5khOeM1xfgKYppl0merJ/6DXVhqzZokS5+Q/jUQP3fpTtw2nn1qDeBtyallIc/m5BjCuMcrnB/CmpOpfawKP/dYYNNMnAxzT/NUxkSqrIBk7+gqSkrnMaloPiV9avb7RtYNjBdGPcsd1JEWKpgbgowcfNj6+9WvCHhy90J75r6aGVrkoQY2Zjkbs5yB/erRW+aPa6wyx2rkYZ2Bx+HYe9WzcuOmB+FEanMrI1rYSpQa9ot/NP1WnVdVui35Y7U2a1jliUSIDyeapieVjy5/CrtpuZxls/WqTMWiuNEkmP8AoyyMfTaTVyz8J+IvMD21pLGez+YE/rmu00ZP3YBrsbVB5Y4rVIybOFsNI8Ww4FzcWjp/dmYufzA/rWpJp7GP96ib++zpXWNECOlV5LZfSrSJbODvtOG1sDiuL1G22SEV61qFqojPFee61bYkbipkiovU5WNAJM1af/j2Ye9NKbX6UsmPKIzWSVjR6kUUZYqoHJNZ1zH+/kBXvg8Vpwv5bhvSqU43TM3qc0nsNbjkd40IjeRRj+FiK5O9WZpyEcRhuGz0P1rqy22Mn2rEuYvMckiplqa0m4ttFfT4Job23nkVbiKJtxSNgc10F7q1pNEB9gkVlkx90/dJ/wAK59bb5htGPeptk8a7RNJgnpuNSk0VUlzO7LmufYbazSaGH9/cEgcY+XjBI7dP1qta3kKW8cZJBUYJxVa/ikuHieWV32ptAJ+6KiWHauAK1hZamErtJM2Y54nOBIv51YUd657aRT0llj+7Iw+hrXmM+U3SvWo3FZi6jcL1Ib6ipf7UB+/Fj3U07oVmW7I4jP8Au1S3ut07pjK8cjirlpwHA9x+tV2Uq8y7Tkncprj6Gki1p8wZgCeM5HsaLuFTqe4qCrLnGPeqVu80MmfKY5PIxWm7GebzCuAowKSTuI47WR/pMg/2W/rXP10mtjF03uGH6Cua4rrjsZsUdaWm5pd1MQvar9loWq6jb+fa26NGzskYaZEaVgMkRqzBnIyOFB6j1qpa2817dxW0C7pZWCqPeujn/swjTYLvV2spdFeW3lSNH8yUCZ5A8RClQx3lfmIxtU89gCr4f8OHW7R7hrnylWQptCZJwAfX3rooPAmnj/WXNw/0IX+lTfDqykudBndcYF0w5/3UrtE0q4x0H51lKbTsaxirGNpuk2ulRslqHAbGdzZzirvPqa0P7KuMfdH50h0u5/55/rUXLM0g0mDV86Zcj/lkaadOuR/yxai4FIA0/wAsSKUYZVhgirQsLgf8sW/KnrZXA6xN+VGg02ndGSbO4aNbeSWNoFxyFIZgOx9P/rVYYda0GtJv+ebflULWkv8Azyb8qUYKOxtXxVSvbnt1eiS1e706uxUReelatgmXFVltZAf9W35VqWMDhxlD+VaI5mzrtHGAtdbbH5BXL6WhAXIP5V01vnaK2Rky2KjdcinihqBGVfR/uzXAa5H8zV6HfA7DiuI1mPeW4oY0cRMvzmoH4TFaNxAQ54qpJDxWbNEU+cVXcZbpV0xYqJoqgZWcZTvVF4ea1inBFV2h74osNOxQEIBBpZIulXfIPpSNATxilYbkZ0kWQOKjaEDoK1hZSt0Q/jSnTmx8zKPpzVKLIckYjQelMNuScDmt9bKFeoLH3qURpGvyqq/QVaTJ5jnRp8zdEIHqeKRrAr99x+FdJ9jmlxhcD1binDR4zzNIzew4FOwuZmLZjdKyj1b+daC2p3KzdGOKz7A/6YQf75rfcfIv++K5kbMrGBEBwOarbcZHvWg4yapsOWoEcX4gGLr8W/ktcz2rqPEQ/wBJ/wCBf0FcvXRHYxYnFFGRRmrEdD4JZV8V2hbHIYAnsSprv7nwZotzcy3E1gHllcu7edIMsTkn71eY6BJs1q3OdvXB98GvUrS+mjmgJnllMr4dGYEEHuPTFc1Wpyy0PRw2DdalzXS3su7Su/TTv/m1f0jT7bRbdrewtxDEz+YV3s2WwBnkn0FbcNxKf4Afxqic9dhFSRylD3qWrnMaYmlx/qv1p3nyf88T+dVY7odwanF2nv8AlSsA/wA+TP8AqWp32hs8wv8AlUYu4/U/lT/tUX96gBwuhnmN/wAqkW6X+4//AHzTBcRf3hT1mj/vigB32mPurf8AfNNN1F6N/wB807zYyPvCjfH/AHl/OnYBFuYc9/yq/bTQkj/CqiNHnqKv2zR5HINUkJm9YSRnHT8q3YmXFYdiykDpW3ERjit4mUtywCKaxFKOlI2MVRJVuCm05xXNah5JJzs/GujuMFTwK56+jQk5UVMikYEwtt3Ij/IVVdLU9o/0rWOlyTn5LYt77cD86D4fVV3TtDEPzNYM0MN4bUjhY/0rIvYYQ3yBR9K6t9MsidkUbSt6ngVS+zW8MxAiQYPJAqlATkjmI9OlnYBImwe5GB+dWDoMithpIx9Oa3ru7j35LJFGBgbjip2m01NPMkUhnl/vJ0B+tVZCuytpfhW1uFLTByqdSTjNZN7Bb2906QKoRTgECtP+2LtYZIoSEjPc8tWO0DF95bJ64PNOKd7ibRTkO84UFj04qF7eVmw2F9cnNaV23kbWRAxwDtyBn8aoNcqbxGEu0MpJUsMYI/PNNzSdhWbKxtSOd5+hqYxquzCgEjnFPYgjg8UjY3Rj2FMTLIHy016ePu0xulAjj7Jv9OP+8P5V0Un+q/4EK5m2OL/6kV0rn9yfwP61zHQxGqo+NzVbY8VUb75pMDj/ABEv+kj6j+R/wrBj0qeR8PJBCM9ZZQMfgMn9K6LxMh3OVxuG0gEZz1H9a5sR3TDuo9ztFdEb2MXa5qf2FpMMQe619GY9UtbR3I/F9grNkj02NyIzPIoPBkYLn8Bn+dOXTZZACrq5PaPLn9Kk/siVRl43QeshCD9aafmDXkVluooZFeCFVZTkHBJH5mvQvDmoWupwCWMKs6/6xD1U+o9q4QwWcP8ArLiHPouZD+nFPt9St7CdZrU3BkXoRhB/Xik4xbTsaQrVIRcIyaT3Se/qezW8rqAAcr6GrQdGHKlffqK4PQ/HdncMsWoKLWTOA/VD/hXc200csYeN1dT0ZSCCPrVciZnzNEy46qQRU8bD2pgiSTkqPqODThZ5HySsP94ZqXRfQpVEWlCH0p4iQ9hVP7JeLgqVYezYphW9j6xSY9hn+VQ6Uh86NDyY/wC6PyqRYY/7orJ+0zKeSR9RipFvZezUuRj5kaZgj/uimm2jP8IqkLyX1p8d1NIcIpc/7IzT5WHMi6lrHn7oq/b20YIwKpwR3r/8sce7HFa1nbTMwEjov0GaaiyXJGpZRKAMCtePaoGTj6mqdvaqijlm/H/CrARQcgc1XNYm1y15sYHUn6VE85wdq/mab2rH1TW7axOxpow+Pu5yfyo5mPlQ6/uZQ2PMIB/u1Db3MMK735b1PJrm7rxCs05VEd2/2vlFZja1eOGKhIwM4wMn9aTkhqLO0n1Z3O2MBR6msTUtStbdcS3avKf4EO4j8q5e4mluIg80rOxxyT71SZR5/THBqebsVym7L4u8uB4rS3P++5x/KsS51O8mKnzdgY8hBj/69VCOHqV1wYs9ME0Jtg0kUXLPISzFj6k5rptPAGjL2yT/ADrmz/Ea6S1G3RYff/Gqp7kz2JFGYP8AgVMYU+I5hH+8abKQoJJ4Aya0MzE8T3iWti6hl851CquecetcMqs3JGSa08vrut3N95cjws+1Ni5wi8D/ABrb/sXSrq1fyLqSG4QZKyocfj6Vw1qqUtT1cLStE5RL+4s2KxyOvt2/KrsfiG5BDOEbHHTFU3in+0NGY+Qcc077JIQS0RwOpxmhVGtmaSoxk9Ub9v4mtXGJ0aM+o5FWk1vT5eBcKp/2xiuJmgCyDDYBpwsi6FlfIHJ46Voqz6mEsJFvQuQNi/U/7tdMT+5b6VyNrKXuAx4IIHHpXWoRswRkEUHKK7DHJAqscEkirHyDoqiopZU6ZH4UWA5bxCQkzMykqI8kA4J59a5hdRWI5htIQf7zjef1rqPEIDlsHnyWOPbIria3gtNTF7l+bWtRmXY13Iqf3UO0fkKoszOcsxY+pOaSkq0khXbEIpKdUqW00n3ImI9ccUxEIr1jwLGW8MW7o7Iwdxx/vGvMhZOP9ZJGn45P6V6h4DAXw2iq24CZ+SMd6iTuUkdVFLPH95BIPVTg1civYs4cmM/7QxVZKsoM9eaak0JpGhC6OuVYMPUHNTqe1ZYt4ic+WAfUcVMkbL92eUfU5/nWimS4ml196Dbwufmhjb6qKyoLi9d5QJoWCSFQGjPbHoaX+0L0Oy/Z4TsPJWQ8j8RTVSIcjNH7Jai6hxBHzuz8vtWgu1F2qAB6AVgjVZjcxZsmUruJzIMcjFPk1O6ZlC+XGGz0G4/mf8Klzj0Gos3lNOjv7W3kHnXEan0Lc/lXOP5koXzZJJMtg5bjH06VE9sRJGQAoDD27ms5TLUTrpfFdhbgLGsszE4GF2j9ayrnxleuQtvbxRA92yx/wrEkiUGLBJJb+tTxRRoEeT8BWLZooj7i91bUbhIjczNuJyobav6VDLpLQ3A86RcsvIXkjmrQLG6h2Agsx/lVy9tvs+JHk3SYH86zlPU0UdDMtNK+0X0hUnCnkmqN1GkUkqLyAx5rdsbuVZp0hTcxBOawLhGR5Qxy2WzUwbb1CSVis3+oT8KqsD9o55ODVqXAhjA74qJyBPnHUCtiCkQQH/GpJOSvsD/SmuPkJP8AeNAOSv0b+dNCZVfgn610sOBpNuP9kVzLHr7k/wA66dBjTrdf9kfyq6ZEx8Q/cr9TWF4pvza6YYY2xNcnylx1A7n8q3k4gX8a8w8SeIoLjxIyFibe3Uxow6bu5/pVTdloFKKc1fY2dGv10yJVR5FC/wAKHFa1/rNnqUKmRJY5l6ScHI9D3rjI7qKVd0UqsPY05psrt3frXmyhd3Z7sbJaFhrctKz+ep98VpafdXlocwBJB/EpXINYYdh3zUsc7IdwkZOe3WnJXVgW5Pql/aT6g0semwRMVAdQDjd3OO1UgbdyNv7snqBnAq5LqOXVzK8mRg7gKrmaF0LMBn020JaWB7lK1GJh6HFdLufGNxxWBDCwkQlWC55IFaxlcj5UY/7xxXZC1rs8SV+hOTnkk0zcP4efpUIW4b+4n0GT+tMe1lf788hH5Cq54onlZn61EzYkyoHlshBPPr0rjlsLhhuMewerkLXcyaPFJ96V/wAKaujWKNueMyt6uc0e0QchxiWKZw1wGP8AdiQsauxaQz8pZysPWVto/KuyhhiiXbHEqD/ZGKVkz1NQ6vYpUzl00idOf3MX+4uT+dTppUZP72SST6mtt0GOlV9mCeOlZupI0UEVI7K3j+5Co/Cuw8L8aYwxjErf0rlbu4+yQeb5ZcZwcHpXReDbo3WmzsVC4nIAH0FVTu3dinZKyOqSrKcVWSrCmugwJ1NTLUCmplNMRBZtte6OOPtDZ/IU+NC91IB35FFjtUXxYZ/fHH5CpF/d3DEdkBxWV9DWxKlmhkRpHxwTgUiQqtzFlcjcev0qzaQefdR7j8mw1JdCOG4hA7Mc1HMVYfLA5jRyoC7xj06VnTn97EOoB/qa0ZpZrpYY0X5d/b6GoDbgTwqxxyM0XAz3jbdEfcYq9a2qyyxM/wB0HpU+pNCiwqgGcjpVezSW6ljVTtGTk1Dd0UlYW6dY9QiMX8JOPyqWe3nmbz524VMhfxpLmJLa/iUHdsznPfimahqBkm2khU24+vWoe5SH2tzHaR3RWLMhIUY+lc3JIZS7seWJJqea9dg6RkhG5z3OeKoBv3Jb2NXGNmS3oLMf3cX1pjkCbHoBRMRsh9zUUjfvWPsOtaEkBOYvfn+dI3ysB6LTTwi+/wDjQ/Ln/dpoTKzDJUep/rXWYxaQD/ZH8q5M5Gw+4rrSMQRD0Ufyq6fUifQgu3MWmyP3WMmvHrHRpddnlit0XzlXe2WwD/8AXr2C+GdOlU9DGa4HwqmpWto0+n6dFL57f6+WTbkA4xj65pv4iV8JzQ0C/S7lSOGRmtmCvtO4A4zjtVeWO6jmkErtEx+6GJUA/r/Ou105NanuNTkhnggzORN8u75gB09qW48PT3ceby/aQE4wEApWuWpW6nFR3l/Cq5XzQDhiOR+lTrrSlmWSLG3vnGfzrbk8Hx5xDOwbPGTWVcaJJbS7ZpHaLq5HVR3OO4qXCL3RrHEVFswiv7WdVO/Zu6bhipyhxlTke3NEng+d0WW3kjlRhlWXoR6jFUpdE1OzZmCSDI6g5/nUOkujNoYt/aR1YORUoA60xF5qVV4x6VmYAORSkcYpRRzjtQBHjmoyvNTnnrTcjPFADAhoK5FSc4/xpAM8H9KQyBo8VC8fcDJq6VphXNJjRSeJZY2RhlWGCDWj4Nga0t72Buiz5U+oKiqrDnpxWroRx9oH+0P5VdJ62FNaXOijNWENVIzVlTXUc5YU1MpqupqZDTALNN63oz0n/wDZRUqndPk9xyPyFRWDHN76Ccf+gipWXbM4HXy8/TmsDYlSZop4gpIA3D+dPljdmikbu9Q5AuoyeeSfqMVdl82fyCq4RWqdmMuwTxW8MXGX38/rWfdSO7oxGMt/jV60hjaWMyHgSCqmpyx/aEEQyFPb60uoDbq2WKCJ3++WGfYYqG2u2t/LCYBOeT24pbpZXhjkkYgbwAKzJ2zOnpk/yoSuO5LdXLPcAg9jzVCSQm6JPOMf1qSVsTD/AHarE/v2PriqtYVwyFjc98gfpUOQICB2U1M/DH0Dn+QqBhthx220dRBIfmhHv/SoZD+8f8KfIN0ka+9QuSWkoAgY5Kj6UP8A61j7UFfuHPcUOfncj0piZDjJQe4rrZOFT2WuTjGZYx75rrJuAPpV0+pEylqb7dMnPpEf5Vi+EBt8NWHurH/x41pa6+zRbtvSE/yqj4bXy/D2nj0gBq+pPQraC2YNTf8AvXkn9KuSn90o9zVDw8f+JPO/9+5kP/j1XZf9Wn40LYT3IRw4PpUQt0uIyHwG7EdQaeDhifY063+6TTAxrSZtHuzby8WkjfhEx7j/AGT+hrdc8YOKr31ot3AVKgtjHPcehqnptzsjFnKzeZHwhY8sv+I6flU3toyt9SMHFOXrUeaeh5x61y2Nh/Wlx70x5Y0GXYKB6mqsupQIDtJc+woswLTjvTM456VnyanK/wDq0Cj1PJqs80rgl5CR6U+VjNnf9KATnjrVazcSQD1HFWgKkBxPGaYSfan4wcUhHtSsBEVFaGjHEk4/3f61SxkVc0v5Z5uOqr/Wqp/EglszejNWUNVIzVlTXWc7LKmplNVlNTKaYD9PyZL5R084E/8AfAq0gM87EDrHijRIRIuqHusyf+gCnFjbXibRkFOR+Nc19Wb22GpEYri3DdShP6GtWW8jEESIuTn+lZlxFJ9ujdshQGFaEPkxRRu/JLHr9KkY2JXmliXOMyDNJqsUNu8KK3O4E1GsrPcRmPIJkBFJqsJtRDJK4Z2cYFV1AoX94ziKPp+87VQmOZo/qf5UTuTJE2edxP6VGf8AXxe4P8qpKxLHO2ZwP9ioOkpPoRUkn/HwQD0SmRrvmkU+gpMAcA+YPRj/AEqGQfuB9BU6ruMjAZznAqKZSIBn0FK+o7ELnE6+yk/pVdicPk/5xU8wxcdf4T/Sq7j92/1/pQBGMArx6fyqNuFk/CntnCgDvTHHyP8AWmIWDm5RcH7w/mK6ic9fpXNWmftsf+8M/mK6Ofv9K1p7Gc9zF8Tvs8P3x/6ZEfpSaSPL0S0B/htl/wDQRUHi98eHbv3XFTxnytIA6bbYf+g1XVk9jN8P8eHYT/ed2/8AHjVyY/Kn0qpog2eHLIeq5/U1POfu/SjoLqMDfe+lOgPyH61DnhvpT4TiOmBYzWZqlmZAJ4iVkU7sjqCO/wDntV8GgnNJq4LQ5ZtRduEjA9zzUbXM7j5pCB7cVWLEdWAHXHej5CMls49TWFkdA4sOpYmkZ9i7sYHqadjjKgHjpUG6STh0wv0ximBIj+YDgnipF5WoIhITwNid6mHykj8aQy3YyBJtpPDcVq5rBB2uCOvWtqGTzI1YelTJASEt7U4KD71H3p6elQAu2rNhxcP7p/WocgVNZn/STx/B/WnD4kJ7GxGelWlNU4jVpDXWYFhKnSq6mplpgavh0Af2sf8AppH/AOg0smBqa5HHlE/rR4a5m1VT/eiP/jpqKQg6jg9VQj9a5ftM6OiLN7M1zdRrGuFGcn8KltoElljMjZXcf5VDJcohjRR8xDfypsLF5YtzbVByfYUkMfPNHFdRNH0WSs7Urp7q4iZs/eGB6cGlupVaZQn3Q+PrVWY5eIf7f9DWiRDZBMSXhHTk806Zds8XbCmiUYeH2Y/yp75e6jJHO08UwINpa6PHO2r+k6VNd3UoVcKSASfpVzSdOV78PcA7NmcY6811NoIlkfygAvmKBj6VhOdtjSMTGi0qCz02VtoZ9p+Y1yVzjaufUV3eoHbpMpHHyt/WuCuvvoPcVNNjkivMm6XOeQtVn4jc9wTVuf8A1n1UVUm+4wHcn+da9SBqgFhn0NROMo/uasIvJ/3TUMn+p/H+tV0JHWQzfxgdNw/nXQz8E/hWDp3Oop9f8a27hvnx7itaexnPc5rxk3/EilX+86j9as37+VpF0f7sB/lVPxad1jAn9+4QfrVHxPqUgtprC1G6Rk3TN/zzT/E076sVti9p/wAuhWI/6ZKf0p07fMB7CsW0v7jS4baz1LHkMg8i5A4xjhW9DWo7bhn+VMkaXwGHrUsR/d1SklCnaOW9BViJ/kA7imBZDUhbrTAeKCaAOJack4GAKRn3sCTzjFR859DVkRIy5PBI7Vgbka78/If1qyhkP3lA981EYD/A3PvVgdB60DGPMsZIJ560rEDDU0xIX3Hoeo96ecMvBoGB9vwq9p82QY/xFUFOR9KlhcxTAjpnNJq4G1z9KUDjApEO5c54p44zWQCjkVNa8XI/3T/Socc+1TW/E6/Q1UPiQmtDVjNWkNUozVqNq6kYltamU1WQ1MpphY2fDLf6Vqi+vlf+gtUU426iR/sH+lO8NH/T9S/3Ij/6FUdyT/aLY6hCK5ftM3WyGJcrFLGxUMcGoWnZ5U926VDIwzEB6H+VIGPnR45y1OKVwZITukj/AN/P6U+SIAxsSB8+AKckbfaIgo3Nuwanmsz5kG7lyx+UfSqchJGfcndJABwMmt7RdNSedJZRuwCAKzb22MM0KHqMk/lXTaKMRRn1B/pWUpaFJGksCC6K7QAYwB+ZqoLeSG7naHoHB2/hV5WP21v9wfzNJGyiWV8ZG7+lc7ZokYGoXqNpEyHghSMH8a46chpI/wAK7HWbeP8Asl5MfMVNcnOoEqgeuK1pkzKsuBISfQVWcZj/AB/rVyQZeQH+6KpOf3KfUfzrQgAQC3+6R+tVpT+7Xpyf61KXG85Pbiq8rjbGOtUKxa0wE6ih9Dk/ka15j+9/4FWRpPN8D9a0rosBkY4bvW1P4TKW5y/i+48mCzcDdtnD49cc1Umt3tfDd5NOM3dyPMlb3J4H0FWPEgNxqenWysocuWG4ZAx6iqWtalJJp72txAY5nZVDLyjcjof6UdWHY1byOCWxjguFDRmMAg1zgnuNHdYZzI1gx+STqyD0PtXQPtjOSd7gYye1U7hROpjZd+7jbVNEojeZDGDEQVbGCO9XQQDXKSpNoV0m4l7Qtu2g8rz2ro7e5gvYfNtpd6nqO4+tTJN7DVi2smDz09RTt4PQ1XD4470oODkUlPox8vY//9k=", "path": "images/5pts_ADE_train_00010354.jpg" }
depth_point_53
images/5pts_ADE_train_00008593.jpg
ADE_train_00008593.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 91 y = 164),Point B is located at (x = 311 y = 128),Point C is located at (x = 171 y = 110),Point D is located at (x = 244 y = 185),Point E is located at (x = 224 y = 157).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_38><DEPTH_35><DEPTH_42><DEPTH_45><DEPTH_6><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_43><DEPTH_74><DEPTH_41><DEPTH_57><DEPTH_41><DEPTH_17><DEPTH_17><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_66><DEPTH_32><DEPTH_33><DEPTH_36><DEPTH_41><DEPTH_39><DEPTH_20><DEPTH_49><DEPTH_5><DEPTH_5><DEPTH_19><DEPTH_2><DEPTH_41><DEPTH_2><DEPTH_40><DEPTH_2><DEPTH_33><DEPTH_36><DEPTH_63><DEPTH_5><DEPTH_19><DEPTH_41><DEPTH_41><DEPTH_94><DEPTH_94><DEPTH_63><DEPTH_69><DEPTH_3><DEPTH_64><DEPTH_36><DEPTH_19><DEPTH_0><DEPTH_19><DEPTH_80><DEPTH_82><DEPTH_50><DEPTH_41><DEPTH_36><DEPTH_11><DEPTH_49><DEPTH_2><DEPTH_39><DEPTH_2><DEPTH_68><DEPTH_2><DEPTH_15><DEPTH_15><DEPTH_59><DEPTH_17><DEPTH_67><DEPTH_19><DEPTH_41><DEPTH_19><DEPTH_78><DEPTH_71><DEPTH_84><DEPTH_69><DEPTH_68><DEPTH_19><DEPTH_78><DEPTH_69><DEPTH_25><DEPTH_78><DEPTH_39><DEPTH_55><DEPTH_14><DEPTH_60><DEPTH_54><DEPTH_32><DEPTH_14><DEPTH_41><DEPTH_78><DEPTH_1><DEPTH_23><DEPTH_42><DEPTH_121><DEPTH_98><DEPTH_47><DEPTH_64><DEPTH_19><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
5
[ "B", "E", "D", "C", "A" ]
<DEPTH_START><DEPTH_38><DEPTH_35><DEPTH_42><DEPTH_45><DEPTH_6><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_43><DEPTH_74><DEPTH_41><DEPTH_57><DEPTH_41><DEPTH_17><DEPTH_17><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_66><DEPTH_32><DEPTH_33><DEPTH_36><DEPTH_41><DEPTH_39><DEPTH_20><DEPTH_49><DEPTH_5><DEPTH_5><DEPTH_19><DEPTH_2><DEPTH_41><DEPTH_2><DEPTH_40><DEPTH_2><DEPTH_33><DEPTH_36><DEPTH_63><DEPTH_5><DEPTH_19><DEPTH_41><DEPTH_41><DEPTH_94><DEPTH_94><DEPTH_63><DEPTH_69><DEPTH_3><DEPTH_64><DEPTH_36><DEPTH_19><DEPTH_0><DEPTH_19><DEPTH_80><DEPTH_82><DEPTH_50><DEPTH_41><DEPTH_36><DEPTH_11><DEPTH_49><DEPTH_2><DEPTH_39><DEPTH_2><DEPTH_68><DEPTH_2><DEPTH_15><DEPTH_15><DEPTH_59><DEPTH_17><DEPTH_67><DEPTH_19><DEPTH_41><DEPTH_19><DEPTH_78><DEPTH_71><DEPTH_84><DEPTH_69><DEPTH_68><DEPTH_19><DEPTH_78><DEPTH_69><DEPTH_25><DEPTH_78><DEPTH_39><DEPTH_55><DEPTH_14><DEPTH_60><DEPTH_54><DEPTH_32><DEPTH_14><DEPTH_41><DEPTH_78><DEPTH_1><DEPTH_23><DEPTH_42><DEPTH_121><DEPTH_98><DEPTH_47><DEPTH_64><DEPTH_19><DEPTH_END>
91
164
311
128
171
110
244
185
224
157
132
10
94
74
53
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDmdX1iW/1y5v7sQDz0SGOZfvHHTn14rNdjNIlucXAD/N8nIOefm74p9mG+xS6ZLZ+cbaQvED95mOM8/hT7G2KZjDyAmTzEjI7EdM+2BXNOyd7mEVY0bWJNVu7nTo5Wjzhk3HITb1+maS4Se42T/Z55plVomMXLYzVC33QTm8+0mCSRvnRk4LD396u2XiK5s0uI5mXypp8RAcFGI5yfSoV72B2JNGiD6q0d1aPtglWOdFXjgZyfwqrFpF7r16BbfvzNcOYt3oDxuPbP9KLLStQs7m6QSTi5lnU+UmWLqRwc9812/wAPJoYvD1zYQxqmqy3TF45BhkTOM+2BmuylFS91kTdlc86SO4h1eO7ltsJGfJkErZBYZU1q3VjPdNcRLEkyNIHkgibYHJxjn2rofE/hjTNOWC4gvREHhlMdvI2Wd/4GA/Fua5K7t1uVe00y7aQXC7pPnwYinXn3zWNanyysVCVzAZJtNur4sVD7tpXdndk9vpXa3EWwBechGyR6YFcvbqLm3a0ES+eLhBExUszHGGFek6HGJr+8MsAKLFsAPfOM8VdOyuaRWpyU1ilzbbCA3+FYc9s1q5hmG6Ejhz1H1rsdf0w6ZqIls34ZQVjPTHcVl+ZBqCMhTbP0KNWm5exoeDvHt34dlW01BmudKc494j6j2r2y1u7S8slvra5SS1ZdwlU8AD19K+a7yyktGIVS8R6r3X3HtWn4d8TXegrPBHIZdOuUZJYT0GRjd7Yq41HAyq0Yz1R3virxU8Pjq0itJY0SyhL788MHHP58flXW+HvEseoN9luZFNwzAQ7R99cHn9DXh2qL5Vmb+7dZJYIoYbVV5EqAH5mP1xXp/wAMtOtLx/7b+1PPcRwCLZjCRk9ce4rCE5Ope5hOnyxsz0pVzTiD07UKaO9dpghNmaTygDmnbsUZzRdgNK9qFQdaeMZp4xSuOwgT5aYwIqbPFRtQmDGjcKeGOMUwHilzQA/aDyetLsyKQCng1LZSYzZ7cUbQOlS0YFK47FcjNNKcVYKimlMiqUiXEqlOaQpip2SmFTVqRFiErRt9ql20beKfMKxDto21JtpSvFO47EYWkK1Jigjii4Ee2kxUmKaRincD5Zt71gjyGVmKHaCTwc+nvW3cTRpaxyXQm80AFFjwM9cc9x0rIsbW1Fjek7WnjT9ypPPmKRkH86twF7rMM7ssqoAo6jPp+FeNONmdyJIQGtlQ7pXZGmYzcAHvg/lSW9tp9zKJL3a0U5EYgXI2t/fBqeHS7pYSQ3mRS9XPYAc8VTW7XTri2ie3M52kkSDBQjoR7EUW6odkaI1W4sL2HZK5SCdWD99q8gVqeGL69u9Tlk0ufyZb24YPNOAwIzkg9CM1zusSQzaTa3kMDRSLIIZZAcgnPy/Q4J/Kr3h5xcXs9tJMtsZgWVycbDjGfr/jXRRepMo3id/r3hFdfkvNfl1CNI2tSllHGQUiIHRm75IPSvIbzUUWxdo4TDPMhDRxngZHbNe6+J9Qs/C2iafbXcG7S5gbeUqPu4XIbH1rxDxDFZ7raWKBokulEkZz/B93n6kZ/GtcRZGdF6FnQ7GRL1bmFblPKRWVCNpU8c8jnOT09K9G0NRE9wfm+ZWJz9RXG287JbJOJvl80eW2d3B4wR2rtdGQLJcdT+7UfU55rmpN2dzpiaGo6XbahDNHIP3uR5cnocdK4HWNJltpQrApcRj5XH8VekbbhWeWOISWu7a4H3lPrVW+soNSRVddyDow+8taxkUzzO3uxK/2W+Xyp/4XPRqq3+lyQSGWAZI5ZR0NdDrmgy2oAdPMt2b5ZAPu/WsgTyWY8i6O+H+CUdh71ejDYyUuB9lkgeMy20gxLD0I9wexr0nwHqdjo1hDDYXKPG0g3CT73JA/SuBvLIljLEfmP3WHRqq2V5LYXsdxBgPGwZoyOGFZyi90OUVNWZ9N2OoR3z3QiHywTGLd2YgZJFXc1xHw116w1XQRZ28mLu3dmkiY/MQTnPvXamuqMro82pFwdmO4zTtoNR0tURcdt96XFAIpcigdwzSHpS8ZpDQFxp4pMmlPNGKYri7qXdzTMGlHvSsCJQ/FKG5qMClA5qWikyYHilwKYtPBqS4saVBphSpDTTTQmR7aQipMUbaq4miHFFSlQBUZ9hTuIZik20/BpcH1p3FYiINIVOealI9qaVyM07hY+YtT06Oy8RyXZRRaNeGJ5kJKNgccdskGrNvZG306ScyjzZGEjuzHCAchRj1yM17PbeBtFhhvonhaaO83blfgJksePf5jXh/iS0vvCU8vhy5IMDM00OT8zqeBn8h+Vc1alFRN4VObQvw6hp6mNbh5N7uiIY5Dh5P4s84A5FZD6hI3n2k6GVGkZVkbG5WHQA+mKraLp2o6jpt5p1pa+fPbMlx5Y+8cdcVTtZBHNlo5WYu2IycEODzzXMocqN0TwytJa3NvLM0cjruCADaWUgg//XrY0nSp/FfiAQW0bL5kikshwY+OCfbPJrF1OyhjvoGN3+6mJXPRomH8Le3pXU+CNVTSs6mu8yQgsVIwHk5AH0qoSjDVjex6P8S7OWbwtYpLcIt5G6gxAfK8hGOvbufwrya+EF7o92kEUxa0nWKNgAQYn/XsDVzVL3Vbu2kfUdTWZr2+V5VQkiIgEJ9OSOlUNK1o213dRm3ZZ96rGqjKgAkGitUU1zIzhDlVjW8OaYkAtoV3GWQ4mcuCDzkDHtj9a9B08f6RddMjaP1rjtNRft6v5ONzxqVY4656/lXY6Rlru9H90qM/iazotuLbNoGnFDK/mG0uVS9jYnyHPyyL/n0qATeY3EflXK/fibgn6etS3UUchDklHHKyDjHNMe5hneOLUhsf/lndL0P1NbIoB5d2CjICSP3kLcfiK47XfDwhMktojS25yXhP3lrspomRk+0HkcR3Uff2NPlt/PO2WTybgDCSLyrj3oA8gw1qnG6S2PUfxJUV1aLKBNE27I4YdvrXf6t4amaUvDGqzEZZF+6/0rjJoJLWZjEpx/HCR09xWifYDGtpb3Tb5biwme3vFPBU43D+v0r23wT8RYdccaZq+y11ZeF3cLN7j0NeSNapexNJGQwXkjoyVBIolSNbtijA/u7peCp7ZprTUmcFNan0/jn0xRXlHg/4ky2TR6T4mY5wFhvOzjtmvVo2WRFkRlZHGVYHIIrZSujz6lNwY6jnFFLTM7hzS44oFLmgBvSk5pcUoFACcinDntRQBxQNBinAetAp1SykFGaKKQxc0UgpaBiUtFAFADGpACakIoouDRGy4pNtSHmgjjincLEXemt7U8jJphXmqTFY8h1f4i3k50R7KL7NLcRGWSPGcNu24P4ZNcj4587XdXi1mERyy3AFsBknyivA+mcmluYY9Qsrme4vRb6pprJsCjAlHRj+AIqrbRLZX1wZb4+XE+fLbq4AyGA9a5KlVtHRCCWqKc41nwprsjG4WLUoCqB4246fe9+KxtbW8lvklulVBcTb5AmBk92H1zXb6t4ei1PRLLWTrAF1drI/lygYDDHBPWucvw+p24so4lkdZBIsndVUYK59+tJ32ZtGMnsiPRprVdY8iG0SaPf8wfDHjuM+9a8ME0WqCGPyoIjKbgjn92cjK1kWnhW7vblZYo5lbjBHygD611EPhi+lRVGoHyiBuZhk57/hWUoXOhYeT3K9zBCbN7tWh+1JOxWFnwuM8HHTPesaU6RBrP2pL+QSsxklWNdwLHoB9DmursvB1kruZZZJ4zw7Mev0rSt9G0u3kCWdjFuXgyFc7aUaZaw3dnI6c8l9qFvNbxTqrXKPK3POG569K9J0KeKa5vvJkD/OuTjGOTUFusNvNDDGmSTz6gepq3pKxpPcCGPaMgkY75NXFWRNSCg7IuyTSwSMJYRJafxEDJWke1jnt82xElvnmFx0+h/pU8jJuIEmyTuSOD+FVzZ3SyLJayCKTrtPKtVozIoxNp8WFHn2vRoX+8g9vb2pyjEDzWzG7sjy0WcvH9KngvY5p/s9yn2a67BvuuPY1VudPuLO9a6spfImY5OeUkHowoEKLmV2iORNCgJRzww9jWdqmiwanbmeMBLleQcYz7Vp288d1MVCiC8AJaIn5X9x606cK5RI1MdwSFYdh7007AeX3umzWl07A+TcKec9G9jSwolxvhmiEcxGfLPQ/SvRL7T45WP2qASHofX6isG78JvNal4bhZVTmNhw6itFJMRx1xb/AGVfJuE8+yb/AL6jrr/BPjeXw5cRabqkzTaPMcW9wefKPofasEvLb3K29/HtdvlVyPleqd7Ymx8zEfm2Un+siP8AD7ii9hNKasz6RiljuIUlhkWSJxlXU5BFPxXhngPxo/hi/TT724abR5+YpCeYz6V7lFLHcQpNC6vG4yrKcgitFK5wVaTixQKXFOFFUZ2ExSYp1FILDaWlFLQFhBTqMUoFDLihKKdikNIbQdKKSloC4UZxRRigYfjRSUUCFoB4pOtFAXFIFMYHtTs0N0oE2fMFtZau0n+i24hR02uH+6T6kevArVbwpPdMLia9cqUIdn+UsTySPxrpfOJj8yddqD7sQH+eaXcjKJ7ltqD7sY5J+tcVraI+ijSguhj2XhSxiJlmJaJVwDIvr3rQWxsYIl8qFY4kPBY8n/61WpJGcCWYBI1+6lIsZmPmzrtReVQ9Pqadyrdh8YkmGWO2HqF6Z9z7U4DzjhciAdSOC309qT/j4XnIi7Du3/1qQsZyYoiVjXhnHb2FIaQrSGU+Tbj5V4Z+w9h6mnFvKAhhXL4zjPA9zTWbyQsEKgN6dl9z70hKW0fJLFjwO7mkUWbQJBdRFm+Zn5Y9WP8AhV3SB/pd3zw0uRWZawsbpJZPmlJAAHRR6CtXQ0YyXO/7/nDPtVR2OLEfEi/LNHGAlwgVCcJJ70jF7dQxG+HPLLz+dWCMrggOg6rjOKrtG0X721fK94iapGBHcQQ39uEcCVVJKkH5l+hqO0kljQwTs08AP3m+8PrUhjSSQSREwTdShGA1NVyZwXHk3Cg4PZxTEUL6KyvlFxEZViByrLw8Z6ZFTxyXL2rRXTB5B/qbpB97/eHrXC+IPFF/4Z8XhDF51g1tFujH8JIySK7jQ9Z03WrGO50y5RnP3kPHzehHY+9DGPl1BhNHb6hGEkPCSgfIw/ofaphCkQ3j5QOA/p9aLgxT5RkCuF+aJ/5io4i9qigDzoTwyN1UUgRBqlhBqFv5FzAJUf5mh6N/vIfWuWvLC40yAGc/a9NzhblV+eP/AGZB/Wu0SJHBEGJrYjIXPzxH2psThLgJcRrJHICPMx8rL6OPWqUhNHj+p6eI3cw4eF+w5H1HvXSeBPHk/heZNPv3kuNMY4B6snuP8Kf4l0ddI1CR7ZG+xP8AOY8ZCj2rn9S00PF9rtWDxEA/L3H+NWmJpNWZ9J2l5b31qlzazJNC4yrqeP8A9dTg+1fOPhPxlqnh3UIreGZBbyHY0cx+Rien+7zXt/hPxTbeJtPdlCxXtudlzBn7reo9QfWrUrnJUouOqOgoo6UVZhsFFFGKAFpQcUlFIaY7NB5pAcUuaCrhRigGlBpDQYpCKdmkoHZDO9FOxzRimTYbSUpFJigloSgnIoxSbT60ydTx0hY1E9ydzn7sa+v+e9JjkT3GFb+FAM7fb3NBXyz58zbpDwoA6ewFNNzPCyRzFNkjbiO6AA/nXHufSt7XHCNmbz5dqDsG52+/1pw3zYd9xQHIUnGfc0JiT97MpVByqZ/U0hD3T8jEI7dC3/1qk0SE8yS6Yqp2Q9CVHLewpzSFW8iAYK8bv4Yx/U0PIzsYYSFx95x0Ueg9TSExWqrGibpD91T1Y+ppXCwu+K2TagMjt0HUufenxxsrNNKwL45PZB7U2OLyg00r/Pj5m7D2FLGpunV2ysKn5U7k+pqWx2H2zyS3EcvKQxtlB03H1NbugDJuHJ6zAZ9eK52TVLWPWbfSUbzL2XLMqniID19/aul8PpiKcE5Kzjp7gVa2OHENc5ekgR2BgmCzjO5GOM81VnuY0nWKTdFITgEcU+9lj8x4rmFggJKSr1/PtUFw8hgQSf6ZAckMB+8X/GqRgOkUEYuBmM/dmj4IPvSRiWAhZ0+1Wx5EijkUtu0ioGjImhP8J6j2Iq1AI2XdBlH7xMaoDy7xhGG1G9UDpbRqhPOTsBH0+tXfhXpUVr/a906K5ZI1yBypyckVW8ZFl1jUSUATy4wdo4/1Y/Otz4efutN1OTzFVsoOe/tTew0tDq7q1D27rv8AMXPyv/Ev41EcwhDIBgLw49femJK4mIQ7G7o3Q1YYFwGVdjYwwPKmoYjOu7YtOlxZXH2W8RdyyAZVvZh3qWw121utSNnfItnqgGx42x5cw9R6n+VTsgaTAQIyjBRuhFeWeKn+z67qMp3yRefzCT3wOVPY00rjPXL77JBbGW4gaWzB8qaNlyY88Bh7e9eMa5dXWkeLdR0jQtIudRgt9kh+zFpAVdFYHCqcfexXpWh6jfLpFlb3DuQ8Ia2uj82D1KSDuK8u8cWxutUv9NtpLPTby31FbieGa6SFWVreIIysxAIUiQ4HIEnA61cRNGfpV1H4jkumWz+ztCV437+ue2B6VqaRqGp+GdZW+00/v4/vxMfllXuKzPCdrPqWqa/ewX3nyxzh/tOzb525pDuK9s4zjtmt2eNbsET+XDcD3wD9KpITfQ9w8IeNtM8W2amJhBfKP3tq5+ZT7e1dMRXyx593p95HfW8yxXcByswbGfc+tev+GfivBqtnHZ3EDTa1tb91APlkI6EHtVJmM6SeqPSMe1FEW6SJHZShYAlT2J7U4p71VzBwYykp5Wm4HrTuiOVhRmml4wwQuNx6DPWmC5g87yfMHmY6VHtI9w5WTZpc03cucUuRVD2DNGaM0maYhc0vNNzSjNAJimjFGM9aMUDsGKCKXFJikFjxgbYyJ523SHhQP5KKtQ2VqsU9/qTrFKiBLZAcsOckkdvxrNwQTcTkFhwOOF9gKciNMwknBCjlFY/q1clz6Jw5h6h7nBfIjH3Qere5oMpmYxxMQg4d/wCgpm83JZUYiHOGbu/0p+8qBDboGkx8q9gPU+9RcoVpVtgsMSgyEfKg7e7UqbIEaWSTc38UnX8BUavBbht0iCQ8uztgt/hWVd+INMtyJrm5DsgzFDEd27P9aW4cyW7NuJTckPKuIxykZP6tXO+IfGP2fdY6KfOusYknQblhHt6moLnxfFcQmKOykwe8suMj+Yqn/wAJTqKrstorRF/hDRZ2/SqUXe9jOdWO1xfA+mXM2uPqTswit13TPN9+QvwMZ5Net+Hn/c3gGMrcgHH+6K8x8P3uo6j4ltrnUbkukSOwKrtVcjuO9dHZeJri1vb21YxxpuSSIMnU7Bk59a0e2pxStKWh3cpkguG3x+ZG4PyEfyqt9khP7yycxuvJXPH/ANaqmjeJNO1i0Ed5cxwXuTkSH5W/wrVn05yiyREMMjDIf5GpTE4tFHcgkBuFNvN2kXo39KkvGTyvMnOAqnbcQ84+uKc8pVjHcR+YpGC2KLeKF4pEtpDjaw2H6VRJwuvRJc310chhJDEc5GGGwc/55rQ8Chfs2uRiANGhi47Yx271n6jCTeSlBhxDECOmfkWr3gtC1nrQQiN98RJPOfxokV0OiWAuga2YSBesT/eH0NTec20IFDKx+dH4b8KpbnilXfuhlx8rqeDVye4R40a+TA3YEsXY+9FiSdVWaPCOCR2PVa8j8UqZdSv8RnJusH8xXq0lvPDuJYSIynbKvUema8x8QZkv7vbjyzcfMy880J2KirnpNvGn2S1h8pYyYV24+62QDz6GvPta8BaBrnihJ9Qv9Qiv71tzQeYi5VcINhZTzwO5rvbmRbOyW5YExx2yyun94BATj3rz3xAby7j0zUb6dJCyCaNI02+SN+cKc5P4+tQ6ihudWHwU8QvdaWqSvfVvorJ/jZeZ1vh74V+HfDV3JcQatO00ZV5IZ5FY4GeCFA67vetq88GeDmkE01rK5mjE6eSGZQM4GPcmugbwr512buO9khdlKqUA+6xDHPvkVnz3EAmFstvOVhH2VmZ1UMVIKsfxOa6EcZmf2Z4JgMCx6Z9pmuImkgEgIDgZ4z07Vd0saJcahHbQeHktJQxCzIRlCF3dR04pugy6dqWtRWq6UkaKjSo7k5ABOMD6kmuxls7e3t5GihVGC9VHJ4x/KgVzgPBfxITUr+fRtYdIr1JpEhmPCyqGIAPoa9EaQKQrMAScDJ618watYYvLqZSWjNxIQydUO4/lXW6N42vr0afpmrXH/Hu2YboHBc4wA1TOfJFyIlTvqj2+eeO3heSVwqou4k+lchrXiVbrTXi044mZgVLHHyjqa5/W/EEkc8cEkoJkDQBnOU9cmsm7ubVdPuImuGnZiJB5RwQePlFeZPHSqWUUZ8ljQsvEkh1aDa8eQp3mR+q4+bFasGqPPqltb2rfPMf3YPRgBnOf0rhzp813rMNxBbb7aMESLjDKD1DepzWlbCOzlS9lvWRrbcFRhyhPQCudVEpb3DlO3sNdD+MbmzNwogt4B5u4/KremfXNdeCCAQQQehFeFXWtPqOpSzyu0ElyQu2MgD5SDn8a9kOtafb6UbuW6j2RRgyYbkEAZr1cLVunfuZSgaVFVRfLNpIvoAGDpvQMcZz0rFg8QyX2pi1gMcKnbzJ/Ec8getbzrRjJRZPs2dMBzTxim4xzRmtL3KSsUdc1rTvDukz6rqlx9nsoNvmS7GfbuYKOFBJ5IHSuXsfi54G1LULawtNc8y5uZVhhT7JONzsQFGSmByR1qD40n/i0uuf9sP8A0fHXlMtlax+OrdoDo7i18Y29tElla+RJax+bJiNsRqHB2DnLYKdfmpN2NIwUk2z6TzRmkxSVZg2fPbeJdEhUtcaojTDpHErOF/Ks658a2byFbe3ubhByCi7cn3zWdBpVsJMRW6gL7CrAsoo5R8wx6Ktc3Iev9ZkOHi/VZmIg0q3VAPk8yQgr78VWN74huFZX1HYrnJEMYyPxHNasdoNgeNclWP3x2xVoxzgAiYdOAqjipbjHca9pPU5tdCmmffcz3Umeu4n+tWE0e0ibb5YDf7Jxmtx7ZWA3u7H03U4RRrwIxUe1j0RSw8nuzN+w2yj5YkJx95lJIqYRxfZZDbREyhSQ5X5Fx7VewDnAApY8JazAYA8tz+lCqttIJUIxi2Z2lvNdOpjeR1cZPybQSPWte7SaeWAwhVJ+XBGQx2qMVa8OpHdagsPmlyYmfG3GOBWlcWu24g8qIHy7jnPbha26nHtscnmxmwLmFoGXIJK8Ejjg1safqeu6HGkml3X2i16tE7bx+HpULRySHbKB5eWyCPc1Uks1hObeaWNm6helNxQ1N9TqIPiBBISdUsJLV+MOgJRvY+h+lNfxboy6mIGlltyyBlughMOWz8pI6Ee9cy5vZbdoJYkuY87gzDBFNtNOs55Wia5e3Zhjy5RlT/SoUbGilFkS69KJHivnWbcqqbpAWVsADnHP5V2PgmSOGHVtwLRMI/mBBRuvQiuVm0a/s40KWsc0TZGU/wA8VN4Zu9N0vVZJL03FtujKFRkoGzwaGPl7HpE8EUn+pIA6bG5H4VVeOe32LG+1TndE4+V/xpYZra72zWk6vCB8skR4/EetWJbiRQqyRLJDjO5f60XItYit3SIbIZDbyEZMEn3Tz2NeSeI1ls9evZIA0YkumLp1U9O3rXsE6QPbl1IePHKnt06GvLPEyr/adyc52zvx+FJoqB6dICRF9nk8zy4082E8Mp2jkeorg9Y0y1tZbJrZ5xC0gEcLuWWP95g4B6d/zNegzGJXhmJKlY0Hmp1X5RwfUVwviO7MOvaLazqkkV1JtLrwQfN6/SkoRe6NaWIq0uZU5NX3t/X9anvKHEa49OlZbaZa+dKn2DzFuDvkkZgef8gdKrTPeecSNThjiU7ht6n0B9qqCaAXVwkniHcbjesUQxlC3p9BW+hzm3ZQOXEstrBFIg2qVAyq+masXPFvIGIyRxnvXMyLpwuZ86ndF3ALID6DGRTYLvSLVklaa4dyuxGdif09aVwPJL60ZLq4eD7xlcsrDAb5j1Hb61lGwWZzGikF+GibgjnqDXqk9vY30TrcQkCNjtYD541JyPqOaxdR8KNHLbzwzxtCGJEp7fKTg0pv3WTqjPgto5NHbSL+ASGANJ5pOSOPlJPf6VUtdG8x5cahE0sCiSNIlJbI55HrgU651IWU9rlcea26RgM5UDpUCRwtqcmpecI2UMBcRHlWIxgj6ZrwoSak09jFtmuNeiC7reRNjkgO6kZYdWOKqwy/2hqpWaL/AEMKFuJghxuPQrnqfeuV0K+c6k1so+0wQFpWWU447/zrskW7neOaKQLEE5TsD61jOPspXC5k22k2NtcPBcs03lyFo2xhh6Y+velsJZLrUJLf7NOqHcH8xGKrj2HXNbUsFnHI120onmjAAI6IM9adDrlytzGtuimUIjhwvVc9TWtPFtPmYFjS9QNl4Nmtr+K7SWaZjGEyyxKgBBHtVTQL28a7keV4ZEiuY2IbrGn99fp6da2by9zZSpFdzQyXC7WjKgqPUD61gW1skiAwXTI4bZKUA5x2rWviVzXBHY6h4vlh8SWttBJvt5LjaegXYF55Peu2S5ge2NwsitCFLbwcjHrXjlyttLdGOdDNLHgxp069/wAq9FsbC4h8ESWlvIkc3kuI2zuC57GunCYmU5NDSuU/HWlN428A3mkaVd2qz3yxNA87kKQsquTwCeinoK8z0z4Q+PF8UaNqes+IbO/hsb6K5ZZb2eVsK6s23cmMkD1FXrTxFdaXqWlvBAt2YkeJrbzNnQ8HPYc9T6GvWNA1qPXIrhWtpLS8tXEdxbSspZGKggjB5Q5+VuN2CRXXSrqbs9zo+q11R9ql7vqr9r23tfS9rXNOkxU4jFL5Yrp5kcnsWz5xFqiR+ciwjJ6saeEzCWa4UZ4wi02OAlcrEfTMjZNSxwLnLSwxeuQGNZ3N7CLGwg35co7YjY9yOuaQkhMZyK3EsI5/DNo6zZP2mUA4xkYFUjZW8KNu+dgM9a46s7SPTw8W4Ix5ZyXKocD1FNS5YEAnI9asf2bcSyEwx5JP5VKNKMKHfE0jY7HAFZ851uCSI0IY5OfapoozJHcqhBK28jDPsuauw6LemzS4+xzJDkgkr2qZdPmRDtt22T2k3lk/xjbzVwleSOWovcZZ8P2csGpWryyQZktmbbCckdOtT6rPHAHc72cvuj2/Rc5q1YRrDqkQTS47MLbMN6nJb7vWkuNNN6wCNtER5PqeK69zzGVJL6z+zqosJGbAOW9arSK8g3R2ywZ5G5s1fvNOl+UrMVAHOK8x1a78S3HjHU9J0vU0jitIVmAlRecqmFB2klmdwoHqRyBTsxo7fyrkxli6EdOMVQlWGSPbM6nB5BH+FV/hq9z4i0C4udQmEkqXLRq20L8uxTjgD1NdWfD9kqEKwBPIpk6HMpOtm3+i3kqAc4yWX8qinma6z5008mf+ecQGf1refR5UkRfIBUnAYVbOhzxg52fL6U0kF30OEuo7nSo/7R02S6hmhKvtLYRsdiK67RvH9je2cCahdwLqUmQyQggD0ByMVn6qySWLQdPMfYc964m50dTERtGenNKUL7Gkanc9qW7jm0q5urcCVYlxIIjnBHJ4+grgNeg+32smqWzrPbszO2zh488DcK5jRtb1TwvevNDumgljMU0LtwymugsdS0fVbdlspntbwqVlhdv9YD04PBxWTTNI26Hq00R2QqV2ZijAk7N8o615j8QIR5Wn8hZI2mIZTjGHNd1pt2xsLXy7lZHWJVcPyhIHQ+nSuS8cQNdWttNGq/upJVkSNs7OT1oTFZpnf6WFfR7Mshy9qhJfkN8vWuBNxCPiPp1s6BbiK5Ug/wALAqcc122kqX0OzhErRM9qhVX+62FHQ9q4Moh+JlizAbjPBuyO2GoTC2p6NLtmlJyU/wBjGCD6qe4qpc3EESKl/NHChc7LgjC57Air7xxmYiFtoJz5b8oevQ9q5fx6qP4Vuo5UbocqR/WqIsdAY5bZlfaJk25O08/8BPes/X737L4Wvr22Cl4beeVcjglYmIyPqKp+Bop08E2bNcSTMHkAZ23YXIwMelO8WBh4Q1twqrmznG0dMeS1D2BnjR8Q+JtCEV/cxaW2+3iZYpblJH2OoZG8sSbxlWB6d69GXTrK50ZrW2hK2s+4faJDtIbs30zXlPie80rULK1ntJtMadLKzicqt0LktHbxxup3DysAqeR2A/H03+2PtFsLiKeGaFU+aBBnYM4AArz8dTUeVwRjNJGHqei2vh+D95c7r/cqQsn3WGPmzW1pF+92m6bdHLAuCHXZGT247k9ayddt9Vku0uZIY2sIpkMahsNnA/lVK/1Sc7oppPMjQFlZj83J6CsHD2kVfVmZ1UmrsITDEsMczckMMBx0q9BJDp0HnS5e6CbSI+jAHJx+FcHpc1xdX6xhllWNWby3+bjv1rT0rU5G1G2Nw7eXuPlA4IZc85/Ksp4eyshj4dZmmuZWG8xo+9PZSfStUahbPd3TRRXUETcqFXq2Oo+tYl6vk6m0TxsouLoYYjCSKeRj6dKZH4iZrq4tL+YnylKqFP3WyP8A9dU6SlshIuQ65Mtpyu2dxua4GWwp7V0sPii9svD8Mccv+jzPneOrAe3vXKLdq960FjJA0RY7g/G8EcYHtVWS+I8OyqLZpZY3XaVb7pz1xQqbi/dKRvSJJqF7ZtFGqXZIX50ISX5gQrYPQc9Ote0+G9Dn0tr29vp4p9Rv3R5nhQoiKqhVjUE8hecHgnPNeHWOrQERy3NxJNcp+8GDhUPptr0rTfiBG/hy6eWbN5CpKvs4b0wPb+ldGFkqcv3nyO1Y2r7L2Latteyva97X3tfX7uiR6L2pgkUuVBG4dRnpXLah4407T7S0O83E1xEJFWMdQR1PpWdoGvm88SGe8CwedBtQBhtbkEGu54mmpKJzuR5zZaJcyJvlilXJ+5I2K0ItEVMl3tYB13F8kCoUktpRHhNSuSR1JKD8s1YFtp7oHXSwzE7c3E2dv4VV2aNGvo1lHf6bYW0rtJCBdS/uRy4VuMfWprLR7G+nsibK5tBNKyPHcH5mC8giqllqi6VpWlvtO9rSdU8rjaWbg/pSaXqtzBei8upJL1oc4Er5xuGDjNYVFHmdztpRm4KxvQwwJqlnafZLdBJMS3lyb2woPXgdajurgG1vY7mKzfMypbxW/wB5vm/nxWb/AGkIpIprGxtrUxliAi888GsPZItwZATuLbiRxzmuZ1EtjojTb3PRJpLa6j1STdfWzwx7XWQgIOOMCuZuSsdloBkcBU024dj0xwv61jXd206oHuLh5l/1yux257cUukukl95fmhFS1lO5+Qg4yfp7V0QmnJHPUpOMHqXdIu7G5vTHZm4YpbsS83PHFWhM0coBcDLH5dw+bHeo7VojqW9NSS7cxOCqR7QBxzivOPiXatFqsV3HI6PIX5VsYAPaupHnWuz0i9uAI/8AXRqfeQdK8a13xPJofiTVJbDy2v5bq3k82SCOVFSOMEAbgeSxByACNgwa51yzHLSOTju1QtAjnJUE+pFWirHo/gXxFpmnQX5guIrXTptTldYrgAOsJVcDjI4HH4V2A8deFoY/+QgpPYBc14QIkA+UAD6U4cc+lFgse5D4leGYFOJrhznI2xgj+dZU/wAVtK+by4rhye+3GK8kEjdDU0Fs9yScBYl+/IegosCR3ttrF9rN5E9rprSWqS72yeTwelTw3dhqAxHKFbnCvwa6D4VxpeWoIVQsDSMGC7c4TGT+deWXlhe6bIZd+6F3ZhIhyh5NKEnewOKOtk07fH8yfnWFd6Or5YDkHr3pNP8AE91buI5cSp0w3I/+tW/a3+nahwrCJz1Vjwa03FqtjH0zXda8OylraXzYGOZIZR978a1bW8j1uW6nsRJFO+XmhB5wepxUk2mjLLsyvXPWsabSsSedA7QzIfldeCv0rN0+xan3PaNBuPO8PWENxFIr+SEVnHytgcEfhXHXCr/wnGl3afPA1zCu8dOMg1z2l+M9X0aNbe6gF1AhADRttbHfPrWtaatoerava/2VLPbMsocwzDbtIOSRzWNmjRWPV5raGYmSylULnmFuUb6elcn40Ez+Hp7eQkRSKzKkg+aMgfwnuK6MwQszzWk5RiQSFOVPviszxaLmXwxcpNGDsjY70PH3e9aIzs7md4KH/FGQMHdZEmdVkUcjp27/AErWvYYb/T5LW5gDR3KvG+xjslUoQeRypxmsbwNK48J7UdWK3LZQ8Z4HQ1b128WabT7W3lls/tczi4uBgEYQ4TkY3NnAPXjjNRUklFmtCg61RQTtu/kld/gjzKbwPol3NFPbWItbYD96jTuxzx0+bNbenWZ0lo7aKKC3iXKtcOcySHr0/H9Kz7CeTTGkdYxPcPAGiG7OzJzgj1I5qrqmsLczQwyIiStGXDqcgAZ5+ua8p+0q6aswxVF0Z8t7ppNPyevXb+t1qbF/PpcemC3uhcpHCxjZyeQx/iJrhnkiWQ2kDedDEWCzMMEitOXU4nsZrKW/tY5JQd0lwRlu+eevPeubtpYGgeXzog8a7cKwJb3xXRQpcsdTntoXbRjbszx3OTIChI6gGpY7+GG+tG8rMcWQwz1Hekn0+BdP+2teMGfDqkZznjv6E1Fpenys8QmlaN52xxzsXqQR3Nb2TWoHdWmox3dvbPLbmWFgGt3fpEo6iquseG7I6edS025ZmDBp7d0/eEE4+X1wKztBki0m6lj3vJp94hNuBwVCnGXHY16D4E1a3mv7uaeEyWsVp8vyhiCWwQK54QcKqS2Y1ued2BbEcUsUcjldkLdGgAP3fr60Wlk0s11ZxXKswcr5ijhSQOefStfXdN1K3S5vo0itmM728VtGuPM8slpHJ9TVSy+3wWMmoalYW8yajHm3LPhotjY4+v8AKtp0mpNjaFg8NXYsNQ1CG7t7+KynWAzoxDO2BwB/npVq2uGsNUSwukIVpVkiJPr/AAn610nhXW5GtYxOtl5UtwWnsggLgjAWTHbDEVnWmgwxeJr7W/EOFtdNSQ3SStnzZiTsC/Xg0p01VirrURJd3kMnmvHCylMAqi58pBmtvwdoOmeKNh+0XUT2TK6nOPNQ9f1Fef2/iBJIPNkt0hwGwo6s7k4BPoBXqvgTxnbNFBp7WawoiLHFMpzuJ5OfasqdCMJrmKVrnPJCzuXae6nCr/yyjwDSeVaqiMujXj4JJaUkVHDrGoXjHzbqCAKPl+zx7vz5qwtxaxxv9o1PVJDsPyxxYHTuc9K7tTe429ATStDXbt/0DdgdssapxOfM3gE9sCrPiCZoYdPKx4jSyjVQT9TWTCbllEmQvPSuaWrbZ6lF+4kbImLbSvYZpkjyGX5WG8chTWNJcXUYIUqMnHTrV6zt5JY1e5c7zyCDWHJpdmvUfcSj5nYjcT8wB71N4e/f6lcRxqruLV+GOB1XrVW7s025TooJ5PU1o6VZwCC9HlM2+0O8RnDNyO9bUkrmVf4GaUTvb6mBcm3RTG6/JgAYx1NcV8REElvZOOQRKQfxFdVpWlWMd7c/6Gy7Y9w82TfjkVgfEMBoLbaAFDSgAdAOK7Y7nk9TywRr5qh8hCRuI7DvWiyzNcywzQhbNQx4QYUY4IPr/iapyKc+tROXMYQs20HIXPA/ClVpc70/rzXmelgcdHDRaab1T0dr2+zLvF/10aqH3oPNSOpqPGDWx5w09DjrihWk2bCx2nnb2ND/AOrY0rMyqDtyoAyaAPavg5eS3OmXcTrl03IrBcDbt6V5A1zMqTW/nP5JkbMeeM5NepfBl1+zXg5BWU4P/Aea8ouCBNORyRK3/oRrCm71JFyXupihg3FdN4X0jQ9WSaLUNfTSbteYmnGEb8a5bBA96TcDww4rZq5J3+raP4q8JSWZklgubS5k8uGZGDo+eex44pyatZSXMtvdL5UyMVYjkE/0rmfDMU+oa5p+mpNIYnnQrEWJAbOMgfSu41rxf4futf1LTPEfhyPZb3LwJe2R2uqKSOR3NTeS0FyplOWwEqhoSkgfuOay5tFjnZ8qVbdgEHBHHrWXNqqWepTNo00v2Hf+5Mv3ivvWrb+LUdSt5ajnnelXo9xWa2JLLVNb0KXKTPcwnAKO/wAwA9DXUW3xAl1zSm0u4NvaX3mJtkl+VZV7q2aybWfTtUhR7W4UgggBuCSOopk2howw8fJ7jpUuPYfPfc9C8IWdzZaddR3MMUSG63qqtvQ5GOMdBWreafDfEQXttFPbl8FG5IyCMg/5Irx6OHV9DkZ9JvZolbkx5yjH6V1Oh/EgMptdcgFpKHD+YB8jY7f7OazcX1RcZOL5oOzR5ympTTXLNDHIFhZiFjGW2+pPsao2sgm1RPtxMZdQFfnAHP8AjU7z3OlOZLeNTGN0ckqfMpz0Ofp7VQ0/WXt7xLh5CVAYbSOoPas1C2kUYVZTqTc5ttvq9WbF/Bpn2rVp3sYbxNP0hHhSV3CFzdxxlsoyk/LI3f8AlWJf29paz2F1bQCCPUrDzjAWJELea6EAnJwfL3DJJww5PWll1e+s7x5LARBJ7byJY5oI5UKeZ5m3a4I+8qnOOoqk1xeX2qfaNQIkcqq/whQoGAoC8KABgAYArWMUoWD7JqW5jigk3KwIG0YOVJ61bs7+bzFWRT5UjHbIeCXA4rKSYj90iyKEYOFXnaRXcXt9aeIhbRQRFo7dRLMJI/LAbGDtrCUFZtmfL1ItLvbOzstPv2kLzw3Z89FGfMRuv8qsaK9xbzX09sbizhuVa4sth3MuG+VMd6xL2GOGe1ubWAx2kzMU5yGYda6/wpYjU7OJRNKk6NtilduEz3zXPKo4pMSZma14k1Dxa9vZ3SiFkmJjVfkLSuMFCOvJyK7C48NwajosejXAttOls9PjlnnlYl7eTocD0OOa5a/tIxr2kukbx3hleeSSY7AxQnn8T3qx401F02XENxI7XX+uDnJbHJwfTJrZ1ZdimzFv9Om0iyfUbXUYJoZZFXCHDtg84PbpmpJJZdeZbm7vXdJSdynnbgYBI781PpsVrJ4eW5cRvE027yHXqDwcUt5oU1ikE+n/AL60gYblx86gnOD7AVzTrczsTcwBdrZkRosbxK+CCPv8Yzmui0zfHOkulsXmUKCjNhQcH9KwPEOnrZeXeWs6yW9yzFIy3zIR1H0rQ029aBBn5z5Y81x2UDt9M1dVuUE0M9ET/RkIe9sIhjOEwBVS/vrJbaVDqu+Tym2rCQQxxx0qhFp2l24YXF/a78YCDmnTJpEGnzSpe23mpGSkaKck9q7EjqZa8VRTtBZssbvGLaFQwHfbyPzoh0XUJLPd5BAIBGa3/FG220uyX7se+LPHT1q5ca5aW9nMbSQXMkKguhU8Z6d68+U5Xdj0Yz5YJnFXGiXoaMGIDn1rbttDuTaqzOikgcelNm8TadLGkUUcrXbthSeFDHikl8Vpa3zW32N2igDRyZYfM4PUH068Ue+4kutZli78NztbgGdcE44HNXJtFSwtLjdcyESW4QiIfMoyOaS38Tyao8dvDYrbs672ctuxgA4/HNWr3UZLK0ubxWXcigAv0GWA5p03JTSIq1OaGpl6fDa2084je4ZnTB88YPXtXN+OEzptoX/iklH04Fb9nqkmsX0vnmNjGQR5Z9c5/lWN46QNo1s/QedKD+Qr0It31OGWmx5e8arnmoCpq1KnGeoqLbjnPFbkopuOcVGRVhxyajxTGV5R+7b6VWuyUMYBIBXnHer0ifun+lQ3KAtHkZG3vQgPWvgltk03U9xJZWZwT9K8fldjqEgzx5zcf8CNex/A6MldRiCfI6upPpxXj00LJqLnqPOYf+PGuen/ABJGkvhRaIO78aYCGzkfxYqyRn86gRPv/wC8a3RB0fgBf+K0sGHDI24fnVTxgwXxvruTjN9J+eat+B2MXiu3cLkhCQKoeMQT431Yno185rNP940Vb3bmYeTzxTX2rGxLHAHNIzqsrFvQVJIVKFshgQTWhLN64s2j8HaXfAFE+0yRKyjHO0HrTbDxPqFjIoD+ao42PzmtrXJGh+FXhqFOBLdTFxjr8oNcMzFWB7g8H0qYu6CyPQf+EsswiJqVrLZynvsODnpiltLWzv8AQ7MqjNdKXW5L/wARz8pH4GubPirVNSsI9Iv3huYWkQLJJGN8YB4wRj9av+IbrS7O8mFgL211WKVVljY5jYY+8OOPpRdrRi5SW50qS1f/AEWRo93VSMqfwrGv9Mhurr95AtjI7KC8QzEce1XLfxhJEn+nRC4VehBwxrordrC/UoMJIyhjDLjIB5H1ptId+5xEuhX+0SlYyiHywVbIcj0PTpTtGTSTdgX7bo50IUqPuPnqa677FqNh56wvILecfOhIZWGMDgjg+4rm77Ropbgkr9jlcDEinKM3cnuD3rkj7SV1L+v8zvx+Fw0Ir2Eur6p3XRu3wvyf/BdO/wBSXdc28WwQsBiVFxnaetbDXRt1sZZrhhDJaxiYRgcK24ZA9eKxY7GG0voItXDJCELgx8iX0xWprK201pYXKh0IsFRU6Ywxx/OnKyXKeS1bQoTT3Pkx26O8unRSM9uHGG6YzXf+DVuINMAW3LG2bzjEf+Wq4zt/nXJx2Eem28U8syXM0kXMS5KrjkjPrWzba5d6pcQyW0bRxxc+XG20lemD61yV05JJCsQ3V/8A23rF3fapM9jZQwTeRDKpLQ8gqijqSc1QH2W/0RILi1mutbacJCUJOYSOy9jVzW2to/Euk3N55l/aTYd4QQBuGBtPFdZetHpniCDVtMuolWS2DIiqC0bDI2/hniu6nacVIto5BVskj8mWWW3t4QFCg/Nn3/Grejzy6itxb/anSB4SGcdx7e9c5dRT4V/M8yadnKk8B1BPP55rW0QyXTywIRH9kiACxHr6nNcFakoq6M2rFQPp8OsLFPaSy2mdkZcFcEY3HB5pNTsJNNuSyyqtrOziJYznA9DW9eRSx2IuvPS4aHcBuA+VWxz+FZlnNZ39teXl8CY9xVQegHTKgUQndXQyzHaFpPmsx7Fn5q7FYuFGI4lBYdee9dHaXXhG2VxcaZczyE5Rt7cD61Bqd9o7WxGn6HOku5SryS5Awc+teknodDZueNZfOksrbqjXCK49qv29paWccwjiILEHn26VwGo+JtR1C6E0mlRHy33KWuFAz270+XxprjKFa00+MDrulBz+Rrg+rzbbudXtFypWOs0vTbUQea0AYmQsCecHNX7aytYIQgiTaGzlhkkkkk5/GuAj8U6vBCVQaXEueMu5x+tI3izVGXYdQ0xWz2jkaq9hO2rJc1fY9TMdtbqr4iRM4zisnUEN7pV5HEiTlnTCE4BG/ufwrzxvFGqkqsuswbewW3PX8RWvod/f6hPeRXOqPJBDD50kccKpuwRjkAHvThQcZc1wlJONrG9YwSWd7MXtY7cFQcIevWsrxqVbw1bsOhnf9QKtwyRNeTGJ5NoCjEnUdf8AGqnjU7PCUIGABcHH411Q1OdnmEmQeBUDfKvFPnmEMTO4+VRyRUEc/nQiUIyKSQN1dBI1iD160wj8acTzz09aOCAT0zQBHL/qn47U25X/AFX0p83+rfHpRd/ejHtQB6t8EZDG14p+785+vAryOX576THQzt/6Ea9Z+DIPmSgHkvID/wB8ivKSP9OfI/5bN/6Ea56f8SRrP4UyyQM/jUKD7/8AvmrUoxGvHfk1WX7rY/vmtkQzo/ArIvjC2D9DG/4VleKsS+LdQkUkq12SCfcVpeDQB4nhJUsSpUAfSqPiOEx+KbpSNv8ApGMf8BrNfxX6Gn/Lsw7tcGX/AHVqhIxxhWOK2btRHPIJOhReD9ao3kcKJkKN2cDB6VqZneeI3K/DHw0cci5l/wDRYrgTd7gqsuC3Feg+IE874X+GlA5+1Sj/AMhivPZrV4ZY8shwwBAPSop7DluaWnR+ZrNnFkAG4jX8zW/8ST5XxE15UHCyqQO33FrE01QdftX6bbiIr9c1v/EdN/xH8RH3Q/8Aji03vcRycV1BLZSPNMBcswSOML90dya6DxjKmn6x5Sb47lbS2YFRw2YlzTNS00Q2pUw23lMgxLGDlCORk+9b3jG2hu/FogeEmebT7doygydwQcGs3VS1JcjE8LeJNZnu5LbzFmhjgeV1k7qoyQK6XTvEHh3XIPKnIs5m/hlHBq/pkdnca3b2/kRxxrZXcbeWgVivljk8eua8wvbdrSc28mSyg7CecqM/0xRTrc4J9TX8V28UOtRRWrpLE0StCY3yF9QPTNXSFudO02zugsJkgZpJZOGUq3TFUfFFuNN1mL7KixGOzt5VwP4tuc1Lqd/JfadoWpXg3ttnMhUYzhh/jUNXIa1Zm21zKsMQaQrGHYqSOGzWtpzyW1tNceb5bwITGSMBgDk49TVO3cNY2zXDsoZWMQCg8k96laQTW0rOi/Z4t6qgJ+VmHXFQ1fQQTErcaY0syzJcrwqc7XwCCffNdSlqsGmSRzlY9SkkKgb+gGMN9K4a6nk+z2FpnyxbsxDqMMSwHNb08N1ZzwHzlcsu75hkxqBk5NV8KSRVuhXvkcqqRhikLiNM9do+9+GaisdSuYJJpraJY/MAWbA6KDjitmz0yKaws7u7vnRSrYiUHL55+tc7eyTJao0w8oLKymPGDg881m1fQUotF972RIr2EAkjbkg8FQ3I/Gn6dcvPcPZQRpC3l7iHOVDE5xWNBOJzmVQYed7L69qdbpPPukVtkYJy44ZuKTppIlnqEcmjXafa4i95ATsRgxUcU6/NnJpyiCzeKUSrgtJnjNc5DpcGmmSys7lzbI3yhvXvWjFbETWpacNvmRNoXnGRXQkdDZj3ltCWZvKB3OSeKpvahGjKxLkNyMV0N1YyC7nTG0CRgAfrVdrFgQXfgDJxXOpaanfGm2kZ00KyxYWNc7s8CmspQDbHgg9RV+Cy3E4JQ+59qedPGxMyknHNNSRfI0ZzqzMGJ+4QenvXV+EF8yXXXjk2Brf5W9MsKxvsMQ3ZZuorofDpWztdXeK3MxW3XEQGdxLCnozOpFKLbLccJS7uPNmDcAk1Q8cuf+EMhOOPOUg/Wr1lLJdzXkktmYMKuARgnr2qn8Qdi+DSyn5VuEwPTrW9NbI8+djy8WU2pMAvywxkNIx9ugpb+4Vn2lAgiU/KO9bC2y2fhfTrhm2SXMhMme3p+lSaR4es/EGuLFLcmOAxlpMdT24r0alCKjdGEKzu49DkbZ7i6cyqoW3HHNXFjyvNbM/hiTSNCGofa0a1kleFE771Yg5/ACskDAGeO9cqubO2yIJk2wyfSm3inMZ7YxU1xxBIfarUtrbyWLtJ5vnjGzbgrj354oGk3segfBbJvZmAyBKc/wDfNeYLD5mpTu5YQxTO0pXqBvPSvUPgtKI724z/ABSf0rz7SrG9v9eNvZIGkur5raPdnaWLE8nHYVjD+JI06K47ektodp3J5hCMRgMAeorOHDyKBxvNeleOPh2/gzQrC5S9e6RpSkqsoCxu3Py+2c15ztHmNz/y0Oa2MnubngolfF9gNuTvJx68UeMoynjm/XGMXnQ9vlp/g8bfFunSZxmWrXj+PZ8RNUH/AE+A/mgrK3725bfunKaqiiWcglgEjPP1rFl5lmHo9b2sFQ8+Ohij6fWsOVSJrj2etkRc9I1wMPhX4cccf6VL/wCgCvM15vOv/LSvS9WLH4V6LkcLdyAf98V5qq7bwH0lFZ09UVI6CzKx6xbkgf6+I10XjwCT4j+JMDOVjIx3/drXPFduoRvjH72Piuk8eXjaf8RNVnhKi5EMEkRYZGQoqt5JEva4XAeexu4UeOG2VHMu/wC8SOwH1q14qQXHim0X7Wtmz6VCxuGOMfLgL+NYOtvqFvJdf23bhbmW2E6ueN4fHIAq98RbL7TfaXJG5LDSYHmJHyqo4Fcns2pNMhfCy74K1E32vvHcxhnhs7o5XgsoTp+hqDUrOz1O1kubO1a1uIod8bnlcc5zVXwDK7eKXeVvkOm3KZUekZ/WqFrczXeiaoqX0sccdruww++u7ofSolTaaaF2JPHLeZrlq7YBOn2o/wDHKj1DC+H9HijZXRZZ03DpyQf0q54uS3a+s45nZXl021ZZFXOOMGpbPQYNT0uwsYr4eVDczEzBevyg963W2pq4OT0OdZ3kkhTccooQLjp6VqNb3EE9vNZugF0uJEIzjC4P9a0NY0Ozgkihgtrq5uAqmR4uhPofStaPwhFJPAHe5ihgg3SPv6s38I59zUocaEuqOFlUPc2Fw2SZcjBHYdK6aNFj0Aty05xCGZslQTz+lel2nwO0nUNPsbh9Su0xEpVAPu5q9cfBzQbDTppnvLtlhjaVyW+8QvWqlHqJKzPO4pbaOWF7ZXaQ/uzIW3KPw7VzGu2TTXE9zLds8xKkRledvSuo/wCJXYXDwxzHfIvEYGWfjOTnpXN6vdRSTtdLK7EgKY2GCFrKO9xSaK8GhXK38NpbbZ5ZELqnIBG3P6Vb0DS5JHR7yFoonG+N+xIOCKpWWpvHNHKlwyYckuT8wB67a2dPtIJLMJPqsxiZmEapzjuDWFaTtYyZ3OmWkSyySyS2TF5NwG4fKPSi+uoxfafGJbcD7SA20dsismDws673ESFgf4pMCmX+hy2tp57wwKmdvD+tdidzdl7VNNupdQuZ18sJJISmZB0zVSbTLllPz2/4yDmudXSbY7mWGAqDyxOaR9LsxKqpBASRneOlQqMToWJkkdCNPCDLXtkuef8AWU7bDsUPqGnrgY/1ua56bSrURSEvb42k4UZP86Y+k6dBYeaXg/1YJ+Tk0/YxD61M3JhZIDnVrHnn79aWiajpVnHfwzapE73EKqgt2+YYbJrk7K1spIEkjcBSOjVv6PZwm/BgvoUZV6sgNLkSFKtKSsdLZXNmv2yeF55kYRqDKeQTmsn4ghz4HnbggSoRj61ckXbJsS8S6VpArMi4XcAeKTx0Nvw6udwGN0f/AKFWkd7mEkeZi9N5a6fbopCwqZJC3Qk8Cnpf6jbXqvpsaGVRjIHUe9VdJkWVGGBhPlI9q3fDsSPqdzBvRBJsXLnHy5ycGvSkm6d+5zJqM2kWdesb3SfBVrY3comkub8zOw6KSu7A/GuU28813/xGES6fYKLhS6TsUjVgSQQeTXAgtjIzXPazNHLm1LdrpTXltLdTskdiriKR2bBJPZfeuy8R+CrG20q/m0a7aTU4gjy2A7RgYOPU9/xqloC6T9v0mO7juXeCRGWBEDLI7HJJHfoB7V1nxOvhY6NDqVssSX/2pIxInIZxuMn5EKPwpTj/AC7mtKd009jE+DCrNPeEH/VygsO4GKtaDYpaW0cMOr6MLuw1E3VrIknLZYh1k98VZ+GHiHUNRlmSS0sY42mBneCAIWIAxXPaQ2jXc9hJdRwu2nXF3JfRCMMWQMduR3NY0/4kmipP3Ueh/Ei7u9b8My6dbafPdF5I54prfDR4B5XPrXhU1leWby/aLG4hIcnDRmtVTcRaLdatZzsiC6KRNGMfLtJHf8K1U8Q+IrTVFsINVuCn2MXDbm4PybsVprYh2Zk+EyD4msBhgfM7qRV74ibYfiJqKM43LPGSSf8ApmKuWHjDxDcXOmu6Wkz3U5SPfCGIAYAnt61a+ImqWcHjnVbW50i1uJAyfvXT5vuL3qEvfuF7xsef6uxlMjArjyl6H0Y1jTr/AKRdd/m5rrpJdGbyzPo2zzUJURzkDHT09aaY/CdwFaexvYHJILRS7g2Ouc4rS4rG5qiMfhNoxwQou36/7teaHBu/+2q17E0vhrUPhrbo0moxadb6h5KOFBcuV479K446L4Ka43x6xq4YPjH2MHkded9ZwdkORQn5uI5BypeMA+4zW78WLcW/jP7aHG828DbT6bKgFr4RSEEazqhRGM/zWSnIz0+9x9a6Hx5ZaNqfiq0vbjUZIHksrfMJt92UZeMc9atP3rgjnfGlzDqFloi3JIuYNJVmYt94scjPv1NL47t7ye50j7OHYHSIvMA/iAJ4p2oaLZ6rcxzW2r2EcT43RzOysBkgKMA9sCuz8XQWl94F0K20q5gfWoY0AlVipeA5Bw3cbh3qJ6yuVZWscj4F1SK61mx0uGDykjs7jzGPV2MbZNY+l6dLqMU2mDzBM8DND5QyHKnO011Hgbwnfad4ysZZ0f5kkWWZivlruQgYOck1saB4UHh8XDvNM97LJsDngIpPOP0rGeg4UuZnN6roOqa/qPh6Kzsmcvp0aOx+6NpOcmun0zw4+lPcaebdi8MqyqXHKh1P6cVuafbC30izgeZlmeEjy1bkjecn6VXOF1S/Xzgh2QopPP8ACwPNYOsn7rOiLgpKw63t52j+RG/fSYHHXFPjtJZphbhMebLtyTwMcZqTbs3heiJsXB7/AJ0nzGcFFx5UXfqWPH9aSkr3R2Jwkj07/hIdHtIVRr2FQqkABvSsXxZr1lqHhDVIbG5DySRmEFT0LD/CuJdPKWJSQvy9Mgck1V1aWOTS7e0glBn817iQpgjaRtx9RgGrnW92xw16UIRbvqeb37xDU7a6kuMP5CqzFThdvH54rNvo7OW9CWMs00RXmRx1avUmVbv4fNo5tpLgW8qPJNCQrlmcjr3AGK8/1bS7vS/Llt7oNaKfL2ONrqfoOK1hblTOTSxj2my0nEwMbtGdpD8qQeta6LEJo1sA0jRvvfaeAKwUma1umkMQGcghx6+1XbGQrM8sD4wDuAOfxrGrG+pDPQo7PWiW8vT7plY4zk1V17StV/s9POEkAZwvztgCtUSeKbgs1jNfTQZ4lWDZkCqF9Ya3Mm68lvhzxn1/KuhWNjk7LTGWVhDI0z553P8AKfwrcTRNSm3btNXaR/COtV4tDvzcE77xhuJAH/6q0IrbUrJHzf6guT0PIptgYGo21xpzs7acUC4yWHFTf2pZNCu+IxuwzgxnFR3s01xK4e+lOfveY4PT8Kq3Ed8Cn7/zE4xuAxihbAbNnc28tsHRFdQcZ245rTtbMTo7tboMHGd201zmnyeVcRLexkw7skRHmuoju9KgyC87oW3EEcj2qJvoVFGrpcUcVu+2MRoLgEIDnsOab46d38EXK4wGKDn/AHqh0eeK6e9e3ieOFLhFCyHk5A5p/jRmk8EMF6syfzpwepMjzjwyoGoTxHb5bRHeZOFH/wBeqGrOuVYEkpJjgkE8Vs6IkccN/cSOGMTKuzH3iegrCuh5iO2ckuSa9S9qRyrWoOhuEkYMC+7p8xJx+dW1fcME1WQIJmK8AqrDj1q1FHLcSJDbr5k8jBI0A+8xOAPzrncnJ3Zu48uh3nw4newvLnxBdWvnw2iC1t0xy0rHJI91UfrUPxO1KzutA8PQ2dwJczXEs6dGWQkHkfiaqapeHRrqDRdOcLBpcLJM45Etw3MrHHoflFctr15calJDfTqhO0Ql4lwDj7uR69KlSTdupfJJR02PQvg6+fta5+Xz1J9egqn4X0LULHV/FF1d6VcmNRKyBo+JMk4A9e1T/CAgm8XofPX+Qqjp2s65P4i19W1i78q0E5ij3jC7c47VzRdqsrFSV4IhuNOni+Hdu3kS/wCkXwZh5ZHJHPHoOlOe1kHiXUNyOBDpYx8p/wCeeMVLb+I/EK+D3vG1y7LtcxRqx2kAbcnAxVi98YeItOktQNSaTzLSN2M0atuJ3ZzgVurmexU0C1VNV8GxNkeYjSdO+4GqXxVdV+JWq5cZ3R9/9gV1Gm+L9fkl8Peb/Z8puLl48/ZvmRAyjjn3p/jPU3X4g6vZnSdJuI7e2M2+4gZpDtizyQ2KSuncHsefa40cdp4dkBUGSyZj7nzGq3Z2UcsWjEqpE0F3Mx9QqnFdFZ6vcai/h6CXRtDZbmCWQf6K3yIpJwvz9KWz13UphpYk0rRgXguiqfZmHlxorHH3u9NyEPsoEPwg8OIyj95rcJb3BYf0rDtbCN5rZxgB72/Y8dl3YrtItbupfhTo+otpumNLNqcSRwmFvKjGeCBuzu/Osy08S6vLdWSJBpsMb3Vyi+XbHhVUljyepI5rNXGzkRZbbC4+Q4/smAjK9WZzmul8U2iy+I9N3gErHYpkr0AjfI/Sof8AhKvET2Zc3MMYbSlnHlwgcl8D8q6bWdX1a21ewijkgdWhsfMMkWSzOHyf0NDvzIa2OD07R4p59IijijW5ZrVcuM5Zi5H9K1vFmnjTk0u0ZVMlvp6wGRRwWV5M4/Kr1t4n1porR43s4nZIWYi36EeYfw4WtS/1PU7nTdElaQebPYCWQhAQzlnJ6/T9aTFqcr4etRL420eMSusbXBK/McH7/wDgK9q0SCe+glTURDdAlfLEvDKf4h+HFcDpd1qA17R90tvse4VWAhwRnNejeGJrS/jvZtuf9KaIDBGMDH9KNGzaDtBs8v8AjA39kazYwwLHEjWe6MwjDcPgjPpzXnk19dSeGbpnuJDJHdxDcDyVweCa9i8cf8Id4m1VPt+qS28tlE1uPLXoS2f6Vi2Hg/wFdabPZRahrV8kkqNKYADtbsenFL2S5r2MOp5npesXu4QT3Ugj5lQBslj2FNvfEOo3bXElvPLFG0uRluUHHH516pffDP4caVdeTcanqiXC/wAPnLnPp92ud1PSvhnpsawwXWpzNNIEnLzLmNfUfL1pKlboT72yZx76trIs/PmmKpv3KHPzE1peHbm4uZLl2BAkVyFB7jGfzrevvC/ge9UJB4k1OLy8IGni3BeO+Kp6b4aex1M2YvUns0BMM6dJEYD5hz7VM6V1axEnJK7Or8O30I8O6mGhHnSvEUCHgL6D3rLmkuLi1ikOnvIYj5iRNF/EDjn+dRavqGm6ZpzrGT9oDAR7D/CO/wDSuSm8U+cCwecSdSN3A+laRwsVFJsnmbJ9e0TUr2FL6LSpzeMQrxhOgx1xWPbaLrlvHMDpV2N64xs5zW3HrKNBK7tc+YmMBXxwagt/EXmRo8ovkRyQGEnBx+FbOjTS5blKR2Vx4t1cDi3hOOQoBFU59b1q4gUPBborDpgk11/2kTwNbz/YZ0RtiCEqWCjpu96ozwaePljidJewY8GuKFRS0R1SjKCuzk7K+1lfMWMqvk5JyvX2q7b6nqJgMtxIgz0TZmtQO8DsqkRluDkA4/OpLe6lhiYedDJ82cFVOKrm1JvoeY3uoafJduLi0uFfccDBGeaJ7u1WLfCLiJ2+VhIpYAe1eovemQrugtnYdzEuf5VKt3LAVnS3s5B/dMSn9KfP5CTPJS8iQCSGeQnIOFjwa0bTxDq8d0nn3SrERtHmpkCvYo7+OXm50a1/eLjeEUfyqOW2sWUiPRYZMjuuTUupbWxotdDkNDvGltb26uJ0nLTqd0a4AwOlbWtW0t94DxbQvcytHGQsKEsec5xTL25utPv5zp0cdvHtBMKRKyhyMHPHWren6r4muBsspvlCjLLAFA+hAHNJTtqVyXVjhNF8PMbK8XVkks/NV2h3KRIsijAyOwNcUoaELHOjrIudw2nmvoRdW8RE/vre1kcDDiWMEsPrUWpeK1sYoBPYaUvmHb5jRKxz3ro+uNq1jJYazvc+ePtoikjG0sm3DEg8AnpXZeGWj0qzvfE8q7vsg8ixB6PcuOD/AMBGTXpD+JNOudkcOg2F55h2q/2cAMx6Dj8abrF7oEYms7jwzFNY2MgAMTEIJCP3jbQfUYzS9voU6TueQrPjTLwB98joNznrnOTn61TvBIllawJuZGBdgP0rtL3xJoF3JJdW+i6dBBYkA2pkO+6B46A5461o6boeh6gqwX0jWs8k4YtbqSIEYfLGwPTmqTa96xTa5bC/B1Abi68zC5mXG78KqaHYzya54vZYXwWmiRscFjn+la8kdro/iC6sNCtWDo20E52swHUijUPHFxaO6te3kV3G4MkNrbxpExwO7KTz7msopqbl3E9YpXOeWEr8MrYiGUk36ggISeBiq/iTcU0qTyJhusFBHlnqrEf1rsbPxlq/iUppGnxmzlc8zeVHhSfbGK1tXbxKup6VYwXNvDHJFIhmESHe6gZLZHB+mK2U9TNxXc5TQoGll8J7Y34a4kGVPZkrU8SWslz8RPFcsVvLKf7LbYUQkMTH0q3qEfi3QrzR4f7bS+jupjEf9GRNhPocVv8A9i6+94ssniCe3BVd0EEKYHHqVyanmbDlXc47Q9Dv47rwuw0+5Cw6RMGJjOA5HA+vNaGm6TePo2nRS6XKLtrK5PmOmPLLIRtJ7ZJrT1TR9V0eylv7XWry5nhdXQTn5VLMB0AHrUFzpGpL4eTUk1S4Fw1gblV3nb5u7njuMdqXMwsiva6DdL8OtG0UvbLe2l1Hczq0owirnOff2qjYaNb2t5YQ3erW8cySXIwq5H74EBifQV0Gj+HbbUNEtry/3S3lzaySuQxUZxjp0rO0vRoD4NvGmTzJmsypkbrxJ60tR6GadA0RbOWKTXC4t7OK0cxIQGKvu69s1Yvr/SbrU4Z52ZZtsLBEnHyCMnYCffca1dM0eJ/BGtW6WRkMs6BV25Y89jUeneAbtrxDJbWxRZAG5BKjFK3mF0UrA+HbCBWEt1NFtWJ1C7wjLuwuR6jNRjW9ImghW6srmOW1UpAkPKhevP613Nl4T0608yJiXglcS7OgUgHjj2NPufBmmXcqyQH7PnG5UcY/DNVZsXMjhZNd02N7aa0gk86GRZFaaIkA47Vb8R+PtTXS5m0/ZA1xCyxRbMMzY+Zq62bw5pek20l7Lbh4oSGIZyS2BjAHvmvHPEGoSRatqF/fWM6zCOS3t7bYQI1PAx9c9faqjG2rDm7G1YOLjQLXT7iC3it7dRIZiPmLsMlnPvWpotxCL+Ka2it41uDGCbfhWCk815vf+MbnV7YaaLFtPs2jWKZkHLqMDLE9h7V2/hx1a909ItojQhE2dGCjAI+vWrSd7mWppazJH/aGr3Muw7bo7QwyegxiuB1uxVJmZ7iOMyxM43L9/noK6rVdZjsta1K2mt9++bzAChYkEDB4rJ1W8sL+2kSaxkuJFVvKJhZQmdv+FU9EJQvItJaefBfbCpzHHMPl65X/AOxpLa+t7XQY55JkiKtJbbWGS38S4H0as+x16a3neURzcwRxbPIbA25/xrSWTSr7TrueaBi0c6zeRIwXMmMHbxkLjGaqKE1Y5a6n1LUr43mn6c6szARuq4jVcYPHvVabwrqI8zc8nK9PKq/qXi3VbUzLo0QhJUxl0XcAPRQeP0rmZdf8TBEka8u8tnOV9Pwq5NX1HytoS7j1eHd5sM4LnDMykcLwKXSb2C2nzqKPdWqqwFsrbck98+x5rsbHVbyDT7KC5djcTDfcPIFYEHkYyOw/nTrqz0zV4WW8swMHC3lupXH1xxVKEZ6kylyuzR3qWVsJPns7XcZDlrdiv86SXSY4cm3Z5SDkLIMgVl6Zp1hDI0k3iTTrmMElljuCpH03V0kGoaTJCrw6nH5anGTOnP614lODiehVkpWsYE0XlyAErg89KqEbA2EBBOSQOldZd/2bdKGS7sDGxwC0oUqfwrFubWayYiYwFG4DrKuD+tdNkcjvFlKORSwGUz16Vdjt/NgY+Xu46A9arExYztTjjIIrQ06yll8wicRptyFIOM+5HajoJXbGQQNMYwkk0IX+AuD+lS38GqxWDtZz3Mg3qCsa849avz6P5GiyXken+feGIgSxFyAT3rnZLrV4Asi3d+jCMj5ImGMdAeO9Zto6IR1Ee81m3yryTOpXIBh+YZPLE+pNTz6/r1vPtt7i4EagFo44uOlR22u6zGwb+0dxkXDoyD5B/wACqSz1nV5JZQuqrhVwgKIu45GCfWpsbov6HqN7exyK88slxyzFhgoPSp7jVtS0+FkurO2kVjxNImXBx2rJbxD4hgtfK8+zafP7y6gSPcP94elFxr/iGZYgl3HcO0nliMwIck9McdfpSsDNex1eS1tbnUZmhmtlASFPL2lrj29gM1T/AOEuubnFsscVkgG5yY9xPtU2o6vrNvexadbpp1xFaRASzTCMAzfxED/x38KzZfE2q20MyHTbGctlGbywWz2IK9aprogRmPeafcajbSPp9rJKm5wrJtLcgc10OqaVpevaJeSadpIt9QuIlMTI+GeU/dH0601NbtQqzalpOntI3yLFDGxnfGMcfWtnQ/D3iTUtQXUZmj0Wy24jgVA8g44Iz0reCfUxnboZPh3wpqOnahZvqMDLdIQ1y7P8pyOeaNW8Bz3+s3UsV1ZxW7yhoyzZwAuK6OXxF4ZstdtdIjuJtUv2OJCspKIMfeYk7fyqncfEfT3199CtfCs91OzbE8vygH/EniteVmOhX8NeCzo2pm/Op2U/zqwjjYdq6a90k3l1ZXAdR9nZ5MBgfvDpXk994r8BWGr3Gn3fhXV4b6KQo8Ud0Sd3oNr4rRurrwbbrAuoR674dabmItcO5b3wGNPlQz0a90WTVbmwYs0ItZhKcr1xV6dy93K6o208CvOho/iqCBrvwX4wbU1RNzWd4cTfTBHH41BB8WdbONJvdOgs9YQ7WWdSpYeq9iaFC4tjv9UtJ7zSZ7eOI72UY3cA4YGqb27PoUFlvha6Fq8AiMgzuzxWRCPEGsRrJeXMiKBkK/yKfy61Ru/Dek6tKjy3Msd2v3Li2mYFW7cZrX6s2tGYvEQTsdVYWc1hpNraXHEsELI+OhzUumaVbWukT2qoXAVlJbuCc/0rnrfWdY8OlbXxAjajYn5UvoU/eJ/vr/Wu1sprW9sGuLCaO4gccOjZ/P0PtXLNSjubQkpbCxZW0HCqM84HeuL8cazdaTpNrHbSmJ7uf5pB1CKCT+uK7ltoslPA+cfzrzL4rTQRWOkbnVW82UZY4GMVMW7l2XU5QatdyH5tWwffNTx3d+RlNYhH1YiuYm8Q6LpMyw3Ect5MQC/2cgqvHTJ6n6VdWfTdQsxf6WQ0edkkLj5oj2zXSpGbR0Au9W+Uf2hFMpOSvmirkmp6+wtLgSRGaOUxuSFfchxgk+3NcesSZ/1a/lU8MkkAcQyFFkXa6jowobuCR295rGuWk8sMttb4RsZKIQQcYPT3rGXULs6rLcXcAElsr72gA2jA4xj61nXMjXFpBM0khYDyZAXPJHQn8Kz5p5YYZQsrovlNnaxGTkU7hYsGx1QLzf3wbbgkx5qnNotzNnzNQnbP99DVpru6TJ+1z4z/AHyaemo32PluWIJxgrmncVjIbwwxOftaH67qafDIwdwt3+rMP6111tFrtwgdGiIx0dV/wqvPqGoWb+Xd28IP+1CuD+OKoVjkpPCW9QI4wh/6ZzY/nUB8IzH5RHcZz1EwrsTq6n79jaMfbj+VH9pWrY36TCRn+GVx/WloFmc9o3gOPWLua1m1GexlgUO7THcoU9K6WL4b+GbSExXni68b1SFTg1Q8N6it545tNNdGaxnuirwjrjHA3dSBXtB8L6FAcJpKLjvNKef1qHUSeh0Tw8o2v1R88KLFZVBszuJ+b9yavGDTioZVVUduQq8GvTJtQSTg28TsgII8sDNU2S3MY3abGoxjaqivGWNXVHPzs85m0+2uJleJ5Uj7qgJ/GqdxZ3kczRpJcyxKQVYtgHPYV63aGyikMUdmkXAzlf0q3ttJQFuIIdigjGwde1ZvH67Aqh45aMxkdZJ3RSCQWY/KemKusJ1VxBfXIyNvySMc16RJp2lXybb+xiESOXxGACc+9ZHnppX2iy0h4Iowd6vLGrkk9V5NdNHF+1drGkPeZFBe67b2yJDrrwQxIEIYc/h60lz4j8WSOIbbW43OdzFkTGPy5NaI1XU7nYj3Gno+Mp5ttHtJHY81XTW7oROhttGmdm+R1t1GG9Pet/U6SiviTxCfKEt9YxuVLNI0EZLY7dKsW/irxGbry5bLTZzj5WaJRuHbkVpJ4hUKsUvhvSGyQA8iYznnOADjAra0mKHX7hraPw9YRQIuZJvNZVGem35aFdhexzknjXVoR5b6bp8DPnJMQ2tg+vsau6X4x1G81e2tRZaeGL7g8cWTGwB6fWu3bwFobiMNAsaqwcKspYE/iBWpDoNhaRlbdo4sgjKRjP51pGk73ZDqaWPLY9d1i+SS6m8J6bFEhOZJmZM855GeatWFrqHihEt9N0q2tTFJulvFLeWp64GfvV20XgjRBKst5NdXrA5/fyll/Ed66WM21vAkFuiRRoMKqLgAfStFTs7kupoc7pnhrRfCdrLqd7MJbiNd0t5cY4+npXm3ib4j3XiqaWy0+6OmaIPlef8A5a3A7hfQe9U/itreqXviGXTZ/wB3p1ow2QZx5v8AtN6iuCkmaWQkAKp6Kp6D0reEUYuTOwsLzRrAQ22mxTNOW3NM4GCe59TWp4MtLp/HMWqugMKQvMDnrgGuG0xXS+hf1yMfWu68LzmG01K5JIWKwZV9icitHFWM3Jok8BeDAup3HivWFjm1C6md4I2YERAn7x965j4i6XfXvjm/luoJZrTy1EEkbZZBjoo+tRWmr3dtEPLnkCgdCx4p51a5nmM7s3m4A681mqVtR84zxNrGraRong3xPYyvZahJbSW9wyjG8xsANw7nHrXcabc2PxH8LWk3iqxSKeUmOLU7Xgo4OBu9D39K4TUpxq+mJZ3wZ4ID+7A/gJzkirWk+ILzwXpL6dABNaOzM/mLuKlscEelEoOJpCSm7HcxX+qeBL6DTvEDtd6RL8ttqijIA9Hx06jmtb7VpMF6psirIhJl29M+orzTT/iuunkadqcCalodwNstswyYh6rn+Vdb/YbQ6SdT8MM97od0m5UYHzbY/j1WrpztuZVaCWx2r3tpPerbySbyYz8h6GseTRrzS5pNQ8MTNGxy01qwzHKPp2NVLDWrS2sQJPs6krhpZSNwbv71GnxC0O1n8r+2U3gA4wcelaShGa1OaPNB6GvoGs3HiPzdPuLtdOuY33tblfmxnsT1Fch4+0C40vxBDqEOorc2PkNJLBOok5XqB6Zp2veI9O1RYV0zT7zUNScboJrVcbM+pp9p4G1rVrVP7ciktonYF0aYiTaBggY4PWuGpScJaHdCfMtTxK007+0MtFGDPITIx6LGuau2Bn8O6zF9oK/Z7hdjlDlWU9/qOteqN8H7qy+1rY6rbrbyNviR87lUHhTxzXMa58N/FLWbRQaclwofcghfnB68GncopsmoQuAs+8dDlR+dSBrxRndAx9CDmo7Sz8WSubWTw3cPcRqBuXAyR69qW+m1jRxcnU9Cu7ZbXYZm7Lv+7z05ouwHpfXIRo2gX5iMgZ7Uy5nlaJ1a1dQYzzuHqKpReK9NlX5mdc9m5qxHqmn3gZYssQrZCRFuo4HFPUdkWZLvYMy286d+fm/lTDqcNnptzqmPNMLBVjYEAyN0H5Ampv3lta25u4poC8akF4mGcj1xWP4nu7U+HXhSYGdrlHRc5JwGB/nSuHKZP/CeeITNvF9tPUBY1xXaaJ42i8VWbaVrCpHqap/os68CVh/CfQntXnunaTPexsYQgVeGeQ4GfSoby0uNPudrgxTx4YEHj1BBq0yWj0GSaKJmRnUOSOD2qVWjJBEkeM/3qz7WSfVLOHUNsSGYHcpUElgcE/iRUot7kfwwn/tkP8aXMx2IbHTNRfVHntCEdJC6Tg8Ke3Nas1lqjkm+8S4J/h8xj/Wp9At5JbiaxbU7S0e4YOsdwcK5/DIq7c6DcNk3PiLR7ZAcfIpZv5VHIdX1ubt5HTPtwVCqX4ztFQuzYcDkj+H19q15fCWphkVyiju4brmnL4X1KOUFfJdV+XaX5Pua8T2M+pxKnIxxAPMwzMxwM47GnOynCyKrIDyTXQr4Sklcia4EIfIIQ5PtWTfQW9myRQBzsJWSaWMqgNRKhJajdGyuZrajdWMojtHtmyMlZ0DdPTNKNbneVfM0vSbhTg7zAo5/AU6XU7eWSFpvDBuViO03KzbVP1GKvW91oTB4ZdBubdFBYskmetd9KMYxRtTSiVpdTOBHdeE9Ncc7GHygj8Kr282l6jcwQT+FooU3YLQysChxx3rXFx4enliQDVVCkbQyZVPrVvzNGG6UambLgp+9gGc569a1vpoaXRznm+GbeR4pND1EAP8AM32hy3p60aN4gtBrt7a6VFPDp4hV1SckvvBwTk9sVvBvD8s3lweILf7S5+YSrw3tiubvtESy8VSX9vfB4fJ8ny1AKtx97NaU273CXLZnUJrFzJwGZmxxhsVImpzrxI5c9QwaueWXao2t19G/qKJtStdMs5b/AFKTyreEZIByWPYD3NdXOjn5WdZDqUrn5RK2PTJqb+15I+HeRD23LXit58avEktyU0G2t7O0B+VTHvY/U8Vp6J8aruacWnjCxjltpDj7TbptaL3x3qriPRdWsdC8RSK+rWgmmRdolU7Wx6ZHWsZvh/4OcHy4rmPP/Twx/rU9y0UbpJbTpPbSqHhlU8Mp6VGtyf7340XsKxl6n4CsLK0F1oZurm8RxthyTkdzz6VHHpmo2+nS2aWV15s8OyQMnyqc54NdHb+JofDkUmoTwvMCREAv8OeSa19C+JWna9qX2K2jAk2M5OM8D1oUmDimjzW18G3iFBc2lyxDZO0HGK1tS0m41K0Al0h47yPiO5jTbuHYMo4z7162NUJ7L+VOGpZ/hH5VSqSsQ4RZ4PbaBqMctuLmxcoJfMlIBP0FLrGj3s9159raTbWB3KyEZr3b+0B6D9KX7ejdUB+uKHUkxKnFO58tap4GvGk+2JaSIkfzzR7TyoPOK9HtPi3omntALLfFFGioYmHGAK9Wv722WyndreLIjOCQOuK8og8IaNJdAtbRszsMgr6mp5tdTSx3EHhvwv8AEDTbbV3sWFtKCyopMeWB68VLp3wz8K2uoPjRFK24URvKxcPkZPB9KvPrFvpxs7SCAxwICihCAvAFXBrkCKCZCvoDzU3bDQ1bPTrLT4/Ls7WG3T+7GgUfpUrwo5JOfwNU7PUVvB+73sP7xTAq0lwhfaJEJ9mH8qQ7Eb2SOPmRJPqoqH+y4E+dYyj9ip6VoA0tSBktp8nRLuXJGMMaz9T0A6np09hqEf2m0nXbImc5H17V02KTgD0FFgPC9V+AWj3RY6TfT2cgHEcuWUn6mpPDsVr8IdJlTV9Iu5BM487UoF3o2Og56CvbXVGGXUdO9ZGtWGn3/h+9tLgg208TRsc5Vc8foaLXBaHCxfEvwLqi+TLfxqD2uU4H6UzUIPBOv2N3JbWumXbRQuQ8OFIbbwO1fPOp+H73Sb2a1nikQxMyhihwwBxke1Z2JoXBjchh3VsYpezj3K532Oz0e03aHbSCNHjO533OQQd2OPU+1ZGvKGtrZyOUd4gx/iHB/man8O65aW9o9jfIuFfzYZDyFb0PrVDXtRhuWjigYvHEMl2GN7nqcVryom5lxrfpavcwmdbaN/LMik7VJ5xUj3Wpx28U7XFyIpMhWLHDEela/h7xpLoWmTac2n2t3azSeY8cwyCcf/WrQ1zx1Y674dOlS6HFbeW2+3eB8CM9+Md6l3GY2marpzI0euWs10d+UmWVgyDuOtdBotz4cvtRWzh0rUrkHLZjlYvge2cVwHfFex/DPR9K061kvZNas21C4UIqpJ/ql64PvSd7DifRcyN5TbU3E9FJ61mNbXk8gkjEUQGRtxnnHWr4kQsjJcHjsW4I96mmuIoVZnkQBckiuRxurmidjEji1iAjdJbyx8b8Jgj6VcmRbrEM0JKsMFWjyMd6XzZLiMSRqwIbA2ngj1qRJ7mIcW7SE4yS1TvoyntcoTeHbGc427V7KDwPwqG88OQv5It4iRGmz5jwPStIXU0kLF7B0ySQN3WqMdpqMkiSy37xKAd0IHr05qJQiJK5i3Wh6kFeNLZJBu4Pt2rPOg3iJI9xpsruG/gGffiu9gL7AFmLDJJzyfpVkTggYPtj3qFTXRkuLTPM9Q8MySW1yTHdwlkPMZ5BPcVwsOkX0PlsusTzgcsszEq3PHHtXvzXtp9o2Mx3glTnp05rz3V/Bl895NPo0ttPDIxYQu20oT2zW9O8dGUvM43TZtbsZpI7u30+5spWZnwMP7YrjPH+qXWpX9npCWq28SDeEVtxcnufpXdXsGqaccXuk3UI6GQISv4GvOdUle48X3VwAxCJhCR321rBXlcc3aNinbWC/ZZZ5pzbafA2xpFXcXb29afJp6SacL2GSSewZ9heRNrK309K6PRUiTVJNEvIfMsjpm+QYztb7xb61PrixrBoZ0+N5NGaN4mbHdiB83vXTc5zM8K+LjotpNpOo+c8MJ3QeWm8r6jHpXSQ+OtJkYB5pU/3oiK4fQrv7D4u02VuPMPkvkZznivTXgt3GJLaBvrGKTmkUo3NXw/qdjq1tcmGeGeLIBx247g1r2dvY6c7yWsUUTONpKgZI9K4nzdT01m/sDTbGSOUZnV/lww6Ec0/+3vFwGG8O6ewx/C//wBemmrCaaPQ11AY+8PzqRb8E8OPzrzgeI/E8f3vC1sfcPTD4r8Rjr4YXHtJRoI9M+3DPBpDe46GvNf+Ev18dfC0n4SU3/hL9cJ+bwvdY/2ZgP6UroDvtSvmayZcn5iB+FZunyol2HYjCDPJ/KuKufE+tXCqo8N3iYbPM4P9KdbeJdct8r/wjTvuPPmS5/pRoB3eq6lHIbLaVx5rZ59qe2u6RaWc1xfXcawwDc/PJ9h7151fazq2oNCLnR0sIUYklH+9x0rkPF0syQRW20qkkhIGc54pJ62Go6Gr4o+LPiPxFdPb6XNJp2nAkRw252kr/tEVzMM/iRHFxBe3m8HO5JTnNNsbKWWRba2UF8bnY8AepNallaNJd/ZtN1pZrwZIjVMKce9WI6rwZ8bNa0O8S08QySahZbsNJIcyx89cnrX0FHrttc28F3azpLbXCCSJ1PBBr5XmtY/ENpLBNGsGsWoJBIx5gHUH3q/4F8fS6Fp0mk3hJgjcvEXP3M9RQB9OjVz1wCK89+JPxP1HwnqWnWunwQMLiBpXMp6YbGK561+KOmnGZY8+jPtq/N4w8C6sI212zsrx04jLPuKiiwG74F1K6+IfhwXes3kiTCRgUtJdiOvuBV+78PXOhbtP0S3kubG/b5o5JSRbv3Yei4zx60nhXWfAsCTPoMMVpgDeFBGRn0zRrHxO0TTmaMSKXUntk/lUWd7FWubmoW9lNDFHdWsMjZSIO6g7s8Vg6l8MPC2p5M2lwo/d4vlNYmjeJrrxZr8LeTJHp9s3nnecGQj7oHoM11msXVzc25ijzEc7iV64rGo0maQi2jzjUfg14W81xBfXFvxw2/cK5m9+C8TAmz14SEdFlTFeltalsM0D7c/eZuv4U9I0jRVaIEk5BoTfcpxR4xN8HNcTiG5tJWxnG/FUZfhV4ri6WccnH8Ema9/jtZ3bNvAWHdicAUGCaKTDTKh6/KarnZHsz52Pw68TIyKdJmJYZ7AD61s2fwk8QzYaVrW3Hpvywr6DtbWIxeZI7Ox65NLsiDtuKKvrtyaTrFKkf//Z", "path": "images/5pts_ADE_train_00008593.jpg" }
depth_point_54
images/4pts_ADE_train_00011476.jpg
ADE_train_00011476.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 242 y = 220),Point B is located at (x = 274 y = 172),Point C is located at (x = 33 y = 129),Point D is located at (x = 80 y = 198).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_41><DEPTH_19><DEPTH_44><DEPTH_64><DEPTH_74><DEPTH_31><DEPTH_70><DEPTH_31><DEPTH_31><DEPTH_59><DEPTH_78><DEPTH_72><DEPTH_44><DEPTH_36><DEPTH_74><DEPTH_31><DEPTH_70><DEPTH_49><DEPTH_35><DEPTH_17><DEPTH_25><DEPTH_61><DEPTH_36><DEPTH_36><DEPTH_49><DEPTH_31><DEPTH_40><DEPTH_3><DEPTH_35><DEPTH_5><DEPTH_9><DEPTH_42><DEPTH_36><DEPTH_29><DEPTH_49><DEPTH_30><DEPTH_67><DEPTH_49><DEPTH_70><DEPTH_5><DEPTH_44><DEPTH_50><DEPTH_69><DEPTH_69><DEPTH_69><DEPTH_69><DEPTH_58><DEPTH_60><DEPTH_35><DEPTH_70><DEPTH_72><DEPTH_44><DEPTH_63><DEPTH_9><DEPTH_69><DEPTH_15><DEPTH_74><DEPTH_30><DEPTH_38><DEPTH_59><DEPTH_2><DEPTH_2><DEPTH_40><DEPTH_0><DEPTH_32><DEPTH_82><DEPTH_63><DEPTH_72><DEPTH_58><DEPTH_40><DEPTH_60><DEPTH_38><DEPTH_55><DEPTH_31><DEPTH_33><DEPTH_31><DEPTH_71><DEPTH_1><DEPTH_81><DEPTH_38><DEPTH_63><DEPTH_8><DEPTH_121><DEPTH_56><DEPTH_73><DEPTH_64><DEPTH_29><DEPTH_83><DEPTH_81><DEPTH_36><DEPTH_42><DEPTH_42><DEPTH_16><DEPTH_57><DEPTH_63><DEPTH_38><DEPTH_64><DEPTH_64><DEPTH_36><DEPTH_64><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
4
[ "B", "A", "D", "C" ]
<DEPTH_START><DEPTH_41><DEPTH_19><DEPTH_44><DEPTH_64><DEPTH_74><DEPTH_31><DEPTH_70><DEPTH_31><DEPTH_31><DEPTH_59><DEPTH_78><DEPTH_72><DEPTH_44><DEPTH_36><DEPTH_74><DEPTH_31><DEPTH_70><DEPTH_49><DEPTH_35><DEPTH_17><DEPTH_25><DEPTH_61><DEPTH_36><DEPTH_36><DEPTH_49><DEPTH_31><DEPTH_40><DEPTH_3><DEPTH_35><DEPTH_5><DEPTH_9><DEPTH_42><DEPTH_36><DEPTH_29><DEPTH_49><DEPTH_30><DEPTH_67><DEPTH_49><DEPTH_70><DEPTH_5><DEPTH_44><DEPTH_50><DEPTH_69><DEPTH_69><DEPTH_69><DEPTH_69><DEPTH_58><DEPTH_60><DEPTH_35><DEPTH_70><DEPTH_72><DEPTH_44><DEPTH_63><DEPTH_9><DEPTH_69><DEPTH_15><DEPTH_74><DEPTH_30><DEPTH_38><DEPTH_59><DEPTH_2><DEPTH_2><DEPTH_40><DEPTH_0><DEPTH_32><DEPTH_82><DEPTH_63><DEPTH_72><DEPTH_58><DEPTH_40><DEPTH_60><DEPTH_38><DEPTH_55><DEPTH_31><DEPTH_33><DEPTH_31><DEPTH_71><DEPTH_1><DEPTH_81><DEPTH_38><DEPTH_63><DEPTH_8><DEPTH_121><DEPTH_56><DEPTH_73><DEPTH_64><DEPTH_29><DEPTH_83><DEPTH_81><DEPTH_36><DEPTH_42><DEPTH_42><DEPTH_16><DEPTH_57><DEPTH_63><DEPTH_38><DEPTH_64><DEPTH_64><DEPTH_36><DEPTH_64><DEPTH_END>
242
220
274
172
33
129
80
198
null
null
58
12
132
99
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDXjh9qsrFT0j4FWEjoGRLEPSpVi9qmWOpVjoAhWKniKrCx08R0AVxFjtThH7VY20baAIPLo2CpytNK0AQFKQoKmIppFICLbTStSkU0igCBlphWpmHNNIpAQkUwrUpFMIoGQkUxhUxFRsKQEJFROOasEVC4oGQMBUZAqZhUTUrAQk4OakfVCM7IM/Vqik6Gq5FFhEzatN2iQfXJqI6ndN0Kj6LTQOa1FiRRwij8KNAMk3l4/SR/wFMP2yTvMfzraxRimFjnrmC7SFpPLJxj7x96psZV+8UX65/xrqpEWRCrruUjpXO3FpFE2JLfLdOHPt/jTSuJlFhI6NmdBgdAhH65q3FaSiMbpsHHpTAsKt8tqgPuSalNzITgKo/OqSFccLZu8z/hikNv6ySH/gVMa4m7bR+FNk1SzsyFvJdrsMgY7UOyDcebZe+4/VjUbW0f90VC3ibR16O7fRDUL+KdNH3Y5G/4DU86HZlhoEHRR+VRNEPSqj+K7X+G2kP4Cq8nisH7tm34tS5w5WXnhP8AdP5VA8Lf3TWc/ieVvu2oH1NVpPEN033Yox+NPmDlPdI4+KsLHTo0qdUqhEapUqpT1WpAvFADAlLtqQLRigZHtoxUhFJigRGRTSKlIppFAyIimFamIphFAERFMYcVMRTSKQEBFMPTJ6VMRUbxh0KnoaAIiKYwqVhTGFICEimMKmIxUbCkBCRUTjmpyKhcUhkDComFTuKiYUAVZKgNWJKgIpgNUfNWuRWUv3q2CKXUCLHNGKU9aKAGEVjaiP3n/Aj/AErbrH1EfvB9T/SqjuJmdt+agD5hT8c0AcirJIyvNc54njzfwYBz5I7e5rpsc16D4a0nTp/Dpubq0gmmafYDKueMCsK8+SNyouzueBCBz/C34CnCzmP/ACzlP/ATX03aaXamRMabbqsP3cRDk89asnRYmtGeVEjUneVCj5QOg/lXLGrKWyNec+X10q7kYBLWdi3QBDzT/wCwtQY4FhcE8/wGvpy50qGJ4pogCVYF88YHB7ew/WsrVpmju7NYYVJlzGCOo3E8+5xV+0t8W5PPofPcPhnVrliIdMuHIGThDVkeCtfcvjSZvkGWyvSveIYW0+CdbhYHJiCxqGwWJJ+Y/TBrJsHmkacO2IIc7sjKsSeCf89BQ6rTSFzmqi1Mq0irxUqiu0gQLTwOKUCnY4oAbijFOxRigBlJinmkxQAzFIRT8UhoAjPSmEVIRTSKBkZFNIqUimEc0gISKYRUzCmEUAQsOKjYdanYVGRSAgIqNhU7ComFICIjioWFTmonHNAFdhUTCp2qFxSGVZBVc1ZkFV260wGL98Vd1d5I9OkaJyjjGGHaqQ/1gq7rIzpcn+8P51L2GjjZ9YEUzRTauyyIcMMHg1MXjmsXu/7Vd41YKQpycn8a5PVvl1O5JI/1rHA+taUUPkaYsJbBba7L755/w/Cs7JI05dbHd6EjJZMhYviRhk96j1D/AFg+rfzqzoqn7G3H/LRv51DqC4lH1b+dbQ2MpGdjmgD5qkC80Bea0IIx1r03whbyz6FsGWjVywXHQgj+lebBfmr1bwmzQ+HIwoY4LyFTwDz6/hWFdJrUDchaYRqzKsUbSfMoGWbmqdzdLcGWIKOW2FTnAyMfjg5/OrH2kIA0iPFGwDSO3UE5wB/jWU6zaod0UhtYHciNgeSe5xjrxXFKVkop6sZFo4mlurkMrgqrFtxJAwMAYP41duoLdpLW+urvascn7pAcA44x/wDXqxaQRQQTFZmiPKtLJxk9N36Vi289zd6ddSXN0snkpJxgEdhkY9SPy+tVTSSjfzEZs0i2/iOaW5kCxwy7FypZUIPy5HcHmufu552N4ismZZB8uCCfYDt2/StG61tZNWkjeCOSIsZShXOZMHaSc/7X6VnyX5t44omtgJUJdm7knGBnsBirbTsI7RVqUCkUVIBXcUIBS4pcUYoATFJin4pKAG4pMU6kIoAbimmn4ppFADDTTTyKaaBjMU3FSU00gImFMIqRqYaAIiKYwqU1G3ekBCRUTVM1RtSAhIqFutTmoWoGQtULip2qF+hpAVZKrNVmSqzUwGL/AKwVf1cf8S2T2IP61QT/AFg+tXtZONOk+o/nUsa3PNDp51Hxe8DZ8tp2Z/8AdByf8PxqW+/11xhhiOTqDwcnt9K17NIEj1i8jkDzl2TOMBRnlR69ua5iaXAIC/KJMZ6gD1qNzZPRs9V0bAsR/vt/Oq9+AZBn1b/0I1a0gYsR/vN/Oqt9/rR+P/oRrWnsjnkUtozShRmlHX8KO5rQkYBh8V6bpEoHha1HQBn3EnGCDuB/z615oB8wr0XQ4Ptujx2pyE/Lcx7f0rkxc3GKt1A1Irm6nlfztsivHvEZ+6QfUfQVFZ2ebZOgEQJxnoxyfyBNWLa2NmpUEqgJC45Prg/4VIXltdOubhQFYISu4def8/nXmtOcteg1sUbu/SDS5IL5jHJNlYlIDHaoABPpnH61grdrDBKI4g/mrsHHUknGB68VvS29u0WmtPCT5knyh+QikHGfUZNZcGnPJqLtBIBDAfMjkxhTtAOSP89a6ZQk7P8ArUW5zy2D/NcGKTDMyrjjH+f8abPaR3UokBcFnx877v171vW/2p5GEUbGXczZI+Vc8Aj9aryWslopt2OGdwS23p0459OazXNYLHRqOKeBSL0p2K9cYYpKdijFACUlOxSGgBppKdSUANNIadTTQAw0008000ANphqQ0w0hkZphp560w0gIzTGqQ1G1AER6VE1TN0qF6QETVA3Wp2NV2NAyNqiens3NVLp2VkCsRnOahuw0hsneqhdS7IGG5cEj0zVtRu6kmkaCMEsEG4gZPrS5w5Smh/er9av6xj+z5PqP51V8oBsjIIov5mbTJS5yQ4H8qOdPQLHnr3kn2ia3J2wp5g2qMZJOcn68VBHCJIHkCYEboxI75NXbqARXMjbTiQttPrgnNU487epzkcVKe50dj1PRju09T3LN/Oqt7zKPx/8AQjVnReNMiPqSf1qrecyL9D/M1tT2OWRWApB1NKO9A71oSKg+cfWvS9Atv+JfBKsmAVAI689f6V5tEP3i/UV6VpVwsGiRPvxsALY5J9sd+tceLV0gRuG2+0KC28OGydpHI7GoLi5afUPsgVha7WWSTA2sccjNSNNM8SSQr1wef1zisaQO13KGunkYSgKgGNznBPH071yym1rFf8EbGavqH2q7WwjaNFkUA/L93Hfd7c8VdRZobCcBNspyp2ZwinnOOcduKzp7Xz7yWVeFSQgPnIxxmkudSmSCdVkwRhH2nsR1/wDHacKkru4LQfDJNYybZCyMRj7+A2ec/hVaW7LXY+3bp1AwQxPQ85GKjEiuY3EeBtwQ3r6j8aqzMXuMhyG6Gs1JxdosEzpFp4pq1janfXsF6YonRY9oI45r1pS5UNam5ijFc0l3fMfmuDz2H/6qnjeZj80rGo9p5Fcpb1q7vLO3hksolkYzKsit/dPXuPz7elaBZf7w/OsiWFbiIJI74Bz8pxzUkgJ53Nz70vaMOU0DIg/iH500zxf89E/Osp4+PvN+dU5YVK4+bA7bjR7Rhyo6LIYZBBB7ig1S0gAacqAYCswx+Of61dNap3VyBpphp5phpgIaYetPNMPWkAw0w09qYaQyM0w080w0ARN0qFqlaoHNAETmq7damaoHPNICJzzVO6P7xPoasueaqXBzKn0rOpsWh8fQCnt0xTEp79KzQ2Q9TVXUeNOk/wCui/0q0OpqpqR/4l8n/XRacdwOYt5RNazW9ypJaRgG7g7jyKyriQQXPk7AzMwG7GP0rXtILmPUp8xFkaXerdup/pT9Q0ZprwzxrnEisV6ZHtRbXU1vbY7HRTnTIh9f5mqtwf3i/T/GptGb/iWwn6/zNVbk5kVh/dFb09jmkMHegd6FORmgd60IJIRmVfqK9Ct3+z2VpiPbviGS38xXntv/AK5frXoIuIhZwJN8+xAAq5DAY61y4m1lcC7Za2sjiAoShG1WxjJ9P/r1a1FIVhS5ljO9DhNo6sRjBP0qrZ2sd1GbpXRGDYEeOOOe/rgVbuYf7SsWj83yo2OWbBOGzjFcilfQtXsc79ski047mby/M4BXqSOo/Co5rxJ0juAcDbsZSR1xgfkP51JNGLeQ2cjYIlI6468fypkMMKGWFR5qMCqAKchiR/hSatoSxbWyM9uW3ENuLAbcZHYg/Wi6gMTswGG289/mpsF60UCQLvZg+4jB+XtUzzQtkB9zFd+3OCP8azkncE+hsrWJrK4vVb1QfzNba1j62P38J9VI/WvWqbFoop9atxn5/wAapoeoqyhwVrEopDxb4bx/yMGldf8An9j/APiq0ra8tr61W5tLiK5gfO2WFw6tg4OCODyCPwr5rvLbTNPSLTW0priaTTUujeRu5lEjwiUYXds2LkBsqTgMc9Me0/C0j/hXGkj/AK7f+jnrSUbISdzrH5qtJ0NWDwTVd6zKLmkN/o8q+kn9BV81m6QcG4X3U/z/AMK0ia3jsjNjTTTTjTDVCEJphPNPph60gGNTDTmNRsaQxGNRmlY0xmNAEbVA9TN0qBzSAibpVd6nY1Xc0AV5DzVSc/vkHtVp+tV5olYhjnI7g4qZK6sUmOSns3FUmZ0PyyMPyqql+80skQdh5fGSo55NRyND5kaGeaSS0jvbeSGQsFLA/KcdqqxeZJIqmZ8E47f4VqRwiEFQzNk5JY5ojBpibMr+wLYdJJR/wKmnw/Gek8o/GoPGV7e6foD3FjKYnEih3A5CnPT8cV5hJruryHL6ndn/ALakVryJ9BXZ7TZW32O1SHcWCdyPes2SVTKqZBO0d/avHpb26lOZLqd/96QmptLunttVtp95G2QZOe2cGqSsS2etrlSfQ0/sTVcOcHvQH4qiS7aj98v1r0WGK1+xKxnUTYwR5YPPGB0rzayObhfrXo8KNDCxdQoZcb8ZwSR+tceKb0sBueX5MSx28hClh8oUcc4JNK6pHKFM5+TGSoHAPXtTpAUtUCYSVnXavQ4zwD+tFyotbFEZ0Rmk+duoAwc/pkVlSi92Uc/rCp9vgMsSmGR87sjOO/Tjniqsl09ticLF5jNgkH5fu1f1Nd7wRI5O9wfM4J+6f5Vn31ioeOJAWdULSKT7dahyd0mSyKOMNdW5C4WUAb2Yrz15puo7IFn+QBlQncD6An0qpLI8kYYsSBwD9Bil1ecHRrp9uGWCQk5/2cfzNOz0BbnVLWVrg/1B+o/lWqtZmt/6mI/7R/lXfPY0Rlr2qdDng1XU9KW4vILCF7m5fZCmNzYJxkgdB7msb21ZpGMpyUYq7Z4qvg/4ijThYLp6eSIjCG8y28wRk5KCTO8Lyflzjk+teseA9LvdE8Fafp2oQ+Tdw+Zvj3K2MyMw5UkdCO9X9N1mC/uDb+Tc29wqb/KuIijFMgbvTGTjr2rVY5XFVz860HUoToy5aisyJzjtULnIqZwB1qF/6VJBJpZxdTL6oD+R/wDr1qk1j6c2NQx6xkfqK1ya2h8JD3EPWmGnE0w1QhM0xqXNIaBkRyc59aa3SnsajJpANOKjY05jUbGgBjmoHNSuagY0gInNVpDzU7mqshoAYxxzVeRuOtSO/FVnbigCvcTJFG0jnCqMk1g2d6gvPnUoJAeT3JORn+VTa1MWmjt8/KF3kep7VlXCOIgXQgMMqSOv0pMDrrY/vk/3hWsx5Nc5o0xmji3NllbaT64rZS9t5p3hjkBkQnIwe3XB74ouBQ8Tw/afDOoR4yREXH1U5/pXjGeK93mjE8EkR5EiFT+IxXhTIUkZCOVODVoTGGgEilxRimI9U025+16Zbz9d6KT9cc/rVsHisDwnMZNCRSf9W7L/AF/rW6D8tMC7pw3XaD3r1WKIzQSFGLgMmGGMAgj868t0dDJqMKDqWA/UV6grSWsuxJGECuCw98jtXDi9GgNDULnypg+AVQg59e39az7u4a7WBiCUG4lmGQTjpj8KuSKpSKSNifMbOHwSCAfmNU7maFpEgib5Y/mZyfvetc93du4FFYz9rt9zHYpZuR90Y5FRy2qy/vlEjE5aUdMKMDP61YuSHvI/LJwVYqParNtLBHHL5jAMYyOvUEjtVQV2gsY9zaCGyt9xA8wsw47DgVm+I41tvDc8kcmS8RUr3HI/xraFwWmTIjKxrgZGAQT/APrrH8aNH/Yt66YCkKgGf9oc1UW+ZJglqdSDWfrXNoh9H/oavA1R1g5sh7OK757FIx1qtqtjLfWsXkMguIJ0ni8wkKWU/wAWOcYJ6VYSp0IrnaUlZnRRqypTVSO6M21t9Q1DVra/vrRLNLRHEcQmDszMACSQMbcZ98iugxx171Ch96lBzwacY8pVeu6zWiSSskr2Su31be7fUa2D+FV36VMxxmoG6UGAlm23UovfcP0NbRrnraTdqtvHGC7Bstt/hGDya6E1tT2IY0mmGnGmE1QhDTSaCaYxoGNY81EzYqO6uoraMyTSBF9T3rDuvEPyn7LFu/2m/wABQBts4GT2qjcarZQZ33EefRTuP5CuZnvLm7k/fTuwPQDhfyqu0CtwVAcc/Wiwjof7ds3bCmTH97bxUc+sWsZwGLsey1gbSCOPn9+9IU3JjrgfpRYDSk1t+dtvgepOcfWqzatKX5jTH4iq6rs4zkds/wAqYQFyhGVPT2osBopdJNHkEKe6k0jNxWHcywRPh5kXHZmANUp9d022iYG+BbIAEZLED8KLALrzFNThx0aP+RNUJ2cqu5jtXt6Vnan4mjuSvkQF2XIWSbsD6AVU0ieS71MxzyM3moR16Ec0rAdvoU6x2azyMFXzCxJ6AD/9VXIby1TTdNImTzVaNiMjPzcNn8zmsk2Pm2CWiu6LH8wYdTz3qs2gusWxLt8ngBlzz69azal0LVrHdBh1BFeK6vF5GtXsX92dx+pr1Oyu4rS1htysnyKBuJyT715t4nC/8JLfFCCrOGH4gGtIksySOfakpTSfSqJO08GyZ0+4T0lz+Y/+tXTgjaK4/wAFyc3kfb5W/nXXfwihAamjKz38aofnLALz3zxXfA6nbP8Av9sylwzEHOT9RzXBaISL5WHUEEfnXodlm6ktWfB+bkE4C4ySa48Tva1wJpNShldWCOgHY844PH51WutwlVgVKspcbe2f/wBdQ3EISITFlG9jtA6n3quPNeMbh8ijHpxxWLhbVAy3KQJ0YMcGM4yMHtUY2NIFfJJXkg1CrKZiyhjtjw27GAc+vepoZVabaoAPU/kaqzsNFYPtkLId8afeB4yKxfGU4/sF9vCs6ZyPqf6Vu7wsrGNFYMckDp14xXP+Mwo0RcrgNIMgdsBqqKu0M7cGoL22N3amJXCNkEEjIqYU7NdzVwMD+z76JuYFcDvG4/rQsVwPvWsw/wCA5roM0hNR7NDuY6CXp9mn/wC+KoWOu2upXjWtnHM8ygth12A4ODgnrXSs21GPoCa870bUI4tV01lzvaQxyccAMcD+dLkVw5jsDaX0h6W8Q92Ln+QqVdGRwDc3Esv+yvyL+nP61fpS3GKpQQm2RwwW9omyCJUX/ZHX6+tDHJzSk0xjVCEJqNjUF3ewWce+aQKOw6k/QVz134llfK2sIUdnk5/SkB0bPWbqGpx2iYDK0p+6uf51yb6hc3chNxLIrA/dDHH5UEbgVP3uoamBLdGS+fzjP5p5JX0HsKgK7du0YU/rTUUqdwJUjg44q7GvnKY2+8fmX60AU0HJJ4GcEehqVlVlGfvGnPHkZHUjH49qiVgcMOQBn8D/AJ/SgBjYwBnkf0pNvUj64/nUsy4ZXAB29acoBXIx7e9AFThcr1HSon5Rs/eHWp2QhiMf/q/ziq1wSMvjtzjvQBwHiayMWoNeAHZN972b/wCvWLxXe6taC6t2iPzF1IB/2u1cC2QMEYPemAtWdPuBbX8E2cBXGfp0NUt2B1pVcE80gPW1weBjlc/5/OpRyu7PRSax/D18L3S45GI3oBG34Y/oK2DkEgDg4/nQBFLHv34JBPTHcV5xrd0l1qLyhMMcr/3ySv8ASvTSQEZieFU/zry68jDaes5H7xiefq7Gk3YDP3Z704LnnIqHnuKcpzimBqaXqE2lSySRbDvABDDNbkXi6baN9tGfoxFcoHx9aXeTQI6zTb/xNevFc2Ou2Vmby+ls7O2mjy8kibDtBERUf61ACxHP51674D8Rz674DsrjUJhc6lN5gcrGFLHzGVeFAH3cV4r4f8Wado+mWtvdRNLLa6hcXTwvp8M6To6RLs8x23RH92wJUHqDzivS/hDIsPhvSnk3bN8v3cZzuf16dayq6RuM7W6mi2eVHC6sg+ZmJ+n0quJJXYbSSAoBz29PwovZ02p5U7tEy/JuUjuMj9Kba36plSBkcc45Fc6vJaiLRjjS7GDhWQFg3QHn9KVLbDMy3EQJBU5NSJfIWwQh9eB+tSm4tpCd0cQ/DGKqMbblIq/ZCgIFzAc/7Vcp44Bg0y3QzK+5m+6cgcD/ABrtMWeC2BuwQDnOM964Hxmxc2sR45P8xVLcD0odKcKYDTga6QHZpCaM00nFAjM17Vk0nTJJTzK4KRJ6sf6CvNd7pHFsIV423qR1B47/AIVq65qDanqjSZ/cxkrGPYd/xqulsCN2AajfUR2vh/xFFrMXlSYjvEHzp2b3H+FbRNeUuJLOZbu3JjmiOQRXoumaimp6bDdpxvHzD0YdRVIZdLVgap4gW3Z4bRRJKv3nP3V/xqLXNQmeQ2VuxVQP3rqeT/siuYvJksNLur9FJa2jaRoi2NwAJxnnGcdaYEzzyXdyTcMXduct/TtipEjVCykHGe/WuJufGep22nrd3PhK9htJArx3EjOqfMMghjHggjketdhpN2dS0yC5MflvJEkuzOeGUHGe/Xr7CgBWjUkKc47H1/8A1Ug3BgG+8hwSR1FLPdWyRs008cag8M7BV/WsC+8baNbg7JWuJF42xLwfxPFMR0RRUl3fwtx64pwBAynBU5B/lXnsvxEn87ENhEICeVdyWP49B+VddoXiCz1u2zC2yVfvxOfmX39x70hmx5ivG0gGAeSvp6iqrR7JMDGxsn86mUbXK9VblcetG3cNpwSDQBESohB6gencU0fLtYdD8v0p7r5e8Dp9786bGB5e09+RQAyRtyqT34yO3aqcwzH0yTU8ikF1HQNnH1qvI+FYMeRQBVtYGuJYkTAYODz7GvO9dtTYa1e2xwPLmYD6ZyK74LMHJTKg8h/Q1jar4ebU9Qa5luiGYDfxycDGaXUd9DhS1ICRXbQ+GbGIjdG0jDruNaMOiWg2lbeMH2UHFMRgeDdTMF/JZufknX5f94c/yzXe7gSvr1z9DWbHpcKOCsSgg9QoGKvx2KFehB7d80ASp8y4BzvYD9a4G6smljs7UvtaZ1y2M43O3+NehCNYAjfwBgcV57qNy/k2U0bKJFSFlKjoev51Mug0S3XgbU4MmF4bgf7LbT+RrDuNPurMZuLd0HTJHH5108XifW43AlWCVScElMfyqTxNJG+jEo6t+8U8HPrVLUTOVtLC5vSfs8DSbeGI6Cta38K30uDI0cQ9zmtDwiuLK4f1lA/If/XrorhnW2cp94LSk+WLkXRpurVjTTtdpfecdrHheDS9JW8MollaYRkbABggnP6V7B8P7W2XwlYERmNtgIKYA5AJ49zzXnWvxWH9hMyykyFtxw2STjgkdjk47dTS6L4x1LTLCC2hceXGgABrmlL2kdenzOrE4P2DjZtpq+q5Xvba77aHsLaTEExHMQB2Kde/rVe1095lEqugySCCSDXDW/xKuhgTQK30Falj8RbSNFjkhKgd6XLocvJ5HWC2aF5Mx4AbhuvGBUFzB5c+1gRkZ571mr42026dCJ1RRztPf8asnWLO7l3JcR4PQbq0hGxDVjY0+NPLlDySKpHyhOcn6Vw3i8mTUbOPngDg/Umu3s71IUxHcqwPIIauJ8QObrxNaqzbugOT9aUY2k2Poejg07NRinZ5roEPzxUF+Wj0y6kH3hC5H5Gpc02VTcQSxHo6FfzFDA8uTlRjrW1aW6yWzPvUbQPlJ5NYiK0bGM8FTzn2q9BOy5OevakiQuEEYLYBx2PNSeH9aOn6dcwiMM3nM4ycBRgVDO5mhOcAdeapWUW22mmHRpjF+Sg/400JbltllvLyRmmO5my31PPFZ+u25Tw/qjKDgWko4/3TU4lEcqELtKnkqetSzql7aTWTSOsVyhhc45VWBUnPrzTsUcBdSQ215Nqj31k9lL4fgtPKjuo5HllNlHGFMasWGyQBjuAx5friu30Cc/2BpLhMBLSIFs9RsHGK58/DXRRCJPtV6d2cYmT3/wBiu2sbKCzs7azxJ5cMaxozYJKqoAzjv1/OgZzninS5dY0dkt48SJIJEViAD2Iz9Ca85m0DVYfmawnK+qruH6V7gbeGeZhnAxn0IFKbQJGWPCqDgDsB/nFID58dGRirqVYdmGDUtneXFjdJcW0hjlQ5Vh/npXuV1pa3P7uaOJ1/ulAaybjwjo1whH9nRDP8ceVP4YoAPD2uw69Z+cp2XEfEsf8Adb1HtxWqzESB15yv5kGsLTfCUGi6it5Z3E6ZBV4WIZXHpnr+Nbu4DaOchuB7Y5oAdL83bB2mqyuRGM9QSKlkl8tjlhgH9P8AJrPefLMBnBOaYBcS7XbGMnp+dRKI5eJV3H1U1Iqgn7vX0b/61KY1PI45/ioERqkCkhNwz68ineQmTuKEe1O3Y/gJx7805SB92FuevFIYz7Mh5JU49DmmlFXmPH41IYjIMvAh/nU8duiYZAVJ/wA80ARQjOMjHHVanYARtngrg5H86Rht/iyTnGfWqlzI7/uozlmGPp70AVdXvNllclTgLEz59OD/AI1wABkhtkJOPk/9Brt9cgji8PXu4lnMJOSe/tXK6bbiYx8EhUUj64rOXQCUIT2P5VV1OMiyLbB94citq5MVpH5kn4KOrH2rEEtxdzkuDtJwkS9P/rmmhFzQo7pbT90XAZiePy/pXS2qX5I3lSP9oVzWxI1UI7GQfeZTgfQf41PHfXkX3LuUfU5/nRvsFjT8YQrH4fjOyMM1yu4oMZ+Vutaej+G7a80GxmYkO8KseAear6VanxUHstUkdoYwZgYQFYEd+nTmu10jTYLewjt4bg+TAgQFxnOOmTWUqkY+6xuUm7t6nKS+C858p4z9ciqM3g2/QZRVb2D5/mK9CeJkJVWQ4Gcg01S2cBSSBk45o5oMFOSPM5fD2owZLQyYHqmf5ZqiYLmEkEFSPqv869Y84ZPzZ9hUUnlyfeRW+ozVcsWUqsjy9LvUIfuyTAexzSjVruO5WbznMi9GYdPzr0KbTbObJa2iOe+AKov4Zt5vub09MNkfrT5fMftF1R6YDT0G41GuTgCrCjaMfrWxBGeM0ISW4qhrGr2mj2pubuQAE4RQeXPoKxdP8badeSzJMfsrRgkFzkOPb39qV9bAYevWwtdfuIVOAx8wD2bn/GoMkuBwM9CTVTxD4ih1HxDCLaFgFiKmRv4xnjjtjn86ia6CSbCczMPlQHk1N0hKLb0L9y4EbLuzxyauaTamfwbdSBTuM7Srxz8uB/IGsi+fZasTjG3Jqnb313ZadLA++NhGZo4g7N5oyM4A6H5s4NJzSdhxi3qXQyyKoxyOrCkaZ1mgigkVZJSRuYZCjGT+NYVlca85zHprOrchGXace3NSz6k6QgX1hdQfMCrjsc9aqd5R903wsqdOqpVVda9L9NHbrZ6267HQ2Blju5dPnZZCv71HC4yN2Dn860FZtzdcr1ArndN1bTopSUuyZHwHMxOTx3zxWul0puFdGV1bGCh+n/16KcZKPvDxlSnOremtNOlrvq0lt6flstAykkHhjgg5+v8A9eniYq6jcQGI98cZ/mDUAcF3AXqcY9cg/wCFSbdwQ+6/zI/rVnMWoyWZzvBLMFGeOmRQ2FkCCM4VSRtGcdv8fyqJcK4O7H73PPuP/r1ISVvdqkjcCOPY/wD16Vhh5cUudrDPIx6Y4pr28YjyeIycBQOv+NEbPIpUqGKseSOcc/8A1qwvE+uzaPo8UkUfmSvIFjDHp1J6ewpASXMZS7kDrhRgjvimNErj70ZHuMVWsdRi1PTLa/RdnmKQ6rk7WB5FTgKxwGJz6MM/rTAQQH+FU/Ag/wAqe2+NQHI/EYpRDgkEs31VTilEe7AUlOfQigBhdSeWGfTAqSJOeB06rjmpBAz8sWx64z/+ulKeQMgAnjOO47/zoAmVRgDqG4yexqC4cQqR1x/T/wDXT5rhVBH8J/8A11mTPLeOUgPAJLuegpAPmuDI/lR8swz9PegRCFiAxYtwW9acI0ghZUzk87m6k4prvuIPAAIoAx/EZx4fvMDjysHP1rAtLtLTTbaTjcUAAA5JrU8R6lbjTpIXJAlTCqOre/0rkLZnmuIkAJAwqqOcCpkgJVi1nVV1e+iuYhHYH5kcfMwyx2oMHOFR2OccKe/W3o3mXGnJIc73yHkIxxkjAx+p/D6ssPE8OiyxWYhElu15M2o5gjdpI3/dlY2bJHyb+QV5c9qk0TP9kQBSdvzYzx/EaJbAjSWyGwMX68YAqQWSH+IipolxCoPNSheR71HMxtF/SYxZ6ZqU7bmj8tEYrwVy6/4V1vhrU5ZNF3QPIkqSeW7KfvLgYrH8PaWdVs763M/lR7FJwM7jnIGPrXWw2MFlbraRwtHIsZQbzj5cdTj371z1WmrMViSeDE0juYtqkAog4J56H07/AI1n2VwFuZZH4VVLGm/aUgAjDblVTyf4iep/H/CqHmKts8sn+qAy/wDtei/if61jBOTE9whleW7dsnDjft/u56fn1/KrSknj17GsnS5WuGubh2BZ5Bn24/8Ar1qjjvXXHRBYmVcnkAewqdGAPX9Kqg85zj61IHOMH/GrA6wHAyDzVW+1O10+PzLu4WMdgTyfoOprB8Y+KP7At4oYcfaZwSp/ugd/rXnDaqt7KZJbkvK3UyHk/nWwzU8SXd14k1mU2/mfZBGIokJwc9ScfrVN9O2SS3SMjFQqggEAk456ADv0rJudRuLLUFEE3l+ZFtPAz36elZsN3PLq8cTySsQwwWbcB/hUiOlt/LtJJ5rkqRKoi87/AJ59+ByfTnmu10DTtOuLMaqMzrGW2uy4OOh4rzy81OCKWaBoFJdQS+eR/n610Om+LLbS9P0y0Uq0ckshulAOQpxt/Hv+FZqPvNs05m1Yi1DUdLF5KsomkBlZRAF2CMZ4yT1x6AYqpqn9oABrS1dECZeeMEvJ2AJ9OBjFYV5IZ7mWUyNIzMTvbq3vV7Sr660/ypkd0O3p/D+XSlFJO7KhUcXoSrol/LF5kRuJJ88Dyjgn2bPX8KdctFolhcWN5c+bfTYAhB4iGOp/w47Vo3fjLVGtvLgLem5UAA/EDr9K4yexvbu4a5mOGY5JJyx/wrSxVTETmuVi4VWZg5J/ukU0TGKTeshjx3BxVeWVYQ2WHPU/561SkmaU8ZC+p61SOc7Xw74lnuNTjspnaVJDlWb7y456/nXdl+doBzjePwxXnvgizhYPdBf35Z4wx5wNv/169B2edbdfm2nkfj/gKalcLD5c/aAAfvkN/Sppji8hf0yf0z/SoXz5lu2OhANTyquUJX7p6jr3H9aAHQnyp3wf4h/MVynxKtWPhlJkUDyrkFiPfI/rXQyuw8w/xY3DPT7mf5iovFln9u8K6hGoJJiZx9VG4fyoYHGeCLkS6PcQsxHlSIw2jsQR/wCyiunCbwA0hYd8jFcJ8Pp8anPb5x5sJwPcEN/IGvS0t5BkN8wPZqFsBVjgyuOVzxle351OqFdoYAnH3hx+n+f8LUUaZK4IXvmmT/KCp7cGgYxHQAjjB6VTmlwJFByvQfoajuJ9jYHfJJ/KmiM3K75RiPJ+XoT/AIUAVmWS8XqUgHVx1P0qxGoEUYQbUx0H0pznI24wvKgDpUTOfLQDsx7/AFoENnfEY47CuZ1vXFhj8mI7iDyR39vpUuuazsd7W2YFxjc3ZeP51yV4GdgoBZmHHck1LYytdNPdTB3LSSOeP8K07C1EcnlAgykfvHHRR/dH9TTIrZo4dqsDKPlkYfwD0HvV6yjWN8AYGKxqTsmzehSdWpGmna7S+8vtplhty1jblieSYlJP6VTZEhPlRoqIvRVGAPwrRJUAFDk9+azpyfObjvUU581zbGYX6u42bs11Vnvba77aF+E/uUqbt71XgP7pfpU+eegxVHIzsvBttvtr66MgVIQoYZx1zz+BxW/LcO+mrlUVWA2YHO3HU56Z/liuZ8NW7eQZHbETnDL/AHx6f57VtXt1uXbmsmrtsiTsZQSS7vPKTJzxxWd4kv0hYWEBG2I4bB6v/wDW6f8A6623uo9D0WW+P/H3OTHbjvnHJ/AH8yPSuNW2Ml0rz84P3f55qrezjzPccUbHhpQlhJkfelJ5+grazg5BI/lWdp6rFa4j+UbiavCTjG7NXD4UD3JASBnPHegSEg4GR9aj8zkAAcjtSGTB6ZFWhF7xz4cttasoZZGaOeEkI6+h5wR9RXh4Zl6OR7Gvo7V13ae5/ukH9a+dryHyb25hbgxzOv4BjTUrTaZbWhEZd2PMTOOhB6Vds72G3fcIkLYxuPX86zSCDxTSSOorQg09SlS6kjljVtwGG7/SrGm5ljMasFaNt4P4Vheayfdz+dAuQDk7kb1BxQM0vObJ6dc9MVNBfO8sUDbgjNtOGxkVjyXx6mbccdSMmmG5laMzKThGHzDAwT0/kaVhHWT3UFom04yBwi/54rAvtZeYlE6H+Fen4nvVBlu5rdpyr+SDy5HBP171CgyeOnc0IY9iWO5zk04A/hWnpGhXWrP+6XZCpw0rDgfT1NaGraFHZagtvAWMaxKWZuSxycmiUuVXYJXZreBjiIg9BOf1UV3VsWAkTjAb/wCJ/wAa4vwxALctGp/5aoefeu0tVIu5ATlSoOPwH+FTTd02OSsTFQYHPTBB+mRj+lWJeAD7/wBQaiKkPOnY4x+f/wBelllConPVlrVEkUiB2dDxwAf++iP61ZiBk05InAbcq7vfK4NVAu0TZ5HQZ+uaswsqxqhOHVc7foaYHjHh7dpfi9IHODFOYj+e2vbIsCEMT8px+teNeJE+wePbl14VpRKPxH+Oa9bM6mx2BcLtDL+OR/TP41KGMlnEdwyemMfQ/wD1wKpXV2MSgA53YAHc+lJNI810BEu5iAcdh9aRLdbdmZ8PP97d6HvigCFLQjbLcEFj0TsPc1IXPzZ5J4qRiGUt15yKqO5WEsep5oAdvyDg8jn9KwNe1Q29kwhJX59hf6+lW5LtpQyISFbG5h39cVVv7WGXTmSRA0bYGKmUrC3OLF1EeC2D70st15JLoFbK4znp9Kq6rZrYzkRuxXcQA3UVQEpqUk1dFbGta6kkaMgQgHqDzWhaahCZBz3HSubEgznGKnhuBG4bGaHALnYm9gK/KwB9xiqrBpWLLg5rF+3RsOCVNOju2U5Rx+H/ANakoW2HKbk7yZ0yIyQqT17irVrEJpMMQqLyzHgAD1rmo9VmXhmJHvzVq61nzdOFtCpRnP71umR6D6/0qHGWwrncaFqaXQneIYhjG2Me3r9T/hVsTmeeOJCvmSNtXd0Hck+wAJPsK5Hw7fLa2Epbge9TyaiwtG2E+feLtX/Yhzyfq5GP90e9EIJyt0RNtbs1p7ka5rAkQsbC1Xy4A3dRzuPuxyx+vtVV2BuXY/3jj86s2oWxs0jXJk6sB3NZBu1847jtOT14qK75tSonS2eRaoT0Of51YEwBxnNQ2mPscWAOVBoZADu/rVR2QiYvu6MPemeZg7ScduaZux/WmsTyQcirEd7qTKdPmyRyvBJxzXgfiKPyvEN8vTMhb8wD/WvYJLa/vTcxXUpQCUvCCM7lHHH5ivK/F0YXxC7/APPSNG/TH9Kym/fTNkdV8PdN07VPD13b31nDcBLjILryMqOh6jpVrVPhdplyGfT7mW1c9Ef94n+P61S+Fk/Oowk9VR/1Ir0fNdMdUjNrU8M1j4f+IdMDSR2ou4l53W53HH+71/SuSlMkEhjnieNx1V1II/A19QKhkbaBnNZOoWNrfW5hvLaGfaSh8xAcjGRU1JciuCV9DwjTkt7nTpVeBGZZQQ5XnBHT9Ke1tDHG+2FAeOdvSu08SeHtO0eyt57CDyftD/vFDErkDjAPTqa5K54Lj/ZrCNTnd0U1bQu3CGbwpjBOM4x/vUuieFTI6S6ipRM8QdGP+96fTrW54Y0m5vLKIurQxCUOHYdRweAevIr0KHS7WWR5iv7x2LMxPf8ApW1FNXuSzlki+yqqLEY4sAKAuAB7Vi66iteRPjJaLB/AmvUVsFjQsQSo9eKxdc8MwahZO9tDi6UHYemfr2x7+9OtFyhZBHRnD6K225ft80Z/U12KKwmRh3wD+ANcZpqSQ6lLFKNsibQynsQa7eJsxrnruI/X/wCvUYf4Rz3JbhgPNI5wB0/Co3Q+Xjr+8H5ZpNxWJhgnK/yIFPJ3rx13j+ZroRAyRScnAIUhh/n8afI486EkYLBhnHX/ACaaiki4BJGSAP8AvkVZlCmSNeMhWOcZ7UAeU/EeBbfxXFIgwrx/yY13Vm895o9uYx8ohTLEe3P865X4sW5TUbGb+95i8f8AAT/Wuj8PXTHw5aYOcqoI9eSMUluBqx+XE+yIHBwdx6kGoJjiTJ7kikJKLASM5VASPrTJZBtDMcAA8+mKAIic7T2GP5VjXd21zmGPJTkMw/i+lST3L3XyRkrDn8T2/KmxoFUkAgipbAbDCR944AHT0qLVJFS03HoHUE1YLFuAMHp0rN8RQPJoc6pksSuF79azbuCMHUNPl1S0guLfad5Y4J68nFYtxol/bLultJQuM7lGR+ldv4fjKaXarIuGAOAfrWvGSY8En2rKlUfM49i5LS55GYyO+D70m1h2r1efS7K8B8+2iYnvt5/Osa58H2EhPlSSwsemPmH610cxBwO4jrmlEh9a6S58H3seTBLFOPTO0/rWPc6TeWpPnWsiAd8ZH5000MgWdx/EanFxJs8wr8mcbsHGfSqfl88GugisYZsqYlwAWx74pSko7glczv7QmkjEIJ254ReMmut0xZZpzczYZxgnHAzjAA9gKz9Os4lUmOJQ5BAOOa6yxsFt4kB5c1nz3vYGrEiRsQSTlz39KY0a42sFfPqMirDsF+WPn1NQbST05pWEXYpsRqGzwMYxUglBwDxj3qmrY65xUqnjp+tMCR5PTkeoNMYnO7aOnPNMLkHDAfXNBJ+tMD0dwomhH8WSc+2P/rivG/HcXlavCcfwMn5Mf8a9hU771z2jQL+JOT+gFeY/EGELfwyFQR5rrz7gGoq9Gaoq/DCcp4huIc8SW7fowNesE15D4EfyfFNtgYDh1P4qa9dram7xIluXbaPYNx6sKyb5djLJ/Du2t/Q/r+tbbOqjcxAAXJJ+lc9eTm5DxQoWiz80gIGPpUzjzxaGnZnOeItOuNU0+3traPfIk/c4CjB5P6U3TPBlpaOJ7pTNPxywBRfouf510MWmowDb5w454c5q5BC6JidhNA2csw5X6/5/GijQUF5hKXMyGby7C1a4kkQwRDLFhggDtXh8vjHUW8V/215rqRJxErYUR/3MfT9ea1PHfjWXWbp9OsZm/syFyA44acjuT6Dt+dcNnnrWt7Mg+qNDvYNU023u4JA8M6B1z2z/AJ/Q1ZeIRMVHGOmOn0rzf4Qa6J9Im0mRx5ts+6IE8mNuuPo3869PkO+IPjtz9ap9wPK/ENt9k8aSyBcJcQrJkdMg4P8AIVsR7eR3DZFWvGVirwQ3yjDRNjP+y2P6gVSjbdIcYGP8KyirSZT2JeTGw9AR+n/1qSMkTHByfM6HuM//AF6iTc00xOVDAEA9vvZp/SZWHtk/iK0EWkJdSp7kYFOfcDHIePlI6e4/pUceRIFX1HP4mpgQ2FfJGcfpTEcL8WBus7CU8H7Q/HsQP8KueFWD+GrMZwcH9G/+vVf4qKr6Hpsw4Pn/AM1/+tR4VaOPw5bu5wAjHP41HUZ0Nw6RqrMQEUKcn0yKwpJ5LtChJWEMTz1bnP5VLcStcMquCERflQ9/c1GrHGDgn26UnIQgUEbVGR0z6UrDnjtSnOAFXn8qWPP8XHt3rNsLDEG3PBB96rakoNkx9WH86uMQuRjr0qpqABs85PLDiplsND7IARqOwFWIkZYwSRjtxVazYeSM/wB2raAlVGccVz0PiZc9kLlVyW4puCQOAc9PalZSMcgg9scVEF7YIzXUZiBjk529ecdaGYHAOasLanBf7qnu3GaDJHEp8pSx/vMP6UrgUZtEtL1S81rEB/fxtrHtrF7aS48xcYO1Se4/ziujeR5MFmyCaq3uNnFZVW1oXFGZpsOLyNFGRu6V0sj7QVTOT94+tc/YHZeo3PXtW3wQCPXginS2uKQ0rtP4U05zjOR70pyTwM00fK2cce1aki7Seqinhxnb/OmKTjNKSMDjn19KQC7uxIP0pCxBwaN6j2NRM3HA5+tMD0m0O6J5P+ekjN+GcD9AK4T4ixZRX9JUb8wRXc2qmG1ijJyVQA/XvXKeOoGuLLailnYLtA6khgaVVe6aLc4jw3KbfxFYv0AmUH8TivX5J1TIGGf+6DzXBaH4UXzVuLiRXmUhkiSTbg+pODXaQWbZwExI38MpHzfRhxmtKUGo6kyYyVry8ceewCgcRIMgAeo6n8qsQWyEJkBc/deIkDPpV2CEumAp3L95G6irkMSjLYLY+8CPvD/GtbEEdtAP9XIBu9QMZrgfip4mGl6Z/Yls+27vBm4Ze0X9C3T6A1q+PPGEfhezNtA6yanIuYO/lof4m/oO5we1eC6jqF1qV5JdXlxJPPIctJIck0mxldm3dOKaPekpRUjNjwzq50PxDZ6gPuxSfOPVTwf0NfTFpdpd2+5ONyBxzn6GvlAda94+HGuLf+GLdWZmntCLeXPYfwH8sD8KtaoR02p27XttcWRAYPG21vQ9VH+fSuOtJzIIn2YZ1Gc9QctkfhXdXAb7RG65KZIb6Hkf1H41wtziy1i4hAxHv81fYNuyP++t1IC1F8z5yeRn9TUisdrkcHGefwqvay7idvG1gp+mf/r1Ix2rKw7kY9+KALhYiVj1wQcf8CqYKdhf0wf0NVU+ZgCctgEn8QakhmaSXaThCrjH54oA474ntjQdOQnrcfyU1S8Psx0a1zztXCA9BnrVz4rYGm6coP8Ay1Jwe/y//XpugQhdEtD325wOtRLcDQjjbYWbkntnNOMfQ7c1IQxXGQM9qQK3Q9untWbYAYgw6HPrUckI3ZycdyKkLMr7e3r2FSLhuMkmkMqKhLdS2Pao9TjItDlcHctaAjUKRnBqHUUeezPlDc0Y3Y9R3qZbMa3M20HyMDkcD8ea0YhuKBRn5QemTVCyzOAiMyf39w+7Wm155SiO2UDAxuI61jQT1ZU2K0YUZmIUYOAepqN7lIhiFFyOMkcioXd5JMtlsds01lGMjAroMxJJGaTe5O3FBO/hc4FQnuQT780oOclh9DmmBLs2E8e9V7oZjzVjedjK34CoJuUFc9bdGkNinYr/AKYO3WtbGzB6VnWCk3jHAPB71pYPOCBWlL4SZbjTkc49waTgDuB605TjPPHYdaM5Geh960JG5z070H73GCKACCCetMYgdDye4pAKTnIII9KifHTBJ9TSgnk8AYzTWPyg5zntTA9Be8HKQlXk6DJ4Bqj5Eskvm3JmDjvGQ6j/AIDgHFCIYokLyB42O1XA/nWlAhCqwO5MgYHVfcV0pBchCR5jMqoUc4SVehPp7Gr1vGLXMcu54HORnJ2/jT2SJI5GmK/Ziv730x/e/CvPdY+K9rYZstOtlv8AyyV+0SMVVh2wOpp7CPQdT1Oy0O3+1ajdRxCPGySQ8yj0AHU15/4n+Ltui+X4dRjKykNcTJgL/ur3PufyrzLW/EOo69cifULhpGUYROixj0A7VkEmpcuw7Fq9v7i/uZLi6meaaQ5Z3OSTVTOaKKgYtFFFAC13Hwy1pdN8QtZTNiC/Tys/3ZByh/Pj8a4epbeaS3njmjYq8bBlI7EHIpp2YH1D55e1hIQ7nyn+6wBI/UY/GuR8QxqupW8vaSMqQR/wIf8As1WPCniT/hJLFbpFCypnzogfuyj5sj2OB+ZqXxRGH05J16Qyhvwz/g1Oa0Ec9HmMlkOzJGecVILmXBJXcNuMjr0/+sKYDn+BeP1qQECNR05wcisk2BbiuVkY4JVmAGDxjkVctZFBTjrx9c//AK6xpIySOcA/hj8akSVowjLIv7tgee/GMVSkBzPxOkMj6ZbjnZGzE/XaK2NLjMFhCm3ogxzTdW0uPWL0XE7sqLGqbQucbWDZz74rQjWMZCgYA/Kpk77ARjLOM9jkVIRjrwB0zUwTKliSAaSRGKj6c9qgZEIdy5DfWhEbb7npTwVj+9gHuB1pxcnkE+maAIcENksePzNL5zfwfLx1FO2kkkLxwDmgL8o6c80WAiLb1+b8eeSaiKKATgE+g4zU0iDzAOMYx0pHYED5uSMc96AIG6Bl6Z6dxTHjbo4HPT3qcoAMbOMdj0oZVjAYjI7UxFcKdvAyo9absUn/AOtUxUEen86AmMhiOe+aAIXQBc+n61Xf/VA44Iq5MyRYRiMniq8m0LhmC+gzXNX+I0hsQ2K/vZCfStEcHAPXoDVXT0G6V+cDj2NWiNzDI9xWlL4SZbjGUjkeuaaSGJ7ZHrTzjdjGM0xsg8AjA61oSMJz04A60zbjjBHrTsnOc8elJ1BHQ+tAEbMcdiPeoiR35qWTaR8wyO1VzgcDHtQB6dHFvUsijePvoejD/GoIpltpQIMtbyHO0jlR0YD8ef8A9dZ0N1JayfLK24/w7iR+tSxyXu5i0CsC4cHof8OldYjV1qzlvdB1DT45Vje4iaKNycDLDj8D0/OvnW702S0uJIZ43jmjba8bjBU+hr6Jkuo7q0aCZXRhgdP5H2PNcL8SNAM1uniO1UF1UJdx+oHAYe46H8KmSA8mni2tj061BtrVdUkh3Lzmqbx7fpUlFXHrTTUrCmEc0gEooxS9aACiiigDqfAviX/hHtejaY/6HOQkw9B2b8P5V7LqcIutIurdCGV4z5ZHIPULj8NtfOXSvVPhr4jFxCdIvbj95Gd1tvPLL3Ue4xwKtaqwmdFHo1ytuh3qZyMtHn7n1NRTQSQHbLFtI7joa6xbcSQPn92ufnK9foD6+/b61SZPtRxjbAPlUAcs3t/n86h010A5vYp4wevfpTfLwOBityfQyOUfMmeVA4/E/wCRWZNazwudyttB69RWbi0BVC/OApYL0NSqOSxGAf1pFYBsFc5PBFPcDoOcipABKOCwHHPHfNNEpOCM4Pr0qNUAIYMQxPf0pygAHr6fWgY0qSQFPfoakPyjnI9qXK7QAd2PxFNzwAVIH40AIzDOMkNx3pO/OOPQ+1IUymcAfzpEYY6dOaACXaVBzjH8qj255bkd89qcVBIOMk8EA5ND5HyjgdqAGowGSGHNGz5SBj8qaEOCvIHUCnn0ByaYDNwyAP8AIpAuSVjwc8fSlC7vlXO31p0i+UmxTk5ycDmlcAMMOzZIiSZPJIpfs9vggWye429KhVifunkcECpl3jJ3AZGaTSe4EjbQirjgDAFRbSyk88/hSNMFPytjpnIoMu3vzgUAMYKW5JH8qiYrnHGc9fSnlhIcg5JOPpUZQA4xweDimIhbGTj5R6UjcDdgDHvTnOAc/hTHfauCcf1oAZIfUn8Kr5HP86cXJz+pzUTyYU8cHtQB6BaWilVkO4ov8TdzWpK4SH93HlicbnOMCkt0LkBR8g4A7fhVpreKF1kaPzJlHyjrj8K6xFNLe8kRd7LwP4UwP15qKe1m8iSOWWJ4yDujYZDVsKrbwJd3mEZEEfp6se1TiDy1JIhhTHJ6mgLHgviHw5Not5JNbRF9OkO4FefKJ7fT0rAlhQjJJx7V9DOluQ0D3bTbzyDEGB9selcN4k+HZd/P0dVJb70X3V59M9PpmpaC55NJFlsKMVWZPmxiuyn8C+IIAzNYM2Oyup/rWBeaXe2bYuLOaM+rRkCpHcyiKSpWWmEYNIY2lFHaigAqWB3jkV42KupyrKcEGoh1q1YWc97dx29tE0krnCqoyTQB754W1p/EPh+0uiCrKvlSqOSzjjj69fxrXjV45HLJskA28H5UHQKP9rGM+lVPD2lxeHdAt7JW/eKgaRyMbCeSfqT0rRMe4r1x/CM/dH+Pqa1JEVRtIxuHoON3t9Khe2W6BXC5HV2HyqPQCnuZTLFDGoLONznHEaD/AB7D+lWEhXooIhBB5PLGiwzHutEjJP2bcp55J+UfX/61YtzY3NvL+9jO0f3QTXbQxKiAbQEXoP6/571BF5dyryyKOu0IecY9cfxfy4FRKmmBxny5wVA9P605gMlwenb1robvRoplaRRtBOBtHU+gFY9xpdzbBmZFwOvOT+NYuLQFI/fyMAY4prA8bt3I5xSsCSQF3ADgUp3MByScgcCpAYF+6N2SvUd6UspCkfdzg0pyDzlj6igt/EDz6djQMiJXcRjLe9I+7n0B7il5bAGRz+VJjd0zg8/jQA1ht3c5PSo1J3cAHaOgqYkKwyT+NPZVH3MduM0ARqeCDwcZJ7c1GSC3zKcjAFS8bvn4P86TCjjjGMA0AMjG3JOc+ppCu4HPTsBTtigEAHn170kYYEHr1yaAIs7m9OOppTk4yBnuKeV/urxmmsqjLLwcdqAIyASR8vPtSMwB44I9qFyOQflPtTJAGHJ6+vegQzzFBAP61DKw3jnj3FLIPm+9kjtUBwFI60ANcrg9vYVCxKquDxTmPJPbpioHIbHPA9aAP//Z", "path": "images/4pts_ADE_train_00011476.jpg" }
depth_point_55
images/3pts_ADE_train_00015056.jpg
ADE_train_00015056.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 87 y = 173),Point B is located at (x = 178 y = 123),Point C is located at (x = 221 y = 224).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_17><DEPTH_70><DEPTH_17><DEPTH_30><DEPTH_72><DEPTH_49><DEPTH_49><DEPTH_49><DEPTH_49><DEPTH_3><DEPTH_30><DEPTH_58><DEPTH_22><DEPTH_30><DEPTH_72><DEPTH_49><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_31><DEPTH_59><DEPTH_49><DEPTH_38><DEPTH_83><DEPTH_69><DEPTH_49><DEPTH_29><DEPTH_49><DEPTH_29><DEPTH_31><DEPTH_59><DEPTH_49><DEPTH_3><DEPTH_38><DEPTH_29><DEPTH_74><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_31><DEPTH_67><DEPTH_70><DEPTH_67><DEPTH_59><DEPTH_69><DEPTH_31><DEPTH_31><DEPTH_29><DEPTH_29><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_67><DEPTH_85><DEPTH_85><DEPTH_40><DEPTH_3><DEPTH_29><DEPTH_59><DEPTH_70><DEPTH_29><DEPTH_36><DEPTH_69><DEPTH_63><DEPTH_69><DEPTH_49><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_64><DEPTH_64><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_44><DEPTH_19><DEPTH_78><DEPTH_78><DEPTH_2><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_2><DEPTH_2><DEPTH_57><DEPTH_55><DEPTH_57><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_1><DEPTH_0><DEPTH_1><DEPTH_0><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
3
[ "A", "B", "C" ]
<DEPTH_START><DEPTH_17><DEPTH_70><DEPTH_17><DEPTH_30><DEPTH_72><DEPTH_49><DEPTH_49><DEPTH_49><DEPTH_49><DEPTH_3><DEPTH_30><DEPTH_58><DEPTH_22><DEPTH_30><DEPTH_72><DEPTH_49><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_31><DEPTH_59><DEPTH_49><DEPTH_38><DEPTH_83><DEPTH_69><DEPTH_49><DEPTH_29><DEPTH_49><DEPTH_29><DEPTH_31><DEPTH_59><DEPTH_49><DEPTH_3><DEPTH_38><DEPTH_29><DEPTH_74><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_31><DEPTH_67><DEPTH_70><DEPTH_67><DEPTH_59><DEPTH_69><DEPTH_31><DEPTH_31><DEPTH_29><DEPTH_29><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_67><DEPTH_85><DEPTH_85><DEPTH_40><DEPTH_3><DEPTH_29><DEPTH_59><DEPTH_70><DEPTH_29><DEPTH_36><DEPTH_69><DEPTH_63><DEPTH_69><DEPTH_49><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_64><DEPTH_64><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_44><DEPTH_19><DEPTH_78><DEPTH_78><DEPTH_2><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_2><DEPTH_2><DEPTH_57><DEPTH_55><DEPTH_57><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_1><DEPTH_0><DEPTH_1><DEPTH_0><DEPTH_END>
87
173
178
123
221
224
null
null
null
null
11
36
62
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD0i5ubaOCMEqUkHy88GjEX+iXEb5mfJUKOOMZB/LHNY8v2a/v2hMbrDCcFk4AUnI/H1rZFxp6xtbMx4QEtg8g8Dmu9STle5lKm4U7Jb6mzGoaNWxjIzUgUelVYkvBdKoCC2UYOeSfTBrQWJj2rOUrGfKRhRS7RUohaobhngeMBQwY4bnGBUcyKUGxwUU7aKiguUneRVyChwc1YxSbC1hu0Uu0U7FLilcLDdopdop2KMUrjsJtFG0U7FLilcBu0UjWv2ggh9u3g8U+oXlltZWIcMknKrt5GABWdVrl97Y1pJ83uj/7NU9XNZkWzy9q9EYpz3wSP6Vd+3TseCB+FULdSIVOclvmJPqST/WuGo4P4Ud0FP7THlBg8H1xVSd1ivUdwxAXt1q4CV9ap3EL3F4EiUu+zOPxq8Lb2yuTiG/ZMvya5iKOQRMck8ZHb/wDXS/20/wBqjj8r7+3nd6/h71TfTLo28a+WAQWJywHpTvsMgvIXLxALs6yDtivV5aR5nNUJ7kf6XIcfxHmmEc5PSn3R/wBIlAP8RqPGVI4+leFL4me1H4UIyHPJGB71FMq+Q/SpHwWGajn4gY84GKmNuZDl8JqaNK0lu+VUYP8ACMVfBbyWOBnmsvR7uxWB/Lu1fJBOQVx+dXft9n5Tf6QmBnJz9a9ebXM7HlQT5dRmqDMMef71ZQUcnj64rTvpUntUeFwy7sZBz2rMwQo5rzsR8Z6FD4BvBXPHsKCO4/SlC89aCnYtz3rnN7lnSf8Aj+cg/wANbneuas737NqYiEMk0kiZXYQMY+tbAvZ2YqLGTI6/OvFenSf7tHnVV+8ZdrmrxQbyXJP3jW1FdTysP9EKoTgsXFY99/x+S8H7xzWOK1ijbC6SZWZBu6Vd026S1Mu9ThsfhVNhkcCrunWqXLuHJwBnj61y0r865Trqtcj5ti//AGpHnGw5+teSfFfU477V7K3RSphiJJPfJ/8ArV65/ZVvnOWz9a8t+LWmQWdzp11FkPIroxJ7DBH8674Kpf3tjh/d293c6fS40Om2pjxt8pcbenQVZmT5YwAQMnis3w2rQ+HLFXX5/JBPP4itGVtuw4/iIrzJJJs9GF3YyYEiuLaSPc6TFC4IXG7OSMj9a0rTS3ksBczHdcSwqVXOAhxwB6VcitoZZvNES5+6CG5A9fp1pBHdWcixo3nQkk/OfmT2HqK+lUeXTqeFOtzx00RPpMd7DpX2e6kHnxkKJM53D/ORWoHO0AHPvVKyXfahzIHSQlxj0POKsQKixlUbcuT3zz3rKS1Fe+o6S5EabuqjJODzVS6vR9nMqIWZTwCv51Tg2RXU0LH7gGxD7cnk/wCeKha+TesXlLE7ndvkAAP09eKxlKNt/I6YUmpd+pM8EMmEtw0crkO4XORx/Kta2kEtujAk8YJIxk1mwXf+lRQsjxl2KlmwdwA45rStkEe9FyVzkHt6f0rS75dTCcbSJqguZXhCFUZgTg7e1WcVHJw6Z6evpUp6iH0tCg7Rnk96WkOwlLRS4pDsJUiojLlwCR0zTKrXMUjyKyIWwpzgVE3ZXtcumrytculYAeRHn3xWDbtvjLZzl2wR6bjirptZyDiPrVWHmNAMHAAPpxXHVk3a6sddOKV9bhg8A596xdbXM6DnoM8/WttiB0AB+lY2rMDdRFl3AYyp4z1ow9vaodf+GzNeGP7PHlFJ3N1H0qaGJBqNvhF6x9vYVYeaLyExbJ1PUn296kjmX7dCBBFnKc4Oeg969L5Hn/M3bgE3EvbLGotuDgmkv5nincoNx3kYzTPODPjjp06V5E7czPVinZDjEp7Cobn/AI9ZABg7fWpT8x5GKiuQfsr/AO7Ux+JDexzFpJICwDHHlv8AyNPSSY2kvzN95P606zubhBsWVwojbAB6fKaVLu6NrNmeXIZf4j717Tvc8hWOi0cs2grvyT556/Sp8dDx6VBpUjyaCDI7M3nkZJyelSchQSQfxrzMT/EPRw/wDs5xz+NNO3kg559aTbhe9N29/wCvWuZ3OhIxtWmvLfUbd7IuJdrfdGTimzX+vARMkk4Zky+F75I/limeIwTNARkdaoC2mu2tIIVLSOhAHr8zV6tBfu4nmV3+8kbdpdav/bsUbSzfZzOMqTxgmti9+W8l9261zYs57TxHatMm3fOpXnrggGulviBeycE/N/SscWvcRthfiZB1B/rUtvO8DsY+CR3+tQ7iQOe35Vd0tVa5feAcrnn8K4qeskkddTSLugGoXJyM/wDjory74qX11calp8MpBhSNmXA7k4P8hXs+yL+6n5CvNfi+sQsdLZQu/wA1xx1xgV3whJO7Zyc8XokXPDkyXPh2ylUEfuQpz6gY/pV+cfKnH8Z/lVDwxEieGLEKckxbjn1PNaEiFpEHbk/j/k15k1q7HpU3orjYoLfSmihubmXzDCcORxjuCR7nNWbS5kmE7QxkfZwY1VxySBwfxq48bOC8xYKFJCkA4Hv/AIVTtL2EvJcRSobdnO4ryd2OnsenHtX0spXPnYp72LEF9I9jJ5UAaeDCvEMgA4yQOKgt5JLO4keecLHuJKYyDxk4A7irUkgjjnuMF4zGrYEeSw/Dk1n3rRwKsohMjhi0jZ5TI7+nFZVJcqbN6UU3ZkjPK9yZFzA5IJc8gj6d+v6Vh3nlztPEsoZVkYxqoBQ59/fP51duLh5JokhRySMoS3DHHH4c1UREttyoi+ZIg2oRnJx+h/8ArV503zXXRM9OHu2fWxb0i4Z7iB3ikd85Vm4C7uD9RwP510lnAFnkmLMztwTuyMdcD9a5RvMbzIow8U4++0Z4fPGfTI71taPeraWYW9uTgvsj3+vTA7n8a64TThZHBVg+bmZub13bdw3emaqXFqZURWYnY2c+tRLdB71WVkAYZKOSDjJ5/wDrGrrBfMVWLDIPfrVbGexIucAHqKdUAUCJY0POARzx1pJrpYYSSwLbtnHTdU2AT7Rm9EW18YIDDlc98+hq1WeHLQNLJAFkTlGfBOex4q/G2+NWyDkA8dKckJC01rpICEZWJIzxT6jktfPYNv24GOlZTvb3dzSFr6iHUEGcIxx9KyLYbbZMjDdfXrk1rjT15y5yfasvBXhWG0cYIrlq8+nMdVJQ15RcAhjk81W/s8X99g7toTOR2POKsYfoW/ACpobmaKIKrjH0zUUpKMrsupFyjZFeXw7JhUSRSoJ5PFMXw/cfaI5C0eF255PbFPur66njaO2uwky9SAMiopNU1GKyLt80ig5IxjiulYpHP9VkyW7YC6lwOQxzkVE4m89CnEf8WRWbpkgu1lmeR/MlctJ83f8AlSRyXFldNEzhw5Gzc54riktWd0dEjZwxXlDgd+lJ5EtxH5aj7w4yaYADKWdwRt+6X74qTfEpG2QZ/wB/p+tC0d2S9rIbb+FIo1Be5YsVIOF45GKkXwrbKjJ58hDEE8DtUbTru5k7/wB6kM6tkeYPrmuv655HL9VLj2Eem6X5UTll8wMd3vxVUMDwMUxpkKbSQR6EU0mHOBg+4U8VzVanPK5006fJGzHs/B5Xim7x1OMemaaTEc9c9gEPNAdefkbP+4axNbE6aRa6ltmunyikgIGxzV2LSNNt5o5ovkeMEKQ/Qf5NZgdMY2v1z9w0gmyej/8AfJ5rphiXGKjY5p4fmk3c15bDT5riOeVg0kZypMnTnP8AOqOoOn219rhgQDxVPzSc4Vzj26UgLHnY/wCVRUrupG1jSnQ5He5ISOmQadCryuUjBZsdqjy3dG/CrWnzCG8y6sF2nnFZQSclc0npFtCGyut3ERx9K87+KFhdRy6dcuhWH5kyem7rXrZ1C2H8Z/75Nee/FfULaXTNPtlf960xcDHYD/64rup06cZXTOR1JtWaH+Cpmm8MWxds7dyfgDxW3LHP8pjQNgHq30qt4DghuPD9kMAhYySB3OT1rsBZwKMCMVhGg5tvzNXXULIxNxjZbR5TJuJ+Y/8AoJqoLaK1dYkhZPNkxugxgdSM+tW1Mcl005Zo9rGNR2bv/OoGlW982zb97IoBjkUAcY6+3PFexe2p5STbsSfbXOmSTQyKrBuVfgoOhBx3rIinRrwW2ox5cjcs0fRiDgZGeRzTrhDGj2cDeY+8liRnA47Z5GcfpVa2EYCWjl1uAxKrICNhI7+o61w1Juc7RPRo01CDuakttJcyR24jVoYzlZQQApx0A9O/6VlXFqxEk1uVXYRuRV5XJ7enPPFKrXVqYY5byRRCwYwgHBUZ4z37e1WY/NE7p5338LkEDJz0we/OaioudK+7Li3BuzM6zltxctummcyMVULwWB6gg9ventEWcl7iJYLgjERfnI6Anr0P8q07rTrPykExAZpGxn72c9OnA4FZFtpeLzzJ7ZtiYMYUl+nc+n9citHFpKD2M1KMpOS3Og0m8t3uo2dCsxygBJbjAx+OBWy0uFG1Rx3PG3Oay5Ps1jcWtyyIH27JHIxg+v0zk1rNMk8RC7XbJ+X0681qmtuxzzWz7kUEIihjhAzknoeeecj0rF1ODzpnkhfcoOWRiQTjqf5cVoNcFbZ4jGFm2YAB2gDvz9KwrpSJoFt3Z3A6Nzj1HP071nVmopG1KDcnc3E+aZ2kc4ePBjbtx0FX9O3pbiJwoC8R4OcrXNXl79nsQjTsA+MkHc2eox7YFbOnxs1xAVmZooosHAx83v8AhWqkpGUoOKubFZ99qL2lykIKqrJuBI75rRqKe3hkXe8McjgYG/8AlWU03GyYoNJ3aKTX1xsY71HHBAqooJVWJbdjtW4ixmIF40QkcrxxWHBk28ZPUrk+9clWLVru51UpJ3srCPtj6sQPdjTDCqF5izbducAkippmVIWLgEAc8Vc0qdbjTYpAwWI5B3cEc1EIczsaTm4xuchLa28trJduJFc5AZQw3enFV49PvgQ6RTvDIvACk5PvXcPCVuWVrkLDtyATT4r22Ryn2xGIGcbhg1sqSW7M/rD3SPN9NnuNKa4EkIUEkuuAGBzWjYazBcE+citMp+XKgECqeu3NrbapfTxtIxlf5gBwOOtczDeTSSLIQchh8yr0z60vZ81zVT2PQtOZLyVpTNuKt93HTjpWwi+Y4WNAWPHSs7SFVLUZwJCMsfXitWymRr2IZHOcflWMdZWHNuzY42U5BxHjn1pfsNwOif8Aj1ajTxI21pFB9CaT7TD/AM9V/Our2NPucvtp9jJktJooy7rwPQ1CAcHr9K2Lt1eycqwIPQj61jkH16/4VhVhGLVjalNyWorHBxggc9qa+7H408YAPJ7jpSEnnk81kzREsFnJcJvUqADjmn/2TL3ZOfeprG6hhhKO2G3E4xVj+0LbP3z+VdEIUnFXZhKdRSaSKI0mUHIaPHbNQXFq8DbW2kkZ4rVOoW4Gdxx9KztQnSeYFMkBcZIpVIUlH3dx051HL3iq3Tgjj3qS2haeYJuAyDzmoWyBkqPzqW1mFvN5iryAflziueLXMrnRJPldi6dILHPm1wXxR0bydPsL/wAwHypTHtx13DP9K73+12zjyl/OuC+KestJo9jaeUAJZ95b02jp+tdsPZX93c5X7W3vbF/wLqZsPDFnBFYyT3FxM+AvA256k9B/9au2We/I5sox/wBtv/rVxXw3uUn0W2RAcwuyNn6k/wBa9Cp0m5Xv0M6qUWtDmFtFtIFuSwaRmBl3LnnOTj3rLuRdRasb1MR3IRg8gHyugOQMZ9Aa0bKR5D9oWdZIZQRGqkMSOOSeeRShYoLyR1BaIAOAnU5zyR+Vds1bS5z05pu9rlIWm14rjy5Cr7nCM+No9Cw9cfyqg6zOYlKeVO5xHvydw7f1610kw+0KnmYS3dl+TPzA9envVO+mXy5YI9zyRqmCRhl7HNcdaEYq510akpdAFv8AadGnmcokwX505Crj+XFRLZx6lN5kUP7tmRll3ZyQvIP8vwrPieO0aRJlxayL8yKP9YPfJ7c59eKltYLizuD/AGfKdnmhlyN4AZefw6/jWsJRmkyKkXFvU0YrKbzzJdyqU3mVtzA8Z45xwQTwOlJNFBBevMiOoYf6v0IBycdO9XZJ4TGYJckSxb1YMSDjqPbn+dYky3Mflq8mUctuKNvG3PH+falW0jogoXbvcu3SWxjc3MvmRSoEWNhnGTxj25FX7aFLeAAr5aDJES87sjt/hXFq4uHRLidsxuQ0r/MT37dOK6aO5SRLIWjxOkRw7u2WB7kLznmoo1VJWiVWhZq5Hf3SuUco65TaSQA3698Z/CoYbhYopowDI2eGJGC3eluLpZphOyq2ATuYcdc8jtTYbdpSJShZcfKUOQD1B/PmuWVVurZHSoJQ1GRNGLhd8Q85Xz5bplTjpk9q1keO0kX7LIDNNLmRUGQPr9axbNhG7h9qOhCglfmHJyceuO3uDWh4eiDXk+AVMfUBhyR9K6qT5YpdzCquZ83RHV4rB1uwa4u0nUzARIC4RchsE9q1YL1JpREQVkIJwRjOPSmXepQ2k6W7pKzOM5VcgD3qqiXLZmFKTUrpFGO2nmtAQrMCvBPy5pkRYxDHIxwQetX/AO2rVVcsHVUGckDBHqOazrMkWkQ4yFHeuKooK3Kzrg5u/Mh115hgYQ4MnQBuR+NYdzJeWiGWZUMRA37R1at13VDjOGbpTbzQpLtFCXSrInzbSMgn3pRi5PQvnUV7xxP23UjE9whSSL7rCVeVFYs9zIIDJBkASE5B5HrzXpeUtbU29wm9GyZHVcfTFcmPCtu0fm2+pSosjE7DHlgO/Oa6Yw0uZOrHmaKjWjXOlJPdupViMOuMj6iqugtEt60ZZnjZwPZh71b1i1tNChs4Yrxp45TueF1wOOpqDTtHjmMV5DchVZiWAbG32qWuVNM1i1KzR1Ktb6ddSb0kEcgwGHI9qltSI5zH9qyc7lB4IHpVKETIv72UTQMMCQnBXjijRNNs9S1O4+0S3JkQgoVbgjvXPGHNoaTkoq7OjVgx9ecVK0TxAF48A8ZPer8NjCEU/MQOzVZkiSZdrjIreOHdtTklXV9NjAIBwcfhTz0AAPzfrWt9hgx908e9ZkvliZvLHyCs50nBXZpGqp6IYQCcFTUbhgOhznFSEqdwxg+hqGRtyNxgjOffisy0Gc465qWCGWeRggzj1q/Z2ltNbJIUyxGG5PXvVyOGOAMY0xnrW8MPezb0MZV0tEtTBnDxu8bA7l/wpjMCVODit97WGU5kQFu5qreQ2tvblhEN/Ree9KeHau09CoV07K2plM2B+fbpUllGs10qODtYHPaoC24tyQMcc0kc0sEo2sQxzg+grnj8SbN38LS3N9dOtwSQp/OuI+KemWy+F47pUPmxXChTnsc5/kK6X7fc44c8dTiuI+J15eSaBaRl28trgF1x1wDiu2FSDlZI5HTqJXbLnw2VYNBSQvgSyMzcdMHH9K7t9StUQkyHAGehrzj4eTSTaFNE3CxSkKPYjNdVICYGHJytYe1lCTSNfZRmk2ea6TO2kvG3nS4hXzGY4+Q8Yx6k+ldLoXi7T9SMlvdq0MsituRuFIGcDH8J4HqK85vXaVEZ3ZZVI255AB9u3Na1jaPpMRZolkvJivkHAK475/pn0rb2/ItdW+5m6XO+1ux6UjLef6m6dQ44DuNx7Aj2x/Orf2JzcObpZGO1cSAYycg9B6d/auU0iKSKaQXMcjBOSWcdABjp0HX6V2ayRGO3e3v8cHaHO4NkfmauhNVlzMmrelojF1a1VbmERlZNwfeu75cDBweOD8vXviqx1dLEywRKquQApcfLtxxn0Pb8qkv4mvWikLeWcsQYz1I569hz0NZjRws0xDQyMYRINnzE5bByPr29qx9s+Z8qsaKKatJnTafqVs0WWKFIV+ZFPHB5Yj6H86nurlb20XyECbGAI3qAAenH5ce9c9ZyXBtIhA67FDF/l+9tOfu45HIrTjt/t3mraO8eADIFJHmNx8w9D09uK6IVHUjdmU6ag9DHksxCLiJHWOORjG2/JKHgE9OnNXNLtvs9xFLbTxukasAoXBYDAZjx7Dk1bhtHaBEkVMIQs1uG5JI5IPryD7VlyedFNNDbTqC4OUzliM9ueePzrnqTVOWmhrGPMtdR0ku+7u7ZVAjjfEa8fMe/J7f4VPBqDxt5dsxQLHnCtuBPcf8A1s1UsrUvEVlJDPg7mOATzjj8qneOSOYMhjMqkZyBkKeTnHeuanNKXqdEo6WZLKkrW8jNKxljYfvk4yMH8cc06KbypoDaygsOGJwC/r17ZxUdzcWzXgJ5tlKKxBx83I6DrVdYiXSG3dgHcLuZMlVx19c/4VtN2sr3uZ2unodTYanBDA0clypnKkhfTAGc4zx3zT/7Om1C0DpfK0mPlkK5I5zg/TOK5pL6LTrpIbq3Em2Mncq/M8nc56YGfXirllr17BmKGKK4zyrBdoA4GM569K65yhyWkcsIVOe8S9eabHFZCynlaUuNoPlZyfz6Vz3hy6macqC32by/lUHIFaN3r9607LcJFETFlF25we/OeawtKujYyta2jtMhYMCV7cZFck1Fp8qOunz/AGzo764SN4pMuDvAOwZ/OtCyu7i5lmt0aNDGqgMyElgR0ODxisa3uRJFLcLayDfJg55bINaHhyVpr64didxYZyORwOKeGjedmTinaF0XLi1vpLdoB9nw425Mbce45rHXS9XgyiywHHTER5/WuzkbkBRk1AP9eSByDx712qKOByZ5J4kkc6syyqDJCwUkDAAAGePqaTEFvC5iAWRhuRu3vVvxVBDLr93ICVHnBHbHHK+n1rObLQW5kKmSPEbAfxD/ADiueW9juh8NyzLcXl5iFhugVF4RsZJrW00C1uIpra4dZcnj371hRbYZh94K0hYY7Ba17SSJRBLDtO99jNntkZ/z71KVmkVJ3i2ekwSyTQqwEg465FOUS/6xnl2gZ25XH8qZp7K9mgVwfoam34t2DfeCniutpJnnJuw2XeIJGO4YXj5s1ju56KASeprYnIe1l5/grHGNwBOMVyYjdWOvD7O4xiScAgH1/CqxlBuGU4yACR/Kp5MKe/PT2NV0ILTSAcs238uP8a5ep09CWC+a3l5YlGBbaGIGc9asTasqRoSGXJIJEjZ6cdqyZ2QrKCOR744NQSzlrAHAOJTgngHiu+gk4o462kmbE2uQ2yxZLN5oJBaRj3x6VLdXCXFnaXCEYkUt1J/nXO3fkyRWzMOAGAI6ctWtvRdHtCDhfnxke+amsvdY6PxohZvKD+2AataeA+oRO4yGPf0qjMVO8k48w8c9sVPFmWeONOTz0+lcUdGjtk7xZ1nlw4+4mPoK4/4mpD/whNwxCArJGV6dd3atSOzucDMTjgcY6Vx/xI0+8k8NRuI2CJcKX+hyP5kV3Qqtv4TidJL7Q34ebf8AhHWwvzNO+SO/TFdUw/dcccVxPw281LC93AgeaAvvxzj9K7QLmE8DpXHU+NnVT+FHic1vM6yRByZNoBJGRk9ASOnrWksg02ONrsSSlhteQPnLjHyjsMDinWMFuksi29yZxlW3bCAOfc5z9aqXlrJLcyMtrJ5zLl0T7snzcMf8a7XRUqd5HJ7ZqpZHaaC0+ow3Mk4jWIAImB1bAx755H50vmxtbK1qXhldm/fRk/KpOCntznp/Wqeg74/tAiO2RmD+WATgY5/HOa3rNYE8xs/NIoLgr3x156H0qI2hTSiU3eTuV/OLwwwyzCZI5MluQWx90cfXmqktkEnSIRyOQSQzEYA+8A2OeuatahbXU0k1yHIbOVYJ044Hv3/Ss2SeSbUIFn3Dy2ZzEG+8AMdR9entiuSVRN2SN0nuXbbU5IS5hicTQ43TIBg9uPz/AErbtNTUQJAs3lyTuWdkIJXgZ75IJPWsSWFoEYfIybAMLghRxgt75H5CoDGog3JPEkucOCu7cc4ODz2z+FLD1nHToVUpqSuzf1EXEGlQoHTy5T8z7sNt4x1/WsfT2YtBMI/LkwQZACUbkYPJ9KllvjNFLbyIjMxErfNkKox0/wA+lZ0mqyyQ7IITDCG2yMV4JAGTx0P0oryi5XCndRszYS6+zl5WaMsWG/tjHrn8aj+0pGBKtwpeUb/kJGT6e/tWbZ6gzT7fLFzF94hRgHnoTj3/AEouRbNtNkHg8sKVV3zuyRnvx6cVnC1my7q5bWeW4jJdYjGHG4nJXfg7Rjv6/jT1uI1h2CMLcbMyM/AQnPygjn/9dQx339nzy4jMzTjzCQx2o+08579uetUGRpnlCYKuysUR8HIHPI/L61tVtuiE+jCW7n1S48ggMzNjO7qOM49q77SdGs4NOR2tMuPlOZiflz/9euBggksZ2mjTMCyj5WxuGem49u2Pqa2b3WrmLfujkCMi7GIJxnsccGrpN2u9SJq+idjY1PRra5naV0BRR8jBmwOPTP4VxEFw0NmvmSCOSQ5U7eFIPXP5Vry6hJLphSS5jMkxPAQ5Jz0Pp/8AXrmQF3FVlBjA5VjgD5jx+la7q1hRTi9zrLHVyNNkd+SThcLg5Pc1s+HHd7iUw7FL7SeOAcAn+dcRbYaRJG3JsQ7eep5OBjr2rq/Dl15ayRr80mdvA6cD/wCuaujBKVzPETbjY6/zZoyWdgwHVhUKzO+4q4znkDt+dRwyRNGyq5OCQzelWGkhgZWAyuBz2H1roehyLU+Zdaivb7xNftP4q1Sza8169sbeJdzRR+WyEF28wbF/eqOFOApPtXTeAZJr7wpYXN1PJLIN7u8jFmfEjAcnn0H0Fcnqfjl/DvinWra1jvQ1v4gvrtDDe+VFLvZV2Sx7DvUeX0yMhiPeu1+HcKx/DnS5/MVSTMx3dsSOM4rKrsb0b3OmjS0S4zLCFXCgA+mOmP8APSrUbwqscMaKiifOxAPkxjj61RsV89335bBwrKc8lTyfTHrV63tPIjjjmeMPu3AFxmsFudD2Oh8P3UihYdyLGZCAAg4rej3yWhkaZWcIcEKOKzNE0aG2tVldi8hy2c1bRfJtmQE7ipDDHI61texybkk7slnM5fP7o7sDHOOKypJhuUqoYcZIrZiUNYSqYmXKEYYY7VhlGUHbnBO0gjoawrX0OmhbUV3BjZunP5f41DZtmLawBPJx6cn/AOtSuwAzu+XGCCOlQRys1vHcooEmdrjpxnHP41zHTYgubkWcyCR1UO23r04J/kKkN276Z50UqyLvBTaBnkYx0+tVtYs579kht0UzSLwAeSO+D9M/nSWmmaw1p9nubMxoHDgbgDtxjsf0rsovQ46q94kN/ObO3VG3SDerEAcYNaO43Gk2u8sSdxdyOhJqtG+oWc0UMcTpvZlwMYJIyOffFaTtLHpkP2lNszySFgSOp57U6nwsVLSSKIxtZQqgJwP51bs1EN3HIxO1WB6VRhkWMNETlid3X2qW3ZpLqOIn5nfBwegriTd9Dsa0dzp/7Rtf+ehx9DXOeNdXtv8AhGZ0j/eSu6BEKn5juB/kDV8aRMDvMqnaOAD3rD8Y6LPH4Ymm81f3RDsOpxnHGfrXcpVXujk5KS2Zj+CrkSw3mVCSG4aVljXCru6Ae3B/Kuq2kw9BjBrlvA1uiW11cBgd8gQ85OQPX8a6vooHse1cc7c7OqD91HkOk30MwW4ZAzSIqMZDhmcHJwB17da3HigVv3fyu42kk53jnt7c/nXNW2n26RtJCdsg5hLknY4xkH+QrZt/Lur2LVprsi3cEeSOD8uN2MdBjnNFSbcXyvTsRFJSu1qWYp57W2E0zMkkibdwGHAU9MdOef16VNFqzfPJKWkJQBUZhjOc8D8uKkecQW83lTxzFctIEwwHPQAdDj+VU5nguooZLeQmZnIAxjd6fyrjjNyuU2jea9j1HTUxcNFORgtjh1AOPXFVpfs159nuYpSssL7GAGCQVIyvcjdWLcSoscyq3lbAfKAXPQ7e3XoOaLW9vE05GkjIh83exWMAuNpIwfz/ACrsTco81rGduV2NhluIgbhwGjXDsGxgg4GD15yaSWPZJFKm3y3cSMiHbhsYGAOuKjtruV2S2nCkBG+dWLMQT3HryOnemSOFRCG3RrGWKE8kcDg9s/zNQoyTV+ppzJ3RBMY0VQ67Xc8sWLF+ufqP8KI8A/aJFdQxO7K5Dknn68dKY8UP2pZmV1REZwj9V7jP61oM08kNvEbmCSJI9kaKDnk55UdwM/hVVNLji7kdskH2gSby0JfcUcEBhgAnjtxU99GFjM8u3fKT8oQ49O34dKszTReXG1vAWjICMpYfd6jPGeD61nXSO7KJIZRCY8lVTGCPXj9PSudNJXWo73ZBEUMkKQztiMncpTdn0HXP/wCunzsEklVnWPJDtJEcAegP8v0ot4Ft0IiXIKbPlXBToSckd8f4VTk824jFvFKPLj/eL1G9sjOc980JrSwSvfyNnQLeKS8nlkZgEAREOc4bnvntj8jW99jtDYlXkA4w4BJJU8jA6f161w1s62UnlzOx34YrGcDJOcZ9/auutrC9vbZri0eNjt2JtByEzwOuetdcG72Ri0mtSxeQWYtImjfHlgu+xDk454J6EHseo4rhJAtm8kMjptKgsCvPrjnkV3n/AAj2qiyLSJA7KhDRo5w3Hoe9cLf3EVwpmnUvJH8m1RyQTwT39vyroXNtIhKKXuly3ltx5GxiuAdrP1Xj/GtKwEs14IreZo9y7iVfaWOQCP0rnYY2Y75XwiuW6ZO4ckDFb+mboLmGfEn8T5YBAoz+uew9quNk7kVG3GxMxmt3KC4uUUnDYkYZPr1q/GSsRia8mY7gcPKxPT61Fe3scqkkxt8vyBWHzEmsHWHml0i9FqoDyIVI27hgdccHqMj6+lVKp7rYqNFVKsYXtdpX6K/UvXnkza3I0U8T/ZWBk2MCwboFJz1zx+fvVe6ea4llgjQngKowTubIz+GO/tWPc/2Zd6nYjw/aGB4WUy74SPJAUhlckck4755zzW9azQnfbgslxIhXzCuMjpn9DxXNCfNqehjMMqDilfVbNWa6fjuv6bmsmS0xHuUKF+6CCWzwd2O/Q1cjjW4WSQhVZWBRiScdOtU0s4I5Q7g7+GjZO4A/z+dSRySrhCuEHYDkAn1/GnrfQ5tEtTZgjEVuszZUBdqsHPPGfXHWse4k88mSAuZAmHxIfmFPNwZdEnjTMZGGBPQe/T0BrjY1njd2+1IZJldkfkEZByegrRR1MGz0/QpDHJdIYnUG3Y/M5OOnqasZbcWVvlkHr36Vzfgxm8y9WS8WaT7I7FQDnt6itG3lkCu0m4xsPlYH7v1rGsmrG1HqWseVJvRuCP3ik5ByKrKok8y3eRsNIw3BtuO/H51IC7h2G1TjG3r+QqpYSMJ7uGTA/e7kJ7fIuawOgjupftFnvchTggOPm6emPpVFb0eSYZOZThQUOAF9T+X86vXqRJbRmIKBg5xx1XBx+ZrH2RNZJHFKzvu5YJjjnjH410Q2RzVPiLd1dE2sIC5TJOScHA4rYSRn0C2eTcFV3PB646/nXP7raW1t3a6I+ZsAoevHH+fWuhV1bw7YkqQGnYb+g44z9OKb2FH4kQKwjjEsuFP3iQO3p/Kpra6EU8UxBKbhz0JP9KqsrbmeMNsjOccYb659KkRFe6QozeS7gGNMZHP8+9Yeh0PzOii1wPOgNuRntvxt/SsLx54iWLwhdqLYO0zLHy2QPm6/pXQ2+iWpiy0kvzn7pI4/zisfxp4btrjwlfHzZN6KrqSQBkHv7c12QVW+rOZuj0Od8B3nn2t1GVVQrrIMcdRj+ldaGxyc8j0ri/ACwpa3WxAWjdULt3GM9Pxrs85TOemc1x1PjZ00/hPJrV4LTUp47O5lllc+a08hyrj+IEH8eeua1SDcXszxRxxKoWXy4xgEEYO4AY5zj8a4rTNdjtrcmRVbdE6sz8F2IO0n15x+VL/wlMiW9q8AzPGpWXzPmD88cdgBVSoVJKyMfaQWp3lh5Pl/NCqqZHkfanBxyRwPStUJpdtYtFLbxuzE85wFXqCPfnHtiuc8Panca1Hawqkg+aRFIxygXpk9+K1prV498isWCfNgcj6fhXFyzpu1jTSWpAyWYtTGtvI6PuHHzOOOoJI9c1Xigt7bSEe3nuWs/tg27mHdCMf7PfselSXFzdW01xC1sIAYfnCgqdvrjt+HrVB7KZJPPuSfIWYELMCq5x7cc8Dn1rohOavFkNRdmXlYM8kkivHPtHU7SVGDkAcEjrV22urBIoJCWFywJcj7oH9336dawvM8+/B1BH2yKXDLkAgA4X1696nuLRIIFwxcqDtib5QfdjjOOM1Cck7XL07GvDfQywEyeZFIPlWNFLEnoSfoOPSqrhhbxXEt0yuHMcWItpBB5LdezdqrxzH7O7gDzfulCNu0EgAfyNSTNJ/ZkSXMYZVncg7sFBtXPPryOtLmd25MdrJJE8N7cfZxFC7tETnqAAehzzz/APXqgTJI6B53ARflVCcr6Z9azzbyWU8uy4BXBIYj5eRnJ9KSyv2WbzLkNiNt25Rzzls/57VnKUr2HzLc2NRvEhfdHIzj5WYn7wOOp9fWopHmM0yRLEY/lZyOmfTP4iqi3/2q8u3TzFDYO5DyMcgkdgR27VYWaSOGT5iFDcZwT1yT78kCkrrV7hz3GXbXTfvLZNybtvy5IbI5x+RrsdI12LR9DitktVkuI48qN3zEE5+vGaw21S2islgMbtKuTG6DB4A5z2ALHtzUM2mLcaZFd211KJG+ZmBxj1GPSu2g5OVkZT5eXU3R47kWSaQ2buu359rfd68njiuYmCWtsBJC2zPDkA7TjnPcCt/TvD0Fxp5ghu5BM/zybdpXHfJ65rFmlRLForpnBA+XKZDE4OM10yuTDl6EAdZrfzImUFHDOcA5U5Gfr2/Gk1FbkskkEySSgHf82McADHb0qgJVtUDoYmk2/vEYYCAHPPc+uK6PR7L+1tPMojTyhuAdWyX4+Xg9OxB9hVLQzlqYsl5PEbeOdCDcBgOu4A54AHb3PXNKl9c27rHI0XmNt3ICMAMcHnucZ4rVsfDLalaJcJdrmXIDu2CByCOe/sKivfC6wyYa6SZYznahBIx9Pp+lXy3RHNqWdW2PIINyeah3Jg4JwoJ47EiqcV3bzFIShdm4Kg5Cj2x1NLdxxDUJZlR3Z8iNGfIPygcc88k02aKWJDImVZwFRWX5AfUe/P5j6VjobK9jYhkVVDyktHhgBwT7fjRG0sseSzmNWzudu47YFZokXSVEhlCyAhTGBnPBJyPXipbaaS5miijk+aWTIReSFOc5z/Sla+w9twj1ZoraaBZG3TSBsPjaFxwMn8Of61gwQXE002VCy7HzGx+YnHcjr35rs38LsY+ZFJZiuSCQO3A/DNQxeFo43SOS5VXHyh1Xlcg5x+GeK1UXYxuhng5Ps1/dg4YPYu2T2HHH860ILoG5G1FaPOcN2/8A181NF4Yj8PtPfQ3UkrvbNGInPGWx/h+prLjvI57pYYV5YcnPU/5FY1U9Dei1qaL3AhHyLmNTuYAZI7ZHt04ptpAEupnlkOCyoOOpCjJ/XH4VErTHyVWMhmkVlOfvEZ3A8c9MVNEqm0hUSklHO5t2BkkmuZ9jpRFqrQpp0DKowzjO4dAx/wDr1iPuEjW8QCTR7SQOeineR+ZFdXp+iNq8cSXQ2QqoEio3GR2Hf15qW08N6bqN3ePPCw2zmFDkjJGSTn8f0rppxbijkqySkzkiY2tIcnEe9xjoRgL0roo5Fk0a3tQSwSY5J4wp5xj3JNa83hrRraHMwbZkiNN5yzd/r0H5VX1exTTtEAKk7pwzKPden6dfaqnBrYmnJNopwxL5cbx5Jb+EnAAz2qhLLLazl4/4ZA3Parf2tIUVEdd2wBUONxqLz4ZhDthZz5oDjZ78iuWJ2S2sXV1+/wAeY06gbsY2Dpgc/wA6z/Fmt3h8NXIc5jkAVk2jdgkc101nptjKpP2K2RRxzycgnINQeK9Otk8K6jN9mi3Rwl1OOhHQ4rsjCd1qcnPDsee+Brlxc3QMZWMgMqgcE+pruRLthY4GRnv3rivBMyzR3n71WcFWUY28c8+9dWj+Y5QEYySzA9K5avxs6qS9w+cFikuGLIowvG0npTkR05YEA1s+DL6xin3XrIEBOQ3R+MAfrVDVpLJL+/a1YGITkR4PVRnFemnrY8zY9H8O2MuhRWkV5cbDcKzI0cw24dFOPY8jPqOldR9sMdvKr3DHHyhuRuGc9R27+9ePaDrk7XEMaj59wVGL4xz6npXoV7fJIz/Z5gYDISwVl5AHYk15eJozve51U6l1YtTvam7mR7lpCmM7JTgjrtye/tWdd2/m2UZlDlDeFVSPJ3ZjJGQO+apXGoGS7bYo2XCKyru344AJyPXb+FHiGa5tvBUc9rOfOS93K68Ywhzj8KxpU581kW2lHmZPaJHPblYp50V9v2iQqBt9Bj9Oue9RNbmSG686UwbpECs/90/x+g+gqgb2Wz0q3gurhBHJMjqIhzu6M34D+lZR1aMqqtG7uJMqxfOAM4XHftzVxjJ6jbilZnetD9mVY5JULu4DyK5Zjk5DenPf8KpT3Ie2FxJIHU3JTAJyGVc8n3xg1y8XiKC+1OKO4kMUBwjMT6Y59s4ro31HTtOWEO6FFZ2LgAb1aP5dvvkDr71lKM47ofOpK6MjxXePo2iT3MMMcksSp8rksqZcDaxBGcZ4+lcedf11LvSotQ0+zhh1HY0TqDlo2YDPDHacdAecEHGCK2PFGsWWqeH7mB5gjt5SlihIjHmLuPHXGfc1jTa9peu6hYwiGK0S01eL7KIxIWktmwhLbiQCqxQ8DaOTgV24anzUrzjqYVal5e7sdTZiS3u3Zn2lSA+xux4B/Q5rRurtImMUgJjY71YfwZ6/jxUN7cWsMsbW0BmacDencYZh274XNacWmSX0VnJcGIwSKHQoCCC3yjOeeoH61g6SfvPQpN7IrRQ/brkLGsioxGS54Rcdz25rqE1iTS9PNhMqBFTbkYOQT+Pcn9K5q98PMbiS0sgzTREAKzZ3HAzwBgdQRzzXo2geEbG48NWcd1p8L3IH7xpNy55IJDA81pRUZOyY5S5Vqjh7rWpo4pfsFxJDhQu07QW460QW4t54nnkHksgBkkA4/H8K9DuPCun2USr9gimhcgOj84PqH6r+ORSeTpsmmmN9LtwynYokhBx9RXTJPYmM472ORbw5Z3T/AGiMsYn+fMeNwb1B9KytJkv9Pnlsbe5eAMCNygBWwehHY4x+ldw+gGEQvbtCu8YHloAAPes7xBpMljJZ6i9vCYo3CSsEAARjtz9QT19zUqDXW451Yy6HF3mralb3pQSsiYLxrGBzk8t9f89aqQalqJuD595Kq5ZmziurvoHs5LO4WFBAlz5cxC54b5c/nt/yat6tbxTS5itIUOMMNg5+vFdEVfQwlJLVoxHaaEQoLlZ0usbmxljhOdvoCcflTwWm8y1dFRUCn5QTtx7fWrTQCe9s7UqFwANyJwgJLHj3BAqyYhpE2y5EYvCSAy9VB/iz7jgfjWCh95pz9tjDeW2t3Y6g7Fkzi3VgGJCkckdO/vWY2pSea7xnycf6uWM/N90d/wBOK7aaxiOmXdw1pbkhGfcVG8YFU/Dccd99pnEEJRZcqSg4QqCpxWqpq5LqnPf29q3yFdSuRg4++eMVZsdRu5ryR59QmBUF8s52g++e9dtcWqQyAeTFh/mCLGPmPtUFppmJwLiFFk35O0YVVPoKbV9ELnW9jI/tC9uLWOU3UzuT+7Bct6jP/wBajTZ3S9jVYw8pPHHXjnk9D1rvbK1EVrB5KxuAMYwAQO9W5IIcBbdVZ0bITA4OD3/Oud09zdVklscWZnW/V2CqAobaSf4uMj1HH61CJY4tsn8BdSwTt7+3f867wNEks8kuCHVGH+yOeP0NQXcaLpX2gRK0qgOOME4PT8ql0dL3H7e+ljnhdvEjtFKwXaWADFSTzjjvTtJM8WnyRT3EvnTs03JwQTzz6dq6LSHWRmnKKUlPyt15POP1qdPLkdrRgCrOzuPVRj/P4U409NxSq67HOSSHYrIzs7HIzkkDI6e2cdPSoJbmSWRk8x3ZQrH5zjBJ4yfoePeuxg2pDLdELukbK59Oij/PrUqRBY8Ku4nlmPGTQqF+ovbpdDz11cTK+HCt1Gc4+vpTvK2j7RCZN2QCwOQ34fWu8ZJdp5iQ5wMgnj9KkitFjUAkMe52gZPrT+rvuN4ldjzeykuPts6K8wZXD7Mn0/UVS8VSX3/CPXjStN1AfJOME9K9LjQQavK3Ch4geOM4OKpeJoTN4e1J3UHZbOQuOvynrVKk73uL262seT+A4yt5cy79sQjVSSfU/wCFe0ppljHGFECDiuU8FWVlJHMptIQTsc/IOcdK7bAbn8quNP3m2ZSq3SSPii0m2Wzp5jruPIHQ05onkgZkJcDkkJ0rXi8Mp91r9FwMt8tejfDuSz8Ki+k8tr5bmNVYbQdgBPOKt1oolUpM8r0do1IE0vkoTgvgnH5A107+V9nnEl9bhngMmWiBA44AI5z/AI1d/wCEf0i5Z5ZJpPmJyEwBUkGg6KtzAFEzFXDBWOd2COCKydWLZqoSS0OZt7a5jZZluUlyAwYMQcn8K3L+eST4agykl/7TkAOeo2D/ABrpfGNrpusalC5hGleVDzFboFDnOQ3Htj8qZb6dY22iaJAshuLcak87bwDvwoO0/XGKj2qbuHI7WPPb7UZpbVHl3byQOh4A7KappfLHMHeISY5IJIr0LxLoWn69rUt2lwtkrkKkKRgBAAP8Kh0fw5a6TfLererMwVlKMvHIqo1aaSE6c2zi5bizF/GzW/lx7ACsbHlvXmtjULhZ/CsswUg/2ioye2IulOv/AA/aSy7/ALb+83Z4XrWne6PE3g+C3GyPfdh2lXJLnY3JH4Y4qnVi4/Mn2ckzktOsY9TW6il2lPJY7WfbyOQfzAqCx0izj1G2ZIVDpIpBLt97II71u2WnWttE6eayylXxPjIcHaAmO3ckjOc9K1fB/hix1vXTbXV08UYQykQ8MzKCeM5wM4oVeHNyr+up1PATjR9s2tr28r23236dvnZnjKSK3h06W1fcHhl/eYwcmZ//AK9WPD3jUWqfY70O0Kx4jkBwwIAwD7cfWqk9lFqNxpcMtyzx2kbicRr8wzI5wM/Wq48PQyX8jC+Bj5KApk9eA39aicac48s/M54c8ZXideNftP7fjUB0Wfyz8w5cHaOR2PGa9pt3toraKJdwUH5ULcgZ4NfPLWPkXKobkEhIiGxhs4B69R9K9n0S1s7SOR2uZTcE7gxkZzt9P51NGEYJuIVJSla5000a3KiORH2N1KnH51Rl0vSEkaYxxKyj94dx5HuAax5dZubhL6KFykyRF4SM8j+hrz+38U3DWDQebcSzs/JZzkj25rWUrboUKfNsze1aOx8yee2mCFV3ReWSh5PqD1rAvNV1E6e9pdXZuIZ0K7z95c9mH9awJPO1G8dY7q6iiXklpGx9M5pt3aT2lnHL9qkdznMYlbJHPXmtVUgrLqQ6NR3fQ7TTbS+1XQ43mumW1I2SIgGWPTv6U2LUpo4pbS5K/a0faxHSRfUen/6q4V9SvreFFt7yaOMjcY0kI+bP1q5dahPqNlby7n3Mu2Vg5BVhwT17jbmou4yv0Hy3VjqYbhbrVHeFg1vCA0jKc9AAQD65GPrWZqV9cyXpv1VWkVdrpjh0/u++O3/16wr67NtBc/ZZ3QXdy2wo5H7tBgY9iT/47VApNtL/AGq4Kt1bzW6/nWkJJLUmVOT2OzbUJZ7AqswlR4yVJ6qMdD6irGg3FrFb3G4+QUhgJGSM4jrg44r2GeOKKSfkcAO3TvwDWnZ2d1K8sSeZJMUXYpkbn5QeeemDjH0pTqIcaUmel6TCNSZr25me3BG6NATlI+35jk109zapdwwSQ3IIDbUcdNx4Gfx4ryyz1C5srTfeO6l8Io3kbSOPWsu+8RXZmMEF/OIWG4rvxznOeKxVS70NXRstz0bRrgxSyJfy/IX2E7iMNkjBrX1Ro7GxSeyceejBsj5sjuDXjUGuS3MkqtLIrSMGyJW+8M57/TmrF5LeeWk6m4EZO3eJm54+tU5e9dk+z00Z6DZ6i93PMJdwDndx34zt/nxW9YJfXLTRzqyY4ZiexHC4/nXjWmJe/b0iW4lVywdD5rdR0P6/pXavcpaT7LWea4lbcWVZyxbjqeemampUSdrFQpSavc6vSZWtbRbIsyMGLqwHGNx5z7YxToIGGpajeCRmTy0ijGTweSfxOR+lc/d287O7famjCyNtIONqkAnPPIzVzzhHJOqynfNKkQG7ABAB6evQn61y+10Rp7PU6Bra6e5REuGJjQfITgL6fj0rRt2niUC45HPzg5riTeAXNzI105ViAB5mMkDFOiLzyPEZn24GcSY/LmqVdJ7DeHbW53LIMkD5uM7T0qqs0tvIodt0WdnqVPbNcT5nkXK26MxDMAMyHg9cZ7g4/Dmo9ThmRVkWSQbsLIVcn6flWjr+RP1bzOsuLvZr8BbJjuEaFD/dcEc/59KuvCLiWaFQDATtmzzu4+7XN6qzQWNv5gR7m1uFccY37uhrYivLXTrNUnlDTKfn28lnJ/qTW99mc9jE0bULbTNe1CwCmMvOI4sDhVHb+VdbcysNsEOTIwz/ALo9TXgMlxcv41lCzSQsb5jy5+XDE+tdtZ6hemFr15bljN1+ZuueMY7YqZ1OV2NIUnI8VV2GC48zGS2B612ngzULSxuL5ruQqrRL5aEHnrxn8BXAjVYoIiY0RiRgj1Fbfh/xtBpH24T2Zn86ILG2B8rAHqD9f0pzi2miYuxahiZpYFQvGbhgMk9ansHuYdUjaSEu0Uo+QHO4Ajj9K5+HxMimIOrBVO4Admx1q7d+MFztsYZDlQS5HfvUNSWli1a17nXa0Vv9QkL28sYjjCtFICGA57VmIsgudJ06E7QJXIDNjJ9/bpXLz+INVupBIZJlbyxGWaTlgOmc81mfaNQS7FwLl1mDblcvyD9aUId2TKpHod5qMF1Ld3MhUK6uQEDZGR1AqKK2u2kYxkxkdQecgdT/ACrDt9a1QQhTFFI3P73PzZPfrST6xqLoFSYQDBBwuc5685qdtBupHubA06/fzf3SFYvndwDkDJA/p+dTzsY/DtvahpJmknVkkKfKmFYFc+pzXOi/nmINzqczY/hAwP50yaRJIgPt8mQcjgjB9aXN0YnVh3NlRGuniOSWPzGdhtZBkAAchu2TxWt4b1nSNC1Nbq4Yowt5Im2HcSzDiuDaMuDuui/fvzTf3YCgqwC5xzT5E3c1+tSdP2fM+XtfT7jrtAnSLXGkW7gWFomPzZz3wPr61djCCOczQlS8ZkXaQC6jOWXOMge3NcSs5VuAM9BxmniSSQqQx+QcAsT+XpT5bkKS6HRS6lFcanDhZFhIjUF8fMQADXv+o6RH8stvLLEzAcI2BtA6CvnGy1M28H2VrVJYWfdh8/ITjlT26fjXvMms2zyLCtxKqKoPytgIP61aVlZImWu5Mkdvp0bpA3myycu0hwQCOcH+lcmlvpmw3KIincC2emcY/wA4rY1LWYHRrmK4O1FJWPYCGAHWvNY9duCofzMRqxKxsQB9Pb6VFSlKWprQqRVzo9bURWSx2cQhGfmwBg/j2ryrxFLMLo3RbJ3qnqCME1295eXWpRQ+bvUSZPytwADjkf1rnb/RTdRSI4cfNuQqwbLbf5VpRpuK1FXqqS0Zz1pevcWU8TqoKHzEwo/H+lP03UZWtnic8BxIAoxg4x/hVzTtAvILiTzUHlsm0NuHXj3qSx0G6g3LsjaVn5w44UGtnE5LmnPazROkM+BLFEAVHYgdPrmmpcSLnJJHpWhqtsG1O5n3nZI7NGecnJJ59KzZI0O471DdSB3pbaM1VuhpQXQghe4SUmeL95DkZG4HofY8j8au6RqFwBrN5CqsXxFnPMa7e34/yrCtrsxqV2oVbryfX1qfStRl0+CW3hKjzMlg3Q1lOHkaxlqtSPS/s4eW1u40lXfgSN8zJ2rP1uxewuI0iKtHICUbaORWnoWjTatqWpeRIBJDMMBjgEEnrW1cfD/XZ3jmM1lhQePMPH6U+W0jC90clolm9x9rlfbm3RZFIUAj5gP613VjffZk2yP50ZAYqR7d6qaf4W1CzhvRMYh5yBF2EkcMDzxTG0+SxkDSEKOhIJpTjzI1pS5S29/Hb6tJcIjSRSRlVXGNpI9+1dlotksCxyL80kqne54z06D07VyMEcFwkxIYttypCnArqIdfitbNAYy0m3gMOD+NYThNqyR0RnBXbY3xyh/4R++YgZREYcdDkCquo3ULeJ7GzjUN5WbmTK5+cjA/IBRU3jOR30PUIsjmNDj23ZrnZfMk1q5mimUPPcRxAlhlVBBbA9eF496yjG6/ryIm7Mz9SuDY6pd2yQW+yElQTCp/XFd9p0ccXhHSriO3hW6uUYu6xgE4Y4ziuG1axRbi7kMkHzS4JaZdzfhmvRdIhj/4Q7RfNHIjdVG7j7xPUVrOyi2TSvzop+WpVXlhkdgBhlGMH61IrG4iaB90bFf3cmwgMRz+BrSXzAflb5FxkMPrUco8+3ZQSh42Dtnt+tcx23LuqCLfBPt+eV7ck498Ef8AjtdAtvHcXW/aPLhb5Rjq/r+FcrrLssVyxJUxxpNHz91h1H5k11JuY7HT0dtz7YwxA5Y/5NekrNanlPfQ8KntUm+JFxbPwr6gwI9QWNeiyyLbeVZWK758A46BBnqT2HtXnUty8PxJluJ08vbflmXrj5ulei6fHPDb7xCN8p3uzv8AMWJ+lcuIdpnbR2PmiJVAyUix+NWlW2x/qIvwJGaohTjrTwWHY10NXPL5maMbWaEEWvX+7JVmGWyHLW8hGcfM+cVjjJPSpFJzkg1EoX6iub/m6ecYtiB7D/69PElo7fJE49SVP51grJIuArHBPFPFzPk/PnHHWsnSfcLm07Q7AFkCkjruYfhVGS3llLGPa2P7rg1U+2SkAFycVJHchW3FQx9xQoSQXI2R1OGUj2NIqD/6xq417G5BeLkemcUJLasP3qlTjqBV8z6oCmYehVhmlSFu+a27WfRV2mWKQnv1xWhHquhwSZW3zjpmPP8AWs5VZLaLKRziWkzHIiY+hxV2HRLmcKY0Kv3BNbknibSkIMWnq4x/EAPx61EfGjRLttbCGLjqe/5AVnz1ntEfNbqPh0RreK3ErMJWyXBXIOPrWtLqD5KxP8/HCDcax7XVJ9Z3G8dTscbQOBj0rVhmiiAj3xgg8DIHFelRi+RN7hz33LEEkxtbmIuyhHK7MDgEA/1rCbQJDwZ1477P/r1feeWK6lmRTJHIqkhXHUDFVovE1q04ikimDF9u3A45+tbWjZKRHPJPQu2ukXJsooo5VzGZPm+71xjA+tRzW729q7S+aCZDGjbuQSSAf5VDe6kZHzZmaLyJ9jqDjcSv69KqXNxeXNzFHNLKkAO+OM4zkYI/qPxqk47BeT1FgPmy/NI+1lUjLnv5f/xdWrSOIi1kfo/l7uT32Z/9CNVkhiiVcy7cADLFe20ev+wKa15bRRLCLuEKuMZcZ4x6fQUOwal7V1gW7mSPAQS5U+2f8GrOS2hDlUuonRufu8kH/J5pXvbeaRWM8b+oXcc9Pb2qnBNBZXEbvveIZBGxuQePSs5JM0i2hz26vMGtC0idM8ev5VPZ2ZubYvgkKxBwPu4qG5kFnMwWZY1B4y4GfwqLTtUMIdUlQF3ztLYyDWEk+h0RlHdlzQJTHrN6hB2Ndo5/4C2a6TVtY0jw5b6cl/eCLzUXaDGzZCI4P3Qf761VsbCOJJXtpHlkup1cqFxt4J/GsrxfaOhjubi1Wa4stPuJraKZFdXYPCpJXkNtR3fB4+TkEZqt2Y7HTeH/ABn4Y1CO602zvQ95cxgRw+RIN5VBu5K4GAp7jpVq6RC7EKvG44K+6V5V4S+0Xnj7QJXsYbOa4tZW3QoqLMNko8wIuAuQMYAGdue9etT2Fzudmk5cc4j+nv7UNWehSemo62AEcylF5MmPl9CTVnUJ0Sy1RMKAIPMRse65rHme8tj8oZgd3RB3/wCBe9ULvUdQ+ztE0DEMrAnA5U4yOvsKlwk3cpVIpWNHVdWTVbFLjb5Yms8mPtkEj/A1mWkvm6nZzcH9+Dj+8x/yKZr80UOm6aY25CurIG5wcHmuh8IaNpt7pVnqU9+kMybm8uQcE7j05rnceVFuXMznruwA1a5eQl381iTjgc9q9c0K2E/hnRYt2BsI5HvWQNA0KRy8msx+Y5LMOB19q3opLaytbGG1uFnSAn5lPalJ6a/1qhx30Lv9h4PEy9f7n/16DoQY5Mw/74qhdeNNPtH8uVirg4IwapP8R9JiIDeYx9EHNPmw97WE6lRbsz/FcTjUncofLEyRllOOiA4Irr1j+03SQHHyETXGPX+BP6/h7157rXiiPVXuFt4jEsssUitKRkFQQeBk+la+l+N4rS12zQNJM7l5ZNwG4n0H6VcsTSvqzG5xF3bs/wAVpcoxU6l6dfmr0S4iu97W9vAzSE/M204T3NcZG9ufE0usyXB3NOZ0iXAAOcgGustPGkSJh4Yzk5LK2Mk9+lctWtSnO9zeFblR81FQmx0KsSM9Oh9DQwPf5c+lOUE84GKfjH8A+ua7TgZDjPQZpfmY/dJNWHffGi4RQgIyo5OTnn1poxjOcj2oFcix3II/ClXGDgkirAiDDKgkfXrTxHzgkDPSkBCkBYEhM4GTxThHjjp64qccHhye3FO2l+WI+uKLCK+wjkZNAUip8BRyQTTc46Dn1pWC5Eqbmx0HeneUB0p+cck00vngKTjvSsFxoiGPrThF0OAT6UFyq7ipIz+AphkLE5zijlAu2bMizqnDEAj6g1vtLb3Um2O3Nw+3+E/Kp9z0Fc3ZnEj/ADfwHHtWhbarDHbQBdSlRtuWXyshT7cV0U3aJcWuptzQzLAvmyBWPC+WMhe/U9eM1WbwxFAwnnvvLAO5Rtyzd+BUcF4txIg+2yTkrnYV2j0Jxj+veqOo6vKi+XbsC5GHmZsn8KqVnqylykuo3ey3lmRVIa6WNg6g5Gxu34VlM0RtVyoKh8FR34p8UmbJLY3SCR5A77+T0Izz9acbNDGE8zeC2TswD/WptJu6J6lJbyOBsx2ik+rD+lPOuXQzsggQn0jq3HpKtxtf8TTzp0MThGCBz0ByTVJVBqSKEetXzME3qu7j5UFSRXlzN5SSTF84yOMGtOPRQ4O5Co9duKa1naaeyMBmRSCPlNKUZWu2DkjKv4Fm1CdvNOS3p0qJbJAM+ec/7taLxQOxceYrNyWOCM/SmpAgxuyfrXPKTvow533NCC2lsvDc8vnkiR43UqT8oywx+lc/qaalcXNpcWd68M9uWKSCVlZSccqRyOldOmpjyPJuPniAACoOBjPr9aRr20ONkDYPXcAMUOaVnc6aFGddtQ6d2l+Lsjj7Oy1RdaTU729M8ozulaVmkPylRyef1rba+k/57zZ/3zW3/aVkp5thj3xVe61KBioht0APZ1HX8KG+bXmMZrlk4y0aMo3zg/66X/vo02S7lkCxiRzvOOHPFaIvCf4Ifpso+2k8eTEfwIppLuQmitrks39q3CJjYCFH4AVTt7i9iyF5XPSti6Z72M+ZFCW6ht+CKqw27jjaAPXNKckPnHx3Fw2Mgr/wKrkF1dxNujuJEb/ZY1CkLFscVK0RjU81zuwuZk8uoXEzAzyNKwGAWJNMF4EGNoB9qrlDngkH600xZxhgCKlxT3C7LJ1ObG1XwPSn/bbl1yJOPTNUQmPvjHODj0pTwvyFt39KXKh3LTXd6BwTUf8AaN6o+8aq+dKOoPFGZJBlSarlXVCTMiS2MUrRB8kdcc03yXIHXHvQJFUY5Oewp4wf4c+tdRGlxJYZoJmidcOvBB7U5FkUZCgZ75pzAMxZgSTzk9akEpnZEklIRRtGF6ClqUkmyM7hgNn60m1F6/Xk0pTEhAfKg9TS7Bktvx7e9BDWowAngBiKVlB684p+0FcKCCOpY9aNrBCvmAg9cjpQFvMYI1LD5QD704Y5Gc4GTjmnlWUZD8/WmGGV8bV+nNFhDN4YfKdvHYU61h+13CwK/Ld6cIHZSNn0NHk7Oi8jqKY0RyoLaV4mJbaSDg9ahabYBtAqaSMgBguOf4qb5LOo6YPpzQDEtJt0/cjaQeK0rPw+JzGZZUVCoYbW5qrblIEZPIZ3OPnPYfSri6myRJGYjhVABx1xWkFH7Qy8umRadKJY5CQowq9epHesqXRbRTuV5GZjnG6pX1FGX5VYNmpk1GBEAMb5+nU1peA7lNtJiYb5Z5Qf9gAVA0FrBJ8k10Tj+HaMVaa5M06mZhsGTtCA/hzSm209oyY5bgOc4UAdalyT2E2U0eVH/c+fs/hy3NXRPdSxhZnY+x5qOKLZgAj6tUxKgDc35Vk5MQxmnyyAtt4x82c09YyVyTz3wRTyUxnOMetIJii43DBPpWbbYxBESMnJB9qXyWDZVcD3pftDcZxz60huNuQ3P0qbSFcaQRkHYeaDGwUb06+gxxTftKgnnHuPWpBdu4AOTgYGfSk4t7nRh8TOhfls0900mvufb+tGyNlDeuaQIR02n6mneYDndGx9O1JjdjAINUrJWMqk5VJuc3dt3fqOPGPmA9qAwJyWYEdqTa3rkj2qRE9MCkyUSJuAGCSKeS5w2D+FRkFeAKBJwM9KgZYV2UgspqUybh/F61UWUAnoc9zUqTL0JUeuaTQEbo4OV3c1Ed/UnkHpirZkTJAwfpVeZ1PIGAe2acWwABmPJ/CpEdBncapCdY2yDyPWk8/J25GKpxHc1VNsy/vODTHaAAhG2/nWcZBjgg9uRioy4JAYcHvmkoDTM/eu0Dk9uOaUK+35QaiUFlPGKduK9z+VdBmSNvRhleo/vc0oDEcHbnjrTJp2uJN7DBwBkVJLtMzFVaNeNqE9qBtLoPGcZOePSjILEHLN6elRQShpNhbyy38R6UeYNzDrg4+tFhW6ku/P5daXJC/KT+AqEMM8nb9alV1DFt27I+mKkAXJPJ79+9PV3Ctg8MPm7YpqOGO1UJbqMc0gaQ4ADflQBLuJ+bPHTrQm8HdjIA6ZNMwfvfL1xmpScjJxQAoYBcY47jbQBkE4CjtTP3auvKg/TJqQAFehPP0zSAAF4yB6g0/AUAlcEjuOtJ8h4IUe1BcMoBDbQe9AITKAElQSPbmgKuMjAB6j0o+VjhcenXmmiMM3zMBzwPWi4XHjZ2XOP4qkygUEE5PY1GseBuAJxzk8D8qcBuJG1h9e9ADGAI3Njjj607B29AeeTUnlAjGRnHFRtDKBnj6dc0rgPwrNgERp2GckD+pqIM2SM7gD2FM/eAkNjH05q3FAHhdzcIrDgITgtRcaV9iIqdpwOetRJEvzcMx9zUreYOFXofvZpMnksR9M4FMQCOMqeoPpT1iCjpgHr1qLeSflA68kD+tOSYM4DAkA4ODmkBKqZ6YxUpRRtB/EjFRo+0gEEc9uKlLmQfLxjrzUMZIIo85G4ZGadtiB+/8Ap0qKSTa3J3c0JMi4ZSQx7ipGOdVMRdRlVIB56ZqBHjdiisd2efTFW0kR25wxxjJ5OKs/ZYS25UAOOuKnmtuVdPcz2hBGRzt7jFBjXhQ/PUjFaXkRrnIHPfqKQpGFOI/l7gAUucmxRw0kaqMFU7gdKrywyckjj1FaO+LYdiEd844pDJCUOQc+uOhpqbGzDKbZAuGP1qVItythchRkmr8iIbZnWRCU9RyfpWW8gDAb+fpwa2T5kK1iUQsRnAxUZTcuSN3bIpRcgAfdJFTCdHGGOQaG2hp2MNSxOMn8qBuYYLZHpTi2ScNTmiiHzZwCc7c9BWt0iBuFHfoM5FGXJLMxbPGSc8elP8nOPmx2604QZ7jIPdqXMgE3jA4prSKQCCR796cBuzgIc9hTfL3MqhcHrkUaAL8oJIYkAfWljcmNjtT5xgZpQAzsSu0DpxTlBbYcj6kYxQA1N4GcfMP0p7bgAp6+uelStDgjJYkjnHSmeQhPDEn8aAGKWyVC5xz9KkUnGShFBKxgY3Ee1KsoAxu7ZxmgQqzPGjKCAp6rQJX+8enbbSY3KQWUk9ck0xvm+VTSGSGUno7A5z16U/z9i7TyQOTjrURKLyxUEDgGnLkR4JAVjyAM0WAXzVJGWwBxT0K7i276kVCERlyyYB9e9SPbLEzIC5wejDBpCJy4bgYPoT3oMoK45z2ANQMrBSuRj25p6MyYChiRnp2pMZZJRSMkg+gFK7sUztHtVZnbJViQcYGRj9aUtnOCSSfu/wD16mwEu4Kuc5Y0bkXhWyO+DiolyZArIckZ61IqJxtcDnt0pAPbY69efrmmHDLtHVeSCKBlm3dO1OVXB4Kn1BNAxmVVcMOOv3cCp4o4WlDSSIqkcgHkfQVUIWTjBz0HNSjahByDnjnrQ10GnbVk3yrJ+7+ZfUjBq2EJI24BPQZzVCSTYvytmPnHY5+lRrfSxnjG1u3elythdG0wURKCDycZxxmqjx4O3CqeucVBb3TSttLcsMjPQVI7kABgD6ip5WmFxDw4UAt3Jq2J3K5A4x2FZkjkJ8yDk/Kc0n2p41QhM8c5PSqcLhc1GuWCgByjdDkc1W80u2S+Bzg4qsl48zEBuMcnPWmPK28ELuXPJA71KiFySV8MdpyD3FV2kkA+U49atIqSD5gRnkcUgSEEttLqp5BJxVJgVGn3YBYgH3ojhkumxEoZ8ZC55/CnOkePmBIweOnP/wCuqzJtYdcdq1VhD3jkQFG4x+dRs5VeTn1wOlIDyPQ8c08LwWVh9KBlBAcfN0pSD2OO1MRXbJZvoKaxDAg/pViHbjnAfJpwZs8ZINMjC8qAefSrC8ADIA6jtQAwLkEZK45BFWmvJvsq26+WEbgnYN2P97rUIj3NncuDnpS/OwyVBAGPpQK9hAZAC4IFTebtwMHB6n3pmBnGMgDil3EAAAADqCO9AiQOX3DoM0wStnaDwe+aGcMMkjk9B2prMC64OQOpPFSA5QQGYupJ4ByaAwU8EcjnHUmkDI+ODjvn1oMe7145GP60DFOSgO35Txk+tITGSCAS2OABWhpdzbQx3EN7DI6SAYXGeR0Oexqj5UoyQQY+xHX8R2phbQB5ZYuSfxFJHISPlUlT044qJt7F1yNvYjvT/mC7gfn9KAJ0cg84H0FPDOzZV2dv4iap+Zs/h3N3x1qdXK5Oz5j70rAPKsvzE8g5pzMCwYyZxweKickrhiOvNNYIpwSMt+tICeNg2Nx3fU05UJzhFUj0ORUREZQKoKsOPwpyuNnHUY5qWBZXGUZtpwNoyelDnGzamMDkg9arGQuMHBI7HgmpEuWVRuGD2GO1TqA8OshO0dO2OaC+3PKg+ppUmaRwAPv4BPerOq2iWEscTzBpWG5h6CmkUotptGc7rKPmJ3fypV5kxvGSwAyajlEblirEEc5FJBcRRyKzp5ijt1Iq7CXYszCSNnSU/NypyM8jqKhwVPBB4/CrF/di7kWSNjkDJJ7fhVElywbAfnk46cU7DmknZFuOSOKSORjmMMC2PrTpLhZbgiBm8o9N1UQ5OSMkDPy+tOi3SH5QM4z1xRy3ErvQuOh3ZLYPYbu9RMG3EZbB45qxp++4cQ/KGLdWOFAp8kTB9pQbhwx3ZrK9nYLFfYEHGRuGc1Oocr6j8s0/bwqk8A9aaFAlIU5X19aTYD4gQfu8dBx0p2WVd2BgZz9aXLNjA68YJqV03MGAOOxx1rNsZUliY9BwexFVJV8oYAGcZyDmtQM7Rs2FOBjDHp9KoyHcTgbgRg8c1cWwsUdzI5LjI+lPzhckLj69KkeMfeDEHngmqhKqArZz6DvWy1EUTLnpUpYSyEgBciqu4ZGF69808EA8jtWgy4BIFAGMetOKoUxknByarpKqnJ4pBJkkj6k0CLClgTgBR2qQlwgAJyegqqk4BDdMHipEl5z/ABdqBDzMEm2EAN2JqQMDyTz34qFmQ/NIQQTyTSGXCjkk+3akBbCDypZMZRMbj6ZOBUJ2q5y3zH0HSlimY2c8SL/rCp+b2Oah2HALjvnApIbRMCFyuRjjPNDTS4ATgfzqNEVcMVIJz3pwLKSQN3NAhyyuOSxz6mhZyQD1/Tmow8q4JwSeKeynBXH1PpQBIjAEEsPXihmG7r146VEqqDt689cdqkYIu3GTk8YoAPMBLAqAw6ZpCoOQCfpmnGIZy3OSeKdkndg4z2FIQ0bQSQwyBkk9/YUEjzFHHHOKRwVYnjjqKb1YhRk+tAEhO8lRtz3NQvHLjcxHA6A1MqlV4THXqKVo/MT7wUDnnvS1AhjmX5VLYIPUHk/WpsF13KwbnmlhRo1fCp8wG4EdqYZfkAdxnOMAYo6jJgxQHHXAIPpTLmZ7iV5pW3uxLMe5pskoOQpGCO/600ygpjcM9NwFAX6CGQYB3AAHuOtNXD7uVG3HHdqhk2ume3UHpTOBg7uR71Qy1hgGGdx6g5pd5QYUH1bHeoBLtwc0glAIO4k+npTESSFckOAvHapYhhTghScYyaqgTHDA5PbNCpJu+cfU0aDNFLxVCbHG4ZzjvVqMowy7EEnPtVJIohglgCOPwqdTEMbHBJ7Z61nNJ7DlJN6Inx8pUScetRgqrFc9B196iL5BBAJP909KidtpIVty9Tmp5RF0XAKgdl59c1OskkkaZZwiYXPOB3x7VjefsPHPOeKmW9eSHGT16VLpgXJZGDb+UzzVd7h4wT1IOBz1oaXbGSAQR361SdtxKhju7iqjAY9rt5G2naD24prbHAycN1yKgLBDkc9jk01GJyTx7CteW2wEOwJAJMgg8YFNwD8qqd3rmljV7h1iXA449hSABX4JI71eg2O2YX+tABEe7G5R1NBYs2SoBPYdKD8xLIQR6UCBV3HjipMdMN8w64qPccAgcU/aR6gevrSESxhQcnANBxngn6io2AEfDUKBkKOvY0hCqzFgSCeeD0qUTFs8dO9MlieAsrggq20n0o80KMrxj9aAJW+ZfmZuPbiotpVQTJ8x9KcsjOQqjOecUjMo+YjPFAFiNAYw2ST6GnMjcjjOOuOtV1uQQMD6UryuZQd3/wBakBIdw6Hj37U4OyDG3PYYqMbCWLHIx3qSGNVUn+E+9AEgzIegJB5Bp9lMLbUIpHiVkjO5s9Cecf0qMyIkbHgNjnioDM23hjx+VLcE7O5K/nXEjM2xcktj1JOaCqmLIcBs5IA61A0zgBs5J/OiKTc3z5Bx26Uag9SZ52VQd3Pv7UjSArhDkjkk1GZAGwEBz3IoZY+u47j17UWAlW427QcDPUd6buDMHZl2dRTEf5wAgPP3jUzxoYwAo3DpTAjby0XJVsk4we1LKgCxjDAkdMfrSu4VPmG4nge1RSzzuEVmYqo2j2FKw9BZI1Aw3AxxjqagGMY2Fjn0qUbiyKUJAGCR2pHIABwM+p6mmhAtszDcUKjPXtSiIKduBnOOeuatvqcrqyHaqOoQgVXEwkA7Z6Uo8z3Q35CFJGbO7OO3SmOrbsuWI9vWnbSJDjOBTs5UHB2gjPNUIaCzbcyFQPXvU7KgI2ucnnjt7VC0W/gHke1Jgo5I52jvSaAkLupxgkEc4oZ9qcemDTGYg7skkjp1phLsOnyjp60WAafv9OMdKFypOM88j3p25VYMcYPb0pnmHLenanYZKZQBtOTmmMAfmz19O9ND9s9+eKdNEYmDB1YYzgH2o2HYicqSeMetM5wPmH408EvkN2p3kA27Sh1G1goXuc96dwSHxSQwli0ZGFKkA9c1XMu7gKAo9BU4cTwEM3zZxnsaWIIlrPuxkrihx5dSrFKQtgEfnU1uqGN2PI2nn3pkStIQF5OKsIVjdDj5U7HvTERxLk7VJJPStCJVtxbzTH5y2VUjI2+tIL1DEqv5SspyGC4NQzTeZsV03OV3KR1x71Du9GC3NMWkT3LXLhCOTtY9eO341npLG1sImgG6PpIDip5J3hgjUsGIypUdP881WMYRmdiTvQ4A+mM/gaFG+pTiWVvI2j8qf5weGwM5/H8BUk0S3EXlyIiMRv3bcAc8ge2KpWi7N8s0W9EGeR0PbP40555C+Ub+Hft7EelJw10JUQ8uGKZTFM6hf45Bjd9BVCRsOVAPXoe1XbmU3abigBjHLDv6fjVd2JIL7mOB+A6DNUr9RWHKgRAWwpOaA3Bbj3OaBIpDISQG5PuR2p6QwSxtvkKvj5FUdT7+lDfcQwhthbaQrHAPvwal3klVHGQMCn3W1LdAykyY4OcYFV2bjd1A9TS3Bi72djvOfYD8Kc0sfHyMARg89P8A61RhSRvLAfjzTxGCuEG5gO1OyAhyd+cg57VZ6IpAqAIUGWBXHXNB3ueG78CgCYuOoU4FNkYsQS4yeoNIqueWPAGAD3p7IEnImRQoxnikKxDh3PyrkZ4ANOHmAEkbcVJLJCs/lW+6SAEYcjBPHIx9aUSsz/KBkHjA6+1PYbVhqFWUEMcj170/7vAUNzUZbBXKbSW/zmnISE2MuCPXvQIe8pBPYew61E8YXDFgzN+NAPPJwwOKUOpG084pWARc7tvT1zSs/GTjjpxTHl3MNgCjODmh13qF4xnnFUFhTKeUx15OKemDw+5RimsFDLhs4FMMwO0DOM4JoAkAZmzuwo6mhjhSeST8ufWo5GBOOQKFJSPPJz+lOwDo2PlyMR8wIx9Of/rU5TnjgN1wBTN6DrkVHuIbIOD3OaQyVyGXBGFznj1qMJuOeQadhTy3J9RTmBwB27YoAQFRxtycdTzzTH3SkBR045pWJPQc0ccg8GlYYJKYpBIcEjsfpimgqoyBxShSyEswODjpSBF25x+RpoD/2Q==", "path": "images/3pts_ADE_train_00015056.jpg" }
depth_point_56
images/4pts_ADE_train_00002041.jpg
ADE_train_00002041.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 175 y = 129),Point B is located at (x = 269 y = 178),Point C is located at (x = 39 y = 133),Point D is located at (x = 93 y = 184).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_59><DEPTH_5><DEPTH_2><DEPTH_2><DEPTH_67><DEPTH_5><DEPTH_59><DEPTH_59><DEPTH_70><DEPTH_70><DEPTH_5><DEPTH_11><DEPTH_66><DEPTH_25><DEPTH_43><DEPTH_56><DEPTH_5><DEPTH_67><DEPTH_11><DEPTH_3><DEPTH_67><DEPTH_80><DEPTH_19><DEPTH_44><DEPTH_80><DEPTH_74><DEPTH_72><DEPTH_76><DEPTH_67><DEPTH_60><DEPTH_7><DEPTH_82><DEPTH_40><DEPTH_45><DEPTH_43><DEPTH_1><DEPTH_57><DEPTH_94><DEPTH_78><DEPTH_29><DEPTH_94><DEPTH_39><DEPTH_25><DEPTH_76><DEPTH_63><DEPTH_19><DEPTH_25><DEPTH_44><DEPTH_19><DEPTH_9><DEPTH_57><DEPTH_41><DEPTH_94><DEPTH_19><DEPTH_69><DEPTH_77><DEPTH_82><DEPTH_77><DEPTH_40><DEPTH_33><DEPTH_9><DEPTH_0><DEPTH_41><DEPTH_81><DEPTH_1><DEPTH_14><DEPTH_2><DEPTH_27><DEPTH_98><DEPTH_74><DEPTH_84><DEPTH_84><DEPTH_81><DEPTH_58><DEPTH_78><DEPTH_39><DEPTH_32><DEPTH_94><DEPTH_98><DEPTH_55><DEPTH_121><DEPTH_121><DEPTH_55><DEPTH_14><DEPTH_57><DEPTH_1><DEPTH_41><DEPTH_39><DEPTH_94><DEPTH_9><DEPTH_39><DEPTH_121><DEPTH_94><DEPTH_119><DEPTH_END><DEPTH_END>. Since point B has a higher pixel value on the depth map, the answer is that point B is closer to the camera.
B
long
4
[ "A", "C", "D", "B" ]
<DEPTH_START><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_59><DEPTH_5><DEPTH_2><DEPTH_2><DEPTH_67><DEPTH_5><DEPTH_59><DEPTH_59><DEPTH_70><DEPTH_70><DEPTH_5><DEPTH_11><DEPTH_66><DEPTH_25><DEPTH_43><DEPTH_56><DEPTH_5><DEPTH_67><DEPTH_11><DEPTH_3><DEPTH_67><DEPTH_80><DEPTH_19><DEPTH_44><DEPTH_80><DEPTH_74><DEPTH_72><DEPTH_76><DEPTH_67><DEPTH_60><DEPTH_7><DEPTH_82><DEPTH_40><DEPTH_45><DEPTH_43><DEPTH_1><DEPTH_57><DEPTH_94><DEPTH_78><DEPTH_29><DEPTH_94><DEPTH_39><DEPTH_25><DEPTH_76><DEPTH_63><DEPTH_19><DEPTH_25><DEPTH_44><DEPTH_19><DEPTH_9><DEPTH_57><DEPTH_41><DEPTH_94><DEPTH_19><DEPTH_69><DEPTH_77><DEPTH_82><DEPTH_77><DEPTH_40><DEPTH_33><DEPTH_9><DEPTH_0><DEPTH_41><DEPTH_81><DEPTH_1><DEPTH_14><DEPTH_2><DEPTH_27><DEPTH_98><DEPTH_74><DEPTH_84><DEPTH_84><DEPTH_81><DEPTH_58><DEPTH_78><DEPTH_39><DEPTH_32><DEPTH_94><DEPTH_98><DEPTH_55><DEPTH_121><DEPTH_121><DEPTH_55><DEPTH_14><DEPTH_57><DEPTH_1><DEPTH_41><DEPTH_39><DEPTH_94><DEPTH_9><DEPTH_39><DEPTH_121><DEPTH_94><DEPTH_119><DEPTH_END>
175
129
269
178
39
133
93
184
null
null
28
144
85
114
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDHtNs6CAbVOCxQnHvms6zBacI4G+I7VByMkc5zVaKWa4vIzGQMD756U+R3W/DRPuJVjuHPIFedGLWhgnoXY7gok0vmN8jEEFjwDTbyRglvtYkqISR+f+FVpVc2zzBX2SL8rNgBuPTt3o8+O5+xhMuxEcbBT0H+RWkUtxpmvbkX0aRFRtXBZQeh9/xzVy4lktmyrqHHzpx07daz9LZE3yclpGbH0HAqdpmlhYSD/Vnt0x1FZyd5DuRytO0aucsgX+HHJ6Y96tWrNKr5wVAwcD/PFVprlYhMYsBBFuAY8E4zUtrcBoImJCFgPlA4Uf5NRJOOqENSc3GyIqBJECh55GCOaWbfMwj8sA7duAeOKimXy9VIf5gx37gOnA/wFPmYo4LfMBwWHYdeffFaaXVupXUz0lePWTDEETO13yepHT9Kv3au9u75UlBu2/3u5+lZoTy9aJZR88Pyjqfr+X862ZMEMIwR8gXpxj/Hmqk7PQOpi29i9pcGMbpFkgZioORnj+nNRafcmOcIEULsBG/06DFXbaVrfULiOVwyorAc9RxVB5NpilCHZFGqruHAyeMn6VortNSAuSs8okjkQBtm3cvJA9P8+tRxTlrc20aFJQxYtuyWxkAZpEcG+ck74iSOOTxjJB/CorQRzXx8sKuC5ODgnnpU3shXJ5b8SRhLopGkSksmPvH0P4gVYs7tRAqrZqQBkEckjrWZebXuIZ2QsuSoJ9h1x6VrxvHDaxv5alkX5ewJJqZOyC4ySe7uElWOHAdSMj+EEY5pNJmuNIsjbyW7SDeX3Y65xWlZzCF5F8mJWlBKkNnIqxDLPOfNESYA+Vex9/yrP2mlhI5+We6n1K3usqYoGBKNwWwf51eXVQ1o0T28hXe5zjOMlhj9a0Iwksji5hXOd4B6ZHBx+lUnAa4wjHBmJIxxgsMVXtEx3MyRfOaODyyo284HIIGOQfeqttG1vO4LSRxuQCi8jHTpXU28cbSzzCHapYIpPOdvX9c/lUcRiWdYdv3Z3zj0Kkj+f6VfPZWGcjfPM2qi4iXKqmwFRjj3z1q2JWRHD7kAbbkLgn3rp5Yo5pygRQsfzfUnt+hqd4YDEF8pHYjOOBn3pSqRtZoTOSmyshbJJdt7kJjc3v6AZNOuUWeOJuWRRtKbeh9K15os3gTy1YohPI4yT+vSoAolbDkqwK8ADk5A/qRSU7NMDIvUS5+zRPE4kQANtON3Hb/PNQWNsPtV7DcR/Js8tD059v0rpLjBKlIzvYjDAA46VoRJBJiGVIw646jINN1nZoDitPtVtZfNEpSX2PqcH8q39P8AsFhqEb/aGm81ZA7YHXK46dq0NTs7dbPeFGYiJFUHqQeaiv44muLd0ACtC5yoxnO3r+dOU+Z3QWJPtaLDv3b436EA8/5zTbif/R1lAATGdrHBJHpSTeW6YVflHyqQM4PoKijuEYuj/unJ6EYBHeuaV29AbJvOQqbhSjpH86leRkDisGQEW+f4ipJPvzWpcCOO02RKFEhAwOmByf6VQvl224A4/dE/zr0cJG0L9xPYq6cCuhEEjP2g5/75roPDwysX+/8A1rA01SNFkJBBNz6f7NVp9TvNPjLW07IQ/GK64O0RNanrJjJHFcFqXGsX/wBD/SsiLxpqqQ4N03mAckgdavPM89xPNJ9+SEO31IBojJPYHGxTz88P4VMvErEcHNQnh4fwqCK6d/EMNiceXJKqk9wDTvYSV2Jay7NNdkc7hKPk9RjirsDs7W8jbG2hxtTjaeOuKq2SRpPNIHKqpBCd8HvSXEscFwXGcE5wRgZJ9q8qVnJoGbAl8qBfOh8x85+c7sDI/LrWKCbfUYTu4Cr8o4554/OtdDJcRZjhZcH7pbhhj1rNYO93Zq2ATGmAe/zGnRb1uVF6G9HiG3Em3nJUNTyHgAdyMOvp+XFO5EXlKC+FHU4zUl4+23YHBZRkDrjFZXuMp322K3YupMUikDHuMZpscarFEhwf3SjOe+KS4iE2nRSCQKVI7Zzg4qzAV8ry1b7qnDY4Ld81SegIjkkkW9jUkcoSFH071Jews9i0iHcQB05xg9KrTSqk1uW2ht5ViR0BH+NTmAm0QISu3AKdmwef61L0swuZjSEXsTuAP9H3AjkqN3FaSgkxncMvz1zgd8/jVJI9+ryBkLpHAwwo+9lsj+dJDM8cITaF2njB5AJrZ62sMjnjLSXW8IC25UYnrkCleFFsJRMY2GFWM56tgD/E0kiPL5/LbFuIlVs9QQAR+ppk1rL/AGlPGqEZkLqx/uYHP+H1qvJgyus6/Y7dVbDNKS5HBbt+Rq1bSGKedvlXJbr2IPOBUbYsbaUON4E4eNieo7VBHOrNHv8AlLk49BlvzovdOyET380ltHahiFKpkFeM+uT61p7HlgiUDKYHGMVi63JvZFLKRn5hj0P/AOqt9FBtIptwMjhQgz19Pw6ms5rRaCEjVVlQeViZzhtp4Uf0rTaXyQMElT2xVGOLyRL5Um59/wDGvJP1qWOCWVY5D8hPLAHJP49K55Jdxjnn3Bii7nL+YrEnC+o+h6VUMgSO5kRCxBRwoGSc9B+Yq+Y1BAEWZM/XtxWZfeZaXcbMuxJyFwG+6Qc/1NVFXdkBqWTSW9qkLAFtmCcd+5+uaoXU8kWpxccyoQCOMEA88+xrVRFXCqScLjJNUL6ETanZxKHOQ/QdhjP+feiMtdQJoG875wmUcYwT2AGP61ICGwCCMAA5/wA8VXY7GCIpwW6g9KmaIxjGT8wGMHqen9alrQClLA8t3MC5yHCpg/dyOp/GoUKobV51IIOTj0yD/n61YtopCpVuXlkYkluoBqnfqy220DlS2M9+5/KtoLWwy+zIqLnqFG0kdMUlkipPPHOySO5BBxgmok8wS20ShTEwJyfbFTOrQTI5WTYxwxX+H0qJxYmPuwVtmjbLhlKIc88+v6c1TDswhZOXj5AxkFSVb+mK0LhfNj4w0Z4J/Ss603tLEvl7WgLx+Z0LgHofpmiMtLgWmkHkCQ5BL5JH55qshjeNslgScgnpnH86sbfmZHBYE4JboRTEDMhiBKRhwWGOQByefSsoJydgK04xIsYGAi9Pc8mq9+pkgRF5JhwPzNPnn+SW4bvlqrNKZrCGTH3oicfi1e1BcqsJkenwyQaGyyHL/aeeeny1SGnXWoSeXBGpy+fmYAH86uWczSaI+RjbdYx/wCtbQYo22k9d/wDWrirxswe5iHwJr00jSLbwfN0xcR/41flhe3ubiGQDfHEEYA55AANd6sUeOM/ma4a8x/amornONwzTjGwm7me3+si+oq1YeGL6fXLfU0lshAsqOQ90ivgdflJzVQ/6yP8ACnYYuw3HBPam1cE7EVz5lveO5jITbwhHQdefwquA+Tcop8tW79Nx6DnrUl1FcXN0UAXeowM8bvf3prPHEqR8LIjKSxOA3PavMW3mBoabczRJmWLDMcrhuCBxjFVftAOsRGRSxViikH0J/wARUwlhMbIq75N5xt7j/CsrMn9sIyFVk3ZAJGM4pU4LmbBHZxBvN8w9Tg8HHPNMlu0N0VkiyShyAOtFrJNOitKnk5HPPf8AwpkmVdnJJwevr/nmspNXsMpvM4gcfN8rDYR2zzirWnzsQ6+WCxQc445rPuHPmMnm8SMCvy98H+lWrN5ZXCxFSP75OM4FU/huwuSXsKTCSMR5lMZwQe46H61dsiTmOaIEOgbPXnuM/rVCSeSSVcklBlGOelSWNw3mxqXOTGdoAwBg9KmTdguQxbLfWI2OdrRNHz3Ktx+lE2zfGrhgXjK5zznIOPeotRcnVLeIJu3A7cnPJA5H45p7SKYUWT/Xo5HB6cYzn39K0vazGQQZg27pAPMugcZ6Kox/SpoZpJ4LlJEw5kKqCThRjk1VF15BYOEMRuWO70wfTr6VatZClq8iFSGbJbH3sk9qJ33E2VbmBYJJ1lBK+TuUZyS3P86zJgsMiMVLLww6EEkZrX1fdHc28uQ8jnDL29BzWHEoaVItjsTFgKOOc9/1rSDbVwLcV0fMiaZNxaTMgIByB0yDXURJIgDvGEXACoSMIK57QbIPcNM4LKMnk/dNdTuGAuzee5Zawrct7IBN4WJzld2Plb1psLGNi5b5R1w3T0qG4BWUStJx02L39KZAVQFg43E4xnIH+elYtPcC9gPvKry3U56is/Vowy2yu7NibG7Hqrdf0q1JdOH2bnBAI4qvfBm063mYkOLmNWRzyQcjmqp/GhouxHdHExAyydz9KrXLyNqSJk5EDFT3XJAx+NWLZF/s+1k39lGM9DioJt5v5/3rKEhUKV7scn8+lO1mCKOmz3AR1nVgy5I75561oXU7Q25unJ2oGAA9eQP1/nVa3fbLtc4byuQevJxUs2ySSC3LlsOJWRf4vQfnzVcvkCQCGW2SJGOHjjBz69M/nzVW/bbZFnbgtg+3Xn9aulWWcBm3OTubPT2x+dU9SiL2My7yrKQcY4YA9/0q4yV0Ms286MqEtxHy49AR/gTVua72TBGBeF+FOPyz+Hes7T3V0KHBMkUb7uvsf6VqfJHwV3YAwTUSi09QI2kaJXEgzHj7yjkVlLcE367nJRpHHHTJUN/jWhNL5aMqIWVm+7+GTj2rNnEZ1O3KJjLDeOgyQR0ojbqI0NjBQUK7SOdvr/8AXNVC7RQ3MkhHzYRc/wC1yf0BqGQzrqG4SYjbhwBnH+fWlus/u4COgMp/E4H6fzq8PC80BUvmD2LqhBJHC/3vaklZf7Mt3jGF+z8D05am3MoigKBQWkzg4+7SjnTLYNj/AFJz/wB9NXfBtzYPYg0rffD7BCFDSOZAzHAJ2/8A1q1Y530IiO5i3lW52Hj171l6G6yazDDH3RgB+FbHiWPCR567sfpVU2+UHa5cHjjT4yBLDNHkdcA1gnUIdR1C8e3JberOPlxxxXP36fJu9K0/CkQA1OdhkJbbR7Ekf4VSk7hZWJi6mROeh9Kie+gjdvmPX0q2sQ2jjqM1gzoC7f77D9TTbaEkmbbzYSNJkUgNtVhjcoz61nNunWeRnDbZNi5PIOf5VoXLF4ngfK/KNobqKylWVEMoDFGJBOOMjn864ILQRZRmd0R3VQCQMDvQbfzdWDxqZIlRfmKnGQvT86i2pc3BeEFRkfu85I461p6Ogk1G4jZ9scWD97qT3/ShvlTa7AaEV5BFAElcvIMDbjBonmZIgzqTkggY7U9raK7uWcMJEAPzKP4f8aJo92mCWNmZQwK7uSMHHNcqtcRWmhTzkYEbDICFJxjKn8u1GmsjBFbOwIpGB35p13KsZEjbSdu7A55APWpbSFnVBgfLEuDnn2/lV7xGWX+zzWuUUEtlTjjB7GqNjJvt4Zdp3Ru+4HnAzz/Ork6xlcBWJkAz2H+f8Ko2BC3k0YG5WZ+v4fzFEdmMmnjC65avtB/csRk8cf8A66huwoJKcMq7m5756D8qlvTHHqlqA3IhkDe3TB/KkaNriymYkDaudp6j2/WiPRsDHKLNFGWIB3sQuc8//rq/bMkdtAfMVcR7QT/n6VnrKfs8jhl8tXIRcdSTuIz7VeEbrbxyt1kh5Jx8pPQY7VvJWVhstX++S0YRvu2tljxxx7Vz5uBG0bxOSFyRnkZ54rftYpp7YoqAMw4kDYyO/wBaxJl8iOaKLDYkKs/8I96KVloCN7THEMMUW1yVXawyAuep/rU8l9IJyoysPfHU+wNQadDNcWUbq5XOeUbk9jVlrJYodwkD9Bz15rCXLdt7iVhiSrJknaIz3zyMVLCYpLdkSEjJ5J6DHrUUuyO3+zvGpIIBx1/SrKQvGGSMAZbJBBxUNXQEiRosahZGLnqx5qvqSL/ZNwnmBpkCujZ+9tOT+NOSdlvfs7Ark5VwMjFLfW7S2MyscuVIzjGTjg0oOzQIbBLH/YSOTwEVvxAqpp8qXcs8p4aR+PTaAP8AP40W6GXQ4jt4Nvg+ucf4ipNItB9nj3xgbEHOc5Y88/p+davqBK0aXE7Nt2nyxhvfJ/SqdvK32h5VLsWIAJIwB0z7nrVmZ/IW6kJCHyvl568sOP0pIrMQxRQxoZNgHzDue4z696rp6jLu0eUSjnKHkZ5z3zVS8dWjd1kBRgUz74yP1FSrFMYdz/dOQ4Q4yelV/s8bB45I5FjZflOcgf5yDURjbdgVrV40lZRkbGGCDjhiSP5/pWs8ki7Ff7rfdbpnisi3KPexgjHnRKTjoCpI/lWu8RnbazDys4Acce59qqe9gFKqdx3glAQR7n/9VZ18Wg1C3kZQFY7Oo74H+NWFWVHYYKhmzlv4ewz+GKqayrDToZc5KTqxx1Hb/CpjH3rAX1jctHhMPEQNvqPSqkhE91dzD7u3C/QEAVpSOuJJcEeUp2huuTxWdCMQz/8AXP8A9mFdODjZXF0Mi/DbQxXMe7HWpiAdMtsHrCf/AEJqbeQySIpi5AOGHrTWyNIt+ckQnn/gTVvT+OQdC74Z0Uw3kN6ZgWCk7QPXjrWl4qXbFAfUmpvDf/HjCTz+6BzUXiNhNp1rIOnmMPyrZKysDOPnjR1bfu2DGdvXHtWvo0cEPhnU5YPM/eSRxZfGeOe1ZxUMsy/7Of1rVtIxD4Ss06G4u2b6gfLRbUOgSLtbb6Y/lWBMF3ybQcCQ9a6O6GLhx6Gucmz5sv8AvmiQolyZ1kUSxMcBs7C2ePxqJJ2/s0xncYw/zKBjscHP402bZBclZNyLwFQY5Bp/kO+mPuk+YEsoB4K1w2WgyKO8+yQSRbCfNwV46HHap9MhlmaaE/LIuCXc4I7YqTTLZ7u0kVflIQnd9OgFM02EzajHESS2dzt3455oet4rclvQvyS6pp6+TCqMuzcNo5PrTtOuLq7DpOuA2CT0x6cVrT/aA5bgKCNrrjKj1qK6MyK6IUPGcjgiudvpJWYzKliYTeUTl8bHBOMcj+lakLwwS/JKwBCnk4A65rKumDalGzZUMqE++f8A9VaJVFunfyt6ptCoefrxVSTsh2HPcrNHKCuQQWyO3b+dVYwW1MFR8piDnjqBwRV7fb3YLLB5bqTuj7kf/r/lWU8whnAQr5gRkOOmD3oSRTSH6hGg1aNzJuxGcbf4sj/Coo5itrvSUEFfmX3z/wDWqm7s8qS9WXKsAe3H/wBemSsRb5t2DEEk+tact1Ym9wsY0ntJI2JG+YAf7Izkn9K1Wie+vWKkiCIbc44JHTNY1lLJtycYLbuRzXRaYNkEshLbd/8AexzRU0bYEguHECvGpAyG244DDgj6HmuduoUbcYwFDkE7zxwOc/pW/wCaYJJYdgYTD5dh3Eev+P4GsC7t5BfCEJuYHj0op6Mdjc026lSzjhyccgMOntg1ZjtgWKqGzjHLHgVDaQ3EMESAoBGMkkcc9qsq9xOBsP7vuehY5/lWTWrYrEyIvEkaggAlnzkt7DNXkkVgMkgKO3XFZV47hQynJPygDoCP1/Gr0MUYSL5FO3knOCaza7DLHlhNjNMNxbkEetSLbB1ljaRNmfmqA/vMbj8wOMg9DQZSsnltwTwc/n/n60h2MOOFf+EcZZGG6JGBBI9SP8DVixm82zcKypsPz475HJ/z2qjeSGGHULQFQGuVKY64Ygmp1glt3ug+1o3DBFDZwPXHritZar1Eys2Jkt4XcOiTBGIHRCcnP5CugjmS6ysbr8h+4oA4/wD1VhKqtc2yyhAkceW5xuzwM1rwyxJO7RqF3KCCQQMDipm5K1g1FffAREq71kGV5yDj+tMeVniBVB8uARjn/ODSztI8fyY+VvlPoRzioBcbrfC/eUdMfdIP60aWAzRbyfaTGw+T7T5eDjIBG7g9q1Wmdj5DRnLMF3Y44PP6ZrLu74i5J43oVnY/3tuR/LFarMzTpIOiJhuM8tz/AIfnWk27XYE1w+8gqEDAcZrHv5fJtZUEZZRh0Y/wnPQ/jWob0Y+6M5K7T7VUvYILu2bcdpcbQA3vmsIS11ETXLYtoxnmXDHnsB/9c/lUUYAtrgk8lOP++hTbh83BTj92oTj2HP65qRRiymO4EGPjH+8M16N1TUYrqN7FUB2tHCkHac7fWq12FWzg4wpiJxn1ZquQuTbSKgXegLKfwqneMrWsBUkjyTyev3mpUf40xdDWsJlstLJXcAkRA3Hn0FQXsnm+GdOYZwWc1T1O58rS1QHBcVZnGPCWlf8AAv6119RdDIhKGZ4inzvGcHPp7Vs3Plw22hW3l8Fd23PQsc5/SsOD/kK2/wDtZX8xW1rh2eI9Mt1/5ZeWn5D/AOvQMbejF3J9a5ycfvn/AN4102pDGoTD0IH6Cubn5mkP+0aJCiV5JhNGrFyZI+VBHFT2L77dosDABPJweaWayWDdwShyNw9ewqKxhZ0kmByYuCPbGK4Xbl0H0LVs0tvFCYJfkJ+6DhutRXF3cWdvLPGGUzMUEmOw6gGr+j6e15cQ2kEUk7vIUUIMtycjA/nWxrngjUdGsCLxkkleQv8AZ0JIjX69CfpWlB8s+ZDjDmdjldMvb60u1cs06soygbORiuvguVeFSytlT8wb0PbNc1psTWcyMYy4LgbfTtXQyIyodhwsmCcdfrWGKlztJoqcFGVkZmoBzeOQAQBHtOPVjj9TV0PIs8gdwsgA+YHgjpWbqMs8F1tkAVyE2/QN1+taESSXE5AG9FVR5vYnnpUvZEjrq8RMIxdG42njn61lNHMbiNmQKXbCseAeD3/CrU0IMzebIQqsAB7Hqa0tbRYbC3uIiu23dSu3oQeP60lo7dwSu9TmL6IWs8ZRuJD16j3qpHIzxhVAzzk1oa/Zi3kjVJN5ZgeOgzVSPHl4ClSF7/lmt4/ChMW3O2VYtvAOcV0VokI05fMlZjyEUHAHf8a51Mr1689e3pVs3BEewenBxzU1IuWwr2ZtCUPGCm0yIwMfHJNZN7fKmqIwZ8OclRwQSemKiLyMytF8pUYGG/z70+4h824illclgMsp5/HNRFJPUq9zpo3iu4w4ifyc/wAK/eIP8qeVnjmaSCFgrDB3dPbFFkklvaRIigIFyR3zU73U0sbfOAmecdQK53JD0KtrbyOxlnKsEJCA9vfNWgzGbcZWx/dK9wMVAjoJQhfcE7sOuakM4ySAAM4GahyC6RPK/mFfn2HoMcZ/xqnMzbfObor5JqU/PIACDj17VDtLK+GAViVOD0PampW3DmMq+i83XLJ0BAuQD14O3nPFaF8Wjt3kYKDGCx/l+VUbr93qmmEkL+8O3sOR/jVrWt40i4Y53NhAewycVq5axt/WorkWmWsslqlyAFL/ADIrN/D04qSWV4WETKroD9CintVtC0NsoIXbEgGD3AFMtyrwq+FO7k4HQ+n0qfaXbckHMWYZLOZMh9jY3BSMHP41TeGIXSn59khKtk4Ct1H59KWS3McmfLDKepUcj/GqrxXYndFeUoyjBK56Hjn61cJRexSkiNLWKTUmjDA7rVlIPY7sEVd0eKSawWSXDM3U57AYH6VVRrgavG3kMJDE/RcjJIPX860tOWa106GMwkEKcgjnJp1GrWB2K+wpPKjjhcHPcZojQKjSmJDHHliw7Y6AfpUrRXUsjXBhzL6E5GKqTRzQ2DLKpR5mwAT2Byf6UqMU5pElOJXd1LFsudzY5ODyavbQIp9pGBHgjGD1GKhjiZ7mONPvYGOcdquTWTwW88pAC7MEA5xyK6qv8aKEZKZEuSx2ZHA9as65b+QYhHEVhKBEPqep/nTrTTZbjbcKE8sN82TzxWlrdq0kUNyZB5UK/cx1J71rTtzSa7gctf3qRThHhjmAXGHzx+RFbl9IsvhfTJFjWNST8qdB1rkp2824ZveuquiB4T0of739a1T1G9jJsp/L1W0iEUbtLKqgsuSMnHHpWleXZk8YiJUiZXnxuZASMccHt0qnokPm+JrAkcIxc/gM0+2Bl8VWkhH35Sf50wXQvatxqlwP9r+lczJyzn1dv510urcapcf79YupQRwTbIwQuA3PqQCf1NDeyIQuqqBC7bkJblVU5J96z7GSVYc7gmG3dK6waM7qBLMh6DCp29KbH4ZjRlKyNhRjG2vNjUjy2ZTN34eW66fY6jrEgzMp+zWzY7sCzH8sfnV8zveK6yuWOc8mqc+qDQtPtdCWFWWIl5mB+YMx/LgY/KobW4IkYgcFjXfRaUSnCUVqc7rSrbanIvQSYMbL/n1qESvdjyy2CTgEdh71veMWS18PPqkNrDNcxFFRZFJB3Oo6AjPWuH1DxB4i0iLzrvStKVd/lOUYSGN+ux9sh2NweGweD6GuarSvN2QlG+po6orvd2olIYRqOT/ENyitVo2gnk8lj5YCkLjrxXQukPRo0PH9wU/IC/d4+lcrqKyVg0MNoImKyBR93nj8jUeppMdNu4WjOEQNGR3xg1vbweNnGOcUbnJyMAEd6nnSDmOS1i3M1rCqK/mCUMeDnGOv+fSsqS2nRQgt5sqMYCHJr0UGQ871ApxJ7yflVxrWVrCvc8xis9UkkYJY3DBun7s1oxeHdZl2j7IygkDkgV3uQSPnY/SjJAx8x565pvEvog0OSt/DOqKSu2EcdS+c1cXwtdSriWeFSowSCSK3juHCqTkU35h2rN1m2GnYrRae8aLG82do27gvB96kXT4wpDXGSeeVHWpvn74HpQucfeUVHMO5EmmW8cJVZmJfktjJzS/2db7R8z5H6VMdxx+8xS/N/wA9GpN3EQJYWyY4c/zpk8VjaW7y3GyGEEFpJWChTkAck8VaC45Lvn61z3jtAPBmoHJJ/d9f+ui04q8kgS1LQuPDd5cQIb+ymlDYiQXSk5J6AA9a15rW2mQJLEGUMGAJzyK80vvDttpGp+G5LaOFZI7yK1vfLuVlJmXYxZgGOwlmkULxxF0zmvSsLk4z+da1oezaSZUlYcILfacxKQexoKQjpGoHTjFIQv1pMoBjFYkkmxGXgKB9aUhFPbgVDvU8BQO+aFn2chA3GOaWgEu5OpwD60mYjwWWoGlHTHApvnLycjPbii6AtebBjjH4VgavMst+UT7kSgD6nk1q+YgBctwBuPHpXOwZurgu2cyvk/nXZhUleY0XbbautRbugC/+g1raoYzpFxs4O0dvcVlN8uvY5HIH/jtXtRYnTLnJ/gHb3FaVXetAkxNKvLlfNhRzszwPwq74mvvs2lpGv3mwfyrN0j/Xy/Ufyqv4iklvLwJHG7KgA+VSea7ZJJDWrM463dsm1imPaNR/Suiv5Gn8L6XI33m3Z4x61yotZv8AnjJkf7Jrqr2NovC2lq6lWGcgjBHWpiOWwzw9LLFPdkSERJbu7L2J6CmWKj+29Kdf4sfnzS6Z+60jVJz3RIx+JpmmyKn9mXLthI5HDH0A5rREk2op5uszozqgMhG5umazdUt5TPvCkoQAGA44GPzq2t8q66Lm/jJKyjEfaME8/jj9at+JLAadqQSIEQyLkc9x1/p+dJe879i5Q5Ipvqa2T1L4qezVJr+CPeTlhn8Of6VTWW05+dm57HOKkk1CPT08y3tZZZ3UrnBxGG4z9eeK8WEW5WKhFylYsaJp66rDrN9MgkZSCpYZxliSf0qBV2HAqf8At2Pw7oNyk1hcxrcFVBKFcAZ5569elcrP4pty37lXf6jFerQvKN7DqTvds3td1RdM0FdQePzUs7y2nZP7wWZGx+OK8g1SDTrW1mWz1lr55rgOqRo6KEAbmQOo+f5hjbkD5ueRXey+INP1GxlsL+3ZreQAuNxGcEEdMdwO9SeHvBmh+JmuE0/S4w1vjf5l1IOucY59qdXmi72M4SWx0ZErEMX/ACpVjlY8sxHSt5fDOts2He0UHjPmMcfpVaHTJ57t4BOLiFTh3iU4c91Ht6n8K86nhKk5WsZ1ZKlHmkZFxbObRZ1ZlTzVVSp++c/qP51OsTZ+4xroNV0W8uobO2to9iCVS78fIPXGRn6U9PBzch9TnIxj5I1Xn15JrpxOFtyxprRGWGc5pymc4FkA4hbHenZZWClBkgkAt/n1rpB4KjJyb+7P4qM/pWfB4MlGsSrcSSfZ8MYnEoyfu9Rt/wA/hXMsJUOrlRmZbuyA/WmlucGVQfrXT/8ACGacmQzzFT283/61A8I6MJQ7K5OMYaRiCPzoWDqBZHLMDnmUfnTgu7P71Tiutj8M6FFgG1DHplpWOfzNWv8AhHNEZflskI6dT/jTeDmt2NRT6nDbUUAmYYJx7U0yW4GDcD6cV3g8N6OV2iyjI9DTG8LaKTzp8PAwDt5xR9VfcfIcOLi27XBPOD0pzXMEa8uSMZ612LeDtEO7baKhIwStVZvBViV2xqGX0YD/AAo+qy7hyeZyf263z94keu6s3xMZLvw/PFYhWut8bRBmXGVkVud3HQd67qTwzBEAn2JSoHBGD/Ss3UI9P0/y45rZpZZM+VDFDudsY3Y7dDmj2HI+ZvY0pUJ1ZqEFdnj2maV4ki1WI3Uam3mv4bu5zNExZkYndwc8B36etemm/t1XJPOcVq2CWN5F5luhARijo0exkbjIPHUZrQXTYnOfKUr6k9a1nS9rZ3CpSlCTjNWaOXGowgD5WGfVSM04XwJGLeQg8A7TXUS28AJgniV4/wDbXOPpU1vLe2xVbNmliHPlyjcAPQHqKn6qu5nyHMK08nCWU578RH/Cl2XXVtPnHbPlkCu8tdZil+W5iktJOwmGAx9jWgHDDIPHrT+qx7j5UeYlL4EldNnYD0ialWDVZQQmk3Gev+rx/OvTN/pmkL/WmsLHuHKjyTV2vbTTWW5tpLdpsIodcE+v+feotC028uXaW1tXnEQwduOCfr+NW/H2oNd+IEt0G5LZACAe5rsfBFr9k8PpIyEPcsZD9Og/l+tbKklDlQkkzhvs1zJ4o+zxw5uC+PLJA528j0rR1jTNVtdKupLq08uEKBv3qecjAwDUkD7fiYD63Df+gmui8Z3cEnhi8RZkLBlBUMCQdw7VUqScoy7E2VjyzTpfKkuGY8KM/pWQ+qXayyCKeVELE4VyBmr0SyzebFAu+SUgKAevFRnw7qiAFrUjPq6/41rLUSRRbUbxuTNIfq5rqL2RpfCulu5JYg5J/GsUeH9QcZ8uJcf3p4x/Nq3NSie38N6ZC4G5AQdrBh+Y4oiEtiuAY/CsmPvTXGB74FM0iISxWlrMuN14Dj/Z2kn+VO1A+X4f06I8by8h/Oq+gmRtdh2hvLjGT6ZOcfyquokVWtzf+IdVRpWG2YAd+papb1biO6VLi6kuDsBBdicD0FY0l/dxapezCNobl5Myp2U8/wCNNW+u7q53TKW4ALdNo5rKGkmdE+Z0kuh9LrHEo+WNAPYYo8mHL5jU72DNkZyRjB/QVCLiPsy/nQbpOxz9BSEcX8V7Ka58OQXEW7bby/vAPQjr+ePzryjSYSdR0wOBtecZHqM//Wr6Hu1gu7GaG4TdA6EOrD+HHNeQadpdvNqNrIhcLFM4UcYwiFhT53okbQpKcJTfRW+fQ5q+tIrXWtQTCYju2jAYEiNcnkjvXo3wrsoo73U7q2fdGYolyEKgkliTg/SuL8Rw7NQv9URnR5LxY9o+6RsBJP4k1S8OeIdS0qae4hu2jg2sLjPIK9gB/e7D0yah05+05r6f1pY6p4mg8L7NR19Fo735r7ttaWennokvX/Eviq1t99r9pWK3U7ZphyXPdEx19z26Zo0fWI7vS47qya4itTlVIjQLgcZwB0/GvDlluvFGuQWwJVZXEaKvSNf8AMmve7O0i0/SobO3ULEiBQPQAcV0Q7I8iaTd2WIdRaSTybgqcjIdejD19qZqty+kCMzSMVlGYwOWb6DqRWNNci2jZhnC9FHc1u6bavqlj9ru2826RMKCOAg7AegrVkJ9DD/4SLUX/wCPe0bHYyvj9Bmj+1Nbl5328f4FsfyqxcSyQznYCCBjhRVUSzwP57IdgOXyODV2Rk5sDcaw33tQRf8Adi/+vTGGoEfNqj/gi/4Ven13QYkzPe2anGcFxn8hXMX/AIr0RbpxBdhk7BEY/wBKlOI05PY2J4tUtyobUWBZQw3RqeDXXeHJ7a8txDI5N6q8jdjf7jt+Fef6t430m7WA20d45RdpxAefSs2Hxpb286utrfAg9RHgj9al8skWudO9j1DT9XivL27sWjaK6tSN6sMblPRhn6YI7GtHca84m+I+kXU9tfy2OoR3yKYpZEiX94hx1565A/KrMXxG8PyMFllvo/8AfQgf+OmuaSszqWqud0bhPMMe7LgZIAJxSlm7A/lWVpmpWF/aifTpoZoieWV+QffuPxq0Z2GfnQD6k0hlje4PI/SsHVrG9GsRavY2iXbi3NvLA8nlll3AgocYBBznPbpWq1yw/wCWiH8DUYuJSc+YuP8Ac/8Ar1E4qSsb0Kzoy5kr9Gns0+mln9zM3R9GuYp72/vAkNzdsp8mM7xGqrhQSRy3Jzjj0q5JbXEUqmNN+erKAMfhVjzJG/5bY9gBTgZM5Mj/AJiiMVFWQq1aVafPLy+5KyXySM+5mmkjMTxlT67eapiBiv32Htit0Ow+8zH8RTt6MpBXj3qjIx4TNChUbWQ9nXNRss8S7rWR7d+pVD8h/wCA1srb+ZxF26cA05dJmkyWhcnsFUgUAUYNXlQBbyB855eIlh+XWrp1G1WF3W4Q7VLYzzx7U19Jv1OFgUj/AGsCodV0W5u9JuIYooVuGTCFnXr9aaTJdjya5d7me4vZDlp5mYfTtXrej/8AIFsf+uCf+giuMuPA+qRaem9rVBHyzNOAAPrXXaUt3DY20TrDJEsSgSxSZ6D9auS0Ijpc4sDHxKUZ/wCXn+lF1GJLnUA6eaBK7BD/ABEE4FWn065Xx2t9sXyBNuyXAOMehpL2Ca0uL2WWMqHZnT/aGSeKpIT2PMr1ni2x/dfJLD0qr5kuPvVvSaOl0/2ibVbGFn5McjPuX2IC1VbS7dSQdUtOPQSHP/jtQVZrcyGll/vV2F5k+E9IJ6lTWMmlWLqTJrNsh9PKkP8A7LXQahEi6BpEEcqyryodQQG9+eaqJMthl5p8+pXul6ZBgSmBRz0GQSSa67Vp7KzuNN0SBU82IK7MByAowM/XJrFi1CLSdZv9SkUN9niEMYJ/iIH+H61zuk6hNfeLIrudt0kzncfqDSWsgvpYytXUDxFqeB/GP5VUt/8AWSfQf1q7rUMia7qBBB3y9/aofsctq/70qd6qRt+mf61EV79zpnUi6Cgtz6GEnYxke+KcHGPun8qdvUhTgjPtRuRujA/SlczMXxTqAsvD10wyHkXy147nr+ma860a6Szg+0y7RGrSbmbooZQufyzXSfEW9QwWdtFIrglpG2nPsP61ztjpz6p4U1K2jA8xlGwnpkc4/QVmpfvUj2I0oxy/ml1d/wAbHM67rdle2jW9tLvka9MuApGVwADWDqoktXGmJywbfLjvIR0/AcfnT107VdO/0o2D5t5B+8Me5VYHv2610mjeA9Z1eSXU5/LUudxZjnBPc46GunU8Vt9S18NdLQX8t0wJaFNjE9mbqB9FGP8AgVeiyXryTZUEKFNUvC/hZ9E0z7PLOryM7O7rxkn/AOsBWyunQKPnnOB6CrirIye5gXbb54oieM7mroNL1q306RZriZEt4xg5Pb0A7mqc+m2MkvzyOpUc7Tz9DVa4sdGtYjcyB28oEgsxOP1rTpYzcbu4niW41cvFNa2X9nWd0+EnuQGkKkE5CdFH15rlpNH02V832qXV4/cNIcflWd4j8e3F60cFrGnlwYEbuCxwO3PauTvPEuonHnajLGG6BMgfpWfOlvqaSjf4dDvVsdFtyfKs1ZezNGW/nQuoadaMCscUeP8AZArzE6iLqQK13LIx/vE0pVO/P40e17IXs+7PW5/H1g9osEjKdmMYI4xWLL4y0/ezAkknNcIhswg3xMW781Cxi3HamB2FSqj6D9ku56ZY/EKwgnDOh2nhuKuX/jvQ72Xy2sreSJgMSSRDKn3GP615J8n92pILeWdsRdB1JOBUyk5blRjy/Cd5pV9Fp/iL+0dOkkWzkJMkYAIb2x6fyrsYvF9tLIEVWDMcDKkZNcR4Z09reVbHUA0SztuR1TJBx9enSu6XwYsLLPHqMMixnftOQSBUunfUfMzGn+ILw6k1r9mPyzeWWL++M9K0z4jtbg/JqUXrgMK8y1bnWrhvW4b/ANCNb9l4N1i/K3MFmPJZQyuGHzD86mdHm2YXZ2H9oGQblvVf02sKedSm2gCYsK5x/B+rRfesJuB2XNVn0G/iBLW0645JKkVk8M/5hanVrqUwcb5GCjrjrXQ2Hi+1gjVP7ISTH8TTh2P9K8N8R6u8CDTbeVjg5mYN1P8Adqjplq935aJd7JpH2hcH8KunT5NHqxps+nbbxjHdxHyrJ7bacHcAf5cVoWt0L2OWWV2WOMZOGrjrG0Gl6dbWS53BF3k9Scd627K+htbC5SVjvkACKB1respRw8pQXvLYlO9RJ7Fx72MnMenylezzSqgP9ar/ANoeXuBSxHOfnnZse3Arltb1u2nvVAZkaNAjLjv/AJNZjanCf4m/L/69cMVFq9WtZ9ro2bafuxO1l1eGRHjaTTyMYZfJd+vTOTVddRto+FktFwMfJZAf1rkX14RPvWMEFdrfKAT6c1TbxOIW3Cy3545bj+VHssLLXnb+Yc9VaJHeLeQzsFSWMsen+hoKqHU7aYZFxFhW/isgMEH61yTa9MzqywRxgH+Fjz+lcp4pt18UeJNMguormRTb30wgtWAd2jg8xVXKnlmQDoetSo4Ob5YSd/Vher1PUrp9Ovhi6OnzD/ppZkfqDXH+I/AEdzZSX+iIFdAS0EblkkHfbnkH2PXtXF6Dpy+HfFUQjs721e50vzntb8ESQky4xnau4EKGBwPvY6iu/sfFF5YK4jjiKv2JJ59airCnS1pzal2d2i4yk9Gro8kdHU4JbivQbePzdL8PR4z8wz/Oo9ZsbHUr77aYEE1y2ZI4iyBT3PTHvxWhAohjtVCLi2GI8Bj2xXSsXSgk5u1/UzdOT2RyOuXby386Bj5bSs5Hqc4q74Vsmk1GO6YHy4z8p9TVm+tbNZtxsxIevV/8akt9TmtlWO2sFUL90BWP9a0VWM4pwZHI0UNZQNq90f8ApoaneO2w0szBmWNRHH6sR1PsP8KtRXOoyXRuIdJR3J+aQ2+8A/jkVlXDFriRnGDnBAGK0jKMp2XQmUXFJs+gAmOgX8qQQoHL+Wm48Egc0kc8UnKupHbBqhr2sw6Jo1zqEhBESjC5xkk1K1NjlPFegHW9Ta4jvEiSKMKEEZJ4Jyevqak0LShpem/Zi/nu7F8opHGB/hWRY+O01W8t79o41SM4eNBwynhv0NX5/FljJfPPbqwjbIAX064/IYq1CF+a2pbxVacPYt6djY1nT21HR009UjSIoZmC4HI55+npWTaTC00+3s7edWWMlpiv8Uh7H6Diq1z4ocBdkB4jk3MW6H5v8K42LW7uN2LmMM3JCLgDnr+NNTUia9CVKyZ6R/aAVOTzQ1yxhLhHZV5O0E15wNdvJZkjVuWYAcV2dprLWsCCKQM8RyT6n3qkznGfaXQPJIcSSMWYZ6eg/AYqYXFmmlPPPGZJy+1T5YkEY9dpOM+5rH8VXkB1H7TZnZbzoJdgPCEj5l/A5rhptTvLmdo4onmTqFAJx70OWhcVaV0bk1lpRe6XySSEXy2YkHJIzx3PP6GsGCGFdehf7NA6R2GoyJHNCsi7ktZGUlWBBwwB5HUVYk8VahG22S2gJCbCHjzke9c7c3+pNdW9zZ3MlrcQbws0MjRuNwwcEc8jI+hqZbaFRdr824+9VLnS9F1KW3gt724e4RxDEsSyRIE2SbFAUctIuQBnZ65qARswJAJA5OB0qu51C61AXl/dSXUuMGSaRnYjGByanLsvQ4HcDvUrYliEAU5ULkhcEgZPNMHPehguMgnP1piGnFbGnbDYlAQJd5bBOMjFZA29xUi7D1YikVGXK7nWQ6u0DREuoZEAzv6kHpXTWOpXtxeQusxMErjvxtJrze2FtvHmFyPpXt3hOw0bUPDsM1taztLCCC4ycN2zz9Kol+8zyPVBnVbkf9N3/wDQjXQad4svdPVLUggIABnI7YqrrPhjXI9XnkOlXuwzsdwhYjBJ54rrbbwFFc3TST63b7ABtXnd+O7FO9g5GyOHxteKO/8A30ah1/x3dpoEqq7Bpv3agnO6n63Y6H4eby7vWITLt3CNIyxI7dMivOtTuX1SO41BGRbW1KxxozAMWbuB3xjn8KTYlGzMgq011t3bnPLMfXvXpng3SrC5162S3DMsRDEk8HHU/wA64uzigstHhnZA13NLvJY9EHQAe55r1XwCtu1xe30IbySAse8ANz6/rSSG2dZeN/pxY9N1RTglY3HTGP0qO8mDTlV5PLVs+HkjuTJFOgdTGpwf8+9bSnyYecu1vzM0v3kUc3qXh60kt4tQLSeZM5VxngY4GPyqO38O2Lghg+dvHzd66bVrdYtGZFBxFN/j/jWELx1A55/nXHhaVCtDncU7mtac4uyZUGh2bRtGY8Srxkkn8ab/AGTaJDviiTdwm5hyM8ZAPGamnvXEolIAYenerCxSXujXl3tkVEYENnuP/wBYronSpwWkV9xEJSk9zBeC0EjbLeMLngba5Hxeb201LS7rS9J+3MIrqCSEQu6sssYjIOwgj5WbHI5rrACRypJzVaa9trS4VJJlV89M8j6+n41pNU4x1sh0adarPlpxcn2V2cd4PGp3PiPff6S9lbWuntbW8RhkVIx5ofaC5JJyznknqe1d95UfGEX8qeU3SrdJGpt5gHJTqW7nPT0pmSOArZB/SqgoxRE1Js2LFRLZx280gWMyeWiBceZkg4J/CqXifTBpVu8tuu21ELiP/ZJwMVpzW7Dw3ZyGP5vOLqdvIPPIrRCReI9Ems7rKs67XOOVbs4ryMS5UZ+3j8OzX6nVBc0eR7ngtzc3MDmSC5eJuhIPUVseHNSv59Wt455S6MSDlRnoa0LaO28Na3d2Ot2UMsikKBMuRjPUfUY5rpINR8P3TKLbT7aK4P8Aq2jOCD9K7Y8srSWpk1bR7mz4R1u0s7m7027lWF5ZjJEzHhskDBPY8V5hqZDaheMDlBI5yPqat67Jt1V+ccf1NULoqmmM4/jXqaqMFGTkupDlzJI6j7SVfaHYY9DWN4o1SSWwh0/czLcuFIJz8o5OKfFqVtNctCQS/wDDg9aydVJm8R2qqGAigaQBh0NeXQpv2ivsVBtO6JNn2Vo2VVVSoHyEYI6dvQgirejeSYx5m5/9IK7BxlTkde3Ws6+ja3s4WDExs2F+uBn9a1/DEsf2KYuFZ1nDKG6HivVvYaV2rGvFblZ4HP8AEdx9uXrC8RwiPXJwpYgqhBY5J+Ud66B5dq4U8qCF/wDHv8a5W+uZbq7M0z75CBlv0rKB24t3aK0WIJRMTwgLfkKraVqOpCRr6WE/YpSVVven6gWFhMF6su0fiQK1YrWOPSGg3gFYwpTGOCPlI9SDjP1q0cTRl3eoNOfLPAz60lp4i1HRCH0+byJF/jQYNY0kpEuaknO5MjvTbC3Qm1fxDqetzGa/uWmc884H8qsR6bbNGhKsxChid/DZ4/AZI6VhniuhgurcQR4mjXKKoBbnIwcH05FY1ZTSXL/X3npZdHDynL29ttL3S312122/pPG1O3W2nIjGFKhgCc4rP+c9xWtqcqTXPyMGAQKSOmef8azcY7VpC7iubc48QqarSVL4bu3p0IwkjHCk/gKvWGjX2oyNHAhLKu87jt4z7/Wp9I1D+z5ZGLEKwGQB1/Gta28TGK7nmM0h/wBHdYgy5CucEcEn0q0l1MdbXM298MX2n2b3UzRNGhUHY+7G4ZH+fejw9ZwX2rC3nUMpQ4B9a15fEdjNoMtk8UpmlhRS2BgMqqPX/ZFc3aXctjc+fAwDgEc803ypqwk3Y7VNIsVkC/ZkHB/gJx+daHhHxjeeH9F+ywxo8LSNIQy554H9K4wa/qEx2mYDPoK9C+Gvh1NcmxOita20ymYE9eMgY9Dik7dCpS5t1Y9A8M6p4g8RIsy2EUVqf+W8pIB+g6mu3i0yML++bzD3wMCrES7IgI0VVUYCqMAD0FVXuZ/tAwQIR971qbtjSSPEfip8PNdn1O91e0jjl08uHVI2+YfKB938K85XwLrTRhikS7hna77SPzr6uv7jfaggggMKVrmFpMYRtvVeDzWVarGlHmkUmm9j5dh8La+rbmhR2AC/61DwBgAc+gr0rwvF/Zvh6CGdNlw8sjyDg45wBx9K9altNNnQNNYWzZ4y0a5qv/YWgyAKbKFT/sZX+VaKStclqLPNXLS75FcAgnHPP5V1HhuQNeoQeHiOMfgay7/TtMjuZmhmmRQxCjdnj8as+G2SC8tIlk3BRsyTyeK6KlN/V6l+qMU1zr1OqudPjuUljckxzHJA7Gqi+F7AdYy31Y1q7gnX7p/Q1QvfEOm2ExhuLkLIBnG0mvmaeJlCPLzWO9xvrYi/4RjTsZNuh/z9az9J1CznnfRfsstm+7cYGwQwAznip28a6Mv/AC2kb6Rmsu58TaBNerdtHOZ0GEkC4K/Tmn9daerbuHKjpP7B0wdbaM/8BFciLD+wNQ1WCfw3c6qt7cNJaTxRoyMrKP3UmSfLVScZPBGTjirqePbIAq0E7EdDwM/rSN4/tP4bSU/VwKieIb6nRh8R7G6cbp7rVbO61X9fOzWh4b0yHTPDNjZ3zGS5jizJuGdpJzt7g7c7c+1WlijZsKsaj3wK5yXx/E2VFgSMdS//ANaqTeNgT8tkP+/n/wBavPr1MRJpRei+Qp1faTlUlvJt/edLFq7Ralb6Xf267yGIeM4XB5GOcnpg+9X5JUWQ+XGAvbI5rg73xgb2NEewj+TlW3nKn1Bpo8Z3oQD7PCSP4ju/xqsTWr1vh935mcXFGt438KQeL9N3rti1SBf3MvQSD+439D2ryLQLO5tPEEENzGySRyFWVhgggGvSP+E31IdI7fj1T/69NXX/AO0ophc29ubg9JFGCB/WvRymvVhL2VR3XQyrcrV0efa62/VZVBzgkHHbk8Vn3zldFiBPJOP51d1U51W5z/fJqp4k8iLyYbbeIuqiTG7oOv45r6J7HEj1p/Dth95dMgyMchBn3rhPElqtv4w/1JiUaecKRj+IivYCgPX61574/tymvWVyF+/ZSJn/AHXB/rWMIanQ5e6zgNVxFpNqvnSMFdSFdNpXPrVzw20YN4j/AH0Cun54P9Kh8VJFDpNmEd2mk5l3nPI4H6VY0e/0yBYjc2smWhIZwcZYn/63FUyIu1mb24lUJHJcqf0/+vXMXA2zYrro9f8ADrFN1pN8qdFf7z8fMfy6VlSXWgLJu8m5fjuRUqNjapVU0tDn5h5giQjhpUH/AI8K3NStgIbmVeDChB/Fl/wpbi9025hhjtrYxN58ZBI5OGFOv42ZdUl8pijk4LnA4Xkr69qtIx3PPidxZe4bir0to8NorzMiEjhCefyrOMhiuA4PepwfMkDOSR1JJ7UhFab91guQueQO9MDgqDu4qW/spVWO5lcZnUOFHYHoPy5qoU2xFc557UPQZIZV9TSecvpUOweppNg96QE/nr6UhnHYYqILh1wD1oIG48d/WgDX0K9t7bUDLclAipxuGcnI/pms57jc7NjGTnFMhjV1kzj5RmmYyQKB9CczyIQY8jHJxXtPwjvlsrDxDqb5MMMUbEdvlRia8dsro283MYZO/qK9b0K1XS/hPql3LcQwvq4YwwjOcfdx+IDHFMnrY6XwN8VL3V9WFpq8dvHDcki3MYwUPYH1B/nXdXs5QyFTwx/mcV4LZaatvp8c4+SdcMkg6hsZA/SvW7W/u9Q0i1vhbk280SSGQdm3DIpqw7Ns155PMhkRW+YDOM9+tef31pqY1u8hgvgWuyJAT/CPmbb/AOOiuvhaVdRvQ8bKpwVJ/i4A/pXMaxbf2hdTIrBG8xAG+kbHFctapOFWKTsrPpfqhqKa1R2ls2630+S4eTzljUFM/KWC9T71ms0iySNNeCIrvyCCMAn1z6VNaS+dZ2Uuf4AWyfUVhfEW4ZPCciRSmIyyojOvULyT/KtI87jFp2+QnbYdqcED2jvbS72xuyGyD+NZHhq4Z9dtwzfdy35A1xumahNpaLH5sjWsvAEnVH9Pxra8KOw8UTSh+DEzY/KvQxtWKwE6kezOanGSrKLPRtd16XS7OGaII7tKF2vnGMEnp9K8j1bxbe6jqEs5tol3H1Jrp/Hl+Rp9qp5HmMf/AB3/AOvXmQiUplpW596+VwFClUoqpNXd2e5RpqUndfjY0ZfEl8jY2Qj8D/jTP+EjvuOYRn/Z/wDr1izwIG4f86h8tP8AnpXpLC0f5TmqRak0vzOm/te+ZSfOjX/gIrKuvEOppMUS4GB3Cis0qg/j/WhbSWXmJGcHuozWnsKC+yjHlkty03iLVGGPtRH0Aqez1G/nimeS7lxGVPDY4rNWymL7RE+7/drQt7Sa1sbtp12hwAoPWoqQpRWiV9BpFo6hlSTfSZH/AE0NUnvmZyDcykZ/vmqY8o9FY/gaeIlbpDKfohrVxp9kNU33LcEkUpPmSsfqTWlodxBba3alHb5n2H054rMtoXjYkWk5z/0zNXrSG5kv7cpZzqRKp3FCAOalSipbnfHk9hyu1/Qv6txqd1/vmsbVJTNLDn+GMZrX1hv+Jpd/77VhXCMCXOdpAAP4V2vY8VH0t+P5VgeItLN/f6SzqfIEkkU0hIwiuu0H/vrFbgdccGqupRLd6fcW3zESIV4PIPY/nWKdmdHkeGePYhZa3NZLMsqRsSCBjGedtd7cy2lxFZSTqg3wrjycFT67sfWvPNY8IeJjduTpdzMST86/Nu96yH8Oa/aMGm027RFIJ+Ujiq3YOLWyPZLbT9JliCrDbyQlyCWiTPUd8BqyfE+m6PZxQmDTY4i8jgkO3IGMd/eseb4nXccXkjw7ZIgG3awJ4rDuviBeyggaXZRemwOMf+PU07Ck27F+4a0t442ijCHzo8AHP8QrZ1FY7PRtX85P3spHlsSflwdpx9a88uvEuoXoCTMBFvD7QPQ5r1P4kzaNL4a0i8sLgfaLlN8kaHghgCxPvkU1JbEJe8ePS9TUTXDRIVxnIxT5WALCqkrc461AwaXIAIyPTNIZsrt24FM6dqeJCFKgDB68UgHMAqBs5BpgO71pBjGCCR9a0NN1WbS5WktgFZhtORnI9KYEUGn3t1t+z2k8m44UohOa6bTvhr4n1BC5sPsybNwa4bZu9gOuatWPxL1e0iSJZcRqMBQBgfhW3afFm6Vh56Bx3BH+FA1JdjBh+HGvQWrT3UcMBMbMY5JAGCjOfbPHAriDuViM9DXuEXxS0y5Tbc2Yx35z/MV4vfrGl/MkX+qEh2H1XPH6UDbTWgiHAr1mK8XUvhfpUQIxbv5BHo4b/A15Grc16z4d037P8O0eRgZJLwTbM8xgsijPoSBmmiepeuLKS5sHt4XRJI9suGOMgcYHrXU+Gddz4Es3jlYGABWQAYGx+f0Gawbu2cWSXEJxG6SLKf4kYZ4+hGKxfhvcic6pYynKgrIqk9jkH+lO1tBb6nsqa8WGGbI/2kB/wrF1CWG6jkUQ2vmvKHL4ZDgDA6Z7Vk2E52mCQnfGxjJz1x0P5Yq28YdhycjvXPXhOVnTeqKi+jOmtTpsVrFCtsMIgUbZP8a5P4jm2Njp1tHFIhluC7BjkEIuf5kVcDsOhrm/FrPJf2CuchYZHH4lRW3QE3c4/X3aTSj5pzIqBg3fGcj8iP1rs/CWiafbW1vf3GqDzZ7dSVWIkAsAetcjrFsJfDJuyxWZEEckRUgryCDmtTwTq1xc+HYog75tiYT83bqP0NcOY1KkKDjF6PRl00ua73O5utE0TU4xHPexTIM4DxEY+lcXrXhLRLKYfYXWdDyQSRj9a6H7dcCPaM49wDWNdN85LDr7V85CrOn7sXZHW22jAOjWY/5c4j9cmm/2RZj/AJcrf8VrRnuIoULyNtUdSelU21O02hvPXDHAOeprqjKtNXV395i3bqR/2XaDpZ2w/wCAVKlpHGMJFCo9AlSGb0Bo80/3Tipc5PdgMaJI13t5aqOp2Uqxo8YZShU8g7OtJM3mQuhUkMpFIjlIkQLgKoHWi7sVpYeIsdCB9FFLsb++35VEZj/d/WlErbSdpOOw5qoRnN8sdybEwj9Xb86mixGwYZJHTJqiLr5gBGxz7VajZ2IyNue1XOhVprmkrDt3Od1lgdRuW6bmJx9azr6Tfptu7DDMeRVzVeb+5Gc/ORWVcMGsLeLJLJnNfSRbjBKW9ji0ufSJhVidwBB5pPs4yMEg+xp8U0My5imjceqsDUuMDFSa3KpgfqH596a0MvHoOOuaujGec0HtzQMyLrSrS5H7+xgkyOd8YNYd34B8P3oObRYmz/yyYj9K7TYO9KYgeoGKLsdzy27+Eli//HveumegZM1kap8M9bVEis5oblFXALPsx+dez/Z09B+FN8jBGGPFO4XXY+fW+Fvigtg20P8A3+FA+FniPvboT7OK+g/JY/xD64pBGwHIH4Gi4tOx8/f8Kr8RYP8AooP0Yf403/hV/iDGfsbfmK+hNmB9004L7mncND55/wCFY69nH2OT8qcvwz1r/n1f/vmvoYL2ApcZ7Uc3kKyPn5PhhrBIzbP+VWE+FurHH7hq94HuBS8dqfN5BZHh6fCrU/4ov/Hh/jVlPhNeZy8Sn6sK9oA9qTBzijmCyPJIfhVMr8xwge7CtifQ7nw/4ant3jWRJrmI7lbJjAPX9B+deh5PcVQ1yFrjQr2MDnyiw/Dn+lHMwsjidSmi0qxvba9QK88DtCzeuARj64/SvPfAN/8AZvGCRk/LcxvEfr94fyr0L4qSWV3o+m6pBdRszW4QQr1BxyT+ZFeKW17LYX8N3AQJYXDqT6inKV3cjlsrI9/ksbp7sSwQs6SDDgEDDDoefbj8quJFdJxJazL74Bz+RNcx4C8d3nibVjp8tjCCkTStKGIAAwP1zXpiSKJMvBKB/sEMD/I07xEubsc2XVPvZX/eGP51geIXVtSsX4ZRbuMf8CFeiPeWm7DJIo/2oyK4vxfClzrWnpZ7T5iPGNoxzwaElcrU47xMkZ0y9milJgk+eJCfuA87T9Mis74bzZGpW/oUkA/MH+lX/E99DF4en0uRVW5t9rDA5IPDZ+hA/Os/4X6xp+kXmpy3pBd4kWNT35JP9K4cwjehK39al03Z6nelWI4U/lWXeKwPPFJq/j+NkZY1jiT1NcLqfjUsWNvIXfp04FeBTwdWo9EbuokdNdKBDIWXeACduM5rm7iyltwuA25484WPcC5OSD6dqzNO8TXTSSLdz/LjKnpzVp/EMef9efzr0aNKth3ypXM3JSOmEZwPmo2H+9XJP4hj/wCex/Oom8Qx/wDPVqxWCqPoPnR02qLt06Z9xOxd2A2OlR6T+806F3cjcM4JzXJ3OtLPE0Yd/m45qOLWBBCIxu+UY610LBz9ly+YvaHekRDrIPzpyzxRg7ZlH4ivPjrjH+E/nSf20+fu/rSjgaid0xc56EbuIcm4/WnWd7BeTKtvKJXLYG3nmvOp9UmuIvKHyK33iOuK9d8B+EbV/CtvfI8sdxcbm3DGcAkd/pWiwMnrOQ1K5wOoW11DdSxzRyBix+ZlIBoitY/s/mSAMGGBg859K9M1DwDLeYxqUgGckMvX9azZvh3dCFEjeLCHPycbj7121VKSVjN0+zOPVJ42yJHWtC21bVbb/U6jMo7DzDXpu7Rb4nzNOtmwMkqAKgfRPDU6Z+zPD/useK6+WJldHHQ+M/EMGB9rWQD++qn+laMHxD1SMjz7SCQeykf1rVk8D6PO2YNQdPZgD/hVaX4ey8/Zr+FvQHI/xpciC5LF8SoOs+myL7pJn+YrRt/iFo023eZ4T33Jkfoa5i58C61FwiJKPVXBrOl8L6vDkyafIfXCE0vZlXZ6ZB4q0S4ICajCM/38r/OmXPjDQrSTZPforkZACscj6gV5PNYSwgh7Z1/MVS8SDy9QhT0t1/maOR9Q5me36Zr+may7pp92s7RjLAAjH5itLjpXzlY3l5apKbG6e2kI++jlf5Vt6b478SQqoa+MwA/5aKG/pUuLQKR7nx60evNeW23xK1NCPPsreT1Kgrn9a1bf4nWxOLjTpU90fP8AMClZlcx3vQdaP1rmbbx9oU4G6WWE+jx/4ZrTt/EmjXOBHqVvn0Ztv86QcyNLvz1rg9U+IRsr2WBbJf3bFctk5wfYiu7huIpwDDLHIPVGB/lXhviYg6vckf8APRv512YSjGrJqRhiKjjFOJ0cvxQuAP3dtAPqjf8AxVRj4qXg62duf++h/WvPXOTTM13fU6S6HN7efc9Jj+K8wPz6fEfo7f4VcT4pwSrsk04gMMHEmf6V5TmpojkipeDpD9vPubWvaXq2tQrJpFjcXNpknKR/cPYH14rl5PB3iRRltGvR/wBsjXunw7Unw45x/wAtz/IV123HavMqJRm0jvptOKctz5x8OXPiXwhJcy2umTJJOoRmkgJwAc8Z/wA8VrTfEnxeODhCPSEf4V7uUB9KrTafZz8S20T56hkBrPQu0TwST4meLc/8fhX6IP8ACrXh3xtquo+JrFtXunmihk3qCBx6/pmvXLnwboF1kPpsAz3Qbf5VjzfDTRt4mtRLBKvKsrZAP0NGguWPQ4r4nppsepTXOn3HnC7wx6YXuQMde1eYO5DZBINena/8O/FV7OSkVvLGgwuyUDj6GuXm+HHiqIndpchx3Ug/yp7jcJHLSTO5G92YD1OaZuXk10MngnxBCv7zS7ge+w1Ufw3qKfftZFI9VNFieWXYxdxoJNah0O7B5hf8qP7Du/8Ani35UcrEZXJpQpJ4Faw0G9PSF/yqQeHb8/8ALB/yo5WBqaQdCttGkju7WK6u35EjMwMfsMHH512VjH8P7u0gNxpYjm2qX2SNycc9689Xw5qJ6QPj6VNH4c1Qn5Y5B9KdmClJbMseP7TSrfXUl0RFjspYgdig4Vxwev4H8a5VT3rpn8LapMAskchA9acngu9JwYno5WGr3Oft42nnSKNSzuwVQO5NfUOiacdL0OxsQRughVD9cc/rmvENP8JXtncpcRxkSIcqxPQ12lneeJogP37kD1Of50OLsNNpWsel7X6Dbx6k0pBH8IPrzXEW+reIsBiAw/2kFbFpq+pkYnsd3qUz/LFTysd32PMoru4TpnPsauxavdIOS4H1rqpfBdpyYppkP4N/hVZvCE6/6q7Qj/pohH+Na+73MORmTH4guEOS+R7itGPxQ7MCwXgAfKcVFN4b1Jc4ihkA/uuKpyaLeRD95p8o9SFNOwWN6PxUwx8zg+zVo2/ioEndcEccZXqa4R7ZVbBEkZ9xSeUQ3E350WZJ6SviO3nUCRYJPZgP615N43IPiRiAADEpAHbJNaIFwudrhse9ZXjM/wDE/wAdxbx/yoKTKmiWMWq3i2Er+Wk5AMv9wDnpXo8Xw80cxBbbUnBxyXUHNeXWd3JYN9qjzmPmuqsvGEzqpIByO46UXFdo6KX4c3S/8e13DJ7biKz7jwNrcGcWxkHqhBq5aeLcFSwPbOGxmtaHxgrHiR1HUA84ouPmXY4ufQdRtz++sZB65Qiqb2jRj5oXU+1eo2/i1GOGlUjHcYq2uqWN5u861tpMDPIBzS0HzI8hQyRHMc0sZ9RkVDqxLTkk5OBk+tewSad4eus+ZZKhPdDj8q8l12MJfTKgO0MQv0rvwKV5WObE7I596Yae/WozXezlQ0nFPimAbk1C9Qu+KlstI9u+HerafHoJt3voI5jMT5byAHGBzg13CsrqCrKwPQqa+VF3sjSZI5wDVmy1XULVh5F5NHj+45FeHVV5to9CDaij6lwOtJgV4HYeN/EduRt1KVwO0h3/AM66G1+JmsIMTwW8w9dpB/Q1nysvnPWu+OKTA44rz20+KMZAF3pzD/ajf+hFbVt8QNCnA3vNCf8AbTP8s0rD5kdTjHGKTHNZkHiXRrjHl6lb5PZm2n9a0I54Z1zDNG4PPyOD/KgOZDsZ7CmtCrDaVX8s1IQOvFHPPFBRUfTrOQHdbRE/7gqCTQ9PlwDaxjH91cVpZo7Z70XYXZjjw5p4ztiIz/tU4aFZIoHk8dsseK1iORxRjmi7AzP7FsVGfsyGnjTLNFAW0iB/3BV/HPvRii7C5UFjbLnFvFj/AHBThawjpBGB1HyCrGCOoFIVB6jIpBcjWOLqqJ+AFKEAX7oFKI0UcDHPakEXBAY47UANCKOBkewpWXjg8/SlKvkYP5ikAkBGf0oAyw6np+dPBzVH7DgfK7D8acsM6/8ALViPfmkBf5bGVBpoVQSQMfQ4qiY5+0rD6U7ZMP8AltJTAtmJZBh0Df7wB/nVaTRtPmHzWsOe5C4/lTNs4P8Ax8OPc07bM3W5PPqKfM+4rFSTwpprg7UdD/syf4ivMPGq48TzIP4Y0X9K9cEUuf8Aj4Y/SvJPGOG8UXHOfkQf+OirjJvcmSSKGnQXL2l29tCZXRVwgQtnJ9q0LTw5q8sQnOnybW9ENdB8Mo1eXUyzlcCPof8Aer0YWcfBy5991HPZiUU0eR/2bNBxNA6N7ginCAAY3Mp9xXrgiXo29h6E5FQS6Zp85PmWsZPqUA/lT9pEXszy3y5V+5Kp/GpEku4znB/CvQJvCmly8rEyn/Zcj+eaqP4LgI/dXMyfVQf6inzRfUXIzko9VuosElxWXqmtXTyuk0Nu57kx4rtJPB16n+quYpP97I/mK4HWk2XkgPUHBrvwW7szlxCslcx5Zd7E+Wo+lV2J9BUr1Ea7nc51YhZyP4aryycfcFWGqpN3rGbdtzWKRcstUUWD6c1vEQ0vmeaV+ccAYz6cV13hHw5pGrTzLfzSRAIChQgc5rz6IhDvwcg9a3tL16WzcGPjjHNeW5au516qzR6f/wAK109/+PXUwBjpIv8AhUE3w01CM/uJ4ZR/stj+dZFt42uJ3Lyqu4gA4GK3rbxaSMFnGfRulFw5u6MafwTrNsTmzkYDnIG7+VZ02jXdvzLbMvPdSK9CtvFwYqGmIHOcitVPEcEvyF4pl7E9/wADS0HdHjjWxHBRhSp5sJzHM6H27V6876NdH9/p8Bz3VQD+lV38O+G7k8RvET/db/Gk0h3Xc88t/EGuWwCw6lMR6F8j9a3NK8X69cXaW0sysrDlti5Fbk/w/wBNmGbe+KnsHXOKqxeC59HuVu/tEUkS8YUnPPHSlyoDlJvH/iBJWUXvAYj/AFa9PyrodJ+JVvbWKLrTTPMTnfGi4x79PSvNZuZ3/wB4/wA6J1K2kbtCZFZtq8d6TgugJ6nt9n438P3gGy/EZPaRStbEGo2V0MwXcEmf7rg18+wWcoGTE6irSxOnIkZTU8jRXMfQHUcH8aXpya8Lg1HUrYfuNQmT2DkVt2PivX0O1royY/vgNS5WPmPWcgde9G4dDXnSfEC/hJW4sonI6lcj/Gr0HxGszj7TZzR+pRgf8KVmPmO3yPwowK5228aaFc4zdtEfSRSP5Vpxaxps4/dX9s3sJBSC6L230/Ojb9aaHVxlXBHqDml6nOKB3MHzMcbhmpA49RXnaN4lsf4mnQf3utW4vFN/bkJdWT5HU7c4/KhxYXfY7sSA56U4EegNcnb+MLGSTY+UY9iK1YtbsZjgToPrxSs0HMjW2xseVwaUxL/C2KgjuYpBlJFOe4NSiQdCeKVxjjEdvykZxXi/it93iW6PoFH/AI6K9nLDB5HTvXiHiN86/dexH/oIrSDJnsdT8NxIf7RMbbT+7B46/ervvPnRuxx71xHwrP7rVM/3o/8A2avRcITyoqZPUILQrpfZPzIykDr1oNwJOuCPrU7RROeRTTbRHjJpFD45VAA5x7c1MsiN3/WqwtUXG3g/XFBt8465+tIC2GPQY/OvEPEH/IQn/wB8/wA69l/eQ5JyQOv0rynW9Lae6lliuraQFicLKM16eXbyOPGbI5J6iarE0LIxBxx6Gq7ZHavSZxohaoZIy3QZqc0+HaZB71hNGsWiwnhTVJNDS/hgeRJGPyojE8HHpj9aow6ddRPiSJ1PcMpFe9eB2B8L20YIyhYEDsc5rekt4phiaJHH+2oP868iUkpO6PRiouKPALfTrlArNA4U85x1rQjhcEDawr2/yYwgQRgL0wBwKrSaTYS/6y0hbnklAD+mKaqR7EumeRqGToxH1qVJJ1GQ2cV6TP4X0uXnySn+65/rmqE/ge3fJhuHU+65/lVc0GRyM4xL65Q5+b8DVuLXbmIjMjZHPNa8vg6/iJMLxy+wbB/I1mzaLfRttltXBHqhp2vsKz7FxPFMrEs5Usep6Vo2et/bn8g5yRnrnpXKyWRTh4SPWr+gxImpgjd/q24P0o5WI4FzmVv94/zrq/Atxbw6i5uIo5Bj5RKAQPpmuRPLk+5qwBdRw+dbKSd2DipuV10PcVvdNu1Cy2Vuy/7gqKXQ/Dd0MtbeWf8AYYivJbPWrtT99gR2rct/EV0oAMjEe9Fw5pI66fwHpMxPkXkiMezAH/Cqr+AbiBM2l3C/1yCazo/FUrlfM2kKMA4xVyHxMc9x9Go5gbM268J61ExItzID1KEGsy80q+TCvZugAx8yEV3EHidSoAmIP+0K04NfjZNzSxuf7vei6BNHkptNq/NEQfaq7wjdwzrXsjXOmXI/0izhfPcqDVWTRPDtySTbmLP91iKGojv5nlVvcXls26C9dCP7rEVrQ+LtfthgXhlHo4Dfzrs5fBOjXGfJunQ/7WDWbP8ADqYc213E/wBcqaXIgNgFMjao+lI8CySB8gAAqVxkNUgAweMUuB/k1zm5mahodle/egXjvjn8Ky/+EXt0bEU00RznB6fnzXT4yOCAeo5pQNwIYDng+9VzMDlH0G/jyYrtH75CEfqDTDJq1oceYWwM4V8/oa7AqoXsM1Wl0/z0YrKyMeM9f50+YVkzm08SXiIFnIVs7SrIc/mOK8+8RyD/AISC8wf4h/IV6Nf+GNUlVRbXluu3/pmVyPfk1z1/4B1W+vJrl0jRpWzgPu7CqVkS4PoSfDjVILK31BZWwXdMHGexr0GLV7ObG25jz/vYrgrHwNqemKxh1OON36hYycfmadP4a1gOSmoeaxPH+j4H6VLimwUZLY9HWdHGUcMD0wakR1PQ5rzm1tdTtIE8+FvMBIJimxn04P4Vcg1TUImI2Xkaj/npHu/lU8vYfvdjvNxx70u7/ark4/EMsZIbyssM/MDGf1q1F4iUg7oXKqeShDYo5WO/c6NG968P12MLqVxgYG84/OvWk8QWLYDSlD/tLivJtcbdfyn1Y16GXr3pXOTFS0VjEdRULICO9TvURr0ZJHJG5CYxjqamt4E3jrUZOantvvismkaJs9v8FW6ReGbZlABYsSR9cV0gHH3ua5/wgwHhiz45w3/oRrf81c14s37zPRj8KHcjnIoyM8mkDD1z3pQwzUjDaCKTbwaC/wAwAIz7+lGTnpnNAC89KQ8njP4GmsSD90/gaMr1596dwsIyI+Q6Fh3DDP8AOs++tLaOBpo4IkcA/Mq4P6VpZHrVHVSF06U5PQ/yNVGTuTLY8DxzW5a6Fq2oaJHNpkEzgzMHZQMYH4/0rFPSvXfh2P8Aiko+es0nT61bdkTFJvU5O38CassYc+WXIyVLgEfnUreHdTtF/eWchHqFyP0r08KeTnP1pwG3+AfUUKr5DdNHkjWexsSQsDTDAnZyp969ckiikGHUN/vAN/OqM2jadcE77WE/QbT+lP2kWT7NnmQhlU/JID+NPD3MYyQT9K7qbwnYSD5BLGf9lgw/WqM3hBgD5N4R6B0I/lmneL6i5GcsupTRkfeFWo9fnTgyHHvWhN4X1NPuLHKP9lhms+60m8h/1tjIMd9pp8vYmzLtv4ndGYkIwIxyOlXYvEw4ySPo1cq1sgyDG6H6VCIACcSnn1pcrA9IweuCaXAPJpgNOzmuc6Bw6DnmnLjPBpnGfalGzvjigB2AeKd39qaoCAcZPrShhmgB3I70ZYEAdBSbsUobPtQMUNvyvOR1zSoFTICkA/3TikJPajf2xSAXylaIptUsxJ3OM45zUT6bBN94qG9QMCpQ3PJpQTz+YoApPokU+UE5wPu5TOPp61Avh6FS5kUzHGDlQv8AL+dawZh060hkOQTTuwMW50RIAzLFiP08wsa8y1k/6ZJ9TXskrsYyFUkgHHNeY6pomsBnzo5mYk4dHz+ld2CrQg3zM5sTSnUS5Vc5CTioSeDWnPoeuqSX0a6A/wBlCapS6bqMQPmWFymOuYzXa68JbMwWHqreJVzzUsD4kH1qsweNiJEZD7inxbiw2gt9BUOpHuP2cluj3Dwpe248P2cbSruAOVzyOTXQLPG1eCDUtWiVEhgBjQYB5yfrWhb+K9TtYx5ouI3J9TjFeXOF5No6oyaWx7aJA2PmOKaqtuz50mPSvKbXxxdKctcEZ5w61vWPjK4mOMRy4/u8Go5WilPyO93Nxh6crEH5vmrl4vE8f/LaN0z3xkVfh1u0lAAnXd6Hj+dKzQ+ZGyZQAxCZbHGeM/jT0kBQEgA45HpWfFdRzorJLkMMj6VMJQAcNnHFJO4y0Rk8EZ7Vn6wD/Z0hzng/yNOmWSUjy53j9SuDWdqEU8NlM0l28y7G+UqB2NVHcJLQ8WJOOfSvVvAcsqeE4QikjzX/AJ15MWO2vUPBNlNN4Xt3S8kiUu/yr2+atJbEQWp2iSu20eWw96kMig8kjPrWZFpmPv3szY96lGnLtH7+Y/Vqy0NLF5ZVI+Vg2fekaRQASD169aqCwiB+9ICB60/7O44RwPwoET+ZEx4kA/GnlCej59Kpvbygk4Rj9BTow4X5kxj0NFgLBVh1wRRsI55H+6cVF5xAPtSif1Bz60ANltYZQRLEj567kB/pVGXQNOmX5rRB/uErWl5wP8WKFbjqCKpTkuorI//Z", "path": "images/4pts_ADE_train_00002041.jpg" }
depth_point_57
images/5pts_ADE_train_00001400.jpg
ADE_train_00001400.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 149 y = 154),Point B is located at (x = 48 y = 156),Point C is located at (x = 309 y = 126),Point D is located at (x = 11 y = 221),Point E is located at (x = 173 y = 159).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_25><DEPTH_74><DEPTH_49><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_59><DEPTH_31><DEPTH_36><DEPTH_44><DEPTH_64><DEPTH_49><DEPTH_3><DEPTH_59><DEPTH_59><DEPTH_70><DEPTH_70><DEPTH_3><DEPTH_29><DEPTH_64><DEPTH_64><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_5><DEPTH_17><DEPTH_59><DEPTH_59><DEPTH_49><DEPTH_64><DEPTH_36><DEPTH_31><DEPTH_31><DEPTH_59><DEPTH_30><DEPTH_62><DEPTH_5><DEPTH_59><DEPTH_49><DEPTH_36><DEPTH_64><DEPTH_31><DEPTH_3><DEPTH_59><DEPTH_11><DEPTH_54><DEPTH_20><DEPTH_59><DEPTH_49><DEPTH_64><DEPTH_64><DEPTH_49><DEPTH_31><DEPTH_59><DEPTH_70><DEPTH_54><DEPTH_67><DEPTH_59><DEPTH_49><DEPTH_64><DEPTH_58><DEPTH_49><DEPTH_3><DEPTH_43><DEPTH_17><DEPTH_48><DEPTH_17><DEPTH_31><DEPTH_49><DEPTH_64><DEPTH_44><DEPTH_29><DEPTH_5><DEPTH_61><DEPTH_75><DEPTH_71><DEPTH_22><DEPTH_67><DEPTH_49><DEPTH_64><DEPTH_72><DEPTH_70><DEPTH_17><DEPTH_85><DEPTH_119><DEPTH_47><DEPTH_7><DEPTH_5><DEPTH_67><DEPTH_36><DEPTH_25><DEPTH_38><DEPTH_63><DEPTH_15><DEPTH_18><DEPTH_32><DEPTH_80><DEPTH_2><DEPTH_63><DEPTH_45><DEPTH_END><DEPTH_END>. Since point E has a higher pixel value on the depth map, the answer is that point E is closer to the camera.
E
long
5
[ "A", "B", "C", "D", "E" ]
<DEPTH_START><DEPTH_25><DEPTH_74><DEPTH_49><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_59><DEPTH_31><DEPTH_36><DEPTH_44><DEPTH_64><DEPTH_49><DEPTH_3><DEPTH_59><DEPTH_59><DEPTH_70><DEPTH_70><DEPTH_3><DEPTH_29><DEPTH_64><DEPTH_64><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_5><DEPTH_17><DEPTH_59><DEPTH_59><DEPTH_49><DEPTH_64><DEPTH_36><DEPTH_31><DEPTH_31><DEPTH_59><DEPTH_30><DEPTH_62><DEPTH_5><DEPTH_59><DEPTH_49><DEPTH_36><DEPTH_64><DEPTH_31><DEPTH_3><DEPTH_59><DEPTH_11><DEPTH_54><DEPTH_20><DEPTH_59><DEPTH_49><DEPTH_64><DEPTH_64><DEPTH_49><DEPTH_31><DEPTH_59><DEPTH_70><DEPTH_54><DEPTH_67><DEPTH_59><DEPTH_49><DEPTH_64><DEPTH_58><DEPTH_49><DEPTH_3><DEPTH_43><DEPTH_17><DEPTH_48><DEPTH_17><DEPTH_31><DEPTH_49><DEPTH_64><DEPTH_44><DEPTH_29><DEPTH_5><DEPTH_61><DEPTH_75><DEPTH_71><DEPTH_22><DEPTH_67><DEPTH_49><DEPTH_64><DEPTH_72><DEPTH_70><DEPTH_17><DEPTH_85><DEPTH_119><DEPTH_47><DEPTH_7><DEPTH_5><DEPTH_67><DEPTH_36><DEPTH_25><DEPTH_38><DEPTH_63><DEPTH_15><DEPTH_18><DEPTH_32><DEPTH_80><DEPTH_2><DEPTH_63><DEPTH_45><DEPTH_END>
149
154
48
156
309
126
11
221
173
159
5
31
53
77
124
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCpN8ZvFsd00UQ09gHKgfZySeT/ALVRj44eLOfl004/6d2/+Kq74sfwiySDJi1OJj5U1uyxsrdiVXOefWuV1fWrTXYEN3a2FtcqBuuLeIrJMRxk89+p4/GrcbCubw+N/is9ItN/C3b/AOKqRvjR4t27wmngYz/x7N/8VXAWytJOIooyzZx8qEk/hXd6b4Et9RsMX89xYOFz5srKi89sNihU29hOViI/GzxcO+n/APgOf/iqB8bPFx76f/4Dn/4quJ1rSxpOpS2yXdvdRgnZLBKrgj3wTg+1Z4znioasUejf8Lr8XtkBtPHv9mJ/9mpj/GnxjjCz2Q+lsP8AGvPm4XjrTXORQB6APjL40I/4+7P/AMBVpT8ZPGn/AD+Wg+lqtcEigx55zSkYoA7wfGLxoel7bfhapQfjF4z7X8H/AICp/hXJ6FBHda9YW8wBiknRXBOAVzzn8K6PxmNCmjhufD9skFp8ysvO/cD/ABZ/Smotq4r62Jv+FxeNR/zELf8A8BU/wpT8YPGoGf7Sg/8AARP8K4MsM4qRRlTmkM7RvjB41B/5CcX/AICx/wCFR/8AC3fGv/QWX/wGj/wrizgmmDrQB2p+LfjYn/kMAD2t4/8ACkPxY8anprRH0gj/APia48oNobsDzTDjHvQB2Q+K3jYn/kON/wB+I/8A4mnP8UPGTcjXphj0ijH/ALLXGJ3p33aAOs/4Wb41z/yME+P+ucf/AMTSf8LM8af9DBc/98R//E1yWctSqPn+Y8UAdU/xL8Zbv+Rguh9FT/Cmf8LM8Z9vEN1/3yn/AMTXLSffptAHWH4keM3AJ8Q3f4bR/Jajb4ieMMn/AIqK/wCv98f4Vza/dpjdTQB0f/CwPF5PPiPUf+/tK3j3xfg/8VHqP/f41zYGTUj4xx6UAb48eeLiv/Ixajn/AK7mj/hOfFp6+IdTx/18NXOqeeeldT4atrRo5Jb9I/ssYzIXPT6HrmgCtJ428U7ufEWqc9R9qYUx/GXig/8AMxapx/09Pz+tZ2rm0fVZ2sA4tC37reMNtx3/AFqtjdxQBr/8Jp4p6HxDqeO3+lP/AI00+MPErNltf1M/9vb/AONYzjawFJQBsDxZ4iDE/wBu6lg/9Pb/AONKPFviLORr2p/+BT/41jZxRQBsDxR4gPLa7qPPc3T/AONA17W2BzreonjtdP8A41JoniSTRbeaFNOsLhJhhzPEWZh6Zzx+FR3l/pl6GdNNa0lPP7mXcmfo3P60wIW1/W1bb/bOoH/t6k/xrqNB0zxHqsbT3Wu38FqjYyl0zs574APA964hHKPvH3gcg56Ve/tu++zPB53ysu3IUAgegNOLV9RO/Qvanq17BeSQ2euahNCmQHa4cZI69+aNH1jVJNZsEfU71la4jBBuHwRuHHWsZMCH161b0Rh/bunc/wDL1F/6GKkZJqEXl3s52ycyvyeR9496pMecj7x9O9ezaR4Z0zQ5r2bV5rN98paGWY7GCnOQRnn2rG1eH4bRqXinvDOcn/RMuuffdx+tbSp6XuQpa2PO7Sa/tGLWk1xCWGD5TkZ/KnXCySKz3l0/mH/nqxfP610djbxSzGR8xWQIKNcMsPHbPP8ALNb8niLwhY2wt7sRago/5YW1sGXP++4A/nVckbbhzO55W2M8Hv8AnQpAOTWlrt5pl7qck+k6c9hbsc+S0gfB9sAY+nNZlc5ZISpHTFRnpRz60UASI+1QKUtn2/CowcGlzu4oAsW03lTCRcgqDgj34/rUrXOUZeQG7ZqoAWAA+lSFTjmmpNCsQ4+fpUucLxUZbB6Um/2pDHsfXFRDGeacTmlCe9ADtwPIqNuWJp2zjrTTwcUAGSBxRk0lFACr1p5z2pi/eFOL4Y8UAI+Og7E00dT9KUjHPrSUAPzhKYead/BTaAFBxTywK8VHS7TjODigB6AZyalkundBGciIdFB7+tRxI8hCohY+gHNO2EHDqQR1B4IoAjbrml3Y5B5phOaSgAYljk9aB0/GiigAzRRRQBf0zRNS1YubKymmjj++6L8q8dMnAz7VNdacbTbFPHNC/wD00TH/ANaq9hqupWGRZ39zbqOixykL+XStmHxRLc27x6tI93IxypMS4A9yMEmqXLYTuYDxIozvH0xzURUAAj6it+wm0FWMt3A5kJyqcsg9OpB/CnW+sW1hqT381jaXjkjaCm1YgOAFXp/Oiy7gZ8WjX7aebpoTHAATubgkeoHen6SkC69p4Us+LmLqMc7xXRXHjHT7+0kU6fLbTkEJLG+VU+prnNKleXxDYO7s5N3Fyf8AfFOXKtgV+pJqKXTX9xcyl3Xznw7MWx8xquWkcdAM+1ey2XhLS7a4d7gCSRpCwT7u7JJ+6Mlql1DwL4SWFppnfT5iCQPO6n/cOT+FbOla2pmp30PE/s00zBirk471PFo1zcozQmMlRlleQIT9M8GuqNtYWU5F1eJIiYw+1l49doBP51bPjLw1ZwNDHZzXynqixLHGf++sn9KHSglqx8z6HnEsex2HTHBFRgZ6Vra9f6fqV99o0/Sxp0ZGGiWUuCfXGBj8KylyGGK5maDgoXJppGKlYg8YqNiDQBNHAzJu6D1p0kSjgZx60kDjIOcgdRVqWMNF5kZyO4z0p9BE3hnTYdU8SWdjcBjDO+1tpwQPUe9ely/BaOzkuLvUdbA0yNdyGOL96w9DngfhXD/D9QfG1hk4Ctu/Q16BqXxGS88QXtjNIp0mQeVC2PuMvG8n0PP6VUY3Bux5Fqa2y38iWcTRwK2E3tliPU/4dqWKzaeAMo5+uOMVLrsRi1WcDGN2RjpjtigyCDT4kB+aXOfZRSVr6h6GeRzRSyctlaaCDUjHmNtu7t61Cw71Z3/Lj+GoH4FACJ1zTmUBeB1FAIBFLI+724oAiqQfd/Co6ctAA9NwAcDNOYg0w85FAEyjAwaiqUyl+WYk4xUZ68UAKvQ1rTWkI0GO5iO7e+1s/wAJ9Py5/GslPvc9K0YLjOm3dqx4O2Vc+o4P6H9KAF0SMtqMRU/MpyOcV7vaWmgalopfxJZ2bLGADcuoUjJwOR3PavDtAeOO9E0rBI0G5mPpVvXvE8+sMsIDRWUR/dR56/7R9/5U0Bla3bR2ev6jbQrthiuXSNc5woPAz9KqhA596kvrhru9e5f78hy3170wuE6Dn1FICORNj49qZTnfeAMYxTaAHbTim9KXJ9aSgDpPC/hDUPE5laD91bxDLSsPvH+6vqaNU8JappUrCa2LR/3kBP59/wBKwIZWhG5JHRgeCrEVrQazqsduSdXuAvQRuxkz+B4xVpxtqLXoZwiUybPm3+ldPbeAL+W0S6a5tyjjIRCSfx44/KnaV47utNQq1tbsDySI1DH9Ks6j8Qri7tZYY8J5qlc7Msme4z3qoqHUV5HH3sX2e8kt9ysYztLKcjPtU+ihm13T8KeLqLn/AIGKdavo4md7q2uTEI8JHDNzux94kjvTdEO/xFpwXcF+1xbQT23is35FG3ceL9ctdQu40mCAyMuzZt/i4JxyfxNZ8mqapffLLdSEHPCtsH6V3Vr4Lub26n+1xpLEZGcb1IYDPYjLf0qze/DFjCW0m6UOnWKclgfow6fjXT7KW7Zlzo85tDdWVylxBN5bBhyGPP19RVq+gu9ed7vbCsqKSyqgQN6nIGKsyPFpVyYNTtbmKZequnbt161LceNUtWC6PaR8D53uUzg+wBA/OhxppasLy6HHucOyZGR1wc00HFXdV1e71m5FxeMjSAYBSJU/kBmqNcrNQBwSaKUDNDALQAJw1WYZnjbGCYz94etWdJ0W/wBXlWOys5pyT1VeB+Ndv/wq64sLUXOrz7HxlbeHlvxPQU7MV0cRY3jafPLNC22R4mjVumAeCfyzVVncHgnArs/CXhqy1XxU9hdwkQNGRhG+Zf8AaB9a1b74N69FriW1rLDNp7/N9sdtvlr/ALS9c/TrRZhoeayyu+PMJLAAc9aHZpF68AYFdd4w8P2egRx2tkryFSRJcSjDSH2HRR7CtnQPB9v4i0GLCBLkLlZAcH6U1Ft2E5JI8zLEdaRSQfxq7q9kunX8lqs8cxjOGaPkA+mapDk4/Gk1YpO488c0wsSBmpCpK8fSoyuBSAM0Ek9aAuacyEckEelADKUHFJT1A6nmgBnWj1NOfAAwKQDp70AJ16UVOkeQQCAfQ1CepoATqRzU6ZQMSCTg8D0qxo2nR6rq1vZyXkNosrbfPm+6v1r2LxD4B03wx4OnjswZbiWM+bcScs3HQegoA8VMjKvl8rnnHrTSOTXonhHT7HUrL7Hqdotzb54IJDx56lWHI+nSptc+EmpQulzoTf2jZSuFAYbZIsnHzDuB3IosB5k3JGKafeun8Z6LD4e8R/2VAxcQQoGkP/LRyMs35k/lVey0gagpU5BA4f0oAwKK0dY0mXSJ0ilIJkXcpHcdKz1GRigBCaDjOKkEW5cgZNRsuG60AbmgT+HIVk/tq2vZXbhGiI2J6krnJrXl8O2Wo2Ul9o1w0sCNtJdGXacZxyMfrXHom/p1+lWopby0GxLia3Q88OV59cVaklo0Jq5LPbPbNiQEe+P8itGPwrq09mt2bRo4mGUJXlh6heuPfir/AIaudBsZmutS828um5xMCI198Z+Y/Wuqu/HumqixhT5ZGBhMhR+GK0jCL1ehLbWx5jPp9zbvteFlP+0MGp9AGzxJpo6/6XCP/HxXR614r0+8s5Eii/0jHyNjgE98Ef1rm/Drf8VNphIyTdw/+his5qK2HFt7nXah8SNV+1TwWkNtCEdkyQZOh9ztH4CsafX/ABBqjf6RqtyR/dDlV/IYrr7Fbq5v3i1LRdLvodzKN8AjkIzwdygZNb9x4M0afT3eLRUs5QMp5l0yIfqecflXRGEurM3KK0PIjakENNPuc9f4ialTTEuo1SEbJzwFdWAbnjnkD8cVpTabJaXT2/n6S82cKJLoyKfocBfwNZuoanrdqRbT3JgUjhLZlVCPbZUy5VuilcoappN/pkii9tZId3Clhw30NUFGWANPkkMhLOxdj3Y5NMUgHJrnfkaFlowgJ4qvJyxp5lPOSDmmOQWyM0gPS/hR42tvDkkunakFSyuJAy3GP9U5GOf9k8c9q9f16BLqx8xTvUjIZTkEHuK+WYXKKRXoXgr4hSaXGNH1N2k0xuEk6tb/AE/2fbt2q4tbMTXU6bwtZrB46yqkAxenvWnefE6O18bXWmzBG0mMiHzR95JB95vcZ4x7ZrI1DVV0M3erQuGf7ORAQQQzMcKf1z+BryKS7cuXZiWJJJJ6n1pppbiauekfEXy5YxLGQy53KRzmp4dW/sH4evLCwW4uUWCE9wWHLD6DP6VwNvrcs+m/2bcvmJf9S5GSvsak8Qam1zHp9lG37qzgAOOhdgCT/IfhT51dtC5dLGLNGq/MoBH8qgBxnORT2k3daQBeuO9ZsstRSKkJBA3MCB7e9VXGBil3A+1IzAjrSARPvVJIxbknPGKiBxSnn7vSgBtSIO5Pao+lHJGKAJZm3vux1poYZpTjjNMOM8UASp8rZqNwdxPqaGYbRyenNNzkUASwJ5j4wAvfmvZPDGtHXPhteabPIXutP+QFjktEwO3n25H4CvGFbbn3rofCurNpOr5kcrb3CGCb0CnofwODTQHe+C4ljtUbaBwOvpXXax48sPCUCo2bm8cZ+zRHkL6t/d46CvKz4s/sjTja2O17rG0yfeWP/E1xstzLcSvJKzO7HLM5ySfempJITR2HxClhvfFUV7E2+G5t0kV/UGmW1/DounC4cb3YERx5+8e34eprnEvy0ECXBJFurKg6ZBOcfmTVS7nkuZfMY9OAB0A9KTGOvbua+uGuLiQvK3U+g9B7VXUEtSHrk0A46UgLcVx5DFlRc4I+YZFVG5PHelLHGCeKSgDX0XVLDTXL3Wm/apP4X83Gz6DGM1oXeoeH9Qdn2XVtIw6ucgn6j/Cuct4HuJlijUszHAArV025n0S4csEU/wAX7kO30BYVpCT2Jkhk0VspPlTq3seK04PB+qXdiLoBIk7JISrH8DxV7TdX8NxStPdaastw5JaS4y/zZ/LH4V0EnxD0k7wYpvlOAAvBHtVpRfxMm7Wx55daTc2LETW7g+pPH6UuiZj8Q6czJtAu4if++xXZXHi/Q7hsETpnqwTOPw4/rWXFcaK+r2MsGyRzcxBVVWVgd469BUyhG2jGpPqh91471eGSa0sBBaJG7KXjTLvgnksaxptT1PU8td3kshfGQ7k5/CtWXQYby+mYW93AGkYszEEZz2Bq0PAOrNHv02eG4HXY+YW+g3cH8DVJT3YvdMGHTy+FBLE9QTgGtQaPapaudQmjiBXADEJj6Z59+lZd/Za9ocym8srm1IORuj+VvxAwfzptydR16B9SuHEiQYiLnAI4yB61XtFbYFF9yhqFtaQS4s7w3Kc5PllcfietUqlb5B60xSN4yM+1czNAVc07y8da6JNOtvIWS3cyAj72MY9sVi3yNG2NtXKDjuSpXIUTLAdATXTeHfBGu+IsNY2JFvnm5m+SMfj3/DNdh8HNE8O6sLuXUbSO51K2lDRpMcrsx1C9yDnrntXuGxREEVQqKPlVRgCpSG2eOw/DTzbc6Jdam8kmwvA+35InHbGeVOT/AErzDWvD+o6Fqzabf27Jcg4VQMiTPQqe4NfSRiH/AAkcbo3VWBGPTFRTaxoWo+I2sisEmraeuNzoNybhk7SfwzjpmtHC70I57bnhbfD/AFC30c3uof6NKV3rARlgMfxeh9q6t/haNY8N29/pEixXxiVngc/JKcdQf4T+ldh4rUvbOeDkE4B56Vs+H7mDTfBsF5cN5cMFqJJGPZQuT/KqlBIFK58yanp15pd49ne2729xGfmSQYP1qovSun8ceKLvxZrRuZkENtHlbaEAfKnqT3J71zDHBX2rFqzNBfLPUAkU0jBxXU+G9OtL/wA37dci2t4o2kaY9FArnbto2uJDEpWLcdgbrjtn3puNlcSd3YhRC5IXripTC6KTjgc0tkpa7jA7sK7TxXf6XcWv2PTIUja3x58qgfvWxzj2HT659qFG6uJuzOEJyeaeiE5xzxTD1NW9OmaCcSowVkBIJGakogmQoRmoT0rZ1+8h1G5huIYI7fMQV4oxhVYdcex4NZAHNAE0Nu8g3AZWoXXbIV6j1rR0++FrDPbOiuk4ADMOYznqPr0NUrgYlIoAW0tZr28htbaMyTTOEjQdWY8ACvePCXwnttHtDqGueXd34Xclv1ihPv8A3z9eK8EjJD5U4bsR2r3z4W+MLvWtKutJ1K4866tIw8cjfeePpgnuRxz7imlcTOVt/COk6tZOk6NbzrlVuYeTnP8AEOjD8j71yXiHwXq/h10NzB51tIcRXVuCyOew9m9j+tel6V+78wkjG8/jyas6p41tPDUGfkuLliCLPIOSOcn+79evpWvs043JcrOxwx8KJo91YWd3CklxLAZLpZBkBiQQv4Dj65rUuPhXFqVuZ9GuDFPyfs8xypPs1bOtzRajrllfxnfHNEXU9iDg8+/NdXp06W9p50jpGkY3MzMAFwOvtUqCcrD5tLnzvrWg6loV15GpWr27n7pIyrf7p71mf0rufid4ut/FOsWyWJJtLNGUORjzWJ5YD04AGa4aoe5Q/wAonpzSMpU4NamiiFNSga4IEIILlugFWvGF9peoaxFJpEJS2jgVD8uNz5OSB6cii2lxX1sVdBOqteCHSpXEjclAeG/A1p6pqF7Zy/Y9XtITPtDEEAHB6ZHY1X8JXcmn37X0du0xhUhVzgFiOMnsKdczWmoa3PqOvXj3E0z5dLdSMcYwCRwAOMD0qot9BOxmSXFpId3lyRHv82R+tNisLq6Ba3t5ZEAyXCHAFdvpt94Rs8SW9vb71/juUZ2/XNVrrxhp91uEltOoBOAh2g/gKpwT1bJUraJHGGFEyWky3oqn+ZqxpAb+27D/AK+Y/wD0IVr3Wo6RcscNIrHvLFnH4qc/pUFiLNdasPKk3jz48MrZ/iHYgEVLglsylK5ry+NntbycQ6dB5yyMvmuxY43HpnOKrz+OdbuM7Jlh90HP5mlutC0W6u5mt9cEE5kfMV3HgBs8gMua2LL4cxXtojW3iO1FwRkoVyv59f0rVOqyGoI5WW71G/kWSe4nkJP3pXOP1pY5Y7YSLcXUARxh1Ri5IHTOK0NX8Gavoc0b3ptZ0yCqi4GX/wCAnmuf1RXNwCbMWpxyEjKBvek21qxryIr/AOx7wbOSVh/EJEAH4Yqqv3hmk/rRjNYX6mhp2uovbS71+ZT95D/EKk1Ro7m3FzARsJxjup9DWTztz2FWDbzpamUxyCAsF37SFJ7DNVzNqwrK9y/o+pzaZKlxazNDcI+5XU4YV7x4H+Ilv4jVLC/ZINUA4A4Wf3X0PtXzguSQKu2kVxLPElsJGmLAosWS2e2Mc5oUugnE+l9f1SLRZH1KQjy4YZJGHrjGB+J4/Gvnh9cvG1dtUFwyXjSmbzFPIY8/lXouuaf4w1bwKINUhVbqE+YRu/ezRAZwwHAbgHrkgdBXkRyOtXKTWwoxPYdM8YweJdKNvLtTUI1PmJnAk4+8v9R2qr478T/Y/B+l6FbyESXMSS3GD0jH3V/Ej8lrhvDfh7UdUm+2QO1tbQPg3ZyAG/ur6t/LvitfxV4P1WPT4fEXmte2s0a+a4XBgIGACP7uBwR+NNycogopM4uWbeu3pjoahA3MB6nFOkG04JpuDnHc1je5Zba8bYYUOEyM4HUj1qvKwYDAwfSmtG8bhWBBzTSDkkim2+oD4pDG24cHHBpwncAgHrUVSNHtzmkAw4J4oDELgdaTp9amt7Se44iieQ9gqk0AM3jFM6dKszWU9uu6aJ41zjLLjmq3Y0AAdtwz0p0jb2Dd8c1Ys7Sa9lEUMe8n9Kn1fSn0mWKKRwzsuWAHQ+lOwFBW29K6TwRrh0PxZY3TNiF38mb/AHH4J/A4P4VzWD6V2ngfwFdeKJ2upy8Gkwt+8mxzIf7ie/qe1IDd1jxLHoP2iBE33m47FI+UZJ+bPf8ACvNrq+uby6luLiVpJZG3MzdTXeah4KGprJNZXBS+yd0c75WU5/vdm+vB9q4O8sbiwu5La5hkinjYqySLtINVJy6i0O78I6z5ulxw3D4/s/cNznhY2ORz9cisjxV40uNaH2G1do9ORvu9DKfU+3oKt6J4NMumW0t+8sUOowlk8s4ZQGwCQeDnris/xF4G1TQEFyyi509vuXcIJX6MOqn60XYWOZZywwaRSBnNDDBpUXecVIxTKfSmZJ604q4BO04+lNoAUEjoSPoau2hnupBG12kaAZLTnIA/Kp9F0OfWZJFgBOzBIAyTV6bRbrSJQ1xYEqG437hn2z649KqKbE2c5PNObuK2t7Nrm5lJVY4FJLH2ABzRCb99XXTJdPmt7s5zFKCrjjdyCB2rptQ1e1vIjp0cMemzyafPBbySuETzGeIkbzgDciOmTx8/JwTXM25Wz13SodQvo71Le2aNlgcOsIPmEIHXIbG4HIJxux2oaXNYLuxpzaVNDG7TywRledhkBb8hTNJ/5C9l/wBfEf8A6EKdN/ZkrHymkiH+0mR9OKNN8tdYswr7h58fP/AhRJJbAnc0rzWLe01G6RNPjZ/PcbnJP8R7VG/iXVGwsc5tohwFgAQfpya038N6fe6nct/bUcZeZyyNFyDuPGM1dh+HxuXMdjfWl4452AsjdPQgitEqj0RPunKmd7ucma53uxxvkY/zNbMdjLFYQTWdy96sxIlhiB2oy9jkEHPtSX/g27sVLXEVxbKP42QSIP8AgSniuk8N6hY6JptxpMcqXtvMwkjuUAV42KgMjKecZHVc1STvaQnboee6lN5s3NrBAV4PlDGT7/5FUoQGmRSQoJALHsPWr+sRNHfyhlK855HWs5eWAzj3rF7miPbtI+GOnaSkdzqP+mTDlUb7v1x0xWB8TY/J0qzRVVEM3yqowB8p6VN4W+IjxCKw1yQPDgIl2Ryo7B/UD16034tvEbHSzCytHJIzIynIYbRyPzrd8vJoZK/Nqc94C8Bz+MrqbbdR21rbkedIRubJzgKPw69K978PeEdE8MRBdOtczkYe5lO6R/x7fQYFfPvg3xZe+E7mWe2RJYZgqzQvwGAyRg9jyea998OeLNN8T2Xn2Mh85APNgf78Z9x6e9ZRihyk0XrkD7ZD3Jf+hrzvWPhVZTeKn1Mzrb6LIPNlgj4k8zPKL6AnnPau71Bwbi3x3kyPyNeRa78Sbo+LLgQSCbSom8lYT0O3gup7EnPtitHFacxMb62Ozv0iis0t4I44LWAbIoY/uoP6n1PXNdP4b2PoFsjBXjeHawYZBHI5HeuEj1iz1iwW4tpRIp+8p4ZD6Edq3P7ct/DPghNQnxxHtijz/rHOcD/H2rWaSWmxEW7+Z5r8UvCuleHdZhbTbgKLpTIbLqYRngg/3Tzge3pXA45BzyK0dT1S51e9lvb2ZpbmVizMT+g9APSs49DXG9zpPS/CvhGHxRburYV4+5/iFcX4n0q20fXrnT7W4M6wNsd8cb+4H06V1mneK28L6NLBZMBqE4G1jyIh/e9z6CuDumLzsxJYtyWJySf85rWo1ayM4Xu7k2hxiTW7RCqsDIOGGQea+gNQ0Lw9HoTS/wBnWxunh+RCPwzj0Ga+f9EuIrTVoribPlxncQBknHp71vXHjG9uNfGqSPzt8vysnaIv7gHp3+vNKFuXUpptnK3I23Mq+jEV6B8LpUgupriTy/KjUl/N5XA5Oa8+uH8y5lkxgO5Yfia39Bsdav8ASrq10y2Z4pGzKVcKXA/hGTyM9fyqItJ6javodN8SNas9esbG+09QlvudNgA4YcHP8x7EV5uOoq3LPL5T2rEhN2Sp7MOPz7VXX5T9OaUnd3GlY9D+G17pUjvpuoRCOc5aCUD/AFjY+4ff0P4VjePYymoWxOMsrEn8RXPJP5IVo2ZXUhlK9Qa1/FOpprFrpV4CvneW6TKP4XBH8+tXzXjYlL3rmBwRyM/0r6G+H3iq38Q+H/sMdpFZy2CKjxQ8IQc4IHboc188qQo4FdV8P9c/sXxdbs8hW2uQbeYZ4w33T+DY/Opi7MJI7sZEk6jj943b3NWruw0fxDbxWuvIV8oDy72M4kiHoT3Uj16Vj397HYm6lmcRIkr7iT/tNx7n2rhtY8T3GpboI3aO1z9zPLj3/wAK6JSio2Zkk3LQ9l16S1ka0NlsNsq7YdnTYAMY9sAVLpt79jBEgDwSKRJG4yG/CuD8J619u8PQQSPmSycxEnuh5X+o/CpvEfjSHSIfs1psnvgMYPKxf73v7VMXHfoVrsZnxV0DQ9IutPu9GDRC+8xmgB+RNuOVHUcnp7V5/Dw9T6hqV3qk/n3k7yydtx4H0Haq8RAfJOKwerNVseoeA/DOm61YFb1Pn3EI/r7GvPfECW8fiLUYrRQtvFcPHGB/dU4/pVqPxRqFtp5srGY28TffZOGJ+vYfSsVjkk5zVzkmkkTFWud/8NbqCwa6vLmVYYYuXkboBg1m+L/EFx408SpJYwyeTHH5UEY4JAySx9M8nn0Armbe68qIxSRiWJm3FGY4yO+K0LTVVjkVfKwhP+riHl5/EDJqU9LD8zKudJmvCiTCRWTOATjr7H6VatvBGoxlbiO0umA6EpgHP1Arqo/FcemmMWUUdmu0MrLAJHfP95ycj8PWpL3xeJVMUlzNHOoG52XcCcDpzx+VTCUJO39M6sRhKlGHO2nsmle6bV0npbVJ7N/ec8/hfVIbd5J0ihCjO15BuP0AzVHSxjV7QNnPnp/6EKnvL6S4kfdetNuHJYE4qLS1A1W0IZT+/Tof9oVUrdDlV+puXupaTaaldFbCW6lWdxmd8L949AP8alTxveWxUWdpBaqOyA/4irF74Ysm1S4aXUZY907kjyc9z0Ofp2qxB4Qt7hjHZ6sskgGdkkR/+t/Wtf3nQh8tzC1DxfrGqfLd3srKOiKdo/Ss+4ee1I2yQsJBncjbs/n/AIV0F/4Uu7ORt8EUm0ZPlOM/98ttNZQs4pZhG8YD91CsG/IZz+FS1PqNNIyJJ5HwJHLj37VXncpBI69VQkcdDitXVdKfTirSHAc8KVKnH0PNZFx/x6zf9c2/lWbTW5aJ7zStTs7GW5GrWU0sNpBdzW0YbzI4phGVJ3IFP+tQEKxxn61ZlvriWzitJJGeCFi0aMchCcZx6Zp2reLNOvNAls4omklmsbK2xJp8MZheFIlZxOrF3B8tgAQOH9gK9F8XeBtE8MeFJpoGlur1NiG4kbAyWA4UcDjIpxi3sJtI8yDuOFPFW9O1W90q8iu7KZ4biM/K6H9KqKjSOEjDMzHACjJPpxXqng/4STTpHqPiQPbwYylkDiST/eP8I/Wkk+gNq2pYfxxqOveCr+4isJY76CPa8yIfLIIwzKexAydv415Gx5Jxx2r6V1BIrOyihtLeKG3hcKkKJhAuDxj0PevH9c8A348UJaaRbNJZ3g821bsq9wx7bTkEntitakZJK5EJR2Rzmgz6muqRLpqu08nylAMqy993bHvW944uNYmi01Lq38vT1hJtthyjschyPfPAB5ArqbTSbLw7ZG0s2WaZx/pN33lI/hX0QHt36mu707RtP8Q+DIdL1GIPFIhwRwyPk4ZfQim4SUNxc65j5q96Q4wc9K6Lxb4Pv/CerNaThnt3y0FyB8si/wBCO4rGsUWTUrWN/uvMgP0zWNuhqQF2dtz5JPJzTMlk4Ne+f8K+0nxVYiSYG3uU+XzIlAPtn17V5f408NR+GblbQSLJIGKllOQQAD+fNVKDiyYyTOOi0xtZ17TNOUP/AKRNsYxruYLkbiB3wMn8KW/0f+xfFFzZLFcRReUssSXIxIqOquofgfMA2DwOQeKjee7t5/8AQ7fzppopLfhCxUSAKduO5BI/E12ngnwZqWtXxt/EulalptrY6W6W9y1q8RdvODKpLjDHDuMccAelSlcbZyJBJwT+NdKuuHwtpFmJRMEvEdWRUBICkZ6kYOSKp3LN4c8Ryi1WF3gb5PPjEi8gdj1rtdWnutS1Hwfqjyzi/vdJ1R2ktI/3m/7K+CigjL88cjJA5pDR5td67HrWqTXH73c6qWaQAZwAvY1Exz0pbuO9TxBMNQm1SWXyAQ+qQtFMRkfwlm4645oUA9c9aAFUNwcHHbHermpaXeaULdL2FoWnj85I2+8FJIyR2zjpXuHg/wAC6PFDHrEojuWUfuIiPlTHQn1bvXAfFlQfFFucYJt8nnvuarcLK5Kkm7HAc+9XdJ0u81nUYdPsYjJczNtQdAOM5J7AY61Pp2kS6wJYrQg3ca71gx80qj7231I649M4r2/4deDl8MaP9vvkxqd6vII5ii6hfqeCfwHakotjbseXa3oerX9l9vjdrpYUDXMCj54WP3mx/EpOea43bzgce1esm8m07U/Ngfy5UkIDL14JyMelO1jwVZ+MLOXVNCRLTVoxm5sukcv+0npmrnDqiYz1szh/B9rcXlxfW9vdNbF7fPmAZ24Yf/X96o61oV/olwIryFgr8xyjlJB6hu/8/Wus8DWwtYridxh3O1fop5/XNdufsl1bPY6jardWMpy0T9j/AHl/un3pqm5ITnqeDVJDBJcOEjXc2M4+ldb438Gx+HBBf2d6LnT7tykQfiVGAyQw78Y5/TmsXRYhKWYLkqeo7Vnyu9i76XMl0ZGZGBDDqCKT6V7hpXhzQ/EOmrb6tbjztoVLiM7W9hmvI/Eem22jeIb3TrS7+1Q28mwS7cZPcdex4z7USg4ijLmRVsLC61G6jt7SF5ZZCVVVHU4zj9KuxadrOl6gUFjcRXQyBmI5H0NekeB7CBfCRZrie0RlaSSWJ9h9yT6YrgtT1K0j1O4ms7y9nVXAhkuPm3DHzMTkEc4x7VXJZXYKV2WLXw1rVyodoIEA+55mMr9PQ1LceA9X8supEjtyQuf8MUtj46ubZBHKgYd3A+Y/nTbjx3fXKn97LG/bPzDFEadJNyRrUxOIqRUJybS2/r8PTQzpPCurW8Rkmt0iA/vyKDSafphTU7UvPFxMn3Tu/iFVp9UuLos0s7yMeOTjH4U3THf+1bQBjzOmef8AaFS+XoZq5o3d/bJrNyLoXUyfaJNyiTA++egrRg8YWtgMafo5OOjTTscn3AFF34RurzUbyVLmALJO5+YlSPmPtWzbfDRZbQONQVZCBncu5V+pUmtYKpbQl8t9Tm9a8baprsHk3aWwj6riP5l+jE5r0T4Yarp2n6N/Zt8IoNXkkMsXmqFMkTgFWVu/fvXK3PgXUbN2YNDPEDgMpEi/jjBX8RVPUw62FpFqtsVitVMcM0EmQqk5x69ScA9KPe3kDSasix8SoGOqLKc/MTnJz2//AF1wRAJKnGDwcjPatrUdYeeEWz3Ml0ijCNMPnX0571n2Y4mZF3TKoKAjPfk/Wsa9RK8kdODw7rVFSv3/AAV9F1emi6s9v8PWPg/W/DVlNF4f0Vrp4V+0AWMJZHHB/h+pqh8UZdvhN1wq754xgfnXl1vqV7ppjvIJ5La73EBl+Usvv6/Q1ra/41l8Q+HUsbuALdJMshkT7rgA547HmtKNeMqbutScXhXh6yindWT1Vnqr6rWzND4U6rpuk+J5JdT8lQ0DCGWX+B8joexIzz7V7i10Z1E29WU8qVORj2r5XjkEY4xk966Lw9431XQGMUcvnWZ5MEhJA9Sp7GnTnGO5zVIt7Htmtyk2wHGDKOn0rlLvx/DpUsmhzKVjwd0y87WP8JHp3OPWor3xrpmo+HZr6Bz5sC72tmPzgngfhkjkV5FPdTXE8k8rFpJGLMfUnrWtWolaxNOHc9VluVZF8t1ZGGQynII4rvdBvI7PwnBPMwVIo2kkc9gCSTXzxputXNhhMmSA/ejJ/UHsa6fxJ4skfwxp2i2qyxB4zLcMwKlhuJVfp3P4UnVTjcXs3ew/x14uHi2SGeNykEWQkDfw57n1J9a4y1bZqtof7syf+hCoTIRTkkCTpJ1CsGx9P/1Vzt3ZvbQ971bxYnhPR4zEFe8nJEUQP8PQsfTH8/xrybxlqUWotYywymQGNnYscsGJ5z78Vl6trN1q+pS3k7cuflQHhF7KKoM5f71XUmpExjbc2PCEcC+IrS5vcJbRuG3MDjOeP8+1dtdfEye48RsWymjgmMQ7fmx3k+vt6V5yriRIzHcLDsTa65wevUeuev5VDcyeZcO6cKTwB396wo15Xs0eli8HRp0o1IS106p3urtpLVWejT/zSt+Ipkn8R380bh0aYlWHQjA5rv8AU/AjeMPh94TmXUPsxtrdvl8nfu3lR/eGMbPfrXl+/PWvZvCmqa5eeCbCLT7K1Nvp4EbvNKd8zZ34QAYU4IGWyOR6Gic1Hc56GHnWb5bJLdt2X4/18rni9ro8VlBLOLxnnB8swmLA2/3g2fUYxjvUir82B3qa7Xbdy/LtG8kDOeCcj+dQA56cVSkpJNGVSnKnJwmrNaM7/wAN+N7vSb+z8+UmxSIQSwpyCOm/3Yfy4p/xWjil1PTr6FxJFLEQrqchhwwP6157uZSDuPB/GtW6l1Ofw9aNcQyGwhndLeZh1OMlB646/jWjndWMlGzuLo1z/Z+pW98ZWiaBxIjKeQR6V7t4X8bW/i62kfCxXkX+sgJ6L2YeoP6V85tIxOK09A1LUNM1u2n0wF7veESNRnzM8bCO4NKErMbjc6++mUapcszgeXK+STjjcazJ/GUtjct/ZbAOcq0pHVSOQB6Ed6yfElxcf21f20g8oLcOGQHPO455rHHFVOpfREqGt2ek6DNG9pBJAQUZeh7HPOfxq1q/iO30eMbn3zHlYV+99T6D61x3hgazJZXp0xEbaowZDjDf7PYnHrxWDd+f9olFyX88MRJ5md2ffNV7S0dA5Cxq2rXerT+bcvwPuxr91Pp/jWl4Y2+VcMxVVVgSSccVznHepo4rk2kjxpKbdCPNKg7Qe2ayjKzuW1pZHZ6p428mx+w6SSrEYa5x0/3Qf51xDcvknJPJJ70hOaSiUnJ6gklsb934jnl0G30e2ykIQeeQeZCO30/nVLSQYroTvbG4MakxoRld3QFvYdcd6oJvQb1yMnANdB4Rtrm/1OZRLtitreS6kOwOflHAGeMkkCle+4bFSDw3qN0oNvazSZ9sZ/HpVdtFvQ7IsZkZeoi+fH1I4FdFaeO7mKIJd2qyH/Zc4P4U298cXc8BjtWitYx0jWPFVaNhXfY5x9Nu4AGkt5EyO61Y0u3cataFsAedHwTz94U6bVZLg/vpXd8feJ6VY0m6tUv7U4YuZkHoB8w+p/lUu1yi7qmr+TrN6LdjFtuJBh33fxH8R+dTWviyeBsiSadgOBgDH49aluvCE8+vXcj3ERga5kJ2thh8x9a6CL4d6YYg39oyxvnBDqrj+YrZKfQzbicbdeLPEE0243UiKDhTHGAfx70eItW03VdM0p4Rcf2pDD5N48qgCXByrZz15IrrpfA6wwnyriGYqfvRtx+Kv/Rqfo3hL+0bzyFSPzoeS5OAuOmQQf59qbhJrULxWx51/Y1++mvqH2d1tk53sMA5OOPUVQUMCCDgjoRXrfj03tp4WNtdXSTAyqoKRhRjr/SvJATux2rKpBRdi4yvqh7EucuSx7k81vX3hDVtO8Mxa7ewfZ7eaQRwo/EjZBO7HYcd69G+FfgnSZtMi8R3rJeTl28qJh8kDKcZI7t39OlbfxKjOp+Fr9mA2wL5keTyMd/504U7rQmdW8tTwDGT0rU0Hw7qPiPUlsdOh3Pjc7twka/3mPYVf8F+H18T+IItLaYQhwXLn0Xkge9e3xaZpvhzTf7K0mPZGOZ5T96U47nvShBydhylY5vT/C+l6RaCwRTcxyLtubhl+ebg5x/dXk4H4mvJte0K40PV5rJ1Z0Dfunxw6n7p/EYr25mLFeejDHqev/16v2+k6brNxEb+NWW3UsMjO5fT8+fxroq0koqxlCb5tTx7w94Z8izj1rU4P3cjYsrd/wDlsR1kI/uL6dzjtmuwvvC48W+DoPK/5ClqjvA5PMvzHch+vUe9VPEN+97qs9xtwit5cKKPlSJeFUen/wBc1veFbl4NLtnyd8ZZgR/vGhUlyW6ic3zXR4bJE8btHIjK6HDKwwQe+aZGPmAbpkZr2P4naXpSwnWLVVE9zFudQO543fU/0rxwggdc1zNWZunc9J8YfDZ7a0GsaBFJLaFN81tgs0fqV9R7dRXCz6Pe2umLqFxGYoHYLGH4L5BOQPTivpbw9exx2UKykqsiBst0U4ryT4tXcc8luIIwkckzMqgY4Ax0/GtJwtciEro8+0u0jvNXs7aZmWKaZUYr1AJr1DV/gtMLKa80a9887d0Vs45Ptu/lXlunytFqFtJnGyVWz9DXvOo+PbXRb6LR5J8m44eXtbAjgt9f060oxTiOTalofP8APFJBO0UqFJEOGVhgg17P4G8N303gO1u7bWri0juvMNxEArhwGKjYTyhwOvPb0rznx3Gkfi+7RCrABOV6E7RXsfwqZbr4fWsR6xyTRfhvz/WsZ009GdFDEVKLvTe+90mvud0cf438C6Z4b0K4uYHe4lkAZXkPzqCR6YHfFeb6Naw3ms2VrcMUhmuEjdh1AJAr1/4mzpLouoRBw5h8qMjOSmQpA9uteLxOYpkkU4ZGDD6jmrcUrJGTnKbcpO7Z7Nb/AAXtLvUo5xeSxWSufMg25LY/hVvT3NUfi9DDa6XpdlaQpFa28xjijQcKNvP9a9Cfxjp2lR2kd1cqrXwUwDqRuAOT6DkV518XM/2dYEnrOSP++T1rRxsmzJS1R5haafNezFIEZ3xnaBkmvYPh94FbQbdvEWqIDdMmyzjPOzOQX+uOntmvM/DE/wBn163YnarEruzwP84r2+38XWXiKH7LbSBpbZR5oAwGz3X1FTCKdmVKVjzvW7O1vNUv4pYl2tK2WUYIb+9muK1LQL3TLhElQvFJzFMg+V19vf1Hauy1SbGt34HP75iR6c9K3fDmp6cqPDrSxGyhlWTdIceW3qP5EdxWtSCauRGTTKuk6b/YljZWDKFuvJ865BzkO+GwfooUfUGrGp+GtN8TweTKRa6ivywXQHDY6JJ6j0PUVWn1Jr/WrjUTyJWZxzwAen6AD8KtLKZCgDEMc/MOMYq1BONieZpnler6Lf6FevZajbtDOp4z0YeoPcV1Pw3nWOe/jlUSQSKnmRtyGGT2q18RPElrqmkadp8c0VxdW8jGeVRkgAYAz75JP0rN+Hm06jdBv+eanr6H/wCvWEElOxpJvludN4k+Fi3NudQ8PEZb5vspPDf7p7fQ15VLFJBM8MqFJEYq6t1UjqDXu914lg8PadIZ5U2bS0aMeS2OAB15NeESyPNK0khJdyWYnuScn9aKqSeg4NtanoXgiSCbwvcWc2jx6iDO3yM4Xqq9Sf6Vg3Ph28j1SaBNOubHdkiKWbOF+vGRUnhHW7bSLLUDcykcqyIBlnOCCAKrXmpX/jDX7SIP5R4iiG44jjGWLHHoMk/Sh8vKgV7s1E8CyFA8tyka45AAGPxNY1z4duFuXgsklvCv3jHGSB9W6U/TPE91poO5Fuxn5XlY7gPSr8vj7U5PkB8pRx8qjP50Pka0Bc19TBOkX6BibSVVU8krgUunwyLqFs2z/lqn/oQqe51uS8J86WR/diT+Xak06bzb+3OST5q5xgdxWbt0KVy7rGsXdtruoRh1AFzKMZPI3n0pg8SX6xhVlbnue30p+p6RdT69qMjQzLC13MPNEZZR85645FdFpHw5S7XdJqkWGHDxNyPqp6itIqb2E+Xqcnc6jqd637zUJWDfw7ioNdNpXiaXw3a211p8CNLLEsOoWwVv3nlk7JQw4yQ2D7it5vhhbI3y6ghZfbH5qT/KqWq6SfDVs0t3b+dDnmW0Oce5B5HXrT5ZLVsm8XoZXjPxbY+IdKt4rYTRTCTdJFIvTg9x1HNcIOWrR1HUZNTuhsjAUthFVBuP1IGSazm4cg8EcVnOTk7sqKSVkdr4M8cTeGLaezeLz7OeQSOqnDIQMEjPHPH5Cu31zxXpGt+DtTNjdq0htmJif5XGR6GvFR0qWG2muEmeJGZYU3yMBwi9Mk9ufzq41XFWJlTTdy3pOo3Gk3qX1pMYbiI5RwOhIwf0NeiaX8S7W6RINWiEMo+7PEMrn3XtXlSqQRk55p6K0jrGgLOxwqqMkn0FTGbjsVKKe57nFfwTJ50E8TxEZDqwIx71574n8a3F1qCx6bPLFawPlXU4LsO+fT0ra0PwWdMspE1h5lnu49r20b4EKEH72OC/fHauF17RbrQtWlsLn5sfNHIBxIh6MPYj+ta1ZycUZwgrmpa+JVuSy32A7HiQdCfcV0g8S2+h+GUf5ZLmRpFhQd/mPJ9hn8elebLCdhb0712EHhQ6t4Dh1OyUtfW7SB4/+esYYk4HqvX6ZpRqyasNwinc5641y+uknjnuZJVnIZwTnkHPHpWc33T9KEy5AVSSegApsmQaxvc1O18UeNpNRt4tNsZGjsolVXYcGZgB+gI/Gub1HWLzVY7ZbuTzDbqVRyPmIOOp79Kn1fw/c6Pb2d037y0vIlkilC4GSASp9x+vWsnaWyBziqlKTepKS6C98+lSzXU00jyyuZJGJZmY5JPvU+haRJrmtQabHOkTzEgO/QYBP9K1r/wN4j06SYS6dK8MIJM6coQB60uWVrod1c5+W4lupA8zl3ChdxPOAMD9AK91+DVxnwbNFx8t7IORwPkQ14I3WvcPge4Ph/UUxlvtfH4ov+FSM4/4oyT2njS8jSRhHdW0Jdc8Nx3H1X9K4PvXq3xh0C8k1RNajRWt0txHJg8rh2wf/Hq8usrabUL2GztlDTTOEQE4BJ96dmGhLJqM0zhpnaRgoQFjnAAwBn6AVqap4mm1nw7aWF4zPc2suVlP8abSBn3FVbTw5q15rC6THYzLeM20xsNpX3J9Peuq8ceF7Twr4d021hxLdGYtcXGOXbb0Hoo7D6mq96zJ0OEWQr0GPrV7S9autI1GK9hf5oz8ynoy9xUFrpN5qEcrWcTTeSoZ1HUZOK6LwX4Qk1zVmlv7d49Psx5twHG3fjon4n9M1KT6DdupDresxtqdxcW4fdKQ+GGNoIzz781z811PcvumkLt0APSuq8T20V3q14z4SQyHDAYA79u38uK5GS1mimeN0IZDhuK0qc3UUbdDodB1tra0mhnSSSOFC6lRkgZAI/Ws/Utfu78MisYYOyKev1PetbRLD7No0N1ICHu52CHoQkY/qzf+O1W1TQvOja5sVHmqC01uvUj++o/mPxp2k4k+7zHN54xV7TNXudIaWS12CSRdu5hnbz2qlsP1re8MabZ6nHewXg2r8pWUfeiPIyPUeo71nFNvQuTstTGuLy4u5zPcSvLKerO2TUJJY5NXtW0e80W+NrdpgkbkkXlZF7MD6VRIxSe+o0KpUH5s49q2dItDdTgW9wsDlSpw3z4PBx07e9WfDXhVvElncNBdpDdRSBVjlHyuCM9e3eq8EN74T8RAX1j/AKRGrqiSNhSWUqGDdxz1p2tq9hX7GpL4aVcLa2l1eOed6EKn4n/AGsSbR7nMm1VfaeTGwZV9i3TNbNr4yYQiO7tslRgFDkH6qaiPi26CYjuWi9o1CEfjjP5EVUlF7CV+pivouowwGaWzljjJ4aQbc/TPWk05mjv7UBv+WyA4/wB4VPc37Xe93kyW6tIxYn8TzUVjtOpWx5P75OvH8Q/GoduhR1d7r7af4gvjHsd1upclcq33zx2/Oqs3jLxFfTXhsrDSjaWrRRNNfTrE4Z1JVdzSIGJ2P0HQVU1XSrq98Sah5f70G7l+6wYr87dRnNZWoWtlawa5od3qlvZ3DXtlcI08cpDqsMwb7iMQQZV64q+aaRNlcup4r8UXlzd6ddSy2ksLBGghBUqecjkk9vWrEegXmoGIm8f5+JGuGbI56gdTx265rX8BSWWt63rl0FgksoIbOBTdQtudY4jGH3KfkJ2ZIyevtXUXWq6Fp9xDG93sgl3FWX97GSp5Ab644OauMXJXbJbSdkMsdE0XQrIyWOZbkJ888w+YfQdq8fZi7s56sS35mvY7m+trnTJ57WeOWNUYgxtnbx6dq8dCjAIp17JJIVO92bWheGNR8QavDYWMZIflpWzsjXuxP+c16B4u0rTvDvgObS9NyyCRPPnP3p3yOT7DsO1aHw/1bTf+ENh0+2mhh1FmZbhWbDPgnaffjHT3qh8QvNTw2yMMAyJjjqBRCCUXIJN3SPMtMsjf3kVsCA8rhFJ6ZPAr2/QvBOneCrJNUuEE+q9Ii4yIie4HqK8RsJPIuDIr7dnzBgehHSvU3+JFjr4giuWNrKoAYycoxxjg9uprOCV9S5XNBpTJN5rkly24k9SSea1J9L07xDoMiXyKZrP7rdGKHoM/XNYoJZlIIwcbSD1rivEPi24j1vbp9yyJbEqSnSQ98juO351vUkuXUxp7kev6fG2tC3ij2QQoqhR0A6/iea7zwWiW2iRpGCDHK5GDx1zXn9rrkOo3crz4S4mbPH3W4rufD9xBZaHJNcThI45HLOTwOlOny2uOd7m8fBGjGRtUs4Y7dHJabH8Dd8eg9BXhOuGOTW750QJGZ32qOijJrvrj4nSR3UlvaRb9PZhvDcM+M8j0Hsa83nbzJ3bP3mLfTJJrnqW2RrG/U938PWenaz4Ts9K1KIPb3NpGuSeUYKAGB7GuW8TeE7Pwd4c1CGIiaaSLaZ2+8QzAcDt16UkPim00nwjpweQS3JgUCIHnjuT2HFYWueNJNe0Ge3vQDeO6fOvRwCPyPArWbjuZRT2MTwW+zxhppPeXZ+YIr6Bn8QxW2iurbPtIUpGjY+f1bHcDPNfNulXg07VbW9KF/IlV9vTOD0q9e+IL681U6i0zJOD+72nhB6D2/nWcJRUbMuUW5XRkT7vPk8z72454xzXtvwQjZNB1CV/uSXahfqEGf6V45ql4uoXbXIiWIuq7lXpkDBP49a9c+B96G03UrI5zHcJKCemGUj/2Ws3uWdF8VgR4OuxtwuM9O+5f8a8D0eYWmvWFxjiO4jZvpuGa9t+Muo/ZfD8FsE3JdytGzbuVI2sPw4NeD52nd+NO+wW3PqewvbO0Ki48pZzlIHbAZyf4R3NeZfF8k2Nkx5JuCSfqpNcBqnijUNXvo7q4mYNFgwqh4ix0I961/EnilfEvhqzWdgL+CbEqjow2kbh/WtJTTvYhRasM+Hdw0HiJY1H+uiZMdiRzz+Rr2zV57aPw/FFaqqNK2ZB3G3sfxxXzhp+pS6XeRXVsds0ZJVjzjIxWpYeK7y11Y3lxNJOJOJld87h7e47VMZJKzG073NHXJD/a92qDq/4dBW74b0611mwe1nRWliYGJ2HY9ifTI/WuZ1m+tv7WmmjmDRSAMhH8QIBqpZ+J59MkkezRVLrsJcZ9DkD61pzpbkpM7Dxj5dlr0emQKBFY26QjH94gsx/M1jQXT2zJKCVmUblOelZEOqvf3Ms97MXuJSZHdz9761FcavGilYR5hz16Cj2iSDl1Ol8S6TYPosmuWipESgE0CngSNxuX2z2rB8IyFbi6XkgqDwM8c1l3OpXdzALeSY+QP+WanC9c/jzUui30en3EkkmcMMADqeazUlz3KafLY9HhtLPxFYLo2oHBLZtpx1jb0/8ArV5fq1jJpmrXVjIys9vIY2ZDkEj0roH8YLbtmxsVUhsq8j5Oe3SubvruS/v7i8lx5k8jSNjpknNFSSewQTS1Ol8FfaJFvorW6a3mBRw6qGOefWrupaRIb2FdR1IXM0wYIHYluO2CeOtcjYald6eZBazmHzRtdl64+tWNMu3tdSS/mjeZowzKWOcttO3OT0yQfwoU0lYfK76HUP4agjt8xeS0hOMSHA+mf/1Vz8vhy+aR1jgJ7/KCFH/Aj/8AXqSy8SXlqojPlzOBgSSZyPxq3NrhuICLySaXcP8AVo4RB9cdabcWhLmW5zUsDQM0ZPzr94A9Ks6VzqFsflH71OT1+8KluJLUlvLijQdQsYOP1punrnUrc9B5yf8AoQrIs3tW1bVYPEWpogilVbqUDzI1bA3nvWZLb6ZqN5LcapaW7zy4y0LSBhgYHyhsYwB0FSa5C914s1WOMtzezYA6n5z2q6NEV9PaeOaAPgCONPvsxOBjoSR6frSlVcNGr9Tsw2BeIV1JLVJb6t9NNl5v/O1DTrVrL7TFpkqQW820SOrOFfbnGSSSvU9xW3F4Qu7yyjjknEcIJkTZ8w3EDJ7dgOhqfS49T0LUx/a9oskGwr9pA3FfbcvOD71o6x4iY6dCNJgkkluXMUW2MksRjIUgDkbhwR3rpUVa7PPb10OK1jR7rQJgGu0JkXAEZZWI+npWKzc9K9CvfAkumeFr3V9fnk/tJkDRW4bJQ56se556dBXnu4ZxWU00UmmPV2HQkdxjtWg+s6pc2P8AZ73M9xB1WJyXxx2zyKsaH4W1HX7hYLKHczc7v4VHua9Hj8L6d4a0a6t4tlxemJhcXRHfH3E9B+ppwjKWwSkkeQjIT2z+tNOSeK3/AAzo0niGa406ADzDEZFPpjqf1rZsPh5NHD9o1FtqJIUEfeQjr+H86lRb2G2jJ8LT6pcXf9mW9yY4Z0fO7kJhScj07VhXVvLaXcttcRmOaJyjqfUGvX9M0+zsTKLaFQxQ7iByfqev/wCqq2r+Bz4rkW4tpY4LpCEmJ/iHQH64H6VrKm+UzU1c8qs7We9uhDAuWxuJPARRyWJ7AV01/pWpS+Dba+guZLixhldZY+6c/K59uMc9PxrofE+hWfhLR4dOsixnuGH2uUnJfaM7fYdCR649K3vh20MukLaToHhn8yN1YcHJqYw6DlLqeJ8nnJoPSu68UfDm+03XGj02BpLKQb0c9EXPOT7VxupWQstRntVk8wRttLepxWbi1uXcS4tri0KLcwSRswypcEbh7VDX0BP4Zs/GHhmHT5l8u4hjUxThcmI44PuD3HevFPEeg3HhvW59MuclojlHI++h6N+NVOHKKMroySM0pGR+OMV0Xgm0tL/xELS+jD28sDqwPbpyPQ17DL4E8P6NpSXr2q/abeLYrNzuz2PqfehQuric7Ox88E4BFesfA0k6jrCdP3cJ/wDHm/xryqUqLh8AKu84A6DmvTfgpJ/xPtSG4AfZlI98OB/WoLOr+NNqJPDVpKpyyXi9B/eRv/rV4Mzckdq+p/GVtFP4dug4DBV3cjoeRn6818vwW5lu44MgGR1QH6nFO2grkCkkhQM5OOK17/QJ9M0W1vrvMct2xMcXQiPHDH3Pp6V6j4J+G9hZyXOq6qY7u3jUiIMMBCOuRnrx+tc58SpvNED4wpkbav8AdGOB+VVyWTuLmvseePGwVH/gbocd/T61a03TJ9W1GGztzh3PzMeiKOSx9gM10XgP7DdXd3p+pwrPZ3EYLq3VSDjcp7Ebq9Bj8HWHhHTZ7i2uDM16dkTsBlU6nnuOgojC9mDlY8w1jT7ZNTe3iXylRVVGY9Dj+L2PP0NYEyPFI0cqFJFOGVhyDXTeIQf7ZcEdVX+VdH4d0Wx8SaLJbTRI1/ExVHI5kXHA+o5x9MU3G7sF7K5xWhW6XFwzzIpjBCLu5G457fQGr2p+HsRNdWClguTJBjlR6r6j27VqalpUOgajb6fAxOP3shfqGYdPyH61ZjufLlV4nw6nKnPIOauMbxsyXJpnAMcDkYPpVvSbOPUL028khiLodr9gff2r1jXdF0y90S51qK2gSdbZppU2YD4BO4fj1FeWeH+NVVuwRs/lUclpJD5rrQq3+n3OmXRtrmPa46HqGHqD3FVSMcDk16jaWdnr0Y0++TJUEwyD7ynHb/CvPNYtP7P1e6s9wcwPs3KODiicOUcZXRHb2V5IYmt4JHMn3Nq5zWjprQXEjQXYEbLn5pDtCkfXv7Vu+HbkW2nWtyNvyFgVboRk0viq/wBD1Sa3uLW1Z7mNgZnxtSVe6nuT7iqcFFJkqV7pmXqEFmkG6ISSu3CLEMAn3PLH8MVQfR7/AOyLO9sluCThXbaccY4PNNt5rq0I2yPDGx58sDJ+npUstw8r/K0cKn7zudzt+dZtpu5aVkZkqNEPmOT7Gr2jzrFfW+eSJVAwvvUbRWwViXeV88t2qOxOL+DYmB5ijgZ71IzqNcub2LX9TRGguYxeTYSRQSvzt0z/AI1VgvlEpeeBIR2dUDDP+6eKbrcb3Hi7Volm2k3swxn/AKaN6nNa9h4XY2sga6MZkQpt3ZVmIPZgv6E1ooqdm1sXCtOkmoSavvZ2v6kDapdSqsUlz9ktSP8AXxqxjPpkdF/Suw8N6eNMjgvYbkXGxmkjlXbKoLgAkdwTgZ+lcdBo+teHLxLiA+fEPvxoxUup/wBlsZ/DNS6x4i8/w8Ta7rO5W52lEyreXtznIAHXg1omt5GDTeiO81mQa7ZzNI6yK6FMoSFH4eteLanaLY6nc2w/5ZvgflVix1nUNOmaW1unRmPzD7wb6jvVS8u3vruW5kVVeQ5YKMDPtU1JxkvMIxaZ7B8NtdsoPBrWweJNQjkdSu4B3XgggdT1x+FPvmP2K55OfLYnj2NeLrKYzkE+2K3LXxZqVtbPbSuLmB1K4k5KjGOD1pQqWVglC4/wprbeHtch1JY94hf5o843qQQV/EV6fJ4n07xFDE9nKS4UloXXayH0x3H0rxJnbcSAQCciljnkicPG5Vx0YHBFTCfKypRuexQzqrs2cAjYD6k9B+JobxhF4WnWUqZZpeDEh52+p+h6Vwul+IdRms51kg+1LBGJWlLY24Py7vXJ6d65q7vLi9uJJriQvJIcsa0lU00IjCzO38Va3a619le0lL/KWcEYYMSOvvxWx4Mlkh0tGXO9JmP48GvKxKyMGU4I54rpItd1TSdGSOONUMkrFpyM4bA+XHY4waUZ63Y5R7Hu3ifVYTosKRbfMuQG9Sq9/pnpXzZqUzTajdSdd0rnn6mtBvFWslgX1CZ8DaA+CAPSscsWJYnnqTUSkmkkVFNH0L4d1u20u3hmvJkjt2t0Vmc4AOBj8TzXA/EqOO/zrT4MzsiKVbK7ewriNR1q+1EwpcynZAipHF/CoAx09cd6ptcztD5JlcxEg7M/LkdDirlUTvoTGLRp+FZxB4ht5GZUXa+5icADaa9E1T4hWWq6elmZtjW6soZxxK2CAR+HrXkeOntTGPOeuahTaVinFN3Bt2ckfnXpvwbjRdWvJBIPOlgZFj7lQyEn6dK8zyWJyODXefCJtvjhF5+a2lH/AKCf6VFyj2rxW4j8O37MVQLbscseM18xM3k3iOo5RlYfUc19O+NrdrzwlqluihpJbOQAep25H8q+YbuJre4ZC25lAy3qadwPTW+ItpaiTT4FkktJWUyzAdD7DuPX6VheNrmG+06zntZFliZ2wynOeK4lTwPyxV0WV0ukm9YOtqX2Iezv7fSqc273EkkSaFqK6TqsV06lkVWDKvU5FddF8QHvJo7W+RY7RMiEgkmPPXPqOn0rz9gynHWnRxvJIsUKM8jnCqvUk9hSUmtBOKZ0niEr/a28MG3RKdwPAHNLofiNNEa4fY8ruAUCnGGHfNV9X0GaxuW0/wAx5bmCFWaMdGbqyr9Ofrg1gfpTbadx2TVjqLnX5de1pr2dVWdzlgvfjHH4CkvdRgtAQx8yQH7q9x7ntXO2itJdIBnA61Lf6fJaqs65kt5DgPjoeuD7/wA6am7C5VctXniTUL20W1knK26jAiTgH6nv+NVdJnW3vPMc7VANUamtrd7qYQxlQ7A7dxwM+lTd3uOytY2f+Ellt5N9mNkinO9hn8hWJLLJPO8sjl5HYszN3J6mkljaJyjoyyDhgw703oaJSb3BJLY2rLWo7TS1tjCZZQzHnhQD/On6VqKz3fly28e98neOi4GenTHBrGjjZvn/AIScEnoM1o22kGUHY+9sdF54/Cmpy6EuKNAW3263kms4RM5baGmYBVz7cD+dQS6IIISbjUbUS5GUj+c/p0qk0DWMuGkdFPLYA5/CtJdQiSILb6fAnH+suVZ2b6DGP0ob7oav0McxLG7YPmIDjIWtHTbi1hu4S1vkiRf9Y5XuOy/MfxNR3d08sbPLM8hA424UD8F6fiapWp3X0RwWO4Dr71L0KOn125gh8Uar/wAe0x+2TZSRNpz5jdyP5Uyz1PPy2yS2bH5d8cjEH0GBnPNN1iwkvPGOrRwwb2+3TEiPkkb27E8102nWLwWv2KWeRN45iRvKf8EcDP4Gtad2RIyJm1y4gEdzCwtZByyRHaw/3lGB+Iro9N0a2tlEy2wyFxuRhjpznBAzVK8km0wGSz8ySY8mMkwyD8+v4E9Kn0TUDrc0UGpma1YzAyPsOTHsOcNjOdwUfQ1r7sfMzbb1WhlTaIPFWrtaaVbwxxQkG6vWh27PYHjJ9sfjXF6raRWOqXVrA5eKGQorHuB3r33U3s7W0Sy0tUEDDDNGc7j7nv714JrDbtVvG9ZWP61lUirXLhJt2KGcdeK6zSvC/k6JLruqowh2H7Jb9DM+PvN/sjr711PgTwRpOoaMniC9y8QH3G5Cshw36ipPFF0dQt7lkQCNYysS9AqjpShDS45SseXPGZEll5YqwY49Dx/MirmhaDfeINSis7OJssfmkI+VB6k1b8Lw2954gtrS5Aa3um8hwR/e4B/A4P4V7pe6fZ+GvDzQ2cKpM6iMOAAQD1NTGNym7HCXlhY6bpv9j6eu63jP72U9Z5CcFz/Ie31rj/E+iNDGNVt4z5MhxMAOFb1+h4/Ouu8xmRuvPI+lbWhW1vqfmaZe4MM/Tj+IZ4yfUcflW8opqxknZ3PKdK02RNPk1meLMET7IVYcSS9vqBgk/Sug0Oxi1Xw/d2sxPzzFlc8kPhcH863vHwtLW0sdPskWKxgYrEgHHAHP6/pWT4UcGwuB0/fk8fQVlGOtipN2OGvLG60+byrqB4m3FRuHXHGRUqLDp12pnj8xlTcybQQrdgQev/169rk0TTNbsLfUL9CzaeDkDjd/dB+vH4j2ryzWtHuJ7nW9VSMC2tZ0RsLwXYAsB9Bz+VKUOXYqMrj9Rto/ExFzo9nIbmNQJ4o0+XbwoI98n9K5++sbjTrp7W6jKSpyw69QDXpfwrka0uZbwgfY5QImJ5w3Of5jP4U34t6PBbXEdxbKodR++buQT8o/X9alRbVwvrY8uGeM966tvAWpLdxHG6wmQSJcA9V9MevWuSUEfjXvPh/VLf8A4RttPviD5cQeBs4yccqM+5HHuaqnFPcU5NHjGvWMOl6vJawsWRVVuT0yORXW/CGNJPGXmH/WJbybBnjnAP6Vy/igl9fusjkbf5Ct74UzeT48tEPSSORP/HSf6VLtzDT0PoXVYvO02VQpyYyMA/7JFfKOojF449hn8q+tbiMNbBeT0B/Ovk/W08jWLqP+45X8qko2PB3gy78V3MpQhLaHBdj1c9Noro/iBbR2GiWthDGI0hcKFA6da2PhXOdEiuILyZVt7vbIrHpGcdfoeP0rK+Jc73dsZDwTPn8K2ceWJCd2cDZ6Tc6oGSyjMkqLubnHGa9I+GXgqWOefWtStyj2yloo5Rj15P8AP8q5bwJMsWtlGz+8iYDHqOf6V6e/jLT7DTZ9MlvIzPMuyNVOdhPBzjoPrRCC5eYTlZ2PM/EU0n/CRvOGKycOrd88nNWL/wAH/wBr6FFr2jqPNYkXVqDgK46lR2B64ql4iG3W34/gUV2nw8vkjs7qB+Yg/wA647MMZ/MU0k3Zjbsro80trKWzEJnjeOR3ztYc4H/660IrlEkaOWMS28g2yxHoy/4+h7Vs/EKZP+EuEUbArBGkYK9DxuP865rPIJFRLTRFLVGtqnw/ntYjcWVyk1q4DQs2c4PY+hrk7PK3i+2QRXplj4u0+28OfZ7u5TeYWj8r7zbgPlOB+FeZWSkXCDByOtE7aNCi2zpYbKLXWit3AW8BxHJ03jH3TXPanZPp969tIpR1+8p7Gta11KKzvIZmk+aNww2jNUvEOppq+uXF7GCI32hQRggAAVLs15j6ml4SmtWF1Y3savBcgKd3Y9j+vWrX2W68OX4t5Hb7BLLiN8DPbqT0xWHoytJOyISGZeCBnvW5d6fdSvsvJZJmPQvLx+Wf5Crje2hMt9Ql1mxncBdsQz1aIZz9Tmll0u7vYsKkRhcblMi5Z/8AdH3vyFUoXGk3KbII3mHRVHz+wA61oS63qUacW8kCsCdrHy8+ucYPfuabd9GCXY53UdNu9PfZcxMp6ZPJA+naobYqbmHO4ESDknPfvWldalM6u8sp2N0W3QIPxPf9az7ba19FsUj94CctnuKyduhaO2v9Vso9f1OGWys5At7ODvVQ5/eNnkmtO01QalbypawXRjjwJFQedGM+qvkevQiuO1uL/irdV2XG2R7+cABTnmRu3eum0ENaokVzHbSDnBWXyJQMf7Y2n862pyvoRJWG6na6ltMUUCi1yC7IrSQkdwUBbafetCy2WWlpJJIogQYZ0ZmUfiOR+Ipl/A+n2wuLeR0xk/6T+7wPaQZXH4is9m1jWLKaJykMzBfJlzk9f74znPpWt7bGbVxP+E8t47hoGgllhBwJQeSPp6flXEXcqzTSyr/Exb8zWhf+GtVsBvnhV0b+KNwxJ+nB/SsuWMxAqfvA84/lXNOUn8RrFJbHYeGPG0ej+GpNFuI5jE87Sh4iCRnHGOO4zU8/iTS72JkFwUDD+NCK4IHGB2zWlo+jT6ze+RBgRou+aUj5Y1HUn+g70Rk9kDimMgu1srxJlI3I4ZSPUHIrvtT+JkOtQItzZSxPuyxRsr0xxXnd3Cgkk8sEJGRgdyM4yffpVfcfWlGTjsNpPc70eIdNkjZYZmWQg4UxnJ9qxr/xZcltlizwJxmReHbHoe1auj6E2k2kc9yuL+VQwVh/qEPQf7zDk+gxVDxxoQ06/i1CBMWd+okUKOEk/iX25BNXLmtdkJK5lXmv32oiIXkvnCIbVYjkj39a0NJ12DTLGSQwySF5TtXGBkAdT+Vc0iNI2ARjv7V3HhHSINZ0S90ufA82XdC56pKAMH+Y/GpjdvQqVrGWfG2rmQmOZY4yBmNR8px0zmui0rxZYweH1tJbFLm5upHmmEnCBmY/0AFcBfWNxp17LaXSlJom2sP61GsrxbHRsMBkH6H/AOtS5n1HZHrfh+5t7LQyht2itXmZo2XkKr9MH2PH4YrB8TaZ4luNDnuWaPVNOcqxuoTmSMZGAyjp2HGRUem3Nnq3hjUrWwaZdRaMSNpw+45BG54vTjqv86y9H8ZX+hRyxWodFJx5e7G3jvxnNLmdtB2V9TnTZXaWpu2tZhbo4jaVoyFD/wB0npn2qS41O7unEk0zMw5XnG36elepaPd3nj7wzd22papa2cSyeX80TO4XKtkEsB2xmsq98A+GNNi3z+JpZjnGyOJVJ9+pqPaW0G4pnnM0sk8jSSMWdupJyTXSfDpmHxB0TB5M5U/irVlazZQWV+VtDKbV+YjLguR749wa7H4XeFb3UdZsNctWVo7K+HnIeMKFznPrz0qlrqJ6H0JLH/ouOnFfJ/ipJI/FmrxyKA63UgwOmNxx+mK+uSoKj0NeAfEX4deID4lvtVsLI3dpdTBkW3+Z1yOcr16g80AecPqN3NGkUkrGNAFVM/KABxxVxtR1K/02W2kYy28C+YWfkoOmM+57VIvhTXGNwh06ZJ4NpeB1KyEN0wPwNdrqvh4eGvhybVlU3lzie5fHOR0X6DNWk5bk3SPNPOkjYEOyEjjaccUglbPSr1pbLfRralgkx/1Lnpu/un2P6Gt3R/AGq6lLZtJFthkkP2hDw8aA8kg9jSUW9htpbmNqD38MdtJO4Z3gWTkfMFOdufwx+dVYtTvoQ3k3c0W7Gdjlc4+ldR4rx/wkO5FHlmIAKRxtyRj8hXM6hYNZuroC1tJzG+PzU+4oaaBaojR7i5nLPI77RuYs2T6f1pt3HcRuolYsjDcrA/Kw9qv6fbAaXNcuPvyiJc9wMk/qFqzbmCeNrS8z5MpJEg6wv/eHt6jv+FCjfUNjniTk4p0EUkz7IwTJgkBevHJrQ1PRL/SHU3cBVH+7Ipyp/GqVq7R3SurFWByCDyDSatuP0I1OQTTTyeK3pNMbVYXubNB9pRd08I7/AO0P8KxmgaPlgRzjBGDxQ0JMbGxQ9SD7GtTSmubK6WVg6xH/AFi7sFh6ev5VHo0VtPfmO6JVGXAYHG0+tdLNpl1YwrG0RKuu6MxDBlH8h+NVCLeqE2QprUcsyxR288cshwFjTLN+I+Y0mraTOIRJclYZGG5RI4D/AIg9DVCGG+Sdo7eR4Gf76xsZGA/2tvQfU067sovscscUF1PcpjfPkBE57gZzn3NU5PVMSit0Y0pwskZIbn72QB+ZplrxcwjuGX+dPaa4iHlM+QucA4YfhTImP2qNicncP51kWdff3GkjxLq8epxGRzfz4IlZCo3tjHGO1alvPp8cBTTNcvYo24+z3UYuIvpkZx/3zXIeKcDxZrPr9un/APRjVf8ABAZtVkUQo/y8s84jwP8AZzwWPvWtOWqRElbU6KbTdQmKmLyDE+MvYsFJ/wB6F8Bhz2rYtNNksoxHIkPnbioMcRhLZ/2Tlc/SkvxJa2u+CFweoFxwpH+8uRWdofia8e/SOa4tYnR/kjSbH6Hr1/Sui6TM3do6HUNFh062S5ugz3synYjtlYh6gdjXjl0mySQZzgnmvaNbvvtmJpj+9A+Uc4/DNeOXoy8rEHJYmsaxdMk0Pw7e+IL6K2tVIVuXlxwgr0e60y28N6d/ZFmTu/1lxKR80h7DNTfCS6tovDd8xVftEM/UdSrKCP1DVW1ed5priY/NuLHPr7UQikrhJnn1rbG71NrUfeuQ0afU52/riu+8CeABaW7a/rsAxCd1vayDPzDuR/SvPlla21KOePh0YOvsQc17lqXi7StT0ZzaX9uwaLGzzACGPXg/lUQim9SpOxw9xM9xdO8hDPIxcnOe+a6230K28SeE73TJ1DSRNuRu655yPxya44tG+W8xSM9VNMl8fPpFz5OnhZAyhZ2Y8N/sjHT61tJqxkkzI1nwsPD+ko7zCWV3CMRwCeentWh4N3x20pXO4SBuvfH/ANas7xD4qg12C3jMDwMjlmydw6djU/h3UrW0hu5LieONQyYJbvgniojy82ho03HU7Tx74Oi17R7bWLEKtzsBdjwCPQ15Hf2kttDBa3CeXNCXBJ6EEhhzj3Nekf8ACx7D+z104pP5CMT5gUfMOwx9cmuV1XVYtVuJoLeY/Y2GeUwSSo5OegyOamdreYRuYvh+C+utVjj0+4FvdLyrmXZj8a9C8U+GnupA+v2xtL4jYL+1wyS44XcnGT05GDXMeB9KefX5Y2tmneGEuqopYh+2Md+tez/8I7qPiPS7e31dWtYo0KbWwztnvjoOOOaz5U92Xdpniev6H/wjenWb2+qpdpdSOS0OVxgLgFTyD1rmVlYuCWYnPUmvfde+Hem22iRLHazXgtfmZppWLyHoAAAcnsPrWf4O8O6FqDzvqPg64s44yqwiaGRi5OSSfbj9akGP8H/DrR9f0y21PVhLOyAxiDdtTjnnHJ616hY6RaaZbJbafElrbqMCKFAFpbC0tNOg8m0hEMWd2wdq53xD8SPD+hboRcfbLtTjybfnB926CmgOt2N/z0Nc14k8S6JoUf8AxM9V8tgP+PeE5kf8Bz/KvItf+KXiHWA0VrINPt2422zEuR/v9fyxXNjRLloPt2rXKWMMnzebdMfMlPsv3moA7n/hZrap4l0+x0fTILO0mu443mlQNKylgDjHA4Jx1q58R5Fm07UmUDYihBg+nU/nmvNV1nTtLlSTSLRp50YEXl2c7WHIKIOAR71JL4vvr/TrixvUE7TKdsqjDA9eR0IrSD3TJkuxgW4aXaEBz2x1r6F0nVYLnwib0gC7FokbnoTkAA/59K+e7O+lsLpLiJE8xM4DDI6Y6VfHinVwQy3rrt6Iowvr06U4SSVmJxbZseLcHV49uCRGACPqa3PB9lY65pV9o2oBWjZw6NxlGIxuHp0FcdqGsSX/AJN3PAUOzYSnQkE8j9afo3id9Ju3nitt5dChUvj05/ShSXNcJJ8tjoPFeix+HrTT9KjfzDGHlaTGC2TgZ/75P51yoBLdPerut+KbjX71Z5rdVk2BFVWJ6D/9ZrHmuJ4ZPLZQhwM98/Sk5K+hSvbU9htRaatoy2d5DGyiHfGWHBXHKmvE0wZyVHGSQK0v7f1QRrEl9KsarsVQcYXpWYDz8o5X2onNSFGNjo/Dl6bDWrebJ2k7HA7g/wD18U7xzHbx61GltgBovMYAcZJP9B+tc8J5cghipB6iluJ5LmZpZZGkcjBZjk9Km/u2HbW5NpgAvACQAQRknFdydbRtAitPspuZIl2+YyfIo7cnGa88yQcjrmtzTbtLiD7PIJWmH3W3DgfU8KKcJdBSXUsDUbueVYHtHfdyI4W4yO/HH51HKtpJbyQST+VcKcmNzt2YzwSeD+Gaq3Iu7WJpI2OwH94YgxA9Muev4VnXVxFcBWCOsoADEtuD+/QYocnsx2QjEBisjAkHHmDnjtiki/4+EGQcMM4qIHC81JCcSxf7wNQM1fFS/wDFX6yM8fb5/wD0Y1dbpNmmlWHk2up29xu+eRHhWWMn2/iH4CuZ8RvHH4u1vzIlkBv5urFSPnbuK0NK1TSLCFbiWzgkw33RNmYe4BGP5VpTaWpMjqY7Z7xSVltbVSBmNXk2P9COVP5/Sr81ubexklWMMIIi4fzVm4UdwfmJx6VykOvT6rqbppxjt7GEB2kulIJ/2SVyBz/KpWluda0m/tbV3a5jBaN1kDbwnLICMZBUnH0ArfnXQzs7nGaheyXd7JMJG2k/KVJAA9gen0qIRyCLzHyAw4B/nXZ6F4Bll0ttV1X9zGADFET973P+Fc3qePtMygEKCQB6VzyUt2arsVbHUbywRxa3U0AkxvEbkbsZxnH1NTRXeqahOltDcXE00pCogcksTUdtpd5dQWrW8Dym5laKJVHLFcZ/9Cr0/wAO+FW8NWeJ1RtXuozvI/5d48EkD3OOT9aIxbdhNpHmt9ZfZ98fmebJHgs+eDzg49uf0qhuzjmuhlgM2s/ZcBfNkaDB/wBrgfrj8qveGvAl5qd1by3kbpZBTJOe5Idl2D3O39aXK27IbdlqV/DegvLF/aF0CsRz5ERzh/8AaP8As/zOe1YF/avY3ZhdRgqGU+x/zivVJw0lvLcKnlxR7UVVGFjXoAPYcVQ/4RiHX7MyiMNPadIwPvI/+BrWVPTQhT1PN7W2e8nESHbxlnPRF7k1uadoUWq297BbDbPEqvAT1YjcSD7sM/Q4q7qmnQaJ5mlW779zBppW/iB5VfoAR9TWl4TgMFvNejqJ1QeoIGf5kVEY+9YpvS554MjhsjHGD2NXtKupLWWQx8F0xnGce+OhOOn1r0nW/h7DLdT6ogHk3kLNEg4WORlOCfxrgNPgiAvPmBWGFTkkDdh1yR+AP4VMouI07jI9U1DTbiVbO9ntWJXeIZSuSD3weTzWjF4z8SRLhNdvwB/02J/nVKeOeDE0gRGuIzcBSMn1BP1znHpiulv/AAtPo/hmLV7y8gmkngjniiS3TaAxGASRyefakk3sMpj4h+LI1G3XLoAeuD/MVNH8T/GCHnVy20fxRIQf0rmrnUFWd0W0tCM/LmIZ/Sohfpkb7S3x3wGH8jSA6nUfGviLXoPst5qMro64EUK7N5yOu3rVZtCWwjSbW7xNPUjKwY3zP9EH3fxxVNteudOtBBpkENmXXD3ES5lf/gRyR+FYTF55Xkkkd3b5mZmJJ98mgDp77Wxo0n2bSdMNpMFBNxdgST4IyCB0X8OazvEECNBp99588k1xDmdp3LHf1PPpz+grrn8KXfim5s7t7xY1S3WM5jLvIRyMAfXqayfH+jSaDDpVjNJG77HfarDcoGB8w7UAcxc+SdNtnhSRXUkSsTnc2eCB2GMCui0jQfJ8HX2tzjEk6mK1H+x/G39Pxrr/AAHoFnq/hm0trmJHW581pc9SgbAA/KtnxjawQ2U+nWwC29taMqqBwpK5/wAK2VNLVmfOeI/Zzc2zyRf6yBcyKO6Z+9+FRW9tNc3EdvEhMkriNRj+I/8A66t6VO9tqFs8YDNvA2no4PBU+x6V7Xo+hWFppV3qJhiIVnliwOUkPy8fhgfjUQjzFSlY8z8QWsVhc21si74YIREf9rk5/M5P41zd5ZPayKU3NDKN0TY6j0PuK7fxJFnT2mx8yupxjsMjP5t+lS+HLa0v/D9zBcxK7o58tz1QsoGf1P6VTgm7ISlpc4jTIDIJ7gjIiTaD/tMf8Aa04dNXVI0s3Plytk2suP4v7p9j+hrTu9Cm8PaGltc7TNLI8pkj5DKMAfz/AFrXtLBI/CsN30mhCSg+4bd/Jqap62Bz00PN57ae3lkhmjKvEcOMdDTbdilzG6AF88ZGQfavZdY0zT9VRGlgC3MyFJXUdVGAGHv85ryjTLQv4gtrR8kC42nPop5/lUzp8rGpXH6nphhjN3AhEG4q6d4mBwR9M96zWikSNJGUhGJAJHUjGf516jbx21lqv2eaMPb3aM0oYcAlt2f/AB4iqXivSI305re0UfuGLrn0xk8+vaqdLS5Kn0OG0zT/AO0rn7OJhG5+6WHB9q030DUtG1S0IYJK0iBWI4+Y4z7jmsrT96XTAHbIn5gg16P4k1yB9I0OcRK801yjbA3IwMn9StRFJrUpt3OLu9QNtePDdu8iBjhsfeXOOB0FZWoQWayCSxnaSE/eDjBU+lXNciZ7gSqweLlUZQQOvTmscEo2VPI56UpPoNdxT93jpT7Yt9oQejD+dNH3cU62OLpf94fzqRmx4sbPi7WuP+X6f/0M1kAgcGtfxUu3xbrWR/y/Tf8AoZrGoAs22oXdl5gtrh41kGHA6MPcdDXX+Cbu6SOVoYlLeZEAqjl49w8zHp8uTkc1x0Fs8iiTYTHu2DA6t6V19hqEHhqyOGE99KmYYlGMOf4m9B2Aq4biex6h4mlRLEQAjG4Kcd8f/qrya2sP7X8TNar/AKsyszjr8o5P6fzr3O0snXR7JLxFe4aNfOOz+LHI/p+FZ2pWlpp0yJb20UIllV2EaAHuD/MVvJKVjJNoZ4U0q30ewtIJEjaS2hwrY/iOcnPvkVZljEl7cTcF2Cqc9hn/APX+FXtNTaylhjam0k/h/wDEmqVvNHcS3BQ7V3sMkYA6fy3H8qu6FqeN65Zy23ixoQHDNcgxswxncQRj1616+08dno14xeKMM25NxC7mZc/nnNPnuUnt1tXsoJFGfLeVcsBnr7GomA+ytb/Z4Z1cAMJlDevOPXnr9KxUoxuXKLZnW2nTPok1m8RW4kDgRsMHPVRj/gI/Os/REvdPeR3hKh0aF1OFKnscH0IFdBNNcRoblwPP4C9/m6CmCykmIluFMsufmbIwT17USrdgUO5x2v8Ah2bULx7i1K+bIVLq3AxjHp9KtaVo1xp+gm1mC+ZvZztOR27/AEFdxFDHGgAiQt078VBfQ+bbi3jjCiU7Mg9u9Zc7TuiuVWsZUF/JP4bt7Xy33LJuAYfwEcD8z+leZt4Wl06aSTUSFti4CgNy65zg+mePzr2lLElFKIvGB19q4v4mobTSbRwMM054z22k0nJvcaVjh57W3vLmeG0JuJwjSSNGfkQtgKgJ7/yxiuu1LTZr3wvaaQkAiENlHCCTkB1IZj9C26snwCpi0u91GaNpBNdpH8qliQqljx3GWrtU1WLnbZ3IJzndFz+tNX6A7dTyXVPDNxpli93czxPtZUUKOpJxnNc7u4PHWvTfH9zLdeHSsdvKqLKjOxAAAAP9SK8xRDJJtB5IOB6n0/nSaa3Hc1NRfybKBP3TF2yGDZYAD26Zz+lUIZo40lRokd3GA5Jyv0qfT/skUyy3ls1zGD/qhJsBH1xWl4hTT3a0u9MTyoJ48eV3RhwQfx7+hFICZfFPiNdNWKG8uIreNQpeFNv4FgK6TTPCljremWt1qV3LLdbSCyS53BjuGSe/zc/SuDjeWQiFnIU44J461cOt3sDNFFORGnyqq8cUAexaVax6NHZwWcu0Wy4QucnHPXHXqageVr24unuizM0jA44yPauDtbzUbdVVZlKqQ3zZy2R0rW03U7y7M24REo+GIBAHy59ferfMldk+62WYfBtlBKktvayiRHBTcSRxz61uBNRNg9kZilu7bmCNyDxTrK5jaRY5AgYjOdxNaX2myDKS8TZIUc96m7HZGBLpEU9mFnIlUqMgdD3/AJ0yz0pbSGUWkMaRuoZgvU46da6OO2jcyBPLIJBHcD/OP1qGSBUfazKSc7flA9/6UXYWRzFzGl5fxLqscstuuEfZnKpnJGQK22itWgCJCHtGJygzjy+gH/fOKtLGI4zIzAEL83sBz2+lOut01y0cf7pMBlB45wM/rVRm0JwTMP7XBHb2sYLNIlsAy7MfMeuPyFV7DTdFhSe5ispG1OcnErgnYzf3ew6mtm5tZjjMiruIX0PNJHp1yAHMisR2FV7V9RciMO8ULrCIcKu5E3YyRksf5AVa1GAR/u1BIDYJJycBhjn6VWv9JuZL9wLpzKjgnpgHAwfyIpG0rUXU7r6RuOTv4HHPar9t5E+zJHXw7b+HLHULyyjVAx3ukJOXPBLY57d65u/8T6RLqBBiWSGAZtJY49uMkNgjjGCBzWwdFvPsjQNeTiB85iOArDv+FcRr3h640dxKFZrZ+jddp9DWbqdi1HuVr/VRNcTtbxgRyLtw4z3zkehrJ3fNkj8qkPNMCkHmobvqUOByM1JDzKn1BpnrToSPMU+9IDZ8Xf8AI3a3/wBf8/H/AAM1jIoZ1VmCgnBY9h61teLf+Rx13/r/AJv/AEM1i7aANn+1ItOia007bOvOLqeLLDPXYp+7nj1PFZ1vIq3cUs2XUOrPzy2D/wDWqHGBSKck/pQB7rpfifR/EjxxR30kJT5jFK2xmPp6HHXitxo4XUZyyg8eYa+doFE8yxl0jBPLv0Uev869W8D69Pf66ljDNONMtLV442lILyvkfMx+mcDtTuxHeLArou4hQeevJ/yaqotvLqsdkXypUll/2gMgVavb24tNOuZo2y8cbupcgc4JFcVol8ZL8XbF3ZZcsM/e3KB+pcVcE3qKTseirp1mEyU4xnLEZqLTI7e8sRPgqhLgeowxH8hXHX3iwXVqY4rOa2Zirl3kUjaGXIwPxqeDxC2iWMEJs2ucswJEwTaeMjGPUH8jR7N8tw5kmbeutBZTWvlsqgTRo2R1JP8AQc1prHl1MkkS84IHBNeZXOsz6xNA86CJopN5Cnd8zMO/0z+Va194yvIjNGLZFClgXMp9eOMfSn7N2QuZXOjtNRgmvL5XkUrDP5QwMhlwP65rH1fVIrOSR42O2FeQDxls4/QVyq30trbvOQsrOyk7mK+ozke9UE1NrlxbyQpH5k+9yrFi4A469uWo9k7+Qc10ek2k4ltLadrkDdGjZK9MgZ71wPxV1AyC2tklWWNAWLYxgnjH5A/nRFq11b20VvCkBEa7Mvu7ZHOPcVga476naSzMVySFOAcD0x+dHs2r3GpI2/Amt2f9gJpjSLHNHNvIkH393cH29PauwM8TSSxoykwtsYqcjOAev0NeO6Ro/wBttLmXz9rWoR1XbncCTnvkdK7bwpcmWK/LtlvNXIHuuP8A2WtaTaVjOpZ6k3i+YS6VLZJ950J/EDj+VeT5YDHTvXf6xe+dqcTZJQsNvGOBx/WuU1jTzBcedEv+jyc8fwnv+FTWTeo6emhDhlCjPJUNz7jNX7C1F0GUsPOj+eIN90ngFfqe3vVXVFZJocNhWiAHH93I/lipdKBmjljc5EgwPrzj+VY21saX0EkkmhmWS3U+bGGz8mSo6His0QsVjHPzkqD+VdVpEE+r6vZslx5FyzBJt3CzR9zjPJA6jv17Ums6bFa+I2tLckR2j+mOeSf1pwjdg3oWGfZGDu4UDkj2/wDrV0Pw5givbrWPNRX2Sx9RnHFc0R5kMg6YjLNg/wCfepvC00sena8iSPG7ywkNG5Uj5m9OvHatqmr5TKOmp3GpzRWnjOzsY4VCSRRK56H5pD/QVd8XWcelaZBNFGyubqEDkYPzZP8AKvPtSeWOVZ3ldnzGu93Jb7u7qef4jVuVGeGMCWSRjKoBZy3RXbp+ArP2f4Fudmdbo0f9oaVa3MEzg8JLj+Ejjt/nmovEM0+my6czy8I7u3+6MKc5/wB6uFbm8kiBwAUZQGxwTn/CtRrcrozHo0gGDnPVuv8A5Bpqn1Dm6Ha6w/laXcqrRlngcLggt0NY9v4oihtrb7Qy5iXDM3pvK/0X865/Q4oJZyyIoaNcuwAHcD/2as5kEUUTyAMpCliRkc5aj2egcx2uvasstkrWsqMwkVsqQSNoZh+qirtnrWmT2ySz3UEDsnzKzgEH8/euQihAsXlSMKC5ZioxkJtP8i9Zs7C0ilRxuKIcg+oA/wARR7O2gcx1Z1mz0vxBd3N05ktSW2hDkMVCj+hrV8S6pLBok1xpmmJI4UM8Uox8hHzHA6npx9a8+OpRa5FCyAJLyJU9Gdwcj1H3jW7o/jx7kWtk9gs10zLHKxk2g8gbuh+pqZRvaxVziLTxZrNnapbWt2FiThBsDEDPQEjpUN34j1i9j8u5vWkQjBXao49DxRq9mLa5DxgBJQHwP4SQGwPQfMKyyOAfWoas7DEooopAJ3NOj6rSc+n40sfDCgD/2Q==", "path": "images/5pts_ADE_train_00001400.jpg" }
depth_point_58
images/5pts_ADE_train_00016061.jpg
ADE_train_00016061.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 280 y = 174),Point B is located at (x = 122 y = 119),Point C is located at (x = 205 y = 186),Point D is located at (x = 63 y = 100),Point E is located at (x = 313 y = 164).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_121><DEPTH_39><DEPTH_41><DEPTH_2><DEPTH_19><DEPTH_19><DEPTH_2><DEPTH_41><DEPTH_41><DEPTH_94><DEPTH_98><DEPTH_45><DEPTH_44><DEPTH_64><DEPTH_74><DEPTH_36><DEPTH_36><DEPTH_44><DEPTH_44><DEPTH_9><DEPTH_94><DEPTH_41><DEPTH_36><DEPTH_74><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_36><DEPTH_72><DEPTH_55><DEPTH_57><DEPTH_19><DEPTH_72><DEPTH_49><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_44><DEPTH_1><DEPTH_42><DEPTH_25><DEPTH_36><DEPTH_59><DEPTH_67><DEPTH_70><DEPTH_70><DEPTH_49><DEPTH_58><DEPTH_39><DEPTH_16><DEPTH_2><DEPTH_15><DEPTH_70><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_31><DEPTH_58><DEPTH_47><DEPTH_33><DEPTH_45><DEPTH_64><DEPTH_35><DEPTH_11><DEPTH_29><DEPTH_67><DEPTH_40><DEPTH_19><DEPTH_66><DEPTH_0><DEPTH_63><DEPTH_36><DEPTH_20><DEPTH_3><DEPTH_49><DEPTH_5><DEPTH_40><DEPTH_45><DEPTH_66><DEPTH_2><DEPTH_76><DEPTH_59><DEPTH_17><DEPTH_70><DEPTH_31><DEPTH_17><DEPTH_67><DEPTH_76><DEPTH_58><DEPTH_1><DEPTH_83><DEPTH_85><DEPTH_15><DEPTH_76><DEPTH_76><DEPTH_38><DEPTH_83><DEPTH_40><DEPTH_1><DEPTH_END><DEPTH_END>. Since point E has a higher pixel value on the depth map, the answer is that point E is closer to the camera.
E
long
5
[ "C", "B", "A", "D", "E" ]
<DEPTH_START><DEPTH_121><DEPTH_39><DEPTH_41><DEPTH_2><DEPTH_19><DEPTH_19><DEPTH_2><DEPTH_41><DEPTH_41><DEPTH_94><DEPTH_98><DEPTH_45><DEPTH_44><DEPTH_64><DEPTH_74><DEPTH_36><DEPTH_36><DEPTH_44><DEPTH_44><DEPTH_9><DEPTH_94><DEPTH_41><DEPTH_36><DEPTH_74><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_36><DEPTH_72><DEPTH_55><DEPTH_57><DEPTH_19><DEPTH_72><DEPTH_49><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_44><DEPTH_1><DEPTH_42><DEPTH_25><DEPTH_36><DEPTH_59><DEPTH_67><DEPTH_70><DEPTH_70><DEPTH_49><DEPTH_58><DEPTH_39><DEPTH_16><DEPTH_2><DEPTH_15><DEPTH_70><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_31><DEPTH_58><DEPTH_47><DEPTH_33><DEPTH_45><DEPTH_64><DEPTH_35><DEPTH_11><DEPTH_29><DEPTH_67><DEPTH_40><DEPTH_19><DEPTH_66><DEPTH_0><DEPTH_63><DEPTH_36><DEPTH_20><DEPTH_3><DEPTH_49><DEPTH_5><DEPTH_40><DEPTH_45><DEPTH_66><DEPTH_2><DEPTH_76><DEPTH_59><DEPTH_17><DEPTH_70><DEPTH_31><DEPTH_17><DEPTH_67><DEPTH_76><DEPTH_58><DEPTH_1><DEPTH_83><DEPTH_85><DEPTH_15><DEPTH_76><DEPTH_76><DEPTH_38><DEPTH_83><DEPTH_40><DEPTH_1><DEPTH_END>
280
174
122
119
205
186
63
100
313
164
75
36
3
107
147
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwC54+0xdftLqFf+PmCTMVeMSWkkH2lG+9jB+ua971QeTq0k45TzMHFeZePdDew1H7fGCbG4ILc8KaUky4nLIXj3xf3sfyp8IZjuJIDfKSO1VX3qyBiWOfvk5+XsKuQbQrKwOGGMisrGi3ERUlm+dnjx0H96p3eOIHeCzdo6RUDMInySvMeW6/Sm29zdPe7I0RSDgu3GKncdhkc0s6nZvDZxs/uir8LfZoyruZWxnL9BV6SN0hPlqJGP3iPWqj2t0YNyjIyMgUXuWlYt2t2pjDgspJx8varLARI0xO1uzf3qrQwN5ywhRkyFz+VT6liJIIsgZy5x2HrUczvYbdkczf6jJNelpAyjG0ANVON2O4ebNhePlb1qfyreaQm4eRGz8rDoKEsFabKuJFHcCtUY2dyaMtHHEscjlm9OtdPpg+03DtNIPKii5DVj2KpanzOMRsCV/GnpqRuLtpVjWKIhQSPqamVzT1N6zb7TfvhB5MUXCrXO6+SLxXEZjKx/dNdhp1taw2wa1mEkBfJkJ5rl9Yu49SuLtSiKEYgZ71CuVoZVpLNdw+ZIyhYlyM023kt2mYuhJPGT0/GmW1w0FuY1AIJ546ClSF5fmjQlSeWI6Vq9yUiwthJI5kjJVPc/LW3Z6ekV5GJbZDlQc7OvHWmabpqvcXKoJFgbA2j1rprOyu/NMs5jRUUIm4lsgDArFtvRFJJdDDuNOh+0MkdnDscfeZO9PttIhCFZYonccALGOB6810LQKsZaTyuecZqAlQMDaq9sUtUWkmVINDsVBYwQP7NEtTHSNOVM/Yrfn+7HSrLICUVzzxirwcLAqFVLj1Jo1YnFIzv7K0rjfpsB2rjOxcj86x9U0Cyjtkmhi65YDaMDH0rduLx4Y3860YxvwWjOT+VYd3eSxxiGG4lMOfljkRTTbdiUlcz0020uIwfssXzD5iU5yKG0y2ZY41t4/NHfZV4yTXMaholj285BwTjmpYLhhOGlhIZh9zPBHrU3l3NVGKMZLe12zW7WVuxX+MxVA9vaG0MqrEZIj8wEeNw9K3/scd1qCxyqcuM7lOAPwrMu7VrZpooUEu4kF8cDHpVpt9SOVdhJYLCWJXj01FLIN21envVc6bCYt6Qx7B1ynIq3YTJLZeTcqhRTjcMq36VaWJ4Z3K27CIp/q924Y9c9jRdoOVGBNDFHIqPEmT907KlgtbZbuSOaBCSnXZ7Vbk01pLjylcCI85ft9KhbZGZ4WcSPwFIHXFVzMyskxBZW6Ha0EWccZGOKSGygbfm3jwvPH5VFJdswKiIjHGB1Pvmkhu2TOCVYD7rdfzoux+6TT6fbRXEsH2dP3QB/P/8AXTDaQbd/2dPl+WmpczSao7TZKkLir8kbeYx/gPT3o5ncOVNmcLCDYxaFIwvQ+tRnToxbmUxRtk8Grj2pkPzu23suelNe3EMRKsVb+HOMGnzO4rWMoiHeoMa8dhVmO1gkGfJqtM0jNyVQA/MAuCastLsiC7jn0q3Jkq1z32+jDXku/wC43Y9qo31hDrWly6ZcRghlO0kdG7Gti6iEk8hPU9KrPGUwwzuGCCO31rra5kZX1PB7qzks7ySzmHzxMU92x3+lStF5cS47jOPUV6J490SOWOPXbWMCRTslUDqPWuHuIy0rMBwEwoHpXHOPK7G0dSps34P8acofetW106OWJ7zI2MuNmed/c/nWXFnzMEcV1lnbRx2MSg8E5OaydzRGMkj2Yz1HQikF1u4XHXJGcVdvLUyTsq4znt6VSudMnhiM+QF+7n39Kd09Bl60u7ZWMxJWUDG3GSRWdq8hutRfyuECiMY9D1/nVnR93mF5ArKqE898Cs5ZBOJ2UjO/OfT2oSsxXuQSpYKGikVw56v2JpsFtBb7ibhmVlwo6Yqa5cyuduVAPA9KXdKqjIDAf3u1W2CSFkit5LiOKIsTgeYScBvxqxp9uIo5g6bB5mckZ4ptlb+b5k852YICr3b6VpR2cSuDLIViJw5J4FZykNRLFnMtva/Z7EY/eZeQjO4f7vas7xJpUDQw3lhbsHckTLu5PPUCujuNPW3htxbuRbPzv3cmsTUpxLMAxby87VUH0pJ2B7nKRWF3Fw42x5yDIME+3NaOntJIjQrtVkPKtxWwAkeYpUVEIByTkiobOwlu4JpljM26XCKg+8Pc+lNu4WLNleSwRTQ2SmS4mcDfjIH0rrbSJrezjglbdKTlm7A96hs7GLTbRUjALEZIxwp+tTS3rQR7h8xx2HSlfuJ6stS2kTwsZUXb035xVWdYYok8pEdV7g7qy7i/mueZJCB0wOKdbyGNl3uQnpRzD5C4syY8zy1z3+WlWWGd8rjPpVgC3mbfE5Ax93FRvCsfzgqfrxVc1ibEiRbWyQAD1BrG8Slitube2JRG+comK0jdHH3c/SovtKSna8XmL3UHmpcrqxcYtanNLNvgZnQhg2fLkIBYd8CqbXMqHzYo9z5zgngr/droNY0vCpcxtiIEZUjJ69KypY1HmJcReXHJ91th+WpRVmV/tUr27SyJsuIxxg9RVJ7q8tXKoo3rzIj+/XFaNxZwxTh5TII+odBlSG5x+BAqqZ4/MBDSSyKMeYnVvqKoUXcvafphvkFwjL5DclVOTnvV67ktLSyExfKH5Bjnn3pmiyPtMVui+a+fnkbA/D3qtcjyJXWVQYGOHHb8KQMzr9lmhM3lvtXnk4rLJZ4YJ0faBnqK39Ss4WgZreUMhTOzPasiSEXGji5t3BEPDx/TvVR3IaM9bsx/6w5B9F5FWPsymEslwC55BI/SqUkcbrFKfmdz92M5wv8AnNKnmJMdmQM4APpWrXUhmiI3Kq0+wkrhSGxzVg3GVRyo2xDaVweT600xs9ujErlecUnkF8u7YRuah2ZSehFLuRDP5on4wU2kbD6Zpggkv4o4wdhAJIKHirllDH5MrBsAne2aadQ85sWsZZsbTIwwB9KEmJpGTNDbxoVMwaXI5wcDHvUltA91OrHP3dw9wO/0p01oigRq58xz+8z0HvV+Qmy02R1wJZsCMd0QdfwNWSrbo9zaTdcMc8L19qmMIkU4bkjJFQXCx2t20uMpJ1FWkB2gp0PXmu6Oxz/aKYgjmje1mUNE4wc9jXl2saTLpeqz2kh4+8vuPSvW5oQjLIO361i+KNIXVtL8+NcXFuN+4dW9qxq09LouDszyGVPnOOMV0ulzLc2UQAwQcDnrXP36vDJ8vIJwfrV7QpdkpMpCxoc5HrXGdES7qqSOzoTsBGCwHTH+Oarm7M0EaN9ydcOh6ow6fnzWxcMtzlSPlbkMTVCGzjW42Kdxzxx3qNC7uxNeN9j0S5f92FkIjVB1UiuX0mCRnmWNF8tjlya29e3LEyB2MYkLN8vTinaVbKsIXAG8ZJyOlXEjcyZEVcpGMLu+X6UhQs5Gcj2rVuLaFJ1WCdZCw3BcdqrLEY2JA+8fSnzFpFzTLdpojheF6se1WbYWjEwyxMzRNvY54ZfWkspCAIAw/eEAgelTRwLbeZJKSCz7AMZJX6VDQPQvXs6tHAYYm2DgKKhtLGMXpYRKZcZ3P0XNU59daKKMWtviEdz1/LrTxqcslqWXCzg5Ug53D+lIkvNpFsVG+NWhZyXj/iY+3tWgtxBZQDZCMdF29APSq0Uk15p4uNgDAYJyBzTYirELjI/vZ6GpbsUkMkM0rF9gAPQUfLHbEzgr9DRd3+zCQgAjq1VIik7EyyZXufepKWgm+MpkK3tu606O1eVRKxKjOMUrRRK26KTBHTjNSQO0sqKxLDPO3jigb7lqFVgAAYfnRLcKxK9QPStIWdpKpXaDGBypPINV7jSYDFmOZk2jO1TkmrexnFpvUpeYSoCbSPTHNNaJFRmePDEcErVNroQyFRDkA8bzgmh9QZwF+zKP+BE1BtawZ/dABs49sVZhuFmtzaSruiP51RjuFkfaYgi9yM8VY8sxuAj4J9RQnYfLczl0a4trpRDIslv6Mx4pP7Hk+14ZSIm+9t6Vt5EcJkcZI7A1RTULu9kxAYbeCPl2bksK0U2zHlsywlhb2ti0CAxwt1I+9VE20EFuklxsuH3fITyD7Grt5f2yxqBdIoYdSCRWKhWS+e3EyiPGS3976Uk3fUbKq3F1cSvsMQQIVaIp0rBt7o2N1PHhBvGDnO0Vv3WmOly0y+YsZHUHg1n3OmG8uBskRX2gZIyn4gc5rSO5DRmCxadS8YjYD+IHpU62QWMeYSeeMGuy0vSP7KsBF5kcpk+feEyDnsPTpTLjTYbtycCPAxtA6n8KpvsSoow7eBVt2ZiQAp/GqlyjJArxyNtfjHpW3Fp7W7NBICQwPX0qncWvlwS22eEO7HtST1KeiGRxvDpU1uCDcOM89cetNstOkisgJsAjkfShbV5bpQyqCFCo27tWxq0YgtMIBnABYHrQ5WJjZ7nOQ25lv8k5Vm2j6d6g1yfDiNCCFbyxz2rShj8iUKqfPnAJPcjNZWsW6xWkMz4MjyEkYPaqjrqJ6I+hBsf93Ku7FPUmBwVXdG/G30ogKSkuvK/3u1SwZJKlThuK7mcxNhcMoORjIHpVVJNkhRgCp4IqRYzFcBGPynvRcW4D5GcHuKe6sDujyzxhof8AZmtB1J+zXI3KcdD/AErCWHyBwflfgfWvY9Z0iPW9JkgkI8z76HuGHQfSvLdRs2tFjjnGJFchseuecVw1Y8jsdNOV0aFswGksTgyKdo4yavvpMlrZC6kcBkTcwqlo6B5ZITwMB8mtHxjfbLGK3QnMmOR6YPWudK7NHexyLXH2i4IdwY355okvAlo1sHVVB+Vsc1mMxjiGMljnbnvUyR+Y8fmgKpGcscDNa8uhNyeOR7dvPdY2dm2DB6VrwT2TSRiSKYuOG2HIzWBOyxXEQYBNrbsE8NVqz2faQ8hKs7btu7AApWL6HTx21skhWFGy3Ut1Ws3XYZYpo7gbQ5XYGDdB649avSXqQReYuPmGATVG5miayYSIz7/uHNJoV2UIr2dywLzSAjlpAop9nGZSTCoCxNnOeHzTYPIjcAliG/gbt9a19MhtVlke5SKGAcqpJ+Y+1SxLfU2JkeayiVYTEuM7V5qOK2McYAibnqTWmoSWBWjGARgKp5xVe4jkK/K77V+8ves5O7NUUXtY5I2wo3fWoYbBnTauxT7nFXvLLYUK2PpTZItq7sEAd2IFTcbQiacFHIJIHUHioISYpwqBC2cYIoa4csVVw3H1qKEKzEv8jDkEChjtobtkSLaZmC5BwQarEXD3O+3CKoHQmrNwBDpacqWfng1WtZxsbe20+9VKS0REY9RJLQXEI+1woZscMvasiSwwWOGDKe561rclvMafCZ4qvcyGQkHoO9Tc0RiT2rKd6EqR75p0Nw8o/eH7veppZNilcjHvVbCSP+7Ix35p3NEi1d3kywI1sisvSRQK594hHdOssbBWHTJAyeRW3AfLcAhiCdrAetTT2NsunyNMxVw2Ru/i/GqT1MWjj/szNMfMMahBjbu4P0NX9NRnuBKwXg4VSOlX7LTUu4XDRrgsWUMMhcd6pjUp7G+AWO3Z19BwBV3JsbwYCMeYvHucj8qSGVIrlpYkXLjawKjAHqKp3V1cCcTAq0LryoHQ1OzQ21uGaYNI4yF9KaFYS41OERSQs7IPuhwKzLWSGS2nllabMB24Q9c981DqLCaPZsAZiMY6VFBHKhkMeDB/y0Ru/wBKEyHoSreSz3rROzmOJN241BBP51yN+TuOHwM8dqr2d0lvK0ow7EkGIjoO1Q/aYZmIi3cNlyOOatJ7ibN/T7ET6hG0hKgtjnjmnapOsl6sIXKqSDnjgc/zAqdJo5dMlkDbWCeYvPO6ssz/AGidpG+80akfjyf0rN6spLQjSQy6qo24KgFsep5/ka0bDw63iPUrOxO7yImYzPjpn09aq6LCbvWZEVSWMfH54H6V6/o2lR6JpqRrtM8nLNXTSg2zKTNRoUdmaJY41/uAcVHDH8u0Mc84OOKmhj+cejfpUwjEfQZ611GBXijJHz4YE4J9KmaLjZzjt70+BQAUbkMeT6U8nGUwePuH3pLQdjOjDQTkEHnp6VxnxE0giS0v4EBhJ/ebeqn3rvbmDzUDjOR1qGS2h1DTZ7KdRtmXDZI6jpilVgpRHB2Z5HZTv9six8uTg59KzvE2oGa/ba+UQbTW1e6NeaV9okYxskZIX5vm/KuB1i6kSymnRj5mQd23pyPWuCCvI6XLQ3JGlvNJtnFum6A/eXutVGRVAYRtJCTk72HB9uarau/iPSYr+2XXLG8GmzGC7itYsGE7imTvjXK7uMjIyRnqKtC4+0HagRQRkKRVyi0TGSlsSm4N2VTy422gsg25OR2qezMdxF592GNwzDYka9FquI/LtzMyGKSNo8EdMnPFbgHk3DhGVWQldoGcDt+lZ3NUxkyFpVjAKpjo1OkIHlln/dp1CjmtOKzLWrTZ82Tucc1Vh027uDxGuCehOMUXEyvZqGupg0OCfvDGT+FTQKVujJdSAxoOSR+QHvVx1W1GPmMiffwvNVLgveWTZUbw28ADqR0zUN6lJIvJqsR+e0Tbu4Mj9sdsdqvafqxmV2fZmPnco5NcpG7NM8uHj+X51A4z61LFcJIkEMIxMsmS+cBvas3c0SRvT6y8dqkSKZbuV8Bd3T60/UGnMEe+0S4Y4BPQA1U0WJIy7zJidzjLcn8K07q3Vwsasw2ckDqaliSKLSTWsayS2yjjACimDErqxX7xq5cxyNAF84KT0K8sBSWdlKJUEkgkz0Y9aaepb+EsanKEWGIDouayZblIh8ysd3pWlqcMjXIZRuCDBArMltpJkYKuD2zxSb94IrQrrqCwHaqbyTnr0qO71F523ZbjjaBUX9mXAX94uD6g1IkDmIxYUE9T3+tVdMCuZtr/AL0AD/aGc1cisS0PnoEjH+0MZpES3twqO29+znoabd3rcRNiQ9sdBRYaY+OKTzMhuA+7NWGQ3jSIziSIgkL6fSqVksgy2do9Ac02R3ErTxl/l9uDTTJlqZ0lxJBFJHaO8e5/L2nljn+lRmxSPbOE8xypRwT8wPrit25ggksPtEEQW43KzlepANU2sri6WR4NnKnBJwST2qtTOxRsZsuV3YOMmJ+oFLIWkZmWLerjCe1JFZPY3UMFxE5YoTv7n2pqPEt1hwRt52g1SYirLetAyWxAYnqT2P8AhUN/NIxCRqDGBy2SBn2q/DElzNMzKEDD5eahWONYTbgy7i3ORVJkSRjqQWCzp5ig/eBwwqcRIwKDbCDymerUyezCtJ5nAGQCTT9QaKJbeNuSiAhq0voQaVvd4sYVKAYcxyDvz0qJGCOUbogYMfQDjP0qjAXmefach1XYQM/Pzxiuo0Hwtf6tryWV5BLbw4DylhjcOuKUYXlYbdkbvwz0KUeZrl2h8tl8uAH+Lnr9K9AfdNMFH3u3pTSsVpBHb26BFjXYAOgA6Y96tW8YjhV8fvG7V3xjyo57lq2XKuMc9j6VNGAwJPrgj+tMsX3xF2RkJ7MKtRD5TwCAhAI9SaV7hbuZ5RobtlLqUf3wR+FWtvmRjaPunivPfHOoy6Xr5u4pXykMSso6HLHn2rqfD2vx6xaxkMu7GDz0xWaqXdi3DS6NcoBGHUEjPzLVaZDBIjEDbnI47VfOEdXH3W4K0kyLMGhPUDKmrTaZm7nI+OdEOoaQ1/aKFmjHz46la8J16MjSLp/KxkL8x6j51r6bt8MslvIAQw2lT/F6/lXjPjHw5/YWp6gk5WazuF3W4IyCMg5x7cVz1IKMuZGtOV42OD17X9JuLvxFdaWb2SXW52ZxcwpEIYjMJto2u247lQZ4wAeueL8FrK0L3gwI4iCx/pUC21pNIFWyhAZMDEC9a0buHECRq3yMo3Ip6H3qJzTHCPKacrRwWUskbbZbhVZVIznP8jU8EEj3ccUskz8hOccHGck1UtUlujZQmMM2Q3PcD+Vb6XsdlbS3EtrvYSlUGe5zxWJuS3mrL4Z/dXka3TMmYzEcAA8HPWudku4L29lNqzhiRwzkAZqpqEcN3D9vd1jZiYhFuO7OfT2qTRdKvLtZCiD55AAcdMe9AHY3lnGtjbyyt+/VMhwch/Y1Tgs/JmTZ5gWQbmYnIUntWpJpv2fTJokZpRv3RLjlB6Z71xFx49sLO5ms7qK9MkErRuERcEqccfN7VHLJ7A5KO5e1BJYbp4ZlO1+AcfrVKITw74U4DcI2MYrT0uSDXAmqu03kzKRHGw5G1iDnn2p8GmQm9laV32/whjwKnXqWndFmwWR5zJMGCxLnf2NSNqzK7OWLk9O+BWqYTPp6rPjaOFEfGay7izt0OxLUJ6nqahlK4R6sdu4whgPvdse9W9P1ASy7mG3uoHU1mQ6YFbdDBKGLc88EfjWlYWs73BkeNVCDAA64pqyG9hLjUtl2wG4AnnjNJLdxFhwzFu57VXls5onmmDbUZurHpVFobhwS0gPOFCnOaWg47Fm7kRH8tZNzAc8Yqt9pZFDqgGeDz2pbeFEncXEiqw4+YgGrw06DyhKGEn93Bo0AyXi+2NwdqDoO4pIrKNX+aXefpVyVQZAka/P7VKbSO2SOS4kWLzOm4Hj6+lUtrhdIS2Hk2s0xXcASNq9eKwDqLx3I8maTy2GcMvHPatSVhLsiikIkJJYqwA5/Gsy404qEkW4R0UhXIbO33px0IbLtldXBglmGAexYYFNs9VCgq4icqcgDjmizmY2k8EbqDGe5+8p70Q6VNLK7QyJ8q7s4q+otC0dWtruOOO6jVJUGFZe9ZF5CPtPmMQFbgYTNaj6UsNo0i8t/ESKr2sIntzbiVfOz8m49c01oxMyi2IGmKbTCx7/eFMj1HdaTTEEu/Cj0pZLac3Fxb7SSrbGGc/NWcElCiDGxkccVasRJkTDzZGSZnD4xg+9S30wWJU25AUJ0yasJHb3TPdylgOVJ9CpxVRLZZWdiZAY2y69cCqTRFri6e0wvIooFYytJtjA/iP0/rXvmh6Z/Y+lQ/aZZJb0rmV2bPPp+Fcf8PPDDec2v3kIUKP8ARlbnA9frXenN1OY0P7scknt611U4aXMpElvGruZH+5nPNWXfbuwMufuj0oQKMY5hHA/2jT1CA7uS3Y46Vq2QXYQSjPnp2NTquNwH93PT3qG15tzu4LVcUgIf93H9aj0Jv3PH/icn+l3PJz+6QAd+c/1rm/DGsXOjXqCRsRFjke3FdN8RSZdRuv8AZljx+QNcVfKRIzAH5R8vuTXEp+9c60tNT3uwvob+BJYzuRl/KroTKYJxIvK+4ryPwL4n+yTiynckfwk161G/2iBZkILDniuuLujnmrMr3UZwsycMv3vrXB/EANqc9pBLcQ2sUdnI1rIxA8yYMu5GPQfLgjOOTjJzivRnB2GRhw3BA7H1rPlsoVBiuY47i2kI3q6Bk65GQeOoFKtT9pCxvg8R9Xq8789tGr9V5r+rbnzwxeJYpMbZN+3tyfXiiNWJkfO2Rj8zda7b4g+G49F1aLUrWNYbOc7nVBwhxwAOwrhEJlMmCRubIrkUOVcrOmvWVeo6iVr2/BWu/N7vzNq03xx27bysi8hh1x6Vom3OoJLEZEX5t6q4wS3segrIDkRo5baq8H61cgd7mJiyO0YYZJPH5VDlYzSM1dGvZ7sIyC3jVs/NIHHuRj1rsdFAs4DaRq7qDu3AdTVKGaK2VkW3Scsv3lGAn4VtfarWHTbeSSQQ7vvYGCKly7DaK13rzWjpBbBt6f65iOlc74fM88MEy3mpW9qfEd+1x5FsZbZlK2//AB8/OoWPrnIPBbpimXslz9rldJEdD1ck4P6VzEvgqS9vZJjfopmdpNqR7iMnPqK0oyUW3IzrQcorlOj8LK//AAhGnOZCka+Z2/6aN0rUW3LIsqyO2emflzV7wbbrZaRHpDt9ohhVl8wKFYEuzfd5x97HXtUt9aoCYhITvOEBOOaiUldjhF2Vyokl7HsV0DoDkZbca1bRwwIkEeScgoMEVlQQOCVMRyv8cbdPrTGu5tPYqqgFucs2axZujpJEKhCvzc9Sc4qaCLy4nLKu9jwQO1coNYmRGzIrb+OD0q6L+a3slBd3cnjJ7UCsriXWmXlzM6NL+6JyM9qzI7GRb0ozZCceYOB9a1pNWKWwRMvP1LYyo9j71nSXklypZoirj+78oP50IpNosLpuWEz36TKVwcjGP0qSOOW3UA3BlhUEqVrKeeSOMM+FDc7Qc0+G7cgDaSOgwf8AE0WYXJJ7kPiTcy4YEb8DkGtK9vpZ7SN2VkEgw528fgapSzWyLHuJjkHQuwA5qteakWfyfPGxfvPGMAfiMVSWlhNEtrbK7faFJjAHzKwFZkskbxXGy3ADZUnGAferAuJIi5Scnd69quWMSapbTW85C7Od2cZphKJhRQtHEhUklVwSRjdVq3luYyfKbr99cdqlvLAQRmOIts4AbdnntTLGd2uCjKqSRfK+O5rRGZJJfvbjyp3Jhf73FULlkjBljzjIKAdqu37nPztuTv8ALj9axrloJBiPduH8G8Z/PpR1EyJ5JrjUEn8wxMPmcjutRShTdSPGf4xkZ/i71YjZWXMb9trDrj2qpcOVlWNCORjcR39TV6ElpokTbDJ/qvmbA7ktkVf8HeHrjWvEgiTm3i+e5fPG3sKxrUzahLbQwKzTSsI40PUkDGfp3r3Hw1okXhrRI7cgNNMf35HVm/wrWlTbd2ZM05BFbxRWcCbVUbQtWIYVjAXo38R/pRFbvFKfNAaQ9DU2FYsDnOeSK7VoZX1BFVc8bVHQCsvWdYj0u3MsjAD0q1qGoQ2NuzyHBUcZrw3xj4sl1SeSCBj5Snk96xnUa0RXKup9GQqDEDU+Dg8jH19qgtd7WxO3g/dfrn8KsZIAViy5xj5evaqXRmXVHj3juVW1O+JIys6gAHr8q1y0cyT27lkKMrjqetdD4+wuqXLSLlvtJxz6KtcwWiMiBBhmO5s+tefHdnciGBHt5HcEgqc5716x4H8SrfWv2d2HmIBn3FeWK4kEzH7xGPatHwZvXxDaxq7BS3OD1rWDsyJWa1PeCxUGUZ2FfumoGXdFs6RydvQ1djjwkg7ehqhdRvujaM8jnFddzl3M/V9Kg8QaPdaZMy+aVIQnsQOK8TfS7iwuJIJYgHgO0rnkn0+p/rXuUoEE63KqdmRvB9a474haK0kdvrVonyZ/0gL1PofrXPWj1RtSlZ2OKNmpsSwXftf5h6UyXSnjH2kXcipIwKJEemBRp93PC0lsUR1b8KtyOfsXyxqWXkNngVwyvfU7YcrWw20jeS7gaGZ97vtkU+lTawpuriWCGQSCAD5fWs+AppenTXSEvPLn+LOCeOKr2bXCMZUBdlXc3/16uwm+hrXJht3lA3tAEyw3HGewHpzVCOKRbqHzXxG7ldin5lPYZqaA2txY9fLaRRleucgn+lJa5gvIZJX83YA+JBhQSOOe9ZT5r6HbhpYb2TVW19e99tLW0Tvvf/gPTN/NauRH/o0b/KcAE/U1VmnMkhjeR3QfMHYck1bWQ3bMkdvHJIxGWcHGPatG6sbTARCI5AnI2k8+1U5eRwJGK1xdRWSrbwJBvOGJJyw/OktiWvGSRgjBflaUFl/lV+WKMzN5asyovBmORmoBHhcPJFzz948Um0NRYtzbWzSRMEBY/fJXC/UUbNzMkKhznClTnaPXNQxyyFWRz5gzgEHdgfQ0rTSpGIldmjzkxMMZ/CnoVYjZFQMFJCg4cbshm+gp6JLMmEgITo7SCliuZMl4ohbAHaI1HX61G0t3zFNcnls7Bg/ypNWHe5LNY26FELsRjIJXgU+KGIqqNheDhgg5+mc1PvQr5pLMwGBHsODWa8iXBYJvhYN93OMGi4ralW9QxzgPlmGesY6flUMsUsyokaMUfou3r9cVpRt9oLxNcDzIxksec/SrmmTlkkKzAzjgR+X/ACpoZmRaTMIRLLhBJ9wd/wAadLZvaWIlOfOdwAuMAjOP51tXmqQWsawvFvnZ8CPB+Ye3pWXPqEl5DNGVZjHICqKM7AODQrhfuQ3Gq6cyCPyZ8/dKgfdI75+tV3kt28u5t1O/7rYX9T71Tnu447lnknRYmONp6jtz6U8RfZlliYhWK7wqtu49ataCsi4DLJGRPIXhP8DVm3NpKFeKKOIR43AdR/jV+zT7RESCWA6jNabWLWmltM3WT7p9KmUrMSOWtIZpMogGAOo4Ax1qlqMgiiG0Zjk5UsOeOvNbSwubGcK2ZHIU+oHtSeDdDm8V3UEMmHtoHV5WIwMDPFbQV2jKbsrHV/DHw39mtBrt+nzSAi1BHKDv/WvQoQzyGchTnhF7fWq3ysyWdqPLgT5fl6ACrEKM16qRNlVH3j0rvikkczLQbywkO7dIRyzHNMu7hLW2d3fleoAwTVpIsRkqqbs/ePU15z8Q9Uu7fy7WJyvmEgkHtUzlZDUbs5bxv4rkupzb25LDuVPT61wipx5jH5nPC1fuYACTu/eFiCe5pJVV0hKp/q+vrXOnfVjkux9GaVPDr1q13dQSiMf6uOXoPwFZ2t3OtaRqKroVusdmyDzWdC0YY8/KOorUhdrK5W3jgxCPTjFdBEUlUFZCUyNwJ6mul7GXVHhHiPzrkRSzurzPOTKV4DNgDp1HFYSh0UPIMblHAH1rqPF7Kmpg4G9pHYn15IH8q52F8SlGPB459K4Is7WtLkVvHujdcZ3IT+NavgYCTxLAGb7mPzqCzhjnuSrlwpbYu3sNpP8AStbwDYlfFjKGyqDjNaRauS1pc9uQF0cjnjmoXR0dWUYIHfmp4vlicnpjsKzNVvnsp7aRCfLJwRiupnIieeMSRksPkYYK+9UY0WdbrT7lcwzR7eelabyRSx+aoyjDJA7VUuoi67EI+cZikHY0nZqzC1jyDVNHuNJv7u2II2E7X9RT1t3mRYY8AB2GSM8A13fiu0OpaRJcwxA3MKhGVa4mO5+xQzylCWRc47ZYc/rXnVYtSO6lK60Oc1KaOO9eGNi/ljIVFz9aIbsfY2iEkLT3Q2hUzhR7ntWShnupZJkIBGfN5wSev8qmm3CO3gtly8x+6BjbV8vcL6mtYxsAjBQYhgc+1aetzwxWVqAw3H7o2/gP1p9hpsVrbCe5fPlR58nP3j61ztzqNzLem7cLIRgJGRjb6dKka8zoNKub6+ud0HkPKoAVclR+XSrmqavqME4iuI7cBxtaMNjb75rD0uW40zzZWkXz5wDvYfKvOcdqXULq584XUrx+c3AkKjafpzUyvexa0J0le7KrDGsrE84lHH6VoC2mjRfPjQOTgfSsn7Zd3F7FDBKplQbpFACoo9cjmujjvYb0JDLK/ndA8aZjX3JPNS4sbmQixFtE01y0duCcKVQu35CpjpUgRbiOeN8rnc8Wzj8eaZe3s7MtraSksMh5cY/I+lVLbxSiWws9TctgnEmSxb86fJYjnNOC0huISHVSc8981naxYRW1sZ4dkUw4UKFFbtoba5tQ0AGw+hqC70yG5jaOaPcB0K0PQFI4W61PU1t0tnl2hRgHOD+YplhqTmbypvLmBG0sXO5TW23hZ5tQJjuht2/dZclTSf8ACPR2kXnSTeZKh3O3k5GPXC4NO6KuZtxp1ygDRAk5yOzVe0tzbyBpFcSDvVpNSsJGDNdCRGG1GUZP5DkVm3MoSdzbTmWNeWdhtIpWZUWi5eMk17OvmyFkOVV+GU+xqlZO1nflJmfEyld7cNz61Zk1EXumtJCo+1A/MwAyfzqhfz/a0WdldNoAORnkCmkJq5R1PTBZliY1diT87MDuHYYFVbe9aGDa8RL/AN729PpWpIsjxqF8vDDLHZyRWPPAsj+Y24pnbwCAK0jroZSunoX9J1DyrtUZdiSnFdJqd7mzS1xnyiWP+0Bz/wDWrh5YpLeWPbJuSL5lb+lbs9yZ4oLkH5AmX9c9f51E4a3RcJX3LGnI01jcMI3MjTYjCjpwMflXoehaSnhTR1sYfnuZAHkcD7x/yazPBNgYNGGoXUeMys8Snq2QOf0rr4IidsjgNI3zLk/cFddKNlqctRpsLSNYkVMZcqSW9ParCRkzIy/KoHSmKMFo4cMCdzsarx6ot1q09rbjcsSAtJ2Brdu2hBtoFa1BZT17CvK/iSVN9DgY25wTxivS4ZZCgBB8stwK+ZtZ1jX9Q0qz1LVvElmz3ULXEFsYGErKJHj/AIYtgJaNurdKmpFtaEqfLI0LJIprkCWT5VRpHOOpGahlaOZvOj3ASHCjHSjQoo2sC87ktMkWPxYZqO5Hlh8HaqlsEGufyNOlz6i8qKcbiRu/vL3pyRgSFclTgHA78iuS8MeJrfUEH2OYTQN95S2Cn4V2ELiRTKrhiOCSOQPaut6owtZ6niHjKVTrRRl2lGfH5muctyGVnZicHt1r0X4g+E7p5pNUizPakfMUGHj9/fNeZKZbSUo5CAj5WA+97Y7GuNRtozu51KOhsW4jjg8yRiWB3IB2PSui+G2ZfEsjnH4VykUw+cfwuuAO2a6/4WQFdanJ6gdaUfiCWkGz2JQoYlcjqDWB4gVjPZMclWBBrfGdjZrF1tsSRA9AOBXUzij3LdlbyWyFHIMZG4Ypk0O3akWAv3gvcVat2AWIY48vn8qZJFudWMiq/Vf7xHpTbsU7GOpFjcK5UfZ5xscen1rz3x/pkmlmSCL5orgeYpUdAD0r06+gSaORQAFc7j/stWHqNm2r6NdWJJW/iQtE3dv9k1jUjc0py5TxK3mEdrIxiJJ5yfWr2mMfP+0SjaVTKiqkkDKDbyjZNG/7xScZOavWUcs7PBGY55wMDqAB9a55Ox0R1NR76KfaPNwAMDaecUkluRbfu0UIen/1qLXZDPtC7p+5xg1LLLHJfxlwxCchc5zWSd2aWtqULe3luWcKuYwOC7bef61kGwmvdT8mP90Eb5pANwH0ra1HXpZs2qRrCjHB4wRWx4esIYbbz5pFEp6I38xVX1uS2Yp06TT3IiZGJXkovLfWnxSTqjOBIzMNuYVyB9am1DUrNrpYxatHhuuOW/3vUVVuLlZTHKIkMcb/AOrj4zz6UuYIw5ty6b2aCze2eeJN687CN/61kXViDCnlSu2xejAZ7dxWqLyNotkttcyZYvi2OWA7Lj86bDfWEEjs0U7R/d5XeAv+0Tzmmm1qinGKLOlTzaXZuu9ZGOCEB6CtCDVlu9wldrcDoPWsKOASalGkKlGJAJjBJZW9c/WtebQLiNCN4dQ3DJwR9azlq9QSNC0vIijr5qk/w8dfrVdh9pmESSMD3KdBUT2yW1s64TePvndkmm2vmLGGG0QTHA46U4x6iloZWs6JNa3gnTZHC3/LdE+6fwrJmwo8mZXEp/5aqciT6120phS1ls5ZzGxHykCuaudPdrFmA2SwHMboQS9W2wSuZSuYrxxGmM/eH8JoLxNIFhd4xIf3i7Mhce9TTRsz/uYWL/xKe1V3CIXErHZ6AdT701qUXzMVRgj5JXYOaxCxfzUClQSWVR056fyNTLOSwYNhU6DHSk89EmVicg4GMYp7ESKjS71Ebr8o6D0Ndd4P0X+13ijf/UQE+e5HXPauVaCebUkhgQGVpBsXGV/GvZLS0Gl6cmnQon2uYK0+0YUcVtGNzJysLql8umaXdy2sRMGl2rybC23ftUtgHBxn1wa89/4XPcw2KzyeFpltp3ZY5vtZVXK43AN5eCRkZx0yK7zxHbCPwXrYJyBp9wQf7x8tq8V1S90ufwxLocL/AL7TYIJo5jdI0cr5PmpGoUc7p2OdxyIh0xW6SOacnc+iNRJtrQ21rG5LDDSk9M1k+HIgNWuoM/uVQFv9o+tbmsN5UCk9GDDH4Gsvw/Dtubl8fwDNNq7RR1DBjEpzxmvlC51zT7rwnp2nGWSO5tLR4WU6ZBIHYzyyAict5ijDgcDgg9c19ZEFokweK8K+Jeg6XY39ullplnbBm5EMCoD+QoqS5LEKPM2cdpszrb2qqfuxRnn6ikmWRxO5UAB8ZFWPKWLCkRqOnA7DoKhvrhVgMKE5bk7e9YJXZpfRFfSdXvtMv1ubG4McoOXHQNXv/grxb/wkOnPPMjwTxMFZ8YV8elfO8kpKDaBnaBX0R4C0eOx8FW6lQ1xKu8888nIraBLjZanbpMtwdr/mwzgY9O9eeeMPh/DNHJeaXDtBy0tspyx9wf6V2UAadFB3h4vWr8UuR5co5PA96qcFL1Ji+VnzbJby2j/viygNtAx92vSvhbDnUb1lAbBXnHsK2/Gfgoakr3mnxoLxRmSPtKPQD1rJ+GQNpPf28o8twQCndSO34VzcjUtTqck4M9LBBhJHbrXMeI72K11CC2lODIuVNdQSxikAwQeMAVyGv2AuNahu5vnSOLYE9Dkc1vK7aRyw2Z0NkCEiBGQV4Jrn/FGrDS7vT2ZMBnxndXT2+CQx5XywAB2rz34mNsW37YjY/qazrysk0XTipS1OzguUvbQTwgGOQZYdcGs66SSCaKeEEyRHLerrXEeCfEskF0bG4f8ActwDXoVwpIYEFoihaNh/eoi7xKlHlZ5f490CGDUDrMEZa3ulJZQceU+O/wBTWPpkclrLCpBjZ0zjOc16bdQQX8c2m3iZtbmMEf745/nXE6hZCx8QwW2FLQx/Kue1c1bRG1KSbsVJ1fTrG4vZ4t7ySeTDzzn61QguYLGKZrh991jHy9FP1qLxTrAl1f7HDJuit48jH97+P8jisAytOVDOiK7LlmPUUoU2tWXKWpsaZZvPdfbb1kMJPBYFs/4VvRzWzEJvIwflY9f1rmX1S4soWtrSUCMOPuDO/wBqSfUC1opuG/eGUbTjlKTi2NSR1F6I42czBWZl4DDLN9DVC2FsWaFYEjwu6RgBlR+dY9prEyXEMip5katy8nNVbuVHv5Z9n/HwxG+Hkde9T7NlJnS26Qv5s8EoMcYwGxg8dxjv71Et9byFIYULB/vM43MSPr1rIs73+zYjp8YO6Zsoducmp571mljuBGVfcCzbSACD7U7NA2jvNNu7aYWk1zDKxjBQznA/MVVu9TD6hI1tcM8C/KY0UYP41nNqyyW91FK8Mjs/yDJGDj6VjSQXbQBhLCW3fdiOMUOPMI6CMMu9pA6Yk4XG47ay/iVpmnXkem3bGUWFnaXFzMsLje/zwRqq5BC5eRcnBwMnBxirVvqbx27Wk7kzYwJBGePx71yniDVNTe7tY7OzfUBHHLDcQmJnjkR9vykLgjlQcggggEHiro+7NXMq13BnN6V/Za+JbCWweZYHhdpI7g7mifa427gAG6A5AH3sdq7e0Ikvt6EhRHkFOP51yNld6jb+JbG8udI+yQ20TQxQCF1jRSr8fNkn5nJySTk1vSaiPmdVKs3ZRV11zS0Fh2lB3N+2vYYrkyOVDYxLk/dqhfJE05MbjY3KEDg1lSRxp57tksZOuarS3sv2VgJBjdwR25rNJtG11fU6CCw8vTGnmIZjnt0rJns2RIZJDuSRTjHataK5NxosTM3ykgE+mK29D0UarYWYnHl2yyNMxP8AGoxwKFe45WS0H+BdDaxtRrmpQ5kdSIbdhkj/AGv6j2rtLK2kfMzkmWXmQ+gNRWrC5kSQ/LFH8kf8q2FeC0tjcPlIVzlW/iP+FdKaSucz1KHiD7FH4Z1CC9kZYZ7WSBQuM4ZSCRnvzXn/AIZ+DfhnXdJS7e91dGaV0IWWMAAdOsdVvF/iVtVuJYwf9HiYbQh967X4a6lLHEmkyqhR7f7XAyg5wWKsGJPXOMYHTNRCquax0PAydH2t1te3W17X2tv53Oi8QkLZNns/HtWd4blRri5XeC2xOD/vGtPxJtFg6N0c7eOvNc74Jtpob3VEkVzCHUKzjnoK6b+8jjSubnjC4ntvD9uyTSW8BuIlu7iFirxRFuWUjnOcDoep4ryHx9baVDcpBosqiLIKiKYyLuz65POB69hXut5N5ForR/3AteGfEW3itNZt4rKCOH92SREgGM46AVzYim3UUj0MNjY08PKk09b9dHdWu13j0/4e/BySStlZXbcr9uua6bwp4Qv/ABHeLiIiM/flY4C1veDPhvcauVv9QWSKzBypcYZ69otbSz06ySCzt44YVGG2feauhU76s83Y+adJ0+DU76CISrHIZxGU9a+lYbBbO2t0tgR5SBGx04GK8t8I+HLe08T6ZbIqPPaRSXEz+7Fa9kVSecgjtRTsyqj0sEaRyjcdoJGAR2NDx7FKyfOp/i9Kk8sH+AKexpGcL8kvQ8VpcxuCyspVX6fw1C2n2qXUtzHBGly64kmWPBcelTMghTCDKN6VGJVT5VBb2xSYa9BUkX7MYlHJUqAT0HpWBqk6SatJb5+dEStqSGKVlcxDcTjd3GP/ANdZF/Gw1SOYAlZRuY+mP/11DbuXFaG4G2k/9cx/KvPfiT881v8A7tegQyJJwgxgc15r8TLl0vLOJZMq8TDA+prDEbJF0PiOLtI1F5ZBC6M03JHevcFQJpsOAeByT3rw+wVj4l02JTkeeuP1r2q+jZ9HMPmbGESlWB75FKGxvUKGoW29N+SpUggjsexrm9aghlhOsl3a6thic/8APUV11zDuskaTBmbarkHO/gCsS4iSGd5Wj3wSfupouxFKor6GUdHc8DvLiTz/ADgHWZjzUckcyRGRiecHJrS8aaO+h689uokWBvmt2Y/6we9ZUTmZ4iY2ZscjdgflVpe6K7uX/OAiVmlYnHBH8NR+akytA4cbRuD+taOkTKJGt7q1jit5OHfGSPpTNS06z0gLJHcGVWbPmEdBWaaTNVF2K4MtrZwyCTartjy3/iq1HYvJE06SGM5+6elUoJJZ9kzJ51vCdwDHj8q6N7r7XbpPA0XlKMt8uEX2IondFQUWZRt7tlXcVVQc4Hf3q0bi4EaqsZZR/drFnvJ7mWSMu7Rs2AQeD9PatfThKtmI/LMYU4xnrSeg002L59x/z6SH3zU9tK7BsxSq3+/SzzRWihpF2Z7gZBqe1azvZleLU4lbH+rCVNy7pbly3u7mPTyiRykE8MX6P3qvdag8aGC3j+z5IYujglm75qlfXcunuY452aV+VXblSPb0rON/FI5aS5Kzjh18zbn/AB+lZzTsdeFp06knza2W10r/ADemm/8ATalmG5nnv5x5jkBVcbgw9abNf2dq6xxNPcQJ95idqg1Sur2a5k2RlXWHJG1OVHuafpjLdTNbTtIIof3pCnHNbRTUVc46zjGpKMXdJuz7+ZQnllllMZcuB23f62ixDG4XLYDZCjOce1WLq9ZH8q1cRg/woBVdvtETrJM7kj7gzWi2MLt6m/ov2i5l/s5DumaQLj2JxXp2n2K2umRaTHJujhRUeX++Tn5a5zwrpSabB9tcFr65QbC3VR612On2m6ddpLFjk545rLZml20aFlakSIHTlfu1i/FKWe00GN4ZHR0OCB33/L/WtwyXQ1uC2ifFskjFpW5L8HisT4shRoClcDmP/wBCFaT0imQt7HjguZEtfLVMnd824dT3r3b4f6dBaaElwkbCe4CmWQsTuxnA9BjJHFeCSCQWE82clCAFPfNfRPhRTHoFhCeNsY47cj/61EIRUr21NpV6vsnSUny9hPEEm22x/tj+dVPD0myKds96ZrF19o8+M9ImxVbwwjtbXskUOGM6gPjqOOa1v7xyrRG7cTeZBzyS2QnXP4VjR+Dra+1z+1tWJlRf9VBs2gH39a37O1aCBhPJ5r7uCf4Kul1XPzAnuSetbOPNqRfSw3jaE2hAvGxPugdqR5EVeKZ5rSNtXnPpRmOA7FHzHrirFc4r4ZaaRNqNy0hZt/2cSk5LBa9Mw2Y1wGJAPTGa5P4fac2neGrVZuZgPNkPqx6j611M0hSWOJM73yQf7orGMeUJu8iOWSR2KrlQONy01IRsYvMz/wC8RxUoTIYj7v8AX1pyR88j86dyURec9v8AeBKdqG+ceZARnuo61POqxbQBujP3s/0qnMhQjY2043A+1MaYKGlc7TsI5Ynio50iuhsIIYc8DOasiQyQ7J02nO0sv6VkXcsys0Mfy7RlHP8AnpSlaw43K8mrXGlyXSmyuHV8KkiBdoPvzXCfEZmj1S0kmnBlhjDgFfX6V6Fb30UzLa3ce2YD+LgP7iuA+J9rJJeWN9CNyv8Au3X0A9a56keprTdjmPDrNN4r013GAtwACAQDwele13EqpaJvHJHFePeHDFL4m0k4I3zmQjsOK9evy5ghCtsHyggrnoKUXoy5ozvEmsf2LokN3t+QOqnPTk4qJpor63EsBzHIuSO1ZPxLQr4NjBO4GVevH8VY3w6mnntLuKbLwRD5QTz+FKe4khfFWjx61pjxgeZe2ce63Zv4k/un3ryiCEojSiM+ahx759Me1e8Gz85wEYb1PTuatnRtPLfPpFi7kDJaJSSfqVNEbhax4c80ciKZlm3AZBVSOaivpZ762FoUIRRlDt5Y+9e9JoOn5z/YWn/9+kP/ALLTzomnkjdoFgU74hT/AOJppIqUrqx4VYaJqHkhozGkY6qxxmrEqvbRSWlxMtwJR/yxGAvsa92TRNIWMN/YVoVI4Hlr/wDE0Dw5pbuT/wAI7aD6p/8AYVTXMZwfKfOS2DZDNOsccKsFA6mtuyIaSIEMsr7FGDx+Ne1t4W07LFdAt2AIKhWK4PrwBmpHv3ed4LWJJfLZQxKcIM9OnWsqiaRpGVtTx3WY00q/uLW6AlaILtUHg5xnHvzXNSSl7rzLOB4UU9VYfrX0q5u1u7gm1byi+QwOS2B06dKypfC+lXU7Tz6HI7ycs3nuFB+galSTa1QOSZ4qupTT2fl6jAk8ajEZjIV19ie9Z8+m2c0K3UUhimVxmE4wDjg5r3Y+DfD8QDHRZMtzxNJ/LdR/whXhuVedMkbIz/rZOP8Ax6tFFoJTi9DwTbdXIFoPIg3Pl5jIBkfhSv8AuA7RyopkGWKMMkr0617gfCPh9kbbpdyQvGRcvj/0Kq0ng7w+3XTLj/wJf/4qm7kqx4S1pKh8wyIf+BLW74Z0eXVtRW4ulItbY7sY++3Yf7vrXpb+DPD+7B0+bb6+af8A4qhtGgslEVtA8Nup+QA5JPU5OTQ5DsiS0hZpfMdF3sMLt5CD+6vtWraXcEetW+nRkMwTcxJ6Vn3twNO0CS/VdxRTtA7VzHw6urnVvGV3e3RJUQ/dPbms0rsu56RBn+3UTB/1v/sprnPiyM6NHGO7L/St6OSVfEePLVoS7fOD061znxYlEem2oDDBlA6+wq5/CvUzim5HkbwvPHL5UZk28Pz29vfrXuul6klnpllbzqLdjbpsLtgFe+c9+leCR+fI620BZpJXAEY7817rcx2kGj2f9pSCHyY1z0OD7+v0pu61Hdu4qWw1Wafy3BhaUnepyCMdjW9bW8VnZLFGHIT0GT+OK5UeNdOgtbe6htmWynuWtw4XCoADzs6jOOvvXT6VcrfBXtn3Qy9DnOa2ptMzqXQ4XjFj+7Bz2Hap0jJHmSEBfTFKVt7aUrCPNJ6beajEDXGZJnIhU4IXsa1MybzEKHyiwUddi800TRqMshb3AyamVSRiNCFXocfzodD5JCgBqEwJ7GERWar0U9CO9TSDEsTjO4KQKkXYFjRT8q0gUtdxrjrnFKxnfW5OsY8kY645+tSxgCTOM8dKZHnLDtnFSopDDIqbBcUR7kZHXr0PpWfIqkOrHmNgh9lPetWs+5RVvcfwyjDH/a7UwW42VAbdM43E7iMZ5HQV43rmvXV7Lqksc8luLa9FvDJGOeAea9kYjy4txwwVtwPY9q+etUlcaQcHa1zqU78c5wf/AK9YVnZpHTQ6nQ6J4tF3GtjqRU3O8KspOBJz1J7Gu2cwvaS2t2ftMUg2lnPJHox7AdiK8QsomudTgTahzMqZOevX+Ve0iBbiMRY2skYURg8NSTLnGz0OYh8MS6R4rtriEvLZ7t2T1Arvbp/MhiIBCliRnrisFZ3sG8iVWa3zyvdD7Z7VcjZcNJ5rTfxE44Axjp+NTsmJsyfiSd3he2T+EyA5/HNZHw5wLHUWz8w4q38Rrgf8I9ZkYyXwF3Drtqr8N2AsL44yxdgwx7D86hu7uaR2O0sbaJIvJJLxjox61bNtER9w59jS2agj7wqzMfLhJVjk9cdq0SujKT1sZU09nZuPP3IPdj/SrdnNZXhlVA2UH99u9cd4l8QWtmBaLavPPISGfOQKv+EbmGeC/nVsKdoyT0PNStWOzOyS1iNpGfnxtX/lo3qKfP5MU+GEzf7hP+NNtZGFkiMpIKqARz6elF3E07eZG5cA4x6VqtDPc5TxT4mNpayQwG5SUjhsjj864+11C5S0F5Z3M6zhgJSSCGBPp+Vdd4s02zksZZJZ5LV4xy8bYB9ulcnp7xNdW0aNKLXgsWILsQRyBx+dcs2+Y6IJWO40u6u4rS4GoSXLSGRnOMfIC1X4vEemlkg+1Sq5YKFI7+lcVrer3jXc4YSxRO5KxhAQ65yC23PNUbe4I8Q2PnW6J9okVplRi/lIMfMf85pqpayQnSTVz1dH3TYjabkY570eWhiJZ5ehzhsGspdZjk1GGCAAlcknOOPWrLylraQl+Pm5GTit1sY8tmNlmhgijU3M3zZ2gHP51Qe6glk2R3rl/wC6GGazPFEps9NtmyxVclipwemf5Vz+iarpt55yYZbjG5PMXbkfUVDkzRLQ7B1JTi5m4681Xvodkav5zM5PGe3Hep7W4aa2jZ8Yf0FRagcxcen6US0QGHrcJj8B3ZlYtKEbnt1Nc/8ACZB/bF65H8Cj8ea6PxXJ5XgO7Yjgpmue+Fkuy7vyQM4QgdfWpj8TL3iegxsItTZyMqCc/nXG/EwyXhtYoY/NLTEonf7uP5108ckstzMy7APm6/7wNWZYIiA7KgYcmbHzn2WrfvKzITszzfT9Cs/C9uNT1OBprkfMlso4U+pNZd5daj4ima5vZAkLHdHGjfLgHp9ea7jWZDcZAy0GNvI6fX3rza8uWtoRa7F8xZCV/CsJzk3ynRT5dzVvTnwPeiwJT7LdDGRnGTjP613/AIBKv4fhWCaR0QjcW6u56gV5zpkzXXhbXbcZ80r5px0KjmvQPhOEbwjbuFGTcBhn0GK6MMuVyiYV3dpncXSlJvLhUASNt9/wqe1tvOkEYP7mLgn1NRSzCKWa4xuz8kY/261tOthbWUaNy33mPua6EzlkxHRVwEUDPUVCyH+6KuOo3Z7UwpnpSa1JTK6JtwSp59qaynzBKjEbOOlO037dcafDNqVvFb3j/wCsRG3KPoaWa2ma5TYcRHrjpVNoSLK9B82c81KOSKgA8sFieBx9anB2gHr9KV0DH1n6n8ghk/uyjd9KvllBAJAJqlqYxZOzdnBprcEVbqUbSnA4LZx6CvnzWmddH02QbVfyzJn0Zu9e7ajL5UNznqiMc/gM14L4rUxPa2oOCtvENvcHmuWtrKJ00FZMb4VzJrNlC2NpuA7/AO0QvX869huJVjGQoaX+DacYFeT+BrGRvEsErLmKNiT+INez6Ppy6heSzSNiJONuKEr7Gk3bVmU1xHcRhbtcMeFmPSquoPB4fsJrqeVhFtyWB4I/rnp+NdLqWmx2xjKqDCeGUjPPtXB/FRUi0GytRuBuLhY8Z4Azk/oKGrIzTuzh7zV5NTvPKuEaSObG1c52s3K4+gIH4V23w+Lrp16kgIaK4YKcYJyB1ritFthceIgY1JFvIdox12jj+Qr0nT7uEvKUjEMsvLqPWs9Eb9DqrMbUysefxp93cL9lkDBgdhAHGKNPdDaJh9u7tT9VW3Gj3MjD5I43ckckbQTx69K2UlYwekjxSG2mjv7lbgwlS7MPMchm9hW74H1SPStOu4rgMJZ5j5SkgAAdefxrOC3k8TXH2cu0xGx2TPyHp9DTRo9xrfhvFoypOl4/LkjC4Hft0rFXWzNXtqW/FcviPVdQD6bqDW9qBwi3RG4/hWJb6f4lF/bJe6vO67SZlivPMyOwx+VUbh77THa0urQyhf8AlrFKxH6U601fUbHmGyuEiPOSxJ/OlzVFoUow3OmsrTMPzBQ0bk5eIsCf7rZPI+nrW2k7wxRIBFbyM4ZjHllx6BSOBXCXOv6jqCbJrKaSPoFBIH1PfNLHeSMQv2W7UKmflYgCs2pGicbHd3VvFPukbdJMDlcPjNcrq+ma7dXMhsEhjjZR86ShX+hJqit+8YZRHfGQdt570DVbiIhJIr1AeuXfNJcyE3HuKukeL7R/tNrM6kcDEyn+ZroPC2reKrPUJv7ceW4tWiKBSV4J+lc7JrGzenk3wCnIJlYZHrTbV77W5ZItMjumfZuy03oa1UpE8sDrvHl/He6RYRWbys0Uw84LwVG0A/WuSubae2SOS3ieMtjDseq1qy2s2keG4xdFvtM8jHEn3umKhS5hAhZbfG1cOHJZc09eolZrQ9L0xANMts5yB6UX+fKORjgirGmnfpkDADG3d+FV9WbCHBGWwQKuWxmjA8Yqq+CJA/8Asgn0BNZXhDRbiw0kXRuZrWSU5cjaVZe3Pauh1BILnT1iuRvTr5YPXFcz4m161sLJFdHLDmK3RtuB/tVknq2Xsjr45o44Q9vhnIyc876illkuUWS8JjiPSIH94fp7Vz3gHVP7QMsEZ2ypEHJbkKGGRj1rsNP0wy3AYEvPKpJeQZwBxwK0SZEpJLUyLvfPa4QiGGJtwix8zAdzXj/iDzYNQucEYLlzjnAPSvc/EOmfYI2SOcNN5fLfxYPbFeQ+J4Fi1Xzgu4Sqq7cdx1NZbVEaRacQ8EMzz6jAzZWWyZcH1xXpXwsQReD0VeqzsB9Aa8w8I3aR+JLeNkwGkcPj+4QQP6V6v4Hge00B4cAEXUmPoTxW9Jv2srmcvh9DrggnurWEdCfNYe1dBwBgVjadGf7Ycn7qxbBWyBkCuiOquckhpGaBtFO2+tLtHpVEmRf65Dp0tuXjzayHHng5C+me9UtZ8WwaaYDaot35hIZY2BI/DNcn4jeT7ReI5CKp2oE48xV6e1ecWGr6hbNd6jZXbwQJJyjkONzcnAI9TXI60nJpdDrjRjZNntdt400h38qdZbd+pLrwPyNX7ox+JNKc6LqyxyYwtxEN4U+4rx7S9SbWrG/udUtLRmtUMjSwoySEfUcGvQ/hxg6Y23hBJ8oxn/CnTquT5ZBUpRiuaJt+HtN8R2Eso1nWIb+DGIwsOw/jWxdJvtJFIByuPoas1G67gyr255rqWhyow7izN1ZXCMCWkUAmvD/GHhXW49Yk1C6tsxyEKHRsqAM49/0r6Av7hbCwnu3RmSOEuUUjnFcJqWtaF4psPsMl+bWVmGI2UxsSO2elYTSb06G9OTOA+H8bJqUxl3JIqb/KJw2O3Fe36CirpJcDDPlvwrnY9BgglW4t4YhJs2vIMP8AKBwMjv0rodEnaXTguwqEBTJHBNKK1Kqu8bIuamgNiSQDtO78K8r+JeJJdOLjKQh5m9vlKj9SK9XvT5mnzHGPlGK8c+J8oTTlDPgykRA+g+9/MUVeyIpK5zfgsyFp7sD97tCDj+Lv+ld3BbpcZlceXMOpHAqp8H9LVojeuvXMmG5yfufyGa3/ABoBpGl6tcpjcqb1zwKylTdrm7nrYu6ULhA6zOq/d2hhuIznH8q2TG7Q+XJLEU5BXyeGB61wPwrvbzVBqFxcSOy7kRC3OCA1ReKfFWq6bfxrHemNQSDlelNvkQrOTsddeWyBoyk8Eao4xH9nyu0fiKwdUtmtraZ7KS1YZLtEsJG7261w0nj3xGGYSX5IySmYgQaXw94o1jVtaEF1MpUleFjxkNn/AApO7eiKUWjRstWihEqpaSMqHJwo6/nQ2uXvDR6da+QzYzI+05P4Uy+uZ7PxLfWkUpjjtwOFjHLBSD+tGol7u10kzBC7XCBlAwGyBzXJJcr1OmErxsTLr10ELtpVkVUf8/Xb8qqDxsVRpBo9oqE7N7XJxn8AfStCaHTrG8MEulRMu3fvzxyTx+lUJ00W5uhHBaNCGHzKiArj8+tUve1sJtdy7beLZZWZo9AspQQMMt3x+oqW+8XSwIjXHhmyXPRvtCkn/wAdrKin8O2pWM6NNIAchsAEEfjVk2mma1pF7cWdi1u8QbcxOc4GaH7vQnfZktl4zs769NrdaMltHgnzI2DlmHYDAGKuxX9glyvl6cqzyYKqo2qR65Ga4CHfp9hZzReWpRsqzcjLf04r1HwPFPqF5PJdeTNHDEmzC7cFlyelXGLck4ilNKNmaD6GNSNvPfWdtP5PMIe5Zdn4beadPoNtcJJBPp1m8Mn3lF0VI+ny1xuqfEaTS714l0mJwrOA3mMCMEj09qrx/FWdoxKNFRlPpMf8K6E/IxWnU9HMVxCkcEUEAgVMD/SGz/6DWBfXZEoDo2/7pCncB+JxTdC8RjxHbx3P9mLHK24BfMOMr6/nXJz+LbxdU1C3u4IrdYnAVEXJ646mpeo1odRJEpfE771YfcTk/j6Vwnj9UmurGTAbKFQig/KPXPevW9G06PUZISw+Uxgvxg9M15p8VbFdJ1i1hhzsEbMOaXI9GLmV7E3wvhxdXTjr5cSn/vnFey6FbBYXuAgLFwq7j0UcH9Qa8g+GiOY72VSAQEHPfAxXuGlx7bKIEYONx/HmumCTlcwqs868VWE9h4ysrsTObS8BQhuit7+1eeeL7ciSzYdi6MQRy3bHt1r3PxTZxXGmRGRctFKChyOK861XwsuoXKyyX3lorM0cfkgEt7k9veuWdN81jalJOFjymxguLXVrOcNgCTL88gZ5r3zw20LadBPET5JcklxjNc14d0e10u2knvrC3e5jkyH3bxjPXJ4Fdrpkcd7HBICDHIcjbjAycduK3gtebqKTSRvaS6TwyXCd24pNZ13TfD9k17qdytvbg43MM5PpxTdIha3jnhG4qG+UnuKt3NnbXsIS6t4pkByFkQMAfXmt+mhyXvuZfh/xbpfiYSNppndI/vM8e0VujnpzVT7LGke2BVg6DdEoU/kKr32qWumwsb642oibix4OKTkoq8mFm/hPNfH95BHIsErbY5YsFlbB3H09K8paIqssCSIRbBSTuwGxxn3J610fjfUIjcRpuYyqSSzDcCp7+1cKuAzgSLIjIcgH7/Hb09e9cdNXvJ9TtbtaPU7/AEiRNP8AAt9L5hE9yzqqEjLjaP0r1L4ex+RpsuDuywyx6Zx0rxvUoVttP0+wWYNJDANx28ru55554Ir23wUFGjjYOHIc/XFXQj7zYVrch1Yye9U9X1JdLsPtLAEKTkNxmrcbZOMVkeKT5ek5GOSeoz2rqv1OFatI5PxB4mudRt7/AE5UWKKSPyd8bZJ3DqvoRXlNxZapp1rdXQvXu0tEDmO6jG5VJAxu6E9K7jxvsWcRQMBLIysCOMEgDP6VxGv37t4QlWRwxurzDeu1c8fniuCNWTlp3PQdOMIXPZvBMUd/4NVJ4gkVwhWRFbBweM+1a+k2dvodl9itLa4EKtkMxLE/TJ5ryTR9RurfwTo7pKyzSTOpkVsMV5IFV18Rf2ha30eqX1yLK3CslwrkTLIWIABB6ZHpWkqnLKxn7FyXNc90nlT7IS0L/ONuO4riPGPg9NWsI3BnfyyCFA6k8f1rR8GaqzeCLC81G8ModBulbtyeSa008ZaVLem1huI3KA7jn5eCB1x6mtZqL3ZjFOOxV8JaK+g2D2rocodq8dRtz/OsL4sbh4Wv2bIXygpOOtdrfXFw9rL9gkt2uGXK+acqRjvjkelU9b06HV9Cax1SEMZCFP2dSRnHvSaXLoCb5rs5b4V2b2vg+KRlAaaQnd/WuL+KTfZ9VUBd2XZsAe/FevaRpQ0nS4raH50hTbtB6n1rlvFHgOLxPfJcS6g9phMcLg9PXNRVi+VG0JLmPEpdQ86NJboEOBwY2wMe4rovh0I7vxMpXB2lOp54z/jW3J8NJZrgaa13fLAPu3ciRbDj335/Suk8I+Ao/DeqG8F954ZceWyBSPfjPFLoU2jjNclx4r1p9/8Ay0ft6HFWxJH9q8PmdcASFiPXKYH681QvZAfE2tIVywnlzjnjdV29Plz6W+4EGeEKCvQHArnq7GtITxZJ/wATKHGABCCcHHc1jRxXH2qMwszRtkkr/DxV/wAWK8niFguAiICdw68niq1m7SJ5iYjUNgAnv9aqL5YKxtQoqtVcSKFZNzO4fbGCSSeue2K6nSJQ3hHUyrqqjfjC4P3BWAljc3ssz28H7rfuaY/d6cgDPOPWtayLWvgDUWdQd0rLnp1AFTN3SM5Q9nUaMK3tnurDSIgctKyKvAxnnivSvAdvLaalqiXSmOdVjzHkELhD6etcJGqQwaM8hkUI2F2r6d+vvXcfDrfJf62+95V+QK79eVPfNaUG7WMay0ueUeJUM2r3JZ3/AHMrcKeGyxP9azbqVbloVNs0Cp3jyCa7/Wfhnrk9/c3gltlSVy4Bk6Ac1nW3gnXdbJFvcWkzxccFlx+Y5qoqyaLfLZWOs+Htkv2CNkzgF2BPHXH+Fcd8Q7B7TxS8gBxOUIK9Oor1bwZotzoeiRWd4m+cdWQ7hWR408NTa5rWmCJo0RG+cntzmnKOiZlzJysdb4WhePS4pX+95YGfwFeffFvQrvVNVs5bSPeEiIdjwF+pr0o+fpVrBDa2kl4CwDFGChBgc81eaKOISPKoYNycpnHtW8oXS1MPaWlc8v8ACGg3HhrS3u9UaGC3JVi7NxivUbe6tp7WOaGZPKYAq3Yjtio5vKngKiMSRtgbduQO/TFRS7VgDbNyLyI0HSmrQV0Nv2jKHibTTrulm0g1OWzdXDb7cgswHbntXDeO7m88MeG7KSzYK4PzysnmED1wc80/VPiHdx6o1tZ2axtCSWMgGSPTFc58SfFSa14fsj9lJdpCp3jgFeuPesPaKTujRU3BHn8+t6rrzENJfX4zyQpI/IcCvoXwFNBaeDdPs3PlTpGVbcMc7iev4143rrkGyaG4ufJltYpok80kZABYfhzXZeFtSkPiHRV3EW80cjPHgkEgZ596car57JFSpXhzHsduFWLKuCvr608jj61heH5pLiykMjsczMAT6CtlZS2S3TAwPSus42h2M8cdc8muQ8YtsBUxBkmgbIK7sn0rrGkXnnFc/wCL0d4LUxuwK3Cggd1rnxKvA0o/EfOPiiK+v9VkmjgnkQcKyqdpX0qnoNlcS6lDBNbPHuZXyYiAqqwz19gRXsmtw+FNF8QWGkzWl401z9xopvlX9a3x4OsVGZJ7uUKTyJuVB7ccYpKElDlsaqcHPmPKdStVvL+e4W4GxsAYjOcA4HSvaPCKCLQbbGemOlTppltDbrEkY8pecEA8Yx1rQtoxDFwF2fwgHpV06bhuFWqprRF2HlqxPGb7NEbPHzbQfrxW5CO9Yniyyl1TTYbSNhG7TAkt9a0ndxsjCGjTPGPGupAavaIhO9CGdh6YGB/OuS8STBNK0W3yOY2mYn1bH8sV13jPQ4LDV5ZLu5gnuY8EQRyFXK9uPTrXnerXcWpzgqDGqIsaxs2duPeuOlCzsdtWScWd3ZOV8E6eWY5QysPY/MBUeiaLL4g06e2STZyGkITO4dcfnk/jU02l6hL4U0+OKCRROCAwHGSc8V2HgXSrvTNOlF1BJFMxxz/+uqkvfuxRaULHRzWkNh4ONnBF5UUMShYw2QMHp7159cypF4jktgxjNxdO5VeFALZx+Fej64skmh3HlhnYsoIXk14xrk8kWu3k02RKzgRxYIbO4DIpVk2wotJnoOh3ryeKBKCWFw7w7txH3BjgfhVzx7qd1Bq9tawXMqReWkjKrEc5NYvgW2u38UCWSKQQQIxTepwG5zk+9M+JF+sHib53KA26hWI4yCeP1rJRaVip8rmeqaDJJcaLay3BzK6bmI4rl/iPq+paVFZJpt7JavISWdVB/nXWaaFj06JAfuoAK8z+MtyYX00qAWVNwBPX5sV1TuoKxzRa59djkrnxh4rjJkGtSMU3cNFHhuO4xWn4D+Ies3+pG11a4WZFQlSUAP4kdvauFubiSVFd0jjSUlSRk/lS+CpH+0zy7fuJ37g5/wAKmKdtTWo4X901r2+8ybVrlHzNJdOCV7gt0ror6BxdaIgOT5kDkAZ6EVxFupAmfcAJLzn6DIFeg3WqRC4sPPj2FEj5jIOcN/8AWrmqo1pNszfE8L6r4lktw8aRRMoLOp5Y9BkVA1obOBkyGjLFTtAAOOozmtS5k8P3N19qmF5vkO9lGAMgnB5YUx7Xw1NIspbUQ+cAJtI568Bqyu7JHTTm6UuZLUyhq8hsLewAGyJm52AfKxz1z2BrVDh/hvcgnK/aB5eeOrYoa08PbyvmakSB/qwgx/P8Kbe3mm2vheWzsxM+2RW2OvI5zTlJW0M5c0m2yrfpJHaaYBtkkYtwv4V2vwrjKnVQ4G4SR7g3+4a4vX73z4dHKptMG7hRjPTrXYfC66Df27IMnM6qPwUiujD6anPiHdJB4z8YajpGtPY2cFmyBQ3zr7ZrBPxQ1pLIyPp+nMq/wsD/ACFVPiAZJfFV0VJOwIoGOvyiuL1C4eO1MUqsJT3x9z61SU2EY0uX3j1jwr8TT4k1a105tN+z7497Sq3T2xXQ+INd/sfyzZvAZGcK25eme9eN/DCQL4yjUA/8e/cAV2fji8f7TFCB829G+UduM5NFV2irBCK5z0H+2rpvDVxqCYd4gcYUYJAyK5+28S3t/pV7HcOu9I0kDJ8v3t2Rwe2P1rU0ICfwQT5e/wAyN5ACODjIx+leVabqyWtnIG5MknlvuzkYzgfrWdRz5l2HSUFfQ2ND1u7gvJTDPIUkjZ3BlJwd4GP1r1eOVpLcbuoRRg9yRXhnh2VHhvtyBZCy7V284MinivaPO2QBmIVARyx27fXPtWtFe40yatudWPFfFCm08WTxPGiF3Q8ehJzWH4unZbbTYyxGJZnOB2OK2fHx+2a+9zp0gu08zbvgbeAeO4rlvFkrutj95MQ4YsCOcjjmopRtJIqq/cuack5fw3pF1v3bQ9uMD/V/N/UV23w+c3V/ZS72ZreKfAzwDjgZrzjSjPd+HJre3VWkW63hN44G0g/412Pw7nudMupYriF1O52UAggjaPem1ady4tOLR7X4dH/EpyTkiVsn1zWopAUDGccVleGgBocZGcNIx5rSDZA/Ouy+h57HMVweOoxWP4rk26NJKu3cuDknpitcEg5GMjnmsvxHbyXeiX1vGpZym5eKzq6wsOGkrl7zLNiHlltzIv3WZlJX6c15z8Q/EOpadq9qNM1GZI/K3yLCVIJ3Y9DVvy4fNdWtLDH8JYkH8qy9d0621GxkCR2qTJGVTyuCec/zoqT93Q1hGzuzI8O+Jtd1LxJZafNqN3tlZmKsFwf0r2VS2xUIBYL1x3rw3w3H/YnjDT7rVbi3toljOXkk+79a9wsJY7q3S4gcPG/KEHIPuD3p09VqFa19C9FkR+9VdQ2hIZJGVVD5J64xUk9w1tbtKy5xXN6j4kVkht/LI35J2VbnymMY3OY+If8AYuo6dfXFrJatqMa8v5Z3bfTOD7968DsYlZ5vkBw2Tnn9K901W9tElDRec0jj5oicA+5ryzxD/ZqahPNbczuRvhMakL75IrGMtbmzWlj1S2m0O58IaUlx5jTW8QlRAsgG4dOgx1qz4c19tdSdvsiQmF9p+YNn8MVx9qJBp9ubeDciQgZDhcflXN+IbwxXrxQw+XdKgfejMoP1wal6spOx79ORb6a8kgc7SGKhdoI+gFeP+L4rU+OLS+swws5pVZwTk7s5xhsfpXFWmqarNLGFv7obyoKCZunPqa63V5bxGt0e6JBmCbTnjjg/WqluOKtues6HqGlNcSx2qtbtu3SRyuFJ78DdXOfFFbe8sFt4EeS5jxIJEKEbfQ815/rf2yO3RPtUsh8z5tzE7vrVhYEbw7K5z5+c9f0+lYtu5XLqen23j6xERiFvJuXAB3DFcV8VtWs9Xv8ARzHKzBoiCkPzuCDnkfUVnRWllDck+UgQjuxrnPEUcSajD9lXaFQtlT0H1+tWpOWhEoqOoyaLUYtM2LBP5QYuzCL5sdsgniqnhW+isbmdpI5m3LtUImSevX86WV7t7JgXlI27ZMPnPfnmsewvLnTrpfsc00BLdYiR+tbWZkmdVZaVqxsJN9kREZA5Zl5Cg545610LLa3ksTTyMuxRhlKoB35rj18R63tXzNTvSWOMmdq19O1jWrm4hhXVr6JGzkeYSK5akXvI6qc4/ZNdElAMUN1biNemTvz+ODT4oLlslpbJgOmEYn/0GptutJDJMuvXZKLnyzgk/mKz4r3xVMqgX11hzkZRDgfiKytE3U59i7FBKZSzm0jJ43JE4P8A6DUtzpgeznd7ho2XBBWBzv8Ax/8ArVTs7nxLdrMH1OaModoBhj5/Sm3moeI7KFZ3v5mTzRExMEfTjoMVDjFg5y6oTVo7i9MEdkjy+QpaUAYKg49e/FbHw21y00C3v7bVpnguZ7gNtaJuhzjBAPciuYHjLXluGI1aQOw5YQoC31+WnR+I9X152gvr5pNo4LQp9PSuiEZRRhNqTNPxpetH4pv/ADA2wSRBZFzgnapGCR9K5LWLxriO5KKWJH71gMk/SrthLpSG4Or2097IJ9hcyhVAwBnp1x0qjrNxo6PJDpFlcW6/wGaXc0n+8Oij8TXRGGhzuXRF/wCHV7bW3ipZrtlgVbdslzgcEf410/ii6ttY1/TI7V45o3nHIY7doPOfyrzTS0Ml64hkKbY25HXqDXoug/apHsz5sZdrUuTsHBzWdV2SNIantmlW0NnosdrbKGt0PARzjHU/zNeU/EnQrfSdPvb+CaBUe4Xy0hY7lyDknk81U1Dx14i0m8+wwyQvCE28pjAPU/WsHWtUmuoLVLy3IiklDZ3kmQ+lS5KTVgUHFnTeCPDlxcaA2p3QikN0iG2jLHzFAdSS3PoDXoF5GrhopCWjdSpB/iU+teSDxTdeHFtb61s1KrhVDs3TGMUsnxc1O7k2vY2SEe7DAq7XV0F3c7ZvCelpp81vp2mWcVwwIikdMjPuMV598TtBXTIdIhEUC3AhPnmGPaCePUf1rej8TXWowxebMsDsSVNs7A/nXN+Nrq9nnso7mdp90ZVdzlmzRHSSFLVHNeGATqkvAw0ErkDpnaa908C+Hrm1RrnUYrN1aFTD5SAsAyj72f8A61eReEdFmguXv3MiGLKhG2gnP1PNeu6Nq2tAhri9BjfACNCFIA+hq3JX1Ek7XO50SMppRUADYxI4x1qcNgD1xg1Sj17SIIRBNqFvFJ3UOM/lUc2vaQuWGpWuwdPnBJqnJdDJRdzRLEjHrSSS4kxnAK7TWMvijRi3/ITtB9ZRSSa9pc0o8vUbRv8Atuv+NFyuR31OTaCRrne7RuyvgEwjpVLX3udP8O395BIYpYx8rKoGOa6BVG/PfOfxrI8cP5fg2/z0OzP4uM1LiO+p4rfXs2pT+ddzvPJtABbtxX0P8N5fK8F6Y235njBZyeTXzruQOVTaucgZ+nGK77w1448QR+HVg06wt/s9gm2R5s549AOtXAJ2se4a9IV0O4IJDbVI/GuMsSf7TjwG+QcZOafoviC/8Q/D46jfmISsxUiJMZwwA6mqGn3DNemQEYxjng5rOb1HTjoJrkeb8yd1AxnnvXi+vqW8U3kQyFE7LjPGBXs19IPteHOQSN27vXj+rh08U3DzjYJZ2IJHUZ96ENo9H0+AJo9so8vDBM46/dzXF+KEX+1bhM8bAfeurtrkRWUQXyiqgY+cdhiuf13SxqF19ptbhWdxtdWIVR+JqftFQ0OfsAP7Qsy+MM46cdOldZ4hEk32Z4oyQtyHdgeg5rKsvDoingNzeqzxnIW3wcH6ng10z2Lz4Ryqqe8jjJ/AUTZTTbMrU5Xa3LxlZXL525GcdqisvtUluyXUe3d0jBHNbn9nWiMA7h3xgBQKsx2gC4hQL7lQf51k2UZUGnXrjmKMJ6yKQf51Xl0KWTUmnivPKfYE2iMcDr3966drKFeWYSP6ECqk9tcytt2COHsBj/GnG6dyJJPcrXS6immywnW3w68oIEOcDHYZFcxpPhQLqVtd6k6zWpbfIhT5mH510N0sNkrZIzjGSgqtbW5udksoRAv3MDlquU5WIjFXL76f4WnMfk6OMK3LscY/CtS20zwzFJzYoFC/KUc55NYbxCFdqjj0pom2Km+PjPzY7isJKXc6VaxkLp8N343vtKhv7m2tE3OhViSBgce9bcXhVPLUR+Jb5QygFtvI/UcVxbTyjxFeXatcqzZAMOM4/Gri6lMqrGLrUwhGCGC5/lWji7WRnGSvqbWu6PJpGi3GoR+I7mfyiEVduCc8Z+9XS6ZomgS6dayXlzeSyOEdg0zYyQO2a811S+muNNeH7TetHnO24RVH6Cuns77NpFt3cRLuwe+KicWkXB3kdFN4X8KPOAYrooowrJMRx+dZereHNIsIoJdEW6aRm/fLI+7j8auaZA1xZTOysCpwpJ5xVCezuICXt3b3yx/ShKWmoNK5Q0SxvrczobXTJ1klZtlwzK2PwqPXtAubuHbbaXp9qf8ApnO5X8jW/YOZAOAsnQnJz+dLezXFq254/Nh/vE5NdTqWjY5+TU8/tND1OwupS9qxUjaHiG4YPWu00TbZXKuHBjjtym1s5qxZ3byhxGSgHRSwq4IPMkO6A79vLBgAKwlJy3NIwUdjnXvbfVL/AMvIjlAY/dJz6VQ1Z90+kQncCJs7Sf1ro59LnaXfE6EjjKsFbHp71TuLYpqSz3FsCyLiN5QPlPsRxUpW2HJmL4owulWcZbI84jH0zXMkRGU7gAWU54rqPEVnf3VvA0Nuz7H3ZBBFcu3mNdANAzMwKhQMYNbxehn1O58N24/s22ZAGOTyRmsTxu2/V4fMCqYlwCBjArqPDcMtrplssn7tgMkMRXLfEGZJNaiVSpVk5wetCfvCmanhXff6fMXndgk21MnPy/1rv9J0/wA2wV2n/eFGIXyl7ZxXBeBR/wAU+zH7xkJz716XpZEWmQkhfM2sufak7agnoePeKpbm212QwTyKcnODWRHrN/GD+8V+eQ8Yb+danipi+sTsM5VyDgVz4YqzclQexUGinFNXYNtGzB4jf/lppmnzH3Q5P4Ct/Sb7QNRO680+2s5h/AJ9mfzriGK+We/16VbtYle8gAwd0qqQoHSr5UPmlY+gonAPz1gfEGUHwZe7ckZjzgcj5xWrC8gciXyI/wDdbdRcRQXdlLDdyNJbyY3r8qKcH86qTMkj5/RCz5XJUNxxzmu28KR6hF4YvYEs42E0vzSSyYwK2NR0W0s7zNmghgbukZOfxNQlNPgGJbiR2JyIwxAJ+lQpM0UbmnpOsNoPhNNLl/s8kSF/lYk8nOOlRRaxNdXo26W88Gc70O0LVq2+znT0+x2EXmZ6uoNPW1upm2z3kCIeqRsq4qXd7lRVh95eQInmLEVwejHOCK5nU7qHVbmMParNIpyP3fNdQmnWODuZJGB/iYH+VI1tNuAhghCjn71TexSXMc9HpN1kEWqwr2wtP/soru3RLKeuGI/xroTDLLjzFj464anfYLBRuYJu9c0rtstxSWrOfihucjbYqp9VI/lUzWlwWDyRSKP9wVrSTxQKBAA2OKathd6h80jlE7AGm0S5dilCsKsAYgT6lasraT3EoC70T/ZrYtdIit48Dl/72M0NPsk8tWL++3pUg2NitFih2iPcR1LdaxtUijeQeVEA3fgmuqjs3uskcv3J6VBJYx27c8t6lqdktSLnJizVAHkjBPoFx/SmY27v3e0Hp7V010fIhMpjZ/QKc1js7TASSLOB2B6CpbLhBszTHnq36U5YUbIK549avoqs3DP+JqyIItvMpH03Unqa8jW5zAtYVkcmICMnlgeaa1rYnBRnwD3PSt9bVDIRG5ZuuGYgfrTvsshOWghPbrTvoS0c9JbWbJtQGUdw/NWRHF5QGwqCMHAxWybFAQZlSPPTY1S/ZI8Y3VLY1dbGZApWJkRiFJ6YNWUgd0BUjjjO2ppLdYVLByc9ttWYYFkhBIz+GKFIHFsrPppWPeGIPstZ85m+0BXkZAO45rp4/L2Y2jIqGSziuTtCBX/vAc1oncyaaZiQaTbsC/nBm9ScVNEXhmCM+9R0xWpDazWnEyKw+lWYVtpZQFtl8zvxTasBmy2kc5Egdlf2Uf4VUlSSJgrM7r6MB/hXS3enkqfKVkk7AdKxbiOe2x9rt3Zf73pU27BdmPLaW1wxAk8hz/FvxVO40d0ZHS7huCn3eAhH+NdPHYWV2uVQhveoJNOkhbbAImGec9aqzW4WTMK389AVdhj0lj/kfSsHxH4ek1K9hmjnt0XGDtbke+K78LCi7Z40Geo39apXGj6ZPPm3Zo5iOPLbP6UKdmS4OxnaHpsFhpy2Vs/md927nNdDulhthH5fKrnJNZP9kXULiS3KysvUKdrU2aSWVXiumvICRjJOaGuYlaaHn2uAtqty44BkOQDWadqjc2cHoK7abwolypa1vBL3IZeT9ax7zw7dW+Q0ZKYONp4qo6aBJmCirhiw6g4zVvTbcf21ZoDy061BNaTQQEuGIAJyTWj4csbi98Q24iIAgkWRmf0rRLUls//Z", "path": "images/5pts_ADE_train_00016061.jpg" }
depth_point_59
images/3pts_ADE_train_00020054.jpg
ADE_train_00020054.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 68 y = 134),Point B is located at (x = 231 y = 206),Point C is located at (x = 273 y = 134).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_121><DEPTH_31><DEPTH_74><DEPTH_29><DEPTH_74><DEPTH_15><DEPTH_11><DEPTH_14><DEPTH_41><DEPTH_121><DEPTH_57><DEPTH_22><DEPTH_40><DEPTH_31><DEPTH_29><DEPTH_70><DEPTH_20><DEPTH_25><DEPTH_14><DEPTH_57><DEPTH_46><DEPTH_6><DEPTH_3><DEPTH_3><DEPTH_70><DEPTH_30><DEPTH_0><DEPTH_32><DEPTH_66><DEPTH_55><DEPTH_48><DEPTH_26><DEPTH_67><DEPTH_67><DEPTH_6><DEPTH_78><DEPTH_25><DEPTH_61><DEPTH_32><DEPTH_32><DEPTH_48><DEPTH_45><DEPTH_5><DEPTH_5><DEPTH_74><DEPTH_85><DEPTH_25><DEPTH_78><DEPTH_45><DEPTH_55><DEPTH_71><DEPTH_64><DEPTH_17><DEPTH_40><DEPTH_15><DEPTH_15><DEPTH_64><DEPTH_66><DEPTH_46><DEPTH_32><DEPTH_81><DEPTH_25><DEPTH_22><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_2><DEPTH_45><DEPTH_9><DEPTH_14><DEPTH_10><DEPTH_83><DEPTH_59><DEPTH_60><DEPTH_67><DEPTH_76><DEPTH_78><DEPTH_66><DEPTH_46><DEPTH_32><DEPTH_21><DEPTH_30><DEPTH_29><DEPTH_29><DEPTH_49><DEPTH_40><DEPTH_29><DEPTH_19><DEPTH_9><DEPTH_14><DEPTH_48><DEPTH_38><DEPTH_44><DEPTH_76><DEPTH_44><DEPTH_64><DEPTH_15><DEPTH_38><DEPTH_74><DEPTH_2><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
3
[ "A", "B", "C" ]
<DEPTH_START><DEPTH_121><DEPTH_31><DEPTH_74><DEPTH_29><DEPTH_74><DEPTH_15><DEPTH_11><DEPTH_14><DEPTH_41><DEPTH_121><DEPTH_57><DEPTH_22><DEPTH_40><DEPTH_31><DEPTH_29><DEPTH_70><DEPTH_20><DEPTH_25><DEPTH_14><DEPTH_57><DEPTH_46><DEPTH_6><DEPTH_3><DEPTH_3><DEPTH_70><DEPTH_30><DEPTH_0><DEPTH_32><DEPTH_66><DEPTH_55><DEPTH_48><DEPTH_26><DEPTH_67><DEPTH_67><DEPTH_6><DEPTH_78><DEPTH_25><DEPTH_61><DEPTH_32><DEPTH_32><DEPTH_48><DEPTH_45><DEPTH_5><DEPTH_5><DEPTH_74><DEPTH_85><DEPTH_25><DEPTH_78><DEPTH_45><DEPTH_55><DEPTH_71><DEPTH_64><DEPTH_17><DEPTH_40><DEPTH_15><DEPTH_15><DEPTH_64><DEPTH_66><DEPTH_46><DEPTH_32><DEPTH_81><DEPTH_25><DEPTH_22><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_2><DEPTH_45><DEPTH_9><DEPTH_14><DEPTH_10><DEPTH_83><DEPTH_59><DEPTH_60><DEPTH_67><DEPTH_76><DEPTH_78><DEPTH_66><DEPTH_46><DEPTH_32><DEPTH_21><DEPTH_30><DEPTH_29><DEPTH_29><DEPTH_49><DEPTH_40><DEPTH_29><DEPTH_19><DEPTH_9><DEPTH_14><DEPTH_48><DEPTH_38><DEPTH_44><DEPTH_76><DEPTH_44><DEPTH_64><DEPTH_15><DEPTH_38><DEPTH_74><DEPTH_2><DEPTH_END>
68
134
231
206
273
134
null
null
null
null
2
104
135
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDyNRhc+1Vbk9BirpBCgcVRnB8wewrOB2VHZEajLKPeus8I23m+I7fP3YlaTp6CuYt133KjHTmu98DQBr+9lIz5cGM/U05PUhfA2dZGgMp5Jya6bSLFJSMk/mBXPQR4cE9a6/QCN6gn9cf1FXE45XOkttJj8oDDEY6FjUN3oUGxiqKD9P8AE10NuiCMECkvJktbOeeTASKNnJ+gJ/pTJUW0fOOqWv8AbHxA+wx8xpKIiR/dXlq6i/j3zuQMLnA47CqXw+06XU9X1LWXByAQCf7znJ/QfrW9e222RhtxWaRrKWyOe8nJJI4pjRFjxWm8JzjFM8kZxSaHcpR2qEEuikDrkZqS20+NpCyptPXKEr/KrrxABYx35NdLpGiFvL3DGPmY47+lJJMTm0jMtbO8jQeVqF/Gf9m6f+ROKteZrMXH9qzufSaKN/0K5/Wu1h0lVjG6NWqnfaZGsZwNvsRxVckexPtZI4ye+vwQZodMuf8ArpaFD+atVJr61Y5n8P22e7W928Z/Ig/zrU1CDaSBz9KyXiwalwRcaje4CXRJDzp+qwE/3JI5R/MGq19DoV1DJZRa5PZTMBvFxZPuCn/dyBn1pbuVNOsHu5F3MSFijHV3PQVj2tq8YeWdi9zM2+V/U+n0H9Kjl8zRSNS10aGCSJtN1/SiY/uKJzEw/BgK6jTdCll1OPUhHCk2Cs/kyK6SgjG4bTwfXsa4YRbnOQCPeoZLaNWDCNVbPVRg/pSaZSki1eWE1pKyXNvJEckDzFK5/Os2a2VpFCjGa27XWdWtY9kOozmP/nnMRMn5PmrC6nb3Mn+maJayt/z0tXNu35crS2DRlPS7ia0ja1njFxZScPE38x6VJq0EGhabJqdur3EOdqZXmInoG9Pr0P1rQL6JCADdTafI/CLfR/Jn/fTIrLsdN8U22pzXcJtNWsJgRLHazLMrJ6bevT25pIpIwfAtzPN42hup3yZtyHj1HAFbVrqg0y5uLCRPNtEkZGiY9AD2qwmgpY6raalpsUsUCSgzW0gIeDJwevJX+Xf1rI8UWrQ+JtQ2ggGbeMf7QBqtwemp0clxcQWhntZFv9Ox80UqhzH9R6e9F/YaMy27kyWTTx+YCo3xg9xg8j865HTtWvNMuBJC2exVujD0NddHLZ+JrOBLdXS5gzi2QKC2fTJAFJ6AncfpXhW4vL1ALiJ7IHLzxPnA9MdQT711mqana6RpghtVWNIsAKvpmsefUbbw1pH2KBssGYux+8x/zxXA6prM9+zb2Kp2Ga4qknKXkdMIWjc2dd8VSzO8cRI65NclJesyhicSq2VbPX2qnfXvliSVhzjnA61Qg1OG7QlcBhwVPUVpCDT5kN2aszorLxfcWEcttKoe1kH3OuwnqR7HuPx+uF4giOpWMF+kpKK5QIDgL6YqlOSSSvKmtrQ5P+JPeqsUcskbCRVfkdOPx4Na2UXzR3M2nszDt9HjtoRd6o8iRnmOAn5pP8BVDUb+e8ICBUiXhIkPCipLq9mublp7hmd29e3tXY+C/Atz4kX7bcp9l00H/XMozJ7KP61pKfIuaRChzaI4jTtP1LVblbaztXnkY4wg/rXoI+H+tG809dSkb5ipl2tyiDtnscV6HAmleHpobLToEhRRksPvMfUmsnWPEYW6U7wR+lYTruT0NY01Fam7d6lBp0MVpaqkUEQAVV6AVxN1rYu9QizKMwhyvsf/ANVY+r63JdSnDkZ71zz3LLIxJwxOQfenSjdXYqnWxnOKzZDmVvY1pt1+YcVlActn1JrspmVQuaXC8t0+xSxVcnFei+AoQLbVJT/eSMcfU/1Fc74LsfNtNRujjEe1f0J/pXceA7fd4duJ8f667c59hgVN7zsKelI1Uj54BP4VuaXKYZFIHQ/3qprb88CrkERU5rZaHDJnf2F6JYwMqOPU1z/xL1T+zvBN2Fk2yXWLdMDruPP6ZqOwuHhPSuQ8eXUviHxPo3h+L7u4Fx/tOcfouaJbBB62Oj8DaammeCYGZcS3G6Zv+BdP0AqtfRZc5yee9dDdukKC3hGIYxsUewGBWHcNuJ70ugrtyuY7wKO35imxxDOSOBVuQ1GwLBYV+9IcfQVJaZc0LTlvL/z5B+6T5iD39P8AH8K7mwhiZy6jjoDXM20yWOnFYz+8k46fdHr/AJ9a09MvggC5HtTSM3K7OlVQBgVR1Afu2BGeKlF6mzJOD71lajfh0IU8fWqG5J7HKX6q0pK9PSqC23mOSxAQDJJ7Ada1pYzM3TOaxNeDzSDRLZiC6iS8kB+7H2T6t/KokVEwZJP7Yvze4xZw5S0X19X/AB7e1SNHgVp/ZhGoQJhVGAF6AVFJFzxSsacxmCPH1pkiZB4rQMVM8jNTYdyhFCT0Bqd5YdMt5Ly6ZAqrx7+1XRHFZ273VwwSNBkk1wGoXtz4m1PbGCtsh+VewHqaVi4kFxc3XiTUzLJlYlPyqeiD/Gtm1gWDb5RZCg4ZSQfzFTW9kltCIY1+UdT61NsAHApWHzF618U65aSbUv2mRei3KiUfmeR+dPm13T9UnaTU9IImIAM1nNtJwMD5GyP1rKRDvPFH2clwQKVkNSZoNpejXXNtqywMekd9EYv/AB4ZX9a2dHsE8N2lzqVx5TzlfLt2jcOoB6kEflWWotNPszc3zBUxkITy3/1q55df/tOO4jgVYo433KiqACD3xUSTcSotXJ9S1GS4nJlbPJIrHklz1ziqeramkLohVsPyXHRe3NU5dQVIy7+nbvWPsZPU6lNInvJUeJlPbue1c9e+XHMJI3KMRncO9Sy3E18c5KRdj61JcRq1spKgjpzXVTjyqxlN82xTTVHHEgz/ALQrc8NatbwX8qzSYjkiOQe+DwPyrnzDHngfrXUeCvBJ8S3sks5aKxt8b2zyzHoo/mac+S12ZpyvY1fCHgxdXuTqV5xpST7EB/5bH0HsO9eqarrsFlAIogscUahUjTgADtXParqUGlaPZWloAiW0m1VXsOlclqGpPdSEljg84zXn1m5+h100kTa1rs094s0bYwMVk3F40pyxyDVK4ukOUT52z0Xt9arrN8+x+D2rWNPRMmT1sSTTgY3HAPTJqnKwOdxq5fQi40TKj5oZM5+vFYwlAGyTt3rogtNDJy6F6Y7IHOcHGKyueT/StfVR5Uax45J9Ko2qBgNy7snvW1PYipvY7Hw3Ktj4A1K43YeS4KY9cKB/WvRvA9l5HgjTQerq0n5sa8ca5dNP+xJgQhzLtBzlsV9EaJYfZfDulwbcGO0jB+u2lFWk2ZV5e4iJYATxVlIcdjV1LfHaphDgdK0OO5UjjYEYUfjXI+EUbVfHep61JjZaI+zuMnKJ+m4102u3f9naJeXI+8sRC/U8Cs/wRZ/YPCCzH/WX0xkJ/wBhflH8ifxqHqy4LS5qXLP1Zxn6VnSgk9zWjJg8k1UdRTbGkUhDvfpUlrCZJnlxwvyrx+dWGiKREjqx2rj1q0lv5EATGOP/ANdSNoquN75yRjgHNWIfNUZGGHt1/SmLGQe9TKoxyOfUVaJZOt0+McikOZD601VLHrn61etbbeeR9e1BBn306aVpz3bR+ZKSI4Ie8kh6D/H2FY9npj20LNO/m3UzGSeU/wATnrj0A6AegrVRf7Y1AaiP+POAGOyUj7396X8TwPYZ71baAntSQ72Whgvb47VVkt93UCt+S3BziqrW3OcUx3MQ2p7ZqaKzVFMsuFjXkselbEVhu+ZhhRzk1534x8Qyavff2BoxLR52zSL0Y91z6etQy46mN4h1qbxNqI0/Ts/Y4z1H8ZHc+1aNjp0VhbCKMAn+Ju5NXtM0OHS7TywA0rD539TVkw4xjt6807FuXRFHy8U1o6uNF7U6O2MhwBkmpaGmUYbcu3StC5Nlodl9rvyN2MpGep+v+FP1G/svDNoZrjD3JH7uIdf/ANdeZ6jqV7r1/wCdcMWYn5UByB/n1pWLSuLret3Ou3e+TKxA/JGKm0zT2U+dIWQ4wADzVm00oW6h5QDJ6elXV4U0DcraI5bWZPsN0S4V1ZCAPUVgeYj4bKnB4iwa6nxPbb4IXxySQM/nUFnYN4g1JYbeG2tUTAdiQp/AdSapWsO7MN7nYOTg44X0px3yJGQzEv2Xp+Venw/DDTLi0VkW4lcnBmabbHn8vmP0rpfDvw50rw5fQ3Nxci7k2/ukdBiL+8c9z0ArOVWMTSMJS9DzTRfhd4g1yNLkRCztn6S3OV3e6r1NdlYS2/hXSH0q0u/tRikO+YADc+fm/LpXYavr5EsvlEfLlUHoAOK8P0/UnSF4pcljIzlifU5OfxqeZzjqHLyvQ3dQuDMXV2JL8jnpWHI8kqmIP5ZHG7vU85ll0+eeIgvCy4B7g1nC4FwN3CTD9ahRsaKROkEcKFUXGevvUc0ayAdj0Bqe38yWPfInlKOrvwKjlvY48i3UM3eRxz+A7Ule5TaaFgmlhspoZAHeQfKhHzcd6x5cSAtt2/UVoWEoOpx+ZzvO0596papC9vcsqnG0kYNbQ0djCRd8Qti/Eefujmq1sSEHHajU5PO1GdyBnJohXMfToK0jsEty/axG6u4YccyOiAfUgf1r6maIR4jUHCAKPw4/pXzT4Ntjd+LdKiH8V3FnHcA5/pX0zIw8xj3Jqo7nNiXokNC+1DKcdqUOKCwIqjlRxXjyVmtLPToyTJdTdAOwwB/48RXTSWy2dvBZRHEdtCsQ+oHNc7GBrPxORT80Gmx729Mrz/6Ey/lXUzDcxbualK5u9EkUGTNRlBnFWmSoWUqrMecdBVWHcdbp5l1k8pFwP949aVnMir3AGKnhgaC2C/xHr7nvUMNufLXjt/WiwriLHnuR9KmEQ9KkSD1BqykHtRYhshit8noaZqO6cjSIGK+au+7cH7kX93Pq3T6Zq9cTJp9m1wyGRshI4geZHPRR/npmmWFibaJmncSXUzeZPKBjc/t7AcD2FFibj0hRECIoVVGAoGABQ0VWduKQgU7E3KEkAPamR2e4+1aIj3dq5Dx34v8A+EegXTNN/e6zdDEarz5Sn+Mj19B+PSpZUU2zB8f+KZIZf+Eb0TL30vyzvHz5YP8ACP8Aax19BVTQPDUWi2fzbXu3GZHx09hV3wv4V/seE3l6fN1Kf5ndjkrnqM+vqa2ZUBzSSNHLojJliFVmi54FabxH1NOt7F5nACk02JGbBYvNIFVc1Dr+uWXha02jbLqDD5EHO2neKvFdp4ZgNnZlZtRcc46J7/5615fb2l7rt688zs7McvK38hUM1jHqyJ3vte1FpZmMkrHv0QV0NlpkdjH03SHq5q/a2ENjB5cS/wC8e5p5XNKw3K5VdAelMSAu2MVoxWjzkBVJzWt9gt9LiE10Gd8ZWBFJY/l0qXoNK+xzWq6Kj2FvdXaE2kdzGJj0+Rjg4xzWzpngHwxeSLq72LfYIWxGHkJ+1MDjof4c/nUFvY6p4t1cRaihs9GtmBmhU4Z+4T2Jx064rZ8R67DbWxtoMIkSqI40HCgdKwq1GlaJ1Uad37xpaxrMcN7b20SJHDFHhEUYC1QvNUeVprqNty28fz89MniuNm8TG21a01JrdJ0GQ8cmSrAjHNUv7S8p5JN+FfOVzwR6Vio3imdEt7I6NNWh3x3GAxLEOHHCk9P8+9YkWjWbi7AUEO5OB1UHkf1rGbVI5PNWGRWXoRVRNburedJY3+ZeCrchh6GteWTjZaGUVZ3LdpbSwy3lizAh4/3bepBrOd9PsJcu8dxeDqA37tTWi95b6jNDIB5bFxuUn8MA9xXMajZm31Oa2SPJDnauMmrpq/xEVLJ6D7rUJLlx9pbIH3dvQfSo4FuLiTy7ZTMT2HWrC6MltGJ9TkECdol5dv8ACm3OsmKFrfT4haw9Mj7zfU1tZbIzvbclZIdMcPcOZLleRGjcKfc0arJKk8TTRpKbhBIPbNYTFpGOWLE/jXRahGbzTdMIcJIsW1getHLytNiUnLZFCc7mdz/Eeani4TFQN/q/xqVW+XpkelUtinudz8LbTzfF9hO33YnZ8fRD/jXukkmOeePevG/hVEI7r7Rt4CS7Tnp0Feuxh5Y+oxVUldM5cT8SHG4xUc2oJbwSTSN8kalj+AzVKctE5RieK5jxdqf2XQpox96ciMe/r+grRoxgrtGn4EJOm6lrE/Mt9ceWpPXaPmb9Tj8K6NroHnNc/Zf8S3RdPsP4oIRv/wB9vmb9TT/tef4qS2NWrs2WuM96ktwZ50XqqfMf6CsRLrJAzXTaLbloQzAbnpieiJ2RjyFJA9Bk05YGjjAZeR1x2rbhtkjUcc097eN1wV4zmld3FbQwuPSp4V3MAOtLdQeS3HTtWNqlwXQadG5DTLmd16pEew9C3T2GaZkWIJRqN99vBBtYcpaDsx6NJ+PQe2T3rREgHSsZLtUUKoCqowAOgA4xUovQe9Ml6mqZBQDurPjudxABzVbX/Edp4W0dr+6IeRvlghBwZX7D6eppMEruxF4x8W2/hPTAUAm1K4yttb9cn+8fYfqeK5Twt4amgmfXdacz6tckyfvOdme/16fSq2gaXdalqT+JdfPmXkvMMLDiMduO2OwrrHuc5JNSka3toh0r8mqjnJpWk3GrFraNO2Twg5JPagkhtrJ7h+mB6muW8aeObfQo30vSGWS+IxJL1EX/ANf2/P0qp42+IaQLJo/h+Qbvuz3a849QnqfeuT0Twy8xF3qAIQ/MIyfmcnuajc2jFLVlLSdEudWna7u2fy2bc8j8s5/z3rr47aK1iWKBAir0FWcKiBFUKq8AAcCmhS5AAOadhuVyttJ7Z+lXLPTJLqT5V4HU1p2Oj7wJZ/kj+nX2A7mo/Fd9HYaHJb27+UJBtJX7xrOUlE0p03N2RuaJp9mkC3AIZD91+m7Hce1Wbq/s7aF2jiQcbiAOT9T3Nc5N4htrOzjhRlASMKvsAMcVyWq+I3kh2RncQPve1efKpKc/I7404xWh2E8r6d4fid2CTSwi9G7/AJbMzDd/MfgK4DU7wXFxNMBgbiSPY1nza3LeENJK+VG0ruyF+noDWTcauRc7HQgZxuzwTXRKDeyMqb5XdlgzKSYJeYW5UkdKpTSPbZj374jkKx/kakl2zpnOcjkGqTTNEdkgDr2z2ogrG8ncorBKredC21u4PSnC9CsPOj2uPUZFQ3KeZckLlc9KrvHIuQXNddk9zjk2ti6bhjIrK4IDAjaelbuo639muGNvaLFPIoYzPy2O2PSuP2Ht1roNYhe7stKuIl+aSHY3PcetTKCurkqbZlXFxNcyF5Jd7HkljzUtjpN5qEgEUTMD3AzXV+GvA7Xqi+vRstU5543GvQYrW006xiFtGiFgWPHJ9OayqV1DSJtSoubvI4/QPh3JIfNvZFgjUZPdjW8/g7SvtEFwoBSE5cNyX/8ArVfm1VI7GXaeQvSsM69izdNw3ZI4PtXJKrOabOlxjF2R50kUszbIoncjJKqpJx68U4hvmULyODntXZ/DeNRrlzcF/ljtvvHoMkZP6Vg6/rEmuazczM+23LHyV/uqOB+Y5r0E+hyyXU7r4fMsGmrknmNs8esn/wBavU9LWZlDxMJVP8GCa8i8ESuukNsVSUbysE8HqxP/AI8K9P8ADCarJuSG9t4EJyFMRkYfTkVrS0RyV9ZGhqyJJFna8U6jOx8Lu+nrXmussNR8V6TYA5jU+dIM9uTz+Cn869iufDsl/B5V/qd3Oh/5ZoEiUn8Bn9a8fs7SKXxxrj2iM0FsWt4+S3+yee/Q/nVNmcVbU2Jr0SSvJu+8SaYtzkcZpx0+825FsyJ13PhB+ZxTXtRC+y4vbaJwcFQS5H/fIP8AOkNMs2sjSzqu04J/Ou5028SFlEkciqowDtOD71g6NovmQm5Saf5WC58sKV4zjBOR6/0rtYlSKEbt6ADgkZGPqKpClqXIbuCVQySqR9akaaMDlwPxrmNUuYoeGRdx5Drxn8qwX1OXkLM2Pc5osiOZnTaxqsMKNIfmVflVf77dhXJm7bdJJI2+aVt8jep9PoOgrOutRku5A6nMSDEfv6t+NVTdHncSPwoJtc2hee9PW6BOM1gC4BPBNWluYrS1e7uXCQxjJJ7+w96TY+U3rjVrXRNMk1K+YiJPuqPvSN2Ue9cNa/avE+sHX9aH7ocWtt/Cqjpx6d/c1Rnu5vE+oreXilLCE4t4Ox+v9T+FbS3OBgYwBgDtSW9yrWWhu/a896QXJY4z1rGW5Le9acHkWlo99qEywWkYyzscZ+lDYuU1rS3DRtcTusUEY3M7cACvO/GPxAk1TdpGgl0sidjzJ96b2X0Hv3+lZvijxfe+Krgadp8bw6cDhYRwZPdvb2qfR9Jh01RI+HuT1b+77D/GoepqoqOrI9C8Nx2m25vVDTDlYz0T6+proWkzxVbzSehq/YafNeyhUUketGwm3IiihedwqgnJrTkW00WNWuUknu2H7u0hUs7fgK3LWxtrDcnmAyou6Rx/AMfzrDvLmfVZBpmnOLXz0DSSJ95UPU57nBH4mueeIitjphh29yvBqV8llLq+qqsLOxitrVWBEKjrkjjcf06VwXijV5b5SiOcIScj06VY1+6FhqE+kWkpextHCR5YkjjkE9yDnmuWuW2ndncp+8AeM9wayUud3OqEOTQtW+otcQxiWTLoNhJP5Ut/J9huRBNncyB8DnAPSsKRZIcSqQN2Rwf0NdTrGmHVtHh12K5hjSKBVdJCQSfQHGM5zTcI81+4OTWxz9whD+ZFycdPWqEl4iM6SxllfqO1Dz3CHKsHHpkGqt05kWORlwSSCK6YRZzzknqhft7xgLG7lB90HqtDahvHzDP4VVA3HABz70+C0nu7hILWF5pWOFSNck/hV8sVqzPnleyJZJgwWReCartITwR+tb6eEtUF9b6ZNasl1cfNHFxn8fSvU9G+E+haVbxy6qz315tDOhbbGue2ByfxrOVaETVU5yV2eIQxyy5McTvjqVXOK9G8K+ETPHZyamX2MPMKE4Cp1A/GofiFqsB1P+xNNiSCztiFm8obQz9wMdh0roJ9ditIUigIYDAGPTHFRVk5R0FGNnqXtVv47bTGSPCL5mMA9OOBWDda55ttEYzuIGDWReXklz5sbPnngZ71k29wx3wk45yK5vZ8yudcXY031CVnZHfG4bcCqC3G1mXvUE7n7wPzDg5qKZtyCRfvD7wrSEUkE290aejXwsdB1iVTtkmVYVPpn/8AXWEhO4Z6GrDyldLWIH/Wy5I+gqsoIAwc810I52z0rwLHEdImeS58r98QqBMluOgyQPSvRtBv0troLH56k95goz74/wDr15x4ThJ8MQPjO+eXjHptrr7SJ7PBkLeZ1EPYe7en061vDY5Km56rcTi3sZbiWeRxFEZWAIUAAE84rjPDyzap4VXVGVbdroySxrGApCAgDOAASeTnHeszxN4jmi8E3VjGMXF6y28ZHXLHB/Sukt1/svQbPTIeBbweUW7HpnH5U7Gb2OMu7ZZrgqeJScLuBYMf5j9frVidAl/I8OJLhmCpjkIcY/Fv0Hv2vyQqhJT75zmTv9B/jUukQRQX6XMi5jt+VGOrY4/XH5UNah0O10OxWy0+K3+8YvvN/ec8sfzq+4MCs6glOpUdvcV5R4i+LN34T8QWui23h2XV7i6gWZRFOUcszMNoUIxJ+X9as+D/AIsSeOYNSVdJ/s5rTyx/x8ebv37v9hcY2/rRbULuxr63eyJKBDMsSjueQ3/AcHNYNxeWUkM9veRbWVEaWWAeWQGbAyvI/wDrVaumG15LgqAW2o3P3j0HuM/iOTWPHZywQXiXHMzqjSMedx3r0PcelDEkSTRWscgQXhh3AFPOT5GHYq65BH4CmzWF7GWzD5ioSGMRDgEeuM4/Gq0Mot4zbXEZmsnJJUfejJ/iQ/zHQ/rVu8sUN+99BK7xTsXSaNtgHqGPUHuRSvYdipGsYSSWUiOOPl3JxisG8un16dQC0dhEfkQ/xe5rdOvR6lbXkU1qt7ZwSRp+9OWYHdlg3XggYz+lVvKsCI/JiligdgglhO5UJOAHU8qfxOexqdx2KoZolAC7QPTtTkkLHHGama0BleO3vIJWVipRm8tsg46NgfkTReNFotkLrUYmGTiOPHMh/wAKLhYs/aLbTLI31/KEiH3VH3nPoBXG6rrGoeLL0Agx2sZ/dwj7qD1PqahnuLjxBeGadiqDgD+FB6CtGGAW8SpEo2+3U0itiSxtYtPi2RfeP3n7mriO7ECq8KySSBQvJ9qv3V3YeH4d963mXTD5LZT831PpQLVmha2ccNsby9lEEC9S3f2A7mulF5HpsSROnkSMM+WfvKMfxH19u1ed6Frb6prE+raoylNPRTZ2w/1aysSFJHfaAT9cVm6lr95f3zzSSsXLNu5965sRJ8tkdWGp3ldnWyeJA0GpqXw7yuoPsVwK5zRPFi6f4ls7u4bbayIIJmP8IwBk/QgH6Vixq816zhxteNmfI5yoJGP5VjTTLON+NiyDJTPGfUH1rmp009zqm7bbl7VJJLfV7mQMGzO+TnOfm61nXyGG+naDpvO5SODUTPtiYeYXUDv2/rV7xFH5AtJ1cok8QYYPBNdEY8rsZzlfUymu484PBzyprs9LhfVfh1qVtbwmSZMOqqMklW/wNcA8hb7zA/hmup0ewu77wwq6Y0q3QuiMRPsYrgdT0xWk4rRkKUnocybK4+0CBo2Vi23Eny45xyTwK3LTQLaC91Ox1ifL2Vs06C2lUq7YUgbvT5snHpU+oeENZ060a91a58iLPG59zuT0AHcmp/C/hsT+KLW11BDsjHnywNgkKBwp98kZFU53joyOWz2JvC3w0uNej+33TvaaYvPmH70vsg/qa9V0vSNI8K6cP7Ptkjnl434ywH1pdW1qKCwCLiONcAKOAB6VzWseIQJYSHDKMnArz5Vp1HbodkaajG6OxN/HHOOIz5a55xu5rGvNe3y7d2C0v/6q82k8caxPayarH4fuRY/da4BYxqc4+/tx1Iplrrs15axXeNhLFioOcYJH9KaoVIPmkiXVhNWizC1MvJqt28h+czOST9TU9veF0CMxzgD8e1P1KFZ715ocmOT5vxrKk3QyZGRXatVYxtbU2LrfaPGbhGidlB8t12kj1xVK5JRxNGeDzV3XHEzW9wxyZIwMn6CsiNpc7EVpFPYDNJR0DmLRnSUbwRnuPWozLtyeQKeumTDEjMsC/wC2acZ9NtiQS1w49OBRbsPnfUrXGFeFQONuT+NKemRxg0k/zXWAeAMVJtDKACCAM1ZKWh7P4DiMHhCwZYFLv5kiyFuVyx5Ax146810aWYBGY0DE8Z3MT+tYHh618SQaBp0dnJo/2YWyFPOjl3AEZwSDgnmtiNfFUYPy6ExPU5mBNbJqxyyi3IY4M/inTdPaK3aNI3u5mMQZowvA2k5AOe9bMs5x+73/AFYg/wBK5XTn8QXGqarqMMOlu6lbFy0rhRt+YhOMntnPrV4zeIRkvZ6X/wABuX/+Jo3E49DSMkpzkqfQGNDknp2q3skSNU+TjqBGuP5Vx+r6hrdtZpceXb26JPGHkhmLsMtgDBXoea7GMF33butNIUlZHlHxDu7fS/G51O7Zi8GjLHBHDMsMjPJJIhKkq3RC5ztODj1Fa/woht73xJ4qnsGi+z3RtbpEB3iPzVkcx5BHKlip/wB2ug8S/DPSfGWpxahqN1fRyxwiAC3dFXaGZu6nnLGtDwt4B0zwT9rtNJur15NRVDcPO6sYo03DK7VGC24gZ9z2qrMm6L8lmb2XzRFC8ELMsDFWG89Gb72PUD8fWq89uyRGNrdCmMZBbK85xnnjIrrY4Io41jjUIigKqjoAOgqKW0WQH5QaLE3OKOlxytgRSqfYq3/xNY1xOvmNY6beWjxg4vIblXwy+nAwPrnINdL4lvHtGXRdK2vqM4BZyf8AURnjJPr6f/qrMtdCh0y08qIlmPMkh6u3cmpsxpmdFo8cGnTpYlJI32FY0lV3BBOeh569cVnLBdWUwYJJEw/vIQCPQg9RWvNYndkKG9RjrUGp3sPh60Ekkkn2mQfuoFkK59zg9KTVilqVrpki/fiBGvHBdbVQu6U9SVJ575x19M1jWms6o2kC6eUEG9dJYpFypXyxhcHpgg/iT9Kjgub/AFFvtF/HbTofuma2Ut7YbAbA+taFzffaYvJuLKJl3h90TsjEgYySd2eKkbI7U2l/MI/s0IBBJRf3UgOMjGPlcZ46A+1Jb2MNx8ym4tiOStwgwP8AgQ/wpzWVjDbG9uDPbwIerlWz9Omap3upWesBrSLUYobdsYbLxy5/28rtYe24H3oBFrWLq6023EekWxunZAxuoyJAoPcAZP4muJSCS8naSffvJ+Z2POa6K40SaX7E1vNFNJb2iQs1vMOqlsY5z0I7VLFBqjSLFcFJv9meJmP54z+tBRmwxi2tLiOGMOXjwPXcCCD79/zrEvbj7NqEsWCycEnGD0+9j+ldqlzpWn3yQTIpuWIUJCTIiknAz7ZPrWNqWj6pcaheNY2dvJLC4R5SwBJxn5VP86zmk2aUpuJV0pSt7CZ3EaSnYoP3ju4yBUPinRdP0K/axt9RllmTiaKSDAXuMHODVODSNXg1WKa4Tyykis5lkxnB6e9dZ4t0G01vXjexa5BbPcIirby20hdmA7YHOaxUVGW5u58yPNZ+DxJnHsa6J01rVLbSrWxhNyhgG0eWDtOcHJ7DjvVWbSGs7m3gfTZ5JmkKDeG/enoAoKjHr3r0zSbeDw9YIZNv2ny/nCtkJ/sj2z+dOpNRs0EIczsyjoPgXT7e4iTU0iu7wjc52/u4x7D+I+5rrvselWepCe3toomji/hJCj0+XpnA64ri7bxI39o3QdyDnCknOBgflUN3rzGSXDFt6gE1x1HOUjoUUloTatfy6x4qhnlUyW1jGZgD93eThfyArktE1prTxJdTNIJWmDDeD1yd1X4r1rnSdRtNwW5jxKvq6jr+XX865WePyiLmEgPCckf31JyD7+n4V109U4s55rW52Wp6hNeoyPIQCOFFZbStJbgHl161Wt71LiFXDZPpTJZtj70/ECsFDldjq5k4kd4xuI7fU7PV7W2tI9IW1MXnIZVcQ7JIvKzu+d9zbgMfPuzkGqulyqdJhVWG9C3H4ms+bTLdY2eJ5DjsSP8ACmRp5Kq9u7Bx1Dd675WqLQ8+EXTlqa63DRy7l+6Oq+n/ANaoLspKQ6HGex/pVNr3eR5i7GHf1pjS56HI9QahQd7mrmjda7tm0e2aeEymPA9BmqEury4226RQr0+XrToT5nhq47mOYGqMNje3J/dWzEH+IjA/WiMV1M5SfQillmlbc8rMf9o5qIs/8QBrVGhiMbr68ijH91eTSebo9k2Uia5Yd36VaktkTZvcAu6cgA1I4CggDPHekT/XHHJqZYZZ7mKFAMs3c44rO+p0Wuj2Wwiu/wCzEt3uZ9+wKn70jaMAKBg1oRR4URtJIXVQCTM3X865i012N4xKX5ycfhVtNWjLl8j5hkkmvMqTnrqdUKcexuQq6KAs7Kp5ISQ4z64/Krz214qiNxvn4O1l6g/THrXLLqUDIFOPrW/F4kVrtb53BdAqj3wMU6NSaW4q1ODexn+IonGnLYx27Mk0qOJA5OWVgcEYrpp7e508qjqc7QcjOKisdQspr2xt5nTaLjzAW7HGK7nVGtXsZBMyYx8pJ6V7NJtxuzy6qinZHk0Wu61NYy61b3tvFbRB2jtZIeHQEgbmByGPoOMge9dHp+u+fCLs8NcgSt7ZAwv0AwK5i/8ADyy3cpRJnt3cySQxT5WRzkliuc55/Sh7oQuFmaSE5/jTH9aVFTTfM/6/Q7MdWw1SKVFW1fRKy6J2+Jru/wDgLvI9YD96i1rxINMtI4rZRNqdyCLeE9F/229FH61x7atDaRq+7ex+4gGd5/PpVS3n2zy3VxcGW7m+/IU6f7I9AK1buebY6bS7WPT4ZXlk+0Xlwd9zO3V2/wAKnZxI4QDJPQ1gxXu9sBnJ9k/+vSX3iKLTla1tszXzDBO0ERfryfahuwJXL2vaza+HbbaAs2oyDMcP9wf3m/p61xUWm3N5cNqOpkyyud2xu/19B7Vbt7aH7S15eeZPdyHcWkIODWnGsl0+EjY9ySam3VjKPk+aQEXJNJfyWWhRebekSXLf6u2U8n6+gqLUPEEWnBotMUS3J4MxHyqfYdzXPrbXN1KZ7yWUsxycty340mykU7241HXbnzJgdi/dReEQewqxBpywDCAF+7E81sWthLOdscZCr69PxqK61Gz03MdqFu7sZywGUT1+tIe4waVBBbi61CVYYeoLfeb6Csq+8Uy4FvpqyW0KHh1fDv8AX0+lUrh7zVLgyzyPK5/iPQfQVoWWgO6GVsJGvLSycKPxpD2KUeoXdxIrz29o+CCGeAbiQc5yMGtebU9URLi5ijiR5yDKxkCAEA42g89DTd1vCGTToBcyKMvcTDEae/Pb3OKkstPl1eeM3mLiAPlpg5QcjBABALAYHp7VnUa3Y4u70M7R1upbpr69QyRxhk+e5RCGI67cEkY9Mc966iygtJp7a8R5jdwAD502iN2GAoHdse/Gcn0LdUg0uDTZXiiCyqBtdeq4Ixiql3qMOnWdhBBgLG7lsnJZyhwSe5ya4JVuZ2SO9U7IZLJpGnavF5MapePuY3BJIGTgn9TWLealJIwDueRWdqGsK2loqJmbz8uT12gcD9TVGS5D24l3ZXdgMO31FbcjaBNJhNcvFd7wSNw4Oc8irU0pa2adedi7uPSsyacSoQMYI59fwqfSluHllTy2aB42Qt/DnHFW4Jq7BytouoyW4EoWaBmSVeMg4I9qzZZN6EScOOhp9ykkE7xn5ZE+UgHvVVpHJwyjnvW0Y2Oecriq8lq4aI/Keq56GtGzuFuXfzAQkUbSPjrgelYjM5zz0PanQTTWsyzQvtkXODjOOMd6qdPmWm48PWjTqxdRXjfX+v06mvK6XtlLcW8bQGEqGQvlSDnkcZzmsnaWc/N0qe5vp7qMReXDDEG3bIk2gt61WkyTkGinFxWppjKtOpNOn21dkk3d6pLbSy+VxGUjrJTNvfNIc96Xt71qcLOn8PzTQ6DfvHtPltvIPfAH/wBes2fXbicnc7KDzhOKt6FcRppWowSOA0q/LnjOQRRpHhi41GTbHGZDnBKjIHtmsHyptyNo8zSSMkZuWO1ZGPUkmpV07PLtj2Fei2fgIh/LnkSONPvY55q5eeFtOtUADux9sCsfrUb8qOhYayvI8+iGNx7mnmf7NIsgyCBgc80QDgnOKcNLvNWneO0heVo4/McLgEKO/JFXHVhJ2iSW+sSJb+XuI69jV5PEBCAMWxjGdprLfw7qlvAk0tlerGwyreQ5B/SoRaziQRk3Ac87TEwP5U5UYMUasjoRrwjyCTwOAVJqZfEYFv5Yc5JB6H1zWClleTuRHFcsR/CkDnH6VoJ4W1x4WmOm34iVS5d4SgAAySc47A0lRgVOq3uXpvEc095GVY7R3r2pLlnhjLvklFIOeOn6V8721s06vPEzSLAu5sA8D3r3yBJHs4f9Jl5iQ/w+g9q6YKyscVXXUdwxbIB+Y1NaDzTcI/7xSpYCT5gPbFVjHKrcTk/7yKf5AVYs94eXd5ZxGSCqkHj8TVMxOaNhazy+e9qA5RVJjkYbRtB+UHIHU8USaeuW8q6ZdhxiZMDpnr/jV6HBgVhbsFdQQBIGxwB3AqKQQltzRuCOMtET+Hy5pdCjGvJtRt3+z2trIxK/NPHgjH+z/jVSGRYDgqVk7lhg1tyRW008rl4huCkZbaQQMd8EGmyi43sQBNG2OGG8A+2KQFRJooo/OuZRHD+Zb2A71Tu9amvo/s0AMNrnlQeW/wB4jr9KZeaSLrUnkkabAA2bJCAB6AHOPwIqMacYyALgBfSVcfqKLgx9tBEp+Vdz+v8AhV51tLH5rt8uRlYE5Y/X0FYtzqN7YyNBDp91AOnnNHkt9COBVSK4t3kKSvtlfJwxwfxJpAXr7ULvVHFtD+5gPKwRfxAYySep6iksNHufK1G6EZEVjCwdicfOV+6BjJwCMn3rV8Mafb3erQ3bxhktiyxMpyN/GSPp0z7Gr+p61aQ+EtYvBKn+lO6pz952IXH4YNc8qt3aJvGn1ZzkFlocbRRwW8944jDOBKVCHjg/MM/hUV7aWrYLw3pjB3CP7SWVfoN1cpbau9mnyk7mBUjPT/OafPrEsiBTMQO+DSftLm6hDqakrWcFhOTPO7Kr7YJJHUKWBGQMkHrnn0x3ra1XXbe32QaaxMKbVMhGMkrjIHYZNcDJfb7YoX5bjGakguWkj2s4OIyWyecDpj39KuUW46kRUYyujalvbieOSF5Dt9zVIzPdQNHIxEikc56Hsaqi63ADID+vrWlDp9/qumFLW3ZzHLu2DA4I689RxiudQSOlzRhzhmbkfN0ZR60WiAwXAaQRqrKxbGfXoKZMZlJSRDkH8RS2DM7zxbTlo+Bj3rpt7pztq5E91bxN/o6FyDkNL/gKW11G5fULfzJSVDjaoOFH4CozYxxu32idV5+6nzNinrc29uwW2tMnIxJLy34Cm0rWM7u5b8W7TrPnRp8k0St0x6j+lYKnDD0zW3f3+o3DNFLKWjRsR5Uceg6VCNMu3Xe5EcfXLgU4vlSTCUW3dGWwXJPWhWyQqqST0ArT0/R7rVJ/LtUaRsgNgdycAfUmvWNE+HGnaPbGbUD9ougMkZwoPoKmrXjTQ4UZTZ5HFpV3Ku5l8teuSOafbae090beKOSWXcEjRVyzk9MCvdU03SYZUtls4CThpG25/DntVS1sNLsfFeo6tbwBHSFI8DgK5XLEDtxj8zXP9afVG/sEmcVZ/C2++VtQaKBjyYg24r9SOp9hRPo+mWmrroelW0V5fjJnuJUDJbqOpC5wT9c11ureIGtNPuLpCDKkRfP+0eB/SuL8DXH2d7+6dsyysqs56kDLHn3OKqMpNczJkktEjuP+ETsLTTLu2kWI3Xlqil1DHc3U+g/Ci0Ww0u1EdjEsaRqFOP4j61lya2vnxfPneu4+5rIt9ZAikRm5DmuepzNNGtNK6udHFqJnhck9WJ9BWLq1/wCW4TdklQevvWMmrthkBPBqhqN4zlZCeBwamlSfOrmtR+6ySxsR9lV25ZuateHLGW9167hiupbfbHyYiASA3Q1rLa+VaqgA+VRWP4duzZapdy7iC6AH8WrSE202RJLRM7h9F8+J45dRvZFPAUzkDH4AVJHodj5QeVp3dDjc9xISP/HqrPq6iByGbIH9aaupmW3cb2454rk5ptbmsYxT2NSPRrA52yXKnb/DcSj/ANmp8GiyWturRX94I5ixEbzb1YDhgQwI6VTt70iJWLH7mM0601cPBGrMT5O7aPTJyf5U4zmk9RzjF9DH8Q6SPDOi3z28URtdQjNsxEaqUIO7I2gDr/T0rvbN5ZLK3fyY48wJ8pLHHA75rgfG2tC88OLZ8/LOrr+PX9K7bw/eG98P2U7d4gufpx/SvUw0pSjdnnYmKitC2zPu+5F/49/jU1rvaVxtUZjYDaT/AFqGQ/PU9kf9IT6MP0rqORGdbxuLSIeWgwg/jNNeJjgmNP8Avs/4VPA3+joPYj9aRmHSkFymY2xjYv8A38P+FV5LCJ8sYIc+u7n/ANBq82Bk1l6jq32C7hh8nzEeJ5GbcRtCkZycHjBpMau3ZB/Z43EI0gOOizsePoRUTaQeqqCf9oL/ADCCsG+1W4a/R7izthJLZJIu7LbQWJH481h3GvXtvMwMdm2D0EWOPwNQpxvY0VGbVzupLie3fZLb28h/66EHP9PyrA1W4t757a+sYFtzDKYZJC+9WLEDuBnHP59abp8Nvdzz6pchYlEaoBGxCjrzgk880/xPcRaf4WtrAAFptoXB/uHn+dZupd2RcYOLIo9bvvDunxwwFbjzo5GjC27qA2NwbJOTwxrlbfQb28uvs6MGlRRLgxuC3cnkcc8ZwOlbesaqb9tImt1QLFLlgRnjnjHuAa6FWtNOXVdTREUF8ggchMKAP8+tSpKKuW7tnmw8OX1zCs6CFRITt8yUJx65PFVZdBv03KsYkOf+Wcitx+ddDaapHItlHcYeGJJFKN0B3Ej+Yq7cahp2dq2sJBHPy03VlHoNQucNNp91alTPbyxZ/vqR/Snadj7eodWZCGBAOOCpFbUt6oeby90adFCtxj0qna3ZZdPt8sSkskYUcZVsYH55rVSbRny2LemW1xd3AtLaK2tZWj3xvdy7Sw46EjH4Vs+F47g32s2E1xHcyNbOnmRuXQnHRTWBNd2tsBGtkJXTKbpeT+IFa9qNTWJmml+xSTJstVVtjAkjnA5A2561jLbUtHK3Npe24Vbi0mjkPOHQgnj0NP08P9ujjZMeYCmfcjjP41v3+i6m6Lc3V5LcKwwJGkJ49s9vfpVrwr4bt9TuHu7kk20T4BzjeR1/CrdVKNxcj5ipoHg6/wDEf+k+TFZWYGPMOfmx1wCSSffpXYxfDrS4cRC8lY9GYRjr371unUILaGKOMqkagKqjjA7Csy11+Jg258uACQT0zk/zP6VwVMROV2uh1wpRW4/SPC1rYwtFetHcXAJYuBgIOwHuepP4VBBoFne3rTzj/R1b93GOh56moJvEQVrsBwCSf5cYqtZeI/3EahskLwTUw5ndsckrpG/ZTW2m66LO2ijjijikmOBglvlRSfU8v+dWrrWU8vaWHYGvPG1Vv7dmct87oyKT6bt2P1/SllvZHzluPY06sG7Dp7HTDWlOo3Tls5PHP+fas064S2rADAeX5T6/KB/Suce4ZbnJOA9OeQlSMin7Pqx7qxb1LU/tVpcRZPzouAfQVgWF49tIyhsBiCf5U6R2DEdx69xUP2fehZeSOa64pJWMHuaT3REaNnmJsH6VEJRHeMM4STkGqtqpmlaNpAhVCW3AkED6VVS43qI24YcqTT5L7Bzo0ZG8ubdng9adIyyRFT0NUhOXXa3LDr/9ajcw45x61HKac6aPT72Hy7SRgedvGPUivO9QkezvX2kDLAflXpN8fMVEyGQnORxnFcHrOmfbGZ1u4YNrMQJt3zj2wp/WufD6zsFZ2jcpnW52iKnPPep4tdkSEryM96qxeGpHiRxqtkNwzjy5iR+UdD+HLhXEY1K0ZiCQBFMCceg8uu72MbWOeNaSNJPEciQ7ST0xioodeljBJBIb3qD/AIRqdwCdQgXgDH2ec/8AtOiTw00ULyHUUO0E8Wc4H5lAKSoRG68irfarJdzIHzt3bsfSvcfCsD23hPTI5Bh/s4Zh6biT/WvBoNOmkhMgLSYVnCohPAPJJAxjnrXtmjNq8ugae63NkENsm0G3YnGOMndzWsEoqyMKjctzekOWqeybFyv0P8qx9ur97qy/8B2/+LqxpRvRfqtzLBIjI2PLiZSD9Sxq29DGw2GQmBfqf5mkdjmoLU/6MMnozD/x40qPuaQZztfA9ulACMSa5/xDqCadbyyEAyyWssUI9XJUf/X/AArekdVB3MB9TXL66Y77UNOWCZsxSszbRxjb0P5VE7W1KhvocVrGtX01/FctbGH9xHAibgeAoOc/jWUjX94JJViYqib2JIGB689q6DVhGf7OLSO0s8UjEuxOct7+1W9UeztrHVEjALLGtuu45wcZwM9O1ZqUeiOjXuZjape2egT6bKieZcfccSA4XjIOO/H5Vm3l7qGpSW5vLhZFto9keSBx/Unj61qyFNXvrWO1YByNpOegwM5rYTw7b2MOpO0jsggYLl8j7hOeevOBSU4x9RNM5jTtVjt7e5S4i2BXSWDahIDDI2k9eQep9KS48Q6hNoY04oBCWLiQg7mUHIX0xnv3/CtC8t4G0O2uIdz3s2x2wx5O7GAKvDw+JZ7EIsBR4/Ok/dDIC4BXg+vFPmhuybM4s3DQsNmT3pTqMx5wM44ru10bS7e61LFtDIYLkLGj4bClFIHv3qOfSLdG/eWtkw914A64wKTqwT1RpCnN9Tz9ppSDz1NWdOjvLjVLaKyQvc7wYwBnBHOa3riw04iQNZQgoc7opCOKPDj2+n6reShSAqqiZPO0tz/IVaqJrQiVOSZ2Wi+FLKzhMmoyrNKxErFDgBjz/n69qJINOk1aWSFCkMOFZQSd+eTnPsMfiaxG16VzIuRjcazE1WVLicZ++dxx9K4ZKc2zshFRRsarqDXNoyRnDzIWHtngD8hVHQ9SNrpzWatt2kisY3ksMkb9WiOCPVf/ANVQtcrDcF0JMbdMHpWqg1GxF1e5s3+szQWbzn59mAVzjPOP61QuJtY025iGpaLe2Kyv5QNzG0eTnn7yjJHpVLVZj9jmjIAJ2nI78g103jWfShJq/wBiuB5l74g+1Dy9RhukuI/3v7wCMZixvGAxJO/vtrWnRjyu6MqtWSkkmZkk22TfyVzhs+tV/NaCXr8jHIqGbebCOctgiQx8d+M1UN0VXawBWpjA1lUXUt6jIv7qZHCvnIOe9WoL5LiMMMBh95fQ1hPMrOmRuQZ4NR+Y0Ugkibpx7/jV+yvGxHtuWVzfmkWRcH8Pas+6u5lCIjYbPPvUC3hZfm+U1FNKsijnJBzmiNOz1CdVNaFpLxZgFkyso9aPOZG4OG/Q1nNKrdcnH50C4YDGdw/2hV8hn7U3LO5jln2lNrlSMetZ80L72AG7ngr2qGxuCL6EgEfOO9WbnUpIJ3iWKMbT1xzSUWnoLnTWpApmbho3J7MAaspHcN/yz/PiqjancMMbsfSq7XEjEks2T/tVXI2T7RLY9ai1a1vNU2ROssSWxkLL03VDpd7qMFu0VnbPLHPGDLt2jnHAyTxXKaFL5D6hKCQFtG78npXZ+HL+KHT1gfG5o43B/DFcE4eyfNE7U+eNmX7fUvFpsI7eOOKF1XYhMqg+3AU0508Rz30N3Lf2qTQgqP3jk4bGR2x0HSrcOsRNMswAwp4/Cla/VrgyKy4YgkfjWE8ROxpCnC+wsbeImBxqFsxXsTLz/wCPUTx+JvsbQXf2e4huEPyGVlLxt1Gdp+masx6lH5pO5dv0q7c6200VlhATDEI/rg5qIV6mruE6UG0rHL28EXhvRdRsrnTRZWk0EiK8TeY/mEHarseSAM9q6Dwy2fCmlHv9lT+VZPjbxBHdeH9WQoqtO0bL6ghuf51Y8L3cp8KaZ5do7gQABgyjOPqa9XDVHKN2cFeCjsb5PWnWh/4mdv7h/wCVUftF0V/48mB9DIv+NLYzztq1qJoPKG5sHcGBO08df6V0N6HMU3mMFpJgkOZXVcD3P8q5q61S+FwyJOQG5IGBzyP5Cta6vIftkkDCVissgUhDtDk926DjA/GuQuZidSweDtPf61LGkdTqOrPDrsDosSQ+TA+zYCp+UZznrzmszxVq7pfyhJoo907hAMKqgqRkYB6ZrO1C6aO9tpEbaTaRkcc5GR/SquovbzXot5GxNJMjDsTli5I/MfpUTdjSEbnO3FrOGicTtLHG/lo27cVC84x2qe30jU7+aS4MrF2ja73ZJ3Y69Oh474qxqNxBELaUHJeeXcS2Tj7vJrfvdZtrKxuIklTzreFIURWG4hwSeOp6n86nnfRGjXmZejNqFlqNnPqU8zwzpuRpSSFGM5zn0pt14sSXS9StkjkElxOwjc/d8stnn3xnj3FVLvVf7Q07T7FYtzxBQVAyTgY6d6nTw5Mb+Gxk2eXIN/mKuwqDjHXPHNSkm7zE21ojP0S9VtTgt5XIRVKoD0z1H610+m+JLKHWLmO6uEjjiQCJm5AxncB+f41yTaUfsUtyIgVjyrNv53Z9Kjk0y4W3S5SBfJc/Kyybs5OMDHf2qnThLUftGlYvrez/ANqXMrtGolPm4aZAOcgd8dKc1/uWQtcQ5JJAM69Pzqr/AMI3ctdLbbkXMQmXGcFSSO/pzSt4ZdHMZnjLr1YP8v6iiUaaepUZzexFdXQhjyJoZPNGQI5NxUe/oaoLekSmTB+c84Par7+G5CxCzw7uvLYz+lZsthNHP5BHz4JGOh4J/pVx5OhEpT6mtJMIbpkLZ6AuBgE4qzaJHJexs6K5w2AemcHFZ8yW7T+a00g3IpZFX/Z961LLT7mF45Y7KUoDne8i4Udzj6VjNJam0ZtqzMnzMcSElgPWq8zDBwAvFdXrujNPqIh0zTYVjWMEt5uMkjPQ1z1/o99Y2guZ4YhETtG2Xcc1UJRasRK4l/BFLI7S3Sxhwp24JPQVVjtLNAJS9w4U8lFGK2Us4rizW5mVW2ICiFyoY7emcZ+nvUU1jcPAkltdNBFLyYJJTw2ecYGMDjrSVRX5Tolgp+y9rpte2t7Xtfa2/nfyLunR2moaVdRLC4EYMqhm5LAdc1zTTxnpARn1auo8NwR6fJMtzcwhJFwfnwBwRzmucudPEUjILmKQKTgqeDVwtdnLLmaKZYHO1Nv40zee/FSGLaOXBz6dqbtGACelbGTuSW9pPdlhAjSFeuMcVJcaZe2Uii4gdCwJAJHQdelV1Kq2SM+2etWVd8qyQBSARuweePc1LeoWRTIyxqWG3Mh4jZhgngilWF3G4EAe5pUM0eVjck+ijNNsOUS0jaW8iWP7xbIyfTmr2o2E8t4zxx5VgDkEVUjtrpHV1Uow5BzzWxqyXSLC9sZAu358dAahv3tGVGOmqMpdJuSeVUcf3hT10hz9+VF9qhIunYiSR8+m7mnx2jyEl3wo6nNNt9wik9kT+ZjgsSSOa1LTWvJmXcDtWFI8H1FYSTkupz+lSESsf3abj3AqJQ5tGaKdtUdRb68qWhjJy3NXE8RRCNNx5AxxXPWXh7Wr+EzW1orIDgkyqOfxNN1DRtW0sQm7tkXzn8tMSK2T6cGspYaLLWJ1Olj8QRKTgkj6Up8Sxruzkk5x7VysWn3sztFiCGVDtaOaQIwP49aqTm4hleNvLYxttyhyM+xqVhoFyxDNzV9ZF3aCEE4yN3Peux8N+KorLw9ZWssHyxRFS6ygtnJ/hOP0NeXbpXOHUDPIyKPtcsMmElkCgglVbArojDlVomE5KWrPaNH1+OR5Re6lbu8ixFFBCgEr8ygZPOev1rbaZYru1kkOFSQkk9vlP+FecqsY0+S8VVGLW0nXByUHnNxn8s12eozI89pC2SJJwWCnB2AEt9Ow/GtNbamDSvoZUszym9kdHRo3llYE8ZI+UYzjgVy17Jt1rceMoeK6oMZLTUHkVwJpHbaT820jgZPtXFapLjUI2/6Z55PXpUsI7ljVHG6yIOc2wH5M1V9Rme5SOVN/yBAOeeMLn8efypL2SJorPHUK4bGT/FxQt4kXkFiphBG4kHK4OT+FTNvoaRS6mPPo7xrKzSqSsoiwoOGz3ya2dK8L/brm0immkVZi6OAwXYw+6R14NZt7qyTwLHFw3ms7buMc8VqyeJbdLedYwRI0CeWQBxJ/EDz29aV52HaI7RNC+ym01N2UiTd8ucnqR6exrRXXIWu9QLSqDbKY0OQPlA4/WuQl1iaTT0s94UREkEdepPH51TNrPIUYptWTlXcgA0lTb1kNySehp2188yJZ5z50pzn/AGjXY+ZCpstPEa8uZ1wcY2rgjH659q8+FlKk2WcpJG2CB2IGc1Zn1W8nu4b1rqJZ4guwxjGPUn19/rSlSvswU7HR6nfG38SeUGBX7MIyT3z839arNfgP5e4EKM8+p/8A1Vy9zd3F1cyTvIZJXYkt605Xby8sHU9DgMaHRRUavKtjde8XzEyQODmsa8nBvGdSOF4I9aikaNsEK/TGQDz+tQEw5x5bfr/jVwpqJMqjkbCxxS20EjXEURaEKQ559M4rbj16za1gtA7NKFCsyA/McYzjsMYrK0zTor60glkcxImUUMpJkYngDtgc5PYVeMZ06GQW9m0asTmZlOSPrUVIxluXTcuhp3PiKyt55XRbg3IiWJgVGzK9D1z3x+Nc3qOoXWpQrDJGqxhy4CjBJNdhptpp0tq17Lbb5x+7UFeN54HPdufoPrWLdWKjVFtEKszE7mX0HX8B0rGPIndIuSk1qzKha6ihhMCK6um10kG4EgnFTy6ZqN6iiWLIX7qomAo9MjnArutL8O2lk5nZN8wQdTwv0FbnnR2tsSpHPyjjrWcqq5rpanRGdR0vZuT5V0PJIrB4op4yoDPgAnAHWojpcpcgqQvY9z+favTr+y026SKa5iV2t23gYwGbsD6isbxEI4bLeuGlYZb1Y8f14ojiHJ2W5m6SSucFdWsMaMsas77c5HYetJFpk90VWKMt8oZiF4APSvSNK8K2EdsFnJmuXP75mHA45AHoDn8BWzotnp1pZD7PbIqBiVJ5JHQc+wx+ZraVZRTSMvZ8zTPNbbwtcgZWEnAzkj+VSP4X1HORbkA9M/zr1NpYyVXauWO5sVVNykmoeVgbIxkiuZYibd2bulFKyPINK0a91aRorWJisZPmSY4Xnp9a6yz8IyxFYhEqerN1Nd9FJbQK6wwxxq53EIgXJPfiqH21ZpZHBHXansO9H1iVR2WiF7ONNeZi3sOk+F7VJfIW5vn4Tfglj7DoAPWuTOLyK6lu450EKb0EYBDMTwCT2/WtOKWPWNbu7ud8xRSeTEP9kcn860xDBLdRwGMeSB5sg9cA4H6103UGYu8jltP8Oz3NrDKDuluGb5V5wo4yfTngVcn8PzKfLRQF7FiM11lpLbW0Tyxx4CqET2FURdK9+ASOB0xWM60ubQ6KVNW1PNDayREGSCVOcAshAq9ptoL2bBuUgXIyzkAc/WvaDosoO0rG0WOcjPPrVKfRVS4hup7OzW1ijZXjxl956NyOldbqNRu0ccUr2OEgRbeWS2PiGYRqoYeQcgn04BqOS0nvEjLHUbso2V3xyevUHjBxXcJc2ywkRIiSGQ/dGOKs3N/EYYNnGEwx964XiZ2O2NGNziH0eC4O+Ww1WZwOWePJH5tUY8PwEFn07VEjY4BEfAP512H20LuIPyg5+9wK0bXWIG8NtZmMeb9qEgfOeMVMcRJpsudKPQ83i8NRyX1pFPLfWttIcTTSwEeX1wR2PasHU9KNnZWF6JhIl0shwFI2FHK4Pr2P417NrepwXWkSYRVEVqEb3Zc8/wAq8v1K4S68BaPAsQM8F5cfMPRsHFdmHqudzirU0tjX0y0RNEughG640tZW4AwwZvT6VufaUvxZyOZAszxIGB42AZY/icj8RXCafqeoi3aOLIKwmJsR/wAJbJGT9e1ddpimbSIZVLBQsUce49AG5I9Mn+QrqZylnVL8lL1UwrSSHhewxXF6ucXkYT5hs42kNn8q7K/W0hvLlZrqKH+6GyT068A1hWUqWRiu4ow2G2xMT2z1rOUuVXKhFt2MNkJmKzSCH+ICQEE5x7VYktg+m7NymR3LKR6BecH61e8RO+o3LXJil/cpmR1GR14NYs9yLq1/diVZEJXfnCgHqMY61Meaepo0o6DGsEZiFjuCzqu1gMqGJ57citKx8OwT2iSzL8y3IjfEhG5COeO2PWsIzMoVQ56etXNO1iXTt+8NJGysFA7NjitpxaWjMk03qaUfh22aOaQ3EcaCeRVJG4gKSBz2q81tAWtbQYXYPNOB17Vyo1SUW8sOcCVtzH3PWnHWLk3sdwWUyIoQDoCPeseSbe5qpRRrzzWpk1KN4wZlf5Wbkdh0+oP51s6Zp9rH4eu47wI8wUPbkgA5PBUevY8+9cLLcStI8jfekJZjjrzW1feIBPBarArK6fNIDwA3oPaiUJaJDUovc1o9Pggl02C6wNzP+9I5OUyAfof50+aG2e3yYIQyPjaFA3DHXP1rJ1nW4r0WRtgw8ol238bWIHH4c81WOoFiFaaID3fj9BWbhNpN7lxlBGhKISu0wQj6IKztREJ+zuIVjbJzt78VWmvSN+JUY9tpP+FUpbp5Su7+HpWlOnJbk1Jxa0O90+8tUtbdFAWJXOzPYAZ/maS/1qJ42hEoZXIUjHbvXIWl0zW5XcQVIIqZiGXHr3qJU7vU1pyXLodpe6hDBNZLCVESszAL0B28Vzcd466lFcg/w7f61VaYvbx7iRIPu57kVUlLKdyHjOR7VMKaSsOctTtJtclBI3Z3KDxVZ9ZkECHceCOM1z0V8rIrOCOduatGRXQr2PSs3Ts9TWEk0bc+ss8Ay5PIOM1Q1TVDPNFljwVPPs2azxODCUYHIHNVpJRcQBRyV6GnCkosU3dHbQ61I9vMEb5ip6e4xUdtrrxaeip95Vxg1ydrd8cNtYdRUkcjI7KpyCciidNaig9jox4guWlJdlxjsTRbauwu53J5Yd+/SucLkHOaaZXWTfkmoVJWNGzs11oeX97jFUU1eJYzk4OGx9a58TvjGeDVeRjkjPGaKdJRZM9UN028aBpY89ZC351uR6mzyOckFoxj8K5WXMFxu/hNW0uNw3I2GHPFdMo3MIuzN6HUZDaSJvPUkiqH2+VbxX3kZ6mqSXHzZDAg8H2qKViGz6dKhR1Noz0PolGxyrZ4wayPEwzYzyjtGThfbmtERykhecfSsDxHO0VrdwsxGYW4/A0SlfQ51BJ3OEXWo/thZWXbt69qadaBZlLgAt+GK41JhxwenrTvOTPzEg0fV0aKvqdp/bMezkIR6UQavFGRyoAHSuNEqsPlLH6A0CTcpCqxPvSWHRbxFzrr7XYBp88UcpZpVIORjBPaufsds9iLd3kXZIXGwZ6jFZTu7fw/LnFa2kTKsbrtIBbIYngVbgqcW4hS5atRRkPbTopGy007Z6Bj/wDWp9temAi3NzLHslkfKsePk449c1Ye4jGcuoHua568lZbqUoQVZgcilQc5P3jXHU6VOK5EdbZ67dy/YVW+ZmNtI0olHBYcgZ4yaqnU5dQt2LPIOOmBhSK5iCV2mhQHGPkB9jW9KogsmLOMHJGK0mkmjipyvc2NJt7We3uYb9I57pZFGXJbCkA8YIA/OmX9npUOnstuvl3Hm8O0nVee2eD26Vj6LM0hmt1fhjuOOrdq0dRtH+xt5e0ADIx7VlKfLKxpGF48xWkSCGMIlpF5fGSy5NMj0uGSFXRkRGZvvKGCnj1655qckXFhu4ztBHp9KksFxGVc/OPQ525oc3FXHyKWhQvdJijmWSJlaPIyDEVwP5H9Kqm32JsCxhwu6M7RkncO/sK6gW37wEnK89q5vU5YrXVUWNtyxkhwOcZp0qzm7EVaUYFm5sI2u4jGUjWe2WUgjIDAkFfzFUtP019QleBJXWYqxTptcjnb7HFQXd7/AKS218qq7AR781q6ZfC208XcTbZISckdm7fmDW0m0jJKJmHTna0WfczfvAjBh6ngg+nBp0mjGJlG5W3DOM//AFq19RuBbaRH5bj97KrZ65AO4VWmv2uHadzl3YsT61KlJq5cYR6madLK8Fk+oJpYdEvLqQJawPOc4wg7eua9C8PeF4HhS6vwHlYBhH2QHpx3Nbk9zDprnyYl2RkA5H8Xbjuah12nYqVONtDzA+GLyzT/AEpfsqTNhJJQQvHPX/DNVZbZ4FK+bFcDsY9wP4ZHNegeJNfjn0grIqySLcxSsrkMZNpyQScnGOwwAOxrkfFPiufxDdtLHYWem2+crBZxBf8AvpsZY/p7VqveMVpsZjJO9ij+TLhGYE7en1qo8jd8jtzWrpxafSNQLSSb0jypDmnaR4l+xlYru0t7mHpvaFfMT3zjn8aUetkXKRlRQvc2zLHgFXB+97Uoju4h03D610Os6xZX5t2tUi2wPuIEeAeQeemenSrGs+NxdeItP1iO3ivJrUMJEuosxyA/dUr02r2AxTV3oyOZrU56186W6jVo5MnI6e1UyzKx4KsDjpVuPU7i61QyvtRZZCzJGgVRnnAA6D2putO0eoNsb5WUMBRb3rFOelym0uTkgg+opI7poujEgnODUJcnq2c0BlHUZz71fKjPnZqR3ySYz196eZx6ZNZBCHoGB+uaUO6nhjj3qHSXQ1VdrctzXDiZfLbbgcU9bsONr4V6pGQ/ePbjFMaQN/DT5Cfau9y/JJvTY681TLMmRnNR+c46H86QMXODgepxVKNiZTUidZdhDLnkfMPX3q0s6SDB5NUGUDowI+lNwwOdwocbhGo4n1tHYlrnyc/LXn3xEVrLWGgT+O2P8sV6ZHcrLeRbUO/I+6a8s+Krs/jVI1OD5KAbuRzXFsdTR5NDY3Ss+IJCVwGUtjH60p0m8dDMbSXYBksATj9a7w6DdAB5dXYbz8ywxBQKW48OWkMjRNe3kybQTmXAP5Vf1mwlh02cZbeG9SuESRLFnjI3D5sAj86mXwleySMv2cp3Ayx/kK7O08N6UwBCuyjg5lYY/WtP/hFtA/swuizrdCcDAmbBQj6+tZLFNvQ0eHiuh5ydNn0y33SHEcvTMbEbv7pyBj61FJC+kahdWk8sSyRsAShyORnj869Dl8MaKfKVZLnZ5eWVpiQr8/8A1q81nR7/AFOdpAHkGAST6cf0ranJVEyXKVJ6GbcXL3NwzSOXGeM+lattAlzZxhl3ccArQdMjjGGKA+gBNXbLMIClC0fpjpXSmlsc0k27szJdMMMgeMkY5x1o1CQ/ZUjEockdAOldN5MbLkYIPaq0thA33kA9wMUnqJaXRydtdzWkySwth19RW3/wlKSQ7JbLLYx8smB/KrJ0u2ycZ59qYdLiHRj+VROMZP3kVHnWzKum3huA0Ywpz8q56j2qPUbi4sNULQEjKKSuMg/hV0aeg5GAR3xTPsShuv6UuVXL95orzeIdTlj2JHHFxgskfP65xWcA8kgMsZbHJIHJrc+ykD736Uww7Tww/AU48sfhRElJ7syDBCe7KfQ0C2yhCy4U9j0NbKx8dc/hTTGmOgH4VfOJQMeSK5eNEL+YkY+UBuFpbaOZLiJmUlFcEg+larKAhx19aZ8oA9+pzSuPkOztfEkaphiQ2c/5/Kqx1rdGmSCQskpB/vngfpXKxzjA3EYyQDRJOiEcEj+lcro+9c6Yyi0JeTySXgAY/Ihxznkj/wCtT7SCW5YeZ5aqwyNyjgetMghSa9iwx5POO9bsemLJC2ZFQgseec9q1c1HQzUG5WRnF4LF5FgQTBk/eDGAe3bqKzZk+0Sl4oI40PZeg+lbJ09re9ji2F/NHIjONw9M9qtazZpGyRxBcooD7Bgc9FAqFUSehTpHMRpLGJAg+Y4x8tIZJN3zxo3qMYrprbw7JcqvmOYgeWI6/StePw7pgXEpduMDnFOVaKEqTZw8M1qJE3WpEuflKnv+dGpzW1xOrgyBwNpGMV1V94RUhpLGXcV5KN1OPSs+w0aG8gknkWUEMdxIxj2A7/Wl7aG4nTexy7oG6KTxxVZ1IfGK175o7c7UTDHop7D3rOSIyM7SHaAMniuiMrq5zziloQDrzkCkyPUmrAjJI2hgO2aUxEHk8+4zV8yJUGVRyDRg9andCAMgc8cU0RMBywFO4nFkODR0NSBGb7uSPXtQsLtyOQPancXKxjEg4pNxp7Ku4YbP1FN2/SgWp9LRa5tkEkZIIPFeb+O9RafxjDLnnamcn3rfS64z0BrgvGEo/tsuueEB5rggrux3Sdkbx1Qm5kG8AAA/rUP9ptI/3yOQOtcUt9MxZhkn1xT11CUAnk1Tw+hUa8bnoMd+ULBZVC465oOpATKvm8EckGuEGqTk420C6vJJMqGz9KzWFLnXizsZNVHl3TGQ/e4xXJ6WgutQucuVyN2R9aotJcs7xFm3HLEE1p+G/LGqKCSxeE7gRjB9K6adLkTOeVTmZrCwiB5klP41bg0+HbzuP+8TV3aoOdmPwqVMEdP0q0RKVyobVY0ASP8AWqskTZ+7j61sexyB9KryIMk9aGJMx2Rwfu0hHHJ5rQdRn7o/KoXQY5BzUs1iyiy8UzafQmrLK3ofyqI7s8j86RaIyOcdRUToD0zU5BP8P61GYgckhaQ+UqyRsADzUHOef1rRECAZIBNRtAufu8U+cXsyiSfqKjJ/zirbWx5Iqu8bLnJqkzNxaKJZssFXoee9M3sDl2GMYxtqRhJHJIyKCCec9KilLlkYlOvGOg+tXa5nsTW10IZgybiMg9OBWvHqEgPBOPT8awy7d54/wHWnm48mZgXzz0x0qJQuaUqvLudFb6ni8ZmPWIAH05qKbUN1zuJ4acN+AAxWQkyuylTz/SmSShySuRz+vrWSpq5u5po7NtW2+WA3qaQaseDnPpXKpcmSMAt84pVncADcc96l0kEZaHajVVS23A8qOnqaimvkWzXcSWIy3PWuYF2xgK59qS4vXeBRkcDBrFUdSpSVtBthp8us38k2Bgv+FaZ8JvPqCYkHlFdzD1xwB+P9Kh0S6W1hkTODtYg/WuhtL0NfzbW+VVVR6Yx/jW05zjsYRjfcg/4RPy0LF1DdOlULnw0WbEbL9Wro7jUFCZyB14z1rMnuyViVWG52xXNGc2zp5I8pyms6Y9iEYxMo3D5uxplrot1ew/amjYQZ+Vem6u1vZIbhI7aZFdXIJBHYUtxcoJlhQARRL0A49q2jXk0tDF0o3ucmNGkWIyTxhIlGTngAVkyyNcyGOAbYx+ord8U6o8/l2ScIo3OAfvHsKn0rSYWgiR13SNy+K6OfljdmLjd2Ry0EKkOX6Kaa0ZlbIUBRwMd61L/TJobyZI1zA75BHpVqWxYQbjGVjA2rgYqvaJK4lTbdjtvNBVV6E1xPimQnVmIHRRXVJL90gcVyPiB/M1l+4IFY09y5K6sZfn3WMBgoPpxSeZcHgvx3wasbB7U9VOM4Nb8xKolM/aCBhmxS7Je8r59iauKhzyM0/wCzsxAAxS9ozVYcoeSz93J9Sa2fDVoyassj8DYwyOSTTI7VVHzH8K2tCjB1NM8fKe1HPcUqKSubfllQAO3rUnlnHQ1e+zxKME8/SmlYunWmc9igflzz+ZqF1Y5xV9olLcD9KidADgZFS2VGJR2nOSKjkVm6CrxVR3xUT7QP8ai5qooz2RucioShJ6fpV1wD0/Soyufb60GqsUzH6imGP1PFWyuPemN1GBU6l6EAGBxTWjLDjrU5GSM8UoOeCBRcdimY/XAqGS3Vx1wa0HQEdAKgZAPSjmHy33MaaCRGJC7lznIqnIyFwWTgZ61vsuOTnFV5IIpPvqG+orSNSxlKhfYwmlj7JgeoFI0gLksvJ7jrWlNp0TA+XlT+lZ81tNESdvHrjitFJM550px3CIRrIrb24OcGieJ4yDwu7kfN2qsd+cfypZckrjsMVVtTO+hJGxKyE9Quacl2f41z71Fb58wjrkd6GkToVII9DSsriUmldF1Jwc7SOaQSqVKOOe5qrDEHkUrKODkg0PHKJGPbPHNRyo09pIuwXTQvg42nvWjDdEOSr4yK5wswyCRUkd1JHjutEqdxxrJHRPdy4zuP50LeMJIWznaazo7hZk4NKHIXb6HIrFxsdKldaGqdRZryNz0CkVHJqD+bKwP3sYrPZycEdaa7EnNEYJCbuRXEnmXwd+QXGR+Irq7K9EEUxXAIU8muRmHzbhV6C6whAbGVwea0nG6MY6M6aRoxFAWUEuQOas6pewCNYhGABzXNG9LRR8/cNLe3ryckgjHFY+z1N4u2ptwykRoSeornNTXfq0jdhW1BIGt46y7tc38hrS1jOKu0VVBI4AqT5tuOMVMo9B+NSrFzzg0rm/KkV1gJPTirccYQdPxp6qcZGdtSKo6Fqht3NVaxGE5xgY9a0tJbF+pY9Bjmqmz0/WpLU+XcoxB64IFXF6kTSaZ2IKEZ3r+VMI54YYq1DEjwqQuCR1zSG22kjaQOuc1ucDSuUWIxkmoXYGrksWM549M1TZBzuNQUkQkqT0z71E5UjkVIwUHrUTFOeT+VQzVEDsCcYpjg9zTndRnaSTULO2Ocilc0SEYLjrUZIHfP0NDE+woAb1BHoKQ9EMLdgKTJDU8svUY/Gm+YucZwaLFXQm/jnr71G3JqQuOeRUTMPXilYpNEUi8VCVHc4qwSuOpqNsdjRcq5AcDtSEEjGKkPpkYpG/3uaYypLaxydUAPqOtVptOUr8pINaJB7nmmMPcU1JozlTi90YbQPbyZKHHtUbIjkkNgnsa3So71DJbQy/eQZ9uK0VXucs8Mn8JihHR1ypHNWL4nKH1FXPsTJ/qpCPZqhmt52Vcopx3zVKaZk6Moq1jMwacBlevepJI5FOGGKjIwv41ommYOLW4oDocr19qmW7deD19agBI70bvXmk1fcak1syxJcmRcBuaI7loxhiSPWq4K54pCaOVD9pLcu/aPcEU3zgDlenpVTNJk5o5QdVmotygAJbg9RTyQy8H9ayskL1qSOcr16fSpcC41e51dnITbpzVdlD3UhzUdhPm2UHtirMA3zSkdazaN6erJEVVHP5U4soIxxUflNu56U7a2CB2qDce0nTkmlViD0Jpm35DuPNKjBhndjt0qWjSL0JtzHphadGSkqt1GQM1GuCDhtx9PWrVvA0xA4H0poiR2mnSNLbgb36dqssi55yR71l6Tut4yJAeBzWgXEvKA4966FscMtyGVYyOEqlJtB+VePWrjREH5h+tU5wQeMc1LQ0ynMqg1VbDHgVadDnkcVAy+gxUNG0ZERDDkrwKjkzjjFTkDHIqJ2XBGSD9aTQ1IpOeeQKZuGeM1M2CTjmm0mjRMgJI7VGWJ6j8qsMFI6VC2AcUrFpkYfHb9KGfuQaC2OgphYkUmUgyOoFJvPQCmkn1pSc9zSLEIyDk80wrjk8U4j3o6U0IY3HfNMJ9s08knrj8qYcn8KB2GEnOcGkP507b6UhAxmgVhmT70rbsCgn1pe3agLELRBxhhVOWwDEmNgPY1o84xTeoq1JrYznTjLRmLJbSJ95T9ai2c4z+Bre4I5qJ44X+8qk1aqdzllhP5WYwXBGRimmtNrKM52MV/WqzWTAnDZq1NMxlQmuhVoqY27g42mmGMr1quYycGtwXaVOc0hX0NJQM+tO5J/9k=", "path": "images/3pts_ADE_train_00020054.jpg" }
depth_point_60
images/5pts_ADE_train_00007092.jpg
ADE_train_00007092.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 73 y = 165),Point B is located at (x = 72 y = 219),Point C is located at (x = 246 y = 163),Point D is located at (x = 247 y = 223),Point E is located at (x = 39 y = 124).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_49><DEPTH_49><DEPTH_40><DEPTH_40><DEPTH_74><DEPTH_29><DEPTH_69><DEPTH_15><DEPTH_74><DEPTH_74><DEPTH_3><DEPTH_11><DEPTH_43><DEPTH_60><DEPTH_70><DEPTH_29><DEPTH_69><DEPTH_73><DEPTH_74><DEPTH_36><DEPTH_67><DEPTH_40><DEPTH_19><DEPTH_78><DEPTH_60><DEPTH_70><DEPTH_5><DEPTH_17><DEPTH_38><DEPTH_72><DEPTH_59><DEPTH_74><DEPTH_17><DEPTH_20><DEPTH_29><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_38><DEPTH_74><DEPTH_67><DEPTH_73><DEPTH_84><DEPTH_20><DEPTH_35><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_49><DEPTH_36><DEPTH_30><DEPTH_40><DEPTH_77><DEPTH_73><DEPTH_11><DEPTH_80><DEPTH_31><DEPTH_5><DEPTH_15><DEPTH_74><DEPTH_74><DEPTH_30><DEPTH_66><DEPTH_15><DEPTH_29><DEPTH_74><DEPTH_17><DEPTH_81><DEPTH_31><DEPTH_72><DEPTH_121><DEPTH_18><DEPTH_15><DEPTH_66><DEPTH_19><DEPTH_0><DEPTH_41><DEPTH_21><DEPTH_22><DEPTH_72><DEPTH_45><DEPTH_98><DEPTH_39><DEPTH_66><DEPTH_66><DEPTH_27><DEPTH_18><DEPTH_62><DEPTH_60><DEPTH_31><DEPTH_80><DEPTH_63><DEPTH_46><DEPTH_42><DEPTH_47><DEPTH_32><DEPTH_53><DEPTH_75><DEPTH_35><DEPTH_70><DEPTH_END><DEPTH_END>. Since point D has a higher pixel value on the depth map, the answer is that point D is closer to the camera.
D
long
5
[ "C", "E", "A", "B", "D" ]
<DEPTH_START><DEPTH_49><DEPTH_49><DEPTH_40><DEPTH_40><DEPTH_74><DEPTH_29><DEPTH_69><DEPTH_15><DEPTH_74><DEPTH_74><DEPTH_3><DEPTH_11><DEPTH_43><DEPTH_60><DEPTH_70><DEPTH_29><DEPTH_69><DEPTH_73><DEPTH_74><DEPTH_36><DEPTH_67><DEPTH_40><DEPTH_19><DEPTH_78><DEPTH_60><DEPTH_70><DEPTH_5><DEPTH_17><DEPTH_38><DEPTH_72><DEPTH_59><DEPTH_74><DEPTH_17><DEPTH_20><DEPTH_29><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_38><DEPTH_74><DEPTH_67><DEPTH_73><DEPTH_84><DEPTH_20><DEPTH_35><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_49><DEPTH_36><DEPTH_30><DEPTH_40><DEPTH_77><DEPTH_73><DEPTH_11><DEPTH_80><DEPTH_31><DEPTH_5><DEPTH_15><DEPTH_74><DEPTH_74><DEPTH_30><DEPTH_66><DEPTH_15><DEPTH_29><DEPTH_74><DEPTH_17><DEPTH_81><DEPTH_31><DEPTH_72><DEPTH_121><DEPTH_18><DEPTH_15><DEPTH_66><DEPTH_19><DEPTH_0><DEPTH_41><DEPTH_21><DEPTH_22><DEPTH_72><DEPTH_45><DEPTH_98><DEPTH_39><DEPTH_66><DEPTH_66><DEPTH_27><DEPTH_18><DEPTH_62><DEPTH_60><DEPTH_31><DEPTH_80><DEPTH_63><DEPTH_46><DEPTH_42><DEPTH_47><DEPTH_32><DEPTH_53><DEPTH_75><DEPTH_35><DEPTH_70><DEPTH_END>
73
165
72
219
246
163
247
223
39
124
64
90
1
110
29
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDH2sjbWUgjsalU1rtDHOuGUH0z1/A1Tl090JMWXA7Y+YfhW1iERKanRsVWXrzUympuNF6N+KsoelZ6PircTgikyi4tSrUCHNTqaQyQHipBUQpwNICUU4GowadmgBZSfJbaATjoe9PjOIwPaoJsGF8kgY6jqKkQnaKARODSg1EDTgaCiTNGaYWpu6glkmaTNMzRmmIf1pKSkJp3JY6jOKZupC1O4h5NJTCwx1ppei4EhNNLVGWzSZpXEOLZqMnmilSJ5DhFJNAWIyaaaupYMfvuB7LyaspaxR87Vz6vyadhGUlvLL9xCR69qsRabvOGYsf7sYz+taJKKu5hkDu5wo/pVG41u2hBUTF/9mEcfn0/nT0W4WLC2McAy5ji+vzN/wDWprmNVLhSwH8chwP8KwrjXLhyRBEkI/vN87frx+lZc8k1y26eV5D/ALZzU+2ith8rN261m1iyPMMrf3Yhx+fSse41y4k4gjSEdifmb9eP0qoU9qYyVDqyY1ErzPLO26aR3b1Y5qBkFW2WoWFTcqxWYVCwqwwqFxTESWl9cWnCNuj/ALjcj/61b1nq1vc4Rz5b9lc/yNc2BS7falGo0Ox2MtrFcA7gd/qOG/8Ar1Qls5YMt99B/Evb6jtWXaalc2mFDeZGP4H7fQ9q6Cz1S3uyoDbJOmxzg/geh/zxWqlGQrNFAGpkcg5rQlsY5clflb/ZH8x/hWfLbywfeGV/vDpQ0NMuxSZAq2jcVjxy7TzV+CYN3pFF4GnCo1qQUgHCnU0Cn0gsNfOw7Rk9hTkPyilUAuoIyMimIcKKBkoJpc0wGlJpgOzTS1MZ6buoES7qN1RbqN4HemIn3U0tUJk9KMk0CJC9N3E0zNOVWY4VST7CgkWkJqyllI33yE9jyfyq1HZRIMsMn1Y/0pgZyI7nCKSfYVYSxdvvsF9hyavO8cMeWYKn+0QoqjNrVtGCIy0p9EGB+ZobS3YWLKWcSdVyfVuf0qRmjjjyxAQd2OBWDNq91JxGFiX2GT+ZqlIXmbdK7SN6sc1m6yWw+U3J9YtoxhXaQ+kY4/Os6bWbiTiJEiHr94/r/hVPZSbah1ZMaihsrSztumkeQ+rHNM8upse1BFRcdiuY6jaPFWiKYwpgVGGKjYVbZBUDimBVYVA4q0wqBxVIRWYVA4qywqFxVCZEtPxVi+0u+0uTbeW7ICeHHKt9COKgXms2rFihadtzwacKcBSHYuWmq3NrhWPmxj+FjyPof8a3bPUba++VWxIRyj8N+XQ1zG2k2c1aqNCcTqJ9NR8tEdp9O3/1qoskts/zgg9vQ1XtNYubYhZczIPU4YfQ/wCNbdveWt/GQjAnqUYcj6j+orVSjIWqIIL0Ywx5q2lwjdDUEulBjuhYL7N0/Oq5sLpOkZb3Qg0mhpmqrg96eGrGzcRfeDD6jFSLdyD3pDua6k71wcHcOcZ701eBVO1u/MuERuByT9AM0R3qMgJ4pDLoNBbiq4uEPekklGzg0AK8uKYZvSq5Yk05aomxNvJpQTT4rWWTkLgep4q5HYqvLsT9OBQIpqM1ZjtZX6rtHq1XP3Fsm4lY19Sdv6mqsutW0eREGlP+yMD8zQ2luFrlmOyjQZf5j7nAqZnigTLMqJ74UVgS6vdTZCbYl/2eT+Zqo26RtzuXb1Y5NQ6yWyDkZuy61bRjEW6Q/wCyNo/M1Ql1e7l+5tiH+yMn8zVILTwKzdWTHyjW3yvukZnb1Y5NASpAKOKzvcobtoxSmkzQIKaetLuzwOTTlt53+7E2PUjFUkIZSE1ZXT5z94qv15qVdLz1difYVSixGcTTTWwukHtE5P8AtGob3T5ba2aRkRUBAwDzVcr3Ay2HFV3HNWj0qu/WkBXYVA4qy1QMKoRVYVC4qy4qBxTBnc2+srJGY50V0YYZWGQfqKo3nhzTb4GSyk+yyn+Hqh/qP88VxdteXkGNkxIHZhmuntL8+UjSAqxAJK9KGy0jJvtNvtLb/SYSY+0i8qfxqGORZBlSDXa29+HQpuWRD1U85+orPvvDVpfEzWDC0uP7v8Df4f54qWuw7GABS4piJNHuScDerbePapQOKzYDStN2kEMCQR0IOCKmAppHFFx2NGy1y5hysoEwx94na35960U1+Fv9ZDIPwDVz0Q5NS4FWqkkTyo6aPWLF+PN2/wC8GX/61Tq1hccAxP8AQqTXJgUhXvgfjTVZ9UHIdYtnbvcIloyCYlhgg9lOcDucVCmjo0alJcZHTIP+FZOmNDLJDBIzExB2RjzsGGyARyB8xPtz68Wb3VkEiDT8Iu0bySW6AKAM9BgfrUxr3lZo0lTSjdMtto8y9HU/UEVEbC4U42ZHqGFQRa5dp95Im+gI/rVn/hIcofMt26fwuD/MVrzwMrMmhsCeZG49B/jVsLb2q72KIP7zf4mufm1m7myI9sS+wyfzNVDvlffIzO395jk1DqpbDSOim1y2jyIg0req8D8zVGXV7ub7hWIf7IyfzNZ6rUqis3UkyuVCnfK26RmdvVjmnhaBThUXGKBTwKbmpFikfopx6mhIAGKQmrMVk8hwCWPogzWlBokjcmIL7yH+lWoNktmKoZjhVLH2FTJZ3D/wBf8AeOK6aLSFUDfLx6IMCrSWFsn/ACzDH1Y5rRUiXI5ePSyx+aQk+iLmrsWiZ/5YMfeQ4rpUjC8KAo9AMUpQ1agkK5jR6UUH/LNP90VKNOjH3mZq0StNIqrIVymLaJeiD8aR4YHidJIAzMMBwSCv0xVorUbIO5pvUCuRjj+dZ2uf8gtv99a1imDWZroxpb/76/zpS2BHL44qFxzVjHFQv1rIZWYVCwqww5qFhTEVZBUDCrLiq70wKyJxW9Cn+jx/7orFQcVvwD9xH/uipZsNCEHI4PtVy3up4iPm3D0aogtTIvSpAxp+Wz6sTTQKWTt9TQBxSkShRSN0p1B6VIzpdO8CaneW6Tma3hEihlVyS2D0zgcU678B61bKWjWG5A7RPg/k2K63wBqTahoRimO6W1fys9yuMr/h+FdYygjmrjC6uOTSZ4NNFLbStDPG8Uq9UdcEV3vgTS9IvtOknlt4ri7SQq4lG7YP4cA8c88/WtjxLp1pexRpMimYHKOVBIHf8Kp+F9Nj0zVWMT/LNGVYbcZxyP60oxdwe2h0j6NpjjDadaen+pUf0rlfEPgWwWxmu9NzbyxIXMW7KMAMkc8iu4rnfGYuJtG+yWzlGnfDkf3ByR+JxWs4qxCbueULyKR/un6Vt6b4Wv7+++yhoogFLNIxPA+nXPNbcnw3uSh2anEWx/FEQP51hyt9C9jhUqwo4rS1TwtqujRmWeJZIB1lhO4D69x+VZq9KnUCSnL1wOtPtY1mu442+6x5x9K6Oz0ZDGHaQBSeirzVRg5CckjAS3lcZK7R6tV230uWbBVHf3AwPzro4rK2hIKxBmHduasZJrZUUtyHMx4NDI5d0T2UZP51oRaZax9UMh9XP9KtAU9RWiikK9xyIFXCgKPQDFPxSqOKcBTJuIFNPCU5VqVUoEMVDUhiyKlWPFNlmjhUs7AAUAV2i9qY0fFWY54JhlHU/Q08xgjjpQBnlDUE1tFN/rULYHGGIx78VpNFUTx0DuUdmFA64GMmsvXx/wASl/8AfX+dbjR4rI8QpjSJP99f50nsNHIDpUTip+1Qt1rIZA1QMKsPULUxFZ+9V3q04qs45pgQJwK34T+4j/3R/KsFelbsWBBGT/dH8qlm1ydTzU6daqpIhOAasoR2NSBhv2+ppR0pG6ClFKRI4CgjigUuKkZ2Hw3vkt9QvbV2C+dGHXPqpOf0P6V6YsisoKkMD3BzXgHlebDMmWG5SMoxU/gRVzwFFZXD2Nnbaxew3Zu2DRJdNyoOSNpUDGAO9VGTSZSSZ63rMUaI93K4RVAGSePYfrWVb3iRSJOjA7DuqTxvJusrW2HWSQsVHfA/+vXIRsbB23sd6ru8rP3R6t6egHUkjtTcrXGlc2x8WtLW5vop9L1GJbVsFygO4ZxnHb6VevdetdTZJ7dybcICjMME5GT/AEFcPfWmpJ4geGyWC4trqO2k3NOUZQACSQW+vQV2utnTb3yp5ISYby0L2zhcMsi9vxBHHtQ5uyYKKTYzStTM2rwpagyspy+z+FOhJP413OBXmHhiZrTXbbbwkp8px6g9P1xXV3vjrw/p2oXFjeX3kz2/+sDxtgdO+PcVUJdxVI9hPG2q/wBmaIY0VWlu8wrnsuPmP+fWvLkHFdf481Sw1GLThayCZynnK6/d8tun54H5VyKjisqjvISVkW9O/wCQjB9T/I12Vo6mEJuG4Z4rjdO/5CUH1P8AI108I+YnvWtJ21M5mnilxzVdJiMB+R61aXDDKnNbqSZFgAqQCkValVaTGCjiplWkValRaCRypUoUKM8VHJPHCm52AHvWbcXss+VTKJ69z/hQ3YaRbutRWPKR/M/oO1ZcnmTtulbPoOwpyoFHFOqG2yiAwjORwfapEuLmH7spI9G5p1NIpAWE1ZxxLF+KmrCahby8eYAfRuKzCKidAaakwsbhwwyOax/EigaLKf8AaX+dQKZIj+7dlPsar6vdTSaVJHIQRlTnHPWm5BY5rtUT9am7VC3WoEQuKgarD1A1AED1Xcc1Zeqz9aYGPpF5PdxObjZuGMBRiurb5bRf90fyrkNG6z/UV17jNov+6P5VnDVI3krM4y4upbe+mdZGBaT69AKuQeI7mJMOMn1zWffYNy2TwJGxz16Vcg0iW8tkmiicgyeXkDIJwDj9RWMrXNo/CWvE15caf4fuLq2k8uZNu1sA4y4B4PHQ1z9zf6zpPiSLS7nxBZXksd8LW5ht4WBUh9rctEoxkEZBrY8Zf8ird/RP/Q1rA1nXNP1/xnBfWUshE+qecIpNMgtyivJnDSRsWkI4Hze5rpSTTORnfCnU0U6sSkEZwGNLY6q2latHMbuGyE6SKLgWwL5VQdpbuOB19aI/utUp+xNpQtryVIxJMzKzxhxwFB6ggdetK6W5cE29DbnvrmaCOfUtcmkRhhSmIw+eyhBub6AmoFhLIP3H2eBTuSE/eZv7747+g5x3JPRtjFYxHzbXbJJjHml9749M9h7DAq1JINhp3RbTuYNzqclpr8QYcR2xKNjJAB9a7fWpYX8J6Na208U8sSLJujkBGQMEbh0zkjPYjPauK1YKIVvBbxTPAw4kJHBZePpwOtaFu0drbgSR29qT8zxxkBFY9cdP5UrpIdm2XrS8aKWG6aN5VSQMJolG8EHJEkf94dyv5d6i8VawNU1VhZG2a1ulSKRp5DG0JyAWKnnGMds1Tk1K0iczQ3QWUjDAIWWQDoGH8iOR+lZlxd3dzOxklXyVJZYjEMqSAMhx1GBj19aSkr6MJJpao0dSuUvdTmniULCTtiUDGEUYUY7cCohVaLOBVkdKSMyzp3/ITg+p/ka6qEVyunf8hOD6n+Rrq4Bxmt6exnLclAqRCVOVOKZ3qVaskspKDgNwfWrC1SAzUqO0Y4/I01IVi6MCq89+qEpF87evYVnzXckzMg+VQcHHekRcChy7D5SRmeV90jbj/KnDpSxxvLII41LMewq48UFhEzybJpl52Fwqr+f+faluDaSIIreWXlEO3+8eBUklvFBzc3cMXsSB/Oqer6mUPkC9ghwMsAzbwMZ/hHSuRvo7U3jTy3rSMyqxaO3JJ+Uf3iOtaKNznqV+XY7Fr3Rkl8ltVj8zO3bnPOcYoSbSpuItXtic4AMijn8xXFySaf8A20y7r2VzcY/gRQd/vnjNQXMujx3TxLaGe5WVcebcErkt2AAquSJCryPQX064AyoWQf7J5/KqTqVO1gVPoRiqOt6xPp9/Ologin38SFWIf5QemcHr6VZsdfurlxb6hpcs0XygTxxEMCVBPH49iPpU8hqqybsxSKpaqP8AiXSfUfzrSuEWK4ZEzt4xnrWdqv8AyDZfw/nWZuc9UL9amqJ6RJA9QNVh6gagCBqrvVhqgemBg6R964+orsHH+iD/AHR/KuQ0pHRrhZF2urYZfQjqK7B/+PQf7o/lWcPhN57nE6gv7wleD5r5z+Fdd4aLHRYFOMfbwR/3wK5C/BM7DggSMcEZ9K6jwzM4SC08seUJllEmedxGMfkKz+0XL4PuIpoYriDyp4kljbqjqGB79DUEWkaZFIsiadaI6kMrLAoII6EHFJcbWmiSdtsJQkfNgM3oafZEEzKh3QqwCEnPbkfSk6nv8p0ywFsN7e/S+2lr20d9X3Vu+ujL3YUtUjc+XP5ECFwMBuThSauE007nHOm42b6jo+Vb61Q1hWNtZIoJZnkAA7n5KvxEYPuaq6wn7rTwe8kn80rKv8Brhf4iMdLa4im2ktDIO75Uir0Op6pENpuN6+kmG/8Ar1r7CJHbdhPIUNyPm9Bjvyarw21t5ekbooyJYirjG3cdmRkjvXMqMl8LO91oWXPHcl0Kyn1u4ummvpIo41DlY1z3xgCuij8MaVEodo7u643EtIEBH61R8H4WbVMDH7ohR9GIH9K7bStT0q1toYpkhE/dpIs559a6aFOMo3mc2IqOMrQ2MY2GmQ6fO1tpkYbyXIZyWI+U1x4X9yT/ALNexXmo20uj3oiaM/6PJ9xh/dNePkjymA/u1tKMU/dORzclqEXQVYFVo+1WB0qRFrTf+QnB9T/I11kH3K5LTP8AkJwfU/yNddAP3QrensyJbktSLUYqRaoklXpTyOKYtP7UhlAD94/1qUdKi/5av9alFShmjaTLHBtDiNmPzNjJx7Uy8ht7sp5kshVTnaI+Cefemw2xkRCGA3Nj8qLpYrFN07v9FGa0VnoZSSe5S1HR9N1G5M8hukcgK3lsBuAGOc5qNvD+kNKsrQTuwAHzT+gA6Ae1Ty6lYQ6lDp8nnmaYqAQo2jceM81SvPE9hZXE0LWd05iAJYMoByM1oZtU92Wjo+j+eZv7MgLl95LM7fNnOevrT1gsoXLw6ZZI2c7hACc+vNYlx41t472W1i0lnaN9m5p8Z/DFJqfiySyubSGKytv9IiWQl2JIJcrgdPSi41KHQ6M6hcgkh8H1CgH88VFJfXUg2tLIQe244rQiVGjVjEM7iOlWNiCIERLn6U7MtM55ixb5utUtV/5Bsn4fzFal/gXr44GB/KsvVf8AkGy/h/MVi9y+hz46VE3WpB0qN+tIRC9QNU79KgagZA1QPU71A/SgRj2n/H7f/wDXd/8A0I11r/8AHoP90fyrkrbP22+x/wA92/ma61x/ow/3RUw2NZnDaiStwcKD+8fp+FdP4b2h4EB+YSAke2DXMagQblgMjEj5wfcV03h5dtzCd2c4P6Gs7e8av4PuE2q8QVgGGOhGaeoCgADAHQCmJ90fSniqa1uZcz5eW+gSqXt5DyqIAXlwSIwTyxx2HWtG20wytLBJIBJnMUq8qwBx/hVGO6+yMx8zarDDe9XdJvU80xpLG42k4AOB7j04rCpJx1Li07IosDCkm/KtG/zY7YPNN1pSYNPI4AaTn8VpmqNL/acyJLtVmBIJAG0jnr+NcLc+J/EOo6ANQewtPsFtKYDMuQQ7AHpvz2HIGBkZ6inKLrU7I2puFCqpSd0dda3MklyGZAxC8M302jj2xU6TMrW8ZVm+zqBnbwSAORnj171j6bPPPpS3TPIjvGh+ViM5AzkfUmtkGRrlhFJ5So5PlmNT2OT078965JTlGdkz1qkYVbNo6DwiALi+kbA/0dn69FLbj/St7yR5Nm+Bljt9evP9DXLeF5ZP7N1hcgy/Z2iQkhMncwHPQdP0NdNpkn2how8haOGFSXcYywyG9vTn2Hqa7KKvTszysTpPTy/IfqEUcen3OFBcwvgDjPynn6Vx4t2VGkeQk46DhR+Fdzdxn+y72VwNzQPgei7Tgf1rjJOIW+lVyq5z30GJUuagj6VNSEWtM/5CcH1P8jXY24/cD8f51x2mf8hSD6n+Rrsrcf6Mh+v863pbMznuPHWpBUYp46VQhwPNTDpUOaeDlSKQzOWXdezp2UA/mW/wqwprOs3D314MYKMFII+pH86ueciPtJ5PaoTC5olmWKzYSrEPMfLMM9ulM1CUWcMQdfMJ/ibK8fgabcyCOytH4IDvn6cVBqM9rcQwSTSSjepIVV3Hr35rVR965jN7mfeXEY8W2SGzt2Y+V+9bduGW7YbH6Vz+taoIL67P2OxbYB8xiy2doz1PuK6O9FmviSwYvP5pMO0CIEdcDknP14rnteg0v+0byOWa7MhGCyRJx8o5BLU7nPPa5SuNXli1aeJYLMYfex+yxkgZ9SDz0rV1XW72zu9PjhnKCSHJ8tFAJ8xhxx7VxfjGyS4mEWm3t5a3Ul6xmmchVSJI3kkb5DkgBc/8BrjLbUJG17Qpo/EWo6jbPeJE8Vw5jlQB1JBXe4CkNwc9d3HHLuVCm2m7n1HBK4hUb2HzHgGrAYiL8/51Ugkj2Y2E4Y96tE4iJxWhujF1H/j+f6D+VZWqHOnS/h/MVr365vGPsP5Vkan/AMg+X8P5isHuaLYwB0qJ6lB4qF6QiJ6gapnqBqQyJ6gepnqB+lMRkWfN1fH/AKbt/M117j/Rx9BXGaSuI5QOgau1cf6OPoKVPY2nucFqJ23rZUYLv/Oun0FiLq2XbgbBz+Brm9SGLkHuXkzk/wC1XX6VCqWVhMsjEtK6beMDEan8+azfxfeaP4PuKS/dH0p4qIfdX6VIDVMwFZFkjKsODWc0zaTKCksbM2NiSSKHH0z1rQlwYWBYqCDkg4xXD6qBFdK8UVkkbZzJcr5sjj1YHJGe3FZys3ZldLo72VpVtzKke52VWVQSQQR0/Dn8q84tdc0yHQF0Jkg8mawlM13tl3rcFvMVQM7cZihQnaeh5xW7oGqzSWzWMzRxBFaS3Y7in+0q5/76x2wcdcVHpXhrQfOAvrVZSN+5BK4xgcZw3c0RqKmtTaNCVX4S3pGD4etRkHEEeMfh/XIrZjGzU5g5TZJKVL7ud2zABHPtWclqLS2VLdcJHt2oDklRgFcn6Vp3Fyv20PB5Th3RtmADk/LlvxxXnpptvueyrpJPdFrw9IsFlqEkqNIjlQBs3KcsevHQYJ49DXV+HxO1pGk7IZSTvMZ425yCT3zwPoa4fTLtLVLtZXlVSZEWRBwj8gE/T5yPxr0zSLL7Hp0KnO51DEFVG3PO3j0zXo0fhPKxTtJkuoj/AIlV5/1wf/0E1wMn+qf6V6DfsU0q8I/593HQf3TXn0p/dv8A5705bnKvhIkqXmoYzmpu1QMt6X/yFIPx/ka7SD/j0T8f51xWl/8AIUg/4F/I120H/HnH+P8AOt6WxnLcdThTaeoqmIKASEYjr2oOMZpiSbA7HoBmpYzCilFtq91cF90NwoJIHIK8Glay1Oe7EkUJ8vOdx4zx6Utx5MV9GcHypkfbgZ5Yjt+NdJbyAQrjpuNczbvYqME07lDVPM/sCxIBV97blPOMD/JquLN7vS7CSN4wyoRtdwMjcfU1q39rNNplskcbOQ7g7Vzjisu5SSDR7EyREMAwKsuD94/lXoQ0gjlqLVkt9prya7p8yNF8kkRcGVQcZ7DOTXN+JLO6u7++cSWSySD5f9KjU9Bnq3HSulvgB4i077oy0I6H1rjfFFsyaleNgFW2kH3xxWT0ZlJXVjlvHNzNoU0V6FtZ4lvJI5IvtKuXWSN1dSFJKgqzDPbIrhNNudPu/EehWthZfY4Vvoy0lxOJHYs6j5nCqNoAGBjjLHvXpeq/utSuS4URyXB3BsDIzwf0rtJNLbW9UsUuIGkgNmNkiY+R1lf8QCMDpjn2oc0lc1o3tblsvzOwEKxttSWPg8c1pCMSWpAGXx1HTr3rJdXjAcjAY5U1ckYiLgkcetbNXRaObudRI12axnXa4I2NkfMMZqrqpAs5FPUjj8xWlrlqlzcuc4nCKyv3HFchqOsG5v7e0V2IBdXJGNxCk/n0P4+1cl3F8rZV7bkZ6VE9SnpUL1oURMahapWqFqVwIX71A9TP3qBjTAxtIbdFKfVv6V20n+o/CuG0X/j3f6j+VdxL/qPwpUtjWpucLfOGuGHPDyj/AMeNddpzSGCwG/8Ac5Zgm0cNsGTnvnj8q42/4nznJMkmBj/bNdzoEK3NhuaUK1uhkChc7srjr26VG8vvNJfB9xlD7q/SnA0zoF+lKDTZzjpgz27qgVmIwA/SssaLbwHz51WVlO8sRzn39fpWqDxTJTujZSeCMGpcVe5SfQwrZZtQgh1C4Yx7LnMKgAqidNxHrn+lXRZxpcqtuWYIsj7QMkYXPbnnj8aniEYh+z7QIhgBR6CrGnaLf2sNzq0txHb6eImOEYl2UcleOmcda5qtOUndHsYLF0adB05aPXotbrRt7rl3SX+d4f3ksPlra3RJK4PkkYORzntUWria11eMyNKsJfcjKgAZgBn8cdfcV0lmweziliYmAoCrZyMfWqvieaC10CS4lYb4nRo1BG5mzjAHuM1w0pvn5bHVUS5HO5k+H7OW/wBb+ziDfDLdPLKXPZMuDnsecfn617CB8keRn5R2ryr4capa3via8hgSWMyrJKqyAfdAAHPc8tn2/T1bb90Y/hHY17FNOMdTw681OWhR1eZYtMukZWG6BwG28fdNcFOf3b/5716Fqi/8Se9JXpbyEHb/ALJrzu44WT/Pepl8RnrYZGeBUwNVkbpUwNSBe0v/AJCkP4/yNdtAf9Dj/H+dcPpR/wCJpD/wL+Rrt7dHayjKqSOf510UtmZy3HFgB1p28KpJ7VUuPMiZSzIo/wBpv6Vxmja5qNz4n1a0utRD21vv8tJMAE79oHAz7fjVWBK6b7HSXHjDw9azy21zqsUU8bFXQo+VI/CtXcACQchl4xXE6i0DafdzQu+bwN8ssQG0svIweehJGa7PS0W80Owl5BmtIzuz0JQc0Sg7aCUl0Zy1jei7uVsopTHJbCRCWXcGUsuFB9uR+FdNZsn9tzwADCWsTY+ryDP6Cs610iCy1pINuGl8yQYJ6Bgf8K37OzhXWbmXGGNrCpOewaQ1jShLeQotpalzUPtA0qBbe48lmdiSGIzj6e9UXkvobO0il1B2jeJvNI3Fj8xwQeoI/pXQhIGijgnXOCWUA8898envVaX+xLi4Fm8kTzwAZi80howeRuGQQDnjNdcZWSTRLg5N2Of1I3MXivTAl3cpGzQDaJiA43cjZ3z1JrkdYvdWk1W+htdSnWQEGNDMQuNoz/8Aqr0Kw0+A3UkkyCcROrwshJ2kYIAI64/r9ag1Tw9bXN+DbQNE8sZeSfytxBBHB+oyMf4Vm9iqVFTmlJ6dTzLWg6a/NJq05ZSgNvI6b1C8kIflPrnp+Prb0m81Wxu9JtbdrxobjzHtbSOZYMRF34ZiMg7gT1OQQM13mo+E7C5le7WW8huFGYt33FIBA3ADO05HGece1T6JpVs4Mc+yT+znMEO6JcgYyeSM87j3rmVDllc9jEYqnVwvs4Jq3Le7091WTS6N63f+bN+KMS22wnBBODig2pYjaee5YZBFSRMEXlsZ6jAqUTRFcmQD2Nddzx7HD+JWkt9aaUuphRVAQDBHA7/561xE/ly6+JYGSWM7iWRuFJUn8ea7rxvai8s7wxsP9WCGUElsDoMV5HoTyJrNuTu8uXzh8wxyFyMVwzTVWxEn7yR1jcVA9TMarvXQaEbGomqRqiakBC9V2NTv3qu9NAY2j/6iT/ertZj+5/CuJ0j/AFMn+/XaT/6mlS+FGtTdnB3ZXz2Ofm8yTg/75ruvC5Btr4r0+zJ/7PXB3mDNk54eTjH+2a63RtWsdKtbhZ2kMs8axhFUYXG7kkn/AGv0qU7T18zSSvDTyIW/h+lA5rRs59BS18y/vLcOGIwboL+g5ok8S+Ebb7r27kf3Y5JP6AVoo36nO732M/oOtNMckn3Edv8AdXNPu/iNpFrtWx0+SVy2P9QkQHvkkn9K6i31I3thBdQm6KTRhwAQoGR04xVKlfqJtrc5RdPu/KkkNrOFUFixQ4AAqxd3scfgFWklFwWm8sx7gAm4Nx/Pnvit2eQi1kDRE+YQgDSk5J4qLxLpcMngmZIYkjYPG+AOB8wH8jT9jZlxqpRatqYWgwWviTTJDpsKxNbSojCdsEYIOe/XBrC+IxNpq9rbOybTGZiV9SdvP/fNXvB+nSadql5asYnZyzEsvEmCOx6EZP50uvwvB4w0q8NtA8aRyB18oFAB0JB92FZRwtOn+9W6N5YupUSpPZnH2GoHTNStb22k2ywyK4Ib35H5V9F/2zZSFWDgAgYG4f415vrWpR6tor2kUVr51woQYhG4EsBx6V1Mds7ReWWjKFdpHljkdK2ptVVdowqQdN2Mh/EKyTXvnMCEmcKG5yu4gfpUzaPcXNv5yy2wEg3D5+mefSuR8VwW3h3V9OtoJ7xraZGkntln2jAOF2tgkdG79q3tN8beHrWxW0to721iXopRX59Sc5JrJUYxb5mXKbmlZE40O9Bwvkv/ALsy05tJ1BBk2kp/3Rn+VWYvFWjT4xqSD2lhNXBq+mbC/wBv07aOSfOCH8utP2cHsyPe7GdptrcpqkO+3lX73VD6Gu8tVK2EKsCpGcgjnrWJZzicxyQsZInGVeKfcrD2Oa3LeMpbISANzEnBz+tawhymcncw/Emowaba+fOksiA8hBkj3xmvNtF1aC28XX17mQQXKybEZCCcncOgPTmuw+ILP/Yrne2Nw4zgV5aiSSq6RSFJGjYK4z8vHXilUdtDWjC6bOx1TxBpbhLZ7+3sDvLsFUszAgAZHOMACvRPDMgPhnTTDIJYBFtjkA4ZQSAf0rwi/wBMso7DRZUt1VpYmkmIyTJwp5J9z+tTQaveW4UQ3c0YQYUJIVCj0AHStKUJVFe+hlNxhoke03mqWaeKrFPtUG5Y5Uc+YvyklcA+hOK2rX7Nqb3sBYyLcWxh2AbSeH7++6vAIdUeO4S42IZkfeHKgndnOT611ej/ABGvdOu455LaCfackEFSfxH+FN0JrYn2kXuZ+jaxfQ67FE93PugtmjtyznMe1s4/U1n+JNUvjr8t0blvOCKhkQ43ADjNaGlaPrera4NX0vSbi4tRNIxaMAhd2flPPUZputeFdfnuGmXQtS8oAAnyCTnv0rOt8R14CajUuz1LwXq00Hh3Tpx+8ie3Uuh6E4xx6HitSbxXarIdSiLyQYVBFnBQsOdw9R3HrXj8tzcW2jaZaTqEK2zRPaS70YkOGG7+6emD6Zrd0/zpdOVrkgNLI7YeTnJ4B/DB5rj9s1PlWxlUa51FdTd1Px3qr3cZinW0hjZmMWBl1VS3J+gxgVW1j4ofYbIWFksVxdPEFkmUYSIkc/VvauJ8VsENpEC24uzPnuQP/r1x0rnzlhBwG5b6V00220juowpRoSqTPfvCXjg67qNlo9vbSXDG3MlxcsQojIA6DHIzgfjXaSqVHIx1/GvJ/CsLaT4cgkhPl3F4BLLIB8xX+BfoBz9TXoPh/U5L3SZIbg7pYZcBvVSKuUouTSPNSdrsffOyQEpgt79q8wazjW+t7jzd8kUrxAFjnmNj0POMAYrv9V8SaJpUrw32pQRTDrFks/5DOK86l8SW+qeIfs9oH8qW6muS7x4LDyQqjrx0b9KzqU5OzDlT1NFjVdzzUrNUDHmoGRsaiY09jUbGgZE9QPUzGoHpoRjaSf3cv+/W94onnt9Allt2kV1K5aPqBn+XrXP6R/q5P9+uv1KITaReIe8Dj/x01NP4UbT3PK55ZhcfNM7L94Zb15P61IxV8N3I5BPeq0scszQGKOSR3jX5UUsfyFaFt4b8Q3Kbk0q4VAM7pQIxj/gRFW4qwc1mVdwAOBTSwB9K6LTPAurajD5z3VnbJnHJZ2/IDH61uW/w0tBzd6ndTHuIY1jH5nNCpvcTqI84lf8AeKQc4IP617F4VlL+ErDn7qun5O1cv4k0PwppOgXn2Z4jqAUeWZLrfJncM4AOOme1bPg2Yt4ViA/hmkH65/rW8FZmUndGlr88kPhnU5YpfLdLeRg4JBB2nBBHQ5xivNNTOo2+l3Cjxfq0s8Nja3ctvMWSJlmWNgit5h3MPNHBUZCse1dv4mhS78N3wkZv3cMsgAYjJEbdfUc159qXjmW+0CTS0jvVjls7W0eOW98yBRCsYDxxbBsYmMHOT95h3zRPcSOy8NeI457Y3d5ZgXbyyN8mAFBwMDP0FGv6tHetC8UW1o2PJYMDkdDj6fpXMyaTHp+xrws8XIYj19Pr6fQilTR0ubSbULcFEAJiU4yVXqT7nBocZOPKNSincs2OuTy3eCYoFim2l4jhsDncCenp0rtx44tIwA0tquP9sn+VeY+GLAanJNHIB5UahiB3JyB/Wte3QPdJpDxAOrkefn/WKCfyOB+YojBxWg3NSfvFfxdrS6x4lW6R0aNI441K5x3z192NVIZY3XBAz65qvrkcVvrF9HGigxlQgPbpkj3r0CDwZ4evtPWaFpUk8tSWt7ndzxng5rKcXIuEuVnGgxryDg/lTFlDSu2d21Djvz0rq5Ph1vH+i6u6+izw5/VT/Ssebw7c6Hq8FndTQTNOUZTCTjaWxzkcdKy5eVXZqp8zsek26XHh7wbM0jobmC3kfMfCq7ZwB9CRXnGm6xe6fJJ9ivbmDJ58uUjdj1r0XxlPs8L3hH8bon5uP8K8fjcwhZHDKj8qzAgH6E9a0qN2siKdlqzsbrXNQ1S0Nvf3JuIic4dRn8xg1SjsrZWDhGwARt38cj3rLjuY2H+tH51Ot2y9GJH1zXI3NnWuSxauLJJ7WC3+0uhtk2I7R5AGBnoe+BWZeaVLaWH2wT+bGpVX+TbtznHfnODVtbwl9vOTTPE08yRx2cbkRsiFx6lRx/M12YepNNROWvThyuSMUTmpY5uc5rLJkU9jQk8qnhetdqm+p57PUPh94ul8Pm8s5JpFtZ8OCvUEAjp3z/Su/k8fJZobZp5PJQlHLxY2c4zzy2fbNeGaNukngTPJOBnua720tra+0sRtPpH2mWMLIr3bQyKwPXGR83uKxqxXPc0hOysddrVtYeIrSwvmtMySuqxXSAgyKRt5B6gAZ/Ct5dS8N6TZ4bRoIoY12BpApPHQZPNctBJrkWm2VnDHFJb23yoFZZlQf3gd3Ufh3pPFOo3N19jkuWJKF4w3l7eflPUcGudwUVdFKa5izq3iHwWnh241LVNAgu0t9vmtbxRs2WcLhSCMYz3IPFecat4k+E9+rNbaV4lspuzxCM4/BpTVnxUXPgvWVRQVEcTP2wDMnP54H41k+NjqovfGX9u/a/sZvX/sv7Xu/wBZ9o48nd/D5XmZ28fdz2pxvuWpNqx6n9njtxHbQP5sUKLEj4xuCgKDj3xXT28UWh6Nd3bfMIY3mkOOygnH6VzkKORCXXa+MlQc4Oeme9c38XdbaMWmkwyMv+smlAPXJ2J+HDn8Kin70jSS0PL7vU7nUL2a9uHLTTuZHY9yTmuj8AadNqmvzSRyqptbdpNjdZN3yYHpjdmuFknG9uwXAFdl8Lr+NfGHlOGJmtpEUD1GG/kprvb92xyW1uejyaRqC5/0Yn/dYH+tUpbC9T71pMP+AGuqLoO0i/nTDMoPE7j6n/EVz+xRpzHGyJIn343X6qRUBcdziu489z0uAfqAaY4Z/vLE4/2kpex8x8xwrNUTHNdrJaWz/fsbY/QAVVfSbBuTZY/3HP8AjS9kw5kedaR/q5P9+u2lG+3mX1jYfpXC6VPBGrBpUXLZ54ru4Xjnj3xurow4ZTkVhG6ikdMtWeeeGNftdAY3N00mx7bYBGMlmDDj+db8fji81QSJpOhXE67SDI78D64GP1rD8Csv9tqjhWxDIpDDI4ZTW/4Vdohrli7fNDdO20+hyM/pVsl7hpUfi69s8W09lYQbjliu589+xq7/AMIfc3f/ACFdfvbrPVEOxf1JrT0GUjTCFUn94f5Crs84hheaaRYokUszHoAK3hBcqbMpSd9Dzu/8PaVZSeJoILcuLSziaJ5XLFHbkkdulbfglv8AinGHpcP/ACU1Fa6bfaxoeuXq27i41QnyY5PlIQcLnPT/AOtWt4X8OXulaU1veyQLI0pfEb7gBgDr+FEWlJA9mi7bMqSrI7BUViSScACumtpo7i3WSKRJI26MpyD+IrkNR0+W2ktprh4riySbMkaRsWUYPzN7D/Oav6U0P2+8vLCLytPNuNx8soskgJ5XI6AZB6c9u9Zuvepyr/g+vodywEXhPb3e19tN7crf8z3Xl82uEhcaxeeVdmMWUTPtLfKZG5xv/DJGOD9aq6pNLa217aWcqSWrKSXzk9OgP6d8+3NQx4lbcxZieeTmpLqNWsLhQB/qm/lTVdt2Ob6v7t2ZeiJex+QbAsJmgbO3HI8w9c8fifwrp3kszoKxxybbosCwT/WROG6+o5wBn1HvVTwN+7uoMkj/AELJ/GVv8K9LbRNH1OMG70+CVmGDIo2P/wB9DBrpjFuOhzvQ8RnVJJNVa5PmThVCOcsS+9cnP03cmvTJvAujRwGWCGe0lC53QTHH5HNcFrWn2+l6nrNnGj+WCggDOSV/eDv349a9QTxDZrZIlwzKxQZYLlSePSsFHSzNW3e6Ofn0bWrCzln07xDIohQyFLheMAZPPI7elYsNzqeoeI9Ik1Z4nnlEDIY8Y2FtwzjjPJrrtd1eybw3di2njmmnX7PEiHLFn46demawZbcW/wAR9OsR/wAu/wBni/75jFYyS2RpFvdnR+P5RF4ZUf3rhB+jH+lN8JfEHw3D4YsNHvJpI5IVKuJYN0ZJYntn17ioPiQ2NGsU/vXWfyU/40aNYWd5rmi2t7YWs8X9gIwEsQJ3byc/X3qr2kybXirkninT9B1PSpbjR7axnuhypslAdvwXk/lXEHRb+O6it5bK7iaRtse6P759B716hP4D0OXJhhmtG7GCUgD8DkVUfwdrlmN2jeJZVK8rHcLgfmMj9KiSk3qvuKi0lZM5m48C6np+kyanPdWyrCN7wFTuxkDgjIzzXL6+/mXy85+T+prrbvWvF0thqOn6nBFNZQTLb3NygQ7H3AgAgjOTjtXHayMXELf3o93/AI83+FaUV+9+Qqj/AHXzMplU9ajMYzwaeW9qTPJruscJd0+c2ziYZJQ5AHU8V1B1OCO2Ee8OgyQHAPU56fjXII2yFz9Ke0wUEswUepNWtNSd9DqdK1O0n1m1t7jTLGWCaUIzNCFZQe4YYP51v3dxJeX9xYWk9r5MMqCGLcS/RR8uSQw+bnkYrB+HFjYa14tghu5LpAgMkIiT/WMozgnqBjPb8q9Efwlp12+qwvuwmpxorsrJKnyRZZXU8Hk9q5qiXNc0Sujj720k1LRr7S5LtrcXawmVvsTuVUOGGMHplfxrlLj4eafFsaLxKkkJHzSGyZQjbiCD83t+uK7S10bV9O16Syjnjnka0im8yYtE8f8AsuFOGOWx0Ocg8DNZWtz3i2V3p7/Z4xCxkkVSQG+YHcpGTkkg/j2rnjUg58ljseAxEaHtr6b9L2vZO3ZvT/gNHc654r8NPG02m6/FDqCdIlgd1k74xt+U+/515L4u1OfUtWN3cziSSXYOAAFVVwBgfj+dZt1qEl95QkiVHjGzdj5iPc9/aqN9KSUYk/eIB/CuhqMbJIzoxbjKT6Iz5hlmPvXU/DDP/Cf2H+5L/wCi2rl2+bmur+GQx49sf9yX/wBFtQ0Yp6HvDHmo2Oac1RNTAayoeqiojGmfu4+lSGmGkAwx+juP+BVGVftIfxANSE0w9aAPFdKSG8y1w7RxIpZin3m9hVrTtSOj6uJrOSVrfcPMhbJ3L349fSuct7x7dSFYjHIrZsLi3lRFLeRMf4ycq3+Fcra5TpitS14McL4tVR90rNjI7da6HxHG+kaqNZ0+eETyL5dzau2DKMYyB+WfoD61jTLNHIkspaOVQVS4iOGweCNw6iqLWbjnc0q5Jznk/Ws20acjO08N+KtLWL7LfSfYmJ3BpMlSTjjIGB9TXZxLDPEJYGSaM9JI2DKfxHFeJiIgna2PY1PZXd7pkxmsLqa0lIwWhfGfqOh/EVSqu1iXS6ntIgkY5Y9e7HNPNrtXcWrgdM+I91Fsj1WzWdehuLb5X+pQ8H8CK63TfEeia1OILbVoTOfuwSgxOT6AMBn8M1SaZDi0WmcAEBc479qsNKBAMkc4HWpXtOShGMcYIqIWkKyBzECw6E84rROyM2rszbvw7ot/80tmsch6vAfLP6cH8q5nV/CMiXEFlpM5mmug5K3ACrFGByzMPcgDjqa735V6LXOX2qNa6tf3kDBpCI7GBdu4KVG9yBnlizqoGcZxnvUqK3NOdpWOF8MwXmn6xcWU8W+SAfZ90fPKs55A7HDflXpFlfxLEAdytXHXWman4c1aHW31AST3E5nuxEgQKRgsAcYYbN/YdCR2r0iZ4XikmnhjliRC5JXsBnr16VvGry6Ge55D4ohW48V25P3J5AGb2BzTru22cI/A6c11Efgyx1+Ge8uJ5YLhm2qc7kBA+bg9gxKjHZPesFPDOsMt1DBD9rFlO1s5jYbsgAg7Tzggg1lUkrPQ2pvUwpA+CA1Pspbm21OG9RiZ4iCrt8xzjHfrxUk8MlvKYp4nhkH8MqlT+RpiA7hkkVxuTOlRTRqeI9butatLSK6WNDBIXDIpG7IxzXQWGuWQ1fw7PFvU2lkbW63gY24GGHrzniuRmXegB5qW2QLIGHBxjI4p87vqL2atoe1297aXYzb3UMvsrjP5danLrCC8hCogLMT2A5Jrx6N5ByHz9RV4anePaSWkk8zW8i7WjEhwR6Vp7Yy9iSMzH4eXuoMpU6lrBmGf7u4kfqDXE66u2a0wOfswJ/77euovtYmvfDEOkOIY4bWZfK2ptO0AgA889c5rOvfDd9q6QXdlLbsFhWMxu5Vsgnn071VColU17Cqwfs7LucgeOtKuPStO68Pa1aA+fpk5T+9GvmD81zWXjbIVJKMOzf4Gu9ST2ZwtNbom8sSROhYqG7jrSpDDHyFy395zk0Jnb2xntThjr3rTzIOx+GTgeNrZSoO6GULk9DtJ/pXsWkXkkk+uRS4aNdSBOcgnbFERyPevFPh1KU8eab/tCVf/ACG1em2F9cpq3iKEwRi2F7uWYSfMzeXGCm3HA4HOfWuat8RtTV0N8XOlxenUYJPsl1GpQNGo+YHHDA9enHoTXL3GkLD4L1rW7s+Y7QGKPPBLu6Dd9Bxge5q/qMzX1+lsmXJbkD+Ik8f5+lV/Ed7KvwZkFwAs73HlsoYEAi4bgHvgLXJSgpVXM9CpiaioKjfT0V7b2vva/S9jyKXEjRhs43/lVa7wVUf7RqVm3NH/AL2agvTtCf7xrqn8SMaH+7zIiBiup+Gf/I+2f/XOX/0A1ypb5a6r4Zc+PLP/AK5S/wDoBrRnFE90ao2609jUbGkUMNNpxphpAhhpppxphoA8En0s4LW56/wN/Sq0btENjqVYf55FTwXjKvUso/Sm3Uq3E6OvYYNcXqdWnQu2WqzWwAyJISeVY5U1t281pqEh+zSeRIf+Wb9D9DXGwExvIoOPmq0kmMYOCO2f5Gk4lRmdRPbEOVmTa3rVdrfHTn6VDZa28aGO5UypjGW5Zavh7e4y9tNlOpUjkVCTbsa3W5UCLjkcUj20cq4ZQ317VoW8ckiyMtsZyoy2ASBn6VAdpAYEKT1UdqmXuspWZo6Z4r8Q6WwVLz7bAP8AljeZfj2f7w/M13OkeN9K1MCK8U6XdnjZcN+6c/7MnT8DivNo32vgirmVkQggEe9awmyJU0evvCy4JGAeQexrm7jTGbxLpyRmJYIhNOsKJjB4yzHvlmBHToa4iz1vU9HXZp17JFEP+WTYeP8A75bIH4Yrp9O8b6dLdNPqentb3UiKj3Ntl1KjOBsPKjk8DNaqaMJUpLY6uSCJo2jlUSoylXUjgg8EflWVZKH8Pmw1GKeKOxAikJyFlRBkMCPvKVAyPqDW3Y3FjqcRl067huox94xnlfqOo/EVaFuFHIzV3M7WMTR1kGlQF1KNIGlYEYILsW/rU8FvNHrEksaKbaeICUk4ZXXOCPUEHB9NorXSFf7o/EUPGd4CgfQUgIpYYJ7cx3MMdwnTZKoYfrWFceBdEuv3saTWbHtBJlfyYGt8gjCjlj+lSv8AKgUVLinuUpNbHnGo+AtTgbNm0d7H22nZJ+Knj8jWBNa3WnyeXdwTQN6Sxlf517IM4p+S6+XJh0P8LjI/I1m6KexrGu1ueNK54wcip1l45r0y48J6PfhmazWBu7252H8un6Vh3Xw+lB/0HUI3GfuToQfzGazdKSNVXi9zi3CNGVGOT3FbekKi2yr0PqDRfeFdZsMmSyaaMfxwfvB+nI/EVDZOqjY2VYdiOlRZp6mjcZLRm5GzIcrIfxqZ4re9BS7toLgD/nrGG/mKz45PQ1agkHJ962j3MJLoZ2q+EvDhsJZhbvZS4JVrdzjd7qeCPpiuB0bw/qmuuDZwYh6NPJ8qL+Pf6CvV5dPh1QRLNlkjJZk/v8Ywa04oRFGkaIFjUYVVGAo9hXVCq1E5Z005HL6L4X0/wiV1e7la5uYQdrH5VViMfKPXr1qRfE4unm2uuXYuy4AIJGM4wDjoM81X8W3vmXy2v/LOBcsP9sj+gx+tOLW8vh1ofsyJGkW+O4HVZAe/9e/4VnCbqza7GzhGlCLa3K6TKsgIa5F5cvtt/s4ywbI5J7KByT7UXyXkGhy6LrelyalpokZ0vdP5ZSWLbmj6g5Y9MirPhKRrmTUpQ2VUxxgeny7iPzauh3AMdrc+1XBpKyM6l3I8J1Cxt7a6/wBAuWurYfMxMZV4h0w4I45xzWTekl4wfevZ9Wggm8UQxSlVM9hIiqw/1p3gkfgBXmHibw9d6XOXaI/Zg5Ct1wD0pt6l05JUpRMQhdvf866v4Yj/AIrq1/65S/8AoBrkyPkrrPhh/wAj3be0Mv8A6Ca1bOVHuLVGaJZREu49M0xZFlBKnOKBgetNNKTTM0hoaaYacaYTQB84fNBO8Zz8pIqxbMDNj6GpNYi2XglI+SZdwI7HvUFtkPnP41yvWNze1pWJmjYTOwGRxkUop8svkuxx2qxZiCRHV/4ucntUpuxXLqV1cqOeRUkMzxbljf7/ABjpTprVouVIZar4B74OcijdBdo9IsrxYfD6RQiEICWuXdQSeOAPQnoCPQVzUzkSK5yMvnFZTao52YjUSDueRV2Sbz7aGTHLHJ+veprTuoq2xdKNnJ3LikZwMk54q4oyuH/IdKrW7KEBPUj8quoWZfmIxUKVje1yLYhPXFIYgvOc/SpDGrfdcZ9Kik3LwRilzFJEloWW6EsbyQyr92WJyjD6EV1tt4t8Q2SjLW+qRjqJxslx/vrwfxBrl7b5Tn+VaUbjb6fStobGcopnV2XxF0ye4W31C1utNduPNlw8QPuw5H1IrrPJd1WSPEqONyuhyrD1B6Yrxu+O4jIDCrGl6nf6R82lX0tsOrQ/ejb6oePywaPaWdmZyoX1ietpEUbLD5qdJya5fTfiBaXAWLWbdrOXoZoQXjPvj7y/rXVw+RfWyT2lzDPbkZEkbbh+laRkpbGEoOO5F2pR1HapfLjXq7H8KaFDNtQcDqTVWJJo5VKYHUVMpVec1AVCrTRwMGm1YlXZY80Kcg/lUM8cVySbi3hl/wB+MN/OkFSAZFK1x3M6bw7pl2Dsi+yyHo8R4/FTx/KuVuLebTbt7ScDzEPUdGHYj2Nd0CUcGqPiLTv7R08XMK5uLYE4HVk7j8Ov51Moq2hpCbvqYemS7roIB1jY/qK2VUZ56d65zQpDLf3TjlYo1jB9ycn+Vauq3P2fR72YdVhbH1xgfzqb2jcbV5WPOL64N3dXN0ekjFvwJzS3VrLDaqrXJAdS0iBcYAHPP6U1Y8Kino5Uc1X1u7LRgI3+sbAx/cXn9T/KuPDy91zZ2Vlqoo6fwBGzeH57gg5nunY/kBXRvEAOhzWX4JiEXhG07bmdv1raZgD3P1rup/CjiluUZI34O0EjkZ7Vn39il3bvFPEJInBDK3QithzmqroTk559DVMR5/P4F0pZy6m4WM/8st4x+eM1qeE/D2n6b4lhntonWQRyDLOT1U10MsYI5XNJpUYTV424+638qIt3syZRVjYvv9R681XsP9ScAjnvV2VVcEMAR6GokjWLIQYB981uZik0wmlJphNIaEJphPNKTxTCaYHghmF1ZeUxG9eFz2qrDE0SoW43E8Zpm3aWIPJ547VoabHDem6L7w0FuZIx6sMdfwrk2Rve7InAkkAPQjFQxF4JtmM45we9SnhlPoas28BlvDH1EkYP5VnF9ymupoWjx3MeO46juKr3Vhg9ACeQw6Gsi3vGt5SjkqyEgOOorcg1JXXZOR83RuxpNOLKTUlqZLxtG+GXmtGxbdblD/C38xViSCOdCFww9M8/hVSwOJZB/sg0qjvEqC5ZGhBMEYKfqK045SyDBrIKhiMjOfSpY5Hi7ll/UUoq8S+ZpmvGuQcEeuKbvZciRVIHtVaK6V1/wqykwzhsN/OoaZqmizEqNyh6dqsrhRhuf6VRhX5jtxVpLj+CVT9a0iwZHcoG+4271B61AEdRyOKsTYzujYMKYsgcYc5xWUpO40iEucbT8wqxZyT2z+dZXEsE2esTlD+nWmSRr2NMAZPUVPN2G4rqdVZeO9XtRsvIYL5QMDzB5cn/AH0owfxFdXonjLR9UUQuG067P/LK5I2sf9mTofxwfavLxJu4f8KkUfLjPB9ea1hXktzGdCEtj2qSJxyw4PIPao1JzgjNeVabq+o6XxZXkkSf8887kP8AwE5H5V0tn4/kRgNQ01ZR0Mto21v++G4P4Gt41os55UJR2Oz2j6UAEH2rPtfE2h3cRdNVt4toy6XLiF1+obH6ZqGfxj4ftwRFdteP6W0ZcH/gXC/rW2m5jyyvaxs8VKmYTuI49K4m48eXMuRY6ZDCvXzLmTcR+C4H61gXHxK1fTpzNcG2u7ZRudGi8v6YI5H45qVON7DdKdrm5o0D2eo61bEERx3pEfHbAI/QrR4rm8rw+6ZwZpUjx+OT/KnWPimz1/y7sIttJKoJXduBI464Hp3rL8dXAW202H+9Mznn0GB/6FWNeVqcrG1JNzVzm55CZNqjkcjHrjH9ag8TW62l0LcABoIUib/eIyf/AEIj8K09Asv7Q122hY4jU+a5PopB/pWLr959vv5pv+es7Sfhk4/mK5qSXsToqO9RnovhYCPwrp64/wCWZP5k1oOwzVHRF8vw/YLjjyFqwxZep613R0SON7ik8dKjzk88U7ccdKiaQZxTEQSADJHNJp4/4mSEDHyt/KpHx0yRxS6fFuumf+4uenXPFOO4pbGixphNOY81ETWxkkITTCcUpPFRsaCgJphoNNJpiPnR3O8kHn1rT0xwY5MHa2w9PTHIrKPIwB+NXtLhkYXEyj5IVBf6E4/rXI1dGydmSn5gPY1paedmoWrf3sr+lZhON3satBmWNJE+9GQw/CsnujSJB4gs/s+rz4GA58wD2PP881mRztH8p5X0rr/FNst3ptlqcfI27HI9DyP61xzrzWkXdGc1yyL8F88ZGGJTr71oWDhrosOQyGsCMENwa2NOys0Xrgj9DU1F7pdNtvU2ljDbccHoKl2Y4I5qpdSGG1ZwWyuDlTzTrbVYZYwJcE/3x/Udv5VjTvym8mr2ZYaLB3ISreopySsp/ecf7XanqVbkdPWn7BxkZFXcaRYikIP9atghhk1mKhQ/ujj/AGT0qeK5GdrAhvQ0rdir9GTsO6k/hQfmTJAz6ik3k8qacHB+9kN6isW2aIcpYKBjg9D61KpB7fhUO0gblfIPUHvSByp54FQ9SkSMFZsDg+lJhk70Bgc/zppk2jB5qooUmiUPznpSPcBB1yT0A61UaQyvsiGT3PYVYitxGNznJ9a2so7mXM3sOij89g0iqcdARkCrykDvwKrohPTp7VRvb75fLgOVPG4H7/sPb1NUpcxLXKTXmp5HkwNwerdj/wDWrmrmdLr5XLGOZsLz/CO/4mi/uSzC0hb95Jw7D071QikFzesUJEUeET6CtH7q5jBtydjrv7B1fT9HsdSs1eaDySS0ByyjcSNy+mCPWq82sT6p9nExB8gFVx7kdu3SvS/DTJFotksalcQqDyevNcT4vER8WzpFEkYVIw2xQMsRkk4781z4iNoXTLpN81mT6Nfix+33O7DLaMkf+83Arl5nzLgdFHH+fpitVY/9EkkP31b5fckYrHnVorl1IwQf07UkrUomkn77PYdNKjRLJTxiBP5U9uV3fpTLIY0yzUjGIE/9BFKTzjqK7UtDkBSDnPemlVPr7UYHToKaxIx2pgNcZ/8Ar1Lp2VuZAMYMfOR71EW55qIk9iQfUU1oxNXRsPtPVCPdeahKA/dYH68VljULmE8tvA7NUyarFIP3qFT7c1pzpmfK0WXRl6giojUsc8bj91MPpn+lBP8AeQN/u8GquBWNNJqZljPRsH0bio2jZRnGR6imI+d4Y/MHB6da3vD0tvB9ts5xj7VEQj9uATg/57VgJuifevDD/OKuCVJFEicEHkelcjNkGc7qu2/zRsPUYqn3cfWrNoeGFYyNIm9ossV9ok+mzsMgELnsO35GuSurZ4JWRxypwauQ3D2l0zJ1DHj1HpVq4C3i+aOSRVxVn5MUmpxXdGFGuXwPQ1pacfmiJ7PUIt/KlLH7oB5p9i/Az2kFOeqaJp6M09Qf9zKo/u1z8c2W3A7WFbl+PmZR3rm8YPNTRXul1X7xu2l+UAUde6HgfhW9ZyC4X5Gyw+8p6iuLimxw3I9a1LO+8l13FiB910+8v0/wpyQQlqdV5ZHUYNMdN4wRn3pbXUopogLhl2twsy/dP+9/dP6VakgKjcDlfUVkpWep0WvsZ++WH/aX9f8A69Sx3Cyd/rTiozzUUkIJ3KMN6ih2YK6LatgdfypzE7euRVBJJIz8/T1FSS3BCfKc5rPk1L51Yc8wi5DEmow8s55JCnsO9JBEJW3Oeatpt3nIAArTmUdiLN7k0CLDHnvU6uoBeUhVHc9BVV5kUqgBaRvuxr1PufQVVluiXwNryKev8CfT1Pv0qYxctWW5KOxPeXvHloPkIzs/ice/ovt1NY91dmNWJbdKR8zY4X2H+eKbc3wYny2JJHzyHv8AT/Gs6MG5l9I1P510QpLc5KlVs6zwBoaanq0t7dbDHCvyoSMsxBA49B1/KuSsomgaaIjDK5U/UHFdVoYeKdJY3aPy+QVODml1Dw4XllvNPcmR2MjwsepJySp/pVVISa0Mqc0mehaPldMgB4ZUFcDrsnm+KL+Q8/vtv5AD+legaFHJ/Y9m0+TM8Slyeua82v236vfSdjcSEf8AfRrmxOkEjpoaybJzeQQ2xWR/mZvMC9yBnn9DWHLM1xMrN99kXOKk1Nljt4nP33RY8+xYsf8APvSaZEbzxBZ269HnjX8MjP6Zpte7GIm9Wz2ZR5cMaD+FFXH0FMJ59/SpJGDMSM9ajbGc9K7DnEHJpHPIFC4OSuaRgPbNADD196YQB3/Sg4DUjOAMGgZBMOD3qscEYNXOKryKAeRUsCHZxkNTlvriHGJNy+jc0xl575qJxk4oTYjQTVlbiWMj3HNTx3EMnMUuD6A4P5VhtxkVGTxWiqMTijyzVohHqd0B/wA9Cfz5qvpyhpnjI+8OKv66u3U5vfaf0rOg3R7ZV6qaxQyYk/aHT/ZqxB8rdOtQSMHuvMXgOp/Cno5AzWVQ0gLIAWdgQPc96iSRoipVyozz6UwkNcRl2wgOTRJ83C9zxmtIr3SG0mWZmaSMjduPr2qva8FwOxFXoYBJZExryvOB1x3FULc/PLjketGjix6qaubF4N2G9RXPOvJGOhro5yGRPoDWXNYs6NLHk88rWdC9i6xlYK1LHIUOQfwoZexphXnINbbmJpW126Nvhfa+PmU9x/UVvabqJOI4yB6wM3yn/dPb6Vx4bHsatQ3QziTI/wBr/Gs5wubQqWPQIpILpTglXX7yMMMv1FRsBH0P+Fc5BqDMEExLBR8kqn5l/HuK1Ib4EfvyCh6Sr0P19P5Vz8jR0qaZdwr9RioTDt/hyKmE20YA4NOEgxgjNL3kVoxsSRno34Gorp/s4xlQ55yf4R6n+gpZ5AgErjLDhF9TWbdT5ffLyc7jg/eNXCDvcidS2hK04SNskxo33ieWc+/r9OlUJrppVZQdkXcev1qOaUuTLK3A4A7D2HtVUK9y+PuxiuhK5zSkOAa6favEQ6n1rUtocssUY68Cq8e1VVEHyj9a39NtRCokkGHI4z2FbRVznlJGhbQC3jCD8T61fhYjHvVZR+tTJ2P8q0ZCNzS79rUgfeizkqT/ACrz2WTe8smfvszfmc12Ify4JGGMKpOfwrhS22MfSvPxXRHbhnoxuqxmURJgEJCrH6nAH8jWx4IsjN4mEzAbLaNnz/tH5R/Mn8KgkjEdpJM4B3Mu3PoqjH65rrfBWmtZ6ObqUYlu2D49EHC/nyfxFXB3duwp6HTn2NRMTmgtjI5oBBGDXQYiqxUc0jMGHHam/e6cU05Xg0ADEFc5qNgOvFPPHPY1E2VYEYAoAa+QtRP904/GpS4BqMhScjpSaHcrl+u4cionGTx+dTSJg561Aw9elSMibJAOM1GwOfSpH44qIsTximB//9k=", "path": "images/5pts_ADE_train_00007092.jpg" }
depth_point_61
images/5pts_ADE_train_00005519.jpg
ADE_train_00005519.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 92 y = 212),Point B is located at (x = 97 y = 156),Point C is located at (x = 274 y = 205),Point D is located at (x = 149 y = 143),Point E is located at (x = 257 y = 155).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_29><DEPTH_72><DEPTH_64><DEPTH_64><DEPTH_44><DEPTH_64><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_36><DEPTH_36><DEPTH_31><DEPTH_59><DEPTH_59><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_72><DEPTH_64><DEPTH_29><DEPTH_3><DEPTH_5><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_70><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_49><DEPTH_31><DEPTH_70><DEPTH_67><DEPTH_59><DEPTH_76><DEPTH_3><DEPTH_59><DEPTH_15><DEPTH_31><DEPTH_59><DEPTH_31><DEPTH_30><DEPTH_5><DEPTH_15><DEPTH_2><DEPTH_77><DEPTH_70><DEPTH_40><DEPTH_31><DEPTH_31><DEPTH_17><DEPTH_72><DEPTH_5><DEPTH_30><DEPTH_69><DEPTH_15><DEPTH_5><DEPTH_0><DEPTH_23><DEPTH_42><DEPTH_57><DEPTH_22><DEPTH_40><DEPTH_31><DEPTH_31><DEPTH_66><DEPTH_22><DEPTH_57><DEPTH_0><DEPTH_0><DEPTH_31><DEPTH_76><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_15><DEPTH_64><DEPTH_76><DEPTH_15><DEPTH_44><DEPTH_25><DEPTH_66><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_66><DEPTH_2><DEPTH_42><DEPTH_42><DEPTH_16><DEPTH_94><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_42><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
5
[ "D", "B", "E", "C", "A" ]
<DEPTH_START><DEPTH_29><DEPTH_72><DEPTH_64><DEPTH_64><DEPTH_44><DEPTH_64><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_36><DEPTH_36><DEPTH_31><DEPTH_59><DEPTH_59><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_72><DEPTH_64><DEPTH_29><DEPTH_3><DEPTH_5><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_70><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_49><DEPTH_31><DEPTH_70><DEPTH_67><DEPTH_59><DEPTH_76><DEPTH_3><DEPTH_59><DEPTH_15><DEPTH_31><DEPTH_59><DEPTH_31><DEPTH_30><DEPTH_5><DEPTH_15><DEPTH_2><DEPTH_77><DEPTH_70><DEPTH_40><DEPTH_31><DEPTH_31><DEPTH_17><DEPTH_72><DEPTH_5><DEPTH_30><DEPTH_69><DEPTH_15><DEPTH_5><DEPTH_0><DEPTH_23><DEPTH_42><DEPTH_57><DEPTH_22><DEPTH_40><DEPTH_31><DEPTH_31><DEPTH_66><DEPTH_22><DEPTH_57><DEPTH_0><DEPTH_0><DEPTH_31><DEPTH_76><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_15><DEPTH_64><DEPTH_76><DEPTH_15><DEPTH_44><DEPTH_25><DEPTH_66><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_66><DEPTH_2><DEPTH_42><DEPTH_42><DEPTH_16><DEPTH_94><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_42><DEPTH_END>
92
212
97
156
274
205
149
143
257
155
129
26
67
6
47
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDOB55FSKwqw1spHymoWgdOev0rsAkVqkVqrZx9aer46807gW0bHXip1cYHNUVc1KrHHancTLwbIFSpj0qish7Gpo5fWla5SZbAHpTgoz0qNHBHWpUYVLiNMTBNGypcgj3pSOOKnVDuQ7aCtT7OKQr7UXuCZXIzxSleRUmzqKNuOtSx3ItoNG2ng4bpSEk0g3GMDn2ppAqTbk0mOcUDI8UoFOyBRxSAZgU3jNPzTSBRcLDDSHpTiabuzSuJoYaTFPNMahgNI4NMI4p9Iam4EeOKaaeSBTTzRcVhhppJ6U8jimE0XCw01GakPTpTD9KLisMIppANPNRmncaGNUZp5NMNO5I000jNOJ4ph96Lgb4XjnAFGwjtkelR7ZIJFBbfCe5p32iNWIdjgHjFb8wNO2gjQq/8P4ioWtWAyh/A06V2ZyyqU2jPXqKsRsJIlkB+tSpXZThZFEqyfeBFKHPbmrzKDw3NRPbI2cHb71T8iPUiWTFSpIM9ahaF06fMKYH29RzRsHUvLIc8Gpkm55NZ6yGnrKPWq5kwNRJvm5NTLJk8GstZMkc1IsvNFrgam/ilzxnNUo5TUyyAioaGTcHnmlOMe9RiXpmlLd6loaAgU0/Sg5PejqOtSy0NJxTd2TSke9Rk4pDHe5pM4qPdxSFqTAeTTOe9Ju4pu6gY403pSFqYWFSJjz60wtzSF8Cmb80yR2aQ00tg0hepGKTzTCeaQtTS1MBWNMNIT3ppOaBCn60w8d6XimEikIGPFMJoJFMLU0AhprHigvmmE8daCQJ4phPrRnjrTSaBGjDrWn3+yNJvLldQ8aucZNasMRjjKsAW7nGOa84+zt5UKp96NOXC7m+g716BY3O+2h8/KzhAHVhj5vxrtqRinYypzbiWfJQOrbTkcEVEySwM7xKGU/wHtVrB25yD64ORQKysuhqpNorLKpjV2HHcjtUc0owBGwbnOfWpRbs0shb5oyeB0p5tk3DbgY7YpNPoWrdSKN/MTcMDnHFNeNW6pmnSRtbs0kce5OpXPWgyJgFvl3DOG7UJ9yXa+hXe3HVHP0qFw69UqzJMoc7clVXJ44qQj5R05pJ62G42VyksvvUgnIp7QI3PQ1C9u6nI5FO5JaWcnGDUy3GOtZhdl+8CKcJSR1p81wNZZge9SiRcdax1mPepBcEd6Nxo1hJjoc0hcnvWetwMc1J54PQ0mhplosOmeaax4+9moRJ70u8E9Kmw07jiaaWpC1M3D1pXKsO3U0vTSwxUZelcCQvTdxyeajL0zdxnNIRKW4prPxURfjrTd9JkkhfgUF6iLUhb3pDJN1IWAqIk+tJ70AOLHtTcnuaTdx0ppNIBxamkjrTS1NJoJHFsnNNLUmR0ppPNAwJphNLTTRcTEzTM8UpzTcGi4mU/7P1XREt9XKvtBKxSqAQh7gg/1reg8ZjVLI2+o2sUk4+7cR4Vzj+8P8K9A0G0huNJuLK4jEkJkZWVhng9/Y1wfizwINEnF3AjtZnpIOfLH+1jpXcnGcjkfMtUWLe4tZwHt7ry5DwUH+BroE0jUWt45BslV03gfdb8q8xMU8e0xkMp6EdD7it3TPHOr6OoilUXNuny+XP0H0YYqJ0pLWJccRHqdFLItu/l3KSQPjOGU4/OnhlPKupGOo71l6p4207VjDIlhLG0aYkTduU856iqlr4h0prpnmiulhA48rg5/EUlzJamnPFm+cqBuHvVMRr5jLKytk8K5x+VZd74nsIYN1vK8nP3Zlxx2GeK5ebU57y5luRiN15ET549xQo3YSqRR3/2eP5uDtK4IAqELLCQCAydiO1Lps/mWVu5nDSMvJ7/AExU88YkjK5KnOeKi1pGnNeJVeZGUhQd2emKISW3I33l5I9qt7E2gY3DGOnNQywsQWQgOox9al3L5lYjdAeCPwqu9uD9z+dTCWR1LRIGB4JqGMeU+GPykZzmk5CSuQujp0GaZ5jKcdxV0qduVGRjNQ7Y5FyRVNk2sRCXI5p3nAHrTGgYHKdPeo2yuSVz70XsBaWen+efWs8Px1FKHNK9wuaXn5HWnecD6Vmebinebt70rFKZol+OtRlvUiqYuMinecDU2K5idm9KYW7VF5tHmgk0XFzDi1JupmeaM0wHFjSZphaipAfu9eKTcR3pvbnpTcY70gY/NNJoAycc/hThG7HAVvxFAhhPvSCphbSn+EU9bJ+7AfSgCrg7uKMHPNXhZxgZZzTxbQjjBNAWMykCkngE/hWt5canAjANRySqhxj6npihjUebQzxBK/SM/jSi0kI5wPrWiMsoIJwaYRtGSfzNNK5LVtD0Pw7IZoJnOF3ndgVszqlzayKygqRhlIyMe9cr4fuPIk2bTjOMGuhmuiiu+Ny9Nordxadzmk0nZHA634OgSG6vNPcKEcBoc8fUVz13pGoWSBrmzZFfBQuPlIr0SO/hc3VtMuBcqRz69RWrpDpc6YtrOI5EQYIbmtY1ejJlCNjxKbTbdxnyiregz/Oqo0/HCLLx0G8Y/lXsGveErGa2aazQwyLy2Dx+FVNE8OaY17BI8LSI0RBR+hcda0dWNjNU2jy2KwuJZwywPcOv3YlGR9TWofB+p3EdveZQ3c+fKjHcD+H617TLY21vZvb28EcSY6KvWsg24TTbWUKP3VwQSeozisZVUbRppnlKate2cD2VxFE6q2GLKQ8R9MitzSLxdSuoLeCfynkGNszAj8DXfeKdCsNS0qS6kth9rjQYkj6n615JqXh3U7O3F7CgKO5VdrfNuGM4/SjlU1dBzSp6HfX+iXthatPLGHjQ/MyHIA9qyY7qKQZSTvkAiuPtvEWpacJLb7XKiMMMhPf/AHTVqy8T3MEvny2scuxdmJl2g57471lyS6suNRPc6KeSO2gaYDCJ8xPasqy1q31C6e2dNrD7h7GsHUdSvdR3iN2VHO0xoML/APXqHSLC4muxyfkb5s9sHrWnJoQ6rcrI7IQs6ksSjKSCPWoyj2/zAbkbqPSrBmYDBwwyeaQyowO4lcjBxWXKdKehVllU/LGDntQvzpk9uoqdY9sYUEHBzmq8yeWysmcN61LT3C6tYjkRWP8Adb0FV2jdegzU7xujFyd5HYdcVHJKmMjOT2PUUBYreYA2ASp96UuPWpWAkQFgDVfyFZvkc/jUi1Hh/el35700Wx3cyY+nSpRbxg8lj9KLhqN8winiTIGM/lUuyKNNxSp0AKKwxhum3qKtWejHZ2uVgHPRCfepRDMf4cVPI/lg9N3pRFKCoDsEY+tSxqLI1tJD1IFSCyX+J6e0iAEDLN7UiCaMb8bwf4e4pXsylB2uH2WID+I0uII22EAH3pRK7fKkRz33dqUW29i0hyfbtSbuEV/MSBcDG1eKRm2Atxk9KY4ljwd+/PGDSrboeGJd+uD2pu9hJ6jY5gSVc7T609pYwgLP8vt3qvqV5b6faGe5XK5A2g8muYXxYBebFtgIDnaOpFEIuxM5xTOpYtPJ90qMfKaA8scYDRl2B60zTtRh1GAvCeBwd3WrZZcEMeD1pctmV7RNERkklcCEDA6k9qZ9nAZvMO4NUiGGFSEzzQZVHTNNxuJS5Ss1thfllIxyBQiCdt8ituHRexqUykdEppdhztFNJIlPW523kR2l3DPGD5cvPJ+7VkTMZmK5YnnHatu+0cXGdmArHlfT6VWGgsxVGbaqnG4HnFa86sRynOS2sj3bAoSzD5T/AHas2ySaVelGYNHKuEYHv34rq10qCOIpGMORjzGrMuNP/hkTGz7jCpU9bA46EbXZYOCVdCMHHasWC6NpeJJuKRLJnB4x6/pWr/Zt1MA0SHA6gjGapX2kXGwiWLagG5m9KfMmTGHc6CW5iaEtnG4ZBPpWeXgksLm2eRRMx81E+n/6qy7a5lMG0nfsGAX6Yqi8TS6hGRkEcCT3/wAKbaBQbO3iKXGnrvXh0IIH0rCs4N+m3cLYDwOs6g9ipPIpbK9mSCW2JIeM85qtDfmDV0khj8wSKQ8Z/iBpWvsLY3NR8P6Xq0Ej3FjbvK6Z80r82T3zXIWXgzSY5rVprUSr5rJIPXPT+RrsLG+Q25ic4dc//WrKjn8ue4TeNvmCRD649Pzpq9rD0YmpeHNKtrVI7SwhjUhi2F615TpieRqzRpwrhlZfoa9l1a+SO3do2RyoOcnpXjVvLnWVfgbpD09+auC01Ib1N48EgDgVGV5zipm69KjP0qGbPYiIK8huaY0jr15HapWUEc1Ew96WohPPXPIwT3FRhVVWIwR1BNI2PSoWI9ePSoY02RyhlfbFkMwJ6cCo4v3DDeCVPeo7i6WC0e4lEjRhgAqdeaqDVrCVSCtwo94//r1myuaxpsWm4xsXsTTg8sQCkgp2I65ql/adjsAMsgwO8f8A9enDUrMdLkfQpimmPnTNKNC5DO4I9KlMQRWaINuz0qnb3kcxKxzo5AzjHSrSTSE5JqkHO3oWY4FUAkZb3NSNErryF3dj6VACT/EacBnrVWETxqsaYLAt60/fGOhwagAx6U7aOtJBdjgYg5YFiT1p/mei0wBvandBzTE9dwMrEAYAxSGR8cHB9aUcdeaQgGp1Kb0MHxRBJcaaCu0hG3OT1A9q4Z51hbdBbuA77WL/AMxXW+JLwTXUdopykTZYA43NjpXOQwSNHPu5DkmPnPFbLY5pS1Oz0CzitdMRY38wsdzN069q1R346Vynh7URFN9lY5yoxmusyCCQfY1nJGkJJjT1zim7R16VJnim9aS2LIyKToM1IfSmkcUJID2+iiis0MMgdaTI9m+opaKEAuePT6VHIqvGwcAr796fTH/1Zp3A5d9JuIJWiiUFN25XPTBq82jwW5RI8kOMu3vWjcNi0YZ4x0qxDhrePPIxTbBM5LUYZI7hDACRc8PjtirlnoxMIdomUhwQSeSK6HyYywbYuR04p7qJMdcilzMTSZycy+Vf4clI5VKqD2Iqsukvf3L7CPLjXBI711txYwXCbZF5zkN3FOhtkt4hHEgHqfX601JhZI8+12Z7e2niZSCF2gj1rzuA7dTjLd5Af0Ne03ehG5a581fkJZlPrXj1/AbTWI0IxtlANdVLWJhV0aN4/eP1prCnkcn6mmN0qGarYZj5TmoWFTnp1qJ+lICBhVZxlsZxzVsiqz8Nkev51DAxNWmMHh2aTfszMigjn1rkoNWurceW7SSPJwzM2NufT0rptci8zw68cYYgTK/HUAZz9eori7qKZQrTJKPOO5TIeXXtWN7sb1Ovs5I3g3rIzx4PJGWB+tTQrPdLG6Q26iQEp5jnLe/SsOxh1WKz8tbWaVmUbFCjbg9wa39KtL5LaGOWGTPXLADZ7Cple5rTUVuLodws9xdqAEeMFXCc5IOK34MnGa53QrG5s9V1FZkbkFlf1yc10cH8NaQZErX0LQHNTKKjUVKorViHYGKNvSnAZHApwFSAAcUY4pe9OxxQAwgEYqnqV4mn2E1y3VRlR6t6VebjBxn2rjvE9+st4toGzDb/ALyX3bHANVFXJnKyMN5C7SSSNl27n1PJ/wAK1p7Jk0VLgDlMbwP7pOP61lwwNO9vBj5nbcfxruhZo1ibdh8rJtatJaGMVzHnskvkXitnA3YVh2PUfpXc6df/AGm3SQn5ujD3ribyzMN5JYzcFxtDf7a9D+Qp+kalNbStbyP+9jOGU/xCnJaFR91nome470hxniqlldrcwqVP0HcfWrnf371i0a3GfxUGlPXik+tFxntuDjkYz0orzfwt4xuf7QSxv5vtML43yj+Fz0/CvSCGBwxBbuR0JrIYUUUUALUb8RGn9qjlP7o0AVLw/wCgsat2/FrGPaqN4f8AQfbIFX4R/o6fQU2JD6PpxRRSGH40jHPFLTW60C6jWH7oqScAEV4Z4s+XxCxA+9Ln9a9zc/JJj0NeDeK5Cdc56h67cOrwZx121NGyCG5PcA01hQnKIfVRQT2rN7nUthrAAdKhIqZulRNikBia5r9poXkfaY5n87dt8pQcYxnOSPWs2y8W2Gp30drDDcq755dVxwCT0J9K1Lz7T/wk+nfYvN+1f2fqnk+Tnfv+yPt245znGMVgRm8+2+HhrPm/21uujL9oz53kbB5XmZ5zu83G7nbjtispPWxVtDQht7mSJ5zKPKz5ccSjOc9Sakm05pwn2iOOTIK8qDj6elXtPXNkemDKM4q2yLtz3DEVKWpJnWgntLWO3hciKJcIhOcfjUgnvM8ENk8g9vxqykTuuchVXqTUksDRjKMJI8ZYqOla6CSZWhmndZo5iGCrwcYPWrMA+7UMYUGfB4Kf1FTwfw1F9S7FtalA9qjUfpUyirEhy5xTgOOaAO2Dn2qSKJ5GVEQux6ADNSUNxkdKNpA9cnHFXY9IvZOfICD/AKaMF/nUp0W5UBzJbrkYDNJgCgLmHqN7Hp9jNcyHAjH5mvNiWlZpJj887Zk/nXoniHwdrmqrFHbG2a1Tsso+dvbmuUvvC+t2V2qXVhKgQ7d+MjJ+lbRaRzzvLYm8PW5nvZbxwfLjO1eOp711TOoXGDnPUDoaZp9iNPsYoFfO0ckdzVkxkAAsc5yaxk5Nm1NJI5vxFpi31sJ41xLH+dcddReaEmwVljHzkdfw9a9ReEMrDIIbqK5HX9La3cXUSnyz94AfdranJrRmVRX1MfS9alsLhBMf3b8+Z2I/xrvLW6iu4FlibcjDgjtXml0QkEiKQyNh4/QYPNWdP1OezjQQSsgnB4HY+1XOncmE2j0gj/8AWKaSB71z3hTU7m/imS5LtsPyO4xkV0e3PesXGx0Xuiv4Y02e61q3ihRxPI4ebZyijvXujYzwc1TsdOstOj22VtFAv+zyfzq309ayY7oKKXH1pPzqQDtUUv8AqT9amJ4qGbiAn1NAmUb0/wCgger1oxj9yg/2RWdfjNko77xWiuPLX2ApsUR1FFFIoKaeopw600/eoF1PnKLxv8QptLgul8WWXm3NnNex2htUErRRtIrnPk7M/unON2cD14ptzdzX9tYXdw++eWCKSRsAZYoCTgcda5+38WadB4YtbFomlni0y4snik0+FgWkkldXWct5ihfMU4A6qR3JrVhYvpdgR0+zQj8kFdmEu20c2JWx2cJzBEf9gfypzUy3bNtD/uD+VOPWplubR2EJ4qNiKexGKjODSKOf8S+HRr/2b/SvI8jd/wAs927dj3HpWTpvg7+ydSivPt3m+Xu+TyducqR13H1rqXnmkkcQIhSM7SWPLHuB6VH5omhEg6MPyrmdSEpWR1VcJVpQU5badVdXV0n2uv6umM07/jx/7aircp/cZxznNULJ1isN7AlRKKttcRuVVJRIw5ZR71UXqcr2LEc0MBiaYhYmTO5ugNWVljkkZ7chognzkdDWFeKZLYW7lXi3ZA7rTrFngsRbwN5cb/Me5JpOT5rHUox9ncdbsTNcbucA/wA6vQDlapwoEeYDrs5J+oq5b9VqlucxdQc49alXJHXA9TTE7VoaZDHc6jDHKMw53OPYc1qkS2WrLTE8gXN6XRCpdLdDh2A7/SppL6VdHjntY0tN8roVUZJVQCCWPfntTre4a6utYmlYeYLcqF/uLyBj0qvPtHh62HUGZjkHjoKx5vesXbQv6ym3RbUgyF3wSxbJrM8Yxk+BIQmTtZGO0ckc5rX1vP8AZFl1PSs7xaxg8DIQeWVV5981qjNvQ8Rub28sfDumyS+KdaEt5bNcRWkYJhQCaSIAt5ox/qyeF717HoF5fQ+BPD9wbhriWaMtIZ8tvyAcEmvE5fFKzeFrPRmXU0FtbvBiHUNkEhMryBni2HJ+fH3udo6V7PYsq/Dvw5G2SGtE+77quawbaNUjUvdNilUPa7UuGiWSSHsVIzxWJLJDEAZZQingFurGt2eSG11PThypWCNF56jb0rJ1IxQalcwsilkfIVhnGea0i7ktWIGVtu9QCOpPtVSWSFwVkB2t03Dinaldv9gLR44IyB9aybK68ue+L/vYvKEghPc57HtSdWzsHLcrXfhPTbpyUd4QTgopyK4+8tvs2oGGGX92H2ISvQd67u6lWGBbmCT91KhZFPbjkVwu9riW3J/5aOSPzxXTC8lcwn7rO80fSoLG1TyXeQMu4uxrUwAOKy/Ddz9r0eNyeR8pHpitXp0pNami1R6OmqAEjMowOm3ipF1NAB88vPtXLXEctnKIzdSOyj5znj8D3pnmTA/LNIB9ap0UQnc67+1Ux/rn/FacNWQf8tT/AN81yHnT/wDPZvyoM9yOkx/Ks3SRWqOxGrp2lX8RQ2qRuu0yIRnOa477TcnrO36UhuLkciUH6rU+zQ9TsJ7u3miVfNXIOetWF1OPGDtPHZq4cXN1n76f980n2q5AOWQ/8BpOA0md4uoxEdP1pw1CI9j+dcB9tuAOBF+R/wAaT+0LhTgomfqaXsx6noX2+FQWIbj0GaoDxJpslwsEUjSzsceWFxj8a4z+0bj+4ufY1n6zqlwlkDGWgQyIJpYm2sqZ5II5z09etKSUIuT6GuHoyr1Y0l1dv6/y6nYnwt4TcMP+EW0lMDOTYRYPHY7a8Z1MRx3EywqixJOyosYwoUEgAAdBW+2qppsrR6RK0MEkTmaJZy6LnGGHP3uMfSuWcn7HCT/EWJ/Ou3BtOm38u/4nLj8O6NWKu2mrq6s92tVd2277WfU6uxbNlEf9kVOcdaoaa5awiHpkVbzWM/iNI/CKeaiPFPJqMmpGVJLZg7NFM0Yc5dQBz9PQ0woscWxey4GfWrT9KqynH4Vg6cYu6R01MVWqwUJvReS6aK73dlor3K9tJAumOZ32R+YPxaqVraWFveCZNQkMhYnaZAcj8qh1HDaHBkZAukOPXrWPptlbQagXSQGXcV8onJFSmZcl43OukNrIo2XIj45yc5psBhicuboOnA7cVmmKNIi20AgZx7Vztxr0YvDCsOEDbWYHr9BVuy1IhNvQ75TEVnKSq7beQPTIqe36rXP6G6SJcsmeU/qK3rf7y0Qd2JvU0UrY0AA6tDwCMNwfpWKpFa+gH/ibxc4+Vv5VukKW1zSs7aIJeMyDMsW1j6jcao3enqdEtLaNHX5pCcHvgYrQaXZBHggb1b+ZqaV8yWqg8bSfxrma98d3ykWvwNLo9nFG7ow4UAck1X8R2huPC1lbFXkbcmVA+bvWzfOA9puOcMSPbpWX4tje40e1AjeePz42nijGXkjzyqgc56dx061rN8sHK17Dw9NVq0abdru1/wCv+B6orxNFJ4HtobSRZFjCoRGQxU45HHfpSXSSxaLp8XknI3lk29eRVKB9PvNbsrnRIBFAkbx3c0cBjjfkFUHGNwPJ9scnpXQy3BfUIlJ5RTj061z87nr+Wx1YrDrDTUVdXV7NWa1as/PS/o0UJ7Yya3ZSmMlUijAU9jt/nWTqsMUutXTu2W3cmulErS6gzngbhXKarxrt6dvG/j3rWKtE5ZO8ipLZQshAkIHpmqcmloNximALDBB7ippOFB6H61Xdiec4p6AYOumSz0wxeapVWKqB2GM/1rkLedg1q2PudPzrpvFUjCxGTkeb/QVySsEjh46ZreitDGojt/CF1thu4j0WUkD610y3C4zXDeFJv+JreR9mUEV2CuMdKG9S46I6iNyII1LGQqmNx7mn5xxu571cm0grAj2txHJL/wAtEkG1abEL2MH91ZOT0HXFaqTtYmyRWVsEd6C3J21auBqEwUwiyhUfeOKzJbe7Qq82oQAE4Cr0rKUmiopFnNITT2gdLcSNPFMc4Ij42CoifmHemrsYpPHWm5560Z600mkwQmQSaYTxmnE8VGxpXKF3EikLAA00tio2PXFOLE72OW1aRImmiiRUBwMKMCs+7UKyRjpGgX8cVab/AEi+Ofu7yx/CqVy+9mk9W4rqi7QsjinJznzSd2bmkvmwQelXs1laRJmzx6NWgWrkk9Trp7EhbimFqaX3HHQ+tNY8kHj0PrU3LaaEdqrzH5T9KlJwOR1602ZhDbE/KZ5QQu7oBWFWTRtTp3Mm4tZbzRPKh+8sgb8qpQaPcCX7R9kSSdfmG2Tln79qXW7q5j0eK5imdJXm2ts44FYUus6oscMi3TKZiQwHTjFTDXcqS5U7HYraTT253bIi6ncCckZ7Vm2Hh/7Pb4uLcNJFMzQyf319KkSW8Y7jOMH0FSq122R5/wBOK0tc5XZbFnTLKS0iuC0exW+ZfzrUgOGWsqze4ZJRPMXA7VpwHJUURWoy8p5rY8PnOrxjOPlb+VYgbg1r+Hm/4nMf+638q6BS+E053YRJIwHlRkrn8alAm+0LGuC+zcv0qve4XQ0A6vMxq3E5bV7dehEK1zfbHtEt6qXxaIANwJz+lLqTlLWzYYB3DFLfvsu7Uk8Dc38qjvzuisAerSYrqS0Obdi3U0jaVbuwHmErx04rK8+RrwSKoYhTxvrXugwtLYKuQSM1ixsJLq49SelY1nqb09UXLB3kuZCYzgsCeelc7q7P/bV5jBAf8q6LRistxOG4ZW4+ma5vVWCavds65R3Kg+hqV8IL4jNlbgbulVpHO0YHFTuxIwTkgYzVaQ87amxfU5rxO26yA/6a/wBBXKk/IvtXUeJsi2P90yf0FcqfuJ7Guqh8JlI3PDkvl6+V7PHXcDHPsa860aTZr1o2eox+tehZ4AXrU1Nxo7ppALUkA4H3x6f41VtdRt7iVlhYs6/e46Uy6uUaxVEZjnjeo4X2qiqi2X91MsIzlzt+961sSzoGbMbAAfdzkHvUcW0mIMM4XPPrUEF3C7eZkqrLwGGDj1p24qxPYLn8KVlcTVkSQwIZpiyjJPaqZJDlT1X1q3a3cMsrSRtuXGMj1qK9UiVZNpUP60mOD1K+7IJpO1HrjpSHpUM1sITTWoJ5ppNSxiEgioZCBG/0NPbg1xniG91qXxbaaPpl/DaRz23mO86jYgG8szHaSAFXt6Uua2oWumSxfeJ+prOvTtj6c7qp+H7vUJLjUbbUXJltmEZUqBtbLBhwPUVPqLgPDHnDOcgV0KacLnE4tSsa2iOTbuP9qtHfnjPPpXPaffmyt5JFRpCHwVUc9cVsmVXLZODtyfbjNck5W1O6jTctEF+QbSWJZVVwuRlsZqraagFs4o51ff8A3utRzQTXKJKVCKRlCRkketQW020m2l2h17k9fpXj1sTJyvFn0FHAwUFzFq61OUQs1tGGI67+AP8AGqlxqbyqDGpMrDnIx+VJeyxxQhG+8fXnb71mi7w/lJyGI3P3xUKrUnqzqhhaaVrbkl/vvNFSIghom3f7/sKwWQtpygA7lkPHPQ//AKq3PtfnlW/gQ4GO3/161I9UJiX/AEFQfoOtdlCUpOzPLxkIUfdRS0u9aWwWcqQFO0j1raVgw+bjjNUZdV8tf+PAFQe2OtVYvEjzby1mrZbkD0rqTs9TzJR5lojXgIEcxHQkVegbDVlWWoPfRyExLGqnChev41pRHmtImWxdBGSK1vDrf8TlP9xv5GsQHk1seHCRrC9/kb+Vap6ky2NS5bdZ2q/9NW/nVhpNniKNf+mQqk5LG1TofMYYqeck+J4s8ZjArK3vlP4S/qz5MIHXa/8ASnahIU/sw+jiodUJEtuO5V+Pyp2pvxYAj+McV1paHMi1M5FtbkHrXO2ko+2zdznFbkpzb2w5yD/SubsXxfSSDoSTXNW3N6WxyCeLvF0V5fJpunadJAt5JFEZm2yTFD91FMgLnGMhQeo9al0DxDdeJbOe/vo4Ul+0su2EEL90HoSf7xrmdXutL1DUoJLnVWsJNMubiOSJEfzZF+0SShomVSof5yvzFcbQee13wCGOiTf3ftTZP/AVrNN7F2S1Onkxg49agfBcVNL328jNVmzmgXU5jxL/AKkDP/LU/wAhXMSZ2j610XiNwQoDDJlPHcfKK52T7pNdVD4TOW5LbHZfWTjqJAK9HU15pEf3tq3pIDXo4PC0qnxFI0H1y3+wrGWmMcTZEo/jb6VXufEn2hJEkgkWNwASrfMD646VlqS1kxjAKgDG0ZzVaJXmk2RAO391e1dHJHucsqkuhtx+I7aS5gtpYLnZDjbIH5P+8M9K6KfUJeBH5atuG8OMqynkYx+FcDBbTm/x9nmJTlgqk4+tbunSalcR3EMSs5WbkiMghOw6fSpkorqXCUpbo6aG6j0uOL5PMeeTaxHQHrViWaSaQlm3AHgVFJpl3d2scUwS3COjiRzgE8ZwF5roIvDkLgPLdF19Yxis2tLo2Wj1MEEDqce1HL9Fcj2U11kOm21rxHbo+OjScmpfLuAuF8pRn+5iov3Kb7HGbX7Rv/3yajdXU/Mjj6qRXoUI8tMDbIx6/J0pZtjR5kEZH+2tS9Qvbc83LAng5rgvF2rro+uzyxor3k2nJDCZIUljUGUlyVfIJ2jb0P3j0r3h9D0q7H+oTPrGxH8qxdW+Hmg6irFo1WbbtEk0auQPxycVEldWGpXPFdP1SPVNX1TUIkZWuVhknBULmYr+8IA4wX3EexqO/l3ahEykFEQqST0JOa7DUfA2paNJKunwW11GQCfsyhGPpkcVi3mhLGiy3FrPa3DfeaRCVB/DiolXlTXK1oaww0anvX1IdGAkMgQgDP3jW7qUoBhtl2bnUKSveuftITZvKjOpDEYbsa0kEEbmSeT96i/LGDyM1yYmspR909LB4eVN6k17doY47WPPlW64d/Q+lYLzxOznfEq9ACOcfWrU0Ut3Eyq3kqfu/wC1WNNZ3UJw9u31XmuKNB/Ez1o14fCWvN+d0WRHZwAeOlLdWiNiaE8hclR3xUFpplzcvzmFO7sMEfhU8Nw6sY5FUSwHDdgR2q5UnHYbrqTsiCwjWaeNZG/d4LFB3rfWMZAYGuaE6W13FJC28HIdGGAtb9o1zNPGzQlLZl+87YIrspzjFHk4ujOpIdcQho2yQB0zWVZxxJb4WVVCMQWxyTmtqefTo9yOd+eDtY8e9Rjw/pzxBtrBX+YfvW5/WnKXNsc9On7Je+Q6S++C6HULPgEfjW1CaqJYQWMflxLtVn3H5iauQiMc5INbQVlqzkqJuV0tCYN1rV8OybdZU8/6tgPyNZXyEj561fD2F1fduGBGx469DW8ZIyndnceUgCkoh4447037PC8vmvEpcdGxWNa2biFQZZvMILnL4xk8d6Ljz11NYre6lSJVOckHJxWygrnM79zZljiuGRpk3FAduO2aSeCK5MRlGWiOVArOk8+CFpheOVUFsMowajt7jUzdeQ88TfLnJT9OBVuJKRrSKrIgYY2gEAVmposEUxdJZFJ6inGbUEheVhb+XGOSSeazL/WdQisLiVLPLiPO5DnZn+LB6gdfwrOooxi5S6G+HhOrONKG8mkvnoQL8NPC13LNLcWBnnmkaR5fPkXknJ4DAUp8Eabo8DR6YjQIz7tpdmGcYzySe1WIZZtJurCeHVZL1by42SRsysjLg5kTj5ApOSB2xkjFbdxKJY2MbhlI+Vgcg1hGcXF6WaOmth3R5Wpcyls9Vs7PR67/ANXulwGoW0tmMyozLn7yjisKXUC7FYEzjua9PaRnjaNljMKpkj1rzbUYo47+RYV+QtuwKzexFjltYLsqSTY3tIwIx2xWHIOSo6Y4rpvFUTpaWt0ANgZg3txxXJLK7tn1rrovQzktSVHxED3VxXo8bZRT/s5rzVnCjZjuDmvQ7dgbeJv9gUqoJHJQazqEdzHbpIFIIVAAMGutj8K6zBK2oGRLOXHTeNrt3Ndno+l+BL25nn1Gzig1KN8yK8hEef8Apng8iuqk1Dw1ZQqsaJIijamXDcfj3rK02T7iZzVhcW+jaaltfSyiYoDPcRRb0ZvTOKvjUIJUDWF0GhPORHtOfyyatreabqt09sNGkKSqQrMSI29iRwK5tPCepadPLJa25gG87YGYvGB7HOf1pqE3oae1hF3R0aKtwg2ANt6knlvwq7ai6tX+VHZCPmV+AB9a5yK6fSYlmv8ASJ5WJwZLdiyr7kCt601DS9Rty0Eokj/i/eHcD6YzWijKKsy51IVXdGhDqEEj7UDM2eSMcVoNnb8uSxH1rnzFZlSEdUHYA85+nWpoL2O3QOkzOnQg9fy6isrpscqVRK8UXjJqEhO2MxgccnrQbKeY/NKuO+TnFJaavbXMpjzskBwDng1d35yzZGDijmtoZtN7joIUt49keCfXpmvOZf7Pl0q91LUdTkh8QQtMuxbht8LhjiNBk/JzjjI5PPHHe3V5HarvmYlgOEHesKef7ZdLdmOGKZVxHJ5Y8wDngN1HU/mawr0+ezv/AF39UenlmJeHbVnrbZ2el9Ho9HfX0XoX4LGb7HDPczxQ3bxqZBkfK2ORx702WOxnsXtri5jnLE5yc8fjVXIUfdy7DqSSRUEnlxN+8kSMf7WBmnKpzKzMVh5KTktDkdc8KQHzX05ssORGTx9RXG/ZQciZm84HDHPIxXqN5O1tbSXFsglKclByQPXiuWlsZ9WzcSW8aMTlSg4b6muSeHc9Yno0sWoLlkcyRcp/q7n8HUYqJ5tVA4aP8DmujPhi7kOEXB9D0pF8H6qW6xKPUtWap110N1Uw5yUjarJndJ146im2kNzbzmSTY5fht5zXZDwhqJzunhGPanxeD5xzJdKD6hKfs60uhaqYeOtzk0s44pGlLI8mcrkcCp1S9u3ZAxY/7WQorql8HIxHmzvIAcnjFXY9Ct7YAtMR/snFaQwdRv3jCrjaS+E5+z0q2jjG4CRsctj9K0PIRcAKCAMAY6VqfZoBlU3Of9laQRADJiYY4wxArsWGaR5lSupu5mC3z/DSGEelaeIycMhX33Ain+RCR6fUYqlRZl7RGOYT6VqeF0268u/7pRs/lTzaxnoyf99CrOkxLDq8Tf3lYZ644q402jKpJcp10SgI8jAEDk5H5Vm2sYmnXcOSSavXMoWxlRWUE4Gc1Fb7Yh5xBCKmM471vZnBeyuR39ruWOMk43/MPasObxHoWk3xW61NY3mchWClvzx0rU8U6vHo2iTamrq0kKny1Bzuc9Pwr5turqS7upJpMl3O5iM8Z64qalXlKpQ51dn0zOrXmmqlpJFKkwykin5Sp71DParBbOpYS/KEdW5DL0rzj4feNIbfTo9LvJkhELEJI7cEHtk16PaXUc10hIJAX5Rn5WHrms1WvuaxiovQz7HTdMinZobWMbwVJBLEA5Hfpwe1aKLBZW6WltGUijHyrnOPxNR6lbW6EG1DLdSD5I4+n1NZj6bf2Vv513MXdjyFPArGbVNe6tD1Y05YiXPXm2/N3G6tfGGJwrAEg4HeuLuHMjxljyUOceua6l/Jnh3NGu9TjJrkbpS1468gJkcfWsua6uYzouEuUbr0CzeG5lbhgA659q88Yrn5OAemBXfy24nUpKCyHjGT0qk+gWRAUQYHbBNbU63KZOizjmiIjLlhjFeh2kZFlEDniMHNZP8AYFmhz5RPsScVojzokCq5wOx6YpzrcwKizea8tmbcdO+590sDz9Knh1lo8NDbbcdwmf51UWSRuVt2I+tSCO6zuS3dffGRXoe6efa5fPia+k43SD2JUZ/ACpB4h1XymhDTMnVW3j5fbFZxhu5Bk2rH/aAoWG6Vhi3kwOvFJyXQFGxd/tu+IIJl5POCP/1VTfUJIZPtUUJEinnYQCw9SPWpFjvO9o/1xQ9lfy/Ktm4xzjYaUppxsFOLizo7O8TUbZJoW3AjDZ+8D/jVoyMSApXce/8Ae+tcTZnUtEvC0trItpIfmO0jFdbDPHdRrMJAy7SAB1XPevJrQkndH0OGrKUbMdLGYpSyNwrAtjqDWkniB/se0rm66A9jWdCUaNC3zFzk++KPK+fcqgMOq0Qq2VmKvhVKV0TAySzF5mdmI9OBVgFS8YaQZ9+1QAEp5in95j7metQ3OoBIVUoHOOAv3gaz5nN2No040kWLu7kjGIsFpeh9K5rVNQs1c+erXtyuPkVsKtWFm+1XctvHId5H76QDp7LU8eleUhWKzmJPPI5b61soO2hl7WF7tnOrrEQZMafPbByf3qybsfUeldxpQF1psEzRqjsMFVHynHce5qtF4fSaMG5VYUHPlryc+9biosMaxiMooXAXFdFKDW5xYurCT9wgaBF6r8w7k4qrJLaI4R5k3dgvNRXmj3FxOZYr8qD/AMs5V3L+QxUH2bV7cqq2drcgf88nCn9c11xUTicpIna4+VjFayMB1ZvlA/OoJLo5AM1vF7YLY/Wq898d5W+tLqAYwSFJAH1qO3urDbtiu7cucjEp5/KrtEn2ki3JAWhMjSPKD6EY/SopIo42LRxx7B3dsH9avLG7Q8lVbHBB+WqN1Z2iviRZ9x/uHcKaa6k8zI5b61MahvmHdfT8qpyXEKk+XF8pHQk4qwmmCUExOQF7SLjNMfS7hWCBUZiN3ydQK1TgLmZVFySu1ok2dl/+vTluo425tSM/3WzTXt5kyCjgD2qLac84H1qrRYuaSLEk8EmVACjHUqc/nT1t9PkCqZeSOSHIxVLAGckH6Uw8j7lQ6a6D9ppY24EKxtDa3r4xwrkEH8TVZHvrW/W4Oql5CpUwyr8g/AVl4OB8zD8aXzZI+Vdh74zUukLmRlfETUJzosFrMkCGWYODEx+YD0GfeuFs0FjqsMx05L+N13rEwbDZ+hr0LUbKHV/L+1qLny/ubjt2+tS2g+woIreGMDGFG3O0fWuedByZXtEhNQ8J2Gu6XbTRWi6dchdzIh6exzWpoWjjw7Aoglldz94u+7P59KhOq3A24hRmxyTTILuSa+tjOxEAf5vlNczoyTN4Sja52FnZzm5F3KxXPSPuPxqLVp5DEbdRljkirjXyIgOd2egFYOq6jHEQ8hVCTwCeaqULQ5WVGtJyuZ3lyrJtkAHfisOSMPdSNjjceauXGtrNKYolds+1VkaZTh4o2cnop5rltbQ6FVu7yIzDtA9+lIYh+NTPdRQkiZdmPvEnpU0ZjnQSQtujPQ0rW1NlNPYomLjPNMaPPatIx+oppjHpQkNnZxawgM6fZEEkAPmR7c/98/3jVeTxjaW2nW16YGa2uiscbiPcyMf7w9PesR4o7mZdOLyR/wBmgNblH5kHZc++OPoaatxlZdbUN9pmXyZ7Xohz1cD0H9a6XJnDyI3f+Em8jUZLSSAW7xxhzcOwMJJ/hzjknPFR2/iW9ewmup9O+zzrIyR2T/6y7weSn+TWK2jWU4g8PvG8ulbjLFITlopM/Pk+x4x71fmtftji4W323Nl+50yQ84Udc++BwanmZPKa8etTPHbyrago5G+PPMBIzhvcdasnULh5NqAbm/1Dg/6/2FYsFncM6yLA2+4GdRA7rjdx7ng/Wp7exux5xVWKDBtDt/1Yx/PHB96OZlcqLdzKLoMCyvtGZVH8PHOPbt9awWP9mzrNAwaFjmVP4fYqf5itu402e4ZZ0jNvcOy+bgcMBgf06VVudEUPvSIiPbxDn5VOeT/WqfvIuEuURZIpE82BsKevHT6VaHlH5ixQldq59e5/CsBX+xSkB3EROGDdq0bi4SHodx6oDz161xTp66HqU8QnDUknmW3jCklmB7Hr71SEL3Hmyj5gvVl6U6ytpri53GGV+/FdDbWEltpk5nUITnIA7VtCmlqc2Ir30I9O2R2USgAMOc4q75jOABuI61nWw3W0ZHGfWraCROjcV2RVkcD1LSKSST365pzKpOMmoEaQjrUikE4ZTmm2TaxIuMY54oMZI4Y4pAnHGRTuRxS1QhjBiAByO+aimsLS5z59rE5PcjFWAP1oJBIHp6ii4jGk8MWBBaFp7dj1MTVENJ1S2LC31bco6C4i5/PNb3Hp+VMIweAAPQVSnYErmA/9tQYMljDcqO8T4P5VG2ubXC3dvcwjpgx5A/Gujw2c5GPpTWJP8WR0IxxRzhyGBBqdjOXjW6iUdiPlanG1eTaTMrgnhQMnHvWjPptjcn99Y27D2TBql/wjlhnNu09rzn91JgVUathOAsunWbDmNFB6OH6n6VUfSkKnMpjx+WKsPpOqQgiDVfMU/wAMqZ/rVdzr8K7XsoblO+xsEj6U1Ud9xcq7FGWxVQNtzG3YetQSaZdxjmJjnkYbP6Va/tSC1+W90yaHnJ3J/WrSarp1yweGdQw4GflIq/akuKZgGOSMkFGx/u4qPeBzn8TXRyyylg0aLND0GHzmmJDCxJmtgGHIjUcmr9qxezRiQQT3BARCB/e7CtKPT44IzKwFw44ZFbA/GrCXvlO3+jSJGeCm3OKiV7nG9Ei2MeWZcZ+tQ5spQsP+0OJFj8mRSxG0g8Uy7sbOSdjJC0jD1OcGrcXnOmy4VERfmDjoR7VQvNUiskYRYz3kfgf/AK6z+I02IJNLtIR5rhEHoOtZV5eN5v2a0RmY/wAC8n8TUscWoau+6NWihP8Ay0YYJ+grdsdOg02HZAvJ++x6msny7ItRb3OetfD8kn7zUCWY/wDLJfu/jWulikUYRFCqOijtWkUzx0HtTGTtmsnS6msXy6IzzbUw2xq+Y27U3ac80KCLcnY6RLKxIC/Zo2UbdoJwRjpz+NWV+zg8IgwDt6DAPavIxqN1J8zXc5/4GaPtc7H5Z5h9WJobRnys9cEtunGEUHqFPX3NRSahbxq6b4gTxjdwPcV5ct1OAN0rn6mplumzzzQrWE4Hpx1S0KIDPEDkHGcY+poOt2KM264iO45OBXmyTKwzgA1IJgMcYPtTtcFBdTvpPEWmxoAJm4P933qM+JtKfnz23c8YrhxeMGxlh9KnS+PQrG/++tTZj5YmxqM9heGQI7ESe3Q1ThgjBHnSMdvHPX8KhW/hbAa1iP8Au8Vdgv8ATsAS2koPqrU7LdjUmloar200FkLm0lMsA6lTyv1rTclfCcskjku0ed3WqWlXlgl4q2c8uyYeW8MnIOe4rS1GKKx8PTQIDsjG0Z70royldtJmBYXaPbxIDnaMHNakcqsMYrmYThiAuB7Vp20zccnFXGqtjSVJ9DY4K/LnPtThI2AF5PrVRXDEEnpU6KwORjFOUjNwaLIkO3nmlznGahG7AyKkGemKOa5NgLbTxnHtQCG4Oc+9OKgDANIQARzzTuFhcYozkUuM0m3Hei4WAAkc8CkCAA0o9O1B547UXCzIieMDrTgo25pXAbpxSL0waVyugwgEf/WpApxkgflUh447UzBP8ZGaVxJEbFs4I492zVO40qwustLaRM394Lg/nV1o1Jww3HtTTkDAXH0ouymkYUvhizJ3Qy3NsT/ck3fpUH9i6nDkW+qLL7Sx4z+Oa6PBxmmHrgiqUmxWRzbf21ApSTT0nHrFL/8AWqH+3VWTF/Z3Ssv3V7Cuo2kcDJz6UN93acn2NPmYcpxs+rXN+7JawySZ4UY4B9asWegN5gn1BvPk6lD9xTXSlAOQu36Cm7Fxzu/GplJvYqMOpXSJUOVG0dDzQeOAMVMxA7jFMbBPUZp3NLELKQajINTug9zUZX1BpD0K7KSOW4o2hRxUxQU0jFVaxDdziVXIHy4qYRjH3R+VaSWw6bQKf9mUNzjFcfNY7PZ3M0RjuKXyQOea0vJBHC8etTR2wzg0e1F7FdTHMR7A0+NJF6DJ962xZKO1OFoOwpe0YnSiYvlStyRSNHKOx/OtwWf40G0/2c0vasXsomCUc8kMfxp0e5T0IrcW0X+5TzYqy52/hT9pcbhFEfhwKdct/MPGcjFdprhZ9GlzwTgEe1clpFsbbXbZihI54rp9YJfSmC5zvwCeprSNuU5qluY5uGDIAxg1dSMKAADSbWwvY4oBPTJLVgpWOq10rEilt20D86txM/0xVWMMeB171ZjYsSB2q1Jmc43LSbhyTmpMuMcrt9qrAkcGg8ZwTz2rRTMXTLWTnIx+FNff94dahjLg5J4p285xk1bqaCUNR4dyvYUgaQnkj8qajZOOtTKuB1BqbjkrAeBycn2oyAM9aG2qc9ahabawOw4PFUpaGahce0nzYoMgA4Q/jSMFbkc0AAjnJpcxVhclz6ClKn1pMDntQMhc5p8xLTGsMn5gD9KaQD0GKHYAcZFNVs/xYo5iuTQU8d6iO7J709mbPXI+lBBI4FHMCjoQv5vA2Ar3FMzlMlCCOgqfBHODxUbKSadykQtJ2weetM3AnbyBUj5Gc5HvTCAV460rmqSGkI/HemiLDZ60Fcc9KmA+WnHUUtCFgdwANREtuPOanPJLYqIjn/CqbEldDC3PSmH3p+CW4/WmjAPIyKEx8pneQDyTz6U5YucbRiroUdxS7Ofu/jXC0drlcq+SAeAaeIjjkYqwEA6mlAU/xUrCIlXB65qUKD1HNKCg6JzRubI+UAfrRcXKKI+OBinCM4zT1fd0zTmTKgg96YuUZ5WfvEU4RqoxuH502SMnk5xQiD6iouPlTJGEYIIbDj7rDtTpJBLs8x2YLzjPeowo5B6dqVUx1pqTB04scSm7hT7c0DbnG0gn3pOp4HSn7XbngCk2PlRZjVMbQcGnrgcAc96qKGUcEEmrUPzIScZFWpGco2HgjvTsA803J2/KKRiWXONuKrmRnysk25HPT0qGVJMblOB6U7fx9459qcDxkk0NphGNncbEjAbi1T/w4qJZYy3ykmpuMcVcWRNNsReOBStkr1GPpTMnnPFKHO2mZ2aEAwcgYoLZ4zg0u4kcUAEkkmncaXcjIORxn3pWJXtinjpxnikILjA/WlcdkQqW37WA56U/btGSBik2KcbuoNPwBwDTQSY3BUccn0pm4kZzSu525Xk01QcZPWmJRe4mTjPOKbjnk08vk7DxTSCDzz6U0wcRjg8j72O1Q4DDIBqwfl5Hy+uaiZjvJTG00DiMVQ2OKXoxx07U9gFGGFRN8xxn5R2qloD1Yx/lHfNRljxkCpD1PNMw5AzjFTcu1iNjxwKRchsgfhTjjOBnNLyQSKtCKolLdsU5iSBnp6iowcjk08EAYzxXDdndypBsCnjOKcKNwHfNS9QCRilcVhig7cVIvTnpQAGJIp8Y4wRmlcAQADPOKmHzjrn6VFhgDkcVPGMDIGAaaJbYxwduDUY5bbjp0qU434JOKBxSYIaPvYI5FP3KG3GjGW5yaFGQAVzg0FB5gJwAKer8YIpiqM52AGnMCDigQpGCCOtWYgojODyetVuMYOfarMQ+VSaFciaJOVJCmmcNH0PFPwNpz1NMTdtYEirsJCcqPl6U9FDDnmogd3y81MuE+UdaFuEnpoOCBD8oxSMec0DOetBwOtWYtib1btzQiHII4pcLnOBSjgZAp6k3EZwMkjP0odxImBxjtS9F5FMwHOB96gFZ7kRuDEf9X+tSRTpLx0NElv5incRkd6gjgaNslqNUaWi1oWsDdmgggHHegkLjqe9Jxt69asxe5HtIUj3ppyhp2CqEbgTmo2JH3hkUmy1dgzDcGOKQkA8N1phQb+OlBwOKEyuW499pTDHJ+tNRAB0xTI0zJk/dp5bAJPQVaJaGTEqu1eSaY3Cj1pu5mYkjr0ppcknIpXuUo23FZh0yKQqMHvxRgY6UFeMjNUKWozA44pcNjOQR6UL05oJJBC4C+vetItENMolc9eDUijI5ApwCnvmjI5GMVxNWO3muC8fwgipV46nPtUAwMkHPtUiyEpnFJK47kgYjqKMnPBpAOAaeMN9aOUm4oY7sE8VLDkkqTxUaqFNSxsN2KaRLY6RVC5HJBprAnkDipAMFlPeo0b+DPHehoSkAJ4wM+tOYc5UH2qNnEeVXkVYhlGzk5PpSsN6ajdqqhYnOaRSMAHr2qYqjHGKaUz04puIlO4AccDpUsZygquC24gHOOtWY8+WDTjEU5D/r1qA/u5TyTmps8bh1qGQEPk80NWJi7ki8DoM+1LkjrUDPtbIBxR5ueSDihMbROrcnBFOLbhVVXBJwKfvY8H7tMlxsTBgR7UuRjGajyAoBFBZfSqRmyQnpzSggtnoTUe4AU0k7xg00hbk2cd6Rjx0BqNWz1NOLDmqtclXQ/OTn9KjfO04pN3oaTfx160WBPW5BnK4zyfWpA2AAeQaR0DgHoVHFRJJyAeopWNea+qJsAk56EcVCUw+BT8lCSe9N3jv1NFhc1h4HYdepqGVi/wAozinM4Qd8kVWHGTk03oCVyQscAenWml+MY5ppUsRgGngAEA0JFXsIqEjgmlBxxnJppBzw232oHDc1SRDkJsySxP4UhToO3en5zQzBWArSKJcj/9k=", "path": "images/5pts_ADE_train_00005519.jpg" }
depth_point_62
images/5pts_ADE_train_00003558.jpg
ADE_train_00003558.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 108 y = 177),Point B is located at (x = 175 y = 197),Point C is located at (x = 140 y = 117),Point D is located at (x = 307 y = 186),Point E is located at (x = 127 y = 224).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_57><DEPTH_57><DEPTH_1><DEPTH_0><DEPTH_41><DEPTH_33><DEPTH_33><DEPTH_39><DEPTH_1><DEPTH_32><DEPTH_72><DEPTH_72><DEPTH_72><DEPTH_44><DEPTH_63><DEPTH_38><DEPTH_74><DEPTH_82><DEPTH_76><DEPTH_68><DEPTH_44><DEPTH_74><DEPTH_38><DEPTH_11><DEPTH_59><DEPTH_59><DEPTH_11><DEPTH_15><DEPTH_81><DEPTH_20><DEPTH_63><DEPTH_44><DEPTH_69><DEPTH_69><DEPTH_31><DEPTH_38><DEPTH_69><DEPTH_44><DEPTH_25><DEPTH_17><DEPTH_19><DEPTH_81><DEPTH_15><DEPTH_80><DEPTH_3><DEPTH_70><DEPTH_20><DEPTH_69><DEPTH_19><DEPTH_17><DEPTH_36><DEPTH_29><DEPTH_58><DEPTH_77><DEPTH_69><DEPTH_60><DEPTH_52><DEPTH_77><DEPTH_25><DEPTH_17><DEPTH_9><DEPTH_81><DEPTH_19><DEPTH_23><DEPTH_65><DEPTH_12><DEPTH_32><DEPTH_70><DEPTH_29><DEPTH_59><DEPTH_15><DEPTH_31><DEPTH_74><DEPTH_55><DEPTH_42><DEPTH_18><DEPTH_47><DEPTH_98><DEPTH_59><DEPTH_64><DEPTH_64><DEPTH_25><DEPTH_69><DEPTH_25><DEPTH_32><DEPTH_16><DEPTH_48><DEPTH_38><DEPTH_25><DEPTH_66><DEPTH_94><DEPTH_57><DEPTH_94><DEPTH_39><DEPTH_1><DEPTH_4><DEPTH_41><DEPTH_23><DEPTH_14><DEPTH_94><DEPTH_END><DEPTH_END>. Since point E has a higher pixel value on the depth map, the answer is that point E is closer to the camera.
E
long
5
[ "D", "C", "A", "B", "E" ]
<DEPTH_START><DEPTH_57><DEPTH_57><DEPTH_1><DEPTH_0><DEPTH_41><DEPTH_33><DEPTH_33><DEPTH_39><DEPTH_1><DEPTH_32><DEPTH_72><DEPTH_72><DEPTH_72><DEPTH_44><DEPTH_63><DEPTH_38><DEPTH_74><DEPTH_82><DEPTH_76><DEPTH_68><DEPTH_44><DEPTH_74><DEPTH_38><DEPTH_11><DEPTH_59><DEPTH_59><DEPTH_11><DEPTH_15><DEPTH_81><DEPTH_20><DEPTH_63><DEPTH_44><DEPTH_69><DEPTH_69><DEPTH_31><DEPTH_38><DEPTH_69><DEPTH_44><DEPTH_25><DEPTH_17><DEPTH_19><DEPTH_81><DEPTH_15><DEPTH_80><DEPTH_3><DEPTH_70><DEPTH_20><DEPTH_69><DEPTH_19><DEPTH_17><DEPTH_36><DEPTH_29><DEPTH_58><DEPTH_77><DEPTH_69><DEPTH_60><DEPTH_52><DEPTH_77><DEPTH_25><DEPTH_17><DEPTH_9><DEPTH_81><DEPTH_19><DEPTH_23><DEPTH_65><DEPTH_12><DEPTH_32><DEPTH_70><DEPTH_29><DEPTH_59><DEPTH_15><DEPTH_31><DEPTH_74><DEPTH_55><DEPTH_42><DEPTH_18><DEPTH_47><DEPTH_98><DEPTH_59><DEPTH_64><DEPTH_64><DEPTH_25><DEPTH_69><DEPTH_25><DEPTH_32><DEPTH_16><DEPTH_48><DEPTH_38><DEPTH_25><DEPTH_66><DEPTH_94><DEPTH_57><DEPTH_94><DEPTH_39><DEPTH_1><DEPTH_4><DEPTH_41><DEPTH_23><DEPTH_14><DEPTH_94><DEPTH_END>
108
177
175
197
140
117
307
186
127
224
84
148
42
2
195
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCjFKrdxVgJG/UCuaSWRDwatRahKnXmvPudZtmzjbpkUxrFv4WBqpFq4H3xVyPUoH/ix9aOdi5UQtbSr1UkVGUI6g1ppcxv0cH8ak3Rt1ANNTDkMfFGK1jbwN/CB9KiaxU/cb86pTRLgzOK0hQHqB+NXGspV6AN9KhaJ1PKkfhVXRLTKpt0PbB9qYbdgcq/51ax7UuKabJsiliVOoP4U5ZyOtWtopDErdVBquYXKNS4BqZZAe9Vza8fKcfWmGOSP3FO4jQBBpwFZ6XDL1qzHcKe9MCyBRihWB707ApDGYpCADUmBSEc0xERFIRipCKaR7UxEdGKdikIpiGmkpxpp6UCGmkNONNNADTSdqcaSgBlIafimsQB1oAZikNG4n7ozTlhLffP4Ci6Q0mRlhnAyT7Uohd+p2irKxBegxUgSocn0K5CutuoPTJ96mEYqUJ7VIIvU0rsdivs5pwjJ6Cp/lHQfnTGbmi47HOgc04DiumOiWsg4Ur9DUbeGwf9VLj2YVynRY57bS7a2pPDl4o+XY30NVZNKvIfvW78egzSGUAzr0Y1Kl1OnRzStE6n5kI+opCtAFhNUlX7wzVmPVl/i4rN20hSgDcTUY2/iqcXaNxkVzewjoaUPIv8VO4HRHyH6qPwpptom+6xFYS3cq9efpVhNRI6kiqUmTyo0GtHHIIP0phQqeRimRagCOtW0u434OPxq1IlwINtBWrgWGTkcfSka2J+6wNVe5Liyg8KsOVBqBrYg5U4+taLRMvVSKjK1SbIsUlkkiPzA4qzHcg8GnNH7VE1uO3FVcVi4rAinYqgrPEeelW4pg3XFMQ4imHipWyVyoyfSqbhi3zE59PSmIlxnpSGkjSQ8tx6etPI4piIzSHpTyKaRxQIjNIac2B1NQtIM4UZNFwHEims4FIEZjy2PYVKkSjoOalzRagyIB36DA96csA78n3qwFp6xk9qhtspRRCEAHSnBPSpxEB1NOAA6DFIqxEsR69KeEUe9KWphbFFwsOyBTS9MZ8VC0nvQMlaSomkqFpKgeZfX8qVwsdhDg1djQGsSCWRCM81pQXgAG4GuU6TQEfFO8v1qOO6jbvVhXVuhouBA9tFIMPGrfUVVk0OxlPMCg/7PFagUGpFjouKxzM3ha3bmN3U+/NZ83hm4T/VurfXiu5EW4gAZJ6UXFpJAoMkbJnpuXGaabYrI82m0i9hzmEkeo5qm8MiffRh9RXo0sYqlNAjfeQH6imrCscCV5pNorr5dNtnzmID6VRl0WE/cZlqrAc7txT1kdejfnWnJo0q52MG+tVZLG4jPzRn6jmizFcbHeOnX9KuRaljq351nFSDggg0m32ouwOgivkYc1P+4m7Ae4rmRuX7pI+lTR3cqdeapSJsbr2p/gbPsarvGyHDKRUMGpjox/OtGO6jmXBwfarUyXFFEgVCyYOV4Nar2kcgzGdp9KpzQSRH5l49R0q0yHFkCXDIcNVlZFcdqqMoPao/mjPynj0qkyGjRbpxTCOKprqCA7WOG9KkEryjIGB7027CSbHu6r1IqFpGbhRThGOp5PvTwtQ6nYtQ7kAjLH5jmnhABwBVhYHYdMD3qVbZR15qbtlJWKgXPQVMsJ4zxVjAAwBimk0DGhVXoOaUmkLUwtSuFhxamF+aieUL1OKrvcr0GTRdDsWWkqJpMdTVVp3bgcVEcnrk/Wp5h2J3uFHfNQPOx6DFJto20rsdiIlm6kmk21PtoCUgOkRKsotNVMVPGtLlNLgE4pwDL91iKlVPapFiz2qbAMS4nTo2frVhNSkX78efoaVbbd2qddP3dqlpDuOh1iJJY5AWjdDlT6GtO78Stf2bWzvAVYdQvP8APrWNLpbYyBWbcWToeVoS6JiaT1aNR5EPQg1VcqeayGEifddh+NRm4nXq+frVKLDmRqORVdiKoNeSdxTTeHvmq1C5dNMNVftYPenCcHvVIVh728Uv3kU1Vk0mFvuFlq4rZ71KozTFYxJNJnXlMOKpyW8sRw6EfhXWKlP8kMMFQR70rIVjjNvrTkkkjOUYgV08+jwTAkLtb1WsyfRLmLJRRIvt1qeVgMttUKECQceorXguorhflYH2rmniaNtrqVPoRSKWQ7kYqfahSaHY6WXT45fmjO1v0rOntJYfvLx6im2mryRECYbh6itqG9t7lPlYEHsatTIcTl/s+64H0zWjFbuwAVTj1rU8i2Ry6ouTQZFHSqvcSRUWz7ufwFSrEiDgfjTjIPWo2kFGgCnFNNMMo9ajMo9aOYLD2aomaopLlB3z9KqyXLEfKMfWoc0NRuWJJwgJ6mqrzSP3x9KgDO0o3NkVNipcrl2sR4JOT+tJtqXFGKQMj20bakApaZJHto20+mvIiD5mUfU0wDbijAqu+oQL0bcfYVTl1VukaY9zVJMR6EIj6VMiVd+z+1OWAelXyj5iuqVZij5FSrBz0q1Db89KzkiuYILfJHFalvZ5xxS2ttkjitm3twoAxWfLcG0ZzWPy/drKvLAYPFdeYOOlZ95a5U8UONhKaZ57eWWCflrKlgKnpXZX1tjPFctrMn2Cxnudm/y1ztzjNXFlGY6H0qIpWGnjewZiJ4J4mBweAwB/CrsPiPSLggJexgns/wAp/WteUzuXCntQExTo5oZhmORHHqpBqUAUcocwxGZTVqOcDrxUYQGpFj9qlxKTL8Msb8bhmrqRBgMVkJATyAauQ+bH0Yiody0bVpo9xdwtLEqFFODl1H6E0xbVe/UcVUW8lUfMqt9RUy6iOjoR9KjmYWFn022uE2yxqw9xWLd+FY2y1rKUP91uRW6LuFv4wKa15Cv8Yp8y6hY4e70u6ss+dEdv95eRVAlozuRip9q76W9RwVADA9iOKwNWs7c27zxxCNx/d6Gi3YVjDXUJ14JzUg1N+6n86rmPNKI/andisiz/AGifQ0fbs/wmq3l+1L5YHaldhZEpupG6DApu5mPzMT9aQJT9tS22NWExxTSOKkxTGoQyJeJVqfNQA/vRUuaaExdw71E9zFH96RRWLqF20Vw4eRtucAVFAs11/wAe8Dv744rRREbD6nCM7QW+gqs+qSH7iKo9TzSwaJf3DYYxxD3Of5VoxeGIxjz7l39lXFJyjHcFFsxJL6Vx80v/AHzUIMk7YjSSRvYE110Wh6fFj/Rw59XYmr0aJEoWNFRfRRgUvaroh8hx8WjalLyLfYPWQgVbj8MTNzPdKvsgz/hXTmmml7VhyI7nyfanCD2q35dOWOuxowTIEg6cVchg56U+OOrsEYrNopE1rDtwcVoxrgVXiGBVlKhIU2PqGZAV6VNTX6U2jOL1Oev7UHJxXEeLLX/iQ3vH8H9a9JuogymuN8W2/wDxT97/ALn9RUtWizoi9UeDWnhxNShuLn7cLcidkUMpIPTn9ahm8J6gjbIrm0mOPuiUA/ka3rS2VtM3MSu2+lPA44VetYmoqL28C87s4Vj1yeg963g7mM3aTKT6LrVkdxsrhcfxRZ/pSxa3q9kcfabhMdpBn+dS2v8AaNvMscE88Um7Gzewxn+YOadJ4j1aFtrzx3CjO4TRq4H6Zq+UnnN/wz4nv9Q1aCynETpJkFwuCMAn6dq9ChgyeleeeH4hJ47s3EaR+ZAkhRFwuTFk4H416vDb89KzlE1ixLa1BxxWh9iUr92rNnak44rifHvi/wAR+HfEsel6NZabLB9hW7mlvTsEeZGTlzIqgfKoGepNc/JKTsjRySV2b9xabScCqbJjrXM+DvGmveIfFN5o2tWNlbG3tTNiBGBzuQDkuwKkPkEdeCDiuxliwelNwadmCknqjNkUYPFZ5izOK15I+KqGL96KThoUmSRR/L0qvqif8S6X8P51oxx8VBqUR/s+T8P50KISehygjpfL9qteVQY/anymSkVPLo2e1WDHRspWKuQhOelG2ptntRsqbDuQbcVE4q35dRSRkCizC5Rx++UVNsOKREzdxD1atP7Ic04RuKcrHEarGTcOMdGqjYSSIGkjdlO7OVOK6K/td11PkdGrE0y3JtTuHzBiCK1Xwi3ZtWOv3MLATKJl6Z6GultLxL2DzYwwGcEH1rjVtyGrp9EUpYkf7Z/kK56iV7o2iaVOVWdgqqWY9ABkmkHvU0MkkMiyRO0br0ZDgj8ahRbG2JLbTwY86GSPd03qRn86iK1akkmuH3zSvK3q7En9adFaSTyLHGhZ2OAo71fKTc77bUiJzTwvNSKtegzlQsaVciXFRItWEGKzZaJl7VMpqFakWpFIlzTWNGaQ9KLEJEEoyK5fxXHu8P33+5/UV1MnSuf8Tr/xIL3/AHP6ilJe6zWPxI8NLPb6CTEmd19KCD6YX9asHQbeWe01CZPLdYwWwehByPx7UrEpaWSsA4fU5t3HBxtrQsL37bFeQbMujnB7Ebsce9awg3BNGM5WmzM1aAW4N55bBO2Vz/n/AOvXGarDbKEa2ZSG6joRXo87m6tVsZQ+5t5QsuF4H615+9oyzTmVAuwEZx1z0q6cbMmUro6/wxBnxvYDAx9kiPv/AKivW4LXJHFebeGIgPHlkNvP2OM5/wC2Ar12CHmktUzTsWLK3CgEivF/jdPZyeI30m6u0smuLC0uIp5EdkzHJcgo2wMwBEhOcHlR9a91gXAFYXiL4e+F/Fd/Hf63pn2q5jiEKv8AaJUwgJIGFYDqx/Os4+7K45aqx4V8IEt5PiHqKWtzLdQx6XsWaXILbWhU4B5C5B2g8hcV7HPb8nirei/Dzwv4WvZL3RdM+y3MkRhZ/PlfKEgkYZiOqj8qtz2/zHiq0k7grxRzklvVY22JAcV0LWw9Kry22MHHehw0Gp6lBITUN/BmzkGPT+da4h4qG5hzA49qzjHUqT0OSNt7Uw23tW2bYHtTTa+1auKMOYw2tqabettrbjpUbW4x0qXBFKRj+R7UeTWmYPakEPtUchXMZ3kVDNDgGtfyaguIvlNJw0DmOfiXOqW6+rium+ze1c/EMa3aj/pqv867EpTorcVV7HG3Fruu7pcfxVz+lWwa1kdeVaU4P04/mK7JowdQuv8Af/wrnNCQf2Yf+u0g/wDHzUtblJ7DRbfP0rUsikEG1iBk560LEC9QXyokkYbuvp71jLR3N4a6Ggby3XrIPwpDqkA6Bj9BWRuXsCfwpQ47IaXOy+Q1Tq/9yI/iaadUnccKo+tZ4LnoqinqJT0IH4VLnJhyo9tC4qRRSYprNgV6MtNTkRZQcVF/aNssxhDszr97ahIH44qhPdPGMq5FQacScyd2Oa8zE43kkoxR0wo3jzM3or63kYIr/MeACpH8xVxTWWGxg5q/DIHQHv0Na4fEe1dnuZTjYnzSE8UmeKQ9K67GYx+lYXiYf8U/e/7n9RW23NY3iUf8U/ef7g/mKJr3GEX7yPGHATSIJmThL6c7ccgfL/SrUd7Z2M8ohRN7MwPOQoz/APqqW2069vdIjW2tHuVF9OJWU8L93k/rT59JubdJpzYutwzEn9wWwR0wQOhrajb2a9DCrdVGJLKJrfy5AGjcbo2DY2sPQ/TIritbyZkjYnDfffbgH2A/z0rSae9trW5a+trm3YjMH7s4LH1B4AxWA9xKZndpMgggZ61ShaV0Tc9K8MwgeO7MkHP2SMY7f6gV61CgxXmHhlCfHNm3y4+yRfX/AFFeqxjFZx2fqbvoWYhxXnwn1K+8M3/iqTxDeWF9bNOEssp5NvtYhYZEIG5znALYPzLwcDPocdZNx4Q8PXWpjUZ9Itnueckr8rk5yWT7rHk8kE/kKwq03LY9HA4mlRv7Rduieivda9H1flsy9aTyXmm21zLbtbyTRLI8L9YyQCVOQOR06Copoc84rQYVC6ZrWKscMmm7pWMloahmh4HHetN09qgmT5R9a1tdGS3M7y6iljyjD2q6y8VA69fpWaWppLYzfs/tSfZ/aroSl21pYwM9rfjpUDwCtRk4qu6UrAZTw4qIxj0rQlWqrLU2KuQbBmqtyvytV4rzVS6xtIGM+lS1oNM5leNetP8Arqv867gpzXEqP+J/af8AXZf513u2s6O7KqdDmvLzqN0P9v8AwrmdDTGnOP8Ap4l/9DautVP+Jpdf7/8AhXOaEn+gS+1zMP8AyI1JrcpFtE+as/Wr20s54VuHZSyZAVc5Ga2kj56Vy3jSL/TrM+sJ/nWTWuprFiLrmkjqt0/+6oFXo7+CRVMOk3DA85klAzXJJFx0r1zwr4Lt9Z0O0vJbqWMupBVEB6HHc1cI3dkgnKyu2csLyYY2aZap/wBdJSf6U57/AFE/cTTof9yIt/M16Snw706PBaW6f8QM/kKnXwVosZ+a1kb/AH5W/pitlSkYe0Rrk4FV5ZABUkj4FZOo3flR4B+ZuBUV58sWzWmuZ2Kl/d8EA9TtFXrKTbEormZZfNv1Qcqgrat5cADNfOzTcmz0WrKyN0ScVYsrkCfYTw3H41jC4GMZpDcYIYHFXSqOnJSRlKCasddmkNVrO6W6tllHXow9DWXc+MNCtLuS2uL4RyRnDZQ4B+tfRRlFpPucDTTsbR6Vj+JAx8P3u1WY7OijJPI7UkfizQJh8mr2v/Anx/OrceoWF0uIL22kz/clU/1q7KSsQ207nhH2jVLIv9mGpWyNIzFUR1A9OPWgeJddhIH9p3qdPvqTj8x2r3jyX9Mj1pjQA9UB+oqVhktmV7dvdHhv/Ca67HkHVA4GeHiHOPwqVPGeoPgTHTZcnB8y2U9s17O+n2z/AH7WFvrGp/pUL6Hpcg+fTbNvrAv+FV7B9JE+2X8p5z4Nv21TxzFdSeT5jRniIYCgJgDH0FeuoMVl2Wg6XZXQubbTraGZQQJI4wpGevSthAaqEORWuKUlJ3RKlS9qYoPoafSaGmNIqjc3DCTykxyOT6VdmcRxM56AVieaWdnPU1w42v7ONo7s3pR5tRlxENqne+c9d5/xp8D5g8skllPGTkkVXurgBI/cmoGuhGyyjkDqPUV5mHxMqdVNvQ6JUuaBoMKrkcn6VayGUMpyDyCKhZfmr6Bas45bEG2jZU2yjbWpzldl9qgkSrrLxUDrUsZmyrVVkrRlSqrLUsCqUqhcL+9lzj7vH6Vqlao3a/KaTGcn/wAzBaf9dk/nXoJXrXn5H/FQWn/XZP516IVrKjuzSpsjnVH/ABNbzjv/AIVg+HIt9ldcdLub/wBGNXSxpnVb3Hb/AAFZPg+3Mtpfe17MP/IjU7XdvML6FtLfnOK5bxpB/pllx/yyb+dejJp5JrjfHdt5d5Y+8bfzFKdOyuaQlqcWkXtXu/gFR/wh9llgv3+cD1FeMNZSJaR3JAEcjFV55JHXiva/h8oPhC0B6Zb+lFH4hV9YnQGJSf8Aj8OPQIn+FRfZ4w+ft0xP/AB/7LV8RJ2C/kKXyl/urmus5NTAkhkPSue1HTNTub3KLEIQMA7st+XH867xIEA5UGpfIiPVFrjq041FZnXCo4O6POYtBMLFjcXQduT+7jI/nVldOVWCtqPlE9DPGij/ANDz+Vdy9tB3jX8q8o8ean4X1TUxYX959ne0JUIkblix65wpHauOdGK0SNY1nLqdALR2z5N4k+OpSDIH/fLmpl0vUJVJTZntuQp/M1n/AA31Tw/EH0LTJzO7M043ROG6DOcgccCvRmhQDAUCtIYOm1doUq8locxpVrqdk8guUtxA6/8ALOUsQe3GBXjXjq4W0vtSSUfPK4aN89CD/gf0r6AuVKRmvnL4jxs9zfMefLuuPYEV0eyjFKK2I9o23JnFyajN/DKw/Gq739y/Jnf/AL6qiSe9NZuvNbqFjJzubMfiPWbWOP7Pqt3GANuFmbjH4+mKvQ/EHxbFxHrl3+MhNc+LedrJp1XfEpyxU5K/UdqqiTaeDTVyWdxF8S/GmB/xOJyoPJwD/Sr7+OfGkNx5F54hFtJ/dlkjQ/XmvPxdP5W3PBrT0aCPWvEQm1GOO4tbS1aaZJrgQK4HCKXLLtBdkGcjrSfPfca5T1rw3eeLtcWVrfxXb3Ijx5hS7Rtmc4zt6Zwfyrbjj1KOaWHUfFeHixnZcH5gemK8Gb7X4a1rVtNs53MSzbA0bZEqAnY3HUFTkfWmHU7hwS0jZ75Nc86dVvSWhrGcEtj23UtVsrGMs2u3MzjoPOPNdn8N/Ei69pd3B5zSvZShQzHJKMMjP4hh+FfLJvJXPzOT6c1678BLt4vFeo2UmVE1kJNpGOVYY/RjVUqUoO8ncU5qSske061ctGkcQjkYNySiFh+lYz3iIvKzD/tk3+FdoQD1FMlRdhOwH8KxxODVWXO2VTr8itY89u7tpfL8uG4YLnJED8c/Sq5u22/NFMB2JiYf0rA1bW9O1HxTcS+Xr8VxFKEa2gAVAVzkEbsHOw5+lepafcpqejW19FDJCk6h1SQYYA9OK5qWAhK97m8sTy7Iw9EvRPG1swbcg3LlSMr6c+lae35/wq26H3qHbh/wNenSjyRUbnLOXNdkWKMVJtoIrYwIWHFQSCrTCoXFIZQlXg1UZavSiqrLUgVytUbwfKa0iOaoXu0KQSM+lSxo45xjX7T/AK7J/wChCvSCtecSj/ioLT/rsn/oQr0ogbsZ59Kzo7yLqbIw7Yf8Ti+B9P6CqPgRA1vqQI6X83/ox60IRjXLz3H/ALKKi8IQJby6lHGSVM/m/N6vlj+pqov3reYnsdUkQDmuN8a6d9u1nSrYOIw6SZcjIAGDXaqwBrgviQ7pcaY6biCGQ7Tg8/8A6q1qaxYoOzuc5rD2MjwR6eoWFIwzYJILkDd1+gr1n4eD/ikrX/eb+leMgfLyMGvZvh6FPhS0JAyGbHtwK56XxGtT4TrR0xRThjFGBXSYEIp2eKjB5pxasrGpHIa+dviI0mkfEi+uxGfJklgk39gxjIx+OG/KvoaVhXk3xVsoFuRdTKnl3FqEYsOAyOUB+uJ/0rOMbyK2VyL4KznVfEuv6mR8qxRxKfYn/wCwr2kmvO/hRbxLpmq6jHGFF5ecbRgEKo6fizV6ETxW3LbRGe+pXusGM14J8QLLdc30f/PWVMfnivebk/Ia8f8AFsIn1+OI9HuIh/4/Ute9EpP3WeMz6NcphVQszHAAHJqWPwuJYS7ajD5i/fijG4qfTNbd/qP2N75XGLyOV4WXH3QCcY9iOawtLuJRqDjJw5+YDvxTqOTvbSxpSpw05tWySxIsrgrC7boxwzgc+oI9K3jJYXkKwGyjBlIG2NRhj/OuWuSy62ykOUDDcidSvetXzlV3a2ctGAMSKcYz2+uKjkvqy+dJtWLkdjo1hdwzi2jmjilBlVhuDDPPXtSeN9Pme9lXw/bRJprWkf2lYigBIdmHU5xyp49Paq0eUspJt2JGBSNT+pPtj9TW1Y3SNYW+8bBNZeTO2zuFwvPf1/EVnU/dyUmzahQlibwhG9uxyum295dTPcanKVKxRRIV25Kou1R8voqqM9a6XTzZpHNE9pHeb0IbzQCyr3KnsR1//VXOBpEJHIHoau6XcNHqlqzE7fMAbBxweD+hq5xlLW5tGNKMOVR1NJba0tbgJb2sZbIKsBj8DXSfDWZ4PibazQxNIblGj3M+BsK5JPHUBenqKxLgyW99KzfM0iDY2Bj0JHqMDH1zWx4CT7P8Q9FK5USSE7f7uUbirjHZnDNqzR9I1HN9zipM1DcnEdW1dHOtzwPxbp13B8RtUWCUpHNNAcD7xMylF2/8CZs173DbpbWkVug+SJFRfoBivLPFTwj4v+GrcgYuVhaU+6PIyfmf5V2PxF8R3fhLwJqOuWEcEtzbeVsSdSUO6VEOQCD0Y96Sikgb1N941Paq0sSgEj0rxiz+Knj1fEunafq2laDHbzanFp9y1s/mtC7PtKnZM21sBsbh/CeuDXtDtlT9KVmmVe6Ku2ginUYrUzImFQOKssOKgcUgKUoqswq5KKrMKlgV2Xmsu9H71sqcZHNa7DmqF7whpMaOKm48QWn/AF2T/wBCFejMMX8RPT/69edzjHiCz/67J/6EK9NKgnnFZUfikXPZGEg/4nt59P8A2UVR8GzNN/akkmNwvJIhjj5UdlX9AKvqca3d/T+grG8HSFINU/7CFx/6MaqXxX8wex2gfnrXBePoZr/xX4X0+KYRC6kaIue2WUV1TXTY+Vgp9cZrzT4i6hc2V7pFxIkNxPHLJLE53DABXgjPr6egq3K+gKNtTiddsNNW81/UdUhvJntb20tUjt7hYfvxSkkko+ceSAOnU16X8EdPTSdQ8V2sUpkhaOwnhdlAYxyI8i5HY7XGffNeR/23eSy6jA+jW+oxXc0Nw6SLMdrxq6qQY3U9JGznPavTfhAms3N14h1G/hubd7n7OY2MRjV9u8bU6DCggYHQYqo22Ikj2O3n1CxcJ5hnhLZG8c/nk1rQarG6bpUMfoeo/wDrVyplu1Kn7VKFJ55HH/j1VZ9bltZij6mgwMkPMoYemRv6VTIVztg1G73qIGkZsCpsaXGTSV5p8YUe70HTLWEqJp7opz/c2lm/9BFd9dzBASTXlfj29vr7WoUtdOu7qG3s50jaFQwE0g2gn0AWo0UrFO9juPhUoh+HthDn545Jkk/3hI2f6V2+6vOPhld3TXWt20+nXFlbzXRvLZJsZUP95eD68/jXouK1lZu5C2IbhvkNeP8Ai+Ty9ejfOMTwn/yIK9buW+Q14v4+mEOplz0V4if+/grNr3olfZZyXxBsI4tajv8AbjzlO/Hcg9T+YrkbQlblH9Sf0rp/FV2by13s24xuSD7Hj/CuWgDLBbSlSVJ5xV11Zjwzuh18wbW/MXPCAnacZOOP1rauIGtLVJZH3JtAcHrn1rHgjS511kYZTy9pH6VrW9yjzA3Um6KEFYCw4kHTd7+n696zW5s2WvsflvFIxGwjY+BnGehA/wA9av2FybyGe2hQqiTmMvIQMcd+vGMn8aybK6jkmMSzhoYc+TuHU+5746Va0KaKPU7+2klVmuArbVzwclTyPTg/hWdempRv2/pnTg8VKi2kk07PXur2ejW135FXVrRbfUJ4VJJjkIxnJPPBplvZscMwwK0tXEU+siY/8tI1bB6k4wST+FKk1sq7Qy/nWsPhOuEed88nuakzxssaMzPO4woY5JBOQfwBz+vervheJoPiJoTFs+Zef+yNmsi9uYbOxtLvyxvQDdIG/hyV59fuj86j07XHtdc0/VY4Fe6tLjcsBbAPUYz+P60LY8uqvfcT6kLgDrWdqV4IogQC2Ou0ZryjU/iL4pnuBJpemJPblQTB5ZLIfTcp5/KubvviXcea39s+ELnfwHczSrjHTAwPWnzJrRmDi4v3jf1W11XV/FkmqK1jG8csbwGTfuUR5C4/Ekn610vxbvBe/BTVpiU3sLfeEOQrefHkV5Hd/EyyOl31hp2gvBHdKF3veuxjI7jOe/bNY0Pjlo9AvdFn0yK7tLx0eVbi5fqpBGNhBHIHftQlLqTdG22t6Jf+ObP+zWs3lvPFdveJLaC5UvH5rczCXA3fOMbBgZfpkV9GiXLYz2NfIFlqFvHq9lcWOmWdpPFOkkUkbTOUYMCDhnIOD6ivqywE0McUFxdNdTKpDTsgUufXA4H4U7DT0NLNGahDUu6mSOZqhc0rNVS8vLeyhM11cRQRj+OVwo/WgYkpqqzVyGs/FPw5p5ZLeWS/kHaBcL/30ay9A+Jya1r8enzaeLWKf5YZPMy2/sCPf2qWB35aqN6fkNWS2TVK9b5DSYI5C5P/ABP7P/rsn/oQr04nmvMLg/8AE9sz/wBNk/8AQhXpZbmsqPxSLnsjEJA1q7/z2Fc/4WfbDqee+o3H/oxq2nkxrV5+H8hXOeG5P3Opf9hC4/8ARjUm9X6jS2OgabHevNPijOTNpnTGyT+a13sr+9cR4zjhuLyx85A4RHIB+oqeaxtCKcknocloVtPBcSTTRsiuuBng9R2617d4JvrdNGgtnuFjlIZhltv93vj2NeKuIrCW81DfuO0Hbuyc+h9OQMUzRPHWtQxfYXu1+zqC65Rcgj/axmppSk25ndjsLRpuNODtdvqnorWlp0fReW73Po+S9gWV8X9orjqXuwP6V8/+NtM1qfx/qNx9jlnSeQCJ4f3iMu0Y2mq0vjK7kyFKbcFm24xnvWTdeIbC704wzaHbJebcLewO8bk+rKG2k/hXTCbkmpI86rSjTacZXPrd9TtonWNnG9uijqahl1aIDhWP4VxOvXDpbPOrESR/MrehrgNZ8feJ7S5aOOWyRCNysUyce/vWkJczaMZLl1PT9f10xWsjRxOSqk8DP6Vw8OtS4LpaJMznJk+0IoI/E5/MVxk/jjXZl/f6rCPZYlFZZ127kP8Ax+O3/XNB/QUpUE3diVVpWR6pY+K7/T72KeC2tV2kB1W4LllJ5GFXmvS5deSNcyXdvED/AH3A/ma+W31O7mb5p7wj6kf4VVkkZz8yu3+/IP8AGtI01FWJc2z6Xu/G2lW2fO1WxP8AsiUZ/SvJfHniCy1bzp7CZZVXYGx2+cV55gCRSY48E+ua6rxAyp4T0tkVVzbITgdSGqZxSsxxk3cw4r86lshmy2/70cIJbHp7fjW8tlHLbJEqCDYOF4JUe9cfYyGB0lQ4LM+4jv0r0DwRdxHUzLdxiVYUDgN03k8H8BXPW5pO99jtoSjCL03MxPAWtPIZ7WC4dZAPmbCAj8SKn/4QfxKdwa0j2suzBlT5R2xzxivX11KC4TcrqR60xnDZw360o1bbkSim9DyJfhxrYj2jyU7Y80cVueGvB19oovZrmOCe6lQRQMJP9UvO4+5PFd4zAdDURl960fvqzIT5XdHner+DPEN9fE281qlsqBFLyEE8knIAOOSazLzwHeaXp8l9qWt2tvax43ukcj7ckAcAZ6kV6m0wPX8q5f4hS7vA2orkf8sv/Ri1UVZWQOo31Mbw9qPhiSOPSL/VrfUfNlRYF+zTAlicAElcdT9K9CgtNJ07Hl21pb/3cqoJ/OvJdfMVv8TY7W3uNJMEGuFI7eysRA8CrNgKzCJd2BxwzdPxql4x1U6v4iZVclIn8tPYdKlwTJ9q92e7rq0BX5bqLH+zIP8AGlOqxkY85SPTeOa8FTwtqm3cLZsc56fSn/8ACNamCAY9vfO4U/YeQvbHsF7aaLeE/aNL0+Unu0KE/njNcrfeGtAl1mGBbC2tIvKaRnQAeYc4CjPAx1rhzoV+mMuAf+ulOttN1BLhQs4BPHMgI/H86U6UnGyOjCYmnTq80131snbzs9Hb+rPU6KPwt4eW/uPMmMXkyq0cizqqtnnGDxwfT8hXoSfEPT7ebfNcWjY6hZh/9evD5bSWVy08wdj3LVXa3jXOZB+FVCEoxszPFVoVarnBWTt5dNXZaK71su5763xc8MxDEkk5b0iXf/hWFf8AxwtVyunaPLJ6PcSBf0Gf5147tiA+9mpZpbZZW8ofLnjdV2Oc7PUPi54qvcrBJb2SnoIYsn82zXKXF1qOrzPJfXs074L7ppCenPGaqCbcflIH0p6cnkk8UgE2RL3LH/ZH9a6DwVaT33i7T0hQIscgmkYDJCryefyH41hFgBwOlek/Ca0Bj1LUGHJZYVP/AI8f/ZalsaPSS1UbxvlNWZJEjRnkYIiglmY4AA7mqNzKksQeN1dGGVZSCD9CKhvQaOXn/wCQ3aH/AKbJ/wChCvRi9ecT/wDIatf+uqf+hCvQS3NZ0d5FVNkYcz41m6+g/kK5zw82INQ/6/7j/wBGNW3cH/idXX0H8hXO+H2/0a+/6/p//RjVMt2Wlsa80nNcb4sSWW4tTEFJCtnJ9xXVTNT9M0az1jzXulyYiApz0z/+qspOxrFHkl9FMsV1vj5EY3YPQE9a5tl64c/QjmvdvEHhKyfS72OzRzcyxbEO7IBByPpzXkN/oOpadb5u7W4EgY52x7kx2O4GtqM1a1yaqe5hAMDgHGeKPJH/AD0FPaVB/Dz9KCdxUKoJb0Fb3ZjofR3iB/8AiXXPsteQeKG3Trg9YP8AGvVPEEn/ABLrr/d/rXk3iNwZY8ckxYH61pBWZEndWMlGCgEKo47AVath9okKPdJAApO6QnH04qp5TqAC8Q4678/yFMfapx5yH6A/1xWhnY27rTdMgt/M/wCEitJ5cZ8qGCUnPpkqAKxJJBkhScds0nysML5jH2WmPG4GTHIP944/wodwsJ5p3r65/pXU6+5bwfpR9bUf+hVyB+UgYTr1Bya6XWpC3hXR1zwbU8f8DrOZcdDmrYsrNG+QVOcEc5rtfCsvltcODycD8q5WS3aKcSHpLEjqT3zwf1Brf8OsVE2BnnP0rOWqZrHdI7i21Bo3GTxmtRNRJPHT65rlo33de3NWxNjB5zWSRozpRqBYYzSm8VvrXPi6O7kn8aeLrB56VcUS2a0s5wSrfnXNeKEuNT0a4sYyoaXbgsTjhge30rSFxnvj61TuroIyqE3NjOM8UpS5VcqlSlVlyQWv3fi9F8ziLpfEbXMFxqmsz3a28onAnuZJMEHORu71z/mM8vmEncW3H612viObfYSvgoQMEfWuLjU8nHQVVOXMrk16UqUuSSsy/wD2xfHI+0yHJ7saP7SuiOZnP41TVO1OwBgVtdmGhP8AbJj/ABt+dKtzKGGWPr1qAGnDlSRnPSkANPJ2NRNI/wDfNSeW/wDdwPfimlFH3mH4c0AR7mY4JNO43Enk5pwMSK3BJ9zToRNPMsVvEzyOcKka5Zj6ADk0gJolJ6qQPepzgAHI5FeiaD8GNV1GxM93qEFtPJGGhiCl/myM7j6AHt3rjvEHhrV/DdzJb6nZSxBH8sTbT5bnGflbGDxRYDJdxz3r174VYHhOYjjN2/8A6CteNFs17F8K2/4pKUel2/8A6CtTLRDR1WsK8mj3qIjSM0LgIq7i3HQDv9KzdKUR6DbqIjEPnIQx+WVBYkDb/D9K2y3NUrpvlNZso5ubnWbX/rqn8xXeFua4GU/8Te2/66p/Ou5Lc1nR3kVU2Rz9y3/E7uvoP5Cue0Elbe+DAg/bZjg+hdiK27pv+J3c/wC6P5CsHR5PMa9cHI83bn3GQf1qZPVlroX53rR8NSEx3YH95f61kznNaXhh9q3fP8S/1rGSu7G0dNTcfH1qJ0Vuqg/hU/B9KRk9qydFmnOZ502yZtxsoNx7+Wuf5Uw6bbH7ttEp/wBwVo7eec00kD0peyY+dHM+IZf+Jdd/7v8AWvKvEDEyRf8AXM16Z4gb/iX3f+5/WvL9cOWiP+wa9s8u9zOR0AB8pCf9rJ/mant/td1L5drHufGdsSAHA+lUlYFRg0odlJK7h24OKdwNu68P65b23n3ix28ZAI8+6RSQemF3bj+Vc/Jw5Gcj19aU9c4AphR25CsR7CkwRH/FXTarlvC+kN2Fuw/8frmSpU88V02oDPg/Sj/0zcf+PmpZSMlGYuqFiVH3R6DOf8a2tBkMcj+jE/zrn/NMcoJGcVZ03UDbXqeccQEnJxnbmpa0KT1R38bDILcgjk1YAQj5Tnjvwaq6fi6gLxurKOjDkH8alkVkOWGDWKNmSof3gz1I+hpQMEYP9DTYm3H3xz/+qlc7QcdB6HP6VSJHBiDx+n+FVrhiH8wFQQuDx1oaYEfT8RVKZ5LmdYI8l3YIv48VMkpKzNaNWVGfNH/gNdn/AF+JU8RxOvh2G4YHE8+AfUAda5e3iDxyHcoIxgE9a9N+Idgtn4Y063Vf9S6jPoSprzm1T5ZBwRxW0IKCsjGvWlWqOct/8tF9yI/KAHMg/wCAjNGyMHhXb3JxVpkUKOKicAcDirsYkJxxtjUfhn+dOaRzGEBxz2GKMjrTJW5XHpQBGeCcnNQu1PLdaru/OKTAduyPxru/hNKF8bxKkatcPbyJA7MAI2Ixu9zjIH1rz8NkgZxz1q8YfsqJcQXiSSgggR5BX+tK6W47XPr2LU7CxgtpAULqywIoOWLPyTjt90n8K4v46Swy+BbdvNUst7GyqD0BVv8A69V/h7/wjfiPRY/tWl2ksykGQMg+8B1PvyfzNP8AEkvhvxR4mbw9bWCXU1gCWiiU7TIeudpGcDA56c0466knz4FaQnYC2P7ozXrvwtkCeG7mJ22uLtiFbg4KrV3WvC+j2dg6X+ix6dAOkvyQsD/snOT9Oa8vcXlnfOLC7me3B+SQgqSPcHpU1FZasqGp70zVRu2+U15dp3ifWI4Vb7WxIJBUnI4Naw8ZXpUCeGOQfkajkdi7amvK3/E3tv8Arqv867bfXmMOtLdatZnymXdMg65wc16MX5rKkmm7lT6GDdt/xObn/dH8hXP+H2/0a85/5e5v/RjVs3j41e5z/dH8hXP6A2LW75/5epf/AENqzluy10NWZs1f8Otg3AB5JHHtzWTM/vWt4ZwUuWIOCygH8DWaWpr0OhUsDUgbPWmjAHIGaCR261psSOb2qNhSk+9NJNS2Oxxmvt/oV0P+mZrzDWTloT/smvS9fP8Aot2P+mbV5hrByYf9016bOBFJTFgE+Yxx04FOUhm2xW289ccsfyqsDgD6VLBcz28nmW8jxyYwGQ4NK47F46drH2X7SNNuUt/+ev2YqnPT5iMVlytISVkdiR2JzVi5v726VVubueVVGFWWUsB9ATVM9+fypDQ3uK6q+X/iitLb/Yf/ANDNcriuluLO/fwXZXTOPsallVc853Gok7FRVzBcjzKjPJpfk3YLHd644o2kDnkUxF/S9cvdGkb7M4aJj80TjKn/AAPuK6+z8T6dqERG82056xyHjPs3T864Lb8xpDH3FJxuNSaPUbd1DEuMAdRTJ5FLEowrjdK8QzWdt9muFMsK/dYffjHp7itaDUYLnmGdWP8AdzhvyNZ8rRqpJmhJJgVreC7D7dr4uJB+5tjvPoW7VzjS7hXpnhbTv7M8PGRl/eTjzGx1/X8KILmlYJu0TC+KF2j6RFH/ABGcEcegNeZ2rDEufat34g6k9xrcVpvzHEu7GAME/j7VzluTh8e1dD3OdFtmBAFQykU7oAKq3Mu3NDYxHOBkmmSSDgZycdBzTrO3+0fvJidnZfWtuDyIhhI0THoOfzoQGIlndzDKQMAe7cVZi0FmwZ5wP9lBn9a2gwx1zS5/CiwGVLocJTERZWHc81Ammy27lpoBOmMDYeR74rdU++aeCG7YoshmVp3ifVPDF2JtGvZ7Vm/1iOm5T9QwNT+H9cvbPVZdUtLn7JeEOrzxnl93XrkZq5JbrMPmCkehFFvp8MDlookBPPC1Li3sUlrqT3d3NqLrcStLcXB5aWdiT+Z/pULW7SnMkpwf4U4FXlgkkI3c1YFqqDLnFTGilvqW5t6GdHAI1CxxgCrCWbPgsPxNWGubeJTtG4j0FUJb6STODx6J/jVtqO5Kuy/H5VrPGytmVWBULyc5rsXu9Xs+ZYvMUd8bv5c15vazbr14XJO7YFA4Abd+te0sB12CsJNT1RW25xT3puL6aRgFZlHFUNEtb0RTxi2fLTuwJ4XBYkHP413zRRsclFz9KXy1UYAFZ8ncq5gQaIZCDcykn+6gwPzroLSyitYRHEgUDnAqaKIYzTywB60+VDuNPHFJn1pSCT1zS+XkVLQ0xhYZ4NQtJt70+RSBVVwSeazlEtM838R+IGMl3BHBz8yZJzXn0l09xFHvOSoIrv8AV7cC+uwq/wDLV+n1NcRqVtFbXEUcKlQeoJ969CzOHQrpFIRlYzj1xUy2FxIRwBXVJZLu4QYqdbBs8ggVpypE8xyqaO7fec/gMVaj0aMDkZPqTmulGnkY+Xn3qxDpxdsBST7UvdQ9Tj7uGbTtKubdI8wTlSxI6EHINd74QtrfUPAdvaXUSSwu0gKt/vn8jUn/AAiz3kBjlRBG/BDN2ra0nRV0m2EEbKIhyEUcCuWtKLVkzopJp6o4zU/Av2KKWbS9zIQd6Py4Hsa4mawkhJxnHdTXtuoWZu4yBPJHgcBTgH61xVxoxkzmJwfXaaVOpp7zCpDXQ4JVDHjg+hqTy619R0aSByQpBHt0rMyyNiQYPrWt10MrNbkDRZ+tReQAckspHIZe1XDz0puKBHR+DLe81TU1gmHm28eGMnf6f/rr2W6ZYtOKcABcdBjp71xvgOythpNtPAAS/MnGSHBwc/p+dbHjTUF0/wAO3kvRihROh+duAB+efwqoK2o5O54XqV69/q9xdMf9ZISPp2/Sp7Y/e+gqmsah147irsHDN6YFCYidiQKozgmrjHvUMoG2hjHRz7IlUdAB0qwlwCn9apKE8puCX25BzUSOw57fWlcZrpKc8GrMdwScGsWO4OcdfpVqG4GcZBppjRuRKZKtR27E98VDpe2YFs8DrWsbiGHgYz6d6sCKKyOckYHep8RQLliB9aqS3zYwSE56dW/L/Gs6a4lEQlCjDEhS3zHg4zjoOalzihpM1nv8KSgCjszcA1myagJs/vN3GeeAR7DqaiUR3EYdpONvzMeSCASfp7fWq8LCVBcDGYhk8dsgY/Cs3NvYaSLUtu01ms7CQBz5canu3sPaugj8E6iunNe3V3b2YRC7owLFFAySffFa3hLS5L5odTvYsRQ5+zIRjLHq+P8APNbfi+YxeDdXIXLfZXH58f1qVBS1YOTWh5t4Ogj1bW7Wa7xsL8J0yQCVJPpmvYcHHNeLeE7kwQ2YAVgbtMAcSKdw6eoPpXtZBzTihNkZXmlVFHan4GOaDtHc0NBcMkDApu1jz1pckjqacoPr+VKw7gopSCBQVpCPfFTYdxrEnjAqtKgPNTs3PJzUDsualopM4K6RTqUzHkM5Y8dM8/1rOv8Aw5a6hdx3DGQFP4U4BrqV09pDnaBnuatLpgxy3PtXRz2Wpjy32OdjtGU428VbSzLjhSa349PiUjjcfersVsi9FAqXVGqZz0WlSvx5ePrVyLSNjDLYPoK2iuDjrQEU8EDNZucmaKCRXjhESjBpx5XpVgoAajZSpz1rKxpcq+Sc5xUTw55JOaucA5pj888VLiO5j3unQ3cZDqN+OGrhtW0HBYonI6ivSXGDn9KqTWcdyCWAVsdaqm3HQmaUjxie1kt2I2/LUQIIr0TWdByCwQA/oa4q8014XJUYPpXSpXOeUbG54H8RDRtUFvcNizuGAOT9x+ze3of/AK1afxP1HzLm109SCAPNcd/QZ/WvP8kHaanurue+lE1zK0jhVQMxydqjAH5CrvpYkrBfmXp94VYjGC2fSogPmX6ip8Yz9KEA0nio35FPfg1Ex4oGNUMxwCOB3qBJMEgqCPQ1oWKIzjeQqZ5ZhkA+/tWfPGVnIVTuJPC/0qUMeXDAY6gdT/n0pVbHHJ9zUtvpl1Jy21c9A3X8qtz6Ube084ncwOHx6U+Viui/ocq+TK0xZejKAfvcmtBZPPTehMaE/dAwT9TWJpkzCLksQnA9Rk84rpLOynnjdUAjBY5PU5NZz55aRNYuMdZFLJ+0BIwDgZ9hUn2SXyHzxuyflPPpXS2GiRwRbduSTksepq82k25XGOtaLCq2r1MniNdNjzgyPpgAK5lcnyww6+9d/wCD9OWz04Xb+W8t2itwOEX+771ymteFNSbUfOgU3cIGFG/DJ/nNdfoO/T9Ft7W54kTPAOduSSBmhQs9Qc77HWQTHu4AH6VT8TBp/CuqxqeTayYJ9gT/AEqJJzkMpBzU7Mt3azQPjbJGyNn0IxV2EeQ+HYY57rT8Bopjcx4bPySDcM/Qivc95JrxHwPEZPEOnRb1ZFnJKsfukAn+le3dOBxz3qFuMk4IprDHtTTu68Ubj9aBjlbjGaUECoyCMHpQpJyRUsY8yc470hk46VCz4bk0wuMd6llIlZ8jI5qFmprye+Kgd2z1FQ2OwAc8CpVBNNUYPSpVXIzQUOAA+tOBz9KaFpfu0ASDFKcH/wCtSLginE4HNFhjSOKY2e9Sse2cVGwPaiwiFhnt+dNADcVMeR2FMYYPH50WC5C6buvFRvEc8HirHXpUZ7ijlC5WMKuCsnIPY1g6tokLqWVeD+ldMygjiq8i4ODyKVrA9TyjVNFaNj8uPQ1gMjROUfrXsGoabHPGcAZx0rgtZ0nYzDZyPatIyM5Qsc6p+dfqKs46/SqpUxShW65FWA38q0MxknWqzk9ByT2qaVhVrTbXeDcOuRnCf400rsG7Edms8EkgVMsq/OnU4x1qzpcAlErJzhsDI6U26HlakwYlN0YIceuMVt+G7XzrOQiPDNKcn14FVCPv2FJ+6JBaEt61qQ2KmM7wNgGWz0A71pQaZsIJ6VJqqR2/h+/c8AW79PcV0dDE8505EkknKvIIwC21EOCM5H0r1Oxt4Y7aJo1CoVBGD1yK830SZbMushZCynypVJHOP5eor0TRJt2i2m8gsEwcdua56PxM2q7I08Dbx+lLtJB4pitkYz78UKxLAGugwHFMdDnHUU8WPnD5lAFTRKpyfT1qwp7DNZN3NYxM06dIn+qbB7CszWdQ1DRbKW4WDeUQ4YdjjgmunB2nJ5z3FO+V4yjKCCMEEZBqWWeQeC7o2+r2c2Y2d5cHj5juJBH9a9qAB681k2ugaTa3Yu4NOtopweHVACD/AErWByPpUJWG3ckwMcZNM2jPIoD7TjFAbnPGaAEIz0PFM5z16d6lw3UimHH51LKI3PfrUL4xwCDU7jio2BA6fjUMpMrsPWq0mQasvkHmoHOc96xkWi0vXp1qQKelIo/OnH9asQuOOaMikGSM0hJBoGSL1zmnk5NQb+elOD8c00BJyaQe9Jn8qCRj3piFPHaoS27jmnAn1H1pDx0PJ9KYEbZXoDn0pDhxnHNPYY9c+tRgspJxQIbgqf6VFJjPrU7AMM859DUTLnjG6nYRVcA8cc1Qu9OjuIyGUH0NakkYU/dwMdaiVC6kgcUrBc8o8TaU9hOsoH7suBkVj7+TXsWq6Db6vYvbSfKWGVYdj2NeVaroOpaVffZZraR2biN41JWT6f4VUb7MiW+hQSJ7q5jgT7znH0966uO2EMaQouFUYBqx4Z8H3luxvdRQRblxHGT8wz1J9K6C50weSyx9OlbLQhq559rcZF7Cg2uTHyPTmus8JIo0KP5gziRs4+tcjqVrJaamy3azKDwrr3HNdJ4TjlWwdiHijZsqH6twMmlCXvXCS00OteaNRgZJFUNbkEvh3UAy9IH4H0qwEJAJGTUV2hfTrmMLkvC4Ax7GtnJWM1E8+0yZksZ4yEktyMsp+8nowrv/AA/FjQ7YodwYEn65NeaWsYSAzxyA84dD1X3Fev6JCseh2QK7WMKnA4HIzWFPR3NZq6sSR25HXI+lTINhwo61IYn6d+tKEIHIrRu5KikORdwB5zU6A8/qaaihfmznHanjJOKkof0A/Snb+M9SKiOT97n6UAEjHYdKTYEu4sMHj604FlXkmmqSDjvStxyDz6VLY7EmSSKcSelQliOR37GgEnn8qm47FgM2Bmlx61D2604M2MGlcdhTjBJ6VGxVjjmlZiBzUeRnNSykMcDOAarOvNXGAOD3qGSPmspItEuT9KFPJzTVbgU/HGasQoJ6Ec0059aOnejODzjmkMM57UqkA80Y9PrRs49TTAd5g289PWmjGc5o4HOKQ80xCsRSAkdeMUhIA5yc0m7PY0xDmbH/ANemg4BzS7s85pGByMAc96YhNxIzyBQBwSM5p2ODmnYx0piYwKf4ufrSmNREMd6cFOc5pGcjjNMRGu5ewpWUM2UOB3Bo52mmbWGcHrTQmNngTjHLVXNsuDu6emKsDIGCMY608EEYx7VaZJj3NkhQ8AnsCM1SeExAbRiuiaEEZAx3zUZtVxnAP4UrdgMFXOORg1YhePA4BGcVZms1JyoBNczrk1xpULzR9hS5rbha+xwQZY7iQIuCHIIx/DnoRXt0ZxCgUDAUYAGK8Ws4ZlVnxGwJ2ly5GDjPSvYtMme7062mYfO8ak/X1pQZUkX0c9GA5pxhZjkdRTNmO/4VZicdCefrWhJEsRQYxzQOGPrViUADIOahUFueM/SpbHYNhXk8k0DLYFPK8cnmm428Z5qWxit8owOaRWoPz8nikHBqWykh3B5pAc9KPvHmncY9akaQu7jnrTt34VXZiDxSF8VLY7Ervzz1qI9eDxTd4OD3oVtxJBpXHYeG4zilHzY44NMyc9KduVRnOKQz/9k=", "path": "images/5pts_ADE_train_00003558.jpg" }
depth_point_63
images/3pts_ADE_train_00017843.jpg
ADE_train_00017843.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 49 y = 202),Point B is located at (x = 218 y = 213),Point C is located at (x = 310 y = 218).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_17><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_53><DEPTH_70><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_16><DEPTH_7><DEPTH_70><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_45><DEPTH_82><DEPTH_17><DEPTH_67><DEPTH_70><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_45><DEPTH_28><DEPTH_70><DEPTH_67><DEPTH_17><DEPTH_70><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_45><DEPTH_85><DEPTH_0><DEPTH_22><DEPTH_75><DEPTH_17><DEPTH_67><DEPTH_17><DEPTH_72><DEPTH_70><DEPTH_36><DEPTH_82><DEPTH_40><DEPTH_45><DEPTH_74><DEPTH_30><DEPTH_2><DEPTH_44><DEPTH_76><DEPTH_63><DEPTH_74><DEPTH_9><DEPTH_61><DEPTH_43><DEPTH_31><DEPTH_69><DEPTH_40><DEPTH_29><DEPTH_31><DEPTH_3><DEPTH_32><DEPTH_33><DEPTH_66><DEPTH_82><DEPTH_74><DEPTH_74><DEPTH_29><DEPTH_74><DEPTH_64><DEPTH_36><DEPTH_55><DEPTH_14><DEPTH_0><DEPTH_1><DEPTH_1><DEPTH_0><DEPTH_41><DEPTH_2><DEPTH_41><DEPTH_57><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
3
[ "B", "C", "A" ]
<DEPTH_START><DEPTH_17><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_53><DEPTH_70><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_16><DEPTH_7><DEPTH_70><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_45><DEPTH_82><DEPTH_17><DEPTH_67><DEPTH_70><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_45><DEPTH_28><DEPTH_70><DEPTH_67><DEPTH_17><DEPTH_70><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_45><DEPTH_85><DEPTH_0><DEPTH_22><DEPTH_75><DEPTH_17><DEPTH_67><DEPTH_17><DEPTH_72><DEPTH_70><DEPTH_36><DEPTH_82><DEPTH_40><DEPTH_45><DEPTH_74><DEPTH_30><DEPTH_2><DEPTH_44><DEPTH_76><DEPTH_63><DEPTH_74><DEPTH_9><DEPTH_61><DEPTH_43><DEPTH_31><DEPTH_69><DEPTH_40><DEPTH_29><DEPTH_31><DEPTH_3><DEPTH_32><DEPTH_33><DEPTH_66><DEPTH_82><DEPTH_74><DEPTH_74><DEPTH_29><DEPTH_74><DEPTH_64><DEPTH_36><DEPTH_55><DEPTH_14><DEPTH_0><DEPTH_1><DEPTH_1><DEPTH_0><DEPTH_41><DEPTH_2><DEPTH_41><DEPTH_57><DEPTH_END>
49
202
218
213
310
218
null
null
null
null
82
35
55
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDQRKsIgpiCrCCtzEkRKnRRTEFTLSAeoAp4FNFPFADgKkApgqQUAKBTwKaKeKQCgU4CkFOFAC4FOApBThQAuKUCkFKOtAx2KUCkFLQA7FFFFIYUuKKKADAoxS0lAWExS4oooCwYpMUtFMVhMUmKdSUANIpuKeaaaBDcUhFOpppgNIppFONNNAhpFMIp5pppiIWUVGy1MwqM0AQMtNK1KwphoAx0FWIxUSCrCCkUSqKkFMFPFADxTxTBTxQBIKeBTBTxSAeKcKaKcKAHilpBSigY4U4U2nCgEOpaQU6kMUUtJS0ALRRRQAtLSCloGFGKKKAEopaKBCUUUUAFJS0hoAQ02nUlMQ2kNKaQ0CGGkNOpppiGmmGnGmmgBh6VGRUhphpiImFMNSGo2oAykFWFqFBxU60iiQU8UwU8UDHipBTBTxQIeKeKYKeKQDxTxTBThQMeKcKaKcKB2FpwpBSikA8Uopop1AxaM0lAoAdS0gpaEACloooAWiiigAooooASiikoAKKKSgQUhpTTaYhKQ0tIaBDTTTTjTTTAaaYaeaYaBDDTTTzTDQBG1RNUzVE1MRmJ0qZaxv8AhItJTg30WfbJpR4n0fIH2xTn0Vv8Km6LszbFSCvPL3xxqUNzL9mtrc26sdhYEkj16itTwv4y/ta5NperHFO3MRXgN7c96LodmtzshTxUYNSLQIkFPFRinigB4p4pgpwoGPFOpopwpAOFOFNFOFADqWm5paBjqKSlpAOFLTRS0AOFFIKWgApaSigBaKSincBKKKKACkpabQAUlFFMQlIaWmmgQ0mmmnGmmgQ000040w0wGmmmnGmmgQw1E1StUTUxHhglIHyxovuxprXYUczHH92MVVEeetO8uubQ7NSRLpJn2KjAHux5NM2PbupBI5yrCq5BilyPrWogWaPBHB5HtTvYnlvoz0vwhrE2r6UTcDM0LbGf+/x1+tdIvSuZ8FWD2OgqzsCZ3Mgx6dB/KulWtjJolHanioxTxQIeKeKjFPFIB4pwpgp4oGPFKDTc0oNADqWmilpMB4paaKWgY6lpuaWgB1LTc0uaAFopKKAFooooEJRRRQAlJSmkpgIaSlNNoEBpppSaQ0wENNNKaaaCRppppxppoAaaYacaYaYhpqM080w0AeDDpTsUgBA6UorlO6xBOvGfSrFjJ8uPTimOu4VFbNsm2nvx/hVLVES0dz23So/J0q0j/uwqP0q+KoaZcpeabbXEfCyRg49OOlXhWyMHuSA08VGKeKBEgpwNMFOFAyQU4GmCnUAOzTgajzThSAeDS03NLmgY8GlpopaQDs0opmaWmA+lBpmaXNADqWm0tAC0UlFAhaSikoADSUUUwCmmlpDQA00UGkoEIaYTTjTTTENNNNKaaaYhpphNONMJoAaaYTTjTCaBHhokU0blPaoelPFch3jiM1UkUrIDVwVFOmVzTRMldHongHUftGnTWbH5oW3r/ut/9fP512IOK8j8G6h9i16As2EkPlN9G6frivXAa2T0Od9yQEU8EVCDUgqhEwYU8EVCKeDQBLkUuaizTgaQDhTgaYDSg0DH5pwNMpRQA/NOzTKXNADqWmg0tADqUU3NKKAHUZptLmgB1FJmigBc0lJmigBaQ0maM0CCkNFNJ5pgBpCaTNIaBATTSaCaaTTExDTaU00mgQ1qjNPJphNADTTDTjUbGmB4QDT1NRCpAa5GdyJhQ/IIpoNLSGQQMYrgYODng+le1aRejUdKtroHl0G72YcH9a8TmG1g1eifD/UPMtbiyc8qfNT6Hg/r/Otos55I7YdakWoxT1NWZkopc0zNKDQA8GnZpmaM0DJQaUVGDTgaAJBS0wGlzQA/NLmmg0UAPBpc0wGlzQA/NKDTAaUGgB+aWmZpc0APzSUmaM0ALRmkzSE4oAWim5zRmmIWmmgmkNACZpDQTTSaAAmmk0E00mmSIaaxpTTTQIYTTc8UpFNNACE1G1KaaTTA8HpwpBSiuQ7hJSwTKnkVJa3Ssm2T5vfoRTcZFRNCCcrw3qKaJknui3cQ5j3qdyf3h/WtHwpqP2DWYHY4Qtsf/dbg/rg1kQXLwNhuM8Z7H61aW3SRxJb/ACufvR54P+6f6VS0M5O+57YDTwaytCu3vdFtZpARIU2tn1HB/lWmDWpm0SZpVNMzxTgaAH5ozTQaWgCRTTs1GDTgaAH5pwNRg04GgCQGlzUYNLmgB+aXNMzS5oAeDS5pgNLmgB+aXNR5pc0APzRmmZozQA/NNY0ZpDQAqmlzTM0E0xDs0hNJmmk0AONMJozTSaBATTSaQmm5oAXNNJpCaTNMQE0wmlJphNAhCaYacTTD0piPChS0gpa5DvHD6UoGaQU4GkMcYww6V6BZ+C9LWKF3NwW2qWXeME4+lcLbqXmjX+8wH6168vAAHatYGNQlt4oraFYoVCIvQDtUocbsZ5xmoQc8VCtukd2sqlhwQRuOD+H41ZkX91OBqLdS5oAlBp2aizS5oAlBpQajzSg0ATA04GoQaeDTAkBpc1HupQ1AEmaXNR5pc0ASA0uajzS5oAfmlzUYNLmgBxbFANRk80oPFAEmaM03NJmgB2aM0zNGaYh2aQmmZpCaAFJpC1NJppagBSabuppNNJoEOLUhNRlqaTTAkLU0mm7qaWoEKTTSaaXppagR4Yp4p+aiU5NO71yncTqc1IBUCsRUqvxSGaGkp5mrWidjMv8AOvVAa8y8OqJNetB6MW/IE16SrVrDYwq7krSCONnPRQTXO+HPFZ16+kga08kohYMH3AjIrcuJNlpMx/hjY/pXG+EJrOxkuZ53jiLBUUnjPUn+VVezsSo3Vzvt1eU6bqWs2+txlLmdg0wRlZyykFvSvRP7Y08oxW9gPBI+cVxGgbW1i3diB+83En86TlqhxhdO56bnmlDVj63qUmn6LcXdtteWMDaOoySB2+tYnhrxhcarqAsru3RXcEq0eRjAycg1RB2wanA1CDTg1AEoNO3VEDS7qBkuaUGow1LmmBKDS5qMNS5oESA0uajzS5oAfmjNMzS5oAdmlzUeaM0APzRupmaTNAEmaaWpuaaTQBJuppamk03NAh+aaTTSaaTTAUmmE0E1GWoAcTTSaaWppagRITTCaQtTS1MQE00mkJprGgR4hilGaaDTxXIdw4GnA00U4DmgZueGbiG31mOSdwiBW+Y9M4rvI9SspCFS6iJPQBq8wtY43kIlm8pQM7uauXWpIxZLSLyIyMHBO5vrk8fQVanZGUoOUjnrbwq0/gW513yrzzY5C6sE/c+SrIhycfeLScc9Ebj01dPdf7NtAM/6pc/kK5+PUdUjkgdbH5IbJ7JY/KfaY3DhieeuZGbPrzW1ZZSxgVgVIjUEEcjiiZVJal8yDBp9sryfJGu5ieBUdtA1wxxgIoyzscKv1qyZERDFACEP3mPV/wDAe1QaNljzltVKQvvlP3pR0Hsv+Navg+NW1d5CoLJExB7jJArn8cVv+EJ0j1SSM/ekjwv1BzVR3In8LO7Bp26oQ1LurY5yYNTg1QbqeGoAmBpQ1RbqUGgCYNS7qh3U4NQBLuo3VGDS5oAk3Uu6ot1GaBEu6k3UzdSE0ASbqTdUea84uPGHjGTUbyPTtO0mW3jvp7O382UJLM0ZGVVDKGdsMn3RyW49KAPS91BNYHhHWbjXvC9nqd0kSTT79yxAhRh2UYySegHetrdQA8mk3UwtSbqYD800mm7qaWoEOY8VCW5rC8V6tc6bZxG2IUyMQX7jFctF4s1OOM7pQ+WzucZ49KG7AeiFqbnmvN5/FepTNxOVAbICjFa1r4tktisV9H5h7levtS5kFjss0hNZGmeILTVZGih3LIoztb0rTLVSZLFZgBkniqkt6qqWCMygZzwB+tSudzHPY4FZeoENYOisAXwgP1OKYjysU4U2nCuU7hwp4IxUBYqeehpVfAznr2pWFcnzgckU5csQF5PtzUTMFQEEk98HFOt7pFkO/eoII3Hnb70STUW0aYdxnWjCbsm9/wCv107kzRvGfnUj3qxbQJJukmlWOJevdj7AVWkmhhhMbSLIWIICgED3pqSxlR9eu3FTC7V2b4uMKU1GGl1qrptO70bVl5/MvzXPmBY40EcC/dQfzPqaarYqEdiDwadkimYKxPuqxY3RtL6G4H/LNwx9x3/SqQbNODUJg0dvqGutPaodKnxIJVD70/hPbmuiDfnXmMN5IhiVUTbEdwyerZ6musOranG1spt7WT7RyhVyPzreMrnNONtjoway7bW/N1u6s3EK28SApNv+8eMj09fyqhqWr3trZSCe3jhkkG2MpJuPua5OOKaYExQySAdSqk4pOVnZDjC6uzo9QvLseMofs98wtvk3Rq+VIxzx0ro9I1iDWLZ54EkQI+wiQYOa88s963JcrjyuWB7Ht+tdr4Y+XS2Y9WmYk+vSiMrhOCSujfBpwNQNIFUsegFKsgYAg9RmrMywDRmot4xnNG8DmgCQmlBpm7ijdQBJmkzTdwpoYHmgRLmvJY9b0Ox1OUai1m0tl4hvrp0lFyJlRvJAaFo8JvzG2N54KqeBXqu6uauvAfhm8u5rq40zfNM7SSN58gyxOScBsdTSGVfhpext4PsLTbIsiLK2SpCsPNbkHv1rsd1YVjYWmkX1rY2MXlW0VrJsTcWxmQE8kk9Sa2d1MQ8tSZqMtSFqYDy1N3UwtTWbAoEefeKL+S51KSKVSqxkqFzkHHcVzxct1/KtbxBci+1SaYEbVO0fQViu3yMBipe4yRUJUuOVHU0srvKxldizE8mktwmzBLlicEAdB/XvUl2htmRVbKHkEdD3/rSApvpg1O6htZ5THD888roMkRxxPI+B3O1Tj3qhp39kt4g0KbTRdRMb5Flt7mQSFQHTawcKoIOSMY42+4q9eS32mtaXtpHulWTKoV3hlKkEMvdSCQfUGqKS32o6hpsMGkLZ28E/mJFbRSYBYruclyzHhV6nAC9qBrY9oin8yGN1/if9Oax7yWMIm4k4ZOPfcxqfSpy2mRM5BfgnH+6Kz5Yt0d15hIJVXXB6DB4/M1dyDgB6U4GokkDdMg1IDXO1Y600xzEFTnFRnBAI6Usi7hxUcRzI2egoQnuTE7VGOuKjYljzzTwMjfzyf0oUK7YVgTn0q0YvcZ1YDGPenKSCPrQFGQOOvGaco/DgmmBbhfKAMO3HNS5x3rPVjuHOB161cDBoweprOSN4MmGSCcZx19qBipbcKba4YnBUDH48VApJFTY0TLER5YHuOPzrXW8kmgsoI3IliYqp6YzyKw3uRaxoShO4nJH4U5NQLPiMOjsCPwxzVxuYzd3Y0NU1Bry65cuqDYpPfHf8aht7+6tQVt7mSNSckKeKxzfxq5Vg4IOOlKt6hcfMyqD0KdaEmU5RtY6EKYbZFY5kl/eOT1x2/qfxrqfDM4awkj/uSfzFcg9wZpGdsAk9AMYx2rW0G/FrcSI3SQDj3H/66IvUU1eJ1l5MFtn55Azj2ptjLv2c/wDLMcfjWHrd60ojS0uE3kHeAc8Vd0+YmbGeEjHNamBpfad1o756MR+Rp8k2LUMTjJxWWZlGnqCQN5J6465qWeQm0iA/icfzoA1xJ823vjNO3VnNP/pyID1HP61YedEIDOoZvugnk/SgBzT/ALiVhztJptvcgWayyuFHJJY4xzVISkafM/8AeZjzWBfz27wQ+a5JVThFb39KG7Dirux0OpaxDBps8ttcRSTBcIFcEgnjOPbOfwrDl1p7C9U215Peqc+d5rDYzY/g4+UZPb2rDPzEk5C9lzmmqVHO0A1yzU5yvE9fDVqFGi4VFq79E73Vkm91Z6q3X5NbTeJZDq8c7WwAWFl2iT1I9vanHxA5uklCzKg6oHBB6/5/CufIWTUYUckIwwcH1NSrJbSTTxIkqvCCcluDg4rXmk0ec4wTsdYnim2KjfBOD34B/rT/APhJrHuJh/wCuP8ANAx15pHclDt4NHtJWuN04XsdNb+Ik/tCZprhvspz5a+Ucj9KNV1vT7mxaJJ5Mkg/KhB4rmH8iGCGSW4ZfNHGFJwe9R3SlG8oynHOWAwafPJEckWV79czfuPmQ89MYpklugsFcBDITyv8Q5q2GG0DOcdz3ojRpYpJN6IEOG3HoKXM77D5IpXuM0K2tZbwvfSbI16AtjJp/iFLZtTdrWXfH8o4OQD3x+lNKgIH3xujdGU56U3Ct020c72sL2S3uR/ZxHIzFHZtvy/MMAirVtqdyj5QBBEpAXysk5HeocL9wgDHOKRmw5wO3NZwqzcrNf1/wT0K+CoQw6qRlrp1Wt1qkt1y9b/hpfa0rVFNnKX4aPYWOeqjjiql1qqk3Um0gyBAmfYmsmaRlgk8kYLYU4+tUbiaY224s2M49uD/APXrfmPKcbFGLucVNmrWmKPIdiBy1XwiH+EflSauVGdlYx89qrZKyOM45610XkxH/lmv5VUnsoTdxMBtDZDAD0GRSSG53J7GxEttHuUEEDJIq5/Zac4UdOxI/wAaSL92qqrHAHHNTrK4H3jTJMe7sWi3MyfKOhrI3spIyTn1rp9SmH2MiVwFJArmyqG6AV/kxwfWkNaj4zj7w5NW4yAv9ajWNRjANIzYP40m7mqVi2KUNjJFVo2Y9elOZsH68VNirliZBcW8a7sHk5xnvU1tGDOi+x/kappIcKc8Ac1KsuwlgTkKcc+1WYvVlB4Wa4JCnlz/ADq59nJLjaeJFX+VMiZVlVnGVBq/bXVtLcbc8tOMD8qEORKCDO2TgFz/ADp8ErK+VYg9BjvVQtkk5zk0vmFBkcHsfSszc0/OlIC4Yg89Bz71NBf3cDOImcHgN8mcVhq21Y1V2wmOoz0OR+tSidvNVhIQVJOcHOSME1RN79jVF5N5QQ8xqcgFBjNTHU7iUxOWUmP7pxWOk7DeDKFVlC49hUyyrt4dC314pNvoxpJ7o1k1W4W7Nzti80jBO3/69EepvG0e5EcoxZSxJIzWVub1U/jTtw4z+dF2uo1FPoXJtVETSOsbGWQEAq3A/Cs5Z1BywbJ7lTTrnM7tvjUKE+UqMDNZTR4cAZqt1qZ3cXZI1Dcx+p/FTUe+2LZyM+tZu0jJL457nFOCkjiQ/g1LlQc76l1p4muQfMX7nXPvTEwkzyCcHf8AeGeveqWHEv32+760uJCcbzTsLm7o0t6sMbx9QacOM/OWHuc1VsIPOkcSEYVc9BVr7PCjcYIPHQUuXS1xuprexXuoZJokVWGEJIB96kZ3klVpOWbOamNgrrkHg+1Rtpw8xPmxnNPldrE86vewwLIOjjHoRSSl1ilVP+WibSKmOmuDw5/M/wCNNbT5f75/76NKzve4c8UrWKls8gt0hZcbCT9c1OvAPf05/wDrU77BNn77f99U02lwv8Z/P/61OzvcXNG1hjsxkVhwcUb2547daa0E3m7dx3EZFBguQOufwFPXYOaN7ibmWYsp5GDVCUssDqclWxj0znmrL+bGJXPJQjPFUnm3wsvb0xQkJtMu2A22qe+TVsGq8A2wRj0UVMDVGZIDUTHddxj+6rN/IVIDUSnN259EA/MmkMtA1Kp4rPutQhtBtPzyHoi9apb7y8y0j+WnZFOPzNFhF3WsPaLGGXO4HBPJqg1rIPJAiclEAOFJwck1BdqkTL5byHPcmoRK6jIkYU7DT6mmqZJ8wSKB3A5qKdGQuqnJU8Z61XTULqPG2ZvzpxvpJJd8hO48E9aXIXz66luOM/Y0lP8AEcConYjIboe9KhuZisMYUxAkgF8dfwqOdpIY2M0ezDFcN3pNWZSmrCr8wTaeAOfrU0bAOVA4IORVGKcLHkKSo6n3qe3nD3CjcACpBPpTM7lq0VZHWNlJzxUgt4be8icDlZjwfQGoE3IyywsMHgEe1Oia4lljJG75mI+vNItalmEBlAHZSfyFNmk8gJhgCWGcjtjNMQ4AH8qr3+8LGWDck4yPpUx3Lm9DUilikunRwnlBQQcc5qKzdZpJw8CAIrOCD1x2rNaUKwIfllBNXdOKDzVMqqZEKZY9M1ZkTmWIaal40TAM23aGpkwWSxiuIty72IwTVmTTnfR47SKaJ5FfcSG4PX/Gklt3tdMtYZMb1c5wcjvQwW5mvI0eCznn2zUiM7KCGBBHpTL6J5I0Ea7sHnFWIFKwIpGCF5Bqb6F21G29wy+YXbKBT/MURussgI6VBagzTSW7N5eY+CR34NWIYPs8uwuH75FN7CjqyG8A8lf941FZ8zY/2TVuSHz4kGcYJNNgtPJl37s8YpXVgadxHH75v+udZ8YNaTDNw4HXy/6mqphdEHAz9aaYSWpcim8pXI4JGKj+0fvc1AHLnHOB1qNuDTRLNGa4Z1Qbj8pPerNnu2W+WJ5bk/jWQH+Qdau2cxMiAHhckD3oEU3vLhM/v5P++jWvLLIuhLKHYSbFO7PPWsKWC4J/1Mn/AHzWzMVGiwwuSrOgA46YpiF0e4mmSUyys+CMZ7dah1a9uLe6VYpNqlASMD1o0UFFuNwwARyePWq+sDzbuIr90oORz3oAn027muZZDKwYqhxxjFUv7Yux1KH/AIDVnS4jDJISQQyGshF3ls/LgfnQBuyIzafPIw+aTDfoKwxluMcHOfwroWOdJX/rmKxJInhmAEbMpBOQPWgdtLmgvQUSTxwrudsD1qEi5jUkjIHU4rMvrtJSI3Df8AagRovqGTiDymHqz4/Sqktze7nZFwxwCUAPSqMXkNgK0gDHPI9Kl2QFVZZ3J5b7vWhuwESpc7mfy5A5PUqamSacKVKnnrzTU2oPkuZFwvoev51bt5ZA7H7SHxgAMCefxo5kPlK9xJJcSq2wKFUKBmm+VIV6D86vnypOXht3bdj5crxx6fWj7PauMeU8Z9mDY/l60cyFysz/ACnJHT86XyX9R+dX/wCzwUPkNHIVBbYwKscDPHbt61Q89AcGECnoItwO0SrkjIq3LdpMuWUBlGcnB3fQetZ8ctuzqJBtTPJAzgfSpnWz5aFpmUcZ202CJYtlwPJwHPUKw+v+NPmt4UCxyIqFSSVHHp6VQglMUyOOoNXr66iunSRMqyjax9aTQ4pt2JhMscS+WiMEHChh/Koo9RjhkH7lgVzkbh3/AA96qo4xh8Me2DVhhb3IVpwS0fAKtgsPQn2qbo19lK2iL9nqFo80cQjMRY7clQefrV+5VQxDAEqSOR7Gsy3sbKQq6LcYBzwwP9KffXivePIrOo6FWGOfajQizbMiaBxOQvILYUVqwaJJncbq1YBc7fMApq3URttjReY27JHcj2xSrd2hBDxSoSMZHYD8fanowkpRditLpssUlynyb8/KA4pFtrqO1LMsm/J285/KphfRGYmVGliz1BwMU6yvBHO2NxhDZVfTgihoVyC4luIYYSAwYj5sr7VaRiYVY9SuTWmuowHg459ap3uqQxsqxgDPJO2p5b6F81tTPiublFDRNgyMFOFz1xUsKlZ2yDkkmrVjcS3ETsE4zlioHfp/KnpFEsuZcgYIz3zQ4uwlJXM65uXt4YihA3dcjNOs7uSdyrlSAueBitSTSLW4htw8jAsuVwRzwKINBit5C6SyHIxg4pdB31KDvtlfgfKmc4+tUxcGVG3AA+1a0ljm+liDHBjXnHrurPubA2W5dxYEZ3YppCcuxWViqNjHNIu5lbjoetWLWyN0hxIFYdiKmisWMbEEffIx+OKYjOycAdqtW8jx4ZVBz3NSnTZnCldv404Wz7VHHfvSES/2rLaoo8lZA3cmq9xq7TyIDGIyhyCDmka3ZwFyBhh3qnfQNFdcj+EHimI1W1bMPlvBuzwSG61G2sw7BCLZlI4HI4qrDETEGx09aRrC4N1uER28c0DLMOpRxHzHRsLnIFSrqli4z9nb/vkVSltJfJZRGcnoKjt7SVYzvjZTnvRcLamo+o28ttIqIw+XABFULh4FkQSbiSo6GlaJliI2njk1HdwSNcQkIxG0ZIH1o6hsrE7yKIGVNxL4AFc9JE4l+6WAB5HOTWndPgRBD8wUseayZHkO8t7DOKYi5FauVLbeFjx19aXyQqnacgKRSxzsts7McjdgHPSm75JZJirBVH3dw4HrSGR8jqPc/wCfxqaAnYTk54P6E/0okR2hYrt2gCrNpCCHEiEg9GBxRcdhpZYniL5Ch9x+mT/8TU93KkkyFTkZAP8A30T/AEpt3atLIBGy4GBtc4P+HeoZYpkYs0bhRls444DHr+NAh9mX8wPk5EZPHqF/+vWYJCybXOWHQmt+3hTYT38tl4PqAPwrn5iTNkgAk9BTW4McpO5SADg5wTWhE3yvtk2k87SRjNZmDu27Tu64qeKRY+WABHr1piGiYfxdehqYJ+5aVN2zOOlUzl5PlH3jxzXV6dpdnHF+8ukkdgMr2BotcOaxi2EBvrpYTKYlIJLAc1B5knmvGPn2kgkdwO9dWdEtnOUjB914/lUB8OwoThGGevWjlfYftr9TAS78mcSE8EcitGSGS6jYrAUDAe2atnRbRBlo+nfdUqmKPgSSN+OaTBMz7W0lju2by5I4v4QGBNaDqCvzyS49HUH+tKJGkbaCqe7Uv2Z2ywZHwMkhhxSHci6DC42+ygVGVJOTUmKTgUCGbMkn+VQzWwlkDklSBgYq0vqegozmgDHF3NaSPFA0iY4ODjcKni1S7WQReawMg2neo7+9aG1G4ZAfqKQ2sIPzQKD15XFO4F54Xhit2ZnfyV4284OMVC2ssuBl8j2FSQXDx4CkFR/C39DUxjs7tsPF5cnr0rN3RWjMoapI19LLgn5VHPtn/GpbnUhcQtG2FBGCepqVdNiW9uR5XnBQm3LkdQaZI5t/+YVCPrlqG2KxTtL37ED5Z35/vCpYby7kBEUbEbiflTPU5p6a1OpwlvbR49IqZFq99EX2OmHYuRs7mldgTCO/YZKSqvXnimrAWyxdsr2NMfVr5yCzrx/s01r+RwNyJx6cUXDQf5GAGABzzii9URWbSqMMCOcdKSC8jC4YNnJ6GpWuoSuGbIPUEUXdx6FbS3Mu/wAwblUcVo+SuM7T+dVLULHbjYFBPUg9anaZwcYbHrTb1EtgeACSPhgCT39qeYQozl/pmojMWaM89T/KgzE54bPtS1DQcIl2YYtz94ZocA4w7fnWfeTlXYDcBgH8atQTefCrnIJ7GjUpxSVzIVo5E+eEhlUBSetIVjHXn6ihVbuf1NSBPfj61qZkTLG0ZVVzznBFJMscihVGwfxc9alIG4gk4A7GlWFHB5bg4qSgjJNsBK6lAcYA4xREx3tifnqVFMktXyDE6Ef3XHeols5SwzGi85LA9aLeYXL52SIUYE55OM5qt5N0hZradvLAyc5FSeTIFwpPt81CpcnGeOm4DvSswuhq3U5gl3BJJFTjYME8jrWM4mdy7A7ic5xXR+UCNu9iRyG2A49qcIgQNyjpz9apOwjGsWSFjJIrM57mtJZIJeqg/UVY+zx91XHuKMRr0XP0FFwGLbQMM+Uv5VPHDGv3RimeY2OABTCxPVjQBZ81Iz159qDdTfwkgfWq2DnkU4ZoAkPmOcsxY+5owynkU0ZHc0u7PegB2fenb227dxxnOO1R0maAJC1JnNMzUtugllCs21Ryx9BQAu4bMBfmzkmjNR5546UuaAHZwcjrUjXEjxqjMW29M1DmkzigCQN61KsucB+QOlV91KGoAvxyTJzE29f7p61Ml8jsUfqOzCs0OVPFSCRZOHHPrSauCbRoPaWdx1GG9MYqnNoYwfKf8DSbZFx5b5H91qkivAjYddp9+RU8pV09zMm02aE/MmR61UwU4YEfWuoE8TAZXAPQ9RRJaW845QH3FILHMK/HRad5mfetSfRkIJjIB9qzZtPuY8+nvRa4tRpcjkCl+0SdNx/OqrGZHw64pPMJOA1Owrlozylgd3Q55p32qXruFUyxx96gONisH5PVfSnyhcsyTO/3ip/ClF1IoAGAB2qnuyetJvAzzRYLkiPvGRUoDY6VGMr2qVSw71YgCDOe/SnRIycBsg+1KGOcnn61IGHdR+FIBwGcDHJ9ak2p3SofNQdwKRrlAfU+1AFnK4+UYxSF1XqRVQ3TMNoO33zUZYZ9frQBbeZSPkJz+lMWWTbh3A+gqFWGeeKkxHjl/wBKAHbgerE/hQHH/wBeo8qDwSfwoyKAJSy9s5pAc0zdRuoGSq2OtPDD+8BUG6jJ60ATF8mjd7CowaXNADy59KTNNzRmgB+aTOKSkJoAeDS5pmaXNADs0ZzTc8UZoAdnNGaZmjNAEm73pwaoAfWnbqALKTFeKmbZMgDfnVEN604OR3oAlMcsDbonOPShL/BKvmM5+8o4/KlSYd6WSGOQZA5+tAXLcd0xXJxIv95f8Kes6SZCqSayDHJA26NiD7Uq3nzAyLn/AGl4NLlHzF6VI2Yk25BPcVSk08SucIQevTFW4rhmGY5A4/unrUwuYycE4PoaWqHuc/JaTxHmOqzI2fm4rqWw/ofrVaW2jfO9B9RQmTY5wggcU3J9OK1ptOXcSuee1UZbSSIfdJqhWIRcOx5wBjtU6S70DE/gKhCwbc8nNL5sYG0DaPamBObgL0o84uuVqDdGw4pykInJoAdnnmlDVFmnA0ASqwzyM/jUzXIMPliCJf8AaAOfzqrupQaAJN1KDTAaXNAD804GmZozQBJRmo8mnZpAOp2aZmgmgB5PNO3VH+NKDnrQMk3UuajzinoC7qo6scUATrCPsjTsxBzhR61DmrF9IBsgX7qD9aqBqYDyaKZmlzSEPzSZ5puaM0AOJozTc0maAHUmaTdSZoAfmn7sVCGpdxFAEm4dqlSUiqobNKGoAveYHHNQSQBgWQgUxZKkWTHOaYFVsxMDnB7EVZS+JUCRQ3vTmCyDoPpVd4APu8e1AF2OXI/dv+Bp4nOcMp4rKYshx6VYjuiFww3D0NJody/5m7oKaxB6qKriSN+Y32t6Gk85h8sg/EVPKO9z/9k=", "path": "images/3pts_ADE_train_00017843.jpg" }
depth_point_64
images/4pts_ADE_train_00006862.jpg
ADE_train_00006862.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 79 y = 178),Point B is located at (x = 160 y = 203),Point C is located at (x = 235 y = 217),Point D is located at (x = 34 y = 125).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_19><DEPTH_25><DEPTH_41><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_2><DEPTH_58><DEPTH_78><DEPTH_78><DEPTH_49><DEPTH_31><DEPTH_74><DEPTH_49><DEPTH_49><DEPTH_49><DEPTH_3><DEPTH_49><DEPTH_9><DEPTH_25><DEPTH_36><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_70><DEPTH_67><DEPTH_44><DEPTH_73><DEPTH_45><DEPTH_67><DEPTH_60><DEPTH_59><DEPTH_85><DEPTH_76><DEPTH_67><DEPTH_31><DEPTH_69><DEPTH_22><DEPTH_45><DEPTH_60><DEPTH_60><DEPTH_5><DEPTH_70><DEPTH_5><DEPTH_70><DEPTH_67><DEPTH_58><DEPTH_30><DEPTH_25><DEPTH_60><DEPTH_22><DEPTH_35><DEPTH_80><DEPTH_77><DEPTH_83><DEPTH_30><DEPTH_49><DEPTH_67><DEPTH_45><DEPTH_67><DEPTH_63><DEPTH_40><DEPTH_11><DEPTH_50><DEPTH_35><DEPTH_61><DEPTH_49><DEPTH_40><DEPTH_44><DEPTH_17><DEPTH_71><DEPTH_68><DEPTH_1><DEPTH_2><DEPTH_73><DEPTH_18><DEPTH_13><DEPTH_40><DEPTH_69><DEPTH_73><DEPTH_68><DEPTH_47><DEPTH_65><DEPTH_80><DEPTH_55><DEPTH_37><DEPTH_26><DEPTH_82><DEPTH_44><DEPTH_64><DEPTH_80><DEPTH_11><DEPTH_119><DEPTH_84><DEPTH_1><DEPTH_71><DEPTH_76><DEPTH_45><DEPTH_END><DEPTH_END>. Since point B has a higher pixel value on the depth map, the answer is that point B is closer to the camera.
B
long
4
[ "A", "C", "D", "B" ]
<DEPTH_START><DEPTH_19><DEPTH_25><DEPTH_41><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_2><DEPTH_58><DEPTH_78><DEPTH_78><DEPTH_49><DEPTH_31><DEPTH_74><DEPTH_49><DEPTH_49><DEPTH_49><DEPTH_3><DEPTH_49><DEPTH_9><DEPTH_25><DEPTH_36><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_70><DEPTH_67><DEPTH_44><DEPTH_73><DEPTH_45><DEPTH_67><DEPTH_60><DEPTH_59><DEPTH_85><DEPTH_76><DEPTH_67><DEPTH_31><DEPTH_69><DEPTH_22><DEPTH_45><DEPTH_60><DEPTH_60><DEPTH_5><DEPTH_70><DEPTH_5><DEPTH_70><DEPTH_67><DEPTH_58><DEPTH_30><DEPTH_25><DEPTH_60><DEPTH_22><DEPTH_35><DEPTH_80><DEPTH_77><DEPTH_83><DEPTH_30><DEPTH_49><DEPTH_67><DEPTH_45><DEPTH_67><DEPTH_63><DEPTH_40><DEPTH_11><DEPTH_50><DEPTH_35><DEPTH_61><DEPTH_49><DEPTH_40><DEPTH_44><DEPTH_17><DEPTH_71><DEPTH_68><DEPTH_1><DEPTH_2><DEPTH_73><DEPTH_18><DEPTH_13><DEPTH_40><DEPTH_69><DEPTH_73><DEPTH_68><DEPTH_47><DEPTH_65><DEPTH_80><DEPTH_55><DEPTH_37><DEPTH_26><DEPTH_82><DEPTH_44><DEPTH_64><DEPTH_80><DEPTH_11><DEPTH_119><DEPTH_84><DEPTH_1><DEPTH_71><DEPTH_76><DEPTH_45><DEPTH_END>
79
178
160
203
235
217
34
125
null
null
15
90
38
61
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDSRRMMNw4p23d8j8MOho2FCOwHQjt/9b2qwqicbWwJB0x3pAY91aGMl1HHcelQxit0pu+Rxhx096zri1MLblHy55HpTQyW0s3um2xKWbrgUssDwyFXBBHY1seEtYj0m/ZpUBjlXaxxyPcVd8XXGn3dzFPZOGZl+fAxVCOaWplqJetSrSAnUe1ZOuWm5FuFH3flb6etayU54lliZGGVYYIpNXQ0cYBn/P8An3qxbApL9aS5tms7pom7dD6j1p0ZxWJZqF3EW1eh5qjEGJIbrV2Ftyg1Ylsi9sZ4wARWtKST1Ki0ZhGKYetS4J6jBPFNK47VvOF1dDcbbDR1px9c0YpDXHKBI3gg1XI6jFWWAAqHJyfSsmiipLlI2YHAAJz6UsKgxoONuBgjpU0pXyXyoI2ng8g1HBEqRIiAKoAAFJ7ASOpVgo6DvTlHFA+nFSJ0pWCw5RgU4cmmZyakRT1Nb04XYJXJF9+gqGWTJ9qeWzx0FSW1mbhuBj3r0ZLlgWo21YljbmN2nPUdj3FSnhi3oP1pZD5ahAc4601yAAvfqa4G7sykxFHIA5x/n/D86t2kXnS4H0B+v/1v/Qqpg8Y6k10Gn232eAFvvtzTWrILO0KoA7Co2qRjUTHitCSJqiNSsRUZNAGzoOgtqzs7NshTgtjqfSs7XLNLHUpbaOQSImPmA79xUtrrF3ZWzQQTMiMckCs877iU9yepoEivHC0z7R07n0q+sYRQqjp2qVIRGm1R/wDXp5XaMnrUjK5UKMnk1CwLGrDDcaytT1FbUGGIhpj19FoArWGo7NsNycr0WQ9vr/jWvs2kEdOoI7e4/wAK5SNlb93u+cAEitTT9Sa1Ihny8B4B7p/9agDfGJl2nAcdCOhqNk3ZVx8386cACokQ7kbkFT+oqTIlAB+92I70AZE0DQNuX7ufypN5PetVk3gqw59+9Zs1uYW7lT09qaYwU5qVahWpVpgTrU6niq61MpoAq6nYC7g3IP3qcj39q59FwcHjnGK7Beay9T07JNzCOerr6+9RJdRpmdbNsbb+VbWnXEY/cyfcflSexrExkZFWYJcNhvx96zKNPUdNViHiwCOw71iujKxUjpXRWtyuAsx3L0V/8atHQ0uYZJYcFj2rqo1UtJbGkZJaM41jtODwaYW962bvSpIiQ6EH3rLltXRulaToc2sC+S+qIiwNMfGOaGjcdqicN0wa5JUZp2aDlEdUdGVwShGCAcZFEahEVRnAHGaayO0bDJXI+8OoqURMqgAlsdyOtHsX2FyhkUu/tTRE7H3pywMDzTjh5t6IfI2KMnoKmXLDFSxWzvjjAre03w5PcoJANqep713Rpxoq8tyrRirsybKya4mVDwD3rbnjh0+2KRgFm71emhttMjKpgt3PfNYVzK8jlmPPYelc1eq5MwnPmZQf75Pp+pqIqS2TU5GTxViys2vJtg4Qcs3pWCRDHaTYmeXz5B+7ToPU1uEYqVI1ijCIMKowBTGrRKyJuQtUTdKmao2FMRA1RmpmXPaoyhJwBQBEFZm2ryTV6GIRLjqx6mlht/KGSMsamxgfzpAJgAZNMYFjTuScVjanquN1vatz0eQdvYUgE1PVBDut7Y5l6M3Zf/r1zzLkkk5J5JPep9uBUbUCMu5cpd7lJBAGCKv21yJ1AkIDk4HoaoXY/wBJbPoP5U3H7lMf3j/SkB0ljfyWLlSC8B+8np7iugjeOeISwsHRucj/AD1rjrKZ5o2VznbwD3q5a3c1hNvjOUP3kPQ//XoGdUCJAFY/MOhprIJAUcc/zqK2uIryLzYTnsynqD71YUhxhuvY0xmXLAYXx/CehoWtN4xIpRxzWfJG0L4PI7GmA9amWq6mplpgWENTKc1XU1MpoAzdQ03AM1uuR1ZB/MVlA5P+FdYGqhe6YlwTJDiOXqR2b/69RKHYpMzredkGGwQeo9a0rK8ubf57aTcveMn/ADisdoZYpDHKhVvQ1ZhJQgqefbrWeqGdXHqtjqYWK4TyZsYwwxTZ/C7yKHgZXU1hpNHKdtxHn/aUcj8K1bG6vbUbrK68yMfwE7v061tCq4sabWxRvfD8sBxsP4CsqXSyrc8H0IxXcR+Jn6Xunbv9uPn9DT5fEHh5+ZYWVu++I10rEPrqWqslujz2502VLSVo9pfadobgE0+Gwc26EujYUAsvQ12l7rHh+bS7v7MyNcCNjHGykbmxwKWz1Pw7bafAkmzzhGvmKiMfmxz29apYl31Q/avexyMOkmRgFySfQVoWnh2a5YiOEjHUv0roX8S6fHGBZ6bLI3YlAo/Ws+fV9ZuwRH5drEfQZP51LxL6A6rHtpFppcCy30yZznaKrXOvyzDyrNDHF0BI5P0FZswiEm6ad7mUdyc4qBpnOVUBQfT/ABrmnVbZne+46aYlssd0n54qpIx57mpSNvPf1q5a6U85DzZjj9P4m/wrOzZJSs7KW8k2r8qj7z+n/wBeujggjtoVjiGFH60+ONIowkahVHQClPNaKNiWxjUwqTUhwKaaoREUHemkVLtJpPLz2pAQEVYhg2Dcw+Y9PapIrfbh2H0BqYjg80gKzLj61EefYVNIQMkkBRzk9q5jVdWNwTBbkiLozd2/+tSuA7U9W8wtb2rfJ0aQd/YVmBQBUaipgOKQDCKiYVYIqFlJ6DNMRlXQ/wBKf8P5UhX9xHj+839KtS2rSuW+7Kf4SeG+h/pUTIUiRWGCC2QfwoAs6YMxyn/aH8qssMimaYn7qQ/7X9KsOtJoCGCeW0mEsLYPcdiPQ101lexahFuT5ZB96M9v/rVzBXFJHJJBKJInKOOhFIo7QHcNrdexpskYlUqw5qlp2pR3ybHwlwByvZvcVoA5G1uvY1QGayNE5U/gfWnK1XZoRKpVhhvWs9gYn2t1ouMsK1Sh6qK1SqadxFoNUqmqytipFf3p3AnkjjnTbKgYe/aqUmlsvMDbh/dbr+dW1epA/vSdmNMyDGyNtkjKn0YVMkfIIJB/z+Nam4MMEAj0NNNrCw4Ur/umocAuVkuryMfLKzD3Ib+dPk1GVhtltoZPcoR/KlNoR9yX/voVE9tNnqh/E/4UuVodxj3cJU7bBGYj+Fjkn06U+3vgttGEso87Ry24n8eKbJE8MLytwqjcxBzwKkit3eGNlC7SAeT1oswuK95dEfKI4x/soB/OqknmyHMkhc+/P/1qu/Y3PV1X6DNOWyjH33d/bOBTswuY7x44Az6dzUsOnXMpyy+Wvq3X8q20jjiHyRqvvihm96agLmILewgtyGA3yf3m7fT0qwTUe/3oL5FUhDs5o57U0Ek08fWmITae9ITjsalCZ9aaU2+lAEfmkdBUsIZzubp2HrSJGWbLcr7VZAx9KQA3K+/eoHdUjLuQqrySe1TSyRwxNJIwVFGSTXI6nqUl85VcrCDwvr7mgCLVtUa8YxRZWAfm31rJAqZhxTcVIAo5qUDjFMUEnAHWun0rQB5YudQPlx9RH3P1oQjJsNJuL9sRrhO7noK249Os9MHA8yb+8f6elaTzvKvk2cflxKMcDHH9Kzp5ra2B+bzpO+Puj/GrCxzKRK6lXUEHsabNYb05BkUdOfnX6Hv9DVmBatqlBJkWNuIY5VDhgW+hHHcdqdIOa0pIV3F9o3Yxn2qjMOaTGioRUZWp2HOKjxUlDQCrBlJDLyCOorodN1QXIENzhZugbs3/ANesECnhc0DOuH91uMdD6VDPB5oIIw45zVCw1LhYLpuOiyHt9f8AGtYkAbH4HUN6UmMzY0xKEfjnmtTU9OXTzFtuIplkXIKHOKozqrvhztYdx3pRDG3WRz+dCYDN4HejzfTFTC2h9GP4GnC2g/uN+Rp3Aaso9RUiyinrbwjpCx/CrEcMY6Qn8hTuKxCsgrUsZLH7LP8Aad/m4/d7elRxwrjiIfpVhIB/zzH6UXAzi3NM3c1seVj+Bfzpuz2X86LgZTECMl/uD72fSnIcopUHaRx9K0LqFZbV43VCjDDDPUU+2iEdrEg24VAo59OKLjM75vQ0DOeh/KtXb7p+dJtHqn50XEV7+5t5o4lgtjEVHzHruNZ5J9D+VazD/c/OomP+5+dK4GSzEfwn8qQSEDofyrSZhzzH+dM3L/ej/OhMCojsein8qlDH0P5VZVxjG9Pzp4dFH+sTP1ouA6wniglZ5oDKMcKfWoSgklJ5UE5xintOqjh0z9aga7XeMsvXs2aLgWxEFHt2qK4ljt4mlkbCr2p0l5FBB5kpwB0HcmuZvruW8mLycKPuoOgp3ERahfSXr8/LEPup/jWcw4qy1QuKBFdhwaaiNLIsaKWZjgAd6mWN5pFiiUs7HAArpdM0xNPTJw9ww5f09hQAmmaVFpyrNcAS3J5C9krRnkRB5t459ViXr/8AWqjeajFYqSCGlPfr+Vc/JfSXEhkkfC9Tk/zNO40jomuZLxSD+6tx0RO9c/q+oW0b+SGWP6nn8aoX/iCTyjBZkqOhkPU/Succs7FmJZjySTUyqJaIpROzgHIq8i8VUh61fjXitDIikX5TVWOxlvJhFCAWPqcVfkXg1Poi/wDEx/4CaTGit/wi0gGZrhR7KuaY/huPHyXLZ91GP51s6reWtiWlv76K3jydvmOB/Osu38Q6LdEi2v4pcf3Wz/SlZFGPeaZcWXzOu6P++vI/+tVda7JJIp4/kdZEYYIPORXPanpv2SQSxAmBjjH9w+lKwFNQDwRVldUNnHsnJaDsw6p/9aq6jkVS1XJtHX1x/OpYGvHqa5wshK9jjj+VPPiCyhcpLqMCMOCrSAEfhVTSrKW+tWC56AD8wKNY8H6V4jgiZg9nqUK/My4HnJj3HJXPPtg8ipi9SmXZfEmnwxCSTUYQjdG38GqT+NdETrqcZPsSa5y68G6daxi3uLm8dUOVTzAAM/hWe3hHTROgKy4bpH5uWb6+gq24iSZ2tv4rtr3JsmM6qcMw3AD8atrrrrIu+A7T1wcnFYdpDBbQCCFAsEPyjaMAt3/KrABDqWOGc9PQYrJzadkWonYxapYjjz8n/dP+FXI9QtG6Ox/4Aa5WGP8AfMcd81rwIPStURc12vrZFyWb8Fqq2r2YOP3n/fNQsgZcYrPlh5JFOwXNd9SsbhDE5lVWHJC9BSW+pW8EEUMhld1QAtt+9x1/GqOnRMbyErtyG43LuH5U+8jY307NtY5OSowPwFFgL41e1P8ABL+VSLfwt0SSsdI8Y45q0nyqaQFmbVIIxzHL+GKoya5ar1jm/T/GornJArJmUG4jXtmkwLLeJbdi2y3uGAOM5H+NUbvxlY2ODdR3EKtwGI4P41nrHsuDg5HKkfQkf0/Sm3FrFPA8EwWWF+qSDII9/THr2rNSb3LcSyvxB0Vmwss7H2FWV8a6Y9tJOGnCR4DZ4P4DvXLxeHtGs3LmykmQHBXcxdPYjP61s2/hjw9cKslzbG2iY/LGdxlk/wB1c/qa0TiQ0y1ZeMLPWLr7PYw3srfxtt+VB6sewq5dvOgLIcqPUmrllaW1qBplpapY2qEFbOMjdu675m7sccL/AIUzVrd7VhGo+X5h+tRJ66DSKNtez34EkzcrlQo6LjjirEiHHWqmlp+8uQo4EzY/nWmyZ4rSO1yGZ7DmoiryyrGilnY4AHerjxnPQk+grb0rShaR+fMAZnH/AHyPQVQDNP0xLCHc2DMw+Zv6D2qrqWqLbqY4+XNT6tqHlAxRn5+59K4PWtZjsVYD95cN0XP6mplJJFxiXLm8HmZlky7cgdzVGWV5uCcL6Cue0i4lvdWaWZy7mM8nt04FdOkNYOdzSxRdKgZa0pIvaqrx+1JAdbCORWhF0qjDV+HpXYcwsg4NWNEXF/8AgahfOKtaIM35+hoBHjnjW88R+KNcn22mni2sr+50+1/fpHJMyMMqFeTLthk+6P4q4+wuLlSZhmGeKQr8uVIIrovEj6Xd397aXWrxWUlr4j1GeVDFK0hjcwgFNqlScxvwWHOOnWsxdSi1S/1TUiixfa76WcRlQdoc7sfhmpNYux6F4P8AE51Ai1mYJeKM8cCUf4138bpdwMki5DDDKa8ChuBbzJNDJskRgysqAEGvYfDGsLrGlx3iDDg7JBjgMOuPboad7jdiRrFre6aJue6n1HrWT4ghMds5HoT+hrtpYRLFFLjkNgH2PUfpXOeKrfbp0reiP/6CalrQjqdB4asPsyRgjhoi3/jyn+tTXsaOZI5JQPIO6OXobc9g4HPl+jj7pyOlXNNbZd2yAcGIjn0ylcd4j1v+z/GU9rN+6MaK8NwnysuRyCfQ469OxGMEQ1qMh1hYjuF5H9mkB/iGzJ9iFKMD1DLtz6VzsrGJy8Q2bhhWbJJHcjPX69BXRDUpJYWjRm2P8yLb3PklvpCxK/imRXP3SGK5LSo5eQ/dkYM5A6A47e1KRUSeGaOK1UkEBV+VT1P19yeasQAuJZCfmZVbHXblM4/Wsd0k+1KZBjCO2Pwrc05Q0ky4/wCWgX8AhH9KnlaepTZtov78jvgfyrVtoycEVSjiJuzjk+n4muhsrFmj3LnAGRW8djFkUdozgkAlfvVQmtyhwwxjqfeu30mGPyWDYJxjOMcVzesRotywAbbnj0qgM6xVvtMbRnBDdq120mSUXEpBI3E57kE5/wAaqaZGhuAdpO3J64rropoxp7E46UhnDyxeXKcj5vT0oVCxHHXirlwpMpKhSvPQVZ020+0yhcEZ55FAjEuYyvUcACsiVMXMZPbJ/Su21zT1tiNgyCMjJrkJY83i55wDUtDRz9yxjlDKMkyNx65Zv8KfGUuCjqR6g1XupCXyOxYj/vqb/Cq0hlt7zEWSjAkgetc7T5tDZbGiIoZb5Y3tpp2AACwttYex9R6H8O1bZkm0+Py4LeKxeXhEgAlu5fYYyFHuT+FYNjElxdIypvIXBTaGb6gEg/kc/Wtu2mSB2t4Wjs3KkSPBbStcMD2BYYH1zVohmnpdgkZgyyiRZgHCtlVcgkpu/iYD7x9e2BxNrkPmXKoR/wAtGwB9Ky9O1S3fXtHsI/lhjkcW8SEMD8p3ux7ntkepHrjevVH28MQMjzGP4KKZJy+jxZuLsY/5bfzVTWpJFsOcVX0aP/Tr1cYxIv8A6AtatzDkYrSOxL3KumxL9vTcucKTirmp6mIFKRIzSEdhwtN06HF4D/smqWpj/SG9jTGjkNe1G4g427WcZGa4O7ZndmYksTkk967XxUP3kP8AumuIue9ctX4rG0djR8LJ5mqkY/5ZH+ld1HanHSuP8DRedrxTr+5b+Yr1WHTsqOKgZy01sR2rNmhwTxXZ3Wn7QeK5+8ttpNUhGjEcVeiPSqEdXo+FrtOYmJyDV7RF/wBOJ9qzyeKZPfXOm6Vf3lrGzzxwkptGdpPG7GDwud34VMpKKcn0NaNKVWpGnHdtL7zzr4reHdC0rW4bmOyZJb3zJ52EjnfIXJJwW4/DArzc3fkAx2kSxITnn5ifzr0/4maasX2WSXUp75pbZpxcSuCmd38AHAVuw568V5Uw+alGfNpa1jor4b2PK1LmT2eq2dno9d/6vdKwl1cE5Lg+xUV7D8Mz5vhaRyoBF0/T6LXjijivZfheP+KSf3un/ktUtznZ6Co/0GE/7f8AjWF4qAOkTcfwMP8Ax01vdLGH/eP9awfFTY0h/fI/8dNJ7Gb3NuObZrNgAMLtbJ/4FGP61yHxBhgbxZl1JJgU59OTXTM6jUrRmPAdl/KSKue8eBn8QW8p/igC8exP+NQnZlpHO26JbpiEMpPdWI/kcVPGqxksFy3cnk0+NPlBA/WpVQjr+Wad2i7GdL8146kEYibrW9oaebqNwoGcSyZ/BiKx2XfqD/7o/UgVveEGWS/ud4yHaY/+Piod29QZvKii8OSQcnp9TXcaQYv7Pfd2+8WrilP+mMRydzfh8xrpLC6jSxnj8xQ/yjaTzg9TitlsZM1LeB9xkX7hznmuaudzOR17E+/rV+XxTp9nbeVNM24MAxUHgH+tZD6nbSTeYhnKk9dhx+eOlMdjU02zZELlDl+AKnuX2WzIfkZiQFJwTgDpWgl7bm2tUjHzzKSgA5461wuv+LY49bSzm0a4lmgYoHONxzjBGMj9aAOghtJZY2kVccZPtU1kxgulJzkEcelT6TqsH9jzzOrIsQywbt261gwa/ZXOoxQ2zM7tLtwFAw3ofypBY1tenMkrK6ggdOOgrlBDvv1C9wa3L2aS4IlkQIx3DaG3fxHvgVm2qg6mM9NhoYkcRJGVl6Z+Yr+bzCnzqBdRPj5Wz/SpHH70H/aJ+v76Qf1p4BcWzADkZ/QVzv4kbR2Yx7dXfdtwfUHBB+o71YW38yPZJLPKmc7JZcqT7gYz+NWfLPtVmKEEEmqY7IytIXZ4+05iQWGRnAGBtIAHoK7a+G6+IA6mYf8AjprkLGHPjmyKjIUEk/ga7by/N1M9eHl/9BNF2RIydNhK6rfj/bX/ANAH+FbDQlhkioLCMNqt2QOuzP6j+lbJhG3gj8K0jsZvco2cG24zj+E1hakP9KkHua62GLEhOP4TXJ6nxeSfU00M4bxX/rIP901w913rt/F3EsHurf0rh7rvXLV+I2jsdT8L4vO8VlMZ/wBGc/qte7Q6cNg4rxH4RvGvjP8AeMADauOfqtfRUKIUGMEH0p04XRMnY5m+07CE4ritWtthPFerXdv5kZCqSfavMfFU32K5aGVdj4ztPXBpuNgTKEVXIzxVGOraHiuowLAPGK0NHiSa4eOVFeN1KsrDIYEcgjuKyw2BWtoRzdn6UDTs7o80+J+i2VhqNqllaFI5o2kljjkKqW3nHBOAOOg4rz9tOTdxp/53Fes/E5Q2pWY7/Zz/AOhtXmUU88iKyqGyOoAFPkjBJJWNp1qlV81WTk/N3KRsmx8tlGPczZr1n4cRmPwqVZFQ/aX4VsjoteaMbk9Y69S+H6sPC/zjB+0P/SktyGzsW/48oP8AeP8AWue8WHOmhf7zgfzroH4s4P8AeP8AWuc8VMPstuD/ABToKmWxPU0JHIu7UqM/vpv0ZTn9Kg8V2Yu5UkGDJGvH581Jkie2AP8Ay2m6/wC7/wDWqfUCTdJuHBQ4yPzqF8RaORjDBRj+tTBe7Zq9eWPlFpI9uD1GOlUUBI6itLFFFSW1VVJ4JQf+PCtfwac3TkcApI2fq61kQ/NqwwQQME/mK1fCBx5POM2zHP8AwOsn8QM6OI5ndvVm/wDQjTbe91mO/mtzZWrwnaVlDkYXn8j+HNLGQJODnr/M1pQojAspAmPGM43D29cf1rSJkzCjaK80qWKZ4FUalKd2cMq7DnnsOO3pVjQtN05bKaYzXGrXCAbIN7R/J/ewSM9DWRfxTWNvKYwqzXFyJEDn+IPjBGM4x3/2vatOw1OytLc/ZoRFJMCkrXEqr5KBfuhs4PPSq3RWx1NlDGZtO2xXEcEUEjESE5y7Zxu68c1zXiI2mo6kLC2t2+17yjBOSwyMEkH0GeadoHizZYGzvNZ06ERnYkj4ZsDjPfOaxYtU828gu11SxjuLVZzudh++kd/l49AvekB1tlollbWd7pqtMi3MYhmmI+UYzjGT65+tedwWU9p4ok05pW3K5QunG4DoRz6CuohF1dWUOp6iSHjkSXbDJlCmRwffP86rz2EaeJ7e+gmhks/LXy5FlBebGcgL13ZOKbVtgT3uP0CA232iFo7wsp+aad8oe+FGfetW2A/tD/gB/mKl2lE+Zt0jEs/OQCTnA9h0qK2P/Ew+i/1FSxHIlDvJzwvX/wACTREP3MH+zgf+OipMZaXI9f8A0ppg2+VGD2YZ/LFYfaRoi/HyfmJz71djBwAAaqoxUgAE/StO1THzOD+da2Hco2MRXxEshByf6A/412OnW5uNTkCnpI2Sewxj+tcsZgNbTAOAp9fSuu0C4jjvrjcDukkKgj6A1LXvEstWWl/Zddl34ZHQMOOOM/41p3ojkiAVl3KegPasy71OOXUhCiZaIclhxySP5qaljuEvVYx7YtoxsOMn8ulWttCAQBc/Q1xeqn/TZf8AeP8AOuuhLOMkc4IP1rj9UP8Apsv1P86aA4XxhzJbf7rf0rh7o9a7nxd9+3/3W/pXC3XeuWr8RtDY2vAyh/ECgnA8pu/uK9/0Z44IVZT8wHc188+DpfK1rf8A9Mm/pXS+N/Ed5a6VaQwOwjkkPmYOM4HANTH4kkPpc9S1nx/JY6y2lw2aF/s/neazcdcdK818R+Ibby7mea7Rrq5tVjZgc/vfNBIOPu4QflXK6Rf3tzrdvJdSuw+wHarMT8u4gdaq6zYtK0jCTCeaHAxk5JGa3je9mRpbQ9LjPFWUPFU0bmrKNWxgWN3Faug83Z+lY4YEeta+gH/Sm+lAzk/iUB/aln/17n/0Jq8tgERiXdI0ZA5AGa9Q+JZxqVkf+mB/9CavNLITmBfLt45B2Zh1rSeyGhGFuTzcOeP7teqfD8IPCo2MWX7RJyfwrzQrdZ/49IR/wEf416f4EDjwwvmIqMZ34Xp2qENnUynFpB/vGuY8Vkslko73SV0k5xaQf7xrzr4sPnwow9ZU/nSewup2KMjRJMpORJMcH3U1YvJRNNEMAFVYfKOO1eHyeFW0DWvCdx5N2huLqFJ/tCbR5wMbts4Hy4kC9+UbnsPZbT99qLhyBjdwT06cVla0kWtUWXi3Lg8fgKw7y2MLcDKnv6V1EigLjKj8cVn3CxOCrPEfXNa3GjkID/pdy39yBz+lanhXCiBSefsZH5yGqF3GtvNqBjcMPsjnjt2rQ8OAC7jXp/oi/rIayb1Gzfi4lcE9GP8AM1eUhlwwBHoazXmjikyzqASRknvk1YFzCnlhpUBkxsGev0qkzM5CS8mGpXUCv+6Em8ggEqd+Mg9uKz7G9s7u0ltbgbt5ODnJBqVyRqWpN2DkD/vomuQ0+dmlRgBwRz0Ap03qy5rRWLEkK21+8QwSuRznB9DV/Srb7XdyCQoqMdu4DIUeoq7M9lJZBpSsknmbCy5wvtkDNTR3NnEFtoQI45EzLckFvmGSAP5UXTDU6FZ4LDTDY27Yhd8jn5uSOCe9UNHuri31yK2WUiElDtzxkg9PeuehvZZJcEkpvHJ471r2AP8Awk9m/XKofxwadSSurBFaO537N8uahtW/4mP/AAH+opn2qJy6qWymdw2HjH4c0yylV74EE4x6EdxSuQc+QWkkGcHDn8p8/wBKcybxGFwORn35NOjGbiUf7E6/jvY0CRInXzCFAPJJwPvNWPVGiNaC32qD1NaEMbbevFZqahZAjddwY9BIKuR6xpaABr63T6uK2ugKkikayhHJ2tgfhW/arP8A2feSxYEyzSbRs35+RSBjI69K5241fTp9Xijs7uOaVUZzs7AKe9dFpN1tS73nO52bGf8ApklS3qJkdvHcpfJDKsTzywLnK4T78mcjrj2qjpt7b6NdQ2UFusRmnkWQlAm4lyFK+oXGOexFa8NwHv06ZWEY9fvuOf8APesHxbabLi0vbWHMys3zL/CxIOce+K0h0IbO3hnG8xg9AfxrjNU/4/5f94/zrY0ueQiLzTmTZ85HrisXUzm8kPuaBI4jxd963/3W/pXC3Xeu58Xn5rf/AHW/pXC3R61y1fiN47Frw423USf+mZ/pXS3jR3MCxyqGAOcGuW0E4vif9g/0roZGyOtJLS4XKiYGvB1GFFmFGP8Afqj4gnMVorgZPmqeuOnP9K1QcA1g+JGB04Z6iRf61rElnpqGrCGqqmpVbmtjEtAgDitjQD/pLVhhuK2NAb/SWoBHK/Etj/aVoP8Ap2J/8eavMLXyvJXzJHRschRwK9O+JY/0+0fIx9mIx/wJq8ws5ykCDCj/AHkzVy6FImP2XvNKfwr1b4f7P+EUTyyxXz5OW69q8qa69DH9PLr1X4fv5nhRG4/18nQY9KlAdNdHFnB/vGvPPiQs0ukW6W9sbqQzoVgCFvMwQcYHJHHavQLw/wChwfU1yGvXEdvqOlSSuERZyzMQTgY64FTJqMbsqnTlUmoQV2+iPMdF/wCEgudcia50u5MVzq8F9PM1u48tw7ZIPQAhznPoPSvS9Rgku4ligwrm4Lklgo+4O5+tanhr7PcWm4BHBYq3fPC4z+dSeFILbUroG7hinjMW8JKgYZ2rzUwXtJKxUlKm2pKzRhjSrlQAwQ+/mqf601rGRVy3lf8Afa/416kND0nP/IKsv+/K/wCFSLo+lr0021H0hX/Cuh4bzM/beR4wAbez1XAXJtx0OerY/pXSeHwRqqqegs4v5k0zx1FDb3uppbxJEn2e3QqihRksx7VJo2YtVuSf4LaNT+Vcs48srF3url8gtIxxnnpn3rXubWW3mhEylWMYIB7DpWK0mJ2QHALVvaxPumt+uREv8jTRDPNrqb/iYX8RHzFmI9fvEVzdtYaxbIqppl2OpB8o8/pXTtBcXWrXM8EmHRyGEjBdoHTB6Y/z3qcananPm6xbgj/bZiT+AqOaxva5zsMms2zox0q5kCtuCyRtgnHeo/8Aic+UYv7NuvLd9+3Yeuc8VvG4iu7oQ2t9BOxYAAPtY/QGmNNbQ3DRXd3BCyEhlDsWB9MCjn02DkXcx4bPWfMjV7G6EQcM25TwM1vaXIreIrYKM42Z49iKgkv7Dd+51NMdMuJB/wDWpNMja21u2kMvmSOf4fuheoOe9Vfm1E1bQ9OsLKG6e5eQkCOEtx3PpWRaLsvSyjHynjJrY0eULFfhh1hYfpWDby5vznOCDVXMSsi4umyOss64/wCBGqWoQl1KrGZGkjDBVXJPPpWhaDzLt/8ArrMcf8Cq5palfEGlnGB84H6H+tRGPM0maN2MS3s5MLnTrlvZYDWpDBOigR6NeMf+uOK9F2jt/Olw2CMfrXb7CBl7VnkUtleW3iVrufT57aKW3kVTIABnb/8AWrd0y7Zo7/dkBQ5GD6IgrT8Y5D2uP7jj9K5jT5ibHUD6CUfn5YrCrBQdkVGTkdFY3G68DZ4MJ/8ARj1b1OXdag55DCuf0+cm4iA/54N/6NatG9lJgQerrRTWhEty/p04aVcd1Oaz9Q/4+n+tJpMhF5tPoTRfnNw1VJWGjh/GJw9t/ut/SuGujwa7bxmf3tqP9lv5iuHuehrjq/EbR2H6TJ5d0W/2DWt/acSvsdXJxkbaw7E4lP8Au1YA33OP9mpTd7DNiC8gmlEYEwJHXaP8agv9Ej1FsvdTqg+6giGB9eeaj0sFb8ck8Gtrym6lyK6qUU0ZyZ0iGpVPWqyHNSZ461RmWxnYTjjucVsaAQblvpWNaBTYXjMoLKy7Se3TpWp4eb/SmHtQM5v4mlfNs02/N5ZO70GWry6EyTQKViPTqK9O+JjAz2fJyIjx26tXmdrzCv78R/7PpVS6DQphfH+pfOOtetfD1SvhNQVK/v5OD+FeUPuBH+mKfxNer/Dwk+FBlw5+0Scg/SpQHRXxxaQfU1xWtSNb+IdLusyuocgRRruJIB6D1Of/AB2ux1RsWcH+8a43VZD/AMJBomDz55P/AI6airHmjY2w1d0anNa6aaa8no/6/TQueERLEs8pZlWRhhOwwAS31OR+VaHw+kLfZ3AzmArj6YH9KoeGXzaknruHXoPkWrHw3YmK3f8AgHmxn1yCaMMuWSQ8VWdabm1bRfckkvwR6UrkEnBp4ZiRhj71E08UADSMFBPGakWVX5U5xXptq5xWdrnlfjty2p6mC3Wa2j+vyg/1qexO2/1DuQEXH4GqPjCQTa/eICDnUoV/JFqzbFVvL6Rn2jzlyfYD/wCvXl1fjZ0R+EsGdft5Z+R5gyp7itIajNqM7zSpGiBikYQEfKOBn1ridS1mKC53tN5KB8s5TeMemByauNrtsfsU9jfi4jVkSdFhaPLMD69hilfVKwW0FvtBs5L+d28xg7ksm87T36VU1nSbKDQNQmhgEckVrKyMrHIIUkHrWjcatALiQsyrz3YD+tZWt63ZSeH9SiWaMu9rKoAcckofeqsLU4HUdJW0sZZE167kvLeytbx4pYtiETLGwVH8wlmHmjqoyFY9q9Rj0OyhKg2UHl7TuOSSW9a8x1LxzLfaBJpaR3qxy2draPHLe+ZAohWMB44tg2MTGDnJ+8w75r0Kw1jfDfTPI00ETqWmK4AyO/p/SiVluNJvY0jpGnBcGyhK/wC7TbDRNPtr+O4igCMp4A6Cq7eJdNMYAuIs/wC+KWHXrRmGySM9eki/40C1OjuLy7twDaSKoc7ZQU3ZWq9rJ/pmeARng9q5mDxNZwxzyXd7IkkpZ4kjiEm35sYPPHAJ/GpNO8RWr3Hmm43Rs5YSS4QgehXPFSnqx20Om05dl0+eSJJR+gNWbBgdZ0Z1yCJ5Izn6H/Cq2mSrNfTyRsHTz5H3KcjBAxipbKX/AImWncEBNTZQfXKuKdP4kEtj0Elu7flSA4yBmqd7qVvYBRKCzHsozj61Tk8XeHbd2hudd0y2mXG6Oa7jRlyMjIJz0INehzxva5jyu1yh4tBLW59EauH06Zhp95uGd0kqg/8AA0rq9Z1rTNWdG0zU7S98pDv+zzrJsznGdpOM4P5VydmEj0iVieZJXYEHj/WAYrlxO5dM07GT/Tox6Wx/9GNVx7nziB/dlxWZZti7gbBANn/7Of8AGpoWOYif4ju/nRS+EUtzV0841RD6o1SXnM5qGwOb9D/sn+VSXRzKacwRwvjU4ntf9xv5iuIuehrtfGv/AB82v+43864m5+6a4qi983jsMsj+8P8Au1ZjyZ2I7Cqtl/rG/wB2nkkT49RUpaj6Gzpqk3ydehrfAYnnn8K5WxZo7hXUbscYyRW7vkEYcrwe2Wrso7WMp7nQo2BTg+arhsVKp4oJGGOU3SuGAQc4zXReHWP2x/pWDurb8OnN230qRnNfE6YC8soyPvQk5zj+JuK4KIW8aDdbiTH96X/61dz8TcNqNhkAjyD/AOhmuSt7eVrdZBJZA4Bx5+D/ADqnqVFaFSSa3kIP2RRgcBX/APrV6n8Pdn/CKjYm1ftEnGc+lecyR3ATeZbTbzwJ8n8s16N8PJTL4VLEYP2l/wCQojuNrQ6aW1huoY/tF0LeNCSTtLFvYCuX8SDSoL3SvskM5uFuOJpnAyMHPyiuo8ozoib1Qcks7YAHua5bxKLCPU9KWCZ55llZmbbtjwFJ47mom9CUtSl4alK2dwPvBRnHuIxUvw+l+ylpTk+Xcyrs9iMk1neHJwtjcwlhueWPgns0Yyf0qtpOtQ2UlzZqz+fNePtWMchSuCT6DmlCVnfsVa+h3Op68NRZolfC44A7UzQtfni1COCdjIGGwIR1PbmuZmtZB++ibzIQAG2Nkg+/tUC6pDa6naTSySxusgw8WNw9xmsYTl7RS6m01FRcQ1a5+269cSkEBtXY4J6YVR/SoNYuC+n3iMBiVm3YPb5apWlz597HK7sd+oyyEnqcjrj14o1dnnt/KhXd5jYb2G7Ga0k7yuZLYx9E8KXGsoJzItvabtpmcE5PcKO9S6/4NvNBhW6MqXNi2ALiInAJ6Bh1Fdjb3UdtZQWkW1YY0CqoPb1/nUM0xEMtnMWeynG1o+xB61l7Z3NfZrY838pdoJTryM1NHDGykGIOCMYXg59qpX1uLa9uIZZHAifYMc5HapdP2FJ/sxdZyoCu5A79B7mt6k7R5kPC0FWrKm3bf8Fey83svM3oryxjnklI+zTQxhY1WP8A1nI+Xjocc5qzp2sSrHeW8K4WUuyj7u7Pt3rFllG2FLnaZwxONwO0e9W/PVpgsQBk7c1gn7SOpriqX1atyx7LR6NXWz81/VtjS8MaPb3d+o121Jtp0by3h+XaykDn86Z4v8KJoUyTWr+fYzcK5Ayh7q2Pbp61r6ReRXGl+Xkqw+Xax6Nz09Kh1aRZtFvLeePc3l7056MvIP5Z/OqVRqWph7O68zhxHCDyARnt6Uxo0J4Vf0qooXYXeVl56AE1IqiNz828HGN3vzW5ke1eFZAbCWNSBGJxnHptHH0qSxeSO8cFdrw34lUP6A8n3rJ8PT/Zbafj/loB+nX9Knub3bdR3ZOQThiBntisOez0NFC+5pXeuG4uZWlzveQ5GOAOgH5V5f4tj0+wv7rVZ7CLUWub37OqSySKkSxwwsT8jKdx8wAZOBtPB7drqFxBcQs8RzL9CDxXCX//AAkMWqXs+mQxGzleNysyQyqHVAAwWQHDDnkAGinK83KQ6kfdSRt/DOCOO58TrBFNFDHLGiJcYEiDMoAYf3hjn3roUdf7EiC9TcSKRjptlP8AhXKeAhe6fq9/b6nCftd3JHIXmYFjjeWOc853cmuhtZA+h2/J5uJ2P18xq2m9DCK1Oq0HUmiVbQwQyxvahj5keSPmI4PatprDSbloSvnWWwEZB8xT/UVz2g3sEdw8DWiyt5AxIGKlDnoPWunjt4bnYtnN5jkZMbDa4/xrWl8JMlqQpo8lpOLiOeGe3GRvjbkZ9RVO5/1pq40TwXOJEKsOuRg1TuDmQ05AjkPFFmt3LEM4cIdp/GvPb1WjZ0cYZTgivStccC7jH+x/WuE8SxBLlJF/5aLyB6iuaotbmkX0MqxPzt/u1Kf+PkVFYA+c6kchalfi4FZdSjS02QJdqe1XPEFx5fh27dHKspG0g4P3hWZakrJuHUdKyvFGpOypp65AGHc+vpXVSM5HpZbnAFXLKyubxglvDJK3oik10kdv4b04/LHJqMw9fu/4VK/iC8ZfKtkhs4R0WJcn/CjYVmypB4Rutnm308FnF33tlvyH+NaNpFpFlmGylmuJ26zEYXismVpJ5N0rPI396Q5/SrFkpFwhJJ61NxqPc474kkf2hp+f+eDf+hmuCjcCNAMdK774hx+bqOn84xCx6Z/irkZEjkyUktSO2AoH6UM0jsUSxORnNeq/Ds58Lt0/4+X/AJLXmJhQnAktiO/zgYr0/wCHyhPDTqGVsXL8qcjotOG4S2OkOWtnUdTkVxniWEwalp7Z3OVl4HrsIH8669H+Uj3Ncj4pKSa1pcUg3JIzxkf7wwP1xUy2JW5xkmoPpqSuse7MiRjJxg7e9bGh2LWeoak94UmmMgj3qDjJGSBUOkWdxqcE9itqZY1urVpXCD92qEhjn3C/jmr+pxvpurSefJjzj5gxnIUk9R36VlN+7oaQTbuWJZpLX95bt8vQg9Oa5qdGl1NnbcY1TzAQffGB+P6Vp/blIO5CF449c1XuHjjimP8AAVz+Oazpu0i56qxBp20Lp7DgmaWRjn/e/wDrVoTPssYlAUGSYKWPX72cVl6YQRp6E4xHKefrUmsSFdLjwSCJScg9COlarcyJWLxAOdow9XorpthEpznn6VgW93JcQYYsfVsd6sW4nKEYxED96suU1cjE8SwD7dJPCwdH2FsHlTjHI/CqBsri0lkSULtXgkNkdq1Jba0k1B3klJbOCAcZFF3a26IWUNsGcAnPFdSdo2Mb3lczUiLRvMI3kjVgCw98/wCFWbK4WEC5lJKKwO1QMlabJJAoQRqyADY4GRkHv+VSi2tl0WZHCm4TJWTPPsOKjfcb0Zp6Ndxyy7lUh9mXJ9c4H6Zq9qF7C1vKJTtYxlV92IwP51zWiJLJIpU/Mx24K/yrfm09JYR50hLE4+U9MfzpSh7xSlpc49baa4HlRRlnUMxHsBzRkmVfov8ASt1tClZbmWK7MUq5Krj74YgEZB44NU47GW2febU3EmAFH8KHjlh1P0rXyMrnZyM8KEruC8kkE+tWIbhbm38vdmQAHPvWKDJao9pNcGZ8bt54zn0qxZ3OI84wV4I9a53a9jdPQkvL4W1vJkfOGXkduec1WjzcXkQbAVnG7dyMjnH8vzpwlt5dQghyS8z7Ci8YB4zn610Y8OXc/k2VzbQxrCwZrgS546HaAM5we/HX2rGfMndHpYKlQqxftH26pWXVq+78v+HWXd241S+CyKI3XJR4QQynHGOah8KtNeaG6ycGKdyTjqOuB+Oa72TwzbFmljeJCoO5hIOMj0NcXaJb2WnS21o7PCu47m4LEnkmuidRWsjy409bs66z8p2jnMQicw7AFHU5zk+pOK0gpKKxAI7Vzun3sUyQojYZdo2seT9K6G2b7g9GrbDybRnVjZltZ5pol82V5Agwu45IqjOfmJq8SNzYGOKoXBwTWkiEcX4qufJvYBnGUP8AOvOb+8e91GQSThFjPy7j1NdZ4/1GSC+gjjYqTHyR1HJrhYp4E1JJ7uGW5i/iw+GP/wCqs1q7lxdnc07a5RcOANxG3rnirBkjlYMSQR6VUubjw6+DZf2hbSEDO/Dgn6H/ABqCKdVlCMGIJGJQMYHuv/16icddA5rnV2MKyRI4HHrXJ+K1Ua/L8vAjTGPpXcadbPbWwjYqxB6rWNrfhe71PUXuoJolDKBtfOeBW8WrGfU9SQEjb0HovArRsdMuLnmOP5f7x4H50jalpVidtpC17MP434QVVudSvb8YnnIj7RR/Ko/xrMvU1H/suwOJpTdzD/llD90fVqUbAwdECbmJwO3tWLCoLqqjAz2rVzwv1pXC1jiPH7f6fYnt5Dj/AMerkra7jSzRTZ2jHaOSjZPv1rqvHnN3ZHt5T/8AoVcLG4Fsm7HTtSbsaRWhf+2xsuBY2oYHOdrc/rXonw5GPDUw/wCnpv8A0Fa8xEkQGa9O+HTBvDs+DnF03/oK04tt6hJaHQxgGTYWVAWwWY4A9zXKatsvb26CYmW1mDQTBTn8Pauoaze+3QowU5+pPPYdzWHefZ7HXPs9rKJA0WJADnDjPfoT9PpUVPhuEWkzgrrWJNP1aW2tppY0lYyfu3IAJGcH3pft8+qSF3keQooUFh0FQ3+med41htwrbJ90gAIXA2k9+nSrut6K+n2CTWjDyIWw1wH++SR2/HGB6VLhzK4c7i7FeVxCUdiTkc4NQX7rLZtHvZQw4KnB9ari5EkQV+D1Hv8AQ1SefEgjZuxCis4ppltpokil1KyaGVHjuVEZbD8FVzg81qpctd5ilRNqgP68mql7IiWZhTlhGAx/Lj9aXT2LXR7gxiulq1rmF9C/vQPt2AAHqKv3iNHHEekeMLz7Vk5Pnde9bGrH54MdDGDyaEtbibZyEyt9rlJIIJPB6daDBKcEHBDZAzxRJxdSYOR7VJI7i0aSE4m42DqDz3o1ZWxE7RodrgAg8ipFeHOcLnucVS1i+EtwqiIJtQFjtzliOaqQ3jREOnX/AHM5/Olyjtc07ffZXzGPDZXeD1APrirdpNNPqQeWRmPcGqcV1JdXDGSFIlEQwqnr71bt3EmoRsFxhADjvgdapiZ0PliazdwMNEOcHGap2pzcH6f1rTsYw+mX75+6gx9c1l2mPObr0/rQSNRBMWLkhgpOR9apSTS28jBQDuHWrEUmM57of5mq9xGtwzROcKwwT6Vm43ZopWKlpdK98XLf6tHmJHfapwPzxW/9nnj8ODV01W3AMHmtB548wf7IHc/lXKmaa0mkP2TPyGA5PBAPOKu27391YERvaWsCREqp+ZmAGcc5q3CLXvCTaeh0LWdzDHEzanBcq3JEMzNt4zzxUlnKGt5QD8x5IPaqEempY2CXwvp7mSTCEOu1RlS3HJ9KvaNaz3Vu5t493ykFm4APuawqJX901i3b3jV0fbLqFs2GIEoJKr6A5/Cu2hRss0ZLwjGSB9057+lcR4eV7LxCqXT/AClG5U5Ut0/Su2xPb3P2m3bBUAnuGHuO4rpw8bRbMqzvKxaDfOfpVG6+8astereStIsIhbb8yKeM+o9qqXJ+c05bEI8j+Iuf7ctj2EI/9CNck/Qetdd8RP8AkNRD/pgP/QjXIOcDNSihDyvXHFOtxunjBPG4D9ajyNtOhGWGPWq6DZ6TFdqP4lP0q5Hco44INcBFOygYZgfyq/BezIeJM/WsbtEWPT4vmbAH5VfitmPLnA9KSFVj+6MVOH4q7DuTRqkfCipA/wB361XVuaeG+79aGM4H4lXhs5LCRU3kq4xn3rh11WNwM2sXToBivXtahjmaEvCJCAwBwDjn3rFawgJ5tSP+Ar/hWMqvK7WOmFGUopo8+/tCAnm1T8zXqvwznSbw5clECAXTDA/3VrFfT7I53ooPpsX/AArovDs0On2UkMURw0m7jA7AdvpTp1k3qE6EktDbdbmUvDbSGMyZV2H93vXJ+IBbwCNbBzmIHfKp+ZjkdP19v51s3V5vBXJRWyCByT7dax7mG3KNnJJBHTpUTqrZFQoveRhMpk1rTLyLJaFmBEpzuUqeD7dqzvFWoS6jdxSvHsRd8UKxAlSSBnnGCeOwFLexyTRNbJMY5OFVvTnpWT/YWulgsghwP4nZTitItW1ZlKLbulczX3QTtDHL8wOCo5H5VYtryW2mjuDa28hUZV5MgL+opzaRfrefZnuokcoHzGOoJrO1zThp7wL9oknLqdzMMAH2rWDV1qZTTtqjTkfzoDLn/WDdwe/pVvT2BmjPH+r6/jVK2giXRraWOQl2UmRD2OTyKs6ZumuY4YY2kkbgKoyf/wBVJtNk2Lrn95+NX76UyfZ3yc+UAQTmr8fhmVzunuokP91FMmPqRx+tTXHhlvJ/0e7iZwPuyApn6E8UXQcrOFlKmWUY71DFcmJCFwAOcVa1CzuLK4ZZ4nj3dCw4b6Gsls8gHvQn2HJdxkmZGLtyW70ipg9eKQlgcU7J20wJLJ2Wct2PGa1rVsXgPOOmc1lWrAYVh9a07E5nYjGMdDQ9w6HTWkn/ABL7vCPkr99fu4z0IqjanDuT0xyaQSskbKpIDDBwetRxSKiSk8cdTTZBCrAZBJ4TH60sUTSlnOdmMk+3f/PvVV5GVWx3Azx0q7pUU15G8Zby4G6kfeb2H+f61LdtS0rlq/0aeS1Dw2TiIQmQyDHzk8kkk/yrGhj8u0iywTfHwWxg8Vt61NZaY0cE0ko86I4OM47VgSXti0PkRNJ86hCAv3iOM9OtRG7V2aSstIs3dEs7jWSlssjLbxsvm8ghcDqB68kfjXUajdw2kC2FiFjhj4+XvUVkU0jw/Hh/MuJk5fHJ4/p0rGdmc5NZu1w16lm0vo7XUIHm3FDIAWH8Pua722uTbSbx+9tWIYhT+oPY/oa4XT7BL5ZGdMqhGDuxzW/o5l0qUIxEtmWyYywJX3HP6VvRqqKcWOVCTSkjrLiG1+z/AGy1bKO2MqMDPoR/Cfbp6VlXL/M1TywQx7bm1lDQSg4APf8Az+IrPuXy7VUmZJHlXxFmA8QRKRnMA/ma5Qk7RXSfEMZ8QxnHSBf5mubHMdNWsHUbnIAxUlsf3i1EfrTWdogGU4NOw3sbyPleQCPepkjQ8jIPtWPaXzudr4+orSju4vuswB96ycWiLntKtipFNQICxwK14bCK0t/tWpyiCHsv8T+wFUMjtLSa6fESFsdaiBw2PRqivdcmu0NtZobWz6bV+8/1P9KuLZC2sAXb99gN5ajOxfVvSp3HtuZt7MkewOOue/vVQXNoTyh+u6pNQfb5fyg8HqPeswyZB/dr9cVyVFeTPTopezRofaLBekK89+M1Ztrm08s7Iwpz1yKwjITkeUv5VZtQfLP7pealIto1WntTnIyfwrNliXV5ZLe3Igsov+Py8A5A/wCeaerH9KjjhfVLqSztisMMXN3dHpEvoP8AaNPv7mJoYrKwzBYwf6tB1Y92b1Jq7KKuzFtyfKjmtTihW/kWFSkZbMYJyQB0BrTS5SSJHYclc8Vh+JTcRW/mW7EuCNx7kH/IrIs/E0sESQyxuNoxmqdJ1FdGUKipyaexqa1N5d/E8a7S0YXOOvJrC16Z7nTivURsGA9Km1DUEvr62mW42woMSK3U89qH1DTYlOA0hPdyK0hTlGzMqs4ybsYtg8qZ371iJ3AY7nqK7/R7VNKti6ov2mb5pD3Udl/xrk9MkivtYhjX7ineRjPA5rss55NXLczRZN3MT/rCPpTkupFOdxJ9+9VhS0JlWLyy20yNFdW6TQv96Nun1Hoa4rXfC8lhK09mwksW5DOwDIf7p9fr3rqQakLlreSIqHV1IwfpR1uhNXPMPIl3H5ASP9oVKlpOzYCA5OMbhVy6kmtL5oGhQ/N8rbiAw/xqudXeEb1i2nPDBuRWqUX1IfMi7F4fv/MVfKAJ7A5/lTlt5LC4xMMMOxOKqP4ou549g2gYwcjd/OqU15OvzK45UtlRTfL0Erm1NfFGGSACMjj+pojaW9fy7aMyH+8vQfVjwKlt9OtkCvJG0r4BzIc/pWskwRRiMKo6dgK5pVuiN40O5x17eXEV9NYkqojba2zuR710+jXSRQJtGWxwK5TV4yPEMmwbjIwbA961tG3HDnkBsYPern70UQlZtGZd6mJ7+4W9VpQJW2uD8yjNdNosmkz2G2CGH7RGApnkTkHsT6GudWzil8UeRESYzKN2Tnryf612jNb29/PFbW8UYJDMY1ABOP8A69OcklZCgne5Pdz+YY4wRsiUIMDA46mqpOTSk8008VzmhqW8d1p9tbzzxlbS8z5UoPG4HBU+h44q3t56t+lWdLvoVsm0zUIjLp0qhZFA5Q/3x7iqN5a3OiXq2dxKJIJButbnHEq+n1FO11dG8W4+7It294bQkruYH7yk8fX61Hc69AhJMUo/Af41VZs85yapz4GflPNJTaHOmnqcz4oK6nqZmRSF8sLg9e9cuySQErIpx2PauvvUUzH5WFUJIAQeMr7irjVtuYypHN5BXHegr5i8dutbEmnwP1TafY1GlqLdjhcj0NbKquhnyPqZccTA5ApxDGtQwK43LURi/vD8RQqgnTPoGbUbHRMxW4W8vx1P8EZrH3XmrXgeV2nmbp6KPbsBUVhp7TrvY+VADguRnJ9AO5roGNppFqBPGQWGVtQfnk95D2Ht/OlZvcjbYdZWUFlB9qllVVXrcEZAPpGP4j79Kqz6rLeSeTbI0Nop3MvVnP8Aec1V3Xmt3PmzOFiTjgfJGPQD1o1fUrbTbZrC2BM5xuAP3fdz6/7Pak3oVGN2UtRuSjxqpQnBJ3detUGlkYY+UfSs25uXaQOUJcnk06O8LHBj5+tck5Xdz0aaUY2L2XGOAfXmnWP2nVr19OsWClPmubj+GBfr61nK95rGoLpOloBcMMyzE/LAndj71tG5tNKsf7G0jm3Q5nuD964fuT7VUFbVkTm5e7EtT3drbW66bpq7LKI5LH70zd2as2WZc9f0qNpCR9xfrUEjk/wj86mTu7lRSirIpawPMtpMc/KcVmabBFc6QpniV1MhyWAOPpWjqT7LOSQrwqnIFUPDTC7t0TOIwCWUnnOa0jflOeekmWB4Y0543keFx/dAciqEmi6dGrBrVvMA7uSBXT3qMYHKkjaOo9PWsmIKs/y7WOOSev4ValIz5U9SpptjHazsVhRDtxwK1hVcuBLgAj61YU5FVr1IQ8GnCmCniqGOpR+tNp3amBznii1Uolw3C9G46H1rkpVj6byR9K9A1uHz9IuFxkqhYfhXm5YtilEGMiQozZ/OhpVCjLEYPQf0qfbkBR3NVriNo5mVucVqtWZdDRXVrhzFm4KYHJI4Jz3qx585YeczHPIJPBHtWMwyEO3APArQtxcRQjy8vH/cPIqZRiUpSFMLz6gJlb7uMEeta0MMseNmWweMVRivoEPzoYz3GMir8Ws2yYxGGwfU/wCFRJS6DT1uR2dhc2V9NdyAEtyhHPJ/rW5ZEsjsxyd2CfU96zn12FkYIhBPGcE1o2LiSzjkAwGyefrWc092VFroWe9Kg3SqPejgDNSWqlrgEDOBms9kXFXkkaB8xuQQK2NPmt72yfR9XO6zkOYpQPmgfswPpWYsso48ul82YfwmlFtbHVKCkrMjntLjSNQbTL8DzV5ilH3Zk7EVFLEGBGK3oHi8Q2I0fUyY5F5s7rvE3ofb/PpXOTfarG8l07UI/Lu4vXOJB/eHrmnNX1RMJW92Rl3UK+Ycj9KqNAo6cfhV+5kG84Aqk0pHYD2xWSuaNFWS3PUDI9KiMee2astOwORinIFmyV4YckVd2ZONjPlgH3l+Vqi2huGGG/Q1qtEDwfzqpLb47VSlchxPY7zVYtOOy2ZLi9A2+YB+7hHog9aoWVjLeyfaLpnIc5zn55D7e3v2ostMWFPOuwo2jdsY4VR6uew9uprJ1nxE1zutrJysBGJJcYaUeg/ur7V0ydldnLGLbsjQ1bxCLdfsmmFQV+Vpk+7H6hPU+rflXNCR2PA+uepquZS2AOB7Cp45Co461zzk2zrhHlWgkrsAOB+VVUa81G+TTNNQPdyfeb+GJe7GnSveX13Hp2nxiW7l44HCDuSa15Wt/C+nvpWmv5t9Lze3n8RPdR6f0+tJK2rBzb91E7T2egac2i6ZIHdjm7u/4pW7jPp/n1qpBIuDhqxw5UVdtmfbkA/lU6t3ZokoqyNEuMH5h+VQSPgdR+VIWJH/ANaoXY49fwoaC5BfTg2sgZRtPBNc94bvHs76S14G4kgn1Fb15mS1lXA+7n8ua5mO5WDWY2CqRIoLexHpW9PZo5629zqJdTaYMEbG4YyCTkdPoKfboGXfK6ZX5RtPQVjm9CysI4lAb7vbFSxTlYCz8ep9aaXYh7F6a4j34UYGasKa524um8lnjGcjg1paNe/b9NhmJ+fG1/8AeHWrlFpXJXY0waeDUYqQUAPpfxpopwpgQ3YU2kwY4Xy2yfQYrzUrAh5JY47CvSL8A2E69NyEfnXHy6bDGgwmWJ6nrUqSTBmE7FCGAwUwQKtCKKedWPJK5GelRX9rJby7WB2sNyn1FJaTKriOQ4/u56VsvhM+pJexhJYEwBklsD0roLOx4DNgr2wCK5+RJLnVto5Ix+ArtdOCiMRt07E1lPZIpOzEOl210oWeBJPcjn86ibw1Yxo0gt5CBztVzmtYuLdn4B2jofWrYnHA2E4xu9gax5mi1F7mE+h2sdizpApYRk8jP5e9FrgW0YAwNo4roRcxsm2VdiOp5/pXPQ/IuwnlCV/KpvcuxY/hp9s0gkcRfeAGaY3C5qroN8lxq2pIW+VNir+Gc/rTtoODtJGyv208gDH4U4pfFskj9KmM0SnAammdccMalM6bjNl92K/mK22t18VaYljeusOq24/0S6z97/Zb/PvWN5zH1FQS3ZgIYu6kHgjjmjmdxShzLUxJTcQ3ktleRGK7hOHQ8Z9x6imOhPbFdfeQW3jmwAjkWDxBaLmKQ8eeo7H/ADx9K46KaXfJb3KNDdQsVljYYIIolHqhQnryy3I2jHoKYFZWBXII6VbJ9T+lM+X60rltD43EowwAf9DQ1uSpxz7d6iJTr/SpY7pchWOD0Df40WM3odFq+svqR8pd0VqDkR5yXP8AeY9zWWqBu5xVdYpD1IzUwjkxhdv505Sb3JilFWRYWJegJ/Ko3WWe5jsLBGmvJThVH8PuarSG5NzHaW6CW6l4RE5x7muwtbeHwhpjRwuk2tXK5lmPIiB7D/PPWmlbVilK+kSvIIPCVg9jZyCTVJx/pNz/AHPYen+TXMkryTz6571POjuxZpNzE5LE8k1AYm/vColK7NIJRQqyA84FWoWH+TVMQv22mrMMeB1Uk+hpFNlouAv/ANeoWfPTj8aVlbAAWomR/Q1RNyK6kP2G4c8ARtj8q4YO8EUFy2WwSAPYY/xrr9WZotJuieP3ZH58VzOpwmHSbBSMExsx/HBropLQ56r1NKxH9oW0c7EorZwv0NW7gCKAouAKo6aWi0y1x0Kk/mTS3UxwcmuiFoxZD2RAXITb2qXw7cNa3X2UnMcucexrMkmY5CjA9a0/CkLS64OpYRsRzyTWUm7BuzrlOakFULG7W6jZsAMrlGX0INXhSQmSClzTR0oz6DJoYIp6lKREEU4yck+grM8oTNgc44zitq4giZWYsTImNw7fT61WiRlmLygIM42j+9XO3d3La0OT8Q4F1FH3ANYdwoWRPcGtbW5BLrUoz9wAfj1/rWVdn94n0NdUL6IyZPptzsuyZG5Zdqmuhtbp4ujEgDLVyEZw2Tye1bVjckxpFKeWOA5PT60VI9Rwa2Z2VvOt1u8wfMPlJHf0NaLRSQRhpgwDqChz/OuWhLrMFzjAGSPaumh1OW5yNyCYKACwGCQffvjNY8pqnbQkUxzEyyHaijccDgn/AOvXK3WrJFrTxBSYmwBjkg/14q94m1CbTbaG1DDzmJc7enJ/X/69c/olubu/e4m5WMZYnuTTjDS5Ep6m/JcJNDhXKhuAwHSq2mRfZPF99ABhZIg6j8v/AK9ST3IeaCJFAjDgZA96tTROni7TpwhHmxPE3HoCRTSsmWujNN1PIIxTY4wT1wR17VdkjKnofyqAqff2rJnQmhuzb3/WopUV1wwBH1qxtOO9RMMZ6/TNZMrQqxkWtxHPDujljIZXVuQa2NX02LxjY/2lp4WLXLVf3kY485f89Py9Kx3JDcg/nTrS+msbpLiBisin16+x9qIycWTOEZIw4Lh5QyMuyVDh0IwQanX5u3NdJrekR+ILX+3dHTZfxj/SYB/H/wDX/n9a5q3mS4jyAQ44ZT1FW1fVExl0e4MoHWoiqmp3A5BBqu2BTQ2X1j/2j+dRyyMkqW9ury3UpCpGvJzTZ7oqVhgQvcSEKiKMnJrqtMsIfCdl9uvAs+sTj5VJyI/b/E/hQo9WZyl0RNY2cHhCwMsxWfW7leSeRED/AJ/H6VjSTPNI0khLuxyzE9TUU1zPdTvPPLukc5ZjTckj7wqZSuVGKSHSP/kVESfekdSR979ah2Hdy3FToWicP7fmKlSVh0wPwqqVBH3ufpTh8owuc/jQgZaMjHnIqJnc98ioSzBehpqiRjnp9TV2RFytriNJpjooY7mUN9M81i+JHVorcLkBVIAP4V0N5G7WxXOT14rmvEAOy3HOdpz+Yrek9bGNRaFxXEGl2w53CNcD8KoySNIcsasTA+WqZ6KBVFyRxmqvqSxrHJrR0K6FjfSXP/POJmFZeTU8JZVlJ4Vo2Xn6UxF3QrqVdUchuJAzOvr/AJzXXRTK44P4VzmkW8EFuk+D5si8t6D2rV2rMNpOQR1B6UWXQm7W5pPNHGMu4Ue5rJfXGj161hX5YVkAY5+9kYH4c1VeNYZiHzjnBJrL1dCJYpR/EuNw9RSs3oxt2V0dxqFwFRA7feUqUH97OQ341UlZYbcSOw3lssD6dzWb4d1M3O+O4be8fIDc5/yaq+J717aF41YBp+AB2Ws+TWxqpXRy7zGe7mmPV2LfrUFycuv0p0Y5qObPmD6V1WszDoNjcJuwo3ngE9qvW64h5Gc1WEfHQ1ai4iA5pTYJWL1nqTW5EcwLx9AepH+Na/nJLCCj5B54rm2Uk8HBpYnmhI2OQe+KzauaIu63O8s8W5icJ3+taFqggs0iHA6t7mufM0ty7NKdzKdowO1aiSSOAjH5cYwKmSdrBGzY43WzUYFUjCzIxP4iuxsJXu9UkuGwRGu1c9q4W+j8maJ8Y4z+Rr0fw7bh7FpsAb2Joa0Vik97kk7u2eAPpWdJMw781sXEIXI2jFZsqAE4VamRcSoLxzIFZwFPfFSsG/56j8RTWH0/KoXP+1xXPI0QjrLk4kWoTDNnIdPzpGx70z5RyCfzqSjQ0u8vtKvUuYSD2dM8Ovoa0PEegx3sH/CQ6IvJ5uLcDn3OPX1/OsVFOMgmtXR9Vn0i78xSXifiSL+8PX6itISM5xvqYEcqTxh169x6VHIgPeuh8T6Ckaf27owDWsnzTRKPu+px6eo7GuaV1mTegJH8qrltqgjO+jP/2Q==", "path": "images/4pts_ADE_train_00006862.jpg" }
depth_point_65
images/5pts_ADE_train_00011025.jpg
ADE_train_00011025.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 181 y = 152),Point B is located at (x = 241 y = 134),Point C is located at (x = 90 y = 105),Point D is located at (x = 89 y = 219),Point E is located at (x = 14 y = 152).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_17><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_67><DEPTH_5><DEPTH_17><DEPTH_17><DEPTH_67><DEPTH_3><DEPTH_2><DEPTH_1><DEPTH_1><DEPTH_60><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_59><DEPTH_17><DEPTH_28><DEPTH_19><DEPTH_76><DEPTH_63><DEPTH_64><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_51><DEPTH_22><DEPTH_32><DEPTH_44><DEPTH_78><DEPTH_36><DEPTH_41><DEPTH_33><DEPTH_5><DEPTH_5><DEPTH_84><DEPTH_17><DEPTH_73><DEPTH_78><DEPTH_64><DEPTH_64><DEPTH_45><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_13><DEPTH_17><DEPTH_26><DEPTH_46><DEPTH_44><DEPTH_44><DEPTH_41><DEPTH_62><DEPTH_6><DEPTH_17><DEPTH_5><DEPTH_17><DEPTH_83><DEPTH_2><DEPTH_25><DEPTH_19><DEPTH_64><DEPTH_66><DEPTH_43><DEPTH_44><DEPTH_49><DEPTH_5><DEPTH_85><DEPTH_2><DEPTH_25><DEPTH_58><DEPTH_74><DEPTH_69><DEPTH_40><DEPTH_12><DEPTH_85><DEPTH_40><DEPTH_76><DEPTH_36><DEPTH_76><DEPTH_29><DEPTH_71><DEPTH_1><DEPTH_59><DEPTH_45><DEPTH_78><DEPTH_78><DEPTH_81><DEPTH_72><DEPTH_29><DEPTH_15><DEPTH_121><DEPTH_121><DEPTH_23><DEPTH_55><DEPTH_END><DEPTH_END>. Since point E has a higher pixel value on the depth map, the answer is that point E is closer to the camera.
E
long
5
[ "C", "D", "B", "A", "E" ]
<DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_17><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_67><DEPTH_5><DEPTH_17><DEPTH_17><DEPTH_67><DEPTH_3><DEPTH_2><DEPTH_1><DEPTH_1><DEPTH_60><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_59><DEPTH_17><DEPTH_28><DEPTH_19><DEPTH_76><DEPTH_63><DEPTH_64><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_51><DEPTH_22><DEPTH_32><DEPTH_44><DEPTH_78><DEPTH_36><DEPTH_41><DEPTH_33><DEPTH_5><DEPTH_5><DEPTH_84><DEPTH_17><DEPTH_73><DEPTH_78><DEPTH_64><DEPTH_64><DEPTH_45><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_13><DEPTH_17><DEPTH_26><DEPTH_46><DEPTH_44><DEPTH_44><DEPTH_41><DEPTH_62><DEPTH_6><DEPTH_17><DEPTH_5><DEPTH_17><DEPTH_83><DEPTH_2><DEPTH_25><DEPTH_19><DEPTH_64><DEPTH_66><DEPTH_43><DEPTH_44><DEPTH_49><DEPTH_5><DEPTH_85><DEPTH_2><DEPTH_25><DEPTH_58><DEPTH_74><DEPTH_69><DEPTH_40><DEPTH_12><DEPTH_85><DEPTH_40><DEPTH_76><DEPTH_36><DEPTH_76><DEPTH_29><DEPTH_71><DEPTH_1><DEPTH_59><DEPTH_45><DEPTH_78><DEPTH_78><DEPTH_81><DEPTH_72><DEPTH_29><DEPTH_15><DEPTH_121><DEPTH_121><DEPTH_23><DEPTH_55><DEPTH_END>
181
152
241
134
90
105
89
219
14
152
88
67
1
26
137
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDyPFGKWivSscAmKMUtFOwBRRS0WASilop2EJS0UUWAKKMUuKLAJRiloosAmKWilxTsAlFLiiiwCUYpcUYosITFLijFLQAmKMUtFFgDFGKXFGKAExRilxS07AJijHtS4oxRYQmPajFOxRiiwDcUYp2KMUWATA9KNo9KXFGKLAJj2owPSnYoxRYBm0elGB6U/FGKLBcZtHpS7B6CnYpcUWC5XoqxNbPESdrbfWocVEZKauinoNxRilpaoQlJinYooASilxRTASlxRS0AJRS4oxQAlFLS4oASjFLijFFgEoxTsUYpiG0uKXFGKQCYoxTsUYpgJirV9ZGxnSMuHDxJKGA7Mob+uKr4q5e3KXUVngfPFAIn+oY4/Qik9x9CjilxxS4pAQ2QDnFDEGKMUuKXFMBuKXFLijFACYoxTqMUCG4pcUuKKAExRilxS4oAbilxS4oxQAmKMUuKMUAJilApcUoFMBs6vG2NzbG5AzUGKcSWPJJ+tJiogmoq5T3EoxS4oqhCUUuKMUAJRinUUAJRS4pcUANxRinYooATFGKdijFMBuKXFRzTxwD5257AdTVJtSkJOxFHpnmsqlaMNzSFKU9jRxS4rIa8uH/jx9KjLSv1dj+Nc7xfZHQsL3ZrtLGn3pFH41JE0EqBluoAScbWfBH51jJbO3Xj61r6Xo1veQyNKzLsOMggdv8A61YyxkkdNPAc3QsLauwyjRv/ALsin+tONlcj/lhJj2UmlPhe3Ykx3ZHpkA0n/CLXaf6i9XP1IpLHPrYqWW+X4ojaGRPvIw+oxVzz45NAS3jKtPHdszKEGcMowS3pweKjGi+IYiAl64X1Mxx+tULm41KxmeG8CzLkZOBz6YIHvVfXFJozeAlFMmktZUAaZSFPTHQ03cq/L68cCmQzw3Rwku0/88m4P596nKFeCMe2K7Kc4zXus4alKUPiQzFGKdijFbGImKMUuKXFMBuKMU7FGKAExRinYoxQA3FLilApcUANxRinYoxQA3FGKdilxRYBuKUClxSgUWAq4oxS4oxSATFFOxSYosAmKMU7FGKYDcUuKXFGKAExRinYoxSATFJin4oxTAYzBFLMcKOprOn1EtlYRtH949an1N9luFHVjWWFJBIHA6muPEVZJ8sTpo001zMQksSScn3q5paB9RhQwpNvO0RucBiRgVUrR0dhBq9nJ/dmQ8/7wrilszri7SRCSqEjygCDjnmgytjsPpVzXYvJ17UIgMbbmQY/4EazjkUuRFe3qNbj/MPqa19JfdpuoR8cCOQfg2P/AGasLNauhku95GBndbOfyw39KGkgjKTbu+jLSytjAY/nT1uJBjDt+dVFYfj6VKuavki90YqrNbSZox6ldqAPPfH1qbVmVWtn2qyyQKXAP8QJU/yrMHWtK/bzNPs24yhZffBw39TUypQdtDeliq0btMxpdPtrnmJgj+n/ANaoGkvdPRfNxLDnA3HP5dxVmVcEMKstam80K8kZiXhCuo9twB/mKnklB3T0N/rNKsrSjaXlsyNSHRXHRhkUuKq6ZL5lsYz1Q/pVzFexSlzQTPFqR5ZNCYoxS0uK0MxuKMU7FGKAG4pQKXFLigBMUYpcUuKAG4oxTsUYosA3FGKdS4osIbilApcUuKpICpilxTsUYqRjMUYp2KMUANxRinYoxQAmKMU7FKBQA3Fami2EN7dlZ8+WoyQO9ZwFXNL1KW0ujFGsILEHdLkD+dZVpcsLlwV2d7ceDLCfwrJd2+mXaTI/FwCdu0Ak5GTx715sVwa9TOv6zpWhkXkMEmnv954JMYyMepH4V5Zc3VktzKsd1EUDHBZgD+IrGhVUrpsupBqzMrVUfejY+QDGfektoj9hutw/gDD860XaK4t5Njo64IypBGauafotzf6fq01sm9bS2EkijrszyfwqMRBJ81y6c3blOVwARVmBgsyN6MDUBUg0qEqRzXI9jpjubfiuMReKNRA6GUsPoRn+tYhrb8Tytca0ZzBJF5sMTBZMAn92vPGeDjNY2M55xj0pJ6BYjKEYJBAPTNbHhmQrrSIMYmjkiP8AwJCP61NdxMmj6ZJHIV3RyB1/2g5/oRVeweSPULd3faBIuWVRkc9RxUOd0dEKXvK1/uDaVOcVMozgjpWrdaJdpNJs2yICcFlwSM8HtUbaVdRxoRCjEk5Ck8dOetae1iYvDTX/AAz/AMikOtaTqkmiltvzoy4PtyD/AEqubO5QZa1cgdwT/hVmMTDTriNraRVxjJI46H+lNzVhQpSTMd2HArW0SP7Ql1bM20TROo+u04/UCskomfvMPqv+BrS0h0hvUkZmKHGdqNnr9KptNWM1FpplNbaCKd5YFKrJg7T/AA+355qTFXb+ONLp0DBQCQA42Hr6HFVvLOM7kP0cH+tehRnTUEkznq06jm3YjxS4pxUj+dOVcmt1rsYPTRjNp9KNp9KtJCSKkEDHoMinYm5RxS7amkTa2MfpUeKLBcTaKNlOwSM9qUccmmFxhUikxT80hoC43FGKdijFFguNxS4pcUuKYitijFOGDyCCPajFTuVcbijFOxRiiwXG4oxTsUYosA3FLilxS4osA3FD26TgK+cA54p2KUsUQsMZHTNTNLld9io3vobviLQ9N0vTfDtxYZSW6sd90okJDNngkdq5iS20yx/s1brSm1B9UeWSR0dxLGvnPEFiCsFL/IW+YNncowO/eePIHGleE1eQjGkrwox/Ee/WvPI7rxBZCSCzKiASu8LMkTvEW4JR2BZCQB90jpXnODlSTijsUkpu7K2juRp0qhGY7zyBwOB3rvvA9vfXa+IIbe5itg2lSmQGLzC6AcqORgn15rh9NjaysZYrjajliQu4E4wPStbT/FV54euLl7BIy1zavbP5yE4VhyRyOaKq/dpN/wBXCCbm7IwJYWQZPT1qHIz0oeRnOWOT700HmuZvsdUYfzM07q6e8dHnbzXjjWNTjoqjAFQBn/hiA+pq5DIiWVypdVOFIX157Vn+cxkzjgdq5ldnpy5YW/Q15RKNAtXcK224lULnBXhD+uf0qjDMr5PlkFT/AHv/AK1b1kF1LQlt3kSJhKGxxnhcd/XP6VGnhkpuZLyNt3bH/wBepuupabuuV6G55l7Iqlo4yvlhsJKQSD+FJGZv+fafb3Czf/XqW3VDbrG7SZWER5Ruc4Hep4XjhjRG3AKdoyM4H9ak2uhgJXAa2vlyOPlDf41YjMJVlmimCkfKxtnBIPrgYq9HJaSAlpsHPUA1Zhntor2JjN8hgZFZW4DZHUGnoQ2efeXax3aiddyK/wA6q20kA8jnofwq9KbJ7wPp6ukBPCOwYr7ZHWpdZgY6vcEAusj7wyjI+bn+tYbWuZplEflSxtgEDhv8aulXnBk4jA0ayT2b7HQeIFaa689fn3gMSOeSoJ/WsQx/N8ycH1FSwhWtmV0VH9hjkdR+lM+YdHcemHNexhKkp0tFseBjaEaNWzbJb0EC2uI8uskK70A5DL8px/3zUcfzgMnzKehFTFW/sxZlDOUnZZMkk4IBXH5NVdM582DB3feXs3+Bq6DcVbt0/wAjPERUnzd+v+ZZUnGMH8qeA2Nqt+tRpLuUMhbAOMHqD6GpGlLENkZrqTTV0cTTTsxHVguCefc1DtwecH6VNJIJOFQZ9RTCChw68fnTERgKc5JFBUkcYxTyquw2ikZSnAb8qYEWB64oxS4pcUAMxS4pcUuKAG4pcU4DmnBc0xDJmUxBUQFOqyAAZ/Kq+KakPlH92zAf3ScipMcVx4WMqcfZyWxtVs3zRG4oxTsUYrrsZDcUYp2KMUWAbilxS4oxTsAlV72Ro4l2gklu3pVrFUzeR2+r2krEmOGRWfYeevOPfArmxUuWkzow0eeqkdJ4g8Qv4httGihtzALGxS2Jc7i7DqR6CsRrM7cySGTHUbsAfgKrnVgbrfHCdhcnnrjPpTnn2xSmOZ3aRdqqUwEB65Pc49K8+eIVNqMNUrdN+/pZHs4fC0alKU6zSevVJpJaNLeV3o127XunyLFDC+NiDB9qwpWaaQu3U1dW0DcuxJ+tTxwRjnZRWrOpsrHBSjGnre7MtLd36KTVqPTZG64H61pIAOigU8MawsaOs+hWi0tONzZP1q5HZQp0UflTlJp4J9RRymbqSe7JIooywG0E+pqx9njP8AqGI4dST3rRWPHrRyk8xWFtHtIwwHsSKesJA+WWQf8AAqsbRShM0cgKo1syJWnjOUuZVI9GqRbq8QYW5JB7MgNO2UbOKXIuxarTXVjjqF+cfvIzjpmMCnnUbxzuaK2Jxj7pFRBCPpTsHHFT7Jdiliai+0TpeEFTJYwMc9j1p5urQ536XH1zt3D/AAquAx6cUhRiCSAdvOR1oULbFfWaj3dzRS60NozFLpVwiswLiMjBxnB+oyawtWisE1RpNJWRLYgEJPxuOOc+n1q+iO/JYge45p0tkkyHB+b3HWnGU4O6Y/bKWk0jn3f94ZIAUlHDK/8AI/40sR85S4BGDhhjofSsiW61WfTV1JNCvlstpIuwjmMqCVPz7cYyCOvUVs6dOtxpRiCiJvkmSPPUMMEj1/hr0qWIu107nNUoKzs722EYgNleKQsSMHmnbD3zUkdu8g+VT9e1egeeRpIUGMU1juOeBTihUkUbGI+6fyoAYOtSoqyN87BB9KZinrE7DIUkUAOdIkPBLioSMniplj59acGKLgLQBEqc54rTjhikiG6PLeoFZxJZsmrVrcNbNkDNDQjKZQD8rBh2IpMVbulgBQRRyRvj50foD7e1Ubm5hs4xJO+xSdoOCefw+lRTqKVNTZpKLUuVD8UYqtBqdlczLFFNudug2ke/cVcxVxkpaxdyWmtGMxRin4oxTEMxS4p2KXFMCNsKpY9AM1iLtYliuSeTWvet5dnIfUY/OsVWwK83HPVROrD6JstJjPoamC1TRs1YifbiuGxuWFTvUgSnRgOuRUwSq5SXIiCU8J6CpQlOCVSiTzEQSnqlShOKeEpqIuYjUYrXiG9FOOoqlFbvIwVVJJ9BXomheAZtR0a1vFvFTzVzsaMkjkjFDSW41d7HGiLigrggEHn0FeiH4bXXa+i/GNqjb4bX2OLy3/Jh/Si8R8sjgvL46UeUfSt7xLpVl4Q+zf23rFra/at3k/upX3bcbvuocfeHX1qnoCad4pv5LHRdVtrq5jiMzJ5cseEBAJyyAdWH50vdDll2Mzyj6UnlnPSu0fwDrajIihb6SiiHwFrMj4kjihUdWdwf0GaNO4WZxvlnIA71YEJ28da9Fg+HEJtnL3UjTgcOowoP07/nXLanol3pE3l3MeAfuuOVb6Glo9h2a3MUR5UZHPtSEFehxVllxUDgE1DiCZydnPpSeF9NuZZwlzFoV5a+bHqMIMbvLc7Y2tyDI24OBkEABwe2al023aHTLSeNSS1qit7gqDx+NQt4D0tSf9Iu8em9f/ia3oYYreyit1J2RRqisx5wBjNQ+jRvGrbYzEmMfO0N9aspPE8Z35T/AHagn8suShznrxgVDivboylOClJWZ5taMYytB6Dtyq+QMj3pxMsuBjj2pgFLlv7xrYyLkNlGgDvIC391uMUks7L8qkYqsHIUj1puKLASgNLzxx2AprwlCCwPPpTopNg29BRI+447UCJLSK3aQCTcfar7SWcJOyE59D0rMjYJ25p7Tu3eiw7lMRE2gd1KOpx0OG/wplnBDc+JvDlvcRJLDLq9skkcihldS+CCDwQR2qCGSeSYh4iqBerdzUeo293MkD2M5guYZlmSUOVZCM4II5BBwc1xUozeGcb3Z0XSqpvQy/OM2v2Y+2abdAK3zWFn9nUcHgjy48n8DW7is2O21ufUre51TUpLwQhgvnTvIVyCON3TtWritcJCUINSXUWImpSuhmKMU/FGK6jAbijFOxS4oAy9Xfbbondmz+VZCntXR3djHdhd5YFehFZsujzpzGVkH5GvOxVGpKfMldHVRqRUbMpKD271YQGoWV4XxIjKfQjFWIyG6GuO2tmb3Lds21x6GtEJWdEvIrZC1rGJlJkQjzUix4GKkAq7Z6dPeN+7XCd3PQVfKkRcorHWvY6FNcAPL+6j689T+FbNlpUFnhgvmyD+Jh0+grQB9wKlvsNFe202G3TbGAPfua9Q8EoR4aij6hJHUew3Z/rXnIwR1J5r0TwTIjaBhf4ZmH8qynsbU9zpQg9KwvF3iSLwhoR1WWzkuYxKsbJGwUjdnnn/ADzW6OT9a5r4h2S33gLV4mXdsh80f8BIb+lZG54j468Y6Z8RPEPhtPsT2tppxuLi7NydytEAjsPlBOMRkdD1GAareC/EOkeC/iPc6xcKJdO1LSt8R0+Lam9nj37FYLtQSRyADAxgcVxt9ZT3TIljceSWVkkyxUMpxwcZyOOlVLWzu4GUXE4kjijMcSbyQgLbiAD0GSTx3NOzC+h9eeFfFeleMbCe601JlSGTy3EyBWzgHsTxW40aYwVH5V4l8AtQC3msaax+/Gk6j/dJU/8AoQr3HAIxUpjI40VHGBjIqG9062v4WiuIkdG6qw4NWSoBByeDT6Yjy/xB4GntWebTg00XUxE/Mv09f5153qM4sv3YH77PRh93619JsoYEEda+bfGnnTeMdVZxt23LKM+g4H6VXLUqJxhuOk6NKrGdZXinqv639OvdGR9qctln31FJK8vDHj0FMCFc5UBQM8HJz+lOxXbg8LyK9Tf77GWZYmnVmvY9tWko3d3rZbaWXyuMxRin4oxXonljMUuKdijFADcUY5p2KXbQIZilAp2KXFMBuKUCnYpcUAZ5WSKZXhTfk/Mrcr+IqTzkkJdoxBlsBM/yzUu0EUksSyMDzx0rzMTCvTqc1BaPe1v1PUwDw821iLaLS90r3W7Vna1+u9hu3FJinId6cgq4OCpHT8e9O213YeU50oynv1OTGRpRrzVB3hfT0/rvr3I8UuKfijbWxzXGYoxUm2jFADMUYqTFG2gCNkV12soYehGaqtpluW3Ipjb/AGTx+VX9tG2plCMviRSk1sZkEZEoU9QcVs29vLPJsiQux9Kr6VareatHEx2qzEk+wya7mC2t7cCGMhR/P8a8xtRdkdO5m2WhRx4e6+duyj7o+vrWwuFUKmAB0AHSl2BQMIOPU5qT5s5O3HtUPUZFhj0XNKI5GGBtH4ZNSjOM5FN3cnLE0hirA7EKZG5PG3ArufARZbW+t2WYGOUH94pGcjtn6Vwwb0GPxrt/AUp8q/jznDI35gj+lRPY0p7nZYA7mqmq2v23R7615PnW8kePqpFXAaUHmsjoPkIWxjlG91VlPT1qtdKI2fJxzXQ+IdONr4g1K3aCQmC5kRQAeV3HFY2oQPv3hG2lQTx045rOnKo5+9/Xax6OKpYVUE6S102ve1tea+iaeitpbvo30vwfvxZfESyUsQtykkB57lcj9QK+mgPevj/w3eHTPEumXuceRdRuT7Bhn9K+wM55HIqkeewI4pR0ozQDTAWvFPirpX2TxIt4i4ju4wxP+2vB/TFe11xvxL0r+0PCr3CLmWzcSj/d6N/j+Fb4efJURlWjzQZ4Mw4P0poHAqeRcA/SmbeK9k8sjxRtqTbRtpiI9tGKk20baAGYoxT8UuKAGYoAp+KNtADQKULT9tKFpgU43EgztYEcEMMEU7FS7aNtCTtqD8iLbRtqTbRtpiGbaNtSbaNtICPbRtqTbRigYzbRipMUbaAGYpCMAn2qXbTJflhc+xoewIm8LoW1XeP4EJz+ldl0PUVy3hKPNzcOAeEA/Wuq8s7hkDb35ryHudobyRgn9KTOcnFIqkk4Ip4UAZ8w/h0qQAKcn5c00BsHkD8aUBQRyTTwvP3T+NACBRnkk/Suv8BMFvLxF/ijUkfQ/wD165MA+wrpvBDY1mVdwy0JGPxFRPY0huehjGKXA9KaF46/lS7WHSsToOR1P4faXq2qXF9PNdJJM25hG4A/UVUk+FOhyRtH9pvwjDBAdf8A4mu5IIpHkESFnBwPQZNT7OPY2WIqpW5jzV/gf4czlbzUVPbDp/8AE16Raw+Raww7mfy0Cbm6tgYyakIyBSKCMg00rGTbe4+k6MDilpD060wHVDdW6XdpNbSDKSoUb6EYqbqKKAPmfVbGTT7+4s5Rh4pDG34HFUytd/8AFHS/sviFLxFwl2gY4H8S8H9MVwpWvcoz54KR5NWPLJohxRipdtG2tjIixRtqTbRtoAjxRipNtG2gBmKMVJtoxQAzHNOAp2KcFoAq4oxUm2l20wuRYoxUm2lxQFyPbRtqTbRtosFyPbRtqTFLtp2FcjxRipNtG2iwXGYqC7+W2c/hVvbVTUeLX6sKzqaQZUNZI2PCa/6Lcnpl1GfoP/r10LMBnJPtxWJ4YKppBPygmU/XoK1TKOeTgegryXudo8EdcH86kBXbgAZqIjODtPPQ9RS4fsQPpSGSE7SAadhQaiEb5B3Hj2pREv8AExI6YJoAl3KPatzwfcKviKEbvvqy8fTP9KwlCIQRyfUVp6LceTq8DqPmBYA4xztNTLVFR0Z6Hb3suqSzi2l8u0icx+coyzsPvAZ4AHrT30qCQ7nmvGY9zdyD9AQKp+D5ln8H6XKoPzw5yRjnJzW3+FYHSZx0qzXaGmuQT0BvZef/AB6rFpp1tZktEJNx6s8zOT/30TVohTjKj8aUt7UAOGAMUA8mmhsfw0uR6UAL1pnHT8qAeeRScDoo4pgSoflp1Rxn9akpDOP+I+l/b/DJnRcyWjiUf7vRv8fwrxVkwa+lriBLm2lgkGY5EKMPUEYr551OxfT9RuLSQfPDIUP4GvSwM9HE4cXDVSM0rRipStJtrvOIi20bam20m2mIi20u2pNtLtoGRbaUCpNlO8s0ARBacFp+2nBaBFTbRtqTbS7aYiLbRtqXbSbaaAj20bakxS7aVwI9tG2pNtLtoAj20Bak20u2i4Ee2uLt9LlvrfRoT4gv/wC0tWhaW2gaMmLd50kSoZPMyCxj67MfMPc13G2vPLXxPa2tvo8q6bK2paTA0VtObkeUGMskquY9mcqZOPnxlR7ivOx8n7tvP9DuwaT5r+R6J4E3SeD7OWQl3dpCWY5z85H9K6Qhh0VQPpXNeBWx4K075iP9b0/66NXRhhk7gT9a5Y7I0ktWGHKBsjB6EYp2AOr/AK0gK9KVSGIyOntTEKVXPJJp4CDoDmhQwz8tOA55H4UgFXOeABVmwJTULdj/AM9F/nVcAA9TipomVLiJuyup/Wkykdz4Cbd4H0xQc7VdMn2ciukyR2rmPAaPB4cmt3xthvrhEx/d3kj+ddNkYOawOhDyTjpmm5PpSbhigcigY4E0ZOKAMUcZzQAZyM+lLgHNBOeKQHB6GmA5QBUlRAnmpAcgUhi15J8StM+za8l4o+S6jBP+8vB/TFet1y3j/Tft/ht5lXMlqwlH+70b9OfwrfDz5KiZlWjzQaPFitG2pWXBpNtexc8oi20bal20beadxEW2l21JtpdtFwIsUu2phGT2qVLfd1BpOSQ0mVdtOC1fS3TupNTLDEv8IFQ6iHyMwgp/Gl21Jto21qQR4oxUm2jbRcCPbRtqTbRtouBHtpdtSYo20XAj20uKfilxRcLEeKwdVdXvBtYMAg5BzW1eIzQABSyhhvUDkjPasW6KSXhEe3YzKEAGK87F4lxl7O3b1d+3kuv9X9rBZdGrhnXbenN00Vle0n0cto6ffrbtoFaC0ijIBKxqM/hT/MbP3FH608Rr5eM9OMU3Cr2b8q5zmFDtj7wx9BTw567zj2qPCjPyt+dPUHjCfnQBIG+ppQWz0P5UirKRwnt0NPAkX0FADgSF9/enb2AJwOKbukPBk/WnEAry2e/40gO38F3BebxBak5EGoMy/RwG/qa6jnHNcX4IkP8Ab/iRDyGNrKP+BRV2QAPbisDpWxIRjpUTXUEJxNcQxnGcO4HH41JgCvH/AI2aWs11pF7wN0bwk49CCP5mmFz1s6jZY5vbYf8AbVf8aZ/aunLwdRtOPWdf8a+UZNJVf4h/3zVWezWKIsMH8KQcyPryG8trsH7NcwzBeG8uQNj64qwAcda8G+BOoeXrOqacSMT26yqPdGx/Jq94j6Yx0oTGJ/ERmpIzwR700qCaEOGA/CmBLUc8KXFvJDIMpIpRh7EYqSikM+f7+0ezvZ7Zx80TlD+BxVOVvLjL7ScdgQP512PxIsXsdZN5EilblA3JIG4cHoD7fnXl99qssn2i2uFEcY4OxTu/WvUVdKCbPMlSfO0a1pfLdSFfJkXBIyMED646Vf2Ken865PTZprLDH91HwCm4YbPfngfnWut/cwNGZ4zIszYXYB8o9eM5qaeIuveCVPXQ19gx0/WnAqo6VGCCMjoaGIVSScAdya6DMmEvtT1kOeoHtVJriFFDNKiqRkEtwRVC41GGVwlvcJIR2jf+dZTnCKu2XFSbsbLXkaFg0qLt5Oe1ZWsav9mEUkMgLqwLDjBXvg96w7iaR5i8omEfr/tD0NRSz2VpYylQwmdtpjJPtg1xyxDldJWOhUkrM0INUcY8wqw9q0obmKYcHmsAx24PAIq1a3KwH7pIrloZhUTtN6Gs8PCS0WpuYo21HBdxzDjg1YxXuU6inG8WedODi7Mj20bakxRiruTYZijFPxRilzBYZtpdtPApcZouFiPFcwB52u467rgDH411eMVyemgTa7AGxhpsn881z4l+6bUVqehFmVmG1evvSMxIxhR+GaiYAE8jOacSvqfwFcR0gWb+/j6cUCQ5Pzvn0Joyp9cUZUn7p/OgBysT6n607PtSDAH3f1pwx/dFACp7+vapMj/9dMXPPGOeOKdk5UblUscDkDJoA6nwS2fEGrKAvz2dq27nJwCMfhXbjg1574Pl2eKsF/ln04FcfxFXYf0r0IYrBqzOiL0HnpXBfFq1E3hCOfGWt7lTn0DAj/Cu7yKwPG9oL7wVqsIGSsPmj6qQ39KBngk6gwwsO6isa8H7lvat51zpkD9uV/WsO8UiOT8ayg+g5rZmp8L9Q/s74h6WzNtSZ2gb/gYIH64r6fTIbrxXxzYXbWGqW12h+aCZZR9QQf6V9hQTrMiSpykqh1PsRmriNk56dabnuTS8EU0Y9OaoRZopkbbkHtxT6QzkPiNZmbw59rRULWsgdixwAh4PP5V8+6raRy3CxWUjOQTvIGduf89q+qNQsotS025sphmK4iaNvoRivk3Uhe6dqFxYSyuslu7Qtn2OCKv2jUeVmU4e9zIfb28c8KQRxAy4A8wHPf0PsDWuu3Tl8x9Qduf9WIxk1zsG6URJDIqOuTuIH9Kstst4DdNL9qcqCy4woHvzyfzojU003MpQ11NKfW5o3BEq+WRuwyFXUjnB7EViXOqSalfs7ybARhYt3yr6c9PWtQ3FvqUaTWbC22fK0arkg54xjqfpWdqtncB0Vldo3w2SPvH0x2I96mpOp9p3RVPli9FqQI/n2wjgfeSdzKzHKke3Srq38iBC+DhsqxXnHbIrnjLJFc+Vgj+Ehs4xW79qto4MK7I5AwR90j8etYu6NZvm3JWv/tSASSAJk/Nt6n9P1qhdQSkKDPL5JPGTjcO31plzLL5HlRKjx9VbjIz29Kzp7q4H7tj5YGDtDHAqk4vW5Ki1sehC1iP34qQ20K52xmsBtf1BcYuEYf8AXMZpv/CQX+QfOT/vgc0SwFK+kmXHFztqkbSFo5eEIGa1o3DICa4mXWr2Q7TMm7OfuYxSwa/eLlSyuN3ORXXhoqjdJ6HPWvUV7ancbhjIpc1yTeJrvaFWOEH1AP8AjUJ1vUWPE2PoBXY60Tm9kzss0ua4o6rqRPNyw/ECmtq17nm7k/A1Pt0P2TO3yPWmmWNergfjXDnV7zGPtUn51E95O/LTM2eeTR7dD9izt5b+1SNyZ0BAOAWxXP8Ah1fM1qEnHyhm5+lYZcu2S2TXQeFQP7VLE/dib+lY1KjkXCHKdkG5xxS7znjFNXaTywP1pygbieSKyLDzDyKPNHGTij5R1yM8U8sDnnnHpTAXzAQPmzR5gK5w35UuRjoaUkgDjqKQCBgSeD78dKcTx93JpB7AD6U7JxyKAN7wuu3xFpEoA2mC4gIz0wVYf+hGvRhXmeiz+VqOhkjJOoPHxx9+L/7GvS+Mnmsnubw2HZqK6hW6s57dhkTRNGfxGKk6d6VTjFIo+cbeEnSJYn4aGUjn2rDvYJSrkIxBXPANel6v4K8Wy61etYqn2V53aJjMg+UnI461Qf4deNJtyu0IDDB3XIx+lcqck3odv1eEoq9RHkRHzmvqrwFqB1LwLo102C/2cRt9U+X+leSt8FfEDgnzLJD6Ccn+leoeAtA1Dwz4ZGl6hJDI6TO6GIkgK2DjkDvmtou72MKkFHS6foddnPao2zgelCsNtMbaF71oYli2bhl/GrFc62v21vMViXzpAxQqHVQCPUsRj9a0NO1Nr1yksUcbYyvlSGUY922gA+2am6KNKvnn4xaINN8Wm7jT9zfx+acf3xw39D+NfQ1ed/GLSTfeDxfRqfNsZQ5I/uN8rf0P4UPYGfOpkETjIAIyOeKJrlpIhFHhFYAMC2Mkd6jmgndi53FSfvHpUEi7QFIAbuOxrPbYmxYs7ya0D7JHQ9Plxz+J6UrXd15JUXEqsp+TbJnHrVNjvYuzHIPT0q/PdWbQR+fE4cDBCt0pSk9hJEKzrKFSYuZAQqu/BINZ06yxyPuRkCno3b2rRFzBMhjiHXqHGT+FShluGmWUx75UALE+h6/WpUuXoXyaXKFoJJhtjnEeOoOR19+lPF2YT5cj5AOGKtyfyq39leHTpoJLc4kcN54YE8dBj0qjJZxxbmE8bcZ2urKfxppxbELJeHZkqN+fu9KhW8fPAyxNS3NuqxFxKp29QKpEqsh+YlB7c12O63MopMum4WQ7gCSxwPUcUqyYG3I+Xk896qMyjDq2R2AGMGnIB9nfc3zk/dxzRdhYuxShsncCM44NTeZ6Uy00+JI1eRjuPOCOlSP9nQ8zA/hzVJSsQ2ug3e1LvOP/AK1SxrbOPlfPsKk8mDPRj+FPlZPMisGb/IpQx/yKn8mL+61NMUefutRysOZDFYkjJP5V0/hNSbm4YDogH61zBCLIoUYz611nhHAW6Y9Pl/rS6DOkUMPSnDeDwV6jtTcgnBNO4z1pAPJYnJPX2peTj9aZketLuB5PX6UwHjNPDNwA34VENvYGnAj3/KgB4PHWngg8FlH1NRAjng07PsaALscjwrYzoy5g1S3Y5/uncp/nXrDqA7fX0ryNtp0HUXZSfI8mbGcH5ZVr1tmJwSOSM1lLc2hsLkUBh1FN5PalGfakUAcE80k9zFbwtNPIkUSDLPIwVQPcmmsDnPFee/Fc2c+l2Vtd/aX2u0zJBIEwgGCxyCDyRgVNwPQ47iO4hWWCRJY2GVdGDKfoRTgc9s15h4P1Hw74I0Xa+uNML2UN5DrzB2wQOnXk+3tWxrHxN0fSpdlqg1HAy7W8y4X9OaVxncgEn2plxE0sLR7wm75QdoP6Hg1xV18TNNhgsriEbxLhpLbOZNp7qFzgqfXAPY1zlx8TtQ1y3mWz8LPNaJIcXDq0gTbk54BAYDB68U+ZWA6i8v7DQNv9rWV3LacoLyFSYlA4O5VbK8+2PSur0eDRLm3iv9LW3ljcbklQ7uvueRXgmoa/rnjFoba2tm+y29vskkZ9qEBss5JIGTxn6V1fw60+0t/G15BpuuExxwllUR4acEKScEbcAn9MjAqE7MuysezGqmp2MWp6XdWEoBjuImjOfcYp1rBcwhxcXf2gE5UtGFK+3HB/KrODnNWSfGuqQT2N9LbSswkgkaNlz0IODWaMM+Xy3416b8YdCOm+M5roRkW98onUgcFujD65GfxrzNyFOCGxnoTU2ExhUnc7HCLxuAB57VC0iHONx59cVLLcs7KQAm1AnHOcdzUTzP8AdRzt754osKxE2DIADtX69KkSd4JxIcNIvOSc1Ayn06elPjZG+SXI4wrZ6fX2p2GblnM91btJcSpCRj5y4Qtn2A5p89slvJ5kkazhSGwWy3TjIrnwkgk8vad/TbVqA3anyxMyqzfMrHGCPXNZSp66MVi60G6PdGiqO+FHP4GsuZZE+UoODy3rWsZIonG8s0i8EZ4Gf51Bdp5qiaNgeg2/3vwrt5VYwi2mVI7eVvKYr8rsFGeAa2Lm2iSAkbRKANpJArMX7RLPGWjlVN24gKcD3+tXpmmeX/j3kdAAQQmSDTjKCTCSk2iK8nU20ZRlbJGcN09sd6oyXLTOzZVe2FGFA+lPksbya4Jjt5Wycr8mP0qtLBLbvtmjKNjow5qJTuy4xSN6ymDACGPKADLE4/Sr5OPSuaiuxApETFCfvYGakkv3lVledtm3ACjBato1UkZOm2zWub1I1AVkLE4xms+KeRpN7MDk9DWfERvHJBHSryBWl3OxJ9Qa55ylN2NVFRRMhV5mZc49D2ruPCSAafO+OTJj8hXNadpdzqUy29jA0rE9FHA+tep6F4Ln0/TBDcXCGVjuIRchc9s960tyq1yL3KGM4p2COcDArd/4Rshv+Pn/AMh//Xp//CNsFP8ApJB9k/8Ar0rhYwNjYOB2pdr9MZBroR4cIA/0k8f7H/16U+He/wBpYZ/2BRdBZnPEOCvyjHqDTgHUj5PlPINdAPDpIwbg9evlj/GnDw5tHFy//fAouFmc6u7jjp604hs4wK3x4dAwTcOcD+4KefDyZz5z49MCncLMxArPomtxgctYPx6kFTXqOnlzpdnuJLeQgJPc7RXKWXh2OYzWyzMrXMLwlj05Xrj8q6zw7cR3ujxKwxNb/uJl6YdeD/KspbmsCxg0oVu9W/ITvnH1pwjjUYwMUi7FIp61434mt/7S1PVb+TU3lihkEASVgFZcgBFXgdSxyfTNe4kxKMnbXkfifS9L0nW4dKlvClhqN3HN5QmcFRk5G0feyQB6jjFJrQTuUJvDuiz+JEsLaCVDdWsZh84b1kbPzvuGcAAckYwRXbaX4btdJ1cKunQvaNEPImEQ3xEYDRuf4geoJz0IritK0S11DxFIbfWZdKmkzFZqm/NxsJ8wj587cgjnrgnrXoWn6rFpBSyvmmUhwA0sxkAJ4HJ52nsfXg4NZpIaK2k+E9OjtNS0+802OSJrmQqTHgtG+GADDnHtngirlr4UttJ0uSw0iOS3t3DZVJCr5PU7jkE/7wP1rabV4BC0qJJKF6rGhLfTHrXL674uW9spIPDuoomt27B0spV2NLjqjI4B5GentVKyQ3qeTPa+KrSOa1tke3tdJmkSctMqr+8bkuvcEEAn7uMdK7LwPf6L4V0J9Z1Dyba8vGO6C3i+cR7iAVU5JXjt6c81zNlrU2sfFB9RktjYwyhE1G2ncL/DhlwcbgWXp+ddJZ38nhHTDpxsh5vnTET3MAkj2ucqiNu29P4SVzUaJhfQ76w8WWuvWIuNDZLhlkKyQysI5Fxz90+vr/PpUmn6vqc8dtJPaRGMyvHcSx7lVBjKsu4AsueCencVyGmX+naSbfU9Ts7KGaKNgLq3SOPgnPMJwykc9Bnr1zSTfF7RbS8htAJriFcLLcw42Lx2B5P6VSn1A7TWLG11m8ttPvIobiz8t5ZopIwwYcBcHtyScj0rxv4mfDLTdB0xtZ0eSVYFkVZbaQ7gm7oVbr17H1rtNL8ceG3mnvG1SdBM+Y4zGSEiHCr04Gctj/a9qXxV4q8M674Y1LTBe5kmgIjzEw+ccr29QKd7gfNLogYg/wA6jO0rxjOa1Z9Cv2+cxBV45znr9KoSabco4UIxP+6RRddybEEd1Nays0MpQkbTg8EehB7U6G3hnXdLdQwAnock/kBxT/7OZZQrliO5Cng0NaoF2hk4PVgaTa6DNO1062k2xi8hmwMbl5PXtnn/APXTbuyBk/dyFVC7VDsCz/lVM3QjljYeWQCCWUBXHtkdatXEq7F8qYBmG7r264zWL5r3uKxFIkEhDyShy33QpAzVqCW2V/ltoxgfe6lajj0+Vzw4yoBXn+fpV6PTijFnkVmPQnPHt1qp1k92VGjPohBIs0Xmbi2OFUDFWdrJ5YSKTn+Mjj86gFpLGAEeMjOTwenpUsglAAwpIHRazUlJ6GsouK1RXZJVdmUkEdcn1qvqljLcWYmbiWMfi3rV7MxKDaoHfKk/nTpVuJFYCRFAGCBH/wDXrRXTMm0cZjNGDmt8+GnwWEufbbj+tZ3kQwXPlXHmgHuMcGt1JMQlpbrJFIH4badpPY1OYBGYVhBY7AZDnuav2+n2ewyoJmHUEntQsFsbvlSyEYXBwc+lQ5u90K2ht+Gr2bT7O9uIdwfCKCrEYyT6V1MWsXhWUme5Ug4XEp7Vx9tbR4ZItyIVA2knmka7uoWEfmS7VbI3E7T7f5NP2l3cnlOyl124gTe15c9cABzk0y38Tyzsu2+uAc4bLnA/HNcFcXN7BeyMshZC4Kg5/Lmte9RLvSg3mIBICNhOGQgU3Ni5Tsl1q7Bwb+4xgnO/p+tH/CS7WQNrEilh2kz/ACNcL4daQ6dGCRjLAEmo57WRdYz5IKAZDL/Ce/HpQ6jHyneN4tEUiq+p3XJ5IXOP1qRvFce3dHqV42TjBTHP54rkTGXgEhXEY4ZsdT6e9GFjjLBuc/dPT2qfasfKjuZNVuzbQT2+qGVZVLeWJAHTHUEHvVUa/qR+7cznJ4IcVzAQ/YklKgEsAV96rWmsXGi36XcUm9U+6sgBGTweO4xSjX1sxyp9Uz0Tw9rt/wD8JBZia4m2s5Ta+MHjg10vhm7uZvEviSdCPsTzRiN0P35AuH/Ed68YbxbP5g+y28cL5LNKWZm5/u54HUjpXR6V8SLnTLP7HBptmsMS7iQHJOeSSR1JNXKQorue3C4cnBJ/E07ewGa8AuPiprdxInk3PlANkLEi4OenUE0y/wDiL4k1SNrd77yIWUqY1iXLg8EE4FLmKPWtV+IegaTNPBNcPJcQttaOKMnB+vSvF9f8Qz+JNYutY1LS7mTT4dqlYnA8sH7o3EEDJHp61RjuoJW8sGAvIpDybBkH6kYH1AFRqI4Yp0lmWNepXl1Y9j/+upchep1NrcaxFqGj6jbzl2gsmEZKr+5TGSgJ2gsA/wBeeK0LXxrY6Zo0mlXEMt9cI8khuFYOzM5ySTypB6EZ/OvOLW7ckJP+9UfKspyTjP6VeGoBD5MDbQxLBCOi9OTUbdRo6a3+KmupJJHbG1hgA2hJiWK4HqefpWPrvjHW9XgQ3v2aQq3+sEALoewD9RWHdTWV5GsMWXIbLyYI+nPem2bK0qRGPATPyZwg9/U/rReyAhu2nubh7m5uHuZS37xmIz+vWrUupai0At7O7uRZDAdFlPlgntjOBmmz3cUFyVBEh25+71/piiIC4kKqyIMbxt6ZA784JpJsL2I7WaS1VncCaUtjaec/jVa5mVXZC3l/Nkrnj6cVYlspixKPGARkkL/Ss2Xyt7MjnIA25OSW7n6dqpJ3Eacd+pGFIB4VZJBgHHbn61ejvGiUq4IY/d2tmsCaYMkaTKNuN21TUcNwyAeW7AA9GbOKOULm5dXbyxlVYlh8wbd/SqvnyvFsdizD+9wT+VQJdpI6/u8Hbgnmmfa0ZHjfpkANmmO5JJcsUO5ZEKcEpJnP51TT94+8RklTuyAT+PFXSYztBVSmcBif61F9izJvtZgp/hIOCf8ACnfQRTmgj2PIo4HbNVBuZduchemT0q3LFKFJbJOeSDmm2kbS3SIVIAOTtXOcfSqWiBHS7mOEXhcdKekgyACMjqBWGkszfIZJDzjOcfrSSyJbykM5Zl64P/1q5nSuzoWIaWiNiS5Ugxo2WPXHanRKJCNgYgDqWHFYkc6+apiAkJ6DPT3NX1usJm5mRDxiNCM4/wAa0jHlVkYSm5O7LjyeVOUB5Iz1zj60JKVUFsknON3aoVdxhwCuTwG9KkSUAMMq2T19KoBXZ3T5mcrngVWmgScnecEY5Zf5GrUDr9oDNMqjYeTyAf8AGqzuJW3LnIbG4Dg/QUCAxSWkGx8Eeo6D61XLbgPJJ3gg525HFbAEazw4bdJt2yIVGAMdKkfTomT90jRk4IcYwPwqbpFXMqDV3UslwVjdTzx1NX1uPtARXmSQHkAMD1rIuLONrt4LgBGPO9fbuPUGs+9tFtLgIs5PGVIHWrsmI7IWwZfmTcgxuB6D6irEsUKmSE8IBgFevt9a5a0vtRh2qLpXHfzBnH41oya7+83XUEgbGN+AQfoahpgGhxMkUqnJWOQgYPNahwoUhe+Dnms7Tb+O6uLmOE7WYh1XG0kYGTW1IkFlbbnkWR5FwIyDuB9h3obdwsRONkCpu+YjODz+VFzCIrZGlLJKVztABJHXOOwrLuNXkVVjhIhkjOHuCdxx6emfase41NrqL7HYWzjd/rJOsj/4CqUWI1p9dublFsrZWdF53lCWPHtVSGJ13C4tn3hsbAMAfXmrC3L25EEUBjGwKzM204/Coby/ltHEoWLGAdvXJx1/GjyQ7F2CIxM7RwqsYwRukyfrxTpVjlLSSzzSs33h0z+Xb6moILu4uEMskCpvJ2IBnA7DnrWlHaLlhuUptB6dDSegGMunSYMtqrsWO07UyEI6Z9M1VvpL6ZRBHCcg53AAfgK6B7MeWuT+8B6KcBvrT4rULcEFVAAOFJz1pcyHZnONNNaAeYh877jKD7UyOa9kEojKiMj5hMeh9AOua2tUtxaxNPDGpcDJ3Anv1rMiu7X7EfNcxSqSWUjByfSne6JaKokktid0LKRyOD09M09286FZPmBY84bp+dVpJwzloPMIzyH5z7+1RIxMkpkRo16MR/L8aOUSNTRjBBeMtwhIkHB3c8c9qnnlgivG8kTRtkkBupJ/Wsw3iwJut8hyAI/M52rz0p0aSSRBvJZSTjzWIzn374pNdRhNHh4pQrMN5yWA/L86nt53hD8IhK5bPyrnPb8Owqv5scUK+ZMZXB/h/hH4jFWZ5Ymit5JAYhjKMyH5vw5ou9gHDzJbWNxK+5gc57nPaqJgfeCBhAOMnjPf3psd2XuXdflB+4qHaAPYVfhuzLEFVFLKxPzDHU0O8RMqbRGzt9nBGPqPrzTLiGTaso2qW6BeuKszXTyPJHI/lhB0UYyaqXM7OEAJ2gdVFVG40IjlV+Z1Vh1B/wDr1ErMm7yyjZPKnvUi20nl7iysDzk8804xMVO5sOB8pIGDRdA2WYbmRJCflde6gD0/I1E8tusrN5KMrEHqVwPoKZBMnleXLsIA4IXnP1prH5ySrNtX5N3p/jQtBE8ps/Lb/Whj02HI/HNVLU+RciRFdwcqvHBNWRKogRS5Vt4IAxhTVi5iju2SOzWMOmS0pAA/+uaXN0YXM97q6lT5NqKRg7cDNDSyuP8AS43PHylV70KjL8ykY65x/WkYyFD1Yep7flVgmG44ABWMYwVYYJ960rSJ2i3C1UkDqABn8TzWXbxRuRkgPnHzEj8a10t44FUPck/3lBApSGXVdpAd6quwdAMCoJYEEQcOAPbpTXnhjVREpO7j1GKIy8z7Y4FBPQMe3rU3sMngjaVAEaToT8vr0wCKYkc0ZJaNkA4LqOnp+vetPStKlvL5bUsQT/c/hHqTXaReDLBUHnXFy4C/MdwHA/CqjGUtUS5JHEK1ysSb8Hf0XOSMd81ZtZYwkSu4DcZpgKpdTQqQy5PlleDtz1x71HDEplVHUkKMDI71kyiHUJ7WY4dCzA/Lt5K/Sub1OKWK6W4KHy8jbkYHFdpsCnbDGgD8NkDJ7ccVQ1bTGk02YNkFBuGeOlOE/esU0krmbYxQzIsh5DHKj09jU6zRRv5SDzCDgRjgZ9wOtY2lysxa2aQiP723ufUVsmRYkLQBU7McAdKtqzJYyWzEjl9wtpkBOVXnH+0R0FMOoSiNrW2kMkLc+dsIkb1AyTx2zVO61Mm1eOPMqlsEv/F7e9UDczyKXUYXjIHf/wCtVpdxFzUGMEMauincnyKmdifj3arvh6JVjMinEhGc57Z/+tTrGdL23Ecqg4GGj28VSsS0N1dJbSfuwC4Q9wD2P0qbtpodjX1G7htEd2DEk/IoOCx96y7NpdSu1mutzJH/AKqIevoPxrMluXvrwSTuSDhc+grobcgt5e0ABMA4xxTtyoDbtNJ1gO23Tro5H/PFvz6VDJfiBcSx/OThscdK7jwN4rfU4BpdzIpvrcERu5yZkH9RS+MvCyzQNq1jCPMJ3TxYwW9x7+1EqelyVLWzOEj1EyS/u7csOvLYxUF5q0UCjDtDOR12bgKUXkGSucMKo3cVrJcK0pkJIyxOSFHtWOl9i9TNmSW5nMi3hd3PIO5OtPjtLdJWW5+0R4HyLIuM/jUsssI3wsHeF8bV/u475pz3cnlnMi8dFYZJ/GrbdiWVrqJYYUIZmUDlhgEH0561TmnkZMJlo+MkryfY+tXHkuLpSBtEpHyhD1+gqNLi4aDypkDDJQMwwQaEFrEtnZm7RLiZsYPAHUirF9PEPLihkDSbvmAP8zWeQYoDCuWJ4B6Y/wA81BEj/aChLZbg54P60ct3e4Ekrw722nlcnOMbvp6CpZrlbqCBAQix8Zc9TUflskzghWEeSSBkketQNGjEMGP94inZMCx5ghnOEBz04zj6GpBcR8KYBuHVgxH/ANaqshRdpXHHT3oB+Tckh91Pp6UWAtSyCaLcYcbThm9PqahdkTJGVjK9etMQsIWQ4CMQevWqkhJY9RjtnNVGILUtRXzwf6sD33c5prXMm8tnhuSvaq2BtzznPSpGXccBGQtyo9RT5UOxILgMOIFL568nj6VLNdzlcSHOeVIXH4VUXKbuoPQ0uXbAySelDigLdvcsro8ihkJ2n8at3VoILdVWbZkF8M2STngAVkEFH2uG4PQ1dS8BZSxywxhn5xjtSatqJrsf/9k=", "path": "images/5pts_ADE_train_00011025.jpg" }
depth_point_66
images/5pts_ADE_train_00005148.jpg
ADE_train_00005148.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 203 y = 181),Point B is located at (x = 246 y = 223),Point C is located at (x = 22 y = 158),Point D is located at (x = 134 y = 218),Point E is located at (x = 78 y = 207).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_67><DEPTH_22><DEPTH_22><DEPTH_22><DEPTH_30><DEPTH_26><DEPTH_5><DEPTH_70><DEPTH_73><DEPTH_62><DEPTH_73><DEPTH_75><DEPTH_58><DEPTH_77><DEPTH_60><DEPTH_60><DEPTH_3><DEPTH_11><DEPTH_11><DEPTH_15><DEPTH_15><DEPTH_76><DEPTH_64><DEPTH_66><DEPTH_78><DEPTH_25><DEPTH_72><DEPTH_35><DEPTH_60><DEPTH_40><DEPTH_44><DEPTH_11><DEPTH_20><DEPTH_60><DEPTH_74><DEPTH_3><DEPTH_75><DEPTH_31><DEPTH_74><DEPTH_3><DEPTH_31><DEPTH_20><DEPTH_55><DEPTH_36><DEPTH_31><DEPTH_74><DEPTH_3><DEPTH_40><DEPTH_29><DEPTH_29><DEPTH_38><DEPTH_57><DEPTH_8><DEPTH_67><DEPTH_72><DEPTH_74><DEPTH_74><DEPTH_64><DEPTH_25><DEPTH_69><DEPTH_33><DEPTH_119><DEPTH_33><DEPTH_15><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_41><DEPTH_85><DEPTH_4><DEPTH_66><DEPTH_63><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_41><DEPTH_78><DEPTH_57><DEPTH_25><DEPTH_66><DEPTH_41><DEPTH_0><DEPTH_0><DEPTH_1><DEPTH_57><DEPTH_57><DEPTH_94><DEPTH_0><DEPTH_57><DEPTH_57><DEPTH_94><DEPTH_16><DEPTH_42><DEPTH_42><DEPTH_END><DEPTH_END>. Since point D has a higher pixel value on the depth map, the answer is that point D is closer to the camera.
D
long
5
[ "C", "A", "E", "B", "D" ]
<DEPTH_START><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_67><DEPTH_22><DEPTH_22><DEPTH_22><DEPTH_30><DEPTH_26><DEPTH_5><DEPTH_70><DEPTH_73><DEPTH_62><DEPTH_73><DEPTH_75><DEPTH_58><DEPTH_77><DEPTH_60><DEPTH_60><DEPTH_3><DEPTH_11><DEPTH_11><DEPTH_15><DEPTH_15><DEPTH_76><DEPTH_64><DEPTH_66><DEPTH_78><DEPTH_25><DEPTH_72><DEPTH_35><DEPTH_60><DEPTH_40><DEPTH_44><DEPTH_11><DEPTH_20><DEPTH_60><DEPTH_74><DEPTH_3><DEPTH_75><DEPTH_31><DEPTH_74><DEPTH_3><DEPTH_31><DEPTH_20><DEPTH_55><DEPTH_36><DEPTH_31><DEPTH_74><DEPTH_3><DEPTH_40><DEPTH_29><DEPTH_29><DEPTH_38><DEPTH_57><DEPTH_8><DEPTH_67><DEPTH_72><DEPTH_74><DEPTH_74><DEPTH_64><DEPTH_25><DEPTH_69><DEPTH_33><DEPTH_119><DEPTH_33><DEPTH_15><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_41><DEPTH_85><DEPTH_4><DEPTH_66><DEPTH_63><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_41><DEPTH_78><DEPTH_57><DEPTH_25><DEPTH_66><DEPTH_41><DEPTH_0><DEPTH_0><DEPTH_1><DEPTH_57><DEPTH_57><DEPTH_94><DEPTH_0><DEPTH_57><DEPTH_57><DEPTH_94><DEPTH_16><DEPTH_42><DEPTH_42><DEPTH_END>
203
181
246
223
22
158
134
218
78
207
60
111
33
183
80
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDREVO8qrQipfLr6U5SoI6Xy6tbKNlMVir5dL5dWdlL5dAWKnl0eXVry6PLoGVfLpPLq35dHl0AVPLo8urXl+1J5ftTuBVMdJ5dW/LzSeVzRcCr5dJ5dWzHTfL9qLgVfLpPLq35ftSeX7UXAq+XTTHVsx+1J5ftRcRU8ukMdWzH7Unlj0ouBU8ummOrnlj0pCgouBSMdJ5dXPL9qaY/ai4FTy6aY6ueXTTH7UXApmOmmOrhjpDHSuBT8um+XVwx00x0DsUzHTfLq4Y6aY6BFMx00x1cMdNMdICn5dNMdWzHSeX7UhlQpTDHVwx00x+1FwKZjpvlEnAzkVbMYJ6AjvxWDrs09vd2ASRljeTDBe9TJ2Qz1Xy/ajy/arYjo8ujnAqeX7UeX7Vb8ujy6OcCp5ftS7ParXl0eXRzgVPL9qPL9qt+XR5dPnQFTy/ajZ7Vb8uk8ujnAqeX7UeX7Vb8ukMdHOBU8ugx1b8ukKGnzXAqbPajy6teXR5dHMBTKe1J5ftVvy6DHRzICn5dJsq55dNKZHAz+PWquFip5ftTfLq55RxSGOi4imU9qQx1c8ukMdFwKez2ppT2p89wtve21u4x5+cH0xVjy884NLmTdkOxT8v2ppj9q17K1tZmf7XcrAqjgswGfzqO9gtEkC2kvm4X5snIB+uKweIiqns3uHLpcyzH3Ix+FIY+CeOma63SLC0kso5ZIEeTfhi3ORWHqVslvezIm1V3ZHYAelYQx0alSVNLWIcljPFrIwyI32+u01nwXltc3U9tE+ZYOJFweK9OQLNaLyFWWLOB04FeOafNFD421aNdziVAw2IxOeOMAVnhsf7aclJWsU4WWhveXTGjC9eK6ix8Pb4Ulu3Zd67hGBtI+vpUiv4ehLRoiue7YLD8TWc82pKTjTi5W7AoM5Hy/am+Vzgj345rup9F067g3RbUDD5ZIjnHpx3rgrjS9StdVvLO5vWlEL4TYojyuAc5wT39e1Vhs0hiG4pNNdAlBos2unXN65FvCzgdW6AfU1tReDLp8eZPGgJ6KpY/4frXTaesEdhCtup8nYOvU8dz61i3HhVLi6M13qV3ISxzuPbHA615VXOp+1cH7tvK5apq1ylP4MnVMx3MbNz8rIR/U1yNwZoZJIzaSh0JDb2AAP8AP9K9IGiuIFjGp6gFxhR52AB+H+NcRq9mdN1JoLkuwADKxG1WB6E+9deWZg683CUr/IU4JK9jBMt9JKEWGJVxuzksTz6cVgeKQVFnM8sjMsvQoFI+mK6yffFdLKdgXbgnJIxnt2rmvGhkk0qOX5fLEoxxgmvVm1y7kI9s8ujy6ZFcTOpItGyOq+YMitC3gaWMPJH5eeinBNctfF06CvUZSjfYpeXR5dX5BZxOVkbkfeGTx+mKc1ohXdGeoyOnNcyzSi3Z3V/IfIzO8ujy6jnvTbth7K7JHZVUkj2+atCGFbiBZoySJF3JlevtiuipjKdO3N1BRuU/Lo8sDr0pGnl7WM+M+q9v+BVoW0CTW8cmWG/qPTn2orYyFKKlLqCjc5281WKy1qw02SJy94GKuCNox2rSMVcr4oeeHX/Dt29rtCXZj5lGGJIx9K7m1g3Qq9wgSQ8lAw4/GnUxUKcOd7Ao3KHl0nl1eE9o0gRICckgN0DY9PWppbVWjzEoVyMrycVh/aULpNNXHyGV5dIY+DVRZ9VbUobcW9oqy5KsZHzx7YrovJjhjDMqkgAZ65NXiMfCi1G129hKLZkiH5gD3q1Pp6RQu6lmKEfjUsV5DNcbDAxReGfjGfSrdwhktpRvKZUkFefyzXnYjH1VWgnFxuUoqxhGMD3HrT47SSTlEYj1p9laxzXEe69nkCjcVJXBx24UVqzrK8JWGRI3B6lcgCuvF5n7Gapx3ZKhcyW024aMjyuoI4+lcl4S3QadewXrmOSK6kGJm2nGTjk16FCkluAZ51I7hv8AE1heJodL1HRbzc1rNcRITlWViPqBWdHMpurySV13Q3BIfa2322NmgkhdQdpZXBAP4VZXR5CT5jBQO685/WmeFDAdFie2UBGRW+VcAHp0/Cl1oO88cMjOtuRk7cjcfc9qJ4vESxXsYuyBJGe72w1b+zxIxct95UJAH16VrnQ1PAlII+9uHGPUVmwDyNSgVYsIRwAemP51vap5i6bePECZAmQMZqsXiK9GcI8w4xTZ5f471C0sddsIrXEjWn753LEhj/d46V2axR6poMOpWASOSVPMZGJZVz16V8/6yuo6pqc11duzMHKgMcAD8a9K+FdxrTw3umzys+mRQnb5oyUbtg+ntXM69WFVOMjplTXJsdrolvI+olLs28ismVQR/qMk1N4ktJJIrV7d/KIZg+xR8349qr6Gtta6xEpvlkmkyvls6kk+w7fSrHjG/h03R4bu5cpEk2GIJGTzXTVqNYuN9mcqTaJvD6sumyRt5u5X/wCWhyf84rF8S6TBd6xO80cRVgCqnktx3zUnhTxJpV+bxIdRiYnDMCdoH4t1qr4s8QRWmo25s7a5v2aPraxiRM+hI6VlS93GyfRlON0dXoxV9EsSgUL5eOOBjFeaRN5HxdCyqYoXj2ZK534PGK7Hwx4g/wCJDbLe2F1bzxsR5JhOdv44Fee+JLjXJfH9rcWtpFAZd62pmf7y8n5sHilQpTVWpZaSCzsev6ikktjcRwrmRl6AgZ9s1xElhdvL5Nvaskv8TqCAv5jBq3pGqeLLf93qa6ZOn8JUsrL7Z5zW7Jrc5xst4xxxucnFThKOMwvNGEL3B8r3ZPodjPp+kpBO+6bcXJPGM/yrz7XvEVo/i24Iu0MCDaoDjDfU98HNdFrBudatntZrua3t5BiRLbCF/YtyT+lYEXgrQ4Yyn2IPk5+d2b+tbYTAV4VZV6m7Byjax0Wgp4ev7cy2mredIQA4W72lT6AAirU/h2Bton1mZkU5AkkGSPqSc/lWBBoemWzbrfT7eJv7wiANW2iGACAcdMjOK0eV1Odz59yOdGtLqum6Jp/kWgnvGGSIoRvYt7noBXnOo3XjPWr2a4+z2dlFIcIsjBio9CRnNdcUphj44rbDZXSoTc73bB1LqxwTeEtYvHDXetKgznEK8Z9ulZvibwqLDRZbo3tzcTKw/wBYeBXpvl8Vg+L7bzfDN4vtmu50o2sTdnpcqq7hY0WSQfxKcbfrWlGPlVic8Y4/I1yK+ALiNAsXivXFHp53X9auWPhTUtPnEsfirU5cdY7gCRD+BP8AKvDx2H+sRXLujZWj1NZ4pFusyRjDqQcng1A1rdOubNvLU9VZ2AH0GK1EWVQmWViPvELtz/n61Xv7a8urcx216LRz/wAtFiEjAe26spSxc4qDilbqCa7lZYRCPLkA8xgRl3yzD64p+iMG0u03DJQMjgeu4/4isA+CNTbOfGOrnPXJGPyz0q/o3he50SRvK1u6mifl4p0DjPqpzkGqxNCpVpJL4kNOO9y49peGQmRQ8QPCK3JHue9aUaFIol2hVXoF7UpWXYwV1DEcErnH681Us9PuLUS+ZqM9wXk35mVTt9lA6Cs60MTXpqErJoSUb3ucf8R4pY7W1uolEP2e+jPm9D+Xf612kVjbwEhYY2cjO4ryx+p+tcL8QfCMUui6jq0moag8yYfyhNiPj/Zrq/D2lLp+lwCO9vJ4mQPsncOMn0JGf1rXE0KtWmknsCaXUsie52lEt1Rw21FCnH1zwKvRB1KCUqZMcsowCfakMbEEbyvoUGCKhtLRbOLy45Jyu4vl5S7ZPXk9PwrCWEqTir2VgvHuc7qOq2VnrOnNJeRIyzsrhmXhcHrW7stdVscQzLNA5yrxOMfjisyfwR4du7p7m40qKWVzlnZmJJ7nrVuy8PaVprE2VjDbkjH7oEZ/WumthXUlGcX7yFoTJYFAVeb90P8AawVH5VOZrf7MzrKhhRCNyOCQPqKVrdHXDru7fMSabHaQxDZHFHGo7KuP0qJ4WtVcXUlsNOKOKTxv4cs7rdAt3JKCVbyraQlvXPGK6XT9a0zW7YNA7qSciOaJo2B+hHNaQtwuQsYXPXC/4UpRuRyARjFa4jBwrNSbs11FzdilFbWNvIzkiSU/eLLkn2AAritV124m1i80Tw94bAlWMmeRlWHfkYzjvXoJXA+nauMCC3+LLDkifTsn6j/9VXTwiU+eUrsOYXwefEmlW/2PU7GM2qx7YmilUkHJPILe9XteHiK+uIjpLWVrCEw4ucyHPtgGt8YaQpkbxgkeg9aNnC5GCe1bewh7T2nUObyOEXw14pluYpptdtYthB2Q22QecnOSK7SVbq8sJbcyCN3TYZ4htKn1GTirJi2gliVwM8DOKp6rqaadbeaEZXYbUjXnzD6kGscTOm7Nq9jWlTlJ7Hneq+FdO0yxvdQvLya5S2fbK91j52P93A5rp/Ck9vP4XtxZbTaT5RyiYCZ/vd6w/iJdGTSrLSmOJHPnTAc/MemawfA+rzeHdQeCRmEMh+dN3B9xXG3Hm50jv5G48p3lv4H0XSp0u7WxUSAlllVySD69a0JrWOdfLnjWZD/DLlgffBzU8t/BDGl1bzLGJR/rH5U59fQ1JHPBKdrqYWVc7j82/wCld9LFQavJHFOhJbFGOyt4OIoIkH+ygX+VPKdf0wOlX5LdlG7AK8cgiojCT2OfTFd8JxeqOZpopmPIHX8a5LxZGIdY8P3H925KZ+uf8a7bZx+v0rg/iLqtnZQaahcPOl2suEOcKOtVKqktQUG9Tr2i5z700x+1VY/EWjz26TpfwlXUMADkj6gVE/ibSgSEeaVh/CkDE/ypqvFLVgqUnsi4Y6aY/Y1nv4ltgTttLn72394FTnv1NUbnxaoVRb2fmEttOZcAfpUPF0l1NI4ao9kbhj47enWmFBnFc4/iyR0jYRwxMxwdxLYx1zjtVJ/E9/KDtu44znBEdseB65J5rN46maLBVdrHXMnGe1N8vPSuKfUNSmiYHULsufuLGqqMep71m31yQrNO15JwcebcEbc9OlQ8fDojX+zqiV2egSy28IzJPEn+84Fc54u1Szg8NXDoVuBIfKURtkE/WuOhcXNzDFHa2ySBuJJmJDEf3iTimOsxikgkQBEJKhQAue+Mdal41vZGLw9up9PbD6UbD6V5yPiVqDFQkGlkscYM0gwPUnbTx8RdQwMxaZnJxtkY5A6k5xx/OuR1kV9Uq9j0Py/ajy/avPx8RLxgwS3tZGPKFWIDDucdQBRH4/1UxbXsrcylvlZA21l9gaXt4DWBrPoegeX7UeX7V5zJ8Q9V3II4rf5jlcwN8w9fvcVGvxD1dtnzWKhmK8wtx7n5uPxp+2iL6lV7HpWz2oMff0rzdPH+sOAd9h12lQhyD2/i6VKPGmuYb95ZMVwBiM/Mc845pPERLWBrNaI6zxVam58K6nCBlmgOPyo8LyC58LaXMv8AFaoeee1ea+KPGOvz6dPaxXsSLMCrCOEAgfU1meFPF+taZpQ00XrFEH7rManavfk1arJxuZvC1FLkZ7n5f+TSGMivKpvG2sb8/bp9h5H7uME+33aF8Sa5Pt26he4wdxAj69sYXtUfWYo2WX1Weq7BSeX7ivGLfxlqksbRy3d2bmBtsq/aMfjgCr0Ws6vd4ZLm727sjNy549OTSeJiilltRvc9XcbIzJg7ACc4rzvxT4ulkt54bJ5LaLbgSYKs5/pWRd3WoDbcSyTuY23Z81s4/u8YqvBJNqJLmCGXc+/c8YbJ981P1pPobRyufVnC/wDCR+IUYhdXvwASB++Y/wA6mj8U+JsjZq+oH6SE5+nFdtNZS26LIbe2Uo5k/wBQoycdDx0plglxd+W0Qi+Qkj92uRnr2o+tXL/sx9zlU8UeMSMx6nqLLjOfX6cc1Sk8Wa9HrNvez31z9tjXasrY3BD1H0r0O40y8jtpNqoGVS6gQgc/UDisuDwr9sura81XDQXMZG5GIMbf7R28VUMV1ZjVwXI7XNq+8bxWXiLw9eI5mhuLbyborng56/WvQZtQgt4DOxZItvRl+Zh7CvA/EOq/aA1iiJNb2kZhgkJ+6cnLAjHP19Kk0vxlPtSHWJZp0RQoffyB71jPETfwmkcFFWbPVrjxPG6FbaGTzQCFMqYCj1PqarWKiUyarqcrvHbLvYk8MewArE0Z/wC3JY49O2lFOS/QKvvTtdvpNUvYPDWjBzBGcSSqPvN35rjUpzd5OyOqUYQXLE5nUr2bVr+W+nYh5GIRR0A96dDHa3FvtcbZk5VwMVfvfDuqpqMWnx2wV9uI03DBHqT2rn9Uh1XSbqS1NkzzoOsZ34+uKv2kGrXBXR1ul67NpSLbahEHsZvvH7wb/A1sS2k8Nl9p0a8Z7RjuKHkx+3/168m02911NQeOKC4uHUZlglUspH07V23hddYF3NcQzW2mqp+a1uZCQw9P/rVEmo9Q31sdLZ+J57d8XbOEA+QooG4j+9Uly8eqRNJJLJ9puDuhSOciNPqVIqKP7HrQuLppra0liUq8avkMfX2qgdMvrO2+2xxyxR7eZozj/wDXURxDi9ynTpye2oy40G9ieWOzkjnhjHmSTOx259CSe3avNdevF1DU4iygshPmFcYz+FdLr+oa1d2jWtpLsgfltzgPJ+HeuIjtruKXDwuWPOO9dMa11e5FWg0rW0PSfCnh/Ub+2T7NI6xbsttJBx7e9alx4Yu/PMU0srv/ABb2JP8AOub8LeMdT0rZaQxnDnDZxxXqWi315Il9crbtc9DE8hChjnkVPtdbNiXNTV3HQ871bRm06ESNwdwxmrWjaH/aMAeNQwJ6egrqPFMUXiO1hZLq1syGI2O2SD3/AArmVudd8JQyxaN9m1TzFwkkSlhEfX3qVWhtc2hVduZLUPEOif2ZZNLKm0n8M1zGkyq96I5Dwxxz6VUh1PxZrc72t291db5dpMxO1W9uwFaMng/xNF9okSC3b7Ou+TZKCcYzxWqqQSs2ROrJyUmj0iz8NG4tt4T5CONvevNvG9xHZ6rHpyKPMLZfA4ArL/4TzxJYSxvFfPvgiMe0J8oB9Qep965eS+nutQa8upnlmc5dz1NOMdb3JqYibTvsdt4fkEGtQb7Nbti+BCf4+eK2fF91PNrcltc6bFYSJFxDEAePcivPot3lSSSXUiTKwMSKrHcD33A8VLHJNHqgMc8ziQY3SDDn1zyeK3ueem+qO40+2iuNdNlJgZYqoz3rtbnwL5dm0jIBheTXibeLnGqfarKJIMSb448swX2BPWutm+Kvip1vA9pFt+yhJEKtiMHHzYz1NYuF1udjxja9zYW0aKPWGhc/Jv216RF4TMluJgikMuenavn5vElwZfNyu7OQQD/jXQQ/FrxHb+RsuY8QRtEAY+GU45PPXih07j+utK0To9SWO313yCo2qwU139p4Hjm09ZvkO5MjNeAy+Jru8uTcSOGkY7idnf8AOu7j8V+IrSz0ySHxFpR2xO6qSNyDurg9+OKaprqEsXJrRk05TT/EElvIAEV9re1ekaX4cjubWOcMoVxlcYzj2r50uPEl7d3L3M0jSSOSSQBzWlb+OtbhjhWO+uF+zZMQBGFyMelLkTFLFycbJ2PX/F+iaPHbvJFMhu+hBwaw/AulWN/eXK3skSRwr8xY4A+ua4Wfxjqut3Not84dY/lDKgXcD3bA/WmXN7dWZ3RTyRhjskC8Fu4z+VEVZGak36no3jq0tdOvYUtJFZWAbg9RjjGK1PB9vZ6tp7TSyIgiH7zJHy15hNea94iW0F5NNJGf3cLFdq+nYDmuph8AX1pKqw63HNMyZkt1kZAPQE5xWTnTjubqpO3Lf5nN+KJYLTxdfNpZTygQpZDlW9TXWeCPEGj5NrrEy25XkM/CmuWtvDEr6lLBcTklMh2QDbx6E9a7LQPB1jcwg+VAeeUcks3uT0/CueWJinbc63Tap3bsdJ4m0+21DRVn0XFwkg4dOQB61xE1jr+i2bWi2oaWblWVs4HpweDXoF0tvaSQ6WIpbUCAsVtRhSPXivO4/En/AAj+uXWJWkdWxG23ccejVnOtKTtHRGFGpJR3uJoreKNRtpbUxNJAGKM0q5kjx1PqRXSacmmaBcxxrqbPIcNLG8X3fxNW7PxfayWbSeQsF1IOXiVsn+lcrf6hbtdy3TLK7+rAA5/GpbqPRDdXm0eh6TBcfbdTeON/s6bd0TNGAHXvn1rm/EGjyTQXdtFcsIXBciFcL+QpumarB4k0V0lmmt50G2HccMxx2xXU+GGJ8MCK6IkvI8pIJAN30qXUqPRsx5vZSvueBHRmKyK9xLEgbBVgB+NXo/CtrAgma7iupS4CpC+7I9x2ru/EGhi8lmdbYG5IO1wOmO2Kw/C9ncw6mVnhIKt2UUe2m4XR6EVC6djoPC/h3U3SRgkMHOAIjt3L/tCr2r69aNP/AGKsDpPAQZmtU5X3q9oEs51dl8wLgnIc44qbULDPjYXtvcJBI0G1skFXPuKiLco3Zx1pP2uqPK/F+rRC/ZdNv7mU7cM0xZWrL8P+NrrRLiUGD7U0yYxJ82Pzq/4l8OaleaneSs6l0Y72iy/Prx2riBBKsTxFTvVsEnPP512UqcHHUzqyqXXLseor4y0qztI76zjCasxzN8o2sPSuF1nxHdahfS3LlI2lbcVT9OKxIhcY2bCCBkJj9aWCwvbq7SNIJXJPWNN1axowiQ6lR7HoPgfWXuDLYjSvt08wYKxPI4613uh3Wo6nrNz4d1CMLFaxhmaA/KuegNcn4a8I3+nX1m+bu3L4eRAhZkX1x/DXW6R4o8MWHiK/YajHB5h2yeY43OwrklTTk+VFzk0vMo6xpOlrfLGu4yxsdjE4zmuQu3Phy+uPIhhllkUoZLiLeUHfafWuj1jxFo0esCaHUIjEGznzASRXP+Jri2vrzzYXLxModX2npWdOE4zud3tFKkuYs+FvCn268tp7ucJBI2/y1B35z1rtNdF9pOu2Gj6XKIYboHc0jdAOtY3hvxX4esvLknvYAsagZaUcEfWr9p4g0fxVrN/b2he7uDD+4eOQZVR1Az+FXKE23dHJOpeSV9DB8Y31sZY7WFIAIRhnj5Y+vNYemfEv+x4jYJbrJZq2GwcMR3qTXvDGs2lm17bQvcw8qcMGKt0wR14rz64sdQRvIkt9sg+ZmZdp/WtqNCDWoVJytaKOzvviE9zHJZabbLZ2LNuVOGI+p966fwfdW8Okx3xsL17gyqWlztiO5sDA79a890jwnqWq3AWPTrmONFy0iqfzzXsXhezg0fT7SzvtTZGgzMbaWMqoHbIPJPQ0VacPskRnLlsyLxFoIna4uJTbpM4ztjQHHHGfavOrvSLBbyMagD5QH7yS3jG5vYDpXoWp38H2K6uBNHKXkJyeCw9ql8PaXHZeE7m9mit557tPNYGXBEfXHtXNTVTmdnodbqKNJJq5z3hTw5pjQNbTaYLk3iu9u0lwN8SAnbkDgZ4rmPEPhC48MXVvPHOlxJJuLxRAnyxnjnv+FaHgqSbUPHhlsZV0qORjiKPOCBzt756VrePtY0lNXdpbiQXkaeWowcY78DpXZ7SUNtTmjCM5Wnoeff2Dbd2kPGOTSjw/ZBcbXP1ath3VcYBOfbFAbr8v61teRzJQMr+wLLH3G/76NKNBss/6s/8AfRrVD5A+UfnSbzuI2jj3p2n3HamZy6HZD/lj/wCPGpRo1j3gU/Uk1c8w4HyipN+FJxkjpipcZdxpxKQ0ay6+Qn5VFd6VarZzFIIwwUkHFaXmHHGCfSmyB5YJFCn5vlGBnJxRyy7g5RsN8HX/AIdtLCVNW8P/ANoXW/McvmY2inppqarMwbCwhyxVD8xPYZpnhTT7I3Lw6pN9kjfIDsp6+nSpy/8AZ+szJHMvlrIR5g6MOxpzU3GyYUpwjP3kereG1kh8NW3nWsv+ik7IMCQn6ccGuc1Lx5DH4kVfLWzglxHOZFBYfXipPB3iXde3EEt4pC5HmYwQPb3rP1/wJeanqRurHF/A5DK5Zd6nPO4elcUVK9pmsknK62Oqh8L6XeaJN9nUSXoy0cwB3OOx9KreH7S8W3aG8BEmNrbhyvpWX4s8Wy+D9OsdN0l52v48bllQbAhHJOPfFc3pPiWe71J21acCVgNqRsUXn/PelVw7krjp1Hdxb0PXET7TpyFrkR3Vscq4PzbfQ+1cVrPhJ9Qvrm8sFF07/NGVQjcfTnjNc2iW92+pmS71EW24bYGuDtz6Yqe616Xw7paW9he3SRxxguqy/IGPQDI479Kfs+WyvqKKlFvlI7jTdVSXZPbXMTIAJMrwPbjpVey8M6lfTyeRZzJ5WSwlByf61e0Hx5e3Gi3MWpXa2ruwKXPkmRiPfn+lXjrupJdrdx+MrZpPLAVZ7ZkAB7HC81o29mO19bG7o9tpujpG15f2fnwDzZXYYEQ9Dk8muaHxcni1m9OnaYbyB5TtmMnlDaO+NpzWTceHby+nkvG1jTLtnY5LXY5+gbGBQnhTXrdcR6aHjdcjyWRgfyapj7OO4SpufUvXvj7WLxxLb6bDCz8b5JN/J7ADFTwnUENtLfSTwzn78ezbsJ6epFY0Gk6zZTCS4065h2kEOIN20eoBGDW7eXcOs62LuaV0baFNs42s4X+I8YqZzh9lGtOEou17lTUfDfjqw36jaXy3MTZffCQ+1ewPHWuT+0eIL26WeTVpXeNs4djhT6EV6NbavqcWqJJplxHbW5XaLRQXHueTjNaN3D4f8QSY1Ky+xaiRj7VbDHPqRVLERtbQzlRqRfNO9jMtdd8SyaMmszwabbxp+7SeH7zn0K9D+NRW/ibRpIbqbWrKKW9ZPlKwgKeO+OhqXVtE1bQNNmtGuBPpM5BaeNVBH1HT8qxE0SwNu0g+0zcffB28elYTqpSOmjSjJaBaXujXMSWUPh20+1XD5Wd5W+U9ug6V1Hiu9/4RzTbEQ2sUOobcC4hGVH581xi2mmwysY/PVoRu3iX7p9uK6m18LXev6bDqeu6wU0xEzHmUu2Pq3Q01U5tCa1NU3zN6HEz+J/E95HJANVmBk+UiFSJHH1HJq5pHwxnmC3uuTrplo/zAyndK30SuoPiLSNBt2t9Es44DjImKCR2HqW7VhLq17qWqR+XPcG6mIKs5OM9sj0rb6xyaIylh5T8iHxN4c8P6ZawWNpaXkd054u5yAJB6he1U7i4DtBAGYpDD5e1jjIxiur8QadqN1bmfXL+1VkAwlvlnjHqaoWPhmDVEN3Hpt3eqCAshmEMeO2Rgmp9s2y4U4xgcG+nWW3dJCITkjHmfrTrOzSGdXsft32oH5WtgQw9OR1rv5NPeCa4htbLShOMLIzwPOyp6/MNuBSSJqU8q29z4meEAsNsHlQjA6Yw2f0rdVptWMlSjcyfDUvinT9X+0NatdoCdwvX8tc46nJ61s/25fQLcNe3/AIciDOJCEUyM3sSOmKw73TYPOLXl79pYJlMzuCSR1JCYOKqBdA2OZ7aGNjDsCqrykNz82S45P0qdxuC6HSeIPH1j+8l0XUpreRwu1Y4giFu5bJJ/SuC1BbjWJGvX1G4urnB3FgzOuPcADnsK0hrOk2YnWKNVDnGUtYhgjofnBI/OnWesyapqLW0eqXYiZC+zeMM4HXAAArT4USoJuxXkvLaKzttPtgSyJmUldrKT3PfNaHgvxIbXVbgajKs9lKAhe8Qy+UvPGAfpXMXLMqytFuaa6kKhifmIHc1NpivHcyW0UblDCwZ8HBPX+YrRRXLczlKU3ynpT3vhzwhZ3muWF3FfXN0vyIkYVEB7AHoa8b1LVJ9Qu5J5G4di3TpntVqay1y9hRXtbt4wTtHlNjP5VC3h7Vgm9tPnVB/eXHP404cq1Y5KWxZHiOXjdarx/tGnrr800ypHBCu7j5m4/Oqcfh/WZQDHpl24P/TFj/SrKeEfEUo+XR73A6jyiKrmiupKpvsD67dRuVEUGFODjJz+OaYfEF0SdscQ98H/ABq4ngXxNJ8w0a6wfVcVKnw+8THppcgPu6D+tDqQ7lKk+xmHXr31i/75qZ9YvUgRhcxMWB3II+U+uRWmPhx4nPWxRf8AenQf1qSH4ba9PwgtRj/p5U0vawS3K9k+xgHWr/A/fDp/dH+FKuu6kqbBduF3bgBjr7V0q/C3Xf4p7BfrOf8ACpk+FmqE/NqWnL6/vCf6VPtodw9k+xyq6jPIkrTXs6yAEpsAOT7njFVDe3JYuZ5NxOSc8mu3HwvmVj5mtWI+gYise98GzWU7RG6RsdG2EA/Smq8ZaJilC2rMa3vbmOQSLcOpzndu6n3rsbbxdLdfZ4hNLDPJ+7mKHAkX8KZpvw+jurVJp9RaFn/hWHdx69a0rXwDZW9xHMuqXLbDkbY8Vz1Z0nu9TohGXLfoZCX93Y3l/DZalcA5IeNwr7wOn3vSro1rUlW1m1HU5Gt5gGYJGm8Ff94Y7Vpy+DNMuZ3unu7xXmYuVRQBz9asnwppMkEUEi3brECFwQCQeuaylXj3KjRjceMavpV1OjF5JQGyVAPHc44BrK8QW8NxaRwRoIwwVpHPUgDoB/Wun0XTbaxd441kClSvztn5amh0fy7W6a4wcqdoxkoPXms1XVveIlT1sjml1HTbbSrVXgR7dU2lmtombHQ8k5JzV+GfQZJkWaKOKR4gNslsm5wScYKmsQQxXFigkTEcMpXaen+c1uWVrbXWn29zJpsDXCjiRhyADxij2qe5r7Ll0RKbnwcl5JFN9mQq4XKWjcAdsA/Srdpc+FL278mxnJYn5yqyKwHoCTxURsrUN5x0+y3Hnc0Y3ZpyxxRzxOI7aPY3GwBTRKacdERye9rIkUNLdyQ6Frk+9CVNrO5wT/sMepq9HqF5JbfZr6NZQU2SiWMGZD/eyOtYloFs9WeZWVG8wuD6Hjmt/Ubq3utUtZY54pJZICJvLPAb39O9YybWqL5VzcrMbWvDDaH5Dw3PnWlyAquRlkPWoY9NmjuoQy7o1Ut5u7Jb6iuh1jVrFfAcRkSSV0mES4B4bPrWHceKtKsnjE5k5UKQkedtZTi204o1oVG0+c7bSoLbVvB9xp9yC/lA8cnae1ecXWlyXC2kKlyPMKMATgYPWtjTfiPp+jvMq2cssVwcKQu3n3BqK01lnuR/xL2X7RL8oX7q5NXU5lFPqZ0FyVJaaGXaaT5FnPJMjL5k+3B67R3r0/xD5Vt4Ut7eJNiuAVAHtXL+IRc6dJFDBaGdmAcSDhRjseKyNT+IeqXklrYyabEixj5yCefp6UQvK4Vo+0nGUVoUnsHO7zIjyPNc4+8ew/Cum8M2VvYeErjWXgD3k7FEcjlR2xXIw+L7y5aSOXSQsfKbw5wD7muj8PatqN14Zm02aJPOs5cbdpOFPIOenenBSgnzGmIvPlSINPAitb3U7k+ZCJVjiDHO5x1J9aW4N1cyXksGozQoE4t4ztViw4PHpmsW61uaHTZdK2QqoczByTu5PcfjTbG8kNuzbnfOAcHgjOBQuZLmRfs037xk38N2Lex3Xc6uQRLJvILHPfHWr/8AZelXGn2gb7dLHG5Jx94n8e1O1BvltsryjnKnsazxr0psLh44EV4ZAqgktwc8n8q6Wpyimjn0hKzNGOw0oXaKtjNhAWi3ynKk/jz+NWBpGi78ro8T4PWV8nNcs/iO9RUuVEQbzhG5C8FM+9Q6h4l1WG6dI7kKoYcbFzg9Kv2VR2szP2sTt49O0yMgrotmPfbn+lOawuFkHkaascOxstHb9OPXHFc7ol/cSwmfU7i5kK5/dJMsee46DpxVjTvFd5qFzPAI2gtyWdgW38fdCgnoM+9HspLWTDnu/dRgvC63Dv5YD/6uJP7oyef1rtrWKW20mK3EiFEjwBgcn+dcfeS/Z7eWRmJPPX0qHQ7ixeFRKH+0B2KyOCSR6Vs6cpw0I5lGWp3gunWAKb2MKwzguox9KpT3VsUKz6jCU7hpQa4Z4QEm+XnJ579awpIgw+ZgvP3m7VKwi3bFKu0exrr2n28QibV449gxsDfd9ulJ/wAJRpHfV+M44Lf4VzUHhm31DULmW5vDbgtxkD5vzrSl8C6VHEJYNSe4PHEe1uce1c8qcY73OuHI9WybWvGNvpumJd2Am1EyXCwGNJGTkhiOcHJ+XpiskfEC9ttVtbDUvDd7ZPcSIuJpXD7S2MhSgJ7/AFxWhquj2HhjS7C5W/dEuLpoxJKuBBK1vOscmcZG12Vs+2e1eeWVlcQap4e02bU4ZHbUAVhtZkl8jc8Y3CRCRltvQHjaD3rqoYenKnzSR5uKxE4V+WD00PabO5W+ulgi07UVJYKS8DBQPUk1qposcb3SRiQyxybPn2gFsZwDnrzWDf8AhnxDNCzWOoXZdl+bzLgjcQc/l3+taNr4bV0Vr9dWkdgrSD7Z8rsO+N1YKNJR2OuXNfcz7i/a0tLq5n0mdFttpdHZA2G6EYzms5fFqSDMWi3T+hx1/IV1/wDYOnIZAbe+XzceaHu/Tp/GazrvwlcXCkwaveBC2fLMzYUemazhCN9Ua06qtqc9L4puAQX0GeFC20NLlRn8qz7nUTqztK0CxNE+whWznP8A+ququPAdxIkTC7kdomzmXLZHpWTJ4U1GxluW2xyhyDiM859a3pxjGWhliJKWwtnqH2W0EEtxbxbF+QOm7cfru4pjaxKw2i5tlJBwRHn/ANmrK1dk0S3E07RzOnLIp6E9Ac1W0PW4tV1BElt0hmjU7lHIIPSpnSb1sQqjVom/JrcNpGBc6rDbFlyoaEmqz65BJbSzRa2hVCN0ywZA9sYrb0Sy07UL8W+o2kNygRljEi7ucikvW8J2PiSLT3trSBCm2VfKATd2zXMnFu2tzo52tGN0LU1uIS0E7XMTMN0mz7x/pXVtaxjR5mGA0mWYg5zxVa3j0nTQ62yRwiSIlvKQbPbGKnjlz4ddnIDAFT2zWFWL5kkQ5dTyvzDDpt7HLlW8w7ffng/lWtZxPc6DmIRqkQ+YktuH0xxWZdWBvYrpYHYkSDZhTz7Vt6XAkYMM8MjrCgYoHZN579K6JR6GkLybfQz4NQttKvvtl1o9zqcJGNqoGXGPQ9DU1h4s02VoIrTwRPLMshYzYGOTjkBSBjP6VcTx9B4fhK2+hwyec+f3jkquP1JqeDx/eauGRNM06NZEZnZ1YqMZ4PPWuuFRxp2scDhJ1bkUltdxXQuI7dX2yq+ySRR9eprU+3alImpyzaPZwW0jAIxmG1vfIPFYGleKrnUrpoFttItgqkhlslPP41Z1DWdXtLyxgjuLdY7hxnZaRqVHtniufn+ydXs5vWxuzWqahpFhFC9uIrebzbhcAbSPQ965yXw42q3kk9tNDIjOSMtg/TBqXxDf6ppsl6trqM8cEQB4CHLEdc496yLDXb+5t0WTV70SOOArBRn8BUKCetzSEnTVki3daSklzslS5Kq2W8q1kfHsCFxWxPvksLeG1sNS3Rco6xbGH1BrhLfWdZurKaWbV79nWXb/AMfLKFH0FXdGknvF1KO7vbyYogaLfcP8vrgbqr2EYq0i/bSep6HfQ3EjWF29xJMdux4mz8p9xWDqa2Fnfl54Cg2lS5GeaZfWtpN8MYtShtN04RlaZS24EHg9ax9SeEaRprhFCuiktkcnHc1j7IqjV0sihHq9rDcyxEzLGRydudx9xXSw61bWdtHrqJE0TKYbhD/Ew+7j865mW2Vl82RVCL824+lczrauPLi+1oIGHmIgcEH8AfaumlQjN6MzrVpQXvamjYzPrWueW0kSSTjaNgwDz6+tdvpGnRJeSW0qlvIUlVx3Hv3rzTQrO4jlM8MLvj7szIdqH611VteXsCy+Vejz5CEk28MoPXr0ratSS2ZnSq869419Ywk5ULgh85bjsK56e2YJfxpCwhZd4fsSD61bupEgl8lJJplYhVZxk7u/NWbu1uoEj82ZHiwEEaEkAe4xRCInZsgsdP07WdJhRI1ikKEu443OO5zWULGyl1ciRppJsdFICkj8K0rq8trILbwTBSM7t0ZUD9ah0nyYbpbyW2FxbEneUAbHrxkU4xkncUpRehMtvPp9tdRxWLSwMwbcCq+WcHjnk1b05IxZ78liUBIwBjvTtSNjNGZbXUJorWUD7kAfB787uKyrm6gtNPltre5uLiZl2nzIwoX34J7UP95og/hq5VvLeTUr57ONtiKNzNjPHaorewawu1iLbsOPmxjP4UumysmrRMEVnaH5ucZq5e/Nft5qYO1cfMSB/KujWKsZRSk7szZjcRS3DJDmPecPzx+FXtS0aI6EbwuDKVHy+UAfzzUl3NaaVpr30qF5JDsjt35V+ckn0rjZNZmluZZWGFcEbFJAA7UKM5vQyrThDdluW+iv7qWSdBbnBOxOOfxr1jwF593oIP2+JIhgAOASMe+RXm89hazr5skY3Nk5DHJq5pl1rthaJb6TeyiFcu8cbAYXuc+tZ1bTjaOgoQcJa6neeJ9M0XVtKMWra63kQnzwLbAZmAI7545NcXdeG/D2jWuk67pGo3dw4mWTZK6qdynPACg9QKgZL+7nN9dzi4mH7tczbAEP8znP51FIPslxbpcNJNbI54J4BP04rKM3Fctzqr4ZKHtppaW9VfVX6a+Tfmb8vxC1ZLWSeG4jhYfKsa5Jb3+YnP5VBoXxT1f7aE1VxdROwBJPllB6/LVTVr+G80Oby7aNFj+RQqjk568CuCTzUO0KfU8dq2pwU4s5KtZcycdj2bxZ44his0msXS4u2f5A8RARfz5rK0z4oXrQRF4mMsWWk8tgBMPTbjjH1NctB/punIvymZYyw9T7Vj2VtJDcqZUIQHDEDOAaFGNrPoaPmcly7HWXXxV8RTai0lrN5FuWH7sKOnpmtDVfFF1d3FrJHqMmxk+ZVfv+FQaHEXeS2hP7hB8wRM7s+tWbzw3DfvLJbt5RjICksqg/UEZrOU4N6I09hKML3IrKQXyzRXKl1LANuOd2a0bfSbHR5ITaxbWaQbmY5JqlZ6HcaXJNcS3EUiuAMRsTz0zWxeACzzxkEEc1E5a2TJimldmlo8E8/iO3SIE7SSxH8Ix/+qtqX4b6Rq2sy3OqTzm9fDoyNhcD27muTXU7qx8RKtvgeam7cPwzXoaXSalYJK8pQ4BR1PKH1FYR92RpKMpx0BfCcFqgZ752IXHyrsJX0Iyawrq5ez0m6trYO880hVFc9GPpjtjPWqPiDWL7RiLu6vlG0FRcRjPmA9iOzVe8ESLrr3GqXT+YsLbUySASf4j71M4294dnGPvO5zkemT6PfW8VxOIIpM7Zc43MfvdPfNZGpX0gvZ1tZXmYAmOWMkkeoJrX8TeL7Y+ILqGbTorq2tm2q27DL2yP51y8mqw6XcysxC2w5QR/fcN+laQhKfvNFqajAk0tZLy3cXUao6RkKJOrH1//AFVFa3My2TCC0i2x5zJM+SD7A8VY8Fz297qkCSRWzxSSlG83lwMEjA/CsTXHkg1m8hErBI5n2pu4AyccY9K6FFt2OapVUNUafh+Vm1qNUkVdwYsVXIx9O/4Va17VnDWSSzwFo23qoJOB7g9K1vhxHFe6fqiXCRvKiB0eRFJH0JHFcD4y0W90zU2lkQ+XJyCkZVRWcacJ1eV6Mp4txp3R12v+I7e80tjNInnThSQg4GP/ANVcxa63YwQFHZix4z1ArkjLIVwWYgcc0AN97BrrjhIJWZyyxspbI6eyMsYea3fzIucoDyfetvw9rEFvqby3EyQqYMfO3f0+tcHBNMrjy2IPtxWhp8Wq3uoypY2yzzW8DTOC23CAcnqOeRgDkkgAEmnKhGQ1jGldnrmjeIbGfwDcaYbg+cXfaQjNwfUAYFczeXDDwxaq8DboiVYPxxntioPh/O11o+oqwVSJN3H0Fat9AbrRryaJhtX5XX1/CuOpSVN2O7Dz5ocyMye6nudIaJG/1pWJOeAD61y9hpAu737O8w3Qt8xJwu0HmpZpbi12yJIdpQfN3/KoYriayy8BAdgQzFeSDXRTTjF26mOIlzyXN0Oxv4bSSWK3uLgw7yBDGshC47E9hSfYdK075JnkmeQ/Ook+96bTisrSbr+0RdX97CsksBRYyeFXIPJH4VLrcpRLG6ZA+GywBwDg8gGs3GSdjVSi1zDJrW++1/6HHMFz8qynke2a6A38EaJHNIruOGC8gtWTd67Z2yMbeXLrDled2XPb8OKzrfxBDHb28VnpkBu0YkvIitu+uRnNaR5ktEZ+63e5ZvE0+7EkjvsZzjcZBjI7YqHSNSh0h2gEodnPzHfwD7Ypt/4lubu3a3eytrYjDboUxz64HGa5qeeaSQbtpPTdgDNXDme5FSUY7HczXbeTck2ttHA2JMxzBiTnrgdOtTXFxbF9wMZDKpLbgSx44GOTXOWaWqWsc9tqu27H3reWAqh/4ECc/lVk5kmFxcTebIudoh+7GKiULu5aqXWwljcoNdheeKQhX2BR8uQTXazwaO25n0yR3AwCbhq4ezeKTXbONl/ctKu/eBnrXrsdpoMqhBfKuM4G0rUVFZrUdNto8P1nUL4wtbySB7XzG2KQDtwemazoUe/mitjCiYGSVXBrtf7Bt9YjvLe3Zmmh1E4448rPJrVXQLG38ZLOkbvYG32ltoX58Y6Gt1VjFHJKhKcjgIblw2c54wAO9aNn5/2BktlRpSSzKxG4L/s5rlfNeur8N+HpNTh866hka3dWCFCQwboD9M1U4JasmnXcttyxY66TEieSYyjbTJ5hUhfyr0LWtBgt/CP2zZ51siiUbTkAevqRzWdZ6FfweHbXT4bO1lkWbe7SxlAV/Pk+9dfY2eoQXzA3aLpLQlDZbS3OMdT2rjkoc10dtSdarQ9lN6Hj9nqFlcajFFHtKsSdmCQfwNbDywmWQiztvM27eYV6fTFcJf7dN8R3IhJCw3DBcdgGP9K3rR5ryJZoFld3fapx3rtUFFXPLoQa9zc2vDUFv/wksyXB/dqmVREA/DArrJdP0C7jkijjnhlOfbtXD2mm6xpXiCy1Ca3dxISqujD5j3FddNr0X2gXf2KcW+fJZwykbvp/WsZclz1KPO1axwks8+j6rd2gd8rwFPy5969o+ElqmpeDjcXUcUj+awViMnHua8S8Q+RPrN3dWySKqsucjgZ+nSvRvgzr8iPeaQCfKA8xPY/5NKpFcnMjmlKbla9jv/HVpbWXhO6lFvuC4wIhyK8ek8V2b2v2dopAQOvFe8XFz+7IdQQRj6jvXnut6UlncGe0ixE3JAX7tccZxe6N4Qly6s4C48QQT6jY3aRzDyQRIMcn6VsXnxEmtbRPsujxPHEMgTvj/wAdGP51n61LG00RnIEUZ3IRkY+tc5qFxFqGrJyFikcBjnt610whGTvJCqTcY2TOjvfH+ta1pMsE1npqW8iYIEB4HtlutbHhPxDpPh3Q2sJvtTzz/OE3Da30x0rjtXs4rSRfLw0UgwArAjj6Gq0l5CZY+A5gTHzjrVzhGS20JhK102dN4xeZxHFNp/2NpP3pOwEuuOMv1NcxBHDPaYYTNJknHBU1fsN2r3EcBaSTjCogzsHfjPFdJb+EUtrfzFhd06nbIDn8KwnU5NGdtOMZROFST+zNTtWJKCNw+e/Wt3Xov7Q1q5u7O4s2hkw4LysCcjnIrozotqYBdDTUZAcb3Zev0JqxdRxwadCptLeJiCy/KjHH48/pTjW5mlFamU8PGzbasYPhjxBB4Pea4uBb3onXZ5cEhyPfJFQeK/Ecfi63KWttcRsvrJuH8q0AkbSMfJQbhgttA49OKgkmgtDwyLgYAFdtPBpy9pPRnBOorcsDzg2ksVx5cqFGHJU8GtZbNZYhnrit+6v7OdcSwNLjvsJ/Wq8dra3X/HtKyH+6R0repTf2WRS5YvUyY7COAbzVnSvEVt4ee6vY7eC7vZLmALFN5gCxR/OTlSucuI+CSPlOR0q3c6QyRb5bxEX2bBNZQ0vTlnAuZwN44LEj8eKwi+V+8XXpqStE1PD+p22lalqlvp0Nxf2ckzi3MSHJTPykg8jjFadrqt0y3ER0+dI3G0/Ngke+aqaJeWegzvFEYSHH3mc4BPfOajfX4oppVjnSbH3n5H6k81z1HKb0idVBxpwScia3mWIHzNOikfPVnwQPriorgQzbs2KQ7urrJuI/DAqE6tpyoW+1Nk8kLGM1TbWLdZFd5GdG7JjKilGnPsaSr0u5N9hWFcQ3E+GIPGAM+/NQ3qXSXTiY4BXgE8HjrgUz+2LJZx88hi3Z46gVHd69HdttZGaJc7d2CT9a1UZmE6tJrRlxdJMfhiW+kkAmMgWKNSCWB6kismxjuPtKEBhzyR2p663MqIqqzAcMjHKkU2PUpRIHS2OfcVajIx9rDoS3QdL2UDeR0BPekjtnfJIKH2GajW+v97SLAQ2ey8D8KkeTV7ltzxyNgY+YcCjlYOomy1FYhtsbs6/3fl61t2L2NpazqtxK0rja3QAD0ya5tbXWZu0g/wBo9qRdC1KTBcsPxPFS4p7stVJdIl+Ke0tr+S4ySD/qwT8yn1NWz4mii3mLevIAO4nNUIfCN5OMs/A65NaUHgZgFEs6KScY34pNU92xp1tkrF/wtcG71dLn7TbwR7iXUt87fhXpRjtZMYJZeuCc1xWm+D7SwlEqzAyDoeuDXRQwm3Q7Xx6k81y1Gm/dOikpLc8utdBgfS47orGylyjcnIr2fw9Fp8OhWawqVVYwME9+/wCtefwWkcWnXtmuDGZPMhwc4rd0q98vT4YVP3Rz8341pVTmiYKMdkdz51sB0xTTexgEZrlDqG0nO3pnk1BLqrBWAAH061kqTTuXz3TPI/Een3EXiK+jMbEtO7DAzkFsitTwnNc208kMiOqL8wBGADXW3Uu+QvtG49Tjk1T2CU4eLcOuM966pTcocrRy06PLPnTL76+9zotvZtGzTW7mRWgi3EfhWZpt5L/Z1/bXEWyO6fzEeZSCGB4wB06VfilktlYRqqswwTt5xTUxnkAdh8ua51F2tY7FJN3OdvLDUZoZorZP3c+DKNwxxU2gTzeBdUi1u83tAzeSyRKGc5BPQkDt610A9QF/lUj7hrfhRTn/AJD1nn/vo1rDmlaL2MK8YqLqLdHQaH8TdI8R6xbaTbRags8+7a08SBRtUsckOT0B7V0t7pqXA+aeUKeoVsZryHw+mpQ/EnQzqFxrk/yTbG1e3aJh+7fIUF2yOnevXZJzjk8VzYmkqc7RHhK0qkG5dzEu/BulXAKys5B568V5dc+HWj8SmykhmNosmCyKcba9jlmLA9CPes29VbgkumT2zRTqyjobTpQnqzz/AFrwjBZWhm05Z5D3UtkgewrFt/Bt9qLGQ74N3G5+BXfzGaEnZlh3WqxuHLFhGAfXPStY1qiiQ8PSk7swLT4fTQMGGteXkYLRKckemc1dHgeSPZ5Wv3I29Pk6f+PVpm9KjOQoHqao3PiCG3437j6LU81aRfs6MEUn8FPCjk65cAE5IxjJ9+ajhtIrabL3bzMoxuY84qpe+IJroMiblHrmsJvtLPuEhwepzXZQUlrI4q0obQR1NzemUmOI4xxmoY4geZPmPvWXauFUE7s9+a0IpMjI5rvi7nMki2u1OgGKhmijkkEkRKP6jg0Ak8Cp7dYy+1xmlVl7uhrGKuVLzTo72ILcXTNj0AqKTRtPeAReQuByCB8wP16mtlrUe9M+zkdq8ac5yejPbws6NJNTje9uid12d9k+6/ythDw7p2efNP0IqRfDenf885D9XraSDBPFWEi9qbrSXU5Fh4djBHhvT/8Anif++zUi+HrIf8sE/LNbwjHpTvK9ql1pmioQ7GGNEtV4WFMf7tOOkQqARGv02gVteV9aXyd3QfnS9rLuHsIdjP8A7O0tLUL5Usk56sSFUfgOtS2kWmwIfPsnmkz1EhUYq4LTcOoFC26g4OCafPLuHsoroUfKhkOyKFITkkFjnj0q9pdra+c/2ydVVBkBByfzpWgUA/KQw7A4qMwJtyeRnOM07ticEjSibTLabzbafcScHzHOPpwKIbqGKYqiL5ZOfLKh1Hvnis1Gii5d0A/2mFDX9hEebuFT6bhS5JMXNFG7ss7lWJtjGwH8IwpqCKxK5kldWJ4yOwrEHiXToGCm43xg88E5ofxjYfwK7emEx/WmqcyXUj3OljKAYD8ds4qyqKRlZQa4iXxdET8lmxPqWANVX8YXAPyWiofXcc1XsZMj28UTTXg+YMchvvDHWpLG6jt4vKhjCr7DFUvLJqWKIk8da6+Q41UZqCZiMe1KZCQQOpqmm7JGelWkXP1o5bFObGNuPfmoSJOxxV5LTMgLHimSx4lKBse9CswuymN/djmpER2IAJJPGBVlUBwAoLdvete0tktVWUorSds9qmTUSoXZmJZlHKyHletN1Dwu3ii0jsluvs4SQSGTy94OARjGR6+tdSGDqWKKQOuUFUpL65+0SWmnxwgoA0jSEhcnoMDv3z0rmlVa2OqlhnVvHp1vpoYnhz4bHQNettTOqmfyN37v7NtzlSvXcfWu6d1ReTn8Ky7TUPtMDMyeXIjmORN2dpHv37VIbraMZQ/WsZSlUfNIpUPYN07WsWWlUjK4HsRVSVs5J2j8aie4c9lx2xUTMP4yPoP8aXKUnYrXbpDliflIrktR1mKB2WIj8639aRmt22E4x0FcFIDvIbkg4rpo00c9erKOiCDb4k8RaPpd3I4t7u/hgdomG5VdwpxkEZwT2NUDYadcaamq6al1AIL2K2mhuJllJLhmRlZVX/nm4IxxxzzxN9qn0nULDUrOFJLizuo7hFZSVLIdwyBg4yB3FVZtSuLiO2tI9NhsLNJxM0dusmHfpuYuzE4GQOcDJ45Oe6KSVkeVUu53LxC+lM3YGKdnd0INNK+361B03Qn2gRcAjr0zWjp9z5yc+tZMqIRyBmprGRYG+XIBPatKcrMlnRRjLYJArWtrBQBIzg/SsOO4yAyANW/Y3KygIRsPpnP60sTzOPunVh+W+pa8hVHJBP1phgU84qRlIbg5pCDvGRXl2sd6aaIxCoNSbApGP5U9lAPFOaM4DdqQxrKBjgUFRtyFNSEZWgfdxxRYdzL1nVbfRbNLmdJWRnEeIwCckE9yPSs7TvFthqmoRWcENyskmcF0XHAJ7N7VrTf8jF4V/wCw9adP9+st0nTUPDC3t5qNzdebebv7VtjDcqvlpjq7Ex9dvPXfXRTpRdNye5wVsTUjXVNbaG8UB5BPHtSGMkZUHNOIjz938jTgdvQ4X61ztHcVZ7VZxyZB6/MRn8qzZ9AinztnuEPoXzW7nHKuT7ZpQM87/wAMirTaREoJ7nIv4RnP3LpG/wBlsg1SuPDeow8CEOPVW/xrvAeucn6GmbSzZPStFVkjCWHgzzs6ZdwcyW0ie5Q4qMxheCee+QRXpZc42tkr9ahe1tph81vG4Pqoq1XfUyeEXQ842+n8qXdjuSfrXeyaDpkqkC22Mf7pxWdL4TtnP7uSSP6jdVqtEh4aaAL7U8RHGcGuXXxFeOwXEWOTnZn+ZqF9d1Bj/rsD2UDtW3K+5zurA7FIuauqQMemOteePql8+c3MuACThsfypjXdwchpZD6ZY0cj7gq0ex6KJUVDulAwe5FMa7sBJh54ue4YV50ZGJwST2PP+e3NKGyOcAHuO3rS9kV7fyPQzrGmRYxPFkenzcVPb6zZXU32eGfczAkDbjn6mvOQx9/oO1TRSOrqwOGBBB/z/nFS6SKWIZ6lHcbVIVArkBjg8kVDNAwlM9vObd2AVjtDBvqD396zdG1ZL+1YH5Z4+GJPf1HFasciDcUAAPX3/OuadPXU7qFecPei/wBfwZPaRpax+UHAy5JbIZpM+pqQsp/gULggDBJzVdLhUYlYwyk9cZ20jOTtMnHJK4XFRypFSqOcnKT1ZIzqy43KBjrkUhLMSij5ffvUQJIAPX+HmmsWweCF7r3p2AJY0bcrLuIHzc/41x2tac8MzTJ06nArrxITgLgKeGqG6hjmjKOgbAwTgcVcXZmdSPMjz9IZ7hf3Skjv0/maoTQsrlXUqw6gn+ldNqOiygCO34VWLcA4OfX3rE1YSwzKTDJ8qBS7KRvI71pGq5St/X9MqvhKVOgpp66dVrdapLdcvW/4aXpo7xjClfyqKSXDfvHz9Kpy3jE8cVCXL/eNbqLZ5LmuhrxS2rDmVQfRqnhmTzlWIRvk4ODWAABWlpEkMV8jTLlc9c9KGralU6ibszp1tJY3UbGXcMj6fhV2ORrQDeSD7itu1ZLmFDEFKY471Ff6es8W4oSw7D/9dT9YtpY7o0OqLFpci6g80MAfTNS7mz1BHtXOxGWzURgmtazkdlLN37VyNX1OpMvFsjjikOSM7v1qB3bd0xThK2OM5+pqGii0obZ1H5GmKQjHJ/OhGlZeAPxAqNiwbkD8Dj+VFgTMvxBpB12xS18/yQsok3bN2cAjGMj1rM0fwWdJ1OG/+3+b5W75PJxnKkddx9a35ZneVkgVMqAWZs8e1SQTGeI/LhlJBHHB+tNVZJciKqYDatJa6ddV1WnmTYyCe/pTN5+7t/U0gYr1H60x5P8AZH86OUm4qsQ1SHd1ANMjlQj39BxSedg8qce5zTSE5Adx7YNPWV1QA/rUTNu+ZVoRw+Qcg/SnYVyUSfN82D+tSZXqMfQACoA6j5WC05RnlAcewPNHKLmJlcHg5H0prlgMEk/hTDKqjD/L7s2Kia7hRf8AXofo2TT5ROSZ5lbqXmQDqR/Q1Gxx/n2qewIW8U+mf5GoW5J/4D+deh1PCT0uAIPbqR+VKHGCSMdDTRnaMdcf1p+0biOoycfSgYgkOOg9/wADz+lSBmJ65OcdKjA+XOOcZ/xpQp29cEHb+PY0ASK5x1z7/wAqerc8jBHpUfGcHGOw7e4/lT1OPY5Gc/z/AKUh3LVhey2Fys8LdDyPX2rv7G8F7bxzLMvuAK83ztx8uc+/X2rQ0nVW0693A/um+8O2PWs5xujoo1OWWp6EsroWMe0rnBApWlaPJPrxnHFQRXO+MSQbGzjjGePrUrKSWlAfn+7gVzNHcn2JGfcpDyhs8jHb8qHVpmPynGPlYDpUI5I+chSOdzc0hbylG0BhnnqcUuUq5K+2PCZOSOOnNNUxqcsy+5J60xgFDYJxjIAXpTUyx+b5ojzydpp2AcWOMCNl5+oNZWs2v2mBkCsCR6YFazTLGmEwQOMbs1CzI0bFiuPcZppWYSSa1PJL22NrcNGwxg8E1VrrvEkQlBKndj2rkCSDg11wd0eRVhySFHWpBlec4xUY605j8tNoz2VzufCermRDbORuHTPWuraRnONpI+mP1ryrR7prbUIpF9cHmvTEnWRVbcMN1BORXNUjZnqYapzRsxzwh/mOPxNPhcKCuwYHtmmmVQMDn/gNOidghwr7fXOBWVrnTewsjDg4P4jAppmK4BA57g0klxEh5x+Jphv4Mffj4/urmiwc3cmWYjkKp98Z/Wle4c8gj/vn+tUG1GLd8pY+6qFqOXUVx0z9XxTUWw50XSs8jmWOQoxGGIIOcUsaBCVDEnqSeSTWWuovuwiDH+7mmyXtwe7D/dGDQqOty5YyUocjen9dd3bobDIRzz+HWmCRV6sP+BVifaZ5G2mVmz2Y80p8zuw/HJqvZWMPbLoa8lxCvIkjH0Oaha+gUZLOfolZWUU/OWBP90/4U4tCeCSfeq9mifasuf2om47Mn2JqJtScHKRrn3yf51U3hWwuP+BDH608SN/dX86pQSI9o2W1vb2Vc4K/gAPzqN2uSctIw9wxIqtvcNn/ANBp4l39Xb86fKg5m+pKAGGWmy30qF0UHJYHP+1imOwAye3fGaaruw+UDH1osS2c3Y4N1/31/KoNx55/un8afZt+9HPOGqEn5W+grex5qfukgbBH1Io3nHuFx+IpmflJ/wBoUZxj2JU07DuSbuTjuc/UGl+8wTuRtJ9+1Rjnb3OChx6jpUq208p3JDK2Vz8qnqKBjQ/AOOW5A9+9Oz68jHHuD3/CrUej6hN9y2k3HDDIAGe9WYfDmoznIWNRn+J+g7jipGoyZnk53bjzxkgd+xFCn5tuACDx7f8A1q3E8LXC7PNuYx1+6pPHpU1t4XgeRhPdNlR1AA3UnJGkacuw7w7rC2ZFtcbvJJ+UlvumurjKFt6/NGw6MxIrBGg6cr7TLJJ65brWlC9raKIhKix4wN53EVhNX2Ouk3HcuGUoCY1TZ0I6mmCSQFnQP83YDiq41Cyhyy3W7POFHAP0qCTWIlO5WYp3XG3PvWfK+xs5pdS75ksqgg98EHig7lU8KGPPHesebxHZx8hFG71fn9Kzrjxgm7dDGgI/GrVOfYh14LqdIpO/IOG7jaeaZNNtRl6MfUYrip/FupSk7ZFUH0FZc+q3dwT5lw59gatUn1MZ4uPQ3dYmHltuZd/+9iuQc5JqWSVnPzMT9TmmbS7cCtox5UcdSfO7iZFIzcUrYUkelMJyaZkWLPcZ0xjr3rvoL+RIVjjZDxjATPNcPpo3X0IC5+boK7BF38oApHrUTjc6sPJrYtm7uJOS7D2zUUlxJ33gHvuJpvlt3kH4CmMrryH3D071CSR0c8mOVTncZN2e5GTRKDjHm/nUasuTyB9aRnQckr9cU7iuSRmLoy5PrjNSMVA4TH4VEjuOnI9+DTi0h7r+eaB82giuwPynHsal3tjr+QqsxYZ38D1Ao39CCWHrupCTJGyQd3I9QMUIIvr9cmon5IPmYP1zTlncfLtz7imkF9R7hEPy7hn0FKuRzgfnSCWTH+rB/HFV3d93zLs+gp2BvsWHO4c4NN3QqOTIv5YqBQTzvJ/GmsPU/nRZCuy0Xh29Mj13VEJlU4iJP+yR/WoPNC/LgH/dGaU7iOY+PeiyDmLfnSMPuKp/3qhk8zHCr9AcVDl8jkoPzp4JIx5n5UBcr22hGKRfNuBk5HA7VYHh6yAw9xIxwMjgUhu5SevH+7SNOSCcufqarUxjGKLB0XTgp/dO3I6mrAh0qAcW8J7ncATn86zgGkGcE/U03ZID97j0xSsNW7Gv9rtAuEjjUEdAtC6rGqhSHIA/u9aynidVzuI9MelP2xn7xP4tRYq7Li6v1+Uj0y3Sm/2vLg7FCluuCearD7Oo/g/AUMyMBsVjz3GKLIV5Er31y5+9jOOgxSrNORli+PZqjEjcAR/maDLKGxhB+OaNBp9xxdmkAZefVjml8ncxJbHsKaV38s4z7CnbVxyzH8aRVynd3X2dDgsTXP3F/PMSGkZR6Vr3kI3E9axZ4GDE1UWc9TmICxPOST70henw20k0oG0kGtu30iJMNJGGPoTxVORmoNmCiSSN8iMx9hV6PSLyUbim0e9dDGgi4jSNB7CleWQN8z8eoqOY1VLuZFtokZP76TB9q0Es7S2iJVVOFJyaf+7JyTk+9Vr68ihtmBAJYFRgUk22VyqKuczKcysRjk9qaBmggk5pUGWHfmtDl3ZsaDGVnacKGKDgGug3tI4+bb3OPWsi2uUt1WNYgpYZPOT9avoxYbt5x7cZqWddJWRYLP8A32/OmFiOSSfrTRhhxn86Yw28n8iak0ZIJx0/kKDckfwsR6AVGJE7Z/Cl3nH+rcigLixuzNlPlHp1qbL/AEqpjccrx+OKlBkH/LX9KLAiUiTOS24emcUzdHu5UBvcc1G5ZusjE/WgFVHzKB7nmjQCfzIwOox9aZ5xH+rOR6Gk3oB2/CmM6Hp1oSFcm89+4UfjTHmcjAAx6CoMnPWjJx96qsLmZKuw9SQfSl2p6Aj3qvnByzcVKm1hwc0rCuIcR/dcqPReRTlmbHC/lSEL/EB/KomIU/K34UwvYn85yDgKPqaiJy3zMVPqopolH90ZoMpxwAKLC5h4nBfaEP4mlZyykBQM+9QDdnITmlZpAvQD8aZnclXeABuxj2o3OHAMjEexqEEt1Jz7CpAmSCQceuaRSZKNh65P+81LmJD0UVHtT2pCqZycfhQUSySoQNpPHoKQ3Jb/AJZt/Ko96KfX8KUPuPCmgCQSuTwgH1NOOWILMF+lRbWPQAfjS+W3c/pQCuS5P98/nTG65yT+NRMCpGTxUwROoXPuaQ7kUhjI4A/Os+QBpOg61qMIwuMCq7GBc8DNAnqLAqlRiI5HerAEnoo/Gqy3BAwqfpQ08n9yhpjulsWHLBfvDPsKaChA3MSD6mqwd268UqxHnng0WQczJy8S9hWZqu2aNSmCQegq95Cd/wCdRtGgzhRQiJXe5iJZ55wxPpjpU6W7RnKqo9c81oFRQOO9O5KgkVo0PmZZ+TweK0IRgYzxURZCMc5+lPQkdP1oLiWR0wSfzpuAjbtu4e4zTMt/epCct8x4pWKbLKyqRkEfT0o8xO7frUSqOoApwGKdh3Gu4Y/ICT6inASdwKjbCtkHFJ5xJ5U/hRYVyQ7h1NNIAPzZP400uw6Lj6mm73PDYA9x1osK5OoTGQBQSO4qHaO+fxpcL6UDBtoOQ/4U35j/AAmggqcpx9KBLk4ZsUEh5bHuPpQIwT8xIPYU7zFA9aa0oPBHFMLEm1R97mkKIfu8fSo8MeVbilIJ6mhCbGOpTnqKQOGXIzTtuO2aXfgdMUwGiX1U0E5OcYpuV9aTcO2TQSSgn1xRz/epivycLn607LEdQB9KQDxn1o4HamAf7R/KhlGP4vxNFh3JN6gcmmiQA8Amo1IA6VJkEUWC47zWxjaaPPI4GB+NN3rjqKjzluKLDTZNhn6ufypfKGMGRz+NMVyP4SfrTjKw5CDNILjHgUjjr7mkjUKdh/On73c8nH0pfKU/ezQNK44BB1OaC6DjAppVV6CmHA5pD0QrEMcikzJ64FJvz1NIZB60IVwJf+9TwA/c/jxUe/ccDmnAHsMUxDigAxxTdtL8w70x92KYhDGQcinBgo+aogSOCacKQXsP8z6/lTslhn+dRA0ufTg+tAXuSKzjin4LD7xz9ahD+tPD+lBSYMjLzw3tSq1N87Jx3pmD97Iz7UxE5K96jbb2xmkCgDnn60YB6UDuHKfcyVPXNKGb6fWkL7TtPejIoEBJx97P0pABjkfnQWxTSwJ4GaYDuO1GM1Hhz0bbTgp7yMfoKBDgSvelEnNMwV9/rQH/AA9qQEwdiOFyKaSD1GKbvPakzng9KBkXme1NL+nWozwcZpcd81RlclV8d6f5vHWoQSKcOetAajxLk45p3zt1wPpTI8butTZUdxU3Ksxohb/nofypREOhJ/Ol84DjFIZuDgUDsNUBGxipk9hmoDlvY0BfUmkCdiyWx1wKjeRc9fyqIjHTNNBP+RRYdyQSAHNPMwI71DmmlqLBzE28k4p20nq1VwSDkkU/zOehosPmJREvoKXao/hFReYewNHmNnpQFx/KvnHFODA0wq5Gd1IFJ6nNAEpYDrTTInvTSoxUTDb0FMTHNycikGR7UKciloEG3Pek6HFLkDvQcEZzRcA60tRZINLyaB3JDgjFJuxTOfWnUCHeYPemls9BS8UE0wAAkZLflSge5phBHKn8PWgP/e4oAecU3pSFl9c0m70H50BoO3DucUoamYzSiMepoGhxcUxnVhxnPtUgRR15pGTHK8UhMYrsB2pSxIwf0qM5U80hJxTENPJzg04Zx0qbA9KU4A6UNiSIAGJ4FSiNiPvD6YphbDCpC+B6Utx6CpEq8k07avpUe9f7woMmfug0JDuhz4AJFIDkU35zwQB9aURv3bj2piFzinKy0zZjncTTAfmpATsQRxUeD6UUE0AGD6U0gZozRmgEPKqoHFOHHSot+etL5gHfmnYCWmt0pokJ7Uu1mHPSlYY4McdadvUVHtPrRgelADzKMYxTCxbjFJwO1AbFArsURnqDTgnq1JvpwOetAKxG6YFMBwamJzUMgGc5xTGxSacDTAOBjmnBWPQUCFyKQ5HTmmt8v3jipMIOc5oAYJBj3o/eHotPJGemKTNA7Dd2OCcGjg04gEH+dMOV69PWgQvA6CjfTSKaeKAHg804Pn2qMc9qdsY0ASbqQtjvTQuOrGlwPSldD1EMgxjGaiIOc1IVP8ORTCfXg+lMR//Z", "path": "images/5pts_ADE_train_00005148.jpg" }
depth_point_67
images/4pts_ADE_train_00007014.jpg
ADE_train_00007014.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 220 y = 221),Point B is located at (x = 182 y = 214),Point C is located at (x = 267 y = 180),Point D is located at (x = 134 y = 96).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_36><DEPTH_29><DEPTH_49><DEPTH_31><DEPTH_49><DEPTH_60><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_70><DEPTH_36><DEPTH_74><DEPTH_35><DEPTH_43><DEPTH_5><DEPTH_29><DEPTH_3><DEPTH_31><DEPTH_3><DEPTH_67><DEPTH_36><DEPTH_64><DEPTH_22><DEPTH_18><DEPTH_45><DEPTH_22><DEPTH_49><DEPTH_31><DEPTH_3><DEPTH_67><DEPTH_74><DEPTH_36><DEPTH_40><DEPTH_56><DEPTH_60><DEPTH_11><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_67><DEPTH_29><DEPTH_72><DEPTH_3><DEPTH_67><DEPTH_67><DEPTH_35><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_69><DEPTH_67><DEPTH_17><DEPTH_70><DEPTH_3><DEPTH_5><DEPTH_70><DEPTH_69><DEPTH_60><DEPTH_17><DEPTH_69><DEPTH_15><DEPTH_72><DEPTH_76><DEPTH_19><DEPTH_25><DEPTH_44><DEPTH_36><DEPTH_2><DEPTH_51><DEPTH_2><DEPTH_78><DEPTH_66><DEPTH_27><DEPTH_39><DEPTH_32><DEPTH_72><DEPTH_41><DEPTH_39><DEPTH_22><DEPTH_33><DEPTH_55><DEPTH_16><DEPTH_21><DEPTH_87><DEPTH_84><DEPTH_12><DEPTH_33><DEPTH_35><DEPTH_31><DEPTH_98><DEPTH_21><DEPTH_79><DEPTH_55><DEPTH_121><DEPTH_82><DEPTH_62><DEPTH_70><DEPTH_59><DEPTH_49><DEPTH_END><DEPTH_END>. Since point D has a higher pixel value on the depth map, the answer is that point D is closer to the camera.
D
long
4
[ "C", "B", "A", "D" ]
<DEPTH_START><DEPTH_36><DEPTH_29><DEPTH_49><DEPTH_31><DEPTH_49><DEPTH_60><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_70><DEPTH_36><DEPTH_74><DEPTH_35><DEPTH_43><DEPTH_5><DEPTH_29><DEPTH_3><DEPTH_31><DEPTH_3><DEPTH_67><DEPTH_36><DEPTH_64><DEPTH_22><DEPTH_18><DEPTH_45><DEPTH_22><DEPTH_49><DEPTH_31><DEPTH_3><DEPTH_67><DEPTH_74><DEPTH_36><DEPTH_40><DEPTH_56><DEPTH_60><DEPTH_11><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_67><DEPTH_29><DEPTH_72><DEPTH_3><DEPTH_67><DEPTH_67><DEPTH_35><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_69><DEPTH_67><DEPTH_17><DEPTH_70><DEPTH_3><DEPTH_5><DEPTH_70><DEPTH_69><DEPTH_60><DEPTH_17><DEPTH_69><DEPTH_15><DEPTH_72><DEPTH_76><DEPTH_19><DEPTH_25><DEPTH_44><DEPTH_36><DEPTH_2><DEPTH_51><DEPTH_2><DEPTH_78><DEPTH_66><DEPTH_27><DEPTH_39><DEPTH_32><DEPTH_72><DEPTH_41><DEPTH_39><DEPTH_22><DEPTH_33><DEPTH_55><DEPTH_16><DEPTH_21><DEPTH_87><DEPTH_84><DEPTH_12><DEPTH_33><DEPTH_35><DEPTH_31><DEPTH_98><DEPTH_21><DEPTH_79><DEPTH_55><DEPTH_121><DEPTH_82><DEPTH_62><DEPTH_70><DEPTH_59><DEPTH_49><DEPTH_END>
220
221
182
214
267
180
134
96
null
null
74
47
6
107
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCgEp4WnBaeFrOxqIFpwFOC07bQAwCl8tT1UVIFpdvNMCPyh2yPxo8v0P5ipsUYpWAgKsOgBow3dD+BqfFG2iw7lc7T1Uj6ikCoehH51a205EGegosFyoU9DSFW7c1pKAOw/KlNFhXMiZCYZFK9VI/SqukndpNpwf8AVKOntW+Ru61maDxpax/885HT8mNDQJi7GP8ACfyo8pz/AAH8q0uaOaLBcy/Jf+435Uhhk/uN+VahpO1OwXMv7PJ/cb8qPs8n9xq06KLCuZn2aX/nmaPs0v8AzzNaeKMUWAzPssv9w0fZJT/AfzFadFFh3Mv7HL/c/UUfY5f7n61qUc0xGX9im/ufrSGymz9z9a1cc0YoHcyvsU390fnR9hl/ufqK1MUYpWC5lGym/uj86T7DN/dH51q0mOKAMr7DNz8v6ikNnL/dH5itbFJtpMDJNlKP4B+dMNnKP4P1rYK00rUlGObOb+5+tMNpN/c/WtgimEVLGY5tZv7n60xrSX+5+tbBU01lJpNjRKFpwWnAU4CtjIQLTgKcBTsUDGAUuKdS0ANxRin4pMUgG4FGKdilwMUANFOQc0mKcvWgCQUYpcUVQhMVmaQAkuoRDot0xA9M8/1rWxWZpq41PVB/03z+arUsaNHGKaRTzRTER4pMU+kpgMNFOxRigBuKKd2ooAbijinUUANoxTqKAG0mKfRQMZilxTsUUBYZikxTzSUgGd6MU6ikwGkU0in0GpKIiKaV4qXFIRUjISlNKVORxTSOKljHAU4LmnKuTUoXFdBkMVeKUKKco/nS45pDIiMGjvUpXPWm4oAbRinhaQikAyjFOwaKAExSr94UYpQORQBMBmjFKOKUVQhAKzLIbNZ1JO5Mb/mv/wBatYD1rKT5PE8yn/lrbI34gkVLGjRpCKeaTFMBlNxTyKSgQ2kp1FACYoxS4oxTAQ0lOxS4oAbijFOPSopZBGhbGcUAPxSYrjJvHE6TOi2EZCsRkyH/AAqL/hOLsniyhH/AzUOpE7FgqzV0juKSuGPja+5xa24/Fv8AGmHxtqHaG2H4H/Gp9pEf1Gr2O8pOK4E+M9UPRLcf8AP+NMPi/VWPWAf9s/8A69HtIj+oVT0HFJisTwzqtzqtjLJdFS6SbQVXbxit3HvVJ3VzlnBwlZjaTpT8UmKBDMUEU7FJjioYxuOKYRUh6Uw0hko4NTDkZqLpSG4igjZppFSNeSzHAFbsxTJCQpb0xmqKzG81Jo4pHEVrxKVP3nI+79AOT+FQz31xJbyzW0WAFyrTDG70wvX88U7TdKa209IZZ5C7kvLtbblycnkc9aTKRqnpTcc1UNhBGGYPMndm89x+fNZ9+LiyEVxFd3P2VSTMciXaMcHBGSM9cGkM3cUhWstL7UIo0laGK/tmGRNaHDY9dp6/gavWl/bXyMbeUOVOHXGGQ+jA8g0mMl20hWpMe9IaEKxFigDnNO60VQiYDNPAxTU6CpMUCG1kz/L4ntT/AHrVh+Tj/Gtf61lX2F1/TG7skqH/AMdND2GaWOaTFOpKBDcUhFPNJQAwikxT6NtMBtGKdiigBO1JinUYoAaRVa6H7lvpVo1BcDMTfSgaPJb9duoXC+khrQ8O6HLr2praI+xQu93xnaP8T2qrqy7dWuh/t16B8IIUaHUbpgBmcIWPZQP/AK9czjeTPbrYj2VBNHR2Hwt08i3CK0ZxlpH+YkDvj36YH9Kj8Z/D2ztNEC2V0weSXaz7FGCAcDgZr0ca1p1rPOv9oRKy4TCxM20Ae3Xkk/jWN4m1XT77SWhTUPNl3BkTysZI98fWtuSKjoeL9YqSlqz5x1TSLvSLzyyGmh2bt6r09c+nNQR4dQf8iu68TRxPYCRzEPLcfNKDtAPBzjnvXKLBH9lWUMC5bGF7jHWs+VONz0cLiZqfLLY6LwOf9Eu19JB/KutArkvBa7VvF9Sp/mK64VcNjmxX8VhSdKd9KQimzBDcZppp1GKTAYelMNSleKbipGMllWJGkdgqqMknsBWLp27VpRqdwCIAf9EiPQL/AHyO5Pb0H1pPE8jPaQafGcPezLD/AMBzlv0FbkccSWqIi4VFCqB2ArcxRy3iPVp7W4hjt4hL5f7+RC2AQp6E+mSPrWz4V1e/1qylmvbMQFWAR1ztkHtmuC8TXc7+ILi1j5ZtkQHqM5Az9f5V6L4WvZbmxks7qFIbqyYRPGgwNuMqR7EVMyoeZqPESOlYNzYalY4Olyo8Y4NrcHKY/wBluq/TkV05HFRtGCORzUcxbRwFrc3mh3LyQ2N1DasS01lKN6A9SYnHA+hxXQva2OuQR39lO0Nxj93cxcOp9GHceqmth0x04rjtet77Q7v+2tJJEZ4urfGUYZ+9j06/SnuK5tWWrTJeDTNVRYrxv9TInEdwP9n0b/Z/KtVjxXK6bfWXi3TJrG4LpcRnzEYn505+VlPfB4z9K0dE1G4uhNYX+BqFm2yXHAkH8Lj2NNBc1wKU07GBTSOaOoEsZzipc1DGOKlxTJDrWALyXUtSV4URRbKzJvGS3zKp+natyaVIIzJIwVB1JPHXFYunRWEV1LL/AGza4ZZQE2uThsEHgeoqJSsVFdSWfxJp9hp4u9QmFunm+ScKz/PgnsCcYBqrb+OPDl3dRW0Go75pnEaL5EgyxOAMlfWszUILObX9AtGZLq3uNftd0bxZRkLEEEHgg56H1rktIcalBpeo3VtbQ3Uet20EElvbpAJUOWcFUAB2kR84z+857VUNVcmWjPYBRRRTATHNJ3p1JTATFLSgUYoAbijvTsUYoAjxio5lyh+hqfFMkGVNAHlmsxf8Tm5GO4P6V1fhXVLexsVS3tgkpObjDkeYexwPbvWBrMWNcuB6qpp1mrQusiEhh0rFxbkezKCqUUj0WG+spYwCJE+j0yd7MIcM5z6tWdYazoxhxf6TP5mMF7a42g/gwP8AOrh1rQIxmLRriRu3nXPH6VL5trHm+xkmUvsf9qn7HbWTTyOfTdke4P8APisjxHpcenTR2QeF5Yxmby+iN/cz7Dr9RW5deLL97ZrezFvp9uwwVtV2sR/vda51lR88g/SqhCXU6KUHF3ZP4WTY049VH/oRrpx0rA8PqFmkUejf+hD/ABrogta2toYYh3ncQdKTHNPAoIosYXI/wpcUuKMVLGhpFMI4qbHH4VHjipKRzuqr5vi7SI+yQyyfjjFbsR6r+IrF1b9z4p0O4PCyCSEn3IyK1ZMxtuHbmttzE4rSrZdX+JFzMEzBCzEnGQdox/Ou0u7d9O8RW+qJj7NcKLa6A/hOfkf6A8VxllK/hTxnNJOgNtdtw2cZRmzke4NepT2v2qymt8hfMjKBvTPGaylozWOwuymslQ6Fcve6VG0w23MJMFwp6iROD+fX8avmOs2y2ii8YIqtJEDkEVpPHgGqsi8mqTJsec6/4en0q6Gq6R+5jT53VDjyz3IH90+lPh1lbibTvECrskWUWN+g9G+6358iup1u4jt9KvJZiBGImBzznIxXm+hvDJ4d1y2kf9+0CzIM9SnP55q0S3qes9D1pCarWExn061mPV4Ub9KnHWmBNFyPxqUnAJPQVFEeorA8Q6xtU2Vu3PSRh29v8aG7ISV2U9d1I3svkxNiBD2/iPr9PSqVhGPt6qORjbj14qnFlpfXHzH+QqxpjN/aEb/7YP61EdXcuWisRa1p17fWdt/Z1wILq3uFmSXeyFCoOCCOQQcEfSsi30bXZfEOm3mr6sLkW08b757iSQqoYEgZFdPK7w3ksaIXKsQRnA6mmOonj3DI5wQeox61l7bllyo6JYOoqaqyWjt1XXa63V+l9ztlIZQRgg9CKWuT0vV5LBxBOS8B6HutdSkiyKHRgyt0I710RkpHLKLix+KMUuaKokQDilAozRQAUYoooEJj2pCuc06jsaYjmbjw1DqV5LdtcyREHZtRQaki8L20eP8AS7hseqrWxbcCcf7dFxcJbxl3PHpnrS03Nvb1LcqZQXQ7ZD9+U/gv+FS/2VbA9ZMj12/4UyOeS9XcJkRc42qavJoyyqD5/P8Aun/CpU77Ccp9WVv7Mt+v73/voD+lH9m2/cSn/tqatDSbqJN9vOzjn5QpIPOMHNUtN1aDUTPHHkTW7mOWMjBBH9KancluW9y1b2cMOZEUhsYyWLHH41YxSxfcb60GmK99xMU096fSY5oC43FGKdRSYCbePwqDHFWRUPaoZa3MDxJbyXGgpcwD9/ZslzHjuV6/pmtOKaO+sYbqHmOVA6+2amtyGh2kdCRisTTR/YepPpExxZ3DGSyc9ATyYvr3FaJkEfirShq2ikBP9Igy8TAdfVfx/nWj8O9ek1fSHtbrJuLPahc/xIR8uffjFacCjeUYZU1z0unyeF9efWLUOthJxMFGVRSec/Q8g+hIqZ6oqF0dqLT7Hqpu4UYx3eBcKozhwOHx9Bg/h6VpeVxVfTNSttQhDQzI5/2WBFaJFc0nqbrYz5UwKoTjGT6VrTAYNZN0etVEhnA+MI7nUyNOtWQCKM3EwY4+UdMn8+K5mz0NR4QuNYed0kKlY0Xrz8uD9c12UWlDWItVluWeOO7cRRsvB8tOAfoTnjvWauix2cll4fgmeZZJvtdySMBUXoMe5/lW6RkdXYRmHT7aE9UiVf0FWKMYFLigCG6a4Fs4ttocjG5mChR61zY0G5kYl7m1Q5/idif0WusUAsAQDUwRR0UflUuLZUZJHKw+HQiPv1KDcx/hikbj8hU9p4ftoHDtqEjkHPyWp/q1dJgegpDQoNdQ5k+hg6lpQkupLmwllLSNlkmiCge+QT7cYqe30m0ih2ut5LIxLMw2oGP0wcfnWt3oqPYRvc6Z46rKn7N2tp01dtFd+XT/AICMh9Gsm6Wlwf8AeuB/RatWVp9k+SKJkjPUGUtzVylzVqmlsczm2HSl/GkFLWhAClooxQJhRQKWmAlAHWlApRQIqQjD3A6ciuP8XXAbVI7eRo1iQKDvBI5POQOSOOldnEP3849ga5LxxY3kccerWO/fDgOU/gwchvoKVhxNPwsEGj2rJswQT8i4HJPSvdbfTtPmtIpPskBV0Df6selfMnh7xbFa2FrBdLmR5GDPkKFGc5/WvbdM8W2MGj2mdctoyIRiGQc47diazpuzdyqieht6lbItjHsSNCpMfyjAwDj/AArwOctYfFy4hhPyXJPmD/eQMf1r0698cWBsZJJp8LvL5xgHPOO2a838N2FxqniG98TXcZRZmYW6t/ED3+mB+OaLpy90Emo6nZRfdbPr/hSkUsY+99aU4rQhDKKdijFAxuKUDilxSgUmNCAVBirHeoMc1NiluQRL/rB33Zpt7ZW+pWj212mY25BHBU9QQexFTqMSsPYH+lSACmnoJqzMO3v59ImS21d98WQsN/jCt6CT+63v0NdM0UdxE0UqhopFKsvXIIxVSSKOZGSVFZWGGBHBFZ6abd6cv/EquwsX/PrPlox/unqn6j2pSVxpmX4U0aW3v9Rs0uJYNQ02YBJs7llhblQwPX/69ehWt605kiljMc8WA65yDnoQe44NcdDd3VtrzX1xavbF7cQysB5iOQcggrnGORzjrWsutC4AEU8B45wwzWUoNu5opJI25nBB5rn9Zv1tNPuZwf8AVxs3Hrjj9cVJJcKRma7QD03VnXwW6iWK2t2uAXBct8q4HI5PUZA6U1FIlu5C94ulaJbtdZLrEqBFGWkfHQCo9H0+WDzry9AN9ckNJg5CL2Qewqzb6cftYvbxxNdAYTA+SIdwo/r1q7itLk2EpaMUUxCr94VY71XHBqemhMdSYpR1pTTAbtpCtPFFADNvFG2n0hoAbigDFOxSYoBgBmlxS4oxTEJRjNLiloAbjFOFGKKBEC8XUo9UFLt4xjjpzXO69rF5p16v2YoNy4yy5rL/AOEk1h/+XlF+kYpOSvY6aeEnOPMjpk8NaDudpdGtZi+SdwIxn6Gm6nor3rqtnMtlAEEflxR8bR+PX3rnG1rVSCWvyvr8oH9Kfb3WsXzBILy6lduAIwTn8qzai9DVYapH7SNe08IWUMoluTLeSDoJfuj/AID/AI5reETDgJgdMYrhLqXVLaQxXN3eRyDqrsyn8qpvcXJzuu7g/WQ01aOyH9TlPXmPSFUruyMfX6UVxHheaVtbZXldx5ZxubPvXbCrTvqc1al7KXKL1pQtJinDimY3EoFKRQBSaAT8Kg71ZFQEdaCkxsibZkPqppQKknX5oj/tY/Mf/WpAKypvQue4zFBB9TUgFBWtCCtLuSMsDkgEgE1w8/jC6dyP7Nt8qcfNIWP8q791BXB715JcL5d3NH/dc/zpSegludZ4b8RaXam5k1eS7jMshcJbwKwX2BLZ/DFX9T8eeH1j/wCJdFqMj/8ATYIqn8jXAGsssQ2M9DWLZvFJ7nsenXo1HT4btUKCUZ2k5x+NWhmsTwc/meGbb/ZLL+tbuK0RDWogFGO9OxRxTCw0jipx92ocVOn3RTRLQvSilpQOaYhuOKKcRRTQDaMU6igBoFLilxS4oENxS4pwFJimIAKMU7pRigLjcUmKfSEU0I4jxcuLmFvY1zU90ltD5jDJ6Kvcmus8YqB5LY7/ANK4po/tOuabbPtKSS7fmOACTjP8qxnpc9mhPlw9xi2lzqL5nLuM5EcYOB+Vb2j2iRBp2vlspkYBEPBPHU128vhS4S3kEYSO1SMAGPjc3c46k9q0rT4eLLp0czW115rnHluAuB6k578Vy2qTehyzrQ3bMG+8VaJb2NsdVtZ50cCKWeMrIu/H15BHPqK5PUJtJlmMuk3PmQE4KMCCp7fhXdeLvAlpZaN5MMbi5lJba8+5cgdwBwMn615Q+ltbanOhJCIw8v5vvYyM/mDW3I+r1CjVakrbHTeFz/xUAHqh/lXfAV554YbHiOEeqn+Rr0YdK6Ka0Fj1+8ExS7eaKXFWcImKXFLSigBMVBjmrA61CRyaVgTHXC/uc/3WB/Wk2lTzU0q77Zx6qaj3l1B9ea5aTOiaG45pcUoFOUVpciwscHmHHrxUtz8O9BkRr2eN/NkcO4RyAcnnirFmAJNxxxWnd3RNoQT/AA1zVG27I6IJJHK3/wAOfDsaqYftS5YcibOB3xkVhnwFoUIQtFNKxB3bpT1z7V2klzuWMbj1wRVGQ7s+w6/jSimnqNtdDNstOttNthb2kXlxA5xknmp+9SsOcVGRXQmYWExzSY5paKoQnapY/uio6ki9PeqQmPFLiigUCAClxQKWmhCUhHWnUhpgxBmloopiClNFKOlMTCgClooEJigjilopgcj4zH+ixP6P/jXCXEBmRGRgssbB4z6GvQfGi/8AErVvRxXBDJ6VhO/Me3glGdDlZ7p4H8Q2fiDRV+1/LKFEdyrfwOB1+ncV2aX2liBVmuYmKcHLlskd6+Y7W4vLaTfayyRv1zG2K2F8Q+JHXAuJn/7Z5/pTjJo5quA968ZI9H8d6zbPvewTf5MeFKgKGb8f88V40/ErkYGTnI7+57Z9a0rmPW9QbM63Uo9CrY/LpXPXdjqaXdyZ9QtdMto5UhVrtW+aQoGKjajHgEEk8DI55FFmxxhSwyU5u/ob/ht/+KktPfI/Q16cvSvJfA9pqs3ia4W4AdtOmCTYK/IfmBxjryvavWxwPwrSCaOfGVY1WpRDFGOKU9KTtVnGGKKTOaO9FgFqJvvYqQ9Khb71IC2uNpB7ZBqtEP3ag9RwanB5I96ij6uPRj/n9a4oaSsdUtUOpwFJThWpKLMTbcVJPJujIqsrYpXbK1ly6l30KXnHODyQ1O35LDJ71UlcrOVwcZ6+lTbgZMccg1TQk7kjdSajbrTyeM0w9aaJEpDS5pDVCCpIvvGo6dGfn/CmJkxNAooqhC0tIOKM00IWijPrSZpgxaM0maAaYhR1p3QU0nFGeKZI6ikzRTAcKKbmlBoERz28Vwu2VFdfRhkVAun2qfdt4h9FAq1mlyKdhqTSsmRC3jA4jH4CneUo7Cn5opiuxuwA8CvJPG19pc2vX2l6q13CtvdLcwyWsSyFt8ESurBmXH+rQg5OOeDmvXaoXOiaTeXDT3Ol2M8zY3SS26MxwMDJIz0FG4XOD+FDwy3fiCS3h8mBpImjiLFtikyYXJ64HGa9KzVWz02w07f9hsra18zG/wAiJU3Y6ZwOep/OrQ5oSEGaKOAKQnJ4p2ASikzRRYANRt1NSZqNuppWGTKcdPSmg4mceuD/AJ/KkLbfvVHJcRLOpaRFyp4LAd//AK9cUlaodCd4E+adniq6XMMrlI5o3YDJCsCcVNmrEPDUZ4pmeKM0rDuULs7ZQfpTlZS6nHfnim6hgDOOgzTVYHH50NaCW5azlRTCaAflFNZqBhmlzTc0maYh+aWM/OKjBpVPzA+9NCZazzRmm5NJmqJH5ozTAaXNNAPzkUmabmjdTEOzQDTMg0opiY4mgH3rE8Sa5NoVpbS29g9/PcXK20cEbEMzMDjGASTkYxjvWNYeM9QuNdtNL1Dw7c6a9wrMrXDsDhVJyFKDPTFMR2hbA60nmD1rPa4J6Gm+cfWlzIfKaXmD1FKHB71niVialjdiaaaYmrFzPFKDXP8AiTxLB4d08SyL5tzJxDFn7x9T7V53/wALI8QiQnzLfaT9wwjA/rVXSBHsmad0rySL4pasv+ts7N/oGX+tW0+K1x/HpUJ/3ZiP6UXQrHpc7SrbytAoaUKSinoWxwK5dWtEsLa7tLppNVkaMfNMS0jZGUYZ+7+XQc+uGnxWH8WkflP/APWq3bfEnRGnM02nTwzMMNIiqxI+uQSOB+VY1afO9/67rzPRwOOWGi003qno7Xt9mXeL/ro13tBrl4viB4dlH/H3LHns8LD+Wasp4z8PuRjUo+emUb/Cui6PNsbuaKaHDAMDwRke9GaoQuaQmkJppOKVhjs0xjzRnFMY5NFgM3W9dgisC1pcQyT7gFUOCee/FcRc3chYF28yZuTuOfxNRXNzHChRcbz0Hpz1NVI2yxLEknkk965akbzNqb9yzOi8MSmPWIyWOZAVJ6Zrvt1eZaVP5eo2756OK9IDcCkW9iXdRmot3al3UWERXo3Rj/PaqcLBlQj/APXxVy55iPsay7ZiqhTn5Wx+uKT2CO5phvkFNJ71Ejnyxz9aQvQMsZBPNRscUzfTS/FUIf5gFJ5nNQk+lOihluCRGBx1yaltoC6JOn0pfMFLFZtgb3H4VaS2iQfdyfel7RIfJcpeZ6U9fMbojflV4eWo6AUnmoO4o9qw5EVhDKeoApkivHyykD1qebULe3QvLKkaju7ACsG/8c6PaqUWQ3DH+GMcfmcCmpsORGp5gpPM5rz+88dTyMRZ2yRLngudxrFufEGp3hIlu5Qv91TgfpWidzOx3niC9t4NU8LyXFxFFHFrtpJI7uFCIGJLEnoB6muV0z7Bb6n4ZsbJnSSKa8kltzfRXgXdEoDiSNQBu2kbe2zP8Vcxdwi7QLIX4OcioraxS1uEmjaUOucHcPTHpVX0FbU9kJPek3V5jHqN5Gflup1/4GasLrmqIflvZfxOaixd0emRcmub17xFrln4ns9F0aztLiW5gDqJsg5y2fm3KAAFzk+/NYUXinV4hzOh/wB6Naz7vxMh1O61O+jt57sWItbaFldVbe5DklCCMIXH3h94e9XEzkZOrazqPiHUnmv40SWICPy0UgJgnIwSTnNVBb8/OpArQ1K6ttR16/1C0kCrdbLh1RSAkrrukUA84DlgPYCqsjSuMb/zFOyErjDBb4/1hH4VWkRFJ2tT2t5u2D+NMME390H/AIEKhJplMizTlNJ5UoP+rP4UmSOqkfhVE+pKpyea7f4eaMl9qMl/Om6K2wEB6F/X8B/OuD34r2fwJai18K27fxSlpCfqcf0qoq7EzqOBRmmbqbvrUkfuprNTC9MLUASFuKYzc03dTS3NIZ5CkvmMSSSTySasI1ai6ZbZwIyo9jTxpMB5DOPxrj5josUYH2SK3oQa9Ngm8y3jbPVQa4MaQmcCR8/QV1+mh1sIUOSVGPr70cyuFtDQL0u+kjt5pP4cA/3qtx6eP+WjE+wockgSbKcrboyPUVkKxWeRQOdwPHeuvSzt1/5Zg/Xmp0iij+6ir9BUt3GlZnNw288i/JC/U9uKsppV0452r9TW+CvWl3IKTcirI5qeznt1y65Xuy9BVQtXWzTwRRlpHRF7lyAP1rhtb13Q7SctBeo5Od0cPzYPsRxVRk+pLXYtFwM0zzMMCMgjoRwRXH3XjM/dtbQ/70h/oP8AGsmbxFqd0dvnumeNka4/lzTfmCPV01SNIN9zNHG6jO5mChh/jWXd+NNKtsgXBlb0iXP69K4G30TVb8h3iYA875mx/wDXrWt/BeQGubwL7IP8a551aUN2axhOXQt3fxDY5FtZ8f3pH/oP8axbnxhq9yCBOIlPaNcfr1roYPCWkxkF0ll/3n/wxWnBomkxHCafD9WXd/OsXjKa2Rf1eb0Z5pJcTXEm+aZ3Y/xM2TTREDznP4V6ylpZIvyWcC49Ix/hSlIscRop9lFS8wS2Q/qz7nkZXnhcimnFesvCjD7q/wDfIqu1tbtw8ETfVAaf9oLsL6q+55yixRQJLLG0hkJ2ruwAB/Wo7iERSLtJ8tlDLu68+td5PpFhIMC3WMZz8gxk/TpWVfeFo7pnkguHRz2cZB/KqpYuLld/12OzERpPDqMFrp0StZe8293d7Lp5W15Teig803z1HTNOu7CezuWhnUK475yCPUVEIwOpJr0U01dHjtMXzixwo/rUUtpHcMHljy2MAkkcfQVMX2j5VGKvkol1HaiBJEYLlwDls/xA9h/gaidTk6HXhcH7e75kldLru722v23MuK1gt87RjPXk0/C/w4psqbZHUMGCkgN60KM9T+VaJ31OaScW4voDKDTTH7YqcYHCr+QoZSBkjGaZFyvtHb9aaSe3NPcqmdxwKrPcqOEBP1pDJQM/eUYq7Br97YxCO3v7hVXoiOcCsZnZ+CfwrT0TQLjWpXEToixnDljkj8KevQHsdX4O8S6pqGufZru5aWExMdrAcEYwc16Bk5rk9J8O2Xh9hcBme4IxuY/nx0FdHamaYb9pCep4FEqnLp1JUeYtbWY44/GoS3HUfhUU92GJggOT/E47D2pFIVQo7VcHJ7imktiXdTC3NNLionkqyTkFnVuQw/OplmA7+9eeR39xGeJWx711XhOK91a7LynFrFyzdNx9K5HGyOlSTOrsoGnlG4EL1P0rqLO7j+WJ0WNuilfun/CshpYoJH3OiJtByxwPSs668S6TbghrtZD/AHYvm/lxUKCauDlbQ7gOBwetKJlA615zP8RVSEJb2bSOOPMlbAP4DvWJdeNNaugQLhYFPaJMfqeaXIXc9ge+ihXdLIqL/eY4FZN5410SzBDXqyuP4YQXP6cV47Pc3F0++eeSVvWRix/WogDxnIA9aomx6Le/E0AkWNgT6NM+P0H+NYN347127yBdi3Q9oEx+pyf1rlywHXmk3ZHSmFy3cX9zdyb7i4lmb1kct/OoN2fTFRkn1FHNMVx5Iz2zXdeG9PsUso7mPbJIwyznnB7j2xXAMcDqaZDqV3ZSGS1meFvVTgH6jvWdSm6kbJlQqKDuz1zJOduAKjnultoHcclRnmvPLfx3qUOPOjgnH02n9KvDx/byoVn09xnrtkB/mK4HgZp3tc6Y4mD6m1PrF8ZP3M9sSGAKI3P+fpWbc6lqDXJZ5pUAf5lRjsyOT+lZMmu6NM7ERXUQY5wgXg+tEetaTGm1Jr0DO7DKCCfXr1xx9K1VBxXwnZHE0ras27fUbm61B3WeU4UudinaAO5Gc49e9Q22o36yyyvcSMjMVCq/zbsZUgHnHrWeuv6KJWmdbkyEbf3ShBjvxnvTn8WaOqbY9LcjjqQKHSn0iJYmhu2alhrupzXWBE1wg4cYGF9811Svuj3DgY/KvOh41WDcLTTIkz/eb/DFVp/HGsTAhHihB/uJ/jQ8JOb2sc1TF076HpxcBdzcY7/41jah4n06yykcn2iYfwRHIB9z0rzO51W+vWzc3U0vsznH5VHFJ2/KtYYCK+JnPLFX0Ru3upTahdNPNgO3QAcKPQVXLE9SaihO5Qc4qbcAetdiVlZHM23qxvJqwl3crF5aysE/l+NVy+TkU0sAMk49zScVLdGtOtUpXdOTV+zsPAHpn3p27nDdfbiqrXSrkLlvx4qFpXccnA9BTuZpmg11HEvJJbtjrVSa+lkzsAQeo61XYqoyTge9QtMDwo/E0aiZLk5JJ5Pqa07Pw9q2oqrWtg7owB8xvlUA+pPFdD4I8Hi/jXVdRj8yLOYImHDY/iPt7d69IFi7AKcADgKD0+lGl9xanlUPw91eUjzryxtx7yliPyFdRoHhsaFctcS6kbiRk2MsURAYdsknnHbj1rqPsw/L0prRKBwKsgqTXiq6lLZC3QNL8x59ulDmef8A18pYf3B0oMHmynjlF3gfTr+lQvdRJy0qLx3YCriluwbZYQKi4UACgsRWY+tafHnffWy/WUVVk8T6PH97UIT/ALuT/KqbQrG2ZOKjaTmuck8Z6OnS4d/92M1Sl8c6cPuRXL/RQP61N0OxxunWE2pX0drAMs55PYDua9Mme28M6GscWAEXHuzf/Xql4Z0ZdHsfPnAFzKMt/sjsK5rxHq7ajflEb9zESF9z3NczfMzZLlRRu76e+uWmnkZmY55PA/wqEYqIH609cmnbQLslHSlD4pgAz1NOA9qQyTef4ePpSHJPJzRn/IozjpxUjExS5HvSdBSZqkIdu9hSc5pvNKemScCgLMQiqk8Zznk1cXHamtzxVJice5ltGfxpnlv6GtMxDPSmmMA9M0+Yjl7Gf5b+hxTdpx0rQMe7rSfZz/8AqoUw5Chtb0o2N6VfEGaUQ4B4p84cpQEZJ5FO8ojv+VXhFjrj8aPLB6ClzD5SmsXrU8cQGMfrU20L6AU1pUB45ouK1iVBgCnNIqDJaoN0jrnOxfU1FtJOTQNkz3JPCLj61CSzHLEmkLovfJ9BUbSMR6Cj0FfuSZVeTTHmboq4pF5Q0+OF5iAikn2FNITfYg3MT8wz9a7rwh4SgmjTUNTj3I3MUJ6Eerf4Vn6F4YuL+7jHlPIoILBRxj3NegXN9p+jkJdzedcgYFtb8kexPQVnUk9olQiupv27gII4UCoowAowAP6VJ5ryArGeO79h9Pem2sf2m3jkYLHGygiJD/M96s4AGFHA7UQpdWOVToiDYFXAHA6VDIvBq0RxUTLnNbmRBZRf6WGPoa8s8d+FpNF1A3lshOn3LErj/lk3dT7eleuQAIrN36fSm3UFvqFpLa3UayQyja6t3/8Ar1SSsK5867T6Umw5rofEPh2XQdWktS+6I/PDIf4lP9exrK+znuw/KpaKKew+tJs96u/Zxnk0v2dR6mkB3fijV/s1t5ETYkkGBjsO5rhOlTahfPfXbzvnk8DPQelVN7Hvis0i27kucUobmoPxp4NOwXLAOacDiolJqQEUmMkzzS4NRhiKdnnrUFqyHHA6mkz7UgIz/hRn2oC/YXJ7mjFA5HWlAphqxKMfSn7c+1LtApXCxFtye+KXZxzxUoAzjmkJ4ouFhmwUbcU78KTjHPWkA3FIR+FMkuUXgcn2qB7h34HFUkyW0iZiick81E03UKv4modpJ55p2AvLMB9aqxNwJZupJpFjLfTPWnlh25o6/wAX4UxBIw+XblhimxORKDIP3R4YD0p8SNIyIilnJ2gDuc16V4e8H29jElzfRLPdkZCOMrH7Y7mqSE5HBW3hjV7xyttZSSIDgSY2qffJ4rTh+H+tS8O9lDn+/cDj8q9PaFnABJwOg9KaLUDtT1JTRw1t8NihBvtZtVXPKwKZCa6O10LQtOA8q1kumHQynav5CtbyVHWo5FwKhopEbXM0iiFdkMR4EUS7VrkdpjuJi/zSl23Njk84/pXWIuZQax9btPsmrSNt+Wb94v49f1zUxsUdJ4Zv/tFiLdz+8j4APcdq2WyDXn1jeSWdyk0Z5HUeoru7W7ivrVZYz+Hoa1TuZtWJSwHpUbsCpGBTXbHFVJ7hY1LuwVVGST2xVrUi+pOsg2sPaq0l2sYyTjPauRvvGdtbAR2ziaWQ7S/8Eee59e1cTdanqN1NIbq5lL5wy7sD6YHFO6RVrnQeNtUh1G/gjhYOYFYOw6ZJzj/PrXL4pAfXinfjUN3KG4oxS0UAUiabmjrzSjAqBijp0pwFNzmlXNA9tiYCng1Gp9ad0pAmx+acDTAaeF4qS0KSaNrHrTuMUoxjpU3KsAQA09R7CkLCl5PQVIxcH1pMj60uMDJOaheSMEhSSfbpQkDJefoKY0irncQKgMjsnLBV/Wqzt82ACfr3q1G5MpWRPLd54UfiartI8nViaBGzdBn8KAEUjOeTitEkjO7YIhc+1I0iJ0yT7VHM8gcxkbcHBAqayijN1EJxmNm2nnpngH86dibkfmyPwPlX2rrNA8Gfb1S41BmiiPKxr95h7+lZ+g6es+pnzl+SFuRjvnpXqFhasYTcTMsMCDLSSHCis5ytojSMb6sfpfhvR7VVWDToCR0Z03t+ZrmfHd9pjRppFjaQy3iPukkjQARY/hyO57/41Z1nxa9yradoG4IflkvDwSP9n0HvWFaaaIV6ZY9WPeiEddQk1bQl8DaFI2sm5uYxthUsgJzyf8mvTTF7Vz3hKPa1wOM8V1JXH0rdKxgVvLHemFcVaYYFQvU3KRWcAGq0o4xVpxzUTJmobKRHawb5RkcDk0/V7H+0LMhQDLH8ye/qPy/lVlQIYtoPzHqaVZPX8qaSSE5XOGaJkzkEH0NXdG1B7K9CMT5b8EVo6yLeKYF3RPMzgkgZPcfrXPzXNjYP59xcK23pGh5b2Aq1GwnJs6vVtatdNtjNcyhRkgAfeY+gFeb634nu9W3RITDbH+AHlh/tH+lZeo6jcandvcXDsxJO1T0UegqqM+lNsEgI3DBqUnzY0mzk/wCrf/eHf8Rio+g5pLVsOVJwkp2n2bPyn/PrUjHkUCg56EYI6iimAtIc9qKTOaAKGfSgetJTgKhghwxT1AFNFO4oKHDPendKZnmnUh3H54pytTBTt2KljRIufSnDpULTooxnJ9qhNy5JCjHrS5WNuxcaRV6nFRPeKB8i59zVYKSNzNge9G5VACDJ9TTUUJyYrzPIxLHA9BS+YAcA8VESAfmP0oJP8PB9aqyJ5mP3Z5xgHvUbuEXKjJPftQpLYJOTT9vFMTdyDzpD97kelMLF2yavJbyzzGKKJpHJwFVcmuo0r4b6tqCia6C2Nv1LzHn8qd0I5YETxb85kTCsfUdj/St7RfBer64ymO3aCA9ZpRgAe3rXfaV4c8PeH8PBA1/dAcyy/dz7f/Wq/c391dLtZ9kX/POPgf8A16lsaKKaZpfhi0ubvYb+8UeZIqH5QeBknsM1zl7dap4hkD6hL5NsDlLdOAPw9fc111nbfaIrq0wB58DIv+92/XFcqJCBhhhuhFEYp6jcugsVvFAgSNQFHYVKOtRiTPSpB781rsRubPh2YJesh/iFdaw49q4G2mNvcRyjjac13VvOLi3SQHqKVxNCknGPpUZVSe4p54yP881DI/FOwhrImeWNVGbDc/SpHkxnn/OKyZr4NcSANhEY7mPAFQ466FJmpJKMDnsKqS3qxdTz2HrXJ6n4yia4Nnp+Hk2kCVvukjsPWuMuNQu7lnaa4lYt97LEfoKq6Cx0vjXVY7ya0sUO5omLufQleBXJjpVu9fzbawvMZJTypO3zJx/IrVMdPSk3cB2aUHmmDk0oFMY6Q4jJ9qRVBiAPpTJD8oHqalHA/CgQ7d5irIep+Vv94df8aT8aF/1hTs44/wB4dP8ACm5JHNACnJ69KUnjpSZpCaQyiKdmmU4daTAcDTgaZSk4HNIY8GnbsDmoix7CjqaLBck8305oCySk54GO9ERCSAlQQOcGnSOWPpnmkMb5a4bLZPoKjCkngUu/bnbyfWmksRknmmri0FYbSQ2QR1ozxxwKvT2jXV3b/ZkLNcoCoH97oR+ea9A0PwfaafGstxGtxdYyS4yqH2FNRbE3Y83i068uiPs9pPKc/wAEZNbFr4O166I22DoD/wA9CFxXqgSRRhXKj0XgVPFJdRjCXMqj2NVyEpnA2Xwu1SQ77q5ht078E/zxW5aeBfDtiQbq4lvXHVUOR+nH61vtE0rZlZpD6uxP86eIQOwpcncfMMt3t7BDHpmnQWo/vbQW/wAP502bzbhg08jyEdNx6fQdKn2gDpTSCaLILlZkAFR7PbirDCmhTmpaGtyWxXbI8gHzIAwPpWF4h037NqLXEaE2848xSvQN/EPz/nXTWaYV2I6gCknga6s5bRXCSj5oXboD2z7djVJaCb1OHRFPt+FTrEKrwazaS3cllfw/Y72NtjoePm9uxrYWzVl3RsGX1FFiuYpBAOtbmh3/AJb/AGeQ/KehrPNuVFRH904YHBBppCbOwkYEZz7Gqc0wxk+lV/7QUW6M7AZBLE9sdz+defeIvHDu722l8AEgzkf+gj+tPYm2p0mu+J7TSY2DsJLjHyxKeT6Z9BXmtxqN1e5ae5kdWbdtLHbk+1ZryySyM8jMzsclj1JpVdgMA8UrjtYmfK7WXhlORVqYiQLPGPlkGSPRu4qkJSQQQKntXDK9ux+/yvswqWNFu2Pm6fd256oVuE/D5W/Qj8qqjGPSpbKVYr6IsRtYmNx7NxTJEMcjRtnKkqfwpgwGKXOKbxRnHQmgQ1uZFH41Jnn3qIAmRj6cZp4OB/WgYjnA4+8Tx7GpAzHJbGTycDAqEfO+49uBUmcUAOpCaTPvSHFAFLvTgaaKUDPakA4570de3NOWMnt+dPES9+fpRcBgBI7n+lKSo4J59qildt5A4A7UoFADjIc4UYpvU5Jz9aUUUAGMUowevSnJFJK22NSx9q2LPQJZAGmO0egppXFsb/gC1F08krqCbYkRn0LDn+X616L5eO1c54PsorJJo41xkgn3rqttaxVkRLciEdL5YHapMUuDTYiMLSEVIetNIqGUiMjFMIqQjmkIqWMgK80qx5PH5U/bU8ShQGPXt/jStcZKAEjC/maY/Zhncv5/5/8Ar1G0h3fWkMvfP41TVkSmcn4+8ODVLP8AtezT/TIF/eqv/LRB3+o/l9K4fRfE1/p8yR/NPGcKFB+YfT1+lexCUJ3AGM815fcadb6Z49kRRiAq00Q/ukqSB+DUPYpbnS2viCzvyY1kQTLwy5wQfpSzkP8AM8oWMcknjj615NuOSTnd3qXzZnGGkZh7nNF7CsdN4m137fMtvazMLaMEMVOA5P8AMCuYkfd8oppLe+KYal6jHYyhPPBpO1PUr5LL/ESMUygApwYjleo5FNo70AWLkBwsy9H6+zVPqLb5I7kH/Xxhj/vdG/UfrVaBtwaI/wAXK/WphmXTGX+KCTI/3W6/qBQBAJXHf86cZW78H0qIHH+Jpygk0ATJkLz3pXJxjuaAeBTQctu/KgY5RgU6m5paAF5ppJpc0hOaQH//2Q==", "path": "images/4pts_ADE_train_00007014.jpg" }
depth_point_68
images/3pts_ADE_train_00006360.jpg
ADE_train_00006360.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 123 y = 100),Point B is located at (x = 169 y = 148),Point C is located at (x = 310 y = 109).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_121><DEPTH_121><DEPTH_42><DEPTH_119><DEPTH_119><DEPTH_12><DEPTH_42><DEPTH_42><DEPTH_42><DEPTH_121><DEPTH_41><DEPTH_9><DEPTH_58><DEPTH_119><DEPTH_65><DEPTH_50><DEPTH_45><DEPTH_2><DEPTH_41><DEPTH_2><DEPTH_44><DEPTH_72><DEPTH_25><DEPTH_85><DEPTH_15><DEPTH_76><DEPTH_58><DEPTH_25><DEPTH_72><DEPTH_64><DEPTH_33><DEPTH_64><DEPTH_49><DEPTH_40><DEPTH_60><DEPTH_15><DEPTH_29><DEPTH_3><DEPTH_31><DEPTH_45><DEPTH_41><DEPTH_44><DEPTH_44><DEPTH_74><DEPTH_59><DEPTH_67><DEPTH_67><DEPTH_22><DEPTH_15><DEPTH_2><DEPTH_41><DEPTH_44><DEPTH_64><DEPTH_36><DEPTH_38><DEPTH_67><DEPTH_17><DEPTH_22><DEPTH_36><DEPTH_45><DEPTH_41><DEPTH_44><DEPTH_64><DEPTH_74><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_67><DEPTH_74><DEPTH_19><DEPTH_41><DEPTH_25><DEPTH_36><DEPTH_3><DEPTH_3><DEPTH_29><DEPTH_74><DEPTH_3><DEPTH_11><DEPTH_2><DEPTH_19><DEPTH_74><DEPTH_3><DEPTH_49><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_31><DEPTH_76><DEPTH_72><DEPTH_49><DEPTH_74><DEPTH_36><DEPTH_36><DEPTH_74><DEPTH_36><DEPTH_36><DEPTH_29><DEPTH_38><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
3
[ "B", "A", "C" ]
<DEPTH_START><DEPTH_121><DEPTH_121><DEPTH_42><DEPTH_119><DEPTH_119><DEPTH_12><DEPTH_42><DEPTH_42><DEPTH_42><DEPTH_121><DEPTH_41><DEPTH_9><DEPTH_58><DEPTH_119><DEPTH_65><DEPTH_50><DEPTH_45><DEPTH_2><DEPTH_41><DEPTH_2><DEPTH_44><DEPTH_72><DEPTH_25><DEPTH_85><DEPTH_15><DEPTH_76><DEPTH_58><DEPTH_25><DEPTH_72><DEPTH_64><DEPTH_33><DEPTH_64><DEPTH_49><DEPTH_40><DEPTH_60><DEPTH_15><DEPTH_29><DEPTH_3><DEPTH_31><DEPTH_45><DEPTH_41><DEPTH_44><DEPTH_44><DEPTH_74><DEPTH_59><DEPTH_67><DEPTH_67><DEPTH_22><DEPTH_15><DEPTH_2><DEPTH_41><DEPTH_44><DEPTH_64><DEPTH_36><DEPTH_38><DEPTH_67><DEPTH_17><DEPTH_22><DEPTH_36><DEPTH_45><DEPTH_41><DEPTH_44><DEPTH_64><DEPTH_74><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_67><DEPTH_74><DEPTH_19><DEPTH_41><DEPTH_25><DEPTH_36><DEPTH_3><DEPTH_3><DEPTH_29><DEPTH_74><DEPTH_3><DEPTH_11><DEPTH_2><DEPTH_19><DEPTH_74><DEPTH_3><DEPTH_49><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_31><DEPTH_76><DEPTH_72><DEPTH_49><DEPTH_74><DEPTH_36><DEPTH_36><DEPTH_74><DEPTH_36><DEPTH_36><DEPTH_29><DEPTH_38><DEPTH_END>
123
100
169
148
310
109
null
null
null
null
61
16
84
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDat5XgbK9O4Per4SO4XfDw3dP8KqvbtGcEfjSIWjYMpII6YosNMsqMcVMmKSORLoANhZfXs1BBRtrDBpDuWUIqzGRVFXqeOTFS0aKRpxYq7EBWVHLVuKcetYTiapmtEBVtMVlxXAx1q2lwPWstgkmzQXFSACqaTj1qVZh61SaMJQZPinAVEJR61VutY0+xUtdXsEQH99wKd0RZmhXNeM9cvdE02J7KHc8r7TIRwlV7j4keGbYkG/8AMI/55qTWVe/FLwzcwPBLbz3ETcFSgwacryjZGkFaSbRys/iPWZ/nlv5h7BsVCPEOsoQY9SuAe3z5qjrOs6Fczh9MtriLPVZjkD6VmxX9sJl8/c0eRu2DBxXMqVWx2c8D03wj4y1O71OHTr8C4EuQJVXBXjv7V6LXlmg+NPB+j4aK1u0mIwZZFDH/AOtXUW/xG8M3BAF+Yyf+eiEVvTUox945aqTleKOqpCRVG11ew1BA1pewTA/3HGfyqzkDrTbMbMk4ppAphlUd6Y06jvRdDUWK4FVpMUPcD1qrJOPWpZvGLQkpFU5SMU6Sb3qrJLnvVxiUxkhFVnIqR3FQO1bozkRtjNRGnMajJq0ZMUDJFRyn9631qRDlxVZnzuPrVLcl7DcZNOVcuBTFYjoakDfu3c9hxTYkVydzs3qaQDHPYc0Z4FNY/IfegBjHOTUJHNSseMVHTEMIqNgKlNRtSA0YLnaPLlG5P1FTPACu+I7k/lVRXWQfN8revY1Ikklu+V/LsaRQYwatw3KuBHPyB0buKaPLuhlMLJ3X1qBkKNgjBoDYuPGYyO6noR0NCtUEFyY/kcboz1Bqd1BXzIzuT9RSsO5MkhFTpPjvWeHp4k96lxLUjUW5I71Kt4fWskSe9OEtZumjRTNpb0+tUdb8VQ6HZ+dMdztwiA8sarrKfWuc1fQJ/EnivT7RZNsUkZyT/AB941DgluPmuYOpeMfEOt3LRQTPDG3CxwZz+nNPs/AHifVSJXs58NzvuH2/z5r1rw74e07wxrc1naR8T26yo8nLZU4bB/EHFdZVRhciU7Hi9r8H9Vdf391Zw57DLH+VacXwaTA83VyP+ucP+Jr1Wir5PMj2jPOIvhDpyAbtRuW/4AtSn4S6YemoXI+qqa9Cop8iD2kjzWb4RWzD93qjg/7cIP8AWsu6+EN8FP2e+tpPZgVP9a9eoo9mh+0Z84z+FdetJ7qGCzmZ7RwsskGTtPUdPaptN8deJNEcRyTG5hXgxT8kfj1Fey+EmNyNWvu1xfPtPqq4UfyqxrnhTR9fiZby0TzSOJkG1x+Pf8ay5bxuaSklKzOa8PeNLHxHGUjJgu1GWgc8/UHuK2HnPrXlGqeF9Q8IeLLERyb4pJQYZlGNw7gjscV6G13nvWagm9C07IuPcH1qFpz61Ta4HrUbT+9aqBLmWnmzUTS1WaaozKPWrUSHIsNJUTPUJlHrUZlq0iXImLVGWqEyimGWnYhssq+CT6AmqrNxS+Z8j/TFQFxVIlku7ipJWxAq/wB45qrvGaWWQlgP7oxQAuaSQ5OPSo93f0phc4NMQ4nNNNN3E0mTQAppjUpJqNjSAsCpFlIG1uV9KgD8Uu6lcZZx/FG3T8xVhLpZQEn69mrOVypyDzUodX6/K36GgC3LGU56qehFNjmaFsq31HrUcc7w/KRuXuppzIsg3QnPqvcUAWtyTDdHw3dP8Kj3471SDsjZGQRVhZln4fCyf3uxoHcm8wetKJh60gsLw9Ld/wAqcNMvT/yxI+pxSsO4Cf3q7pMyJrtlcM2Cjlc+oYYI/lVUaXdd/LX6yCnrpsqkE3Fup/66ilKN1Yakdn4jZ7OO01hFLfYZd0oHUxNw/wCXB/CtyORJY1kjYMjgMrDoQe9ZumXcWoWHlSyRTOF2ShTuB7frWTplw3hm/TRbxj9gmY/2fcN0H/TFj6jt6isoys9SviVux1VFJRWtzMWikozRcBayfEupjSdAurr/AJabdkQ7lzwBWtmuNeT/AISrxekUfzaXpD7pG7Sz9h74qZy0si4LW72Rv+HdPOlaBZ2jf6xIwZP948n9TWiaM1XvLqKztZLiZgsca5JqJSSjYl3kziPHH+l61p0KtgWoMz/U8AfoazDKa0lfUbiWa6m06BnnfcDIeQvYdfSpP9OH/LlYr9cf41VKFo6lSl0MjzT6U0yMexrYLXw/g05P++f8aTzb8f8ALxp6/glaWIuY5Zz/AAmk/eH+E/lWwZ73vqNiv02/4Uw3N331m1H0x/hTsFzJ2SnojflTTDOf+Wb/APfNapurjvrkQ+n/AOqomuZD1138t3+FFhXM77Pcn/li/wD3yaBZ3Z6QSf8AfJq8Z89dcf8ADdTTLF31qY/QNTFcoTwTQRgyxsgJwNwxmqzvkgegrRna0dPn1GWQjlQyk8/iayGcZoAlVssOaTf1Pc1EG4J9sUbhQBKX+XHrUbtg4HSmtJg/Soi+TmgCXdRuqLdRupAPLU1jTd1NLUATqadmkaFlG5DvX1FR7jSKJc0BqjD0u6gCdZcDDcinglTvjbp+lVc0BypyDQBe81J+H+V/XsaidWjOCMVDvV+uFb9DTxOU+SQbl/l9KYF62urfy8XMtzuB4CHjFStPpygEpduD0O8VlyICu+M7l/lRbXb28owUKngiRcj60XEaQu9NHSzmb6yf/WpwvrIdNNz9ZDThdcZF5Yr/ALsOf6Un9oKP+YpCP923/wDrUwLNnrzWM3m2lgkbdDhmORXYQXeneJ9Me1uochxh4X4IPqD/ACIrhv7UjHXV5f8AgMOKQ6rB31S9P+6mP61nOCkUnY7GK81DwyRBqXm3ulDiO+UbpIR6SgdR/tD8a6K3uYbqBJ7eVJYnGVdGyCPrXBWvjhbSLy2aa7A/56KFOPrTYtb0LzmubK4udFuWOXCJuhc/7Scg/UYNYPmhuXZSPRM0ZrgZ/iVZ6UEW9kt7wMcCSyJz9SjdPzNZs3xDi1+6msoLttHsY1Hm3DpmZ8/woOi/Wj2mlw9m72Om17Wrm+vD4f0Fg164xc3I5W1Q9ST/AHvQVtaPpNroemRWNqDsQcserserH3Ncjp3jDwjoVl9m04zMM7mKRMzSN6sT1NVL/wCI93cKU0vTvKB/5a3J6f8AARUqTbukNxdrLY73UNStNMtmuLydIYx3Y9fYetcBq+pyeJJEZruG2sEOY4XY7nP95v8ACsMandXM5nvlS+nPQyqSF+g6CrP9pXOMrp1uB/1xzWsKd9ZEtqOxY+zQfxanB+BY/wBKT7NZ99ST8EY/0qq2r3KHBt7dPrAKP7auuwgH0iX/AAra5FmWvs9h31DP0iajyNO/5/JT9ITVb+2b3s6D6Rr/AIU06zfjpcY+ij/Ci6CzLfk6d/z3uT9If/r0eTp/Y3h+kQ/xqg2tah/z9yD8qibWdQP/AC+S/wDfVO4WZqeRY/8APK+P/bMUfZ7Pta35/wCAisdtWvz/AMvk3/fZqNtTvT1u5v8Avs0XFY2/s1t2sL4/l/hS/ZYO2m3p+rf/AFqwDf3R63M3/fZphu5yeZ5D/wADNFwszWvrd0xKlpNDEo58w55rML0x7mRhtaRiPQmot9FwLO/CigP3qBmIOPQUhfj60BYmdxj3NM31XLkmjfRcCxvo3VBvo30hkxam7snFQl+KcDgf7RoEbGMHIJB9RTJFVvvjB/vL/hVjHFRstQmaNFOSJ0G4HcvqKjD1bIIOQSp9qidEf7w2n+8vSquTYj30m6mPG8fPBX1FR+ZQBPupyykDB5HvVbfRvoCxaDlDujbj0pSUm6fK/p2NU95ByOKGkV+vyt69qYWJSzxP3BFL8svK8P6etR/aAf3cw+jdxUcimP5gcqehFAD84JBpd9R+esnyucN2b/GmOxQ4agCxvpweqgkz3rkLy98R33irUdO0q/ihjtoRMFlRcH5UAUHaSWZmAA9WHQUAdZqGk2upFWk3LIowHU1Sg8PJb3AmW4feOh61n+DNXvNV0eae+n82VbgoG2hfl2qewHqa6LzKlpDTLIYKMcUvmVW8yk8ymFhZ/tD8R3LIv90cVVNtcE/8fLfmasb+aQPSsA+3hlRsvcOw/ug8VeUmqsZzVuOobsaKNxwHFIwxVhFJpJlIFZ+11L9mUXbFRNJzTp+DVRmrdO5i1YmMopvmCq5eml6ZNiz5nvSeZk1W30qN8w5phYs7xvPNCvlqqlz2qRHOxj+FFwsWd+7vUcknXHbiolfGTnpUJlJ4ouFibf70u+q/mGk8z3pXCxbD0bqrh+KUNk8mgCwpwNx/AetSRjJyeveoo/n5/IelWYxik2NI3COKYRUuOKjYVJZERUbL6VKRTCKAK7DbyCR61BJGrdtp9R0q21RMKd7CsUHV4+TyPUUzzPerjL6cVWkiU8/dPqOlO4rEe+mSNxTXV4+oyPUVFI/yZoAeJiPlYZX0PapI5mjBKHcndTVHfR5hU5BxRcLF9lSYFoeD3U0xJdoKSDK+h7fSqouATnOx+xHQ083Cy/LL8j9m7H607isTsNvzKcoehriNU8SSeH9c1F7FU/tCS5t5N80EciKkaAgDcDgliDkAEbRg11vmyW7YYZB/I1NF4fsNWL3LW9q7k4YyW+9unrg9qAaMTwlLaS22pS2CPHZvqErQJIAGVCFKg4JGQOK6DdVq38OQ2kZS3MUKE5Kx27KCfXGKl/scDrcn/v2aLME0Ud1Gav8A9lRDrdH/AL4H/wAVR/ZlsOt2fyT/AOKosO6M8tQGq/8A2fZjreH80/8AiqUWFiD/AMfZP/A0/wAaLBchgyT61oRKfSkigsYhn7Qf++lq2ptUXdvfb67h/hWM4yexrGUVuPijY9qWeFwmcUkWo2YAKSsR7N/9jUkl9ayLgtKfxP8ARKw9jUv0NfawsYV0CueKznfrXQyizk6xu313n+lVzbWP/PqT/wAAkNdUItLU55STehgl/emmT3rdNtZ/8+bH/ti//wAVR5Fp/wA+Df8Afh//AIqrsRcwPMpRJgE+1bvk2v8Az4H/AL8N/wDF1VuxaLAQ9o8IJ+8Isf8As1FguZhk5Az0FSGTEaqPcmqKtk8etSO+5+D7UrjsTNLhcVHvzUDyfNgGmGXHelcdi1vo31VEvPWnB/ei4rEGs3t9awWy6bAs91cXCwpGyk7sg9MEelZI1zXbbUdPt722sPIu5hGstvIJVb5gGAdHZcjI47ZHrWrqV/b6ctpNdl1gd5IHdFyYxLBLHvA7ld+7HtXG20Nna6rottban9ucXoeQxK6wplkA2h1Vtx2nJxjG30qlsJ7nrES4qdBUSVMtQWbBmKj94hHuORSb1cZVgakJ45GR6ioWhifnGD6jg0himmHpTTHKn3W3D0amGbbxIpX+VIAaomFS7gw4IP0pjCmBCaiYZqYio2HFAFVxgk5xUFxbjyBLkKC2Bj1q0wrL8R3k9josMkBUMZiPmGR0ppg0V3EkZyV47EVEZSaoaHrVze3hs7hUdpBuRguCCO1bMtsp5Hyn9KL2DlKJemmcqMEbl9DUkkTIcMPxqtMuKLisWo7phGQmJE/ut1FMBEaJLDKfNOAfm5z6fSqSEg5BwfarEc2HDE+W/wDfHT8axqwc9v68z0sDjFhotNPdPR2vb7Mu8X/XRrft9Us/LVJbUGXHJIGGNSHVbVSR/ZwB9wv+FZIaG4G2TEcvZh91v8KkSXyj5N0pwPuyDqv+IrR1GeeoI1V1aI/dsE/Jf/iamTU2P3bGP8h/hWWr+SRnBU8hh0NaVrewAjcKwniJLY1VGLJxfXLfdskqaOa/c8Wq/r/jWrYX2nZHmYrp7LU9EQDJj/GuWWOqXtY0+rwSvuc1Y6dc3o2XMHyN1GW/xrbbwbZLD5tva7pv9qQjFdBFrej8CN48+wq8L+CSFvIliEmDsLnjPbNR7acnrIzlptE4WLw/qKHb9nVVB4Az/jWnZ6KUlX7TbEr7Ej+tMutf8UW+px2SwWDmUEpIgJTA6kndxXRWupmO0T+0JIDcfxeTnb+tKVZv7dimml8KZkaxpVk1rmC2YSY67if51wV7aXkTHAAHugr1GfXdNAIeUflWDf6vorg8hj9Kj6xUi7qVxwgmrSieaTSXsZPK/wDfsf4VUkv71eN6f9+1/wAK6zUL/TXzsVa566mtGJwBXVTxU3uhyoR6GadUvV/5agf9s1/wpkuqXZt2Dy5DZBG0dPypZmgPQiql6UVIFUjnn9f/AK1dUarbMJU0h1uxA3E8AZoMiKhK8n1zTJCqWh2n5mYKKrSNtRVB56mtIyJcR4bJzQW96iBAFG6lcLEit81W4VDAsc4H6mqUWS+Kg1qVo7KJEJAd+30p3uwsdBd6XbajpaQ30QljE28DcRg4I7H61VtvCmiW9xFPFZbZYmDo3mucEHIPWq+gI02nyJ9qcLvD7ARknkdfQf1rZspXkiO47irFQ394etQqnvcv9aHZUwThS9o2m9LrtzK612fn2++19KmXtjk+lQpk4AGTVuNQnHVu5rQ4jXKg8jr7VG6n2P1p+2mNvHfIoAiJI9R+opu7PYEe1PL/AN4Ypp2mgRA8UZJK/K3txUbeauOjj8jVh144OfrUTZHYj6c0gIDMucNlT70HBHFPYg8EA1A0S/wsVPtQUhHrA8Y/8gK1HczNW45kTqAw9RXN+MZlexsYxnh3LD06YoW42cxo83kazaPzxIAT9eK75hXnXEciOvVTkfWttvEt0fuwxj86mTKUWdIyZOOxNVLq0xM6JklSfxrCi8T3ck4XyY2CnkAHkVrarr8UNtHeW4DlwV2NwVJzkGhb2E1pcpujRtgjHvTC2aZpmoyal5okiRVUAgDnrViSAZypx7Ghu24WI0lZBt+8v901ajuyU2P86dgfvLVMgqfmBBpQealspIurO0YIU74j1H+ehrSt4LeZdyXbk4BYLGTisMMRz0P86kWRlzsZkJ67TjNJct9QafQ6JbaIf8vE/wCERqRYYgf9fcn/AIBXM+fOOPPk/wC+jWHGniCfTLe7XX7bzbizlvYrQ7xK0UbSBznZsyPKc43ZwPXiqVOEuhDnKO7PQI7LxJqNx5eh6Vdzx5KieUhUYjrg8Dv61qw+CfiLJjMdpAPRrgH+Wav/AAk8UtdaFFpU8u6/iIubcMcecCvzoPfkkfX2r1+CeO5hWWJtyN+nsfQ1i6cL2sOVScTx2P4fePmKu1/YKw6fvTx+lNvvBnjyxtHuGurKZEGWVJDnHtkCvawwrO1WXzmt7BOXnkDMP7sakFifyA/4FVujStewo153PCr+y8X6Kjy6toV08C8tLbOGCj1OM07y4Z4UlIugrqGG5lB5r23xDqEVppssZYebMpRFHXngn8K8e1bSIUiJ3vwOK5J1aVKfJY6KanUjzGU9pZfxed+M61C1pp3dW/G4Fc9exLHIwBP41Qau2EotXSMpRkup1pttM7oPxuBWPqhhS6UQghQOBuDD8Kx+rAYqT+PAPeruibMtmXdsXsBSE7mJNQg5JNTAcVLY0gJphcjvSsaRBls/lSTG0aGmxeZKoyAQQcHvz0qn4i+5bDH8bHiqH9s3llLN5YQKj4Bxkkio7u9mvFRpsEjOMDFUlqiejNrwzDHcQXiSpu2FGXPGOorpYkAASNQAOwGAK53wsjqLslMI4VQ3uDXTIQBgdPX1ocVzXSLdapKChKTaWyvp9xYiwowOvc1YTJ6dKrxjpngelTq+eFqzFmvnjBpDTvMQ9eD70hVW6UWAhNMKg9qkZCDwaYQaQEbL6GoyWHUZqQ8dajbHrQFiIsp6jFMIB6GpG6VGwHpQMjYEdP0rmvFU8YsBERl3b5fwrpSDjg1w3iss+oRqM/KmePrQhmKynaOM/SlhUSjCv83oaRXMSl2dlB4HyhhS28Eku4KokJx8o5PT0rCfVs3j0HDTbmKUyxoCT1UnH5U+WxmmDb1KZ5xnPNSpJeWp2/OuP4ZAT/PmpxqjH/WxlfdRkVi51L3VmXyRsLoVu9u86uBkgYNariqNtcrI6ujI3PY81oNyMitIzctXuQ4pbELKMYIBHoaiMGDlT+BqzinBaJSsgSKW0g4IINOVDVto+ORkehp1taGXJVwoH96ojK5TVioy5GDWLb+LNOg8MWti0TSzxaZcWTxSafCwLSSSurrOW8xQvmKcAdVI7k1089iY4WczJhRngGueENjFOBJZW2318hTx9K2pzcL3MakOfY2dE8qLTtPkSBkmWCNg4yDnaOQc16PpHjnV4GzJbGdjjc6/KX/3h0J9+D7155aS2AjVIjM0YHCKuAv09K04buCLlUuR/wADrGp7WWyRcYwW56tH4+vJZI4E8OXzSydJFGY19ya0IZdWYSywW6x3cw+ae4+Y8dFVRwAPTP515XD4iaAfILsY9Ja07bxRrkgBttL16YYBBWFyMHoeRXO4Vuo+WmtjVm0PVr2/ZrzU4WmY43G4GfoBkY+lW7jwFNLaNvumeb+7gkfqa52OfWzqX25PCmreftxv+y85z1+vvVu48Ua9aZN9p+s2q43F5LZiAPXgGlaruv0HpsmYmo+EL2zc5sw49dorBnsntyd9io/Af4VvXuvPcNl2uJQwznzCB+WRWXLeQSH5rWU/WX/69bQliOrQONMyDIgbb9kUfgP8KzdgbfJtwOwrfkktmyBZuCRjPmf/AF6z7hbYJtWCdAOcgg5re9R7kLlWxQAw4X86shOKpxvumGc7SfxrdGnpgfvG/wC+aWrK0RlsmWxTlTBHFWprYRygBiwxnkVC4Kkn0pc2th20uYs9mZ7qQEAoz5JptyV2jaBhTj61YlZ5sxQoQrdWHVvYVXuoCp8vcQyHlB0/GtKbvLUiatHQ6Lw/dIY2ts/NncBnrXRpheScmuK0YmHUYmwfm+Xr612kQA9zWrMiwMnk9PSrCdMYxUAIxUyAnpSuFjZNMYD0FONNNWIjIIPDH86Qs3qD9RSmmk0riGlvVfyNRsVPXj8Ke3SozQMYQD0NRspz1pzAelRkY7kfQ0hjSCDyOK4jxGc6sR6Riu7kULHGQSSwJ/WuC8QHdq7+yKKOhUdzGmx9jfjkyLj8jUOolfs5KHDCRMEdeFqWdGeMBR1YGoLiFyFBK/ez+lTGOt/66Dm9Ah8QavaoImn86Lsk6hx+vIq6Nftbgf6Tpxicjl4H4/75P+NY728hbqDTAhU8g0ToU3rYmNSa6nU6YbYECJ1feq7dw2txnmtRl5yR+IrntKkBvbZcD7mP0NdIR6E1hy8rZte6Ih7H86mQ+oxTMf7INPQAdytRMuJIygrkVNZDhvrUZB29AfcGn2TETGMDg8nPas6b1LktB+obhanH3SQGPoK5u+AAlJAIBGwjv7V1lwP3DfSuDv5PL8QXGdxRQAFAzjgdq05OaVzqp42NLDuk09b9dHdbtd10/wCHusFy0ZOMr7Zq+NTOAedw7k8H61QtpVu3kAj27SBnPXPerstqqxMwJJAz0qpK7OBPS5o2mtWcWGlWbcOq4BxXs3hX4l6Tq0MMU85t7uNBG6TDb5gHRlPQn1HXnivnyC7VBh4+B0I6ite11e2RgzWwfPbPH8qlxcbuKFJKejPqVdQtGQOs6EEZ4NYWt+JJdNJaLTr65nlAVFitndY1/vMQO/p16VznhL4maXqIt4r23kgvlUQhljLhx2wQOvtXdT6zGluZIYLqf2igYn6Yx1pqzVnI5+Xlex5drXi2GWCR5LW2ZkwHUwlXB9wwBrg73xBY3BObKZf9yNRXpPiHXfE13NIz+E5FtuimeANgdsnnFec6rqr7iLjS44T32KF/kK5lBRlZq/4HYpNx00MC9vrZoX8mG4VzgDeABVB7pmwuw5AAq1cX9rIcGNxznGazjdK842qcZ/nXZGOmxm35mhbb2uIht43CuuA+UVz8NuFljOW4YV0ajgVFymihcD98M/3f61SbBYjGSau3JJmZcYx39qqMNpO3H1NTvJj6GBcXz2iNb2YLTchpgPu57L/jTEDbBuzny1zn8ahlJF5Ln1q6qO0eccGNc/ma61BR2MLtvUsae229t/8AfFdrHksQtcPaZW+tz/tiu62PGiNwA43A/jiqYnuWEUAZYipllGMIuffoKqouSCTk+9WVxQtCWjYJqMmnmmN1qhDSajanE0w0gEY8VETg1Ix4qI0ANbnrUTdetSE1ExpDRJPxHB/uH+ZrhtYiDatKx6AL/Ku4uThIP9z+prj9W/5CEnTt/Kmhp6mNMv3M8DPAFU5uSox/Ea0iu6YD0PFZ0wy0Xuxq0TJkJUZwRikMYY4YU9hg4oXnBoGiTTlMepwD0P8ASunLc9K52zwL+3Pua6AmueqtTWGw4OPf8qlRl9agBp6kVzTSNYk7AYzirFiOZDnnIFUiQOnH0q7YnCt+FRBalyehPcH9w30rgtRIPiaQYIHAIH8XFd3ct+4auA1hsa1Of9ofyFdEFdv0MZvRF+zjgjLJGJFZcbkcYIFaboDC30rC0S7nnDwTzvIq7doc5wPbNb8h/dN9KxknCTTNINSimYCRqY87RmqqhlORnr+FX4x+6596jhjDRse+6tnOyIUbsLa8ltp45oWZJY2DKyrypHQivoLwF8R01+yNvqksUWoRHHzDYJB/eGeM9civnq4ixJ1xx1zS2929jfW7LI6zBgyODjBHQ1MryXukygnoz6N8eTW2q6Z9h/tw2yEl5Fi2kyY+6vPvXhmq6P8AZGJVrqRezG3GD+IY17b4F8cWfiG0EV7JBDqMYxIpCjzP9pf6ivO/iallb+IHjt5o5vMXzHZZASjEnKniudSne7Y4JL3LHmsyspIMbfUrii0j/fLuFKxWW4eJS2V656VahTZ5f+e9dXO9mCgtzewF2n0IrZX7orBuZNkII/vqOPqK3FPyisYmkirej94hHU5FUpCAeauXp4Q5PU1nuQGo+0HQ5yUA3s2KvwY2KvrGP51UZc30vHXkVeiHMeP7v9a9Bx0OVPUWPC3ULf7Q/nXeMc21v/uEf+PGuEVcTR/7w/nXc/8ALnbfRh+tSxvcenrUozmoYzzUyUIlmyelManHio2qmSNNMNKSc0w0hiMaiY81I/SojQA01E1SE1E1IY+55jg/65/1NcZqcoOqyp9MflXY3J+SH/rn/U1wmrH/AIms59x/KmVFXZYtYxLJ7qM1juCz26/7ZH61o6fP++wTkYxWX9oUT2hIP32P61pHZET3ZBJlZip7GgHuTgVBNcr5zEA8k1C0rMOuBSBGrpzb75DjgdD+VdATXPaP/rk/z6Vvk81hV3NKewu7mng+9RUZxXNI2RMWq9ZH5WP0/lWYTWhZH92fqP5UoLUqT0LF0f3DVwGuf8hSc/7Q/lXeXJ/cmuE1wf6bKe5f+ldFJe+YVH7o3QT/AKWx9q6SRv3R+lcxoZxcsfpXRSN+7IzUVl77LpP3Sgn+q/CoLVsO/pkVIp/d/hVaJ8SuPpUtXiyk/eRPMEacEqCcd6zrq5DTkxODwBnHSrcr/PVK4Cea21QMjt9aujH3lcms9NB1q97cXUUEMwDyvtUseBWje6Vq1pYi7nuITFlBhSSfnBI7e1c79tmtblZIJmWSNtyNgfKank1zU76JbW4vHeEsnyEAD5enbtk11cpyc77l+zdnnXcexq+GGY/x/nWVbNtmHQYzV+N8sn41y1l751Upe4a9181uAOzKf1Fb6ngVzkrZixnuP5iugQ/KKhLQpvUgvT8q/U1nOavXx+RfqazmNL7Q18JntGfthbttFXUjAVTj1/nSSgCVGwMFB/OpCxWJOM5ViPzr0baHHfUjlUrIre4rs+un2592H8q46YgrGRx0rrlP/Eug/wB9v5CsmaPoSR1OtV4zUymkhM2ieKjNOJ4pjGqJGHrTCaUmmmkA1jxUZNOaoyeKBiGomNPY1E1A0OujxF/1zFcHrH/ISm69f6V3N2f9V/1yFcHqxzqU/Peh7FQ3K9vK8U2UBJx2FZbPlrUn1b+dXEmMc456is12y0PsW/nVR2JnuQyH9631pQePwprcufrQCcUyTW0g/wClx89T/hXRnrXLaSx+3RfU105OaxqrU0hsLnmgmk75ppNYSRsmKWrSsWzGfqP5Vkk1p2JPlt9R/KlFajk9Ce6P7lq4XXG/06XH97+ldtdt/o7VwetN/wATCb/f/pW9L4jGp8IaI3+lEfSuhkb92fpXNaMf9LP0roZG/dn6Uqq94dJ+6Ug3yfhVNWxO30FWN37us6WdIpyWPUChRvcJSsy1I3zdao3bnzBz2pkt2znEQ4I6ntVdjK5+dga1hCzuZTndWRXkOZG+tKpwwPvTjCxJPHWlELDHINamNmXrVyZDk81pQtllrEHmocoQK0rKcSED+IDmsakb6m9OVtDcnfFvn/aX+YrpEPyj6Vyty4FtyM/Mv8xXToflH0rC2hq9yC/OI1+tZxOavagf3a/Ws/PNTbUtbEU8mFh/3D/OrKODb2p9mH61l3M3MQHUKR+tWIJCUgXPQH+ZrvuchYnfMYPvXXxN/wASyA/7bfyFcZIf3X0rsLc/8SmD/rof5CsmaMnjPNTp1qrGcmrUZoRLNfOajNPprCmyURGmmnEUhHFAyJqYTT2qI0AhjGomPNSMagY9aQx931i/65CuB1g/8TSYe9d5dnmL/rkK4HV/+QpP9aHsVHcy3bEyfjVJjzHj1P8AOrUpxNHn3qk/VOe5pxJmNzyad2ptOHSqEi7pJ/4mEA/2jXUE81ymlf8AIRg/3j/KupY8VlU3Lp7DjxTS1NLGmk1izVAW5rTsW/dn6j+VZLHFaVg2Y2x6j+VEVqOT0J7w/uG/CuC1o/8AEzn/AN7+ld1dn9wa4LWT/wATK4/3v6VtTXvGNR+6GkNi7roJG/dmuSimeFt0Zw3rVhtQuiCplJB9qqdNydyYVFFWJzqIAK7DgEjrVNnMz72A44FATjJFLtqkktiLt7iZx0AFLmjbQBQAZoz7CjFGDQAZ9qkt5khlyeAe9RkUhX1osguzoblv9F/4Ev8AMV1MZ+QfSvPEvp5XjjZxtLLnj3r0CM/KKxlGxrGfMQagf3a/WqAbNXNQP7tfrWeDg1DWpqtjKlfMx9iaswS4aEe5rOkf9+49zU8LfNFz0NdRgjTkf93+FdlbHOjRH/pp/wCyiuHc/u/wrtbI/wDEki/3x/6DUFSLUXWrKdKqRHoasoaaIZs5prUtRtTEmNNNJoYmmbqAGvUTHipHNQuetAxjGoWNSMeKhY0hjro/NF/1yFcBqv8AyFJzn+Ku8uj80X/XIVwOrHGqTj/apMcNzLnP72P8apufu/jVu4/1kZ+tU5CMLj3qoinuJS5ptL36UyS5pI/4mUB9Cf5V1DVy2mcajD9T/KulO49TtHp3rOe5pDYGcL3pjMx9h70cL0H4monkC5JPSsrGiY44HTr6mtLTnHktz/FXM3OqKh2x/MaorqV5uOyd0XrhTVxpvciVRbHc3rgW7HI4rgtTbdqc7A5Bb+lPk1G9kQo9zIyHqCaZEuVyRz61ajy6mblzKxDHEV+9zUwHtUu2k203ISViOj8Kfto24pDsMxRipNopNoouFhmKTFSbaNtAWI8UVJt9qNoouBHGB5ydPvD+dd/E3yCuExg/L17VbTxBeqoXKHHHIoa5tgT5TpNSOVj57mqKNng9RWYusS3EipNt46YGOtaA+YBl6jpWcotM1jJNGDN/x8yfU1PbMfMQe9QE5nckc5NSwf61fatmZLc0nb5OtdrYn/iSR/76/wDoNcGx+Xr613Onn/iRRH/aX/0GpLky7EeAKsKcVUjPSrOaaINsmmtRnimMaokYTzUZPNKx5prGgY1jULHOakc8VC1IBrHioHqU1E9Fhhdn5of+uQ/rXA6q2dVuOf4zXe3fWE/9Mx/M159qh/4mlx/vmkxx3M24Pzofc1Vk6L9TVm4PzJ9TVWQ/Kv1NOIpjad9KZThVEouaYcajDz3P8q6RnABJOPeuVtZfIuUkPRSTU1zqUs5wvyrUSV2VGSSNS61KOIEA5PtWNcXks55OB6Cq5OTn9aljt2fBbgUKKQnNsjVGc4GasJb7eSeanWNVAAGKfihyEkQ+Qh6in7QO1OpM1LK0EIpNopfaloGNK0badRQAzbRincYo4oAbikIp9J3oAbtoxThR3oAYUJ71Cbdh0Oas/jRgetNNoTVyoyMjA/lWtp9zvAUnkVRdQwwajicxS56YpvVCXusQn/SH+pqaA5kH1qtnMpPrU9uf3gpsEXCeMV3OnE/2FGPR1/8AQa4Iklq7zTj/AMSOP/fX/wBBpFSLMZ5FW1PNUo2GRVpTzQJm4TTCTmnGmMaogjfrTc0rUwmgYjGoGNPkdRySKqmVn+4vHrSGOZgBzUDzAnAGT7Upj7yNn2ppYDhRxQMSWQuqZGNq7a4PVj/xNbj/AHq7aQ+pridZ41af3IP6UPYI7mZOfmT6mq0n3V+pqefkp9arSEYA9CaIikITzSr0ptKtUSHNKqtI2FGT/KhRukCnvWgkYVcKMCk2FiKK3VOW5ap6XGKOlSytgwRSdKXNJQFxDScU7ANJilYLhRijHpS4oGIRSUtH4UBcSinUh6UANOaKKTpRYVxaKTvS5osFwx+dH40oHtSYoAQioZl7+tT4zTWXKkHpTQmVBw3rxU8H3hUI6VLD94VTBFkGu9sfl0SIH++P/Qa4HpXaxySCyjjXG3hvxxioKZfTrVlDg1St5N61aBPBpiN/tTCRioGuM8ICx9qYUkk++20eg61RISTopxnJ9KizLL22j3qQJHGeBz+tNaQnpxQO4wxIvLcn1NML46D86cfXvULHNADWbJ61C7YNJLMkY5PPpWBqfiCC3yiNvf0U9KQGrcXCRqSzCuI1edZdQkkRlKnHKnPaoL3VLi9JBbCeg4FU0OAcZPvTSFfUkmJKg1GqB5cGnSf6sUsA/f8A4U0DH/Z1z3pwtl9TVgJ7Zp4TmlcViBIFj5HX1NSAH1qTb360baRQ2kp2Oe1LQA3Bpu01JnPFHagCPBoxT+2KX6UgIx1pacaTGOtACYpMU+kxQMb2oxTsUhxQIbijHPSnH2pAKAGgUYpcCkxQAZozQBxRjFMVw70h6UZ96CaAuUv51LEcEVKSD1FQ9G46ZNMET5BGc12tucwpz2FcKHwSPSuusLpZoVKHpSY27mkuUbev4ir8UgdAwqmh3LSoxhbcPunqKWwXOjDKgwo/AU0uT7UmcVG7c1YhWIFRFqbLKqDJNZWoazBZqfMkC+g6k/hSA0ZJVj5J/CsTUtet7RSC+X/uryf/AK1c1qPiS4uCVhzGh46/MfxrEZmc5cnJoGaV/rlzeFlBKIf4V7/jWW3PJPNB9qMZoQhpy30qWGNmBwpPvVmCxZ8GQFR6VfSEKMKMY7UXEZrW8jhQF/E9qsQ2ixnJOT6+lXAnp0pdvFK4yLbigjHFSbc0bTjp9KVxkWMCjBNSYoIGOlMCPZ+NJsNSkc0uPagCHZRsIqY/SjHqKQEW3FJtqbFJigCIpRt/OpMc0mKAI9tGCKk25owKAIgKUrxTyMUmMUAMxSYPpTiPrQV/OgQzFJinY45owTzTAZt74pCvtUmDnmnbfWgCArSbOasbPbvS7AKLhYqNGarchwPc1qFBjpVWaBt4ZRn1piK74GSfXr6Ve0u+NvNtboTz7H1qjKjKDuBAJqJSQfcUWC+p6JazCRQQeKuKoPFclomolWELn6fSuphkBXg5FJAzYMqgHNZ19qkNpGXkkVF9T1P0FcxqPivkpaDcf77f0FcxcXU13IXmkZ29zTGb+peKZZWZbUFF/vt1/wDrVz0k0kzl5HLE9STTKQ8nrQAo4ooHJwOT2q7BYFhvlJA/uigRViheU4RfqfStS3s44eeGc9zUyRBFwq4XtUgHTtSbGAAFKBkHFAHHvR2GDSuMNvGKCpo5NKCSaAE20h56U7B4NG3jNICPBoxUu0daTb6mmFiPHrRipNp6UbTjFAEe0560Y5xT9vFGMdKAGEZNIQakK56UmOOaQEeKMcZxT8UbaYEYHHSjFSbcUmOlIBuM9abtFSYHekwBTAZgD1o20/HNAGaAIiopNvPepSOtJgZ60ARhe9H4VJtzzTSvNAhMg9qTNP2+1N280AGe9NyKdjBoIGeKYEUiLIhVhxWYwKsQeoNa+0gVUu4TgSL26/SmmSV45CjBhwQeK7DR9QE8QUn5h1FcXjH0NW7C8a1nDDp0IoGUvrSZpBzSjk8DJpgHWpobeSdsIOO57VYt7Ithpen90VpRqFG1QAPSlcZFBZJDyOW/vGrIjPsaUYGKePWpbAaEOOvFLsz1FPpRxSGMCn0NJtPWpB1yBmj9KAI8fjSgc5zTjz9BSY44zmgYdM8UYzSZwSOKDk9uPagAwDRg4oyRSnOM5P40CE6nkUpHHHAoyQfalGcYoGJjjmm7c8085xRtoER4o49M0/FBx/hQAzb60Yp2KOO4oGMx1oP05pxxijHWgRGRzigjNOCnBNKQe9AERFIV9Bin9D0oIP8AjQBH060YyfSn9KQ8YOKYCY560oAwaN2RxSg8dOlIBpHFLgelOz3pB/KgQwjPYA0ED8adwDikyM0wGkAk00qp6in9s96afcUxGVPF5TlOx5Woc1p3UXmREjqORWWeOaYH/9k=", "path": "images/3pts_ADE_train_00006360.jpg" }
depth_point_69
images/4pts_ADE_train_00006035.jpg
ADE_train_00006035.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 18 y = 155),Point B is located at (x = 300 y = 174),Point C is located at (x = 247 y = 197),Point D is located at (x = 239 y = 138).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_25><DEPTH_44><DEPTH_25><DEPTH_44><DEPTH_58><DEPTH_64><DEPTH_44><DEPTH_25><DEPTH_44><DEPTH_44><DEPTH_3><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_31><DEPTH_31><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_22><DEPTH_3><DEPTH_59><DEPTH_31><DEPTH_59><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_67><DEPTH_9><DEPTH_38><DEPTH_45><DEPTH_58><DEPTH_56><DEPTH_56><DEPTH_84><DEPTH_66><DEPTH_31><DEPTH_44><DEPTH_98><DEPTH_119><DEPTH_58><DEPTH_42><DEPTH_47><DEPTH_18><DEPTH_55><DEPTH_50><DEPTH_65><DEPTH_8><DEPTH_27><DEPTH_65><DEPTH_68><DEPTH_39><DEPTH_86><DEPTH_77><DEPTH_27><DEPTH_45><DEPTH_119><DEPTH_24><DEPTH_3><DEPTH_98><DEPTH_119><DEPTH_24><DEPTH_77><DEPTH_69><DEPTH_24><DEPTH_65><DEPTH_119><DEPTH_62><DEPTH_33><DEPTH_85><DEPTH_25><DEPTH_85><DEPTH_41><DEPTH_41><DEPTH_15><DEPTH_25><DEPTH_72><DEPTH_45><DEPTH_1><DEPTH_16><DEPTH_57><DEPTH_16><DEPTH_57><DEPTH_1><DEPTH_16><DEPTH_1><DEPTH_94><DEPTH_57><DEPTH_END><DEPTH_END>. Since point B has a higher pixel value on the depth map, the answer is that point B is closer to the camera.
B
long
4
[ "D", "A", "C", "B" ]
<DEPTH_START><DEPTH_25><DEPTH_44><DEPTH_25><DEPTH_44><DEPTH_58><DEPTH_64><DEPTH_44><DEPTH_25><DEPTH_44><DEPTH_44><DEPTH_3><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_31><DEPTH_31><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_22><DEPTH_3><DEPTH_59><DEPTH_31><DEPTH_59><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_67><DEPTH_9><DEPTH_38><DEPTH_45><DEPTH_58><DEPTH_56><DEPTH_56><DEPTH_84><DEPTH_66><DEPTH_31><DEPTH_44><DEPTH_98><DEPTH_119><DEPTH_58><DEPTH_42><DEPTH_47><DEPTH_18><DEPTH_55><DEPTH_50><DEPTH_65><DEPTH_8><DEPTH_27><DEPTH_65><DEPTH_68><DEPTH_39><DEPTH_86><DEPTH_77><DEPTH_27><DEPTH_45><DEPTH_119><DEPTH_24><DEPTH_3><DEPTH_98><DEPTH_119><DEPTH_24><DEPTH_77><DEPTH_69><DEPTH_24><DEPTH_65><DEPTH_119><DEPTH_62><DEPTH_33><DEPTH_85><DEPTH_25><DEPTH_85><DEPTH_41><DEPTH_41><DEPTH_15><DEPTH_25><DEPTH_72><DEPTH_45><DEPTH_1><DEPTH_16><DEPTH_57><DEPTH_16><DEPTH_57><DEPTH_1><DEPTH_16><DEPTH_1><DEPTH_94><DEPTH_57><DEPTH_END>
18
155
300
174
247
197
239
138
null
null
84
252
107
32
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDn4NHj023eyUs6NKZBu4dfxpJ9Tji1CG0eQxzSLiMH/VyE/wB70PvXbSQpK2ZI1ZvUisXVtCiubi2uHj2tA25JE/liocLanbGSehPY6rhvKugUkUchx8y+/uK3oyGCsuG3dG9f8K5pofPILDJB+VgcEU60vptPcLId0THk9j9fSkpahKCa0OnVcOfXvTwmcEcVFazw3MIljbKjg+oNWdhPOR+FaKzMGrFS6tmZWaH/AFmKzlg1MDO18+1byqvYfnUq56E4FJwGqjRz4g1MjIWT8qUQaoB918/7tb6yRliNwGPapA6HJ3H6U+QHVZhCHVOT85/4DVaTSLqR9/2dy56/LXWJIhH3sfhSzRC4hKpO8bngMnBFJpCVWRysejXWci2cke1WV0e5K82rZz6U6fTbi2lxN4nuY2Y8fJx/OnCyfGf+EouMZ/uf/Xpc0UW1J7EiaLOT/wAe7D6CnjRZcHMDflUlpo99dMRbeI7iT6J0/Wrn/CNayrEDXrnI77Ov61SkjNqRSGjzAf6g/wDfNO/sZw3Fuf8Avmrn9ga4vXXrkD/rn/8AXpf7E1lOuvXGf+uf/wBeq50TZlI6KzAg25/75pH0iVgoaE5UcfLVwaPrQ5/t+c/9sh/jQdK1oAga9N+MI/xo50PUonR37wH/AL5pf7GcN/x7/wDjtWzput99fk/78/8A16cNO1rd/wAh5/8Avx/9enzJg7lA6O3e3P5U1tHbPFuT7Y61oHTtaP8AzGmb3MA/xpBp2uZz/bJ/78D/ABovEV2Z7aOxH+oI/wBnFMbRmJB8g/lWkdP1pQGfWQM/3ogCf1pBpuvyAeVqyvjusQP9aLxHdmUdHJYZgP1xSHSCM4hP5VrNo/iM9NTGB6xDP86YdH8SAHOpKB3Pkjj9aSlErUx5NLYLxCfyqrJpzhuYu392tCZNWtztl1yBJO6mLkCoWm1Tdxr1tj3irOUostRnuZj6c4/5Yt+VOt7WS3k8xIju7ZFalsuqPIJJtUhkh7hY8Z/GtEzjBUyDH1oSj0KcnY59pLzqF5zzxUTSXuMMvH0roGmX+/ULSLnmTJ7YocRKZgGW66bT+VJuuWZRgjnrit3eGON3PrTGGTg80uUfMV1g2Jk/Mx70HOd3apl+Vz+lMK7TntVJBzNkRBxnvTMcfdOOuemPrS3E0Vshklfy1z1b19Kwb3U5ryRoIFJAOSh4Ce59fpUt2KSuWr/VY4ciJlyOr4zg+w71gX00iWU1zIpZY03mPPMv+8fT2q0sBMoLOWYdH7D6elXVtRPG0TRh43GHJHDfWou2aJWOoUc9fzp4Uqfl70zqe9SDPUDpWxxXK1xp6TZaMbWPBXsay7qBoy6yoenQjg/WuiU4wfWleJJ4ikihh6HrScLmkajOUQ3Ngxnttz4XJTvj29R7V0Wl6rb36KrjZKwzg9/8+lU73TpIYWMTGRR2HVRWPNqC6NFAs1uXiuJfKXA+ZWboc/j1qUmi5cskd0FwvXOD0qQLghj09a57T9XliULegBQ2zeDyv+NdAjKwDo2UYcN2NaxtLYxlFx3GSwCRflwr9frUSMQ5VuD6GrEjyIoKQ+bnrzjFDw+dHnbsce9NxaJTTBcFSO9Sq+OARVVHKkKwyfWpRzntQrCEv7SO+tWj5LKMiuZTcjGF1w6nGM11aSE8qMe9ZWsWW7F3B/rAPmrOcOptSnZ2Y3Rb42OoK2cI/DV6Erb0GDwD19fevKlIePPrwa7PRdcT+zo4p+Zom8sn1Xt/SlCSegV4Nao6M5KjJBo2+9UW1OLPyrn8aj/tiMZ/d5/GtDm1NLaBxgH8KTAHOMVkPr8an/j3P51EfE0Q/wCXY/nT5Q1Nwhe9G1c1hHxRGP8Al1b86QeKYj/y7P8AnRyjsbu1cdP1pdo7g4+tYg8TwHINu4/GnR+I4GHMD/nT5Qsac9pbXJRp4UkZPu71Bp8cEMPKIE+grOXXoHP+pcfjUy6vC38L0rBqXx7A/nVPVL5LGwkmYnAHTPU9qU6nbpEZGJAU59/SuV8S6l9tuFhj/wBTGM/7xNTLRF01zSsc3cPJcTPPLy8x3FsdB6Clt7Q3Uqrt3KvU1J5TySKicsxwF9K3La0FrbiNDgnlqyjHmdzrnNRViuYlQBFXao6DFRlB35PtV1+uc1WZQzEZwa0sct+pXK89BimrGvQDJNWSm75Rx7+lKUAwMZPqKVi00QCIJwRj1pGACgj8Ke0kiybVgYjoSTSSssal2baMc5p+oXb2Ij2HcVn3+pxWakDaW9evPpVe51hWk8mMt5Y+8y9T7Cq4hja4Nx5QRyuBnnH/ANes2zaK7mbNNPdSvIxwy9ick/Udvwq9FFvRVA3MeoAxzRpOgiytzGzlmkcvJKepYnIH8q1ooY4eFDD3NCQ+ZIpwacACZWI54Ud6tkBVG0AAdqc3Oec1G33aYXbNSON2O1VJPqDmnlWTHmKyqeh9auXGn3ds2fLYD1UVTZ2zy3I9TmuixxDx0+YDHbFKAe1Q+ZsB460qzHHNTcZZB7jnNQ3lhBfRCNlGVOVDLkbv6U4SrT/N+v4U7Jhdo526094g0U6MNx5YdM+xpthqFxpe3JLxkkFHbt7e9dKzrKmyUbo+4P8ASsTVtDiuoEWJmBhlEqkHkkHODUuNvhNudSWp0Vnfw3sSvC25u6Z5FW+M5B5NcEDNbT+bbMY5F+8p4zXR6Zr0N9iK4KxXAHQ8Bqan0ZE6fVGxLCJAAvD9jVJp1hlMcgYOO46GrodehyPr1FO3KeSqk9iRVWMkykLxD/DIcelPF5Gckq+08MNtO+3bXKGBEYdR6ipP7QUDiJSKnV6FeZgT2hE7+Tu2McgbTTktJd2QXUj0BrcluVniKhNh7FSOT6c1jf2qUmaORJ1ZTgjcKmUVHY1UpTRKtrd5GJZMfQ08Wd23V359jWrogTWVkUXM8ckZxsyvI9a1v7DYf8v0/HTgVSZDk07M5Q2FyB/rJD+FILG5PBc/iK64aK5PN9N/3yP8KP7Gkxhb2T/v2P8ACjQnnOP+wXIPDUCxuQOHFdh/Y0v/AD+P/wB+1/wo/saXtdH/AL9j/CjQfOch9iuVGd4z9KU2tyOjfpXXHR58Y+1nP/XMf4UDSZ1XH2rP/bMf4UaIOc5Aw3a/x0pS7BG2XBHfNdZ/ZE3/AD+AH3jH+FI+kz7CxukBGTzGuAB36U7j52cgzXRXDzfhmqrK+TlhWjLrcAldN5ZVJG8RLg/pT7W8hufnYEKp6GNfm/Ss5JSNFOS1sQ6YkFvuuJ3G88D2q41/ByQ2R64qVruxz/x7hc98Cq7XFocgQD8qpRUVZGbabuQveW7t/rMe+KfH+9XeCCOxo3WzHi3UZpPMCLsRQF9BSH0JWAI4wD61ExzwR07imNIO7fKvJNYmoa4qkw2pBI6yn7tDaQ4xuaN7qMFnGGkb5m4CDqa52e8nvZQZlKwnhVXoPrUJhllcNMWeVgQx9M+laGn6WlrZxwSSM+0kkseTk5rNts2sokUdmXAWNAAO/ar8dsseCSCR2qUsFXavT2pCwI9KdiXJvYGc7v8AZqPuSKGfAx2pm4EUxLzFJPXk/SoyVHDMn4nFO3DoKfEdhJ8uNj23LmixTdj0221PT79PknQg/wAL8H9agvNDtLhSwQRt2x0rhIYZQy9SfXvW3Y3ep2zDy5G255D/ADA1tFSaORqwl/oF1BlkTeo7ryKxmV43wQQf7pGK9Bs7x54wZothP93oafc2FreKRNEpI7gYpO60YRkedFiAD39DxThI3fj2zXWT+EbeTLRSOvpu5rOm8H3g/wBXKrD34qWirmL53fPNSicAHBIyeTViXwxqyEhY0Yf7LVUk0fVYRzZufcc0bARXNvBdDLcMOhFYd7ZvG4cjlfuuOn1rZMN7GSHt2X6io3Mu0xyRrg9j3qWawlbcg0zX54E2XzboV6zdT+NdGl0sgV0YNGwypU5zXNfYUAYsgA/hXPAPbNaPhDT3vc21zIUm8vLsnQP9PSqg+gp23RpzGO5Bz2+62epqjveJtkq4NR3yXtlMY5YgmGwj9mpn2iRj+9iyw9Wpt6kJFtZMnnt0qnqNv58YlT/Wr/49T/PfgC3Uf8CqQTyFgBbr7ZapeppH3dirpd1eafdi6jX5tuxwPSulXxRLt5t5fzrkv7eUXTxR2rKQ/ltxxn1rUS6uBj90n/fVKOgptS3NVvEVyx+VZl9qiOuX5zgzflVT7ZcDrCpP1py31yR/x7qR3Aatbozsug/+29RyTunx9KUa5qK/8tZz/wAB/wDrU06g/wDz6Db/AL9Kb+QrzZj8GougsSf2/fqeZJvxFSL4kuwfmM34Cqj6g5QAWoH1NNN5MV5th+dF0OyRpr4qdfvpMfqtU9W8TT3dnJawo6CQYJxyBVY3k23m0B/4EKy3160kuBbmLEhbaADwT6fWpnsVFWdyKK2llkjhK7U7mtg4iCoOQOKh88KMC2dT7MOKY1wpH/HtIT6lhUKLLnJzJS+CQVJH8qkjXK75MhR096z/ADCCGFvJnsN1I95KefJOzuM0r2E1FLQ0zKFxxkevpVS7v4rVN8rgbuFUHlj6Vbg0m6m0l9RfMMK5wh+8fwrlWgkuL0mVfMiUcHuG7VT2FFX0G3uoXd4/lnMUAOAAeTUmn6c0LSHcTFIq4U8gEdTUsESphjG0h/2h0NT/AGg4/wBUw9sVHK2bcy2J0SOIHA3OerGlMm4Y4Hue9Vw7npG34CpY4LiU4W3kP/ATTM29RQ3IApDkn7rH8DVmLSNSk6WkuP8AdIq9D4c1eRCvk7VPq2DVKIOaRinOehp4idvurn6da6i28H3JwJ5FjH+yc5rfs9C0+xAYRbpB1dqaiZuocXZaDe3ZDJC209zxXQWfhBFKtczFvVVFbF3qtrZLjaznsFHFYN54muipEUYgX+91NWokXcjg7fxBfWqjKrMvf1rUh8XRJgMHiJ65HFcems2crL5ivGx9R1pdWlNvaNPGqsy4Kg85/CsYzlFHY6UJHer4lmk5hmG3HDLVS41a7uEJklbOezYrg7XxHPBEu+0ypGTt4xVhtYnluRJbvtjI5Rhmk6rtqSsPG+h2cOtXcKgLcScehzVyPxTqKrxctx6iuPF5c7csFP4UfbZQMGNCP97FR7SxqqKO4TxpqKjDMjAf3lqynjm5/jt4m+gNefC/IOPJz/utmpFv1XrE4P1o9qJ4eJ6NH44ifiWzBH+yQasL4p0mcfvrY/RgP8K8zGoRFiTHID67aeNRt1OWZge+RTU+5Dw/Y9L/ALQ8OXIw0SL/AMANTWsvh+1uPtFvcLHIevzD+VeaJqVsT/x8oPrxViK8gY5EkbZ77/6VamiJUJHpdzeaJPE0F1cW7xt0DHn8Kz49J8Olflu1I7DeOK4lrkPtJdTkdc802OcqPlJKtnnHequifYvod2dE0LqLpRn/AKaCk/sTQwc/bgCOmJBXEC4cNhSemORUcly27DNt7fNxS5kHsZHeLo2iRAkXcYydxJYdaQ6Po8p/5CI454YVwfn5HLAAd91Hmt1Djmj2iK9j5nejQtIPS+49d4pToelDlb7H/AxXCC4fGC1HnyHq5xS9og9id0dC0rH/AB/jH++KQ6JpRGBqIX/gYrgzO+MBsj603zZD/F+tHtEHsDuxoOmdDqyn/gYqQeHtOI4v8j2cVwHmSY+8c/WpFuZVX/WEfjR7RA6B3q+HbBTn7eSPdxSP4d0ltzedbqf73GR7/WuB+1zA/fP50jzTEck/99UOogVFo7ZvDWnbv+QumPTeOaePDGnMeNQ/Jga4Jnbdk7vbDVMt0xYgNz6g0lO4Oiztz4T09uPtxIPbNWbHw/pdnMJZJ4riZfuF2wF/DvXAreuo5Y/nSJMRkkHg8881WhPs3bU9SvYLa8tGgknCox5wwB/KspfDugwfedX9SXrixcOEGCwPbJpJL1tp3MB/wOq5kQqcuh3H2bw5DwRCfq1J9s8O2/3YovwXNefPfKBzOv4tVd9QjP3p0H41Lmi1Rm9z0ZvEeiw/ct930jxTB4vs1zstmA7dP8K81fU4B1uVHtimnWLZcD7Tn6Cl7SJX1dnpZ8Yxt0tvzaoH8YOAdkSL9TXnR1y2B4dz9BUb67B2SVv+A0/aRD6vI9AbxhdGQKDCAO20/wCNTxeLgwYSxj6DvXmbeIoYt7LbSswHGDwalj1u1SCOa4mSMuMlM8imqkRfV2ejSaxbTx7njVV9zWNfazpUQO+4Uew5rza+1mK6vRHHPKQx+UYwKsxWqngDc+efan9YWxUcLbcdJ4acpmC6LLjPzDmptMybWMMzEhiM5zW1jg/7vQVjaYALZMD+MmsGdCNCJUkjcSIrgt0YVlXSIl66qAqLg4FaoOOg43VlXZBvZfqP50nqh9TVjAliUqaf5YPJUGmx4TaqDAqRjQloF9RvkJ12imCJN2CBj6VKp4pv8dFguN+zxMxxHSNbptxsOB2qyp4IFNBKkgk5zSsg5mVPscQDHbzjoRXO6nF5dhcMflwOorrZAxU89uK5jUjixnI5YDimkhSbaMWbw/dW9olxOLkxyLlXj5Fbek3urxaTbJBZGWNQcOV5IrFtdc1G2hWOJyFVcFGOQeK7fw/Iz6DbSNgFwWOBx1rSyOem3fUzzqmsgfNpoOOny1m6u19qclpb3cbWql/9ag5/Ku2DYPBO3OeK5/xK7q+n7U8wickLnGeDSSRrJ+6XtX+FX9meH5tXg1+4kMcayeW8e0EHHfPvViH4PTS28cy+InG6NZP9X6jOOta3irU/EDeDpI7nQUt7Zooh56XRbC5GPl2jr/Wn2+u+JfsSKNFO0RAL+/z/AAjoMelbxppnE6ku5zeg/C+51rRodQ/t2WIyswCBM4wxHXPtS2Pwvu7zVdUsk8QSL/Z7qjNs+9n8eK3vCWoeIE8OWsdroQuIMth/O2hssc9vXNWdD1DxANe1510KSR5JV81PO/1Rx06c0OCRPtZX3Oam+GF7D4gtdK/4SCVjPA83mBOFC44xn3pdW+GN9pMFvKPEMkvnXCwY2YxnPPX2rrZ9R1w+NNPlbw/Isq2kirEJvvKcZPSneJ9R1l7WwEvh6aALexlSsudzc4HSpsiuefc5e/8AhRqVlYXN1/wkrSeTGX2hOuO3XimWPwo1S+021vR4kZBPEsu0p93cM4613GvazrR0LUA3hq4jBiIZ/M6D1qLSdb1mDRNPjj8L3UscdtGqyCQfMAOCKaig9tJdTz/Sfhvq+r29xKniAxmG4kgwVzu2sRnr7VWl8A6xHrl1pQ1smS3hWYvjgg446+9dp4W1rVoNPv1Tw7dXCtfTOxEgwjFzlazL3W9UbxffXH9j3UMrW6I0IwSqjGCfyFXGmm9Re2m+pxuo6Jqfhq6tLm41E3SM5URqcbiBVseIpweNPfHsf/rVo6tqN1d6jpiXNlNb7JWIaTox2nitJjnf85Jz/SsKsUpWR20m3HU5z/hJJzx/Z0mP97/61c9Pc6jf6lcSJftbK0mAjNwvA716GrYKjcc5rgLnUdNtdSvY7q3nkl88kMkm0dBSihVJWWhYhj1G3ucXGom6V0Dq0b5GKvpHuBDy855y2DVCDUYr+4SSKAwQrEAqdSeTzmuW1xHbXJ4t7BieuevtSktRKdonb/6PtJMqbQccnrTGlswRmWEj1zXFyac9xLEkC42pz9a2NI8PxYIljWR15IIqHYtTdzZe8sYz81zCPxqM6ppyDJu4PpmpJ9FtJMK9tGOM9Kq/2Fp6J5ht0DdACO9SpIuV+gra5pg4+0oT3HamyazpycPMoPXAHaqd1bWkdqUMCFjxuC1iahCjbmGMxqBwOtWtSHJo6RNWsrqQJbuWOPSta20q1uIkkmLE+g4FcLoGBf8AH90Yr0axx9lTH60x022tSrcaTZpOkyxYZOhzVHU5p552s41cIoyzR9WrdnBB9/eqlgD/AGzdY4IUVK3KktDqYLdpFJAyMGsTTIttunX7zV3GnWg+yMfY1z+nWgaBAv8AeNU0QpFSeJolX0NYtwubuTJHUfzrstXtgtrGR2FcZckfa5OO4/nSsWnc1gckHpin9PpUS8sKf7UimhQefY4o6MO+TQOtJwCtMViYHCkD86DgketIORQDgkUWEDNiuY1UbdLnbJHy9q6V8nuPxrm9XO3Sps8/LQHRmUupwJEAUcHGMlR6V2Ph9t2gWhP8SE/rXnE7K0YfepAA+X04r0Tw6R/wj9nx/BTRlBGspJVhXP8AiadYJdNkcnCzHoOehroADng8ZrB8TjyrnSnJAUynr9DVJ6lzXus6nxV4t0u98JvbRRXQnMcQw8JAGCM806DxXpS2qq320v5SqSITxxjFafjLUrO48FyQx38Eh8uEBRKCTyvGKt2+oWi6eB9vtty24BHmjgbf511LY817mH4R8W6PYeHbSG4a4WWPeW2wFl+8TxW94O1CLU9W8R3ltvaGS5XDMNp6dxUPgm/tofCdjGbuCORd52PKAR859+DU3h29sz4g8TSfaYQGu1wWlUBhgcg55qZC6mhOc/EDTs9rGX+lL4uP+iaZn/oIw/yaqz3MU3xEsVilic/2dKSI3DhenXFSeMJFSz0pnZV/4mEWSxwAcN1zUMLs1PEZx4f1P18gkgcce5rntH8Z+HotEsI5NQZGjto1ceS52nb9ORWz4muYG8O6mv2m3LeScASqdxyOBzTtFktxoGmqZbXP2SMEmReDt6daEOxx/hbxVodrpl3HcXYjd76aRFEbMCrOSD04yKy73xHo0vi/U7kXg+zPbxxIxRuT8vGMV1fgswDRbov5G5tQuCVLLkjzDjv0rJvY4n8cauw8gqLePB3LjdhcY961iJ6HIapqNlf6ppkdpMJGWViwwVx8p6ZFab4y3p1yTk1n3iNN4h0mGSSKSQXD52Yz908VtXsOx3GD14rnqP3zuofCUlyMH3rzDU7eKbV712kKnzj/ABH0Femk7XAY4A71wYhtn1C9e7L+WZW2sg5zgdahvXQua0F0by1aNFkLhIACT/CcmsbU13eJZzyfm4I710VpFFHqCiM+YptlO4DaOp6471zeqPs8TzleefWgjTQ1LTLS5wcdwTW5o4CrG54JGGrAsw5yuOWHBrf0yLahIbp1FZz0Oi+l0aV2iqxwOfWs+5YrACp+b3q1PMQ2M5JGQTWbeyeZassjkKAeQOhrOIN6GfeENFKEwQ7qfyFYV2d3mHHGOlSwXZyIHdmdWyD2IqG8IZZMfKSK3Rzt3G+HudSH+7/WvRbIgWqV5x4dP/Ey/Afzr0ex+ZI1A4oZdHYsTjLA/Sq2nIW128x/dFaVxBgD3pmjW27Xb32QVK3NZHex/JAQuMYNYWiuFiGcZyeK2YgTFJgdAawtJH7leOea1Zzx2L18GltCDzxXB3Hy3UuR3Fd9cfLEAT1GK4S941CcEdGAP51EjSmXon3hTjBNSY4JJpi8fdxgVIvKls5pI0Yo4IJ6Uxv9YBg4HepMnPbBFVXudrgCJ2OeMdKTeoXLnQDnrQF+brUcbF1DAfe7VJnGec461STYhkrBUJA3Gua1YhtIm9So4NdMynLDHUdK5rWopU0ifcjLwByCKdhX0MeWzN3C7RoI4o067RgkV2nh4E6DZBSMeXWJb+HEurECB53/AHeH2y8bsfWuj0OzmtdItoZItjIu0ruBIos2ZRdjVtoDJIA3TNY3je0TztFRkyplOR+ddDZ3FmjMBcxl0OXUMCV+tY3i5TqUumi3bcIXJkZWxtBzzTSdwqS0Oi8V6Bpdv4SeWLS7aN1EOHSIBssVyc475q0nhvSGs8HSYCwt95+Qc/L1rI8TaJFB4YNxDql/NxGFV5Mo2SMn8O30q2NAH9nNjWNRH+j7vlb/AGelda2OB7kvhTw/o114dspZ9Mt5WYsSzqCW+Y9aTw/4d0SbV9eSXTYWWO7CRKw4QYHA9BVvwY5Xwpp/TaoPPf7x6+9Q6Vfx6fd+J7uYOUS63YUZJwopOJLbvZG7baZoegq95Ba29kdpV5wQCw/ug9agnu7PU3ktdVis5dKY745WkByexx1z9K4bWvE7atbmG8hiiijUuqkkEj3FYumG+aeK5aNUtVG2BHQMUHrg1N76DUZHo2u+GdATw1fTwWEYYQFkkDHBORzirOleFdCk0ewZ9PUs1uufnIy2OtVr+SdvA+pSTzLMxgzhV27eRW9pbH+yLHOOLVfp92iUQvJaHM+EvDuk3OiTySWYkcXc6qwcjhXIArntV0qwt/FepwNZSxwxxRsoDk4JAPUVt+FdMvLrSJ5otauLVHvZtsMcSFRhzzyKxrnTb4eKtWgGrzu6LGWkKKS+QOMYxTihppmdHaWcPifRpLaEREu5Zt2QflNdPfxLLuxgEGuW2R2XiDT91+Joo2cujqoEeQfT3ropNSsyGzdRHB4IfisKi9466btEyZkIkXjJBrzHWLWN9J1W5Z2Eiz/LycN8yjGP1r1m4i3kFSAT715Tq1tey6ZfqglKmfiERE7vmXkce1ZLc1nZwK+vaBpFvd+I7TTBexS6JOysbmZJRPGJhDkbUXa25kOOcgnpjmtqwP8AwkNzgAsDj0p+r6xq2sS6ht0OKzm1Cb7ReG1hl3TEsW53s2F3EnAwMgdcDEeqEJ4lnzwC/Ga03OVJ2ZracNqKGJLV0sG1YcKMcc1y9nIwmA/KugjZsbc5yO1RUR0Up9BbubAjHOM9cVl36tc20/ksQcZK+1X7os0eMYKgY4rNlmfJVSBxz9KyjE1nK6ObD77lAmQqjH0NOuW8wmNmGMdaIFzfyHlQCfpRfBQnQZPet1E427C+HRjVCPavSdLQt5WO/Neb+GudUI77TXqOhp+7RiOmal7m9F+6a91BkpjrjNLocSprt/3+UCpicnnrtwKg0kn+179lPPFKJpJnXWkJa1kbHY1z+nIEtFLEjJPJIArrIdkFjJK5CoFbknAX8TXBwa/YxWqRxoLkx5DnPAJ/pWj8jCDXU84vW1rUdQ8TTxeIb6BLG6mFtbiZysu0yOyr8wChY42PAP8ACO+ateHp57nRre4uZZJ5HJ3PIxZj856k1jzeMbrS9ZeO2SSK1TUp7i8t4rgql2HcAo2P4dq7RnPUnvU+i7m8OxrG7JlXxz/tNQ1cmnPlk2dyZVjzvdF9qrrqds07QqcuvUdq47Srx5bbZKzO8ZI5Oc1ZeVbbVbaQnYJEwSeM0JWKlVcmdDqusiw097mKEyMpAwTgdasWt+lzYJcpHgn7wzwDWPq6vc6DcmKJ2AAbd0HH86seFLS6uNEjIkhEWTzgkg1ainLYjml3INV1i7g1OG1j2Rw8Ek9TWwLmYuhHyhu+OlYXi3TTaSW1wZGlGdrECtq0tLeaxicK7BwAdzng0JWY3KT6mJourTx65dx3E7EFyNxOR/8AWrZ12YPol0pkZscgjkVjJEdP8ZkRQswuBu2hNw5rvU0S9u7eWL7K3lumwgqADQo6ENtW1OM8HXLxC6jEUz/N0QZx9a6aCad72IrBINrDLMQOKteGfh5eaRO891qEatImPLQ8j611EfhazRlZ7ubjncR3pxh7oudc1zyW3e4t/GOrxxwrI5O4qWCnBrWkluWjZVtAMjoJBzXo8fhjQLa6kvmhAuGHzTsSc1K1zots4RER2Pfy6ShZ7hKd2cRqCa7N4JXE1s9qGTESxuZRh+APYda1XHiQWLHzrL/UYACtk/L/AD7V1U18IIgY0jVegG0U4XCvFuZ48Ac4Wt1Gy3M+bXY4rw+niW20O1ij+yRIqttjmjfevJyCPXv+NJYLqg/tGS6tZHmupvNJiUhM4A6HntXoVqI2jEgIZm71PBEF37cYLUcyQnJX2PEBpeuz61dXtxo8+4ELGrxnbjtWxBp+siQPLZ3BjYcKsfIr18hmPLU4K+etZ31uP2nkeVanJ4jbS3tFtJ2t5U2YWMkj68e1XdL8ReKI4IrY6TEFSIIryIwGAMc16TiQA4NJiTbgFRx3FDlcOZdjzvwi3iKHQ2EOn2ojNzK2JmZWyXOT16Z6e1Y1xcawPFers9paiYLGZRvYIuFBGDnnIr1oC4xyiEfTFQvFvd99pCyt1yoyaakLmSd7HznLLNNfXEhUO7uSdp469BVXVnlTTHxA0YPGSe9fQFz4d0ifO7SoEJ/iCsD+hxXOav8ADnT9Vj8sJKiAhh5b+n1qHTubRrI4me4mTw9p8LCULt+dxnJ46euKqm8KWzKku5lHygjp+dd3eeErvYmwlQqhV3Lk4Fcn4i8MawLeXybbzSybThM45HOBz+QrKpFwjoduFjTrVVGb79Ur+V3or/1dnP8Ahp5/tF1JdMElACL5uM4yelWtcure20qaRY7d55BtVyqls1a0fSLiwswt1CyyADO5DwPx57/pWH4yuYI4IYUjiEjnJI4OO1FNtxu0Z4qnCnVcIO608+mqutHZ6EeibTp4leFZGkbdk5FS6rqCWSxrHAA7HnDGpbSzS00+3TdIJcZbbyBWJrCtJdLF5+9nYAZHSq30ZgtNUbMVxHOoUiRcgEknIrOuJFOpeRbygu/yrkYFWjBdxqSixzIBgmNxmszTGWXX1aU+WiAnLc4NLlQKTZJceH9Utblp0txMhGGMbZx+FY12ZXd4ljf5PvDb0r0y6uWttNlZTjCE7sjms/wlDu0yW9lRS08hwWUHgcfzrSxNrnF+GR/xNCp67TXqWjyIlqAWUH0JxXK+JLxbF4xZ2sK3DtjzgAP0q/HdvFFHkgylQSAOCfWspR1N4TSVjtGYCRSNvTqDVfSCRq18Tz0rl4fEyJqUdtOGkkPPydFFdZoDrNqF86tlnxsB43VCTuauaaM3Xr+TxBdXdrJqkn9mbtkUMHyqV9S3c1xcdu+ja+9qGbyZVzEx/iHoK5ubUJHcpADbwNn90GyBWnp1yZraD7TIWNvJhSx7Hjr9cVU3ypsyoU1Uqxg3a7Sv2JfE5VLm1lXj5SuPTBFXre4mubVDb28kjFcEsML+dSXFpNqG9IdnlsjBU6fNnKsW/CrcFtqcFoomQkqP4WzSpT57v8jfG4VYeUUr6rZqzWv67r+m+Z09JxeXEZeOBwx3K/JrcngFsltexEyPDIPM38hlJxwPxrIv/wDRdXSVlK+avzHHeti3LXtvLDHGZsoQRnj8T2rVbnCzqrfbcxsOCkgKj05Fc94W1BNEN7ZXbhUEh8ts+9QaVcaxKqz29rbylTsCyPnaRx0qW1028/4SP7fdWEdtIQWYA5jJIxwKvmsCVzY16S31fRmaBopsOCse8BmPtWnoemxw20Uc7jaoG1RyKZY6dHK28RhUByoUfdPtWxFYpjOGx9cUk23ew5KxuaTbaRasH3K0395gOPpXRRyWLLgzBvqa42G1hBHDD61oRW1uSOG/76rbl0MpK51iC2YnDKwPuKiuZtPtGCO6q5GQM9KyLe1QsNrso+tZ+sWhi1HLMWUoAp681ElYUKd2azw6fdMWkuA+eoJwBUT6fpYnQ+bHnIwKyYoYiQGc57j0q2LK3aaPdLg54FZrc1cLGpc21k8YVmX72RipFS1AZBIgGOc024sbYxDdNtwaR7SzVGO8Ekc81pczsWYVgVFCyKw4wRUkbR4fY44PNVLeG2Ea+WePrUlqkO6bbyQ2KLEsuCVC20MM4p5nRVyTznFVwkYuOMfdzSyxhigwPvYpWRNx73aqpORik+3LgcjGKimgVonPTjikFquwAf3RVJRDUeuoKVyORkiopNXiRiHfkYpkFkBGRu7n+dUJ9Hf7VK4BYcdapRiFmOutejEiqrEgkismfxBIjZSUgg5GBUraHK06YjYDJOTUU2hNyC4J7DFZ1Gk9DaEbjofF7lgk6KSejVYfWWk+9bqcc7s1jyaOFbayH3J7V0Gl6WJdLhMyYJYj6iqhIU4pGe12JvvQD0PGc1k6loOlasuLi0TeBgPj7tdcNOgU5C4PfmmSRRRZxt59a0dnuZKdjzW/8H3Cxq1rNvH0yQK4W50q8tdcDSwSHHIcfcP4+te9yNGrY3x8c4zisfULa3u13M8YmX+IdD7YrKdJLW5rGbZ5DcS+XEyOpSTGdpGDj6VJ4TsRI11eTJkMdkYYY471seINGmYq9nOkLhvnRxkfXNJpMb2NmiK9xcXBYlwIDtOfQ1lH4tTRpqNyLxNa2NlosssaSLPIQqbGyCao2l9q+ixWukWelTaq5tPtUiQIxaNWYjkAHgHHPqRUus3Nrq+q2mmvcSRmKUFoPJOSep71Z1j7FJrmrWty0RSbQo4o4zeR2pkK3kTYDyAqDtUnGDwDVvuib6HJX+pyah4hiW8spLKSB1V4JclgwPQggY/Kty7vo3U7GGQag22l541u7q1lM1rbW0CLvkWTaVhRNu9QA+0qV3D723PerN5Z2V3E8rJ5UnZovX6VncDJ0U+Ze3cwJ9ORWlqWqSWUJ+zu6ydmU8g+1ZWjk28U8kiOEaTYsjcc+9WbeIanrttEG3RF9zkdAB1pFpnMN8rI3ocH8a6Tw9ZQ+UZp5SBIMBQMY/GualyY+Bmuj0hy+nqMY5NJlU1dmq2gXsGHsb8yDushwfzpy3ms2TYlt5frt3CoY7ue3dfmrZs9cBIDuOKVynGxVHiJ2YR3EGT/ALa81ei1DTblDGwSNWwSc7Wzn1rVh1GzmX50if6iq+oX2kw/ujp0EskgyNyZUfWqS8yLER0eEW8lzDrM1oi8vlgcH2FT6LLaX8cognNw8B2u7cFvwri7yaOW5uBbxbGdeEjXEfFaXgm/g07WLiOZ1WGZAC/beOn+FHMXBJHqmh2gmt2iCgTRHO32raGkEkfLgVjQXRgMdxG3PUSR9/Y1v2nii1cBLlTE57jkGtFUsZVYNu5GdHlz93I7VKmkOMfLitOPUrZsbWVvcHipPt8WcbqfMzF3S1KMemsgBz3ouNJS6jaOUn1Vh/CavfbYvUUhvYs/eFDuxJ22OSu9Iu7MgsDKg/5aL/Wqu2T7QmGJORXZm9jyQWGD6VTuLayncO8ah85DJ1ojF3NPaaGPevIygMSAGFNLPsbB/hq9eWZnjHlSggNnDVQnguERwykZ/uHNa2Emia3llWBRkDirVlcbTLuPVj/KsqKV1jC4YEY5xT7SbDSYw2W71SEzbW5jF7gHny6Lm7USQFW6vWfJKEvido+5SNP5lxEAPmDGjlRmXb6822j4bkCoP7RmSIDOflB/SqmoT7YpEwMmqpnxHzjoBz9KfLEtF231eYREn1qvLr10s8q7iAAMVQgmxGVIPLZ4pjW8s9w7LG5yRz2qJ2WxSsTy+IrsSLlmNM/4SCZgc8c8mpU8PvNIrSzpEB/cHNattollAQfLaVs/fc1jZs150kZNvJd35O8mODuzdxW8dReKMImdqLhKsi2i6HGPQVILOBgARVrTcwnLmMh9QlkzhDVOWeRgRgj61J45um8N+D77VtPiimuoDGI45VLKxaRU6Ag9GPevKNS+I/jHS4fNu9I0VUEnlMYyZPLfGdjhZTsbg8Ng8H0NU5xCKPR3Xc+W5Jqq9qrbtpINdu2hwsMo5+prNvrexs0YtOrN/Ci+vvUuUeo029jz3WbMJLETJsBHIbvWag1C1iVLe6SMAnJZNxAPpzWX4+1aSXWVtd4zAgkkA7Men6Gqllq95qCixWe3h8lR5csrY3VjfW50vaxpWukCxvDfQ3vlXTk7plizuJ69+Ko6vodrrF4LrUL+aSVU2ZTC8Ak9wfWrf/CPatOA8upwEHn5FyDUK6L5unmZrhycEg5weOv06H1rOdVRN8Pg3XTs0krLW+7vZaJ72fl3ZX0u20zQTN9nlkk84DcJsEjGemAPWpLnxRGiMkWcnG0KOaX+wNPCLJNcTSAjIDmnh9OsVxbW6b/WqizncXF8rWqILSfU9QnLyWqRWwBOJT978KfYpb2s2q3scDQ7EEYz03HOcfpUNzqks6lchF74plyJ7bwrLcrG8kMshRiP+WQ4+ai4WOSkheJnhcYdCUYf7QrU0OQ/ZTk8hsVb8dWK6f4z1OKPOyR/NjABPDVR0VWWSdCkgUgMpKkUSRMHaRvSLuQgYqoIynSryng85+lQMozUWOhi28kgflzVqT5yrE5foD6VBCvzVMSEX/aBpktGTdMUvFBdgjIVIHfHNVZD5ULSiPGDnYOMe9Wb5gt/a4IGWIOenIqndXCEyooZ2UHOBk/p2oaIbsbGg+JL+3byre739zHJ0rp4PGsBOy7ia3kJ5YdDXkkkwLblJJ9RxircWqXEaDefNTp83pV7bCVRPc9ng1uJxvtrhSvXKtg/lVmPxJMP+WquDxg8GvFGv40YPDvhb1BrWj1glEC3qyZ6iQYI/GhTaNEoS3PXo/EkbnDO6H6Zq7HqqOu4S5rx461dRorMTs7FWBBqeHxOycZ9yO4qvag6EXsevDVkHO7n1py6yinrg+oOK8rj8VlR1P41Yi8XRlgHRD9aftjN0Ox6euuR9NobHqaBrgRsKgX/AHTXA2/iPT5uHZYzWtBe2cwGy4jz65NXGojN0Wjqv7aR87hn600alb53LEAe+KyYbeBwD9qTPU5NQzGKFz+8+X1DD/Gq5xcjN19Qglk3sp3Yx1pPtUYkDAHIOetc22p2iPzKPxIpRrVlkf6Qv50/aAqZ0rSwyt+8BOfel3W5DEISR6msBdVgYjy51P8AwIVegb7Qhw43HkfOP8aamhNNF8TiPG1UPttqdL47CGGPYHFY8hlhbLlQR6MKpTamkO7MqZ92FDnFByNnXLdJ1BAzR9sAJ5zmuBk8UrDx5inHpUB8ZjdgSKKzdVFqg2ejDUFU43YpW1MdQ4VR3JrzGXxazAnzVx61Tm8TRYy9weT0JqXVQ1hmdv408SW9j4da6Z0m+z3VrOYgeXCXEbEfpXgeqQada2sy2estfPNcB1SNHRQgDcyB1Hz/ADDG3IHzc8iuzvtd06/tXtJ42mifG9BkZwcjkY7gVhSWekyZNvo+AP787gH/AMerJ1E2W8O1sz2W48Q6hdAq02wHqsZxWXLqlpZlZL64AHJwpyWNeZTeJLy4kYSXHkqP4Y+apS6jEHJjikky3LvnFDlfoXaESbUrn+0dYuboLgSykjP93sKrWrs08m0nG7gdqegDMMHoCSM1FpwBTOTyx/nSZm3qdHp+pT2sLI0jFfSo5tUOWxnDHJGariPAHPFQyKOtZyipfEjpo16lF3pyav2Jm1J5P4eaa0hYAnrVZfv9KmzntTMdhTzkkCp9X1VrbwzZ6ZE5DTEvIPUdqgI4wSMd6x9QmWW6Zt42RjC5qoEzZ6F8VrOS1urDVINy7gYXYcc8YrgbHU7xb6FZrmR4ydpV3OOa9z+IWlf2p4Qu0SMebb/vEA9v/wBdfP7nADj7y9PrW9RWkZR1R16kR4X+I+nSkJw9RB9wVwc7kDZ+o5o3ZXrXOzpTuTq+DjpzSGQruB5y1Qg45FNaRi/HcUARX8cDtGZ03QiRTIvQkZ9e1ac17bWkLRadZwwQsu3AGSQfVuprPuR50BQ/xKRVeE5tky33QQfwqkzNq5z8tpMsjbIpHwxPyISKrMkit5bqy+xGK2r7ULy1KRRXMixNyQh21ls73Cl5HdyO7HNWjFqzGRjcpXdyKXylxgE+9MwTzkDPpSMdvBJ+tOyE7mhZWMs5tQhA+0SbBxyPetTU9BuNMuGiW5EoDlASOTg4/nW14V037XYaVcxjM1vdOzg/3eammeO/1i238pLcyZHsXzXJUqcrsjto03JXucpqtlf6Ndrb3iKsrIsgAOflIyP0qkLrB+Zc/pW/4/uBL4sm7CNRGv0HH9K5Vn3cVvF80VcwlJwkasWoWwI3pJ/wFqtJq1qg/dtcIf8AroT/AFrnSSKTPsafJ2YKtfc6wa+TAVF3dhv9kLj+dVJtVuXwVunP+8orn8/UUm5vU0cnmL2vkbf2pm5a5IP+7SNNkcXLf98iscO3qaQSN60cvmUqyNkSk/8AL2QfpU8N9PCMpfnI9RmsDzG/vUbz/ep8r7i9qux1q6zKyASakw+iCq0l9E2SbyQn/cA/lXN7z60Bj/epODfUftktka8t/wD3ZnNRG9JOcsT7nFZwYg57VLvBXI7daFETrF+J7i9cxwRPMQMlVJ4qey0+91C4EUEI3O2w7j0zxWh8PnP/AAlUSg4R1KsPUGrtufJ1SWNJNrLeKPw3VlKfKzeF5LUyEe4sbS6eRUkmglEZRs7UGOpA6g9Ko6mS8NtOv7tp0LNFk8c/eGegPYe1dF4ltZdHudTvIJChe5UJ3yuPT8TXHT3M1xMZJpndiSMk/wCcUoQcpc39eh01sVT+reyS1t2Vr3vzX3u1pbb8LIk8kR2o2CO461OLq5lIgaRsMeRnp71UXdvyO3rWpaNsgZCiMpP38fOP/rV0aI8pavVmj/YV8bK4uLSSGeKFNzrnDAevPWoLJP3UZXO3AwfX1ps91NEixRyFWkbaSO61YgAj2hc4BwKlmnU0l/1dV5DwakV/3Qx3NROST1qDQaoG6n9+tRqeeaN53UCHs21GcjhRn61lyavA5Bk0m3z7MQT+VW7tyLZ1/vcVibt8+DyFXAqoGc2fTF1rFsUdXUFGyrD1Br571myGn6xeWanKQynafVT0r06SeViBkFfrXHeMLHY0N/wVxskx29M1pJ3BQsZWnS7rFFznZ8tWlkHSsuwcxvJGe/Iq2JByf0rI0WiLYf3pS3KkdutVlfNSg5XihjuTbsrwMnNZqt5N3NE2Nu7cOtacTaekmNReVYCP+WRAJNNk1bwvGCINLuJ9h+9JIRmqRLZgaoyGKJt4Lbuee1Z9vuLlFBcH+7XWL4jsUcJZ6LYxFiFDyhmx+ZxW1cp4hgtvOjjsRjqkUC7gPXpTMpas4CPT76V/3dlcN6YiP+FXo/D2syYLadKB7gD+dakmt6vIu03sqgZGFULj8AKoSzXc5/eXUxPqZGH9aOZdQaOp8MSXWkWv2S+WC3HzMsnnoSSexANUraOO2v4bma/tVSGRpCobJIJz0rmXjkfcCx6Y55psULwTCZAjlf4ZBkVm6cW7msarSsaXiR4dU1OS9hvI3Zyf3ZUg1z7DaSuMN39qt3BmknadkCBjkhRx+FRXA+6yrwfTmtForGcnd3KuOeaaae3XkEfUU0gHNBm2JRQKKYBk0ZozRQAUUUUAFApM04KT93JHrincLD1BbgDJ9K0bTTI7rCvqEEJI+6ysf5VUt0OSXU4HrRIzFuASPYUmxpWOm8P6ZdaVrNveRy200aHnZKOn0zTLyC9i1aecW0vzTrIrBCR19elc6huN2UjIH1x/Kr9vqWpwEFbiVMHO3duH61m4pm0KttDoPGur217beWjjzmKEoO3rXEh/RB9eTXRx67csT9ot7W69fMjAP6Yp32rR5RmfR3j9Xhc4H5mqhZKxFT3nc52Mb5AAM884rSiBHJwM/nWmuneHJ2AS/vLZz2miyB+IFIdAuiwFpe2VymeD5gVvyJoZKRmA+beD0jB/OtCNckMOMD9aVtA1e3aSU2DvGTlniIcD8qE/1Z7HPQ9qTNIkwOFC1CzjNKxPOD0qEnvSRZJnuTSBssKYCcc0AnJxxnAzQFyG/kPlKvAI5NZ8CfLlhjHJp92fOuiFJJBx7VLBbNPJFAoJaU7VAqjJ6s759RkHQr+Vc9rPiKQn7CixzLIMOMZ57VfMNwQCYZeRj/VmsIeHb0XhmVJT8xIHlnNF7ms9HoVYrK7iZHePB7854+lWc/MeOR1rQ/sbWZTgWl0xPT5MCqd1a3FlP5N1C0M20NsfvUi2Ix1zUqOQR+tRd6d/WlcaHX0Pn2m8DJU5HNYsqnaQM8c1vxfPG0Z7jisiaMhmX8KpMzmQ7VeJtvQgD6H1r0PRdU36XbSsjbwoXdnPT1rzyH7rL6V1XhaS4eFoIipjVtzb+1UNF3V7SLUZnuEUQzEYO0cNWPLpU8ce4yIx9FPNdXIkYYrmMnoAoyTVKa3RT+8Cxe7uEH5GpaTHY5UQTEnEbce1RshGTIrKPcV0NxPp9ujGW6LOBwka8H8awpNVZ96xRIqt0zyaVhNFGW7iVCFBb+VJaSLwex657U1o2/iXAPXNQwk+Y8fYd6pGb3NFmifogb8KybtAkxC8A1baZ2O1FxjvVSZmeQ78cU0DIMYxRS9abimSFLSYpcZ70AFFG3FGKAADJFacXC7QBge1Zoq7GJljDKw2nrSKRJPICCRwB196lhmidVGNv171VuGHmImeDUyrx6oPSkw6lsooOSMKehoCx/X8am0e+ttPlZri0S5ibgh2xiu0sLzQbxVMcUEMnZZR/I0kikjiUgeTCxxtJn+FUNa1p4V1O6wWhSCPsZDz+VdxxEAUVAp7qoNNadFOXbAPfNUkg1OR1/RLPRdCdtzT3s8gQOTwPoK49t8YUh2B9q6vxhfrdX1pbI2VijLt/vHFcvKMyRoO3zUDZYtNUv7c4juJNr8bSxxV7DYy5G48mqFtGGmC44HNaDkYOOallRQzPFM9c0pBxnvSHpzS2KEJx0pC+xSSflA5pcc4qxaadcahvEFq9wij5lXoPejclmSkfmPwrMG54HWur8P6OsAN7f8AnJM3EaIhIRfU+9c7qNrJpd4iES20ZGSHHBI9K2rG6ubq1SeNZypO3K9DVakwV2eqLbNn7uPwqDUb+x0eze6vZxHGpAIwC5/CuTOpZbMqeZ/10fOK4nxRq893c/ZDHHFbp8wVBgE1amuwShbqehP8RPDyHP8ApBUjghMZrmvE/ibRddSB7dLhLqI43MvysnvWHpw0ldPg+0RRPLyWJ61Tv5dNjm/0eFCMYPFJslXLafONyfOPUGpVAJGDWBFcypLvgQKPTtW3aXcN0AspWKb0PAb6VDiXGepaXKsCB05qjeoMll6k1p+UYyFcEE9Ae9V5Y1DFHBz2NCLkrmKCsczZBwRwPetTStVXTVlbyN8shATcflA96rzaa52tENzryVz1FUTOiOQ0bg56Fe9My2Zvy+IdSu9yoyRoT/AMVSIuJSTNO31zVWNr24CrFbSNxjOMCpm0y8P/AB8TpEPQHJosPmGyG2h5Ztx96ga84xFF8v8Ae9KmFlaw8kmR/U1DNNEmVOFX0FImTY1YLm4XLNtT+8alCwWsbANlz1J71SN4wXbESF96rMWY5ZiTVWJuWXulwVQZPvVUuScnrRjPWjFCExN2aM0uKUCmA3NFP20baAG0v1pcUuM0ANyPWpUuXQgHlaZsFJspAjS2299EuGAkX16mozFLbkYXA7Z6GqOCDnPPtU4uZGUJISyjp7UWGi0knPzqY29+lSqCCHyR6MtNSRJEC8Ee9HklWPlMV9jyDU7Fpmlaazf2bfubjI7qehretvE1rdp5Oo2zYOMvCcFT71x3mtHgTIR7rzTkdWYOjfN696NSky5qD+bqNw4cOu7EbAdV7H61nIS0zMewwKfMH8verNuAxg9CKdEhwAevUmmTuy3aLhC3c1McKOBSxAeWFH1zSsCeMcn1qbmkVYYRnFNYcVJxtxjketCruXPRR1ZuBSe4yHoc8kHlcd/au48I3Wj2GjhbjUrZLmZi7oWwR6A153eX6R7o4ckHgv6fSo7W2tLk/wDHw0foKtKxDZ7M76Lfpsknsp1zkBnBqaCytIoRFZrEIl+YCMg8/SvIE0WMn5bt857c1BDeXOhazG0dzKRG+SQdu4U7i1RrSyMVxvPJqndmPYzuM7enHWrJ5PSsrU0n3gopMeOQKmJcipma7yIkUIPbpS/Y1iwXbcfaprG3kWNt6kAkECpmdUbbszVmaRWMZA6YFMMYz6g9/SnsSWyWAFMLAEYYk/7IzipsJly01K4tRtJMsQ/hfqPpV83lvfJmFysg/wCWbdayFcbsybT/ALQFVpI5JJyYgzY6MOMUWKbaOiW4QkMMgLwcdc1b/tUxKowjsOpYVzyfapApC4xwc96c6uo/eTDd/dFFmgv1Zp3Oszvn94230HArLmvsnqSD1FUp2wwPLYPQ0NL5qfd2jPNCRLkmSvI8innaPaqrLg8/NTj6c4oxVEDee9JT+lGM0AR0tP2ZNLtFADKUDmnYoyR2pgGBS/hSZJ7UYxQAuD6UlKDSZ54oAaSKTg96ftNJtx0pAHtigg9iKSnDp0oAQZXoSDVuG5dDhxuX1Haq+PfApQ2PpSdijSidXUBTxTXtY2zlcN6qeaz9xbn7voRU6XkiyhGw6/ypWY7omFuI2++Wx/ePSp4wQVHXNR/aEC7lDZ+lKt7CrgbSzepqWmWrbmmiAA/kKVowiZkZVHcsazZbu5YbYCqe471RENxLLulYt7k0WDmNSbUbaIYiQzN2J+7Wfc3VxdsPOkyOy9AKXYFP3wD6UqReqEZ/2SM/jimkDdyLysrzkj0FMNln5oWIPoetWjbYOd20+hpQkg+8Mj1FO5PKyokssEoWcNt+uKvJp8F6qyl2G4euar3jFoABu4PpzRpkzrOIxlkbrntRsNeZ3i+GNUlXctpt/wB4gVYj8EanLy5gjB/vNmu4XAHDA+3WlLD+I4A7AYq1GIOdzkY/h8x/12oIDjoi5/nTk+Guko+6e7uZC3Py8f1rsVkRgOTjGcUMyMhxkfSrUVuRcwLbwL4ciKg2RlYjA8yU8d60otF0W2QpFptmg7navNc7408RrpWmzWsMxGoSKCAnJjUnqT9K87s7bxBraPPaSXNwsZ2tibGPzNLmswZf8Y6B/Y+qtJBtNrMdy4I4PpWBFNJECykfStOXwz4lmA32txJjs0oOPzOKyrzTLvT5fKvLeWB+uG/xqbBcSS4mk+82B7GogRuB6n61E0eOcnFRtjIxmkDZLcknFCsvl4zUJz3oAz0FBJMCv96nAr/eFQhPanhc8ECgB+6Puw/KjenZv0phj7hlFRknB9KBlnIxxTTknpTo4mKAjBzUqWzseopXsG5Cc54FO2GrH2N/7wFTRafOzApn64o5hqJQxjoM/WnD8fxrpIdEjkh/fEB6adCtyMEsG7HNHMVynOn024+tIyj0rXn0SWIbtzMvqKqtp0uMhh9DRcnlKOB70VYNnMDgbTTGtplH3KegERAx71DKzI/HFTGKbH3KieGVmyVzRcVhomP8QBp4mT3FIYGUfMAKaYwB1x9aQicFWHBFNHFxk4PFVs4PB/KlDkNk9aYF03DQYCvwR92ms8lydxxGo9Biq6ynfuIBFLJOZPlGFHpQO5bRk2lo5XDj9acZpHQLu6cntVWFTn74+gNXrSxnv7tLa2jLyyHGBz+NT1Gma3hTQn1zWFTafIiYNIa9oNvarEiSWkDxqAoDRg1l+HNGi0DT0t0IMxGZZMdT6VrsykHC55z1rWMVYooXGiaBcnE+mQZ9UG3+VUZvAmgzAmNZoM9NkhI/Wtp1GBySW6d6Vt0SgAA+vFOy6k3a2OSuPhvaZzb6i49A65FUH+HV9BloZrVyfqD/ACruvtBQ8cGnfaFJxnn1ocYsalIpRkFzz+VSBNw6HGepqRYcDAPNPwijLOAPSpAYi4B71IgK4ytRG5RRhEJ579Kgkmnk6MUHtQB5l4o8PawfEF5cW9rJJDM2VdmH5fT0q5oktx4T0iTz7KaYyNvk8og4rt5Y3kX5ndh7tj9KpzpFBA00pCInVm6AfT+lSxpI4a+8f6hNuWzjS3Q9GYbm/wAK5q/1S7vphLezvO+MDf0H4DitPXptNuNQaaygMMP8bHgSH1A7ViyHzh5aRlVHIZu9JsllV5HdsUqxd2NWFiVR70eVu5707okhMa475puzvnB7CpijLzjNOUxyAhwQfagLEKJI4ywKr6kVKLc9zkVZSWRVWKTa8fY+lPa3ZVa4+VrcHG4NyCe2KWo0istquef1pwskzu5xW/Y+G9QuFVmiEaEZ3OeSD3xWzb+HLeEgyM0zD+8MAUalcpyKQqOOgqykRcbUXLewrrZNKtzhmt1DDoPWkFqsZ+SNUqWaKJhW2ny7laYKFU5we9aiKNxwgQHsKtbNq4IJOetN8sZ56elKw2M2AJ1GfekON+0gH3pHzndnK+lM4JwenrQVYlKBlKMMqfQ9Ky7nT3XJiO5R+dXycDJB9KUEhshjjFBNjn2BVtpXaffim7dw6kiujlgjn2+YitVWXT4JAFjJjOfwp2EznpZI1coAzN/dUZqvM0iIWESp/vMM/lTLsyQ6hNHE46/eU4psHlOhNy/7wH+LnNNIzbK7SSOBufg9hTfIk67WI96vG5tYzlQDxjgVH9sZsiNGI+lO5Nipsx7UjIcVYaOebkQ4z3py2soGCAM0wsVI+v1qQwg/xDNMkQwS4YciplO5QRQCGeQfTHuKntLq8sJhNaTSRyqeCvWkBNKrEnu2Oyg5/SkNI7Gw8d6rbxqk1/FK55MdzDjH0KjNdBaeO9+BNYb/AFe3kU/oTmuD03U7eJ9t/skj7o6c/mOam1yfQntYZNHgkhuGkzIN5xjH507srY9f0jU7XVrP7VayZXJUgjBU+47Vf4OQefevJvAeuXNjqUenfJJbX0uZFP3lbGAwPccCvVzngYJ564xWkXdEsidOTz+FQbcAkVbKqc+tRleMjpSaBA29zknH0ppQY3MM5qxjAyBxQUyAccU7DK2wFeOBTGQgg7ulWDGcenrmmEfNx0FFgK7RHYSwAOcjngg1wHi/xALmEQaejmG2mDSz9QWHA47ivRGTfG8ZHB+Ug+hryq88H69HfTRW9mXhZ22uGwME55qGhFbRYdIuYptW125LskhC2qjBkOOuPSn3s8/im6jt9N0tY4ouF8sdB/tHpW5pPw6JKzazcBsY/cxd/Ymu1trW2s4vItrdII+ygdfrSsM8b1DS7nS7gQ3aGNj0fHy/TNVQhOeMfQ8V7VfafbahCYbmJJEPYjpWCvgjSFlLEy4zwm7gUuUNDzYReY4CruJ7Dkn6CtG18KanekNFalE9Zvlr0210ixsgFt7WJT/eIyTVojsMU7AeV6n4en0aGB5p0mSQ4cqp+SshUWC9iR5PNt9657bhnPT1r1vWNHh1iye2nJTJ3LIn8Jrn7TwBYwzrJPeyTFeiqMCiwG7DPBcwrJA6vF0Ug9AO1OKA9eT61Jb2NtZQCCCHy4wemevvU+xeBjH0o1KRRNv61E0AHQfnV18k/So2BI5osUmU2iJHIBqLyE2NkVe8oHpSiLBI25pWHuYrx7cbRUAj+UkitaWBj0XJ9BULW55G3AqbFrYoBNwAoMWKteTzlhx7Uvlc4xigRUVBkk0SW4kjMRPDDqKuLECMEGpBbZXduGadhNHLXHhRJ3MkNwYz6FSc1PD4PtVg2zK8knXeMiunSFgwK4x3qdYt3zY6UyHFHEzeF3gBaGJZwOcHgiqPlGJyjRqrDswwRXo/lgHgdetRT6bb3SFZYVYeuOaLCsjz0qSCc0zbkYNdVeeEmCl7GbI7o46VjnQtTDkCzdseh61NmGhg3tvlBJjIXrSi0kktBKkLlScKwXg+1ad9p9zYRj7XE0YkGUPr7fWsmznmjli8tggD7gC3AP0qkTbU3rDwdfXAEl4RbxMMhB95hXV6foNnYxhIocHuWGSfrV/RLl7/AEyCeQjzHB3kdCw64rREfO7tnFVYaMebQbSYEvbREnvgCsu58FabcIdkTwP/AH0Oa64RhT3wae0IxxRYZxmmeDodNvorpLuR2i/1fHQ12MOpXUbbZh5oHcdaVYgCCF6frR9n44GBRqgsi/BeW846hH9JOKnZOM4yP0rJ8njOOPSnRmWHlHK00xNI1i3OAOKjYk9ac7YNQmQ4HpmtGIUlenOaQuNu0j8aRnVX/CopJM9Km4DmJ+8T7U3eQPvfX3qNjleaToOOlSA4sRnaMew6CmbiBtB9yT1PtSF+eDimj5mO3r3oAeDnPFNLbhxj6YqTyxuB3ZNLhSeBzQBCO3Az9aCpzngZqUW+STnB708QJjJbJFAFUghQyjAzzjvTzETyMgVJ0Uqq5xUUgdx3PstIRG6qOAcmoiWx05qcRNkBhil2hDwM0FIonIODS4G3n9KtOq7eV5qMRDqp4oHcrbfSl3HAXipvs7ZyGGKQxMD0FFg5iJk3r12n1FQFW6MMmrgDR/Ky8mm+VuGcGlYalYqFAV4HSk8hWG7v6Vb+zsOgqQW7NggcUrFXKCw46LUgg554rRSzc9TgVJ9lXdljmmkS5GcIvl4qZYjkAKSPpV17RGGY87qZHvgY9j707CuRi128lTQIwD2rQS4EgG/Cn09akeCOVcjCmqSJuZnl5zyfpTlQHAyQfUdqsm2dCCoyKAhySBS5QuZmo6Tb6pZG2ugSpOQw6qfauQl+Gs28/ZNTURH+F05H45r0QJmk8s4JxRyhcztO01NNsYbVGLCJMbsdT3NXCABkY9hUjAgjHTFIEHBAxnvQMavTp+dSDkgE/pTG46c+9IGbcKAJiAOmKVRkc1EG6mpxngj0oBjWT34pojGDu5xUwCnIHU0hQk49OtFhXP/Z", "path": "images/4pts_ADE_train_00006035.jpg" }
depth_point_70
images/4pts_ADE_train_00007776.jpg
ADE_train_00007776.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 83 y = 159),Point B is located at (x = 270 y = 118),Point C is located at (x = 246 y = 224),Point D is located at (x = 305 y = 189).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_49><DEPTH_38><DEPTH_38><DEPTH_49><DEPTH_15><DEPTH_36><DEPTH_15><DEPTH_15><DEPTH_15><DEPTH_29><DEPTH_72><DEPTH_72><DEPTH_72><DEPTH_72><DEPTH_72><DEPTH_72><DEPTH_72><DEPTH_72><DEPTH_74><DEPTH_69><DEPTH_49><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_36><DEPTH_74><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_2><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_2><DEPTH_2><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_0><DEPTH_1><DEPTH_42><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_42><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
4
[ "B", "A", "D", "C" ]
<DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_49><DEPTH_38><DEPTH_38><DEPTH_49><DEPTH_15><DEPTH_36><DEPTH_15><DEPTH_15><DEPTH_15><DEPTH_29><DEPTH_72><DEPTH_72><DEPTH_72><DEPTH_72><DEPTH_72><DEPTH_72><DEPTH_72><DEPTH_72><DEPTH_74><DEPTH_69><DEPTH_49><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_36><DEPTH_74><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_2><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_2><DEPTH_2><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_0><DEPTH_1><DEPTH_42><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_42><DEPTH_END>
83
159
270
118
246
224
305
189
null
null
55
12
120
83
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCkT70Ansajyf7tJn8K9axzXJt+OpppcetRdf4qaQfrTSE2Tbl7GjJHeq+eaXp607IOYnEjCneYcVXDA9KXNLlQcxN5jdzR5me9Q7vpSg57UWFzD92Ohpvz9mo2/hRs9DQAmX/vUh8z1p2wija3pRcBoMg70uZOpNO2GlAai4WIyW9aTLe9SkY7UmDRcLDAW9TS5YjqacNwp3Pei4WI13etOXdjGacCB2p2KLhYZsb+9R5Tf3qf+FPDYHAouFiIRN60ojYcZqYN7ClDijmDlRB5TA07ymPepSwPAp2QB94UuYLIhER9acIyD1qXKHvScGi47IaFbP3qkXcO9NNNyewxRcCfcB9akDjHJqnuOelBf1zS5bhzF0SLS71zVDzMdM0CWjlFcvGReho80AcVQMoppmp8oXNEzAd6Z9o55rP82k83NHKHMaJuPQ0n2oj+Ks/zDSeYafKLmGiVD3p29PUVQyfSl3dicVXKxc5eAQ9xS7Y/71Uc/wC1Rn3o5WPmLwjU9xQY1IxxVQPgfeNJvOc7zS5WHMi35I9qPJHqKq+Y3ZjSiRv71HKw5kWfIHqKURqO9VvMb+8aPOb1p8rFzItbF9aNi+tVfOb1pfPb1pcrHzIs7VH8VLj/AGqqec/tR5zetHKw5kWz+dLuAHSqfnP60ec9HKw5i3kGlBWqomf1FJ5smeSKOVi5y5lKXKAVS85qXzmx6UcrDnLn7o0Zi9apb2P8VG9vajlDnL37sjqaCYwOpqjub1oDN60coc5d3rS+YnpVLJ9aXcfWnyi5i2ZEz0phYZqtk0ZPrSsHMWd49KTzD2zVfn1pfxppBzFgTEUvnk+lVcmkyRTshcxZMpNJ5nrUANLmiwrslLigMKhyaOaAuTbhSEiouaKYXJCRSHimHNBzQhXHE5pPxNJg0lUIrcetGKeF5xtJo2HPQmlzD5RmKMVII2Izg0eWe6mi47DKXmnbCOooxzRcLDQDS4p2OKULSuFhvNJipMCjaKdwsRgUuKftHal20rhYZikxUm00BKLhYbijFP20u32p3ER4pcU/b7UbaLhYZinYpdh9KXac9R+FFw5RuKWnBG7AmjYQMlTSbDlGEUYp2xu6t+VPEMhGQjH8KVw5SMijFSGGQdY2FBjbrjH1ouOxHigCnhSRwMml2HHvRdBYZijHrT8Y6j9DQI2OeM/QUXQWGYoxUgicjhGP4UvkSY5jb8qXMgsyLFLipRbynpG1O+yzEgbGB+lHMgsyuBzSkVZ+w3G7Gw0/+zrnP3MijmQ+VlPFGKt/YJ/+eTfhS/2dcH+Aj60udBysp4oxV/8Asq54OB781E1hcA42gU+dBysq4pMVcOnzgcmP86a1lKp5Kj8afMhcrKecdKQEjkHmpNmKXb7VNzSxGGf+9zQdx6k1JtFLtFFwsQ9e9G2ph/u08YHYUNhYr4pcD/IqwX9AKXcfb8qXMFivtHoaXZ7GrAc+1Bc+1FwsV/LORwaXyyOxqcM/TI5pxdmGMilcLFby39KURuOqmpwxFBkc9+KLsLEQjY9BSiNv7tO3sDnNKWJFGoxBEx/h/Wk8ts/dpdxHrTgzijUBBGQeQakCLjJCj3xTN0ndsUZbuc0rMCwHKD5VU00u6nlVIqHLetByR96izC6LQYyccLQY5EOVeq2WFHPJ3GizC6JnMxwGJP0pAoH3gW+tRjIIO4mgjdzuJosDLEbxp0jUe1OYxspONp+nWqo49qcJG/v/AKUgLKSqyEMACOmVoS6xkDaPwqDzHI5YH8KZkmjTqK76FpbxlJO0H3p4vmb+EGqJH1pwGev6UrILstG7mZsKoFOae6xztC1S2jPU/nTsHHcj60cqC7LPm3DnmVcfWnDz+vmbh7NVPB9BSgnt19qbgg5mW2mcD/Wup9M0LOx6ysapkMepNAFLkQc0iyZH5/f4z2zTfNcgKzEe5NV9voM/Wkx2OaORBeRKxQHOST7Go3kLfSgA/QUh/wB6qSQ7sqhhQSM9ae0cQ6OG+lRnGelMQ7ctAb2pvWl5oAdvHvRvpBmjvQAu/wBqdu9qZS809A1F59KTnPSgLS7eaVwF4/iBp37vsDTcYpQKAuKDHnkGlzF/dNJijPtQFx26PspoLJj7hNNzRk0BceHj7xGnFoj/AMs2qICnc0guOBi/uGglOyEU0Clx70BccHx0UUu9eyUzAo4oFckD/wCyPpT1lT/ngPqTUGRSg+lAXJfNXPESfnR5yf8APJPzqPJ9KQClYLsnFyo4EQpxuhjmJar4oAosF2S+fzkIBSNOT1AzUeKeuwfwnNFhpj47hkGSqke9I05f+Ffwpu5AeUJpMpnhKLBcdvJAwopCGHJo3gdEFKZBkfIKBXE3fLTgcDJH40eYR0VaVp2IwQuKG2NWFITjrzTx5YHTJqMXDgYAWl+0yDptpajuhwMYbHlM1KVjB5t2z9aa1zIfSmedID1x9KLMLom8uIj/AFL59qk2RKvEDk1V3seS7fhSbz/z0f8AOi0gujP+g/Sj8yakD4GKBnNO4AkEr/dT9amFnL3Kj8ajDMDwzfhSnJPPP1pNsasTLYuf40/OpBYAfemjH41T6cc/nSgHpk4o1DQsNbR5wJ0pr2wUZEyH8ai2jHTP4UEcDgUtQuhpBBxkGjmn49hRVEjcE0uD6U6jBNFwsIAaKcB70YouFhtLjilxS4ouFhtGfz9KdtpdnO79KLisN5pcZpxGTShc9KLhYZj2oxTyuOtGKLhYaPSlpQOaUii4WExSAU8UCi4DcUU7GaMUANpO9PxRigBtHNOxRii4WG5NJT8Vl65qkuk29u9vZSXs9xcLbxwRkhmZgcAAAknIxjHek5JK7BRvoaOKOlc9ZeJNQl1u10zUNAudOe4DMpuCykgAnIBQZ6YrpMURmpK6G4NbjOvalwPSnYoxTuKw0iinEUmKLisNxRTsUYoCxAX3fwCm49sUlFRc1FxRj3pKWi4C4pRmkFOFHMAUUtFHMKwACl49KSgUXQDjjFIBQaXtRdAGKMUClouAAUoHNAoHWi4C4paKB0o5gsIetHbilopcyCwDP1oxS0U7hYBilGKSindBYXijigUtK4WExR07UtGcUXFYTHejg0daKOZAKAKTFLRmi4BxWTq08Nrq3hi4uJUihi1y1eSSRgqooYkkk8AAd61eKzda0W212zS1unlREkEgMRAOQCO4PrUTvKLSHF2dzm9PFhb6j4asbNmR4prySW3N9FeBd0agOJI1AG7aRt7bM/xV22K5zS/BWm6RqUV9bz3bSxZ2iR1K8gjso9a6MmlSi4qzKnJN6BxRxSZorW5AN1pKWkoAKKKKAKeRSjntVFbosOTMPqgpDeEHBWU/7WBWHtomli/9CM0Z9xWcL2YnCrx7lRVgS3ZHywlvxFL28AsW6M1nNc3a/eRR/wACFN+3XIH3F49xR7eDCxqjpQDWUdQnUDcq49iKf/aL4/1Y+u4U/awCxp5Hr+lHuOlZyX8ncfqKJNRMY3MwA9KPaxCxpAg/Slzk4rLGpOw3DZj3oXUX5y0Q+pxR7WArGr0o59KzBqaY+aaAfjT01KEj/j5h/Ok68ENRND9KdznpWeL5MbvtEOPehtTiUBvMjP0NL6xAfKaGaWqIu5G5S3dvwpftc/a1b86X1iArFzIHHelBP901myXl0eBCU/I0yQ3k4+86H2dRSdeKDlNbp1I/Om+Yn95R9WFYJ0+UtkuSf9qf/wCvTzYTkcNCD6mQf41P1mIchub0/vr+YpdybgNy8/7QrnjpVwx3PdwZ7Ybipk0TUBbm7MimJDjftJUfWrVZNXDkNsMM5DLj0zyaXcPVf++hWFLaRfZ18rVCJer5HyD6d6qm22rzeI59RkUKvEOU6bIPTGfqKO3Vf++hXIlCpwZ3P+6SaQkA43yH/gRqvbRFY6/IPQj8xS49DmuQDPnguB/v1ILiRRxI6/8AAyan20QsdV06kL9TTTJGP+Wi5/3hXIzzNIvzzM3/AAI1SMbZysjfi1P2q6Dsd158QOPNTI96py3TzXDxQ3McKRgEuQCWJ7DnGK5lZnDAOg2jqc9aWWZGHyKFPvWNWpKS0/O34nZgp0qc26nbRtKSTutWno9Lr53OqtbxJYm82SNZFYq2DgHHce1Sm5tx1niH/Aq4hlZx80p/AVF9n5z5jEfSrp1ZKKUtzHEypTrSlSVot6f1+mtu53X2y1B/4+I8f71L9rtjys8ZH+8K4Jo165P4rSxrtfcOnoBV+2MLHem5g/57x/nTDeQd5k/CuTFySOIqT7WV/wCWfH0qfbj5TrDf2g6zoKQX9rkZmUVyn21XRsQAkDqR0quk8pCkyREnocYp+1DlJzK7f8tXP1enK7jkMD9Zf/r04TWv8QQfjSiWzYnBHHtXnts15PMfFNcggqkR+rD+tWxfXqceSp+mf6VT8y29D+VOMsSp8jH8zUO7Hykj6ldlSPsoP0TNAv7pkIW1x9Y8Uy2uBs3FirZ7VN9qJP8Arz+VLVByXKzXdwTgoqn/AHKjaaZuCyj/AIDWj9qOBmRT9VpPtO7uh/4DVJsl0zNWSYHiQflUwnnxkyBsdRsFXPPGOdg/AUqzAdGH4AU+ZhynPXXipbC5a3kRzImMkRrjkA+vvV6w1wapAZlt1Kq+w70AOcA9vrRYXdjpOu6rrGpyzpbyvDY/uYVkLo6hpRgsuBsXaTzxJ0NM8OWzaT/aWl3PD215LG0oXIJXA4/L9a0kvduPl0NEXUHU2MTH/dp4vLZX3LpiYxzgUz7awAIV07D5QN35igalcRD5QT7bB/hWDuKzLC6hAQMaeMem3NS/a7VyM2IXH+wapHV5Rz5OD7ik/tmckfu1+mKzamwuzSbUowQTayluxRjj8qgkvkkb/j3n/WqX9pznB2rkdhTv7SmA/wBSufrQqc1qK5IFjuZBEsVwHdgqg5GSfc1snwXragn+zbwjOAVdSKwRqs+cLEgYkYBz1+tU7TxLr2nSSXVlqdzDCzZRGk3KfzzXRSTb94uEeY6yLwPq7HP2KcH/AG3Wph4C1jGDZyf9/FpujfFjUGljj1O0WdDw8sWQ3+FehR+L9MZOPtJBUEfIf8K29lfYmScdzz+bwJqltC8zWsm1ELNhwx49B3rM0OXxJd3EWnwTyfZpclkdBtYH144r1U+LtNHIS469MVF/wlWlR8x2kik91jA/pVqjJApKxxx+HWrgk+REoLHOJAfy5po+G+rN95Il/wC2i/412a+MrIH/AI9bg++KQ+NLI9LSdvxFHsJbivE4DVvAmraVp0t79lFwkfVYJAXx9AawYIbWaBXXzB6qeSp9DXrR8b26A+XYzK3Yhl6ehFcZ4q1C2kia+06zNnNn96OCjA8ZGO9Z1aNRRvEOaJzYtoT1ST/vml+zQY+44/4DVNtbuzxlSOnSmf2xMepTP0NcVqncLouNawdfn/74prRRkYCsMesdV11i56bo6U6pOcbnQc+maL1O4aDzCo6mT8I//rVEwRf45B/2x/8ArUjancCUIt6igKTylV5dXvsERzBz6jFWnPqwsh7FBk+aw/7Z/wD1qhMiHpKT/wABxUX9rajsIcoT/uCojf3zMGZIjjjBT/CrTl3Ksi15i4+8aPMX1c/gKgF7dFstYwMPbI/rUUlxeNOHFrGij/llzz+NXdoOVFvzcDgt+VR/aQG6tn6U2CeRZHeSx3Rt91M96c0u/afsBTacsgfqKOYOVA7koQWIDDHHWqP9ngYzIxI9TUt1HLNKWjVogR8i7gdv1rQsvsxt1S6hZpx/Hu4am6jQrW2I8XO3cHTbj72AAaYryq5LSqCw9Ko3F007RxyN8sQ4C8A1EbqRNx68d+1Q7jbNuOSSTgSo23qMVIsjD0I9MVj2d+wkR9pX8Otan9qMzZ8sKCfSo5rMaloSQyKoclR970pxnH90/hTRcBN2SDk5GB2oF9HjJT8xVXuPmF+1sB8sRP1FRvcTMem0ewpx1NFB2wbsd/ShdTZv+WKDPTmncLkW526qxb2Fb2leENX1qzW8sYEkhZimTIAVYdQR26isS41KSKEvlA/QBRmuh8C+KW8N6gs00rPbXbbbuHPQdnA9Rz9auO2ppCm57FO6+CviHUtSMzvHbiXHDYOMADrn2rY0r4P67pcDQCe3nDOXJDBQOAPX2ruD4p1i0jsNW1OxtY9IudrJtmZpYUYgb2IGGHOdoGeR6Gu33opGZIx16nrTpzU9Lm2IwlShbntrdaNPVbrTqrnkrfDnXbaB33WxEabtm4MSPauPlkRMh0KN0wex75r6GFzBFgG5hBXuXHT3rlNU0Hwk98+p3cluGlPOZgEz64puKuc1meS2sFxfPts7aWQdMlcL/wB9dK6Gy8KhgGvpMkfwRLwPqa76Gz0F1VIL62VMcLHKMVYGh2Mv+puSR7ODXRCEI7mM1PocUfDemk58lgfXOKY/hWwk53SqP94f4V3J8ND+G5I/3lzUTeG5R/y9Aj3Wtf3ZnyzPLvEfhyw0nR5r+O4mMyYEasRgk9O1cNbxzS27RRhpduCoVc4HevWviL4enTw2bt7xPIt3B8oD7zHjJryF3aJiVfYo6jpxWFVxvZHdhYNrUs6faziUho5ImxkOykCu+0KY3OlwMW3OgKHtnFcr4e03VdTl32qGWFRtwXwMmvS/Bng64sRdDXo0S3lIljcSgbG5yMelEKnKwrRujP2hc/nRklQQ3J7AV2LQ+DoryO1bUIGnkO1VWUHmtP8AsDRI15SP5eOZBzXS68Tj9lKx51z6/pSEYPpXoh03w2nDm1B95RUZj8KxE7prFceslHt0CpSZ58RzkfgahuYftFvLExwHUjp37V6E1/4Oi+9dadn/AH8/1pj+IfBtuCftdhkc/Lz/AFqXWTVhqjJPY8ClUIxVuGzjH0qI7a6/xVHoeo6hcX+m6jbQCTJ+zA5Bb2Nci9rLnA+b/d5rhlHUvkfYTfgcUgmcZ6dM0wQYLeY5Vh0FRmM53Fm/Ks2rE8rRM03zJtIJ2859aX7SAcNtJ7jHSqUk6QMBtZiDyo64rcSw06SHzI7qRkk5XcwBz6Hiny3L5W0Z3mnK52+nHenfaGAKnA9sdKtXelPGqywodmMshPT6HvWaM/dz07mjlJcZEzTlhzj8KZv/ANpsfSo2O0ZJoyT0OfoaLWFZkpmbABY8dKTfnJJaohknBI/OpoFgw7yspKDOz1otcpQbG9uSxHf3pBsbB65+6M4xSpc2jyEm2HHZX5qWe1ikiWe3cGN+objb9aTXcr2bMESK5LM+welLJdEqFHXsfWovLTauHViepxSbGJwWBx0IrXQrlL63AiCd89fY1MJVXa3m5BPSs0DzGCk4J4FTpbNKvmRkvHGdrj3qXGIuUvR3wabaTnbyCPSrUNtK7b4QZI35GaypbRlbd5g46Ba2dMtyLVem52+XnmsmkHKCpcBShUbc9BTIZPLud/ySL02N2rXNtceVtVLdSQRvLcj6VknwtKcZu4juOSxPNXCUepcUjpx9ln0p4p7eIQTj/XRvsAPoDzXPXtlJZN58O1rcnIYS79uPU4HFKmgXqW3knUA8AOQuflBqwNMvwXL3sZDrsYL0xWnPE0jLl2KQ1OaWIpzuA6BiRx6DtQ2pXSjl7jAOMsTUqaNLZSxyrOhwwUZPer4smkjaOeWKfK7crxtb1rNKEdjorYuddr2n5Jer06vq92UbfVJJLhFd2AycszH5vai6uEltWlCGPa+0LvyDTo9CKuHWbochccVYXTWQAHbtLlmBHHNXzKxmnFGJ9oKsWDEHP8JOKel9MpyJpF+jmt9dPt1PMcR/3Vp40e1dgycHPYUozvuVzRZkRa9qkIzHf3KqPSTFXIfG2vwDMesXX4vmrraNHhyWdkc4K1ny6Kvmf6Pa7wOPmk/+tT5kHudiTUPG2vatp0ljf6g09q4yyuO46c1hSS+fMHddg27WVfbvWr/wj9wSW8uONcdBJ/8AWph8PSZAa5jye2ad1uJzS0RTXanmCNiFYrg5OO9XbeVjKqeZIBkjAJx/OornSrmIJBEysPUGmRWOoI24MB3wKTkmw9pG1mOW5PzY2k54PcULdNlWMzEAncWYg/SkGlXrFsQE5HXFO/sPUflYRZ9sUcyHzQaGiYlcMzA5znJpUjJ28rydx+fPFWG0vUWQIbQL7qKVNHv45v8Aj2bAX+9RzIzlJdEVBExYIGGd278KY0BDfMygq2TxWgmlah5jH7O/PTmmf2RqbJjyMc9zijnSJ5zKks2aHOf4ieBURt5UBHm4DDgEYrXOgahj7nPpuoXQb/G4x/huodWAnIwoYJoZS0kisAOBmtO2uYPPzd26zRY/1YbBq2fD18+R5aD2L/8A1qQeHb4cFUyenz//AFqh1YdWTe5nO0XmMYY9qE8A8n6UxmLA7eCeQe1a3/CN3y9oh7lqD4Yu9nMkefY0nXp9xmZFOxcZlcL6M3WthI7V4MeSjHPXrTE8MXRx86Z+lXE0O9VdgmiX3IpPE011E3cR7KzkhBWBAy+gqA2scTkKg2nrVtNHvgcfbkHvtzinNok7v8+oYz/CExn9an61SFY5NbbXrmwhvY7OzMc8TzxRrOnmyIrMrMIt+8gFH7fwk9KZaXDXFrHK6hWbIG0cdcVd0/U9Ktv+EV1STU4vN0e3PmWQil82SRbmaVVB27NrB0yd3AJ4JGKu+GdBgvvD9tM0xDPuO30w5rerUjTV2KLK8dov2WG8AYrKxVCB3Xr/ADqG5nhktmjCyrITyVHBrqjocAtYoBcSCCJi8aj1PX+VNbQ7QkF9+5u5NcjxdMq5hDwtbhCDqUYGeNopw8K2iDnUh+Vay6LAi7HnlkI5yEwDViLSbORc5uF74rN42JN2YP8Awjmmr8zaiT9FqaDSdOt8lL5+RggDg1tDSbZAGxMykdM80+PSIG+dbeUr6s9T9dQXMdLLTIwB57MB0+TmpPs+mDnzZM5zkKP8a2P7Jt1IPkE7umW60v8AZtqqEfZVDn1NQ8ahGQYNMBB3yk+pX/69GNLTgeex9QK2RZiIAC1jYd9wzU5tkAGyKJSe2ypljEFzA/0MYKwXDE+tPYW2eLS4Y+zV0AgZvlZ0B9NnNOWBk+SSRlx0KrWf14dzm824dd1lLuzkbj0pTJAGw1i5z/tda3jEpJxcMx9CtRlSpKCUoSOMpVLGoLmShQ5A048f7XWpEV3I26WFHqTWt5KFQJS7gdwMVMkcZUARybQcg5qHjWBkpDOxythFk9i1JsvFODZQrn/a4rcWJMY2nnrxxT8R7QCiDHaoeNktguzBEN2x/wCPa3Qdc9al+zXu0lWtgO3H/wBatVpE3EEIAO2OtMDu6naF8vsO9L67JhdmYLe6yBvtt3cBaeLW7Od8yKB0/d5rQhcBssiDHVtuakW43hgh3ehAqXi5hczVtLhiCt0uO7eXip1srhgT58wGMfdH+NXVaRiBsAUdjipCC+QwA+hqHiqncZQ+wyk5e5ucn2/+vSNZBHCmW5Ye/wD+urwV1IAI9gTQUZmI3kP7Hil9Zqdyblf7EmMoHJPq+KjOnszEMjKo4yHzVwROBkMzY4IxmnbcLgg/Wp+sVO4XZTbSomdWBbHu1PFgAQCqkeoq4EypDAAHuWpq/JlduB65pfWKj6hdlR7FByEH5UkVqmwjaCM9xWgrDIII4pnzMTkjmo9rU7hcgFsu0kLg9ximm2VeQGWrKOpPGQR70pbuRnHXvS9pPuBEYk28frT1iC87u1KzoW+vQUb0I2vx9Kl1JdwuyMxoo3HrSbELZDHcPUcVKZFRsqgk7c9qGlCDLOAO2R0p87AYEU5znHfAqM2ULncy7h2yOanWZG+62c9vWqOoStBFuikZGeRV3E/6sE8k/wCe9Ck27G1CjKtUjTju/wCv66mSfAnh/H/Hhj/ttJ/8VWrY6TZadZC2tkKQrnA3E4yc9Tz1NMQSWt5Hbx3EsySqxYOclCO+fTtVwqzgRk5z+la1K1SStKTfzKxFD2LjZ3UldPyu1t01QeRGoGQSPrQYIyPmVce5pPIP3Sx49aRrVH43kn0BrNM5xpyvzN0U4pykEsSSAtRkLkkAnFSBnwCycfSm2xijarEK7k9hTTs3cjL/AN0nijIds8j8Kb5bEkFQPQ0txB+7C4YMc8/7tOLqUyyZx0PemAHJIJYD0p4XcRkFAKdvMBROvHykk8H2pBcqp5UYpnlN5oXB2nv/AI0ohdVZlVSffuPaiwDxdKQcMMfTmiO6CqM/N7EVH5ZUZEeCaeikrnABFGgDxcRNIf3XbqopBMGIJGeOMikJUEBAffFII0JJEgB9D3pWQyYSHI4z7UgBJYhnAzyKYYcY7n1BpBuViMHPqaLCJuCvDEY7GkwhwCeTUReTkgDI44pSMAFiQSRSAm2Ju2EKWFHlR9l2/SoAmZOXywzk0NFnjcwFGoyyQAOEUDoRTFSDBVcKM1EI0BwHc+2aeFjBGTgjsKTuBJtjVuxFNYxj5SrZ9aQKS2WI9lWlUHLgtx0J/u/WlqAq7GBDIQB3o254UcepNNDbSXLZB6f40ocE5K5p6gO2DcApKtjn3ppATCc7T1JpCZpAy7Bn+E+gpC0gADQ5I6HdSEOaOIHBO/1zUZjAfPT0Ge1OLnIwnTvjNK6vLhdue+SOlPYBGXcMbMHtjvSxowRWJ24NLtlTod2KU7yu4rtX0NF7gUtU1ax0q3Se/ufJiZtgYIzZOCewPoazYPGWi3N1Hbw6kGeRwiDyZBuJOAPu1Jr9jHeNYxXCLcATPIkB6TSJBK6Jx13MqrjvmvPbW4nvtR8P3Vxp1tAXv9i3FvCkImAaP5diAD5Sx+bHO7H8NephsDTq0HUk3fUD1oyAkAEMw6DJpC6E8Nh/Q04Jtfd8ozTdqMcjAPevM0GNMwHZA3r6037ShOHVRjsO9Pe2hyFCDHXO6mmO3dTuwG6cUaAAuAR91R6YqOWVGLpNAGGOhGamEEQAUNz2odVSXLYAbqf0o0Gm07oqwi1tf+PeFUY985P5mpTKzfMo6dTS+Tb7wcZ2d6cqxPIArElfWqbKqVZ1Zc9STb7vUiFxKxyFyDwCagd7jDMAE29/WrpMZXkEDngU0pCFU4d89QaE0QDEqNrjGRn5aPMl2Ahm468dqrJdhsKrDJGOaBJKkYDltoPJHNPlEWXdyvGfWkWSTAZ1KsOOtUnnKtkFiOyn+dO81y4OBz3zmjlYFzzdvGMKevqacsiMTksB2yKotdxxuUOXJ6ccipEvMsGZMY/vDrScWBaeXb99T9B6etPRgxDIwwex7VCsyrGW4POQGPNC3KNldqhxzn19qXKwJjIxbbt3e9Kd3y7Rg/yqMXSA4bCkHBoN0obbtbnkcUveAUmUyFdqjHcd6awLuAYwCO9SG5j2qWwh7c/zp25h84CseoGetLUY0K+z7qj096EByN2FbsAc0F25DKAT1HWlVD5R2EeuT1o16iHbDluPqKQKxjyxGKah2oWcsR0zT2VduQ2Qp/OlqBD8pQYVg3oBSKuWIMjADvirJZW+bftduBx1pN+eqjHQ47U1ICuixFsF3z2zxzTJDHEcMzuSeeOR9atkRHA/iHI9D9aQwpv4bdI/X39qfMBCoBUhSdp/iHamlxEArBuOpHQ/WpSEhZWYkKTjaORmnEYGGYEdxilzK4FSOaFcoJQW7CpAJWX92Q69z6GpDa25yxRcH+6DkUeU2QuPLA44qm0AbH2KS+Btz+NMMkn7vlS2cEnpUwjKxgHOew/rSCEMwJQ5POT3qbgRv5m/BmRU/u5FIbmSEBXZGJPy4NTpaQrkJGpB65J/SkNnA6jC4Oep7U+aL0YxitvYoWAI54NSMxYYySR71G9urfIi8A5Bz3pfIbf5igY6MpzSfKIxfFGjXet6ZDHp8yRTRXCzCSRyu3AYcFQTnJFc3H4R8STa1Zajqmpx3hhmRi81xJI+1WzgFh9fzrsrlpVuDb2cJkKAM4DgAZ9ST19qlttl4nmBWDklCrHG0jsR2NddLF1KVPkjsdE8LVhTVWS0fmuu11ur9L79CZ0j8wo5bAHY9fegRwtyoYdiM1E8bn92sZ3Kcbs5BFKglZQrIq5HPPNcpgSrBAigFiVJ5bOajcoilUjOOqt60sUDomRkL2VqQgKm2R8qePl7GpQDU2FxIQQwHHNP2Bxktuz2qI2Y+55rD0B4JpEh2nZubIPXFUBLlERuD5h7dqFlUsAyhC3AI9aR4SF/dtvbuDwBUQimOVRuhzj/AD2p2T3AtboguABnt9fakLoiAMGyevqKrgANh23BuEx0U1CYmOIcn5j8zN1/ChRVwJVgSNyPLRcep5pBGscpwGJbqpP8qtbFjdoo/mJ5KN1FNPk+W3lqW3YBYnkGjmEMS2hAYgHJ4O49PakW1+8ihF7bgc1K7L5gX/Z/PHegbSv3sMR+tF30AYLNlVdpjbHV24NI1uXJUkNnnNP8k4AEu8DrTdzRnJBwDjHqKE5ARyWAljDyfwHjBoew/dsFYnPRvSpVciVlTKk9C3Qj0pUilJyxxgEEZ4SnzMCI2ZIbnhiAT6VKsChCBKwYdXxkGnmJ0wA24Y/OlTMhB2EBQc+1S5NgR+WrIGZ1b1wOtLChRiBKMdjjIPtmlmJG1kZcEDmmbpS+dqPgc7egpajFEeVwSHyeCDzUjRKCVkOxh6Go9yDgIwB6n6043EYAyhIUcg9Wo1AiMbFQDLuHYU4RzeY+PwIpRcq/IG0McBf7tSFo2jDYYjO04NNMRXEkrbt21WHBA6VMPMwC2AB1pxkg3qHXaI+E/wBs+pp6yKwPOAODtGQaTAh4LkDk+g6gUqrIAdwGP4eec9qVoY2VjuGfufKeTnvTkiBC+WSNvy7W659aTAiBMBctDgEcc5IahnaSIrs2L2buam2SBvKDCQj5mQ96bJJtUKdpz98L2+lAECtPEuDuDZ+8BnIpzyyh2LDJH8/epxEXAViyjGQT19qWOMjCmRXH8QptoCuZXc524LHac9iO1IZbiXo/zj07VNkCRN7hYiNw9acHViCuOT8xFK4FZJrmM4kVTGeM55zUomZFAdwEPIp7qSgRlYIeuB0GaimyrqrAsB7U7JjJGZ14gUAH1PBoRmddyHLDhlPT8KhkuFJ5DHsF7Ux3V45iu4LHjDNwAfQUcqAjntpluGntCpaTAdJAcEjuCPyqW3tDaowZy+WLuwGNxNS+ayZDxlOOD6mgI4jDfd3AjJ7mm3odM8XVnT9m9tOmrtok35dP+AhVm8yF1YPEucAgUwT4jVCAd/IYHninIHCKWYEYyfqKUEt8/wApJ+YcfeHrU6HMIrxu6fMWz0y1NmB875XDYP3duMVKoSH5o/mcjg47mmvPIME5JBwQB37GjUZHK7CMZ/iPc/yNNUuqhsM2eg9ad5khdVeNC7c7+x56CkaZFyCrKxJyg7fSrCxEXHO4MzA8dvzoa82iQKfnIyOOAfrUglUlRImFzzJ7VAyiTcDbho1ywGcE+h/DrVJCHR3sSgBtoaT7yHjbjvTTdxmIFXJVmOC3H5VXmkt0VRIT8pBwR/WpIJrcqdgXO/5Qeg//AF1fsxGkzhowwDEdAUXk1HvjK8xlMc5xjB96559ZVHVyQGXuD8tTjXCRgg4bJDgZGfpT+ryXQVzaK87nbZ/EP9oUpWHzBtyzEb+f8+9Y39pmNCXXLDB2nvnv7Va+0N5hVjmXGVUcZB7VLou1xmii7nZCyg46L0NPVQCNzBgOM1ntNJGEVSI5CuMsKQXMkLrHLghxlWHQ1mqTA0nA2hkC5xwfSopJPLALcrjFQrIAy7plYKCSopiXJYyFyAmNyr1OPf0o9mwLimURvvZWkUZUY7UwSMCWIO0cNs61AlwC4YsVjx/Eev0p3nF5wwO6QLnJ4x7UcrAsMoKq5YqB0fqRRxgybMxEZAX+L61B9sVZJACVBxw4zk0jXaMeHCMpwq9AT6UcrAtIS8cbNtwwGI+68UxvvFGIZDkjI5zUBvB5fnKy/MQvHYipft8LYLDOzOQD60nGQx3lxlCUZUOM4Yd/agwsNoHy5GWB/pTBJHJt3E7jnGRnA7UNOiukolEZ4B385AqfeAPIAXduGcEBh1prQvIgO/Yu3CqOuaVriJnzjOW4KngfT1p3nDgNGQG4JPX8KpXAFCqvltIC44HPShXUymNEZto+Y5/X6UieVLMyAKR0HqPrUp2TeW+NgyUfHT8TSYCsSu4FRk4AbPykVHJHghAR5pICOehHrR5ke10ZAmGwUPJB7Y9alcwAYb5sJtI9M0r2ASNZk2q0igIwBHd//rUjHfKy8YJ3EDqKQxqY0Z84X7p9u1NkjMrFQcREgtg8kAfyosA3bv2NvXIJ3+q/hShI44lRNxLHAYnvnrQ1srAlHUAgbU6BhUbvKqsY/LJC4kz/AHcdAPWnYCw27kBm3McbR0GO9RrEWkZBHISp+8WzxUVvcskIYZaMDCoBk5pWLokbMACOG2HlSe5p2sAiMIRu8oMSSpjPU0sdziImeMoynEgI6qehpq+fIgkICYYsjn+IUkQaXEhlOwMVw56D+tPQBpnkSQRoFLfeX0x6k+/p7UizGN8SMxLEMAxwB61Z2okbxMp8vIKnbxj1zTZtiRsZG3RSZAcn8s+/vTv0ArPcGKEiYuoB+U9dw+tPa4uGDD5VkHRMZ2r6U8rbyfK6R7tu0Ff4frSx7UtxHGrheWZ89/c9qd0FiojrM2YptzFhskb5VPqMVP5mH3HI3Ej5uQcelRPYqssL5bHLAI3C07yIwTsZljB3KSPzz61T5Q1FNyUjVtjOuSoyenuKhN5GJ3jLiNVxtU9XPeozC8soWNyLdvlVgMnPp+dWFsITCYJEaJx8xBG51Oefz/rTsuoakJlUKuHTap3KT94URuPOJ+1KWZsncP5etQy6fH5xmzgscZfsfX6YxSJDBZgwqzPk48yQ58v6H3rS0WtBCXPlXJmXyl8sDcu7qp7j+VNitUaNSinyUO9x3dh0BqeMrJI6QINsPPlZySe75/pU8o+UlZUEhO52B7npxTcraAcEJHctGFyrL36A1JCTGq85HGSW6Y61EqMm4hvpUhWNzk56DOK9h27GSkW31Iykbc7DkN7elPj1OXDF5DkDCnvVBEQAqp680woVQ/WpdOL3K5jRbVJdhAdty/NknOaiOqPJHuTcX4UtuxjvVIr8xznp1pGTdGQCVIIJxS9lBD5l1NddVlEZf5QM4OfvZx60q6tKXZUlAkZfnesTDthTJ8pOaWOKQtjdjnGfakqEAvE1n1e4EoaMEsMA9x7VZOsNC4jnYeYpwQD+v0rBhL7A7NzuINKYwwLSsSSOtJ0YC0NldZuGlCO/mt0LdsH096VtRMS+ROxfn5c9VHv71kRoqMFI3cfL9acTK7LJkb4+cdgaHRgUb0GoEtsWIx/LwG/iUf1qt/bUidApBYkj1H+NUmaQjMkjbsbiQfu+1VZULTh2UxjjZjuR3NSsPG4mbEmvYKJGWbJ3MxOPw/DpU1vq0s0iiF9rf3RyB9TXJ3DzRPJ5uTGWy209TUtjIrBy8YIPcdaqWFih6nYw6pEQTJuUxkkM43Eeu2ntfS7kKv8A7XXLAetcy07A/PvOF4Vj8tSwanIknlxjbnjnrjHrWTw3kLU6hL9pAsgBG85SRfvNVmK5aSV4o4trAEsxPIPbIrj11KW0UwqAu7JXAzuq4urbJ1ecM7Mo2hRgD2NYTwr7DudE98FlWKTa8zDLEdHI9+1Et7D9nSd3zEThtvXPauce+MyNuIwWwEHCjNJ9vR57iJZETYwBVRww9RU/Vb7judLHqizblG5TwY1b0pzXUZlVZZCski7VZehx61zqXcKW4tZ2Z13BkA5Kj1pYNQYh5HlDmTcGVx0x0x+FH1awXN77XKWcMn73aPL9AAOtL9ohnj4BQlflbuX9T7VzMF9MIofnb5xwoOPMCnH/ANetUajEIFXzsySHI8xdxH+RSnQatZCuXYbtiqpJHsnA+Z84HXrVh5CQm2Y+WCCRjlj6+9YK6n++NuzoVBySFxgZ+8fU09NQADpGdu7IjZm+Q0nQl2C50CXRObpVYPu2qx6BfpT57hYyzFlUthgqjG71+tc6mrR7GlwwdPleMsckeq1V/tMXDrJI/mSnIwwxsXtUfVpMLnS297KoJlQtE42BA2Pxx2qyzqIgksikdFzytc3JLDJLtVjHvHBDH9T2q69zGzbpQ0SqgQN0+pAH4UpUGijUV4QxaJgoXhwRksf8KrSXkKRAE7hISGycnOf0NVPMZPMaLdLxtyTtDepJ6iqU8gwqtF5gjB2GI4yPf1I4pwoahc3EmQRSCBCQr/vA56g/3vSrQjjKKB8sQ+bYx6ntj2rBtJX3rLLiGUj5s8B/bFWTLBDMnmsCzE+RJ1UfWpnRd9AuaQZARGZFDZLYTotMkmi8lhGTtaQHDnpj396y3miaMzl2RlYgtGM72/HHFMuDISjRgtIQN0W7IyfUfrUqk76gbQaOaMmUBUbIkUc7fYe2Kry2EL53Kq5AGxuSR2rLM01qzRyTozHkHv06Zp51VVbzwVRx95iPl47E9c1Xsp3ugLq2izKBgh1BjDI+Fx71EsU28EqFaHgow+Ur3JNQ2+pBrh7dFVd4CBg2VIPf61PNImGXcPs6rzETy3qKbUlLUDiwi7tg6e9TMFjhCKowe/eqwVOM5J9aZ5hYle/1r2TluT+UpdDyuODinSIOApJWmCU8HacDg5pfmHzKfkpDuIImKr83A6inMuSVz27UnOME9fSlAwfvdRQIRINy4VNxA6UpVBhtp2dCPQ1NEzRujhhkGpmtvn3BSQ4ySO1O47FCCNGyDx8/pQIiCdnPruq1EEjnUMchjkbR/OkfiQxsAD3ovcbRV8khvmx8x6UrRS+WyZGAc4HenuDt3bgu09+9Iu9UIzksc7qECYqIVkEcpJTqcd/TNN2P3JOKntIyJZAz8SIfwIIqSL90h8xwwIp3KWpRaMSDaUBHrilSARrsg4Xvmrr+W8PA2yZ4HtVZgikAZP8Aeo5hNtFd4C77v4+wPSmGOQpwRkHirhhXO4k8fdx3pGjVCNvf9KFMfPYo3EbGJGJIZSBgdqlVmjBUtwOfpTrpT5XDfxD8TStaluWbr1AquYfORtIx2yjLY7Y61J54aXzCvDDA9qPKZCAucfXpQYn27QM461OjBTFe5j3JGshAPGMU97opJ0BCDgHgGoVhG7aV5xnjtQsPzAsckcnPSiyFzEjSsxLKFEoOVDH5QPQU15mnUmSUi5yBHCi8MPXPam4eQqCMjGBxQIw7hyzBunHGKaSDmGMriHcYym1gm8N0JNSWs+yTjJZs5XouPXHr3oWIeQdwbYCTnPeoDHKsqyEqWHAx6GlZPQq5duZzPFEjIRHHwCnU57momndbfznxkjIQjO4D1pimWNzKhHyjlT0IqNZGZmwcFhjZjIxTUUhXNCKZjiETbZZBt2Hpj61Y+2yW1r5UH7tCfvs+T9KxwjQg7eGOMHOSKaXY5T+Fhg96l0kxpmpcXzvJGPNfYVwz5xuHsKjadGiUx+b9lj5EuPmDHrVBpSABt3gDuf8AOKijufkZZDJlWJCgnBpqkhmv9vSSaKN2doFJ5z82fXFKL948qrMyoSVGMA+/tWL55VCHVjvPUDkfjU/mSMCpJ8oY5zyaHQTC5rS6xOypLLHhSACR1OO496I9TRJJiXMsYGUbOMk/3vWseeSExhfMbcxJU7jUMbYXasqkL95SO1J4dWGbTan5sMcJG87923HT2+lFpcxTW89vIyBnbI4yRjoPbNZsZjhbIYrOx3IRyMY6UkFwihWCgSnJ3qBwf60vY2VgbN93kt4N4ZDCy4UMozv7rnv2/OmS3P2gGHBDDLrk8nHvWNdzyEh3JfHzbA2cN64pZbky7GAw7cHDc49Kn2ArltsYQKAM9qURQYbepz2IPeggGMFgPlpiNlGULx1qjIkKqAFySxFJyV2D8qRPmwR1HrTi3lKrhQTmlcRHHhQCc/e5yOgpShD7eozkGh2yQGbJb0pvmFSSRgDjmgCUsqnCsMHg8VZhuzEyYY7cY5qi5GPlwSeRQzsTyowB+tA07FkyqsmAu0k5qMtvk+b+dRE5wxODikQhTuOT70BckdTnGRgdAaFDMWG7oOlMMm9/7opTIEUsRz296BEu5hGV4DdBS+WxGCwwBmonlBAI609X3HJBDbaBolIKBGBBJHcUqorOd4AJpvmkRqdoPHPtTS5lwSVATke9Fhkjl4yseAB2NNWEPuHU00zbizAgswxhugojm2/MRhulAWHfZwq4IznBAPrSmI7iyjJzzz0pjzuVcZGT+lM85vKVe3QmmBZ+zKYt4YkngCq6xu5CHgn7xoMpRSwZt/TaPT1py3Q4Ddc0kIljiw5CkbgMMfamGJlK4T5CcE0ySb5mVDgE09TKQELYOKZSJBCFJDx52+h9aglhMchVh1HGKna4VzgNtOMGmtcRtGFbJK/xCgCJo3QKoB2t1GKhmhkQEcH0NXWuVSMqSSCRtJpHMc8Iw3zbqYFBUywJbKtx0pfKYbgF+cdPpU8eGZNpDKCQcdqmmUh45v4X+X/GmCiylJbycYBZlHzewqNQqsF6D1NX7iN1ySWKkgGnRwfaMkhdoyG/2RQFjLz0+tNRdpc4Byepq+9mSxIUlW4BXsahitdzTE546A+1UmFmV3XJHbI60RqMFByTwDVkQ5gYMDvj5K+tNtog7ED5WUbgppXJs0VDbp5akL0z17807yh5AZUUMMFuOoq7JbS7GdEJ243Y7Z5pqQkRsXByWCsPTPSnzMtplPBCANjCNxx2NQyWgLjYflHAA960jbPnaFLHoahEWxWU7lkQ96akxWZUe1kSUHDI5A3EHkUj27EF2b7nQ96u3JaeRmbIYKOaV4cyBEDNgKW/Wq5gLEMblnHLOzYHpmnbXSFmTO09OOtXY4nEpIVtoPzH/Ci6VvOikHywE5x6E1iwaM04AXYmz1zSyEiPJPy5qeZA8xwQcnHFMWIgBGHBPegmxETgAr60jFXByeae0Q4OSFBOaiKHcvXBosIARkAn6f1qYxh7beJPnB5HtUeNhB5znoe1NiY5JJwGzkGiwDlbI3HkjijcOVpEGT8tNOAAdw4osA87evpTHOcECmhS+Mnj2prZIKnIGcA0CJDlkAyNw5pwkyMsfypCmBuGCcUiAIh3dDRYLkvmr5Z7A00NkcLxUW4cBjwO1P3Ngeg6igdxVA4U9D8xpytlgFPNRHcfl7saQrsX0K8E0WAlLDgHn1NN3r8y9qjfIAT05bHpQrAA55VulMLk6qAGw3UUxFAHPU/dqMPjIHSn8MT1BXoKVhXHPw656EfNT2mCvhAccDJqIlpEZsYzwBTmXfgD+Ec0DuMAYSHccg0KWOxV4DHGf7tDAggqCee9AJiZgRkN9760xXFbcHxI3KthaC7LJ+75TOT9abIchVJ59aFkAjdPXvQVcWN2SMsDgsegrSW7j2DJ3FOgI9ayxIEIyOegpMvnOMn0o3GpM3opopJI0ZgVYMHHotJbQlDcHcGXOAPUViRyeU+QDnkH8asJcum5UJx1JoY+ZGgxxEI4/uKc9ehqWV4lu9qx/eXOaozToh/dqemSPWm+Yqoju5x0Ht9aSuO5clh3v58YClRg57jvUQgHmlUwMr8rdzmmmYqYwRuT1B6imtPGSHjJDK+AO456UILmrFEqxIJlxvG04PXjFVDbtvD9Xj+Vl9QOf5Uy4vWEJ2gh1PzA+9U5byQKCr4O4ZPc01qU5I04nje7dAuN4GGpbuxWEB9q5c43GsuW7ZZEOV46BasrqZmhaOTOOxPQUMXMix/Z2x1MhUrjdlarxQg3CrEdhJwT9KW0vmeNhuzs6kdCPapbcxSlZlYISxzmmmUrMtNvVwiNwPm+tKMS2u91HH8Pv2pDITbYbGCM5HpUNvIoQgBiGOcntUltIiFuh8wxjEinLD0qmFdpMMcMMnFaMk6ozPwoJz/vUww+YnmoOWNBm0VpAzRxROVUkk8mmIoLEE5IHHtVswIYcYyN3JbrTWg2MfLH+sHymgnlKQPOTyTwSaUIroZlUF1BG0UNHmRSTwOCKdGgR22naOuPWk2Z7EUUWxvNz0GSgpJYWUEbMMeSMdKtbV2jLjLndgdcCmo7SSFh90560XApyR4C4OBnmmuBg4Ib0xVgSAKOhDc805Rj+AAHsKYupTZWjcK+VOM81K+3y13ZweRxU+xpYgcbmB6ntSyp8/yqDhcfjQU0VkiwwfgjFPQ4YtnJP8OKkTeY1zjA64pCPmG3A56mpuKxCSGbjIIPpSqqyo27PJ9KkkgLONnJB5xQ0LIwGetO4crIVVUJLAFie57UskSBxsUkd/anBPnYSEbRSsqKoIkIJPFFxWIBtEp4+WmmUk7urGp9oUEH5iaaIV2Er0PSmAqsSue49aaSd+7pu5FAcBwByMYxSNICFHTH6UAEjPjIOCO1MG5sjcOeuakUFm2t3/ippjY8FcAd6pNARPkgZ4IpDwACcE8inY3H+9x19KZtLLkcnpmnoMQfMRuJ4NCyHByDuzxT2UqQvfFTfJIoJ+ULxSukBFhsDjoKdEMIwJyxGMCpVcxqQCGJqI4Y5xyAeF60XuBLyxBx9znj0pzkeSGA2hu1QxSOg2sDkDP/AOuhXDI6nkscrSsO4+KURyxKSQobI9+KaJCZ3kztbOQBTcFiuRn09qjbI+7yc/lVKwJl6WeSS2L5BYt82eOKozSbmIHIJFTLtdcE8jtUBw3zDgBqFuDZIpXrsP405TwwU7c9feo1ZnDccCgDIGPvUSQiUsY12HggcYNOjlJZmB2hE3EVXZi8jluNoxU4hMW9HIyq5P0o+EuNz//Z", "path": "images/4pts_ADE_train_00007776.jpg" }
depth_point_71
images/3pts_ADE_train_00012373.jpg
ADE_train_00012373.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 142 y = 215),Point B is located at (x = 31 y = 100),Point C is located at (x = 153 y = 122).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_80><DEPTH_41><DEPTH_84><DEPTH_54><DEPTH_6><DEPTH_5><DEPTH_17><DEPTH_30><DEPTH_60><DEPTH_23><DEPTH_9><DEPTH_64><DEPTH_66><DEPTH_9><DEPTH_7><DEPTH_30><DEPTH_73><DEPTH_76><DEPTH_66><DEPTH_25><DEPTH_25><DEPTH_44><DEPTH_15><DEPTH_0><DEPTH_62><DEPTH_77><DEPTH_74><DEPTH_58><DEPTH_38><DEPTH_19><DEPTH_74><DEPTH_64><DEPTH_44><DEPTH_58><DEPTH_31><DEPTH_73><DEPTH_38><DEPTH_72><DEPTH_76><DEPTH_19><DEPTH_76><DEPTH_64><DEPTH_19><DEPTH_29><DEPTH_70><DEPTH_70><DEPTH_40><DEPTH_9><DEPTH_45><DEPTH_72><DEPTH_49><DEPTH_64><DEPTH_72><DEPTH_22><DEPTH_30><DEPTH_70><DEPTH_20><DEPTH_60><DEPTH_74><DEPTH_49><DEPTH_38><DEPTH_74><DEPTH_72><DEPTH_58><DEPTH_78><DEPTH_31><DEPTH_49><DEPTH_40><DEPTH_29><DEPTH_72><DEPTH_64><DEPTH_25><DEPTH_25><DEPTH_19><DEPTH_9><DEPTH_78><DEPTH_44><DEPTH_64><DEPTH_72><DEPTH_36><DEPTH_36><DEPTH_74><DEPTH_74><DEPTH_36><DEPTH_58><DEPTH_94><DEPTH_94><DEPTH_16><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_57><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
3
[ "B", "A", "C" ]
<DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_80><DEPTH_41><DEPTH_84><DEPTH_54><DEPTH_6><DEPTH_5><DEPTH_17><DEPTH_30><DEPTH_60><DEPTH_23><DEPTH_9><DEPTH_64><DEPTH_66><DEPTH_9><DEPTH_7><DEPTH_30><DEPTH_73><DEPTH_76><DEPTH_66><DEPTH_25><DEPTH_25><DEPTH_44><DEPTH_15><DEPTH_0><DEPTH_62><DEPTH_77><DEPTH_74><DEPTH_58><DEPTH_38><DEPTH_19><DEPTH_74><DEPTH_64><DEPTH_44><DEPTH_58><DEPTH_31><DEPTH_73><DEPTH_38><DEPTH_72><DEPTH_76><DEPTH_19><DEPTH_76><DEPTH_64><DEPTH_19><DEPTH_29><DEPTH_70><DEPTH_70><DEPTH_40><DEPTH_9><DEPTH_45><DEPTH_72><DEPTH_49><DEPTH_64><DEPTH_72><DEPTH_22><DEPTH_30><DEPTH_70><DEPTH_20><DEPTH_60><DEPTH_74><DEPTH_49><DEPTH_38><DEPTH_74><DEPTH_72><DEPTH_58><DEPTH_78><DEPTH_31><DEPTH_49><DEPTH_40><DEPTH_29><DEPTH_72><DEPTH_64><DEPTH_25><DEPTH_25><DEPTH_19><DEPTH_9><DEPTH_78><DEPTH_44><DEPTH_64><DEPTH_72><DEPTH_36><DEPTH_36><DEPTH_74><DEPTH_74><DEPTH_36><DEPTH_58><DEPTH_94><DEPTH_94><DEPTH_16><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_57><DEPTH_END>
142
215
31
100
153
122
null
null
null
null
59
26
86
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD2oKKcEFOApcVvc57DdopQopwFLilcdhuwUu0U7FLilcdhu0elLtHpTqKm47CbRRgU6ii47CbaMUtFAWEwKMClpcUgsNwKMCnUUwsNwKMU6ikFhuBRgU6imFhuBRgU7FJQFjN1QFjbxrgt5ofaemBzk1YkvLeOcQs+HbGM981i6u8dvq0Smbc00qfu+cgHjj64NZ2tXN0biSISxskR4VQDs+U4BPUAniqlokkQt2ReKJhqDw+TGLiGOXIYNgAdG5z64rgdeQ2krSvhvO3MxyOSDge3Tity+vZNMt7No0LjJcqOke4n5cd+RmsOeL+0bCVpYZnbf5n7tx93GTgevOPzrmnKUmn0LirFrTGFxar50CfZjtkTLZCg9VB/Lr+tWb9rTT7O2uo7yMXEUhIjTowYgYyOmQPoKragltZ6MP3XlSSEKuwlsDbkFf7uDn8qp3tlcXSwCb99deYY1BXaNoAIbpk960pxd7rqOTOvFlc2UEN9DJKHuIn+4MKoyAH/ABGPxPtWbfvO1sWEn73aEDudxBxg89v1zzV7Vrtm8PWSQSsscUhyozk7jwD9M1z99q6wSWyIi58gLI5Ync2ckDHfHf3p1J8z0ehEY2JtWtoLi2kDXkRRwH6/eGDnp7jp71raDpsk+kWjuZ4YZPml/eFVH93APAwT09q5FYJf7Shh2pbvKX+8+dvQrz7Z/nXqz6cLjRp4LNnYDa67TtJwvT8efzp4dRcrMdRtR0Mfw45t9Et4pJA8sylpJsnLZOB16elZMmkwzeJL+Pc8T/ZYpUAABOcgE+uDz7V0UNpHam3iKFZHw2zOS2OcH6Zrm5NYlk8RavJGge5khECKinJCtgqp9fQiunkUZtkubcbF2SG/tmhSbZIkhDKRyDGOM9h0xxVu+t/sM9vKDI7Lwyxj5NmR+X3q1LywZhZyuyYAUsCC2B1IP41Qu4bmSWTZNGBsCkN0BB5IX/PSpc0p8y6itePKy/pepTzSSTybvs4bAQnJAPt6dq6PaKybW1lurC3ZAkO1+oTBZQeD9eK2SKqTsTFEZUUm0VIRTaVx2Iyoo2j0p+KTFO4rFkClxSgUuKwuaCYpcUuKXFK47CYpcUUuKQ7CUUtFAxMUtGKXFFwEopaKLjEopaKQCUYpcUYoATFGKWjFACYopaCQBkkAepoASgnAyeBSB0LbQyluuAawNc1BraZ40cGTaAUDHlSf0NNaibsZ/i28to7q22ojyMBuIGSwB4H4DcazZbpYUkitw6yOfmZ2BJXHBOf5etRapLbXehAs/lXSyhUaJzhBjPP97qf88VlWlyLU3lw06O6ReWqsM4OMDdj8awqyd0kxRVx4WCYxR5TfECRkfK+euB2Pb1qpYx2+nSfZ4w8fmsXC53MOMnH1AyPqafDKk0KkxYQxsCP7ozkE9sYJ59TXGvdSy6kZWfM+MAk429h9SRj8hWShdWLZ3lxYwXyy26q6o8u0xMn3RtGCQDwM4/OsqxsNR0O8t7uZprixVmRZGTzPs+7gFx6BTn8asw3oubD7dC+JQxDh3wOAM8D3/pVGa+ljSaZJXVrtdoPmHC8ZYEdM4Jx7n8uijGysyW+xNdz+RFORNGUH76Mo4ZSCMYB6HPBx2rmby5UXEcpi2W5XylAJUlsDd/OrkRgtrAW97AAsgPlEJtZckAj2AZc/XNF3bW/9mW8W/LXDEyyvjagA6dOuec1EVd2W427CaL5cmrqtxP5nlsBuwWJAIyOfWvbfD6j+zRKhHkSDcmeWHY5P4CvDtJsdRsryGQkYEn7l2GQ+CAQT2/8ArV0TajqMtld2Fu5Fv9oRGCvghQect2H+ela0V77VyZ3senQy2l7Il5Gu5ArEsR26EVySWFhZ3Go20EzpGVWREAOQTyGB6jhmroka2ttFt7iKN0WKNljQYLFsdffuOawDKdY1LVJD/orC3VGZ8fMjYxg9vu9q6JSTaiZpNK5oxi6uLRbdo2FsgVDsPzt78/l71m28v2HU5xHbu7o21BIvBGSf/rfhWvpIUiWNZP3LPsQ9G5zzz14H86kOkLdPK0CxErJjO7JZcdQe3WppwXJ5hKXvHQQM0kCOwUMVBIU5APsafiljQpEqk5IABOMZpcUrjtoR4pCKkIppFVcCPFGKfikxTuKxYApaMUtYmlhMUuKXFFAxKWilpDEopaKAExS4oxS0DEopaKAEopaKAEoxS0UAJUVzcJawNNJnavYdaS7uVtYg7d2CjmsrVNTiR2RoQXjRZIyx45znNOKuTKSRZ1LUbePTndZvmf5UK9c9q564v/tRP2yd8fwiNCPLHTJ989qvamkdvpoMUaiZp8guvCgHGea5m7gne1+aXyz5hIZDgLjufbp+PSspycZ2QlqjqrTU7VdTJ+0PsK8ll4bjr7Vj65dmG8mv44TJHLEY0JwCMfe4/P8ACs+xklSZJnRPvAEOTy2OGx6EYP4Vl39vJJf26SuWQ4jYo2ELMMFhnrk5H4VDn9nuOxkatPLJDBNZ7ZCAWjhjIbYQ3JOPTjrVXQZpfPuw7SfMhEmWAbfyST69Ca159NvbS9jgtDGLVoVdgG5UAjnp97/Gq+k2bWkL3EsUP2b51URjLEg5we+Mk9uMVnzJ6IexqwaYk3h83dtlpAMbWkxkY4YjuMY4/CuOt9JWz1WeC8c4Q7w2DhQcckdSuOPavRtrrbRQrAHRIWlPlpwrbgdvuMZrF12wvdT1tbeBLUFRsWVFxuQjdk+nI6ew9a6IxTjo9RX1Ods4/tMYubSLZMkoXYvRk9z3HAp0H2iFZVmstx3iRNg3KrA4ye/GCfrWvoNmLaSJmSKSNGKM7jOXJ4bJ64/wrV1B5LWWO0t0hWIg5lYglD33eh5J/CsZyeppbQwNYsYJNNtJZptwjXLoRyM5+bH5ZH1qhpt9AqRQRoJ+hKyHCKM9l5yTkA/StO8sINSAt7xXWGMkB48fNkjHzcjLf41QtLJtEnuWDKGQHyJcAggnAwRxnnGPapj8Nrk2N+PUrp4Zbizit5CuCJCABx0A7kjI4ptjJbLZSXNyjw2cMjCZohhpicjv6cn2GapakXt9OtJ5Wls4ACroyjcisp+YD1x/kVa0MeRBZQrGZtMlYvF5gHRwRvbPUkdu3WqprllpoDOsihkvLqOWUfZLVWYW9sDlip7sBxz165q1rWnpdojRSSWpt4vMDxxghycEKQevTpVa41CCaeTICIgJWMAqxVSAuPxz+lJrN7cXOmxSQsSB8pJ/iJ4z19O9dXtI035mbUpnNRXNzbWeVaSRlud5+6PNGT09MV0Wla5PcTqljFbJAFEkzkYK9Mj+QrnFufs8bWm0EbmR1wACq4JB7flU2jwNJNNHEz28Rb9wrdztzx+X61lCpOTsOUUtT09HH2feH8zAPzDvUMd7E8yQZPmsD0HHHXmsbSdSSKNbQnytsZZizbiCcnkk+1WkvLSwdFlcRsFBdjyCTkkD06GtYTTjzMT3sa+KQiljcSxq652sMj6UpFUmAwikxT8UmKdxWJaWilrM0ExS0YpaBiUuKcR8opMUgsJRS0UDEpaKKACijFLigBKKMggnPSq01/BC4BYHpnB5GenFJtLcCzRUEFzHLGzBwQOfwp8E8dxGHjYEHtmi6vYDO1zbHBHO6GQRniPGQT6kVnafcR3M88l38mMbpWI2n29qd4quI44EZyNhRwrdQWHOP0/WuP064dbiez+czL88mTt7n17nP61UpOKTexk7NtG14plVG+xQu7HAMigg7ePU9AcEmsjSrmS9m8hGZs7t29c+WWJ5Ht3z6ZqbUJAZHX7K4aQfKzD5iOOP1P51DbSL5skIga381QZCPvZ6bc/j2rkdVc/M1cu2hYkszaX1wvmKWRGQ/McMfVh9OlQPBDBEWuIRdAKCGB3ZIGCMf56GnvGySzCd/Mkl5JAAKA/XORj+tV47p8TCGQiMEJGNvyrj7wx9P51hZybaGhrziewkQrIt3LkKuR8oHA5HTAI/WoJ4ki04Oi75l+cOshAJK9c9MgDpVtYlWcGWQhZEV5EBBVjz0I/DOB2FZst1N9rDi1RkKYkijXCoc4yRj0qoXg9AkiTTtVm/teKzdttvNJ5cpZgw5AyAc9AD/KtHXrZINagbT42jeLDpLGcowIxjA9h+JNYskgheOR7fsQfLIJ7KBgfeHA9+a5jVdZv08SvJc3RVVVUMUb5IXIIHXGcnkev4VvQmoXSW4mrnbW9xb291M08ZFxnJ2jeEIGRxnjt/kU+WX7QJJSryRMrB9yEnA4YY6k9f1rBgjMjG8+0tHE7GWSMtgEkjAx3H+PpW/LIJZvMgBmFxGA8aL8w3ngkjgYPP0NTK05XQ0ZVzK66WbiKPZBHMJNwYqcBsYx06ZP44qqbiLULU3vleXCkjPDAgx+8yM7snsTkdvzxWiLd73R51S3lQArEvmOcSEnoATgHj8K5a41KXRIZtLuWM8MK4n2EZc/w4IPU5Geewq4U1u9BXOgmt5LzTre11LM0c0W5mGTJES3cfQVoWUkcFpaxK4lkiyFDE7ABkAY9s9P51zuk3MxaSWWfB+zRBFJJCjAJAHcdK6SG6iCxiCUhDvZl27SXwOmepz2qIq0rMqxn6pqsl83+jywx5LR+byWIwOmT6k/nxVu2mu5oLiNXDPGgAa4XAI6EnjocVyclyIZbVg48wvy47AHoePqa2VvDMTFDJnKjdl+d/90D8cAUpRsG5esdRl2zwtGpe0IJjdcs5wAQOc4469MU6eeaWyintrlzMX+Y4OUQnGQT6YzWdZWB1RbuSy3JJvxGGbDccgehAGeParsUF1aWi2zxSOZF+YL0BJHQA9OP1NDskFjalvG82FZF82MMPLDHLMSuBkemf51elMrJFvHmKzhZGXChiODkY9f6ViTWk6RPMsfDNnaq42leTn1Bx19qfez6naXL3Dzb8xh/LPYEnaSPqK0oc8lZK5nOyPRrG8gmAgiBXYMAdto4FXcVzmgLNbRxSzTpJDcDIbGCDyTk1vwzrOGKg4BxkjrXU01uKLuPxSYp2KKB2H0tFLUFiUtFcj8UNa1Hw78OdV1XSrj7PeweT5cuxX27pkU8MCDwSOlAzrz2pK+edO8a/EG38YafY3viyy1C2TW4NMv4ra1RSjNIQVJaFTghJBlc9Oo4r6I4PAIoATFFLijFACUUuKXFADSQASTgCsLUNWmjZ0twFycK5PGR1/lVvW76OysyXkCZ5JJ7CuLtrs6iLks+6BGOQB1J6Y/CuerUadogb0OrNFp8hP7sMxO48ls/5NZ0k26/3qxJICkjoc4xn8v1pi2co8uGPiNANpwTnjPTPSlurCZ9qRXDSr3THI981yupd2bHYseYVil8iZgSPL+bufWn6BKqzK7y8ABvlJxkjnp1rGPnYuozhZVY7Hz7j/CrZuYrQYlQoMYDqOvY4rSLcPNiauyTU7hf7Wkht5/3UZ8/y2UFWI5xnsawoVMtw91KxM09wWZtmW5I4+gGPwFQ6neTnUo44ZgFLBlUD5mIAP4epzVS5uZkWGKKSUknYwRcAtjODxyeSB9KpzlU0vuTaxqT3KRMbdLlPOZP3bMC20nrjn29OOKWeK4bfIJAA/IDfeDdMHn0HFc/ZO893BuPljqUbnnceue5YD8607vzWvt4aPaiFwOcOc4PHuen50ONnYozNfup4vEEDGBjKrhcE5WQAE54/CtuHUbdXdZIo7dpAnG4DBYdcfh+tVJ4l1ueJzEZIonK+Y0mxl464/wCA8VBb6WY70Ce3E0RkDLIOQAO5z0LEjj37U1YF3Kl3erZ3kD3E0hjCkRSKACe3P5n68dhUtsL2Z9QJbYZFBAMmA7AdMnp6ZH6UniEA3XnvZzTWWzMrKh28/KGOOgUAciuft9UuL+4iit5mEwOyOSUcbe2Pzo5bq6Cx0l7BcEW07xxOoGZ4i+0bcDgY6HOef9kVm6xpDR65aAWKHzJtnn78naASMjoDjqT6Ve0C9ls44/tzD7TlkJk2sr85+p6k5PatxbhtGR4ZmheWQHPRdpHO0Hv9T+tQ5OLsI4y8mu9DnnktY4p7JyAAMBizfwgNycFT275rpfDepWd5qdsXjlWVszHa23IGM7x0I4P61dfTrTU4M3ckMcapvMpj2mQkA78dsA8e+eKS10+0sJp3tI4nt0DsjEeYrZAOxePlGRn1PWiNZW5WA+SZYJJC27e8j+VHOecHJX8OMjODgmvMb8CfxhOkLIY5XRgZV3YbgdO+OSPoK6jUdWciG5sXVJ5ZGEnmEKE67QenOBnI6YxXMDS7pfEETuqobkbUGcnklQT6d667Npu3UlHT6elquntayXEk4iPDuCWIHQYHbrz2rR09I7nSb6QIz3VsyoyOu4rnOQPXOP0qe302WeAi2SA+Vx5kZ5Y4xj2APr61j/2XqLNJdWAeOdRl5WbEcyk7cY7nIJFZ+zm2XzIgl0yKYJJHE0f7oFk+8+c8E+g5z9K09OhaGNQLaXy5H8xpQmdpAyBnHGdo9qmtNPtYrEX3nuzyMInjTouDgduRjtxmtC1tJwJEikBgkjGDGwwgB5UH/P61MpQsrMSvfUyrScRu4hQoMmSMBPkGehOfX1960HuYpIGmtmiS6gYOsoQ7lOec44xioJblIryaCGAssTqGIBU7SOw9AOx9aiiurRbuOKVhGPLDxeXECsig4+bvnrk1jLXUZ3OjRubae+bZNbumxFjwGY5GSe3bjvg1yWqGCDWrC2VXkZHLK7t86oQflPBwAfr3q5Hf3axm3soQ2W+dSoADYyDgdzt4qddHsbnRLnXopZDewklxIcFQoBYdu2cH3rqoVGlaIpRUlqT6NNcxT2qsGkR1UGP7wC9yB65J/Ou6t5FkQhUZQvADDH5V5tDdENJJa/vSOY85GPTI79a7TRNUFz5VqQxZYQTlcYxxyfyrZTUrmajys2sUlLiigsfS0kbCRAy9D0p9IoTFcB8bP+SQ65/27/8Ao+OvQMZ61V1K10+9sJLbU7e2uLN8b4rmNXRsEEZU8HkA/UUAfMFt4s07XvH2kJZxM32rxRb3qPJp8Ns8KmU5QtGSZCdy5Lf3Pc19UlVbqK5WLw14ZiuYrjT/AAto0EsTCSO4+wRoysOQy4XII4OeKvC51S2iaVnjnA5Mci7Wx7EU7MV0bZBHQ/nRu45BrnbPxrpF3M8DzeTMpKlX9R/+qt6CeKaPfFIki+qkGkMlBBHBBqKa4SGN2JBKg8D6dKiurqG12NJwHO0Eetc/LcOzy7XRlcFcFsBcjgn8awq11DTqCVynd3K6lEs10m4HKiJucc/zwKp3NxbKkSxoqksASrcD6/gKhubaeyEEMKl8buTzh+PmP4VGkH2mJgzB9jEEhcDPTj864rc3vNjNa4la2AdmYRMvDnp6fN7ciqIaYN5ysQqnAB7c/N+NRXMwt0MMkjsHYL8pyVwveqtxqMZUSbCc42YGN2Qc9+veoVNvUpmhJHA5kd1O5huMnoDz0rPiupZbnyH/ANQxbBwT7jj1p9vdRS2rPJgb38sKSW9ccdKuWtpBuzCcYVcg8jIPJx6+1VflVmIr3FvFCkl5sCXGMsQQBtA5BHcZwaxlv7KMyQXDtF58ZfkjEbbcjB6j+mPep/FdzHbFEwzPKhyV5wpODn3xn6Vy9/vvNQS5tnjeQIc5ycMB37Z7fhV0U7ashs6cyR29jFC0UImaVVQGTqByWye3XrVuCSKZ5GBDRhyAjsQXbHK+vU8duK5QTtNpnlzPEGQrEskjHIXgjb3z2PrVuK7ni1ySxto42eR2YyltwA55A6AkDp9K2cdCtjQvL1NNM0eStpeYZJQQrIeBtwevFX4L12sfLRoYhcwsDKDkKex5HsDyareZaXDiU7Wd42+VgDk4x8oxkD1+orEj1OW1a5tBBG0MQUMACxHTGT+PPeiKutBDPFMWq2+mCzgmuRYSRHM0SFgTnofTdn6dKTQrKE2kdv8AOhGJSwG51cY+6D0PAHFbNvf2cdxBHcKPni/eYJwHUkHr25xnrmsG1LR+IryzhhcwtLsjklbLRFweDg9yefr2qo6+6wuat14dmubyJ8gvDndj5GAJJ3Y4U9f19qgvdOtYNSs5DcQSpIWgmYueWCnOTnJyNo/CtSHT55YxFcXLiU4SWVPk2D+4o+vf6VQnsZYJL/TrpYbm0lYyid22sxYnAHP3hj2460kpNXuFzD13V9Qt2exZzt+aMlO+T37EAEDH09K6fTbS5SzLTswQRqEkEu3OQGZgPXGfyrDXRptY1Es20W54R0wFlzgD16YxXV6zJ9g00Jbw7LmWQhVK9CAAyg9//rYo5UlZCRjXOnWEmptb3iP5TyBJH352E5z29R+OfpXO6sbP/hMEttOM0qQ7IgZWOTt5K8/Tj8u9d7Bp62+nbZ51fcM75DlmYZyxA5zux+lcrqnh28ufGcN+hBtJhGEHRywUZLDH5kZ5IFaQxDceRi5Fe5dt9Tm1C0a3d7Syt1ym+Ndss5wSFGOdx/z1qG/fXFbfFCItPQKkUSsN8agZJIGQTkmrui6fYaakxuk/e3MryNJNztXJPPpVy+nSGykWGJCrgkr0AIHJI6nv3q2+bVstJLRGXaa2ltpskKCWKVVAgKLgsx7/AFBP04qSyvNTeNpTDIrwx5fMYBJBBHynHynH5jPase+mS2WX5AJ8qJHznY/AwMdsdD7VBFLeXSK5bzJtpOA2dxB5ye/eub2ersIdqF5GmqG5sZHhLbmZSOULjBx6j0PvRaWjxok6hvNRCzJyTgnIOMf5FRXVvMJZZQyFo1+aNwC2SOmR1rpLLTlbzMrHsuLdY365R8gEKe568dOlOXuoLFmOOeDTjHLmNGZfMlztL55Iz9OD+FNt7j7TbTxrIkBbI+VyqkYwCT9B3rStNLmBSCzyZxHnychl3AkZxn3yT7VU1vS7vSrNZJrUhJpfLYHGCR6DsOtFOLcboaHW8nkQLLPuhDREKCOgPX69M1vadeTRz2p8sbmIAjOASc9D+ea5O2uAl2qMxnQRHCsM9c/y61taLOsmqpNM5zCRvU4BDYPQdq2pRvp2InoelDoPWisy31OGO3UyzM7sN23byvtSw6zFPeRW4jZfNJClj1IBP9K6eVhcsWM11cZJgSGBeE+bO4e2O1XnkSJNzsFHvXF3Ou3UUSEL5SsMRxKuSo7DArX0xLyRY5rh4355GckCsI1Lu1hpmk9zNJxCnlp/z0kH8h/jXluv+ItE1TxdBY6lc3E+kRxsshWRlWSYsPv4I+RQARjHPqK67x1q0mm6N5EJCzXbFAd+0hQPmP8AIfjXmlppj3oMjxF7dT85M25c+hzWk4c8bL+vU6MJifYVed+a00aut0+6/q256B4MmQy61b2Vy1xo9tOEspXlMhHyDfGpJ+4vyheMc9T1roJi11Z3OyBo52TbtY47+tVfD0wk8PRR4CmJfKABGFHQY/DFTQXO+0kLzEz7d27gZA5pQjyRSIxdZV6rmla9vwVrvze782cvq3h+S1AN7axzRseHxu5+vUVX0rT1trtLiC8ureFTym/Kn0GTyKZqfj1r+WOFUItvvMwKA5xxxnmrEd3O67BAqBtrY4yAecn/AD2rDEVJRVo9SImpPdz3y2/lPG0YYtgtyx7Y/Ws8vctNDcFYkijfaULjI/8Ar9eKS3uEt4Y0uVWPMxdPLHyqBzjP1qyyPdSLKknlqgZSVXgse/8A9evOfNr2KG3t6PLLmNnBbJxztUjk4qtb3SzWcMsS7EdQdhA+U569Of8A69Q3Ms1vIzmRBHuBchwCF6ZNMFzBNdNNI6+UoGcLgZ/iP58CtoU/dTA1J7mMSp8qu4OQCvzccA+wz3rDmv1a4kfUI9qrHhDH1OSORnocGp7fU7a6nuJImHmqwQgdWXBx/L+dQXUunT2t1MzmSdiDGzLwB1Az6VXIou4MeiGPS5J4X87/AEiMDzB0AyePXt79auWtxG1vF9pURXLMGWJAOT2z2wc1l2RLaMuJVVZrhp2wMhio549csOnHFVtQ1iaG3jS4gZZl8smYN90NySMdxgVpPeyIZZ1RHImSVHimMD8qwYqM89+e3vz9a4CRHks31USoohfZ5EJKnphW/Oup1a5hcSCO7/0cwsAFALjBGc5xg5Ix+PpXnbXkyxfZkkYQyN8ybjhjnirpx6IlvU2IdVMdi+zOVJBdzuZiTgYOMjjOf6Vwl1pujafBHaXkl4uoSWSXQnV1MSs8Ykjj2bdxypUFtwwW6YHPUR2XmQsWfawA2jHBBOM/nWCs3iGTTVX/AIR15JUtWtVvzaSmUQ4KleuzhSV3FcgcZ4GOhWRR1fhPUZ9M8G2F5GqbI3dGY4yQXYlOOQOM/Wti6vEXUJruWeSG2mRTsjiysshjJTI7c8fT3rjtLspLbw/bicSJIQ26KRSCnzNjg+2T+VbGmRoGElzLJJbRZCrnlhjHHp1OPc1Fkm2BqabJOkcFzGSUL7UkBIfGSMDnnPP410en3N1JdxzyW8N0+AgcRcswYmORR2yo5OOdlZckVrZXjrukmtYrR2hBX7pB4AwASV4574NV4tTjv7OyhEl9a3vm+XHIgJO3OAzd+pOM5+hzUuLWokdZdXxja7lkkt4Ff96yyYOSOD7jqOP8KzbCaKWa0S6vN8N5P5EPGTEOmCfTOOB1+lc9baHqeoi/a/1OJbmBkja2yHMhJyGIzgKCev1qKe5bSJGttTdWZkXy5IpPmUjBGD9R756VpyOPvtE6PQ7YW73V7aW1lLarbpO4d3fa6KGID46qeB04+erPiK4t9JsdCEjuJPNIZHJOAVO4/wAufavLr3WLrUry4vXeJHEWBtwoO3jtjmtiXV4dYFrYXEzpDaQLuZ1w0i8HGD3zjnr1qar5tI7DirI6uyXdqEschV1jkVk+f5GbcR83HPGPxxWxcWIR9tvIymNCFYfeAI4Pv1bG3iuQ1LXvL2vaoCY5mLRFhnBGNpHoeRmut0TUIjLbRsY4LiY/gc+gz2HArkakmmikZTaJqUqWVqsFzGznG9v4mHGCSeOmenep7/wxqmlWkeoPdQOCTGYAT3ypAz9ak8V69fy3stmt4lunmARMVCDbgNyx53dO/esG3v8A7VqytfXs0yENuldy21QB1H489O9dFooZX1a3mS5069+wJDbTFiw7MoGBn8s/rVbS721sLqF72MSBUG0Q9c7c4I9+c1a1zWJCSLeSFkTC5QEfJwu3kZGQT9KzImcGFGt4/LB88o3KHOMfjjsad0hGnGlneNJeIrR7JVUxgZIzyeB2HOPatTT5rjfAsMkbKHDIScYUtjJz1OBWZG+mieMQRyRbMOZC3LjGdpUcE9cY9RW6I4mG6Od4ZMgHC8qOwA79e/1rKo07oZ1Oj36afM9rGgklk2nzyvqeg/DnFR+L7WXUbpLZLouZnzDDjO5sfp9fU1zl1rH2DUhJbwsZ0UKsu37j+pA4578/yrttEktJLR5mlJkADyDqoYLkMPfoaqlJ294DnLfw39inW3uJVkmiQMNowFJxwfpV5NIt45zOUG98FguduR3/AEq5BI758xhIz5kZgeWPFScYzjoe5ropuMloIjG5skgAVfaIQaZBeEAPDcpL/wABztP6MapgEtwCa6aWyEujvaEfehK/iR/jWt9RWPFINQu5tXhVdhKjIEufmA/lXcWd7HaT+bGhSSRlLRxvlTwA3Hb1rkY2W8vbTzo4IRMMJMg2lWBwR7V0ujR+Vq7addbGuIeAQAN4H9enFedGXK7jaMnx6tzqupCe2MojgiURqDjdnlvx6flUOjeN7PRfCUmnFfOu3LZByevHPvXZapYpJE8iRruwQRjn0ryy20uCNdR1e4VXiRmWCM9HlPT8AOfyrthPmjqRazPR/A+pNfeGLyWdWCxzHADEnAUGtM6hZJo1zFFIYvLtn8oNkMflPc1j/Dazik8GTmeTaJJ2DENjsB/WtjXdPj03Rr/UUZZfIs2KJIMjcBw2auVtg13PJNVjGj6ZbWjSl7+cLNcMWOYl/hT2POT+FdF4dF/LC15eFpBIpjV3OWPGQw/T8q85e9utW1bEwae6uJPmZjjJNerW0SaPZW+mqRcnOSDgBQemf8a5cWmoLzCDuyw1sj2sRxg7wzh8EhuOAO3epPtZSMuGJCpkKF+6o/nxWPf6kkReNkdtjAkxjAzyT/KqlxrlosAjhlcSSqVYyL/qxk8HHUH+VcqpuSNUWdSvo/Zo2HUt24xx/jmsu41aAwwGJEjwdqjOc4P/ANfrVPVbnS4dOtpRvd5F8pnXjA67h2PX9Kr6DDbXSIbhn2pnynIO1uOenvXZGNkPyLLytp1y0sC7JHOOCAoz0/Rqlv5vNW1i8zYruzDZjKnpu47dfypj3LSQF7SzVwoOVc/fABy2PbiubRg1w8+fLUknr1GP15I4osJs9EtY5bW1gmlnEUapsLA8BT1HTqxxn61yV3rFtPcMUQCYS9CxK4GQB78/pWhZ6hPqekIt3PII1UhQI8jGRjAxz+fakt9IsLS/gvY7tpcoBsK/d6c4POM8DvnFZcru5PoSxlpp8Y09nbc5uQy/KQQFPdvTkda5KPQbl541YCKVmKor/KGIz398H9K9NJtox5a2ytEIwsczJ85BOTuH4frVC0tNNupY5plSSeNsIJG4LDBye3GenSohUabaJscsbFIiI7pfKmaXOGBVFB6gt04OfxFQjU5ri1/s93Do7MELHack56/h3zxXY6vopSyR7cmZldZZrdn4mw2WXPpyT+H0rkdTi8zUhcLa3NrCcfI0RTHfCj0Io9q3Ox6dHC0Z4d1JS116rSy0TW75tk1+Otkn8Pie1a5tb22ugqeY0KMQy54+4Rnrxn/ClWGePw+twkDwxxFVYsAWyx+8AOgyMDNW7TRZF0VdQYqgQsufN2ths4U988jj/Ika7ns9AMEkeyYToYxKhy44XIX29/XiulWe55t+w7TNNmk0/wC2QJLObdS7M/zBSXHUnpxng5P9Osn01TqFytrayI7A3iGFRv3sM4PYDqDn1GKz/Dsd/r2kumk3kKzLKslxZyLg7lZcNjPOe/bAq5cRXmnxXVvqizWtxd/KJxdAAooDEg++WUDvzxmujlT5dDO71Odv722mie2ggjTUfNyt4i8OBzuPPY7ucZ7Vn3jpqVh/ZmtLFaXsALw3K42PwSp47EdvTnrVTWpLa7mXaQjqqs2F8vZhRgc5yO/FY17OZkhYymWVVAUcnGOApz1BFZN6lpmZaXK2eoRvcQeYIn3GM9GI9a0DqU95qk94zLDJcSZYqvEanuBVC6gDOMOMMSFBOTnpnPpx1pXs57eSH5WKld4yOB+PQ0mPUuYMV1JC0jNGCUZhwcfj25r0bwrbC4st1uZLeKMB1aToOeq+nHT6k15tcQ/ZLhA7hiyhnwc5J5/A812+iW5W8t7cXebQsryw7+RtHOf9k7sH6VhVjdbhsdZqmhWcuoStIZJmjjaUKW+dhnI4/Dt2rl7nR4J7uMW7YjiXMx3Hac4AGR68j1+U8VtT+I31zUPsOnWQt4jEyM7naXk52gE8nnsKpeKbKx0KwmU3cs91clDIpYlFwfvcdycnr3NVGFnoNnMyXii4uJJ4UDuu2NMdByOPoQKlFwY7KSJlwrNlnI+Y5HK5HUZ5xWCJFRAG2/ONuMjpn863DDNJYTTO5EEeCGPHOMdPrxVOFhDrWZBGrsC4Vtp7e2fw4rqtGt4mWWW5QpsVcp0zz94f4VysMttNZbCr5ztCrwmcjBz9M122oC2s7PTGt7svdKubjeQ3oUx6ck1EoNrQaL9hYLqE0tzcJIvlybWhc/LKN3AA/wA5rbgmhja8is4VQ3BB8tRkqp4P04FUNJtpGguJlld5pJkKrG2SAGwWH+cUarHPbaheyzo7xQqCXVemc4P8vpzU2la6GXbfylnZmlWIpjIlcj2/GpJb6zTISZ5cf884yf54q3po09LGKa7t2d5Dwz5OMjPP06UkmrloNtjFAjKwVwISdwJxwauE1Ba7sdh1oskmqpCtrM0QcZmPCkdc10SahbPfPZCQfaEGSh9Papbb/j3j+TZlQduc49qwb2287xArbjE6MrJIo57ZB+tdO4jhpNOg1bwvd2ll8uoW1yGVc4OSv9cGs3Vbi+/tJNUFrcwpBBEjTrztcLtJJ9M+vpWowGnM1/FtLS+TE8u47flZRlvfjbn/AGq6exuLT+2dQ0y4aPa8jbVbo6t2x+leXztdNDSUbjI9WttQ0U3s1z9luDAcLuwGIXnH1rynR7a51fW9P0y4J+zAnEXTJPJJ+v8ASvSLXTZtJurjSbgB7NoswsRnYuSMfyrAtkS2+IUc8duYoYrc8HAy208/yr0cO2znqWR2iaNZWWhG2WBI8jkKuQMnHT1rI8W2SWvh3VXt5JIYxbYMSSnDEnHI6YOa1ppWulaQShY2IC7u/XmsTWb83Hhy4gEY2TNEilj0G4c81pJa6iU3Yw/CHha3s7Q399Gjz3O0wsrZKLj+ZIrV1i2uItI/tExkRTEqI2YbsfT0JHTPepIp4baRLQ3B2xKFZiR85x0B/GqPjKSS40Z7eF2Ea4YjBx1HBP1I/KvMdeU24y1TehfIlqjD+2w3TXC7QiFRmQZJc4GPpz39Ko3sRfbJ5MjLxtZPmLHGAM1mRXSpOqsQQAFcnpn1NbwtG0/ThPdMSpkwiK2RjHytW6tGxa1K81qkttZCVejeXgDIJJp9lLHHO9n5DoCxbf3c5PbsOBVO3iuLqNoYnyy5kVc54HXPpW/ZeHFmmuJLm/8ANaVSEkj6BhwwPP0pzqRh8TKt2KQW0gtW1AxKm+JkIXjaMYJx2PP4+1c151mZH/eRtGDnYrFOOxz2J612Gr6fZWWnfY3lhEu1BsUfOq/eY/oPfmuP/si4udUDrHDGbghlDgY6Zxg+taRknqjN3N3wdPc33nQRlUtUIKRFsbWwTkH8OnvXR6nJBZWPnrYuLnfzIgHGScHjt61o2NvaafojW0VrBHIqGSSUxqpz6cduAazrTUBcafCFkQyLKQHZ8EHH3s9R2PeuWo05PlAr6vL5doBcTIw4LPG5DZGB1HpnNZll9k89L2MyWk4YR+ZLJyrbSVJHQ5XHX1NQagst1EZ5pCyo/wC8kVgF4cA5Gf1FVtVjBime4uWmjVt7NFgZH3UBUdDwc/WlCLslcDobbUoxe3Bll+aIhcFiyuu3O4Drj8e9Zcl9BPe3MsxjvlXBVA23awORjd1+6D9DXJSSIuqXMjMIoZI28lXlyxGMrkjv09q32lj1u2tUu1jtpI43aWWKMfOflCgjg5IOOTjpWqhZiZs7Ptepw3Wo3aXBgKOYkyokJyRgYyoA46dq6CHVdFl0iXT4HKoQAwdN5bP8IOOcNg/rXnMYjuruCGym33KbVQ9m45JPc56Cu90ZrfTktbm2RnlaTYFZcFOTnr079OKpPl0YHNR+HbtANR0ORItRiJeOLd8zxAjDgep9PSupvNRk1bRJLe61BLkIim5jkKjcMcngcYI4J9R6Vl6vO891cNZzPHf25Vxuwu8K/IA+vI7YrjLy+jaeW+VXllvWHnSj5FVyOVUdNo4NaRlJKwrFW/1KSNFjaeP/AEcGOIonzEHsfXt+FYVygtX2xyBhuDB1HYHgg/57VqSwxwXshLmRGbaHBBBJ4JOegPH4VR1BlZpYf3WUVTGYRkEd1/X9Ku1gKyzGOQXZVGETbwpX5SQc4x6c1d0u4llSRtpCkhcNk7myOgqlbQT3cxtAIzLL8yqXAXoO/Tp/KtXTY9j3QwVhXLZBwBgZ4zzg5/lUvVFRRBdTxtqZlgGYg58vjIJHqPSun0o28qlrnBvBmMIU2nBPAIHc5J/CsSNZP7KTIEs7yy7wQSQuFH6kfpXQeH7O6tLOSZ0e4lmAjSHdgLIOFz37Z+gNZz2Gb97posIVMtkJWVRJ58Um1EVSDgD6jqO5rlNXurq6jZTmOCbLJlAHlHUknvjkZHHHvXaB7NreUX8TLHFuQ7gxMjZyT2wOM4P8q5OWya8szqjTIuXaKP5CCT1Ye2QamnNp6ibOb+yXcYUzQPud/LjI43EAfj0I9OtbdhYSOsUMxVwuNsat/qyeRknv65q/YvY2NvI/2VX1ANxI7FRGD2Uf1zUKXU11KqFYyWbgBApzjnkcDgfXj3rdzuK1ja8M6RDN4hthdwt5EbFJSfundlf5n9Kt3Wim11w2TJKWjmVEY8bsZGc9q6T4bZksZIJXSRWyzbjhlHAAx35yc0zWo1fW/NlMaTRNsJznPAy3480r+62UiDwwz/bZlRm3QwNEzkk7vmONo/ma7bUIPMsVmfcS0arMqgHdngDB46muT0+W1i8SwngxyDGI1ChWJOMkcdK7wS7Y13JhR8hJHQjvSh1A5+G24lt1dgUBVZGbkkDg/pWbCCbyKGWd0RHUgZzk555roJrbGGEpAkJOF45PUfTrWMsSTXJCIBJuDEY6+wrCouXUZ2yHKD6VlzRuNYaRRldq7snpWlA6vECvIBxVS62/ackFTgYb+ldiZJxii0ufK06WJcmM29xETzkKHUj8Mn8qz9NlkmtrjT7hd+oabLuU9WdAeTnvnn8cVk+ILmW18UXuqpG2+1uEwUPBUKvY+x/U1q2qRSeJY9WtJ2ddzydPvpkHH45x9TXI6aktDbm11N7SNdbUYZXm2F4mKuzKdrAnj+lctZwm+8VyiSUlUUjkZwcDg/nV7TY9RjiZ7LzXt45fMMeAqsncc8k8dqboatceLtVZEERMhbAwQowBXVh48lkctX3jbubeKC2hZsu7y+UgPbNYXiaA2umQQHeApXaT/EK3r03DypOqNJHbPuOD97HU1R8Yx/2jotnNE6oTKMnbkouDnitG/euyLaaGG2oRy3tt/oW6LyjunWLoduD096be6xbXPmw+UXQZDAHJOD3z9OlaE9za6ZpMaxysy8D5OCSOC3t0qhHYWquTHKojuXyyEZ2gDjBHU8/rXjrlc3bY6FfY5KKGOS7htI5I2eWUhwTgr7Anr/Wu8i0PNqkV9D582Mlt6syngLjjHA5rBt9EFx4xd51RIiQ4jkOCeMZH0IJrszDi4/dxhXjHEhk4cdjj8P1p4idpKKNIo5yHTo9G8QhYIHEV4NkTMnyI/UhgeeQK1Lu2urm2fMYgVQSfKxgHJPH1HFWXjvhFNDNMytuLgx9GHHft0NYD6232yaCZv4CQgX7y9AAeh7nisk3J33sD0Lumxwa4t3ZhYnePCmQrztxgdvrz71xGraPqGj60trbCSRCxaMmcKp2856/eHH6V2GjWdzbW5t7V5I7ghHdpFBCqT8wJHXHFXbmytryaG+iiSSRYmRUl/wBWQcZYt2xjORW8KvJKy1QnG6MzSNV1a6sbuG6sVcPGRHK8fDcdiCPY0xo5mZR9mQxxAbolXk+mOp/+tV065As6RCFY7MuY85wDggHA6Y56+oqR0hNyXtp41TaAsXTHPB/n+VDm3q0ZvU4DXobqzuprKNZjHIVlPy/eyxIbjv1GK5yxv5LGO6s2kVYrxQrrgcEHI4PTkV7TsWTSjdNEiKxOGbOSRxnHbO3p7ivENYCtetLGm9Gcn5VwAT/D+FbUZ8+hLNBJLaWMxlllfaAjSYAG3jHTp/UVPHqF0uqTraS3CQSFxFI4wdmM49OD39qwXnmmXJjXlMAdeB3/AM+laTI8VlbvOWaGIMuwcbMrkfn/AJzW1rKwGlpX7o3EsLbSH3RyhsbcA8YzwD1z2xiuhv7mG2+0HdJPLFCF3CTCs464x1yTknHrVDw9p9ja2VpfXESzGbtnKrx82f0H+Nc7qd5GYnW1ZQrFkZAOqckEn1GfXtUJKTAl/tW4SW5gvFKSTZSRifnAB+7n0JJBou7qFtHhgDjzUO3zMkjHoPoe9YdoqXMswuZlRFjLK7EklgOAKs3YeKytQufJO7D7fvcnB/T+datdATIptSkEAhSQiFsZU+ox/hUAzN5arGWVOvvz0H51CHMMvmRtgqc/MAR+vWpFvHEPljbtYg9OeD/jViv3Ny+jhbR7aKxiHnxxGWSQAF2DZ+U+2B/nmoptTudVaaYeWJbyQb1VeR0UAH0wKqwXJmnds5bGSp/i468e/wDOp9PBine7UBY4gJJAFwp+YDgduc1GyLua6W1v8s63Mpmii2SqOS4ByCM49QPbFdXaHUnmhgRIyqO7z53EMTg7g4GQSM/XYfx8/tit1qtvHOsy7iVeRep9CPbp1r0bw7fRaVp0VtJMi/vN4YSb8biecdenJrKpFpaD3JYYoNTh1O3iWXzY2LBWJG/0JLdz/I1k3llcTXEt9qNtOI5cfZ0ibhDg4Ld/xHpXRwrp9neARStckuzyMTuDMQcKecHCjHpzVp7mOcywjyllVQGcMOvYk554rLms7iOF/cSOs5VnUgiQ5O4HJG5s9DnHekt9Nnvb1oI42BVMsS4+bHp69e9dAlpbreG2jkWYTkOAU/iYnn0GDjnnip9E064GrRzTwCZRkckp8xB5PsK2TurjsWfBUe29mjjhRJWK+VI5O78B0PatnUBJqUzObSNWh3KBu+bBJzz68/pSJLLYaoLpbUmGL5GKEhkQnJ4I6A1u6vJHc6dFcW+1nkB2s2RlR3/lRe6YEHh+zRrUxiSPdHhkUcqrH+tddtxGABkgcc1ynhmxKTbifmT5j2GT7V1tXR+ECmI43YKTlg24KTkDHpVYaVai7LpCyuTuLE8VqbRnOB+VLWjSe4XGRLtjA+tVbrd5r4ww2cr+dW0+7+JrNvWK36qMjfHgEHp1pgjzbxbZ3EU9zOgVoLkkE5yVcBCP61Q8ORT6dCybDJLnIH9zkgj9M10100t14RRblUaWW4R2kDdC2OMD2rPnQ297I8bAGYI7DHRtoyPzzToUlzWZFadoto0PPvlstkc6wrlgVXlmGQPzJ4+gq74c0yKxublb65T7YWy4DgYB659+lcncNIYPnlcsTwM1seD7Ivd3V2QHCoVbdzyeQc10TgknY54Su9TspL7RLGJYXniRGBAJyQR35plqunI3mWlzE8Zz92QNjNMu5beBVEmAkhIIPfH/ANeq0um2QV/NhjCMAvKjqfpXJJ21Z0qxyHizSZXvWNp5hhJYsqnODkHIGe/p71ixNd6ayOUli+bBZlwFGAT/AJ710+rXE+miUW0SbIyMAHqDwSf6fjWVDG+syW0p85ZFcsYzyhx0yPSuGk25O5S3NS1lyq/a8+ZGoYTgAdxkfXn9anbVV/dRIg3yyFVDrjdg8fyFZGoTNZ2Uz3U3lqpwQU7k8n35FZl9a3N/qsc7sI7b7OH8wtkKccY9emT9ayqQXPdmrfY7Z9Rhu7VhHhgVyxRc7fU/SsY6NHqF1b3YgQRZwUKbdyjv646fWo01X7DCZTLGefLCfxMV4+Y/lx7/AFqvqWp3SZaaEx7QGaQNjLgbguD6gY9K51Bp+6I2xN+7kFuGiuVbJRxt3hcj8s81daGzv4TFJHvXaN20cNj/APUK4O81O4ntrW5vNi3CHDE43MoGDkDrjiug0jW0lhQq/mOxw7A8g4xx3PTP41Tg1qFzK8V3EcFzCi2iOVAjOeCg4POOeMZqW3glvkF+9yYY/KMAc4JQ53B1Hrxz9SeKjur6b+1ZtkkiyuA8ZMWfMBYjr64zVPU/EEkNwnnRRphhsQEkrng59eD39a3inyqxkyxLe30GpvNKhurK0i8uVE6AAcsP5/jWJ4r0O0l8PR3ujoIzE6/aEYDcAwBU/mRWxdajp8UUl5FGxmY7GKcIR6MDx948HFZV/qFxNYQw2TMkl/A7ynzPvOCpcYBwAE9fetIJpq2gHPjSCttbxBoWxnypCcDjG4N7dal1PSzBb3bX8kTTylZU2PjHHIK/jW9pV3vaKUadaRssfzzyHAYZPCdeuAOvc+lZPjaDegkNxG11IyecANu48nAz0xkZrWLblZiMK71JfsMcK3E7wdRk/dPoPasz7PI1svlq0ruC+F5IHTHt61Z0ZFOpgSlY40UiRmXeB/DkjuD7f0p9hZ2s94IppnjVyVxzwueCD9Oc/pW6XKhWMyWFlUI67AoydzDOfWpJm5izKrFFChRyB/Tv+tbL+GvO0u6vheQRvC5/dM4Dso7498fpWKIIhCyyTbZcrsA5DAjJOfyqgsVMyF23YJHXjpT96MxZuEAAq09jcR2NvdsgMNwxC8gFiDg8dcUkk3+gvbxkLEpV2Uj7zDIyPwJouKxHAZh5twqlo4V3biuQBnAJH1I/OrKXM8UcapLvEkZDYORyc4/X86gV2aFYklZYzhWQHAIznGPqAa0NCskuNbs7DcBDd3EaZPUAuAaTKRc1ay1nQp7eO7ieKV4hOmCAQMkD3zx/KrtjBLdRxui7JSQqtuPy4zkn3OK6Lx+HuPFt7EJU8m3hzuj+8BnhAfbge1NsbD7Fpc17MwuPLDbE3fNzkDPtzUysiupv6RpEUc+p3MtzcWiHBtUiG0Om1jk56knv6mnzaPAYrIi3uvMkwrYIO5cjAbB9c1cgc6hpbCZmRo7eP7NzztGRgjsPmB79K17W/mVrWFki8nyWJgxxhQCpLHpyD781no2BnPZ2+looli+ec7TcryAQSzRjng5rVa2t1MDERKs7bpVH3iOcNn0yefxrO1a6kvSDABLCIwbkMMCIjuPc5/SoNOv1uxLH8xETZ3k5J3EnB+nSmooZtSuzX1xE0cckUUKblH8Xt+v61Jqt2T4cspZrTy96KdidV9Pw6VDpJ+0alKucfu4wRjPfnP6VvzadDP8AZJgjEAKeOn3eKvl3sIyvDtwsF3sY4kk+V++CP/r119c2ls8c5kdFVkwwYDGea6MHOCOhopKysDFooorUQi9PxNRywLId38WMU9eh+pp1AHIXiW8WmvCFwO5I4BxgfyrmWjeRiw2nPTDDrWzqWn3RtJJLm+ciIkhERQGPv1rifFE8kHh+d4ZWik+UBlOCPmFdcFyq5xSkpM37G2UyE3EZCqjYzxk+la/hFgGu4S2wEhgCPvdRVHR9KtBo1nK8Kmd4kLSNkkscc10VvaI1wPlA2Ak4HftRUTs7hTmuZJImvnRZEcwNMFOB6AE8n+tUtT1CITLDnc7DO4D2q5PbvvYKVIMewJjoxHDH2rA1OA2d2iyMHlePe0anAUgDLfSvLxN3GyOtFa+sJb1JkZlEMqAKMYIbOfxrOg1lrAXGXjR4VIC44BzgEn68VpxTpLaOrvuknTA2tgbgOxrzDXxdC/nCI7KTljjgtn/GuWnBvQ021OwvLu31jTis7ebKY2/dhygB46tnnp6VjTatcPZQYU5t1W3aMt8wUDBz05H6Vk2b/Y0jS7Vo59qt8+SBn07fnXd3UsMWhpepboJHUSkqoySRycdiQAPwrSu+W2g46nBNqzWdyYw02wspdc4LY7/Wt5imswWlnaSsbppS5QvlVBGTkdcDv+XU1zF5NDK0kjS+ZLnOSOV64+vGPyrX8P6fcTyLew2buAGDsMrzjHHTcP8AAilJJLmBM7M+GbG71B7iK7hjIiEIt43GzP8AHkDpu46elPtdDuNLvZVibdDcSbgqYKoDgKMYyME9fasCwa38P3LPcO6QqAIYpIskuApJ98dv/wBdbdprclxA80LNMRMTKvI+XB5+bjOcce9c3LK2+hehgXWpXUGrXz+SF+zSeTzHhkXacsD6cE8Yrhtc1EXN8QjZRG+VCScehyeea6Px1qAku7O9sop/LkiCPKePMbBxx7DNcUZUe2SK4ZxcBmGQMYXPAPHXrXbQjomYS3saGnaq0Wo7L1JfKBwxX5SrA5z9RzXWaLZWTz3EstxczW0ETIvmKFzuToD/ABHHJx2ArjN8KrJh2ZiPvMD8p6ge/ORmrOoXUOg6Jb3scl0JxIoOwDaJM7l69RhW5BPatJK+wka8Wu63ZanHok0qWsBCeV9oQAiLAAHrg/1NV9Rto5PFF1BMvlmO5BmOCwAJ5AxnkZ/HFYMXjK31TWb64m09JLi8U+UHQFYWHIwc56Z/HBra0Gw1BY/7bgjnKvM0eVBO9gAdvvk/pmnCLT2GzS1ix0SwiWb7HdJGGlVEbJA43RgE+owPWsWJ4dL8q4ltVnlikJkjkDEMeeD7fjzXZarJqGu3klpDbRNJBOst5cFyET5vljOCRnnJxkjnnrXEa9e3AuZ7ddsCea26IZ4Hb6j39q033B6IbqGv3VzE0QiijilcuQiDJznCnPOKo2TM99AIozI4BVIzjliD/wDrpLSB761wj7pS/KDOTxx/OtONLHSr3Msl3DLGVMUkRAZHHXPHb2p+Qi7a+HtZk0y1ZTEQbnyooi4LM+Dxjr6jHqaw7thPDEPKSJ+AQF2kgDHPbqtdqbW4fTV8RNc3MdtaFuAQkkbk5U+g3fKc4/irk9St4xHDfpHMIJyRh+eep+bjPWkNox4lKsqyjG/nJz9M1fspo7e/tnjTEiMpLkk854I9KW90ia1soLwgeRO7KjiTPT1HUc561FbRDzg4CqF45znqOn50nYS3Os13bMUaF3MpVBIGk2hmbJbvk89q7W201hoot7dWjuXzNl9wYScqQf8AZwM45rmbH+z4ngvroLM/lfuEI27nBHI9eT0712DahHNHI6hoXiypkxgNgkHHvz7VlKbexaZV03SX0WUx31yt7FIduDIRtAH8QP14/wAKvaxqVrb2FuiyykSu26THUdBn15/l71GbiKewyykQhyJLh+twRjjH9aux21pE89tqEayyXJMim45YLx0xwOeTj1zWa3vIRh3+qxWcyfZYldgoPz/dycZGOjVd8PusV06SRgJhSTjGctn/AOtTNQgtJre3aS34bIQRMAfbJ6Hn+tN0h8edHwVJU579x/jW9Nphc6nRIbc6xO7gDPl+Ux4PUdK7SIfuUH+yK43Tnji1Ly5XxFkYPXkdP612ikFQQc+9aoCteKHgZAMYGaLS4V7eMMw3YxRfgC2diSOO1VbKKKGAS8Lxznv7fpSbdxmkHDAkcgU0yKmQWAxzVeSXYxYE9OnXk9qzZpU85sjG4lu/IzUynyoEjaiZCWCnODzUlUrTcIELYG4gn8qkkAEzkOysVQde2TVp3Qjl9Zkxp10SRjcRj8RXmvi+QLojJkHfIi11N9DaM7ZuZnw3GZGx+VVJbHS59iTIJF4OHyeRXZfQ4FFo6CCaGPTLRPMUDEY6/StmzlikilkJ+TGGIri4LbS0lCrCp6EDBNd/a3enQWkcaxkfKAQIj1/KoqzurGlGi+a5U2yDUrm5bbiSJVRufxyPrisPxRBfLcRvb2X2iMptk2t8zAgkgfTFdRLq+mqXSQOgXqWhbH8qjuNU017cmOWKSbaWRO7cdhXFO1mdnK+xzNvbsLeGUp5mWwR1K/T8a5HU7VGvYrlQ/lplmVQRnr69K7/w/JZvKUEyKichHIUrnnGDWqmh2bRlY5gQRjs3FYUYNrmCWx5RLpf/AAkN/vt4WWKKJBsAIyQBk/jjH4d6l8VBtO0VFeUyzE7csOgUdOK7e7SK38ZR2m4J9ohTleFLDOMjvwK5nxxpEc6qbdd06uQ5DHAz6jpxSr+605LQItWZ5zpelXl3p+o6hHbiU26eYR0OCRyB3x1rWsPF08WiRabAwS4zxKQMhcfnn/GtKyuZfDmvaTZWtuXtpFaKdmJw5PJwO/AOTj2rH1/SY/Deu3HkDdZ3cYmtjn7oJPH4HjH0rzqGNVeq4SWj1j6LR/5kQnfUbc31x9s8qV5vK2hnyB9/ABYkD06elVrjXFETQIjtG7MVZXPzsSAS3rxjpVa2uftFjOGgZrjcGErHgIByD7+9SfYLhoxIkRwhDjdhgBz8xx2HHtXpKHRoq5oRJKYrYQM+yCVHbYu/YGIyeeQPx7GuR8QSGPUggtvIdFAORhmOchye5II5r2TS7GGa2mjQ2zKieXcRuxGXB68c4IJxx6V5343Frc3sk6xsJE2qxLD0OMAfSinNc1iWZuk20uo2d4CrA+WW37RjAGeh7e9Ydz52u3+m6XNLIIWmRNxx8kYB3MQP7o3H6Cu+8I6fHcaHfx3U8duYImYSPyWHy8cHpwfxrhfEuj3Eki+UjSLLunV1UnouXHPoME10LcET6/fQapq+l+ItPeRkmMts5mhEZV4+Qu0Mw2iKSJRz/BXrOtmfw38NvDFxaCIb5VmcbePMKEg/l/KvAV0/7JebknDheh243Ajj9DXsY1RfFXhHwj4YgnAvFZmlc9IlDFVz+BrToNmxoL2z+HbSzSKU6fArTXd5syBIc5cqOTjj/wDVXk18Ihqk+yTzIlZtpJ5dc8HH5V7Z/Z9vovgPU47YmRTZuwlJ3eYzKVz7Z4NeJTBpZvNRVUrCuMDpxioC1yxBfW9tgxM0cysd0o6Y7DGK2bKV9S1OA6hazXGbaQhIQMzYG4FvbIBOexFcvbpHdS7WD+YWxhBkmtIFdI1BLiGeQWzgws0Zw2MAP+HX64oZSR0OteMbMaVcabp9vcxretGLr7VJvzswPl9BkVz+seJLjU0torhFEFqgW3hjQKqr6+pJ461VktH1PFzEFQM5QR7skdx/Oqd4qI0QUszmMGQsMYPoPYDFCE0zbfxMtx4eh0lbCNNjbmlLklju3dPTpVrRIpJ4JIIokkuJo/LjJByWDLwPfH9K5WNSxXAzlsYHU11HhOWS51uzhhuBFKrEozsFUMOhP4AClJaAa2pWf2CJb0yIiQybF67t3QgKQORg9+1O0nWi7TyXBVlVOIyTtYbuPxPNT+KnltrqSW6thNvaYI7HjJI3SAHsT0+vtXLW00k0jsF8uFxgL246VLjdDZ6DNe3Wu6hDb6ddCO1YqgXaBtAGSMdeSK3L/wC1rNHPtllLpg+WNwQ9+RzjGeB2rjdO8ZWcNksUlq6NGDscAcgEEDceR0PI6Vo/8JGtyYJYGktLlJ1Y2zZO6MnoT9PzrFxkugNHReH7FrqC2MghnVpsxHbygJAGSe30pknhu6s1vJIZ1BicnzMLuc8Ng4HHB/nUvhC2W9uLu4W4dGyjOfMCkfMSQo7AcH1rvodPtdkgRVleQmWQM5+bI28e2KummUkktTgIZtTjs7e8LJOWbDqeoPbOPWvR7PUnazhea0kTdGGBj+cH8uahTS7FEx9kgRR0z0B9PfqatWpaGHYQqIvCoo6fnWkebqToR3t/AYlAZlctgblIIP0qvb7JYyWJLuc7QeTwO1XFlkk8th91gNwbqB/jT22LsYrkg8YOetDV3cewjRrGFGzr39frVCWJLu8Ee4Lhc+vFW1vi24ADg4Vugb3FIJiVAkicMByfpzjj+lEkmNXQ+OFoxK28nam0KB14qZV3xhju+YKMHgjHNQq8wD4AbkAYHPbPenmR8Iw53fLt9xVKyFY8gaYEd+tKJPn/AANZUF+J4g6KwB6bhTbjUorSaONy26XhMLnmutSTWhx8p3miaGs9pFfXMwj3SARgc7hz1x05HeuojhLMHQg7R3z97Iz/AFrlPCxNpoeoX14DFCjxkZB/z3Fb2l3o1Q+ba5aLeUckldvQ8A/WsZttm0UrF43drK0qNIfLV1XvwxPFE0cUWFcq245+bqaoyWcM8k0Tm4CtMJt3GMDGPwrScxJE00ux+4Jxz0/+tWT1LTMmwsbJ9LRpbZUkbl94DlWznGT3NSJp2nXMkaJYpESm8nGOBj0qyICbeVgESN/mVHGApHQ0y0UMykMjtHb+USD1YentSSsNSZ57qWn2mo+NJ7WQTIIZCsc0bt8gABA9eo9a1fF0MsemRNbTyYkYGQs3IHQdevX9aoaXNez/ABDuzGo2PPMqB0IGFB5z+Br0W9+y/ZfKu0Roiv7wOMjbTrR5rImF1e55B9nmnmt7q5AS4s8KoY/7XzHPuuKw7k3s2p3bSOLgBD8qx7woHTaTyAMgmuu1e+U6uNMijd9u98FyEjjLEH6k46V1uk6JpthJJcRFS06qNshyDkcqPqf6V4uXQpe1m4rba9tF5fO5FNK7PI9CW81TVVt0hgcIhDRyIVXZ3z6Hnr9K6ODT5lu4pjahkCEsqy4J6/LyMk55/wAK7680i32PcWVrHDNKUWbYnJUcY4p4jWK4AhECyKArlhz909Pz/WvYcVY0vYyLuFbWYQ20MaySEMQG+YjnOe/HT8q8d8TXV1fa/fqiOJWmKmMc8DoPfvXtF8qNqhvYYlaZD5QXkZLdM+3Q15Rr0zab4znligRJE2giNgcHA3fjnNclJ2d2SxNCmiFk1lLGWc/LGgBUMT0LEDkcZwfSuo8SQ6ZrejPo+kSQS+RGlzLfeY6kthgYUUgkkjnOcckcGuT0e4ttd1QRPdrZrLKow/yruJ+Y7hjqOMe5rR8R2WkaXfzLY6hHGsYyqq4cMcZwPxz3PQV0T5re6d2BdBTftrbaXva91uld7X+djzC5tjaz+SzEqQGUkYOPp2r174IW2l31zdtI0Y1O1dZYd5+8hBB/X+Yry3U2S6uRN5hZ++c8j/OaXS7mbS7mO5gB3g4B/WtISfKubcwxMqLrSdL4b6f1/nqfRXj/AEt9M8B6hLDInkxbWCbjwS4/TnpXgWXmv5TAgVdm7A5GBzitm78RalqyfY3OIp2AComN5BBB2+tMv7K8sZLiKaBY3xyuASDt4Gex6flWcqsU7GSmrnNWxfzkaJvmYnHr/wDrrV1e3tYY7f7KZPJEQdvM7MPvfXnNWtN0OZrLzJQgVf3nDgH7pJXnkHj8/pWgky2uqWWySSSe1hLIGAdOfujPGMgnJ9hWcsRG9o6i9pY5m0vZoIwsQLgyFsqOW7fpVVZpDdSySAs21g27qMjFdHPqkceshJoY0ijBCsmMx553AjqavJZ2U1ul3LE6qqfPcmIHczHOTjOe/eq9vbeO41Js5CBljgfcv7zomTjafWtnwnp7ahqJijVhLwqZ7E5y59lAJrU0vRre5KpDljcjMgcDKqp98V0GheHNIsLxCL24vpp0ZfLhGExkj5iORzg9elRPExSY0y14tisl0h4ZLrzJLe3ihRwdwcNk9R6Ec1wvkhdNGHcTwtvWMDgg4HUHv6V6hrOhw/PcPpqy2qQC3wrADeeA3J5wcc/j61xeq6LfJqhJSIOwyIYztVCB03HjIx271EMSnpYJSaexTWC9kt4zc24GHJIccYxzx6DH4UrxXFzcogwXUEJuYjd7+3rXZaFpVtdWSG+upop9rJzcIGVixPCk8ggj65PIrobXwuJLn/RFjtvLVCC21hlRg4APPvzzmsXi5XasReRjeCrea9vFt/tFrHtJLuMs8gIPGDxXqkE0cDi3eVRtAAHTAx6dq5rQtAutPjlad7XzSzbTCgyQemTx044Fa7Jcqpl8kyzFdh+dUGcfe4z+VY/WakJe6i1dI0PtStjEmCHyQCCCBxz9aaL1C0jI4IPON3p2rNt1n8j5rTy2OAQzg+mcH88UGCUoBHHtXnI3YOePz6Z60vrlZ2Yrs0/MjTOGXkgnv+X40CSLzhOWYNs24Dcdc5rHnsLyW1aMSmOUZ2uGGGGeBioo9LvIwuY3lCn7gYAHPvn/ADk1r9bq32HzPsa5ubZcsHBcHILnkfh3NNk1KNOhMh28Fe/ryOnWst9M1BypW3HOC251z7j8v5VNHpN2/Mq8j7oLjjjnp+FDrVn0Dml2L1vqUTx7ShOe445pZNUUAhEJOecNVCbS7pYDtdNx5VcnOeO4/GrC2N2nzQz26NuyS6kgr3H8qlV8RsgXMeP+WFhgMIwxXkHtVC/hafVbIHPysx/Ln+lesy/DiJ2yl+y/9s//AK9RD4aRi7E7X+4jd1j9Rj1r246RsY8jKvh6UHwy1o6BxNNghh6DP9BW/o8aW0bRwARjeMKOnvT7Lwr9jtordblWCEn7vrVtNG+zfvjIrFAex6VL3KSdzPnF0mpoiSD7KUCshXOQTzz9KtXKxvbhZEBhDqoUZz94YqtaBNj2iSYIJZ13djVx/JMMilz8kQzg9AKgtGf4pGPDF+UfnyJMHHT5TxXn2ieEbX7ZGHnmkQsmVLdRuGeleheIbNrrw9cx26O5aLgJyWH0rNtrC5tVkmFu+AuVyrcY5zx74os29CZOxc0tp7eytEghjaIzXB3M3P8ArG/pmodQ8PT+JdTmcX0ttHCiqgVjhwSeTgiq/hDUowiaTLC7MWyJCS33vT05/nXVaNbSW896JAfvKAT1IA/WtJ02nZhFqSOGj8F3smqfZTqpbbvO5l9Nv/xXet+w0aSyVIZ7oXFxBKSpbkkDGMZ6YzWtACviP7rcpM2T9Y6ivCkOoteGQDy948sYy2cf4VgqNKleUUkCSRzHjK+1TSbAXWm3awyzTqmGUEL1yOfpXHaRJrmpeII7lphPO5BcLEAABjqQOOg/KvRL6Ky1WxdrwCSBZVmjRsjB6DPr16UzT3t4ViFvBGpXllhjxtBxgn8m/KuCvj7Jqn94Pc5zWNV1bT5FhjCzzvJmVkXBIC8/L9MivH/ENzcJ4l1CeVWhaUljHJ94BhwDX0Etlbwz3F0Nzyy4ZnBIccg4BwcD+deD+MYEg12ZRI0yAsf3gw2Cc4b8/wDOajB1lOXKS3Y5eGSR5RGrFQzAHB6VJfu/mhCQVjAjU9OlQeZ5V0GiIyrZBxnnt9a0L2zuWPlS2sgulLM8ufv/ADen14yK9SWjGZyKXdV6sxwBnirkZT5CI1VlX5ix6N2NW7LQZJXkUSbxjJIOBjHXnnjNWtHsHe4MYdIp9xSR3XcFB7dP1qZSTTDkbI9ObV5He9sRKJFyUmiQ/Jnqc9sA9atwQ6yt848kvLHtkd5fTgZ/Gtu0vrKxkjj3tdIjFZx8yBmyOeCeOB0FLrK2lldQSzXEBygMm0bmUj+AZznjB6d65m7u1iuRGpqemxXemaa4fyUiilM+3JcydSxyR1PGfp9K4hLqKO4hZ5t8MShQpJLHnI59jSX3iJpzLFBCBbNwFdifxxnGf0rH3l2zu59qujQ5VqDt0NOa706R4ybAuEPLPKdzDOecd6vP4quFtZbW0toreCRQpA5OB0rnvmPGeBT1Qlc8n39K39nEOZrYvLqdyHSUSFJFyA4bkj+len+FH8PCCO6vbuWS9KDdEk2AR1wR07d/avJPKJ57CpkjIIIPX0rOpSU1bYFI9s1LV9Me2EJ8+IIGJg8wFgCBwOT2PSuYCtq109xCs122NsKqrFQB93AwcHr16VwUbzRMHWV1YdCDg1r6b4k1fTYxFaXzxxqeFHT8qweGaWjByvuegaV4Xvf3M4srmOYP5h3fJtYEcjj+vrXY2Xhy6Mpn1HUGnMnzOiqVGfTOentXmen/ABK162wJJo517715rq9K+KcMzLHexmJj1ZTkVhKjUWrBOJ6KseyNVU4Cjgkn9aQqQCWbnPbNUNN12z1FA0F0j56DdV2RzwCykdcg9aylZI1UQdWYYJP0FKgGPvH8BSEmPG7POOlSoxzknn0zRFJsEkJ5UYI3DP1qZHRQdqsPSom3Z+/gfWpMnGQfxrogknoVyjy656HNQNO2SFBBHYgU9g+D8x+uKYwO3By3qe9XJsaQ9HLDHNI6gqSAetCKyruJyT2qNvNbo4X0odlHULGrQTgE1CGuGcZjRV7ndk/ypji8YsFEAQ8DOTxXo3M+UZc3P2RvMlVmViq/IucZOOfzp1zJtspjgkKh4VST+HrUa298Af8ASIsnjlSf60xLK9VgTdxkDpmLOPpzRfyHyL+Zfj/kRreWLtlIXBbv9nI/pSedaPFIyxNyApzCcn2xir6xTDl7nP8AwACjlyVE4J9gM1Ki31JkktjNOtWtrKI3YkFAVRU5Uc9fyqhH4pkvL2OFLCSOymJj89zhlPPOMYx+Oaoa78P59a1dtQXX57VjjEcUCgD688n3ovtA1HTfDa6bBfmTad3mi03HA5xjJHNaXQig3jO18KRxaclv9rwiyNKHC53DdjHPQEVUf4vwnGNNkVQfmxICf5cV5jqbtDOltM5DLtBcKByFHy4AxVJmDtwQV6PnnAB9KqXvbkJ20PUb74ro8kM1vazJiN0ZXIOQcYII/wB01z8nxHuHvldIVa0ReY2YknjHXvXGsu9GG5ieoX9AKhwTMC2Y+RgNyCfwrGpQp1ElJXE3c7iT4k3pi+SztiQoGD0Hr78jt7VCnxHvjCkZtYuFIYhsA5//AF1xiISrZaPbuyxz781C7YXKIzLgtkc9/wD61YPA0NrBqeraV4/0/dGL1VhAABIXIPr06nivM9d+zX2q31/BeGYSy7lD/eOfU98fhWeOcKZflA5zjnPv+NV3bftkaQZJ2qqjkYz/ADq6WDp0neI27mho9jYwK7zSKJFBwhjyGI6fNn+ldTZDSZEin1O5tZXeQF1ZsAICeMA57niuJ2yqm9mVcJldo6/WmsAsQZSeGBw3U+/0rSVCMtxqVj1rX18LW3hC9udPuLKK5WEOsVtOC5bkDJB5HzcgV5V4bnjmvmjvLqSKF3AkaNfmKkjcc9ug6+tVLjcFl3DBKk4BzgVU015BNIq4wUPP5cfpTpUIwi13CUr7HSanqlnB9osdHgX7Gw2b5UBcgHPX34P4Vz7hpW8xmJJ9c1YZZI5QQ0hUD5jnvQxlK7PMOR34NEaajsJtlZYx/eBHrTxCpOAcD1FWE3SMMMCCVHGOM5p7OwZsgY9SKrlEVxb4H3ifYGpVj7FyB9aezNtG5FXPcrxilRmCKFVWLcg+lHKAgi293x35pxjACk59hnmhZQcLhHJA5x09aVZBImdigqDwc80cggwMk/MDj8Kf0VcDGaheTDKNiEnpSbmPKDnOM596nkCxaAOeMjFSBjuycg/Wq6zbMhxzx/FzStdRmTGW+bgKDnmk4BY2dN1q502TfBIwxyVJ4r0DRfiOrvFHfKUB43DGK8naURsSEJDfLndTllwpJ346HB/Ssp4eM90NXR9L2mq21/EHhmDIf0qU3PzhYlUk9WY5r580rxJcaV8q5dSR8rP/AFrsbP4mWcCJHLbkS/xfNnFcc8NUi9Fc0UmerrL90HDZ/nR5778A4Hb3rzSP4l2If/VScnA+YYqwfiRZRYD7hgE4DYJ/Ss1Qq9hps9FWXJ3KPqAaRpcnljgjgVwSfEGwKcZ57luRUR+I9kqnyklJ/wB0Aj86fsqttirs9AMrHlmbHcGmecFBBbnscVwS/EbTniCvOI5PvY4b/wDVUcfxF0+aSNHuZkDAjd5YIJ/Ol7Gr2Fdl3/hZWptk+XAPYJn+tMf4jakR6f7qqP5ivPxcupzuOfUGj7UW+8xP1NfTckexxe0kdq3jrWLl8JcSRD35/kBUEvibVWBL38x9gT/jXJCcDoSKXzx/fo5EHOzZl8VsrssuoTKVP8WcfypsfiOCQ7k1CF2PfeM/41iyNHIpVwrKeoIqn/Zum5z9lT8KTTHzI7m38UavCv7jUJdv+/u/nSzeM9dSKXF87EoRhgMdPpXEC2gUfIzpjpihlb+G7lB9zxUOHkWpLuRTQXr/AL04dyOSW65qDyJo1C+TlgpGWGe3FXBJcr92dG+q0huLodY439walwKuujRm7ZEwH3ZB6888fyqCaWVSuCV4XGB0Ge9bRnPDPbsCO4pjXFsxw0f5ipcBpPsYsTPHD5ahCx5+971O2Ni7pBkrlznjjsPatHy7Jhlggpj2Vq3Icc980uRhfuZRMm9VKq0aIfn6cnNVQSZgoz/dD/gK3DpYdfkkYjPpmon0mUsCrD5WyOMUuWQuaJkmRpsRBztwVzjrgk/hUpEnkF2VQSMKAeef8irK6NPExKgN/vHpSPaXKBSYySO4NKzHdFKWOeaGQOqrkEY6njPequmwsgcsufWtBllQKMMCMk8evNVjKY42Jj3ADpnrWkUuXUmTd9BxIKuxY785xjrUa4O8AF+N2W7+1KWXynbZlmOQPT6U+PauNzDOOAD0rE0GKcplUIQnIbgY/CrUTqGZSMsAQSRUMTBmAbG0k5HpTlIQyH7wU8gjqMUBYlx9oiCbvmAOAD6dP51CqmJUwi7yQNwHANWCwE4ZRyykN6+1RYJnLsxJQkhT0IpiHTpvliCOQoxlgePyodJEh+Qqw53FuDTExJNJKDgAYA7dKkaI7jE+0jGVI6ZNICHfDEcP/Fzlucn6U1IyYjJHuUl/u9hT4IHUDcgZucE9Rj+lGVkjZVkYJknaBhcj370wE8ln3lHUEnbkjINBT9zlBjY3ORioy0nmhVGVPKnpz3zSzTSfYdij5+QSegGaQyR3mdGXaoB6kHg/SpY5VeJUiIfaBnPb1qHdiPG0KqjkH0pV+YbI22gdMUXEShlVgGIOeAxGBUSMquyoNy7sgjpUvyggkBzjv/hVRzKrkqu1c9fSkMuQ/MkhVWBzgKR0qPzTzvILAYwKriRtuBI6c4JB609GhCsGi3s3Ck9c07CFzJ825+FICjPWiSZ1cEls/wAJFNifzCsWzaR6+lI6gSFS29FwTgYwc96VhhDJIdznfxkkgcGmQurLkSlWOQc8Yq00gAUrwO+KoXEUSykIwJbsD92gZ1yF3+6rH6CpdkvdGqBZT61IJ2/vGvRszhuO2Mf4f1pfKY+n50q3A/iUH8aeJI29VoAj8ph3FHluOuKnwpGVcH2pNremfpzRoGpCVP8Aeo2Z/iH5VKcd+tNIFFguR+UPX9KaY+fvGpClJhh0NFguRlXA+U800vL/ABKpHvUuT3FISe4pWHcjAib78aj6ZpGtrWT+8KedvekKjNLlQ+d9yv8A2ftOYbh1H40vkXsePLumb2J/xqbYOxNL8wGA3NLlQ/aMrFtUQc4f8qa13fR432oYd+DVwO46804Ske1HIPn8jNbUEcYe2yDwcHFJ9o09l2SWzquMcjNafmK3UA/UZpjQ20g+aJOfQY/lS5GHPHsUxNpbDAKr7EYp32bT5VwrJj2anPpdo548xT7N/jUY0SHtM5H+0Aahw8i1OPdi/wBmWhOQ2T9c1H/Y0XIVj9SKcdFGf3c5U+nI/rUZ0q9QAx3Rz/vH+tL2a7D5/wC8J/Y8iMXjkG49SQcmoW0u7VSA4bIwecVMLfV06TMfyNL9o1WHqin1ylS4RKUm+qM0aTfRFjsJDAggGpTHeKwzA/1xV3+2LxceZaqf0px10kYNtt9cdaXs49x80uxlSGd1VGidUP3uufelNw20eWGUAY+Ydq1RrMGPnWQfUU4apZScFgPYrS5PMLvqjDMgyrD1zgGmNI25jgAkYz71v+fp7fwxN+Apdti4/wBXH+FJ033Dm8jAE/7kIEye+afFMQD8vAA24HH41ufZLArjYoB/2qjfT7EpxuA7Yaj2bDmiYj3Unl8qeeBjrUYnYFw/AyOCc8VsyaXARhTKR2yeKrtoy9nOPdaThIfNEy3lyQyphQeT2qdJEcj7zE9+wqy2kOMCORcf7QNMbS7gH5RGQPRsUuSQXj3KszMgQhhluBj0q1O6RrEMBsDBOetQmwu12kQZ291YVA1pebvmil456Zoswuu459s7xKrNEhyWAPFPaKD92q7UK5PB+90qqUuEfLxPgditK105ULIgO3OOMUrMZ04YjvThKRTcDFIRzXonCTCWniUVVPBozTAvCQetSCZgMBjj0zWerHOBThKaQGktxz8wB+tOEsbHlcfSs8S08S5FLlQ7sv4jb7r4+tHlsfulW+hqkHp6yEdDRZ9w0LDKy/eBH1FNxTUunX+KpPtKN96NT74x/Ki77BZdxhUGmlBUoMLH7xX/AD70eX/dcH68UuZBZkO000girHlSAZ2Ej1HNRkDPvTVnsLVbkXI7UZIqUqKTbQFyPcKMgU4p7U0pk+lAxd3pS76YVOOtNO4GgCYP6mnBxVfLelJvx2NAFrfz1pQ2f4qqhwehP5U7f70AWSQwwcH61EYICTmFDnvgUwPSiT60rINRGsrR+sS/qKhbSrN/4CPoaseZk9aXzPpS5V2GpyXUpHRbYj5WYfkahbQkP3ZiPbFam+l3L6UuSJXtJGKdDmU/JN+pFB0y9UfLMf8AvutrPvRn3o9mhqrJGA1rqsZG1nb6DNM83V4jymfqtdDRn3qfZ+Y/a90c9/a1/Hw1uh/A0LrbBv3lpu+jdK3mUEYIBHuM1XNlbEk+RFn120vZy6MaqR6ozxr9vj57aRfpipBrlgeu9fqtWHsLVj80I/M1A+lWjfwEfQ0csx81N9CRdU09ukyD6gil+0WU33ZID9SKpvosBPysR9RVeTQgfuuKVp9h/uzS3UvWmA0uQBXQcw7Pal4pgYfjTt3HSgA2+hpMEduPajOeMClzigBAfzpdxFB9COKTb6H8DQA8SHPWlEtRHOeR+NAINAywsgxTxIKq0u49qAsWg9ODkdCRVUOacJM0CLq3Lqc5z9ak+2FuHGfrz/OqAfNKGGOtS4xY02aIkt26gKfxH+NGxGzsc4/P+VZ+4U4NS5WtmO/dF4wN2Kk/XB/Wo2ikQfMjAe4qFbiRRjeceh5qWO9dD0H4ZH8qPfXmHusbikx6ip/tkb/fQfioP+Bo3W7nsvPYkfzzS531Qcq6Mr4pNtW/s6MMo5/EZ/lUZt2/hZG9t2P501Uiw5ZFfaM03YPep2hlUZaNgPXFRnFUmnsLVEe33pMEd6l7UhFAXIxu70FuelOIpNvegLieZjqKUSe9IRTcUDJPM+lLvqEr3pNpA+8aAJ94PejzPeq+WHek3sOoFAFnf9KTdxVbzPUUvncEZOD1FAWJi1Ju9cVD5me4o30BYkO30qxbaddXg3QQuy/3u351Vjm8t921Wx2YZFTy6ldTLtaUqg6KvAFAamWtSZNV1YDqakEgp3CxL707J7Cowy8U4NjrQIcDmlpgNOz70CHUZpv0NLmgAPX/ABoIHXAz7UmeaXNABik5FODfSg0DG0tHWkwMf4UgFz+FLmmnIpu6gCXfjNOD1BnjPalDe9AE+8U7cMdarbqUNQBZ3Ubqr78d6XzKdwsWAxHSni4kAxvJHvzVXzPenB6Tsw1RcS7ZT0A+mR/KpBdhvv5P1Ab+dZ4ajcOxqXCLKUmaPmW7H7q/qp/qKPKibozj6Yas/fzgGjfS5GtmHN3ReaEDOJVz6Nlf50028uMhNw/2Tn+VVhcOvRz9M0faCeu38sfyo99B7pIQV4IIPvScYoF468BmA9M5H608XMbD51jP1XH6ijmkt0HKu5Hx6UlTbrdv4WH+44P6GmtHF2lKn0dD/Sj2i6hysgppFT/Z2P3Hjf6MP61G8MqctGw/CmpRfULNEZFNIpSwpMiqEMwKaefan7uaQkGkMj+Yd6NzCpM8Hp6Uw4oA/9k=", "path": "images/3pts_ADE_train_00012373.jpg" }
depth_point_72
images/4pts_ADE_train_00017737.jpg
ADE_train_00017737.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 291 y = 223),Point B is located at (x = 122 y = 219),Point C is located at (x = 322 y = 128),Point D is located at (x = 215 y = 164).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_29><DEPTH_59><DEPTH_80><DEPTH_73><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_59><DEPTH_70><DEPTH_5><DEPTH_70><DEPTH_15><DEPTH_34><DEPTH_73><DEPTH_40><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_70><DEPTH_5><DEPTH_85><DEPTH_55><DEPTH_15><DEPTH_73><DEPTH_49><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_67><DEPTH_69><DEPTH_61><DEPTH_1><DEPTH_33><DEPTH_75><DEPTH_60><DEPTH_29><DEPTH_31><DEPTH_70><DEPTH_11><DEPTH_64><DEPTH_11><DEPTH_33><DEPTH_72><DEPTH_68><DEPTH_29><DEPTH_31><DEPTH_31><DEPTH_67><DEPTH_59><DEPTH_35><DEPTH_35><DEPTH_70><DEPTH_34><DEPTH_50><DEPTH_35><DEPTH_59><DEPTH_5><DEPTH_31><DEPTH_85><DEPTH_7><DEPTH_31><DEPTH_62><DEPTH_34><DEPTH_80><DEPTH_22><DEPTH_35><DEPTH_3><DEPTH_12><DEPTH_42><DEPTH_46><DEPTH_25><DEPTH_78><DEPTH_76><DEPTH_66><DEPTH_85><DEPTH_69><DEPTH_121><DEPTH_39><DEPTH_78><DEPTH_58><DEPTH_78><DEPTH_25><DEPTH_78><DEPTH_44><DEPTH_19><DEPTH_44><DEPTH_64><DEPTH_58><DEPTH_78><DEPTH_76><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_94><DEPTH_94><DEPTH_16><DEPTH_94><DEPTH_16><DEPTH_16><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
4
[ "D", "C", "B", "A" ]
<DEPTH_START><DEPTH_29><DEPTH_59><DEPTH_80><DEPTH_73><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_59><DEPTH_70><DEPTH_5><DEPTH_70><DEPTH_15><DEPTH_34><DEPTH_73><DEPTH_40><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_70><DEPTH_5><DEPTH_85><DEPTH_55><DEPTH_15><DEPTH_73><DEPTH_49><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_67><DEPTH_69><DEPTH_61><DEPTH_1><DEPTH_33><DEPTH_75><DEPTH_60><DEPTH_29><DEPTH_31><DEPTH_70><DEPTH_11><DEPTH_64><DEPTH_11><DEPTH_33><DEPTH_72><DEPTH_68><DEPTH_29><DEPTH_31><DEPTH_31><DEPTH_67><DEPTH_59><DEPTH_35><DEPTH_35><DEPTH_70><DEPTH_34><DEPTH_50><DEPTH_35><DEPTH_59><DEPTH_5><DEPTH_31><DEPTH_85><DEPTH_7><DEPTH_31><DEPTH_62><DEPTH_34><DEPTH_80><DEPTH_22><DEPTH_35><DEPTH_3><DEPTH_12><DEPTH_42><DEPTH_46><DEPTH_25><DEPTH_78><DEPTH_76><DEPTH_66><DEPTH_85><DEPTH_69><DEPTH_121><DEPTH_39><DEPTH_78><DEPTH_58><DEPTH_78><DEPTH_25><DEPTH_78><DEPTH_44><DEPTH_19><DEPTH_44><DEPTH_64><DEPTH_58><DEPTH_78><DEPTH_76><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_94><DEPTH_94><DEPTH_16><DEPTH_94><DEPTH_16><DEPTH_16><DEPTH_END>
291
223
122
219
322
128
215
164
null
null
133
87
39
19
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDoja8cwxn6cU9LdVH+rkX/AHWrFEtzH92aQf8AAq15bie30e2uFbMjtglh1HNMVyfLhdvntj0lTNRtbxy58y0gkHrGdpqG01SS5nSFoUBc4yOKke/tI53imVkdTgtjI/xpNIalJbMryaRp7NkNNbN/tLkVTn0W5jy1u8dyn/TM8/lW5G4kVWhlLK3QnkH86a0Q3AlMN/ejODUunFmscRNHLMDG+2RSjDswwaMg11EgMqGORY7lf7soww/GsqbSIHOIZWt3/uSdPwNZSo9jphik9zMjuXt5G28qwKup6MPQ1avJYpRbmHdsWELhuo5NUb2C4tJNk0WPcd6IZA8YwelZ6pWN0otqR0WoYHg5uOt0v/oIqn4Ywbmc442j+dTQal9jttkshdWf7hUMAMDqDV7TXspZHktoYY3ONxiJAPP909K64yVrHmVIvmcjdtQBMQK838WY/wCEjm/4D/6CK9ItmVZ/mIHpk15r4qUL4hnA6ZH/AKCKyr/CdGD+NmcoGBXrWiD/AIk1mP8Apiv8q8lX7tet6L/yBbL/AK4p/KsqW5ti/hRzup6teWGtTxxS7oTtzFINyn5R2pk13p8urOk9u8EizYEkJyDz3U/0qnr53a9Lnvs/9BFV7o/8T2X/AK+T/wChV3JKx5d3c6ax0uWHVDMjxTRCT5mjbJXnnI7V0uK4my3DxTOFYr+/bJBx/FXa1EyonGTrjxBJ/wBdz/OorC7lSOXLblWPIDcjqK1J7OCXWnMF7GZRLueGT5WHfg96y/s01nFOJomQ+V3HX5lq1qSdLokzXFs7MCAGG1Sc447VaOpIsmyRSArHDLyDj+VUfDxzZEjuRWIZpItXuCrEYaU/oalLUfQ7SOaOYl42DKQORUUdsWQTDBXkH25Nctaaqqh5JCYmyo3R/j1Fb9rfp/Z6zSSDBUlto9z2ofmEXbYW4sYbiOQMo65H5VWW2eG4TkNGwOMjleO1XIruGZHMUnmD/ZBpGYyNCiI5JyAMY/hptXQRbUkZeuWj3elPDHt3FlI3HGcGucMDxX1ukiFWEJBB/wCuZrs2haQPFLCfo3FUZbS48tB5cckYyAH6jqODShoi62sip4bUf2Qv1/oKbq0trHf2SXFtvMmdsqHDoc/kRz0qxpsLQW7RRjy1Vvutzjgd+9ZuvI5v9OJfOGI4HTkUl8ZctKKK2n2WfLktH+0RxysWwMMmQOo/DtXTzyJBDJI3Rck1xVqHiTckjqwuuoOP4P8A61dbewQm1lMxk2dypyevpTqK7RNF2UmiK3v98gSQKNzEAjpxWkl0EXaZAQORk9Kwli2KTCscqIgCyKOR0zkdefetO6mEFqHRVDPgLx3NTKNnoVTneLUjRgure4OwMFl/u9m+n+FRTJ5IIWJ2jP3o9vT6f4VQtJ/tSFJF+ZQpyOOo6j0rQiv2iIiuv3idFk7/AI0eTDlurxMO68OwT3MV1aR7CHDEZGDXKjUbvSNQa21C23oHO0OORzwQfSvTmhBzNbMG/vL6/wCBqje2Npqlu0VxEHHuPmQ/0p+pmRaZfRahArxzRsMckD5l9iKuS2rlDulJQ+gGK5/TtFbRpZfJdmDLkep+n+Fa9vqaiSKBz+8lQtjHBwaYjiE1CJ+HXH0revwh8O2JBwGbIz+NczazaNLqMdoGuXZ5AgJAUZziug1RY38N2KrcRxxRuR5jkjOCRSdhEGkxf8TODH97+lV9UjP9o3Bx/HV3SbCSHUrKaGUSwvuJbI44qvfR3TXl5LtXy0ZmyeMgelAyWZNvh22OOfMP8zRo8ksjzh3ZlSIsAxzg064bPhu0csArOcce5o0VNxuysgP7g9BQHUdb6iLuRIZIcSN0K9P/AK1Th0kjOx1lToVPOP6is/S4G/tSD5j1P8jVWwt3OuqNzAGRs4PXrQwTNR4wY2jCiSIjmF+3+6axbiwSNDJES0We/wB5PY1asrxrpZvtHyGE5Mm7AOTj8DTNRnigB+XdOMfLnhx71lNJo6KM5RehUmBWY4IYbV69egq5pFx5F0dqH5sBvYZqncBGuGYIFBx8vpx0rS0RQXm+UHgdvesqb9+x1Vo/urk+paykN2beWKRYxg+aVyp4PH54rldewuqsNxbhTk8/wiup12zVbAyB2GXA254/Kub8SB012Vcg42jp/siqrGeEXVf1sZ6uAO/5V63or50azwjf6lO3tXkikEgYwa9c0V1OjWYBHEK/yqKW5eL+FGDqOnJNdyPNFJG4PEinIIHTIP8AiKz73S71NSe58gtE824MpyBk98dK7yaBHibIHSoJ7FQPNjZkfqSpxmu1XPMujl7VZB4mmJUDMxPP+9XY4k/vL+ArGNpPb3UfR42kAwwztye3pW3USZcTibxGbxVLlufOXt7CpLWWa1jkAkZ4xA7+U/KEjHapbm2nPiFrjyiY2lX5hyB0HPpULf6iX/r1k/pWm5nsbehy293aM0dsYCCNyq5Kn6elZk2jyDULiaFo54yXLBGyyEg8EfjV7wsMae/uR/WsyZP+KkusEjLODg4/hNSt2PoikESOKVCuCHTqPZq6d8r4Zm28EQvgj8awWvhFHdLeRC6ii8vAY4YZz/F1/OuhQJfeH5EtQyiSJ1QSEcHnvQxo5O21Ke3tFcsSfMI3A4I4FdLYat9ovoYCdzgZz0I+XP41yl5Z3NlYbLmJo2EueR1G3sa09BYN4g/4Ah/8cptCO2aYugV8Hng96r9UXj+L+tZ/iG4NrpDzBQ2114P1rLsdfP8AoySNuMig7X+p6H8O9JN2HLc2ZFAlkwO/9Krz2zTKjjayq3KsP1q3p15DcGZ0XcGxuVh049e9TyiML+6BCnkg+tK3vXL5/wB3ynKz6VGrMImMZMofZJ0ztIwDWtef8eUw7Ff61euIkdJQyggr/jVWeMvE6qATjgHpRLdBS2kc7bzeXey+XIUkWFTkduVrS1KWE2Nu1y7qHZcOg6EjuPSqk2losryo5jkeIKY36cEdD+FO1pSNFtg3VZI81T1aIj8LLFjJJI6S7o3j3lS8XQ+mfT6UzUdRaK+MKAMkaEyAjqcZFZWjyPHNGEcqGunVgD1Hy8Vf1B7aPUJvnaCY7NzkbkcHsR1HTHehr3hqT5NDVguHhRJlLeXjPPVfr7VdS6husFiEkxxIvQ/UelZdjFPHYyR3By+Xw2chge9c/p99c2iRqMSIIs7Ce+7HBqUnrY1lJNLmO3aPcNkgGeoIPB9wapy2wEySbF80fdbpu/wNLFc7Ywc/KeoPY/0NWRLFMoR8DPQnof8ACkmKUGjx3R/m8V2o/wCnkf8AoVdPr5x4Itm6MXPP/AzXLaFIG8WWYx1nH866XxA2fA9hj+Ig/qaOhmQaPuOs+FyST+5mP6mpdQ1C6stV1kwzEeVZl1zyA2Rzg/Wo9GP/ABUHhtfS0kP6tUOtORqHiE/9OYH5stMDahvzJ4J027vII7hpZGyPuY5PIx0q54e+yXbXi2izRO0JUiUhlGe4IrI6fDzRvd2/9mrS8FD95fn0iH86dtBdSfStLvrTVrdpdktuScSxsGXoazNFuxN4hWJlw29/5Gl8Js/9thA7BSjkgHg8Vh+GPEF7da+kM6QzspcrKy4cAA9x1/Ghgja01raez1BiQFAAbP8AvVRvoVjnUL08pcflWgbSGPRNSWzEbfdD7CS2Q3Oc1Vvh88I/6YR/+gisKvwnXhdZk62AuommSUqQxUhl4yPcVd0e1kgkmDbSDgAqwPeqt9JJZWMM0TMpeZwRng1c0O9a8abzFG5dpJA604wV0xVK0rODJfEQxpA/66rXJ+JzjX5/qP8A0EV3WoxRSWWyRQylgcMM1wOvu0msys67XOMgH2FRXRtg5Lb+uhRFev6MbGbR7JZB5cggQbhxngV5Cten6Z/yCrT/AK4r/Ks6MrNm+IgpJJmxL5scbeWwlX0PB/OpGmRoiDlWxyDWTJcsksggu1JU8xPz+FWJb1vmiuLZtucB0Oa7Uzx2i9cKMIf9tf50/rVHzFkIWGcEhwSj8EAHmtIICAQwI9e1S9dio6GdNp22fz43ZSWyR2OTVK4sBtcSWw+aNk3RHGQcZ4rdkIKcEHDClkQF0/GrsRcxtFgit4ZIonZgMZDDBHWsqWGVddlmaMhHZiG7fdrpljWO4lwMZC/1qpPp5+0+ZG5G8/MOxzU63ZWljitTBMGqAf8ATD+ZrrNLX/imcf8ATKT+tUb7SInjuUlhkUyhNzRN6Hjg1pWKpHobJGxdVVwCRg96cmCRyEN7dQaIT5xdVcDZINy4I6YNbOkzWB1eLELxXbRRsdhyjZTPTqKxJ4ZIdHnSVGRg68EY7Gruj8+IrZv+neH/ANApvYlHQeJ45JdAnWKNpHBU7VGTjIri4lIudPJ4OwAj/gbV3euyywaLdSwuySqoKspwRyK5Vb43cti15DHM7sF8wDYwO8jOR1pR2KluavhHH2CX/eH9as61qTWFxbIr4EuQQRkHp1pPDkdnFbSizneVMjIddrL161neMeJ9POD95ufxFL7QfZNWPVYZ0l3MF427gcr3/KtIrAbYOOJAozg5DV5ras6SXSo7Lm5UHB7fPXe3U5tdEadePLhDdM9hTe4RZLJGkiqGAIIPWqdzb77JEUKVXHysMgiobTW4LlIg+FYoWyvpz2rTJjbTY2QBjjl1OQRzTeoouyZgR6fFbXSlGaMifftfnJOOAfwqjr+f7SlbBxsj5/GunuUVu3IdT+tQ3VmJdxKhwyco/Q4/kaOo18LKukZK3QOP9e3FY0K21xdgRD7O4RhsY/Jw+Tg9q6CyiELzgIykvuIPPPtXOGN49QCMmFKS4P45ojuxz+CJta0mNNZwcOu3lT15FVdM1GWe5EDgEbnBJ68fzq/OVXRgzIrgRKSrdDwKz9Ojt3uiykp+8f5GPOSB0NSkrM0k2pKxzdveabAwns7GMXKcp50pGD+Aq3eSWUvh7TbK4ndpI0BeO3AYlhnjPTvWAGiS7Qy4EeDu5/KrDiJzmMMF7BhzXIsQ+blsdTw0b2RLoU01x460wpYXNtZ29u8KGbknhjkkcd6i8U3VvZDVpWuUae6RY0hXJIwwJJPQdKXzWjHyyFfcHFQiRjYESrExZSSrqGGfer9uupEsLbqbfmA/DrQW/vM39a1fBX/MRP8A0yH9ayre+j/sy30+4tI3t4OUVSUKE9cY/GtHSdU0nTWmSIXCtcALtcg4+h/GtI14NXuc8qM4+89iv4S/5DmfSJ/5Vy/hCFo/FClu8bsPoQa6XSSujavdS3Ev7lAwjLLhipXjI9c5Fc/pN6IJI2V1RmXar7ctkZyB+FJ1k9Y62M/h3NmykaO01t0ZlcSphgcY+Y06/LGeMscsYYyTjH8IqG0LNpuqSlWCzOjKWGNwDVY1Af6TGP8ApjH/AOgClVd4pnXhPj+Rr3Vpa3GiQNdStEouJAGUZ5z3/Kl0awitHmaG6juEfAG3qPrT7oA+G4v+vp/5modFPltOQuenStYrQ56j99o25EEiqh7n+ledeJht8QTj3H/oIr0iBhJKowRwTz9K848Uf8jFc/739BWNfY6sH8bM5elen6b/AMgu0/64r/KvMV6V6fpv/ILtf+uK/wAqwpnZV2Rz+qZ/tW4I/v1LLqV1DqkkSykxmbG08jG6rN7o81zfSyWt3bSuW3GEvtdc9qpX1ndR6qzyW0ioZ8htvBG71rvVjxnuadvq632pC3a3VXSb7wPo1bCuyHKkj6GuZ0pFGuMR/wA9T/6FXSis6vQ6MNsx7zMj7TE6AsMOhyD9RU6aijuuWDY644P5GuZlvLiLXGiWVvLM4BXPHUVJa6557uLmBDsRiSvBNaI5pbnVQD7RcS7COAuPfrUsg+ZQeoYVz1pLFco8kDSqgI25OCp5q411eQygPGJos8Mpw340r62KcfdTNKRAZMEfw1XihVrV4scMXB/HNRQarb3MuCxjcDlZBtNXbWItA7bgCHY47ketN6iSsc/NpTiGSDCzxZGEkJ469COlQW1pDBqVtII5YpMIi5+ZSAOBmuh48xvoP61C6rsgOOki0dBJkGuo0miXaIpZmTAAGSeRXHR/LJp64wVkUY/4HXeXEAuLd4iSMjqOtYs2mEmN5YxMY3GH3bWGDkexpR2HLcg8I/6u6H+1/Vqn8T30ljBbMqRSI8hDpIoYHj9Kl0S1itZrhY/NXdglJB05PQ96o+M0Z7CAqjNtkycDoMUfaD7JlRw6fPcXRYtZskqszZLoxywHHUda6fU1DeGrhEYP/o3BXoeO1cdKP3moDtujP/j9drCzJoStGdrrbZBHY7acugonAxfIYxnB+yt/Nq6q5u3s/CdrMhO4MBkHB6msU3sN3exR3tuu9oHzND8rADdnjoelbV9bG+8Jxxaexmw2VyNpOCcj602JBFrMcztHLywlVcjg5z6d63ZpBJO2Su7byBXCWltN/akwaNkKXIYhhjsa2dcvJLbVnK4IWAMB759aNmPobqRNLLIUXO3aTiqk9gAT5eANx+UjI6UaJeyXLzkkgrtGe561YF3FJIUDAPvxtbg0la423ZIp3S/8Sp0woPl4xngVkaZC6XmXXH74ke+VFdP9lL2u/KldvzL3FUmtvKaJozheMr26dqFomXJpuJ5fDfQQtJvjWbIynHQ9xVgPvdmK7c84BzilOnySEn7LEnsxJJ/KrFtZSXE4hZBDIx++W+Q/4V5ahJS5uV6nfGtC97mVfSlYyRztIOPXBzVi3X93OGZFhll2JuHXkcD9av6n4V1IQO8ZglAUn5JAayZbdzeJK3mx26KHQhC2GGD09aK1N2sxVKkW9GacN1bzKQZPnYnGT09qyLmZZJSIwzuvXHpTh87CUtIqSfdbH3j/AEqrMPKn3LldxwSKmMbKyOR+0cHfVGw0TT2hWeV2YrhCRwo+lVLWzEPkoz+b5OSB05PemSPEIRv80bv4snj1phXy5HWGRWVSCCG9utXG6YqXvLVLQ3m1mwSyuYWh8mSQIHl3EpkNwAOcH8cVd1AYvUHpFGP/AB0VyzSpcaVeuZY0keBmZMcH5jz+n61uq7SGMsSTgDJq/bOTcX0OyhFc10dPcn/imoP+vmT+ZqLR/vy474p9peW82mJbXkSbVmk2jzNpJz1H51Ytre2gk3W/mgMRkPg4+hrui9LHDUi+Zs07TiZh/smvN/FH/IyXP+//AEFek2xHmEn+6RXmvic58SXOP75/kKxr/CdWC+NlAdK9P07/AJBdr/1xX+VeYL0r0/Tv+QZa/wDXFf5VhTOyrsjmdaX/AIn9xjjDLjH0FTNd3Vtq84huJUBnOVDcfe9Ki1Z1bXJyCCNy/wAhRcEf2vN/13P/AKFXodDxnudCl/CdXeGSxi3iXassfynr1I71eFYyD/ioX/67/wDs1bI6VjV6HThupjXOmX41gXAty8DSqwdecDI6+lZltGVlnDKQfKfg1Zv5ZoPEzCGWRAWjyFYjPAq3aXtw16YpmE8WH+WRQfwz1rVbHNLcs6ONtkw91/rWe9zLHrsoSVh+8bgH2rU0+7trmGQQW5gZSu4btynr0/WqEllC2us4vYt7NvMZBBGR09DUr4maP+GiGDV5Jo5jdQpNsVccYPJrW09mW0SWNvLXLHaxyFFZR02WzFwrqxQohD7cA81r2K7rBV6g7h+lEthUviC21ZnDNJGkg4w8TfeHP4VdjuoJRCgkA+dW2twcVy0emqsE6xO8ZzGcqcev+NPRr6PVbG2VleIhSzMORg+tW422Mk7ncFYjGZIpVYDqO9UyQUf/AHv8KzXuTbQvLIxjCrneBnFRwar50KuPLnjZiN8TYPbnFRGV0a1Icrsa+ALlsddg/mar6hatcQhkkZHTOCKkt7q2kuXLs4+XBUqQRz1+lWLgxrDmKQSA5/Cn1Js1E5i708AzFrXcXwS0TYJw2eh71rwjOigKGOYCADwelSghpOf7v+FOgQPYKh6GPH6UMUTh4LQpdwGeNlk2SLhvQhv8a6JI0HhVkUDaASB/wKlXT2CrsZWAYgB1z19+tTeUV0SSJ18vBKkIN2OetO4kjItbuVJZt2JlBTCyc4yD0ParGv28D3jO1wI5mgwFdflIB9e1V4raRJJio3oVTDLznA9Kd4owbiIjvbvT6h0NHQbeWAzGRflcIVYHIbg9DXOTXM0d5MFPAuZRg89q2/DpP2mYbjtMERxnjO0Vm6i9n9vmWWIQFJm/eIfvZHUg/wBKV0rth0Nm21SFNLG6VWmSIsyE80sN9BdyQANtO5MqT2Poa4M6m8+qiFGURjciqOrjGCT36Vu6fhb6DJIIeHP5VnTnzXEmc8njfTmPLTL/AL0YNaNv4t0eTG65iHs8ZFeeSWBHRTUcVmpnRZDtQnBPpWfOdrpI9Yj1fSLhflmtTn+7Lj+dYvmRuLySNpXCPiMFePz71x50HbHK/wBqTCn5cfxD+lQ6fa3kdypZJFjZTg5+Wok41EYOEJLRnc6fYxXRJmQwIzFlEnBBHpUeqNbvcSSfYwcD5lUYAx3FZzXjIY4jJI42lRtPA4qrP4mSKc28UatGoChufm9aly0tYzV5aIQtc3ZMdlhg3VeAQtaemaBPcQTO0KyMhwyhhu/KsnTdUt49UguI2aORW3NkcEVsHXIFurqUurK/IkjGCuO2O9TFLd7is47mTEEtriS0uoPLikO0pKO2SQc+mTXQW5WQgbkUggDccZqjZTfb5m+1QLLk5gMq43e31q1plpd38sx+S2ZD8sMgIP1Gajku1JG9Gq1JXehauHLu8bHKK7ED0yea1vDwCtIM8bhxVKXS75VMktm+CeXhIcfl1/Wr2ixmPzNx/iHGCD+Rropp8+p11nB0nY0tRnS2t1dyAm/BJGex/rXBa+pTXJ0JJw3UnJ6Cu08RAf2Yh/6aqK4/xKf+KkuvTef6U6/YWDj1/roUl6V6fp3/ACDLX/rkv8q8wWvT9O/5Btr/ANcl/lWNM6quyElsEkPzKknoJEBx+PX9aqzaLHJOZxKyuzbyCMjOc1q0VuptHJKlCXQy44c6mbnzAoMm4o6lSOc9ehrUB4oIFIKJSctwhTUL2OZ1L/kZyyvxmP8AktT22RqJzjHz/wAjWtcWoldZMRMwII3xgnj36/rUD2CQP9oj3swzlOOc9cGtVURyyozvcg0P/VXBz1Kf+zVUulA8Sr9U/wDQRWnplsLaKQBiQxXAZdpGM/h3rOvY3/t2GYSQLGzIPnlUE4GMAZznNCa5mEotU0mXBcy20s7xSEbbeMgdR1UdOlX7C6e8tkkkjRW3lcRrjPvj1rHd0cXex1YC3RSVORkMtaeij/RIx/01P9Kc9hUviI1axKzGGaRSdu5ZFzjr3FPW0ke8triNd8ajBdOR1FU0gGLrjgkfzpU8yO8sFR3UbOcHr89aPYxT1NKdRJazIRkFDXOnTojDAUyjLK3KnHcV0pbartsD4Unaeh4rMNzZyQRnyJYBub7rbhnj1rOnsb4he8iHSWvftV550nmopwgPUc1b1DVYbC1WSWWSEs+AQvseo7ipra2SGW4ZLiOTJ5UdVOe4rE8bKzaHGVUkiYfh8ppPWY4/wWbEWqCSVtrRT7VydjYYdOCK1LS6t2sUUo6nZ8rH+teWwK76nforFMwoQR9VrubCQw6TAJMlli+83O7FVL3TOklJtM04iV27hgFhg1ZiG6KU443sK5DSNY8yGE7JIt7n7hyvGO1b1lqbSafIylZELnoNuen60PTclK+xJcWUMlsWC7X8sncvB4qvqtl9oMRKq6NHtI6N07GrK3sTwbSSh8s/fGOvv0qW4ZQsGHDcc47HHSmJGZpMKW08pRnUiBRiQegABzXA+I9SF7cvNEjbGcn0ww6ivQhdW4uDbsw8x4SNuO1eTXC7ZXQSGRQ2SFGQcVz1ZdBS2JrC2LZuDE08r5KkNgqfTHc8Z/Ouqg1Nrm0lNz5ZcqAhPDKRkZOPT3rk4GmW5TbbkyNuKqhx2IyD+dX9NunmhuTtjZ0iPLYGSf6msoNqSJVzjIpJwf3bv+BrXsGVlkF456ZU7Qapq8aj5cVZgJkYRom4t2xWk9VY65XtoW1hgeQLGQ27q3QY9aX7XBDEbfa5QcA0kcMQlMU4ZB046g01oUidy5O1CRgjr6VjGxhG1uVkkAJRmt5g4P8AyzJwRVeVLfKMMIAcseDmjTnQ3iq/yq3GR2q3PbwQrPK8YlOSMscAflTkraDkuVjLpLSSFWWFd5wM45/Oq9vYJFA0iSo0hbBRzz+FV51nidJIY5ti43RuSpAJ6j1FWdQ84TqYAeQP3br/ACND0WjKaVuUfBLdKViuLk+VG2Y2x901vR+IHjvEuHUs5TaAvzZx2+lYtjLHdwbt6Kwba+442/hU8DnTb0Y2Md27KjPFHvakVGl6nf6XqljPaxiXEczcspcqQfxq9IyOymOR3BP8Rzj8a4GLV0vLyUJbB5SNhaRR8o9q6TQrN7PzEJyGYEHPFejToP2PtH/XcxjXvLksb1zDFNabJY1kXrhjjn1FcxfaVaaje3UsjtbXIb7zOCpJ9utbGvTTW+kl7c5cOM/SuWttU8h5GexYea5csrbsfTOKFhalSPNGN0arFRpPlcrM1rXwzYhAXkubhh1CJtH5mupheCGCOM21zEqqFBADgCuRHipVhKuJi2OONtW7Lxepg3tp18sSHa0sK+YoPvjOPyrKVF0170bGyxLqP3ZXOoR7eTiO6iz6P8h/WpDBKBnYSPVeRXPxeLdFvXEYvIXbOCsybSP5Vp28tlOnmWzqBnG6CbHP41HInsWq8luWSccEYopfMnUfLeNj0nj3D86QyTHkwW03vDIUP5Gl7NlquuqDNJSPNEpHmQ3MOe5TePzFCvDIcR3MTH0J2n9ankaNFVi+oEcVB5K7unfP41baGVVyY2x6gZFRVOqK0ZEbaLawWGJSww3y9R70+3QW6hY0CgHcACTz+NPFKOtPmYuSN72KaxnEqqWLNztZcd/ypoicXFu2xvkGG46fNnmrpFM8tN5fGG9R1rT2r6mDwy6Mfn5W/wB0/wAqxUG+zUkD/Wt/SthhkEcc+tQGzjKBR+7CsWGOQc1VOaSsxV6cpO6IrZAmo3Z7kk/qKZrVxNbaXLJC5Rhjn8RU8SgXMsnI39iv079O1VtbjaXS5Y40Z3OMKoyeopNpzQopqk0yvDdJcWlwLuESIkaOSnysfxrTgEUlkiwhhGVKjzOvfrWPBBLHa3PmROgNuv3hjJGK17T/AI9oxj1/nVT2IofEYFlpF1Yw26su4KzHfGwdccen41diDDw9MuwEbSeOMcA1gxSPBCm12QiVwCDjsK1NDnuLrR7eW6mefdCrEOevygnNVIiG4tvJObQGKY5MSja3IHTNXr6+Sza2V2dS6k5Q9cAdqjt5bSWCP900CGIEc7tozVDxXGBpkM4ZJAjbVDcE7h/9apqNpaCj8LM/xBfsr211bviYYLMqYIAPAYdMZxXLTXMT3f2hjgs2Sq/KD69K3Le/DWkgkhVz5IRyecAEEEj69q5q92rJvmLGZjyOPw+lc87S2IequUrvxNpUd7LG02xY2KmMI3UHpwKv6drdpPYsbJiXZgmcEDI5IwRzxisKRTaSaRFZaRa341Oac3CzQozyOJ3TyhIQTHhAjZUgjzMntVLwyjS6ZIigZE5IYnGOFpyppIbikrjpHaOMsCeKu6BrC2t6ZJ5CgKlRxkVmTTI0TAHk1USraurG7V1Y7O6uA25t+92Oc+npTJbm68plcGR8AsoH6issXCXNvEmdrsRwD6VckmKzqQ4BPB5xXMo20MLNA9zLp0ym4idY3H3lwamh1BZoZSsReIP37ehx9azNSu3eVI+Snq3Q+1aWkraRWxmi8zeww6sMitGrxuzR7cz3H6hqdxcz2hLdQAfp6fSppbu7fTHKFfMVsyIWHCnpgHk/hT5tOjkiguI8ARH5l7Ee1VPOhuI8TxqXXoVGMD+tS4xkloUrNJ2FsYLWWJp7ia4W5LZJVcqPQmtA3sO0rCcuvzMx/i+lY8MrJKAhO3uOx+tXQqTTcKUYjOQORVxhKbskLEaWNjR5hd3ZmiXI2jO0d816LCGdgGOOenavMtDlmivvKtIt7MRu+YDFejabFdRArddS2UIYNx9RXpSlKVGMJ6OP43/yOTDyUJTS15/wt/mS6nCTps64ZsrnFZUdrFNpQzGoGMg5yRx29Oa1NXuGt9PdlBJPy/TNc1Dcv9inUsMqqqv0zz+ldmDoznRvF2tIitiaVKo1NXvFr9QFlGdJaZlyxOQQOnbrUNgsjW1ytuzpLEWkBQkHgJ6e1akN6sej5Ijyp2iMHr7ml8KlYn1G42BtrLuAGSiHGSB7EA/QU8fzypSU9ub9C8vdOnWpzp6vk1Xnf9TPttKgubl7S/jRpSGye4bPPPf1rNbTENm11BK3nRN86xuUPljvx1I966nxDN5HiC3nUqUCA8Dtk/nXE3FvexeZdrPGYkVl4bnB7EV41OKTcWerjNVCqlbmRq6ddXm3bFqd/DIQXRXVJFK4z3INXIfEWsJzPHZ3Sj1BRv1yKkht2i8MaJI5i8yZ3wQMMVKngn/PaqqR+XHKrclf506kVGXuvQ44Sbj7xsReLpI4kkl064ETfxwMJBx1yAePyq1B4t0e6bbLcxJntcRlT+oFc1An3kJ2r1Jx0FRXbQZZTBIFAwuWxuPfIPSkuduyNXGEUnJ2O9tprWVd9s4C/wB6CbA/wqyJJCPluNw7iWMN+orze1tobt4Y4YYkLOAG2bSD0wcGuxk8LXEMoNjrN1EeyyOJP/Qsmlz90OdJwtrvsa+98/8AHvE/vFJg/kaPNjHLJNH/ALyZH5isiS08T2yk+fZXaqOfMQofz5qs2t6jZDdeaVOqf37eUMPyOKPdYlKa2Z0Akhc/JPE3tuwfyNOMbjJKkD1rnD4q0txtuvMiJ7TwEfrj+tW7W60+4G60u05/54zEH8qORdC1WktzWpDURe4UjbNvGP8AlrGG/UUn2mTOGtkb3ik/oaXs2Uq8epKRxUUibwOOlKtzCw+YSxf76cfmKejRyHCSIx9mqeVotTi+pX+yQH5vKjD427tvb0qZF8tAoA46Yp23HbFJ3ouxqEd0cxeaNcBFEP7zEu9s/KQDj8+lS6MDbaNawzKySpAoZCOR8uK6BxUaxgEnoTV87e5l7FLYyLcqNNiZ8L+6xkn/AGq5vxDcxzXTRrOzIqpgbhtBxyK63WoDJpFwisiyFTsZz0NefXEUMumvKkpaVRucFeYh05PcE9qmpLn0RzTpyjoUWee0LBFby2XbuHRxnnj8Kp3xgO2TkEkKVz+tODGQBXdm2YA25ORxT2aH7Q8skIk3JhVIxtJ/ixWWi6kwhKclCOrZzLWWuRm9js9Te2tLl2d4FuHVXDEj5gODxxWj4e0xrO3e2u5Uj8yTIdeccD1+lWntd8W0k+fnknoTVWGSVbh0fg981SnzppG1ehUo2jPr2aa+9XRiMuAaYo+WpnBwaLWEzyLGvc/pWr01KGxko4YHBHINaVtZyTxpcyybgVyAelX5LLTIxHDuJbPzPSXKvOVigjG0LwqjH51i6nNsYuXM9BI2hnJjuQijHy4HSni6RYvKRgdndBjIqhPYXEQZ2GSv3geoFMQlHAOSSOaFFPrc0UU0azXbiPaJCEIzwaIyfs67lkUN/wAtAcg1QSKR0Zv7taenzeVC0DkEHp3H0pSfKiorljpqRrG5DAfNt5J9K2F8qWKJAQHEeORyDVVniOS5Ee7jnoafG0X2nzI3zEFzgdjiroLmno7PoYVJRlo9L7+Q/SYyl5IcnhcH35r0TRzAsYMGccbsnvivP9OYG6mYHII4P416Bpq7baIHABQEYOeMV9PjYqOF06s8XCO+KfkT6tdTWlmZYH2sGA9azra4u76JXa0sZ9zFcNGFbj3FWNdI/sw4/vLWZp8kUdsjGaWNxI2SpIGMce3Ws8DRhLD8zWt9+peNqSVflvpYsSJaiMvPpLooAJaGbgA9OtSeG5LZdWuxDJKisAY1YgsSO3v9O9Q3Uqmwfbel90SZRsevSq2iyxW91cS3EJeJLcs2z72C6jcD6jr+FZ4+mo0k7vfu30fc6MsfNWlH+6+i7rsWtf8ALtr8KiDymiICg8Kcn9AentXJXtrcXmqW9nDHuaXAXC+vqa6TXYpEv0NxcmUTBpFlVeqZyDj3PJrS0O4FhqVmzQeb9psiyEDJVlyf5YFeNTdqh9DjLPDQ7mFOPsepnTZ5Ts06MrDk8GQ4z+HWhb5bqd4NqrISOM54+tZHifWI9T1dri1THmjLKDnnj/CrfhqytJ7F7y6iEsxm8tVdiAAAOQB9eta1eW12edQpSnPliauxSXjzhXyhNW5/MSQpcQL94OwDBgBippbOxgWNSsmCFZXEoP3snofw/OlvbNpnCxTTK6ny8yJhCV6859j27Vxvc9FYbms3oZloyjVbRli2KHCkgYydwx/Wu5vFWS+hIhV2T+Pfgr+FcQtpLDeWh8+BwZk5jOcZORke9dtNZQ3MhZh8/Hzg8ii+oVKcaLir9xt000WnuJG3EtktnHHoazNejZ/CxiRS8kjqQoHJP+RW5PCJ4du8hQ2DisbWoDHo6RlA2JM4C7vXtxWlObUl6nNUfNScTz/F5bybAJ0J/hwefwppmDHMkEEjerRgH8xg1Y8TavNonhu9ubQtDfI0RgkEbER/OM8Pkcg1xmvX3imxl1LzNd06+msJzFerbWwDRNu2ZO+JcjcMZXIyR6jPfKtBytOBwqlJL3ZHYw6hJb4MMt1DjtHOSB+DZrRi8S368NdRyDsJoP6qf6VoJplldaKkTJ5M32ghXWNupHQ55ArIg0dbqYRQO4Y55OGAx6kHj8qhOhK+6sV+9VuprReKrhMBrWN/UwT4/RsVoDW7KUKZ1MTYziWPJH4iuRudMlgZVeWMEqHAJI4PSti1VXaVGwQIQRu5APIzWdRRjZxd7lwvK91Y6CK/s3IEF2M+iOR+hFW1uiY9yzo6nnLoP5rXF/Zp2Q+aP3arn5cEmorJpEtZfsk0gSM/cxyBUaMvWJ3YnEi5Eat7xSA/oaQzwj7zNGfSRCP16Vx9re3FvAxjd2DEsySFjyf5VJb+IZ7ddkyCQZJ3LkcZ6danlT6FKpJdTrJYEu4WjO2VGGDtYH+VeUa7G1pqFzbW8xYFcBh/H2wa6TUvECmNwke1yu5JAACD71x18W82d0nJWQguuPm6569uaymkmRUqc2jM+G4a3dgoCfJhiO5z/n8qT7RGhLB95PAX/PtVZnl3MSFKkHhv6VPbJbhGlZHKlcdeje3rUSStqKnUlTmqkHZp3Xqh73CtG7AuHI4IAPNZ7kl1LyA7hng8jnvUkV35X7potwwVJcY/GpXhWdt6BBkYAzzTjFQNa+JnWa5kklskrLvsu/8AWiRWmjPnSKB0YioNjQuJFOGzxWlfrsvrhfSRv51WGCOa13EkWftEcmFSLuCze9Jb3xgnVC2Qx+bNVvLAzg4z6VBMpUio5ET7NNmy2opdSlWG2EDaQaLgQyzowKghMAetYSn5utXLXEl7DG5O0soqPZa6MpU0upsx4YsuwfMozngDioVtkLnZICueP/11D4ieTTtZmtrZvlXGePas6xv5YyImbjOQTSdObu0wi2nozeZFEOzAcryDU9lk3IVtuCnzAcVnGZ5HjXIxnJ461ZV/Ln35xgjvXZl+FVWT5ntqc+Kk6KU5K+pp6cAtxMF+6OB+dd9pn2byVNs3G0bup+bHPWvPdJmi86Rd67iBgZ5NeheFgBA6SRnAYthhjsK9/HSjLDWT1R4+EjJYm7jZMd4gAGlMR/fWs7SftDW0Qj8sr5jYBJBzt5ra1W/sLnSJFltpIuAQXXvkjH6Vmomj/M0Nz5ZDIBslKnB68fnWWDqKGH5Wnv2NMXDmr8ya27kN+kxsmZoFULHGNwYHj1pfC5d5b3a6+aoRY1cZR87so3oD0z64q0fDWrTGRFnUW7H5RJJklR0zV/R9CbSXuDJdwEyqoIAz6jnPY5xUY6tSlSUVJPW/4G2ApVI1ZScXtb8Ucx4tvBNd2vlxvFGkJRYnGCmGYEH8q6izi+w3mjRNywiK5+qj/Gl1TRbTUXS487MiBQd3Qru5J9+Kbrc6x6pZMGxsjLe3VRXh/wDLxWPbq1L0o07WsY2m+DQniy8uH2m2QGRQOgLNwPyzUjWMFnvtLcIdksmQzgEkgHufT+Vaum+ILf8Atu609zgPEJQ5PG5RyPy5/CuPOtRaj4vzJgWxnQ/8B+7/AFqajk6sl0sY0KjpSU0dNLaPsify5cgRoVC7l2gDdnAPvSTRyR30rtbyKGkk2sejfe7fTNdKltGsiPGMMOh/CsvWBLdJdlFdZbcbFZOrgjNc1Orzpu2x3wxblK1jnzvD2zr5ak3EYC5+YdDyOwxWpDdSqLsCZ24/iHI5xn8q5u5lv7XUrDzmLq7JICw5POME9Tit4jImwAxC9CfcGt42ep0SfM235fmX/wC05Yo4FfdlhliB1zwKh1SVrnSShXeyyDjZuyMelVpC2yIDGMYIPbk8VR1m4MOmbwqsPMHyuMg9etaRjeSS7nJiIxVNs5fxujjwPqu1CFHk7htkXH7wY4b+lcHr2v6TcXfiK60s3skutzszi5hSIQxGYTbRtdtx3KgzxgA9c8egtqVvMGhudPhlhYbXjZmKsuc/dYkdgR6EA1AINBaYn+x7NEUYVls4zv8Acgjjp29/WuqdCpz7HmRrQ5dzr7dXi0i4aMbZQxZVLGPoOuCTxz9Kq6TJsvIxFIu7Yyj94hz8pxngHrimWN3pf2OaRr+GCRlZNrQjgHuBnr9KrwX1ucFrs+X8wzJKd2CCMlSP5GsuV3mrF8ytF3L2pxXmIJJpsqyAFcch8cj5eR646VT8027+bnaCFVu/GWzUt1c2t5FCYolaVHcsyMXIBPBxkdcfhxUc4X7NtkJ2AgkDr1as0tEmaX1ZoBIXtUkRyzMm72HH6HpUVjZSxQTSLIExKQev4U9bpLbThEySMGwAEwfmxjj1pllLia5e5+VGc7Q6EYLcDPvkUraM6vaxbjd7EcxjWC48x9o8xQT6Z/8A1VT1C2ht4BP5wPQADq1P1CaC58u3Rl2TAnzO2QeD+ANc7rMxtrzYrO8aDkg5Az0/r+tDTjqc9SS94q6lb3cMYWVmZAcq231yev4VWguWlUQuqOd3LdM+1TXGrvcQsr5WPOQuP1qIRQzwmTzSnXGF5BNZNmErN+6Y7O5ndMAjOC2M4HtRFM0XyPyoz045q0baS1YTEhos8nrj6/rVOeYtMJXwV3YODyaa1AkWGeUyMNiAjLZPWq8TyoQyHDJyDnpUhmG5BGXCDt/hT44JZ1fah6dB14p3tuHqP1fcmr3a5/5anAz15qisrEkYIPtWlrgUa3eEjkSmsyNhuJ6c1ZuiTzGVSSc+mKbcZLLkdqVmAXAxzTZ8Ajr070DIstnaAOe9XdLQya7ZpngyoP1qmrAN61qeHEEniW0bO3a+7J7YFC3G9g8TSCXxHengASY4PpWSy5wV6juK1NRPn6xdSnGWkJ4+tRxxKXIPTihMlLQgsWZbgM7HHTk1q3drl9/JyPWqRhBukQcc5rtreCN9Mjyqlt3c+wrOpNxehtBLkd0cXNb42SLIRkAEZ5BFemfD1riXRbnM7tIGKxs5zt4FchcQwrdSqdq8jAJrr/BTrDFJ5eG3kjg8ZxWtN9TnqTu3CxqeNrvUdP8ACU0yzxl1eMZCgkc88Ed6870nX9S1K/jt2EDeYCwJhHGPpXc+N5zdeGriHYDKZEGV6HBrjfDVvNZa0GuuEiBVlGMgkYFbKpZ6OxHs7ra57DE8zSMsiRrCFTBZ6jt03XDK24HIJHOepq2krKCqxZwgw3qad5s5ZMIACMt9a5nG7u2d0arUbJJadzH8SztYaRfXYTICKBnv83SvOb3xS98FMsbBlQICvHAJP9a9A8ZmSTwnfq3HKkc9twrx/wAhx3p8vVHNOor2kaT6lF56ziSdXXP3eeCMEdPenaXcafBf29zNNIUjb50aPlhnNZZjfHSkCODyoIofMyVOmevWvj/QNoDyyJj+8o/xp8nijSbxMRaggyflLKcL9cV5I1solEW4byMhe9LfWzQwwsOCVH8zWKp2SUdC3BR1PUb6e2uLSIyXFlPNHKpi8skELkZzmrB+xBMyXEYycZVs8ZzXjG6cdHb8DTluLlTjzH/M1pGDiVDEJaHsqG0miWNJwWUnHOM5rH8UW5t9M3bshpV79ODXmlzqd1ZOo8yTkZyHxUq+LL1oljmkmkReQrkMP1rWm3GSlYqtVUoOC6l2Qgy4c/J9etPgP3wDlQeOaqrqrT/P9niIxkgx4z+RpF1iMIQbIZ/2XIxW0asfbe0f/B2ta99uv9ak6/8Asaw/lbf3d78yVviez12v5JakFrJdsVixkY6nHU4pPs8pgMoX5BnPPp/+us1dZRSSscsXur0HWYli8tWm28kgD866vrUW99PQ8pUHb/gmottONreU+COw69P8a3CfM0tVwDnGcj3auYtvECsFVbggL03R/wCfStm11iwNl5UjyrJkksq8YzmuevVUmjopUnFM111S1WESyxglG2sp/h44I9qrvqtpMsLDzNiy8/N06+tZ8l7bTyM/mQPvXGHOw49cetOigs5ITiS3LliV3MOnbNYKMO5o+Y1JDZbXVARHnDYFY2u2Vo8cfkHc75C/lx/n3rX01IYHit5hA6OGLMGBwRj8u9Q67paSxILJRnaVDbzx7GpslpcTucJNYz2oy6si5wCeQrDqKjHmGZQpJwcDP6Vq3luksTJdz5vowzsTJlGXHT3JrDiZp3+Q4VcYzUNEvyNNSs0BFzH3ILK2AB16f1rBeM/NjOOxrYVJUVc8hx91Oc57U+xjtvtbpd27PEOG25DR464qUOMXezIrD7VGiK0e9nXZEePlBGefpjNaD2U1hbQ3MrQtvyMKefckfn+dUdPMqXEjRSojgYUP3Hcexreiso7mNjcOThDtGMYOeMGtLXjoatXRzPiH/kN3/wD10NZCAk/j/WtrXWjm1i7dGDIzkhh3rMjxk54xQND44QyFmzwMirXkRvL86g4AxTIv9S5PTGBT7ZzK7luMECqRLZnzKFuZFUYAPAra8Hx+Z4iiG3dhHOMZ7VjXTbLuQkcbsV1/hnS5tN1aC6bDxyW7nj+E46flUtpFv4TnZRuvpjjGWPHpyaljX9430FRMwa5kboCSf1NTRn5z9BQUgIxfx/57V6Lp2hW97o9vcs0iuzKpweOoFecPIEvY3JwOlep6KbX+w4RLGS/mIM7CR271DSvqdFK/K7dzkPEdn/ZurCCGaTaYg55571q+CLl5LaXz2JXzCBke1VPFMcR8QN5IzGLcZ9jUngvP2NhjgyM2a0jsclX42dkbGK9ha2mXdF94DpyOa55LHOtX4UDKsOD35rpFvYrLfLIrMo+XC9ear6XbwTeIdRMxxtYFcnHOaJJSaSKpNpNs1W1yOBWXyZTIq/dPA464NUdQ8R/YXiQ2qP5ylzmUnGCatsZri4aOOON0EZDKWwwzXK+LLd4PsygHCxFM/VqGQ3bYNZ8VzajpktrFawQhyM7vmyOv9K5KbzjGWK2/HPC4/rUnmJ5otWPzlC+PxqGU+XZXDMMBUIFTd3JepUOpgOUe2gJU4O12x/Op0uY5F/49gCeBiU/yrHgi3CtmxtlBVsc//WrZQROhpDSJn1GK4GPKKqxPcEDpV7VbIfZbU4Byv9TWxDD+4i/3B/Kl1mBBY2h5LbfyGTWEdWdFZcsG0ccbJD1jH5VFNZKI2YJ26itwxCo5ocxOM9jWljzVPUz9Y0e2M9sdwcmEOV/E5H5VjeJLO103Uja28ZRQisR16+9d6+lRXcu+ZmRI0U5X3JrJ8SacreIbiUkfLGnykcHiqpx5lodVaXLIwtPtmljBUgfus8jPAFUBPGQcxOMdcMP8K6OHT7dTMJXKo+4j5goVsHH4Vyl+lxZX0towUuhwea0jGPLdkybbSJzNb85Eox/sg/1qLejiRogWCrzxjrVQyzfMGRQOhwa6DQ9IW6il8wnbInQdsYP9amSgkOC97Qz0gjSIOXC5AJznj9KcEBHEyjvy2KdLdxw29xZ+Q5QEKGLDKkEn8aFuoJjKUhkJ8kqcsOnrU8t3YG+petLJpvLADPychW68juPrVwaSgZzIk6AEhRjP41HLbn/hGIZ1BBEoXI+ldR4C8NpfhtXvbhWtoGKC2c/6xsfXoKXLrYvmSRykwe3BABOchXbqoFVxNdoS4lkUgjG1jz69OK9Q1zwxo+rXlj5FwlpM3yOkSAr9SM04/DDSZJ2iXWJVkAyQIgBnHcZpezu9Byg7KR5Hd+cZSu0/N94nmhI8rkRhSqqCV74ro9T0ZYr2eMXDExsVwjgq2KpJbF1mhjcecI/4+MHPek4NIlJX8ivZ6iLJdoh3H1wKtx6lC8r3a2YMi/ePTOaz4bTUJHAkt/LA6s64Ue9W5LdotMvXTnAQ5AxwTRy20KhUktEyKO/thdXNxNGDFOQpTHTHpWhFqVrFboVZ0jY8ZxWVFEJbPblN4OS2OT1q9c2cVtolm1wBtLNjPemmU5NvU5WckFhTrJBNMFYcck+9RTAknPJqxYOkLF3ZQT8oBqUaws5q+1xLtWs5jChBQ4PPpUJuJIXOwAZ5INS6mwe83KQykDkVUlI38Z6d6YqkYqo7bHZeDtO0vUluXvolmmPO08ACujhkt01K50+BTGgh3RoxyQCOmfauY8ETJEl8WBzhdvTrz/n8K2IrhU1q8lIDvHEWDDHOQCenv/OpmtBv4TiJYngu5YpFKupII/GpY+SfoKW6uZLy+kuJRhn9PTtSx/eP0FCvbUnToMaMSXkasMjrXq+iXMg0K3i8jeFKupDY6Edfxrys8X8f0r0zRWU6ZCP3WQgzuPuKhvU6qEU4v1Ob8VyTSeIVldNpktOQGzVvwhE66ewPB3n34qt4gXdr0Sqq7Vs9x2nirXgeR7zTy2Ap3sOD6YrSGxx19KjsdPqUZFgD1JYfzqERA6ze9wHB5qzqhH2JFH95f50sg/4qHUv98VNTc1ofD/XkTefKM7W2E8Fl6mvI76C71PU5Wu/FOpWxu9Yu7C2jwzwx+WYzl2Mg2J+9HRTgKTXrZWvH28cS+HNWv7WCO9EttrN3dqYb3yopS5Rdksew71Hl9MjIYjjrTg2ya0UkrFLRLe+urOC/853lycO75JAJHeu7028tToN5BfQKty4faNu4Z28frXmOlFvsEeGIGD39zV9Z2VgBIx455rXbU4ZKo9mjSt1CR/Nxgc1rWUsTbAHXJ7Z9q59LncCnHTFdn4b8MprYNsSseYstIf4fce4q+bTQ0ad0dTbp/o0X+4P5UzV1BtbfHUDB/M1ZWCS0hS3mKtJEoRipyCRxkUl5Gk8cAkfYgizn1O44rmitTrrq8DA+zXFwRHapvmJ+VAud3tTZoyqupXBAIIPUVoWOofYJGZmRUKnLuxUIexz9agv7j7XJPc/L+9JbKdDnvWtzzHC0Yy7mzZt5ZHAIdMHPsCapaxoi3dzNfPOI1K7SNuQAvBNNubicS20EGzDgFsjJAGOlF5/apkTyjHPbscbn28/dz/7NVU3dJI7asYwneavfsUjYpZT5jg+0K6kbQM8YPODXnmtO83iC5eZVWQ4LBemcV60YbhILWYvEbh423bRlfTA5968/1t0vIrbUY4QrGLy2DcliCRuJ9a0bj8KMlFuPM/61OdjjT7VsY8luQeRXa+GIgylRnbhwCfTiuYtYDPcCfgxhidp4JxXTeFruKa8uFCsqpuJDHpwKymtB0vjRx9xHGLu4jEinEu1QOd3arVjps9y8yQKzMinOxCcn049a6zTvC+m38Sz2m57pjvJd1VEGeAAa63TrCKzLreeIkVVGFt7RwjO34Cr6kt6HPQ+HNVuvCkVvHZyCbzlba42nGBnrU2jeHfEtmLi1gMEZPzMkjA4J6Gu8tbaxSzV5I7yVun726YkmqbWVvgt5fLHuxNVyE85m/wDCNeIDAghntYp8fO+3PPtxU0PhrxYqNu1KBm/hIi6fpV4WdsR/qhxTGs4BkiIDHuafKhczPIfFmtpoHiW+0y4ubjzY2QyeVboV5QEgEsD0b0q/oMUfi3T5/wCzhNHIVaHzZwEXI2nBIJ9RVe9uLDRvGuuatqck8dtK9vYgRRCRnR40aUcsuBsXaTzxJ0NQeBLi50XXZPDN5dPHZnUJYJQgAHmABQwOM9VH6VC+LU0a903H8IeKYLcRTj7VAg/5YSh8Aew5q1DZ/wDEtv1YbSLPPzdiM1bvpfFOmfaZbPUwZLViBBKgYyYPY49K6GCax8VeHJ9asVzcSWzRXEAHO8A549f55pulZ3JU+h5PpEHn2kTkjK7hg9+a6nWbdJNCtAyt8shxg4zxWBosJSyZcj5ZDk+ldjPbpqGmWltbyRPO0p6v0wvU1mlui763PKZT8/XjGKAYGtisg2vnKGukufCOoBleKJWyOQxIwag/4RbU2BDW8Jz0w9ZmzZzaH92ATlqSX7/XP0rpV8H6mMCOCML6GTJpW8Eaw5z5cQ+jUCTK3hZFnu54GJAaIsMdeP8A9dbdpCYNX1EEBitkG65zkDFQab4T1jT7+O4CqAp+bBzx3rcsNKult70yweVNJHtV88nAx+XH60N9CpO8Tz5Pv/hVmMfvD9BWwvgvUwc7k/76/wDrVPH4N1INncnP+3/9agSaOdmjaS7jVevFekaZJGlhAjNEPlH3hz1x/XP4Vz8fgzUVnEhMfH+3muit9BfEaygKAOSOcVnK/Q6qFSMLtmLqQV9adwV5s/4egyTVn4eqRomcf8tnH8qmm0hhcea8FwvybDsAIIzmtPw1p8Gm2Yt7fzdhdm/edQa0horHLWfNNyWxc1Akwd8Ar/OrDj/iodS/3xSagm+IopG7I7Vzfi21upml1e3upIJoyGKocAj86mWrLpS5Y/15HVYrifFzpeataQxTqQsLpJsfJU56HHQ1ztv4h1yVWgmuzJA4KvlRnBGKv3N5EbLTzDbRtdIgWXyV2hiSRg5HPGOc1m5unO39fI76WEjisO53atfporK95dk9l5/c+blsZhNMAoxENx57VF9llUI0ibN33CRgEV6Xb+E7SeFpLhDFLLGA6K+Qp+tTP4LsZUiVpWxGMKM9BXRzI8n2cjyiKF/tKnAwrAnHpXrHhS9tdPlZ7ptqOu3IBPbpgVCvgTT1ZmWZ/m461LdaXFpMcU4fzURxuRuhHvVKStYfI07mpO6rAGU/Ljj6VT88zW7Rsgk+QYUjsD/PnNak6/2xZxzH91lTGdq4BI7j8xVeHSzDjFyTxgfJWMbLU6KqbVjjvEVvNcfZ7WORl3Fydv8AFtGQD+VX7KQS6RA6EbTEB+mK3LvQ1uDHK9zKWhYsgRFGcjGOn86W20KK2s/s0E86QnJ2lUOCevJFacyscTw8mkr7FETFbuNwT+7H3exrSaOcMDF5CRspwroW+vHvmmHQ4Qxfzps8Z6VfjjMYUiWTKjAIwOP8iqoyhGXvrQ1rxnP4SCNbn/R/PWFYypMYjGPTtXD+JdOa00izjSPYrQiQYbOck5P5136W8asG3ykjgbmyBVS40exudpmDvtXaAX6D0qqk6fPeGwqcKipqMtzy/RkZLYK33juIz6YrQ8PK9vJdsqlnlbYg/ma6m4sfDkKynYrug+6GJyfSqGk5iia4/smfY2QgR1+UfQmobutQUeWVy7IpTR9rFNy4G1MA4zyPWtTQtBS323kynzP4Af51mQPp8uuWQBaKQHLQzLgn069q9EMcU0K+Sm6RBl9o4FaQ7sia00Id6pDs2g54zVduWyBwKmmkQbdpHyjHXvUBlXGMj861MgEmzJqOecCCRz1Ck0+SWIgBQuB1561n6rc2kNqxL7B/F3wO549qGyoxbdlqzz34gfD6GTW4dUm1nyPt0URMX2bd5e1FXru5ztz0HWuJWI6OEt7e5eURTecH2hfmwvbJ/u+tem+Or/UtWi06ee3t7OGSBXgRGMjqhAwXPA56jA4Bwea4m80i28o+VdAygZAK/eP1rnU4z+E66+FqYe3tLWd1o09VutOqujtfE51K/k0rWNPklMF1ApmRGwNwrO8P6xN4S8VxsyutlfYWdCCAG9R71r+F7j7X4Gt1b5mtZSn4Zqrr2kyanZqIYsSxMHjPv6VtdtHHY6DxT4Yhjhn1PTI8x3BEkkaDgMf4h7GvPtH+2aVPqF75ZQ28bSbZARu5Ax+teq+Gry4OjLa3SkSR8fMO3pVLxdpkNzoE5giCyFlDbB1XcM8U3B/EhRqLm5WSwXllcPsV/mzjBBq39mQ/wimRqsZykca5OSVGKkMhrjsdQfZlHQL+VMPlpMsRKh2BKr6gdadJKwjYjrisrVJ5E1TS5B5eQrZJHOOM/nWkIczsS2+hseWPSopkGVHqe1Ng1axeSMu7BGl8o5wvzfjVm7CLfeXEchWx1Bx+VS4tbjuM8hT2o8jHYVYA9qVR60hlbyh/dFOEK56VZIA700lR6n8DQBD5OOmap3H7u6HPb0rUAyM/zrMvAW1BFHQLk0CYyJPPuSrcj2qj4l09I/D97IrEEJ0/GtCzbdfAcd6b4q/5Fq94/gH8xSHrY8m0yEPuP4YrqZYHlfQ4VAPy8fXeaxbUR7d6jbnrXSWg36xoKeilj+BNVe7EdNFZ3a8Njb2AIqb7NcbevPrmtPGaNv1qbF8zMaewvJSNk/ljGOGqG90m6ubaKE7ZMMC5Z+o79ua6DyzR5eO1Arsw7HSbiytVt45V2KSVG7oCelWvsMxOfOPTnmtLYP7opdi91FA+Zma1lKePMNH2BsD5zU9xe21uSGSQkeimq41ezc4EiKfRjg0WFzMX7AeBvOBTxYrgDNPFwHGUKkH0OaUO7HAqlFkupYiOnpxy1MbTY2BHzcjFXlV1GWz+dPUdwGz9a2hh29znqYtL4TnLHwVYQRuJRJMXYsSz4/lVtPDmnINqxMR6bmx/OtwRdxwfzp4QEYYk/WulUkjjlWk+pkR+GtKDeZ9lTzMY+brU8Ol2dsoRIcAdtzH+ZrTjt2J+VM/QVaisGcgyFlHpVcqRPPJmUtjb4yLaHPoyip1tLTb81lb5/wB2r7acitu8whfpzThbxR/PISfRTRZBzSKUGnWcwObCDH97bgUy40/So1bNlbyHHIKDb+Xepru/CKRkKo7Csp9RiKtkE/Sq5e4vaNPRnBajod1cX0NqLyWSzRPLVpGyyKOgzjnHb0HFTWfgSxhcST3U05HOOAK1Li/QSEpHjn1pkmqSRxqp6tycdqyjQpweiOqvj8RiLe0lt5Jb7vRLV9Xu+pNGmm6fNHZqojLgsAOAfyqw97bwDgj8BWDNMEuxKRuO0hWPXBqF7sscBRVqyOZtvc1otZlXUJCAohwNmevvUs+uzSOI12lG4IA6isNC0hJ4XFSRqgkUYYt7VMpIuCbdzp/LuQeJFP1WnqJuN+36iqyk9pG/OngtjG7P41wWPSuWNpKkFu1ZOoXdqNPiaUqJICyAjqCRgH88Vd+cdAufc1nXemXM0VyIGgSSXBV252mqjdBdJpnD6dcRXELNdTYnZznjgnNdDY+JpodDkurlRPFaTeUidDt47+tVI/A+pRgAXloRnJyh61pReFUbTzpc85YSSGVynrwcVTloU56aHUWlz9ogW4hZTFKNyBcjANWvNlU8FWHuKq2lslpbx28ShY0G1QowBVjHPJqLIm7JknOPmTH0bNP84Y4Uk+lV/wAcZpS8YzlzntxSsguywJ044I/CsnUJ1XUVx02irxZOcPwB6VialKv29cEEBBUyaS0KSb3LOmt5mp8DGc9KseKgq+Gb0McZTjPfkVnWbILsbunNYnj/AO1XUNi9sZJYYmPmIuTg9ifUUo7AzjrKZ/JYZ45rtNBt2m1vQ2JwEt3Y+/JrjLK3vLqTyoYJJpOuFToK9G8N2dxbX1rJdQSRLFbMmSvAJarbJOw2ehp20jvSI6yDcjBh6g0/p71OpQ0A+1Lj2pdwo3e1FwEHHal4z0pcn0oyO+KAE4PamNFE/wB6NW+op+RnrRQBXaytW628f4LiqQS7N1cLZWsTRQgFi8pU5Ppwa0pJEhiaRyAqjJNcS/jqKOO9t4LZJVncESGbaQB7YrSndO6M6kVKNmdSktwNnmWseWOAqzAn8qlj1bTQ5WSWzVgcEG6QEH3ya4m38Ym3dHFk7lTuwJl5rn9Rkh1PUp7z7HInnNuKtaW8mD/vEgmuyFRtanBUoJP3dj2iK+08oGD2eD0P2qPn9asx31jkBZLPPtcx/wCNeNzXUVxo8GnmycLC25T9hhI/LfgfhTdKXT7K/iuLnT5Z0jbcETT4Uye3O84qua4vZ26HtU19LHMYorB5SBkkSoAP1qCbVbqGPe+mgL0yblf8K5abxlp88ERS0vY5OS+UU5P/AH1VRvFduEI+z3R+sSf/ABVZOTvodEaatqdIPErC7MdzZeVx8rCUOP5CsvUPETliIl5/vNzXPz65DcSB/JlTH/PTA/rWdda8sbH9wCfV5gB+maunPuYVqTuuU1b3xBBpljLf6julA4RPU1yg+Jc13dLC1nFHbOccdRWbrl++rmGCUxCCMlyI2J59zXOz28aPugBAHb0qKlZ3900pYdW9/c9FEigu5O1Sc8nrUEmoQhyWkH4VmWlvJe20Msk5CMg4A5zV1NJgXBZS3u5pczewuSPUhk1WPPyKZD0AFME93KcxW5Hu3FaHlRwnCqq49BS8dqV33HotkZszX8MDymVVK9FUZyaoWWoXt7PLBcy8jBU5wMV0GYj5gmj8xVjLbPU9BWfo+lmbxLFEFOzGT9M1nNnRTV1dnaI3pzUq5PQ0kcQHXNSSW/mKArsmPSsrmj1HfcGWOB70z7ZGjENJFj13VA+mNIP+Phiw9en5VUfRZl5DBhjtUuTKUV3NVdQt8kGSMemDVZb+OPUWkZw0WMDbzzVA6bMFHGH7bulQPp1ysufOh29CA3T3qeZjsjqVvrdwCsin0GalDo/QgjuQa5L7OEI825iB9iTUxurOJRsmcEDnZk1XM+wWR1JVGGfXpSGIZ4OMVzSasijKPO2PXAp3/CQSrnbDkf7RouKxuy20pTMbjcfXpWZPot1cS+Y1wgYd8Gqz6/dEYVUT0qD+09TmJ2yNz/dXNS0nuUm0aUej3cW1lnjDjoSOKs/Z5YkxNMhbOflHFY4g1if+G5OfbFSDQ9Ul++u3/flp2Qrs0g1qJGLPt992P61N/a9rAgU3fQ9uazk8Lznl54l/M1YXwtFgb7l/+AqBQAsmtWm4lJH3+qrjNS2mvRtIscjHB/ibipodCsYRkxtIfV2q3HaWsJzHaxKfXaKYi2lwhQMQMeoNNa9hXoaTfgY2D8qTdnov6UWHcFv4zkeXJ+CmpROH/gfHuKZ8397FBzj71OwEoI96UsKgyR3zSFj64osFx1zGtxbyQngOpUmvCNU0aSx1G4tyznynIz5Zx+le67mx1NcZ4x8PXd4TqGnOBMq4kQj7w9qa0EzzG1SIXkatOjKTgjDD+ldimnWQiRygwe4JrgyzwXBZ1O4HkEY5rWTxO6QiL7LkDvvNb0pRT99XRjUjJr3TqDZWOcKHA9d5rB1ofZJo1t7koGzndLtH6moYfFXlElrMN/wM/wCFZeraqNSdGWLytue5bOfwFaVZ0mv3aIpxqJ++yyJbs9L6I/8Ab0v+NO829/5/Iz/29L/jWGDxxz+BrXt9bMVqkLW6Nt4BI61z8zNrIkIunYB7mIj/AK+FP9aHtk6vqEC+wLMf0FZjTB5zJnGTkjFK8gIyDRdhY6Tw1p8Woak0byhYEUsz47CqepWSWt6/kytLbvyjP1Iq54UmESXJb7phIb3FXdfs0trG1kxtBj3Ae2aYupNpQI06EdgKsvdJGPnk6dhXMR66ghSFZhGijGcZ/SrNvf6KxBupbiY9wW2r+lPn0M/Ztu7NRtVt1Pdie2ahmvL+K1kuvsdx5EYyzeWQoFaNj4l8PWAzBbxxt6quT+ZqzqPjHTNR0q5sz/y2jKZP0pczLVNGDoWqvqOoHJCq2Ewx7d69A0CCMXt46hQvygE+nNeN6Jdi1u8NyAwOPXFeteGdWKwSTiNCZWyMrnAHApMpKxCdeTtDn6mo28QTfwxqoq7D4atRzJcSt7BQKtjQtOBy0Lv9WrK5djCfW7s4O8L9KrPqF5M/+tY/SuuTTdOTG2yj+pGf51cjWJOEiVPoooGcOkGoT/dS4fPopqymjanLj/Rn+rsBXabmPANJiQn7xouByi+GdQbBLwR/7zE/yq1F4W/57Xi577E/xrodj92o8ts9aQGRH4cso/vSzP8ATAqwmjacvPkFv95iavlD60CPB607ARJZ2sY/d20Q/wCACrCkqMKAPoMU0hqAhPXNFguP3Ofb8aXLd8U0I3YGl2PRYVx2TjkUDdnIBFIEb1p4T1Y07ANyT94k0u4EY/pT9i0u1R2oAi2rS9BwKlz6CkOfamAwD3NG0etDFh1YUwlvY0AOwvOQabuA6Cmkv6CoXaQen4UATl/UgVG0o7tVOSZgOR+tUJ76RAcRmgDzD4i2RtvEbzLny51DA+/euMEjoflYivUfFCy6xbeS1tkqcq/da4WTw9do33GOPancRv6R4TivtJivLnUHglkGdmwEY7d6iuvDNrb5P9trgdmiH+NZci6tsCNJLtAwBniqUlrdsfmDn60AWLiG3gyF1FZfpER/WqT3GOA2fTikNjP/AHGpPsM/9xvypgMN04PYj6U5bp3+Q4ANKLC4PSJj+FSLp13ni2kJ9loEbvh+8W2uFLoHU/KQfStnxdqJvbLPl7AQFjX0UVzFjZakso2WNwfpGa6uz0G/1Eh72GSMDoHPNO9hW1OEjspZDwpNaVtoNxMR8hruH8M3kLj7LDEyY5JPzfrxU8el6umB5Eg+m2pGc1a+EXcjeAK3LTwbZ4Hmx7vrWrFZaqOqzD8Kuw22rjvJj3Ap2C5VtPCOlxsGFnEW9Sua37ewihQKiKoHQAUWceoCQfaDGY/p836Vo+WoHSkNEAUnvUiqB1p3liniIZ71NhjMgdqUMPapPKH+TThGPSiwEQf6Uu5jUwRR1xSlVHRc0WAhGT/+unBW71JgfSk+X1pgNC+pp4QY9aQAD1p35UALtHpSim7j6ijcPWgB1KCfSmb8dKQufSgCSk49ajL8Um/60AS5A7ikyM1F5gpw570AOZvpTCw9acI/U/nR5a+tAEeRnjmk3GpdqDqc0g2j7q0ARkMaaY+OeasZNJgd6AKxhUjmmNaRN/Dmrmz2FG3/ACKAM19OiP8AAPyqFtGt3PKD8q2NvtRtA/8ArUgMJtAtD/yyX8RUR8OWZ/5Yr+VdCRSHp0osBzZ8M2ef9Uv5UDw3Zf8APFfyroioPak8v3osBhLoFonPlL+VSppdun3Yx+Va/ljvzQUGelFgKC2ka4+X8hUq2y+mPwqztA9KXaSOBTEQCFF7U4hR0FTFB3ox6Ci4yMJntTtgHWnYJo20AISe2KTk9adtpwBFACAH0p+GqMH1zS7hQBIAO7UfKO9R76C4oAlyOxppK9yTTN2e350u73AoAdx2H50Zx6CmFh65oDegoEPLGm8DrS4JoK8etAxNy0Fh6U4IPpS7V9M0ARFj2/lSqCamC56LUi28rc7cD34oAg8v1p2wY6GpTEqH5pRn2GaTfGo4QufVjQBHxjoKQsR0FKzZPyqF+lAUkc80gGfOe2KUj3p+0UvAoAjCH1p2KdnNHTrQA3pS5NB6dKbuPpQA7NJTd3saQvzgkA0AOzRmm5H1NOzQAmKPxpeg5pOewoAMUHHc0EHucUmOKAEyO3NGD14pcHjmk4HU0AN2jOe9OwccUnJboNvrnmnbOOpoAaOOtANPCCkCkHrTAOKXAxSHgc03fx0NADtwzSlh61CWU9QKNwPtQA0EDvRuH1pqqKeML1OKAEBY/wAP50uG9QPpTgwNL+AoAZsJ7k04KfQU8IzfdBqTyW/iKr9TQIgKt25pcP6D86lxGvV8/QU9ZF6LGD9aAIlV2+6p/AVMtu/UgD6mpUgu5T8iMo/KrC6VIRmaYKPrmgLlLYi/efP0pd8Y4SMk+9XfK063+/IZD6ClOpQxDEFuo9zRYCGOK8lGI4io9cYp0mnXQXMjr9C9Mk1O5fjzNo9FFVnlZzlmZj7mi6CzEZNjEcH6HNIRmk3U3cfSkMf0GBS/jTMmkJ7UASZNJmmg+9BNADsijIpB9KMUABPvRxQdoHWkyO1ADs9qblc4J5pOe5pQqjtRcAyvpQQD2FKMUuKVwGqAOBn8TRnHenbaNuO4ouMb1PWl2Zpdp9adg+1ADMY4xRt56Gn/AFoJ5oAaAM040biOKaTzyR9KYAaQbh7/AI0hIP8ADSg460CG9TjmmkdsinhutBYYxQBFtGOaQcU84OKQ4FFwsf/Z", "path": "images/4pts_ADE_train_00017737.jpg" }
depth_point_73
images/5pts_ADE_train_00001985.jpg
ADE_train_00001985.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 308 y = 218),Point B is located at (x = 263 y = 188),Point C is located at (x = 262 y = 163),Point D is located at (x = 29 y = 155),Point E is located at (x = 125 y = 121).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_31><DEPTH_49><DEPTH_49><DEPTH_3><DEPTH_31><DEPTH_3><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_67><DEPTH_5><DEPTH_70><DEPTH_70><DEPTH_70><DEPTH_70><DEPTH_67><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_67><DEPTH_5><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_3><DEPTH_59><DEPTH_70><DEPTH_70><DEPTH_3><DEPTH_49><DEPTH_49><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_70><DEPTH_70><DEPTH_31><DEPTH_74><DEPTH_74><DEPTH_36><DEPTH_72><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_38><DEPTH_76><DEPTH_76><DEPTH_64><DEPTH_58><DEPTH_82><DEPTH_81><DEPTH_81><DEPTH_81><DEPTH_81><DEPTH_74><DEPTH_82><DEPTH_84><DEPTH_81><DEPTH_50><DEPTH_2><DEPTH_0><DEPTH_39><DEPTH_39><DEPTH_39><DEPTH_78><DEPTH_1><DEPTH_0><DEPTH_9><DEPTH_61><DEPTH_61><DEPTH_63><DEPTH_78><DEPTH_71><DEPTH_33><DEPTH_74><DEPTH_77><DEPTH_78><DEPTH_41><DEPTH_57><DEPTH_16><DEPTH_42><DEPTH_121><DEPTH_98><DEPTH_121><DEPTH_12><DEPTH_47><DEPTH_9><DEPTH_45><DEPTH_9><DEPTH_45><DEPTH_19><DEPTH_1><DEPTH_42><DEPTH_121><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
5
[ "E", "D", "C", "B", "A" ]
<DEPTH_START><DEPTH_31><DEPTH_49><DEPTH_49><DEPTH_3><DEPTH_31><DEPTH_3><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_67><DEPTH_5><DEPTH_70><DEPTH_70><DEPTH_70><DEPTH_70><DEPTH_67><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_67><DEPTH_5><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_3><DEPTH_59><DEPTH_70><DEPTH_70><DEPTH_3><DEPTH_49><DEPTH_49><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_70><DEPTH_70><DEPTH_31><DEPTH_74><DEPTH_74><DEPTH_36><DEPTH_72><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_38><DEPTH_76><DEPTH_76><DEPTH_64><DEPTH_58><DEPTH_82><DEPTH_81><DEPTH_81><DEPTH_81><DEPTH_81><DEPTH_74><DEPTH_82><DEPTH_84><DEPTH_81><DEPTH_50><DEPTH_2><DEPTH_0><DEPTH_39><DEPTH_39><DEPTH_39><DEPTH_78><DEPTH_1><DEPTH_0><DEPTH_9><DEPTH_61><DEPTH_61><DEPTH_63><DEPTH_78><DEPTH_71><DEPTH_33><DEPTH_74><DEPTH_77><DEPTH_78><DEPTH_41><DEPTH_57><DEPTH_16><DEPTH_42><DEPTH_121><DEPTH_98><DEPTH_121><DEPTH_12><DEPTH_47><DEPTH_9><DEPTH_45><DEPTH_9><DEPTH_45><DEPTH_19><DEPTH_1><DEPTH_42><DEPTH_121><DEPTH_END>
308
218
263
188
262
163
29
155
125
121
166
110
81
23
3
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDkCO3rVS4X7Rdw2o+6P3sn0HQfnVxsDLMcADOai0uMusl0w+adsj2XtXz0XZcx9XPW0Sz5WT9Ka0WO3WtW3t/MXpTZrUjPFRzFJ6mOUycYpfLq8LYkk4pzW+1SzcKBkn0FJzLMS6QzSxWg6Od8nso/xNWWXHap7G1Z43vHUhpzlQeyDp/j+NLJHg9OlW5fZ7Ex11KhXApuO9SsOaTbk00xsgcBVJPAHJNVLZC+65YcyfdHovb/ABqzdIZpUtF6N80nsvp+JqZk2jGOBWl7L1M95ehWIpdoxjHWpAhJpxTipuXY6eC+a88P2jFsvEnkv9V4/lg1hX0S3CMjjINT6O5QXNsf4sSqP0P8hTLpMEkVl8M9BQWljEVmR/JlPzjlW/vD1+tOI9KmuoRMnXDg5Vh2NVY5C2UcYkX7w/r9K6FqroWzsyTblM++KgJ+Yg9RXQaCvh0rL/btxfRkNmNbaMMGGOck9DWbqg0/+0ZTpf2g2eRsNxjeeOc4461a2M03ztFLHY1Gn7tvLP3T9w/0qamsgddp/A+lCfctrqW9Nuo7LUIbia1juo42y0EpIV/Y4rb1/wAT22s2Udrb6DYWCowbzIQS59s8cVzCMSCG+8vX/GnZo1WhLjGTUgpM0E0xjSRTYyZSQHT768r/AIUqyCSMOO/b0oLVWZvJl3fwOfm9j61oldWMpPldywWpu7tTCaYWppCciQtTSaaWppamkS5DZckB1+8vI9/UU5XDqGHQ0xnC9SB9aqi6jidhuyp5GOxrRRbRhKoovVlzPNBaqDagP4UJ+tQtezHphfoKtUpMzliYI091RPPGn3nUfjWW0kj/AHnY/jTQvtVqj3Zi8S3si+97FggAt+FVxeOqBVUccZNRrE7dFNSi0cjJIH0q1GKMnUqSdyJriVur4+lRnJ6kn61dhshJHv7epIAqTyreI/62It6A5o5ktiLN6tnX3zGRY7VDhpmwfZe9aMJVcKowqjArAtdRt57yWfz4+P3aAtjjua14Zg7AqQc+hrx5wcVZnv05qV5JnUafGGQccmtU6WJohtHNZGjzAuoNd5ZQKkQfGd3SuRuwpPU5UaPtPI6Vn6lp/nzQabHw1wd0pH8MS/e/PgfjXdzQLhmOAoGSfSsLS7f7R5+qupzdHbCCPuwr938+T+NZKTT5uxd7qxjXNkEXai4UDAFYV1Fsz61297CFQk1x2oEGUiqpO5omZLCmllijaRzhVGSadIeeKhK/a7uO26xpiSX+i/1/CuuK7kydloWNOtHaJriVcSzHcR/dHYflUk1sc9K3bC1MzBQM1o3OiMY9wX61nKprclNR0ONFufSpBak84roI9JdpNoWrDaS0cRbbgCs3WRqcwqGC8gkX1KEeoI/xAqa4AcFh+IqW/hMcbEDDDlfqOlV5pA6iZOjgEiqvzWYJamfKu01SuIt2JI8CReme/sa0HIYdaqyAit4NoUlcqI4kXIBBHBB7GikmQhvNjHzdGH94f40isrqGByDW9uqMk+jHdKSjNJmgdxrgnDL98fr7UbsjcOlBPemMdpLDofvf401qS3YcTkUwtUcs6QDLuAD0yarSajCvQlvpVxhJ7IznWhHdllm2mopCHUg8g1Qk1Fm4VMD3qs1xKwwW4reNF9Tknio7LU0UmVMo7DK9CT1FMe9iXoST7Vm8n1NLsPTFa+yj1Of6xO1kWnv/AO4n51A91M/G7A9qBA2MnOPpUi2xK7tvHqcn+VUlFGTnOW7KrEsckk/WlCMRwpqzIqxBckjJxwMU/wA22T1Y+wz/ADqubsRZFVYWZsDrVhLF29aY103miSNQABgBuaa91PIMNK2PReB+lHvCvFEscERZwzIu04JY1IZLSMffLn0RaoHrT443kOEGTQ4+YcxKl20SkLGhJOctzSPeTuMF8L6KAKY8Mik7hgDrzT47YuB83XsBmi0VqxLmehBnPU0LwwPvVx7MRIXYEccbjimRPCsY3sA3oq5NHMnsHLZ6lRFOTxUqSSRnKOyn/ZOK0NK/1swx2H860mhif70SH6isqlZRlZo66OFcocyZnWmv6tZMDBfSrj1O4frXWWPxb8R2qqkq2dyoGPni2n81IrBNhauM+UAfY1LHodpMODIp9jmsJyoS+KP4G6oVlszqbz4vSXmnNaz6SI/NIWR4Z/4M/MACOCRkda6K1+K/huZVSS3vLRVAVQYwwA/A15Nq+iiyhjkWUsGbGCtPfw9drGro0bAgHrisZYbCSinsOMsTGTW9j1a/8b6BeIRbajGeOA4KH9RXNT6hDOS0cqPn+6wNcBJpt3GcGEn6c1XaGaPlo3X8DRDAUl8MivrVSPxRO4nuVhiaRs8DgetT6aDFFl8GWQ7nPuf8OlefPcTqFAlcYOQNx61oQa3qEP3Z8+zKDVywcuW0WEcdFy95Hs/hkpJcBT3r0u10qKSBkZc7hxXzXpHju+024SRrWGYA8jJXNet6B8atImWNL7SryFx1aJlkH9DXG8JUjL3loFWv7Rfutzs4vDaRAsy8k1S1bTo4LVmK8Y4qaD4reD7tXDahJCUOGEsDjB/AGsvX/GGg31szWmrWcqKOizDP5da5sRheTWOpOHr1pTSnojzzWcGZlA6VhxtiNou8bEY9uo/nWnf6jDI7NGytnoRWILhfthGfvr+o/wD11pTg+WzPT5ldD24ORUMnNLcXdvAMyzIvsTzWTNrMeSLeNpfc/KK6KdOUtkRUrQjuy63FVZf3LGVeUP31/rWfJe3sp4KRj2GTUEkbuMyzO/sTxXXGi1uziniU9kaUl9bxjmVfwOagOpxMCVB/HiqSWru2IoWb/dXNWk0S8flkWMf7Zq+SlHdke2rT+FEb6kT91T/KrOlTm5upBIqkBMgHnvT49CVcGWYn2QVdtLOCzYtEmWIwSxzUyqU1FqI40qzknNlPXUL2MeFyQ4wAKyodNuZRkR7R6scV0twDIgDYx1wBUSKAv41MK7jGyLlhYylzSMWXSmhtpJXlBKqTgCqciCOXYOnvXRXYzYzj/Yb+Vc5M3MT/AN5B+db0ZynucmKpxp/CMEgUHIJxRFK6EkKuT60xIZGbkd+5qwtuTIEyM4zxzW7sjiSk9RjTSsMMRj0Apm5yu3e2B2zVr7GR97IHvxUcaxfNvIBB75NK66FuLvqQAVYSKNrfcDIZf7uwbfzzTzJAqkLuJ9QuBTIrny4wojUkd25ou7aCsk9yNrdghYkDHpU0dnujWQnCnuTimSXEsilWf5f7oGBUIOcZo1aD3UyeeKGNDtkRn7Ac0LcRKg/dsxx/ewKhk2Z+QsR7jFMB6inbTUXNqTS3G9SoiRQfTJNN+0TbAokYL2AOKaFY9qQoygkkYoshXYHPXn60wn86srHJKBne47UrQBAWYIv+8w/lQpILPctaZxdTD2/rWtisrTuL+cex/nWvjmuKt8R7GG+AVR8v41oWQzKB61SQfKa07BN0y1y1HodUSLxTaFdIhfH/AC1A/Q1pNbFNPhcjrGp/StXxRpZbwrE+3nzl/UGrd7p5XQrRgv8AywQn/vkVze2vTivNlqFpOXc4OQYc1ESeKtXK7ZCKqkV1x2JZmauo+zxtgZ3+lXfsNtIBmBOnbiqusD/Q0/3x/KtOIZVf90Vs5NQVvM54xTqSuuwyDQ7SZhw6/Q5/nXb+F/hzBqUmVvpoz2ygIrE0qLfKgPrXt3gWwVED46DNcdSrVlJQi9yqnJRg5pao8yi+GWoS3mrxRXELmN+N2V9a42TQZ9I/tS31C1VneHbCygPhwwP4cZr6vi062ha5kSMCSdiXbua8Q8d2flanJgda2qurQklJ3T/Qxo1oYm8bWt+u/wCJ43ftJFdFrZZoo9oGApXnvVN766fCtKx5/GusuE+ZvrTYLeN7iMtGrc9xXRHERS1QSwjb0kc9aafd3jfuLaWUnuqk/rXSaT4Qv7u9ghnVYlkcLjeN3P512FtsjtQHYKOMdqkguUtbiO4WRFMbBgXOBxXLLHSk7JaGiwkVF66kY+G08FnPcfZAUiJXfIS+SD6cD9K5LT7OAahcoYUbZ03DOK9EvvGlrcWciXeq3DvIcvFbfKp+uOtcdNqEDO50/T3AP8T/ANa0q11UXuJomhRlCV5u42VQqYGFGO3FQFCcVem0/UhZLcz2bwwM4Qu5AzkEgAdT9aqhcqv0rmtbc61JS2KjrjFRgcVZkTioinFWmDIZfuiogPl/GrDqSo/GmKnFUnoJledd1rOP9hv5VyrHda27f3SVrtHjzBKP9k/yri4/msWH91wa7cK7pnm49ar0f6DluXDfKEX/AIDn+dPaSRn3FjuPGagC5YHIqz5XIByS1dLsjgV2RGmGrPlKp+Yqv+8wpn7sS8kbMdQM0Jg0RAE9KUK2/GKsedCBwsjfkKgafEnmKAD0APOKFdg7LqOETHvSCDFwIyDkjOKYbuY/8tCB/s8VGWduTlj6mmkyXKPQumKGP77ov1bJ/IVBKyb12NuA64GKg2n1A+poO0Dl/wAqaiDnfoTG4XtEP+BNmmtMXGCFA/2RUJ2Z/iNLvHZB+Jp8qI52K0rkYLsR2Gab1GcEmje3bA+gppLHqxNVYls2rLjVJh/vfzrYArItB/xOJh/vVsAc15tbdeh7uH+F+rJI1yDW7otv5l3GMd6x4RxXZeE4Fk1CHIGM1xVpWizrWh2viHR2l8HRMsbMVlThRkmpbzSGXwdbFkKv5K5DDBGBXoVlbolhACAcMrD61B4hgWbSpQfSk8C44b2l9tTzo5g3NU7aXPmTUISly4x3rNcc10muQiO9kwO5rnpByaunK6PRZl6uM2OfRxWhAf3UZ/2R/KqOrD/iXt7MKs25zbxH/YH8q6X/AA16mEf4r9Ebum3HlOp7g17L4C1lXCxMw54rwqCTbiu08I6qbW8Ri3Ga4at4PnjujWpTVSDiz2q18Qrda9qelBVX7IisJM9c9Rj2ry3x1cJLfufSk0zX/K8faw7N9+Jf1C1zniO+M97ISc80qtadacebp+plQwsaMrx7L/gnMXON7U+zH+kxD/aqGVsuealszi5iP+2K3a906Fub+rll8PyvGxV1KEEcEc4ri9zNcRmRmf5hkMSa7PUm3eH7gey/+hCuMYYlQ/7QpYb4WTM6SO1RT8qgfQVoQWMcygSoHGejc1ChwPwFXYJQgGawcmW1oXnsxGmOibM47Z6VzyJ+7TPpW7Je7xtz/Bj9ayYkzGv0oTdtRRRWkjyBioWj4rSaA7RxUTQcdKakUyg8WEFRiOtGSL5B9aiWLJqlIVit5eY3Hsa8+gPyTJ7Z/KvUY7fJIx2ryos0U8m3rkj9a78C+bmXoeZmL5XB+o4TOvCtj6U5p5ZOuTUQZu2B9BQdx6k/nXo2R5PMx/zd8D6ml3rjBf8AIVHt9qULRYLscZE7Kx/Sm7vRB+JpwQ9qnisbiY/uoJH/AN1CaV0hpSlsirvftgfQUh3HqxNbMXhrVp+VspQPVhj+dXofBGqSffMEQ93z/KspYilHeSNY4atLaLOYC09U9q7e3+HrsAZb9R7IhP8AOr8fgXToRmSaeQ/ULWMsfRXU2jgKz6WPOtho8s16fF4X0mIcWgc+rsTV2HS7OJh5dpCuPRBWLzKHRGyyyXWR5OlncSn5IZG+imrcWganN920cD1bivTZI8YAGB7cVA0ZqHmMnsjWOWw6tnBW/GuSD13fyrZC81jx8a+fcn+VboQ8VdZ7ehtQ2fqx8JwDXSeH70291G2cYrnEBANXrN2WRTzXHUV0dKPdNT8TvpvgiW/gK+fEEKbhkE7h1FEfiM6t4NttRmKrNNFl1XoDnt+VeZa9qzt4KmgzwFUn/voUmi603/CHW9vu42tj/vo1i6lV0LN6XsYLCU07re9zJ1qUSXUjeprnJeprUvJC8jGs2QZzW9NWR0My9UGdPk+o/nU1qc2kP+4P5UzU1/4l8v4fzpbQ5sof9wV1f8u/mYL+K/QtxnitbS5zHKCD0rHTGKt2z7Mmueorqx0RLUN+w8YXz5+/Cv8AJaW/nMkhOetYqTEeJZWz1iH9KvTPuINEqdmn5IinK6fqysx+Y1LbttlQ+jCq7H5jTTcRQFfNlSPJ43MBmrtdWQ7pas6K7l3aPMvqo/nXMP8AeH1Faxvra5spY4bmKRwmSqOCQMj0rJk6/jU0YuN0wk01dHTJJwP92pBNwKpo3yKfajd0rDlNS2s5MoGa0reH92vFYcR/fL9RXWW8aiJcjqKzqu1gSIDDlQcVC8HHStVYxt5ximFARwO/pWCmOxkvbkoOO9MjtznpWs8WcHB/E0ixYm4AH0FVzisVYbcCTkce1eXv4W1iW8mCafMR5jYJXA616/Cnyt3qZEyRW1HFyoX5VuYV8NGtbm6HlNv4B1qb70UUf+84rTh+GtzjM97Evsik16dBDz+IqaSEAZpyzOs9nYyjgKK6Hn9t8N9PXBnuZ5D6KAta9v4G0GBN32PzCP8Ano5NdIUAp2P3f41zyxdaW8mdEcPSjtFGJHoun2/+psbdPpGKmSDbwoAGe3FaBXNNEeT+NZ87e5pZLYzZYcMah8vitSeL5jxVQx01IBkS8fhTJF/nVmNcD8DUE/U/WnfUCDbxTo1y9JnIp0ZO7I496YFeZeRVdlqxM6gjLD86qyTwoSGkUH0rSKb2E7HnzDb4iH1/pW0Cd1ZFwMeI09yv8q2dvNepV+z6HHQ0cvUchJNWIpGVxUCDmpox84rBnQi3rFyzeH7qMn+AfzFQ6Fc50GJfTd/M1DqjE6Xcj/pmaq6A5/slB6M386FBexfr+hN/3vyL0r5Y1VYkcVYk+9UEg5pRLZn6lltPm+n9abY/8eEH+7UuoLmwn/3aj08Z06H6H+ddC/h/Mx/5e/L9SdTzirCMAp4qFV+ank4rJmyZn5/4qDPrFWgxyKzX412P3i/xrQJrSp09DKk/i9SJsA+9FjY2+peILW3ubeG4jFpeyiKaUxozpbu6bmDLgblUnke5pXHNUpptRtL2C700J50aSxneiOu102MCrgggqWHI71ph2lUTZljIuVGSSu/+CR2a+Xrl0gtbK2xa/wCrsrjzo+q87t75P/AqsydagsY9Qe/mu723giBgKDyIYol6g/djAHrzirEvWqrSTqXRGDjKNG0lY2Eb92v0pwPFQxnMa/Slct5ThPvYO361w21O+9lcnj/1q/WuxTHlpXAWLTm+dJsghQQM5rvI3+VawxMeVpBSnzxvaxcQfJ+NKqfL+NMjkUJyQPqaUXMC8GZM+m4Vx2fRGg90wg+tRlcTUkmo2gTHnAnPYVTm1qyWeMFmy52jjvjP9KuNKo+jB2W5diGA4qeIdKxhrUSbtsROfU0yTxA0MRdYk4xgHPrWn1aq+gm0dXbjmppcFTgVyja/chz5ZCrnjioJdbvJOszfgaawNR7sV0dQ3WomljWM7pEHPdhXFQapc3VtueVmxI/U9t1IZHPc1rHAPqxKaaudh9rt9wXz0yc8Zpo1C0XOZM/QVxbyOL23AJz838sVeQM3QE1osDBPVgpXOhm1a2ydqsf0rNfWYWi3xp/EykE+lUijAdDWZHG8FqxmKph3Y5YdCa0WEpK1kJyaNSTX3QELGtZ13r9wInYbQQCRgVAyqwyZFHtVeaGB42VpmwRjgVvGhSX2TOU5dCzLq87kbXwCAePpVZ7+dusjfnTP9Gii/jYqOMmmRGHaTIGJ9jitI04xVkjNyfciubmQR53H7w/nT2maVi5P3uac5tWGDDke7Gj7RGgwsKAD2q7akX13Me9G3xDCfUrW5t5rF1Mbdetz/ufzre2/NXNVfux9B0vil6jVXnNTIvzZoROTU6p81c7Z0Ip3650+5/65t/KqXh/nS/o7VqXkebKcf9M2/lWb4aG7TH9pD/IVrF/un6ozf8VehoMuagkXmrpTmoJE56VkmatGbermyn/3D/Kq+l86bF9T/Or14n+izD/Yb+VUdI501f8AeNdC/hv1MH/FXoXVHNDCrEVrIyiRgEj/AL8h2j9ev4U2V7SLOHaZv9kbV/M8n8qyvqbGNNxrdv7of61oMpAyePYnmqdxdyHUIUjjSMOOoHP0z1qwqbSSeprad7K/Yyha8vUH60qQsyZyoz93J60OOaUtFKg3sVKrggDqPaobdtDsw8ISk+f5K9vxf9fk3nIjKnqMiqco61bZ/NLN69KgZFbOZFFOCdzCryqTUXddC7Ef3S/SpkGapieGKP7xbaOwqQXyIeFyaTpSfQnnj3LsFsVujLu+Urjb/Wte9uWi02RlJDYwD+Nc82qskbFVHA4qY6i8iBGVWX0I4NS8POUk5DVSKTSES5kPVyfxpDJNJf24UOwVWJwM9sU9b5kUlVRceiimw3cohXEh+Ybjz1Jrqt5EXvpcvLDcv/yyf8RioJLaeXUreMbQY8u+WHAPFMFxIern86gtZSZ7lyed+3P4UWZTknobYtVX708Y+mTUV7BD9mAWfc5dcAL75qsGNNZ5I7m2xEzF32gbTzkGk07DclY1xHYjlpZWPtgUjNYL0jlb6vUCafft0tJvxQipf7G1Bx/qNv8AvMB/WlYq5QtpraAzeVbgRByEVmJ9yfzp51I/wwxr/wABp0GjXQufscjRJKxaQnfkKPfFaK+FWb7+oQKP9lSaqxnd9DDuNUnELkNghT0GKPtkqxxqrkAIv8q6A+DrSSMpJqbcjB2xf/XqtJoFjBrFnp63U0iMhaRiACAB2/KqshPmMN7mVurmqV9M32ZuTXoieGtDXqk7/wC9L/hUo0LQQNp01HH+2zH+tNCcW1Y86Z9zEg5BpME12viaGwtNH22thbxO7hd6oMgdeD+Fblu8VvaxRxwRKFQDhBnpQLl1PLHgmdDsid/91SasJpWozDdHYXRBPGYjXpj30o4Bx9Kqy3sx/jNFw9medDTL5r0WYtpBcEZEZGDir6+EdXYcxRp/vSrWjaNK/ie6uWyflKhvyFbBmc/xGquxKCe55lrQ26xan2X/ANCrodvzVheIl2ahaN7f1rpgmSK4qr9yDHSXvyGJHzWfqlpJd6pZWo1C4sYvs93cSSQLubbDEZcbdy5J2EDJHWtqOPmsTxDqUWj6np91NbvcRNb3lu8aSiNiJYfKJDFWwRvz0PSlhbOvFP8ArQjGtqhJry/NGVbQzi6sLmDVrq9068E8Y88FGEiJllZNzDgMhBBPDDvkVo+FV3WEw9JP6CsvR9Riv9Z0rTrG0e3s7fz2SN5PNd5HT5mZgqgkhVHAHCjvknovDdjLp9tMt8PJZ3DKh5cjH90dPxrpxrUbpeX5s58v5pRu+7/JF7y+aY9s7DKqSB1PYVYuNStbXhVUN6y/Mf8Avkcfmayrm/ub44jR5AO7dB+A4FedFSep6dxlyIVikDuWG0g+Xz+vSsqwuYo7TbaRlFDHG75mPvnoKvyWMzqxnk52ngVnaCgNhISMkSH+QrqilyPrsYyf7xfMtYlmk3SMSfVjk1IIFGT1NTqnzU7Z1rNyNLGNept1SwPqSKvsnFVtSXbqGnHH/LTH6itN0+UnHStJP3Y/11M4L3pf10KbrzVfaSGIBx9K00uXAG0KP+A06a6kZY4y5w7jj1xzWqpMHJFSCzunQYt5SP8AcNRvpWoKryvayKg5JOBW6k8zdXP51HdzOUijLfflUdffNXGHK7ikk0Z6eGdTlQfu40zj78oFWf8AhF7lVZ5bq1jUAsfnJ4/AVqCVj3NR3yTmwm2RSMxXAwpPWquw9nFalK28MC6tFklv0i3jO0RliB+laUfhrT1/1moTN7LGB/WrcVpclVAglwB/cNTx2dzI7IkDll+8MdKWrKUIroZdvpmmG/uEYTy28YCDc2Czd+laMVlosCKsenKQowN8jH+tJY6LqISUvbFWeVmwzAcdu9Xhod8VJIiXHJzIKQ0jN1B7JLN0t9Pt0kchA23JGT71at3sbSJUi062BA5Yxglj6kmkj8P3WpxRSxzwRxrMCS7H5gPTArUXwzJnLX0A+gJosBT/ALVkX/VxxoP9lAKyp7y4utbhkaQn7OhZR6E5FdIfDcKqWfUVAAycR/8A16o6VotlOZb2e6lxIdqIqgfKO5+tO3YCqbqdusjfnTfMkPVj+ddEul6OvUzt9XH+FSrZaOv/AC7s31kNMDj7UF724kLfMG2fgAK1Yx71es4bBdcmdLNFt1B2oSSGbjJOa3kurRPuWcA/4AKS2Ec0KzEVpPFTHy2OyDhgOB/nNaPj+6vrrSbG20y8fTpHu90txC5j2RLFI7k7eSAqlsd8V5hFr2prqWlNZeLtWvbe4uRHJDcSvG64ZfvIJGBUhuDnnDDHFaxp80eY5KuLVOfI0euxRSSDKRuw9VUmpxZXJ6W8v/fBrQsL9raxjiQ4AyfzqV9Xm/vVnc69TlPEOi6rdQW6W1hNIRJkjbwOMc5rVmsbi3h3zR7FHGSRV19UmP8AGaw9Y1GaS60+ElijTEkeuFNAWe5eGmTSRB90ahhkbm5qF9Ic9biEfif8Kry3cuSCxGOAKrtcyf3jQMjtvDYttQnuZdQiPmDAVUPHOanure0tbaSZrotsGcBev61UeZz/ABGs3U5WNrjPBZR+tMnY5HxUm24tG9j/ADFdSkRIU+oql4g0/SiYH1DUgnl5/dWq+Y7dOM/dH61oya1b2sKiBY4BtGD/AKyQ/ieB+VedNuVOCXmEF78n6FqOzZVEkpWKM/xyHaP/AK9EtxYWwGGeduu5v3cf68n8qwm1S6vJv9Gid3/56SHe35npTDbSGZTdSyK2BwozvP1rFwt8R3Yegqre+nRb/wBItXWvcFImZh2WFdi/n1Nc5oCXt+10qSlBkGQluT1rqbO2jhiDGNRIeScc1g+FjtvdTT3H8zXRTaVOfKuxyV4clZRve1/ma9to1tCQ0gMrf7R4/KrjKqrtVVCjoBShulNY5U/WuZyb3NLEEsW4N06elc34dH+iXC+kv9K6sd65jw8vy3y+k3+NdFN/u5fIykv3kfmdLaaK10iu11FFnoCCTir83h60tbOW4m1H5Y0LEJHyf1qGzOABmpNXfOmGPPMrqn5mulUY9SnJ2IJfC2n3SWk9xfzpJEQ+xEGOxxk1PPp+kwwSFmuHAUk8gH+VSzNyRnpWbqTkWMuOpGPzq1TjouxL0uyay07SzbRvLFKzsNxHmYxntV9bHRQyMbAMU5BaRj/WqkMTBVRVY7QBgCrPkT7CRBKcDshqgSQ/TpLMiWb7DBhnIUFchVHHetAXcC4K2dsMdP3S8fpWRp1pdx6dGz28y9WO5CMZJNX0sruVFZbeVlPIIU4NFhrYgvtSkm1Syg+UIm6UqFABx0zV86tc/wDPQ1nLoupPrJmNnKI1h2hjgDOauS6ZeQRGWWHag7lh/jSsCFbU7jBPmN+dZel3kzQSylyWlmZifXnFax0LUXiJWFcleAZFH9aZp3hnULeyijlEKuMlgZQcEn2qhdRq3MpH3j+dJdXLrYzncfuHvV+TSJLeB5ZZ4FRBk/P/APWqOTRZL7TXC3METSrxvzx9cUgGW5EUCRxn5Qoxg1YWRscmprbRo7e3iiN7F8iBeAewqwNPgA5vV/75/wDr0LRWC6Mm+mKWE756If5Uluvl28Sjsi/yqzPa2d1LJZ/amMQGJJFXp7Cr0drpiKFM8zkDGSQM/pRbW4XKABIpRxWnt0pe8p/4HR5mkj/lmx/4GaYrmTZyBojxz5jnPtnH9KtBsVDplzZeZJL5AEXIjjYk/wAR5Naf9qWQOBbQ/wDfNTHYZxHj7VG0rSrG8WJZQt3skiY4EkbxSI6kjplWYZ968vgvrB9X0mPT9Oe2ihuldmlmEsshLLwWCqMAKMDHGT619CTa9aW67nSCME4BYAUx9fU8bF4/2RW0alo8tjjrYN1Kiq3t/wAAiicGFCFCgqDgdqC2aoway13qV3LKAYodgVcexqw/iVh0VR9AKyOy4rfQ1h6uJzf2XlhwVLEMoORxWq3ieTtUTeJJz0Y0ARvDKT/q3P4Gq/lu7FURmb0AyafdeJLlLWUhyDsODnpUFpqLWlsjq2XdACe/SmIe1ldHpby/98mqOoaXqE1uFSzmY7x0Wrra7N1Dn86hbXJz/EfzoA8+8QzXs0NvJIvlx5IUAYHSug07SIBaQyykyMyK2D06VW8Yj/iW259JP6GtfTTu0y1PrEv8q4ak37GLWm4oL97L5FmNFQBUUKPQCkbtTx1ph/rXIdAzOCa5bQp0ttY1LzASCxGB/vGunZuTXH2yY1m/b0kI/WuzCxUuZMwrO0otHXx39mf+WDH6tSjULVroILYbFXc2WPJ7ViocUsD+ZcTnjAYL+n/166vYw7Bzs6MX9ln/AI9E/M1Ujk06G/WO20+GNWBklxn5z27+9Ul60lsrPezsATtCqOPxpqnFLYG9jpY9SgT7tpAP+ACmXuqrJDFEtvEC8qjOwZHPb3rNVW/ut+VQzZN/Zx84BZz+AqrDbOqTV1UACCIf8AFK2vOqkhEAA7KKxBmobyTyrKZznhDQkDNLSNYufsjzs5Mk7szMevXgfSrja3c4/wBYfzrC08FNNtgRj92p/Pmp2z6UWBbD9X1W4ngjgMrBZZFUjPUZ6VZ/ta47SEAdBWFeEtqFlGP7xcj6CroU5osJGiNTuD1c1DPeyyzWyO5I3lsE9cCoApP8JxVVjI2tW6bGwkTt0PU8UNaDubn9pTn+M0038zfxmqnlyf8APN/++TR5chZV2NubgDHWmAX13LLEkJYkSSKpH41LPdus0gVjtDEAZ6CmT6bqX2my22Fww89Sx8o4AHOTT20rUWJP2K4/79mp+0K6Iftcv940v2qU/wARqT+ytQH/AC5XH/fs1FJaXEGDNBJGCcAuhFUA63lzaSsD8zXBz7gAVKszDvUNlZXxtADZ3HLs3+qbnJqz/Z19/wA+dx/37NRG9htob5zetDyny2OegNSf2dfY/wCPO4/79moruyvks5iLSfdsOAIzzx9KoLojtmRLK3KbtxjBbJ455GPzqbzMjrUFrbXEm23jhkaSNFUoFORhR2qydM1AH/jzn/79mph8KBs5bxVdTWNhe3a4EoSMQSGMMF+cbhyMZ61mP/wkGjagttJrlleQ2uppp93HbRnMchZuDvjUkHZJyuenbitvxvaXcfhG+eW1lRB5eWZCAP3i1h6t4p0/xDrkcNjC8jXeupeRs+nw28kSlm/dloyTKTvXJbnKe5roo048rbRxZhi6sqsIKTSstL6aXV7en69zpLK4CyXqlMtI/DZ+7jGf505n5pLTTdQWectY3Kgs2MxH1H+FPaCVZhEYnEh6IVOT+FYI7SPmmHOavjSNSH/Ljcf9+zSHR9TP/Lhcf9+zTEZGoPiyl/3amjuzcWcSmCKIxjb+7GC3HU+9SahoWrSWrqmnXLE44EZpbTRNVWAh9PuAdx4MZoF1KxJppNX20fUgP+PGf/vg1VgtZ7mfyYYmkk5+VRzQAt55JEQmhSYA5CuMgH6VLDqCogRYIlVRgAKMAVSvH3TIuei1EG2qT6CsKEF7NXKb1NS21YvJLJ5UW3dtUbRwBV2PVcnmGL/vgVztjk2kZPVhu/M1cztRm9ATW3IuwKTtc07HVPMea4eGI7nKoNgwFFXUvrfJP2G1yTknyV5/SsGwXbZxe4z+dXUo5V0BbF63v4ZdUlf7Jb+XCoVVES/ePU9K0hqkSfdtoBn0iX/CuY035hcyf35j+nFX+aGhrYsa1rsqWawwLHHJM4TcqDIBPNaEWsPBEsUSoiKMABa5S/PmapYQ55DF8fStEHmnYXVm+NdnP938qz/7bluddG4K0VtHkKRwXPf8BVMGqOnHfdX0nrIFH4UWA7BddfP3E/75FTLrRYcxof8AgIrnFqwhNAWRdi1hrrXpHdUMVqgEa7RjceprUbXCP+Waf98iuQ0c+Y99KP4p8fkP/r1fdjSCyZtNrnOfKj+u0Vl6nrj3HkWaBUEz4dlUZ2jk1SZiTWdJltYhGfuxs36YoewWSOmGvSooWNVVVGAAOgpf+EhufWsPNL1phY3U1+5yPnqgmoXFxfvfPIT5b7EH93jtVLOAaj0+XfYsuOfOLE+vFTJ2tYaSOgGtz93P51Kutz4++fzrDGaeGxVCsbya3Pn75/Osi81aXUPEMSyHdFbKrbT0yTn+lRhqzdPffqWoS/7QT8qmTstB2R2Da/N/eNMbXp/75/OsItikLZpisjaOvT/3z+dQXfiSe3tJpPMPyoSPrWSSaz9Yfbpk3PUYosFkXPD9/LbWTSmQtLKdzMTzzzWr/bs4/jP51hWgC2MChQMIMnHXinGlF3Vwsat1qi31s9tdxR3ED43RTKHVsHIyDweQDVCK30eCaOaHR9OiljYMjpaoGVhyCCBwazLra1zHHO22AoSPmwGb0NFm3zTKjFoVYBCTntyPoKSn73KdMsGvZe1fa+2m9t+/kdOfEE6KSZDwPWud0fVJZtTe+mcvLvdhk/gKW4bEEh9FNZuiSR+T5f2dPNILedk5Az93096o5TsDr1x3c/nTf7fnz984rEJpKLDNw69Of4z+dIddn/vmsQtTSxosBpah4inisJ33nIQ4NY+h3hgZ5Vb5tgBOfWqesvjTJueoxTrGe1kgP2a0EDDAchyd3HvTS0Jb1NeDQbS+QXBvnjV+UUoM47Z5qZvCMEsbJHqgG4Yy0X/16pRSFEVVJwBirSXLKpO48ChKysh2uMtfD0QvTYx6gjeQg8xwhwvoPrV2fwhJLA6RajBlhgFlIrH0KeQpc3JJ3SzHJ+lbS3kgP3jT2EtUN/4Ri5t4Mm5tdka8kuRgD8KSDQ7+5tlmhjRkcZQ7wMjseara1eyPZJb7yBPIqHnsTzWoupyooVThQMADsKRRU0/w1qlvZoklt8+SWAdT1P1qaTSL+JCz2zBQMk5GBVpNVl/vGszX9UnuY7WxWRgs8oD4PUZo3DZFBdK1C51uO5jsp2t1gIWQIdpJ9DWgdOvV62k//fs1upq7IAqnaqjAA7Cn/wBtSdmoBKxz32W4QHMEox/sGqGjwyLbSFkYO8rMQRz6f0rqL7xFLbWM0ob5lUkfWqfh/VZIdKjklcvPOTJI56nJ4/SgXUrhCOSpH4U5jsidvQE1tDXsnBIP1FO/tiNvvJGc+qigZynh5f8AiVtIeskzt+uP6VoMM1NrWuJDBDa2kUSSTOFyqAbQTzitC1ubSGERvDG7dWLDJzSvqCMQrisuD95rl0c52RAfma7XztNc/NaRfgMVClnoizSSraBXkxvIc84/GmBz+2lxiuiNpo5Ukq6ADOQ9ZOmCx1W5nZHeO1jOFOcs3+eaAKEzbYJD/smodKz9gB9WY/rXTTaFp80TILyVQR1wDim23h20t7ZYY79jtzyydf1pPdDuZAp2a2P7Cj/hvk/FP/r0h0BsZF3CceoNMDJzxWNors9zeHPBkYn8637a2N7NLFbyxsEyDIThfSotL8K31isvmTWzF2zlX9/pUtXC40mk+laB0S99Iz9JBTf7Hvh/yxB+jiqC5n1la6+LAr/eYCuhbSr8H/j3Y/Qg1i65pd+0EX+iTFQ4LEISAB3pCexNAMQIPanU22SSeJPLjZzjJCjNTfZbkDm3lH/ADSgrRQ3uQuiupVlDKeoIzSbQqgAYA4AFT+RKBzG4/wCAmmMjDqD+VMLu1ilfEJZTH/ZNZ+iD5G9kX+Zq7qrbNOm9xiqmjACOY9htH6UdRGkaaaUnmmmmByuqaMmueOba2miu5baOyaadbNd0pVS5woweScL0PWm+FtOl0fWde02bPmWs6wscYztLjP6VD4t/tE3k0NnZSTRXVrHFLKkTMQFkL7QRxyQpP0FWvDMl/Pc3txf2jW8hit4gTGyb/LQpnnqcAE+5966G17I8qEX9cvbv+Rf1xsac49SB+tN0bmGZv9oD9Kbr5/0NR6uKXR+LJz6uf5Vgtj0X8RrKcU6aTy7SVz2UmoopFbHzCoNYm2aTPt6kYp2KbsizpHyaVb/7Q3H8TmtANzxVO2QRW0MY/hRR+lWU60hrYp3xMmqWEXozSH8BWhuOazA3m+Iie0UH6k1o0MESq3NZl0+/xBaJ12Kz/pWgvrWRbt53iS6cnIiiCj8SKAl0NnzCacJCT1qEmgGgopeIJzHpbgHliBVq3BhtIY/7saj9KyfEMmY7aLqXlAxWueOKOhPVi7yKBI3rTOtJ0oGVJX8zXLNGPAYH+v8AStIznNYkb7vE6dxGhP6Y/rWqc1NveEmT+efWlFy3qaq5pM0xj7+8dbKXnquKj0WRoNMjwcbiWP51S1aXy9PdjVqz+SwtwR/yzU4+ozSa1QGp9tkz96l+3yj+I1Q3UhY0wNH+0ZezGq2oazNHZS7WIJXFVCxrP1SQ/ZG96AZo6JO1np6yLIxabll7DH+Oa0f7YkXqxrFjYpaW69MRims5NTHVXYPQ3f7ccdzThrr55Y/nXOFjimbzVWFc6ldeYfxH86y/EHiCeW1itIpSvmuA2D2rL3nHWszUmLTRDPTmhoTZ2+m3txpFs1tcRmGcMQynrgdPwq7/AMJA/wDfNcl9qlmCyzOXcqMkmmtOT3osO52A8QP/AH6Dr+epU/hXHecxo84jqeKLCudc2sxuMNHGw91Bpv8AaltjH2eHnr8grkDcMO9Ma5fB5NHKHMX9R1y2k1R4gscUcaDlRjJNbVhJp5sI2liV2cbtxNcJpWp2lreX0l7psN8GYBRIPu4BJx+H8q157xTKfJQRRfwRr0UelNx6Exnc6R7vQRL5TIob/eOB+PQU8x6Qx/1TD6Oa4/z2ETRnnOck9/enreOqgbiSO9ZQu9ztxVKnSScH+Kd1302Xk/8AM6W60rRL1FWVZcKcjbJikg0nRrePy42mC5z9/wD+tXOfbn7saP7Qcd60sziutzpz4O0pgSjajakHHOSP1zVWXwZbyr5Y1WeVSRwxVcfXNWYPEcqYyx/OtGLxEHH7wK31Gad2PlRhS+FvEcGTA9rdJ2w5U/rVRrfxBbHbLo0594yG/ka3YvEH27XVtoWFva243SsgALn09v8A61dB9us5f+WjjP8AtZH60XBeTPN913pl5PdahZy26TABCw9M+lWI9bs3485fzr0OEWq7/KaHD8sDGOfrioJdKsbuYibTdOaLH3xGCxP0x/Wi6Gro4pNRt2xiRT+NZ2kyq17qExIG9wB+tdcfDmjXF1JHZRWRkj+8vkMQPxDYpf8AhCLKVSZZhbSZ4+yoVUj3znJp6BrdGSsisOtG8A8GrsngO6U5tNbQr6Sx/wBQarS+E/EMBwktnMPXcV/pSHcwdTIm1vTY+oEm8/hzWyWyapXPhvWYruO7IglmiU4giYs5+nFVHv763OLnTLyIDuYjina+xKaTdzZzximN0rIGv2ufmfafRhipl1a2cZWVT6c0rMq67kWmjfrd3If4VI/WtYtzWHpVwsbXM7kDzGAH6mtNZ0fkMPzpdWEdicmkzUfmDFN3imMzPEMhFmqf3mxWwh2xRr6KB+lYOtv5tzaxDoWrcJAwPQUnuSt2OzQT70wNRuxQUKazNXbECr/eatDdxWTq5LT2kY/ikA/WmTLY1ZBjav8AdUD9KhJxUk7fvW9M1CamCtFFPcDzTGFLSGqJE71k3pzqCL6CtY9Kxpvn1NvYUpbMXVGxyFUf7IpBnNOYbaj3elMBxOKYWpGNMNArilqidsKaeeRUExxG30pksybQJI8vmKGBk71tSHDn61hWHO33k/rW1IfmNMmOwFqN/aotxozQFyQtTC2KTNNJpiNJZDVhZisZOe1UQafM4S2c+1Jo0voLpMpAuJgeXfGfp/8ArrTW9dTwxrG0/wCSyX1Yk1ZDcUmtRxehsRanKp+8aW+16eGxkCOQzDaDWSrVU1GUCNQT1NCQ3KyOh0HU2sdPVQTvkYu59fSt6DxGeNzVxMbbYlUdgBUqyEdDSsNM79dbt5sebFG/pkA1Ol7ZTfwlf91iK8+S4YHG6pxeugJ3HgUrDOouNaY6rFpulyu0x5kaV8qi/lW/G1wMBriCUd8rivJ9Hu3jvrm5z87fLn6n/wCtW6mtSJj5jRYE7o7S6g891R9Itp0JwzllOB64xms+48M6YWMkel2aSdcvbZH6VjQ+IZUP3j+dXYvEj/36LsLISXw1Y6lC8OpyQRgH92tovlge54HNZc3w4hPNhrUyegfDCujj8Qq4xIFYe9c1rniQ3OoLY6fFHHj7zquDmjmaE4rqVJfA3iKD/UX9rMO2cqTVKXQfFVscNYCUesbg16DZXFpBbpH5kjSAYaXeck9zVwT20i7TMWH+2AafMLl8zyxfD2u3F1HdXNiYY4zk+Y6j9M1WfV2hcrNDLGQcHchFeqtp1nJMkoWFnVtwzkc/TOKsyRmUESWsMo+oP86V1e47NbM8lTWrVv8AloKmGpQMeJB+deg3Wg6PcEm50Rcn+JYwf5VmSeBvDNw2FikgYjORIVx+dVeIveOVF3Gf4h+dZt1KJtZsgDkBwa62T4cabICbTVbhRnHVWFJF4EtLCVJN+oXU+QFIChc+/oKTs07C95tXRjPKC5IPeml+adc+DfE9vI3lJBOmeNr4P61Ql03xHa/67SpyB3QBv5VSj2E5+RcBzQSBWO9/d2/+vsriL/ejIqI63ET8xKn3o5WL2kTbZqx4iX1F/wDexSrq0LD7wqG0lAmabPGc/rUyTsNSTasbUjfMaZu681U+1o54b9acsy+tVYLosbqQtiovNHrTTJSFck3VXujiFz7Gn+YKrXrj7JIc9qaJb0KOmjJh92z+tartyazdMADwZ7KTV52BamJaIXNKDTAaN1AD80080maQmgTL61DqD7LNuetEc6NghgarapJujRB3ahblSful6BfLtol9FFSZNR7ugp2eKRZIprP1A7rmNPoP1q8DxWa583VEHXDfyoQpbGnnBpQ3fNNJzSZ5pFEqtzTbiQrCxz2pFqtqT7LRsUA3ZXHWGVgZv7zVa8w+tVLQ7bOL3GakJoBbE6ynPWnrMQeKqBsHrSq3NIdy8bpkUncelZulSMdSlnPJVSeafcPiBzntUOk8JcN7AUpL3RX95G6moSDB3Gp01R1wQaxy3NAeixVzo4tZcH71XIdbfOSxrkg5qVZiO9Fh3O4i1xu71meJ/FLxWAtoHxNN8uR1ArAW6YDg1g6jObjVY8n7uKVhSlY634dkRaELq9keR3dlRHY4UAnJx9f5V2RksJefmQ/7DkVwENx9mURoTgEn8Scn9TVhdRYd6G+bUIx5Y2Z3QEf/ACyvZl9iQ1SL5oHF1G/+8uK4b+1nXgMalTWXXHz0tSjs289uHihkX2P+NU59OsJyRc6XGV25yIg2T6cVgprjcfPVlNdYfx0aismMl8NeGZG8xtMEZ7B42A+pAptxpWn3Ma2qPYQ23RvLj2uB7cVdHiAKjM7cAZrzjVfEE+r6jLKGKxodqKOMCqV2S+WJ0Uvw405s/Z9WlX0yQapTfDm/QZtNVjkHo4xXVabp+nwaZBFcKXm2hnfeQcmp/sNkOIbq5j+kmf50+don2UOx59L4M8TQZ2rDKP8AZeqj6L4jg+/p0hx3XmvThbTL/qtUc/76A0u3UFPFxbyD3BFP2gvYruzyWVNUg/1unzr/AMBqpJdSyqYfJl3twF2nNezRm58yX7Vbq0fGwRsDn1zmqju7liLSW25wDHGpOPXNHtF2JdJ9zzJrK90+3Wee1liQLjcykVWF/Gf4q9IewguJWF/dST27LgwyxY59Saoy+EfDch+VQhP92TFOMl1CVOV/dOJF2h6MKd9oU/xCuqk8A6TJ/qbqVPo4NUpfh4w5g1E+25armiZuFRdDE84Y60GUdjV6XwLrEZ/d3ULj3OKqSeFNfi6RI/8AuvT07k++uh0d18OnGW0++ki9Em5H51kN4W1eMnzri0ZozlVEuS2PQYrQbxNo+rhftyz28h43RSFf06VqaHpel21695aX4uJGGEExwUHf8am7W5qoQfwnFrqrQybLqGSJ+4ZcVajv4JR8rj869IureC5TZfWkcqHoXUMPzrCuvAWk3uWtkmtmPeI5H5Gi8R8s1tqc6Jl25BqpZfPfs57KT/StC+8BazZAvbXcc0WcYc7CKo3lhd6LbidpIpXPDJESxUep46U7LoxXe7WxdLZNJmsmHWYZBhjtPvVxLqN/uuKlplKaexdQ1Q1d8QhR3NWVlHrWbqj75UTPeiK1Cb900oRttogeu0fypSaMjpnpQRSKEyKeDio880oNADLxsWzUmnfLZuf7z/yH/wBeor5sQgepqazGLCMepJoeyEn7zJy1CmoyaUGgom3dqUE1EDzTgaQEm7Gaxs+Zqn/Aq1GOFJ9Ky7D95qQ/3qUvhYvtJG6zHcfrTC+KSQ8k1GT700imyTzOKQSn1qHPqaTNAmyfzj2NOW4b1qrml3Y70WC5LfXzR2Mpz/Diue0kb2TPQyirmryEWLc9eKqaNwEPuTTeiMm+advI699UcOTuo/td/wC8axGfk00vgdaVjTnZ0A1pwMbqmTXWAwWP51yxkOetBlPrT5Rc516+ID3apk1/P8dcQZiOM0C4Yd6XIL2h6Amtqw6g046hbyD5o0b6gVwAvHXo1TLqLgfeo5A9ojQ8VaytqIobPZFJ95iB19BWTF4nv4/+Wh/Osm6uGuL13Y5xwM9qgJrSMVYwlUle6Z1KeM7scMMirkXjNT/rVx+FcTmmlvenyIXtpIq/fwM4qxFdzQsGjkZSO4NdnceFdKvcvayNbOewOVrBvfCWqWeWjQXEY/ijPP5U1JMzdKcNSxa/ELVtLQIPLnX/AKaLmut0/wCINpfWyJemW3kYcvGeAa8lvEeN9siMjDqGGDVy3OIV+lNwVhU8RU52memXWnPrMTGw8SNJnokpx+ora0jSX0jTkgK+a5GZZQd25v8ACvIBLMv+odlfsVOK3bLxVqdkABOzAeprNwZ1RrRb1O5vvDOjaoS01oiSn+OL5G/SucvPh5KhLadqH0SYf1H+FXbL4hWyqDqkBKdCyAE1s2PjHw/dMPKMmD0MlK8kVy0pvzPP7nRfEWmgmS0eWMfxRfOP05qGCy1K9HmixuCF5LeWQK9UutRvni3aP9hn/wBkttasHTTrt5qMx1mN4LaPpGBgSE/zAp82mwvZWdrnGxanDIeW2n3q4lyjrwwrprzwZol7lo42t3POYmwPyPFYV14Bv4CWsL5JR/dkG0/n0o919Q/eR3VyEuOopQ2azbjT9d03/j5sZWQfxINw/MVXTVxna6lTT5WL2q6lzUWJaNQe9XY/ktYVP92seS4S4mQq2a03mUNszgqAOtQ1sVF7skzTgagEg9aeG4oKuTZzTgahz6U9TigdxZW2xsfaqGk83TMewNWbpgtu59ulQ6QufNfPalL4RL40aLE0xjQxpuaZQhNJ7UGmn1oEOz70tMozQIz9bfFoB71DpQwi/wC7mm64+ERfU1Jp3yx/8BxTeyMov94y6T1phNBNMJpjYFuTTS1BNNNBLFLUwtQaaTTFcUnFNZ8DrSGo3Pyn6U0Q2VozkTN700miH/USH/aFITTjuyXsgppNBppqjNs6C21VkIwxrbtdcIIBauFSU8c1ZjumXvUuBrCuzt9QvNLurZmv7aKUAdxz+dcvp+mW+pagNiG3sxyQGyfoM1mXF487Bc/KK0be7MFvFGDjAyfqaVmtiueM5XaOmuPCenXChrKZoHA6E7ga5++8N6nZZbyfNj/vR81etdXdCPmrbtddzgMam7RpywlsebXu5YWUgg55BqOykKxYBI5r1O6tNJ1hCLq2Qk/xLw35isC68BIqs2nXYIznZL/jVqorWZhLDzU+ZanO2+p3Vu2Y5nGPet/TPHd9bMUlPmIOPm5zWBfaPqGmsRc2zqo/iAyD+NUeAM/xHrRypgqtSLPUbTxlpd2R50PlN6ocVsw3tlcRlrW9VsDO1+D+deLB8VattZu9MlSe2kKupzzyKl0+xssUvtI9ngS5uPuwNj1IwKivtD0mdD/aSWpyP7o3fnXGaF8Q7m8kddWkDIMKoHyj3JxWvdWWiayPMF7PCx9JN6/lWbTizeM41I3WpnSad4S0u7Yhmnbd8sfmEj6ACs7W/DOrvfSXtlbAxSYYQo/zJx0wa1tN8IPbavHeRXFtdQxglApwd3Y4NdG0s8H+uidPcjj86pSad9yfZqStseTST3tlJsu7eWJh1DqRU8WqIxGeK9TMkFyhSVEdT2YZFZV34Q0S9ywthCx7wtt/TpT5ovdEeynHZ3OMjvI26OM1ZSZW71euvh2wy1jf/RZV/qKx7jwv4gscsLYzKO8Lbv0607RezFzTj8SJr1wbcgU7SxttnY8EmsdZLqSYW0kMolJ+4UOfyrYnjuNL06KS4gkjVn25Zcc4qJxasiqc025FksM0lUI9QjkH3hVkShuQRTaKUk9ibPFNJpocEUhakFx2aTNN3YpN1MLmNrbZljWrlkMRt+FZ+qHfeoPpWjaYEROO9OXQyh8UmTE0wmhm54ppNA2ITTSaUmmmmSBNN5pSeKaTTJYhqKQ/uzTyahmOIzTREmQx8Wp92php68Wie7GmE0RFLoIaaTSmmGrM2MVqdv4qIGlJ4pmNx6cn61YMh3fTioI+1BPNItOyLi3BXvVqG7I71lBuaeJOaTRam0dHb6kygfNWra6ywIBauMWYjvViO6I71DgbwrM9Bh1ZJV2vgg9jzXK+JpdMfcltaRrMBlpE4x+FZ7ai0MJKtyenNR6PKGvTLNh1UEkGp5WtS5VFP3SMeH9VNkt0LRzG3TH3seuOtZFwGTKupUjsRXpUGu7m5ap510zU0xdW0UhPfGD+dUptboiWHUl7rPK7ZsFquxXEkR3Ruyn2Nddc+CbGTc9jcNET/C/zD86w73wvqlmC3k+ag/ijOarmjIxVGpTQlt4hvLQ7g5bHqa6PTvH06RhZs+hDciuRstG1LU7j7PZ2M88nQqiE4+td1o3wf1u6CNfzQ2MfUgne/wCQ4/WsKtSjT+N2NYVKt9DUs/Eek6lgTRCKQ/xRnH6VqpbRyrm1vA2eQH4/Wib4NaaLMLbapcpcj/lo4BU/gOlc3qHgvxl4eVnsiL2IdGhOSB/unmueGKozdoy+86VVa+JHWW1jfycsiog/jY8H6VJNcafp65uroEj0OBXjkvinxHZSG1nurmJc4KPkEfnXX2Xi/T7y3W31CyhkjAwNygn866XBrUKeIhNtIu614z0xCGtIw8q8blHb61DaWP8Awl2l/aNS8yKBmzAiNg/7xqK50Pw3rEf+h3b2ch7Z3L+VdDbWM1vaxxW0kUscahVCNjgCkrLbc096Ts9jkrv4clfmstRyeyzJ/UVi3HhjxDYEkQGZB/FE279OtejNNPbkedEy/UVIt4rdTVKo+pDw8Omh5Kb65tW2XELxt6OpB/WpY9VRjzxXqky212hSeOORT2dQaxbvwfot3krAYGPeJsfp0pqcXuiHSqLZ3OOW9jfowqQTA96v3Xw/lTLWV+D6LKuP1FYd3oWt2GfMtZGQfxR/MP0qkovZmblOPxIqXLCS/BHIzWnAQIPTmqmk6PqOqylre2dgvDM3AB+pqbVIZ9Huha3ICybQ3BzwaGvesKDtFyZLu5NNzmqiXaMOtSrMp70WDmTJiaTNMEgNLuFFh3Ammk0E03NMlsCaguDiM1Nn8qr3JzGaaIlsN6W0Q+pqOpG4iiH+zUZNKOwT3ENRucDNPNRTAmNselWZS2P/2Q==", "path": "images/5pts_ADE_train_00001985.jpg" }
depth_point_74
images/4pts_ADE_train_00014915.jpg
ADE_train_00014915.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 317 y = 210),Point B is located at (x = 97 y = 126),Point C is located at (x = 293 y = 220),Point D is located at (x = 266 y = 218).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_31><DEPTH_67><DEPTH_29><DEPTH_31><DEPTH_70><DEPTH_59><DEPTH_3><DEPTH_59><DEPTH_5><DEPTH_17><DEPTH_15><DEPTH_31><DEPTH_29><DEPTH_36><DEPTH_31><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_49><DEPTH_58><DEPTH_29><DEPTH_40><DEPTH_49><DEPTH_74><DEPTH_49><DEPTH_67><DEPTH_49><DEPTH_72><DEPTH_64><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_49><DEPTH_29><DEPTH_74><DEPTH_64><DEPTH_76><DEPTH_36><DEPTH_29><DEPTH_49><DEPTH_74><DEPTH_40><DEPTH_31><DEPTH_40><DEPTH_3><DEPTH_60><DEPTH_31><DEPTH_36><DEPTH_44><DEPTH_31><DEPTH_59><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_59><DEPTH_3><DEPTH_3><DEPTH_38><DEPTH_25><DEPTH_49><DEPTH_74><DEPTH_74><DEPTH_36><DEPTH_36><DEPTH_36><DEPTH_69><DEPTH_31><DEPTH_78><DEPTH_1><DEPTH_74><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_36><DEPTH_36><DEPTH_38><DEPTH_2><DEPTH_9><DEPTH_2><DEPTH_36><DEPTH_64><DEPTH_36><DEPTH_64><DEPTH_36><DEPTH_29><DEPTH_64><DEPTH_66><DEPTH_33><DEPTH_1><DEPTH_64><DEPTH_36><DEPTH_64><DEPTH_64><DEPTH_69><DEPTH_44><DEPTH_0><DEPTH_1><DEPTH_57><DEPTH_42><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
4
[ "B", "D", "C", "A" ]
<DEPTH_START><DEPTH_31><DEPTH_67><DEPTH_29><DEPTH_31><DEPTH_70><DEPTH_59><DEPTH_3><DEPTH_59><DEPTH_5><DEPTH_17><DEPTH_15><DEPTH_31><DEPTH_29><DEPTH_36><DEPTH_31><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_49><DEPTH_58><DEPTH_29><DEPTH_40><DEPTH_49><DEPTH_74><DEPTH_49><DEPTH_67><DEPTH_49><DEPTH_72><DEPTH_64><DEPTH_29><DEPTH_29><DEPTH_29><DEPTH_49><DEPTH_29><DEPTH_74><DEPTH_64><DEPTH_76><DEPTH_36><DEPTH_29><DEPTH_49><DEPTH_74><DEPTH_40><DEPTH_31><DEPTH_40><DEPTH_3><DEPTH_60><DEPTH_31><DEPTH_36><DEPTH_44><DEPTH_31><DEPTH_59><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_59><DEPTH_3><DEPTH_3><DEPTH_38><DEPTH_25><DEPTH_49><DEPTH_74><DEPTH_74><DEPTH_36><DEPTH_36><DEPTH_36><DEPTH_69><DEPTH_31><DEPTH_78><DEPTH_1><DEPTH_74><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_36><DEPTH_36><DEPTH_38><DEPTH_2><DEPTH_9><DEPTH_2><DEPTH_36><DEPTH_64><DEPTH_36><DEPTH_64><DEPTH_36><DEPTH_29><DEPTH_64><DEPTH_66><DEPTH_33><DEPTH_1><DEPTH_64><DEPTH_36><DEPTH_64><DEPTH_64><DEPTH_69><DEPTH_44><DEPTH_0><DEPTH_1><DEPTH_57><DEPTH_42><DEPTH_END>
317
210
97
126
293
220
266
218
null
null
128
35
106
65
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDyu0jSXIZiucnkg49PxpZEgQrn5zxvwCc+9QpKq9fmVumetWo7tUJUMjf7JUcfjzXB7yehgUL2G2t8yozueCDyRj1zVWK7Vm2YHPYr3rVvYTcWhQyJGp+YDGcAf0rnyhhmyCrqOQRwD+ddEVeOpcS9LdKsXlyoG546cVnvP+8Jj4HYUjv5jbjx/OnAQEcuynPXFXGNkURhznH86nAeddrbg+MpnOD/AJ9ahVwp+UDGepGant5FZ281vlPBwecVQEYTYzK3Ud8d6vWXI8p/lJ7gdRVYiKSfaJCozw2OorUW2aM/vJUAK9M5yOxpNaANgiijmCylzz2yAOv+NPuljt1jSNWRAT3+bPHGevaphZ+c6NKmSBhctw49M5ps8cW6LzNwIUhc8n8qkCK2uWaZ9zgBVzwc7QP50W7ebGSY3OOc+vBq0iqgb0J6DpUDx4g2MoQMRuyTxz0OO1LQCkLiS4kaJVUBmJG7vV1IZo5vLWYFs53dlPpUaQ2rTqYlYjsFAKj/AD71bAje4ICBi44OPQ+tF0wHb595O0tn+LGM0TjdGGBOeM9sVE0fn3WWfO05C7jhfwqWfZBb5C8E44GdxzVqy0QFjcYwpjYEYAOex6c1Vu7lxEyFhjONo6/hUctyyydCox0rPkuMlixOc8nHH40NAQSpEXJB2fjk/jU1q0EY3FTIQM7nGB9aqou7khXYnj0rTgjRo1MzKe+CelSwFlvZmt9yZ4PGBx+GaoFrtwVxnnuQDV+SWNVHkSKxyQwOf5VQF+yyhkJVs9B2NUkgGDT7xXwYJN3bikMUiSBZUdCBkBjjNaCaw0QDMzHj7pAPP1qK8vkuyq7SR7np7fSmtQKRlcn5sLjpgc07EpZSpbB67TTUj3MWbCovTmp0iUgucr6EnJ/IUOyBouQRKGEnlFjjA3nrTjNes4jMAZFOPXJ9fpTcOIkOdq9OCOfw7VKzywxkxzyqQM7mxxUoRnHO9l4QjsADWkJJjCFjw3ALZPTA9ulZLuPPMssjmTqwZec+9XrZFaD95KnPOwgnP1x1osUSwXPmMV2szj5cRrwPxrQCxi0DnCSj7ynpiqT3MMRDB/LZgMiOLZU9rcFAMxHLH7zZLfn1oskxWQjMfIBiyFyDsPbmpEmLBkLEgtx3C1PdrAtsWjbpwQBjI9+2aqNdSJCmyJArHHKZz+NU9RWJ1PmAL5g4PQj+tR3cShFYYBJGVxmneYPMBMKg8ZPI59qjuJlcEsrD0HelZjFbcGRkTB9u1Rxl2D/MeD93PJzSwzOE3dQe57f/AF6mLJI7KV5PXC5zRexL1KRuP3I2ggqOQfrVpbrZMDuBDHt9Kp3CeUT95owCDx0qoJnZQVGCvX2q7XAtGLmOU7Bt+UqByPQ1O1r5sXy5yRyX6/hVK6xbXJieMg45JOR39O1XbOe1SBD5yjeMYJ5JHqO1ckoytdCsVLmRreYxICwJwfMGeP8AeHWnT6erIHtwqvj5o1YMPzPStMvDcQgXUfKjjac4P1qGWyWW3DWr7ZFOGbdtOPfHUU1UXULnPXAkgkaNtvHXof1qEfMw7A1NPavE5EhAJ5+tIsMZ+USYbHQjiui5omRnaduBj1OalVIgm7eS2clQOg/rUbxGNsEfQjvV6wYwncy8dC23lB+PagGIke5GYoCPUjpV60Qx7JtodEOFbkH6fSk8i1uGUeYwRjuAUZHH8jU0kEUBwrXBjBySFACg+pqWxE9vCvmGOUnDuAdp6MCMn24P41FfopuS0m9F5CfLkAj09K0IzlSsDF2zyScnHrz3qO+CTbCwLbgc85BIPepuwK0EExkj2MdvQHqD+NOuFlSNnRnO5tqqB0x6mrKxpJKIURQCu4oH6dO3Ydaha4UyFIJM7eEG0kfU+9K7AqW+ofZg8fll3HOMbfypsLySz71GxBkkBi3H1PerAQpK7hVcuOTIeTj0zToVjjiZSEDng7Sec00kxILdQLgJvYk9N61fkEZJWUHDEZ5x0qvxCysXVpDjIwCR7e1TrIkiM/lqR3GKBlS9tcyxZVixJQ4GDj1rLlUwGQCdZEBwQc/061r3U++FGjkAyCoDcdqyptrBg8MDhf4o8ZzVICpIjNslWJV3cLtwAauxQeVCZpIfMbHc/L+VUkJeRYhv2gfdU5LVeFvLHGGaN8sOAc4H596BFZp9xlCwEbjhSBgU0gKu5I2UEfxLwcU4mQ7zhXbOck96Rbs/OzYwcAKtFmBYje1KlmiBl6kFeKilW2KszJt3LwykHJ9xUEsckjYTJA67uMe1RgNHtEq/KRn1pgKqvGi/u1JznDc1ahkmkkIVkQMckL0/GoBI7khQGHTO3pVq3gVxlHCOO/bHvQwuSSkFmwuWH3SrZyfpUUV6z7kO0nsxHSkkTLZQ72J4Azz+FTRx3ez93bbEAHIWpsBFeRCWP7QuzeuNwGeRUrXM2Mbwi44JTn8BTpoE8p23bZGIySRTY4AxbbhmI5Ltx+FO+gx0FpGbkO8jl26ZXmtGC2iad1Z5CydTk81XSzeIs4aMHHY9B9KkV3LkhkJIweMZ/Wi4XHSysoEUYycnORwB71NFCLiNy5/1Y3ZB5qCJWaTyzLgOOABipo7iSBTsYDtkjpTWoijNPskCRwsMcMwJwfpmp4Qrb/M2EEevSpndrgSb8F8gqwH3T/hQIn3MQVJPLKeOaq7CxSuLUKu2GQc89eB+dTQ2LsFKXECMxGdz4x+NPkUl1IXOeCD0pEAYlPmyoBz6e1N67jsMu4pYJtrbDvB+dCCp/GqgVIYDIFJ43McVolOCjR5BOMH1qK6sytuyICrpwVB6j2oQrFdIpftQzCSArBgR8o/HtUHlQElDCCNpZgBgge/c1siO4jVTHIxbblgeV6880kqzeasjSRiTtkAA44IzXBGoydTIhmg84fZpmRjjh8kVrRidVZTHJ+94LxjI/EGqiQO4UvGFTJ3YABJ9T/jVlWMPyyKXHQN2xRUknsIytRhltYJIVn3pu52oQVHv2xWNEAJQGVSD1DA11lyitC0QDKJExlk4Htn/ABrBuoI4w0bSbWTI+VOCfrW9KpdWZaZXkn2t8owR6Hilgmn37kPUZJHJH1FRkMYOEBXgZxUsQkQ4dvLUgEkd62KsaVu8ZwkgeJi4OEB59+mKszJdRStG7jDchjwp/HtWZ9pnhnlUksB/eGT045PStaK5lSJHJGHABVh83FJiGKNpR1l2yKf4hkDr3446/nV95YooIpywKBiVGTyTjg49OahngeXdJA8bKOR3I+opLdl+yANEDmQDGeckH9am4FmwEdzdtL5axAI4wSP3gJ4PvUMVsixEDywrkjknJNSQoI3V40VS3OQcg+v50ZIRWKkxfePtwOnrSAgs7PzbhlmDLyPl9quRWipdlVRFQAOc/wAQHb/Gqr7Z5EBBUZ4ZGwR/9anzsYI2YN5sgBUgsen+FGoyM2jyXDsFV2PzMQuADyRS4lDBWXBLblK8c/Sls7t2JiXaEY5UL2b6nrVg3ZxgneYzk7epweKV9RFXUp0V443VGZQfMX1bv19OlZk6WzDzUsZFX++mdpNaV78u2YxoWxyxA6/jVNdQUWwSZHRR0CErmr0Ao2sypNvRC+3k8dPxrUieeVN8xOeqJjP5iqMX2NQxWZm54bbz+I71Zjc2pD4kL5yGZsH/APVUsVyrNJIu92iTDNxtABFV2kYr8oXdkgYHOKkvbpZidyrkHITPGahimlMiqI8L0I29R35q1sMmiuRJIFdlCgdl5/Gm7GaR2jmO1uBnpU7qghRnwFI4XGefeqqsYjgL2xt96YFiKCSJkO5SrDjDdasSxRhQVdlwfmIIAx9arnz41PmDy/RW53VJby/LtMgJYcgrjNQ0STfahgqpYqQR68fWpBMs8YAlkBXqFOM+wqtNGG4RkU54OP5nrTW8lSPMlbzm4PHFIBDYSeWZC6gMMtycqPeiz3MRHkqg5CoclhSuY5DzOQQOQOlNVYooDMHIOeFX/wCtQMvPaZUeXb438Euw5pgt26/ZmTk7gjcH6VXgkhlkHmhgueCMmrCSKsoEb5XGRuOCPbFGtwLMDKqoATuBGAwx+FWJVD7kXC7vXrmorYsQArDgk9f61ZaIr84OWHUH+dWhleNSu45wmcYFOkOERgh6gEmmhGDseFGelKHLjarDp096HZMLla8dw+8DCrwDnPNJCkrOWPG5RjJ61p/ZWKq8joAjAlSN2fwqykNrI2DAm4PleeoP0rOdeK0JbMeVUkjkZgwcEEBT71TuZGLsqq/K8jPX6+ldDHo7rKJN+cdgnGM8YzUtzFH5shKNHIpHzpwW/EVk8QlsK5QieGWMjAiPQc4LUSQrGT5e2XHXMeB/+unxK/mYmVXGMNtX5qHtElcywl4kI+YE43fT3rkVk9QGSQBHA2qkY6jeSOfQ1bVG2ojZ2hRjGDiqiwRGRwJCnIIZuQPYipR5kMf+vzEzhNjqeaT12Ae48r70UkgxuG0gY+nNcrqd5DIGjWApIrZ3qQB9cV1cKW7LskuFjUnb5pY7T9eMgCqsuiWN5N8zuzScBsgsD7dBW1KcYP3gRyUcssQVmQFODyK1bRra9mDsmWAJCs33fw7j3qhqOnXNlcPFIjhU9fSoIYpAolQnKnkLnK16CaaujQ2fsyqdhRscd+h69fxFTRwuJijH9264xknHuaq2lyLgEsdjj+NRj/P8vpVsqYyplySf4gfkb/D6UmOxPblreVo1k+YhlYbcFfbFWYTH9mk+UOwcScEEZ5Hv3NUzEhYeazJKmMEjkgHv+HerFtFOGmi2YSZSEKj5Tg5Ht1FSIltoztnlmR/LjC7io7k4Az05qBwvnJwBIp4b29MUunozC6jaaRDJEzIuC2SMEDHvimxxmRtoKmRVJKjJzjrjFIdikzTRyoT8gJ6ZyfyqwbZ7mNAo+YAhmJPPNTENDE4wXUkM0R/gPuR/KmSRSSIkagEmMsAPX14PSjYTJvJjhlYxQgu2MyE5A9h/jSvHBuUBAWHBwuCfTpVUySLsyXKxphlGBj8ak82GSMSTzupxlfKfr7VmxFTUfs0K+XKsvmqx3DdjB/KqLzRSxMh8xio/i5rWnulWYyNO0nG4eZECD+P/ANaqc6wzSqX8tSSCSq/54q4t9QM+1YqzYATnr3xU0KC4d8OWcH+Jh/KkuJBGxHyYU4BxkMKT78eN6RlRkYGM1TE0SvGka7BlTnJHHNCsSpY7RtHXOePpTrSxE65MgHYcZ/Gorm18iUlXYpj7xXv9BS07jGOxWaPkYcdQKnW3WSQbW3beTz0+tVo28xjvCsR3NKHn2KFBUE5G0YqmBZaU9JI3dcY5ycD0HtUeIrggkFABjp0oSSeUKAjM/Zs9Kla1Z0LyFQefY5qRWJEt5Iog5kBj7A9TTzam7YEE5B5UgDA+tRrNGilXY4PqDn8Kcb0IrBGk65GBgtQAPpvll2LxYIxtCZ5o0+FTbyeYcgN07AUz7S0p4UR5HVgSc/jRZGWaaSK28pZOSWcgbcemaptWAtlVyyqBgnIwp7e9RFTJ/rEVB1PrQdxUZaaZz8zHnn6UgLDcHBGeQp/z1qEnugJ4kW3ViAcHnrWikLylQUIwmTuyOPX6VSVGLghiBj8Mf41s2y3KqoZ0ZMZG88ge3/16U5tAxkdi7qVDKqgYD7uoog0+O1hDPL+/DEDapwautfKpBcln7kdDUc0+/aPuuvcDjPqa5ZTlJk3IkhEWHG5mPXLcn9KSMypCTuXLE5GMEU5QyqSzxMH67WBIPqB2p8MoWNy8fB+8cHpUNiIXnkEAdnPIwccEf41TdppSqlgB1JXPI9Pxq+THncpkbaOISmf0PWo1nRHZlxCWGGCdx9D2P1ppgZPk+ZJvFw4xyAx5z+FTmKYNhnRty/LsIGR3/wD1VAJmgZXEmSCcgc7j9atLdpiMzI4P8QUg4+lN3vqMiyYnCLMofaCNrcmmPJMsvmO5RicFyc/5/GnXswiBkClVB2+Yqg8ds4pkckTx7TMJcj73pRbqkBLEJWC4+bjBCDOfU4J6+lAW3I2hJSF68EY/L+XtUscW4o8W2RlIY5bp7e9JNA0EgKyFWJyyOvAGc9uam9xFa9uYXgki817gNxtZhhe3I+v0xXNESwrmOTgZ4U+nWu0mSC/EkX+qk/2OCSefx45+lZVxpMtq+63kkkfBD5TYef0aumjVilYpMzLUrcRhjiMDG7aO46nNW54tgb95KjnnGThx2OOhqI6dcLuzGPmGQen/AOqrdnFhoYbjYvy5WQENhR1X6Cuhs0vcIlUQ7JE2lwSrRttK8dQP6Cr/AAiOhdduxsMmcBxyV/KqGGS6JlYq28ZQdKsQN5E6eYQG8/c2DgunT+ZNSAtjPPJdQhlXDNsLsecEevWrJnljkaBIUhiXIG1M56gEt1PbvVcyJHdSRbBuWThxgDAPX/8AVVy4TzJfIngXqWVhyFHXg+maUrAUdpi2l48Z9B/Men0qe4lSGOSeIKZRtG1D9z0J7/TFV5QkKl+fLDgMxOR9M0rJLdL9oSDMBcogGRn2z6UvUkSI3N0m9hHvdsjI+Yn/ABpJrN3Mju7GRcBgqY2nPGcdaswmZGSIrhcgsOMn8+lDyTzvIjR/Keo6Ee2e9TZ3GUBaSx+XmdZ25zHnoD29M1HK1vDNsmDs+3qGHJ/KrEtrKiMIpNmTjcVzgfh2qpJHKJioeNiD1Kc47/rWrvYGRNNahiGR1GOu7k/oKjkuYRjy7WPB9zx781b/ALMnnYzbo9yHmJjg/r1qC4tYbdwhKllOSAc/hSU1sIpygk5R2C98HikaMsvEgY9cdBVndECu1cE9BjPH0oZymI/JAUc7SBnFO9hXKgtZGC7RuJP8PNaaKzhBcS7ADzwf8etQi6O8v90gYwCRxTJGbjGCo6E5FDdwuX18uFVMLlV5ySOB+tRyJHPIXUibA+8xxj6CqgRnH3CcHPJqzC6JHl1wSOgHOKkQqxRbMYyTnpxj8TV3+y5giSW9uk6cHMb5/E5//VVdHhmQ9Bg8YwCDWzYoqWok2SqoH+sWQ5I9MfzrKU7BczY4LJUM0t2WmyMQhBkZ61dgl0+2d7dHV1MgkJddrA/Ufl2qzFPFdSTSmHFq4+YPhVLDrg9ahlitdP23CwNMrtgFsED8+T9annvoBlXsKNcebGmxCcqgB21p2UUUuZfIjzg/6zJA9cDrVq8tbW/dZpPORig2g8ge3TpUNvb/AGQKkdv5sozmTBxj8umKXtVJWQXJre0VyzuYhBs2hFA3dsEnHH86hkfysxxCQ5PDMOtWjG4dSu2UsOpPy49s0psCZfMkd0zjC7AW59OazjL+YRFCVULKSHx2POP8KljDzgs+7amMcckVXcoqruMjcZ4GMe/vTZUeacPGCgK5CMcfjihq4iaZwhyFVYz0G3/GlknZVwEjDcdu/pTHhVkUSQuzqOzdefrUc0kT53DLEn7zdPxoUV1GTNeyq7B0BOPvA/Nn2NRuVkXKKSf4v896ar5CHzEXaOBnJH4U+OZ8YeZR6lRx7c0rJbCsYwQswxuAxweDjP15qUhDbo2/DjqHU8/iKqNDctsEfzYyf3gAz6855p8093bW4SdYo9wwSCDkfTp/KtXFvYDRCqXBDxkEEE7ePy4pv9kLGGZlDMPmU5IzVOGSa4lVmDZxlWVgD09KmeWOKKMCcKx+V1AKnP1HFQ4yTsA6JvIB8ud1yM7CR1qz5clxbtI0O98/M27BH9MVVWEzNlJWOD1UBm/x7GqQvEfzI2ZxKpAVwQpJH4U+S+wy8THsACOjYwwZOOvrn+VU7jWIBcbPKBAABZXLKffBNQotxLvUSoEA2lWc8/hmqLWjxRv59rKoXoShIraFNdR2NT+0yUDjDEE7gFB4p6XImXzVhcqD1Xgr+GDn8KybXhAYgDlgpCt2/KtuC6G9oPMLdVUBscj+ufSteVLYpRsTXSfaoLadXV5IwyFVJJVQcgkduv6VVlSG4lO9/niyVBH3uf5immV5bkv5Lgn7jD5TjvnFKhgZjPG22XklP4T15x+P0oKLN7k3DsoO07H+YcDK8jH1FW7e6j+0tdeYTAGAbzDkcjkZ+tZV/drbThVDuSq8OenHr6UtvIsVvKxRF+fKgHdjPXj0oauAt4g+Vj0ZjnAH681cj1CRrfb5SJFGRlyQdx7AA9P6VTM5vb1JACeQR8vpx2+laD6c1ygeOMrgAsuCFHqQfekl0AYl7LbsWVBhgWLgk5B+tV5VYneikMQevr9KkaBYwqKwCcn5fy61LCTGCsUX7xTnDNkj8uBRZBoDW8kpDNsRQCC/Jz9PxNVoylpI0kZdT/FvAwPcGrQErOWSMMehYMF2egx+dQMkJiIAk3rnCo5I+h7UuZktlK8uHuYnCeYQDtkXqCPesmQSbVBADA45ropruaFlJDKrJn5+vP0FZ11qKyy+YkW7j5gTnnue1Eb9ECKcarHEGDFpMcYB59qapkOZCMk9s9KU6n8uFA57AUonEwK7N4bGRjmtNQ1GiX5wwG71GBVpfOnIZwoUdASKj25ZQqKM/TOKmtrczXCxRyx8nhmOFH41LYAIp2uFVVxkgEA9BWuNDuwA0W1h0+VwcU2302TyXeeMu4chSsmN2PoCMe+a0LaSSJQkeE28sN52f1/SuepUfQkpro8n2eRpZQDnKgAYPXqSRjpUlnaXNu0RuLlETblQefw5p8k1xcrK6skoz8ig/dGeoPFWY3mlYLJbPIGGcBt56Hr7c/hUNtrUVyQmNwfNhWaM88jAz/I0sKIij5CAo+XGOCRTksTJ90xIuMja2cjGelUoFjeeSEgogzhySc4/yOay0sI1GiknjYx9uMkbt3+yKoyWMvm8yiNwRmNuMD0OKtosOUittyYTnL53fX071P5rwcF4xtAJIyM++amLaAqzPLapiSZ3I6Kq4CD6HtVaSd/LMbR+W+3AI4+mauK+dpwpDDDb2wG9c+1UJrlQyqCUcA43Nnnt/wDqqo67gEtw9uufmKkY3EZwfxqE4OJZAVZhj5hjA/DvTmeSNgjPjPcHv6YqEs8p2nJGMs3GB7VpGyADLGS6feXGQSxGcfSmtkXIClQr9um72psqwrEMAsF4GT0/KmugfGE6Yw1XoMc06LOo/u/eUYxikklEvTLAHPp+fpUZS3KqxjBGMkkEfpUM+QFCHBPbHNCSAeW89VJKqzfKc85FQy6Zb3JAW4dZQxCoTlT+PanQKIbmOTyyT3zyPyPWp1jj2ht6Es5woOCD6kdAKV+XYRHHYRRrGJJvKYFgCnJJz0PNSQQQ2yuFRJOwD4JOeM4Of51ICwnkdTv3Hr0B+mAK0IFDRuqMThs7ZF5Pt/nFZyqPqBkXBSxhiuI4xsb76Ry52n3Hb86zroPdPHPHbTnA24YbwT/Otm501DciR4ZEkY5LRvtKn/dNPgtZ4o/PQhnRSzjBDKo9V9Peto1IpXW40zmy7gFyqbVHKgH86qPqFy0ZjMj7GOSM/pXQ6j9puEUwpbSxDLL5Q6dyMH+VZFnFEbpvPCxITgY/hb6eldEJXVykVrYhlfKjJHHqa00Z2VZCFzgdfut9D2NW7PSUk3BCztknzABg/QUSWrW7/wCkNCVb76FjuUeoFHOnoikySXyksftTr5UlxI0bfL8vAGfpk1WaAxuMSgAY+7kgDFTyZ+zpBIyGJMmOQnauDz+JzSSxebbGWMBsH59g5GMYyPf1oGQPPqtxpa6jJoF5JZiP/j78t/KIB253bcYBBHXqMU21VDIjrGf3kQbGemRnHvW3Zz6UnhfTbmWcJcxaFeWvmx6jCDG7y3O2NrcgyNuDgZBAAcHtmsSxdEiTBdQIUO9Acg7eaqSSETW107x3CmQ5XAVwMEL3zipIbrzHAJbygdpJ+Y/h6VEto7vdr5Z34JxjBPGelTQtdSwlWUMM5AC8jaM4B7CoYyyoW3GWmMas5YFxk9M5x2qtNcW75YSsjYyJOzexoKmeMtmMs3zYO4H6ZIxWdKkxQpI0gTPCnB49aWrBl57nFwyEIQFLnJ3Z9/b6VENUlRS8cgUjlAOQPY/X3qNLTMTKGAZxuPGDtHrTERJwI9m3aOMdT7U3ZIXQnjgutVikmUBvLGQm45Yd8duKpT2jxtgxlCygjcCvHrXTaYLa3iTdMBMrEKY5T8ox+Va7TR3UQbyrZ5kG797yvPYisJV3F7EXZ5/Ho97cATRQFos7cxrnJ9KmNrLasYpUaKRlyB356Gux1CwuruG1hV4LYjh3TKgjPTA9B61mx+HFjk/eyPPk5wh2jGcc55/KmsQnux8xzTgY2vPyq43YzVqyMPmbJJCF4wwGRn356Vo3fhpLe9UJeJ5MmMOUYD6fnxnNW4vC7RQsJ7mFXY54+Zdv1qnVhbcLjLImbU9qFXgRfmCcIPxPeteO0eVWjGVlAI/e8jH0FNjjFrF5O8SAHgBQF6egqKad5JWYDDDgP0Ofr3rllJy2JLXkpCzEqVIPylFwGJxwaT7Mu8yszbVOFUkMcEdcCoop3ETvco7u3KgjIwe9WMhIWgbJjk+cjaOSO3FRaQFaKeCzmMg8tcYw2Wxz1P41aS9ikbZCisCPkUN69c1nPC6uEkg2qhI3nrz7YwfSnqFTdHnYg+YFxyT64Hf3q+VMaVy3H5kAcY3Kct8pwPz71A0sZYlo0UZBy55zj07VVMjMmPkfOM5Ynj1pxMKzDeMleRuH5UcqFYsif94OVCADGzqPpUVw4kQRMhEiscyDuDz1/pSBkMhfc47Y6Y+vXNJiNVO+dXyeMHGKEhFVhvYsYyyqMHcD271XVBuaSMkE9VxWmot1LhldwTgHBG38aVRDGSzQrtYZVmBqgMwlGOCpOR1PY09FJQIGOVO7KnGKum4i8tWbG3OflA/WoJblPmxGCrdWp6gVWBEjRLuZweWGM49Ksx2jtKFGAR1Mgxt/Cj7e6jCxosfXAGckVX/tWaVypjwQ2CMc5/nTtICGKV2k6cqMqRkZPfNWoWmd5X4YnaG2rkkd+KsW90qARyKyFegCk5PsaWDS0kmaeBXjSP5mVl6fUCplLo0BVtrvZcsSdoTJLKmGI7fTtWjMWaJMTSiIMCysc8/h396PsVrcRtct5pmbIVlJ5Hp9KdBMoTyZDvO3IYtxkduO5rKTT2AgldpJWWVInI+VXX5SBU1pcMd6xvlSu3DjGeeRyMVHNdWTy5ER3cZB6g9+3NMlLSwhxKUjiyckgbccDPNJXewDLjzWh+e1ikK5KJtGT9DwR9KoLoMjxzySS/ZlwSqFSQ5Hb2PNJPIJJTI90TgZOwnP49Rj8KWJNimZWEsZ6krkg5789K6ouUUUmSadJcwr5SOpjyVKv0HuBzTZoxbL9oeJSdxBeQElvoOfzqzbK+Q4RA7KMMo27cegFVtSvLozi2VsQheSq4Oard3KKy3MNx5ohBdmG7ayhQD6ioxcPavycpgYOOnrnniq6RqjAvMrc8qQAfzFaSJE0jyHGFjJfnkY7jt19a1lJRV2bUaUq01TjuzKi0K3kQNmdiW27VIyf0q6qm0QhCWjCeWuB8wPTmriyA2kklsfJ2/e5zxz0NZbbHsA+SQWwASeG9qIzci6+HdFrVNNXTV7NXa6pPdPoW7e8kujJAViMeQHdV+fHf8Az2pZSLcACMbCCBv+Yj3z0qvCQsOM5yTyc54oDHhWhdgwI4yMn2FUY2GebJkptfOSOBgdPSrm6S3sii4R24LsB06nrT1WO3tY3MitLJ90Afd9uep/lTLeeOGXfL5QZugI8z8+o5oAqW0Ml9OIYgxycsynJPvVyTT5LSTaJXZiCS8iEH2C+57mtSxMEk09zapGSQFSHbgepIB57Zqd3e4UMyrEzDYdww20c9+fyrCVWV9DNsyo9ADbJA+GU5diA4Pt14rdWCN4gZI5mYD72AeO3rxUUso3Bw24k/dxxt7D/GmtM6vy2FB4APWsJ809xFkW5iK5uLhAVwwypX6c1ZUcKqAzADG7ONpHrWXveaXlAVJJXJ5x9as2dz95SHw2BIoOPpmk4CsWd0pctIglG/pg8DHvVe4tpJ2DQIj5+6CuCfbPf8cVOt39nVhGmGJyRnOfwP60iX0rkuI8RYxndkg/hWWv2UFjOEF28uPJSM8AMW4/A/4VbWaSG2RHdJXQfdYZTdntkdadPdsYyGiCAEFiVADc8Cqn2vcpMgWSJTwOm0mtGnLcCWUKI1ZjIXODwuNvOT7YrPuIJZZlxjA+7lsA/wCNWPOYowVsH7pTGOaas+QNoVT06fePr6HtW0Y2GkWLe5nKqbhwvbauD0HXP4VJHIciV5FMZyBgdvQis97hnl5k+XoBgfKarZCbR5jsUYsEHPejkQWNeSVW+RYk2hMAjB49yOfwqiyhUBZRGRztTk4qCC4yx2EAc4JGN3qDz1p8siZaPOCrYOGB4NSo2EK7pHGWBYO53AMxwPamFkEZMeGcnJweKqyjfEF5CDjryTUDTLACBuBx/H0P+FWo9gsXVmYZwCpJBGTmmPMSoIZcD8f0qtFdsxAOwnhQQucj0zTmlZXBQqnPzLj3/WqcQsKY2aIsZCrEfIB92p8BYPmHmKBzggYNQyMwxGDgZzleoqM+ZkhI36/f9RTsBOhtt+wMxDAkHIGD3+tV1uIWdygYqTy/emtEyDLZUdgR1/GnQW29tlrCxkbJwo6mloBrw3MBhd5ULDb/AKsMMc/y+mM08lsjESKyck+ZyR757ewqg0kygiFyVxnaMd/x6CmQLcM/KsVbqSM4H161m46CNi2mKzBmkEfzc5fAx7Z5q6YjDOwW0Viq53QuMnPfBHPbpXP205W5PyxtKpJIkAdT9SadFPLZzAJcJKhwQGUdue/FZuDewE6G2hlDRxuVVsq7gE59xzVhLcTTTNHEfM5+YPjA7jAHNVPtqTIQIQz5+902j1461o2FmIVJeVFj2HBzgjj0GTjqOM0mn03Aj+wxpCj+Wvmb8DcWXcPx6e471VkdV3wBGVOcHbgYznH0/Oqpvl5KtMEB4RiW2j8afHKyykBZM55CHI/KtYwkldlIuvbQvbNC52bT8pD/ADKTznP/ANaoFso0wGWOWOMNtWYlfoTjr/KhILfzU3QPheM4yR3+v4e1VL9oC+xXBkjYjc7cfqAc01qxrcp3ira6h5Uc0UuXwQuSPwz1qNDJBc+erA/McDHIoeNE2j5NuRyoANMlh8ohFcsScfKecV02TVjSE5QkpRdmixeS+cvkIiqigMUUBefWqqxpiMDohJ/vYNN+0oqhbqLcvOVDYb2q1bv9qlOxdkIXiIHhf8+vWhRUVZGtWtOtLmqO7HmKPLRfvGZiMLHyTgd/TmlEbiCN3wCGPDvzn1xT7NgZcxsUBbIJ/WpXdCrBULnJ+U/X9aNTMo3Kb3iRzK8kiAjjGFyfyyBRLDEZIXRcmOMKZDwCR6evpVq4lQQF/mgmYYzkEse/0HaqJultNjxsWfdx8v3hgD8OKHtoS2btsqqB9l2JLkb2U5/nznFTmRo3YmRmY8BmQc89eKzUvxcQhW27yM8HOBTZbpQxV1LleVByCPpjpXM6cmzOzL63bISGII7tjHNVxcF2DKjDn5ZEBxWeXWbc8bKSvIJbcSO4p482RkWKRWj3fwH+fpWippLUuyNMMxdXZhwcjK8f4/jUvmyS5KoW2jkZyAMfrVBsiP8AeTb8cgE5OPb3qsuqSRgtG3zEgEse1Ty3JNEzByon4LHPPTp6UwOY3+WePaBnqcfTFUTdy3AeV5wzE9C+KTeecsxYce2KpRSGaCXyKSGG5j975sZqF51kLFAIkboDyW/GofLUj/XBWP8AnrSuY9hDEkju1K13YLF+3uRInybgQRuAPHHpSO0al1SZoy38DrjB79KorOgDIpzuAA28/wBaqSlg7FTIWBywB4FVygX5POEe5BuXP+sjO4Z/Cq5Yp/GQ/VlB4x7VVjvBCqKVYSqP9oEY78VONTkfDSQrIucHKDP6c1fKJkbSlcDbg5JxjOD/AI003jICUVXfGcn+H61aVYLot5LiKdc5jI3DH+yev4YqGG0uDHMVWKeMpwImBDc9cdaLBYryX0vIchT7U1H80jzA2c4LEE4qCYOvLMD2GD1q9YRz+UBHCQhkG0uCee/HtSaS1E9Cy2nBGVgVfjBXHfPOKsnShOQ7FIyo4OG6fgKkisUa4Aur6JHcfLGmQTn64x+NTvbSW8Mix3bTMpw6RLz19e31rDnd7XFdmC8jJKyed5rZxuUFSfbmnLdLkq0j/Kcbat3ttHGY5Ht7iA8nMx3Bx7fKOlY8jCO4I4CscgkdK3STKSRoySo0ZHzdeg7fj3pn2dxGZI+wzlSMk/nU8eoWibkmsUO4Abt7EY/H+fGKnm/s6dI/s7zxnlcuu5fzHP6VNraEtNEMMs2I1G8RdWBkJ/TNWo79cbIv9Yp6E5Gc/Tnj1qhPCQBtMpiYZB2nn1GT6VIoEcYCyGPPAx90n6nipaTHY0bqDz7WGa3VI1zyqsOG/p+NVoLWeRnO0Fxndk5A+mOtOjtr143lSVJGAAwGBHXoKfC+oRKIPLcorZICcj6N/TpWbVtmIFtY4GeKR4l+UnJOAR64FaMcK29rlJF+YD5k+8OORj698fjUl9GhtFH2gTb14LKQynsenrxjp71Qiu1iV/KkiIDDDOGRsjk8jjn8KlpyBD20xlR2gukTGDmTr09BVGSyumds3MRVV4JkOCfYHnvVWefVNV1Bmt95iK5+bABAGT9SB+NVrlmO3z5Qc4LHed3px2raMJLdlI2dPiuBKIrxZJYpMBGiGeen4cj0qjqiKt1tYSLIvDhuhPqKit54hMVt8LKHDbwx/mKGkInPmCQpnIB6fh61TjrcGralQPiZgwY8rjd3pcmR2DDaRkcdR7Uks/l3ojES4JBAyeT24qaOPzGMT7BIT8jE96u+hotipgSwSEkMVxnnBqxHIFt+uCTtJI/lVcQst2+4YyuKt+XvMYY4EY3Y6554qhlqEARglzwdqr6e+Kljl061nMsxecrnj7o3ds+oz9KgDp5CJIFZ8fMxU1XkTeSpc7B6LgY/rUW1JbK8rIxLKyOx58puPxz3qBkuCPnKAE4yXHFE8NuDncz59qkbakQwuAOu7r+Fa7IaGmNVBaSfD8Y2A4/Wot8hcO7uNvG5v55pp3M+4qWB9f61MJN4yFxg9OuRSBksF3Iso84edFnpnqPrUvnJF86bu2C2M+/So43i2EBkyegapYlRiolUbQexpPUkFnBQhuecY6/rU6W6lydkqgdQo4/Wo57ZUlBjkGW5yMHNPjE+VJkZX7kKMEVLt0JZK1uFt2RUPmJg/MoOc1Exa1UMNgU8Djv7VeUoEjD7ih6dqztSVnCAlsdRtGRn0pR13AHuioVQuSBninNelgBKAwHQE4qsRh0IJyOqmrEEh3GPgqRuIB702kiiFplWXcoAOMg5zimzTbpfmZwOAU5FWDGshCtGCMYNVvs0jSFSQSOg3AduOaNBXIZZArEqzD0JbPFI0cxmUf63K7ztPb/GrFygRGWW32ygDlccfhVeEmOcSgkOnzBSensRVpgbmkJpeoWxjlLx3mdwdCcqf73oB+ZroLS3eKBleG3cBsifATeccHPrXIx20skjSQLI8cvAeDJK/Uf0ro9OQadGkuo3V0CEO5BwAexz/hzWFRW6iYl9aW00ypcb57l1Dhio+YH0MYzx75+lIBctbM6CV48/MmArj9P8K02MZhieKRMbc7txG5SP5+/6VU89lk2obi3OcqyLuye33uKhSbWpNzOuLC4jKoL9XG/DRE/MM+mevFWZria1iKKBbOSQsuDz6j0q3aXdzFbzMkjSeZ+7OYMOMehx/WoLyHzYWuGWJ3U4yVKOPQlDyfTNG7BGVf315qVx9jmdROpAEbR7NzYx+B+tVV0GXz3S+VYhE+HXILH1A4OamvbK6uAkklqIrkjjapCyY7HPf0q9p9k4QJJcOuBlY0JJ9s1tJqKGxHSCewhtI4UK7wqTuCGX6+3tVa50x9PYRyTRyyH5sKBuA/pWslkjn9zFNOudvmGPjPoAO9YF1cXM0p2eYxVihwh+THb61krt+QlqPtbu5RwUkIweSDnJP8q2JbmGazjiuo0icKSDHgZPuCMiqUbISShjD9cOu7H6YwfQis6/t5UgN0NpjLAbd3Kkf7JqmkytGdLb3NojRKzEgD5SFUDnt2z9cetMvLa4t3W5jmkEQO7cnPl9wQCaxbHVZbxBBMpLcKHxyP8AGtOXVr+HfpqEzQL8o3wspP4df51nKDTE1YZDqpkkMk8i74+RvG4Pz6D/ABp/9oRyQlmjBfqHUcY9CCT+FUEuVLbZLAIGP3sYH5VLBMqMjSxZDcc5OeP6YpuCQ7E2oJHfabHNGI0jVsSmGMhi3UZGcflWJIkQjRHfjbgbnAH8q1LqWZ7MpHIFBxnAIA/qKzLjz7SLbBKsjFiXDAE/Xn+daw7FIktlgtSJfNAJI5UqwA+uOamuFlumaJ5cxk5Up1Hp9RWXp8ocyKwBZiSRjitCWSaSBU3nYWyFH+NXJWB7FKaCQXIMe90UD5sd6LtD9qAJIUyZIHWnXMbPGXcc4zyKnhRW2MxbhMADp9frSUhp6FMSFHdQrgFjjJzihmZ3kfomAo5py+ZJ5jE8bicnv7mn2e/ycBgM8EEf1qrl3LcO6NQ20qrcfODhfxqvc/O+HR9+P4c/5Na8MmbbbIy4QZ5XGD9P/rVQS+uoWOxbR8f3mBP61Mfe1RkveZmJb4kyWBHqev6054S4ycEA5IH6Crb6jLOGVre0U/3kiHH41DHGgGQM5OAPerNCtIoU7mxtzwAakSNSDIC2AemOBV9LC6SJkWxt5fMIIdpVLDHYc8VbigvoVWNtJjkYZIJdSSDzzzQIxUaPzP3rBd33X28fl6VdkiMf3Z1cKMtg4q9Ibx+F0tI8Hd/qgcY7d8ikEuoMwjGkRMWYYK220HP0pCsY6L+9GeAec1rQljENoDEHPPGPzqaYyujbtIaNx2WM7T7g81XjvJ1jMMdhwR8x+9x3xnkfUVNg5RqSyxu4bgKcHPPH1qSWKNkDCaTGflBU4z9R0qxHHNOwT7NEm7pvcjHHuRViOPywXa0jAGQMykj8Oef1pJMVjJii3RFIQhK/e3jr7c96Y1k8QZiY/XAP6datS3KxyYEYijXJYqTmT3qOO9s5XHnWkki9mjcg/TuKHcbiQxwrktIrevLcflUcqGNzIUUBSflY/wD1qfJJASDCjxjnKbskVG7o8JCKxfHJIH6ZpepBXYw3VwuXSFBgENkn8aZPGxywfzEJIVx/PNW4bKC5kjQssW4nc+fl/EgVsw6PFZzRi6upH05kLCSKDduHT5c9ee9U5roBz8f9pWQWaEThGIOVBwfr2Nb9pr8Use1h9nYnDJJymR6Ht+QrREtvcWnlpM1u4xwmFeT2YZHOO1ZEeiWc0q+XM64+ZjIdu3224yT+NRzqS1QPUsFmVzbxGRFBJdFUcg9xk8fUVFA+rR3Bjfzmif5gARuYAdATTIla2BitjI6bvmikTacf7OavGK5NnKI7cblI4mbay57AHOaT8hWLcCyeT5s0wdgQVglTBI9Nw4/rU0lzaSSBpkkEOfuoRuT/AHS2c1mFXEys0kTvtGVQkEHjgrnHSq8t080htWuVjOcqiuvQ9vQ/nUKF9rBYtzXNrpWpuUmEnmrhJGD9OwOR94fiKLi7MlvmOAuxYMVLN/IU2O2F15S3jo8eTghQST7HPr70SadJBKktvIjsj7SGcKT+vSm4xvqJEVtqEksjJl4o1IGVQsBz3PWtiSy05f3lu1yZHOXkMzKW98ccVgi7nt7pgkRhbPLEHp9AavnVJbqJdyJlAF3DcDx3xmhp9BtWM+2TzlPlGQOB86v3x71ba33Kgb5G5YK0gKv16HsaoxpDOMsxDDoSOanWxRY8byVYduc0NF+zkWXsrlfLuoUZV4V9pH3sdv8A9VLILpNrLcEg5+ViFP09DzUMCyWytElxnqc7yDz7dKeouCy7midAfxxScWHJIrToY5VMpUTMSCueU+opJF2RAM+5RyMHjPtV+7t45YCyRxhx/GWGR+Y5rDvDOsDBV+naqSb0Qcj6lseTduVM4RgQAWOFPHrSNpSq+9xg4+8vINZFleQpDJb3ZIUnOSCcGriXAt1UxSlrct99DuA+oq3B9B8liyLC2jPyFcHsvWpUtxENu4FQSAvUioTdxeR80kQA6MjDmmvOFiPQKADndUtT6iaZYeGJo2AwRtwc9TWVaPjTpcjPl5B5xjnFJJeMjcDIP+1VKKdhHOoACynpnnrVwi7WYRV9yR5Gjtmx8pIx+dS2h8sL8xx0GPT1xVaSRXjRSPw6GtyytYlt9zgq3TcAT/8AWq5bJFNdB8Lhbc+YyLvwSG5zjvjtWR9nTnKp6ghSOK1PsbICsTJgnIO3PFRDRruZiyXGT/0zjzilBKIkrFWGJriZLW3RpZXIConOc10Vp4Nv1YfaPLIU8x7xkHtTNMSDTIPLe3y/Vpg21mPXn0FWm1QEkRW+WPdnLEVTGyW3+HpnnHm6qIoWB3MyElT6YFbsHgLSBYGC5upclxKLmErnbggrhj0Jwfwrn0vp5lRGgVUA+XAJ/XP+NWXu2GUWJNu0DaWZVPvk/wAqVxG6vgHw2LRZkuNQuH8tjhZkwT2yccflUen+GvCfkq97/aTuwBVbSX7uPXcKxzdtH/qlKEZ/eRTAnHp05p7eJrhYURIVypySGJz+ff8ASi6DU6CTwn4ZQwJbazrOnwHLSIXDkj2xwP1qyPCXhgOZk8Wa4ZMbQV2liD25FYX/AAlEkkcTSWMAaM/Ltf7w9MYIJpyalaOhLaTG74JJMgX+QqtAuzR1DwbossEkkN9rOpXMZ3JbMY49/wDs/wCycd8fhWLD4UWSRrpdKnggilwttPNvZh6OcjAwB0Hr0FMS4Z2Z12xxyAbUjRmI56Z3A/jT5J/s8u4XV0G7KcKB+lKyHcztR0Yu7yW+kwQETgpbtdeZlR1xzgj+dZlxbyu86myiikLA+XaqpCqeuAM/zrcuru2dMSi4dlYMqyuWGfYDrT0njkj2ossEXXaAwA/DaaNBHLHRbh1SSNJpWOchsDj88/yqrNp08Ls0RUkjBJByvrwehrp3uXJx9tQlc8IpZj6cbarHTpZJPO3TYbk/Jksc8Dpj+f4UJCscrKnlkq9ysmRuyh4B64OcEGrdqZUjPmznYcHG8/Ln29K05NM86ZjNbMHYgNIzlQAegJJAz+VLd6JGyb7UGMbgAm9dn04JOetLQVkULK5ktb1VSRZ1JyxcHA9+cEfSobi6nM8rRTCYjkyRscgDuM9sVLc+H76BuLNwoILOrbwAegJH9KpfYVEoDCaPA/iXjP1x/SmlEdkatv4kmSVI51/dJyjFfm/HHBq7eagsMouPMZreVMxmQZX3AznpzwazJLIorSS2ofC8jzGQEnuOKi+yT3Fs1rtlEe/ciSEEo3Q4P8QI4PeocFe4cqLccfnzNLaXKS5yzW7g59Tt7/8A1qpTtBdOjRp5E6nHlkY5HIIJ6H61mFZ7ScqdyOrY25IPHvXTw3736ot5Esu0BllOTuHocZIOe+e3OappJXHypENwXt7MXUI8stJulPZgR+nepLaRdQixllCjCgS9T/LFW4I4jbSW0KFCpyyPzgnsPT8ay7jw7Jd69pOmiNlF1Oyt5SZYL8u4jHXAyfwqF7zsRfUbJpLwXRSV9u45Ut1PcdK2oIJvLGxjIuOUxkDrn6HjrWXDoY0nxndWCpcQobdZoEuRiQI4R1VuB8wDYPA5B6V0EEcEYjmDHHIbyz39fSias7MUnY5qSW4GcRq4H+z/APXoJdcCJmCgncp4/EVXQbGZ1GCD1U4qTzHDhmK527QQRkClodNiWSe4GFb5gp4JbnFVpbqdPlJLI3IXqw/xqwZ3c4z14JxzU0UVwMyYYZHBKk5pXQmjLXUZLefaXaSNh93PKn6VYGsWsmSQwwM4bvVoShj8y5HfAzira6fNn/kHyGTHAKeozTvHsIy7W8057pWkdYyMH5k4atNbfSZpd4+xtuPRZAM/hVj7BOIVkXT5Qg4zsDf0qFrmWAhpFC5GBviGCPxFUmkKw1dJ0osWcW6YJyRLjH61BN4faXebS/iMO3jcwYH2yKnj1J/L8tCSScBVUf4VIt9NZIh8kIAfQD+VPnQmc2+iXcLkEq2em3vVqPwhq0kZlWJegIy2CQfT1rebWTIrGe1V+cr93+eM1pWevT2w3+akZH3UwGJ9hxxT5gsc3F4R1kbJ57GbyB1KIc4rWe3eMIhttwRf41IyK008YXscrOrADn5Nu0e33cVVuvFF/c/M7woMkjaMY59hSeu47lRLeFDiWJQc8/Nj8Ov8qvWpg28LDbuc7X2n/EkVVS8nlfBmjVCc9Bn65IFMR2XzEknjKlh8jdvfPGPyosBo5hnnRJWVvlALLkge2e9Pktbb5HhQFGG0vjbg/ien4VhGWG2mWQgMccKrcfiTVptVnvnQPtcp39KYmXzEixbcKJWO0EMeB+PFIkaMMmZVAbHQjP8AjVCSeZ2Oyd9x5woB2/pRFsVvMJfzFHzM5Jz+FFhF7yrEsyxrOMZG3ofz/pTo7W3jG6QMu7oJCODVNpIlC7S4wAQVyaiE0TSgmRic5O5Q2f8AD8aVkBoCOKKQBXgeQDKqHXr+FR7pH8wySIqkgKg/iP1/nVFbyT5kgCkZ7Rdajje6Rixt2LEffcDpTsgNlNQhwkZlhZ1B+VUI2+3vTri4tYSVeRZBjnywAfzHWsWaaVlK4+Y+g6UiSTxoSY0BJ437Rk/lQBpRSllZUuoo1XlYzyx+mR/OrMS2c8bRTv8AvA24MWJGO/T/AArLSe3uG2uvlynA/dsNufp/9ekFm7ytHGxGcgEhhkiloLU6KxitBbrHEVYqdxIQKSR6HGR+tMF7CjMJZXgcvvLNlifYZ4/wNYa6dqUo27CoA6bgSfxpwhu2YW80cZZRlFcfn1qG2upOpunW4ooXeFxkNk7lVgD7kYqCHUbC7CrPbSbSD5jRJzntjJwPrj6VkrFcxReTFhWUYy3X1x16fhUcbmHJCKhJyQQSCfpRzW2C7NmHUoP9TMsSwL0ZYhnHvXHXtloIifU75L9/tur3luHt5kQRRoImDbCh3H96eNw6Ae9abLa3G1pM/L0wxDf/AKqyI9VvYAbOLQbe9SC+mu7aSWKV2R32A4CsFYYiQ4YEdeoNaUmNM1tJ0qxsINT0nUMPdWuoS27Sq3Hy4XgfUGlurfSpYo4o5HiVTz5chIZvYHp71R0S0vpYLu5vnkhlmlZ3eYYd2ODu568559c10Fqi28HlXdsly7HkoMEYxg+nTvipnUSY7nN31jcXk0MFvcIsUcbyy3VzjEca7eWIBbAyBgAklgADxWZNa3UGp2kRuoLiKaMzQTWq/Iy5IJA2qwwykEEDofXNdNrt9ptlKI5I5lstQtJLWYxIDJGA8cisASAxDIvGRkZ5Fc5p76cPEdgunC4EUcZVpZgFeV8MdxUEhRyBgE8LnuauLvC4N3VzooEEkQM6GRZAAxzn8qoatLewMj2Nu8++GeDO1nMauApIx0JXI59TWzI3O0dRyQPWo40QYMeVPcnkVzqSi+YmjTqVZctOLk/JXMXRpr8XVr9us2hjtbRrdHeFhvXzC+GJ7jcQMY4A9K3Hm+Xah+TO76/WqjTzROxD7CT8yj+IfSoWlbcrdAecD0qpS5nczndvU6Wz8NaTdK8n2abZn5SZGGMYzzjHFQXXgp9xa0ZcZOY5JASuPf0rZiCFX8yQq20YjdlwB2+lbUUui28MT3NyXnHPmHrg4yCAOmatRTR0XPPU07Uyohh08soO3eoz+tTQ+H9buWEaae6k85C8/qa3pdXt9OlkFgPtK5xGZ4wSCfWnfbdSvbU4aWIKPnCjOD7ZPA+gqHGzHcis/Dl9CqG5iiy3SOSdVbPsByDVqTwtd/bPtfkGKLBJkt23hSByMg8ceuKfa+HLjUbiOS7ujGMAfOQMEdiSf5V3mnmytbk7biSQsAGEb4QADHGKqMRNnBRW9zDaIV08zKz7llLKGUehOeh/GoNS0zVL7Pm2NyIlYFV5lBBHB9AvI5r0/wCy2L7JWtYDEThSzkkEZx+dTy6dpupwoIXnt2jTaskEu3rzjnqRz+daqFyeY8ft/D1w6mM6XdSSxsBIEt+qjoR2B680sekXQmYeR5EW3IEwH8utekX3hS0kQrFr2pQSt3MokBx2IwD+RrGk+HwtgJX1rfvUsH8hiT9ev9alwaGmjGj8IfbbRbguh8sBgrP5WSc4yT0H0FQReBLG7kRW12G1ZuQM7x16A5BP41sN4J1GdTtv4vs6nBLTlR+WMn8qvaf4FWBy730aEfd2jeM/7zcH8KnW47lWx+ENiZle41OaeIYYDywqN3ILAk89u9TXvwmsNSVmsbqSxu0XLCRCYpPcE8j/ADxXY2DWNkwj3+dtG3YDjIA5OM4681qLcXbzFLeEOhXBaTkD8v8AGteSJPMeTW/we1R/9dqdpHxgMiu+fcdKZJ8INbWKYG8scR8x5JLT8e/3fxr1C7vYre7jtZ4It+AyEyEgVfMMER8+eQ7pe4BOfpin7KIc7PFLH4V6/NPEz29squSG3zj5fTOM/pmmax8NfEmlCOSK3gmDuEP2R2YoSeMg84/Ovbru8dYQ8dsQuOXZQOfbNQaQzTxSS3AdQzAL5owRx7UvZx2FzHn2k/CEKrz6zqO7jHlWzMNp9SxGcfhWk3wr8P8AnpGl/fq+zDhJcZ9yMV2V9a3M4/dXcXlk4O6Isfz71HBpMdnN5sszg4BWSMbe3U0nDWyQ0zzK/wDgreIfO0zUkuYskgSNtbH8v1rL/wCFa+JbQyLHHbmMHbvRlB/WvX5dTtI9n+nNJIpwAP4/pis668TrGZ447RGePvKwy2ehx3ocIrcdzypvDWr206Jd2bufuDYpHPt0BqSXQ7m1QNdaVLEuTtkmXaB+Jz+ld3D4muvs0xlt3LsWaI7AQuMdATxnOaoXOvamiSvNcJcW5TKq0WVYZOR7H60e6kK5wktokYDQ+XxncfMG089qjisJ5ldpAwIbPzqQuPYnv7V1V1b6ddv58UCxyyBWVoeMA/7I/nisubTh+8uPKVlHOxnKsR0zj8ql26Bcx2ssyYztHH3FP5N2H5VqQWhUpvAXHIym8fQnAqOSyu1kMEdkRnJKoGJI9RjtUh0a8UxnbOiMAyosDknH0BzS5L7iK0i7kKqnmM2RwCCo9Qciqg0sks0s04SJcptIJPtjrWpHpN0hLZuyu7GYoW4P49D9a2dK8ONcarENW3W8HJYCRXc4/vc8VKproBycNre384S2ljjU4LJcJtx2z79+1JLpVzbZRtkm1SVeMHaT755H0Nejat4a0bSroS2WqxQbl3KrSknb7cHHNYM8d3Nvha5kdpBkxiLk56MC2Ofaq9noM45rKMfLJ5mxyOY3Bxxn6fmaprbMs48n5snBBIyB9c101/pbtC6CKZHiONr5ySOg2f1qM6fqF2If9CMMaSBDM6bIwemN3cdOlYSvGVj0cLhaNSjKc5Wav1StZXTaeru9El187J4q20sTBMqgJ6g44pPPWNdkc0QYZ24xzj1q9eWMvnsJCnmiXycE5HA68/w1hTOBlhC5wclkH8x0ptHmXL1xFDcRK11bC4IJALxhsfT0qitrZKN0NnHHMOAAgB/AgVYG9XGEGGXOSe9DtubYASe+azhU5nY9DF5f7Ckql+3Sy1V/dd/eVt3p07oqKzjdyVdTjGKcZEfyi0iBQuTk4OfakcybDuJxnGT1/CqqfvGzgFAeT6VcoXOXD4j2HMnHmjLdarZ3Wq13/q9mp7khy23B7gYxUOfM8oOeFH5Adqfcw874mOVGPp/jUb4ZtwyCcDaeMetNJJWMatSVapKpLeTb+86K1tLQXDTTyJHtP3Cd7c+vIroY2wvmQanbIgXgSl1Y+vAB/rWc/iMtbxxF225JG1V/UAcGmpqUkqumZAkp5JUnd+VaXSNLHQQ6ha2sxdbWORpCrfaYU2lfbGMn9KbczTrePKJmnYnJiliZsKe2MYrmi892NttblmI4AQkVq2WjX8pH2oSwfN8uYiDz069qalfRILGnYHTo9yS2k8krtujiijLAfmeBWrHqk8l1I72a2+xQ0e9li249j6+9Z0VxFplwyz3Ny0acJhc8+4qSO7sJ5YpnsXZd/wA7PcNtPqfQe3NWKxpajcTbopHe1Q53Bt4Zh6cj/CrVjcwzQySJcXeY8EyIu4AHrt46Z/Gsg/2PHdIYIp5QP4BKcA9cHjpitdr6+nTyLOycwY+7ISD9QPT24pp6ktF1bV7u4L3ixupIKGb92MD0IP8ASsyfXdVvbuQQW8sAT5FAG5ODjA7EfjXWWGmy3dsPtM0JkAGY2i3fyNVLS2tIpJEMHlNGSBucnH9auSb2C6MAzXkrbbi8ldUU4/0FlAfoBlcU8famlVba4G0JuZXj2ruHIxmt83toVlhSO6uHjXPznBX8f6daxbjW1u0ZJrOCIbcFZIt2Rnj0wfxqXGw7mPNezfaxDEkXmZBZxgDp/CATnt7810um65qNzbmFI0QjA3faF4PXIz37YrAgvYwgIt7dG6ISu4E+oyP8ip3vrxAsAs7RXJyfLUhj79QKmKa2Gzbe3vZrmIajcR7i23crgsy+w28VqT6dfQootdX2RhcBJxgqD6Y7/WuUiubmOFZLeQI4IJ8uIlufc1HD4iNtKC+oTiQf6yNYhtP4knmtFNLcmx090t1BCJLu6il24JTGd30qS38SWFnbOpkVn/uhlUKOw61z0vje0aJ2mtFaMcAI3zHPBPHeq7+NLMwfY5bKNflHzMOTj68kUOST3Cx0B8T6bdrt/tCeF8fdijPA+uDV6z1K3wmy/WYjqJgyk4PXPQ15+dds3eaeGzSSdVwyxxnI5HBGMdqQeJIZYsTMLZ1wdueVIHTHWlzoLM9AvUsJZmubi6QtGPuyKmVz+prlb/T7W4uHWK5ZyDgRomwDvwen5VnaZ4lvJ5mig2MxAw3mdfXk54roLi9mkiQXCAIFJYxoAO+ffnj2p3TAzra4ns58RstyCNp35duoyMY4+vNbM1nY6ghdLeKA53kOx2sencDjHpisvTW0+6uVaeO4ScYxASApB/iBA/rTL3zneNExsViyFR830POf6GhWQFj+w7Bysv2hg+3YGgU4x9d3NInhzS7SMTSXN1KyjIWRANvsMmo0BCp5v2lC2RuMRwQRnHHT05qeGw/tDzAYCi9d5wuPru7cfrRypgRQtHMJnjmRnGFUMVLHAxhQCauPql3aWHlQxrDGo43H7xPXt/SrP9ihI8MQWP8Aq4yQufcMM1Vay1JpVUwGaNlwGSUEJ9Ru/Wq5baiuZkkt/PukjR2gaUZEc3IPYHPc/SoLvTY1uoLuAMFc7XV2yyMehIHBHbmtuXSL+VgixRxAgsQ0gx9MVAumSWy5udThtt4y21clj36gcUnG40H9l3Go2kmnlIkNrKdsrhdrZHIGOR+tZ2qaHHpUCTSbJfMDBipUbsY+6QOvb8K1Lq+sLcoP9Mdo/m3YWNW+u7k/lVS98SwyLJD50UEL5YkD5jjBBz270nGPUZyl1d2axy3EU1yzKQUhnIbav1P1P9aw7jxBLaxvbrOwglO/Zjo/f9K2NT1O3hlVWSOYAHI3gq6sDxz/AJzXFz3nmo6/ZlZl4/2iMYrnlHsBMLvzy3zFjIuNzelTfZ4SYwGX7oOO26oLe3D7UxgsOQF6frVyBY7Zsbs+ozuwKzArSKkfIkzjHGec1SdcruSVTgEZ61euNjSMUX3C44x2AqofMI3LH83Qg4UAfhSS1uKcm0lfRFecg2yFizADHHXPqKqLlbhX34Oec/Ln/GtN22I2CrOnRimKz2VLkMWKsPvq/GVPvV3Jumi2wjkDNyGfhh71VkYRrGHyfUZ9KQyF5FRF4zz37UTDZGry4Xngd80EanXvpc1g5t5rbc3BUK+4fXir8ensUDvPb2+RuUPycjrx61kzWt/BMV+0SlxyCuefWnJJLCd8qySO33d3/wCunfyOk6KQR2yFZ7lmLAEImU5x1wKqvq97OypakwxHC7s56dyeT+VU1vMlo3hjDjly6c49Aaktb9rOXacGJsnDIAR6U+ZgStNLxCZH29TLM5Af/gPStWzu7a302TDiedcbVC5RD3Jb1+lYzq2oSCeRopQB8zIuB9M5yant7G5EWbeSNQv8RJ5/CjlYrlue73Qs5m8/aMbpFwM/4elX7O/ltLiH7Xu3tjajt8pXHU+g9qxbeGRHeCaL7mcYGGJ7k5HSrkumXRVIW2uW6ZOSBjoD/kUJNC0ZvQeIpWfyftCr8xKAn7o7AEVSbW7i4nkeC4MZBAaRQxyO/wBKzEtLa3tF+2XLwyRD+BdxB7A+/tVOGQzW7xorsxOBMPkA57jpV8zCyNgahqNxtZJmkXOArbvxNUrpbhr7ezyhf49xOQx4744pLGO5t5SBc+WUORMxwSB2AzyDVqUuYnnuUkLSE7JWQ4k9aHdgVzbz3MvlwQqI0GPPdsnORyAfbioJVvbMrGJl2vxlTkj9P/r1ALZ4XB80wk7t3mHAGfSte3ieSxF21m8hUYHlxM6k5656fjSSYElsIhh4Y4HwMk/Z9zKw4OfX8KsG102+Zg08W5evy7P5/wCFS2mryxKBBYRxcFSzMRlvpRf2MeoS/aGjcynCbyyoTx25AwPXNaculxIhfTpVbFsyERgEKXCoF9/WmK0XlSbreG7bbyCSAvsKqxx/Z4ZJXlMzKwAWVW3Njj5SDToo2iyy2VwQq4Z8FgR7AcjHWpdxlO2sbr7c/wBinbzHyfJgBcqPetYeEpiRNfXFrGqkDM77iW77ge9R6RDeQXKTGSZ4ejMoYk+gIFXL2T7U7BInWbcSRjHH17fSkox3Ey1FpSWVo2J455Wy222i8tPYEkdMe3OasW1xc21pGlxpluLckEuxyy89ev8An0rFS8ZgwlE++3UkASFcnsef6Uf2wtwEEcUiSr88sbn7xx2J7VXNbYR02na55180c9ylsc7QVQcqOgyBj8+K05Ly1a7RYtlxDnLvImWTJPAP15rz6zupY7yNrtfLQ4XcCMAHPb64rXtLrUbW6YS6cbiBuk8SYAyexFXGbA9DM9qixGRQwbO10Xqe4xUUtnHdwArGyxsCO6nFcpZafql3rCI0c0UUQbez/KXBPy4/Dv7VrefqMN4YI5NwI++wGF/X/wCvWi1JNO20iOIjEzuAv3CwwKg+yW9u77r9FGSzbwOPXvWfq16+mswkmV96geaVyVJ9ulNs0luitxLJGsa9IXUHd/tHj9KNL2AviJJ5BJbPGFb70pfBx6qDn9fyq4YrZI2kEMc8oHJmbLMuPU/y4FVoZRcXjjO6NVO93iAwexzWXqWs2dsjW07SqYxy8caYPPpn+tDGU5Vi/tAOLCyjVslBIxIbAyeemeOK5DW9binUtY2SyDBDSFyFB9ceo/L61T1fU0ubvZBmG0Dcq7ENKD9Og74rNvNTecRpbxCJAu1pI8hpD78/4fSuWVRA2U7rVFlsvKZAGC4klA+bk9RnoPpis+0iRi8avll5HYkUrxZf5iclMZI449aCAGjCnkc9eawlMVycq6IxTG7gEqMEjpUTAKm+IHcOcZ/z+VAcKxyxC4I/GnmcDC4ABOQQKz5yG2ys2Vw4VSp5O/p/kUiujksXLZ4yf5VNK0YEiD50OdpI5rOb7pCptRTgDPX3qlJMLkzsqMrDkEc5HT2pm2JWYsPNHXg7efqBUUcglUocgjpk0u3yw7MoJx0PQ1aYyRplWH5UVC2eFHT8apJhEw6AqTwAehqeNRIW8thg5Pl55H0piLGAVdTtPPGaLjO0bVrmW3AOyRX5Y7QXHtnqKqwy20cJieyikLn/AFjkgp+Oc1VmuIvnl8pUckYAG0fpTrZku5AsszIo43AZwPStbs2sWC9tKzQ/ZyfmGPLctgVHcMpl2rJNIVGOe3tipJn+zxIizlkDYUKqg/n1qJQZH/fgbjn/AFjEkfj2NKzBDY7qOxUeXJPHMDz/AHce4q2L10lWRbyd84O4xbcE+39amGnQxyxFpQ6leUhxlsepxSzvDZRDyoizM2F5yqfmOtCuh2RTlv5/NZhcyNI33jjJYfXNOM90IyHmmbjrJLjr6ev0ph+03Th9oVBkYOBz+FTKv2OCV3aEyEgIqqGb6+1HMwJyoRpVuXClEAQ+Zu6j2/pUiWsFzGrNukaEBc4O3H19f5VXS3+1qXV3e7OCRwAB9TgVsaLo08MTG8vYLa0J3ssj5L49AP601e5LJ7eW0t5fJgtopn28vL85BPp6AeoH41pSWeoqEWOMXb52siOSQD2HcVBFq1hauXO6QE5SYruPtgfwjrWzN4jUwIkfnQyNyGhIXI7Anrz9a1ST3YiO48NWMbKyuwl+/iRPlBPbccHg/hV3SFs7N2hlLSqpzhZhjH9fpms+5eOecMWlFwrDzOMsp9fen6rcXs1oLc3zGQPhXRcbhjrgU1ZCNkRSxyvPbM0CBtyLOmBj1xgis5rrTtUmdRc2dvONyjbGNj+xyDj8Kz7HW7vS9lldyCSDbuAKbj9OelZ6wi61EvLDiB2z5bdCD796pzQrHRzLstPss6Wlwo52wybXUnjOcf8A1qrKtikcYjlkVlbY0bzAqffoPyqOKOziLyLb+UkHPzkMSR6Z61TF8l5cK5hZLeLBygCd/YcUr21A2BbWqAS+fIwBICCYKPYnv+VJPJpc26N7UgsuRJHKytn3yeRTrS6trm6fJVoyu5icI6r+HB/nWldvAkQMNygRTxGzgkf7LeopiObjs47gmOOMGUHCq0nyn6bqnPhu9mKu8WxxzuaMMfwyasyXMkzEMLePeSNw2jbj3ApbW4lNtGBfEorEKI5FYk/TrRzR6jMw6NDPDJFNqQVl/wCWTxlMkds84q3b2mpSQ+ZaSRM0ShVLcsR6rngfgM0yXVLQxztIzyTIfmaRmIB7jbz+VVxf70WDfF5ZAfYjFefXHWpc0noM2PnTAvdUjt5Dx5kkxLqMcgDvUqPolvH+71CLzNv3jIcn6DFYH2y3mkaW4QyCPgAE5TPb8aZdrBLaO1vawwAsMMy9ePSnztdA0L99r1jKFWK7MhUYAclVGPYnJPuap/2/5sxKzvkAArFDlR9TmsYWlvap5hOT/CWIJDf4VNI6TBgVa1LDEjKxw31HaodRvcdkas/iZ1iMcVxN5joVwpHJ9we2K427vZr8yi7ZzGimSKNpAAPrxlv/ANVW5rpbeDybVvKEhG8Dktt9W649vasG+upri78wuoVjksAAfQe9ZTqPoJrsE98sgHzoGZdoAXgYPSoWuNyqWjAYZyw6mqsgym548rnPJwalZo3UHJXj1rmalcTix5lD8SfdIx0pgYoMYGAc/N0qDDM/ykYHIweakZZ3XeVY8YwRTSezHFaDGmSSXlRyMYHShZMbkK5Ucge9Q+Wo3MThh26kUx5wJQO+OG4NL2RPKycSZQnaVx1FRyAcjr7ChbghQECljxtx1FTyunlFlBBBw+O1Uqdg5TOC+U25F3ANzkdB6VdZlA8wjKDkZ54qvc3MSovlgY/iDChJ1VSAR849OKGmKw5djSGRXwTyOMZoMQlz5jgPnhlP9KDsdcBgQeu3jBpi/LmNpOW6Z6fnTSYI6BdFgeTMEpkI4CzKavx208AMckcOwjnaoIx+NQwXqRFXkjZmwchBwD2qq817IjmKFgOxHRRXV7q2NS+ssdnIryIiiN8lXIBPuM9qge+NxFte5BibI8mMBnz9aTT9DNyn2i6u12IcBHHJrRhto0neOCJYGUZUqg3D8e1J3YrjbLSjdMAytagnhinJ/D0/Kte60rQ7ZALm/SeQrjy4U2YP5/zqha6hdIXiDPvkG1mK549asXU6zQfctzIP49oTH41VlYRnyTaQE8mGzaAg5LrIWLH3J6flVWeSHzCMlQOw4wKal0jzbAGB6bv4QfxqybaDZmYxLj5n2BmZvbPSosVcrh4hMBEXEHVjtxx3IzWnK0V3C8ST4DkMWdT17D6VjvcW0k8kaOzRgAKhHGf8P1q5GJpGPkQhVYYLMDj8KE76AVbi4mWXypGAJPO3o1dholz51u0l8Gmh2bAvGWPof5VzX9lTxqJHkBXOCeCR9Ku2NvN5nknJXPQPjHp0ohoBqWvmWxnnMxVWXaA5BMfPqfyq3Zlbp0T7Ss0jHJ2sVCj1qvb2xtm825fbblcMuzJY9hT7izWxsklEm0EE4QYYj0z6VpaS1JNa7GVDzWKSSp8sbyXCge3es6K4gkIa4t536qwMm0Mc9B3IrHfU7oW+2KWXbxuBXv7D0+tWobm5nnZ0QxzFPlLDaPqB/Wk5XEC3VvG0qpDOuScqFzgegqWxvPs7ySS274bJWIAjJ9/XFRCOW3hdJ0DzEhWw2Sc9vapbeV1g3Ejy14ZUBJz2x6Ci1xjhc77hJoUXzOpRwefxqGZ7u9Em1ZRsxuWJido9xxVv+1I97qitJOEGVwFUMP8AOazZr68diJ3VVZsyBAcMB05702ATW17IQSXhxnEknb9epqdJ0idEF0jYOWkEijFIbuaJ/tM0M72wbKKvAB7HAz/Ks2/1G3u3SWa1YSA7VSNNpb/eJ60tEh2N54mdW2T2qofmPOA5Pc/41ROoWsbfNLZRtjG1m3dPTiq1nZX8kao9jGkIOAZH+YDqMfjUV6GiH723s4RF/EFLh/cEZxQ31EX/ALVBNceekkjyKhy8Ued30NVL66aO3K2schlkI8syjap9wM/rWba3Eq3Yns7xo2H3XCkDp+I5qSfT9SvpHmkLzydnzgD6Z/8A1VPMyrE6wzlvNmiQK39+bJVvpUd2Y5l8tp1yRtLA7mPtSR2EMERN0olKddhzz7ntVefUo7a3KwRqjDj5V2kfjWcpeRSijIMTWZdPMkMUmNpcHIPc4pkqvKVK5wp4UDr75p324Tu29TvHRj2rPvLuZImCE53YI68VCim7g7InudhYx7ishHB+9+dZN7I9sAWByOVYdGH8qkjDJZtM5Kq7fKuOcD+VNnQsHYZMbtuweV+ntWiSFdCWt556iU/Lj7wx1HtU0moyTIIlDsiqADjmohFHDAV6djnpz6VVZ0RgrSMePugflzRoLYuxMyRszOAeRu68VA0Z8uOUqwXoxz78VHHskxCE2MvzSEdN1TSy7iFX5VUcYPHTrRa4JkUdyAcAggtjINOhulhuXjZhsbpzmmNmGKGORBk85AqaO0gjgZldQy8jI70OyE3YLm2ie0xmXz95IJAKMv8AOmxxMlvguu4dM/dPsaswhhGAZFBXpnvVjYGBVYyQOT7Vg20yOYzlWQMCrldp7DdT9rySBcfNg464rRSIyAjGCedx7+1KtsxRQQgY5ViT1ou+hLdzoxfSxx+VKFQ9MbMGmpcSsTHs3E8ZBxXWX9vYXku6eVkmK/K8RAP45FUB4VsUBkju5SzdAxBz+NdvKzS6M22guhhoo8MOTJJIpCn2BqpdGdJWaednkPUqwINdVF4etYYT5spRsfeVRx+VYt/4Wt2cSwXkKw+jDBHucUONloCaMTz5DIBleeuD2p8phlmEaSHLEYwOv9BWjaeD7V1ZpdTIQtgPFEcZ/HFPTwY1tdJOdQWSFWyTGMsB7gVPLId0ZZvoRIkMVvH5ykjcRmiW8knU20ssaKOcDlj9AK6ZfDGgvbSuL/fcn7pLAbCe+ByaoR+HBbL+5u4/MJ5bysZ/GjlYrmTbQusQ+x26xBuGuJxz9FFPMHlDdJds79gOgH8q2Z7a68spPd7lA27YSuP0GaaLK2ltyPJmeZeN7yj+WKXJYLkFp9qmgZ1iWJV5DTNk/lWmkUUUYkCtNKWAZi+MfTHSiHT7mRERWTOMKoYE/rTBol7czmJbmGKFcFmkbODTsO6GXOv3UMywohCqRuZiG5HoOtQqzXpkmla7uB1UjBC/n0rQOhFGdXv7cqnOCCCB/KrMy6XGmxrmYYGf3UfA/HIzTsxFa3ltlgPmRzvL2Jbgf1qstxFkxTpcMCMA+Zt2n8s1YkksWiZrSS7Ygclotmfyzn9KrSajZu7NLYxMgO4iQHg+/emrC1Lr2sbxu8VzbYdQBklnBHpk9ag8qUxeXEl1s3Y3iYjt04pkeqJGii2so4w3P7uAZZqZPqMssW1Y5VO/AIBH4HnrTug1JY9KeV2aRHU9XfkblPc5FLcRwx7VtrqSOOMEBS5Yj8KIhKzESC8iOwLliGyTzkA4qtdalNZWxfzozycHP7zH4UadQ1JzPcxzbCl7KMZAzjP0GelZksM7TSFjtOc7Qd7EenXiqI1pyjrHKSc8OFAZR9TU5vbZ5k+zLMnH7xs5JOP0qboaNCMzNGnkMwlAOVlOFz9TzSBjKxBliJBJyUB+vJ7VQ3yzlIiyBvuqrAn8fc1JcsbJ/JZoxxyAp59alzsDLE1yLV4xLdxsr9FRASPwB5+tRTXzTO0cUuTj+IAH+dVQLN/uCOFhyQx3A89OfSs17JGmMilM8g7iep+lQ6iFzmi0lw4w8hYj+HOazLgSLO29XfdwTVeeF4rjfCFT6ev41azczukZYHjgmlzxsPnMs+YrrsdXUtsY47epqaQJMI1RGaIcM2OcYqxJbqrOwfoP4eMmolgwkbRhgx4APeskzO7ZVl8x0ZXjU4O2Jc/w/wD16p2UL+ZOWmZ1lXLIw5U9j+lbsKL9nYNsYdw3OOaYI4vNYMe33j3FKVRxQXaMOO2MjSwXDZLfMrAkjipbfS9jqHYZUA+ZjO73AqZsRS705C5FTyTm4VWZh2IPSlzt7i5mUryIeW5QPyQzELnvWcHMDiQBjk7Qw4x9a3p7ZJIjlvvDBUck1FFaQW6hcBsHOMcCtVNWLjLTUiDwzna4UyDuV5xU5gRfl3bgORkcinmLYDIEXBPDYzmoRMZGwoJc9Vzzio5rkkjxxbMDbzzz2+lSKX+4pO3Hp+lVwvmgoMIwPQnFAWZFw2W9w3SpvYCUXTKdhz8vTtVX7TI0n3iW9CeKm8s8uWzimgAHdgZzjjrT3A7uGRAN6W+Xxj5u386ia5CMCkbjB7gg5rAjvpI9uAV9gTmpobuSXJEQXJ6k9Peuu5qbg1ZiGDSSRofVMhj+PP61ZsHspYmFw8pZ+yxgg1iTPAoRtu/I4G6ltbpvNQ+SxWM/e3HH0oEdFezQrGv2USIF+8HTOTWa7X10qKrwoo6BxtJ/EUr64AxQAsw4IR91Qvrfy/JZuyqec4Bp3QE66TczfflhUk5BUZAH14q9JDJbmPdOJAOPufe9utYH9py4b5SDjABbO2q51iRXTEgbuSc8UuZDsdMss6Ha7qrcYCZ6e9XS6oMvO0RxjDAE81zdrPqE9uZyPkT7zDg/409JLx5xICUPVTKwyfwouKx0kCQ2ikPbNM5AZWjYHaD+H6GozfwvA0UWiwsXfBeR2BOPxA/CsBpbqS4UG+uWZTuxCCuW+tEouGgHzZSPJIwck9+/WjmCx00UdlBYCUtIbkkksrAKntgnms+6u7NLVI1EwfPLkqwJ9gORWEkBlkdmymzBUsuBn0+lI98ZHZAIST/d4Ip84WLxumkQ5V2iYZ29CKrfbnmYxxv5jnhlIHIqRWVF2TxsSFwjqcn3p0F3p1xPHHHEIZlT5fMUbT9alAPgmkiidFtiGxwXlGAf6066mvlaPydoU/eYR7gv09/etGG20pgftcgf3iAH+RVO4tlkuIxbudgY7dh+X8fStOVgUbezvbyYrfXEzQgH+LH4Cp7XTgbby1yCxyhzk8dM+1WBp9t9y4mkRckt8xP+RViPQ7K4iE8M9wsanCMcEEf4UcrC45fDkj2D3Ua2ST7TGQ0gXnPXnjNVxpUYi2IPLcjDCFl+Y+4zzV5dHmQqsl2snnKGVkYBFB7HHQ0y+W30u7igkgMgdSFlhOB9M0citewGRcaZFHbfaI5LfzlPKhGDfqaxb2ZVUEwKjcEtk1v4g3/6RM8cR64bn9a4zW3toLmeKKfdEvII5Y1jNdhMYmpn7Uu1QQTjBFXRMhyMhe+S3A/CuWWVpl3wLtCkAl+M+9a6ShkQkjOMOO1c0otGbTNfzGMqnKsdoHI7CovMMU4ZWxyee9ZpuUMYIzg9s9KctyXcox5AyDUNMVy9I6h+Dj6mot7Nk7+ARtPaoPM3nZI+z0J5xSsxMJihYFQP4TyfzpqIXJEnwpkYjk56YwaikIE5U/cZcDJphlYoIiPnA/i71AJV37ZQUVs8N6+xpLsA9kLhw3Q/xDkCqsUjRSbXG4AcZ7Vbhkki3lnAMac4/iqB5YmJfhGY9PWqSe4yyhdsqEYnaccHikO5QCp74ZSP5Gljn+cPEDuC4z3FJNPPCQTn5xkYPBpLULEREsDl1AIPGOQBV0RHzYwpXexwMt1qks0k+1SF5454qxarBDZzGcux6ALjA+vem3bYpeZrTaO0YJeaMSLztxwfxrHZ9rEMe/PNLHdFS0TSO6kcZJ4pjNtyxXcMYBOcU5JWHZCzXSsgCRDA4JHeqjSM7sFfPGQTxS43E7SoU84B6GqrkmY5BIx3WmiTrmExcjcAoJIJ4x+VNEsaoW3AS52ht3AH+NWIBYmPB3zORjIJwPeoLyCBy8pjlWGNdqoD19ya6dTYYt783lpIHC9citK0nszCTISWOAdi8EfSubRVVWQBiScjngVr2Lstk0krL5anAXHemtxWL7TfZ0ASxCbm5c8kf0FVYrS7lnaRDtjPJZec/wBKmSZpIQq/MoH3uKeVEClY5S25ckIcj6YqmrgUBYhbn95I8kYPLZ4NbcNrHDnZEFO3IwMgj3qlABPHiZmYA8IBirb6hLaosXkuVI2nJGFFCiguUHE0d4TBwmP9Xv6+9ahuGnhCRqLdujY+bOO+c1lyMQT5Vu4JOA46j9aez3XkgxsI/V2IJHrxSEaa3c0CFljyWzg4yT9fSoo7iS+tw0kqpD2VcA596xpGeQrGs5ZM4Z+la3mQ2xjWOQsTnlk4HtVIAdoF+RWBUcnzwQPzqCJbRkJmjjYAn/Vscf8A16S8u5VmRJGAyMhyuePemyv9nj80TFkX/YHJpAaEVrYGDY0RXPQx5BX8P608aVo8cn7m5ZG27NxbJ/KqEd5FuaRkDZHOScg+vpVt7q3lQvHaOJFUfMRwfxqrIBJrKKNZYbadmhB42qCGPf6UqRz4MgEa4wq5fHI9/Ws1ruU3IdovKQc53Yq49w6eS0BaTAyx4GM/WkA6SYOwJ2ALw5Rzj86mh1FQAbbzRt+XAckH34qkhMpP2mPYJfnByM/WmNd27mQ/bLhtg2h4x2/Ci7At7rqIOPLZfmOOuDnrVaa7haQpNIqkjA2dR+FZ8+pF5wBFNcNt4UsQfr1qUR3M0iB7IRDuWJai7AS9mtmhLLdbx90q3GK5C+Ia4d3JIJwFz0rpr3TppIwkYRdoxvI6/jWHcaZcxASSgMc4wQfwqZIpFWFlEZLRfIT0HYU9rgRxmMbdnUN6fjTZwlupKEl2H3cYANRxhFjBeQDngL2PvWTiDSZIQWhDxncp64/nUkBYvkj5BwM0+CVSpQIsbryDjNBDtGSR909BWbRk0hzEFzhsKDyaF2rvVWyOm7vSxxg7CQrLnOS39Kc7MihmiwD6VDJsMinld3JYsqjGG6in3R82JJEx82dwPSoRNFuyv7vscjrSrJ5MgG4OD+GKSWtwRLbMtwu1yIxjaWIzx/Wqt7BA0mbRpHj9+CT9KlaTa+QFAzwKBJudnVSvenZp3uO/QRDJHCQGBbHAarKnzLdOMODyrDI/CoEbzhyR71JlkiKhcjsR1FD1Aa8DqgEbp83O0D7p/GmxwyTB/wB29wqcOwA4+tOMw6EZ+tIGLFguVz1K96qwaD0wrbo8KAMYI4FToxjQiRlbPTac1XaYEbY3KjowbvVeRvLkBA4z60Np6ASz2/lktGCYzycVAxVo8EdOhzikaZgDgsoJ5phjMowuCT71KsgP/9k=", "path": "images/4pts_ADE_train_00014915.jpg" }
depth_point_75
images/4pts_ADE_train_00005105.jpg
ADE_train_00005105.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 274 y = 192),Point B is located at (x = 114 y = 112),Point C is located at (x = 10 y = 189),Point D is located at (x = 38 y = 210).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_41><DEPTH_36><DEPTH_72><DEPTH_78><DEPTH_58><DEPTH_44><DEPTH_78><DEPTH_77><DEPTH_64><DEPTH_98><DEPTH_66><DEPTH_76><DEPTH_59><DEPTH_5><DEPTH_67><DEPTH_70><DEPTH_67><DEPTH_5><DEPTH_81><DEPTH_55><DEPTH_66><DEPTH_36><DEPTH_49><DEPTH_67><DEPTH_59><DEPTH_3><DEPTH_59><DEPTH_67><DEPTH_58><DEPTH_47><DEPTH_19><DEPTH_36><DEPTH_49><DEPTH_67><DEPTH_59><DEPTH_3><DEPTH_59><DEPTH_67><DEPTH_58><DEPTH_55><DEPTH_2><DEPTH_36><DEPTH_31><DEPTH_67><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_67><DEPTH_58><DEPTH_55><DEPTH_19><DEPTH_36><DEPTH_31><DEPTH_5><DEPTH_70><DEPTH_70><DEPTH_70><DEPTH_67><DEPTH_81><DEPTH_55><DEPTH_19><DEPTH_64><DEPTH_31><DEPTH_5><DEPTH_67><DEPTH_70><DEPTH_67><DEPTH_67><DEPTH_81><DEPTH_42><DEPTH_66><DEPTH_76><DEPTH_59><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_70><DEPTH_5><DEPTH_81><DEPTH_47><DEPTH_78><DEPTH_31><DEPTH_3><DEPTH_74><DEPTH_74><DEPTH_29><DEPTH_29><DEPTH_59><DEPTH_58><DEPTH_47><DEPTH_69><DEPTH_31><DEPTH_74><DEPTH_36><DEPTH_36><DEPTH_36><DEPTH_36><DEPTH_40><DEPTH_40><DEPTH_55><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
4
[ "B", "A", "D", "C" ]
<DEPTH_START><DEPTH_41><DEPTH_36><DEPTH_72><DEPTH_78><DEPTH_58><DEPTH_44><DEPTH_78><DEPTH_77><DEPTH_64><DEPTH_98><DEPTH_66><DEPTH_76><DEPTH_59><DEPTH_5><DEPTH_67><DEPTH_70><DEPTH_67><DEPTH_5><DEPTH_81><DEPTH_55><DEPTH_66><DEPTH_36><DEPTH_49><DEPTH_67><DEPTH_59><DEPTH_3><DEPTH_59><DEPTH_67><DEPTH_58><DEPTH_47><DEPTH_19><DEPTH_36><DEPTH_49><DEPTH_67><DEPTH_59><DEPTH_3><DEPTH_59><DEPTH_67><DEPTH_58><DEPTH_55><DEPTH_2><DEPTH_36><DEPTH_31><DEPTH_67><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_67><DEPTH_58><DEPTH_55><DEPTH_19><DEPTH_36><DEPTH_31><DEPTH_5><DEPTH_70><DEPTH_70><DEPTH_70><DEPTH_67><DEPTH_81><DEPTH_55><DEPTH_19><DEPTH_64><DEPTH_31><DEPTH_5><DEPTH_67><DEPTH_70><DEPTH_67><DEPTH_67><DEPTH_81><DEPTH_42><DEPTH_66><DEPTH_76><DEPTH_59><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_70><DEPTH_5><DEPTH_81><DEPTH_47><DEPTH_78><DEPTH_31><DEPTH_3><DEPTH_74><DEPTH_74><DEPTH_29><DEPTH_29><DEPTH_59><DEPTH_58><DEPTH_47><DEPTH_69><DEPTH_31><DEPTH_74><DEPTH_36><DEPTH_36><DEPTH_36><DEPTH_36><DEPTH_40><DEPTH_40><DEPTH_55><DEPTH_END>
274
192
114
112
10
189
38
210
null
null
33
4
112
77
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCK0+61RX4+Tn0qe0Hyn6VHffd/CgCtaosiBHTIA5+oAGfyxVa5PlSEAEqD+IrQtR+7P1qrPxcGgCsQGXjpUe1Ff5s49utaU8UflFggDY6jis0MWyCuP5GgCTfZg9JG+lL9ot1Py2zN9TUHKvuAGfQ9KkS6uGbaPLU/TApDJhcHPyWi/kTUgmuzjbAq/wDAKhL3R63CJ9CKYxJ+/ej8zQBbMl8eOB+AFB+245lA/wCBCqeYB1uiw9hSZtf+ekjD2FAFwrOfvXSj/gVN2HPzXS/marZts/clP5U4NDniCQ/jQBP5cfe6H4A0u2AZzOT9BUIK5yLVvxNOyR0tAPrQBJ/ow/5av+VGbUDGXNMDSdrZPxpQ0uf9XEPyoAd5lrj7r8+9Bktv+ebH8aaZJv8ApmKPNl/vxg0DF8yAD/UfzpfMi7W/86Z5ko/5aqPpSea/edaAJBMva3/Sk8w44th/3zUfmtj/AI+BSGQ4/wCPigCUyN2t1/75o8yT/ngP++agLg8Gc0hdf+e7UCJzJLj/AFQ/KkMs3/PMY+gquXX/AJ7tTS0f/PVqALPmTnog49hSeZcf3R+QqvmM4/evSZj/AOej0AWDJc4+6PfgUeZdY+6PyFVgYh/G9NzF/wA9HxQBaMt0P+Wa/kKYZbr/AJ4rj6VXLRY/1rCkLRZ4uXoAfJLKfleNVz6CiAgs646LVctlj85YDnnvVuAZjBx/AaYi/EPnH+5ViNf9FB9Sf51DCB5gA/uVbRSbJe3zH+dAF9k/fQDtuFXp1+7x/EKrMv7+3H+2Kv3C/Mn+8P50CNOVP3Z+laejR/8AEuX6mqUq/uz9K09HT/iXL9TTEeZ2XGfoKZf8p9RT7L9NtJfD5R9KRRHaj90frVS5/wCPhquWn+qb61Vuc/aDigCS4H+jt9Kr2gzGwI4zVq45tmGO1VrXlW470gKcqsbllQAjP3f8KhkU9HBB9DVv/l9Ye5qO7G6VFyRn06imBVARc7o94+vSpVYOMpaKR7mmzx+UVBbO7uKg3FeRn8KLDLv7/jEES/XFKDcZ5eFfyqorK+QsRb6vTgCP+WcS/Vs0gLJeUf8AL0g/Gk3nHN4Pwqvux/y0hXnsM0vmf9Nh+C0AWAR3uWPsAaT5Mf62Q49qh8wY4lc+wWjeSM7pSPpigCcCP1lNGE/uSH8ahzkdJT684ox/sP8A99UATbU/55t+LUYQf8svzaoR/wBcz/31Rx/zzUj3agCY7f8AnkPzpMr08tPxNRZGT8iD8aMj+7H+dAEu5f7sf50GQYHyx1FkHGPLpM84/d0AS+Z/1y/Kk83/AK5/lURfHdKCxz1T8qAJTLx1j/Kk83/rn+VRbz03J+ApC+AfmT8utAEvm+8f5Unm8dYwPpUW7/aT8qN5x95PypgS+d7x/wDfNHnt6xf981Dvz3T8qXfx1j/KgCQzsc/6nH0qJpWAJxEfpSE5HPlVFIwyBtQH1U0APjLFlIHfJq9F90/7pqlDjOfXHf3q/EMofdaBGhCv70f7tXI1/wBAX6/1qCFf3w/3OatoD9gQ+/8AWgRosv8ApNuP9sVfnTLx/wC+P51W2E3Vv/vitCdf3kQ/2xTA051/dP8AStPSFxpqfU1SnX9030rT0lf+JbHn3oEzyiy6n/dxRfj92PoaWyGD+FLfj5B+NIohtBmM896q3Q/0g8f5xVuzwEb8KrXYxcH8KAJpx/o7/wC7VW0B2v8AWrc4/wBGP+7VWz6N9aQFY8Xx57mmXI/fx8dxUpH+nn6mo7kfvo/qKAIrssJoiOCDx+dR3S8JhQGNTXQG+L60y7HzR4x1oApSxshwwwfQUxHCgDy0Pu1WplVrhQwyMHiq7xkyMqr931NADxKOzxD2VM07zT2dj9EqsjumQuPr61YkjuFiZ2OMD1oAfucjH738sUmGI5WT/vqoh9oOODTgk2B1P40APwxHKH8Wo2t/cH/fVMWKY8HrTvImI68UALyP4UpQDjkJTRbyY6077NIM80AA3dPl/Kjndxtz9KBasP4qPszc5frQAAnplT+FG47vvD8qUWx5If8ASj7MN2fM5+tADc/NjcPyo3HIG79Kd9mBP3+frQbbkEvj6mmBGW/2vwxSE4/iwPpUn2dTjEoJz60jWwwSz/L7mgBhbr836UE4HL/kKU26n/lqOfej7NjJLHGKAG7uOX9+lBbj74/75o8hcf6wY+tJ9nBI+figBMg91PvioSSXJAFW1to/LG4HOPWqiJhj1wOB70wLkIwcAYGR/Or8PCMf9iqcI6fUfzrQhX90T/sf1pAaUI/fHP8Acq2g/wBAj+v9ahgX/SP+AVbjTOnxD3/rQBqAf6Zbj1ar86jzYh/00FVdv+n23u39K0Jl/wBIg4/5aCmI07lf3TewNamlr/xLovx/nVC7XEL/AErT0xf+JbF9D/OmB5DZL8/4Ut8P3Y/GnWf3/wADS3w/dj61IyvZ/cPHUiq14P3/AOVWrMfIfwqvef67HsKAJJh/orf7tVrTgvVuUf6M3+7VW0z89ICu3/H/APU1HdD99HzjpUrj/Tx9elR3Q/eoaAIrsfNH9abdDmL/AHqku/vR/WmXX3o/96gCvJ/x8L9DUfSaSpZR/pCD2qPH71x7CgCAbQN7L0OOOpqxLdB42XypRxjpUOP3Q47/ANanx15/CgCddrKp9QMUipmNSWbJ77qIs+WnHQCnRj90n0/rQAkPMa5yT3oRFMYJyeTzn3pYMeWuBjrSxf6r8T/OgBIvuYPIDHr9aWNUbzCwBO80RAbTx/EaWJeJOP4zQAkQwzgAAbun4UKqmebKgkbeo9qWIfNJ/vf0pUH76b/gP8qAGooE8mABlRwOPWk2g3eSAT5ff609B+/f/dH86CP9LwB/yz/rQAwgLcrgAfKelJIP38I9Sf5U9h/pC/7ppJR+/h+rfypgNlHzRkcHdTbgExpns60+UfPH/vD+VJc/6tOP41/nQA2f/UtkAjI/nRccQSf7pp0y/uj7Y/nRcD/R5P8AdP8AKmIYgzF2+7/SkTPlp9BT0AMf/Af6U1AfKj+nWgCoGlYFlkABJwNvTmmDcXO5sk9T61PCP3eR6n+dRIMtTYFyAdPqP51owriIn/pnVKBeQff+prRhB8ojHWP+tSM1IlzcN2Gz+tW4x/oEHuf61XhH79wefk/rVyNf9Atz7j+dMDW2f8TC2/3v6VoTL/pNuP8ApoKqbf8AiY23+8f5VoSJ/plt/wBdBQI0bpf3D/StPTlxp8P0qhdriF/pWnYDGnw/7tMDx6zH73P1p9+uIh9aLQfvvzqS+X9yPrSGU7Jflb0wKrXq/vvwFXLEZDfQVXvl/fj6CkA6Uf6Mf92qtoOXq7IP9FP+5VS0HzSUgKz/APH+PrUV3xJH+VTy8X+PeorzPmR+tAEV31jPv+VMuslo/rUt51QY7mmXI5j/AN6gCCX/AI+EGe1RY/fv9KmmGLhOe1R4/wBIegCuVzCRnvU6oVz8xOPU1GB+5645/rVjbyaYDoR+7TvwKdH/AKpe/H9aIR+7TvwKdH/q1/z3pANgH7tf896dGP3Q+p/nSwD92v8AnvTo1/df8CP86AGRD5T/ALx/nSxj/WD/AKaGlhHyn/ePP406Mf6w/wDTQ0AMiHzS/wC9/QUqD9/MOn3f5U+Jfnk/3v6ChB/pM+f9n+VADEH+kv8A7o/maG/4/O/+r/rT1H+kv/uj+ZpSP9N/7Z/1oAiYZuU/3TSSr+/g+p/lUpH+kpx/CaJl/f2+B3b+VMRFMPni5/j/AKU25HyL/vr/ADqaYfNFx/GP5GmXIJReP41/nTGNnH7hvXj+dF0v7iT/AHTUtwn7hu3T+dF2jC1k5H3Tz+FAiJV/cjHZf6U1FBijx/dqdV/cjj+H+lNVf3ERH93+lAFBIw8WMnqeh96YqBTtHQVbt0/dfif51CFxI31pgXLccj6j+taMI/dH/rn/AFqjbr8wx/eH9a04V/dn/rmP50gNOJf9Ic/9Mx/OrsK/6BbfVf51XiXM8pI/gH86uxJmwtfqv86BmqF/4mlsPc/yrQkX/TbX/roKqqv/ABNLf/gR/Srzrm/tf9+gRoXg/cN9K0rIYsYf92qF4MQtmtOzH+hQ/wC7TA8dtB+/H1NTXw/cj60y1GbgfU/yqe+X9xn3pDM+wXOfTAqHUF/fjHoKtWC/e+lQ6iv75fpSAWQf6Gcf3KpWYyz5rRcD7ET/ALH9KpWI+Z6QFSYf6ePr/So70fNHVicf6ev1/pUV6p3x0wILz+A+9Mus5jz/AHqlvQMJ9ajuxny+O9ICCUfv0qLH+kP9BU84/fx1GBidvXAoAgAIiH1/rVgjr9agC4iJ96tEcmmBlf8ACTaPbSGGW72yRna48tzgjg9q07G5gvbOK4t33xPnDYIzgkd/pWboNla3K2EUp0cNd6/eQSx31rve6ULb4jWQRsY+XYZyuC+ad4SGfC9kf9//ANDagDXgHyLn1P8AOljH7vp/Ef50sA+QfU/zp0I/dnPPzN/OkAyEfK3+8adEv+t/66GlhGVb/fP86dGOZf8AroaAGwj55f8Ae/oKIx/pM/8AwGnwjEkv+9/QUsY/0qf6L/KgBij/AEl/XaP50Ef6bz/zz/rT1H+lv/uD+ZpNp+24/wCmX9aYDSD9rQf7JpZh+/t/q38qeV/0yP8A3T/Sidf39t9W/lQIjmHzxf74/lTbsfu0x/z0X+dTSp80P++P5U27HyqMdJF/nTAS4TNqx+n86Lwf6NKMcbTU9yuLNvqP50y+GLeXjjaaAGogNvkf3P6UyOPNvFjuoq0if6Mc/wBz+lJGo+zQ8Z+QUAULZf3I/Gq23EzfWr9qg8gcVUK/vmHvTAuW45GP73+NaUQ/cn/rmoqhbjB/H/GtOEZiP/XNaQGnEP3s3+4P61fiU/Y7P3K1UjH764/3B/WtGJf9GsvqlAGmg/4m1v8A8C/lV9h/xMLb/eNVUH/E2g+jVdIzqdr/ALxoAvXg/cN+H8607UYtIv8AdFZ94P3J/CtK3GLWIf7IpgeO2oxcj/eqzer+4/EVDbD/AEof739KtXq/6OfqKQzNsB8x69P61HqQxIv0/rU9gv7xvp/Wo9TH7xD7f1qQHFc2f/bP+lUbEfvHrSA/0P8A4B/SqFiP3jj2FMCrOMagvpkVHfD5o/8APep7kf6ev1FR6gv+r+tAFe+Hyp9aju14jP8AtVYvgPLT61HeDiP60gKsw/fR/jUZH79v90GrFwv7+P8AGoiP9Ib020AVlX90evU1aAyTnpUAH7k/U1YdhGrux+UDmhuyuyoxc5KMVds5U6H4mH2qOx1k29lcyvKbdLqRFbfwdygYyQAD9K39BsJNN0S2tZmRnj3ZKEkHLE9/rVq3mYGJZImQNwrZGD9fSrMa5iH1P86mM1LY0rYepRaU1v2aa+9XQ23HyDtyf506Ff3RP+2386dbr8gPuf50sK/u2/32/nVGJHB0b03n+dPiHzTZH/LQ/wAqWBflb13mnRLzP/10P8qAGwD95Nz/ABD+QpYhm7n+i/yp0C/vZf8AeH8hT4U/0u49gtAESj/SnPfYP5mlwf7Q/wC2X9aeqZvH4/gH8zRtH2/p/wAsv60xDNv+mR/7jf0p1wv+kWvuW/lTtgF9Hj+439KdOP8ASbX6t/KgBky4eDj+P+lR3Yyq/wDXRf51ZnX97b5P8f8ASmXafKn/AF0XP50wFukxZt9R/Oo74f6NJx/Cf5VZuwfsRHfI/mKjvUP2ebP9w0AOjT/RT/uf0pIl/wBFh/3BU6Jm1P8AuH+VJGv+hw5GPkGPypgUrRR9nXIqiy/v2+tadmubZT7VQYf6Q3+9QBathkjtz/Q1qQDEXb7i1n2y9Pr/AENakS/If91KQGlGv7y5P+wP61oxr/o9j9UqlEvz3X+6P61pRj91YfVKANKNf+JvD/uNV3b/AMTO2+pqvCudXiPYI1XVX/iaW/4mgC3dj90fqK0oRi3j/wB0Vn3gxF+IrTiH7iP/AHRQB49AMXY/3qt3o/0ZvqKrQj/Sh7MKuXo/0ZvwoGZlgP3rfQ/zpmpj50+n9amsBiZvoabqi8p9KQCoM2Y/3P6VQsR+9f6VooP9DH+5VGxH75v92gCtdjF+v1FR6gOI/rU96AL5Me1R6gOEz60AQX6/uk+tRXg+RPrVi/H7hT7ior0fu0z60gK9wo8+L0zUJGZ2/wB0VauFHnRfU1Cy/wClN/u0AVVH7k/U1ZlhEsbxkYDdP6GoVH7lvxq+FwTQ0mrMqFSVOSnB2a1XqU4LeaUwmZk8tCGUKDlj71cjX90PTJ4/GnwL+7Qe1OjX92Pqf51MYKOxpXxE6zXNZJbJKy/D+vlYZbr8nA7n+dLEv7piOm9qkt1+T8T/ADp8Sjy3458xv51RiQQLkP8A75p8K/NN/wBdP6CnQL9/j+M1JCvzz9P9Z/QUAQwL+9m/3h/IVJEv+mXH0SnQJ+/m4/iH8qfGh+2z/wC6lMRCq4vpP9wH9TRj/iY4/wCmXX8alVMX0n+4v8zSlP8AiZDqP3X9aAISv+mx+yN/SnSgi5teO7fyqRl/06P/AHG5/EU6dc3Nr9W/lQBHcr++t+P4x/KmXa/c/wCui/zqzcL+8t/XzOPyNR3qHEfHBkX+dMB12v8AoZ47j+YqO/U/Zpcf3TVm7GLM/wC8v8xUd+P9FlI/uGgB6Li0bj/lmf5UyLJt4l7bB/KrIT/RXzx+7P8AKool/cJ2+QfypgVbMf6KmB2rOI/0hv8AerYtVxap7qKySP8ASD/vUMC5bL0/H+VakK5jz7Rj9azbcfL69f5VrwLhP+/YpAaMa83X0H9a1I1wLEY7pWfGMG6/D+RrVAwbH/eX+VAzSt1zqQPohq0gzqsHH8LVBb/8hPb38sn9atRj/iaxeytTEWbwZjH1FaaD90v+6Kz7lfk6d60VH7tfpSYHj0Y/0n6MKv3i/wCjPVJAPtPXuK0LsZtn+n9aBmTYj/ST+NGpjhOPWnWP/Hz+JpdUHyJ+NACwjNop/wBn/Gs+yH79v93/AArTtx/oi/Q1n2Q/0lv92kBXvh/pqfhTNSHyJ9an1Bf9LQ/SmakP3afWgCvfD/RVz6ior0YiT/eqe+H+ig+4pl6P3CH3oArXIxLD65qJgftTf7tWbkfvYT33VEw/0o/7tAiqoHktx3NXwpyap4/cv9TWgi80DEgX5E+lPRT5Y/3j/OlgX92nHbrUka/u/bcf50CI7dRs/wCBN/Onwr8r5x/rGp9up8s8fxt/OnQrlZOP+WjUAQwL/rOP4zT4VG6cf9NP6U+BTmT/AHzToVw8+R/y0/pQBFAv7+bI/iH8qkjTF7cD/ZT+VPgH7+c+4/lT41/064yOdif1oArqv+muP+ma/wAzTiv/ABMh/wBcf61IqEX0n/XNf5mnBR/aQ/64/wBaYEDKft0YP9xv6U+Zf9LtB7t/KnMp/tBP9xv5inTj/S7QY/vc/hQA25UCW2/66f0qO9HEYP8Az0X+dWbkfvbb/rp/Q1Her/qv+uq0ALeJ/of/AAJf5ior5T9mmJ/umrN6pFr7bl/mKZqC/wCiy/7ppgOK/wCiv/1zP8qakZEEZ7GMY/KrDKBZyf8AXM/yoAItozj/AJZf4UAUrRP9FTn+EVkgYnOf71btqv8Aoacfwj+VYuP9IP8AvUMC3bj5fwJ/SteFePxjFZVuPkz7H+VbMK/nvjpAX1GIrz8P5VrAHzLEe6/yrMA/c3Z9/wClbAX9/Y/7w/lQBetx/wATY/8AXI/zq3EP+JrH/uGq9qP+Jo3/AFy/rVuEZ1Qf9c/60wLFzwB/vVoj7g+lZ92OE/3q0e1JgePjH2jP0rSuhm3k+lZ5H7/HsP51qXC5t5M/3aBmNYj/AEs/U/yp+qr+7T6mktBi7/H+lSaoP3KH3P8AKgQltzZr64NZ9l/x9N9K0rQZtFH1rPsxi7I9jQMi1Ef6Sn4VHqQ/dL7GptTH7+M/T+dN1If6Op9/6UgK98v+hgn2qK9H+jJ9R/KrF6B9hHHpUV6CbVD7j+VAiC5X95D/AL1REf6V/wABqxdjmH/eqJh/pX/AaBlYAmCTHq1aKAZqiB+5k/3jWki9PpQISFf3afQ0+NfkP+8386dAuI1/Gnxr8rf77fzoAZAPkYAfxN/OnwqdsnP/AC0anQKNrD/bb+dPhXKSf9dGoAigGGlz/fP9KfCP3lxn/np/QU6Bfml453n+VPiXMlx/vj+QoAigX/SJ/wDeH8qkjX/T7jr9xP606Bf9Jn69V/lTkUC/uOP4E/rTAiUf6dJ/1zH8zQB/xMv+2P8AWnqpF8/P/LMfzNOA/wCJl/2x/rQBC6/8TCP02N/Snzr/AKXaf8D/AJU5lzqCf7jfzFOnX/TLX/gf8qAI7hf31sP+mn9DTb0ZMWf+eq1PdKBNbHj7/wDQ028H+pOP+Wi0wHXq/wChjn+Jf5iotRH+iSf7tWL4f6IP95f51FfL/okv+7QA+QYs5T/0zP8AKlAH2dP+uX9BTpR/ochPTyz/ACpSv+jD2i/oKAK9uP8AQ1P+yP5Vhnmc/wC9XQQAfZF4/gH8qwsf6Qf96hgWrcfIf90/yragHzf9tErItx+7P+6f5CtuBcSD/rqtIC5j/R7v6/0FbQH+l2Y9/wClZAANtddfv/0FbW3/AE60/H+VMC5aD/iZyn0iH86t2/8AyFD/ANcv61Xsx/xMZv8ArmB+tWrcZ1Nz/wBM/wCtICa6GSn+9Wj2qhcZ3xj/AGqv0MZ5E4xN+FcHf+OPGL6lqNtYaZpcltDdzWsBlbbJNsYjCKZAZGxjIUHkjjmu+lGJR9DXjPiK50u+1/fc6q1jJpd7dRyRoj+bIv2mSUPEyqVDfOV+YrjaDz2GB3vw/wDEF34ksZL28jhSRLkxAQqQMBVPcnnk11OqL+4Xjuf5VwHwf/5AU/8A1/N/6AleiaoP9GB/2qBEdkM2q89zWfaD/TSPY1o6eP8ARR9aoWw/0/n1P9aBkWqD96nHb+tN1Af6MPr/AEqbVR88f+e9M1Af6IM+o/lQBXvB/oA+gqG8H+hKfp/KrFyM6cD7CoroZsEPsP5UgIbsYMPH8VRMP9LH+7U94Plh/wB4VG6/6Yv+6aBFcL+6l/3jWlGOB9BVFB+7kz/eNaMQ+RPoP5UwCEfu1/H+ZqSJflb/AH2/nRCv7sfU/wA6kjX5X/66NQA2BeG/32/nT4l+WXv+8NEA4f8A3zT4R/ruOfNNADIB80v++f5VJAo33P8Avj+QogHzzf7/APQU+Afvbn/fH8qAGWwxdT/Vf5U9V/4mE/8AuJ/WlgH+kzj3X+VOjH/Ewn/3E/rQBCq/6a//AFzH8zTtuNS/7Y/1pwH+nP8A9cx/M0oH/Ey/7Y/1oAjZf+JhH/uN/Snz5F7a8f3+fwpWH/Ewj/3G/mKWYf6ba/8AA/5CmA25GZrbP9/+hpt4v+o/66rUl0P31t67/wChpt0OYM9fNWgB96P9FHpvX+dQ34/0OT6VPeEG3AH95f51HfAfYpPpQBJMP9Cmz/zzNKwxbjH/ADy5p84/0Kb/AK5n+VDj/Rm/65UwIIB/oacfwf0rAH/Hw31NdHEP9EX/AHP6Vz4H74j3NJgZbeNfDtnNNbXGobJYi0br5Mhww4IyF9q6/RtRtNXtob6xm862lm+R9pXOODwQD1Brya00qxupteiu2tBd6pf3FrZLNGzSF03MBGQpClpHhXJK8BhzyK7z4XjPgbSfeaT/ANDekgO3Axa3B9ZP8K28H+0bUex/lWSgDWsg9ZP8K2QCdTt/ZWP6UB1LVkP+Jhcf7q1atR/xMZP+uYqvZD/TLk+gWrVqP9OmPoooAmnGZYvrV2qUwzPF9au0MZ5ROuJR+NZV38OPCd7LNeXGlb7idjLI/wBolG5mOScBsdTVvX7iWzsLieBC0iK2Mdu278Ov4VDtudKm0uWLVLi+F9IElgdlYMpUkugA+VVzkgcYxzWc6qi7WO2hgpVqfOpJbpLXVpXfpp3/ACu1FoWi6foTG10638iFpRIV3s3zEYzliT0ArZ1Jf9G/4FVaP/j9XPqP51d1If6N+IrQ4itp3/HqPrVKEY1H8T/Wud8YadDq+neHtMuGdYLzXba3kaMgMFcMpxkEZwfQ15voNhp1xqOkarpqXUAg1i1tpobmZZSS5LIysqr/AM83BGPTnngEe06sOYz/AJ60y/H+hg/T+VTasMLGfr/So7zmx/KgCvcDOmD2UVDcjOnKfYfyqxKM6WP90VDOP+Jav+6KQEN2PkhPbcKY4/0xf90/zqW7/wBRCfcUyQf6Yn+6aAIYxxL/AL561oxD5E/3R/KqCADze/z1pwj90mOm0fypgLEuVH4/zp8Y4f8A3zRCPlH1P86kQcSD/bagBsA+/wD75p8K/wCu/wCuhogH+s/3zT4V/wBd/wBdD/KgBkA/eTf7/wDQVJCuJLkf7Y/lRAP3kv8Av/0FPhH724/3l/lQAyBf9Kn/AOA/yp8Y/wBPuDj+BP60sIxdT/8AAf5UsY/06f8A3E/rQBFj/Tn/AOuY/maUD/iY/wDbH+tOx/pz/wDXMfzNOUf8TD/tj/WgCNh/xMI/9xv5ilkGL62PXh/5U5h/p8Z/2G/mKWVP9Nts/wB1/wCVMBlwP39v/wBdD/I027HMHr5oqWcfv7fn+M/yNJdcvB/11WgBtyn+jqT3df5ikvx/ob/h/OpbofuE93X+dNvx/oj/AIfzoELcjNlKM87DTpeLVz6Rf0pbof6FNx/CaJ+LZx/0yP8AKgYxRi1HH8H9K50DMx+pro/+XUg/3P6VzUkyW6yTSHCoCT+R4+tKTsrscISnJRirtnDX/gLxFe6xNe22pW0aLcyT22Z5A0WZCw24X5Tk54716X4L0e50Lw/Y6bdyRyXEU0m94ySpyWbgkA9/SqVpqT/aI47mzkgWdtsMjMCDznDf3Tx09a6q2H75P+uzf+g1MJKWxrWw9Si0prfs0196ui/Fxan/AK6/1FbKj/iaReyNWREP9EHvN/WtlB/xNE9o2/pVGJZsh/pV0f8Ad/lVq05u5/oKr2I/f3R9x/KrNnzc3P1FAEsn/HxF9at1VYZuY6tUmM8rvY0eVkdAysWDKwyCPSn6doemWTm6trKJJn+YvjJHXO3P3ep6Ypb0Yuj/ALxrQt/+PaP6UOKerRpGtUhFwjJpPdX0fqYi8Xg/D+dX9SA+yt9RVBuLsfX+taOoc2j8UzI4PxidTh0XSr3SbGS8u7HVobpYkiaQZRXILBeducA9OtcBpMGtya9otqPDkum2UWowzyRw20wUsGA3u0hY8DPfAyfU17FHq9hpkDC8uUiLMMLyWPXnA5xx1oWWObUFlhkSSNm4dGyD+NSpRbsnqayo1IwVSUWovZ20fzHasPkj/H+lR3Y/0AH2FT6uP3Sn3NRXAzpw/wB0VRkV2GdLH+7/AFqGQFtLX02irA50rp/DULjOlrj0FAEN2P8ARoTjuv8AKmSD/S4/oakuv+PKI/7v8qbMP9KiHsaQESDmbp9+tKAfuo/90fyrOQHdN67q0rcfuI/9wfypgPiHy9O5qSMcSZ4/eGmxg7fozVJFnMn++f5CgAhH+t/3z/SpIhzP/wBdP6Cmxffl/wB/+gqSIfNOP9v+goEMhH7yb/fH8hUsK/vbj/eX+VNjGJZuf4h/IU+EfvLj/eX+VAxIV/0qb0wv8qWMf6bN/wBc0/rSxDN1N9F/lTox/p0//XNf5mgCIj/TmP8A0yH8zTkGb8/9cf60MP8ATT/1zH8zTkH+nn/rj/WmAxx/p8f/AFzb+YpZAft1vn+638qe4/06P/cb+YpH4vrc9flb+VAhtwP9It+P4zj8jTbofvLf/rqP5GprgZuLb/fP8qZcDMlv/wBdR/I0AF0B5Mf/AF0X+dMvh/ozfVf5ip7ofuox/wBNF/nTL8f6OR/tL/MUxhcj/Q5v92kuB/o0n/XM/wAqfdD/AEKX/d/rSXI/cSj/AKZ0hDHXEDf7tcxcWy3cMsD9HB59D2P511Ugxbsf9muej5dj7GlJKSsy6dSVOSnB2a1XqiO2sLy5uIDezwtFbyCRAiEGQ5IBb0I64HFdbaj9/H/10c/pWRajOPqv/oVbNoP30ef77mphBR2Na+InWa5rJLZJWX3L+vkkXoObeL3n/wDZq2o/+QmB/wBMz/MVj2w/c249Z/8A2atiIZ1Rj/0xP86swLViCHuT/t/0qxZf624P+0P5VBY8rcH/AKaEfpViy5e4z/z0pAS/8vS/SrPaq2P9KH0qwelIZ5lqAxdHH9/+lXrX/j1jqpqQxdH/AHhVuz5tU/GqAxpeLw/U/wA60r4E2j49BWdc/Ldn6mtO7GbST/cpCOUtpJdM1W6vGsbm7imREV4EDvERnK4znaeuemcUaXazWshE8fkM9w7iAEEQgnhQRxj6etbemf8ALUe9V7sY1AH/AGh/Sso0kpXv/TO2rjZVKXs+VLZN66qKstNl59/vuurD9wv1/pUM3Omg/wCwKs6sP9GHpn+lQNzpYP8AsVqcRXQZ0o5/un+dQkZ0oY9P61PEM6WR/skVCP8AkFH6f1oAhuR/xL4/wpJf+PmL8aW4/wCQbH34FJMf9Ig49f5UAMj/ANZP/vCtC3H7iL/cFZ68Szj3FaNtzbxZ/uigCWIYB/3jUkfHm/7/APQU1B9713GnR9Zf9/8ApQIdD9+bP9/+gp8Q+af/AHx/IU2H78v+8P5Cnxffn/3h/KgAjH7yb/eH8hT4P9bcfVf5U2P/AFs31H8hT4f9dcD3X+VMYRf8fcw9l/rTkH+mze8af1pIgPtU3+6v9aen/H9N/wBc1/maAImH+mH/AK5D+Zp0fN+f+uX/ALNSMP8ATD/1zH8zSoP9OP8A1y/rQIHH+mx/9c2/mKHH+nW/+6/9Kc3/AB/R/wDXNv5ih/8Aj+t/91/6UAJPzcW3+8f/AEE02f8A1tt/11H8jT5h/pNt/vN/KknH762/66/0NMB10DsiH/TRf50y9GYRz/Gv8xUl0PlhH/TVaS9x5A/66J/6EKAC6/485OOMf1pLkfuJe3yU+6A+ySfgP1FJdD/R5f8AdAoAbKMW7/7tc5GPnb8c10lx/wAe0n+7XOw/6w/570mM0rQcqP8AaX+ZrYsx+9iJ9ZKyLIcp/vJ/WtmzHzx9+HP60AX7Yfu7Mesv9TWvAM6hJ7Rf1rLtB8tj/v5/nWtbj/Tpj22D+ZoAs2A/dzf9dDU9l/y2P/TQ1FZf8e7/APXRv51NZf6uQ+rmkBIP+Pn/AIDU5+6ahX/j5P8Au1M33TSGebapxcE+61asv+PYD0NV9XA8w/QGp7D/AI9j/vVQdDJvBi8b/eNacwzZt/uVnX4xeH/eP8q0m5sv+2f9KBGbpfDyj/PWoL8Yvh9R/KptLP76Qd8VFqXF6Pw/lSAk1X/j0+jf41X66V/wCrWpjNmT/tCqsfOlf8ANAEFuM6a30aoYjnSz9D/OprTnT3/4FUMGDpb59GoAgm/5BSH2FJP/AK63P1/lSzYOkD6U2f79vz3/AKUANQ5nm/CtO1ANtF/u4rMU/wClS/QVftDN5CYVdvbJ560CLSfxf7xp8X3pf94fypqEYbH96nxffl78j+VMYRDEkv1H8hUkP+sn+o/lTIx++l+o/lUkIAkn+q/yoASL/XTfVf5VNAP39x/wH+VRJ/rpf+A/yqWA/v5x7J/KgQkYH2uXr91f609B/psv/XJf5mmxHN5L/ur/AFqVB/psvp5S/wAzQBC3/H4f+uY/maWP/j9P/XL+tK4/0w/9cx/OiP8A4/zx/wAsv60ADj/To/8Arm38xSOP9Og9kf8ApTnH+mp/1zb+YoKn7dD/ALj/ANKAGzf8fFv9W/lROP31r/10/wDZTTpxi5g+rfypJf8AXW2evmH/ANBNMB1z92H/AK6rTbvmNfTzE/nUlwM+T/10H9aZd/6uP/rqv86AHXP/AB6P7kfzFJdEeRJ+FLdYNsR/tL/MUlyMwP8AUfzFCAS6/wCPWT6VzsOTIf8APcV0V5t+zSDIHFc/B97Hb0/EUmBqWQ+ZP99f5Gtey5eP/cf+dZNkfnjz/eX/ANBNa9n/AAe0LfzoGaVmM/YB75/Q1qW3N5cH/ZX+tZtnnfYD/Z/9lrUteLm5OP7o/SgCzY/8emfV2/nU1j/x7k/7RqKx4slPuf51NY/8eo9yaTAkUfv2+lSt901FHzM9St92kM871cfMx/2BT9P/ANQw9GpNYGMH/ZNGmn90/wBR/KqEjP1Hi9/4F/StBPmsh7pVLUwBdg+4q/BzZJ/u4oAydMx9pkHqKZqo/wBKU+w/rTtN4vnHsaTV+J0/3R/OkBLqQ/0An6VUt/8AkF4/2TV2/wCdOb6Cqdp82mn/AIFQBXsObB8+rVDbHOlyf8CqbTubKUf7RFQWfOmzj3b+VAEEn/IGz3x/WmTkZtD6sP5U8nOhHPof51DdPtis3PABBJ/CgABP26VcHGBSr4htLPMEqvuUkcAHvWDrGtbbiSK0c5YAO2Ont9axFkLZyS3Oc5oKUe53aeKNLyd0zKS3TYeKsReI9N3SFZWYHHIQ+lef+UjjcTj3qaNgCV3HnHNK4cqPQINc015JG+1KuSMBgc9Knj1rTUklzdI2dpyvI6V5yH+c4cgcdeadHKdzhW4IFO4+U9Gj1bT3llK3kQBx1bB6U+LU7GOaXddxchcENkV5sFDs2T+NPggwz5O4DHDUXFyo9Lgv7KS5lZLqIgquPmA9alF9aJdvuuYuY15DA9682iIEzH5QMCn4VpzzjCjGDRcXKeji5t5blikyECMfxD1NOWaGO9zJKi5i4yw55rzKWTY56k7cZFRQu6zdSQVI60XHyHqXnRyXq+XIjAIejA9xSyMovIcuB8jc5+leX5ZZ9ys31zSl3aVSXfjvkmi4cqPUZGV7iDawb73Q+1EwxPbZ4+c9v9k15etw4uAVlkAHfcR/Kia+uWkTbcTEZyAXOKLhynqU4GYdpB/eDofY0lz92LPTzV/nXmJv71JI9tzKOc/KxqabVb11VXu52XcDhn4p3DlPS7kL5GMgnco/WkuBtiPuy/zFecHUrhURhcOGDA8f41PNq95LEQl5MORwz9aLi5Tu9QjU27ybBuAzmuft+W61kW+rXLXMSSzuyE4wWJBrUsz+lAtjasfvRH/a/wDZK2LMfKD6W+f1rIsRzH9T/wCgVr2ufLb2txQBq2gxPZD0jP8A6DWha58y6P8AtD+VU7VT9ptj6RH+Qq7a9Lo/7f8AQUMC3Z/8eCfQ1NZDFolQ23GnR/7lT2YxZxj/AGaTAdH/AK6Q1K3Soojl3+tSP92kM4HWR8q/QiotLP7p/wADVjVh+7T8aq6Qcq3+6KoRX1YYuFP+7V205tE+lVNYH71T7D+dWrE5tF+pFAGTZcaiR7EU7Vxh4vp/Wm23y6rj3P8AWpNZ6Rn2I/UUAPu+dLP+4DVPT+dPI9yKuzfNpJ/651R0zmyYejGkBBpfMEw/2z/Kq9h81lcD3b+VS6SfknH+3UFiRFbzNI6hGLDnt2FAEaDfoTDHUHH51zGsa7IyLaQgYXhpFH6D/Gmalqpkhe3tZD5XIL56+w9qwZJMrjAHfA6Ui4wHPIA2QM+xNOV8EEjgenSqwIB+6Ce9TZOCpx9KDWxNlOMZwO1PDLnv+NV9yqOmSTkAHpUijAHAApCsiUEMSQRmngKf4ue3HFR5UMc9fpQJOc5zn2oETK2Wx5hY+ntVhZNpJIHTGKoCY9QMY9KemWIAbnqcmgLF+JsOSeh6U7eBJ2OeMCq2DkEMR7A0hTBJc554OaYWHllEhIzx3zShiSCDVfCjuPel6AjOB6Uh2J2ds8nH0IpwkIbOec8Yqsxj4yF696UKp+YY475phYk34Ye/ennJA6ev0qDcNuDwO1PUnkEg+lAWJMuzBto/OlcsygEcfSnBuPu0OSEHLexNAhAzlRzkd/8AJpynHB+uKVOQBjnHrQxIwRQIVn2MrjqpDcV1ds25C46NyD+BNclIxaIgDn2rpNGkEmmIxI3AFSPoD/jTJkdNZD5k9t//AKCK14Btil9rdR+hrJtOBntiQ/oK14x+5uP+uKD9DTINm1/4/YxnpCf6VathiC6P/TRv5Cq1sP8AiYfSH+oqzBj7FcMB1d6AL0Q26dGP+mf9Kmthi2j/AN0VC2VsAPRP6VYhGLdP90UmAkH8f+9Uj9Kjt/ut9akbtSGcNqozCh96o6TxuH+zWhqY/wBGB/2qztK4lI9j/OqEJrP8J9qnsD/og/3jUOsjMan2NSaac2xHv/SgDMTA1j/gZ/nU2tD93Efc1DJ8us/8D/rVjWRm2Q/7R/kaAA86T0/5ZGqOk820g9Gq9CN2lf8AAGrKsb2Gzt5TKTgHJPQAUgK1lPDatcGV9vzZxjsK5HU9ZFwzw25K2+Tkk8uf8Kj1fWvtk7xQKUtw2cd3PqaxTKwY5JNS2awp9WK8u9Sq9vbtVYFiOTTzuOeTg+1NPT0pGqQqnDfyqRMEHg+3PSo1cqc4B+tPJYnORj0ouFiQMp6jj0oUE98UwE9jxUgwewOelAWF3EcEcVJldoPzEntjimA4b5wfw7GpxtZcHA9DigRGEO4ZwRntVhQuemCfyqHy1Xpk/SpPMXuce1MCVVAO4Ng+h70E+Z8vA7VE2NwZWJJHI549qUqm0/MBgdR3oBICpySNvHTvS7iy4IHFRIQONzEU4he/3evWgdh4C8fd+tPwAN+wfL1xUQKtkLT3UIqsSBu9KAsMJUbflz/nrSqd/YComXcchfl9aBIEwevGOBRcLFlVP8OfYA8VJhgufmI7E+tQpdR7QAGx71KHyoY5CkkDPr3oJsOUnjJ5zTmO5QASOeaYPu8Nnv8AWnK2Tj8/agLDCSv3Sc1veGmDRXEJ6r8wyfUYrClwWyuQK0dDk8rVEDElZgQc85pkyWh39r9wn/pnL/MVtIMJdfRB+lYlocwM3/TFzz7sK3V5W595EH6CqMTYth/p8ntEP51PbDNg4/vO/wDOoLb/AI/rg+ka/wAzU8R26UCO5J/8eoAvTDbZkei4qynES/7tV7ni1P0qx/yz+gpMBsH+r/Gnt1FNg/1Qpx6ikM4rUhmzP+8KytL4uSP96tfURmzf2waxtOOL3H+0R+lUIn1gfuF/H+VJpRzbH6j+VP1Zc2w+p/lUOjkmF/oKAKV2CurZ/wBoVa1hf9GXH9/+hqC+X/iafkak1e9tIrQvJMAiMGY9QPb60Ayuuo21rpp8x/ughj2H+Nee6lq/293RMx26n5Ex9/3NPvtUkvlLYMUCkiOP+p96wS4UnJz9als3hT6sRmAYsDmoS5LnGMmpNjsjSYG0HHXkn2FRHg9Kk2sNOS2Tx7UhRijPgEKQDz60Eknv9KV1KMVcfMO1A7DSRt55+lKMAZpvccYHr61IAMYPP1pBYcueB2p4UjJxkd8dvrSL6YPHbFSbiFYAkBsZ560xWEycDGPqetSA4X3+tQ5NPTbjkYNFwsSBtvBPbtTWbDdeaUBQc7unrT9+V2qqk5z0GfzpCSIxIF5Iyad5mVwDj/Cl2YZSVDBecHofagqvsPpTHYYOT1NOXHc4z2NOUDOKUIuQeCaB2GlUxxk+tShABkKc+pHWmLHtyV4zUxOJCBux2BOTQKxGcr2pQgONwyPQU4xknjgd+KMMMgKSO1AgSJAvC0FBt4BJ+tPjB2gsf8aeUTZw53Z6Y4x65phYg+ZuMlfbFPdflG0/iaXZj09+KByudvHtQFiALKSFVs4681dtZXSWOQnJjYEfhVdZVUHGM+/rUtuok3lmC4GQD/FQDjoeo27RyQt5eSPJHX3atyIZE3vcKP5Vy/h2VZtJiORuAWM+5DV1VsMl/e6H6Yq0cjVma1t/x93bdgq/1qVB/wASqIeuP51Fbf6y9b3UfpU6jGnWy+u3+dAi9dD9zj1I/nVluEP0qvc8hR6sKnl/1bfSpAIf9UKD94URf6tfpSn71Azjr0ZtJPpWFY8X45/i/pW/dDNtKP8AZrn7X/j+H1FUJGhqgxafjVDSnZMfISrELketaeormzb6iufl1KLTLAvKrLjcoH9/OPyPA5oAk1+aG0drieXZGAMkdWOOgrgda1OW8BaRSsa4KRDtUWt6pPfXIeRuBwseeF/xqjMzGLkk5HfvUORvCnbVkay74sDIqso+Yk4qVGwhGeT7VHtyTzSNkNc85PQ9qjPc4px3B/pT9wMZUqhyc7v4h9DSGQKWVgwyrA5BBoySxbOSeueppxOTgYB78U0AnJ6Z6UXKsJ3PGPSpkmkjjcI4G8bSe+PTNRhSTyfxoCDGD+lK4yRAByScewp3mYPrSMsfy+Wztx825cYPoPUUYweOfpQFiaSVZmDLGqKBgKP8e9MUAZJHOfWmLgnpTwny8nvQhWFCLuBbcFzyV6/hUr+SZWZI9q9gTz7VGyBUVw6HcSNoPzD6ipIYXldY0Xe7nAAPU0wsHyeQchjKSPmJ6D096hIYHrVhk2NtZcMKQ4B6/pQAyIYcbzhc4JOeKJAGlcR52ZODntUmC3I4FIoIPAzTCw2MODnJA9asNEPsxm85d28ARg5JznJ9vypuFwMkewzQAp60CsRh2OMGnh278Y6YpxQDJ6Y9O9KO5C49/SgVh0ymCRULq2VDZXPeoxIV5waAiZyFGfrTniwAQM568UDsTQI1xII02hjk5J9ieaYSCDkA/UcU1QSAV4GOx7U5uwIH9aB2Gxw+Y21FLydkXOcVJBBNJcLHDEWYnAVRzmomh3cg1NEWhYMrkMOQQaBWOy8GyM809pIpDxyK4B+uD/IV3loDuXPGbpq8y8K3Bt9di5OJgUPPryP1Ar0yw3BbXdklpnbJ/GrjsclVWkakHEd43bcP/QRVsDFtaD3SqkfFndt6s38hV1h/x5r/ALS/ypmZauPvR/74qab/AFLfSoZuZoh/t1LcH9waTAfHwgo/jpVGFFIPvmkM5KcZhf3WudgZUud7kALtJrpWG6PHqK4fWtSt9JUM533TD93F/U+gqmJK5pa34it7KzYup+YfKmfmb/AV5zd6nJqUzy3BO/I2qhwqge1Mv7mW7d5pmLu3r2rNiPzYzwO3pUNnTTppbheSFpFwMe9NJ/d8vSz7c5JpijK9ak1S0GJznJHNMYgvjtUgAHQ0wg5wwwMc0rlJCSoU28qQy5GGB/lUeMntSsozSNgdskUrlJDdy55aggZzigKM8inMpIzzyKVx2G/LjqcUq4bvgdKavcCpZJWmk8xsbj6KAPyFA7CEBOvU+lSBt2Rge9NBbpjmnj5AMKKYWHBAeOM0eWT6cd6TnPXk+lSRlCkm5XL8bCCAo9c8c0XFYRYyzHGSBzUpVR0GRSbdkancTu9RUhEZCeWxJK/PkYAPt6imJoaqrkg07aOuM5oKlccAe9SKnzYzxjNMLCLGCRk4pTFgEhsnGCcVL8wwdpGeAKXOFGTxQFhscsixPCHxG+Ny9jjpQRzwF5FSNCyqhyh3LuGDnH19DTMjr+YphYjYgjkYP0pRkDI6fpT2RCeBn3pOV6gY96BWIieR8v5VLGwSJ08tG3Y+dhyv0puzcxJPHtT40OGZY3IA+Y44AoCwwYDMcZz6U4AM2AOaXgk44pQcMOaRVhjxujfKKdDnuuCPepyVwc8j60kaZm+6aBNF22fyZoblIivlOuTnOWBzXr1q0cjWrIoxksGz1yCa8ewTjA/SvTvCUrXWm2kmSTErRsPccD9MVcWctddTfQ/8S+4PrIw/lWkw/wBItV9Dn9Ky1H/Esf8A2pW/9CrVb/j+gHoG/lVM5yaT/j4iHuTUlx/qvxFRnm7j+hqSfoo9WFLqMmHSmj7xp1NXqaQH/9k=", "path": "images/4pts_ADE_train_00005105.jpg" }
depth_point_76
images/5pts_ADE_train_00006820.jpg
ADE_train_00006820.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 224 y = 194),Point B is located at (x = 173 y = 127),Point C is located at (x = 25 y = 213),Point D is located at (x = 142 y = 118),Point E is located at (x = 32 y = 177).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_78><DEPTH_78><DEPTH_73><DEPTH_5><DEPTH_5><DEPTH_59><DEPTH_29><DEPTH_64><DEPTH_19><DEPTH_19><DEPTH_25><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_30><DEPTH_67><DEPTH_70><DEPTH_31><DEPTH_30><DEPTH_58><DEPTH_25><DEPTH_40><DEPTH_83><DEPTH_85><DEPTH_59><DEPTH_72><DEPTH_11><DEPTH_49><DEPTH_38><DEPTH_78><DEPTH_76><DEPTH_35><DEPTH_75><DEPTH_77><DEPTH_17><DEPTH_78><DEPTH_74><DEPTH_5><DEPTH_59><DEPTH_69><DEPTH_75><DEPTH_19><DEPTH_45><DEPTH_39><DEPTH_40><DEPTH_59><DEPTH_9><DEPTH_57><DEPTH_1><DEPTH_44><DEPTH_48><DEPTH_68><DEPTH_57><DEPTH_14><DEPTH_48><DEPTH_70><DEPTH_64><DEPTH_39><DEPTH_45><DEPTH_77><DEPTH_24><DEPTH_53><DEPTH_44><DEPTH_63><DEPTH_73><DEPTH_49><DEPTH_78><DEPTH_19><DEPTH_40><DEPTH_38><DEPTH_27><DEPTH_75><DEPTH_45><DEPTH_72><DEPTH_81><DEPTH_11><DEPTH_77><DEPTH_2><DEPTH_9><DEPTH_14><DEPTH_14><DEPTH_1><DEPTH_55><DEPTH_10><DEPTH_42><DEPTH_60><DEPTH_77><DEPTH_63><DEPTH_16><DEPTH_1><DEPTH_23><DEPTH_14><DEPTH_55><DEPTH_94><DEPTH_47><DEPTH_84><DEPTH_60><DEPTH_40><DEPTH_58><DEPTH_23><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
5
[ "D", "B", "E", "A", "C" ]
<DEPTH_START><DEPTH_78><DEPTH_78><DEPTH_73><DEPTH_5><DEPTH_5><DEPTH_59><DEPTH_29><DEPTH_64><DEPTH_19><DEPTH_19><DEPTH_25><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_30><DEPTH_67><DEPTH_70><DEPTH_31><DEPTH_30><DEPTH_58><DEPTH_25><DEPTH_40><DEPTH_83><DEPTH_85><DEPTH_59><DEPTH_72><DEPTH_11><DEPTH_49><DEPTH_38><DEPTH_78><DEPTH_76><DEPTH_35><DEPTH_75><DEPTH_77><DEPTH_17><DEPTH_78><DEPTH_74><DEPTH_5><DEPTH_59><DEPTH_69><DEPTH_75><DEPTH_19><DEPTH_45><DEPTH_39><DEPTH_40><DEPTH_59><DEPTH_9><DEPTH_57><DEPTH_1><DEPTH_44><DEPTH_48><DEPTH_68><DEPTH_57><DEPTH_14><DEPTH_48><DEPTH_70><DEPTH_64><DEPTH_39><DEPTH_45><DEPTH_77><DEPTH_24><DEPTH_53><DEPTH_44><DEPTH_63><DEPTH_73><DEPTH_49><DEPTH_78><DEPTH_19><DEPTH_40><DEPTH_38><DEPTH_27><DEPTH_75><DEPTH_45><DEPTH_72><DEPTH_81><DEPTH_11><DEPTH_77><DEPTH_2><DEPTH_9><DEPTH_14><DEPTH_14><DEPTH_1><DEPTH_55><DEPTH_10><DEPTH_42><DEPTH_60><DEPTH_77><DEPTH_63><DEPTH_16><DEPTH_1><DEPTH_23><DEPTH_14><DEPTH_55><DEPTH_94><DEPTH_47><DEPTH_84><DEPTH_60><DEPTH_40><DEPTH_58><DEPTH_23><DEPTH_END>
224
194
173
127
25
213
142
118
32
177
93
31
113
7
70
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDmm0+GVcSahMFPZZAn8hSW+i6ZEwdEklfOQxdmP9K5dtf1Z/lN7tzx+7RV/kKtaf4s1u1XyzqMksf9yZFlX/x4VyuE0jdSOu8iCyXKwpFj1IB/Tn8zVVbtnkISFWBPqSD9Qo5/Fqg0/wAUzXJKtbWErDk7V8sj8jitQX/mLvNnGg9S+R+eays1uaKxVnE9/btGU+6B+6iTYuPcLkn8WFUrOyVS0c5SKL+46fKxz02j+pNbrXcMSh2uYYmxx+9Xj9az5dRsFVyitdPnjy1LfrT5tB9dCp9nUrIEZphuCqpOcL6BsZA9uKsM9lFB5Go3WxV/49sfNLF9COq+q9PTFZlzqGpXLNFDCLYHpk5bH9Kgh0CaadPtkoQkb/MkzyP5k01fuGpWufLa7dYCkq4wW27Ax78HpWQzFGKnIxXXfYLiKbEQWUcZZskEH3qpf6B9pJkt2LOB8xAPyn0JPUe9WpJaMq+hy4m5bGPSuv1lNNGi6bd2MjyyzjdOXySpxjBJ75U/WuSe2aCcxSKVI65HUetaKXrtYRWLzk28bmRE4wrHr/Xj3q3sELuSEhDQoFBBH0qdZpAQPl+lMjMPXORUgkiHZeO9YM9GPLbRl6w1WSwuYZ1hVmikV1BJwSDnFbeteNH1Y3dzJZYN0GRY/M+WL3HGW5dzg+tcv9qj6blxTzPEYUAZchmyuOnAxU20JlThKV2xLmUhYfkxmMH9TUcV00aygx7vMjKZ3EbeQc+/SpZLtZCm5YvkUKNsYXgfTqfek8+P+4h/OqWiHp3K8UskJciPceoA5p0Fw99fW1rLOsCSSKpeQ4VMnqanjvVtpfMjjQNgj7uRg1RuZLdozhCGx26VSt2M56Lc2fEGl2WmtBsvEmu2G2VFwShHUHHTB49xWSr7RgKSaorKueoBPJGasJMmMbsmqkmzKm4xVjak1zU7gW++7kBhQojBvmweDk9+OOe1QkKecn8eapBZWAKwsw/vEcVL++Iw7RIB6sM1DiaqpGOxbRRu9R9KkEyIeq5H41RKtuUGRJAR15I/WpB5C4WXzS5zjyyqjH4iloDqSaukaIv3A+VmP0HSo5L9h958f7zVTEkJYILbJPHzysxH5VFDfS4JWK3i5x8kQz+ZqlbojNynexd+1s5ypJ/3VJqIXSSZJdiAe4qMXtxI4V7lyMjjcAKqRK3zDB+96UXfYVnzWkafmKy/KDzwMmlHlFiRfwrjqIo8kfjUMaORH8jdR0U1DZ2dywbbbTHnPCGp5n3CcVdIuE2OzE1zeS9wo4H61W82xB+S0dv9+Sp/7I1CVRssrgnH9w04eG9VPJsnXPd2UfzNNebJlGJTkvUtyjRWUA3j+IZ2844qVdUuui+Wg9FSp5/DOoOYgVhUoMYMgPOSe1U7q0msZmjkGcYy4+6T161XLFkRtfUGvrpiM3DAegAFVZZZXzvlkb6safhjnjtUbg88GmopGjSIMA5yKbfAC6xjoqD/AMdFSEEdf1qdRa/2vIt7u8vBUbfUY/pmqbsc7KjDk/57VGVrpJE0mGPzEspZlx1D5H41E+paXt/daOgz6uTWfP5GrMzVLAafdpbSxBX2BnHoSM4/Wm2gEk6xB41Ujlm4xXW+M4ZF1y2kkB8uaBTj72Bgfl1rk75Al1hTwFHI+ldFjji9RsdrN9r1FYGE/loGJjUt8uRk8dhmtGwtpJ3dRcQqAQMh9p6deKw7S4mto5bm2uJYZiTGzRuVyp+lXbG5ubKOOW2mkid2CNsYjIpuKYKVmdBHp8+3yzBaXHPLErv+gOR+tFvPJp65udGs5wv8YfBx7jkfyrWtLDUEit7n7VLIlxbiVQxzgbmX/wBlrqNC8H6NqPh7VNUvbdzewMw3rIVGNnoOO5rPlTbibtNU+fochF4ts1LRNpZhRMA7SrdemPWtGPxBpMuxTlA3+xj86469dYbi8ijt0RSFPUkggZGCeR3ra0GFNYvYrSX5YlZo3KjJYBCQee/HWolRREJpnRSN9vjVbGGCQD+KWdOPqF61nXPh2aVw97eR47IF+UfRelGj+G7XUPEF7pk6pGkUEshIj3EeXnAznqdtZGp2NxYaBLfWN/fQyLeLbqizMOCGPPPHQdPSl7CSV0w9oibWNFszAGlkeBlXCXEp27j244z+FYD6jd3Vlb2khtzHbk7JEgUO2f7zgZYDtmn64s/2S2NzJJJMs0is0jljnah6n61HpUKT3ASVdy7T/SnG6idEIpshKsQN3PPXGKAq5xkfnWlqNtHAkRiXaCxHWsxeXGOmahu+p1JW0JBDg5AHFK8eT0wMVIv38dqSYfMo9Vz+pqLu5o4qxF5fuPzpjocDHGB61KV28Uky4PA6j+lWiGis4bPDH86a1tdS8BJG/HNStH8vvQs89qgaJyuD90gEfkatX6GM1pqNg0+YFFMahmzgsRg/j61sQaTcE4MsaqQeAeP5Uvhpb7xFra2KzRRPNhd32dSoyepH/wCuti+0bU9N0g3lwwWMuUQAhmJxuyRt4GAaGpsxTilcxJ9LYKBFKkzd0AIIOfQ/Wn2mnW7Rj7RLNE+OVEY4+mTV/StP1DUL54I74iUJLJlhwAi7scDj0/CtTQfDGua9Kwisy+xFdnmutowfqKIwk3Yp1Fa5mDT9NjRWMlw5HuoJB9sU14dNGCtncP2Ba42j9BUXiGzm0y5ms5WeC4jwpRZi4BI3DB6YxWfBH5pJMhUkAgknrx6UpU5RYo1FJOxfawjmbKKkG3ovmF8nP0qmmkNFGxeYZBOdqM2B+HT8at3GnalZfZs2zXQuQDEsc0mSC20Z56k1oW/h7WGkcL4XuS8QBcB5AVznHf2NVGlNhKolqxtnq1tAirJNbKV6Yt2Ib2J7H3wfpUzeINQkUpbSW+wcfu0XJGMdP1+vtxUF5Z3UFost7oE8CS48l5riTDE4xjcfQ5rmb6DZOsw2lY12MI5CcMW46/54odNrRkKquY6KbVtQVg093Ip4z0GfyFIL9Ps7BdQvkmLEqABsA7D6fSsmCFnLEk9utS3EIFuFAAdzhQMgnp6fWslC5rUdtTQjuGuMAXN0WHJInJ/DHFWIYFJ3ZnVgQwkeViR6+xHsc/WsBrZYQsj2qzK2eRI4PHB71p6Zb/aot8Wk3rxg4yszlc1oqV3oZc2l2aEkVgGKSy+bGoyFMkm0epXGCD+ntRJqOmLw0bTuEC/MDgj0YcAn0bg+9JLBFDJ5b6NchiuSDMx496qTyach/eaPICPWQ/41p7KSWqI50VpY9P3mW1VUY9YLtS8f4MDkfjUM11HHknRoBjkshDLj61YS50l13DSpMeuW/wAaink0x4JdmmtGQv8ArCWAH4mpcL7j5/MpjWFRjt0yIe20D+lZc7ytcm4aLhmLMF7EnpWoILbyyv2M7m/1agEswzzznrWTMnljyfswGepySy804wS6GUpO5YjvJImzGrIfarLzxXPMsAST++nGfqKxoAhY4LD6mtJYN7dFI9SamUVc3jJtXZ3vj6KNLnSW+cMbVVYk+33cY4/WuEvvmkLAfxEfzr03x2J4dI8OztbILkO0fmOMtlTjn17da83vVJjlbAY+aSWHbPP9TW0jlhuYScCVOxINbFrCWCISF2hX5PXmskjEg4xkH8cVsacYxIGXKt5XUnpgnI/GmLqeuWdsToeiYBbOn9PcOf8AGt/w6n/El160A+8qkY9SrD/CqOlJnw14dk6h7F//AEJD/WtvwvEHvdTiyR5sCMD9HI/rWV/9oa8jreuGPFvFGnCzvS5DZltopfmGNpIbj16559q1PAUXmayjgZH2peevWCT/AAqDxtE7akMjEiQmNj0AKOwNbfwyQNrCbArItzb4PY5ikGauT1Oekt/Rmn4RQP8AFPUoSp2P9ojIOec5zXNeLpngtvEFgSAsd7BMgA9GkB/Qiuw0ITQ/F65aVx813MpTbjrnFcl8Rdlr4g8QW6dJxux7hs/402/dJtscz4jUi1Ut1+2Sf+gJVbROL1Mjghv5Vc8RN5lgH24/0xv/AEWn+FZVpcPbsJI8BwOCRntisPs2O6m/eNrWV/0aI/8ATX+hrCQck1elvJ7uAiZkIV1K7Vx61V8vGeaz2VmdKd3ckjOZl/KnyDLJ/uf1NNiH75CfWpiCdn+7/U1DNSLYSSMVK8O7/wAd/lT0UDJarBUEk+uP5UnILalEw5A4qG7i22vTvWiwOcAUy9hzYlvrWlOV2ZVYqxtfCG38/wAcQg/dCFjj1AJFdr8QQkXhmGMkqDdlcAZz+6P9SK5f4Lvs8agf3o2/9Bb/ABrrPiOAuiQIy/MLtvvevlY/rW/2kefJ6SXoYfga1aa9uZTjaLG6cepPlgf+zV6h4Ntlt7qZQoGLaP8Ama4f4bWsctnNMAPMbT5xkehCgZ/I16F4ZG29uBjpBGP1aj7UfmJv93L5HjXxOSN/Ft42wZE5XI68R8VzWkQJJdAMM8KB/n6Zrp/iOpPie9lOMNduPyQ1i+Ho3e+UICQJELEDkDkcfnTm/eQUtKcj0e/sUTRdGcKN3lWyf+Ra6u40qwvYJ7i7tIppIwEDuMkDnisnX4RBDpkKqVUPbKFJyR8wPNdJx/ZN22P4wP0rbDy39TPE7R9Dyv4habZ2+h25tIEgJn2HYSB2x37f1ry+6gMNrKu7KfbFT8F3Yr1f4h/vdEtQGUbbguecZxgce/NeXX67VKKcg3vH4K3+NViLcxnQ1tc1tNh3iTI7jr9Ksajb7bZHDEFPmXkYHzryfbg0ulj5ZfTdVvU9yKjAYGwZcrnaNx5FcdM7cRszo9I0ZBp9rcTRqTLucZX/AGj0/nXo3w3gSPwfbgKACSenXPP9a5+zt/svg3RyQATZs3H5113gaPy/CdmvT5Qf0FaU78zRnW/hQZpXOnO92Lm3miik2eWweEOGGcjuMdTXLa94av8AV7vyidEf5kctJYsGZVYHaWDHg4wfbNdziqKn/iaSAf3VB/WuiLepyXORl8LXJBM3hXw3ck945GjP6pXDfEbwxHpugw3ZsbayuLq5CGC2csiIBwM8ZJJJzjvjtXuuK8y+MjL/AGZpEbdGumz+C04yb0Hc8OaWWC4tGDH5ZQucdTyf5mspJmN1GX568/St9IkkjizGPlCupD555GcevrXOv8ruf7qN/I1kNblS05XNdHBByRjO1RXP2SbsL6kV2EcQ3zkDjIArF/EdcdIo7rx2k8fh7TYUdCsdw5EpbsDwR+BIPpivLpx+4lVT8vDHPc+v6V7P4z06b/hFZSEXEcjlgy5+RiOh7HIB/GvHpUKExkHEkW4EgdeRXRNanHB9Tn3PzqvcFq0rTciJIIyRjGf+BVmyDF19TWxp7GYRW7AbWUrx1+8CP1qexT3Z7Xoknm+FPDpC4AinTH4g/wDstb3hYbfEMiEcPasMfRl/xrl/CUhk8GaSGPKXs0f0+Rjiup0HKeKLb/bjkX9Af6VjLTEfI7Ya4aR5h8Q7GZNe1CLB8pWd847Fgw+vWtb4ZxLDdwEHIEttz9d4/rVv4lxhpw/OTBcxnnujgj9CKZ8LrWe7aVoV3eU9vISegAYn+VXK9zmo2S18zTjRl+MbxqAC12zHnt5QNZ3xX8GTia61+1PmxMjLPEFwUzk7h69fbGPy1ZIpoPjLbSSR7I7iXfGfX90AR+f9K9L1C0ivLKa3mQPHINrKR1B4I/I1TXumd9UfK+uYfSS69rsfrH/9asIKyxLIR8jEgEGun8RWT2lrfWkaO629/wCWGK/eCh1J/QVysf7xVTarbST0wfzrFbHYr6WL0HzWz/Vf60tEDIsMkZDCUEHqNuP555qKSZY855FZyV2dMZWV2Tx8Sr65qyyhgpB6D+pqo6vEycAggMD+tTK0pI4H4U/YyZDxdNbslY5qUN098fyqKOJ55QpByRnINNkjuY1jyVwRkEd+1L6vNg8ZTRbZcKp9ar3so+yFT707dcOoGQDyBxUMtnczWU1xz5aYHtk8/wBKdOjNPUieLg1oesfBPRY4NKm1d1Bnu5vKQn+FFODj6nP5Vf8AjUgj07S3jUczuXAHJ+UDP5GuJ+EniTVUu301bvNlArOkLKPlJ3E4PXqa6L4l661zb2MVyY1aN5WU7TyB5f8AifyrWM7PlZyzXN7y2LHwmgd43lKkwfZNhz0ycf0/nXpum6a1jf3Dht0UkaBc9RjPH61y3w5t44fB1lJHgmaMuWA65Zv/AK1d4KuFnqRUbWi6nzf8QZxJr2ogH7t3Kce+G/8ArUngUhddhzggzIMfQiofHoI17VCQAwu5ePY7qseBoj/bkEipvEcvmFPUYI/qB+NRP4jWF/Zs9R8VfNqVmo7XkQ/IZ/pW4rY0W4bGfn/pUN9oz6pKkytsuLadZSvVXGDx7df0pz5XQpCRj94SR9FrehG3zZlWkpJeSPNPGypcQWED8cTOMd8bMfzrzHUBumgAGN9zI+B9FFeh+MJWOpacobACvn8WU/0rz65BN5bezMf5UsQ/eY8OtUdDpKhYTx95jU98JZJ5VVj5XkhX9Od7dPwpmm4EQ9iMVaT95NeDPGFU/hG3+Nc8djpr7HpuohYfBOmKBjbYNx/wGuu8NReToNqnooH5cVzXjICPSkiAwFsyMDtx/wDWrq9EGNKgwMLt4/Orh8b+RjV/hQ+ZoVnQknVbj2wP0rRrMs/mv7lv9vH6Ct1szmNOvN/ivC0+k6fJGAXikldSeo+XtXo9eY/Fst/Y2mbCw+Z9230O2iO4HiUUoSeBgArPEWJJ7ZJJPtxWJdFQ10AwJUEAjvmtaOFmu9iv8zgQglc7Qc/41iXK7Y5n6hmxn8agpEukx+ZcwoP4pFH612kaD97x/EMVymgIWv7b035/IE/0rrosbTz1c1it2df2UexePNQtbfwpqUCx8uwVPVmPU/hXgxj37yxJ8vhR6KSM17545tBNpF1uiDFkOCy45z2PrXhzxGOCZw2d3BXHTof6V0ySOGDd2cZOCLgV0Omwx7EIU7gjNkHuADWTeW+POkP8LgY/E1s6awWNCcD5JB9eKhmvVnq3hUAeFIhjAi1PGP8AejI/rXU6Z8viHT255Z1yfdDXKeEZBJ4YugB/q7+Fjn3A/wAa6yx41bTGKspM5GCPRT/jWM0/bRZ2U2vYyTOP+JwaO+jAxhp51wf9uMf4Vc+CTj7NqcPGfLib3/iFL8ULMvqdswzzcKQOoGUI/pVL4IHbfaopJ5gjwD7Mf8a3W7OFfCej6/pzT3MF1bqguov3lu7DhZF6Z9iDg1ynjPx5qPh3VGsd9tGHsxKk0i/KsgPzD6YxgHv9a9FulD+X7Mf5V534ss9Ol8VQXmp3It4rKPeNy5EmQBg8dMgH8DWUuxcVex45NeX2uaddXV1LIPOui+5Mhd3zFsL2B3D8qzodMWPcweQ49cV6VrgsWsUhubmK3mYh4tlq5QoePvICM5BPSubWzskRwdVszuTAOyYcj6x1cYKwpVGnoznzp6LJIS0mdozyP8K0dK060jvYriWJ5khAlaNyNrE9OMe+fwrSktdPdnxqtmSybQMS9f8Avir1mmlr5oOpW7HYigKr9QCDnKj2quSKF7WbMa7v3knOYrZlHK7rdMgH8Kj+2sODDb8dMQqKv32joLKW9trwSiMZKLCdu0cfe3f0rAaXC00Zu5cOrSWjCSNLdHHcQrUltqtzfjMghIYk7fKUZxn29RXPXcmc5NdbNo7aJofh69chvtcRkchieCQwHsQHwaGgKTz3PmAeTAO5xEOtTwzXQiZNkGx8K6+SuCPQ1rPY+cfMVew/nT7iC0sv3czOrs3ByoUe3JyTVNJIV2yvpd9PpEgFvFbxZkwVSFVB4yensKr+NbySZITMyiRVkOfUNt7fhipJr/TBcZM0oZXyUCZxxjGadqtxoWtW0azrdLKo2eYjHkZz90rj9azaje5pGTtZnU/Ci51CayuIp5Z2sIYZTbrnCrtYDjv1J/WvRdAupru91AS3EjiNkCDdwOM15X4a8T2XhvT5rO3huJw0TRgyNtC5OSeB3OT+NdR4U8aabby3r3wNsJmVg4LSDOMHOF+UdP1qFG0k0ac6cGmcH8SIki1jUyMZadsEenfn6kiuo+F2mg6eb5hkyXIUcdlxn9T+lcL4/wBVF9qd7sYGOO5lMZXoyljz79h+Fdz8OPEVjb6Haac5k+1GZ2AEZI5Oev0z+VZ1E2zWlJcjR6zbqFmOO64/I/8A16ztcQQWMir/AMtHLY9Miq9v4jsReWkTLMDckpF8nU8Hn07Ua1ei50qSdYmEYyisxGSf6V00ZXZzVYtHjPjXc2oBkK/JGWwTjgAZrizl7yDPXBP5n/61dv4q8xLxp852ZQArn5Sik/qP51xart1IIRjZGmQO2QW/rUYh6s2wq1Rr2k/lrgnFXtNkE95NHj/WsU5HU/IP5Maw3OFH410Wh2TRa5FYshWT7SMEnOQXX+i1z09UdGJ6Hp/jdiI5I88LAifma7XSBjSbYf8ATMGuG8Y7prq4VOf3kagewIz/ACNdfotyXVYGikiaKBAVYg9c+nfirpO8pGWJjaEPQ12OFJ9qyNMcmSdj3katWVsROc/wmsfSyI0bzDt3OcbjjqeK6ehyLc2JGxEx9ATXnXxUYro1oo/un+lehOUaM7jwwxgV5Z8Vr1ZLS2RRtVflOf8AeFCA8wt7dItbCxgnAZs9fmwn/wBeuMvyfJI6ZkH9a7NZfL8QcDqzD6Zcj+lcVqByq+75/Q1mWanh1f8ATIyeiqzfpj+tdPCR5YY+5rn/AA+n7xz6RHn8RW/FjYoHQLk1jHVnZ0PpLW7dLnSLmKSMSK0ZBUjNfO1/AiTzxAAfL0HQHaw/pX0jfKHtJFIOCvOK+fdUjCanMu0DBI4PQbj/AI1u9zhR5vqbN50i9ic1esTnyBxy5yM1V1dNtz+A/lU1idkkT/7VNDb1PcPhdp632najFNnyt9s5x6qAf5qK9GvYM2odcoysNpXgqOnFcB8H5y9nqURP/PM/+hD+lelXa5tZAPTNOaHd3PMviDBdG3tnGXSCUSmT+IJhhk+uCQPyrjfhvqU+myX01u6rL9idlyMjIKkV7Hqlsk9ifMUMqcsD3U8MPy/lXkVjo58N6pqts2T5e+KFieqEBh+OCPyNc05NJnRSgnJJ7G1418Za9p908FtdeTAsrpu2DOQ2Bg/Qn8q2PHdha3Nl9puFnEVvDvR4z8rDbn5yeTk9MZrL1Zba7u7lNQjhktIr3e8T/KXDqCQD6+lX/Gt7BqOjx6VbkQicRRIA3bcAo9x3PsppTi3CNiaek9TzPWtP+zEjBwQGA7Vmi1DLIAoOCD0/z6V23iuyEQZVZnVAUDspBYDjJBrn7eH99ICP4BXWoqxyN6mQbY5hYjhivapIoW33HH3FXt9f8K1DbFobU4H3lH45qWO1w9/0/wBWp/8AQqOVBzEUto0FtBjgJGoOO/HNc0TkV2+tMsNlKiruYRAKoHJJAUAfia5G6029sCovLS4ty4yomiZcj2yKEhmVdDOB3NdrrVhc2nhy1klRljBVBlgRu2A9AfTFcbO4SeMt90OCfpmr19r0l7DbLBaXN2fMSy8lGw8rfw7cA/MQMDjvQwO+tnVYVb1x+pqHxRYlryKNlIOdw+hGc/rUGifEcWN9pGg6l4BNu91PHAs96x3kM4BbBiBbBPY9sV0fjGSyfVbS4s9gDR/MqBgoKnAwCPSm2mJKx59PYsbh2IyeAePYVMljksOy4PFb89mrSttGAWH8xVsWMNv57TOsagL8zdO/+FNpWuSm2c5Favuh/wBvr+VaGj2pmupkIyA5XGPwrRQWG+0EVzCfLOH3MF4x71b0xba1mupHmh2mUlf3yjcD6c1Oj2LVzzTxTBLb31yjKwxgAHv16e3Fdr8L4n/tDS3cfunnYnIHXbtH86Z4lvNW8ReJLG6+z20FrauBGYZYg6J0wTvG7FbtsLWx8RafdCZTFCT5kpkQJgsCMYOSeuePSspPW5qnpY21BPinToySUiuZM4HTgf4V1FzDbS2EcLzFLZst5hXkDPpXKQ6hpkOtJfy6jbrB5zynJ+bnI6fka6bR7nSvE+nSx2d08kds/ls4XqSMj68Yow9oqz7lV3d6HmvxDsxFLbWtpL9pMluZEMKklyGPGB14rzlZFk1KVwQchOn+4teoeONZg0jxHDHcSER2sG0sV3FXJYoQM4PTJFeU2txLd6o0spG0nCD+6pJbb+bGprtts0w9lJF+VR8ue4r0PSI5U1yIMFYS3abmI6fOWVfpyfyrhpLdndMDtjivTvC8gl1RWdTlCs/AyMLG3/szD86yhojTEe8bEy/bNeklc5jSRnAPQ4PH64/Kul0BzJeXbHsiDP4tWGkJR3x1IGa3PDgxJdE/7P8AWnTfvkVtY6mtczeRGGaN3UnB2jOBUYt7W9iSVoQwPzLuXBHvipbiETwyRnHI4JGcU6Mgbgv3V4rpbOVFOR8TFey/KK8Z+KUrG6gwP9XIMc/7Zr10yZlb3OTXknxJ2PdSFs4jaNiQM8Fjn+VOLG1Y86huyNWilc5AUu3bPzE5/WuavWDGIA9624UeR1aNfMJiUKo4JOCawLgkzRkqVByRnuKkFudPoi7LS5fuEUD8c/4VuINqnHUL+ZrC05/KsJBjl3A/ID/GtRLgHdg8FgAfaueJ3SR9Q3mPsz5JAxyV6ivnnXQIPEl2kjEfPwW6noef1r6E1B/LtXY/dAOVzjPFfPnjHLa/dMyMudrDPJGQRzXUzz0cLr6bboccY/qaLPavknqd2SPYVN4hALQuvdP1qijYjjbJznuOKSKZ7d8H28nWdRt8nE0Am57EP0/WvXpRuiYeqmvG/hHLnWFOAWa2kBPfhkNeyscqR7U35ie5RaBXjMbDIZSD+IrzXxNDdp4n02KyRGn1WwktfnHHmIww31wSK9OmuYLdQZpo4+P4mAryXx34gtY/EPh6Wzkd57C+aRxGOdjN0/T9axkk3Y2jJrVCa54NkvfEM9tLqsnCxuYAPlfCgb8euTWX4n8Q3Wlau9np2pxNAqKk0T26yAOOoO4c46/ia7vXrO5tNdk1UOvkpHuk8w/MVAOcY9uleQarZstw5Y5dyXJ9STmsaHM5S7F1WlTj3J7jxpeXUSxXMNrMqLsG63HAHA75qFfFEsWQNPshkYJEI5H51i+UWLcHg0/yswo4GTiuyzOQ25PF19IF329odoA5gXsOO3sMUxvFV7hj5cY3ABsRRjPpn5axhGRGDjjFRzKRbA4wNvSlYdzpD4qufLy9zdxnHPlSKp/QVJqEEV5pzRm8kF3kSD7RlgxwcruHQ8+mOK55YCz20ZBw7Ip+nFamoK0iyN3yTS1WwHF37kMy8hhwR7irmg3VpZ+KNMLzpFBFrtlK0kjBVVATuJJ4AHqapa75seqXR2/KZmwc9araLpkWra7Z2F2ZRFcTBW8pgrHr0JBA/KqumFmjb8NkaPc6HY3N1ay3L+ILS5ijguEnEKISHJZCVG4snGc/u+e2fXPGll9j1aBkX/R5NzQuOVKkZ4PfrXFaV8P/AA/pcmn6xc315F5UrXC+ZIhU+WQVBATJyRz/AEq+uoXGsSAW9wbjTknlSzXkAIGIGM8/d28Uk9RyTSNhCMbgR/rF/mKzvG/iGz8PLarcrLIboMyiFQduw4Ockc/NXT6X4N1bVrL7Ql5awxuwcRyqSy4ORnHT/wCvWT400q703xJ4ZieXN81lrAWbT42MuPsp27VyMuCTjBGeOa1k00ZxTPNtN1yy1bUmjjt5DtR5NsoCg4HfBz1xWvLdsdPS5giigKv5ciogweMg889jVG4DJ4r0lZ7q5uJ/7KxM97B5VyG8x+Jl3Md2MYOfubK1Jocaay4+8yn6EH/69ZJal3sZn229zxdy4PYHH8qcktwXLfaJyfXzCT/OpIrY+Yw+hqxDblgcDuarlJ5iJXmzuaeY/wDbQ/41ILi6hO9bmdSCORKw/rUvkH7MzY/hzUl1ARbFuxZf50+UXMR6hDJqdv5szvI/HzOdxB7HJ9s1xtpLJBdYfllbkV6dptkBZM0nQDJPbFcPpi6eLtLyeYtvbcYtuAPTmspqy1Oijdy0OptkcRxTJlWADKe4PrXX+EXkMt3hQ0/lO68kDgIXGPfI7965sX9tLEv2f52ZlTavbJ5P5Cuw8Hae9tfxNISfNM6KxPXMY6e2FH41LgnYuU22a0erW28LIzRu3RWHXHp6103h6WN0uWRwRuUenb0NebHEviDTY8dN5A/FR/jXoHh1/N1XXbgjrchBn0UYrCgm0pPubYqKjJxR0QIIbDAnpwaqXF1FZ20m84ABJarTfJGei+prjPF+omO1FtEw3yfe56LXRK97I5qcU9y1BqdrPuaO6jP14NeafEKI3WolFkXbK0S4ABOOB/NjW1HK8Y5jZcL1C9q53xCrT6sibvmIRwPQBl/wNUtES3d3OQskijvdMii4H2cMfl+8RG+Sa5O+Gbq2+bcSnJHTrXVwxMuq6fsHAt8Z7ZMb/wCNcpMCdRgQ9lH86T2HDc6CzGLb6k8fl/hTpWMSkr9cCiyGbQH1BP6mi6yFIXr0rkjuek1ofWN+pazkC7SSpADevavB/HFvJ/wk0kSnc5ijyeBkivebiULZvJkABc5PavCvGc0Z8QG4jZZGwd2HBxz7dOld1meTszgNehaG2gVjuK5GT1PSs6Le0MKoMsz4A9eK2vEobZhiThwQSc5yv6VjQHCQgEg7j0+goKPXvhpE9vrs0UbFTHakg9+VXP6iux0jXtQvNOBmuWeQ2znOADvCn29RXLfDSRU8Tq8q432RDFuxXBJ/Ko/BOpSXuoCGNC0e6ZFbBwR82KyrN2TRvSUbyT7HReKrdTodnexxbIpvLaTyztLblyQccnJ/lWB4Jj0fwiFu28yS9vF6Ptwi5PQ9c1s6la3V/wCGtCMPzDPln5uMqGGD+ArztANX2X8ZkV3uvJj2SAhEVQBle2Tk/Sm4tr3SItR+LY9I8WeI7b7BLLt/d7NxHqqjOPxOBXF6pZs6RNIoWTYA6jkBscjNZfiW/Z7OdNwwqBSD+daOn3ButP3sdwKRsM9MMMY/MVFBWbKru8Uc59lPnSjtkUsVtmy57Fh+prVjgDTTcen9ePrT7e2/0RuMfM3866rnIYots2inGMrUU9t/oCcY+QfhxXQLaf6InHaoLi1xpajHPlip6jsRQ2YN9aDaOv5fKat3FquHQnHOPwq15YTULQ9gx/8AQTVO+lDRXxI6QsR7EkLn9aHoNK7sec63fw3k87IE/wBaWBHUjJptpcLpn2XUgha48zfDsfAXaRz0657dKuSaVbH7i4oitmgjMapHJGTu2uuRn1rmm7rQ9XCqMJt1e2jsnZ3WrT30uvnc2LrxTJ/Y81jPF5jKgkt5O22RsMGHqCcjHrW/ZwNa6dF9n5kaeSWNc8fMwKgegxivOGhlupJZpGyzPgnHpwK9V8MXMV/BoYTbugKxzA9igzn8Qua1p6R956nJinGVWUqatG+n9fp0PT7SUQReXzsC7WUEjIH0riPHvhiD4hzwW6apdWdxpazsI5YhOJchCQDuUjGz3/TnrUOIyM9eM/U4/rXEteaoNZvr+wtVa3hupEaV8gMwOSoOMKcHvxzUufKVSw0qzfLZJbtuy/H+vlc8v0nQP7G1mKT7V5uSE/1e3qR7mu0kTzLAYHKnH15rEmdWvbeVeMuh4+orp7eINaOPSUDn68fStotOzRyVYSpycJqzTs/kUobNmmOB2HX8atWdgzq/H8TfWtiytAZWzgEAdavWNqvlSjH8bA/mapszSOaaxI0svj/lmTTrq0JsAQONyfzFboiB0SYY4ETdR7fz9qdZafLqkUNrAoMkhUAnoMYJJ/Ci7HymB4jvTpOgFYpBHNN+6Vu4BHJ/LIz715hghsA/Q13nxPjksbu202XrG7E/3WGBgj615/DuQ5Ub0zypNZ1ex0ULpHX+EHjQXLSOPPBHloGw2MHkfif0r0nwVcJHqGn2wnZv3zPGrDOEKYIB+oJxjPX0ry3R9FGrkfYLkLcLzsfhx7j1rsNV0HWpLFX0dXiu4XVn8mUoxBU52n1JJ4rjniIwfK920azpSvFrZm5YRzTeObaJ45ECxEqWUgN84zj14Fdx4VJeDUHP/LS8cnP+8a8y8K+OLy0lXTtbs3vYQQjo4/fIfx6/jz716l4ctJrXTBLFGrwSu0ghYYkUFuOfXHarpSu1EvEXUm31Na6kaXdsVSq9CSeD/SvNdTkkudQd5Du5xzXoyyRSpKUYb1B3o3DL9R6V59e27NdTH7uW6HitlvqY/ZshIHIDAE84rmPEjPbeJ7cyxsBNCpBPHBkUH8v611JspYbczSbkJIKKyn5xnqDXLeL7nfcW8KhSxVSGbGRy33c8+5x7VV9NDO3U5eCZS9sSwGwsoH94CFhkevP864o7hqeJD8yDnv616nfSQWejBWk3s0S3Nuqr8pJK8nPfBYceuK8oRy97I567Sf8AP51lGXNFmiVpI6m0ytnHzj5RUd22FOemali4gRMdABVa7+YKD06mueO53vY+tCQ+lZ65iz+lfPviiEw63dlZArLcsBxkk5PSvf7PEulID3UivJPiPbyW9pp8rxxFPPkbpz8znr+H869GL0PJqR970ZwPiG1V9IF3k+bvUSemMYrm0eOK8zjzIUm7dxXX6uvm+FJjkEgRn8c1xCDIOB3B4qEVLQ9F0WQS+LobW2u3h+1Ri3VwTlA4Cn6nFerCDT/DZtIYESJDMsMaj34zXieiMYPENhMDg74nyPZwf6V6/c2TeKfGAhR8Wdm4aQg9g3OPckAfQVjXjzcqR00HZNs83vvCWp6teXd1BIUgaT7hcgEjjp0rcj0SHTdKt7SDfL9lbzZJjgb3bggY/hGeM+tdfE8Wn6pdaU6MI1mPkMFJUZGQrH15yM/SqWq+Tp0UMQ8see/lAO2ByCWP4AGvNlWrRbgjaVKnVp3XRHjeszNIdQ3/AHnCtjOcda6XwvL5ujIp+99nX9KxvF2gXGhpDd3NzbvFqUbSQrGx3KAc8gj0YdM1Y8ISuJ7e1wQzW7/KykE4xzjH1r1qS1TOOo/dsbcWDJNkdcfiP6Vt+F9J/tuSa2DFSqyMD/tYGP1Irnc+XJLvwrZAIbg9O9d98J4hKuq3ROQJBEPxAJ/pW9tLnOjmBEFsYwV2kbgR6HJH+fSql6gGlo2AB5WeOldB4jsptNuLwywusH2h2WUr8nzMWHOPfBrAkinu/DED28ZkL252he/HaptfUbYt2wW9tzwf3i9ffiuf1a4EVlfv/sKPzcVr39xGBZTs42OInyenODVG+0ifU4r+zt4pJrhlXy1jGckOOvYDGeT0oktGODfMjjRfK3UD86DOCODUuq+G9U0XYdQspIVc4V+GQn03DjPtWcq4rm5Ud/O2PZU3HaSuTk4NdL8OhKfGEpMmIrezmnOSAM7dg/8AQq5sYxUbTNaTrdxf6xccHo3saa7ETWh9GxypJaQurqweVF+Vsjrnt9BXnl34iutJ1jWrCK/mht5pna5hjVfnUkg7SQdjdsjnoe1dDaX2kaf4f0+4sZMxXDC7Eecv2BB+hBHPpXC2zwan4r1eaS1WVbiJ5i7D/VM0hPH1Bx+dHKpaMdOvUoXlB7+Sa+53RS1DZFPGEztUgjIwa6u0fCMM4zN/WuT1hdrqFyflGMfpXSRz4t8xnnzQeRzjrXTFJaI4akpTblJ3bOnsSPtTx5HCAj269P8APSrGlyh0uDn5Vkft7n9K56C5uvtUjoQN0YH61reHkn+6WJ3TuzALnJOT+XNUyExgm/4p64lzwIm5NdN8PgrpLdY+WOAKD7n0/Kqmn6XMIbeI24HmpJlFGevy5/AmtbVdbsvBekw2qWoa6nGFU8FgON7dTz2FTJ6FJanmXxg0+81P4gaTYWMRlnurNNiA9W3uCT6AAcn0FcX4i8NXXhLW30u6lSV1RJFljBCuGGcjPvkfhXoknjGNtaj1eaFZL6KA2yPKvKxk5IGMD15xnBIrH8b3MHjHUrTUEu7aylithDJHKW5IZiGBA6YI4rOVnc3py5XqcdabxIkkLtHKpyrqSCD65r2rwxqUw8OW2qanzG6kT3OQANrEDI7n1wODXCadp+j29hBbznT5Zgh8yZZcEsT2OM8c9/Sthbq0TwRDoX9qQ+YJXeQnockEYI/4FXHWw6qWb6HT7RaWex0+u2+kaprNkkd1b29x5LS/atudwOAi57g/MfwrZ1a/urTwYGtTJBNZJGwmQYA24DEjoRjOQa8x02a30+RVl1CC4tlOTEVYn8CPu/yPcV2KfEW2S18lrDzocbSJJXII9xjFZU6NWM9NEFSpDR7m1aeIINQCweIIfsGoRrlblGCkL68E4HXg5FTX+mPEvmy3UMkJG5JFPLD6D+nFeW3V3pTahNdpaXEJl6oJiFHfjPI60+78XSPbRW6bVhhQRxRq20KB7L/k12U4z2mY1JQvememJP8AatKlgikEkbDAI7H09uleQeLGlk8RSWrbPLjP3uAccj+Wfbiu5+HN0msG/WS/+zXm9fs8fADqBydp+8Mke9eaeLtQiafVbiNz5rXLgE8DZ0HX1O6tIQsmzNyujKi1i7vLT7PLclraKGWUQ7AAh5CjOMkDIwOlc9bAG5cDuQtXLaQR210ThS0KxfmQT/KquljffqBzmQVMloOm/eOuSE7VNUb2P5wvbrWvjEWPasy95cewrFQO5z0PqfR23WBX+6TXn/xKt/O0ix3RsoE2S3tnPFd1ocgKyqD6GuX+IcPnaBZhcKTMQM9j2reL91M46ytUZ5JPDu0LUUYjKwbwg9ief0rhw4RlZjtUdT7V213dmGG8tnXBkhkjH1GSR/48K4Oc5s5icf6tv5VS3M5G6uqWUc9i4vYMBFViJRlfXvXuPg64vYdA1e+ggiLr5rRd2O1cgN7bs4r548T6db6dZWi22m6ZGkllZymdb0tcl5LeN3JjMpwCzN/ABjGO1fU3gi2gvPBemyvGhMkAOcDr0P8AKs6kb6lwlaLR4/beNdRXUft8l08kjNl9xJDfUDFWdd8R2niM20l351s0DlwIMEMcjnDfTHWuTmtmS8ngVWYxyMuAPQkUGNoVHmTLHnsTkkfQVXJGSTYueUdmdbq99aazfaBcxXSwx6XE8cgnTlyQNpAGQenI9q07TUtJtnhZboBtytJmMEMQCG2nGRnI/KvPmubcFQZp2JHGFCjB7knP8qaLyPBIglcgd5sfyWtFpsQ5XOw1SCwvLzzxqUcaMMAeUzEDJwCMDsR+Vdn4a8TeGdD0QabA824nfJM4AMjnvgHtgYHYV42b5QSy267ckby7k9OOM04agyortbW4HcqhJ/UmhtkpJHrmu+NoL4rDaau0EBj2SRvbRyq59cMfTsfSsq51vRbqKBvtsUMsCKoW3t9kbjjJ2AnHAOPTivN/7RkYjMNtvbBBES4/HjrSjVbiJv8AV23OcHyV4578Ur2Gdu2p6Cts1qTdXURj8sIqeWMexHP6imnxHHZwPDYWaW8b/MwOSW+pySa5D+2rhmCmK2YBjkmFeR+VT/2zDg79M092XkkRbM/ipFK7e49Ohq317c6ppV6bhgYVichDwCVGelefF/8AIFd9banp99b3Fq2nyQxPFteSCUkgHjhWyM9e9ZWo+DGjtjd6Vex30OM+W6eXKPwyQT+NRJLobUpW0Zyuc9sU2RFeIlhnHIpx4JBBBHY0bvWpNXqdXoF3ayeEmmluAk1qfKKk8BTkqfx5H1q54Yh8zT7q9QH97MyfgFBH6k/nXn9wQGjC9CwJHau+8F38cmjXOnnHmwuZVyeWVsZ/I4q4JXuYTvaxS1QgXMDEE8LnBya6KwjW+tVUbRcIeMdz2P0/rXM6zL+8jlA4GCOMDrXT6BZtFrdmLfPlm5fzQegQBm4/IDHvWsk90YLseqaP4R0GW3RmileZV2yBp25Prwa2I/DGnWa77KAxyq+9cysRnuDk9xxWJYXT20gdG5H5GtUaxiHN3ZTqDx50KF0b/vnkfQioTbLcUjJ/tQRa8kLWDoUcQblzkZzheeOcZB79M8GuG8c3JuvEUxBwscSIuc/KMZ79OTXq9rcxXhxb+YU7l4mXGPQkV5f4/wBr+JZJUD7JYY2UMMbsBlPX/dqkJnAXgGDxxnjPes15WVuCVz0UHgVqX3BPOT39B6VjTZBY+n3j68UWJLdsbi6lEMWXc9RgcD1rSkC2TqLp33sOFRAMj2JH8hWXZXDQ2V2yfKflGfbBx+oq/aO2saHcpIC89qvnoT3UcMPyOfwqG9SrDH1FY1DRRswYYPmyE4/LH8qZHfzS7sQwK2MLhCefXk/5zVVwRHj1wKkgXnjI9OaYEx1C8ZjllB9o1GB7HFKZ7osD9ocISfunbz0qOKMM5B7HqamlXDRnABOf6UxB9puskm4l3Absls+/4dKha5uSSDM7KMbgxznntn2qeSI/ZJj/ALDfyNV4E3AHqOxoWwXKswjZws9tbOHXJDRAHg+q45qS003TxciaG3aFwxO1JSR+TZpmoKBeKD1CZz+NTW7Y2nAz6+tA07amhcqIkA3Bl7Ed6ybkgucVuX8RbSTKCCI8Nx27GuYlmDE4NKxvGo2j6T8NTG0vBA75hkXEZP8ACf7v+FZvxEZv+EMZ0YrJHKxBHUYp1iUurUc5DDjHUf8A16peNbqGfw21u7u1wisXQ8hjxkn2Izj8azU7RsOrFt8x5jq237FaKwb7TNK8pyQQQR2x07Hn1rgJhvs3ReWIYD3rvbpZPt9vLIp2tJny+gBAxn8jXLSWpaFbaJ1cq5YnGMdqafIveJhTlVnywV2Z86+I9Y05UltrWWKOOOESi3t1lCRqFQbwA5wqgdecV9I+FvEMekfDEX8ilzakoiDjexwVA+pavJ/CPhrVdXaaxtIQzKAZHY4RAfUnp3r0DxFpsmkeCNO0X7ULiRLgyO8Q+XOOn0GTVO0o3QTpTpScJqzR5pqF/Nc3U1ySqmdzKyKm1SWOSOvYms07vmL5Lj5mLDv/AFrYvLcBymd6KTjHHWsyVNuAcHPU5ppWMb3INjKCoBB/iB+uakhQyI4QnAz3p5jyik4+YA7utOtEBuShIA2/yq0K5A6AMWwOv3f60irmPIwTkj9KvzQOWLYOeoxUdvAzQvjOQ5/kKkCkAAwx04yT2NSFOAck/KC3+fypZ4iiE4OAOcfSpnhbIIXsO9IZVQjz41PTPp25/wAKcQw9dy9BjjFJDHm/QMDjDHH4Gp3jYZAHryKALujoBZzTcEmTHTjp/wDXqb7Y8AkZcfL39adYKE0qMYOGZj9ef/rVFJHuUlgcf/WqWhpmDrxzdx3K4/0hCz7ehYHBP48GslnOOtbGr/8AHhZrjDK7jPrkCsbBNKxtF6ET/NwfXNS2WoS6ZdpPCSp6Ej0pPLOaZJE2UYLu2nJFMLGvfa5FdwgbChAOMcivU/CjLJqV0OSVQkc+pH614lz9pXC5wpyDXt3g+0jttPgul3F5beAOS2f4Sf6CqcnZmfKuZHZRN1+tXrfWX06aNEAczMRtY4HA6/y/OsxGxgiqtwwl1azTsnz/AM/8BUN2Rdrm5J8QI45JIX09xKjFSPMyMj8K5jxnfwa3bWt/FbNCy5Rn3Z+Vux+jY/M1T8UKYPEN2F4BYniuf1m5z4U1WBsYNnIRn12GqvZkcuhhX3yrjGB2XufUGsScnPvzt9qyNR8KtZeCrDW/KvFlldfOaRMRbZN/l7Djk4jJPJ++vTvqXB65GB3H9a0Rlaxc0xPO0/UxnlVjb8dxq94PITV4Ukz5cu+J89PmUr/Wq/h4GSHVFIGTAPp1NXdDgPnmRR8yHdj8azZS2KksW23cEY2jn6g1atIQyZAPpwKsTwloLk+oY5/OrFnATGvy89j2NaJEXKFvATI4Oep5/GpZ4dskIx1Ddfwq9BbgyykDKhmLDrTry3/0m3XBGVc9Og4qkhNlS4gVbC4PHEbZ59qp6fGWiXOB2ravoiuk3TYxiJgPfiqGmwnyhkH39uKGhJmPqiAahjHIjGe/c06CMgKei1PqseNUZewjXnPXrU8ducx5H0qZLUpPQ0r+PZ4Jv5inyhUUE/xZYf415wWPWMlvVT1/wNegeNtQjsvDdvoyMDcXDiaQD+BF6D8Tz9BXnBzUSeyN4K0T6dto/sWrT2vRG/exj2PUfgaj8V2hfR5riIASCNkJ6Yz0P5/zq9rUfk/Zr5RzBJh/9xuD+uDV+W2F5YTW7YKyoV/SsOpu9YnieqjfPFIlyJXIiZdvQnGG/XFcYZ1iuLiFmIUucMBkghuD9K7W6tHj81lzm0baeB2IwT/9avOmh1y5tH1MWduIpFa4CCVRIYwTl1jLbygwfmxjg88GtpR5lZkUazoz515r5NWa+aZ1dz4v1S7vYrmW/llnji8nzQNvyA5C/TJrrPCt9PqlpPDcOSqneCfXGD/SvKNPnM8CSOAGOenTrXpPgW4SJwrgfPx83ckgAfjmlCPLoXXrOs+Zq2lklskumt397HanaFJWwM461z13ERnGBXf6rZsLgsACrHJ/2RiuU1G32ruH3T0ra1jiKFvA0ltu4xznj3pbeDZqERByu7HIq9ZxE2YwCeelRrHtvoB23jv70uoraD7pOhwfaobOPfDOMciTn8hWxd22OoHP3aqaXASbpP4wynp9f8KQzJvIdsbEjgDmrJiyEbH8INXb+1zE4A4AOeOtSrButYWAPES/j8oqehRiW0AfU14Bwj9qsXNuAn3QBzVyxg/4m3T/AJZt1/CrF9CMMcdKQ7EdpbA6ZbkcApnj3yahMBMeccHsfWti1iUabalsY8mP8CQKZJHiI71yf7v49aYmcZ4hgEFrZJg5LSMQfwFYGQO1dB4onV9Rjt9wPkx8nGOWJbH4AisA7c1nLc6aa91BkU0n0pTim44ouNlZeZ3OewGf1r2LwVfG48IQFs74bgQH/gKkj9CK8i+z4JKsw3VpaXrFzbRnTVuZUgZ/MUKxGHwBz+Qpt6EJdWe/xk7EJBGe5qkGLazK3/PNcfltH9TXFfDvUNUuvEF3aXV7PNapb+YI5X3BWDKMjPTgmuxtZYWvLiSedIFlxtZxkfMwI/QVM9kKPUqeLs/21csepNclrSySaLfRRIzu9rIqqoySSpGAPWvQfFOh3FyJdSs2W5iK7mVB86jHXHcfTmuCluEj2uzgKMc5qpOzuwhFz92Ku2eXz3eszNfs+mMEvbeO3ZPIfaiRlNmz0I8tRznjPrW1MSeQc/7VbF46tGGBGMngeuTgn9KxZs5OevcelaxaaujGpCdOThNWa6M1vC7fNqC/dDQqOf8AerpvDtvuW5bG11XkeorlPDbEXdyByWiAPPUc12XhokLLuGcnYc8kj1osTciNputJyBkbXwevODxWjp2nsbONuisoOf7vA/nVqO2H9nTnaf8AVvkHjHB5/GtfTrYC0X5CTgB0xnccD+VUKxg2lkWkYkbW3tt56nnqKLuyT+0oFAyvlvuGD1yAf5VtWUABkDtkb2BYcY680zU4ymtW/TcIDxntu4/lQnuFjJ1yxEeh3TBScxsQdv3RxxWZplsot8hSeDlcda6bX41Hhu9J4TbgjByWJHNY2joTGAuA3QE0N6ISRgaraEa4VxnKL8o7deK1mhh0/S7rUpwGitIy7Anlm7L+JIH40/UoF/4SHK/L+7GSR3yazviTd/Y/DFpZBdrXU+SR3RBn+ZX8qdrsaPNbnUpdSvJbm5fdPI25if6e3pTCcjkVTK5NWIZcHZKCR6jtWEl1OiL6M+wLy0F3YTQHpIhX6Zqros5uNNt5G+/tww9GHB/UVrAYA9DWNpa+Rc39uPux3BZc+jAN/U1m0arU8s8V27Qa9qUKsyq0hOAeoIyB+Yryu9udLv0h1M6q0E0empamzjRxL5iQiIYbbs2NgM3zZwWGPX2nxhCh8VTF1DK8YIyOhArxF9NsmlbbBtX03scfrWqehg43YzSubOLj1/ma33vmtrW3RGZS06tuHUBP/rn9KzLWBYUCouEHQZpb5/3uDz5SqB7HOTTW5TvFHsul6ius2Cykqs8bESouPnOP8/lWRqtt1O3BIGU/u1jeBdQP9uy2m8Dz4WIJ6Bh0P866nVYsyOFHzgDc237wrTdXMpKzMeyh/wBFBH3h0yaiMIW8iOBgSDP1zVyzRTbqBwWB2nHTBpsoxcRtjlX/AD6VLWpKNK7gGCygspAwuOgqtpdtiW8Q5IKod/8A31WzeRfMWAAlx90ntn0qnpkYNzcqoHl+XyCPRj/jS6lFK+tht6dDxz14pY4c2FsSAH8pdv5Cr92o4J5U/d4+7xSQo39mW+/klMEgdDz/AIUugGRYxD+1xnGTGwb8h/hUuoRDBPft71JbgJrEfGPlbJ9flP8AhRqBypP4p7cUrDCJ9thbMByIVAXPXAFVHlUmcsdyRxtK43YKgAnGfwqRHxp9tnBwu0HHI7Vm6kWTQ9RkIDEQbS+cclgP5E/nVCOAmuZLqeSeVizyMWJqI07aMgU/YB3rJnVYgyaeppSBmgYzQA8GqtuwMjsevQfzqxURgQMWAwaaJZ2vw4tX1HxSZw7KttaOHYMedx2jP0BY/wDARXe3YS90rU5FkCyKwaIe67jjHpjj8a8y8G+KU8NXF6lwpNveQiNpAPmjYHIPrjkg/Ueld9o+vW+m6BezSbd1zDLtm9flIAB7c/zp2u0Q3YPCnjXykTdIWg6bc4KH09qm8X+GDqqjVtBkkDsweeGLBUY+Yui5GCem0dSeO9cj8PdGt9W0TVsuIrtZ0EEmeB8pyrDupOPcYqG91PUtBme2leW3kQjcgfgj1B7gjoR1puHOrDoV3Qqc6V918mrP8GVtRbPzhCitkgHqwyaxZc9PyHrWxqB+UEdccsex9vzrGl79Rnr71UI8qsTiK7rz5rWSSSXktP6/RaGj4dIF5cEjK+UScflXceFo1COdoAJ2nI5PpXCeHyft82Dz5Jzx2yK77wr/AKuXnLBfm5wAPWqMDcCbdLutwywgckgYBGG4/DrWzp8eUiU43Y+Q44I4zWTIVXQrooQy+S+w9Tk5DfzrbsDhV6bdw4J+6eNop2C5naXtZmZB8u5iFI7ZqHVsDXoVByFtxg+uXb+WKk0RzIitnDHndiq2pyA+KHTGNsMYK/3c7j/XNFtwuO8RuE8NXGOXbYp542lx/hWPpAXyxvPGOoq/4sn2+HIF3AJJcR4OeSRkkfpVHRnIUbQC2OATTa0Qrkt8C/iHDoHxEuFXuMnArgfindCTWrK2R9yw2+SPRmY5/kK7aaQHxAxjkOCg+Y84OTXl/ju7N34xvzwBEViGD/dUD+eactEwhuc+nL1ZC7setV4zhqtJ2rmkdUEfZYrG4i8QXuTgNDFIfw3CtmuS1+92apLFbFXlktRGxU52fMeuOnGaibSV2XTTcrI5L4jwhtKGoFGZrl9qgEjamOPzA/WvJ2jE0TP5aI4IAKjGfau617RtVuZ1MrTzc4QySFto9h2rJ/sG4DYcE4rjdeLlzJ/1/wAE9qhGMaDpyjrr0Wt1o77rl3Vvw1vz0cAVdxGFHNY1xJueQ/3iSa6/WbT7FYEdGf5R+P8A9auNuPvEV20J8y5jyMVDkfKbfhC7MPimwdjwXKHnqCMV6xqQDE8hE4Kc4PToa8R0qf7PqNtLn/Vyqx+gNe2X5Qxo7sXyF4HOO2fb/wCtXVH4bHDPuZ8ABtFyuFO/J/u81VvPkG7I/wCmZ/DvVu2LG2XJUgM+4DnNUtTbFuzDOGXOMY2cU7ako6m6YujCQ4YjJdRgYzVTTfn1OUZKsImO3PXDD/GpXZGs1JIeLaSe5zmqOny7PERRwGxC23A6fMtS46lXL1ypwSF+c43KT0qK02f2TDsYMBuDZ5JG5qkvJGClSfmABL44b2/z61X0t/M0ePqmyR/x+duKlIdygGC6za4wIzwvr91v/rU6/Bywx8x+8M9Kq3cnl6vYuTj98gKemTj+tXNRDZI7jqcdRTtoK5mqSLGMA5IBADHryazdbkVPD18F3KzMiY7N8wJNXlx9lUYI5ZRgYI5NZviDK+G3IIKPMgB79DSaCO5xHPal3UmcGkLe1ZHXcduoGKj3Cl30rDuSZ/KkJqMvTDJTSE2FwSqbgee1dk1x9m+G9mGwXnd0GfTeSf0B5+lcTIfMQrnGa1ZbqS90fSLBWBaMyRgD1dxg/kRVIzerOg8EQXUMLzb9kUzbhgcnHHWtbxNaR3VzFJM3mMQFyByO/wDSrd5ZRaXDbRwNHsgQRED26H8eai1d8iBSQqsqkAdSMVtFaWOdu5z9991V+8wBGOw56ViSEZzn6Me/tW1qB+VM+gO0dueDWJKeTnr39PwpMEX/AA+R9tmBB2+Q3A/CvQ/DJKJJgYAB2qD94YrzrQCF1Jskj9y3PrjFd7osrQWVw6L8yKSGb37fyoQmzo719nh26k4R2RQwJztJYYrSs7gCxefIBEbMRnG4d2rkb+8mu9Dmty3RQ2f720g8/lViyuJ59METyHbtx9K0JuXvC86S6dHKRuiCgHuTjFZwvPtPjG+YtlAyKHPAYBQKt6JbNFpnl9MOyqM8cGq9raCLX5CUwWjyAe5FT3Ar+Nb1DbWcQJyso3j+FcBsfz/lS6OR9mMrsUTAO4HBp3iOwEtrIVwWC7sHnB6iq9lIv2Abfljx0OMHNN62AY1ytzrhJjBUKBtz1weP5V5BqU5udUup2JJkmdsn3Jr0e+uvsZkmVdzhSADzyen5VxFxoodWaCVQygEozDBPsf8AGpqFUzKiGciuv8B+FZPF3iKOzLMtpEvnXUi9VQHoPdjwPxPauS2SRSlJEZXXggjpXvfwKtkj8Maze7cSSXSxbv8AZVM4/NjWSV5G/NZFzV/GN1NOLXzTvc48i2OAP95/8K29H04GIy+WqFscDP8AnvXDeFLFtR1iS6YEoh4+teuw2y29qG6YXnNeVXlKfuo9RKNKN+pz91CNzHHyqKx5bQbCSBk89PWqV14mkl8Roi+eLNcrHAq8ztzgj1ydv51q3LN9iSRyqsV+cKc7WHBH4c1zV8BOjBTezOrDYqNR8qPLPG04/tCO2Uf6tdx+p6fpXC3H3q6DXLv7Zqd1cBiVeQ7SfQcD9K564616+HhyU0jysVPnm5EcWfM4Ne2QXK3WhW8yAbyikt2wef0rxKIgNn0r07w5evceFoUEmGjUD8siuymcM9jYswpt93mciVwmT1OKz9ZfFvLnAk2/PjoeKhivrkW7JuTG9jwoHOBWZeyy3ETo7sV9PStGZJncxyk2SSKNrCM4QkAN71SigudN8UQ/aYmgNzbNJGZeAy5Xkfkao6LEbi/0+FyzRmWJSrHORkV6f4/01bvw+bjy1aa1lDKxHIVvlP4cj8qluzuWtUcHql1bpAVDqY9vyjPOc1W0G+hfSH8yVSFnkAHfJOc/rWbqEGUI5+vpTNHtyunFvujzG7VKasDvcr67qUSSCRZA0kbBgwHocgfpXSaq0RGQQFb5jzyCea47XIBkvzx2x1FdBqIJ6Hg0dBdSvBIkkU210LLLyM9sDB/nWR4nKr4fTCsmZ1GD0I+bH8v1qW2byrl0OQGAP4jv+tReJA15pcdpbnzWifzCAPY5A9eDSexcdzii1Jmm9hRWSOkDTTn1pxpDQA0n3ppPFONIaQhm6ui8FJBJ4mtBcFQqsXQsMjeB8o/P9cVzpHNTW1wba4SUZGD27e9Mm19D26/iWeOSNnbY4IOIjgVzeqKwaDClWQKruT7EZA/D9a09C1oaxp/zvIbhAN23HzejD6/zqnqUe64VmD7lYcuBgY7nHX0rdNNXOdpxdmc1f8Rx8Yyo6dSf8D1rEc+nGPbp9a2L4gQRHG3MYz6tx/8AXrHk4OMfQev1qWNFrR5jBfNL/CFKtx64rtbW4MdoYihJIBZgwbGe3HtiuJ0o5ndATvxvQgZ5BrrNMnEqCMgEpwY85Ge7HA+7x07VPNYdro3LNfOiYE/KRitDRowbdc9duSMcEVW0yIEjb83OPXIGMgVoaGqrblXOUVjuO7oQeK0WquZ2sy7pZVUuo8ZxOx2k9AQD/wCzVXnATULORRuVtyBuvGAefyqe3DR6ldRFdrERuXC8HjBH6VBqp2vblCFYSrlD2yGA+lNIBdSTfCQB0UEtjAbtiuXtCVgMR4CErg966O4kBhYBcxqSSu05znPFcxKRFdTAneAc4x3p9BdTH8RuY7NpFOTuBKnqOax7WRZgDGSRydo4KH1rrY9Hj1w3Ec3nSeWoZUhwpYk8AkjgAZNcxc6Ibe6eOw85LpAzmCXByF6jPGDweoxUy1LitBJ9LivIfnAZlHDAd/QHt9K9k+FOnvp3gARN96e4mk6Y6EKP/Qa8t0ay1XULUXMOlXRjOG+eMoknupOM9O1e9+GLA6fodlYuQJI4/m92JJP6ms4ppl3MDwXpRtNOiDD5m+djXV6lcfZ7PJhllQZ3+Uu4qPXHcU/TbVbe1GRgY/SnSuiQyTO21R39BXjpW95npVpqUvJHh1zZ3B1ImOILErKfLD/djOACSOmQRwK0YRLFoV8Y2V3W3kZESYscg45Xp6nI9K2tesIpL972COYI65kKnK7z0Len/wBYVyk9q1raSgOqOYm5QYJz3NeusZRmuR7WOCM3CV0ef3BwAPasucjPNaVyc8+1Zc3LVETWowtrd7mdYo+rHH0rutD26f5aLIphIKsrHlc9/wATWBoVqQnmYG5+mR69K2rossEjhmAHyAb8kAdq1i7M52jWVMqecDJIFV7iLETE+nSn2kvmW6OOcjpT7kfuXI5ODmtjE6Lw1Du1rSxj/ltHjj3Br2TULRL21ubVvuzRsn5jj9a8s8LRbtf0wAHCSrn3wK9c25dsdqzmtTWGx4XfQGJXikGHUkMPQjg1Dpi/6AyY4Ejc/lXS+N7H7JrExAxHcL5oPoehH5j9a53Tl/0GQMRs81jkde2KIrQUtzI1uHdAcde1aU4821hkwMPGhH1KiqmrcwEdzkCr8aH+zLRzk/uEAx3wBzTS0Jk9TmNQOyVEU4LMFJHucGtWyTyoSrKCFKlgWzz05Hc+1UNWgbYcZY9c+lb1lEtxbJIo/wBbEWwIwRyM9e5569qiehUNTz/xNpy6fqreUuIpSWUYxg9xj8QaxO1d14ss92ntIqj91IrcLgAEYPvXE4rI6I7EdJUoUGgqKCrEHWjHNTbaAtAWK5Uk1G+QOlW9nNQXK7VzQS1oa+h6nLp08RRsbRx6Ed1Psa7aS5i1OGO4hGfmUOHk+7z3/Lr715gJ+nyngYrQs9XmgOQWVsYz6iqjJxdugpJTXmb+ocRRsOP3a5Y/7oxisWQ4JyMZ5I/rSyayJo181SGAwG/LtVNruE8hj+VaNpmKi1ubPh0eZrkKZwWSQZA6/I39a2rOVxKsuCpXKsM4A9cfX+tYnhGZZPFNmqHnD9v9hq7e0sUurOWNdo2ufLYk8sTjB9jn+vaptzA3Y0bK65imh2ncfkj3ZCqM8c85/pW3pDbmd4lOA7sg4/eZ5rktOjkjuWtX+R3O1gy9MEf1rrNOBRmR3SPAwMYyh6ZGemefzqacmnysJR0uSsu7VXC5eNo1woBLZDsPyzmn6npOo3dqojsLmRw6tuSMjPJ/kK6nw/fQ293KssaI0hVTIOoOOBn05rsByK1c9dBKHc8nXwvr9wMrYFGAwhkkA7d+aqzfDfW3me4eSxt1C5LPISB6ngV7GFFRXNvHdW7wyruRuoqedj5UeXaH4Vg0YmW61A3C3Eo/fWX3UG3+IsD69v6V0uk6Jpdhq1xNCs0szoQ8lxL5hIPXAIwM9OKnsvDy6dNdQMSbWZd6YHCuvfHbIPT69KqXV3HprxRohY5y2zOUQcfz55/rVLUpq2xuyuBvkDgAIEXnp16en/1hTbZPMbgHaBjiswSQ3eEjcf3lOeD7VuW6CBAjAKMcepNPYkWVdsWB34FY+vQXE2nNb2YzLkZGcZFb7rlunAFUZlJZiOpOK8itHsdkNdGYMumiLQzaE7pDEzufVsf415frahtMuLpCQ8aFCPxH/wBevWNWuksdPvLx/uRIcD1xXmM8Auk1K0UjbLCXT8R/+quO/LNMVeKjys8sn6Gs9YjNMqD+I4rW1GxvLJV+1Ws0G/lfMQqD9D3roPAOjW959tvZIFuZ7fYsUTgFRnOWIPBxgAZz1zivcgrmdR3ZDpsaRw7UKZC8AYb8KTVAUiSHJzkDay7WGOSK7250y8m0+5lukRYkjLqm0b8jGSuBxgZrgL9vMuVQk/KCRu9T/kVajZmTZa0qQ+Rtxhx0BPar0nzA47ttI9ecVmWJKy8EBuA1agBMkZ24bcuV68ZreOpi0eieDtOuLrX4LlI/3NsxZ23ccggfj7V6eikMcgj3rO8O2MVhotrGigM6B3P95iMk1pTSiJeBknoKyk7s1irI57xHoEeuJDExdXRicoB909c57dK5q78Atp9m7WN1LctuLtDIqjdwOFxxn5eh613D3Gcgck9e2am8htowuQRyM0tUDVzwXVrd4w8ciMrhsFSuCnHSr1rHnRbItziPYuR35r07XPDdpr8TI2Y7gDEdwByP9lh3Ht+VZNn4GitLNbebU1IgXa2xOFGSRkE8datSSM3Fnmd5ab8jChzywz0+laOmRA6fCCkhWJzEcHA78Y9T616Bb+B9Hu4FljvbifcT85IA9cYAB7jvWmng/RbVcfZ943A4Y/Qfw4qJu6sXCLizx3V7Xz7aSFs5aNkO84CntivMSFDbdy7umARnNfXkXh3R4VATTLXg5GYwf50268OaLeQNDPpFhJG3VWt15/SslFmqlY+QjwaUV1HxA8NJ4X8W3NhAGFqwWa33HJCN2J9iCPwFcsKDVMd3pcCkzRn/ACKTGL9aaRxTs8U0kUIGRNxUZAI6VI/NMx3pkWK7jLoB71EwINWCD5/0WmumapESRt+BWA8V2+7/AJ5y8/8AADXp3h9m8+Ug87vmj3cAZ6/XFeW+DCU8VWhAycScf8Aauxi1MpG8KFlyxzI3VwM8ccjmtYGMyz4vv20/WYBZtGyvArdSSGBI5564ABH0q54futR1G7tlmlwlyysyImPkHzEknnGB+NcnrJBvU67hCQ2RyCD098etd54IgVbBroYIS3VA3+03b8AKylL32bcnuRaOssZjJJcHPWTcP8/hXZaHqvmqLaZvmHCse/tXCaY/72UevP8An861o5CjhlJB9qUXoElqehbuMkUBgRWfpl+L22G4jzF4I9ferLEq2fxqiBLpovs7iY4jPykk4znjGa8x8X2ep6BP9pju5pNJnOwS55tixOVfHVCT+H4Yr0/y1lU5A6gkEcZpLm2gubWW3niSWKRNrowyGHoapOwHA+FLmO5S6t7uMCSNQ5AOOfUeoPH+TW7D4gs7aQxtBOFH/LQnd/8AXFTWui6b4ctYBAryMG8mJpPmYKzZVMgdB2J6Vsva203zPApYjPI61XMkJokcYT61TfaNznhUGeamtryG/s47qFt0ci7lP9Kp3oLW6Q95nAP0zz+gNcFRXOiGm5xvjq6ifRVsjI8JuT8rbdwPfkdcHjn9K5JFxrUIs0kkj8oRZUbiRtA5x9K0fGV79r8S+WDmO1Qn2B7fz/SuY8HXiy+K43B+ZJghOcZVhj+dc/slU02OirTvFXZ2qeERqOmsutxLLay3KiKLeQwwDzkH5TyR75rptH+H3hvSA6WliwS4HzrJM78jpjJ479KtupENvHjgSsw/L/69dBBGPKjJzkcivSguWOhyTRTl0HT3s2tRCUjKFMKx4BUr/I1iaf8ADvRtPAMRnMv8cpK73+rY4+gxXXk0ZFVdmZwGteFtNltnlm05JZ4H/dmaRj1IGSRgt16E4rbtPCvh82cOdGsy3Bz5eckd89cVfIhu4G3MG80MyjrkAitCNdjBR0VQBTbDQkRVjjVVACqMADoBWfcyEtitHqKzbuMIDIvDE4B6iiO4FXeDJsXl8du1aMdzFDAiSSDfjueawBdyRho7e3RpVb597HA9/ek+xT3d0sjEeY2CSBgVTQGzLdKRHIpILZGR+X+FZNsUn1WaZchJ0VinYkNhuO3StU28dvbAEZC84/z9Kw9OkkgdWkUrDGrmRx065P8AhUsaLfhyyGnWjWWOIriQZbqRkgH8hWyyDBUYG7gVjaL9rN1dtcoFYyNIgIxkEtx19xWpu2jc2ckge5PtUrUGWsc00DB9KjWCNh/qB9WPNKbfauYnZPpyPyNMLnjnx30km30vVlX/AFbPbSH2PzL/ACb868SxX1F8QrD+2vBOq2RUfaoYvtCKOfmj+bI+oyPxr5gZecipkaQYw9aTNKabUli5opMmkJNAxSeOeKiY4Gf1p/GOKjkB25HP4UEsjX5nc59qeBx2qusu0t8vfrTvO9sUzO50vgiFW8VwH+7HIR7naR/Wut1rTCHa6hGSf9ag4Dc1wPhrUTY+IrK4Y4UOVbjoGBBP6165cqGjVk544/x/StIGcjzy4bzbmFcg4Rh0x7kepr07wurQ+C7QuMNJuP4A4H8q4LWoU+32ohUCQy+WRjGSwwPqK9QuYFsdNgtUGFhjWP8AIYrGafOzohJOCQ3TG/ev/u/1rUDf/WrF0liZ5fTA/nWsD704bET3NHT717O4WRTx0Ye1dlbzi4gEpwAeQQciuARssM/jWxpGqNay7ZCTE/UVZO50/wBo3HbGwJzjjmqzvdxMQ0oZs5AQAjH496w7K/Ol6s9jc/dlYyW0p6SKTnH1HpW6pBYsDkHkGrSIegz7WJGCTDJB425Rvy71oRyRyxh0OQOPeqTKkqlJF3KT37VXjkNpKScllkCsf7yngZ9xTlESZieG723sprrSlnXy0cmHe3O30/z6VsXeoQLDNd7wY7dT8w6ZweP515NdRzpGt40TYVgA546nke9dV4v1UweFLbnDyoGKjuSP8B+teZBvk1PR5FJ3OA1G9Li8vXPzTSEfgP8A65NZHgyJo/P1Y52rcKufb/8AXisO61C4ea4imkcWyBgo6AnGOPxzXovh/wAOsPh1dSt3ha4hTHO4fNkn1wMfjW8KfKKdTm+R6xEu9bfr99uPTpXQRjEYFcz4cla9sLeZuQef0WuoHArdbHLU3sQCQvceUUbC/NuI4PpimaiWGnXO0kN5TAH3IwKsjBaoL6aSC2MkcDztlRsTqQSAT+HWmZnMXKtpNjZxlvLdzb2kfHOWfc/6V1hBDbh+Ncpq9tc6h450e2y/2e2ha5kx93dkgc/gK64cVTd0A3LZJABGOPWqWoMRCpwA2c4qxMJxzCyH/ZcVR1Fn8hN4AfHIHSiKuwM21x9ry3etqa4trCIM7BQenqfpWFEcSgjtWksVlEwuJIw80p6tzgdOB2qpICGK7+13wV0byiCMAc/U1qiKGe2MaKBHnG3HFELW0cJaIKFUZO0c06Ge3LtHG6b/ALxVTz9azbAikjaC13ZG5CPmA6Lnn9KhtbiO4uHiPM0OGcFTwSOO2OlaLMNvPQ/rWc7LbbjGhCg/NnJ/l0/KmlcC7k0A4PtWNd6z5SL5EluH3Dd524jb3xjnNQXHiFfLP2ZCxxnJ96LMFqJrEyLqtmANxZ9jL6rggj9f0r5i8QaUdG1+/wBOYH/Rp3jHuoPyn8sV9MWFlNcXgu7nOF5UHivIPjTpf2TxXBqCKAt7bjcR3dDtP6FKl6msNNDzBgKjIqRqiY4qSwNHWm5o3UABHHPSkzmnfQ/jSfXIHvQA3bk9s+pFNKDB4/GpMjp+gNLjntn0oJsRIRCyyf3SOnevUvDupi+sBCzZkjxz6r2/pXlVwcYAJz1NbXh7U2sZI27pxg91PUU1KzuS4qScT0ay0xL/AMTafkZjhl8/HUEKMj9cV0+sykkjPeoPDKJOkuorgqUCJ7Z5P9Kg1abL/XNOdtxUlZE2iNukl/3R/OtfNYmgNmWbH90fzraPWlDYctyVGwCfSnByuKhDYQ/lShs1RJtWwtdWtP7Pvx8vWKQHDI3qDR5ev6E21k/tG1H3ZF++B7/5/GsiOQo2Qa7DRdUFzF5MjDzVHB/vCmnYTMqLxRCW2y2tzE/+1Hn+Va1hKl+3mqkmFOQXXaM+vqa1SRnJUE+4pQUPQAGqcidDwmW6vNe1OGHdjJ2gAfJGPYetXvG9wjapZ6YhzHbqqn8ACf0A/OtrRtNjtr3zNoCQjP5VwOqaibnVr29YkjJC59//AK2K8mg043PYnBQdkctqifa9VgsYRxJKFCj3P/169+hhjs9EjteAgi2YPpjFeHeEYTqPjmBiMrCTIc/pXo3iPVb+W/j0y1idmZcgIpZifp6V3LRI5HZtnc+D5YIdLhiMq7mLNj6YBNderB1DKQQehFeUaddSRXjR3EU1u7bd6IoXc+z7pHbOTXpOjwyW2lW8Mn3kQDHoO1arY56mruWhABP525s4wRng+/1p0m7YxQAtjgH1p9FBmVrKZ7iESyQNCxJGx+uM1JP5vkt5O3zMfLu6ZqQDmlxQBi6Rb6v5Mh1W5QsXJQQ9QvoTUeuXa20QbG4ZAIz2Petw8A1zurWZuEbbjORwehFO/VDVm9Tnm1G4WWcxtn5cqm3aUHYg/l+dbul3f2i3gEnzDblm6ZbpWVHpNxNcxj5epO8ZP0BFb72y2qRxJztHzHuT3NKF29TWbjayNWExL8qpsZux70+OJIshIwPoKowSBk2P0Pf096vKzqg3kE+o7+lNqxiYx8T6TJFdMbnZFa3ItXdlODIeMLjrzkfgatw2s63RaS4zCB8kaj16knvXkusWNxp+lzQHBjku0mV1bcGcK4b6HLDj3Fet6ZdLc6TZzRgF5YVbOOmRyTTKa0uJcWltuAMCPKe/YD3qGOyt4zkR5PvWgECj1PUk96NgOcCp3BEXQ4x0rzb40aX9t8IR3yjL2Fwrk+iP8rfqV/KvSyvANZfiHS11nQNQ01gP9Jt3jGezEfKfzxQCZ8jE81C/+TUsiPG7I67XU4I9D0NRtzxmoNiEk0BqVlIpnegnUmB/XtS/z9qjBI/xpc/lQMdj/wDWaUdOpH603PrSg8g8Z9BSArSYa42joOKsCXaysDyvQYqtLFIH3KRyc0BnAKnOemaojZn0L4TtzY+BtODjElwhuGB/2zkfpisbV5/32BV5/FOiQ+H9OZtStY82kWIxIGYfIARgc5rkl1uz1u9njgLKsQyN4xvA6/SnboF7anUeFrqGa4u443DOiLuA7ZJ/wroj1rhvAGyPU9UiLhpWjjYf7QBbn9V/Ou5br9KaVtCb3EY/KPrS5pjnlR7ZozigB7OFXPemQahJbXKvG33TUE0nvVdDukA9TQB6HY+ILScKk8yRTH+FjjdWg11CATvz9K8Rub9ZfEcwkfCRjYK0LvUb6xs7a5imkKFmVgTkcdKqLTE1Y6rWnGleG7yYkCR1CL+NeM383k6dk8M+WP4//Wr0j4lajttrTTkPzOSzY9+P8a8i1+7JBVTx0H0rz6UNEkelVk9WzrvhNaeZe3d6w9EGfzr002ENzqsU6kpLH0kQ4ZfyrgvAY/szwwJTgPIcj8eleiaG5aJjgEscbj1B9f6V2xV2cjdkdDYafDE7TFSZH6yzHe5+megrUt4pgXMsxPzHYF4wvbNMs41RARySMkmroAxVMwvcQEjqRS5pHOFNZy3zYuCBlUkIDdqQi8km8jH408uo6mqsCPGVU42MNx9c+lIkpktcnqwznHvTSAndyULBSQB1NY9zqLKQI4wWbpkVsIwKAdsVn3FrGScgGqjvYTZmvciOIq8iq7nLFep+mKpiTcxZVfA6u3Gfwq1cfZbYZdoo/qQM/hVJ7ia4Gyzt3Of+WjrtA9wOprSwrmktxAtsJElcSIAJARxmqcmuzzmVNipFCo+fPUn2p9ppzQ2zGeQkH5m/z+JrP1HZDC0K4B/1knsegH5VMtBx1ZnPpr6nZGyV0XzZZJYmI+7I2DzjsNv612PhiCWz0WKzmYPJABGWAwDwD/WsTSAUubR2HVgenQEYrodJZd1zGvQSbh9D/wDqrK9zZqysaTCkAp9N6UGQ3HBHvTGBxxUvrTD3oQHyr8RtI/sfx7qtui7YpJftEeB/DIN38yw/CuVxx1/OvYvjxpWy90rV1XiVHtnI9VO5f0LflXj3X/CpehvHVDGUf/qqNlwasH8j7VC3Trz71KZTQzHHINKPwPtSA44oP50yRe/BOaOvv70mffAo6/SgGLkjoeO9NOCcgceoNOx06gfSgknggY7YFAmRMAB6D0qe2uZLeYOGweKhbrknnsDSHkZPJpknQ6f4pn0/U4b5D+9ibkY++vQqfYivZ9N1O11nTYdQspN8Mg/FT3U+hBr5xfqcgV1ngHxJJomrrBM5NhduElU9EboHH9fb6VSZNj2hzmT6ACkY8Uxm/eP7HFNd8CmBDK9MhOGLf3QTUUz00vssZ39RtFSxo5GGTzdcJPOZTXX3ztJoF0oxtE2B7cVxOkv5mrxn1kJrsWfOiXmT/wAt/wClKm9Qnuf/2Q==", "path": "images/5pts_ADE_train_00006820.jpg" }
depth_point_77
images/5pts_ADE_train_00006601.jpg
ADE_train_00006601.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 184 y = 193),Point B is located at (x = 34 y = 148),Point C is located at (x = 22 y = 178),Point D is located at (x = 10 y = 104),Point E is located at (x = 220 y = 96).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_33><DEPTH_29><DEPTH_67><DEPTH_59><DEPTH_70><DEPTH_70><DEPTH_70><DEPTH_35><DEPTH_70><DEPTH_67><DEPTH_66><DEPTH_74><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_67><DEPTH_70><DEPTH_70><DEPTH_67><DEPTH_5><DEPTH_19><DEPTH_29><DEPTH_67><DEPTH_59><DEPTH_59><DEPTH_3><DEPTH_31><DEPTH_31><DEPTH_70><DEPTH_67><DEPTH_19><DEPTH_29><DEPTH_59><DEPTH_49><DEPTH_3><DEPTH_31><DEPTH_29><DEPTH_31><DEPTH_59><DEPTH_67><DEPTH_66><DEPTH_40><DEPTH_30><DEPTH_69><DEPTH_49><DEPTH_3><DEPTH_49><DEPTH_49><DEPTH_31><DEPTH_31><DEPTH_78><DEPTH_31><DEPTH_11><DEPTH_49><DEPTH_49><DEPTH_49><DEPTH_31><DEPTH_49><DEPTH_31><DEPTH_31><DEPTH_44><DEPTH_49><DEPTH_64><DEPTH_36><DEPTH_36><DEPTH_64><DEPTH_36><DEPTH_36><DEPTH_36><DEPTH_74><DEPTH_29><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_63><DEPTH_80><DEPTH_37><DEPTH_15><DEPTH_25><DEPTH_25><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_76><DEPTH_4><DEPTH_24><DEPTH_85><DEPTH_19><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_36><DEPTH_4><DEPTH_END><DEPTH_END>. Since point D has a higher pixel value on the depth map, the answer is that point D is closer to the camera.
D
long
5
[ "E", "A", "B", "C", "D" ]
<DEPTH_START><DEPTH_33><DEPTH_29><DEPTH_67><DEPTH_59><DEPTH_70><DEPTH_70><DEPTH_70><DEPTH_35><DEPTH_70><DEPTH_67><DEPTH_66><DEPTH_74><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_67><DEPTH_70><DEPTH_70><DEPTH_67><DEPTH_5><DEPTH_19><DEPTH_29><DEPTH_67><DEPTH_59><DEPTH_59><DEPTH_3><DEPTH_31><DEPTH_31><DEPTH_70><DEPTH_67><DEPTH_19><DEPTH_29><DEPTH_59><DEPTH_49><DEPTH_3><DEPTH_31><DEPTH_29><DEPTH_31><DEPTH_59><DEPTH_67><DEPTH_66><DEPTH_40><DEPTH_30><DEPTH_69><DEPTH_49><DEPTH_3><DEPTH_49><DEPTH_49><DEPTH_31><DEPTH_31><DEPTH_78><DEPTH_31><DEPTH_11><DEPTH_49><DEPTH_49><DEPTH_49><DEPTH_31><DEPTH_49><DEPTH_31><DEPTH_31><DEPTH_44><DEPTH_49><DEPTH_64><DEPTH_36><DEPTH_36><DEPTH_64><DEPTH_36><DEPTH_36><DEPTH_36><DEPTH_74><DEPTH_29><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_63><DEPTH_80><DEPTH_37><DEPTH_15><DEPTH_25><DEPTH_25><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_76><DEPTH_4><DEPTH_24><DEPTH_85><DEPTH_19><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_36><DEPTH_4><DEPTH_END>
184
193
34
148
22
178
10
104
220
96
41
62
82
103
11
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCTS794Zg8Y2uv3kPcV6BpVzDfQiSI89GXuprzo25zwSrA8Edq0dO1CfT7wMpCyjqOziualV5XqOpTvqjcjjHnzgrgiRqf5O3OfQ1HZ3AuXuJuhaQtt9M1YYhm9ulTLWV0NPQ4u9UpqUpHUMfxqCaLADgfK3Sruor/xMZuP4qcIDJY5A4BOf0rnUeZtGvNZJmPIuMZ9ajxslz2arM8ZHB6g1BINyn1ArLY0uSKARRIg2Zx05qOFyyjJ571Pj5cZqiriKo7VIqjNNjzsGT7VIopWHcSRB5TfSlUYpZAwj6jmgA+1Fh3JFGT1NPbKITk8CmqDngCklLZVCOOvWlYLixjCjmrMfFV0XNWY42PRSfwosFy0lx5S7iRgVLb3Idt8uNx9+ntVEwvM20A4Ht1NW4NLuZDhEJ+go5GxXR0Vhf2sRBeujh8VaXBEFXe0nQKozk1wN1pl1YwCW4jeNCcAsMAmq1tHc+dHcJE7KrBlO3IOKqPPTldEOKl1PYreMnFzcACYr07IPQf1NRz6tZwg5mUkelcPf+K9Ru7fymQRA9dgIzXPy3s3JLGtp4l7QM1SvudvqWvRvkK4rmZbxZ3JMgx3NYpmkc5cnb6etI0/bFcju3dmqhY1ZLmNVwuMVQmnDdKpNJ3NN5b73A9BTRSViUybjgc0YHUnJp1vGrzRrvXaW5UnHFTajALdg0QYR9CT61SjdXDm1sV80h2gcmovMcnjgU9FyehNQVcQgt0GB+tOS3XsvNWkjUjOMY9qlikUHCoPq1ArkMdk7dAQKnjs8tgMW+nStC2t1uGHmTDHoeBXTafpNggVprqAeg3jP5U4+87Ihzsc7baUXxmNj7itO38IebH96XPPLrXZW9tbxqPIhz/tMMCrHlswwz4HonH611Qwre7MnV7HmeueHF02ElnDtjOxBk/lXJHTL66jaWC0laIHG7bxmvb7tdOhgdbnylVgQ2eprjrrWba0We30+LELyFwAMAcAf0qalKNPqVGo2eYzabcITvQg+lVZLZkH3cV2F9KZ2LPtFYV0IRnmskzRSubLIpOR6026hWQkEHHBBHUGr62oIznvT2gTed3YCtHMwMm2nltZgsjfMeFfs49PrW3BcLONw4IPI9Kp3VrFLBggEZ5qkon05lLMWjP3ZD/Jv8auNREuJHqKf8TOUep/pVywQNYzA9QpIqO4X7RfeYB98A/pUM9pevY+dYgtLCW3Rj+NSORTo/xXYJfAjMnxIuR95TzjuKqsMH60zzp1Y/KAQuetQ2t157yRvjeufxFTWhZ3Lg7oFYpJtzweRVpXBHWqk4IUEdRRHJkZzWKNEy0rYZueM1Mjehqlu+bOTUyN74oGWZS20Zx1oDVFIxwo3Z5pUIJ680rjLkbkfw/rURfzZGbGOw5pWDJEW3CmQpvwBRcC5AAOtaSXMUShAMO3QkdPeqkNlJ5ZfgKBnk1YtNFuL1wVPzH9KalYTs9zS09LYsN8qj612unT6RZwiR7qAt2XOST7DvXN23gO9aLe9wiDGcHNQaV4Y1kaktyIEUW0gbZM2N+D/wDWropuomvdMpKL6nfyWMd+nmXyAr/BGeiD396hmuLKwsRbq8ZVQQFyDiuT8Q6nrU5EbqkCL1WNup9a5SWa9Y/MzY9aKuJvpBBGn3Z0Go3UM0xWJFyazJ4IAu5mBb2rLMrKMYz7moXuGJxjJrkuzZInmZAeCcfWo0DSZIBVf7xqGINNOqMDk9CRwKfJL5crRFiSpwaLO1yr9B+0Ifvbj70/bgZYKB7k1AGYn5cj3qaNN5yQW9zSAYPnkH/PPuB3p00VxPM4gadYmbIDNux+daMYgjHzREn2NSm7t1ODuRfSi5LZmrpkrfKZJCT2GM1s6d4cm2/I7SFu0h6Vc0/WdCgYCZJnb0Rc5r0O1iAhVkhEIIzg8mtaVL2hnObR57c+Fr5IGmlwI1GScgAVzLRXDs/2eKSQKcEohIFex3V9p9sM3M8ZI7Mcn8q5W58RWNo8yafGEWUgsSMZPrV1KcIdRRqN9Dz5kvB97entWz4X1C20rVhc3kbyLsK+pB9eamu9RgnYtI4JPZRWTNdW5Y+WmT7VhF2d0aN3Vj0K68d2yr/otu7n1fgVgXvjLUJ8jzREvonFcoZJG6/KPc1FIV7yZPtWsqs5bslQijRutYkkYlpmY+5zWfJqEr/dZjVYsP4Rn8KjcyEdhUJFWQs00zdWxVRyv8QyfrTn/wBok/jULMoHCk1aQHWR3bqGyaWa6YjOeSBVbOIyaJB+7B9qppGVh/2lwdpPBFWWuA8JRhuUggg1nM2VHFSryv5/yqWgHRzLDMgAwqjgV0nhorJdSDHBVhj8K5Jvv5q3BqVxp8sckJxtOSRyeeOncVdCahPmZNSPNGxl3sQjLqAOeP1rnGVoWFzF1Q4Yeorqbk+YyvwVY5BBrAK/upOOOa6atpJMmDauTSndHuHQjNVEDKucjHJrRlhYWMLFSu6Nev0HNUgMRgex/nXKopNpmnMOVi2eRxU43jHTNRIMc4yDirMgbd7VXKg5mNy7AEBacHZewNSKAQo9aNhCrkd81PKh8zImnlZQQnA96liuJFP3eaNgxkE9DxUiRDjA70uRD5mPbUrpSAAwUHJGetaNl4tvLM5iCgj1WqyWok3A568UT6dsXqAWGcVPJEHI7jw14/S4a4fWbnbsA8lFj+91yeO/T86r33xHuHlkFvCqRdsjJxXCLblTgcdamWMFTkcVbcuXlvoTZXvY1rjxJNePvm4HpjrVaXV/MGC2B6YqmUJUkgDGRQsXBYAHkZ9qz5EVccboPyWAHpQbgdPlx6A01IRtzx24xUjW6szYUZAFDgPnFimKyhg7IvfDc0397LNumuFKYwCQN1Rm04IQHJ6UxrKZMfezijkYc6NOGBNwaN2kPo5Cr/jW9pGjx3Eqm5vbWMk8L5gyfYCuIZJh0kYc1b027msr2G6iILxsHUsM5IpKLT1Bu57Rb+HNPiiAeBZDjqVxWDqXhfSIr6SW8uSIWU7YkYKVPH6da5q98davdR4EqxKeMRDH61zs+qXcz7mcsx6knNdE5xatCJmr9WdHdaXpkUmbV2Cg8FmqS78Q35i8p9QdlH+1iuRa7mP3mzz2qNrxx/AM9M5rnSkXvubEl5LISQSfc1SlnkJO58fQ1ntfHGW3fhUDXy4yFb8afI+w7o0fOX0Zj700zEn7oWsz+0Qwxlhn2pyzGQcZ/GnyNbhzF8yqPvP+VM8xf4QT9apuJGICnH0FPjtg3zMSx9z3pWFzE7THH3sVHuZ+hJ96leLLBT6ZpUiwRx8uevvTDmKzI20njiomUsBjPWtBlATP1piwlsYFOIrmxjMZHrTnPy7aULnNGNy+4JFXbURXxlR9TUoBIB/z0o24wPc1OowMcf5FJoSKTL+9A7GnOuSD2q24h2NuXD9iKf8AZ7WS2Q+a6OQd3GaXIFzFupPsttJMOVVSzL/X61j2jm6sTLjk+grX1WMpp9wpOfkbn8KzvClql2qLczmGzjjMszAgHaB0HuSQPxraknK6FLY0Ltlh0W0mc/IsIJOO20Vnqm+MFRkc1c1Xc3hRY2RldbbIz3Urwf0qKJcRila0gWxGkTgEEH8qsSRNxkHoe1VLuZ4wCDgdCRTpzeEJIpcxsCUYr1GcVpGDa0E3YuJFlk68VIY+nB5NUpBfW8MczthHztO3061F9tuQD+86f7NT7NhzmmY9qjjpmpCpXduG3YxJ5xVe4kkW3znkrmml7i4s3ilDTZiQsBGAfvjgkdSBk+tRy3Q27GjFKsUZLE8e3Xmmvcky7SxIUAhs9QecfpWVdNcJd3alJWg8twhGcDkY4+nP4UDTrqPU4LFliLNaCQDz1HOzP3unUn5etZcouY0Dt+ZmkUZOAevfFMjlhyPLmWaMnG9e+OtYdnqsJvxGJZIw7qOT0bd15HHtWhMXNxEIvu7mGQOvBxRboykzQnkjkeeWIlYeXVQM7RngZpjTW8blQ6EcBlB5B/8Ar1QM00YdRkZ4ceox0/Oqtysq6iygRtu2uWUDoQMZP44pxp30uJuyN2LBVmUfIOQTVuIxmNnb5SOG9q564b7O+IRNkW2ASM4IK5wPz/KrVrqTy6as213yqZyuOM8j8wKVnvcd9bHS2oiWYZwVxwcVNd3UHllY4gSBXOx67EkJa5EkedjMRyMk7cDv1NWrW7S8DOFKqpKg7uvufQ0K9hdSCZc5IHemrFjI555q1KhydkZc9TyBgfjTMy7c/ZJSMYypU/1p2KuVWjOR6ZqPZgbugq2XwFDQTIAerLxSPEpXbntTFcplA+PrmoZlxngk5q+0QXBX8qhmhdUJdCPc0IdzMlG1OR9KwNd1WawSIRIp35GT2rpZ4iRnr1rl/FNlPLBbmKF32sc7Vzjitqau9SG9CawvGuUgLKM+WDxW7a87RgVgaLaTCFAyMGEYBBHSuntIHVfmHPoTU1FqCY7aCx46irCx8ZAHbNKIsEncvSp1VUAGSenasWirlcqS496ciZO3vnNWBGmMnOfrTkVOCq8+9FguU2iJA575qeE7Tjb3qwttc3M/k2zRozOEUsmRycV3EXw2cqPP1h93/TOED+ZreFFyE5nIKPvU0goCRzuJanr/ABDviucufG3h62nlt59Q2zRM0br5MhwwOCMhcdRUWbeg3obhPT61Mr9vpWZperWOs2puLCfzolcoW2MuGABxyB6itFfvEfSk7oBjyE5GByackzCFRgfKPSo2+9St0PrU3GVNVkaawk3Y4Rh09qi8KKk3hWS2kLKkhAJVSTghe9SXoBtJAf7po8EELogBGQdnJkKgcLW9B6smWxSGH0iJW5Bjxz9DToULWytjkqOaRIy+mQIBnOR69jVzTofM0yJv+ma/yNJK431My/i22hOBnNdjpM4sEhhVXaMxMmHQHHPX68Cud1a222DyduP51uRKBLb/AOrIxz+8I962jdIk0ddaKaUSW0UiIUGQV6cVy+qW6yWTSHIKcj5cA/5zW9PMskRQooIHUyk9qx9QwNPlX5enGHJ7iom/euPoMktTPEnHG2ojpn7zcB1WtdI9kIyOCvWpFTBDEgms7tAYzaY43dR+JqvJps244ZgPZjT9TkuReziGRgFycZ46Vb01pJdPhZyxfJyWOT1qW2mPdXKa6bcFuGbPOMsakWwulH+skDD0c1qNw6lSuACTuJA/Sks5hcQiRSu08cOSevcVm5+Q0Zf2W9Bc+fNn3c1GIb0DAnkJBwckGtyclIpSOoUmsWTUJYYgyzRly4VlwM9fSqi77C8iPyLzO7fkFSDmNTx+XvThDdRq0aqm0/w+UPrW6g4GQMDoKzLy61I31wlpbxyRxsFJK9CQD61LkuxpSpuo7Izp47hozE0ETKxAOUx79jWjp9u6QkSIBu5K5P8AU1csZGubWKSZVEjdQBxnNTqhYgMfTpRfSyRElaTTKs52xzEED5MAt05IFZJ8W6PoifZNTvFhnZd6qkTuNp9wPUGtq93JH8iglgBywHfP9K4PVY4zrmsSzSWUb2+ho0U9/CLhI2+2RrnbsfkhmX7p+92roo01ONmRKVjoNF1qw1qG7FjcCbY0ZfCMuCxP94D0NabKCVODniuJ+G8plvdf+eCYs0B822i8uM4L8qu1cD/gIrvjGQ+SOuKmtG0xxehCY8c7hnrtJxUF80lxA8axbSxHO4EVqRx5zkDt1oMCk/dB/CqVKLSZHtGc81o65YrwPeopYvkyQcVvTW4+dQAuQP51XurZY7N9o6KfwpOKT0GpXMeODaQQo6cmrkSEYGR+fSn28W9R/ntT1tttz6qQaXLfcHKwwsi53uoJ+pqwNrAENxx2NP8AsyZ6H86hnQx3FsELAM+GGeoxVeyRPtGSFctk9R1p8Ywqn1pdpGc9SaVSfLBx90cVzvc1RfhnFtcI8SCSVXVwpOBwc8mvTINdSa3jl8oDcMkeYOK8kDSblOQAepA70GWTI+dsV0wrqJHI2TqMMT2215Xfyvaon2XTbK7uLvxFfwuk1nHK8ygW+2MMVLKMu33SD8x716nEdyBvVK8+uvCHi03WoHT9cW2sbq5lm8hLuVFO887lC4yRgH6U6MlFu5U02a/g22tbOHWrWyfzLSHVriOB853IoUKc9+AK6leDn6Vzng7QLrw9pEtndyQvI87SgwkkYKqO4HPymukVdwrKo05NoaWhC3LmnuAIdw6kkfyppUBiaXGYgM+9ZDKV3zbSe6mqvgrUrWz0sC5mWPcq4BjLE8VduVAgb3BrL8G6bBqemMJ3cGPAAXHvW9Ddky2Jkcrpkcsaq5jcttbIBG4+ntXRaHaL9gki5IU7Rx0GP/r1hwWsM2ltDJu2kspwccbjXT6A4FvcAjjeMflV09XYUih4giCaPMhXByuD+IpG1yy2xFZpcquMGEda3L6Cwu0+zXTHEn904PWkuPCOhpBEQswJ7+aa35bkXsZdxqcC20cjzthwcYjGeBisa+1C3mtZY45HJI4BXGa61/C2myxqJDMdowP3naqMnhTSw6qom56nzKiUEVzMd9nb7JGfYUCLCj6mtJkAt9uOFG3mqcxAOPTms5KwIwL/AERrm5e5F40IyDtVc59jzV2w01oLZU3AgEnpjOTmrgZWl2kcEn8asZrFs3hFPVmPeW04QplF3gqGHI5qOwsriMSRqyMoPUDGDWzcR+bA6DrjI+vaobK4t9zWqyxm4jAaWMH5lz6iosV7NXIbm3n+zvlVOVwdprnLvTLq5fzEMajzAeWzgdTjiu17VkShUuJIx0VifzFCdthSjy6oUDAz2yKxtQ0nUZr+ea1cLG5HHmYyelbKkOgX0qwMEOD0PAqGr7hRrSoy5olTTYHgtIIZMb4+GIOeatxj5s49DTARGNq9zSq3YegpozlJttsq3+TDlM5HTCBscHsa4HXtF1+fWxf6NqD2RNuIHeMyQsw3FiDsByPunr1HtXoN5A0yD91HIgGSGcqc8+n1NYQudkclzHpTSW0LHMyXGQccEgd19+n5V0QrRprU0o4WriG/Zr8UvRa9X0W7M7wRoup6ZdapcapdC6nuhH+83u7HGepYA9x+VdgimSReOlVLSMxYZYSsci5D+fvGMZGK0YyEK45YkfypVJc0roxtbRknl4dvrS7QO1OByzH3pDWyMGVJSiSs0jBV45P1qa8jtptGu5oWVgowWFQzWrXkjwoyqeDk1LJZtZ+G72NnUknOR9RV8seW/UUZS5rW0Kuk20clrO8uAkYyxJ9qJvJNyvkujAD+E5qbToWm0i/jUgFxtGfpVOPT5LKdWkKEOpxtP0qYxXJcc207JE+0Gql0hNza4/vH+VXaYIjPqVnEGVSzEZY4A470kSV5S8cxBbA+lQTXcsUahcFjnJKn1I7VevAruWFZlwgkKfPGAMg7mII5PpURspam1iP7dcqwXeDk/wBw1fd5NpIc1mrBtcEyQ47/ADtWgcbcetE2ug0iSWVLK2aSU4REJPv7fWqkGoyeZHHcWkkCSviJ2YEHjOG/unpxVq+t1vbdoH4EikZ9D2P54qklpeTyxfa5omigcOojUguQDgn0I64HFc0ua+h6uGjhnRbq2vr3vtpy20bvvf8A4Kvkk59uP0p0bHZ1qFmwzAfT+dPQlcfTNUzzhjFmHFKSSvWo5XIdvp/WkZzt45qQGzkmE5NYfhG5ngsp2int4lU/M0wJHU+4rWdz5bFjWHZ6fBbwybgkkbAsofJweTwP8a2pPViexoRXLiBtjofnY5HQ81b03Ur9RLHH5SqcbmIztJ4GKyUVvszlgsYDlSFHJ5qS1kkeaaOE7JCB8pTI475pw0YSNgvfvdxBr75txAIgHp9a6GVr+W0jP9qKdpxj7OvH61yapfiUSC8iBXp+59fxq/u1Nowv2uEY5yIDz/49WylYixvRS6ky4OqKM/8ATsv+NVZf7QRj/wATIHBx/qB/jWYh1LAP2uEf9sP/ALKmumos3zXMRGe0OP61LkOxpFtS8ok36Y/64D/Gq8gvycm9Q/8AbAf41WZdSkjGbqHj/pj/APZUNBf4z9piJPpD/wDXqJMaQ53vkuImN3Hy+wEw+v41fAvh/wAvkP8A35/+yrKktr1utxHwc/6o9R+NaEaXksKSLcW5JHzDyjw3cdazaVjan2GaheXun6dcXj3duVhjL48nrjt97vWJ4d1aaa5ksrNo3ZSXubhocjzG5PzbuecjPsKp+PJLiHS4LaeWJ1mkztQFDhffJ9asaOJtFhtrWKezksJ/9Xd7cgP/AHGwR+BNPlXLcq/vHTmTUR/y82v/AH6b/wCKrGae/l1CfEkB46hDzxj1rRum1CCAnfakngAI2T+tZEcF9uLZh7/wn/Gs7CqPoXg9+oUKbcnHzAq3+NLLc6gjD93bMc46sKj8u+AUr5BYjk/MDSSJqO7hbfIbPVqkyLPnXzOQYISP+uh/wp0dxeqGxaRtwBgS/wD1qgzfFx8kXBPRz/hThLfoxAhhbpj96f8A4mnYCwLu92j/AEJTyekw/wAKxGh1SK1nsYYkS0YtjoWRSc7Rzz9TzzWt5+oBB/o8XQn/AF3/ANjUTXN+VY/ZFOcf8th/hU8qe500MTUoX5La2eqT1Wz16q5JZXDSIsP2V4Y4xsXLhuAMY65q9n95jkc8VmWDXJcpPB5S/MQ28Gr4bL4z0NaaI5ZNt3ZeToSetBpsZ+SgmulbHOV283z8xS+WQ6luM7h3FLqd7jSriL+9jn8RVf8AeQsw8wuWk4z246VW1ByYCOOoqXKzNI7FvTbzybSSLu5pssk0l5l5AY9vyLjkevNUYXwwqQGSScDft28nHOR6UJ9CXsXc5NQTH/TLcj/a/lUoNQTN/pUP0arMwkfdI2Tyc1UlvIIFAlcDJ9O9TFiWIGMnvWbPMyXKfuJHAP8ACue/Wuc3Lw1G16+YSc/3T/hTHv7cg4ds5/uH/CokvD0FtNj/AHP/AK9I125GBbS5z6D/ABoLsbDZDIoGeSKjQhcgU/f++Hfk1EFO45pMoidhvYj1z/OlDkgY7rQFGWJ9agnvobbKuctjhR1qWIklAJBPP49KrT3sduMZVj6A8iuLN14k1S4Y22vWVsl1qM9jZW00Z3yOmw7QwjKj/WoAWYc/nWt4VWXUNAtr+6k3zOHJYgDozDoOO1aSpuMbsSkmy9JJcXn3flGecis7TmuA91sJuJHJCkngAZH4Y/pXRACO33AYGBWLZzWvnXC2G8PvO/I4355xRTtqD10J4Uufnj8xGPmEFSO45J9q1bS3Oxum7PJ/Cq9jFIizCXmUPgt68VftI3feqjPNNfEDGiJwwOOMdKu+XMsBOBt9ahMMiOQwIwtTmNhbrknGCRWhAxQTtHPWkO/jOetORCQnPQ+tObcPvHIzxUFDCGC4HSgBgRySc0pyFGT61Iw27TnqTUsaImDNv56GnWsxiuPJkb9054z/AAtj+uAPwFTsF8tj1NU50Lj5Tg7hj2NStyk7HO+PtMnub7T2bKWSjY8uM4ZiTgDucLWh4V8Jiz0+5a+Q7bwD/RXOQijpu/2v5VqavIuqeGZ5sgT2zLNtXqHRgQPx6fjWvdTeVEOPnccKe1W5vlsaJK/MZ18I5BGId4WNcHd3bPb2xiqpDBMq3BzmrEoCZGSQOxqMghMY7k/pWN7mbd2EYYEYJyT3qVdzFizEfNSYK7fUtUoyEZsE4OTSYiHa4cjJwSadGJOx/wA4pyZ2ljwecD04p0ZADeuOPyp3ECLIWTByKad20/X0qZOCoPXGaYWGw5IzxnHrSuBBuY8sMEg8UGQCUhffJodw3XoARTB8pznGabAvxSApzSNLzxyKhT7tI3HWuq5zkUsnzAnuSapXsqum0HJyKluTyn4mqTMWmVccetZyfvGsdidGQEDeAw9a0LCGCR3MrSKTwpUZH41kE5LEAHmsSHxZbbyJEkgYNjKnP8qiTlb3UXGm5HZzSQrcGKIyEL1dgACfbmqzTW5kLuZMoCMIuSfwrGl8V6THpzhLgNceWcZBzu+pqLR71L6MTcMxPJBK5quaXLqRKnyvY2pPK3boWZlKj74wfpioVyWA2j1zTzLHIwGwqf8AZwRUiqAQN449QRU2YEeGwpAHXnio33Y7flVvYxxgZGf4eagkBCgFcEZoRRowyWzuoZJRtGA4I5OfSrBsoWG+OdiuM5KjH86y4FeUoM8k5J7Uk9/lTEvKJwF7H3NaXSXvIprsUtTlli4icMN+MAdapJYieYu2WViSqe3vWn5Rmt9z8Yk/TFSxgIgVQAM1nIq/Y89tfFWnaHPLa3MRkks9Zu7hoG0+GdJkcRrsEjndF/q2BKjuDziuh8DMn/CG2IJ5xJ/6Mer1zo+lySyySaZZPI53M7QKSSTkknHJp5EFnarHDFHDEuQkUahRnr07VpOtGceUhQaZJNOsduoOc4wF9f8A61ZOh3Vuup3SeXtVGbPHLPnk1pW8LMxlm5Y8j2rn9MYRaxqB25/fEfyrODV2ymtLHTRXCma5KgkGTI/IU+G+aCUhUY7x2PSqtswkmnwMZYH6cUWl4q3UjlcqRgfSmpe9cnkvoaA1Qn70T/jVp9UX7MFaJsfhWVPfjzBtAGfeiW6LwqC/AHatPaB7M0v7SiUfKj59MVCdThLAtE27sM//AFqopc8Hr+dNYhjnBGOazdUpUjROpx94D+Z/wp39qIcboPpk/wD1qyt2cEk5p7OGAye9Q6xSomn/AGsgBBt+O/zH/CmtqkQ5+zjP1P8AhVB8+V8tRHOAQah1uw1RRah1WSDUka1hGGP7xdxwR+VXpdYMlyzSQKCOFG4nA/Kso4trV+cSMcBqnldXAYckVLrs09irWLranExDtbrnsSTSNqsWfmgX8zWazFTkDI7jtTiokX5Bz/dP9PWp9uyfYI0xq0HH7kZ7YJqSPVoCDiH68msPDZGODS4bH9RS+sB9XRttqsB6w/kTTTqcGeIc/wDAjWOu7B3EN/OniPcDjn2o+s+Qvq67msdUix/qv/Hqj/tO3YEGIjns1Znl89T+NIYRjpR9Y8h/V13NI6hbHrGf++qa9/bNyUY46fNWZ5WM5o8sEin9Y8hew8zQGqHb8sOf+Bf/AFqYdUJ6w/8Aj3/1qrhcDNJxWyr3M3RHT3yvt3RtkejCoPtkYYHy3yPcUkse4j6VBs/ec0e3Vx+x0Lizwuc7yh9GFef3v2cPOFJ84XD59Cvauz8o/wB45rkLqwdriSQEjcxNaU6kWa0YOLZhzEs7YyeetbGja7/Zg2/w9wVzk/UVDHaTxO7KM89qkeCJuZYRz3xj9RXdGnGpHc5a85Rm7rQ6W28XWx2mRVGOTtb+lbGm+I9P1GdIIZj5xy20gjpXml5awRwGSItnOME5FX/BsTvrokTP7tCTj8qyqYdRTIjO+x6m4Un5V5xnOKkXOxj5jdccnI/WoBw/OckY/SpgDtzu4BOR61x3aNrJjFkzayCNRvICjB5AyM8VBFAqPJu5bOavW0qxOImH7pxsfj8c/gaieJormQP3P51c3omhrcjbOwr23Z/Sqt/JJHp07Q/fCnvjA7n6gZrI8Yacmq2VrbSyNHCLgzSuoywjjglkfA7napx715xaNpA1nRrjTVuo2+2KJra4kEhUBlKsHCqCDkjGMjb7ir9jzw5rlUqypVYyavZp27+R6PK9tbvDJaSl2dhvXeSXGOS3v/jVy1gNzKZ5+n8I7f8A6qgjgF1K87RqqE87RjP+P1rVXACgDt/WuJKyO3G4lV2rX0W7d2/+G2X9JMP3iPauVs8f2/fqTx5uf/HRXUfxtXKRN5fiHUcjuD+granszh6o3kkSOK42nlyAPy5qOFkUHP4cVSViWJPU8mnPkKDyOM1DlqaxjoWHZGIxzU4ZSuAD8tZMZc4IJ5NXYi+wkDNN1LFchZEgXsOtPEozwODVUFyOmeOaczlCvHGKychqJKsvPIxTt56Aden1qLHOcYXtUkWD17GolMpRHRysVwfyp4xu+tNVQHyO9SlBis27lpDZOQBjilTjA/KkfoDj6ilTpgcipGPI46fWm4x0p7nKYzzUSuM471Lv0AmDhziThuz4/n/jTXVkPIGex7GjAI96VHMfyMAyH+E9Pw9KE7isCAN7GnYKnmlaIYLxkso6+o+tAbGAw49aWoxd3rShCR8pB9qNmORyDRgg8H8KLX2EG31Az70wxc9MGpw+4fN+tLt54II9KNhEATHbFNZas4GPQ+lMYKQc1fMKxUPFRtjPofep3TB4ORUD7c89KLjsMZcKay5INygEcCtbblfkYEfnUTIB94YpqRUdDH+y4OQvFDQKeGX8cVqtCrDKmgRrg5wcdcHpW8K8o7Gc4pnPXmnQvFwoOT0IqTQbb7Hdu8a7Cy4yprba2jfuKW3tFjkLKK1+strUzdKJrRahKAA218dmGDVxbuB0w8bJ9KyBwc05yWhYBu1VGsnuZOj2NYI2QMEkvx+VXlMZjCXLLgH5STyo/wD11myM2zBJ2hw2M+xpDtDM7YxtOK1UlHWxLVzB8cS3VjYWlzph+0XEd4rCNYy+V8uRWDDupBwfrXB20Op6jqukxjQWsbCC6V9lvBLsUsy7mLOWPRV6nAAr0O9mgL5mlEYIwB1P6Vo2wjEI8llZOxU5B5qliElypFyw1SMVUknZ7O2n3gwVIVRRgcAUiHJA9Oac4AC/WhAAB61xgRkHzM+9crNE0XiG7LjAkVXH0xj+ldbHH5ku316n2rE1to31dVjUbkTazDqfatIuybFFXkkivbKWDOf4ufwqWcjGPUVGkm0EAYzxTGcu+e1c7vzXOlInUBVXGKkTKoBmo48fKPzqRyoAx0pXKHKcZyM8cc9KkKlgoPp6U2LcWXb1NO35bHTHFJiH7cw8Hke1NUkSDJ4YelPQDaQBSDnIPUVmiiTazAEdqnUb0BHXuKjjJ28cVLG+D6UgEAJPP40eURnDGpjGQcjkinFcjrRcZXKkjqcioXiI6sTnoQelWyvemgYz3U9aOYCp5oiV2mcIqgszMcAAdST2qsda0jH/ACFbI/8Abwv+NP16MDw/qR7fZZcH/gBrgNT8O21r4Js72OOEX8fly3JW5VnZJtxTMe7KBVEXJAyZe/FdWFw0a6cm7WMKtZ02lY9OjIiIZGIb61YGyYcYST0/hb/CoSoIxTlBB9RXCmdDQvl9iCPanqoIwQKlRlYASZI6Bh1H+NSbCBk4ZTwCOlVfsSVxGBzjIpfKRxnAIHqOlTbcDPak2gnI6+1FxDNq4wyj61G8Q/hG78Oalz6j8RTTkHI6e1LULFYgdhUTxjOQKuNtc/MMH1qNkI9x60nIaKhXHb8qACRzhv51YIB6U3A7jn1o5h2IGhBGRwfemKrLw1Wtp9moK59vY0+YRWKA9OtKoZf/AK9StGR7fypQGHYGrTuFhq4br1p5jyp+lIACOlOUY6Z+hrRJiLbYCyM3qOKiG64m54XH9KcyGVnPbj8KsRoF2gDjAruZyGQ2+yvpJzBLNHIiqpjG4p7Y9D1qXTYnht38xdhZywj7ICeg/wA96ttw6enFIOFNZKNnc7KmMdSl7PlXS778qsvJeff77kv3R9c01ADzTpf9X+dEKF5Qo6YyfYUW6I47kqYt7WSd/TI/z9a5FnL6qS3JPJrpNXuPuwKeBy39BXOqu7UycdutKb95R7GlFaOQ4jDyMeo5qtFnJOfvGi4k3XEgHTpUwThV9BWb0+Zuh7EqhIPaplBKISO1RsBtx2qxGMqnoKlMZJDHk9QBjuacI13MSOoqTy9xCr1PQCiZTGUB67ealu4DI+DjFOIHmA4qNCDU3VPpWfUB6/K1SphXzUWRhT+FSLyoI7GgC2DkUmNrD0PSiI8Y9Kf5eVK/lUjI2XHNIFB+tKCQcN0puCD/ACpMCpq0Elzo1/bQpullt5ERcgZYqQBz715vJoPjCSa8eS1y15EIZ/nhwyKVIGM4GCiYxjpXp9xcRwRh33ZJ2hVGST2AplvdJdEhQ6yJjcjrgj0zW9DFToJqK3HPByqQ9q0+VdSUfX8acPfg01hySBx3FOHP9DXKMVSVbBq7C20ccqeqnoaqKOMNVmIFB1/Gq22JepO8QKl4skDkjqV/xFVzyfQ/oasK5yGQ7XHPpSlFuPugJL3ToG+noaNHsTsUmBJ9DTScex/SpWBVtpzkcEHqKjbjryKdxkbHsRTNxB9qeQR0ORTCPQfhUsYbQ3Tg0jKR94ZHqKOv4dqXeQec/XvSCxGVyOORRyP/AK9TqEbnH4r/AIUjxkLu4ZfWjmAiUjPWnBQfb6UgUHkc09B2B/CtIiYoQjrgj6U7ys+1PXHepAvetotiFVQLdsdxQh/1fuBmlQ/u8H0NNH3oyOgBrtZyEUwww9jTAPv57Zp0mcsPcn9aB1f3zUgEuPL6+tTQlbe0ad/TJ+namxwmZwp+7nJPtiq+tzj5LdT/ALTAfoKE+VObJa5mooypZTLKzseWOazJXC3LMvXgVcY4J59qzZm/0piM5HIrli7u53RjbQIbdmLSOTnPT1q0uMk01QcAdPWkX72BzzSlJyZSRO4AUH1qxAf3XOetU5CfMx24qeLIQ81PQLF2THlAg8E0rMCi5GcCo1dliRgeQc8imJMZp23nJ+mKlO6CwMdrA09GOfY0yQZxmpFUYyB9Km+gWJ4+QcgHHY1Ipw+OxpluCW3AjHQipWjOeOuam+ohyMVOfSrIYEcVBtwA2Oe+akBxgjpTeqAWQblzmokO4bT1FSkZ+hqJ1KnK9RSuOxXu4ZGkhnhAaWIn5WOAwIwR9ajgima7a6nQRsU2KgbOBnJzVwnIDDGO9KMHvxSudSxUlT9nZbWv1te9u2/lccp3Djr3ppG3kcj0pPuHg4p2/LcjGfSkjmJAQQM9OxqZCVOD/wDrqFFIOQMg1ZRML8wyh/SqRDJD09qaeSAeD/epGJi4bJU96YGVgcGhxsCLB2yjbMcMPuyDt9fUVUmjkhIDAYPRhyCPaplb+FulP3lF2kB4j1Q9P/rGhS6MVuxQI7r+VNOG9jVqS3G0vAS6dWQ/eX/EVWODyKHEpMZ8wPzfmKXGR6j1FB5GGGRSBcfcPSlYYwjHKnFOEpB+bg+opd6k4bhvUUx1I5IytHqImBDegPr2pdmMH9arZK8qfwqSOcDg/KfTsapRe6EWEPrg1MntxUA2N/sN+lToMHDnAPftW0RMbnGR7kUE7Ez6A01uJSB/ep6gMMHociu6RyEEhy2QetH8Z9yaVwPOCdhnFPt4fNuMH7oOT9KlJvQG7FyPbb2rSOcDG4/TtXMXEplmaRupJNbetz7IVhU4LfM3sO3+faud9evFY4mWvIuhph4XvNkM7BCT6DNUw3mSAhTgmnXbktgdTTxHt24HQVlayOtEgI38daMfvVHvmmRfNIamUDzyfQVnsMYRm5GfWrDHaGOM1Wz/AKVntVhyQGIpPoA9mJgAA4oEElrdhZVALAkYIP8AKmjm3yRzUSZWdc+tEbWaCxckPHTvSgkDGetI5yDjvQp+QH0qEwsT2z/vGT8avqMsDWdbqud/f1q6khVlB6VL30FYueQXXOOoxUO0qSpxWjBHlOgNUb1GjlVkQnsauPYi5HklcDqKjByc9/enkbTn0pr+uOKlloYcKSCPlNMXKNsJ47GpWXj61UDF2KnhgaFqMtkgjBpmMHBPNNVi67f4hTuWX/aFLYCeFscGtGBeOvB7Vlx/N/vVt6fFJKCGX9KpESK8owCrfdPrVURMj5Q5FalzA0R2vwT0zWc3yMR29Kq72JWoA57EEdR6UMzJyMFTS8MM5wfWjnGDg+oqChu4/fiYqy88dRSFUuyT8sU/YYwr/wCB/So2BB3KaRnUjn5W9uhpqVgaI2Vkco6lXHBVhigocbh09qtLLFcRiK5BIHCyD7y/4j2qvNDLZsGJ3xN92Rehp2vrESfRkfB4ZQaXaV5XkelPwHG4cGozuU1KGNO1jgAq3v0pCvOGFPyH4Ipyhs46jsa0iwGKCn+0tTIxUYU8HseRSiHkHkGpY4C0iBD1IFb2uS2Nf/W/8CBpQcLk9jTmXMhPpg0LH5gYZ711s5CEjNyD7CtK1iENvuc4LfM2ewFRx2u6aMHoBkn2FJrFx5Vt5Y4aU/koqk1CLmyJXk1FGBdz/appJfVunoO1Z8kpCYAxnvVp5OGwDzVKUlmIGOOK86/M7s9CMbKxUVC90oPODk1O5+YjvnFLHEI2ZiSSfWoxlpOD71UnctIlQfNj0oPU0n3YnbPamxkeUc5z1Oay6XH1EjG5vrVs9PrVWEYYknPFW1wUWpm9ShcfuDVfgSjPqKs9EOelNkktzbbRARNx+83cH14ogImPcAYFLCudwNLjO01MO3vWdwCBCDjPHSrkSbmGeaqp8r9avwLlsU76ks6fRbNriyciEkockgc4rM1GEbiMc+npXUeHeM8fK6Y/HtWRrtv5dwxIwc1q1ojnUvesc268ZHWqxBXr3rQeMVUlQ5qL2djdDV5yvr0qpKCsuT94cZqwDjrRLGHTf19alOzGQ/wiReo61PGVkAP51VAKnrViGPaxKtwe1EhluOP5hjOQfzrqNMto/L3SE7scVy8YZZFI65rtdJdbqFUDqrgYViOh9DV03cxq6IoX0W5CMfKPUfdrAnQq+PSuuvrd4omLNhh14/SuUmPzkY57iqmhQdyFQQc9vSnjpzQqHqCMdjUpjzH1yKz0ZZWcAVEyBuB+VSHcPlOSKaevJqHoUV2Bj+lTwXTICvDI33kYZBoIByDzVeRdrcZA96qMhNFlrPeDLZEtxloSfmH09RVdJg/ysCDSxzNGwKkgg5BBq2zW+oDEpEVx2lA4b/e/xq9Jbk6optGT0xnsakhLh8NTZEmtH8ucEeh9RUsZVuTz7046PUb2LiqCOlWdNty+r2cfZpkH61RUsvIOcd62/DLef4hslx0kz+QzXdTSk1YxndJmOApZie60keB5n1FM3hmQZwAtS20fnTeWp+U4JPt3razbsYN2RoW6fulP8T/yrmtUu1uL5yOUX5V+grf1K5+z2bsvDMNie3+RXHuwBJY1ljJ2SporDQu3NjHlwD6VUAXcX5yakY7h61EeXx2Fcex3pCykhOKijBAJNOctgBuKQBmIHOCc0bIpK7F2fLznmlLfKygdBRKSuADQoypPvS6BbUAf4R6VbjOVA9qqqBu/CrEPX8KiY7EmMo3TpVWXgD6VbB+UiqknIHNENwLibvJVs9hViE7kBJ5BqnFIPsqqfTFWrU53D8aiSC2hOQMg1dt2G5T3qqRmPipLckr9DSWxDR2elXZjt1wyEjOATg+tV9TnMshlJGGOSBWRDOyJjPIq7CDOpQ8mt1qjDls7lF/lY4HGarSgn8a0rm3ZCCVOBxWdIcPtP3T0xU1EaRZUZcH2NNcZXjtU8q9etQMuRx1rMtEOM/hUsT7T34pnOOnTinAEcflTYy4CGUMOlathdNGNynJXqM9azIXDL0A9cVKJHhbgipj5EyVzdv8AVfPt1VlwV757elYrgSjcn3qXzBKvr2NRJmKUEDgmqcmyFG2xZggkkGQB71I8MkeQTjjOBWxp9skqLKoDeoJ4Ipl5ZbVyD8nYjtTtoTzanPyZKnmq+4jrzVm4BVyOhquw38jr6VmzRDT69qRgGGD+BpwyB7UoX/8AVQhlZkK/40zqMMOKtEDHrUMkeOQeKtMQ6G6MSeRMpntv7v8AEnup/p0p7WpjTz7aTzbc/wAQ7H0YdjVUEg1JBK9vJ5sDAMeGUjIYehHcVvGV9GQ12J47jPHQ10/glRL4lhI/hR2/TH9a51Iob45gXy7gcmA9/wDd9fp1+tdT8PISdcuHI+5AR+ZFdGHjarEyqtcjOTVSVU99uK1NNhMVirkfvJBgfSqVhE1xLGnvz9K1r24FpayTgAKo2p9e1d1NJLnZyVHf3Uc7r12GuDGGwkQ2/j3rA8xZ8gNn6UajPvwuc5OTUSYgg3n0ya8yo+d876no0ockUiXGM0kaDdnFJDOsnG0qKkYbW46CsZXTsbIqXS+ZIR2HFSMuAMdqjGDIOepyaklb58DtQ+iGiCQlpBmphgLjviousmeKdnaf+A1T2sOw5eW49KnhB3celRRDA564qePIk7Yx0rOQEyD5Gz3qXStHuNSDPHGGjUkElsc1XQkselWYWKFQpIHoDUxajuKSdtCBolR9gGB2FTWpxLgdxUdySHBFLASsyk0t0VbQ0cfKQKitpdr7GHJqcDJquylZdw6g5pU9dGQzUtecqwBx0+lb+jxKs2XUkfWudtmKzLzwwxXU6f8AcVsgKflz79RXVRV3qc9TYm1KzBjIEeCV3DmuVuo8Diu5umR7XdjBQZGPT/HmuSvQpkfAGP6VVVCpsy8F09xULLj6VYwFb2PBqOZSvIHWuRo3RVYbXPvzSghlGKkI3p0wahTAPIxntQUTwlgwKgkd6sTJlQwGcVXjkMUgNXyQ6gjGCOKTdndElFJTG+fXqK0ImVsMKoyxbW3Dp/KrFrJyB+lN66oTOh02SSMsUTOeSPX3rUuGRoS+3cpGDWFbuwYFH2/0q1PI0MIdWYpn5gD+taJ3Rg46mPfhRKVByR39aodSRyPerdztYkqeKpkHPPNZ7my2G/MjHnIPapQQRmjGV6U1QVOO3vVWuhbDmAI9aiJK8j8RTg21sEUjZLdAB6iptbcZC8e47kH1FRgc5UkH0qbo3BwfSkcCQZB2sP1q4uwmNALc4IYcgjtXofw5kkuJL+WZQ0ihF83uwOev5da873Mh5FemfDeMf2ZeS4I3ygc+w/8Ar134O/tUjnxNuQ144YU+5BCv0jAri/iKXW20+QYWIvIuAMAkAc/zrtpCVj+X77EKo9zXJfFmHyPD+lqg+7OUz9VP+FehiFek0jlo/GjyQkzz5PQn9KdcuNqqfrT4Yyq59aqSky3OxT3wK8j4peh6yRctogIdxHJ5pXZm+VfTFTPhITjoB+lV1ZSocDqOprC7b5ikNRSGOeopvXdk4NSZ6mmGDaGYuT7U+uo0M4DcH2qzEqtuJA9KgQDOfSrELDysjuaUnoVYao5PbmpohmQ/SouOT71NDnzORxUsRNCitkknPtUigCRAOmKSHCg/WnZAb6Vk2BFcY3Z9KI/ukjtSzjdkD1pVjxmqWwy8ckBgT0poXdkE5pUkQxqufmx0pw6jjGKUbkMkikwi57V0Gn3TKrDdwwBHsR0Nc8BhiKu2smIuvI4rohK2plONzqHljEXPLY5Hb/PFYVyRuIXtwPcUNOcqARgjBqKU/wAQ605yuyYxsVZRkGmlRInvUshAB9DxVY/MOnNZNGiIRwxyc54pskfcfjTjkrkUq/OuO4pbajXYYMMOtXISAgAPBqnja3TvU0RCkDPBqZDZbwf8ahdBFg9c9PapgQyY7+1RFipKkZHvSh2JZat5z2bB9KnlncrtOfSstWdGIzg9qmE7OvzN7Yq3oK1wLFWKMMCgoR069qaSW+Vj9DUsJycVIDooXYEeWzD2FI8BTIKkA+taUZcRjkjt9aZKqlcN8wHQ961iZ3MeZcKAQD6Gq4c9Gq9NFgEEHHaqUiEfL+RpuzKTFOMc/gahLlW5496buKHDfdqQqCKhaMofkSDB6+1eqfD2ExeGck5LzMc+3A/pXkOXifHVT0r2vwXH5fhOxz1ZS35sa9LL1+8v5HJitIolt08ySST+GEAD/e//AFfzrm/i1GG8KwSH/lndofzDCuut4fJsZ4upXOT6nANc18UYxL4GnY9Emib/AMex/WvSqr92zkpv30eEvdy7cKAPSjT4mM25udoz+NRORvwK0LJMRbj1Y/pXi1Gowdup7KJZ+YsdM8VEFCoF9BU5IbJByBULnC8VzLsUhFUkqPf0p1wMRD3NPjBCknk54qO6/gHoM0LWVhorEkYA7iroQCJQKhjUGPJHTmrD8Rrj2om76F2IwO3vViJcsB6VCo+fHpVmAAtnPNRJkku3B9qFALNzmlfGSPpVnTbRbu9EPz5YEjZjJwM96mKcnZC2Vys4UKe9MBJFaus6W2mNHkEK4PDMCcjr0+tZQ6GqlFwfLLcIyUldFiEDBJ7GpehqKAgkqe/NSnGRUrcT3FWTLjjFXIDtZgOh5qiOJOKuRcEH8K0JaJgTkg/UVaQxMPmXt3Peq68sDir9nbebuUY3Y3D8Ke5myCTbsIVBjGelUpB7cfStx7dgQCgKtypJArMmiwxB4I7U2EWZkmAeO9R/cO7pVqZFZc88VWBBGDUpmgrjIp0R3gqTzSD0PFMBIkAXrU2GWFkdCCVzjrU7gMgZfrUOQeTSNIyrhWIHpSjCUn7qIk0t2MY9qRWJHHUUmSxIOc+/emEYBOce9df1PEOPNyOxkq9K9uZXJ2PmJgEgip9P+eXynOGPQmqSuM43c1Yty+7eAm4dOpqKdFt2bS+aKqTSWz+46e0jVlMMqHeO2KnktGc8w/MRwCKy7HUdQkkHl3KI4GAdgyQPwq+Wv7xFMuqzEg4ZFXbj8q6Fh6cdJVF+L/Q5HUm9osrXNq3lhJMKScKWOPwrAuozFkHGPY1t3thaBGdzNJKeQZJM5xWBcrEGwUHtUzjQS0k38v8AgmtN1H0RUZg3Xr296jSUoeeR2p7oiY2qPbjpScMOnNRzUfsxv6v/ACNEp9WKzlgfkyO9e6+HofI8OadH6W6fyzXhMTEShSOpxX0Fap5VpDGP4I1X8hXfgEnKTSscuKukk2MXlrlfX/4kVynjOR7/AOG+pSOoG1FIx6hhk10dtqFrNPIYZklVgvzRsGGeR2rK8UQBvh/qkKjgWbn8hmvQmrxZzR0Z85rkse5JrUUOsW1DyBgVn2a7pR6Dk1qwjJz2ArwK71PbS0GqpSNQcZA5+tMkOcgemamcMW4qFgQxHWsEWiSNh096guGzcEDoABViPluarGKV5nbyzy1EbXGX7dAIBwOlMfk81Mo2wCoH++BnkmsVq7lWGf8ALTP4VYg5k/DH61CiFpSBzVlV8pyWP5DNddLCV66vTg2jnq4ilS0nJJjnOHP0pytxkEjHcUm9GLbonPHYdKFHBwpHseK2eVYtW5o29Wv8zGOPoPZ3+T/yCRmYKWJYnuTmliUbwD0OKXP3flGPc0uMfNlcUvqDSvKpFf8Ab3+VyvrSvaMJP5f5ltokRSVGDjrTFBkIweBTyjeXuaVjgdOmaZGfNHIbH1qY4fDR+Kt9yb/yF7Ws1eNP72v+CK6FHXmpY2DDHcUkyhUyoAOR70kYyeehqJqgl7km/lb9WXF1X8SS+d/0NO1Zdy5IH1NbVjHGsil7iFcf7WawLXC5GAT6nmtWzufKY7MJ9B1rS+G+zzfgYyVbrY3ryyszAzJPI6EZbZCzAH24/GudvhE6I0azMwGGJTAroItRupLRkFxKWAxgE4rnLiV9zKzEq3Iz+dVKph19hv5mcIVW7c34Gaw+Yjj3qpMFjfAQkdznAq2zfPnFR3CbkyO1TPFraEIr5X/O5vChZ3lJv5/5WK4K9dp596cUkCbgFx2pg6kd+xqeB9ylG6ionja1vdaXokhrDwT1V/VtjFwy04IFII6GmsvlSf7LU8EH5c9aieOxM9HN29RrDUY6qKIXXYeMgfWm8HBFSSE9G6Coc7Wz2NYJtrU1sOxjkdPSpo2IAKj5vcVHxnnp3qVG6AnIPSi9tRPUsxz7QHU7XHPFakd3HJ+9ibbIB8y+tYTIM7u9PScoFI7c/WtU7oycTUvJlmTcGIOPyrDdiG2tj8aumYMu5Tweo9KqTLv+oqXLoyooicZGQKqzblXcnUVKJCDtP60pwRkGiLsymrkmlD7bfWiFCGaZFI/EV7/04rxTwxH5viTTlxn98D+XNe0Zr2svXuyaPNxb95I808AWxTX7jynY28ceT6E54z79a7jU4/P8NajDj71tMuPwaqPh3TYtJsLeJBlpEZ3cjliSP6VrZSS1uIiwyd64z65/xrtS01MJO70PmizQrDk8E1oRtsXBGc1WVdr7PQ4qyW5C185Vd2e7HYfuByfWq68vuA681KxCQk98VBvADgdlrNIpFmMZXJ6mpwP5Vnw8zIM5rS42t7AVFRWHYZJnbt9qjK8g+lTnHzfSomxuFQiiADMhqxbs3mEMTnFRKMuTVm2+8x9q0lJpWuLlRYXndUT4EhHtU6YAOahkx53tWO7BIaAzLwKU5EfNSQA4cMMc96CuCadw6k6EGFD3IyaSPjgACliA8kD04oUYc/nQKw6QFkIHpTYm4BHWph3FQLlGI9DTixNFuKQ+cvHB4q+h2kEHrxWWrqo6jI5q+JA8WB3GRVrRkSVy213JGnykjseeDVJ5S/Xt0+lMkkJQEHkjjNQEvsVieQeRWj2JUbD3G7kd+aIiWUihSMYNCfLIRWe6LsVHXZIQe3IpCzIQyjnqKtXEeV3jqKrf7I/Cn0CxZfE0GR35HsaqIxkUg8Mp5Bqe3faTGTweRTZIwkm8dD1rPbQYjfOuV4PvUfHQjg1KDjpUb561S0FYF4JXH0zTlP8ACTimE5Ge4oBDjI/EGqJsWFcMCp696ikO0FfxFIrD3yKe2JUHr29qNmKxXWUoSfzFSmQbQw5FVn4PAwR601Jdhx2P6VTVwtYmmTd84OT/ADqFW7VKGC9Pun9KjkQE7l/GnHTRiZ0/giIyeJrZiOEDNn8K9Y3V5j8O/n1aZz1jiPP1IFekluK93Ax5aR5eJd6h/9k=", "path": "images/5pts_ADE_train_00006601.jpg" }
depth_point_78
images/3pts_ADE_train_00003636.jpg
ADE_train_00003636.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 224 y = 159),Point B is located at (x = 35 y = 199),Point C is located at (x = 70 y = 191).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_1><DEPTH_2><DEPTH_44><DEPTH_64><DEPTH_49><DEPTH_67><DEPTH_31><DEPTH_60><DEPTH_77><DEPTH_77><DEPTH_66><DEPTH_64><DEPTH_58><DEPTH_49><DEPTH_59><DEPTH_67><DEPTH_49><DEPTH_17><DEPTH_30><DEPTH_60><DEPTH_2><DEPTH_41><DEPTH_15><DEPTH_38><DEPTH_85><DEPTH_67><DEPTH_17><DEPTH_67><DEPTH_59><DEPTH_31><DEPTH_58><DEPTH_81><DEPTH_31><DEPTH_66><DEPTH_49><DEPTH_40><DEPTH_49><DEPTH_85><DEPTH_31><DEPTH_77><DEPTH_44><DEPTH_9><DEPTH_44><DEPTH_19><DEPTH_0><DEPTH_0><DEPTH_1><DEPTH_33><DEPTH_16><DEPTH_62><DEPTH_9><DEPTH_42><DEPTH_44><DEPTH_2><DEPTH_1><DEPTH_16><DEPTH_12><DEPTH_119><DEPTH_23><DEPTH_73><DEPTH_74><DEPTH_84><DEPTH_31><DEPTH_64><DEPTH_0><DEPTH_1><DEPTH_42><DEPTH_119><DEPTH_57><DEPTH_3><DEPTH_81><DEPTH_78><DEPTH_58><DEPTH_15><DEPTH_72><DEPTH_33><DEPTH_121><DEPTH_119><DEPTH_81><DEPTH_63><DEPTH_33><DEPTH_25><DEPTH_2><DEPTH_0><DEPTH_2><DEPTH_64><DEPTH_81><DEPTH_16><DEPTH_63><DEPTH_32><DEPTH_57><DEPTH_94><DEPTH_16><DEPTH_94><DEPTH_94><DEPTH_16><DEPTH_57><DEPTH_55><DEPTH_42><DEPTH_16><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
3
[ "C", "B", "A" ]
<DEPTH_START><DEPTH_1><DEPTH_2><DEPTH_44><DEPTH_64><DEPTH_49><DEPTH_67><DEPTH_31><DEPTH_60><DEPTH_77><DEPTH_77><DEPTH_66><DEPTH_64><DEPTH_58><DEPTH_49><DEPTH_59><DEPTH_67><DEPTH_49><DEPTH_17><DEPTH_30><DEPTH_60><DEPTH_2><DEPTH_41><DEPTH_15><DEPTH_38><DEPTH_85><DEPTH_67><DEPTH_17><DEPTH_67><DEPTH_59><DEPTH_31><DEPTH_58><DEPTH_81><DEPTH_31><DEPTH_66><DEPTH_49><DEPTH_40><DEPTH_49><DEPTH_85><DEPTH_31><DEPTH_77><DEPTH_44><DEPTH_9><DEPTH_44><DEPTH_19><DEPTH_0><DEPTH_0><DEPTH_1><DEPTH_33><DEPTH_16><DEPTH_62><DEPTH_9><DEPTH_42><DEPTH_44><DEPTH_2><DEPTH_1><DEPTH_16><DEPTH_12><DEPTH_119><DEPTH_23><DEPTH_73><DEPTH_74><DEPTH_84><DEPTH_31><DEPTH_64><DEPTH_0><DEPTH_1><DEPTH_42><DEPTH_119><DEPTH_57><DEPTH_3><DEPTH_81><DEPTH_78><DEPTH_58><DEPTH_15><DEPTH_72><DEPTH_33><DEPTH_121><DEPTH_119><DEPTH_81><DEPTH_63><DEPTH_33><DEPTH_25><DEPTH_2><DEPTH_0><DEPTH_2><DEPTH_64><DEPTH_81><DEPTH_16><DEPTH_63><DEPTH_32><DEPTH_57><DEPTH_94><DEPTH_16><DEPTH_94><DEPTH_94><DEPTH_16><DEPTH_57><DEPTH_55><DEPTH_42><DEPTH_16><DEPTH_END>
224
159
35
199
70
191
null
null
null
null
181
148
119
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDcEdOEdWRHT1irzjvKwj4p3l1a8ul8ugCsI6Xy6tCKgxn0piKLJio2WrrJULLVIlsqlabsqyUpCntWiRDZWKU3ZVkpTSlWiWV9tG32qYpSBaqwhgX2p4WnhaeEosK41Vp6inheacFpMExUWp1TimxrVtI8isJ6GkSs8fFQtHxWk0XFRNDxXNKRqkZpiqZYqmMWO1WEiz2rFyKsU/K9qXy6u+TikMWBVKQFIpio2WrbJVdx2raDuSyrIPlP0rnYkFxcrI7SMhPzJuKjHpxXUJH5kqp/eIFatv4Lgs9RtrS4kLPMGbK9Biu6lDmRi5qL1OPtIIVnmP2aJhu+UOu7H51fZ5ChVURVIxhI1X+Qr0OHwdp0WfvHJzVtPDWmoP8AU7vqa6rpaXM+ddjySSN8/dNQNAxP3TXsb6JpMS7ntkAHrVe8stORo0htIixwSQPuj3pKKb0FKuktTyS20+aS4dhCxHstaaaPduPltpD/AMBNet21naxbmihjAbptX0qzgAcAU+aK6C52zxmfQb9YyTZuo9StVH0C+WEStFtjY4DHoTXrutSv9gZAh2l0XcD/ALQrj9dvJ2s7eDyiqKzEPnhsmrjTU1ch13F2OKfQZmUhmAz6VYs/Cqsxja5RAoySTVsmUy5ViQVxya29C0lL26cOX4QkYGe4oVGK3FLET6Gengi2FiLl76LBP3c87c4zVy28A+dtaMKyMoYMe/OK6Kfw7Z3lsGs7lowrgMxHDe9dNZRLbWqRBgVXhTjFElCK0WpMZ1JPVnngi9qkWGpo0yKnWKvFueoVRF7Uoi9quiKl8n2piKfle1NaPA6VoeVgVBIlNCM50qBkq861CUraKIZV2UhT2qxspCtaJEMrFKaUqztppWqsSVSlJsqyUpuyqJIwnFPC08LTwtOxNxgWnBeaeFp22pY0wReavwJkCqaLzWhbda5quxrAkMPtTDDx0rRSLcBxQ8HHSvPnI3RiTR7alhWnXq7c0tucjNZtlDylRulW9uRUMmKqLBlCVcCqcnJq7LzVZlrrpmcgtE/0uEY/5aL/ADrt7oZ8T2PtDIa46yX/AE2D/rov867GfnxTaj0t3/nXpUNmcdbobFIx2qT6ClpCQBkmqEZ2oXtvHA27DPjgfXg1l6aguXmPmjzWO8bh35/QVYvhEdRhXG5WcbvQVeOnRPKXjcxrjbtTge9dCajG3c5bOcr9iUmRbVfLAJXsD1AqS3kE0IZcj60yANBGUk5VeFb1FWVAA4GKxZvFdShqwC6eFHTev865vxHbhNDsAOoJP5iui1o4s0Hq4/kaw/FYxp9ipPAH9BW9LZL1/Iie7OMWPDHHauz8GIoa4JPO0AfTJrkCBzx9cV2vg9MQzsQMjAz+JqqnwsS+JFnVr6KSCW0twDMzeVt/UnFaOzyltoQcbsBs9eF/nWLf2c8GuR3CeXmaQbM9uma3ImLtELgx+cMsAp6VnNJRVhRbcnc46EVdjTiqcQ6VoRV4rR7A4Re1O8qp0UU4r7UkBUdMCqsq1fkFVJFzWkSWUXSoWSrrrULLWyM2VdtNK1YK03bWiRDK5Wm7asFaaVqyWVytJsqfZRtqiGyELTgtSbaeF4pkkYWl21IFoxzUspCKvNXIAVINV1HNXYRzXJUNompbAMoqWZQENV4Mp0qWdyY8YxXm1NzdGFffOxApIAQBUlyvJp0K8CovoUSAkionUmrIXimuvHSqgwZnumKruKuyCqsg5rrpu5nIWxGb+3/66L/OuskOfFkA9LZj+orltPGdSth/01X+ddQx/wCKvjH/AE6n+Yr1KGzOOtujapGUMMGlopiMjULMrC8obhRnpV6BgsACIdwAyPrVTU5SYQokCq3Ud6msLmM26KXy2Mc9RitXdwTZhHlU2kXeDS0UVkbmXrZ/cwr6uf5GsPxiSBZqM8A5ra1nl7ZfVj/SsnxiAWtuvCmuql9n5mE938jkDlTt/Gu18Ibzb3DEAIWGP1rjDy/XqK7jwoM6ZKMYHmEfpTq/CKPxIs3MC3mrSI8zKscSkAe5Of5CsmXUI7m6aC1YRiMBQ6nlgvv+Na0unpZzLPDMU3uN5c5HT1NZGoXdu+tww2hjIdVUsg/2smiDT80RUuk7lWJeauxiqsQq5H2rwme2WEzUhpEqTFCEyu65qB1q4w4qB1q0JlJ1qFlq461Ay1rEzZVK803b1qcrTSK1iQyArSbamK03FaGbIitJt5qUijbTJIwtKFp4XinBaYiPFIRUuKaRzUyGho61eh7VTUc1chrjrG8DRg6VJMPkNNgU4qaRCVryaktToRi3S9aWIcCtUaQ9wm5m255GBSvpDwxFg+cDJBFafVqvLzWF7SF7XKFMfpU23AqJxWUWW0U5aqSVclFU5K7aTM5Emmf8hS1H/TVf510oOfGmPSz/APZq5vShnV7Uf9NBXQx8+OJv9myH/oVerQ2ZxVd0b/aq090kQZf4uwqZ32YGMk9BVO6mj8s5HXI3fStIrXUzm9NCol0J73bNGNpGMEelPCI94dyeWN2FTvx3qzCiSyb4lUbR9/HJOKmktEkIJJyG3ZzVuSTM+RtE4paQKF6fSlrI3MjVfmvrNff+orK8XEebAM4IXPP1rTvju1u1T0A/n/8AWrH8XDN3HknBj/xrrpbx9Gc8+vqjlGYmT5c8da24JLttEYWxZQsu4lDz0z1/OsJRliCe+eBXceFrSKbR5lddwkk+bPfgU5yUdWTyuWhzd5LqDrFbhy0QC7jnKk0aKm/xFFCclUZio/u8Gt/xKpjthaxbEj6gY5P41i+HLG4h1yOaWNwrKSGPcZxmnzXV0ZNWdmaUQ4q3GKrRDpVyIE1865H0KROgqQkKuWYAe5ojQ4qzFYW9xlp4lkI4G6tIJzdkZzko7lB7m3UHM6cdcNmgYlGUyw9ga2ltLdFKpDGoxjhRUiKFQADoK6Y0X1Zg63ZHNyxlSQRg1Xda2NRixMW/vDNZUi4pWsyr3VyswphHapWHNMNaxIZGRmm49qfTTWhmxpFGKd9KTFMkTFOApKdmmITHNMPWnk1C7jPWpkND1xmrUR5FZwnUNjcM0v8AalnHdxWr3CCeQZRM8mvPxL0OqmjprXBAq04G2s22mwo5q9C/mzInvXjptz5e5rNPc1UXaij0GKJF3RsvqMUoNGa+mSVrHAc2wwSKhep70eVdSJ2zkfQ1Td/evnOVxk49j0k01cgmIqjJirUr9apSNXbSRnIs6PzrNr/10FdHbyq3jK7h2Dctqjb+/JPFc5ofza3aj/b/AKGtq0OfH+pe1nEP1NerQ+FnFV3R0bAMvIBrMuMBjtXGMDB6DnmrBuGi4YANnoeM1Tup3Yh/LGVIH1rojFnPOojQsWDW+QAMknirNZttOWI3fuwcY9PpV/eOACDz61Ek0y4STQ+ikyOmeaWpNDEn+bxJGP7qr/U1j+LG/wCJig9Ixz+dbIYP4nYf3UA/T/69YHi+YDUSucbYxmuuHxL0OeWz9TnEJZun4+td94bPl6CXjXcwYnHrwK8/hOWGTXXWOoC00JPKnQXCMS0bfxg0qiurISdncbrc6apBmOVUkjzmNzg47kUzQJbmO5bauUjjA2seueev4Vli5tbqR5Z1YSbiWOeD7Ukd1MLoPbRPteQhEX27flVqKtYwlJt3NuIdKvwgVnQvgVehfNfMN6n0j2NCICr0IwlUIm6VoQ/6sV24bc4qpJRRSZ5rtMCrqEe6Dd/dNYco5rpZFDoynoRiuQ1W9FhHIShd1OAmcZNc9ZqHvM3pJy91COcVGxrAfxUjR5FpKH7hiBg1Sm8R3jDMdsqqehYk0o14lulLqdQTTC4HU1xz6tqUpwZ9ueyJTvJvpV3SNMR33PirVa+yJdLuzqnuoYx80ir9TVd9WtE/5bKT7c1zzWcvmLELYl/Q9acbe6jyDbBAvVnYACrUqj2RDjBbyNltajH3I5H+gxTRqdzIf3duB7s1UEs7ySINF5aknjceD7e1QjTtfuGmC3aWqBcbVjBdTnr7j/GtFTqvUzc6SNyNbyfrMqf7q5oeC2hP+l3oHs0gX9Kw9T0W4j0+RptRunO5GSTcQAw7Yz0P+FU7Dw/bPI9xLcbVExkXA5XjGD7U/ZSWjJVaHQ07jU9Di3t5vmBU8zKAv8ucZrH1C+tZNX09IYJ0kiutpcAY6DI/Ig1tW/hvT4oxFiSVlhaPBP30Y7iBV+1sDHMHWBQh53sACpxj8eKl4Ry3K+txjsbNs7lAwHHrV6G4kt2LmNzxwQKj05olEazNGSOCo9OxroWghZMbRj1FeXi8AqMk4s2pYpVE00ULbVhM6wpHI0hGcbank1NbdhHOro5GcY7VDa2fk3zSqUwAQNx9aZrFu8jRzZQgDaQtKnKUaTmt0U4xc7FG/uo7lwyA5HGcdqz3Y1f+zNt+6aqzwlQeK43PnlzM6FHlVkUJJKqu9TzjBqk5rspGcjU8PfNrtt9T/I1rWjt/wnur7ev2eFf51k+GRu16D2DH/wAdNaNpPbv401lfMWOVFjDEsBu4yK9TD7M4cRfob05DQszDJQ4Xn9KpyR8IzDaScnHanSyl0I2luecc/jVS4aWEJkEgsB1zxXXCOhwzldlsSsEGCM578itFGSGFSBliOlY6ShGLH6j0qeO4eSQEDKnnA7VM43HCfLuaayASN+tTg5GaoRnzDlR1GatCULH1BIOPxrGSOmE7mDZPv8V3WexI/QCub8Svv168DHhSAPyFb2mPnxBev7t/6ERXMa9LnXL4kg4cY/ACupaP5GV739SjApY4HUYrZVJYLOGVoiImBJYLwe3Wsi3bL7iAoHPFa6axMtotlKc2xXPA6d8UdSZ2sQb4ph0UYABA4yeeasHybK1t7lgWlErnrjgYH881b0IW8snleeyoSSRgcnsP5msfUod96wXzHUuxAI5+8armMbaXNdZcYq9BL0rC87GKtQ3OO9fKN6n1Fjooph61sQsBbqfbNcpBchiFz1rYa/WOIAuoyQOTXRQq8j1OetTcrWNmmE4kUeoNZT67aocGaPPsc0j6puVJEilZVOchDjFdqxCexzeyl1NmuK8c2J+zi6XIRiA+OzdjWxLr8calmRwPpWLq3i2BrOSE2fnLIuCH4FZ15wqU3Fs0oxnCakkeRanc3NtLOI33hSCd/v6VpaVfs9kVkaPMZxkLlmz0qlrMRW5DY+WSP+VRaESLll3hBtxu+lc+GlszrxEL3NiTUDaT28xU7VlUurn7y9xitC6uZr9t655fG0dB6VgX0LDc5HJ6PIasaVdPJAdsmSvyk47ivQ5vd1PNcdTo2kaO3SZxvaEBCQf51qi7F1aJcLErCQGOVCMnNY+nxEpJHKQEnHAPXPrVvSZg1y9si+WwB2+7D1rWjPoZ1YXVy1D5tvhVyN3QEVqxrcGNZFGJEPzD+8Koos91b/MjGRWyPl7VoQW85uUfGBtxIpP513pHE9xL2ye5s7iL7yshKg9j1/nXFWgaBm89wsbkAKTy3Nd9aoxZoNw3RPxuPUd64nxFpzWmsOsrbYzmRGHOVPp+NRV7jpPoXY7ySfZHDFt8rOAvUfjWlbIbiFpp5/lztIbJrA0+8klRRa5BVvmHc+hNdJbxRBm3ttjm42+h/wDrGqpu6FNWZbtvssYCHzHZBn04rfguB5G0HO3p9D0rmCwjkUKpBjyp3d61LK5MiOpAGMDgdv8A9dZY2h7ai4rcMPVUKivsVtfnlRI5Y3IAODg0mj3Es4LSsSoHc96q6rcpHE0V0smCcZSMtgj6Umn30AiEduJOOpaMr/OvlYycaEj6Dlu0dIHGKhnCOpHFZ7XkiDcQMe5xVNNetprsWqPvlPJCfMFHqTXLTlfYtwsJewbckdKyJetb08iyKQaxLpNrEivToswmS6VqS6XeC4KB2AIALY61dfUNCvbiSa80pXkc5Lghj+Zrn3NRHHoK9KnNxWhzTgm9TpBD4VfpBcw/7hI/kakWz0I/6rV76H/trJ/ia5XOPb6Uu9h/E351sqjM+RHWf2fC+PJ8UzcdBI6n+a1Mllq6Ai28QW0oPZ40P8iK43zn/vUfaJB6VXtGT7NHbKniuBTslsJl/wCuZX+RNMOreJLRcPpFrIOpKSsCfzFcct9Mh+VmH0Yip01y+j+7czr/ANtDT50yeQ3rTUZ7K6ed7XJkHzLuxg5z1rDulludRubiQYWRyygdgfWgeIL0dbhz/vDNOHiKf+LyW/3ox/hVKqL2aI0jaMjnj6VI5HRXIXAGCKcNeVj89rbN9Bil/teyYfPYAf7klUqiIdG5o2NzYQhXcFXA6qec4/xrJmklluN6uAxOSxNS/wBoaU/3oJ0+hBpwn0Zv+W8qf7yZq/aJkOh5i8kircMZOKijj3OK2bK1LkcV83yo+huRw2PnqFYZB7VqW/h23IBaBT/vc1p2lokQBI5q8DitqVNX945atd7RM6HR4IWBWKMAHstaWARjHHpRn1OKiCRq+4yE+xau2CUfhOaUnLc5bVrUoZFxwCcVyt/EPspJHIr0jUoIpIcjGen1ridTsSI5AOleZXXs5tM9CjLnijiPFEXkafauerKf5Vy+lXvl6raqcbpH2nd2yP8A9VdZ45lAjsY17ZxXnVxMYbtZcco4b8uanANygm+50YlWZ6Te2wmjJVTIw/jfhRWJY3BtdR8svuEny8DhTniusaA3VpDOgacOgZVHCKCMjmuS1iIpNgvz/diHGfrXqLXQ8uSsdYkM1xdRSRNwMNk9FpHuUh1nzoGDYYHjpnvVbTLv7Zo6+WGSVRtlXPJOf/1GrJ01raETyP8ANuGVHYVVK6lYzqfCdJbapcTSKrMqq3QKOlTKl1PbtnezhgQT3qKG6Fvp1u0cSEuCrHHpUxvphvjD4UL8uOvSvWitDzJPXViGGWCRFk+Uv0OaqeK9Pc6Ql4JELWfMi56oeD+XWke9aS0CsxaVH7nnBFTz3UEguFmZDHNFtZSevy81TTkrEXUXdHB2k7LNut5CAemO4rtbE7dOxdtt53AjqvvXM2WjyXGpMYlQQxPhdiEKw+uetdNb6ddFZY7iZDG42qsY+YDGOWPf6VnTjy7mlR82w++1a0WGe5Qh1UAyc/NGfcfh+tMsNZlmnT7Gkk0RQ52rx7cnipU0bSbVWlktYRx87Sckj3z1q5DehpUgs7cGPbnzCQqAe1a9DGyvqE+m3t7P551N4EZBuhEauAwHqaoXAltB9nj1mx8/1kjx+eDxWo6LIji4Z3GfujKL+fen2wgtfktrdYweuFxxXFLB4dttxWp1xxNdKyeh53rv9sRuY769DIwyph+4foareFGWDV5WBOTCQST1+YV6rIIZAEkhRkbpuUEVV+wwx/MmnwoegJUdPauapl8ZXUXY6YY1pe8rsyPtO7vUMrhx710ItrZnXdBDnuCoB/Ko20i0chmBQHtuxWP9nTjsy/rsHujkJeCagLV1E2gW8mAtw6Nk5BG6oz4OZgdl4N3oU/8Ar1ssPUjuL6xTfU5rdSbq2ZfCmpRg7TC+Bnh8Z/Oq0fh3U5X2+UqD+8zjFUqc+wvawfUzi1NLVtP4T1FfuPBIfRXwf1qjNoupwDL2U2B3Az/KnySXQSqRezKRamE80rrIhw6Mp/2hio81OqKFpppN1JmgYGmEVt6HoNxq0+4ERW68tKwzj6Z6/wAq5+5uYIdfvtMsrtr20jIZZ5AMhu4BHUf4VXLpdi3dkPJI7kU3zH/vGhjTDUjPQLSLfJ0rpbRFiQetZFkgQZxWokgrx3I9GSujQWXHepBNz1rO82lWbnrSVXUxdIk1eST+z3eEkOnzceneuXi1O5dwGkNdO0oKkHkGuUubfyNRaNfuk5X6U5SfOmjajBKLTN+GZpIxkk8ZrI1SULby/StJf3EK5zyKxdSgmuIZFTALdMmscbVXNZvWxpRh2PN/G0pe5tMNjCGuAu8vI2SWPevRfE2i6leyxTW0PnJGu1tjf5zXnup21zBcJDLBLE7DhGUgk5rXL5R5FFPUvFp3bPWvBd8moeEbSJ2LyQgxeWp9OmfwxWb4gRYkfLxx4/hj5P41k+BtH1+zabfaTQ2ko3YYbS7Dt1BH/wBausn8MatrJIkkt7GH0QeYw+rGvQukzznqjnvCuow2TXqeW5mkCeSDz3IJ/DiuhtrvzJbiOZZHV/vOexFW9N8HwaKuYpmuHLbmabHJ/CrRiSByyIoJ/KtIThzcxjJS5bE8Eq/2eieRNKd5IGNuOPeq722oXMzPHLFACMAn5sdulSfaHb775HpU3nIi5dgv1713xxDlpFHHLDpayZXTRAxD3F3LI/fZ8oNW49LsIiHMKFgc7pDnn8aj+0yyEiPag7SOc/oKr/2VJqB3HUnJBw6KNg/DPNaqXdmTj/KjQOp2sbeUpMrDokQyfyqKW71GZ5I7eAwoF+WaToT6AdzVYaXb29yDBO9u8DYyE+9/vVd8uEyh5b+V5G5AVRgZoVVdEN0m92Q2gWfzTPdgyEDcpOBx3welasHmsNv2iJx1xxVOSGZJWLnzVbnnjj6VXjjtZJD5cNxHJ3DEgfhio9pJvUv2UUtDZeYowAQNkYOOfzpPtEBbZ/q5FHQL936GqMcs6yeUqSGP0kIx/KrANwAwk8twDwcbcCi4rE6upAIcO2cbuc1MFDIVY5OeMHmqschl3FVyF9fu1JjcoEhIPYKMCrTE0OH+sOEbcO45JqO/1OPSdKvNQnDeTawvPJGgyzKiljjOBnAp5eQL9722pg1heL5W/wCEI1wZAB0+447n921NvQhLWxyjfHrwyV2rp2qqD6Qx/wDxyvSxOytk4Cnrjt9a+adXhtW8G/2LHLM19o0UN3LG0IVU8w/vsNuJZt0sKn5RgRd6+inUygHzGRj0b7p/EHg1FGble5pWgo2sW5LxUAwwyTxzwfxpgllYbucfT/Cq2HVvljDHHzKQR+PHFPDMXPyq7D+LONv1GK2MNS5FLJz+7KD1JHNTrOwBJBX1PWs+JwXLNGxb1ByP0NSLKrncGJPoe34Hmla4MtSSrKhDRpIncuARWddaXpl1w1qise6Daf0qwznBLHAHoc//AFxVaa4RFI49eKagmLma2MS98LDlrOcf7kn+NQ6V4Zmnnd74eTbxctubG78ew966GBCytPcOI4VG47+Ao9W/oOpri/Ffi77YrWtq7R2CdT0aUjufb0Fctb2cdTtoe1nuS+LPFsX2VtN0s+VYoNruvBl9h6L/ADrldHthFbtcN/rJzuPsOwrBvLlpmZmOABwPTiuntHDWUJHTYP5Vx87k9TrcORWROTTSeaCabmrRB6dFKAAKtJP71hrc+lV49eis7swaiPLViTFKBlSPf3rw5z5VdI9WKudMZiemTSq7moLaeC5jEkEqSp6owIq5EARXDKvNvRWKaSIZJXXHWs1tWtvtLeZZXZdTj/V8HHvXQCNAMnFZd/qVhaviSeJSO2cn8hThWnF33EnGWlgbUJbyMRxWTxL3eQ8/gKiMZGd5zWLe+N9OtgVi/eN7nFctfeObi7YpAcD+7GOa0qwq4h8zRcHGmrI7S7mgt0y7AY7Vzt/rFp5ikhd6NlGYZIPqK5Wa9v58tI4iXqS5yfy/+vVZFTAn+0POT90noB9KdLCRhrJlSrykrJHpljrME8aCcusvQkwjBroziKEJkE4yxAxXlOnahm9hG64X5wOenWu8bUA9u4VixJOSetem1poefJl6Qhkz2IrMu48ZwatLLnYgPyisTX9Q8uCXYcbRjPvVRTbM3sQm5UThEw8jA7VB/U+1SLb3BZS7Ry7v4l5x7Cs3TbTzbZpUcGSdcknsg6DNWJvNtYUChlxyWX1rp52lyoy5U9Wa9vNHHkzQGNE/ib7xPtV4XFvdWyyhVUKceZKuSPpXJveSTFPNcsF960lurS6iAYvEIxxzwKpVZdRckXsa012kfKEkkY8zP8hSRXrqgC4Yn+JzzWQ8G+VGSUSR9lX+VLFPPE0kk+Y4k/hx19AKqNWxLp3Oga7lCgm28xe7xsMfrzTxNGW2pEQT1OOPzFYEd817GzTAJFH0IOAPale+Msf7qURxqPujj86v2pPszoEnjZgkU6hh1wM/qasnYcPjJ6Ekbv5VyEd/LJlUYn14q1DqCxIynekmOHB5B+lWqq6kOmb8xdwNo3A92P8ASovMKttDEFf4RxWKdRmkUJJNvx/EeppFumHB4P1pqsugvY9zZklEnREDY69xWbq1g2qaPe2BmaMXVvJBvZS2zcpXOM84zSLc5G4Pk+/NVdR1eW0aC3toY5bu5LLErOVVcLkseOQOOOp7USqpK8jSjh51ZqEN/wDLV/ctTzgfA0MRjxGDn0sv/tlezKzcrg56legNYGmatcS3smn6mkEdykYlVosskikkZAIyMHA5PNbKsD8qHp/ErEVdKcWrxJxNCpSnyT9VbVNPqn/XbcnLBVJP3fRRkj8qT7UM4EgA9BkGomlA6lS/+2uP1FNd1wPMymezcj862UjlcSVpVPGEA/2gMfnQblF4Lcdi3IP49qrPMF+VWKnsOoNUJrltxSNC0hOPLHf6VfNYnlL0t8IskuxAGdvUj3BqUKkELXl86xKg3fN0Uf3iO59F/Oq0UEelxte6lKFMfIzyY/8AZHq38q4bxH4hl1Z2JJitU+5Hn9T6msK1dRR0UcPd3Zb8TeKn1IiGFmjsEO5VzzIf7zep/lXGzzGZwTwOwpk0pkkHoOg/z9aYoJZUAySoxj15rzZTc2enGCiiF1ad2RP4gefSt7QrnzrARk/NHx+FU/sws7UhiC5GW+vpVHRrgw6mIweHJBFNOxM1zK51hNIKTNANbo5zrFnxXN+NGzpsEwODHKOR7/8A6q0vP96yfETCfRZ16kAEV4a0kmeoYUV7c2riW3uJInHRkYiti28e6/bKUe5Eq44LoCfzrmY5C0Sn2zTlcMRVyhF7oo19S8b6xcfLJcSjP8K+n8qxxfXl6SzTbVB53Nk/lWTqviG1tb428kcxaMfNtUEHIBHepNFu/wC0BJcJuWPcU2nA54P9a3jSUIcyjYyUlKXLc2ooYODKZJm9GOB+VXIpeqxoqBeoUdKqDAHHWkso3SaZ2cBGOcGsr31ZpZLYTWNUt9LtFnu0lkjdwmEAJzgnuR6VlQeMNMnlitooLpWd1RMooAycf3q1rqW2lv7BHaNpPNk8gS42ef5Mnk5zxjzNnXj1rkdROvC50b/hIDL9pFyxT7Xu+1BNyff3c7M5257766KVCMqfM9zmq1pRqcqN63v501UxiSXG8969K0J5prZ8nc+c8nqa8w06NZtdZvmymWOelelaLOEiMa8O7Y3egrZr3EYyfvWN8zGKGRyCrfdANcl4iuJWtHijG4sOhPrW3f3aqm1WBCjAritXvWaeJEblmyfoKKUepFR9DdhZ7fS7ZVJR8djirkd/N9s8hmymD1+lZzTl44N5+6AOlWUeKWTzEB34OfpWgrkdmI5mlaVyoGOc+tTyI6xtHEwc9fTiqYgdLW4UfNu24xVZ5pILdWRirDNXZMi9jRe6ktoI0G5GyST0pJdTmnjCSPkA5HFR/wBoKVjSeMMGGcgVVuIx9vMMfAJAAo5UFzdhurOezS2MrRkc+mTSz20ggVIHVl6nJwTWB9nnhmXcuVB6jpSJeSi8IWRgCcEZ4xUODK5u5rvM9vAipkM3JYUz7SXO4uST3z1rPOpPIrwH7oI5HWkWYEkBs44qbFJmqJiBndn2NSC4KfMcj6VkrMQcmpBcf7XHegDXS6ycnBzUd3Et6ImWV4ZoW3RSpglTjHfqPUd8VnfaeAD371IJwBwcH2ND1VmXTnKnJTg7NGjp9q1tcSXM9y11cyKEaRlC4UZ4UDoPXnkjNaSzqTjDKe2Dg1ipcEAd/oalS6zyG/CtISUVZE1pzrS55vX7vuS0XyNxJ2XuHNH2ncDsPHQg9KxftfzfKcH68UNfKTtyQfWuiNU5nTLzXlrGzRyXlvBhS22ViCfp1q3Hf2GlWAvROk0rLkTD+EH+FfU+prybVrprnVJ5JGJy5VeegFOtbphalZJD5UeW5PSsHiXdo6o4WKSZu6vrUuo3TTzOUhRcKmeB/wDXrm7i5M8g7IMYB9yKhurppywHCLkAfkP60xm/fD3K/wDoRrCTbd2bJJEin5xz2H/stbGn2gjjFxIPn2gAen/16o6Za+btncfLxtB78D+orcJyuM8D9TUvQbMvUnCwnd161i6JmTUoTg5zuNaesAlCzcDsPWo/Dtv80lwRgAbVq4ozk7K50WaUGmZOaUVujnLjTH1qnfv5lnMmeqmmPPgdaqTXGUYZ6ivHsz0lIxLVt0CjPQYx9Kl465xVK3fBdfRjVhplji3ORjNaNal30LOjrdyQ+Ifsd1rNsw1HTt76TAZpdvlXGcgOvy9OcnnHFQ2Xk/2prpRoGT+1bjY1uNsRGRgoM8L6DnisHUvD/wBuu5LwXO3ft+Ty844A65rU0fTTpdm0DXBcM5c7FwegGM/hXTUnF0lFPXQ5qdOSquTWhsNOkQ469u3+fyqBmeTJVSM/xNwP8f5UB0QYjQA/3jyaTzf32wklsZ5Ncui2Oq3co6po39p2iwm4MbK4fITI6EYxketYj+GV06SK4a937HUhfKxnn/erq2kIyABx1JqjqEga3IYZxziqp1pX5U9DSrgXGHtZLt11V9rrz/rdFnRoxuml6FuB+ArpbC+aFiAQd38q88F/dWkoaF+Ou0/4VpWWvBmPmZVyMcV3xV42PJqXUmztJrszNuJ4yTWBNMG1CRmAYRAKR7k//Wqzb30VxHhCCcflWZFPCl7c+buMchAyPaqWhk9TcW5LSRBCVVgK17T92s+cH92QCO5rnY5bV0UxXIBTs4q/aTH7Q5U5R1IBByM4osgReRmisHYdd4FUbiYzDaRyB2qeG8Se2bzuAGAOP51DdIiFXjOVbNWhMfCFnSFw4yoAIqZstq4bBwW4P4VnQRyxlX2/LuyCPStRZiNT8naNu7j8qYkQi7leeSFjlcnqORzSpPazN9zbIBjJFR/uTK7IcMM5FUYOJGPsKQ7k08awSbkfcG+bNIjhUHPJyarwnAyc8Z/nUhK+WC3BxnIqGUiZZyq5B680R3OQWYdTjjiqrA9jnA6U0PtVc5BxS5QuXhIAThufenCXB+Y5IrNEmEHqTnmmrO652sclsCjlC5rR3TyS7EbCj7x/pV4zhY8msS3uApcEE4PJHdjVl5fLXLZbHJ+tSyky+ZiqnuT1PpUbXACsznGwbs1UjlK/ePPc1U1mYxWIjHDSnn1AFNO12NLmaRh3E3myvJ0LMTUW5s+Xnglcj6n/AAFI5wrE9gTUan98PZ0H6VitdTrlpoOB+XJ74P8A4/Vq1gNw6k5CLwSPUMTVW2ha5ZI1yA0X3sdCGzW+iLGuyMDr1x+tEnYnctR4X5E4/pV+0gEhLucRryTVO2iLsFHJJ5q7fTJbweRGchRlyO59KIJPVkSfRHO65Ibm5WNBtDHA9q1ra3S1t0hToo/OsViW1O2R+cygt/hXUNDC3Qsv61tF3dzOp2KtLmpjat/A6t+lMaGReqGtEZGQ8vvVaRz605z71A54rzkjuuZwOy6lHqc0XKNLGNgyQ3T1qC7fZepjOSRn6VcmtZNgbJUqcqatxtZmkZLZ7EwXEWwHJAH6VOPTrVYt8hwMMR1FOSXcikHPHJrnSl1PQxcqDt7K3Xa9raW3673/AF3LCkc1CQDdb8dsD3qNrqOPgncfRf8AGoL+7kW03RHZk4JHXp61cYM4XOJZuLmOFS0z4z/COtZFzqLTvsjUIh4yepqrMxaJSSScVXDfOozz1rohQjHXqTVx1WpD2benyvptd7u3TsT3Q5Q+1NC7lHc/rUl19xDUUbZFax2OaSVyaO4ngBCsSPc1ci1CNwNx2sOoNVFOeDSmFXzkc01UtuTKgnsdDbOhXIwR2q/EOm049xXKQLNAcRuduehrobA3QiWV4i8Q6tH82PqO1X7SPcydGa6GiitGHUchx8wP86kzIIlTJO08A1YjktZEBDCpj5bj5FP4VSd9TNpor/bPJiiIHGMMpq000AvUlU/MVDDn71RG3OBkcnnFRtaK444K9CO1UIgnjdXZsHBOciqxmMILLg5HerbrPHIWDb1J5WqShXd45dy5HBNLYCwr+avmcLkUkobByPYUIgRAqnI4waJHJYDPGagoglbgkdKC3Y8gCmyYbA6EnFMkJXd3qhCsRsHbimJklSOTk8CkkOAAeMcYqxarhVIPO3JPoKHoBZsIRzI2cZOKc7KZBxnbyB7+tTGTybRUx96s5t8fzJkgnis1ruVsWowruOM4+YgetZmsSM1wgPQLn8zV9W2YC4DtywHQVm6iweSNjjdg7sfXiplszal8aM2cny2Ud1NRLve4IjUswkQ4HpipjzIgPQnBq/ZWiwEykHzWGDk8cVmnaNzokrss28C2VvsU5Oc81aiGRkd+9V/9Y+ByauxJh1Q9uWqFqyXoXYG+zxbx98/d9veqt0xVMnk9h6mpxl2z/kVSu5BIWYcKoIX/ABrV7aEIwLmcrdoVP3Oc+prrrWXzrWKXONy5xXDsTNNhRkk4UDvXc2kPkWkUR6qoBrSO5nNolDn1FSrIR3NR7RxTc4PvWiMzntjOcAEmhoVQZlbHsOTTrqd7eykkjUHaucdM1yV5qVxccM/H90cCuOEGzpc7GhqTxPKHhxwMZBz0qjdanPI3ynb6nv8AnUdploiG/vfzqB0JkK561vGKTsTKV4pnRqwKrjkMAarSsRkE9Kkt3D2sHsozVW6bbKy9ayslNo1u3TRGzelOmYSWQVW3NxlRVYt1yaZ5hA4OPpVPUlK245PL8nbLneP4apR8XQGexFTyESNuYfNULR/vA44NaJmUl2LcwDQjJxzVcDHGalkbdaZ7jFUiSTSitAnKzNBDjrUoOOn61QjlZMdx71bjljkxg4PoamUbGkKiZeh5xnitC3lkhYPFIyMP4lODWZEWXr0q3HJnjNc81c6oM2f7QM5BuIkd8/61Btb8exq9DqTIhERWQ9gw2sP6GsFCM1OvT1rOM5Q2HKnGe6Nu3v1ckytiQ8Ybg1a3AKORXN5bGD8wHY04XM6YKSHA/hauqGJT+I454VrWLN+Q1BKiuCcZ5qiurrnbPGV/2hyKsrOkiZR1YE9jXSpKSujllBx0aDoAo9ccVC/B9+1SkYOfcmoXPOT6dKkCuT8wyMc01zu/E08jL/gajwC6qPWqELL0J79hWlbwxnCchsDp/WqKxlnVRg5atSEeXCS3DtyaiTGitdO5lPHyD5Qaqqx3klgEHoO/pVmUkLtU5B9T1qpKSu2PoCefakMkC43OvTuKz9SOyKM993zVeU73ABOB8xrP1l1W1kkxjAJNFr6DTtqimy7lwDWlFM0kCMep4P171lQSeYkbjoy5NW7NxHcqrn92xyfrWHkzuequa8W2CMO33j0FXIxtTcfvHk1VtwbmfzSMIvCirBkBkI/gTk+9XGNkZN3ZIWJj2jgt1PoKguIh9huX4+SJsD8KsKrMRx8xPP1q1JYwy25Ru64JHWtacHJ3MZztoc74YslkklumXcY8KnsfWunKH0qHSdNTTbdoo2Z1Zt2W61obQa1jCxk5XZU+opOKtmLPSozF6gfhTsK5z95Dua5gxxuZfwrz9lIJBB44r0W8O2+lP94Bv0rBe0tYAzJEZZCScnoK5YOyOiSuzDt4ZFt2kKkJkYOKRdhcsq5bPU9BWjco7RNub/gI6VQjwUBXgelPm6lqOlmW7VzuCls8UzUBifPqKbAcTrjmrdzB5zI2cADmsW7SuzdK8bIytpY4AJzU8dmeshwPQVdSNIx8oH1oIyOeB6mhz7DVJbsgNtAw6AEehqtJabBlW496slo4AS2F9PU/hVSW4eQ4RcD1PU1UVJ7ETcEtdxgjUIy5qEQHPTirCK5b7h+YelXUtSo55rZOzOd6mV5OPrSGM+lazWoPaoXt+vHFPmM3EqxXEsJ5+ZfQ1o295DKcZ2N6GqLQHmozHjtUyhGRpCrKB0CdcCp0fGK563uprcja25R/C1akGoRTYDfI3of8a5qlKS1OunWjI094I5FNYKRnP1pF5HqKa4xzisEjYTBAI7fSoTGVYOpKkc/KetTKcZAPHpQSD9atNx2JaTWppRXK3EYZeG6Mp6ih8Nuz+VZW5lO4Hn1FTLeMAVlG4HuOorphV7nFUw7WsSwBy+D0pI1LTYA5Apiyow+RwcnoetTwHbI52nsB6Vvfsczi1uWLdR5yjHCjp9auT7Sm1uB69xTLZdwLk5Y9DUVw7byDgEeveo3ZXQrv+7zuYH+6R61B5wPzPzgdPWiSTO5OMdqhXAl2MRtBzmrtoTcnVGhjzgc8n1FYXiSbbZJED/rH5+gre84r15HauN125+06kUT7ifKB/OiKBl+y4tYh/sira/61MeuKrwLtjQegFWoAGuIx2yK5nueivhOhlcW0CxR/fPA+tOhj52ZyF5c+rVSSRmk888sx2xL/AFrUt4CdsSde5/rWq97Q521FFyzh3NvPToKv+RkciiGIKqjGMVajDE4x+NehCCirHBKbk7kCQqBinGIgcDNWQgz8wwaUx56GhpAmVNn4Unl1aZT3GaBGMVLRSZyN8kZlVmXJK4rKupBkKO3YVq6kpMaMp6HFZTbfTmvLvpY70upRljMkbDpkVj24KxupQ53da3ZRnp+VV/LJzkU4vuNrsU4pFQH5cVafLIu01BLAwOR1qRyRbEgfMKUo6qxpCemoEogyWGB/EelVJbxmOIgf949adDZ3F5L8oZvc9BW7ZaHHHhpfnf0PQU3yw+IlzlLYxLTSp7xtxyAertWzHoMCIASxb1rYW32LwMCpkQEdjWcq0nsCpoxY9DYH5ZF/Krb6ajj+63ritMR4PHSngdjWbqSZXKkc5NpssfO3I9RVVoPUV1xiYdBkHrUEunQzcgbG9q0jVfUl0+xyL2vt+NQtae1dJNpckR4GR6imR2W4/MtbKojNwOYa2x2qJoeeldhJpMTDpg1n3GjyJlkG4elXGqmQ6bMaCee2+4+V/ut0rQi1GKX5ZPkb36fnUD25U8jFV3hzwRRKnGeo41JwNRUw7MpyDSNnuKzI3lgOUfj0PSrUd+jELKuw+vasJUZR1Wp0wrRlvoTkjmmkAipAUbkEEe1RscGs0aCDnirVtdyW7ddyHqpqnmjd+NUm0S4p7nVRSo0CyR/cYce1Z9zMCSu9iKoWd+9uChJMZ7elSzR5QzW8gdOpA6rXTTkmcNWm4siLbSc+lWokAiKMB83JqnETO4JONv8AOpmZlBDHp39q1euhiivfXS2ULsxzjhB6muZtIPPZ5W5AIA+pPX9Kt6ncG6lAUkxjhf6mpLWJYl2jrjn8aUnyxLpx5pJFpBgc1c0+PzJySRtVSSarADbWlZwYiEIGDJ80nsvYVyrVnfJ2RetkDZnIwoG2Meg9fxroNPg2RBz99v5Vm2sPnTKuP3acn/Ct2NsHleK78PD7TPOxE/somUEdamXFNQZ6VJtB4NdLOdIkUHGOooIHpihIyBwSadg9xSKsRhTu4OaUgZ5FSKmcmhgQP8allI4y7GbdvbmspowRuraPzAj2qvgAdBXjSdmejFXRj/Lv+dT9BT5AkqgLHtI6EVqeUr9h9cU9IwODS5irGA0Df3f0psFm0s+xomKHk8dq6hYsjpUirhcNjNDmwSsZ9vaiJQAoAHpV5IgR0p6p3qRU9KncZHsxxik8kDleKsDB4NO2bT7UmhkATmn7Papggp+wDGRxRYLlbay4IqQIG6VMseelWI7cDmkUiGO2z94cU59PjccDB9RV1VxxjBp4XHUVNx2MSSwkjycblqBoQe1dFwxIHbrVea1jc9MH2q1MlxOZubCKYfMvPqKxbrSnjyVG5a7Ga2aPORkeoqo8QYHj861hUaM5RT3OGkgIzxiqjxn0rsrnTY5CSVwT6Vj3OlumdoyK6I1U9zGVMwlMkRzGxB9KsxX46Srg+ooktyhPBB71WkQjtVSjGW4ozlDY0hskG5CCPUU0gis0b42yjFT7VPHfsDiVc/7S1jKk1sbxrxe+hbzSpI0bblYqw7g0RvHMNyMD/OhlPHes72NtGieFo5HyVCy/3l43fWodQlO3yBwSMsc9vSoyCDkdaY43qQx59a3hU7nLVodYlGKHMuf4elTxfeZvVialClEJPUjApEUBRVVZdCaEOrLFsodwWGQgzt9TngVvWsZjT5jmRjlj71laYB50hI6KP510NjHubzG6DpU048zRdWfKaVpEIowB1PJ+tXkBFVYgR0q1HnPIr0VorHmvV3ZZjGFyKkDCgBdoHelVP8mmOxYiHepgmeMUkKDirkcJJ4OaaQmVxCAPQ0x4yBWiYsD5lqGWIDpQ0UmeejtzUZTJIqijX8jjeVRc9utacakKMnJrw5anpRViMLg4qYLTtoJxSlOOagsVMdKk8sE/hio0Uqfap0oAbt2/SnKuDT8HPtUoUMtUkBF5eQCevapR6EYpEUgYapVUnigBgQg8flUiIW4NTxwk9am8oKKlsaI44do4/KpVGOlIhOcDnHWrATjnr61JWwxVB9jSkYOMUpUg80v61Ixmzk4PHpUZRgcnpU56ZFNLY4NAyuw4qtLaJJ0+U+3Sr7BT04NRMvtQm0K1zDuLeSM4bkfSqkkYIroXXIPcVm3duQSyjitIz7kOJgXNkkmcrz61j3GnOmdoyK6dxjg1XkiB6VtGbRm4pnISQkEjBFV2QjrXT3Fqj9VwfWs2exK5wMit41LmUqdjH2kNuUlT7VYjvZEAEg3j17054MdsVGY6tpS3JTlHYuJPFMcK34HrSstUfL54qaN5E4zke9ZOlb4TaNb+YkYYApBx7CnsCY94U+/tUZwRg1FmtzWMk9UaGlsDdNH3cDBrroYwqhRwBXCo5imSVeoOK7u0bzII5P7yg11Ydo5MUne5ZVSOlWom2kZGKjjHOKshMjkYrqORDhh+cn8DVmEEHPWq8cW0AE/jV2FcAU0D0LkABHIrRgiGMg1RhGSK04VwBWhBMqYGDVS5iXBxwavAkdRVK8IKntSYLc8wCZ7U9QR7+9A4p614TPWHLgilLge9AQkj0NP8hSQTyR0qRoRBuUNjGfWpFGORSr8ox2p49qaGA5p4UjpQFORVmGPPWgBI49/XrVhINvNSRoF5FTrhh71LYES4FSAClKUqjH1qRirGoHGOaXG36UZx24pRICdpH40DEwKjYAHjP+FTEY5HFNB3e1KwJkWccUjLkVIw5z0NMJI47UFXISjZzmk3HoakLe34Uw89KVhkShyDuXB9qjZQQQcVNk5prru570gMu5sA2SgB/wBk1myRNGSCCCPWt5sg4JpjxrIMMufwq1Johx7HOOoI5qtJDkcVuz6crZKHB9DWXLE8Zwwwa1jJMhxsZUturHleapSWhHQVtsAetQPFjoK1jJozcbmI0JB6U+GI56VfaMl8bamhsyWHGa2jK5nKNh9naiTGRxWLeQ/ZryWHqFPH07V1sEHlqB3rmdbIGryc4OFH6VpVS5RUG+ZlYYIwO9egWcJjtok6FVANcroOlm6nF1IP3EbfKP7x/wAK7KMc0UIW1YsRNN2RMiHgg4xVhW9QajQD1qUDHNdKZz2Jk5OatxnNVY8AZ6VZh/yapMTNC3GTWlHwKzYSVGetW43JPBqrk20LpPHSqV0Bs4qyH+XkVQvZNpBA49u1DCKPO8UvQ8U5QKeF714Z6gsZyOanGAcUxV5zU8cKl8kc0DIymTT40I69KmMew+op4UdRSbGKiACpVGDkU1PSpkWoGSJyKlVc9OtIqdxU6JxmkA3LBeAM0ihmTLDB9qm2Zo6cH86QyAuAMN+dAAbpwae8YJzUeNv+FMVxWyVK5xmhEIXBbNNODQHwetADmyo56U0gEetPD9jTG6cUAQuMdORUW75utTE5+tMIGc45pFXEzikIBPFKRTc4osFyN0VsFhyOhphjx0PFTEg0xuKLBcrvlecVQukE6ZAwfXFabHPBqvKihCRTW4PY554WBII5qFkIrUnXD57Gq7KK6EYmdwGAPer1ttUZIFRvCrDkVGYe2TVxdmRJXNE3MI+8wHvXIa2Uk1eVgwKnaQR9BXQpYtMePzpD4ZiuJVZ5WQg87R1FbczkrWISUXc1NOt/KsYI14CoK0E460scYRQB0FShfQV0LYwYDBx61MhIPrUQUfSp4xwT2qkxEykE8cVbi+lU4uT6VdiyDzVJ2JLqHCjFSBqrq3vUgahMdix5rqODkehqrcTBh6Gnl+OtU5npuQJHIbe461IoNN6GnoVz1rxrnoWLCIMZFSp8ppiNj6VJ3pMZJuB4NNHB9qb0qTBwOaQx6jOD3qzEuSBUEYq/bxZ6ipegyaKLirS2/GRU9tbk4BH41e+zbRUNjMgx7O3WonHrWjcRY5rOc9QaaAgJ29TTSQaHPHNQlsGqJH4waQ89KiaYLgn1p4bPSgA5H+FJv5ozkc9aY1IBWGeRUeSDg0pYrSgq4oGNPNNNKRt+lJwaAImJFIHz3FTYDdaieAFwR1FOw0xCmagnQiM4q0gwMd6V1DqRVRiJsxnXefcVA8fIBGKuzw+W2RxUWc9RXTFKxhJu5W8kZ5FOWBM561Pt44pjRg/XqKtRRFyRUVQNvFTxgr1FRJVleRWsSGOX2pxcgcDn0poX060uccEVaJsSryo7U7lGAz+FQ8gfKaUliRk4qrisi7Eyn2q5HwM9aow8jnrVxSVHBqmyUicMDT1fFV9wbrwaQqezEUrjsWWfIzVSV+TS+ZnjvVeU5pNjSP/Z", "path": "images/3pts_ADE_train_00003636.jpg" }
depth_point_79
images/4pts_ADE_train_00002966.jpg
ADE_train_00002966.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 291 y = 183),Point B is located at (x = 63 y = 138),Point C is located at (x = 302 y = 142),Point D is located at (x = 307 y = 121).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_25><DEPTH_58><DEPTH_63><DEPTH_85><DEPTH_14><DEPTH_41><DEPTH_36><DEPTH_29><DEPTH_44><DEPTH_25><DEPTH_44><DEPTH_60><DEPTH_36><DEPTH_26><DEPTH_94><DEPTH_63><DEPTH_69><DEPTH_49><DEPTH_64><DEPTH_44><DEPTH_64><DEPTH_62><DEPTH_72><DEPTH_34><DEPTH_32><DEPTH_44><DEPTH_40><DEPTH_11><DEPTH_72><DEPTH_36><DEPTH_78><DEPTH_40><DEPTH_72><DEPTH_43><DEPTH_33><DEPTH_0><DEPTH_70><DEPTH_70><DEPTH_3><DEPTH_31><DEPTH_19><DEPTH_75><DEPTH_69><DEPTH_26><DEPTH_32><DEPTH_25><DEPTH_45><DEPTH_2><DEPTH_41><DEPTH_2><DEPTH_29><DEPTH_40><DEPTH_3><DEPTH_26><DEPTH_23><DEPTH_74><DEPTH_64><DEPTH_2><DEPTH_0><DEPTH_1><DEPTH_60><DEPTH_73><DEPTH_58><DEPTH_76><DEPTH_25><DEPTH_40><DEPTH_59><DEPTH_31><DEPTH_5><DEPTH_78><DEPTH_47><DEPTH_33><DEPTH_38><DEPTH_64><DEPTH_38><DEPTH_36><DEPTH_64><DEPTH_36><DEPTH_64><DEPTH_77><DEPTH_10><DEPTH_49><DEPTH_66><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_25><DEPTH_19><DEPTH_2><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_1><DEPTH_0><DEPTH_1><DEPTH_1><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
4
[ "B", "D", "C", "A" ]
<DEPTH_START><DEPTH_25><DEPTH_58><DEPTH_63><DEPTH_85><DEPTH_14><DEPTH_41><DEPTH_36><DEPTH_29><DEPTH_44><DEPTH_25><DEPTH_44><DEPTH_60><DEPTH_36><DEPTH_26><DEPTH_94><DEPTH_63><DEPTH_69><DEPTH_49><DEPTH_64><DEPTH_44><DEPTH_64><DEPTH_62><DEPTH_72><DEPTH_34><DEPTH_32><DEPTH_44><DEPTH_40><DEPTH_11><DEPTH_72><DEPTH_36><DEPTH_78><DEPTH_40><DEPTH_72><DEPTH_43><DEPTH_33><DEPTH_0><DEPTH_70><DEPTH_70><DEPTH_3><DEPTH_31><DEPTH_19><DEPTH_75><DEPTH_69><DEPTH_26><DEPTH_32><DEPTH_25><DEPTH_45><DEPTH_2><DEPTH_41><DEPTH_2><DEPTH_29><DEPTH_40><DEPTH_3><DEPTH_26><DEPTH_23><DEPTH_74><DEPTH_64><DEPTH_2><DEPTH_0><DEPTH_1><DEPTH_60><DEPTH_73><DEPTH_58><DEPTH_76><DEPTH_25><DEPTH_40><DEPTH_59><DEPTH_31><DEPTH_5><DEPTH_78><DEPTH_47><DEPTH_33><DEPTH_38><DEPTH_64><DEPTH_38><DEPTH_36><DEPTH_64><DEPTH_36><DEPTH_64><DEPTH_77><DEPTH_10><DEPTH_49><DEPTH_66><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_25><DEPTH_19><DEPTH_2><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_1><DEPTH_0><DEPTH_1><DEPTH_1><DEPTH_END>
291
183
63
138
302
142
307
121
null
null
117
38
85
65
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDM8v2pfKq35YpRHXMebcf4ajIiuT383r+FdB5RI4BrK8OJiC54/wCW39K30jIHWsZrU9bDv92iIRnHTNOEBIyPWrIjwOlSKmFrJo6LlUQZxTGtx5zcdTWgoyRxSGMbyQO9Q0VczWgw2NtRNb/N0rWKA8Y5qNoQamyKTMY253D6ikng3Mwx3rVaAbh9RUU8J8xv5UuUd0Yjw+/aoGiyDxWy1o7dI2P0FRDTLxjhbSY/RDT5H0Q+dLqYcsX7ocY5NVjEdw78V0zaBqcsYC2M2cn+HH86VPCWsOwP2JgMd2Uf1q1Sn2JdSPcwooBkfLk5r3WVQbDGP4AP5V5tB4M1ckExRpg/xSD+lemzLi029woFduGhKN+ZHFiZRktDJ2DJ4pwjGakIGTS4rsueTY5rxKg823A/umucdO2K6jxGuZ4f90/zrBaMVy1dybalLZ6CnrDmrIiFWIYQSBiuWRUYkEVqzEcVo2+mSOR8tX7S1HBxW/a2q4BqErnRGkmYsegSdwKbcaBMiEhM454rsEQY6U8qCOlbqhdGvsYs81u9Nilt3jkG2QDg1mwaNKgBVdwxXf6vpAlid4x8x7VQtNOlhUdaxcHF2Zzzp2Zl2DPBhJELJ6HqK2H0u31CLcmA3b1FXFtUcfvIvxFW7a0SF9y/MPTuKah0NIQ6M52KzSykMF8QkWPlZjwDWFqUUbOZLIrdR9N8JBXP19a9AvbK0vRteJCx/iI/n6/Sqk+iadFbD/QjIV+YmL5WY++MZrT2WpcqEWrXPKnuz5jRMhR1PKsMGpFQuMnvXS3fhuO91E3bSJEQuxIV5OP9o1DPo7w8DBx6VnZX0OKdJp6GD5XtSGKtN7OQDO04qu0RB5BoMrFIx00pVtkphSgRVMftTTFmrRWgLTAzFQ4pxGOe1TuoRck1UmZpM9h6V2qNzZuxb0S4jgjuOCQZf4fpWumoxAfMj+g4H+NYGlIRBJn/AJ6VtRWSXKOCzqQ2AVODVewi9zspVpqKSLi6kh6RN+JFSLfFuFh/Nqi0nQk8iQXdxNM4c4beV49OMVo/8I5pknMkUr/W5k/+KrnfsouzR1qNVq/MQJdSdRGopTdKud8kKfVgP61OPCOgMRv0yJ/993b+Zpq+E/DanjQtP/4FAD/Oj2lJfZH7Oo/tFQ6rpkR/e6lZofeZR/WnDXdBX72rWP8A3/X/ABrRTw3oCj5dE00D2tU/wqO+0LTBYTi20uxSTYdhW2QYP5U1XheyiJ0ZdZMlhubNpVjVXZm5B8k4P44xWefG+gRzyRKLyWSNijiKykbBHUZArFFzqdte26bTgq2R24FXNOZria4DxlZNxyQcZ4FdFSpyRukZU4czs2aa+ObDH7vTNYcf9ehX/wBCIpf+E6jH3NC1A/77RL/7NVCWArn5RUDKAK43jJ9EdH1aBrnx3MFBXQ3X/fuV/oDR/wAJ1en7ul26/wC9cMf5LWBLHuUfjTAvPB9KSxVRj9hBHrFpI09pDKygM8asQOgJFWp+bc/SqtiMWNuPSJf5CrU/+oNd7d0cbWjM88E0Uh60VRxGB4hJM8P+4axsVs68CbmL/cP86yghxXLV3ENRcnpV23i5FRRpV2FeRXLI2ijTtFAUVs2pzx2rGgbGBW1Zr8uacFdnTAuAYFOpBS13pWNBrgFajEY9BUp6Ug6VEkmwsM8oegppix0qbNIcUnBCsirJtbhhg9jVSS4ktmwTlffvVm6Hyk1ly3CDCTH5O59K5nvZGMm72HTvaXigOuJD36VkXVs6FhFNu9mqS5hBy0QE69dobDflWZHcsJHU7WIOPLLgsPbgmn7KTMZO+5DM8kWQ6DFUHmTPUVqXEhMDutkJHAyIy2CfbOcVTtE+0K7T6KICD8okIJYfnVewZk4X2ZQaWP1FQvLH/eH51r3NvaJAm+2SNpBgBYzuz7YU8/hViGxi8tAbVBjrviUsfrgVXsH3I9mc408Y/iH5037TEP41/OtFIdYbVDE+maetsu47+mR27datxQXf2Bnls7YXnzYUD5PbkD0o+rvuP2N+pzTguctyaiKcGtAW5KFjwAKrFOOldMSJC6amIZP9/wDpXQ2KfI/+/WPpqZhk/wB/+ldBYp8j/wC/WyOqlsie2bZv9Nxq0kyngYqrFkK4BP3u1G5w3X868mtdTZ61P4TSWTJByKjDgmqUczCVQSMZ9KnG3qU/Ks73K1LIbilBywHWmDacYHHpmnoBuXGaumveRM9mQyWsb3UZKjI3fyFQJaxxSzSKMZY5/IVosv8ApKf8C/pVSQ7VkPbf3+gr0cQv3bOSj8ZUmiUjis6a3IzWqWDDhl/OoJE3L1H5147O8xZUOFGOxoELEnCnoKuzQMduFPT+tTJbOG5U9qqCuxSO9teLSAeka/yFWLg/uG/Cq0HEEY/2R/IVNcn/AEY/hXr20R5z2ZQJ5pc1GTzRmqOIxtdP+kxD/Y/rWcmDV3W3/wBNj9o/6ms9WrkqbgiwtWY2wKqq3SpkNc7NUzTtvmxXQWowgNc9ZnkV0Ns3yCnDRnTAt0UgPFLXcndGg1jgUgYYpk8gVCagWYEdaxlUsyXKxZLUhbNV/NpDMAOtQ6hHOFy4CGuc1ECRSjDKsCCPY1rXE2e9ZUhEs4Vs4xms763MZPmehRaItCsSyOpCqN6HaQB3z68U+dZkuXVXIHHYelSEoCAqkHPQnNWHAeV29TXRSalqjGomikFm/wCer/nTxHL/AM9X/M1dWMGniMV0GVij5MmPvv8A99Gk+zt/eb860fLFGwUBYo21uftUeWP3h3raa2BJ4/iFVYIx9pT/AHhWuVGf+BUmdNBaM8xlGISMdqzinB4rVlH7s1S2cGlE5ZDtNTEEn+//AEres1wj/wC9WPp6/uZBj+M/yrds1+WT/erZbHVS2QyLgv8AWnMA1NT77/Wn4Ga8ysvfZ6lP4SLZ++Uk96nzgc1Gcbl+tSEHHWudo0TJEbipoj+9X61WXj3qaA5mT61pSfvIU9mXGH+lJ/wL+lZ9ycRv/wBdP6CtFv8Aj5j/AOBf0rNvDiN/+un9BXo4j4GcVH4irnjpUbUZpjPjNeQz0ESBRsHeriIAAe+KqRtmFCeuKuKcqKuC1FLY6mPiNf8AdFSXZ/0Y/hUUZ+RfoKfeEC2P1Fes9jzHszOLc0bqizRupnGYusnN6P8AcH9aohqt6sc3x/3BVKuOpuxomV6njfJFVATU0TfN1rBlpmzZt0rctpMAVztq/TmteCQYHNK9jogzZV8inNIAOtUBPgdahlu+Otae1aRrzaD765AjbmqSXPbNUr643JjPeoEnI71G5zTlqbIuOOtNefjrWZ9o96Qz0yOYsTTe9ZV3cmJgyn5u31zViSX3rLvCsisJJNigAls4xzVRsndkJtvQYdSkMkfRpJG6dgO7H26fnXQxEuoY965O0Fl9twbqJpUH97t/k11MLDykI6EV0UpRfwsU4yj8RaWnA1AHp4etyCbNITUW+jfxQFyxAf8ASE+orVJ/9CrGt3zcR/WtOV9qMf8AapM6aGzPO5PuGq2OtW5B8hqrjFKJyyJ9PH7uT/f/AKVt2g4k/wB6sbT/ALko/wButq06yfUVstjppbEAz5rgev8AU04DmmsP3z8dD/U09Rjg15tb42enT+EaF+dR71Ow6+3FRhT5i/WrBGc8VgaIiA4qSAfv0/3qbgjinwjEy/WnT+JBPZl1v+PlP+Bf0rMvT8j/APXT+grTY/6Qn/Av6Vl3v3H5/wCWn9BXpYj+Gzjo/GiiTxTHbAzQTnNRt90nFeQd5MrfIvHarkTfKOlUiAY047VajIOPqK0p7ilsdah+VfoKffHFqfqKhQ/KPwp1+f8ARjz3FeszzJbMzN3Jo3VDu60uaLnFcx9VP+nN/uiqgOam1Js37fQfyquDxXHU3GiQHFSxHmq+6pEcDBrFlI04WxitCKcAVjRy+9TLOQOtSbKVjXa5wDzVR7nqM1Ta4z3qu83U5qbg5E1xPlfxqJZqqySZFNVznrWkVoYTlqaIl4pTJ71TWSnb+KvlJuSvJzWXqFnLqEMsUUrKdnKA4EnsT2+tXHbiqdxFLcwXMcEjRzbAY2VsfMDkCqUU9Bwk07ozNI8J/Zne5mZ4pWUYDPvI9utdpB8sEY7BRWFpqFhNeyoyTTADBP3VAx0rZR8Ioz2rWlTjDYqrVlUs5FrdS76r7/el3+9bGRPupd1V/M96TzfemBetm/0mP61bv5vLtGb/AGqy7WTNzGPerGrP/oYHrLipkdWH2OZk+4arVZkHymq3404nMyew+7L/ALwras+r/UVh2DH98P8AaH8q27M/NJ68fyrVbHTR2K7E+fJ9f6mpByOaTANxJ9f6mpFXOABk15tf42enT+EWMjzFHvU7ZHT1qNUPmIcd6nKnJ9KwLRGBwacg/ep9aTvilU/vF+tOn8aCWzLDnFwn/Av5VmXh+WT/AK6/0FaUn/HzH/wL+VZtyCyygA/6z+gr0cR/DZyUfiM/PtUbnjFTtE+OEP5VBJBLnhDXkNHcSvyF9MVPFwQPcVAVYKu4Y4Hep0QhxwOvrWlPcUtjq0PAFGot/ov4imIelJqbYtf+BCvXZ5cvhZlbuKXdUO/NLuxSOIx9RbN8/wCH8qbaxC6uUgDhC2Tkj0pl781/Kc9/6VXNx5EckQYo9yBEr9wO4H1rma97UuNmTTNDDO0YuoH28ZWQU5G57VQt40gzGoC47VcjjkfiON2/3VJrCTvsVo9kWlfFO8z3qqM+tPB461mO5N5nvUMsmKM8VDKwxSsDY0yZ61IjVVzT1NbwWhjLcuBqcGqurcCn5rSwiRiMdaba8zynkgAdPxqNz1pLS58iWQ+WzhmVSV/hHPJot2Lpq8i+ZAwOFI4PWnqx2j6VStr+S98wJAERWZdxOcgHGa1wIgFGwHirgnHd3NpU3PYr7zQXNW/LiP8AAKQpADyn6mtLkfV5lXefWguaq3eueHrG5a2u9W0+3nTG+Ka7RGXIyMgnI4INS6fqOj6q0g0++trzy8b/ALNcLJtznGcE4zg/lRcHh5lyzb/So/rVrUW3RQj1nFRwQxJMrDII55NN1CTEUH/XbP6Gk2b0YOK1NlLCxJ4tIs/SsbXdHt0MV1APJP3HVR8p9Djpn3rdUkDIqvqjb9Pk3e3860NXCLVrHKx2Zt0L787+cY6Vo2R+d/oKgkYm2T0yalszhn/3RVoSgo7AuPtUoOT7Z96sKqg52n/vo1WU/wCnSj1H9atDmvOr/Gzsp/CTIEyCFH5mkIBJ+UflSxYBA96GB3GsW9DQjHB4A/IUqsS4+tNwRQud6n3qYP30OWzJnObmP/gX8qpOcmX/AK6f0FWnb/SYfq38qpsfml/66f8Asor06/wM46XxEMi5qBuKssRioGGCa8xnaMk/hHtUyHLj6iopgflI9KdGT5g5PUUQ+IJbHTq39Kbqh/0Yf7wpqHkUaid8aoOCTmvXZ5c9mZGeaXNSfZ2J+8v50htpAM5H50rnFyy7HPXcv+nyrjv1q/b2UV5pqs4IL3UaRsOowckj+VZt3bSfaJpC8aAnOWcZx9BzWtapJCvh2JCGSS4aWRh0I2MR/SoSVzWjB892blzcw/bAjWds+XwWZATV251COOzYREROBxgcfSsfj7bJIxGF5xniqt3KZoJGHAFZydlc7EjMvfkvZgOm8kY9+ag3E9K0bp1EgPlISygliM5pgl5yNg/3VFcctGZfV5N3KQ3nopP0FO+xXci7kgkI9cYFWnmOACxP41De3O+3ihF55LBwz7eTt9B9am6KWG7srGyuY+XQfQEE/pSeW6/wt+VRrIn2wyJLIzSuoweFVcdBWpE2ZF78+tbU5XQpYSPco8j+E/lTt2OxrWU7iQT3p/GOlbGbwvmYjmltQCZg33WIB/KtnYp/gU/hUU1ksy4Rnix3jO3NDRUKHLK9yoipZ2xWJDszzyMnPc5pIr6fdz5Uq+qnB/rmpDpkh4F7c4PYsD/MU0afcocLfyjHby0/wpp26Gjg+jJptSW3iWV45ACcY29PeoDrUXkCURSsGYKAqk/rTzaXyk7b7P8AvQL/AEpBa3y/duIMehgx/I0+buh2Z4/46Wxi1zxRqdzplvezxXunwRieSUKivbSM3+rdckmNeueldF8Mra30jXPEENsjC3eGyuFV2y0QkiaTYfUrvxn2rN8SeG/Gx8S6rLpWnWlxY3kkEh8yO2dGaOPaCFlyVI3OO3U1qfD7w94n0m51m51q1QTXrROXnmVzIRvycoT/AHh1q21YvWx6NFqcYBbjA/2s5H4VFeXUk6IIo9+0lwA3J7flVXZdICBaW2D12ykf0qJ/t4f5bVAMfwzc/wDoNZ3Jsd2Dgc1U1I/8S+XJ9P51PnLYz0qvqPOny/h/Ot3sNGIcm1TPqf6VLan9430FRYH2UY/vGn2xHmE+1WtgY5f+P2T3z/SrYGeaqL/x9t+P8lq0GGODXn1/jZ1Ul7pMmA3pXHfFo/8AFs9Z/wC2P/o5K60HpXL/ABOs7q/+Hmq21lbTXNxJ5OyKFC7tiVCcAcngE/hWVN+8ipLRnlbeEbbQPGOnvDYavaJbeJIbKGS9+ZLpBIfnVhGoGNi8c538dDXvrDBH1rwKxHirU/F1hNc+FLnT4LjW4NQvHis7gK0gkJ3sZCwUAO/TA556DHv7c9q3rNOcTOnflZHIf9Ji+rfyqlIfmm7/AL3/ANlFW3P+kw/7zfyqk3Lzf9dP/ZRXRiH+7ZlR+IU8AVGwzUn8PSoye1eamdo51+VfoKekY3gn1oYZC/QVIv3gPeqjuTLY1UPzCi9fayHPY0xD84+tF6cug9jXqS2POId+T8uaXPXPof5VH0HWgN1z6Hj8KgqxyOtzFVc57A/zrp7dMyaSP+eUG7HYfJ/9euQ1xt7+WFxvZV656mu2UBL5VAOEiKjj0wKcRtFaUEyNyBuOTTZBmLbxyOMVI5wxHygZ7012LMowBj0rnnsUileDa0R9UquGyKt6z8kVu2PUVmrKMVyVNJGsVdErHkVWuUUuCf7opzTDHWqN7fKjhdwyFGTUXKUSeIKJB7YrSgb98uOma5y31OJ5todCxIAXcMk1uwicMGMLgfSumirrQmehfViTmpVbPeqMc2OG4PcelWFlU9CCfStrmdiyCKfu/KoFan7lbv0piHqcmngAmoxinKcdKGA4nDH61zvjPxW3hLSre+jsDfPNcrbiFZdhyVY5zg5Py4xjvXQrg8muS+IlzBZ6Zpck8ywA3rRxzt0hke2nWNz6bXKtntjNC3Cxh23xXvj4g0/SdQ8JXFhLeTxxD7ROysodgu7aYxkf4V6aFGM18x2GnSLq/hzSbvUoZlk1EZgtpkmEAd41LeYpK5bHTJxtB719ObsninLRlWVr9RpA9B+VMKKOqinEjucU3IPvU3Ea4IHOaivSDp823sP61IxwKZN89rOv+wa6XsQjEBzbf8Dp1v8A6w/7tMX/AI9v+BU6D/WfhQnoU0PH/H63bI/oKtIOPWqQ/wCP/wDD+lXcnHFcGJ+M6aXwjgMnpioNR1aw0mES311HCp+6G5Zug4UcnqOlTrkGsTVlubLxBbawLOe+to7d4TFCAzwsWHzqpPJOdpx2HXtXM20tDswtKFWpyz8+tr+V3or/ANamxZ31rqVsLiznjmiP8SHocZwR2PI4PNTHODWL4ftrkXOp6hNbyWkV7MrxWr4yoCjLkA8M2eR1BHOa2n6U4Ntpk4qnCnUlGDuvv6bXXbYryEfaYf8AeP8AI1WHMk//AF0/9lFSyH/SIf8AeP8AI1AnMs/P8Y/9BFeliPgZ51H4h275cYqI8c1NsZvuqT9KDAwHzYX6mvMR2MceVX6CpBwabgArlhjA6CnrtJPP6VpDciWxcU/N+NJfEeYn0P8AOmofmpL0/vV+h/nXqSOBEAI7fhTg2c/Keh/lUW/BoLfI/wDun+VQUclqCGTVbSLHLzxgf99V2oBN6zY6Kcc/SuIERufFGnRg8ecGP4AmuyYONQUKRtYEGnAbI7jgFvwpdv71BjtzRKpFxyR+WBTkWSM+Y7Lhu/tWMtykVfEbJBpHnScKjgn8eK4S58UWVsD8xP4113jWzfUvCGoRwN+8RRIDnH3Tkj8q8Yh0sOR5xkYewwK5MRFc92deHgpLU3L/AMdIikRxn69Kxrbx3cx3DNcWySIxGN654q6mkWLKAYY+O7Dmpv8AhH7CQcoPoGNc3NStaSOtRs9LF5fG2lugY6bbbuDnyxnNL/wmsbQgq6x/McAydBn0qqvhy0C4VWH61Iuhogwjr+Ma/wCFaYbEU6DfJfXuRXpKrboA8fzwPIEKSIT8oU5I471XufF+o3wRo43TYcsVGMirP9iueVaAn3TH8quWOhS3FzFC8sESuwUvvYBfeocqcqnMlr6lpKMOV/kZlv421uNduGCjpuU1cj8d6sPvxof+A16XZ/DPSI1Vri5urgkfwsFU/wA61Y/AnhmMf8g1XPq7sf610qnU9DllUpdjyqP4g3qj57RD9AasR/EcqfntF/A16c3g3w0OP7Et/wAj/jUE/gfwxPC8Y0qKFmGA8edw9xzVKlU7mbqUuxwkHxGtWGJLVx64NUvEWq+H/GmnQaZfm9hRZxKv2fAYsAVA5U8YY9q7MfDXQI54mkEskeSCjcZ46Eg5rNi8L2x8S6hZaAYdNFlFGJ55YjO7O+WCqGYgLjGTwcj0ptVItXZpRpU63NbRJXbd7JXS6JvdrZHB6f4I8L6f4isjaanevdwSC4UtImxGQ5AYbQeoAxXf6d4u0+a1H2u7hE4ZlbYcrwfWuYXwxNrt9cfaLS28qC4e2nFvcPGC4PJVeg69cV0EXwd0z7MirqF1CwHOGRx+oFW5ykk4mc6KpVHTqbo1k1zTZPu3sP0JqddRtJB8l1Dn2cVzNx8G5gCbXWlb2lt8fqpNYtz8KPFEGTb3FrN6bJmQ/wDjwFRefVBy0+57BJyR2qBm2bt2cEEfpT5eDjnioXZGyuCcgg5rub0OVIyYz/o7c9Gp0DfvB9DUUYYQvkEDcMZp0J/eL+NNbDJM/wDEwUf7P9DV5eKoDH9oR59B/wCzVeYqB0P4muDE6TOml8I/ODUygv0BP0FVhIwPy8D2GKlLse5z9a5bmpIQR1wPqajcjnnPHYU0ZPU0jHgjJ4qk/eQnsypKf38P+/8A0NNtz/pE+Ou4f+giklP7+H/f/oaZCf8ASZ/94f8AoIr0cQ/3ZyUV7xd+YjG4/jTSPWmE845qJm4968u522JnYAgZHQU7co6Gq7HlfoKkXnNVB+8hSWhajb5gPekvW/fL/u5/WmRH5x9aS9bE69Puf1r15HnJEJcYo3Aqw7bT/KmZyOtICSXA5O01BSRzlpPb2/iqCSaRYkRW5d8YO010dvq1pNqaRw3EckjA4CMCelcHrSbrp89eKzLZpbe4Sa3ZopF5DqcEVHtbGvImj124WadxtyU/i5pksiswjkdY0Qfx8CvOrjXtVEDf6bMCV6ggH9K5Ge6urrU83E8s6+SxIkckdR61HtE9gVNnsWq+IfD9tZTWtzqtmisjKw8wMeRjoM14DZ3tzCdsd5JgHAJweK2hFDJw0Q684qSCws7u8jilgUKWA345UVMvfNYe4V4tU1IDImjf2aP/AOvVlNZvP+Wlvavj6irl14TsoLhokklaMAHcjYOfwpW8FTmJZIrm4jUjOSxbFZOiX7VEcetsoJbTs/8AXOQVbTX7Vf8AWWl6nuBuH6Vknw1qLEiC+3lezxjP9Kik0PX7dcny3XOOhBNZvDrsP2i7nRx+JNHLAPPLH/vxEVeg1rSZThNQh+jDFcPLaa7GxVrMvt4O0jj88VVaS7iVjcWTps+9uRaX1ddh8/mewWGutbALa6ogX+75gx+RrftvFV5j5vs8o9c/4V8+PdLGw82Dy89AYyP5U5NTjQYiuHQ+0hH9a0ipx2ZDimfSkfiZGx5tqR/utVhdcsXOGEifUA183xa/fxn93qcwx0yQavxeLtcjGRfBv95M/wBatVJrch0U9j6Fa+sZkIFyR3GUPBrK1PSNJ1W6S6Op3Fneqgi+0Wk7ROUBJ2njGMnPTPA5rwqX4q6nY3LQTIkrLjJCDHTNaVj8U7q7hMgsFwDtOOufz96uUm4+9HQdJzpT5qcrM9tsbDR7GCK2tJoY7eDPlRiUtjJJJyTnqTWkr2u3Ani/77FeHL8SYyv72xkB9jU6fEDTZD89vKPqgpKrbRImdKU5OUnds9oZ4VPE0X/fYpv2iFet1GP+2gryEeMdDlOGcgn1QVKmt6FP924iBPquP6UPEPsT7DzPUpjHsBeZIwf77YqhdXkEdtItrhjjBk/wrlfNeZiWwcdKuRbvLw1bKpzaCcLallWzE+OnFNhb96n40gOInH0/nUcRxMn1/pW62Mi1nN/Bk9V/xq/7VQIxdW7fh+oq+FJIIrz8X8Z10fhF6VMfvVERU/pXMajSMnNNYcfhT6acfpQt0IzJT++h/wB/+hog/wCPib6j/wBBFMn4li/3x/KnQH9/N9R/6CK9LEfwzlo/EWD9KibqamPAqu5wK8lnaSPghfoKcvXGKgaT5Vx1x2pySZ6jqaun8SJktC3ER5g+tQ6ixF0oH9z+tPiP7wc96gv2/wBMHP8AB/WvYm9Dz0RK+BTtw2v/ALpqIY9aN3yyE9AhrNsfU5G/gMlw545NUvs5DZyK07pg0r4GBmqTHk44rmk9TZIo3zERbQPasEr/AKZIQefKA/Wtq93nA6Drk8VmKn7+Yjk7F5/E00UMRcVoaSm67BI+7zVPaR2rW0mLCtIep46VcdxS2Ny1AaVmIzkVYnyylQ7Kp64NR2vAGT2olbAJFdHQxIorVVfdGRmr0QkeQPMEKp6rVa0O58+9XZ3xHtzgUWQXMO9jM+ou0R2EjnA4NaFjaqY5DdxiQMwIyemBVTOLnjHPetl2CWq+3pUqK3HdnMXboutzRrbpJDIc425KtjB/CnXuk6dFp7ym2USt0DxkUwP/AMTYSEHvxVu9bzxhixGaiysO5mW3hWz1C1WSKyjiMsmNg44A+hqnN4S06PVvsCLKXVA2Ubjoc56V3NrItlpkRHGF4zXOWryXOuTSFuXQjNDghqTOP09LDwxrmq3upS3KWxeGw+SESM6OoeYcsMDYu0nJ4k6GodB8J3Ja+svtQS4tr6W2ZccEoBzn3rd134Zf2pqNxqR1YQebt/dfZ9+MKB13D09K2PBHh8aBYywC4E7NM0iybNuPlAxjJ9P1q3FNWJUmnc5e48IazbLLLK0HkxgfMSOvp1qu3hzW0fY1vAT/AA7ZM5H5V6B4iupHsHgZiQeuRVLQ7bzPJld+FH3TWTpq9kaqpK17nAy6RqqsVexkyOuP/r1TGn3ije1nKR6gV7FLJvQxKmAx5YMay9YuhHLBFABhOdp9aHTSGqrZ0kKE5wKuEbQKdHGEGKJcBRz0pxViHIQH9230qNDiVP8AepynKN9M0xT+8X/eFdMdjHqXG/1tv7P/AFFaYGBWbIMGEn/np/UVqgiuDF/GdVH4RvTFTDkA+1RnoO1PyAR9K5DUQ01gAPwqZIZZfuRsc/gKlGmTMfnYKPQcmhXuguc3cf62L/roP5GpLdWNxKEUsSV4A/2RUd18sqD/AKaY/nWjoi7tTmH+yD+gr06+tM5qWkh6adcycsFQe55qwmkxqMuxc988Ctjy/akKE9RXmqB0cxQWxjUfKoX6U2a0UQuSAcLxkVo+V6VFcKfIlyP4D/KrirNCbObhPzr9aq6iwF+Ac8RjoPc1YhP7xRVLUjjUv+2Q/ma9OZxpDSwI+8o47jFBB8t8Mv3T0aocj1pM5jlI/uGs2yrGJcJ+9YM4A3fw8mqszpHkRoM/3m5P+FSzHEpz/eNVJ2zwDmudmqMu+lJk+Y5wKzTdxwyuHRm3gLx25q3eMTI35VlOu64T/eFUkBcF/Zk4Zyh/2hxXUadCRaoVAYHng15/dj7wA71HD4n1mxiEUN2QiDCqyK2B6cirikglqetjKBBjHFV52kmfy1jb3OK4XUPF2t2lzapbmB91tHJIHQZJYZOOelPHjvVEH7y3t8f7UTD+ta3uZcp6DbQrEMDHHUU2aRT3HPY1xdp8RGB2z2MDepikwf1rUj8a6RPtMqSxsepaPdj8qdwsbUEA8wu5H0q/OQ0C+mKwovE+iuNq3kS+7Iw/nW0klve2yzWtwkiY+8uCD+VFxHOybfthwOlXUQMyk5PtiqrqqX5VjnJ5xwBWtbRh3AUAgHPBzUxKYzU38uBUGQAAKo6XGkIlupThFUsxxnAHWp9XcmQJirdhGiWZSSMMrLggjIIPajdjVtL7GbPql/8AZEu5reBLKQLhVkJdAcfMeMH6DnkVqaahVVHsSc1lPpTKiQveSyWiYKQsq547E9x7fT0rYtF2Ix74qKSnrzHbj3hnb2Fuu10raWWvVa3fpq9zD18k7hntT9HyLZR0qrrZYls1a0fP2YY49qtfEcPQuyP5aE+lYgH2i7BYd61rsgRN0zisY3P2WKa5WF5jEu7YnU0PcI7Ho3pUM2MdKmIGarzdOtAhiyJGGMjYGCM0inewKfPg5+Xmq8zjbjIznNNRQzDrn1BquewrGqs8MwQSeau1s/Jjr9D/AI1bN655ie2f0EpaI/nhhWFbzSwphH4JyQ3OfzqZp5JAuAinPJUYyKiahP4kUnKOxqjUZkObjR72VB3s2jmH5K27/wAdqeHxX4et2AuGnsiP+fu1lix+LLishZYz3ZSO5H+FW7XU7sMViuJMKcY3g5/A/wCFZuhT6Fe1l1Oms9e0a+A+yapZTE9knUn8s1pKykZDAj1Brirk2d0CdQ0jTrj/AGp7Vc/niq0ekeHid0djPaH+9Y3kkQ/JWx+lH1fsw9oiK/mC3OCcYmHX6mtjw+4bVpMH/lmD+lU4vDukyJHGmqXUaqQf9IPmPkHP3jVq30HVtMnluNI1OzvFk6xXcZU4HQB0Jx+KmrqttWsKFlqdWB9DSgg9q5z/AISK8sP+QxoV7bAdZ7YfaYvzT5h+KitHTtf0vVVJsb+3nI6qrgsv1HUfjXLytGho7Qepqle3lpAjwvOglZSAvU9KvDDck59qz7/SbO433LxYmVS25TjJA70Jagc1DnzV+tUdSONROc/6tf5mr8PMimqGpnGpt/1zX+ZrumYR3KzHIznFJu2xyH/ZpGGQOcetI/MUoz/DWTLsYV0xZ8kADJ6VSkbrmrd1hRjIPX+dZ8hG0n2rJLUszJzlmqkoBuE/3quS85qrFn7QnHQ5qwKF0AVYisGcZzW/dj5Cc4rBmHJqkBp6udmvWyelpEv/AI5SYIPGR9Kfq0KzeIm+dleOKMjjggIBTtjjoEb6Nj+daEEDZYHcob/eUGoFtoxIcxqAe8ZK/wAqvbW7xOPoA38qaTEGILhSOzcfzoAriBf4ZZl/EMP1FTwS3tqSbW8aNj6Apn8jUgjBGVII9qNm3k9qYC2z3Uuja7LeXDTOY4lBLE4y3vWTpGrf2Jq9tfbDKsDbjHvK7q1EfZ4T1iTGS0sKj8ya5Ugu25/ypID0K8+JVtdNuTTrgdyDIMVtad4/0p5DBcQTW4BxvIDr+OOa8kRdx9s4/Wrsbbi7Z6uT+tD0Glc9qXWdIuGHkahak+nmgfzrSg8t4SyOjDHVCGH6V4SBkc1o6XqNxZTqkbuFY4wrEflUuTQciPQ9ZVA4y4Y+mOlW9KjV7TKYHbjmubaK4eQiUu4P95s/lUkcTRPujZkPqpIrJVNbluGhvajFwRvXA96bpluoDP396yjNcSffmZvqalhluIjlJmH45qlUV7i5Oh6EcVWn6HnPsK2odGlbBfj9Kux6SiYxtB9QMmtNTK5w08dweRC+DTY5SjgupGPUEV6ANLhP3iSajbQbKT7yt+DU7Bc4aKVW61cTaQK6Z/CunMPuOPcNVaTwiBzb3UiY7MA1LlDmMbZkYpNq5x1rVbQbyFeXV8d9uP8AGqM1rcW+WkgbH95PmH6UcrFzEG3dGVyQOhGakiZokCLtKjsVH9Kg+1RfcLLu9M09XU8g8GlqMs/ag2A0Wznkoc/oasRyQ8bbgof9pSv6jNUwATwacVwMinzMVkasN9exsBDcNJ9CHFRX0VlqTBtU0i0uJB0lKbJB9HHI/OsvYPvbRu9amW8uY8hZXGBkZOR+Ro5u6HZ9CW3t5bJ86freoQJ/zwvALqMfQkhx/wB9GtmPVr37M8c5spsqRvidkP8A3yw/qaw11Qk/voY3HqBg/pTjdWzjOHQ+2G/wpe4wuyWH/WKPes3UiP7WfP8AzyX+tXYp4llUNKg+px/OqGpDdqjkEEeWuD271U3fYI7kLDjANMY7YZSfSlGSOTzTJCVglwecCsiznboncPTk/rWfODt69avzks+5jnAP86pzDOOtJIZnuuM1BF/rx9D/ACqzMRyB1qonExJ7KT+lUCM2+OFrDflvqa07+X5iPrWYUIZWY4AIPNUkBp6hJnxXMMjoF/8AHRVkA1k6hNG+qzyrtkBfKyIxBP49KWO+I4+0XCf7yrIP6GqEtjX8skcUJDKjNhnKE9Cc1Wh1E8Yns5PZy0R/UY/WtOC9fbl7CZl/vQMso/8AHTTSFcrmBD96GPPqFwfzFH2WMKf9ZjHQuSB+dXG1HTmYAyGFv7sqlD+opJnhNs8kcsbDb1DA0WAzJgIvCtyBnEt4vB9ga5rbliT3roNTmUeFLby2/wBZdOQfoMVzShieppAh7qqcg4OfWprdsIBms+aOV3z/AFqxDvRQCCaGtBp6mgpqaF9syN6MD+tUVlx1DVIJ14+bH1qLFnq6x+Zbh8c+tQHhuRz/ADq3ojC68P2s543xg81HNGoYnNZTjroNPoQGMyZKDp1FRBiGIIqUMQ2RnI6GiTDjoFb2pLXcex7iGpwIqANS+YAK6zlJ8ilqobkL2NNNy56cUWYXL+eMk01p0XqwrOaR26sabk5p8orl9rtf4Rn61A8pkzkD8qjVGfoKsx23GXp6IWrKr2sU4w0KNnruUGs258IwynzLVmtX/upyp/4Cf6YrpUVU6ACpA3FQ5XGlY4aXRtVs8ny1nQd0OD+VU2uWjP72J0+q8fn0r0Tdisy+sbaSQPs2uwydpxn8KllI45bpGHBFDTr82O4xWzc6JC5yFRj7jafzFUZdCK8p5i+wIcf41NrlXsZu7PSgMe9PawnT5UdHb0ztP5GopI5owRLEy/hxU8rHzIfntjjvUe1U4A4NNVgw6ikZs+xoGScZ60ydlW2ckHGR061GXbOKZcZazYDGdw70AYsu1jkAgH1qnL97B9KuunTPXFVjGZJdsaFn7AURQMzZlJ5PAqktvLM7eWhwQRuPSuut9AaXD3JH/XMf1rVTSIlXGzAHYVooNk8551/YRc7mBJ9cVk6p4U1C4nElrtZMY2scYr1l9PTpGoPrxwKjbT2QEhR+FWo2Jcjy/TfCF1FAftLAuTkBTkLVs+E5Dkg4+or0Q2RA4B/KkS1X0yafKmHMzzOTwld87F3D2P8AjVOTw7fW5J8p19CAR+or1v7Oo5/pR5I6gUciDnZ5EH1eBdonmZR1VjvH5HNRNdkki6060k9T5RjP5rivW5rC3mBEkMbfVeaxtW0O0TT7maC3YzJGzIqk8sBxxRyvuPmRwurqjaLpxgt/JhJdhGGLYJPqaxlh+X0PvTre9uzeRQybyS2PLkU4XPoO1dovhJ2iDSOCSM4UYqXFspNI4kw/j9KNldbN4WkU/KKrSeHplH3TUcrHzI5rZxnFRu2zpgmt1rFbR90yb8dEY4H1NRG8meIumnQtGDgFaBno+jsY/C2nr3+zqfz5qIsWbB6VJaXCf2JZZ+U+QuV9OOlQ7l3ZU7j2zUTaKih6jkCmTbI8kyKAOSOpp4hmlySdo9BSeVGuVwGPqazacitj1T+1n/uDFOXVj3Wq5h9qjaKvQOG5ppqUbcMMVOrxSjjFYXlGnxyPE4IJoC5t+T6E4qRIlXk80sJJiUkc017iKKTDuq555NZspMnUAdBUgNVPttv2kz/uqT/SmS6ikSblt7iXPZFH9SKhso0AaXNZY1MuRtVE9nJJH4cUjSvKPnkJHoOB+lTcdi/LcRpkD52/uj+p7VVZy7FnOWPXHaoxgDC8emKjM4D7ANz/AN0dvr6Um7lLQnxx0FMdlBxjLf3RyaTDPnzG2j+6p/maeu1BhBge1IdyJoPOAEoUL/dxk/n2qN7GAr8i7foanzk96VjxTuTYwpbGNyd0SN+GDVGbSEI/dmRD+YrbcHJ4GaYVLD0NXoLU5x9LuFHyMknsDg/kaoXkNxFFseCTk/3TXYPCHGG5HuKrm22Hcm4Y9G/pUtIfMzlbTRZ7oB5f3Ufp/Ef8K2rfSre1XEaAZ6nufrWhmQHlQf0NMZzuwy7V/vdapJIltsgMWwcDJ7CmtEx++MD0HSraCPJ2OCe+etKy44yPxFWmKxS2AKMCmOhx0wKvFR7VG8Y69qdxFMD2pvlqxzt/SrmzimFaYFRowexH40zysdGz9RVtkwKj25PI60hlTyWJPzAe1QyrImMjAPer5QFsDNIU4xmmBkmzg83zDEpkI++VGfzp/l8dMVeeLPYZqP7N1xkZ980XEUXjGPmAqhqDR2sBbZlzwijuan1KHWNyrZJCY+rNn58/Q8Vzd5FrSMzHTLqV+zMNw/Q1nObWiRpGK3bKE2mSXxZpZVjDn5iOTj0FXrDQbe1IlhtiXxw78mpNIn8l2k1ISrNn5YzCQqj8q3E1Gyk/5elHseKzjTv8TLc7bIxrlp4OTDuXqecVmL4jsVkKSmSIg45TI/SupnW2vIWRblRnurDNYEvgu1kJYXhJJ6kCqdOK+ESm+pYttasZBtS6hPoPMAP61fikgKZDhsn+E5rDPgO3bP8ApJP4VRuPA9zA2bW6xj0JX+VHKx8yPoLZx0phj9qtbKcsI710HMUfJJOACTVmCxVWDy8kcgCnz3drYxl5pUiX1JrFn8QTXj+TpsWAesz/ANBUuSQ1G5u3V7FaKAxzI33I16mqSyMTvdhvbkgdvaqVrbiJjJI5knb70jcmrYxWb1LtYnVjjOc0FuQKYPxpfzqbDHkKwwwDD0IzTPKQD5GZD/snj8qTJNKDiiw7kZjlzhnV09B8pNP+0RxfLgx/8BwPzo78Hinb+KXKA5ZAwyCGB75p2/B5wKrPBGTkDYT3Q4pdsij5WDf73H60rBcmLgnHWjdUHmEDLxsv05/lSrIr/dYE+negBjsQxwaZuPrzT3GTmmYw31qxBvPcZo5zkAUpxg00MenagBSeM7ajZAx+5+NScHvSdT1pDK726njH581D5Lr90sMe/FXCDmkPAp3FYpfvEHzYOPUY/WmeYM5ZWU+3NXuoqJohznFO4rFctu6MD9DzTCTnkGpHhDcZP061DIhg4Dtluir1P4UXFYTaRjB/Ol2+uKasV0Uy+zd6Ef4VINwX5kYH25FWIaw49PpTBjGf505yDxnB9DxS7OBmi4EeMnpTdnP3cVNtwcimtu7DNAyAoAeSacFHAB5+lOzk4PX0oI74NFwImTcPmAIPbFV3t4s4MYI9xVvpnPWo53MSjGPMPQYzx60mMoSabaO2Ps0RPc7QMVC2i238KAfQkVqLHtX5jlj1pRgjFFgMNtJCMMPKp7fNmmmxkTpOxxzg1usvNMeFXRgQDkEUWHc7G71G1sUzPMq+i55P4Vz114nuZyUsovLX++4yfyrnfMQyFmZpHPVmNbOk+UzMXCnaOPapc3IfIo7kcFqby5/0u4LS4yd5ya3ILeK2jCRJtUe1NaKKf76K31qAgR/JayyFhxsB3D8c9KVhN3NEEAcU4Ng4zVKOW5T/AF8IYesZzj8KmimhkPyuue46GmItBs07OOlQrTx06UDJM+poyPTmm44pBu64NADvfgUp9qaAevNOGTSADggZpenSk28ZzS5FACZNRy+VtBmwQTxnr+FBlMh2wLnnlz0H+NCRBTksXkH8bf09KQyvsnZwYyUi9JDuJ/DtTv3y9Yw/upx+hqdlx3qIg8YOBTSEM8wHjp7HinENjpxTzzxwRUZiUHIG3P8AdOKLAB4HFIG9qRllx8rIR6MMH8xTWZk4Mb8/3fmpWGO3n86Qkfj7VGGVsbecdu9O574/GmIDkU04x7+9OU564phYSsUjJwOrCgCOQljsTBY9B6U6K3WPLH5pW6uetSIiQcIvJ6t3pzMcZApgMAA6jk96GRCMEZp455J5pDjPXmmIgaKP86ja3Un5WI+hxVjB9KTHNFwKoikH8Qce68/pSFAD0x+NXAu3pSEA8nFArFIpycY6cZ4prKduDVmRF+g9M1C0I6rkD2OKLhYiOETOBUaRHc0j4Lsc5qYwtkEsWx2bv+VK23oVYH65pgQ4xximkc9MVKy8ZV1/GgKwX19xQBCQx6DNJtb+7+FSgDPAoxTsBgRKM84rQjuGt4dyKGPHGcVmRP8AKD6ipJZcxFc1zt2N7XNhLppyPOfK/wBxDgf/AF60oJ1AGFAHtXJRTFSMVpWt0xPpSjUuS4HTLIrc4Oae0Mc4xIgP86z7aXO3+laSMCPWtbkEYt3i/wBTMwH9xvmFL59xHkSwbh6xnP6VYUe1PBwaAIIbqGVsK43ejcGrHA6mo3hjmzvRT+FJ9mKD91K6+zfMKNQJfpQeuagZ5Yhl4949Y/8ACmLcLOSASm3qP4qALDSheAMt/d703ymf/WH5f7q9KEVUzsXB9afn1NIY4YCgYwPakyAKTPPPT6UZX6UxCN600kd6Vm64PNMPOCc0wFz6U1iSaAcZ4NJkUABOBSZ79KQk9AKCMgc9KBDmO8YZQw/2hURVd3BIHoeRTyKbkZ6UAQSLKWxgGM9QnBP51KJYlXHMYH8LDFObgU0EgAYNADl2t0IP407b61WaJOSFwf7y8UDzVHyybvZhQBN3pe9ReYUH7xCB3K8inh0YjZID7A0ADA5AFLgAUYYDrSZJ70AIfrTCCQe1LuAGevNOz6cUwISozyc0jdOBUjUwjj1pARYP1+lBIOflzT9o70uMcUDIGRSPu1EYcHgkfSrJXPakK0CKbJKW4b8MU1ndWw0eR6r/AIVbzzgYpu3I607jOMWUqoHtTXuAAcmqs04UcmmQpLNIHcYT+FT3965ZS0N0jSQ5I4xmtK2UgjPSqUCsSMCta2iPHFKKbBmrYqoAOa1EyUAUVn2aYxkH6Vqxg46YroijNscAfSlGT1xSinVRItJmjqKTpmkA8kAVHLFHKPnVT796cF3CkxzTAgNvKn+qmOP7rjcKTzpY8+ZGSPVOasik70ARJcRyDCNz6Hg/lTmbtSSwxTD51GQeuORULwyqB5MxPs/IpASZy3XgUE+9QmVosCVOT/EvIp6yI/3SD9KaEO3ZzTetLnmkJyOMUAAz2INHNIAKXtQIM+1IQD1oP14oPX2oAYykHP6UuOKOccEmnbs8DtQA0YxjFKCvSlHFBG7sM0ANPWk2h+GUEe4pSrAY7fWlXgYzQAwRsg+VyBnoeRTW3r1VWB7qcH8jUpPoaaR8wIoAgMqgfMCmOzClD7kyCMduaS6lwhjQfvWGBUMUIjj25O7+8DjH0ouMnJyc5ozzxio8SKMhw49GGD+YpolwcPG4HqBkUASksOm3mk98c0gdW4VgcenanUAGQe1NyDn0pdx7Cm8YoAQqMZoCjbxS5FGc0AedR2oQhpfnk9SOPwqxHl5QOc5qMkruQnjPepIHEcoYjn0rkSTZ0vQ2rW3xjNbFrDzgDms+wvrdtqPmMnozdPzroLeNeNhz3yDmumMbGMmTQQbOT1q0CPWo84GKOD6cVVySQ4B9qUMKYBkUoJ549qAHGlBBpvzE804D2oADktg0vQGkzk80YxknpQAvb0oNMEiNwGX6U5semKBCZA6CkycUfLjrSEc/ex6UrAISe1QPDHIcsvPqODVg56ZqGWRYuWIB7A96YETB4lyrgqBk+Yf61ELyJlDMGQHoxHH51KUefaXBVByEHepto27cYHpQBF1GVZSPUc0bvRgfalNvEGztKse6nFN8t1GVPmH0Py0AO3c4oBwajeVUPz5Q+jCnqQy5Ugj1FAWFp4xjiouTxTgrZ9aBDxR26UZ7Y/GjqKADmmkZpSvGM0gYDg0ANPH/ANaq9xcG2UYGSegqaeeOCMM7YycL7mq0MTZ82Rt5PTP86BhDGwJkkJMjdc9h6U8x4Lehp+fYUYz360AMx2xSZwOlPC01umKQDMKTkqM59KDGR9x2X2zkU8r6UYNMCDdOD90MPUHFMa7C8SK6f7y1YJweaMnnnIoGMR0cAqwP0NO7VGbaFiW2AMe68GmtBKOY5icdnGaBH//Z", "path": "images/4pts_ADE_train_00002966.jpg" }
depth_point_80
images/3pts_ADE_train_00005938.jpg
ADE_train_00005938.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 160 y = 97),Point B is located at (x = 320 y = 149),Point C is located at (x = 208 y = 220).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_72><DEPTH_43><DEPTH_44><DEPTH_72><DEPTH_77><DEPTH_77><DEPTH_59><DEPTH_3><DEPTH_49><DEPTH_49><DEPTH_69><DEPTH_11><DEPTH_75><DEPTH_5><DEPTH_67><DEPTH_70><DEPTH_3><DEPTH_31><DEPTH_29><DEPTH_49><DEPTH_13><DEPTH_35><DEPTH_35><DEPTH_70><DEPTH_3><DEPTH_31><DEPTH_3><DEPTH_31><DEPTH_49><DEPTH_49><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_70><DEPTH_70><DEPTH_70><DEPTH_3><DEPTH_49><DEPTH_29><DEPTH_49><DEPTH_67><DEPTH_67><DEPTH_70><DEPTH_59><DEPTH_5><DEPTH_70><DEPTH_3><DEPTH_31><DEPTH_3><DEPTH_29><DEPTH_5><DEPTH_30><DEPTH_49><DEPTH_11><DEPTH_74><DEPTH_31><DEPTH_35><DEPTH_70><DEPTH_49><DEPTH_70><DEPTH_83><DEPTH_11><DEPTH_82><DEPTH_60><DEPTH_77><DEPTH_77><DEPTH_63><DEPTH_36><DEPTH_77><DEPTH_38><DEPTH_32><DEPTH_45><DEPTH_62><DEPTH_33><DEPTH_39><DEPTH_63><DEPTH_58><DEPTH_41><DEPTH_42><DEPTH_78><DEPTH_2><DEPTH_49><DEPTH_69><DEPTH_58><DEPTH_28><DEPTH_62><DEPTH_84><DEPTH_81><DEPTH_50><DEPTH_11><DEPTH_2><DEPTH_32><DEPTH_46><DEPTH_34><DEPTH_80><DEPTH_18><DEPTH_121><DEPTH_18><DEPTH_78><DEPTH_22><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
3
[ "A", "B", "C" ]
<DEPTH_START><DEPTH_72><DEPTH_43><DEPTH_44><DEPTH_72><DEPTH_77><DEPTH_77><DEPTH_59><DEPTH_3><DEPTH_49><DEPTH_49><DEPTH_69><DEPTH_11><DEPTH_75><DEPTH_5><DEPTH_67><DEPTH_70><DEPTH_3><DEPTH_31><DEPTH_29><DEPTH_49><DEPTH_13><DEPTH_35><DEPTH_35><DEPTH_70><DEPTH_3><DEPTH_31><DEPTH_3><DEPTH_31><DEPTH_49><DEPTH_49><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_70><DEPTH_70><DEPTH_70><DEPTH_3><DEPTH_49><DEPTH_29><DEPTH_49><DEPTH_67><DEPTH_67><DEPTH_70><DEPTH_59><DEPTH_5><DEPTH_70><DEPTH_3><DEPTH_31><DEPTH_3><DEPTH_29><DEPTH_5><DEPTH_30><DEPTH_49><DEPTH_11><DEPTH_74><DEPTH_31><DEPTH_35><DEPTH_70><DEPTH_49><DEPTH_70><DEPTH_83><DEPTH_11><DEPTH_82><DEPTH_60><DEPTH_77><DEPTH_77><DEPTH_63><DEPTH_36><DEPTH_77><DEPTH_38><DEPTH_32><DEPTH_45><DEPTH_62><DEPTH_33><DEPTH_39><DEPTH_63><DEPTH_58><DEPTH_41><DEPTH_42><DEPTH_78><DEPTH_2><DEPTH_49><DEPTH_69><DEPTH_58><DEPTH_28><DEPTH_62><DEPTH_84><DEPTH_81><DEPTH_50><DEPTH_11><DEPTH_2><DEPTH_32><DEPTH_46><DEPTH_34><DEPTH_80><DEPTH_18><DEPTH_121><DEPTH_18><DEPTH_78><DEPTH_22><DEPTH_END>
160
97
320
149
208
220
null
null
null
null
9
40
65
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDl7iJfEfhW40kjfe2IN3Yt3dcfOg+oGR7rXm0nVfdRXYabeT2NwrI224tm3IfUdx/n3rD8SW8MeqNLbKEt5x5iKOi56r+ByK4qD5XyHZVj9oyhUgOMVEKlHTpXUYGlpN1PZXBnt5WjkAI3L6EVUnnaaV3dizMxJJ7mpIRttww7k1Tyec1CSbuPmdrXHhhSEc0wHntXT+HvDD6xJFLO4itzyc9WFEpKCu2OEXJ2Rz0iF52CqSc9hmr1poGo3ZHl2zc+or2XTfDHh6AobidVCDlVHJrurLUNA0lB9g0p3bbnzPLx+pri+vRbtsbuhy+Z4Rp3wu1y9CE2k5DdwmB+tdDB8Ib23jaSeFIwpxmQ13+s/E6S1jKwJbwkdRu3kflxXmmtePL7UZv315I6ueBuwo/ClKpUqaQY0lF+8vxJL3w5Y6Ydk13Hn0U5wawrgWSNIEBYjv8AjWZc6xJMjnksp71WNxNJKGC/K681cKMvtMJVF0RblljUxsEXgdfxqFpMvLHkAgZ49qr7D5e2SQAZzxRvjVtygs1dCUYmLbZIHHkjaMsDjAqZ2/0kkACNuefcVVaWVeiBR78VUmm4+eYfQGrT7EuxpeciK6vJyew9qha/UKPLTO3jJrKa5jBBG4n1pEuU3HKYB9+lOzFdXL76jK2GU49cVXM0hcnkqaZvUfxAUwyR9C4P0GaNRuw9Q3ILDafWmTL5KLuG4MTjFNFxEo4Rm/HFRz3LTBF2BFXOAPemkxOStoIbg44QD60zzpT/ABY+lNoqrIjmYmSTk5P1pCMnvmndqQmmIZ0PSn7gVChRknr3oIxSxqWYBQSx6YoAt3+nXGnm3M8Dw+fEsybiPmU9DxVaJFdjk4A/Wp2lmuFWIqXK8KMdKdDCRFuYYHv3qW7FqN2KidgPwqUKOtX9I0q51e+is7OJpZ5DhEUcmk1LT5dNvZrOcYlhYq49CO1YOV2dChpcoAfNwK6nwTrGnaDrLX2pWf2uIQuix4B+Yjg8+lc0Bg+9Scj86mV2VFBO/mTO56kk0wjjGKeEzT/LwKV7FcrbuQ7eQTT1XnNPK47UgwpouUlYJIN9u3YYrM8sZ55welbMr7bVselZI+cn61UG7GnLF2R0JkMsSXcfDpw4qpqaLLFlR8pO5Pb1FWYGSC6yv/HtMOM1HPCY5Ht+3VM1mtHcwmrowMYOKf6Cum17wteaBaQXt7bA2txjy54m3I+RuGD7j+Rrn2kt3P7nPA5BFdKnzHLyWJvu2yAf3SapEVbuJ0RgnQBQOlWLLT4rzT9RumvbeBrONXEMhw02WxhPUjrQmNpGYiF3VfU4r0TQNSgsdRk+1xGSGGMqsYOOlefxSItxHz/EP510N0HjvRcxktE/Ofw5BqKsedWZVN8uqO4uviV/ZsL/ANnabZoZSSZHTcy/TNctqvjfWtWkb7ReSt/dAO0Y+grImt954+ZTyKiaS0gbDyjcP4F5NYxoU47K5bnJ63FMtxPIHck5GGpqWxfC/NIRzhRmk/tS1A/dxBj2Ln+lNbW7g7hFdGEMMERKFrVc3RCvE1rfQb+Ygi2EYcZ3SNgVoxeErhlDXFyqD0UcY+prH03xbdWFuYfMScfwmTqv41UvvEF5fsd96QvZV4rFxrN2K5oJaHRXWk6bYgt5iSvjpK+QD+FcrfapOknkxNEiDvEo/nVFyHzumZj7mmCNO7itqdLl1buZTm2tBkk0kjZkd2PuaQjinsoX+IUgC7etb6GVmMPUUYp+3ryKXyyV4I/OquhWYwDPagjH407bsON1IR75o0DXqNAGaCBzS4pcDuaAGcA0GnYApdvGeKAsRrkUEZqUR5HFDIQO1K5ViLHpU1u5ilWRTh15U0wrxn1pU7cUCL8FncTRSPAjsijLkAnA96iTJHzEk5712Ph3xVbaR4K1zSGtw1zqCqElH8IHUflXHKcgketY3vc300Nrw9rNxoGqw6laFRcQncm4ZHSodSvZdT1C4vJzummdpHI7knmqSCplB5x+NZNJO5qthqx/MKeyYbHf1q6kStLEB1wKZcRbJSvvUc2paWhEiAGrBVdoFRdBQuSck0mawnYZKuKgA5q0xyOlRMBjgc00yZ6shuDi2fB7VWsYzKRU1yf9Gk+lWNFh3xZq2+WDZ0ZfTdbEqIy23RD7JcMD3Vh2NX5g80GHGJYuQcdRWa4V1DNkHg5HUcVcjaWQRlpwUUbcd9vpV1KdpXPPp1Lqx1nhO5s9Vsb7QNXmIttQVY4JHOfs8y5KMPQZ4Psa8/8AsE9pq1xZTxlJ4S0br6MDz/KuguWjinQ2yGOHHAJ5z61a1mMX93a62n35YzFc4/vqvDH6gfmKmMuV26MmUb6nHXu5pm69arksVHFTTEGVju4zVcnk8966EtDme4vIwec12OmzLJjzGYI4GQuM5+h4NccB2LcVu6ad1qoz0pVHZXNaSu7M6nUbeBY40iV44sDO/buc+wBOPrXCagjLfzZGefSu0jbzYLRDj7xFWItE0+83i7ixIc7WH8RzU0bzbaLrRUFY84AOScHpQo+YHFWbmEJNP5bfu1kKjJ5xniq3IJOeK1OfYORuOKRODmgnjrSBiDRYA6nmjG5vr60q59TRtbv+tMLMa3Wl6kU7yye9PEajq39KQ7EJznFOBYjj9Kt+SqIJWQ7G6NgkE1GMk8KcdqXNcrkZAFbvn8acEPPNSiOVs7UP4Cr+k2aNqlp9vDiz81fPK9dmfmx74pN6DUG2ZzxlFU7sg+9R7j0Ga3tZ06yOtXv9mysbDzW+zlhyUzxmqqadGByWJpKSsU6TuZO49BV/SbT7dqdrayOIkmlVGkI4UE4yfpU/2dEbARRUqgryOMU3K6HCCvqP8QaQNL168sLWdLmG3kKLOOjgdxVDyWxglfwFXSWc46kmrcVgSoY8n9Kz5rLU1cE3oYzQ+hqPynB4IzW1PbhPSqfljcc46ZFUpXRlKFiqROBygqSGGQkFsDvirrxjGRzSKMEcVm59DRQVxqxEDocVKFwOh5qSNQxz2qbavTFYORuoqwQE+YD6CpZlRjuIznvTcACmOxzWb1ZeyInUj6Uimpc5HNRkYNWiNgJyaic4PHSnkYP0pjDPrTQrle65tpP92r+iMEscnpVK4X/Rpf8AdqXSLcS2oMjEIM4Ud6qok6ep6GUTlHFXitbFWyu1nh8pwN6DAI7irYZUfK8A9a51SQcgkfStTSw0vmKcsRg4rplT5ne54sKyStY3ICJI2iPUdKu6bIFjuLWb/VuhX6HsazYw6KJNpDL94e1aEqKbJriLvgNWLinozdq+qONuYXguHiccqSKi210d/Z215pMt6rFb2Bx5i9nQ9x7g/nXPf5zXRF3RySjZgFG3nmtbSeVK1lA4Fa2gxma625ABOOfof8Kmr8LLo/Gkbscvl28bnokmfpXWpd2F1ZxCO4twYIyfmbaW7nrXFO223YckBuRVGa8MLeWUyCMg5qKE3C9uprXpqW5Re6uTYS2Zb/RpJfOKkfx4xnP0rMK5fbVx+4yT2qfQ5LW1161udQtDc2UcoM0Ocb17itk+pz2vZGYyADINIMDtWxdWVvfa9MLJTb2k058lHO4opPAP0robbwZZoR50ssnqBgCs51ow3ZtTw06nwnIafavqGoW9nEVEk8ixqWOBknAq3quj3ulavdaVNFuuLWRkfZ8wyOpB9K7L+zdI0uaMpboJQRgnk/WtDRLWS41C5unTzXI2fOeTuJJJz9KxeJtrbQ6I4PpfU8vFpOw5BH1qZLIg/Mw+grsfFGkfZPIvIowIp9wIXopFc4g3yBTxk1pCrzq6MpUFB2ZrTax9o8JWmgvbRBLWd5llA+cluoNZ8UIGQqflTxDsmZGPCnFa1rLGgCxx8Y61DlbY0jBN6mRtKk8YHSlwOg5rWuFjmXBUA+1UBAEkP93rQpXRUo2dkOsbPzjulyB6etaD2sQBwny7fSjTYWuLgRJyzH0rc1PSLiztd7pxiuedW0krnRTo3jexyF1aqTlRg1SZSvBrSmYjOetUZSCeK6oPQ5J2THWsQLls454zWjJKQgjjHH061TtSomRXICbhk+1dpb6fZ3+nrGjKZkyysP5fSsq0lHVmtCm56Lc4u5JwNwrPlAKnnBrsda0Joot6gkVx067CQa0ozjNaGNaDi7MgtvOXKFTs3davAfN70LyoNPAAbJ61M5XCEbEithcVIDUPenZ4rFo1TJiaYwpF5NSkcVPUZD70hNOOM5pOtUSMPX3pM/NinMOab+FUiWNmGbeQf7JpdLYLaD8aVxm3k/3TVawkxbY9zQ1eDR6GWT5MQn5GN5bVLbvJDIHTt1x3p4H0pyjvxXY2eWqKTLsOotE4ZIySeMeua3bG4VLYRv8Acc4IrmVPPTmuhuXRYotyYLDORxis+XsXJ8thph+zXEgcZiKHjsQeP61zk9o8MrJgkZ4PtXWqn9oaa3lD95D8x9SKyJR5gU91OD9KUZWuT7OMnrsZItpGHEbVpaPDJFc/MCnIIJ9atIOnHAqUD5ScdKmVRtWN/q8I+8i2ttLcrdGKIsq/MSBnFatlbW0mmbZreKRt27cVyRx0rGS9lWOZEmdUcYZRxkVNZ68lnAYTaLISpXdvI2+/vWlG0dzmrKU9EcrMrrIQMAH2p8Yxx61JcfNL9AKdCnOTVc2gclpM1tCiU6paFgC3mr/OvU7+yhmXzFAG309a848L2E17rFqsYyfMU/rXqN9bvYXJicfKeoNeRjJfvUj2MKkqTTPMNfs7lNQlYIwTjDdq0tK1ONdRijnLIpXy2P8AD7E/Q1oeJrYE2+1WO5sH0xVCx0gvO+1P3YIYE+4GR+eK1c1Kn7xnCjKMuaJL4ijny9mH3JDlwCfvA9f8+9cilk8k0YjHDvgH0r0PxXYiHXrZm+WKf7hPf5BXI3ccFpaNHC5+0I7KuB1GT+tXh5e4kjmrtSqNszbqZZLyVk4UtgfStOztibZpWbaigsWJwAPc1iAMsmGBBB7137aW9t4I1Pzowh+xSOpHOfkJrStNQSXcVCPO2+xxkt/aq7AXUBHtIDT94ZevFVNT8O21r4Js72OOEX8fly3JW5VnZJtxTMe7KBVEXJAyZe/FPX5JJI92duee2K3lT5Tmp1nNu503hbZHq6rIOSAeB1rvdekiutKIVdrbeh7V5hoVzImp2kkRWNlOQx7kHvXa6rq0Mp/dkFX69snufpmvMxFNuomj06FZezsee3q+XM4IqrDbyXcvlwjLdcVb1BwZX781WtInkmDKdgXq2cYr04fCefPWdh0cclum6aImOTKgEc8eldh4bsJmjjeOXbLI4RIW+8wP+f1rEW8U6xbS3IbYvyh8Zyfp35rr4Lj7Fq2m6hZBJhFgsocKeCDyDz61jX5nGxtSsm7FvUlMSvaXMJSVDhlI6V5nrVssc7lQMZNes+NxLNHDq+VaCcn5l4x6Anvx/KvMdTKy5OK5sI+qKxD5krmOo4H0qQdBxSyJ5bAHjgU33zXU9TnWg7tS54pF5pSMCpKQ5OtSnp0psCb3xU0se3pWbeti0tCu3ehVzTiCTzUkad6bYrETqaiIFXZI/lqq64ojK4pIY3+ok9Npx+VZ9m+2H8a0G/1LjP8ACayLZv3X0NbRV4s1w0+SqmhgwTTwMUgU+1WLW0uL24S3toXmnkOEjjG5mPsBya3uZoiUZarVzNJtClyVA6E1VZZYrgxOm1lbaynqCO1SSxTSsSIyQOvFHUmUk0aGj6j9mu1kZjsJwwHeruo28MGoSJbSiaFuUcDGQelc9GHRuQK39K0TWNZsb++skSSLT4w8xLgFVPoPwNTKOtyFpoyFFwKlZ9kLnGflqNFkK5I6daV2byZEAUs67RmseV3O1tWIUkBLEHjHNU1lzMe46U4W10ilQRjvz1qNYWiJLkDJ4roSOPWMrsSUjz/YgVZQBlFU2GLnn8qtrjHBpSVkJP3meifDQLFqUbyLkluPzrq/EutQXdzOwBZomCuEGeT/APqrH8HaPa20SzPeYYoGbJxjNcf4gu5re9misTLGs5z1yze/4147iq1d2ex6k37KmpPsb+o3Pm2q714UZyDzmtXRLOa/jMKMFjWNWOOpJHOfbiuCg1NpbMQzZE4IGD3rs/Dury21zgAnbhVTHDZA4J/Oqr05Rhoa0KqnG0epmeK9SdtfsbYECG0KxqP0z9arnTwniK5klUEQgsvHBzzn+dUPEr3FzqD3jhc7+Ao4GDVrVpXRXmMzCWRRGwHcY5/XNdFKNoJHnT+Nt9DH1ZFn1CK4QD9+ASAO9dtrFyk/hNrCF/8ASjZmMJu+8WjxiuDa4WW5hUMAqH8q6hJYGsidheZX2rj17D8aK60i30N8JB1HKMN2cNJpniqW5u/Mtz5l7EsMwJjAdAVYADoANi4xjpWtrUMFnqp2IFjdfujpmuv1LVLWSSC9ns5op4CBIEBwpPTg9ARXHeJmxqoweAuRitqdeVWzaOavhVhW4vfzK1pLDG8nnGRXz8hHRfbFXvt7HYCenFYisznsT71YEL4G5sAVpKCOeM2Pu2BY8/jRApNpjJ+Y5P8ASlW1lulYpkhRknacAVatV8y28lMF1wFPqavpYq93dmOwZpCFJ3Zz1rXsxqJnTakjsRlWAzk9OtZjQsbxomODuIY+legWFnYWltFGrl22AsS3Jz/KipsFNJyuzWmnu7nwja6XdyR/aMhVVT0x047nisZ7KxsbS9tr0JNdeVuhZT3+lZ5vrG28S2sQZhah/wB8zuTjP+RVvVbCCIG4t4mlJBbzHy27PUe3euBQcJW7nZOUZr3VsctqKhZs9yAf0qlnkVc1Jt0qttCnA4HaqPfNdEUcr3Jo8E09l4pkI+lTFc1EnZlpaE9koJ6cVYuU+XNFpH8oNWJlyp4rmlL3jaK90y9vNWIUpuw56VYiTAq5PQiKGyp8vSqDrjitSUfL9Kz5Rg0U2Ooio+BG/wDumsW3QPGcsQM9q25Qdj/Q1h25xGfrXZT+FmVO3tFc6e08PR3DhVVs5/vV6H4S8BSWN1Dq1lcCO7t/njw2ecdPQ157b3OqwsAskII9RXU6Z4l8Q2aAR3dqqj/YzXn4mVe3uSR6FHCylF2g7nM+J7NYPERkH+sllZpCe7Zyf1qvHnE/AxjnmpdbuLq91cXF06M7sSQi4GansrEzxzkSAFV546V34e7UbvocVaHs3KMlYxlRZLuFWBKnqBXoXgyG086S2WyvNlwvluEYhWHvzyK4aa0lgu4SjDduwuRXUaLfa1YzebFewoUHdM1ni7+zsmVhqcqlS8Vc7LXPCGj2DEQ6fNJxn5Dx/OvOfEFtHaX0aRwNCChOwn3rq5Na1q9H73VlGfSIYrk9daV74Gafz2xw23Ga5cEpJ2lK52YjDzhFOS2Ms5Kg+lVLyEyABSFGcmr2PlI9qruM/WvWi9LHDON2Z0qkXB+gqxED2+lMnBEp/CnxGiRy7SPYdHnhOjkELh4MccZ4rldfQyahabW3YhAOPbp+lZ9rd3EHh5gjkZBGQfeiwBMCmRmd1BxnsK8uFDkm5nrzrqcFFowwQ2qrtzzIOv1ru7GL7PcJHuwPvsx9BXFWcYk1iLPGZc5rr5ZRNdLbq+0tEefatcR71kGXpJSk+5k6ldL9neUEHY5I96xLy+uLxy7E89h2qa7fMphUkordDSLBuZcd+oreEVFI86o3KbK9pA0jcgk9BzXqmlaNJpmlaXexRJJqEUjPKkjYWRWUgrn1xgDtyc1x8IjtIISkMeW+82M4p9zqF5IgQ3J2hgeW/wAKwrqVVWR1YWbw0uda/wDB0Oq1HUBcao95qUcFuzQiJYvNDBFBJO44wTnpjtXmur3CXE8pQ7iHJDZB4/Crc8nmDcZCxPoKy5o40VvlIHua1oU+RGWMrutK9reXYqIcE1I8rAZBNTwWyuuVHWkubGSNdy/MO/tXQ2jhs7HR6ItvPAqtw6gEgE81LqukySFJLSRItinK5xmsHRpn80neVKLjHqK2pneRTjOHPynvUNWlc2TvGxjaTEGvZHuB8sS7nJ+tXPElx5FxaxxEq3k5Yjgkk1R1L/QovssWSXO6Vvf0qneyPcLFK7liVxk9a0Su7ib5VyoQTFuuM+orc0zxNd2dhJYN+8jYjYSfuDuPpXNj0FW4kyqseOKc4qS1IjJp6Et3KZDvI681WzzT5DwBUeea57Gt7luHpVhRkiq8J4NWouWHFYTNYl+2j4FWZUG2mW44qZx8tcUnqdKWhnOuDU8YwKay/NUqDC8Vo3oRFajJBkEVnTjBNaTdKz7gdaumKpsUZB8jfQ1gwfcP1roH+630rnoT8rfWu+l8LOZaTR1csrbgCOOufWnpc7VPzYqvNIQ20p06GmCTj7tcco3PoKVTlQXj5liY/wB6tXRHVDduzBVaMEZNY855hJHG6tKxdNk6vAHV1yAT39a66DtY8nGRcqkn6EV1MjzwPuBAcVdA+femRnrmszMf2uFUi2fOM85rYmEYV853Mvyn3FYYlp2OvLU4pj45JFHbpWbqLb7iM/7JqZAQoYc84xUGoEedEB0C4z61jQSVRWO7HSk6Dv5EAwQRmq7rxVgVG44HFekjxZIzp4i05wamSBguePzpJMCc1bjTKUpM5LamzYxmbQ/IbOc7s/TNW7EIbcuoKg54NRaWQtqinIBJ6U+9vYbFQufmPRF/nXI9ZWR16KKbOfty0epo20EB+lbU9yY9aeTkmKBgM1kQnfeJIvOGBOB0FWW3tc3TsuS6kA57VpJJvUilVcYu3crRqGmkduua1YLYsm7HNVrSzZ7lNq5UEl3zwa3CgQAZxgUSkloiYRb1ZSnISFAI9xBxgHH51XdHazZ3ARo8FR65OMVqnycZZk+pIqOWazxiSaHAOeWFZpmjRkvY3E0S8lR7VH/Y2Yyjt17itOXUrJTzcxfg2aqvrNiv/LfP+6DWilIzcEJDZxxDYOgq15MYQggYPFZ39u2XIBc4/wBmmN4gts48qRh74FVqxKJVkhk06+3IPlPI9DWj9uURo0agsentUE+oefYmd9Nle1DbDKfuhuuM9M4rIW5i35jQxAdBvzWildakqlJS0L9ypnUsR6njmqEG2SGWE43j5kJP50+e4gNqjRSztcMx3oR8gHbBzk96qL5gbcq7T7VXMkg9jJscI8n6deKn/eKVVlZSR/EMcVEk1xE4dW2t64FOmlubmQPNM7t6k0Oog+qy2Fl+VscZFN70jAjGTnihayvclx5XZlqLpV63ByOKoxdK0LYVz1DaBqQDCipmGU6ZqKEjaBUzD5c1wS3OpbFQj56eAMelIwG6jOOKvclEcnHaqM9XJDk9Kz76QxW0sigZRCwz7Ctqa1sZzelyq/Q/Sudi4DfWtu7tNetbA3s1taeSsMU7iO4jd0jkClGZFcsoIdeoH3h61hxjl+f4q9KnBwWpxRqKUlynSyEufv8AvjFIqgdXArLnmjaZ3Q7FJJC+g9KjEoZgA9Y+xbR6X1uxuXUcOyIpKX55+XGKu2EYPmAnjYeSKh8LazDol/JcT2MN4jRPHslGQpI4Ye4rPkkmLZjaTb0+XNEY8rtcU587cmty1J5YvInYkBWHatRprSWQmSWTb22kZBrn1inlO0RyufQKTUYQ7wG3AE4zSlTjO2o6WJdG9le50oWDaWj8wqB8x9Kp3stujI2x3xkcMBRpniS80vQNS0mJYjBfhRIWXLLj0NZCMWPJ60UqCjK9wq42daFrWLv2qE8CFvxamPcruIEOffdUSxEuMetaT2cp0+NTbIArM3mBPmbOOCe4GOB7mt20jGMKk1dFBhE+2TZmTONnP4c1auobrSrlra7smgnUAtHLkEZGR+lbuj+EfEDSC6g0eZxtO0ywErgjGcHvzke9O1zQ/Et5fNqGs2t1uIVGuJk2jAGBzUSnG+pEaetl1Oej1edBtVI1x2GeKpySvNK0jvudu5ro7vRR/ZkOyaFni3AhFA6nPJ7/AI1zckbRyEEcilTcJao2q0KlNLnRNFJPAh8qYLuGDx1FVm1GeBWKkFjx746VJu+WqM65DknA9a0UFfU5asuVKxIuq3CphZCg9FOKX7VdSAEsxHuTVe2VCkuAH2jOasRuCgA/Kk4q5pFy5U2yMmU9cnNIVkP8JqxnNLnk4pF8pV8uT04o8tyDkEDFWSTmjJ5B9KYuUoRuysDtyPQnrSsS0hO3bk9B2qzp0QnuQrfdHWnTQqt5tH3c0uZXsVGjNwUug0z3i2JtTPL9lZxIYtx2lumceuKn0/TzcyLnkGrt3GjWyqABjpU+hgRuTWE6r5G0ehRwiVdRk7opXFmLWUjFWLGETSAEcVZ1UAyE+tN035WBrF1G6dzqWHisRboRahaiJuBWb3zW5qJDnPasaTAOKqjJuOpni6UYz0IpCAR9KRevFJMcEDvQvUZroWx4VX42WountWjbf/XrNjNaVscVz1di4M1Yj8oqYn5arRnpU5Py1wtanUiF6jJ4p7nPWo2PNaJEMikODjFZ2pH/AEG4/wCuTfyq+5yaqTqskbIwyrAgj2reno7mM9VYdrOtaHNoFysDWcl3caZYWyvALlZw8SQh1k3YiKDy2Hy9SEPqa5JOGk/3q1n0qyGQIf8Ax8/41krw8n+8a9NVFPY4qUHCWp9VXXw/8HohZNBtVHT5Qf8AGvJfip4f03RZdLOn2cVv5jSBvLGM8DFe+PIXXgAj3ryL4yR7/wCxT3M0g/QV87hMRN11d6HQoaWPJUBxmvaPBuoRQeDrGHEYdVbJKjP3jXlK2hBr1XwlYWp8N2Tvps8hO4M6yEBuTXrycZqzR24qjKnTubFh4rsNM1eNdRvLW3SRGC7wBmvMdc1L+27iKLbGBE7YKgc5NdB8RdJskudNu7WDyZZI2iaEyb2U54bHoc1xdq8Mt/crBC0MaIF8tmyQRwTn65rL2MacueJy4b36iT6mNIhVgvtTokyRU10uQrKMgZBIqzpumXmoTxxWlrNNI4O1Y0JJx1rv3ehNO1iexjVHDNya6ENm1ywO0Cq7eF9YsAsl3pt1BH1LyRkD860rqOM2DRHO0jaSMcVw4lyU0j6TAOCw8p9Ee6abfm50u3WyCSbYUDMpBCnA44rnPH18W8Kz2ssZWcyIfYDIOTXnXgbxHF4MuriEfariK6dd6AfKnPDD3wea6rxbqcGsPIInKR4GDIMkkcfhV1nFU/M8HBYaVSumlotbnFXGnu+jrcx4BbLeWBgD2rirtgXII5zXf3l+0NrdGRYlVdzKFJ24wMc15ff3azxLMGXeSGKKelZYVSbdz2MfOMKMebca8w87Zzz0PaorlSbR29DVfc07Bo85Aq0X36U5I+bPNelFHzFWpzFfTztSceoqeJR5anHOOtVbVsB+etXYSvkris5aNs7KdnTih3anAUgHPtT1HvUNm0VcaRx70Ee1SZoxmi5fKVrI+W+6pnO6bdnmq0Z2k0/dl6lrW46crQSLzy7kAqxYv5eGxgHofUVm7sirUM7lVQtlUGFHp3rKUNLHZTqvnTLd3JvOaLV9hFV3fdSxNjFZcvu2OpTvPmLNy+5TWZJyauSPxz3qm5y2aqmrIyxErsrzcsKEApZvvAH0oj6109Dwav8AEZYj9K0bftWcnHNaFuelc9UcTTjPAqQvUEZ4qXtx1rjaOlMaxqJjzUjVE2c1aRLZDIeTTFAw7kBioztpZOCah3sjblbB9q1Suh0KsadRSmrr/gb/AC3GThWhWXaqMWIwO49a5ccyy/71dHPK8jZdix/Sub6TS/7xrsw6aTuY4urCpXUoLT0tfzstFf8ArU+xBPbRXE++4VFTghmGBjOc15N8XfEkckunRaVeWlzAFZpgu18NkAc9q446Xf8A2VL9b66ukuGZAZFkCMSO7HiluPBOoNIkbzachERl2m9XO3Gf8ivHw+AjTxCqud7dOhLTVmO0K0l1O2Cy3ljFIg/5bzrFkfj1r0DTPG2i+E/CFxbS3kE2q20bmCOKTzEck8cjjvXjF/JLfXEKlRlU2IoHQCmQWgguJUnTzIwpUAevY17EKajJyuGIxdWrTVJrRFa91e91O+mvbu6kkuJTl3Lcmr2i3jxmdmILED5m7c9TWdc6e9oUPLBycADniuk8PaVF/Y51CcwssshhEWfn453EenatanLynJQlKE0+wyCVJNgRw2G5I9cV23g/WLnw/qttewWr3TKsoMarklSeenSue+yafGLYQqiyNIytFtONu0/MT65P6V3/AIS8Qx6DBZwTi2ls8NFmVFDAM2Sd3UjrxWsI6KVxSl7vKautfELUtT0K9tJvD8sCOoUzMCFUHnPIrjtN0m+8SmWz09Q1wiiQfMBjnHf6muu8b+NPDM+m3en2d4ZLlyqpGi/KACMgk/Ssj4VJZan4yvYmDP5VqxVlbAU7x/SuavT5qkdTvwmL9jhKkFux958M/ElpNb/Zfs52xAyt5oCnHbB/nTp/C+sW6sbk28IPP7y5UfzNen3UwudTEU2nzm3VhEZpN+G57Y7dOtadzo+l6hMJLm0hmkVdg3DPHpUToxqOxlhMyrYZPl6nhmveFrmc6rbz6rpsatGrJKZ1Adgg4CjkAkVwg8E3KkyDUNIJwcoLlmx9MLzX0vq+haTZ2plt9Etp3XqPL3Ee+KqroNtGEWay0aF5OY4jAMt+FEV7O6RhWxUq1ubofN7eEJEmijtNStm8xQJNyudrnrjC8r6d6p67o9x4eefTbk5kVUcNsZchhnowB9R+FfSMFtYaZru/VINIhtWH7lTbKJN/HOQPXNeW/Hl7WTxLaNAI8mzw7IOSQxxmtoVFK1mc61PI4Tt3YrQgGYlNZ0fU1o2x/cD3omejQd42JqcOO9NFOGPUVmdS0F/CjNN3j1H507jOCR+dFmPmXcog4b8aXPNR5wx+tLuHrV2MYyJw2fpUqPjvVUMMVKje9Q0dEJ6lkPUqPjiqqn1qQMQayaOqMyZ23VA2N1KWqMEkn1oSsKpK7Ipj8wpY+T1pJfvD6UJxituh5FX+Iy1GeavQnis+PrV+CsKiCLL6NgVN5gxVRTipA3FctjdMlJqMtTWfmoy+KpIhsHYE+9QNg09nGajYgjrxWqM2yvIPTp7VzcjbLiTgn5jXTtxWdJptu7lsHJOTg100pKO5zzvujZj8WXeoWTxarr1+z/MUj3fu89sgY7037V4ejfC6pqHlSQfOpjVmWUDjn0z+OKyl+zkf6mLr6UAReau2OLGfQUWj0RryNK1zUTXbf9z5t6ZTCvlxhYAvy59e/wCNVbiSOe+nlhx5Tkkbjip4GTGdkOf9wVox+U0e4iEf8BFQpJPQudNySu9jH1OH7ZLA9tJtCAZ81urYGcY7ZHFT6a82k25VpImUsS2D/KtdJYyANqZ6fdFXYE2uqMqEH/Z/+tTdXS1jNUNb3MVJYry5V5bgJ1woBIwa2NVgsb6KEpPLE0QA+7v/AP1da1Fsm4KRfklSm1lQAtG+T/sYprELYHhX3OOh0rSTfQ7ry6DlxlvKGBzXpfwu8J+RrU95BeTPDcQSec0R8pozuG0e+cH8q5Z0dWO5HH/AcV1Pwv1e3svF32Wa48s3cLKinncV5wfTvWsaqlo0ZTpcivfU9LCWPhy7x5+pXBcBW86dpEQE9TnpTZNWttMknlsdMmuW6nygTn2Xj9K1Yo9Za6LzTWP2cngRo2/b9c4pbmHVzcqbe+t0twBlZICzH15BAqHHqjmTZw2r65f6bbWer6f4YuZ7q5mk3pIzZjAxg9OhyfyrJk+Jvipm2toEULNwoYknPpjPNeoanc6bBHE+oSrGA2ULErzXlvxd160j8OWx0iSNbgXSkTRxEPGME5Vu3YVz8sIytE1jeTSNTw/4l8X6t4iSz1Ow+z6e8UhMqrtO4KSBntzXn/xwtYo73THjnSRzCysqvuI5zk49zXA3firxFehludb1GQOPmDXDYP4ZrIZnc5Ylj6k10RpqJrGi76kCI/PBq/ASsIUggiq+CO1PDyY6VctTrppRJ5GLIQuQT0IqEQTNDygJByX5J+lBMnGSfwqQlo7eNfMUFuTzU6oKjW4g0+OSJjHOUZVyyyqRuPouBzVfyphGWAJwMkL1A9TViZwWG2TcO+KjZpmCpF5mTwSuapN9TCzexTbOVbJ5PGe9SO5XZgEZHfvUtxbTmKNTG/yZ6jHWorou9yZ5Bj5QAPoAP6VpoyPfjuOgdppNqqT6AdSfSrc0b2dyLe5jaKUgHY3UA8jNMWZE+yvEJUhVdrNnBL9Wwe3UVVQmW8aRiSepJOcmplFGtOrLQ0cgDqMUCVSQA6mq2pAxnavAU7frVe3LS5zjK9GNZqndXOmeKcJ8ppswxgEZpB1qncNHDChEhdz1wuB/nrSWd0zyMpHGM0vZ6XGsWnNRaLMvUcUi06b5dh/vDIpF6c0LY5ar/eMsR1ciPvVKPp7Vai5ArGY4l5Dkc07dioVbtTj0rC2ppceeT1qJj1pSaYWzVJEtjHNRFutPY+9RH3rRIhsRmPrk0wt2pXPFM9a0RmyguRyAOKv2cSySxhsEE88VTWMjO4Vet5PKcOOgIOKc3podEF3NuKKJwAq89CB3q5bWJkt5iVxt6VV0q/SW9WIwf65gAc/drubfThDpN0zAdeprzKtZ03ZnbGipK6ORtgHZOf4sYruLXTVTxHpsTqQsgBOe9cNaKyXA46SevvXrMkYbxNobN/d5/Krqy1S7mFrJm0+kRRyORGvBOK8N+JkV5aeK8l3ETxBo0B4AHB4+te3eP9budC8KXV7pkaSXSyKh3DcEUnliK+cdX8S3+u3kNxrUpufKyFAAXAPJHFVgqMufm6HLUruUOVjra9l1IQ2n9oJHJJIAoZCApPA5z0ra8J2moW2vS3Vvcad9ot0lYrPkg4HQAeuMDFY9/qWlJZy6dFoUNnciT55GyZF46cniptF1e00y3Ty3AlXOGdOua9KonFWRnRgpptux9D+E9e8Ra7YQXl7a22lWJhGNyMZC2cYAbtgZz71zXjjxDNZaz9jHiy+trcWjSt5ESjdJnhQQvce9c9bfEZxZwrNqNoiqgTnOf++QKta58XdFaKHyVuLkrHtYLEFUn6t/hWMpz2SMo0lu2Yvw/wDHN43jSytXZXW4lZJru8kaWYx4JwCThRwOgrV+Ovikzmy0Wznja2I824ULzvB+Xn6E1yN78TJbiWS5sNDs4vLCqJJQGZewxgDmuS1jxLqPiK6ik1FojsH/ACziCZH16n86uMZt7JIv3ItO+pTgeMTAyD5e5Na1pZRXjExkbR7Vz7NzweK67wsizQsSOcVOIfJDmR6eBtUqKFipc+HZnGYJ8H+6Ris6TRNTjPChwO4Oa75rddmBkVUlikH3eV9K44Yya0Z6tXLIPVHERWNy4w6hDuK/N64zVUFtuGTA9SOld1ISBh0zVd7KyuCfMgQk98YNdEcUuqOGpljv7rOY0uxW6uz5o3Iq5IHFdCsflJtjAVFHQVJbWFvZ7hApG7ruOcUTRStEyw4L+nSs6lTnlvodOFwyow95amHezZcjcTVGSTEbbhuXHSpb23uLJwLtCjPyuTwapu+9Co712046aHl4io+ZpjIGR5gZFAA5C44xVjasMF0NuHAyp+lOmuFmEIEKL5USx8DrgYJ/GoJAdkj5I+QgjseMVdzkjGSjqi5qej38NvcyXF/ZyXNuqyXVopIlhDED5sqFJBZQQrEgnkcHFARyW1sruVIlUMB14q/rmpaNqk+oamkd4dSv381onRVigkZg0jKwYlwTkAFRgN3IFQRsGs41x82wDJ+lXN2sY0FKo292Up5VkjjC5yowamsByx/CrJWLahKDcAAcDAOKkEiBGAChiwbIPtUOS5bI3hSkqinIjb5mFPGePpSk9DxSZzWXQVR3myaM4q1G1VFq1Dk9Mn6VnNDjqWlangmmBHAywA+pxSlh03r+dZcpsoS7Ck1GSKUn3phOOlNIzYxjg0wmlbr1phNXEzYh75pgxU/lZt2lz0YLjHtUHPerRDKc16tvcSRGMnBxTE1FUVgIm5960JoY2ZJMffUHpT47aM9VNNzjbVGq529GVrLWDBcxyGFjsYHrXVx+Npri3eAQEKR3c1k2ljFJMqsMAmuoh8NQLGzKAxx09K5a0qLfvI6Kft0mlI5eLXJ0l3eQvDZ5JrtT46uJda0u4dYVSIYbAJxXM/YkWQgpjnAro30S3he0kWJWLKWIPQ4GeampKm7aEqE+rLvjPX7bW9B1GKO+bc4EiRgY5BBxXkdpdpbXcU8sEdxGrZaKQkBh6ZHNdBeeKrqXfElpZwqAVYKmSPzNYkHkRSq5VCuf4hmuvCwdONmctZqUtGa3iMwapqtxfLaTWryYZ4w5cZwOmRn/APXVO30k3VhsiEzXQm+VNuAUx1z65q5c6o93GnmTh+fXngYH6VetZ28kqrZ6dK0nNxZrRwsKkG2zRX4T+JDF+/OnxFYwyobtAx/zmoNS+G+vabErT2nnNtUjynVxgg5711tsFOl28k7APKmCzsBuwfWn654nsys6rfLLOsQWMR/Ng/UVzSxM72iiYYaO8paHA2Ntrfh1Hng0qISGSMD7XCsqgnIBweB16mua1o3h1WeO9kElxG5jd1xgkccY4x9K7G48UyfZpkDPuYcseOMYrmZ9RWRSXmyw6cZzXTSnU+0icRSpRS5JGQMYx2FdX4auBBblsdeKyDG9zaGSG1Z+cb1HT8Ks6BJiGVT/AAPyD1Gf/wBVTiFzQZ15fPlrI7A367fc1X+2hlIzis2Ricof4uhpixOzAE/MBXnKkj6GWIkXZLsE4796iecDB9aqZZGJY4x0BPWn4LIDjNaKCMXVbJWnUPxkVe0x1llkDAluorN2/eOMYqxpr/viN+07SQTRKKcRwm+dXJPFGnyatFarDGC8TEHJ4AP/AOqqsHhXSrWMJevLJMwyNr4WtS7uGdWa1wZDjkjishopnly8mW5q4TmocqZxY2hz13O25O2k6JatuW1Z+AcPIT+VZ15YWEgkFuGhfHyqWyp+uaJo23kmQ8DFLax7TIy/PKq/KDz35P1q05RXM3c56WE9rUVNab/gr/8ADGLdWlwm3faW2EXbmNQM47n3qBbkBeYyMcYrppd7QoZARIWIHGCR71T/ALElub1jvCx5B9TW9OopK8jPE4KpQmo03fbpZ6910MRp3KZVOpwOKaFuJDwuABnPrXUHw7hcJP8AN/tLxVSbS7m3OTHu56ryKpVI9DGWGq6OTMU2kp6P83vQWvIR+8hLAd8VrgsnLRk45x0qYv50eyMYOeaPaeRH1a/Uo6cReFgAyhRk5q8JjCDGnHPXvU0SLDGyqMHqSBjJqmWBY81G70OynTVOOu4OzE5Ykn3pufyppfPejzB6Gmwc7bssqSEoLVB9oA/hNNa4XJ4NZ2OKUtSZu1NJHpUJuVHY003aY6NVKJk2T7mAKhjtJyRnimkgioDdxgc7vyo+1wjjLflVKLJui8i5gX1ViPwp+cH1pGbjaD+Ip23Axjk9TWaXVno06dtwV2VgwOSDkV3dlqy3FksqqMlcde9cAQUPTitTR7xo5vIzhWORWVWkpo0k+U1VAM5ZxkZzzWpqWtwaZBbXUkRkjjIDKvpUfy9HC7j2qC5tIr+JreQN5bDHB5rL2abVznc3ayOI1a5sdSvJ3tl8lCx8o8cr2DAd+2ap2+lXbIs8ttcpaMf9eEIQds7sYxXb/wDCIaSVx5cnP8Qc5pk51jw5pTppet30Noo3G3Z8oRn0OR3r0KdWC91HDOnO97HL/wBklYGeF/MXdtRyeARnOfwqxo+i3moXphiZhKI3lGOMhVLH9Aas31wXsIbuW6Uz3LSF+AFGMAEBcAHrTNC8Sf2Hq8d44juVVHQqpwSGUr/WtFq9SemhQN5PPNHCMNjIBclse9W54JYrqe3DSSBHKFg2welUNPO7V4AehkIH51o3d7GtzMxdWLSMQAcnr3pSj2Ji77mXf2C20Hmbw5ZuvJI46ZrPEeFDbDg9Metby6i8V1bkQQOWcBUnXcMnjOKteJfFup6ms2lPLGunwXL+XHDCsWQOBu2gZ/GtIJtakTsnoZEdy0cGwSMvJPXAqK0klged45cbiM981SYDdnrn15rSt4SLEtjG7kcVM4pKxrQm+dNEy31wP+WhPsa0bO7NwwLELInXHcVhAnPNWLaYxTKwGR3rmnTTR7NLESTs2bM7qZSeMEcGnRsVwD91hWRcsFnIV8r25pY7hscP096hUnY2+srmdzVZslippiH5uQMGqIuXxjNPFxx0GRS9my/bI10ncbQpwmOarzSYyd3fgVSF0wBUHtjrQ8pbmkqdi54hNaCSNnOevWoQSDnOCDxSu3OKuWVobnHy4Q9WrbRI5btvQS0Rnfzm+Y5wpJ6mt+3tsRYP3jz+NUolje6WNFAjiGB7mtJWI4XoKxk77HXSjZ3kSqoRcMM0yUog+6CT0WkZ9o5NUmlyjO3Vxgew/wDr1KRvKSSK17FGfnjGD1YY4P0rKmvIYGCEYZh0UVbvJcwtjjcQKy7i3EuJCASvY9GHpXRBJ7nm4ltJ8m5Ya4BVghycdO9ZzswfBBB9CMV32k+BZNY0q41LUEFvPMjPBDGNu0/wg/X0965NzK7LFOxYxDYN4yy+1bch5zxTa1Mxck854p/HrV4rjpwfoKtw6kY4yk1vG69iEGal07mLrNmL3pmf1rdk1KzKsx07j/ZjGTVX+0NMV2861ZM9AY//AK9Cpsh1TJbPPemEev8AKtyO/wBBZ9slpwOSxBHH51o28fhW44ddpP3cB+vpVezZPtEzjjioiQTjPNd2+n+Fo8ebhQSMlpHXGemaauleEXy7KjlumLwjH51ahYmUjKOFbgVLuG3oN3SosLnIPNIWPGMVyHvIR+tERZZY2U4YMOaVyGGR1ojIWVG7BhQiJbHdWsEQQNJks9NltQMvbttkU9+jVhNq580Q527AB8pq/b3pkcocqAMjmsGmjmUbmhFcsT8yMTj7oqnrSxyabKrAgMAGB9M1cSaNizgq56kdM1W1L9/pUuzJ2jlT19aFo7j66nKrpNgy7QjBQem405dGsQRhGGP9o1LGQB0zUw5+tbc0rnesPSa+Ew9W09ba5txb/wDLQknLdD9azLqErO7CM7SxAIYV0WqqHubAMM/MwwfpWJe2T+Y8oyFJPIOa6qUm46ni4ymoVWoj9OW3i1G2uZVeZYZEd4mbh8HJGR9KLmGFp5XCsu92fbu6ZOcZqrZ5imw33SOtXWIJ+tKUmnYzpxi43ZSZUVsbf1qd7mXy0QMAoGAB6VFcYVqXrApovcqKsxhds4z+lPw5HU018huAalQnbytIpS1ITE2ep/OiMNG2QfqPWrG0dOM1KlqzA4T8cilcpPXQnsLeTULlLeDG9vXoK128NXqnHmw9M5DViQfaLC4WeNxG6nIya6631H7XarcKVyVw6r2NYVZSTvHY9XA+yq3jPcy18Pzbl3XEfzegNK2jJGvNznnHC1K17Kf48CoHuWOcuT7VN59WdXJRSskPGl2qOm93cH8Ks/aFgRolwE6jAqgrySHKq7H2BNOFrdzEBbeTBPJIwKLPqwTjFe6i9Yx7Yt5+8xyavDgVDFDIqDO0cevSmzSEfKzADHT1pb7FJ2Wokz+YSOdo647+1Z9zcAnii5uCflGBjt6VRZunPFUkZym3uJM5cqvuW/Sup8JeHF1JlvbnJt4pMlR/EB/9euSzmXORwv8AWvRvCGpvc6dHYIhRoGDKq9HXuT79a3hE8vF1bKy3OruLtYbG6vIFdxbQs/lqOmD+leP3ELzXU085CzTOZGCjgZ5r22JhBaOTsjjcY2jlmHvXj99Ds1G7WKJ1i8whCwPQehNbNnnWKaaSzrvLjaOWNRSwwqDgsVHt1q2WbydjEsKSKAXFwIlXhev09KYiG2VCCJLbYG4WQMSc+9QXdrDdZXuBjPvXRrp0+o4FsgjXcFV34Bx0x/jWjZfDzyIzcaprlvb2oO6Qjj9WpJ6lTpyik2tzk38IWzaHaarHdvCk1z9kmWZQQvGdwPpweKhhtLSHZ9nniuJAeRgoGHtnmtPxp4jsryK10PRkA0qyRnWQggzSEYLHPbr+dcWJrqCRd6IAFHyyDGR/OtehipWeh1PifTILbwJp135K/a5ryVHkHJKIFA59Mk1haRcBra7vXjRVs4wy8ZyxO1Rj8z+FblzJaxaPp063TM0gf7RBISUhOflAz3IBP5VFZSaf9lmZLeGVWZWZM/KzD7u7HbJzjviqdm0mgb0uSaHpyapqRhcsI1QuxX+Vdhd+HLGbTfs8USxODuDqPm/E1ieCGVL67c9FiHb3rsYlJyQx2nIINePUbT0PYqSfNY811HS7rTJtsy5Q/dkHINZ/O8ivVL2wS6tTBJl1IwQex9RXmmoWslldyQP1jOM+o7GrhPm0ZVOfNoyuJniYbhuUHknqKsm8Bk3QyMC2AQeDn/Cqb4IqF5fl2bQcdzWvKmTKNtjoY9QKqMkg8dBxitiz1CK5jVCBuPB9/SuLimlRFAYkDpnmraXTqF8v5CDkketZumJJsmdhFcSRn+BiPpzTxcrnofyqoWBYk8knJz3pwI9Bmqsdcajih17Mst1ZEZ2rIc+3FMNjDJKXYu6knaG7Clk2+XuI+6c1XbV4gdkKNKw6BRW0LuNjzcW17S7Jbm1hSJXWNQwIGAOtR3SDho1UAjIwKs2S3F+JY7qIxRlGZdp54Un+Yqssge2Un04/GlUTTTMqUk00ijKjkAls1ctIS7gZqCXGKs2cm1lOB061Mm+U1pJXKl9GRKfm71XkhIA5q5qeWmGO/NVnLb/wqot2RjP4mQbcEfzrcsgDAO+Kw2zuGM+9bFurCIEA0qmw6W4t4i54FUre+lsJ2KH5G4ZfWrN1uLAYrLnU+YfSimrqzKc3CXMjo0jaeFZUdWRhnIrfsjFbWUSsFDBck45Oa4fStQaxkKvloX+8PT3rrZ7lWgQgjbtGCO4rKpB7Hr4PEKau9y9Hdow2EnGMYqGa9weBznr603S7Nr7zHD7EQgE4q1JoiPIc3D+3yjpWNop6s9Fc0o3SM2S6ypwMZOTVWaYscnvW0NCgxzcSH8BTTolmThpZSPZsVSlFESpVX0Oakfn3qM/zrorjSLCJCxMh/wCBVUutHkj06G8jgIiuHKRsxOcDv9Dzj6VpB82xxV70VeRkQxjeZGPy+n0r0r4epEtjdXojL3LSeSo7KuAcfjn9K4Bkjt0WPI3H1rpPCetNY6tGIVAtdpEjvwCxB2n6ZrsiraHgzm5ycmekSRMJI0nYNM/RB0HtUsqRXKGzmhjkixiRSvIFY2l317f6xKt00QSJQwRT82T9O3FdJpUWZ2Mnyh2yp7gYpNNuyJued654Bu7Z5ptPcTWw+YK5wwH16Ma5q1R7VJd0bLIOSCMbfSveb+xFuBtUYbrnkY965/UdBsNWR42UpmMmSRe2Bn86OtmC1aPNYyILZEAbdgEnJ69an+IWsLPoeg6fjbI0fnzjPXjCk/Xk1UmdACSflHVsdq5XXNTk1XU3vGXamFjiX+6igBR+QrPDXbbPUzXlhThFGZKQS5HOIwMfWuilu7GO3t2/tVZ2SIKFMD5HTIyewrmmJO/HXKj+dQspklWME7e/sBXZpbU8NOxqavIJrcSRvuV5B0UjOF9Pxqgv7nR2I/5az/8AoI/+vXQRWEM2kr5kWdsoUAEn7wP68Cm3mklbaCzVh+73khxuySx/wqdh2bNXwdcBNaaI9Joyv4jmu8mnhtJAJywAwcY6n1ry7SJjba1aSZ27ZV5/GvQ/EcyySeVsBO0cZ5+teVVWx7c17xZt7mKaZgMEscjB4H0rnPGelbWW/jU4H7uUenoalsbhY7jcGAZWXauMD6V0VzH/AGros0ciKC6kYHY9qxTs7ia5XdHkT8Ke2KhVRySKsXCNHI8bDDLwfqDio0xnnrXbF6F2uyREGMVLjjAAFRrwMjrTxnvSuapDsZ75+tSIn0pgBz0p4Vs8CkVyjZUJideBlappbX1moMDRumM4xzWp5RMZ9hSxKTCh/wBkVtSZ5+Ohsxul3MzFmni8shWA98qR/WqEcWwtD18tio+nUfzrXANW9I0aDULq7knaQbVQqEIGeoOePYVc48yOGnJRZzc8ICZxz9KdbKA4yD+Vdi3huwbIIuGAPUuBQ+l6LAAvk/MOpaXNZ+ybVjZVYo47Ul+ZKrNgMOR0rugPDjH94tnFtH8cgJ+vWoJNS0KORUg+yMAvJSMMTVRpNKxnKd3c4ZkZmGwE89gTW5bWdw9uCtvM3uIzWxea/pkloqW7MzDg+XEcj8aih8QJHblIbW+cr0OKJ07jhOxmy6NqkpDrYT7TwCRjJ/Gq03hXWBh5LTy1PQuwro4vF95lQmky4Xo0jgc1WuNY1PUeWggReuDITUpcpooTqaxRk2nhK9nUsJbZcdtxNX/7GudN015JLhXjVwNgByM8VLCb6KNmWeCMgZ+WPJ/nVe9NzIMS3buoYEqFABpNpnTRw1aElI19DnaLTpsdGk5/KrBu3B68elUdLYJpjZPWQ0NKMmuZxuz6KlNxppFtrnPJz+dRtcEEkVVaUAZqNpcnNCghuqx19c7odp/Ou9s54Na8MWStGohWJYXXP3CB/PvXms7bjnGV9M1s6fqktqpaAMYiAJIgPvj/AB966aKikzw8yc5yWmhQ1TQLi01VLUyCUS5ZH6fKPWs/U5d0LW9t8trHwW/vn1+ldDqJuLmeZ4YZpGKiNPl5VMA4/Mn8qxbnQtSMY225OevIArZSSWrPNVCo9os2vCOuRadZzQPHK1xM4Z5T83ygYA5r0vR9XjuJsQ8EjOc5x6D615Jo9m0UzCQZdcAj0rr9Pnlt9scT7Wc7mJ7j0NXBXd0ZtW0Z6Re3ktx+5AMbMeWb6dPauY1fUn03Q9QTeVluCIUx3B+9+QFTWPiJJNQFveqiSN9zDYHv161yvi+++0azJbIxMVsSuc9W7n+Q/Cs6t4XbOrA0lVqpdEcvqD4spEA5fCce9Y7aTCy8M4B64Na92nmGOPJAJLfL14H/ANeoBEyNgSnH+0AcUUF7tzTNZ81bl7HMXsbWV8UjO4FNxD961bLTALeO5ntnMUhKq0fygkDPGeuMjNJdS6bDftHqNrLPmLKyQy7WXr2PFd5rNtbWXgXw9HanMUjSzrlgThgnXHfjFdkYN7M8jd2MnSoYXVWRpGVZ45H8xRkYJ9Pasm8Hm3LnOCMLwfb/ABzWxoz+Vb6iMZ3oi/TLAZ/WsaQl5Gf+8xP5midvZocb8xlMCjBl6jkfWvQpZU1LR7e+TG9kwT6HpXBSKDWt4b1VbOV7Odv3E33D/df/AANeRNc0T6GrG2pr25ki2syg7QS2V5HNdNpd2Hjkhyw+UOm49u/5GuYuBItwYzwNvzHPQ8VZsb0Ry5VgXTAAf09CfeuZk25kYPi3SZLXWJJUX9zOd6t796xEgOeT+lep30FtrOnlXYbWAKn0NefT2j2Vy8Ei4ZTj6+9b053ViqXYqpbHGamW3GDnFTIOlTiPjgVbZ0qJXWAAcCniLH17VOqN6H8qmWI9cUrlqJVkjJiI9qhthugQn0xWk8ZKHiqVtGREB7n+dbUXe552YRskPCjir0Nwkei6jYlXV7nyyksbYaMq2fyIJFVNmOhz71IF4xmulHkmcNKibmSe5f6ymlTR7LnMRb/eY1o7DmnbPyoA47VbaGG+uESMKoVSB+FW5lSO8TYoUG2U8D1FRa8ANUlHUeWv8qddP/pkBI62qfyqkZM1NAH+gP0J801rAcEcg1kaC2+xduAPNatcKCp/nU9TRLQpXTCCB5NxwuCc+mait5VddyMCp6EVYvIvMs5VwW3Iw6e1Y+g2svlTqSeGG0Hp0rKcL6nXhsR7N2extggg571Vvjwe3z9fwqRW2kqeD6VBfHI+p4z9K5tme0pKUbou6aA1iFIO0Oc4qaSBCchfyNQ6O2bcjP8AEa0wiqCMVLN4axQsFhb+SmYfMdhkljwKkNpZhvltovTkk4qwFcREjlfLHGelVWfPeoudUYJonVLeJgUiiAxyNtTJPjHz4+igVQ388GpP4AQDmldmipxLMspbgu5Gc9ainkTDbuQfmOT3phbco+tFu9uuo232z/j1DfvB1z6Z9s0krtIVXlhFySKejKZGnmYHaznk9/atzTwxd52UMM85Hard5oMUczR6GpMRjEjxhgVB6DB9epqlqOpRWelyKmUl2lChGCPqK9qjZK76HxNWTlNvuYuoXbXesh42IEJ3gnqD2pjyM7M7MWZiSSepNV7WNkh3Sf6x+W/oKlJPtXn1Zucmz6XBYdUaSvuU765ktJY3+zmVHUgYbBBBqi+qIwP+jzqf93NdBbQtJE7OnyLIQM+hA/wps1pBtJMSj8K7qcPcR83jKjlXk13OFv7gXd8XUEAJjkV6LqrRW/g7wrau6qRZNLgnGd0jGuGuLGKTWlgt1wZMAjPcmu98c6GFXRbWUlfs2nRR/dz7n+dbUlpL0OV3uZmkTtDHebQGR4Gyc5Ixgj9QKoMmF/lUMOnvZ2l1BBKc3Chc8jaP8is17HU4TmO5kYDtuz/Opl8KQ4vU3RZ27DlBn3NSLYWpPMSE0iFPSpwyjoK8Ztn23so9SbYDgMSdowMnoKa8cZHK7vrzTPMGegp24A9B+VIapw7CqWAA3kA9s9Kf5akktg+55pm8Z4A/KpFkJGAB+VItU4dhuBuwqjH0qaNAPvfyoDjPbP0pwYg49aTbLVOJKNuOnNKV9AaRZMr0/Gnb2A9falcrkQeVuiddgztPJHSsG3JKMD/C1dIhZ1OWIB4IrmrbPnzqeRnI/X/CunDP3jyM3glTTRZXGOn/ANanEYbB/SgdwKkUcZA6967UfOjVUEkelKAT2xSG8tI/9ZPCpHXLiq8msacgx9riJHYc/wAqqwrnK69NHPqkxifcFUITjHIp93xPan1tF/rVbUTFcX80tv8A6p+eeOe9OluFnmgCc+VbiMnPUighnQeGU3aSxOP9a1biKuxsiuT0S8vodPaO2tFlXzGO9ietdJpU1zd27tcxqjBuCoOCKaKT6E7IvbNMSJFB8tQueTgd6n2KxPWq9xcQWSkzzKgPQHqfw60aFWK89sHyc/P61lXzbVG8gFTgg9jUd74lABW2QD/abk/gK5y4vZ7mQu7ksTk1hOClsdNHEypqzN5NbWyiKwgM5JOW6D/Go7XUbu+vOZ3B6gqcYrnwT1Y4+tWrGYpLkHaMYqHBJFxxM5zV3odLZ+LpIJHhvFDKcLvUY6eta8F9BdKDDKrA9gea89uhmZiPWo0leFg0bsrDpg1Lopq6OqlmdSlLllqj0wNzipUc5xXD2Xia5gws4Eye/B/OuksdZtbxo0R2ErEBYyMsxPQD1rCVGSPVo5hRqdbGxnA9KikG4HvXW6X4B1q+QyXMK2KEfKblgCfwFcp4m0zV9A1eayklsRsVWU+Z94EdeTVxw1R9Caua4aLs3ct6NrZsLhEmZ0XcAHXpj0P+Nb/i3TLTVbRNThIWWNVMm0YSRR/I9q85aTUyuTHBKB/dbP8AI1ZXX72K0FpcwzRw5zgfMP8AHFdKjUjFqSPInPDVKqnB2LJ9OM1HnBqOO5inG+OQN9O1Ozk4yea5La2Pec4uN0zWtuLRB1GMkelR3ELuhx0NXFUKgUY4AHFRt824AYxXrpWVj4yTvJswLLTZYtXjumKMEk3Z79K7v4gXCXmuIAoG23jU/XaD/WudDhWK5zx+tbHin/kP3Sk/cIT8lAq4K0WR1OZFr5cZYPlwckE9R2AqB0B+9jjtVxkOeDx6Gq7qMdBUMLFUHAp4b+VRcinDpXjH3CJ1bNSZJHoKrqcY5walBz2pFJjwe1SrwPaoh0HFSg8cjipKQ7HI5/CplI65qEHBBpwJJpFpk2QcYqRST06ioRkAVIjfnSHctRHY3bmuZjLC8cdyGz+Df/Xro0PzgZ/CsBgPty44JaQf1rbDv3zzc0V6JYTqOMVI8RliaPJG4YyDzQvY9TUqA5Oe1ekj5Yz00K13MTbRKueNuTx75qKa30y0cRLD5s3aNByPrV+eaSWU2tvIIyBulmPSJf8AGql1qljpwMGkwCWRR+8upuSW9QPatEr6szla5SufDkkrJcyxQWUT/wB+TB+pB5qN9I0+IoP7QjdtvSNCcfpUFxLLOxkllaSU4+d2JzTF1BID5uF3Y2kY4ofKibNnaeANC0bVG1GK41l7RLeMSK2FVepz9489q6S70fSbTwnfavaa9b3ywY2qq7WPOMEZ614xNrMzK6I2FddjADGV7A+oqD7ZObd495CsRlQeKhzVtDRRtqbWp+KpHDR2q+WP7wOW/PtXOS3Ms7s8jkk9cnJP400jv0ppx/D+tZljguU5AH1qPO0ggUmT60FTjtRYTYZ3U6MlCGpoWl4HJ5NDQRdnckmYswJ6moT1pzHI57U0/lSRUndgOtX7FDIcA8jms88dK1/DbourwiXlC2GHqKio+WLZVFXmky43iTVUlAub24mC8YeVv8anudbXWkha+uJJ7lBt33JLHHpnNUfEVqtrqkqx8pn5fpWOBzxxWlOq3FSCtDlk4s6GcRPI5TA3EEeXnFPhvrq0XInzHu5SQ7lI/pWDHdSwghW4Ixip471GAV1KtwMg9s81tGrc53CxuR3VreTZH+iXXXI+7WlZTNJcrBKuyUNyB0Yeorl5CsjHYQWOcH2HStDTL8tGzSs4a2XzI3C5Jx2/LNTKEZO7OijialJOMXozuWfauAQD2zRvXOVpkMqXNvHKBlXUMAe1OwB0FbGHUhkRGmV2YgBhnb1x3q3q9/HqWq3V2gISWQuAeoBqucHnvUDEDg4BNHNpYTWpGxIbg8elQuOcjipmIHWopRwcdR0qWB//2Q==", "path": "images/3pts_ADE_train_00005938.jpg" }
depth_point_81
images/5pts_ADE_train_00015963.jpg
ADE_train_00015963.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 49 y = 218),Point B is located at (x = 286 y = 214),Point C is located at (x = 23 y = 224),Point D is located at (x = 128 y = 121),Point E is located at (x = 20 y = 138).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_49><DEPTH_36><DEPTH_60><DEPTH_67><DEPTH_5><DEPTH_3><DEPTH_49><DEPTH_67><DEPTH_5><DEPTH_70><DEPTH_29><DEPTH_3><DEPTH_49><DEPTH_44><DEPTH_29><DEPTH_29><DEPTH_31><DEPTH_59><DEPTH_5><DEPTH_59><DEPTH_31><DEPTH_31><DEPTH_40><DEPTH_31><DEPTH_74><DEPTH_29><DEPTH_3><DEPTH_59><DEPTH_31><DEPTH_60><DEPTH_67><DEPTH_11><DEPTH_49><DEPTH_59><DEPTH_49><DEPTH_31><DEPTH_70><DEPTH_60><DEPTH_5><DEPTH_22><DEPTH_49><DEPTH_38><DEPTH_29><DEPTH_11><DEPTH_67><DEPTH_59><DEPTH_31><DEPTH_5><DEPTH_66><DEPTH_85><DEPTH_81><DEPTH_58><DEPTH_58><DEPTH_58><DEPTH_72><DEPTH_69><DEPTH_82><DEPTH_49><DEPTH_76><DEPTH_76><DEPTH_76><DEPTH_64><DEPTH_64><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_41><DEPTH_0><DEPTH_41><DEPTH_41><DEPTH_2><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_94><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_42><DEPTH_16><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
5
[ "E", "D", "B", "A", "C" ]
<DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_49><DEPTH_36><DEPTH_60><DEPTH_67><DEPTH_5><DEPTH_3><DEPTH_49><DEPTH_67><DEPTH_5><DEPTH_70><DEPTH_29><DEPTH_3><DEPTH_49><DEPTH_44><DEPTH_29><DEPTH_29><DEPTH_31><DEPTH_59><DEPTH_5><DEPTH_59><DEPTH_31><DEPTH_31><DEPTH_40><DEPTH_31><DEPTH_74><DEPTH_29><DEPTH_3><DEPTH_59><DEPTH_31><DEPTH_60><DEPTH_67><DEPTH_11><DEPTH_49><DEPTH_59><DEPTH_49><DEPTH_31><DEPTH_70><DEPTH_60><DEPTH_5><DEPTH_22><DEPTH_49><DEPTH_38><DEPTH_29><DEPTH_11><DEPTH_67><DEPTH_59><DEPTH_31><DEPTH_5><DEPTH_66><DEPTH_85><DEPTH_81><DEPTH_58><DEPTH_58><DEPTH_58><DEPTH_72><DEPTH_69><DEPTH_82><DEPTH_49><DEPTH_76><DEPTH_76><DEPTH_76><DEPTH_64><DEPTH_64><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_41><DEPTH_0><DEPTH_41><DEPTH_41><DEPTH_2><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_94><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_42><DEPTH_16><DEPTH_END>
49
218
286
214
23
224
128
121
20
138
80
56
101
22
2
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQMrZwRwcH60ALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFULtBFc27o20yTKHHrwaTWb6LTrFbmZ9kaypuIGSeegry7W/E82saxFN5brHAcxohOF5zyR3o0A9hqOaVYYy7dMgfmcf1ry2PxxrEdxuSdWiPPlsobH49a1T8QVmsNs9ovn+aoKo2MgEEtyPbFAHoNFc8fF1jMD9izP8ud3QA+h71lx63qcl20s06xLjCxxjK/rSugsdrRXNJ4jnhUtNFHMgGT5fyt/hWrp2sW2pj9zvDYzhh2ouBoUVQ07UhfzXkYj2/ZpjFndnNX6YBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRTd4wx/u9ap6Xd/aoZDlyVcjLEUAXqKj8+LzTF5i+YP4c81JQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQRTs0wiZSD5e4n8cf0qLUr2PT7UXEsgjiV1DsfTNcLH8QozrtxO+1bIRbUTYS5I5GT75NAD/iNNLLeWVr5ciQorOZezE8YHqeP1rlreFNhOcFeNqn7v1Pr3rQ1fxNJr5tpnto4mikKLhi3ytj9eKpRRMhmY/8ALRtw/ID+lS9x9CGLyruIyRv5gB2kSpgg1DcWxMbYXA7FWz+hqzawNBE4dlYs+7K9O1VFj26ldy+W6q6Dk9GI9KGl0Fd9TZ0S18mPeT82BW0Kz9M/1bfhVuaQxx7h1rNssnwCCD0PBqeymNlPFJGF/d52qenTFY63D/3zn0qzBdbjtf8AOkpMLHQaNfpZXF20wJ+0zeZ8o+7ntXVVwSttIb05rp9E12LWonKRPHJHjeDyOfQ/hWsZXJaNaiiiqEFFFFABRRRQAUUUUAFFFRzTJbwvNK21EGWNAA77ZUX+9ms7Wddt9Gt1eUF3cfIoOM/jVLWddWF4xZMryL1J5Xnj865VgZNjTyvcPEu1S5yVHoPSgDRm8TXtxKPJ/dIyhyvXr2qTT/EcWkLsnhZ0lOdynkYrHAzK/wDCQuSPpVO7uUCiNlG7qHJ6UgNfUNYGoXxuocqpAwO44rR0nxBNHcxR3M+YCcEtziuNSRVywDAf3gODT47pWHzPyD2pDPQJPEpknKW0KlVOCznrWhb63aSqwkkEbqcFT/SvN0vCp+WQrn1FXba+SMFmTJJyWHNUI7W48QQRttjXOe7cVesr1byMsBgjrXCTN512nzEDZn9a3/Dt5GpZDIhRujA96GK501FAIIyDkUUDCiiigAooooAKKKKACiiigDz/AOI81zJNYWaRyLB80jSZ4Y9MAeo/rXCzWEe4bRGCfbP616J4/O2XTCAMkyAnHbA/wrgJVaGSOE4LgY2j3qeo+gunxxxKwlxkvhcEnnFTPdlAUbLFmIQ4wAOPz71mm6aJjFt3ktlcdS2OgFMS2lFxD57tslYKERun1Pp9KTVmPdF61lkt4TG5kmG7IYtk4445pDcyi4mSZVVAuU65P17V0UdtCkQj2AqP73P86a+nWshz5eD7GlzIVhNJYNCxBBGR0+laBAdSpHBqta262wKoxIPrVkGpYyu9swPy4YUiWzsw+XHvVvNKDU2GSZ+U/SrvgPGL3GcfJ159aoE/KfpV74fnMV79U/rWkNxPY7Simu6RoXdgqjqScAVzGs+NbTTw0dtiaUNjJ+6fpjk1baRNi7rmt/2bd2caSAZfMoxn5fT2/wDrVtI6yIHRgynoQcg14vd317e3LXBIUsxY7xkn/CtfSPFt9pSpDKga3DZI6j8+o/WoU9R2PU6K5/TfF+nXwVXcQuc5LH5R+Nb0ciSorxsGVhkEdxVppiHUUUUwCuK1zVZftLxuXYbiqRr0OP8A9Vdr0GTXBahIjX05Ug/OxB/GgDPu3BOM4GB3x3p7MNnHBBJJqjdXkayENwwAIHXPNZ7X9yNzkokOz5S45z/+qlcTaW5oy3MUbPNI4VNud2cYzWfLPFJckqPMIHbpWXNeI3yqrT89WPHWmTSTSY+baCvRRgUWIc+xtrOsvmRGdI3C5UDFR7mWNvLwGJzuABBrHiZLdXA25ZTkmmxz5V8OW2gEe3I6VUVd2Quey1N+0uGazX7RgyHO7p60vGWMTgH0HNYP2uZpGCx454LVZwTLbg5DSBjuU+nt+NSaG7HeZZM7vMxjNWZJHS3TagTDgjYcGuaS4nVAxw6+/wD9er8N8JCsTh1PBxVJiZ09j4gurdRiXcvo/FbCeLown72PY3qelcbKiJbOUZg+3AOff0qgLm6iXGFkX8jTtcLtHtFFFFSUFFFFABRRRQAUUUUAcT49kCT2IIzlJMEnp0P9K8xnvJLiVVgYucbWfHLH0H+NdP4v1R9c16aO1LfZ7ceRu6gnPOB3yawbK2SCZ4ozkeU/LdTzgAUlK2wWuSafY+XbNcOVYkEFs5PfgH/OTVp0FxeJtTyliIdRxn8qLWMRRKmB5scYwmeBxj/JokDJqUcbNgqeQvAJxUsZtZkXoQfqMfypRMw6x5/3WBpVPApeD1ArMYonTvlf94EVIrq33WB+hqLavbj6Gs7U9VsdMiZ7iVSVBJXjjjPJ7fjQBtA1FHe28k5hSZGkAztBrzy68Y216xQatZwQn+Bblenuc1Ikyssc0EuFwGidD+RBqlDuOx6K7hI2Y9AKh8P69D4ftr0SqWeQgR8jAIz1P41jadrovYmtrlR5+0jOcCTjt7+1YEc97I6KMIccSFF45PTP4UtUB1OqeItT1mQgExwt/DghfwX+prPjspNxYq5Y9WPJNZks+oFWImkXPAG4DHvwKQJeSEq11PhATkOefrU3uOxvQWzozYjOD/eNN+xnaeFU/wB4MKwhazum5pJdz/eBZiAPbmlGmhnIfcVUfJn196LhY1mtFX5jLGj/AN5XAqe01u+0th5F7EQRgYkA/Q8Vg/2eMFmKhmzv4AyKclpDGDl0I6R/MPlPt607isd7pXi+S71W3jublQCu3ZGQdx7Ej+tdx9ut1A+fj1I6V89Xs/8AZl7bgvlWBznBrUg1n/QIwbqUzheVDMFz9OlaxuQ/I9i1vxDYaPbSefKDKV+SJfvNXklxq93cMz78ckFB0wazvPmun3Mzyyt1PWnmNocmUqrAcqTyc1TdtyktNSQ6lIsJRERPdBz+tU2neY8knHXcc1K9uGVmSRPl6gnBP4VWlt5k4aN+nb0NK6ZDguhM80SnGSx9F5p0s0j7doCjA68mqsLopw4wPUCpJrpAB5akjH3qDO1twePcys53E560sbExS/dBC857ciqctw7AFm246AUW0gIn4/5Zk8nnqKuk/fRE1ozozIg022fYWznJUD+6p/HvTPMDywNGCfLypyMYJxTAgOjWjsASswIJGMDb61XkuJU1OzjQ/upGbfxnoBipkax2LazotuInUghs8jip7l4xaq8eC+0bsc96o/avvF0z948exxTy4WY7QGYIAQeODgUXKJoJ5GOCeMd6bK7iRGVyo87aw7EYFRLOqsdwdeMcjNJI+SFBBPmq2PwqovQlrU98oooqSwooooAKKKKAILy5+yWctwULiNdxVeprM13UTD4ea5g3hpQoTA5G7+VW9bkEWiXjlgv7ojJPAzxXl2q+JJbqzttM+07YQwjBU4yexPqamT6DSK8EfktII1AcNnfjjrUFsu0vlcuEY7iOnPH9amgAS2UOS4BAIxkk+v51GjbUkLkCPy8t696QE4Vkjktx/D/y2xwcDFV1dReBcly2MPjOffNKTm0ZnOIMBfLxyBwTn86iDbr7zYwBHjGCMYBPH8qGCN1W4qveanaWCbriUKT0Qcs30FUNR1VLC23E5c8Ivqa5ORJJ3e6u5FQvyWf/AAqUikjXvPEV1elkt820Hdhy5/Ht+FYGsRO2h6hK/wAq/ZZdu48n5T+fPU0SarHGpitI/McdyOhx+vSqGo2t7qOn3Jdi7vG6onQFsHHtRzJD9DEudN0qW7fSY9MigdNEivlvI5ZS5lFmlw24MxXDHcuABgsMdMHrdIki/wCEd04xzMZBbR/IyAc7R0OfWuQuLPxpd6eIJLaPyWgjty8cdukjxIqqiM64ZgAq8En7oz0roLKcadZ2llPHKJkijVwCoAOAOo64zVOXYlJmjcTSRAlmwQc/L2q8tzdDwx9tikJnAYqSBzg4rPvNOuHurlIy2zYCGYk1v6Np3m+F4La5Pl53blJ2n7xpSaaKaII7i5lvY0aUhDbbyB2ao3luTodtcee/nPKAxyeRn0rbisbNJDKZUBEfl8yDGKb9k09LVLcyxGNDuXMmeazTiGplhmbVJoy7GPyRgE96zZGkOl6e4Yl2uFVj6gk5/lXRkacszSGaLew2kg84poOloiL5kW1DlVCng07oLMzZ02eJJlX/AFP2XO3tuz1qtFEBb6SpcsfO5YnluvWt83mnNIzmWPcRgnHJFRjVNKQKqyLhegAFCkgsYXinA1K1XaB+76fjUmkxx3EsitvZ0UNgHAA96s3j6df6xbSvMGULtMXGT1PrToI7GEXz2s5YyxNGijHynqB1/CqctLIEi08EeCsYdS3XYAM/kT/Kucjtbi6u3tRPviBLBnXlhn+lXdGWeK+hkvNyRrArksSBvJII/wDrVq29rZoVkS7XzVZt2cgbT/Wpu9mLQwZrS8typklbIJywOFwf60yO61CHam4NuyCDxnHTOMcV0Wo2sl5Z7YFErB1b5SDwCD61Vs7Pbe3JliPLkjcO20UXCxmnWC4zc2wJYbiwAJ46gdKcJ7C43BC8b8HGeAD65qFrf96QDybgxfRducU690hIYGlV2HloCOcVSethNaFK7kjjlZI28zbj5h0p1rPI7SknI8sjHTjiqEjxrwGz9KsWlymWXhVKkEnvW9LSaOeeqZ1Xnvb6FaFfLbc2MSfL2Pf1quurRGPbJbSxheCyjdik2ifwttCAuATu/P3rGl86LJVnTAU8Hr1FTJbGkXobyXFncgiKdCcYw3B96sBWB3lPmbC5FYjxIXijMaFZN2cjkcdqriVre4EEUkyPjIIb5fyqNSjoJVVDIAMMxBxjvxVa5AkgkJAO2aNhnt1qrBqU5ulgaSKWTuGUgjjPWn3EypDLvVthKEsBu29auLJZ9HUUVQ1bVYtJtVmk5LMFUUFHh3xm0WHWfiJKZLO+vHs/DsVxFbWTBZJG+2GPH3H4AkY8DtVn9nSIQX/i+JbW4tQjWq+RcNmRP9dwx2rz+Aql8Zm1NvHUcunaE+rWt9ocVtKhgldcfaGlAzGQQ2UTv0PvWz8A9I1PSZ/E82p6Hc6PHP8AZTFHNBLEhx5udpkyTjIzyetAHteRnHeisWw1NLrXbxFceUFVY+eGxnOPzraoAxvFUEdx4duVkGQCrAZ/2hXgEhkOtCeIMY4nBjTucfyGa9u+INtdz+GJGtrryY4mDTLjl1zjAPbkivJLeDYVZEyB8x9+Ouah6MpG1bOzW6MibHcAsx+mSP8APrVZNrJNjJkMeAM8Ac05D/owVySCQwReoOO/5VChYxSjcFQgLuzznPP6GgRYSQO8pQB52AymeMnpVG7vBaSvI7hcKcjsT6Z9OtXUZvKaKH5QjZWQnOen+FYusWyXcEsbyESKcqQeTjrSYIyb/XVkm8yFfNl6Bj0UA9h2qiEursCSZiRnGM96s2FkN7KEBP09jVsyWtnEFlky+c7E5J4qGykRw2CRRsFTkoCfc1fYRW1irXDiP5iQuMk+mB/jVD+0LmTJjjEKMAAcZahrKaVFk+84J4kPX8KyndK6OrCwpzqqNR2Wvl00V+l3pfoTPrqRxbba23bVwGkx9P8APWqssYvZDcNtLYwuwehB/pU0VhJJIWnwoC8D73T9KsRuiALHHK0fPOMU4SbWo8XTpwq2p7adb2fVXW9u/wCe5Wle5ySzPsYYUED72KtQ213LZRuZpmY5+Uvjuaivrb7RJA6Qyr5bA8EkEHqKti2cpt81wmSdm4gHB6VaZytEUdjONwbcfYzf/XqY6e3lhnVM9y0hqksytLt8mLJHAKk1px2CMdzEnAyFJyBkelS2xpFYWcecs1uD/vUq2cBkGJbUHPGKa8+AAERcHGSAB9OlWbdftBdWUBNtMBHt4I5eZoF4+7tFQ+Ta71IuUX1GwAUssQtYg0JKBid2PamWu66fbIzFehVjmgAuRaQn7UZhiBQSUXOTnjp9a0bSzUeXLG8m1xn5U9uKSPT1uLRoVwodRu4p07TadHFAl05B7bcnPtVMkmmgcwSDzWLAfL8nQ9RWTLZOp2SMjKzbnOCDmpk1OcO3+ksuDyTHwPrW1Juksw8jB2IHzYxmkhnPTWzwSb4DOR6q27H506PU7+J9v2rcPSRT/XNas8qW4VjAJAxOSpHH5YqBLu2lOHSVMngYyP1oAq/2qX5lsoZcHOUxnPrx/hTb3VLS5tZYGSSBnTaC2cD9KnMOmzqNjx/N142/yqrqFrHDYXSgLsWMlWD5P4U1uJ7HKSAAnBBAPWlDxhRzk1Wyc8ninjGOSBitTCx2UNyE0GJUVWZm2kMVGRk++arC7j3urwyINgQ47EEn+tUJIkbT4S4DBXDj681Dd6tuQmIkZOTjik5bFK1jaFxBIQd67lxtz9DmtKx0bT9SmRvNkW4wANjAg9ex9q4i3ndwqoGctyABzWlpWrXOl6gkzKRjI2tx7VKnrqDvY6efwhPaag16tzGyBTlWUq3A/KsqXBt7oc/cQ/L/AL1ddb6yLmzAy5LxkkEcYxXFXMzxwzsm0/u13K2RuG4Vvpa6EfSlvcQ3UQlgkWSM8BlORWH4qu7a2jtVuYvNVzJhduf4CP5kVyHwo8Q6U+lXFoLrEkb5Bcbcqcn168HNM8ba9b3mqmO3mDpAuzcj/wAXU9vp+VQ2iyjqXiaxl1tR9qhBVUjXLEBQo7nGAcg9aveIPF0euwrax4W3jb5sNy7gYPTtXmcurQWthPaTASO24+ZuB3En7x9/8Kgg8SByFdQAqDBHVyOpPuaxpVZSfvf15Ho4/DUKMU6cr3b6p3X8ytsn2ev427aN44ZQ8WVKkEYPevT/AA34gj1C1ihlJE2MBic7sf1rwO619opB5ajnGM+lbdt41i0aGRGi3OSHjZW6HH+OK3ckeamezeL1DeF7xSSMhen+8K8gExYptGxODtHoYyf5iu01PxzZ6t4YhijjkaW4gSR3xgKwwWHvyDXCCWPKxjLEgjd05CdR+FRLcpF2GRhb5SMBhnczdwRj+VVVkQRzZJc7R+7HqTgU/cnkxl5CQwOFHYgED/GoY2228mAFIIfe3Q4x/hTAtgKIFe5kxA7AMvTaARnkVlahcPBHNJHCJAw24JxgZqw1xBHBNIWEuMbgpzg/0qnfXB2yRKoO5S33sHgj/GkwRkbri5AJk2KTgRp8oNWBZRwAGVgu4/w9fx701GeWJ9xHyj/ln1NLHAFBZVwD3PzHt+FZl2JkACKbcZVl+UngAZqZRJcKfMk37SdqxjA/Pp3qO42QWyM/PloDkD2qG51GRdHhuLZQ2/kBh6nHaod3sUrHSeHtGbUJBEqsgSF5MdT0yBWRcOYJNl18sgJ3CQ7e/TFeoeCNPaysftUmQzgBc9cDr+tcr8T/AA5Z3WrRag6sqxwgOidW54/U1r7LS7I59bIy7RFEJyzMdx5Y5qB+JsYyuHz+lWIY/LiIyfvHGKibLA9f4v6VjF6stmSsgNxvW2cAN3bHf0rctmPzbh/AuPyNZqqTOw7Bj/Orkk/kInyZ3ADk47VpJbERb1uZ3kxTTtvi3hegfpn1q5p/yyugBAxj2qn9qiUA7TkjnmpIb+NJPuDnjOferkvdJXxXLFy0q26FVBYkj5v96mWQkWdVYRhe20EevqaluSPLTGOv9aSJv9IUk/jUpe7cpv3rGnpwJCg/88waTVWKReZtyArcDGTxUtgwX5c9Epmq4MHXna3f2qFuM53Tb1JrkQi1lQ+WeWIIwPWupkOYCOnArldKyL47hyYm/pXVMR9lxx90elaSVmRF3Wpn6ioa2VpGwEYn5mIHTvntWfp4V7uJ4pAVDH7jBgRir+pIG0+RexB6/Q+9YHhaJIklKADMxBI+lJrS5V9bE8yOj7CdzZI5QY68VZukK6DPkBT9mJIGcVlX3nf8JHbhZ5UVz8yhjg8ntWvqBzo9xjGPszcfh9KaWqFc4EyMeKsWrxpLul5XHpnmqBenozeuO1aGZ0F7On9loAcE8gY7Vz7FkXBbg9a1rqR10ZOSV6MayFuWtUDLtMsnIJGSo9RnvUpCWxtaH5ttfKXlMCyHAj25L/h2HvTNUvZXAVgyiKaRRkZyCQax7XUrizuzPGxMjfeJ5LChrh5zIzceZIXK9snvWTp/vOY3jV5aTh3NvTtUmtgpWVgvOR609dRMrTISGDrt57d/6VhPN5a4XgHj8KmsVLTCQN8oP4ir2VzEi069a1gzCzxuchyG4Yen8/zqVNXuAXXccPx1rJ80Ooxj6ChJQHJyOnGatxTJNAyB3G45wDgUsRCpvVcY9aoebswW6H0o+0sfuEZPWiwWL5nCsFBO7s3pTZZd5Ck5I5BBqm0oKhmXDdMihGYvhSSSM0WA7zQNWhFoqT/ukgiIyzcD/wDWTU1pqkcs0axwuItp/etwMiMLj9K53RbcT2soDEOwYsxXkADsfrWpY2kUdwr4LMVb5mOT9xT/AFoNEdF5m2LMcXysTlvUAcn8+KqszNZzsZBtO1QF6qOM/nms+fWREDbIJGZCVOBtGD2PrzVpbuOC1mYJmRQgce5oAbMqfZrxJJFjWSQYLHHFIxhvIJLhDuC5QHsQayZrdH1W7DAtsTzAWOcZqWydjZWrbj80TEgcDOR2pMaJ7Gbz4ZTs2lSyYJz0qvKJJvDZeVssHbkcdGA7U6wdltrsxxtIwd2CL1NWDa3D+G0iRNk24u6OdpVSw5I+lZ9Sixe4Nq54wEA/StfwZo0Opx6YtzzEoUlR3I5GfbpWfeaYmoRi3ZpF3KJFZeMY4rvfBdktpb+WBxAgQMep471UI6ikzso9quFXhB0rJ8Zact9olypHJiBBx0KncPzrTiYVbO2VdrgFcEYNdEjNHllzaeUrKRyWz+FZkkEkcbM2AuTwT19K2dfFtDcyvt+78p471gXOs2D26QzTQoVwdpkAPHHpXIoWZtzXIER1kdsDG8nqPWrMtrjy2mVfmHAJHHHWs86hpaM485CAwxibg56n7vardx4g0ybYGlhOxiow7dOOfu1ckmTHQihsYctlU/MURWSC4IUR5bgcjk0n9saZvH71Bng/M/Tt/DThrenRyq4ZNoyd2JDj9KHa1gW9ye8g8oLEXTcCCefU0trFm5QF0y3HWqkmv2d1KGkQE7ecJJwR2pkWvWkLRSeXtYKS37pzg9u9PS1g63OjjWK0m8syfwDGQeaZegT27lGB2qex9KxY9dubyfzFiITaAp2Fc/gaS48T/YEaGe1kYSZ5UdunqKmyTHcgskMV8jPIgXYRkH6V0zvGIBucZxxk4z+dceviPTVOf7PuAemef/iq1H8Qpd2wLW7ooHG5TnFVJpu5MVbQuX2XtZAvz/Kfu4Pb2rD8OK8UcoeN1ImJwVI7VafV7G2uEadtu05+Zf0qL+1dKlu2nS8UbmDbGOPw60LawdblPUGx4itD3/8A11p37f8AEtugc827/wAj70sk9hdK5juojJ5u5CTkhcdM84pLmWD+zJEluo2kcMhG4ZKkH6VXYR5tI5XgEAepqJpmPAcke1bL6TaEnakmM8FZQf6VCdITOFaUZ4+YAiq0EaWjxyatpM9qq4KAtnrnAz3rCuVH2ggHGCFH4cVv21nPYLEsVwYwFJfDY3HNZV4rQXDIwXJ5JHOQaQinnZ6Mex9Kj5Ug5HrUofaPuAr/ALQpjMrM21SB6elICzBCbqM9sdz0q9DGIkIDDHfI6nFU7VvJi+9ljg7fSrEtw0gJ6L6Vm7t2A58Nx0x60oA4+bnqM1YkgWRd8TbSq8hj1PtURCbgAfl6ZYVrcBH+8G/Sp7WITS4LqBgnngHA6VC2WOK1YIES3UhgrJzz345FAENvFDNHL5rYYH5AB1qQQYEbrgAdSCM5HqKemxbZZE2bg+QD3PQfoT+VSRWkSWUlxI587BaNDxwOM+9ILG2buOysxcQ26kyxBeCBz3JqrpmqzPffOyhQhwsYyR8oH9BVRmhO4O+UVMAMM5NOtLqONWkChcK3AH0x/Wncdy7kSs5OWdnXJ+hzzV17vYrhmhiDOCQ7ckDFZClXfc92xAYYXPTJ4FOaWxtkmIhZzGwDDHQ8fpSYyZr+KSedyzsW4JQbTgVOt0hiVzGI+Aq5OTisKS4LSMVAPHaiCeR3TeQQOQKnUVzqLXVbbTbPa0Mk8vmbxs4HT6VFP4supUZLfTgocbSWHUfjSWMkF3eQxRzKwOQxU5xVz7To6yiPybyViwHEYQfqaNS7orSXmq3axmOcR4QZULnGc16h8P4riLRpDcuXkZuSe9cLpoWK5vcRLKIgdqMcA4OK9I8JzyS6bl4Y4ueFToKqnoxSZ0C8An2qxG5UDj61BjKNg9qPMAABODjNashHJeJNMO0mJXO9yz59a4KfTo5ZFZguPMxkrXoWtuf7TO3LYUk8+g5rkAgKp6ed0/CsWtS7mN9ghbUmtyqgBAwYD+laTaPHuhAC5+bPyjtQsatetIGHm524xzinanfy2VsZ1A8wBguR3JwKnlHcqSjS7ObZc3SrIR90Lkj6gDipHtLWSASQXCyxuOCoBrJsbNJoxvWRpHY7m3YyeOvHWnWRS21cxjIidzGwz37H+X51VkK7NkWAUysGOAB2HXFVbW2+22BmckHr8uMda2JldBOR8q/L2qKzEZhcROGQEe/ek0FyKSyWF41Jbpxt4rO1C1t5MEzQBkyCGlGRW7dOftL4OMDivP8AxHKy2l1GO1yx/wDHmpNajWxpKbJRtLQsRx/rFNaqxxvbYQkAr2YEfpXlwUyIvrk13nhZQuhcd3b+QpuNgRonSIL/AHSyPIT93qCKqyeFrcg4Y491qxqmW8NXiq21jtAOf9oVz62V5bR4+0uSignbK2Tn8femrWBluTwnHn5ZF/EUw6MLCReVYMMfe71S8zVY9Rig+33OC+1gr59+/tXQ37H7NAxYklOTzzwKFZgUWsImXBhfHsQajawiVcKJB/wGqG6abVWtofLBzxlfaq0eoT/b4oGUAM+1irH1+tPmV7CsaTR7fs8eCxBYkt2HqaydQSSVPNZSuwAH3HQVeWeVrshVMhYYOenXOD9cYpUSC5lktwwCHoA2So9PwqlZojqc8HkVWCsQpwGAOAaQkk9Mk9yetbd3pyw2rN8wCt16k1m2+nzXO7y1X5ecZwce1KzAgDNGysyZyMA04TZBXHTjPrWmdJlW2ikzgnOR3qkyRxzu2MhsEe3FHKBFYIiMZJlYDGAMZzmob6yNtKxOWjJwrkcmr/mBlYuoBUDYOPXFOun82NSwBxIuOB61VgIdK003tw+92VRHkkIWJPHQfjWpawQyaWzbSsinJYn0z/QVNBIsTPshDAoRtzjjg9vpVK8KxWxEKhS4w3PWs1e7vsaJpIpFop5I1RRuI2kAYA54NXNSkE6W8MKKybeAoyc+lZNspSeMMRl/TmtzwyGOtW0gb7iO/HbjFXbWxmZlypgwrRNGSucOCKrecQuMnB7Cup8aO02rRxls+TbL17kkk/0rl5odqsOPlyMUmtQsTWsh+0KDgg7RkfWpZXP+kA53GQfTGKp2G43UYAAUnOT7c1q6Xpmo65eSWtpCHbdmR+ioBxknsKOW479ChLhCR83HJ7GlhfcyoGI49elegw+FvDul2zXuq3s92gGCI2Co7d8Y+ZgDxxXQWUnh6NFtRp8Nr5i5WPYhZR6tkEg9+aOUS1Z5r4XDR6jHuXbliRn6VvyW2oxvDPHpTy27YcS7CeM9cD+ddjaeHNOjvkvLeJBhm8hRjYxx1I9ueOmaxDd6YdQEUVy8kxkPm3TzBSnPUD61Vu4Mo2Uwim1SVyQiqxPHuK9D8GXYutIMykmPedvGOK5NdNhub65LjYlzxMqsDgFhyMdiM/Su/wBKjsotMAsYligf5lC/kP5URQ2ae7MLkelU5DIMsCMY5Pep1cG0JB4PFQ7l3lAS20jIPpimIy9Tja3umkdAR5TMB3wB0zXGabnUnaOFU/dMGZ9/ABz1Nd/eiOa2WZmYxrvD9zgjpXL3Fpb6ZbrJaTiOAHeS4DFzjpk+x/DmlZDMlNAuodeiuxsmgb5d8TZAOTwR1FTeIdCvLqygFvEoIkDfvGCD171d0bdBdTatcFbaKTDApLuWUdwQf6Y9aXxNrd3aJJJAYGjVQ6+YhPmAj6470rBc4VnNhIbW6YxSxuQ6lGz256fWmRFZ9TRo8lHuFK8di3FdBIIfFtmIDHHa6vFkxyhiVkX+6c846fT6ZrnLWzv7PV4raZkhkjPmbtu7BHTilZbjO+vLdza3Xy4yF69qy9BsWh0mbIx82R+ZrN1a81SW2e0l1SDy7hSriWMJlfQGo9Iu7+Bktv7WtzbjHyRgOxA7dzTdhGzcyA3TEnHGPrXnepN/aGu3WnIqoz3DHexAAxk816Bd3FqblcTZZhkr5Z4/MV5280C+MJ22ylvOc/Lj0PY1Ek0m1uVGzaRVbTWt8MJlYDkYrrfDYxo7KB91yevbArCfxVKInT7LEY3DgZzuG45JzWnp12t3pxlkYWmJQxCZIcBRn6Zqmk1oJcyepq6if+KbvevGD+orlU1SI7DNJPkcHBHI7d66G/uIW0G7hWVS7jjjGeR7CuRj064kViRGFHctQkrag2OF9Ib+KdyfLSfeWByxGR/SutvnD2Ns46FAR+IFculhcMYbTepDsSADkDPGa6S4dIba1if5zGgDdccAD8KTaQ4psyLcbNb80EfeHTk9PSss/Lq8RyP9Zn9a3ItPl/tH7QcmBiCuDwV6ZFYb3JttThaOxe9nklEUMKE7mcnAAABye2Md6zuuZtFWdrM6KJ3TTbpgXwAx2k4XP19aw7ud5rmVnYIXIds4BzgU+K/1FdRh02/0e6sTchiFuAylhg9AVGRxiqsVm7kPlmcnbsC5I9KcabUnIcqnuKBNB5ypIrEtGQGOecYzUES3YTzkdwBxuB6V0S6ZcR6fP+6zJImETPJqnFp73Nq1smBMVbIbgDBXg1butjNW6maLi+bAFy/51XuGCyFj85HLfjVyPT57O4H2iEo2CMjkGqTR7t4boetUgJ109ikXmXMCmULt5JAJ5wTjAPHT3qOeNluQAG+UjcAOBk11ejnTDp13pN7azXbeYWt7iEALGwB5Y9+eo7jFYupw28Wk2t495brcysYmt4127Ahxkj1yKqST2EtNxLoXNnp8l86SJbAAeYFyMk4ArKu9aspodqTjcBzlG547cVNp1q2o3VrDe3bJYz3MMN1zjajSqCSf1rO1i4urqxuvtGi2toLa9ESyQQLCYTh8wkAAv90HLZI28n5qkdu5bvlNoYmjiZeSNzD+IdRWvpU0Om+XdLPFNJLEQ0Y4MeTkg/kKYbTUbu1aJIFKkHKuOhJ7ZHGOnFQQabJYALeRhSc4JGc1afK7szabVkZ1t4VafwLc675V55schdWCfufJVkQ5OPvFpOOeiNx6TRBm0W3iiRJCyKSR95eORVAXmsW7wSHTWVIbB7RUaBwpicOpY+5aRmz03flXU2HiprTR7S1jggVooEQlrKMnIA79T9TUFmZBBd6je2NjGuVjVVyxwsfdif5n6V2d7JHp1iNNslks7JRvvZ8bJZF46d9zHA9gfrXMP4kmkkYjyVz1ItIxUL6vNIctJEfXNuv+FNWQrM04576S7k1K7iIMaeXYWwU7EBHysAf4QMc9yfrWdafa5tWVWM5nmLbWfILEnrmozq079ZIz0HMQ7dO1KdVuGkV/Oj3oflbYMj6elGg9T0Xw3rH7uZT5v2XIt0BB+ZVGWf8A4ETn8aj1LwpJJfxalbRvywLtt++MghseuOD9K4uLxTrNvxHqDKT1I71ZXxp4kBG3WJhjp8xp3QWZ6TptvK4mXYMKrYJHOSa6TTENhpsSXLKiIEiDFh1PQfXJrxQeNvEakn+1pMnriopvFmu3MSxTX7SRq4lCsSQGHINK6CzPaoNSnbV59O8g+UpOHHZuv5VpLDIXkYo2CPxrwkeOPESyNINTYO33mycmrKfELxSmMasx+vNF13CzPavIkW2eORSRwxI9q5y5tJbuzuLUDZuBIZhgAc84/WvOz8RvFDbd2pKdpyMjv/k0q/EPxHn5r+Ln1WndCszZ1e3khjh0+BSLe2JChTkdst/OtjxUguvCl3BB+8uYVBCL94qSD/n61w03jTV5v9bdQMD2Kmov+EouGbLyW+c5PzuM/kaWgDLL+1tNiM/2ZVeLLebIvzfTNdYizalq+mag8eyOZDsIPKybWyjeoPUe/wBa5z/hJI32hzbEBgxBlkwSDkEjPODWja+JtPC26ypZ7YOIgZJBtHWlypbDJfG2nXGoNp9tZpmZpHIHsFyf5Vg+DEdfEUbO2V8tsjHQ8Z/rXXSeIfD1yiNLHA0sIJRluZcjPWq8SeHNM1Fbi0X7LNjG3e77gw7ZpN6jS0H65epb6vGFQvIUOFQ4J5HH8/yrzq4MsfieW+EbIrSOVDcHoa7DxROZVNxCyySI6iNlX5gMcg/jmuXtob+O5jkmLPGuWCk5wcfoapt7oStbUzPs0jXy28rjeGCnb2zXWR40rSyrSJ5eVy5YjJKg4AxyawDaXzal9tRSWJLHjHOPStG9Wa8tFjLeW0e07CD8xHHHvyOlJaPUptNGy8a3dr5hty7smQrNnbnn+VY94tvOsy/NEjKqo4yVQ+p+uK0Euyui20KrIbpWffIykkr/AA/XvWNe6fNGYo5JoztjCnypFcLxnkD270xqXKtDW0qJHS2y0aMkSPz95sHoKc80V9IoVd4w2MHoQcelV47a2lbRZdNSYlTtn8xgfn/2QP4fQ/X0rrB9m06zt7eLKIu4kjOfxx7nNCjd3M5T5VYzDI0Udon2aV28p/lVT/e61yenN9l8XeHry7YQ28WrWzSTSfIiASAkkngDAJ59DXY2XiWddQMFrNcMP4o8twfUetdPqXh4+MNKi0/W7DVIoPOWZLm3gw4YKygEsp+X5s4/WkqSTvcPa30aPKgLCCTw7YWbtHJFPdSSwG+ivAm5EAcPGoAztI29tmf4qj0Wztpr5hcX5t1XIyikk1ci8DN4d15nupJXjgcrFJGuVkyCM9sfSpbD7RpF3Mbe3MyXGN3mRDhctkDJ68iqSBs2L/S7WPw3LcWl5cStLCJlZiBkAg/XOM1zUai7tDEkqCaSQAbnI5PQE9PWtu51W9RYglsxQHG04x+QqOK81VmzJBajH3fLRVx+lOyFqc0ttNazG2mO2XeEPOQMn1/OtO0Eaz3EIlH7tsFgOCRxxTp9O1C+urmSe3y7lWDZ4yARx61UOg6gsm4xgjAxj2qbFprqTeH47DUNcitb7U3063kBJuGyVVsHsPfvWVrBi/tq6W0aOWCNim9gRv8AVhnpk81BaTy3upWlsGRPmVAx4AyeprpvE1lY3N66i2a2lUrCp3gjOfvcAZGCKSVkmKyTMS006XV4/wCzIHjjnnCopkY7BhgeSAfT0qxe+EPFWoX81hqOpic2LGJHurmQp6fIWHTgenau10/wzo9hcW0dtZXN9eMpIjS58vGCAWLfw+3GM8U/VNSmtb+SDVJ7n7WhCbLyRS44BwNowRzwR1HPeic4qXKb/Vqzpe2tp6q/a9r3tfS9rD49GugNsSlh6RkN/U1nz3kUVok2ZZEJK5Rc5IOP0qlqGqyyRmKH5MnllJyfaudttUY3kts8hVVBC5HAPris5VdHy62DC0o1a0ac3ZN7/wBfrp3Or1XV7e20UKEiuWZ9mVQiRVIJIOeoyB+IrmLwwSLBLboBHInzBlwQ3eqqFNOV4xOssjOJNoORGBnJz6npW1d69Y6rolnA9g0N/ZsUM0a7TLGeRu7ZB7+9KNRyV2dGLw1OjpDrq02m07vRtJJ9Ht17nPHbs6DIp2VO3CjOK0k8lkO+SYegbBzVeRU4K/TlRVc6ODQrNj5cAdOaQqNvA7Z61cjg847WK8ekdWFsbbDB51DY+UbD81HMhoymztDD1x1pFZgTyea1f7NBO0sgXrkg/wCNRGzjXglB+Jo5kOzKO98A5PXFLvcE8noauLZqcAFMbuvzVY/s1XGTLEox1y1LmiFmZBZzjJPSnAuRnca0TYIGGWB+maPsCAHcVA9STRzxAz0Z26nI5/lTkVn6nt3q2trDlhkY+pp4tY9hbap4z940c0RX8zObJ4zxSpGpbBzWiLO3bgKCQPVqVbSEnHlndnqM/wBTRzxFddyiI49m4r245p8SRk4K5G3P41oLaJs2+Rn/AHgeP1pyWRU5ES++R1pe1h3DmQy1EKKG8sHJ9a7u4trARG7miRUii3FuTjj0rjVgcfKNuOw2D/CrzXlzJEYri5lZGGCvGCPype2h3J5kXoL/AEO4OBqAUn+9kfzrQl0yLA8tmYnBz7Vz0RiRAIyyY/utipVmdeUdlJHJDHJ/Gh4mCE2jbOmjtG35ioJdG808xnjpyOvrWU+sX9mNyPPKM8hcZAp0HjYqN0jdTj95F3+taxqKSuikrmumlbIwnkEkDGdwri7rRpotUWG2eZ7jDFgUJIIOMkL2PHPvXc6br0WpLuYsI8cyRklR9cVq/wBgabKWukctI4/1iTfeHuaUqsVuy1BvY8xgXUNOM9wLeaJw3CEFAQfryMHuPWqz6tqCsytczKQSCpcnHtXomp6LbtAUMTl8Hy3kfcAfUVzSeGJo4SJLGC6mZixkMrr17YFVe60ZnKN9znF1a5jYHezk8BRxmuo0vxvrGl2CLHql1FG5JVQ27GOMYPArLl8Lao1ykkFhHGq/wLKzZPrzUtroGpwRN9s0qWZWkJ/1ibQT7Edce9ZzjJr3f8jrwLo05t1O2jspJO61aej0uvnc6D/hPfEDWwa7uobjTsDfFKF3MpHp179q0YI4JoIrlFHlSgHBHQEDBrkD4UurvVIZntpVtjjzvMdCx+mMe1d5bwCKJI0iRVUAAbRwBVw5lFKW5niHTlVlKkrRb0/r9OgfY4exQfVTT1tLYdZUB/3D/hUmD3J/Amk2g9ck+5NXcxsVZFK/KiA/7RH9KgeGR+vHsBitDavv+dLtXHVvzouFjx/T9OufIudUWHEVuEJjbIZl3A7h64qzrOsDVIHcFiyKEPGM+hrcurKzt7CZ1+0qirllWXhlHY+1cgZrZ96BQC5BY5649KT2shrfU7+y8VpYJZ3ImQah9jEciNC0m8ZB5xyuMZyOc8Hio9Z1Gz1mVNUe8mvLuUYnaK1KCAhVATB68Ac965fw/r9zpeoXc8NrBOXYDEwJwAD0x9K7y21yLXbdNRezS2llUB1hbCsV4ycjrgCodKMnzHS8ZVdL2Lta1ttbXva+9r6/8MjkSIG4S92HHAliK/yzWXrF1bvNDPsAuTlZio+V8cBh9e/0r0VjbOuDCx/4GP8A4msSbw/aS3rXQjO9uzYIH4YxTjDl2Oa5wt1PBPGBEhjkKhXychvetiSN0uUVHlkaYBDH0BCqB/MZroW8P2rn95DG3/AQP5U+38Laf5ha6FxP2XMuNo9uKOXoU5tnPtZXZUbbSb8FzimJY3Ofngm/GM12KeHNIQfu0vU+lz/9apF0KzX7txqQ/wC3gf4Vn7Jk6HJqJkJAiYe+w0hEjc7CD67a64aREoOy91AemZAf6U3+y5886jcEenFL2TL5kcriQ9/bmlWJiw3c/QV1DaTMc7dRuM57gHik/sef/oI3H4DFL2THzI5toGJGMr7AVJGjKc7WPsRXQDRJf+gld/gaQaDLn/kJ3n50exYc6vsYuMj7h9eBUYtuchXYE9CtdENCcjH9pXn/AH1Th4f551C9P/A6XsWNzT3Rzz2b4IWNsf7uaathJn5Vk/74NdIfD0RXa15esP8ArpTk8N2iDiW7/wC/xo9iJyT6HLy6VdsQUSYkdtpwaFsNR2/NaTsPTYcV1q+H7JepuCfeZqcfD2nscmOQ59Zm/wAafsTNqLOXWwvmU5tmUHuSFP61KlnKmQ2xT3LTqP610o8PaZ3tgfq7H+tSLoOmL0soT9QT/Wl9XQuVHLmIR/eu7VfYzA/ypki2zJzf2oPfDMf6V2CaTpydLG3/AO/YqdLK1T7ttAv0jH+FP6vEdkcKkVoBg34cf7EDNVqGCEj92moTf7lvgfrXbgbRhQB9OKUscYyfzp+xiFkchFpc7nKaReN/10lCD+VWk8PXJkEi6XpsTg5DzSbyK6Mkd6cHT+4D9TVqmlsNabGbHpF6VCy6tFCvdLeLA/lTv+EU0d5/tM1xeyT7dpcPt/rWj5noiUnmSE4ULn2UVXKh3I4dI062GIzcMfV5Af8AGpvslqvzLtz78n9BSEXJ65H14pvlv3dB/wACFMQ4PsPAUj3Wn+akmA8UZA+ox+tRD5eskZx7E0eaAfvflGKBEhW3P8DD/dY/4Uxo7def3w+qig3swGFmkA75OKj8zeQCck9y1AyQLAf+Wzr/AL0f+BpfKU/duoj9cr/MUwqB1kQf8Cz/ACp6Swg4eXAH9yME/rigBPs07HCGN/8AddTSPaXaj5rWXj/YNTPPZ4H7+5f22gAfrVQ3ChyU3Kv+9zTA88vJ53geNVUh1IOR61iWtvNZRPELaKVWOSZEya6rywR0FJ5K+goEc5dpPcwqltZpC/3WKjHHrXUaZEtrYQQL0jUDPqe5pqxqPSrCDHSgCyKfgGoAfrTwxBoAl2rTgo7VCHp4agCYEiniSoATTsn0oAnVwe9PBqsKcCR3/WgCxmngmqodh/EKeJKALINLmoBIPWnBh60ATDPY04Er3NRBqXdQBLuyeaWow1LmkBIKNpz941Hn3pd1AEoXnkmlKtn5SMVHupQ4zQA7D+xp+T34/Co9w4o3e9AybcuOtG4DtmoifYUm4Z+7+tAE28elLvU1XL5pCx55oAsZXHXBo47NVUsfrTd+ByDQBaKnrmmEt61AZRx/DQZD65oAm8wjtSBwzYPy+56VDvJ6Yo3+1AFgmAdZx/wFCf54pN9v2aRvwA/xqruBPSkwp7UAWTLCOkRP+8/+FMM4GdsUY/DP86rlMjgUwo3YmgCQt3z1pu/1NRtvHB6j1prO392gDDGOhNPAHrTVBPrRj8qokmAUVIpWq4xjipFOMUATjBxilzUQPtTw/HTn3oGPyfSl3H0NND+wpQ/tSAfvNKHOOlM3E0dTQBIH445p+4moefWgZ9aAJ85pfaoAxHXNKJPegCfpSg46GoQ4NODUATrJj3p4mBA+UjHU+tVwwx2NG7OMUAWRKpIp4YVUAyc9qUAgcGkBcDA0bxnrVQEgetPDHPK/rQBZDD1zS5BNQKe+MVIMHuPzoAfn3FG/APNMwO/6U4FBgOobByAw6H6UDGm5jBwZUHsWFPWZXPysp+hzVhL3YB+6j/75psl15qMpijw3YLQBHkHpzQVOOlNL5yen4Um73NAC7WoKkDpTQxzwaXcaADAxzik2r6flSh+P/rUu7jPFIBpXn7xFN5HTn61Jx1z+FJweaYDdzc/KKTfnqMU/A7GkIBoAYSuPekAGeM04jrzTWXj7ooAT8eKQnjpSEY+lDKU43A5HY0Ac2shAx29KeGOfpUIdcDrT1cDGDTEShs9RSjmo1P0p+72FAD8nHSn+ZkbQB+FRgk9qdk9OM0ASA5p4HofzqAMQc05ZCDzmgCYA9KcM8jFMUk8qffinAcdaBDxyeooA4zmm9OtOBHTrQMXAB5p3yk0gPHSlzmgAABPGaUL/ALNN9qcM+opAOwPSjoOlNGcUpoAfkjv+lLuPamjPWl3Y7HmgB4c9xkUoIzyD+FM3VICMcdaAFOOzfmKVY2dsICSf7tMA4qWN/L/5Zq31oAGimhH7xGH+8KRZOxFBZsH37UznpzQMmVs07d+Iqvk56CnoWOVGSfSgCXfx/wDWo3euKj3IeBkUdshgaAH8ntQDio8EYJBxQc44FICTJpCcd6aMdMHNHf8ArQApPPDcdqNzCkI47HilGfxoATcR6UeYehHT0pPXrxSYI5x05OaAHeYOuOtLvDL7elRnB7UuwrtLKVyMjtkUAOyOSKMA1ESOetatnbaTLArXGoSwy91MWRQBwKnJOBj2qQD3qNTnFTCN8Z4FUIdnbj0FOVgeSCaZwOpoDYODQBOD2pd2Tx2qENnp0p+4dMd+aAJCR19acMevNRgqOvT608bcYHSgB44PFPD46moT+NKueuaBE4ZWHUGnbgMHGar4BAxxQrMO+fSgZYDE5xShuOveovNyfTFKG5waAJs+/WlB7cGoA3PSpAcH2oAlyRyaXIwR3qLd3B/CpBg9etIBwyOlKWzxjBHXnrTRg8CnAHPIoAAcn3o55ApwXdx0J468VbVJLRfM/cSexYEigCmC2fWl3d+c09nLMWKgew6U3pjg0ALvGTj8qfuXoc1GSM8n60pBz249aBkgKnGKcAGHbJqvuKnB9OlKz4/LtQBIVKn3pMGjdgdevUetG4fh9aQCbmBPWnCQjGRke1AYEEg9KTrwaAHB1x1IzShuQeOfaozjb+PXFIRjOPzFAE4fAAyPyoz1wRUIfGQeRmgueq8e9AEnPakZWOQO/oaj3NgYbOaC7YBA+hzQBKkMsoby1LY6+1RtlupOB+lNMh6+lDMxxmgBCRuAJJ9cdcUvPPPFISO+OT6Uhbpgc0AcxkYGadnOOTj+VRbsjpkU7d0FUIn2kpu3ZHpSHd7g02KYo+NoqZgSBg0AIp7U8HAPSoDkHoc1IHBzjk0AS57jj2p69wG5qPcPXNOyGPFAEm049BRk5xUbOQeTz9acGPTcBmgB4GTntU0FtNdMywxl9oycDoKgBzmpUuJkjMaSOqt95QxwaTv0BeY1s56dD0oz7GmjaoIAwOw9KfkbuvH0oAXJOMHn608EDvnnvUZAJJHpQc9Djn1NAEwbAyep44p4PX/GoOMZ/rS4POP50ATh/enK3pn6VBnb608NjsMUATK/GfanK+DxyR0qDnqv4ZpQ5z1HpQBY3nbt4556c0A9eCB3qMONw7HFOzngZyfQUASetAAB7jNMBwO/Hc07g45/GgB7DnIwB2pp6DjPfilz6k+vWkDZyRz6cYoAQBlGR3GMUhU4OfrTyWx04o3YUd+e9Axo2pgnsegoEgOOKdlcnKgZ6U3aAQM5JpAO3DPPB9aQEk4wfqaQL8nBxz064oHqOD0oAMZ4J60n8JIPJHApoPGM80GTqME+vtQAhUjp+AoDMPoOKUEZ6jn3pchiF79AAKAGeZnPA/Cnbt0gAP4UxhtYj064pm4nIDEj3FAEzMvGDyOoIppx9KiO7ORk96QOwXnigDnVPqccUhcDgDJpO3vSgAYweO9MQ5M5zwKmjfru59KgyQcjp604en9aALQTzO/PvUTKwbnPFJFMyEHnrz3qYyI2MEnPXPamA3cQKeOgz3ppTd6H60ZCnFAEnBPal2fNkDp+tNVuvb3NKX7Y+nNICQZHfj3pwJPcAfWosnGAfx9aenI/WgBclT15xTgCcY/T0pvt096cD2B6dzQA4cH5jj0zTvvEDIx39qbgkjnFL0AXP40AOwCCOvpzRllOVPB9e1N69cc9s0/kdR1oAQscAHv1zTwc49+cetMJUg5J/KhXGOSSy8j2NAE3OOoHsaUZDc8AnioPMYnvjPXrT/OUjocYoAk3DPIwO3OaUP8AOQD061GOc5PPQZpxAOcY+mKAJfNITAwQT1xn9aVGIXJqEfLt+bPPFIu7GTkjNAFgSADrTshh97B+vNVg+FGRu69KXIz+NIC0Dk8HPp9KUEYOeOPWq/mdPm+9TvM6qG+vNAyfcNu4DPHUUbsthjwR9KhVwB2PtTt4x6EnHPNAEp2q/wArZHTPSmFgTtx7803tjJyevfFJuHK5wR6mgBXIbOOw7U05B6g59TTdwGVIGQevSnAqWPQ9+lAEe3CkscEGgF1OAMfTvTiUIbO3/wCtTU6EqR64oAGk3cjnnimeaD90cg84FLgA9eetMKlQxXA4wTQA4OMhckjn8KaZMYyue/8A+uk3A5xn8ab8pQ87j3yaAP/Z", "path": "images/5pts_ADE_train_00015963.jpg" }
depth_point_82
images/4pts_ADE_train_00011323.jpg
ADE_train_00011323.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 31 y = 184),Point B is located at (x = 201 y = 132),Point C is located at (x = 213 y = 223),Point D is located at (x = 82 y = 164).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_49><DEPTH_29><DEPTH_31><DEPTH_83><DEPTH_61><DEPTH_30><DEPTH_59><DEPTH_67><DEPTH_59><DEPTH_68><DEPTH_49><DEPTH_29><DEPTH_49><DEPTH_60><DEPTH_84><DEPTH_11><DEPTH_3><DEPTH_70><DEPTH_31><DEPTH_52><DEPTH_49><DEPTH_29><DEPTH_29><DEPTH_3><DEPTH_59><DEPTH_60><DEPTH_70><DEPTH_22><DEPTH_3><DEPTH_68><DEPTH_29><DEPTH_35><DEPTH_5><DEPTH_59><DEPTH_3><DEPTH_11><DEPTH_70><DEPTH_67><DEPTH_59><DEPTH_68><DEPTH_59><DEPTH_53><DEPTH_81><DEPTH_40><DEPTH_49><DEPTH_59><DEPTH_5><DEPTH_20><DEPTH_22><DEPTH_53><DEPTH_67><DEPTH_63><DEPTH_65><DEPTH_10><DEPTH_13><DEPTH_76><DEPTH_45><DEPTH_69><DEPTH_53><DEPTH_61><DEPTH_70><DEPTH_26><DEPTH_121><DEPTH_65><DEPTH_55><DEPTH_8><DEPTH_81><DEPTH_54><DEPTH_34><DEPTH_55><DEPTH_11><DEPTH_83><DEPTH_24><DEPTH_119><DEPTH_55><DEPTH_55><DEPTH_70><DEPTH_69><DEPTH_83><DEPTH_61><DEPTH_44><DEPTH_63><DEPTH_77><DEPTH_24><DEPTH_71><DEPTH_63><DEPTH_72><DEPTH_25><DEPTH_58><DEPTH_68><DEPTH_1><DEPTH_0><DEPTH_57><DEPTH_1><DEPTH_61><DEPTH_1><DEPTH_1><DEPTH_57><DEPTH_57><DEPTH_1><DEPTH_END><DEPTH_END>. Since point D has a higher pixel value on the depth map, the answer is that point D is closer to the camera.
D
long
4
[ "B", "A", "C", "D" ]
<DEPTH_START><DEPTH_49><DEPTH_29><DEPTH_31><DEPTH_83><DEPTH_61><DEPTH_30><DEPTH_59><DEPTH_67><DEPTH_59><DEPTH_68><DEPTH_49><DEPTH_29><DEPTH_49><DEPTH_60><DEPTH_84><DEPTH_11><DEPTH_3><DEPTH_70><DEPTH_31><DEPTH_52><DEPTH_49><DEPTH_29><DEPTH_29><DEPTH_3><DEPTH_59><DEPTH_60><DEPTH_70><DEPTH_22><DEPTH_3><DEPTH_68><DEPTH_29><DEPTH_35><DEPTH_5><DEPTH_59><DEPTH_3><DEPTH_11><DEPTH_70><DEPTH_67><DEPTH_59><DEPTH_68><DEPTH_59><DEPTH_53><DEPTH_81><DEPTH_40><DEPTH_49><DEPTH_59><DEPTH_5><DEPTH_20><DEPTH_22><DEPTH_53><DEPTH_67><DEPTH_63><DEPTH_65><DEPTH_10><DEPTH_13><DEPTH_76><DEPTH_45><DEPTH_69><DEPTH_53><DEPTH_61><DEPTH_70><DEPTH_26><DEPTH_121><DEPTH_65><DEPTH_55><DEPTH_8><DEPTH_81><DEPTH_54><DEPTH_34><DEPTH_55><DEPTH_11><DEPTH_83><DEPTH_24><DEPTH_119><DEPTH_55><DEPTH_55><DEPTH_70><DEPTH_69><DEPTH_83><DEPTH_61><DEPTH_44><DEPTH_63><DEPTH_77><DEPTH_24><DEPTH_71><DEPTH_63><DEPTH_72><DEPTH_25><DEPTH_58><DEPTH_68><DEPTH_1><DEPTH_0><DEPTH_57><DEPTH_1><DEPTH_61><DEPTH_1><DEPTH_1><DEPTH_57><DEPTH_57><DEPTH_1><DEPTH_END>
31
184
201
132
213
223
82
164
null
null
30
10
54
221
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDmLe1VoAWHLVeyigAsoOOmaZbL/o6cdq4nxJPNb65KquQGVWHPTivMhFzlY7HKyO7Xb2IqZQD6V5YuoXY5EzfnUqaver0lf/vqtvYyI50epqop4FeZJ4g1BBgTP/31U8fifUV/5av/ADpexkPnR6WoqRRXnC+MNSUfeH4rU6+NtQUfciP1Sl7KXYfMj0RRUgFeexePL3eqmGBiSB0I/rXoa8qD3I6VEotblJ3HAVIBikXpTxkn2qWMeAKeoA4poFPUc4qRjgBzT0A/OkHpTwORUjD+LFV725ggTZJIFJBNWvxxWBq1ol1dGSScJEB1B/Sla7EzatZI2UIGG4qHA9RirY5JwKyoBa3M9tPBIMwgpwfboa11+8aTXcaY4Dj0pQPajHy4pwpDAKKUilApaB3GFajZRU1MbrSAhZRioHXirTfSoXHFDApSLyarsozVyQVXcUIZTkWoytTyVGRjFMRXkX5T9KrKABk9quSjAqtj5DTSuJlaaF72Hy1ZkjcDJxzjJ/8ArVJ/Z8S2/wBnTg4OGYZOfWpDeRRzLAWzIRwo9MZrNvdWliDGHYCmBICckE9BXR8LSRi9U2zdtRb2dvHC0iqEXqeKz59YEly4tI1kVRgux4P0rE/t21t4D9rnDuYtrJnOTn/A/pWNN4qih2/Y4SSOf3h4Bp01Jy95CduXQ6q91pbHQpryZWlkSYKEX/aHH4cVw9/4p1DUVKKwgiPBSPv9TTbnXLrVCLaRUWFwFdVzzg5/pWloOgQ33iO1tJCUSWeKMkKDgMygnB479xW0acY6sTbZgW+n3N2yrFEx3HAJ4B/xr1MxMiKpyCBg5r2zRPB2iaAAbOzVpx/y8TfvJf8Avo9B7DAryPUkCX9wAQQJWHH1raUUlczi7mJaj9wnrivP/FODr8+OyqP0r0O3H7hT7V534m/5GC6/4D/6CK5aPxms9jCyw70oZvWkoruOccJGz1pwlf1plKDSAkEz555pfPYUwUHpRYdyzA265gyOrr/OvcQMAe1eHWv/AB82/wDvr/MV7mo5Fc1fob0yRewp6jvTQKkWuZmg8U8cj8KavWnipGOFOyFXcSAB1JpAKxPE1xcQ2IjhwFk4Y9wKl6DSuTahdNJcwiGePyM/ON3WkuZ7FLKRJLyLc3XkH9K49IHuZSSCp96vx6WDjkZqlCXQfu9Tf01LEWLLBcx+bu3kBvSrek6mn+kpM2xIm+UscgA+/wBa5+LTXiRli4Z+d3pRLpUqodrHHfFKcZbsUUjvRg4I5FOA71h+GTfG1dLs5RceWe+K3wO9ZXKYgpetKOlLQIZimEVIRzTSKBkRqF6sMKhcUAVJBiq71bk4qrIMmgZUkqM9qmlHaoj2qhEUvSqkrBYGYnAAyTV2X7tZ164SykbGcCmt0TLZnL3d81tp817byBnibarHnnP/ANeuRuL+6uWcyzEl23N2ya6S8Ujw7cA9C5YD/gQp3gjSYtRuC8kCybWwS38I9a9BOL1ZxptI5m00+91CXy7W3lmc84Vc1t2/gTxBOyb7PyVY4zIwGOM8ivVdG09bDWJGeIRwsjqrAfwgZzgVd0yZpdbw4LQuCWLDGMAj+VZTnVs5RWiNIcjtfc8b1Pw3P4e1SygnmSV5lL/J26jFdf4dg8nxfph2EFpoWwe58xBU/wAQbGK08Z6IkecSRu3JyByelaejWIPjjT3OWw8JIPIxmE/zY1qn7WHOh25W0e7+aWBK5IH90ZzXiGqRmPUblD1WVgfzr3VSCoIOQe9eKa+m3WrwY/5bPn861cbIxgc7bj/R0+ledeKQB4guMei/+givSIB+4T6V5z4rXHiGc/7K/wDoIrlo/GbT2Od70U4jrTe9dpgLQKKUCkMUUvakFO6il1HYs2v/AB9W3/XRf517mB0rw2AYu7bH99f5ivdT1rnxHQ1p7DlGTUqjFRoOtSDrXMzUeMU4frTVFSKOlSxjlGRTJ7SG6ULKgYjoSOlSCnjNSBjXGhBRutTg/wBw9PwrHnea2fa8Lgg4JxxXacAc1z+oEG5wQDkniri2KxXsppJG2PEytnnNbaxLFgyKWHXHqKyYGZTgKOKmvbS6kj81oLjy2+ZHU5x7denBrVJsl6MuT+I7ezvUtpE2x4GW9Cfaoh4vtQ7rJBIu3HvUI0e1mmt7hkkUxop/eHOe/NK2kx+Qyqg3OhYMB1GMispQVy0zUg8Q2lwgZFf6YqcaxaMdu4g+hFcpDBLD+9JyGXPsK3tKsrZ5kmvJCufuxleuDjrXPySexeiL41WzJx5wH1qZZ4pVDo4KnvXP6gFGoTFwq4lIwBxipk1NIUWFIwEHvmsJzqRdkh2Ns4IyDkVE9TbPLjVdwbjOR781E1dCv1EVZRzVZxxVuUd6qvTAqTVCe1TzVAeopiY2bhayNUleCyLRqGcsqgEZHJrXuPuisDxFK0GkeamNyyxkZ/3hVRV2hPYxtdXyvDmxdqkjJH/Auf6VqfDBGME+2Pdt+bnoKxNYmMugsjA7o0AJx7ius+EEkYjuI3GQ6kY9eDxXQm4wXqYSSk9DsAt0fEun2yxK0civu4+XbirtxBa2LxyWcgwkh3elT2N3aTanZRRNtmAkRVYYYfLyaff6I0dvOiMSHAVCf4feu68XG/Q5b2Z518TXEnjfw8Vxg227jpyTW5pBCeLLLuSYcfnbVy3jsTf8J/okE5UtFAqfKfdj/WussgsfiywckKqpEzH0GbaopR5YWN+bm1PXNNmMmnRnqwDAe+CRXjmpO0uo3MjDDNKxx+NesWsyW0Uq5z5cr9eijcOPfg15PqJzf3JIIPmtkHtzU8ysREx4FxAn0rzrxW27xBOMcqqj9K9Ig/1C/SvNvFC7fENwc5yFP6CsKXxm09jnW70gFObljQBXaYAQaBzTsHHSgD1FIY3FP7UYxS4+WgZatRm6tT/00X+de6Yya8OteLm1/wCui/zr3IDPPeuaua0xy9akHWmqKevXFcxoPQc1IKYBkYNSKMmpGOUU9aQCngUmMMcVgXqbrwexOPyrosVhXXN7g+pH6GhS5U2FiGFX8zlepwMV3tvGqW0UeOFUDFcdp42z7gejL/Ouii1iNr1bdlK5fZk+ta4erzq5E1YtvaQlyREuCMEY64pq2cAfcUGdu3n0q4xT+IgUYR+4P0NbySJVzOu9JgubcRIqx7emBUWrWHnpCYvlfIjyOwNaxTA4o2+36VEldWGmzmPEGkMGM8Z/dkAH2IrMsdLa5nVRkgMCx7YrucDODTSAvAwKylSi3c053axmzqEfaBgKABVdulWrj/WGqz1hLdlLYqyiqz9atS9aqv1pDKc3WoD1FWJu1QEfMKoQ24+6K5jxdx4cnI6hkx/30K6i4+6K5fxhx4an/wB5P51VP4kS9mYetSf8Sh3WNhDLGm0npnOT/n2rc+F4EW+dm4RjhP72VPH51z947L4d+zschbaM49DkH+tdV8KJHgEk0cIfYcA47lTj8K7J3hHVHPa+iO90+aQeI7KZ0wSxBVTnPHSuivbqaeZYdgVNxDHHbtVWzsHGpW1wcK2MkD16mtW6iRs8dTkn3Fcf1i8uRGbouC1PGfiEqL8TNLEfRUVT9dvP866yxjWTxPaRsuVMcWR7f6NXH+OrgXPxD0ybbjkj8hj+ldpp3/I1WhB/5ZQ/+21elB+4NaI7LV5ms7q7ttpLyoDE4wMdB+mBXnuoc39xgHmQ9Tk9fWvTtciE2oQqv3hGzDjIyp3Y/GvMLkZupWJwd54H1NZctpsImXAP3CfSvNvE5b/hIbkMOm0D6bRXpUH+oT6CvOvFIB8Qz/7q/wAhUUl75pP4TmyvJoC+lSsnNAWuwxGheKcFPpUgUYpQM0x3ICvWnBfkqXy6cY8JSsO4sC4urT/rov8AOvdhXhsa/wClWQH/AD0X+de5r1xXNX6GlMcBzT1HFIBT1H5VzGo5RUiDJpqinL1qWMkApwFIvSngZqRjscVz9x/x/L7sa6MDg/SufuBm/X6n+VKXwsOpo6PEr3DocE7d35Gr93pi3U/nwsBKCCynp161laejpIZgxB7GultHib5gu136iqw65YpMmerMubVrK4lntDKsc6kjDnG7jORVbQbZo2kkacKS7cB+g/H6frUnibwumswGe2xHer0OcB/Y+ledvpmr2khiktrpSOoAJz+VdbTewQkrNHoUlw4m8mHUQJDICB5gOF/H/PNb9h5y2UQuZfMmx8zcda8osPD+rXVzE32OcRFsFiMY967XUtMnkv7e1S7aJYoFG4kjcw9KTuDeljev5JYAHTG0nBqgt6ZWGSS4OCKGndtAjE0itOhAZlOc4OPzrN88R37leAxHFZtJgbVyMSsKrPViVi+GPUgH9KruMVyy3ZotitL1NVXFWpRzVZ+tIZTmquetWZhUDDkVSJGz/dFct4x/5Fq4/wB5f511U4+Va5bxj/yLc/8Avp/Orp6SQpbMxL6BV8LtOGzI8cauD/D04rV+G0ksDF0OQjFtpPbaQTj6GqWu25j8PzSq2Yn8vbj8K2vhqY5bSWEIDIwK5x0+U13Yj4Tlg7ao9g07UbW5uYUgkLFVP3uCO1XNQSXA2Skck7SBzXI2VpPZ6inmZjc9MHt6iusM8b7YDN5k20tluCRnqK8+NBqrzrYpT9pH3jxbxzg/EDTWGclm/niu00znxTan/pnEP/SauF8aziXx5p79vMkP/jxru9PCjxBpbLwxijLY7/vIR/SvSjorCsenarEuYZ9wQoSpf0Ug5ryS+Rlv7hSMESMD+dew6oiyWEit0yM/nXlWsxeVrN4hGMTNx+NVNEROetx+4T6V5z4nUrr9xnvtP6CvR7cfuVzXn/idA2vT57Kv8hXPS+M2l8Jz5SlEdWFjz15qUQZHSu6xzlURHHFIsZzV9IMZ4NSJbZBPb0o5QuUhFxQyYXpWiYKgnjwnSiwyui4urH3lWvb1HNeK42z2BHXzVr2tRxXHiOhtTHL1p4FNA5qQVzGo9aeBzmmjpmnr1qWA4dakA7imqOakXrUjHDpisCZc6io/2j/KugA+WueupBFeB8E4Y8CmldMZoWo2lEPX+db9pHl92OgrHsNshyOcDNdBbrtiU+vNVTXNJeRL0Rzfh67uLzxJq371jbocbM8ZzgH9K6jZnjA6Vy3hOL7PruvW7DDiYEe4y3+NdeAK6kZmPpN899c36Hbsgl8tcfrUGu6Ze30sJtnAVQQSGwck1Q8KTGLxFrFjIwVmcuqnqcMc/oRXW44zjpUtXVmUpW2MS20yOztkgdsvKwJHYYp2q2kMcsLKgB5GantyZ9R3tyFGcenpSaud0sK4Pc0kguQn/Vp/uioXFWp08ttnoAP0qs/SuKW7NkVJetVXq1L1qq9JDKk3aoG+8Knm7VCeoq1sSJOPlFcv4v8A+Rdl56ug/Wuom6CuZ8WDdoZUd5ox/wCPVUPiQnsZWuzM/hgxbflUL83ryK1/hk5s4XucblY7WH4Yqj4miEHhx41HA28/jWx8LEE1o8bR+Z82QD06d67Oa6VzktZNHovmfbdQtYpQQjZAPTAANb01hbC3NrC4W7AEiyHkhvX8u3pWabS3jlt2bEZj+VMHgA9cipP9KkuWmX5PKfcx24BHpR9Vk3dPQiE0tGeJ+Ly0fjPT95HBbOPqc12ehTr/AMJTaruJz5IGT/tQ1w/jVlbxXYOhyGUnHocmt3SJHXxhpqZ6zQA+/wA0VW20tTax9CXeGtZeN2B0968p1yYXGuXsifdMrY/lXp86CVJ4wDh2XPPXOAa8pvk8u8uEB6SMP1NXJuxnExYOYVrgPEIzr9zn0X+Qr0C3/wBQn0rgvES/8T64x/dX+Vc9H4zWWxnJD6CrcFsTlj+FSW0O8DA61rWtoCBkV6aRzNmWLQhn5PFSi0Kxk4zW3HYFS5I69KnksgtuWI5XrTsK5zTxfLj1qrcxhVxit+a3DNwO1ZmoxCNVB6k4qGtBoxycyWPHSVf517UOleLf8trL081f517UvPWuHEHTTHqKkApgFSKK5WaDgOBUgHNMXtT1HOaTGPA54qRRk01etSKKkY7HBrltWkkhZpIm2urZBrqwK5bVxkvnpuqXpFl0/iVzTtZkE8UMeVcFS5/vZGa6uDDRLjkV57dzvFe/u2x8qHjv8orW0/xDNHbiMJGuM8VpRTh73cifvOyOnh06CHUp79FxNOqq3virmQoyxAHvXOjxG0cIMkSs7H5cHHFY2oX93qN9lpGWHOVUHAUVv7VCjSbeps3mipBrkuvW8rNJHGX8iPq7AY/IitLTtXj1OyFxHE6kkgxtjOR1xXOjxBb20mVkZ2HQgVftdZ0+/bekUkc6AblHAbtT5kxOnJG3a+QTI0SlX75FOmtxdeUvRww2mi0/1Zbexyejc4rwaDxj4+k061vY/FdkJ5rSW+htDbKJTFE0gY58nZkeU5xu5A9eK0jHmMpS5T2/UYmhvZI25KnGR3qg9JY31xqeh6Vf3cnmXVzYW00z4A3O0SljgcDJJ6UOa8+orSZ0Qd0mVZepqrJVqXrVWTrUIsqS9ag7ip5ahPUVaJGz9BXO+JyBpCkjIFxGSP8AgVdDN2rnvEiGXS40GMtcRgZ/3quO5MtmZnihml0R5MsA+1ipPqa6n4O2ysDKzEbSeO3SuR8RS79CljZSjx7Bg9xnqPauj+GeoS2OnNJGu4+aF56cjvXVJS5Fbc5/dbdz0/UtLkuQYYmKO0mcjuDWnczwf2dcQBD5iRckdWKjGf0rKudSuYb0MPLZZRlFY42H6+lbepWqtoVxchVWZrfseASK66dS8bM5ftWR86+Mfl8Tadx82wk/ma29I3J4/wBMjbk+fD/OOsLxkceKLDPZD/M1v6W4k+JWmbSCPtEQ4+qVjM64vQ+ieOTkYBH6GvI9RIOoXRHK+a2D+Jr1CNji8Y5KibaB+VeYar/yELzt++f+Zpt9DOJiQD9wv0rhvEQC65P7op/Su6gz9nXNcN4mH/E7mH/TJawpfxDaWxY01NoXPpXR2FmpVS2cmsHTED7M9q6y1A2pjr2xXqpHFLcSG2BO3POamubTEMwzk4zTZEdJi4yDxwPTip2k8xHyOCPWmwRhSRoSHIwRj8a5fxFIPOUdNp/pXQaxcyWkDeTCZ5MgbA2OD3/CuW1Jknike4mFthHaPILGRgPlXjpnpms5di0UTg/Yj0JlX+de1qOMV4m2cWeeolWvbUGVB9q4K50QJFFSAce9MUcVIBXMajguKenYU0HmpAKTQxwFSqOopiCpV61LQDgMiqMulRzOS5zk5xWgBmngUh3M1tHhkbc+CcYzjtTl0a3HQY/CtLHFOx6UXYGedKiJBznHHIobSIGUqckHqMVod6U9KRXMzK/sG0H/ACzH5VJFpUEBbyxt3cHA61oZoNF2Dk2V1ikiXakzgegr57t/FmnQeGLWxaJpZ4tMuLJ4pNPhYFpJJXV1nLeYoXzFOAOqkdya+izWIfCnhz/oAaV/4Bx/4VtRrezvcyqU+a1hnhdi3g7RMnONPt//AEWtX5O9SJFHbwxwwxpHFGoVERcKqjgAAdBUUhrnk7u5qtFYrSGq71NJ1qu+c0kMqy9qhPUVLKeRURxkVQhk2MCsLXV3WUCjvcxj9a3Je1Y2sf8AHvBwT/pEfA+tXD4kRLZmF4olWfRJEbAlhZcY9OldJ8KIJXSeKKRFckMu/oCF61y3ii2FvpzyNu3yEDn0zXSfDG8js4pmC5mJCqScbQRjNdtWPJH3DCL5nqegXNl9nu0D7XYnLsOhPU/yrptRL/8ACM3u5jjyl2gduRVG0tYJdmSZAGJy3ck8mtbVkVdAuycKioOv1FclOu3U5UKdBQdz5x8drs8TWH/XL+prd0Ly1+IVkc4C3EeP++lFYXxAdm8R6eSR/qT0/wB41teFilx43tPMyFMy5I5/5aCumTurlRWh9CRJtsZD3Zy/615XqBMt3cOeCZGJHpzXqgmd4PLVRvXAIHA6/wCFeX6iWbULjcFUmRsgdBya0voQjDtubdTXCeKM/wBvTe8a/wAq7u0P7ge1cP4o/wCQ+47mJaxpfxDWWxZ059sasOuK6jTpMxR7jz3rkbBx5K+1b9pcEbfUdK9VPQ43ubkrxjJyOvemCQCNvUgVQe63MynpmrCSjy2+goYGffJE8q7hyQD+lcfrca4QgdCRg12ErK7AnqB0rltaiACE5xk1EikZc+NlseOJFr2uL/VRn/ZFeK3A/d2+f+ei5r2mH/Uxf7g/lXBXOiBMtSAV5Xe634oN7dSReJbCyt21O5sbWG4h+ZjGUONwiKgYkQZZh3z611fgHU9W1PSL061Iz3lvevbsGRUKbVXKkKAOCTWcqTirjU03Y6wCnim5xSlwvLHA96xZpclQipQfzrN/tCEEhct9KsR3alcspFYurDa5fLIvD2p+6q6TI6jDA05pVjQux+UDJqk09hWLG4AckD8aabiIf8tF/Ouba7e+1CQBsAJkLnsKmjdZkWRR1HSuSriXCXKkaxp3VzbN1CCP3q8+9OE8bDh1P41iMm4quOg4NIYtx3Dg/WsvrkuxSpLubwcHinZHSsPeytkZx9avW9zuOD0960hi1J2aE6bWxU8TzywaUrJK8MJnjW4mjYh44i3LLjnOcDv1PFZliLGz8Q29tocyyWzwyPdRJOXROm1xz94nA78dh1rqc1Xhtre0Qx28EUKE5KxoFBPrgV0ON3c66OMVOg6Vn166O6tdruun/D3VjzUMlStxUEh60zgK0tV2NTSnmqzk0AV5uoqE9RUkh5qNjmrERy1m30XnRwgj5VlVm56AZrSk54rPu5PKtmbGcYwPU1Ud0KWxy/ihpG0Vd5O0OAue455pfBmv6LpmU1S4eNSSW2xlieOOnvU3i2RJ9FiRAS2VY4H3QOK4NoefvV6M/eRyx1R7VY/FXSYCkTXLeUgwp8k9ADgV0Go/FPwldeHZIxqA+1OE3IImBOD9K+c9vPWjy8/xY+tc6oRU+dPUq7asdL4t1e01bW7aWycvEke3kEc5JrtPAqbvG+mYAPzqTj/eNeXWto8spZSCI1LN9AK7/wAFX/2LxjbyIFbbMB8xwMFzVTsl6FRV9D6LEUsd7PI7YjCgIM8E15fcu0txI7kbmdixHrmu4u/EMwyDbIwOP4v/AK1cLcTGW5eQgDczNge5pxnGewSpyj8RmWn/AB7iuJ8WALrykf8APEH9TXa2Z/cCuJ8ZHGuJ6eSP5ms6XxhLYq2s21NpHfNa1vPtxgkVzqSgY/pVs6hFbQGaVtka9Tgn2r1E9DmaN9rg7iQec1P9r+Rhknj1rl4vEemyyrGk+53YBRsbkn8K02uVbnpx0o5hWLQueQQOMetZWqTblAxznmpo5wOvaqF++5c54zUyZSRQnbMEPP8Ay0Fe2W4/0aH/AHB/KvJdC06216GZHllje3kHCgc9a9LbU1treJjGTGpCMc9PevOxFWKdjohF2PJ9Y1DRJLi6sNTe/D2mt31yUt4UZZkk8obd5cFD+6PO1uoPPSu9+G+oyappWr6lMFWW71WadwvQM6oxx+dat1pGhSBrl9J052kPmNK9qjFiTnPTJJqKN0s4Gi021gsoWbdshiVNx9cDvwPyrOrio8vKghTd7kniPXJtO015LXAkDKu49Bk4rK0a91K8iMuoXDNv5WPpitCQRXgFveqZoJvlIJ+6RyCPfIqrNay2NxGMZjI4kXof/r1w1qrcbI6YJLc2YeQKthCV5JxVKzcnGRxWgp5IrzmbCLHhSBn86kWMN8rcj0NL0p6dRRzMegG3iixIsaqSSpIGONprLspCQEHCjqa171wtpvweD+pBH9axrVSsaAd6zvrqUtjTY5xjgCn/AC7feq/mDoO1PDqPvHk02IkZRjA60SNHaxGZ3AxycmlVlAPOa5/xldmLSiYw5LAgle3FVTjzTUQbsrnW6XOt/AQhIlA4X1qQnJrmdI8RW+hXUErRvMNoLbFzjPvXSySiZjKE2BzuC+ma9hQstzkUk3ZDHPWq0rYqSWUIOazbi5ySFosUE0ypjcQBnk+lIsaS8i4jrPnlLDBPGRWhaxqT0rWnBPclyH/2UzgMtxEc+4qGbSZkG7zYsD/aFdDaW8W0ZUUt/FEsDYUdK1cIolNnGygqSMg49KzrlysWQqs2flDdM1oSnlvxrH1FmW3V1x8jhm+nfFYLcsZc2sD24R1BRk/eAjtVZtA063Vo1gjkDKQCedhPPWrVxI/loDGpQrgmpFiMty5ETJG6jJJ6njkV0x5lbU5trmHJoVo9qh+wx+dv2naO3rx2q3DoeiyQBfsETOuQzc8nP1q5c3AsbeVwhxGACe2M1n2t3O8bXUXywse49DW04WXNciDsJf6Bp9t4d1K5itESWOIlG54P51wEd5cW8gdJXV853CvXbTUoJLXyHjDGY4PcfQinHRdMlOXsLZj7xL/hWPtlHRm0Y82sWebWvibXGuIV/ta+KNIuVNw5U8jtnFexSH5snPWuauvDGkBo3SyjRt45Ukf1rpDy30ohUjN6IKiktyjZg+QPrXFeNxjVoDjrFjP4121l/qPxNcf49GLixbHUOP5UqXxoUtjlg+APpUOpM0mmSooLFioAA6ncKY74qOVpWj/cyGOUEMjgkFSCCCCOnSu+5gbfiPTLC2TS2sJLN5NOul0+8NtGyneApDOSo3MzrPyCeFUZ4p/nH1rmYbW+jf5rrMbyrLKnmNh2UnBI7kZbk+p9a1jISOtC0Av/AGjaKyL27eS7liZv3aKML71L5uKouQdRcscAgGoqN2NKa95Fmwk1SKSWXTzKqKoMpi7L7/rWnZ+JtWacWtxcSeRK2CWUEn0wcZ9Pzqz4QuY11V4MjZOhVh0z3/xq94YVdM8TXmnOCT8ygt0IHI/SuGpyu6aO2lL2dSM7XSadu/kVNO1270+drq6tgscQy45w56Y689Tz0FbCfEDT7iZme2nj4ycEHH8qyvGFsttrcb4Qw3EeQrjIVuhx6djVrWPDViuiHUra1ETAKzKhJBU9fpWHJSsm+p1YvEOu01fRbt3b/wCG2X9Ja1n4t0m425nZGDqwVxjjvW9ba7pV1KYftUcivggZwc+o968w0jQXv5JTYyDeqk7JO4yO/wCNXtJMSeebm2VyiNlT2YdP1pTw8W7I5Umeq/Z0iIKEEZqZemaxvD1w02kQM7Dc8aj8i1bY6fhXlVY8srGkdhwGSKevWhQMCgHB5FZFBejdp7jPcEfhz/Ssq2xgc8gdK1rxwLSRgNxGMD8RWXCql8kBgenFR1K6FiJe3fuac6gSAduKYqpG2ORntUhZE5YgCqETxhWGUGKxfFAWDTjcZGI2BYHp6f1rRjvUaTaiOw9QOKwPEem/2hYyRO8iAnPynOOadO3OrsaVylbarDJJA23dsIIQDlvbFT2/j++knkWbSZSBkjYpyFz6VWnis7TxJZ3dvsiEiEOyYHPHX8Ca0rDJ8LySBiZLe4lkQ98q5/pmvTpU4pNoiduw6Dxfp+oypEjSJK5wFde9W5H5Ncte2qW2saPKAA820yn1Oc/1rpJTyecV0oxmrEEz8fiP51tWZ4Fc/O3v3H863bI5xW1PcykdFaN8q5pmoP8A6O30otD8q1FqTYt3+hq5CRyEpJL496zbiL7RC0ZbbkYyBWi54b8aoluc1zGnQCmdoJBwMfhipYCU2rnIVcDJqJjmnRnBofQFZElzbJPuGB8y7WyeDVCPTJ4pBHGoaAY+XIxWkD3qdDwa29q+XlZHIr3Kf2dQYgIAjq2cqRjFaKcCoyMsDUi9a52aJWGXX3Y/98Vc6Ak/X6VSuukQx/FV7PU+1a4b4mZ1uhRsR+7b61yPj9X32T/8s8sM+h4rpoZ2jXapGD3rI8ZwNJoDSyYJjdWU9xk4qoO00Q9jzZzyant7cSIZZJRFEpALEE5J7D1qs5+Y1Yt7iJYWgnV2iLBgUPKn+tdtRyUfdKwapOrartrve1+l7a2v2/Dclmj8lkO8OjjKsOhH+NR78dqLi4WQRxxKVijBCgnJPPWos8U4OXL724sSqSqv2Xw6ffbW19bXva/QcX+aqx+a9I7MtSFuajhw2opkZHGR60S2MqfxIuaFc/ZdSgkyQFkBI9q6TXHOn+LLTUUICybWJ7Ht/LFcajlJ3OOvI/Cum1z/AEjT9MuDIGaSJgPqMEfpXJUi+dPudUXdGt4ygafT4bo58yGQow7AMMg/oPzrf0Bl1fwnDHIxZZIjE4HbHH8qwppPt/hhmzv82BWByD86f/qH51N8OrwNa3Vmx4jk3r9COf5Vg1+79AUij4PeSw8Tm0lIG7fC2fUHj9RU9xZTWviLU7KIgCVGcFvQjNN1TOkeO0uD8qPIswJPUHhv5GrHj8tDeWtxG5BlhaNtvGccj+dNazT7mjZ0fhtn/sOwYgY2kEjtjOK6SFgRx1rH8JQ/bPB8Kqf3nkKAR/eFYz+LrWzneKSeVZI22shjwQR2NeXWpylUfKi4arU7VSTUnBFcE3j61U8SOf8AgIp8HjQ3MipEwBdtqBh1rNYeo+hZ2d/cLDZsgBLv8qgevaqNgs6ARTRjkZV1NVp3tZtrSXZcgdiRUYNiOBcN9Mms3Sle1ho2pFVoxu4K1QPlsxJGcc4qpvsxyJXf681MLy2A2jfn0wKXsZsEWY52+bIwM8D0p2xZVKuCVbgkdhVM3aYPyvz7io31Ewx5wdoGTubtVrDVG9EDdtRqaVDPqkfnIHiRGUg8DdkEH+dV9Im3eGr2MgKVebGPTcR/So28TWHmYeeFZOnzMRU8AV0lSBFWCRTu2dCWOTj869ChCUIcskZv3noYPih3WfSChwQFwe/atq7uHRCyJuJ6CnzaXBdSQvOpcw4CZPSrQs4mHKMfqxrpTsglC6SOSuJb1H3NdhQTkBxgGtOy8TmJf3qwtjvHKP61uLpdtkFrdD9RmmT6BZ3I5tkBxgMvBFOMrEuldDrfxnbqoBhP4SL/AI1DqPivz4SsUSJn+KSQYFZl34UnQL5MSyL224B/EVi3VgsJaG5j2t3VhVOfcz9nYu/b72bISeBx/sgU63luCzCYqRjjArK0XEWq3MGwIEVse/StfdUW1BtE+7JqVDmqgbmp425piM+41q6t79raK1SZj90EnP6Gpor/AF24chLSygB5CzeaDj6gGqEk6xeJYtw+U5JPpwf8a0F8SWOwuwlCBim7bwDQrmrSSJll8RlVdINMkUnB2yv8p/2gcEflSPquu2zZl0zT2Hb98/P05qrJ4j0xLwSxO4Kko/yfeX/PNSW3iLSmuWlnmYMThSYydo/ClLm7AthP+El1Ga4gik0K2CtKFyGlyMnr96utJGSR+NYkeu6Td3ttHDfZkMgCoYXGT+VbJPy1tRvrdHPWtdWMVjwCOm7H05qDxed3hi49tv8AMVIMrCyk5YEkH1qLxUf+KZucc/Kv4cio6ozex5W/3jSDrSE80or0UYj/AEpw4pAORTqAIm71HE229DYzgA/rUrdTVVyVn+UnJFTLYqDsyYIuC7SAOv8AD61eFzJLpMMTHJtZSEPopGcfnUukeGrrW457lZEhjQ4DP/E3p/8AXqhMl3p00lo5/wBW3zL156Vi5J6G0XZ7HWeF5xc2U9oRkIcgH0P+f0qj4PuzY68YmOBIDGw9weKzdI1ZbG7Mp4yAPXof8CaWF1GsQzQycNOGBB55OKhw3XcpPU7LxvHvWxu8cruVj+R/xqn4quRc6XokpwzeXJn3OFGak8U3Pm6JbSpyRNzkYPQggisC4uDLpemKxJ2mT+gI/wA+tY04uy8jWOyR6Z8MLxZfD0kGfnhk6Z7EZH9aueKvCttqlvLeWtuq38SmQbVGJD3BHcmuM+GmpiDWJbJjgTw5Uj1X/wCsTXqa3Kq6sHHFcFbmp1m0Xc8fskt9QJE0asy/wAYFT3+n28FkXigWMqwO7njmt/xl4Wa0uX1rQ+AfnuLdTnJ7sv8AMiucm1b7XpLRSKvmOARg8jkV1R9+0kyoyubFgXOn27DoYxyfpVyPf1JH5Vl2WuWdpp8EUi5dEAP1pj+MLMSIkUabmOMseBS9k2zRtJbm6FOc5/SpAhP8X6Vxtz44nEjJCkfBIBUZzUcet+Ib8EwxuF9TxT9g1uTzrodyFx1OPqaxNa0pLvaw1Rrcg54fNYf2HxBcctMwJ54BNZ7abqd0zC1e4uGU4covAP1q402ne4Su0X4tJjecJNq80qkj/lnwecZye2a9Hs7BrOFLXy1URDbivH5LO6tJZY7lWEigqFJPXivSIbbxA0aKrBQFAwzVc031JhFIl8SeJ7Lwv9l+3RXD/aN2zyUU424znJH94VS0Px5pevaxBplrDepNNu2tKihRhSxzhiegPaqGu2+px3SEyb9WNlcf2aEOXEu+Hds/2/L8zGOc4xziuX05NXl8b6MmqybNRNs29mz54GJMednnfjHXnbtrWNGLp3e5hKtJVeRbaHtItiBlpBj60uLdD88qj6tXMfYLgqd9/M3+6AKhl0mNuXuJ2P8AvD/CsOU7LxOvF1pyY33UQ/4HUVxf6DMuy4mt3BGOV3YrlV0izwu7zDn/AGyKjv7LTrS0aRwVUEfNuOadgbii1caXoJuprvTNRxPsZjCwOG46A9ulZO7msmO6ggU3KsxiWQqD7Yq1b3sFwf3coPsetD1OWdr6F5TzU8ZqopOeamD4Rj6CkQYt3zrof0z/ACqnpulNqt1PG0rxInzjjrk4r3T4fWGl6n4YhM9lbSzRud5liVzk855Fcp8M9Is77xR4pE9vHJFFPsRSvC/O3T0qYu8XIt1OnY4pvC0FnCZcRzkcnevWtHTdL0e6i/48k3ryVfrg9D9P8K9sn8J6PIhU2EGD25/xrH1jwxpNlaQ3dpptvHJbyoTtJAZCwDqeemDn8Kl819wVVPoecJY6dYajaslrGrFwF2rzntW4eTj2rfutD05tYv5o7SJVtIF2YY/K5BJP5ba5/nPXtW2HurmNZ3aMFHBkVT0HH0qLxJlvDt2AM4jz+opsZYFWPRl5+ueDUmsfNoV13HkN/Kl1RDPJ2604dqjPPNPHavRRiTgjikJpmelLkY96BCN3qs5xdLVkkYNQmJ5J2kUZSNQWPoCcf1pS2Kjueo+EQp8O2wxnJc/juNcNrN2LvWp7xVPk3DtGhIxnHyj+QrsfDcyw+E1lJwsaykkegJNcZdQsfC2l3WSf3koP/fWf6GvPpJc8mzqb1sUBbCQxhSAzFVz2GeKJrK4tpWAOSrsvB7jrS7s5UHBwQPr2/pW0x+2aVJqAwWW5LP64YDP610uVg5UzFm1G9+yrDM0hiJ3qH7+9W4WkkSC2GCA7uMcYJUZ5/AVqRywDw/befEJfIujGysCQVxu6fT+VZErtaag4t5AQHbay8jb2x+BpJ30sEbrc2PCuLTXdPui/JkUFB1Kt8te3hBzlRnufevA7cy2lvp97jAdyVIHdGr3iGVZolkU5SRQwPsea87Gq7TNemhynjax1C5u7BtMIWTYyMTLsHt/WuU1DwN4itbMXBe1Zc4ZUkyR7mu38TTzW8ltcj5raLJuE25O3PUfSo55G1DVrHT4GzavH5s2OjIe34/1qadWUUrD1PPdO8EazrK+ZEyiL+/IcA/T1qG88L3Ph65Y3yKQAdj87Tx/OvdI0SOMIgCqowFAwK4P4nRiSysxx99sflWsMTKUrdCVqxLLwXpcSh5Vkk3HdgfKOe3HamXOnvoFyt3ZcW5OGiOTz6fj2ruobeGS1iyg+4vI47VR1PRFvLJ4opQrZDAsueQc0OtF7lxnrY53X75k06OO3X97c8KByQMZNaGmWKWFhDAoXcFBc+rHqayZrS4ktNKuGRTCqCDjk7t23p+FadzrOn2sjR3F4sbqeVKEH+VaRdypSOG8VzNb67clQCXXaSfQ4r08SjAABNeWeKby0u71rm3ZnQ9yMdAK7NvEtr5CukTnIBz5ien+9VrYmV2VfGfhQ+KhZn7WbX7Lv/wCWW/du2/7Qx939awtA8A/2JrNvqX9pibyd37vyQucqV67j61oz+K3EyhIF2Z+YMwJIz2x/9eoz4nuBKFWyTYWAzu5HNNVtOW5rVwMqa9pNduu19Vftp/Vzp92QcEfnUEjMMjZ+lXrPyX0+5nuDNujiaQeUqgDAzzmvPJPEWtSE7braPZAP6UtDJNnX+XNI4wnHXipNS0K41LQ544pIkmHzqHON2OcZrN8N3d1d2DtdzyPIjEEnuKo+Kpp1htgJWVHL5ABGcY7/AI0JrcptnMMCdHkRuCJsYrNG+MggkH1FaSYa0eIH/loDUBgK9qE0Zktprd1AArMJFHZuv51rR6/ayRssiPGSDz1FYBgzTDEwFDVwsew+A/EsWjZE7/6NNEGLDsQOtM+FWtWVvfeIZ55xH9puQyFu4yx/rXB6TdF9BkU5Lwoyn8jip/Bp/wBDuGz1kH8q5G5RhJeY3FM+hRq1nKMrcxkezVm67dLLol+I5Mv9ncrhu4UkV5l5hU/eI/Gor27njspmWSQjYRgHrnjFZRqttJolU0jsdL1RL7Rb7UQx2Xjsy567QoUfyNYw4bGP4ea57Q7+X7NpsaMREysjIegIH/1jXQA8senavQwzbi7mNZWZxA16PgLCPbmor7WZrmxkgRAAVK8d6wVlbjCfrT/tLhWBXmq5SrI55opFJBUjtSgOf4DWoeeSO+abwOldSmYezKGHyP3Z4pMSZ+4a0OuCaaQAaOcXIUCshydtR/vY5CM4VxhhnqM1oHnjNVbkYYGhy0Go2Z2ujz7fAt7tOSElGB1Gf/11R0y3N38PbqIqC1vKzrn2wx/TNc5b3lxAk0cUrLHMMOo6MK7jwYiyeHrmJ+VeZlP0KgVxVF7NN+ZstWcKqkxPITygUj+VdH4SQXdvqFkcFZUI5984rEkX7LLNZSLnbIUY98A1f8Nb4NcaLcVYggA8AkdK3nrEbH+H5WTW7S2kGMzgnPZlDAg/nUWvaeNN114VGIyCy/Q9KffN9h8UrJt2Dzllwe2eT+ua3PG8aSR2FwDzuZCR6EA1HN7y8x31K3h7TzrekDTQ2xo5/NDkZwOc/mP1Fep6VbCwsIrQSGQQjYGbriuK+GsQ+zXErAfI2xTjn1PPp0rSh1a4g8YX2nGRXhK+aoc/dO0EgVw4luUnFdDRHTXcX2hHTPylSD34NYXga1Eb3oOWaBzCGI6jJx+mK3oZAwAOCSM9KNLtxZzXpUfLNKJQfUkYP8v1rmhOycSnsaeCDyK4n4iKDaWjdgzfyrszKM1x3xAkU6Zb5xku38q0p/EiVudjbNm1hOOsa/yqTcCeKoQXCrZxAt0jUfpUb3pQjYRiolKzF1Me0Jaw0yAP93UHH4KxNda8sRBDkZ9688sLpn1OOEtgwzztge//AOs1uy3bnvVSdmNnK/Ee1sIDBPawpFNKGMhTgNjHOPWuZ0+zspwFlaQSYGQWxWx41dp/sYbOAXrXg8N6f5SEhido5JFd1J+4hrU5u/tLa0nsFWNn3vsUl+V/xrYW2VHQLjgjGa2F0fRI2RplQuhyN0nQ/SrM0mkpEdiIzdgATUuCudE8RVnFQk9F6fj3+ZuaEZfsFysSW+TCwPmd+OlecGxIY8Ej2rsbTXH0pYXit4zGR8xwQc/X1qve6Ul6JNQ0xjPC2Wlixh4j1PHcfSiadtDGJU8OwqizKVGGPGe9O8YWMkbaeWsFt1MJw6tnzeepHY81LpcYVW6c+jYx+NS67ZxbLOSK7Wd2Q+Yq87DmntTE37xxq2nzFtgz64pTaE9B+FbS2x/ukH1qT7Ie9Y3ZZzj2mOStV5Lb5TgV1DWW7jrVaTTmPQU1NoNDl7O4FtLeRdA8LfnitnwoVi0+VXwGEpJBPsKwL6JotakQ9BjcfQVDPMlpKXVmyTlQo4NbSpc8bdzNs9BeeEA5ZcVm+YL+7TYf9GiOc/327fhXGTa1JIoAVUwMZCnJ/M0+PXLyJRibCjgZTislhJJabk86Ot03Nt4ljtRnypGeZPxU5H512Wfl/GvOfC+ozaj4jt1lZCI0dhgEdq9EB4PtXZSi4qzMKruzyoDAp7R8MRSYJYcVMR+6qWzRGaR1BpQuaVuGNOGNprVEWAQ/WkaEL2NT7hjrUcj8jHSncLEJh9FqtdQMI8kY4q8HGDk/pVa8kzHj2o1EVbZUZCXYAg9zXQaRri6Xp1xFAqyO0gI3OFVcjqfX8K5lJIFVo3Vi4BwwbAzxj+tNbhMEADtROmpbgmaFzKp1NpJZ45t7B2kX7p9RWjqTGx8Sw3iYCShZVPbng/yrmM8gjJxVg3UkhjEzMyxjagY9BmjkEpM6nxdGHezu1HJUqT2OOR/WpvEDNLo2mSGQsHbPTodv/wCusi51eG80ZLRywkhYFD2I6fyNK940ujWkRcN5cp49OD/9eseVpLyNY6s9C+HyD+x5ierXDZP4CsW8u1t/iRI0mAnmeX+DLt/ma3Ph+4fQXA6iZufwFcr45gNv4kNxFwZlz9GH+RXLFc1aSZotD1m2ZJIIpAAuVBx+FG7y8mqOi3f23SbS4znzIwSferkhwjkdcGvPa5ZWK6DHuQK4vx3dKbG2z/z1Yf8AjtdRJng964rxzt/sy3wcnziSf+Amt6GtRE3sddFKXtIT0zGp/SnOeOtQ24BsLfnpEv8AIU2R9voM1m17wtzBs4BD4tuvn/1iGRVz6gZ/ma3XYLH7iuRkuVnM+ppNHBLHN+5ZmxuUcEH61Hc+MFMGYgm49ct0Peul0ZTasDZB40laWS3RM/KpbjsM4pIJL+dFCI74A6tWBd6lNfO8rvuJG0gemc4r1HStKs0srcsJCxjUnn2rrUHGCiOLOXSx1VznyVXPqaZcW+twISASP9k5xXf+TaRL9xR7s1Rvc2y5CmPI7KM0JBzXOf0E6pcWzLesvlY2lTHgn61caK7025WfT2kB/wBk8j2PqK0mvAFBVJGH0x/OsK78TxwT+RJbOhz95iMfpTsNGwl3NPI001v5buBuCcDPrird55NxZ2ezyElQMrIgw3qCT3rJtNQguidk8bBADkcVo2SrPvkOCo+UD196T2sPzIRbA8HJ+lSfY8rgR/mav4UdwAKaGiIwx/OsuULlH7IQM7QP1pht/QVdcqDwfl+tN8xFUsXUL6npU8uo7nlviGMx63cZ4Ifn1IIpbDwvrniCITabp09zHnarRYOCOueePxqPxPMJ9fvHjYPHuADDoeBXq3wu8SW1h4UtoJ4MMJJP30WA/Ld/X8a69rGUm7aHAj4WeMfLDLpM7/7JCgj8zWPH4S1qW5ktmsTHNH/rI5NqOPwZhX1bpuoQ3VuXhnFyucnHDKPpUGs6HpviO1HmhftER3Q3Cgb4mHI/DPUHrW6hdaHOqrT1R83eFdDu9O1+Q3kTRNHEwHAKtkj+IEiu4/rUuoX+nT6vLZQ6d9lvrYMJ5UOIpsHblFPv+WCKhxjA9qlJrcJ6s8tQ5JPUZqc/cqBPlAwRUu4bTzWLRsUmPzdO9GTg4FD/AHjTV5PNaIkXDf5NNcsFpT0prdMGqQmN3kdDVa4JK9eas4+tQXA+XOPxpiWpUMRnZ24Bz1qMrJCw3ruA9auxrh5NuMbv6VZRFkG1gCDScrC5CC1uIHAUxoj+vY1JNDHIMuuAO69aguNOKndCeO4qvHdSQsBICVz0NK19UVe2jElt5Iu2R3xUkNzJI0UbsdqZwM9P881aSeGfocH0NQyxxxzoQMMafNfRglroepfD07dHlI6G4bj8BVTx3Aj2c8xH72BldSPQ4BFT/D8/8SV8f8/DfyFZPjLUxDr9xbh1ltpoQsqgj5Gxj/A156TdfQ1ex0Pw6u2uPDGxjnyZmRfYcEfzrrGxhh615L4N8SQ6XcS27yCK1MWSxHVwev5ZrqB8RNLWUIyzMpbBkROB71lXw83VbSKUlaxttMpDEOCD0IPBrivG08TWcESupYSklc5P3TWNq3iH/TLldOd0tZGLKGYjk9ePT2rn2uGlYszsxbqAK6KOFcWpMls7i58YmCFIYYgjIgU+Yc8gegrnrzxHqV+XQzMkTcHHygisozNt+4B7nrQlvPcH5Vkcn0FbqlCLvYLDvMj6MSwHbtULyKchI1HvWjDolw8QlzEqEZyWzVq30D7Rh85X1bofoKvnig5WzIt13RszAfe655/KusTUdQaJFNxMVCgDBx2rH1HTk0xoyMsHVhgjjp6V1lnYg2sRIzlB/Ks6k09UVFWRShmueD8x+pq6l3egYUgD86vJp5yCAKtpaDaPlFY8xRmouoTDm4cZ9Bij/hG/tL77iRsnuTW9DB5Q4xipvlIwencYo5gMi38Oafb/AMBLe7HB/KtWPybWFYoU2ovRR0FHyqTwcfXpUE0u0ZC1VxEjXuOAgPueary35UfNhfwrNuL2SP8Ai49+tYl3qDMfvEn3pXEbN3rhjXCtk1g32oy3EZ3St1yFzgVSklLnJFQyMShGKtICxfyQXemrHHGgmBGWzyaueH7m3XS44XYCRWYHBOetc+HK5PHBqsjyf6yMsueQFbFbJXRN9T0m11OaykEtvdvEV6MshBFdDY+N21Bo7O9zcQg4e63lZFXuqkd/qK8Xea7Yj55D7Fwaljv9SjxtZgB9KaVtiXZnuuozaJ9hhh0yJmKDhnJ3Jk5PfBz9Kxi2Otch4Ovry6ubsXbEhUXbn8a6wk/nVGEtzzEdBwaGLbfu8U9RmldcqB71ibFRxg0ztUsqnceTUYU4rRCY3Jx2pCrH6VKF4xSquOTTuFiHYcd6imQiMn+tWwBnimygCJs+lFwSKluu55PqOv0FXETauT2NZ0ciEuzTGMnoAuc8VWVLi4PyhzTcL6ti510NzaZnMaAYHVvSoru0t2QCR1Qr0IqtHp948YV32KOmTVmLSI15lkZ/YcVGie5W/QxJY/KfCPuHYgVaUO0KuzEk8VuwW9vDkLGufU85qpfxx/K6fLISOnSq9pzOwRhbU29D1k2Hh+S3jdo5mmbcRwQMDmuTmupbiQ+Y2Tk1qqztLLvOWDEbweGxWeGYpgKiD1zk1MUotstrREC7gflTr607y3xlmAHpV2G0aRgDLuP93OK14I47cASW/lk9yvX8aHIFGxgwWUlx/qonf3PApwsbneUCMwU4PlDNdHJITtiiOWlO36eprXt4o4IViXhV4rOVVopRTOFaxkQq8Lh2U58thhh+BrYsvEFugEV3AYiP4lHH4iuknt4rmEpKgZe4/rWRcgWKrb6hbfa7JjhZcZZKSqKejQrNbFa6kiikP2WQy2k37yRIxnaM8kfWuotDbzwRyQFTGRxj+VcpH4ZuLq1W9sLgRMSdiA4wvbn1rHuG1PTbovMJIZQfvgYz7+9NwUtEw52t0dP4xjCw2jLj7zfyrqrCINp9vzj92v8AKvN7zWrjUrWOO62t5akh9uCSa9E0os2k2resS/yqKkHGKQ4u5bIw2Cee9KHKcg0YDDke+Kbxnbnke1ZWZVyzHP8AKcjn0pWkBIPII9+tVd23tml8zPpT2ESmU9uKr3DFk55HtTi24YIqGZWC+o7e1FxGNfK3f9KxZgQfWt2761jXA5OKcWBUqORQRmnE81G5OK1QFK4GIZABnjj86jg4hUEdqsMCc0qr8o4rRS0IcdSLvTlbFPK0mCOlFwsdV4M+Z72ToPkXH511m4Vyvg0Yt7yTHV1Gfwrps4NXEwluebLnH3jTiOOXP51WV/c/nQ7jNZ2Nbg/U8k/jTCRimlhimGQAHmrRLZMre1LvwDVbzOeKDJTC5PvNMmfMbDjpUXmUxnyCPaiwXKXlykmROdvatGx1EOdjkI3twDVe1JXdu46U6ezEo8yHAfuPWrdnoyFpqjYViWYHPqKcVGfSsa0vngkEVxkdsntWqJo3XcHBHqKxlCxqpXHYVW7nPaoL8j7PgLySOae8ygDDcg1VvZS0Q+tEVqO5Jp8RuYGheVgkchIA756/yrWhsrWFeI1PueaytK483vh/pWl5h3EcD0pTvcaHTxRyDG0D3ApkM80B8ppiYGOGEgyAO5pGdsHJxiq+Gmm2Z46v9OwpIofBMILguFZCThQ3THt6VrxagpIWT5TVRowybWUEHsapyq8IzkNGOxPI+hqbXC6OliuFb7pBqncym9nGnRH9yfmlI/hHoK5p9XMY/cls+4NJBqlykbJASWc5ZlHJ/GqVKyuHMjpm+x6IWMN88QPPkE7x+XWue1DXLy+doTjyiflUKSfyqaz0S6vX8y4lEank4OWrprLTrPTwDFCu7HLEZJpXUQ3OIksLu1RZLqB0jkPykivTNHbbo9pGe0SjNcx4tcPa2xB5Dnj8K6LTj/xLrY5/5Zr/ACpVHdJhHTQvlvmIzyKa3NRM3fOCOhpwkBHJAPtWRRITgc0zeAelMZxjrmoTLjORU2HcsNKy8pyD/DUEkxdetN8zOCO9MdlPPQ0CKdwpfNZ01uPXP0rSlJ6VSkVs4xx9aqIjLeDDcZFRvEcZFaZhDdTz7VDLAcYC1dwRkMCD0poDVdeBsnNNEB9Ku4FXa1BU+lXPKxTjAMEk0XEzo/Csfk6bIr7QZH3gbucYrb9687M8sc29HdWXoc+lbVj4okTCXi71/vjrWkWtjGUHucmslJvJzUYPGacPuiqIuIScU3PPXFDfnTMH0NNAP4H8QpAR703Bpce4pgO3AHGKaWz0FDcMabTAkQZBqeJsVWBxU0YBFJghbqJLhOeGHQ1Q3T2j98H8jWmqrTiiuu1lBHoaSdtB8pDa3CXB2k7W9M9afegLb4Byciql1p5iHmwZOOq+lRi5lliCyNkA8E9afLfVBzPZmjp0mPNxyC+avGToxA4qjYwyNHO8eAoc7v8AZA7/AEqpJqEo3KMZ6GocG2aXSWpsPLgDH4D1pEuIbdeW3MTk471gia4mbgsxPU1ahs2bBlkI9lpclg57mhLqm1cLhf1JqqPtF4cJG7A/xOeBVuG3toyCIgWHc81dW4CjjAqb2LuVINDUYa4l3Y/hHSrhtYkTCAAe1Ibw9BzSKJJjg8L7Und7gMjuHt3+Uk/jV9L27mUJGAMj7xqSGyjXlhk1dCoihQBipckOxTj05GcSXLNK/oT0ra8zYg2DhRgD2qkJE5A5IqdXPpUXAn8wMARyD0Ipd54xUCsQcDge1PBP1pDuPZz+FNLCmlsVG7YPt2pWAeZAvQfhUbybqiZ6iaQilYY5zkdahOT25oMm7jnPpURZumTVpCJNuCQTjFB2AHqahG4n1qcQuV6YFOwr2IjIg+7GM+p5pkjeZ1/lUrwqpHmSL9EOTVZ1IZjGWKjpnrVWC6E/ipWTjd2FMGSaSbKrw3UetNCZmyyo07hTxnimbuuahnTa5yMGohIyNgn86pxuTzWIAeKk3EDg1AGxjipN3tWxgKWb1ppYkdTSFjSds0AFLnFJmgUxjz940d6G+9+FJmkwHbc1IhMfWmA8CnZJFAyyrbgMUoP7zHaoEk2jmlaTlWHr1qbAyyTzVK7hjXEqjGD8wHep2eoLg7oGoW42SQzFZZVRSQTyGOMn3qIWsZdnflic47U2Btrvnuc1PknpTe4CYC4wAAPSpFY54pUgZvpViO296htFJDE3t2qdYTuG4jB9KnjgA61Y2oFxxz7VDlctIIrVR161aQCPoBioo3LL/tDg1KpyOahsoeHIwM/SpAwYDnFV85G3PenowA5pMCZV/eB16jj6iri4x0OKz1f5varSsSPakwJ8ijeRyKhLY60nmZOOT9KnUCUncopucDBFNJKjOOPTvSMc0XBDHyvI+7UJy3TvU27OR2qF/lxz8p/SqVgIyp9RTS4z0qQqaiK4PNNAx6SHOelDkEEg8+maiyvTP5VKBx90VSuS2iBjlvQ+lOUEEmnOTjgDb34pUx36GgLjGj3EsvLdSD3psVv55O5toX7yjqKuCPzF44xRFZG4kCS5Xjh/SqRMmc7qEKRzEI273zms51rW1dPst0YS0bkdDH0NZTBm7AfWtbEXP//Z", "path": "images/4pts_ADE_train_00011323.jpg" }
depth_point_83
images/3pts_ADE_train_00010127.jpg
ADE_train_00010127.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 295 y = 116),Point B is located at (x = 147 y = 185),Point C is located at (x = 123 y = 201).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_57><DEPTH_98><DEPTH_121><DEPTH_42><DEPTH_42><DEPTH_42><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_12><DEPTH_62><DEPTH_28><DEPTH_71><DEPTH_54><DEPTH_28><DEPTH_54><DEPTH_54><DEPTH_48><DEPTH_71><DEPTH_119><DEPTH_37><DEPTH_6><DEPTH_51><DEPTH_78><DEPTH_45><DEPTH_66><DEPTH_0><DEPTH_32><DEPTH_7><DEPTH_119><DEPTH_10><DEPTH_6><DEPTH_18><DEPTH_59><DEPTH_22><DEPTH_60><DEPTH_85><DEPTH_6><DEPTH_5><DEPTH_98><DEPTH_71><DEPTH_68><DEPTH_46><DEPTH_17><DEPTH_6><DEPTH_68><DEPTH_65><DEPTH_47><DEPTH_22><DEPTH_98><DEPTH_16><DEPTH_0><DEPTH_57><DEPTH_10><DEPTH_23><DEPTH_63><DEPTH_78><DEPTH_56><DEPTH_53><DEPTH_119><DEPTH_42><DEPTH_8><DEPTH_16><DEPTH_47><DEPTH_23><DEPTH_8><DEPTH_8><DEPTH_77><DEPTH_49><DEPTH_98><DEPTH_64><DEPTH_63><DEPTH_36><DEPTH_94><DEPTH_50><DEPTH_57><DEPTH_0><DEPTH_119><DEPTH_37><DEPTH_121><DEPTH_42><DEPTH_98><DEPTH_98><DEPTH_57><DEPTH_23><DEPTH_32><DEPTH_0><DEPTH_1><DEPTH_12><DEPTH_94><DEPTH_57><DEPTH_0><DEPTH_41><DEPTH_1><DEPTH_39><DEPTH_39><DEPTH_41><DEPTH_39><DEPTH_2><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
3
[ "A", "B", "C" ]
<DEPTH_START><DEPTH_57><DEPTH_98><DEPTH_121><DEPTH_42><DEPTH_42><DEPTH_42><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_16><DEPTH_12><DEPTH_62><DEPTH_28><DEPTH_71><DEPTH_54><DEPTH_28><DEPTH_54><DEPTH_54><DEPTH_48><DEPTH_71><DEPTH_119><DEPTH_37><DEPTH_6><DEPTH_51><DEPTH_78><DEPTH_45><DEPTH_66><DEPTH_0><DEPTH_32><DEPTH_7><DEPTH_119><DEPTH_10><DEPTH_6><DEPTH_18><DEPTH_59><DEPTH_22><DEPTH_60><DEPTH_85><DEPTH_6><DEPTH_5><DEPTH_98><DEPTH_71><DEPTH_68><DEPTH_46><DEPTH_17><DEPTH_6><DEPTH_68><DEPTH_65><DEPTH_47><DEPTH_22><DEPTH_98><DEPTH_16><DEPTH_0><DEPTH_57><DEPTH_10><DEPTH_23><DEPTH_63><DEPTH_78><DEPTH_56><DEPTH_53><DEPTH_119><DEPTH_42><DEPTH_8><DEPTH_16><DEPTH_47><DEPTH_23><DEPTH_8><DEPTH_8><DEPTH_77><DEPTH_49><DEPTH_98><DEPTH_64><DEPTH_63><DEPTH_36><DEPTH_94><DEPTH_50><DEPTH_57><DEPTH_0><DEPTH_119><DEPTH_37><DEPTH_121><DEPTH_42><DEPTH_98><DEPTH_98><DEPTH_57><DEPTH_23><DEPTH_32><DEPTH_0><DEPTH_1><DEPTH_12><DEPTH_94><DEPTH_57><DEPTH_0><DEPTH_41><DEPTH_1><DEPTH_39><DEPTH_39><DEPTH_41><DEPTH_39><DEPTH_2><DEPTH_END>
295
116
147
185
123
201
null
null
null
null
13
174
195
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDXPwXjPTUY/wAbUf41G3wUz01C3/G1/wDr17EF9qXFR7OPYq54u3wQfqL60/8AAcj+tRn4Iz9ruxP1hNe27aXaPSjkiFzwmb4J3KoWE9idoz91hXOat8PX0aWJZ1tn8xdwKE19LyoDC/H8Jry/x8uJbA/9M6xrrlg3E9HK6MMRiY06i0f+R5X/AMIxb4/1EX600eGrYtj7NH+tdOBxTFX5jXB7Wfc+s/sPBfyv72c7/wAIvbf8+8X60f8ACL2+P+PeL9a6bbRto9rPuL+w8F/K/vZzH/CLW/8Azxi/M0n/AAi8A/5Yxfma6YrXZeD/AAtp+u6ZNcXfneYk2wbHwMYB9PerpyqzlypnPissy7C0/a1Iu3kzyf8A4RmIDiKMfiaQ+G4/+ecf/fRr1/xV4P03R9ClvbUz+arqo3vkcnHTFVvDvgKe/jF1qnmW8DDKRDh29z6D9a05a/NynJGjlDoOu7pXtvq/RHk58Np/zzT/AL6NIfDa/wDPNP8Avo17Rq3hPwxott515c3SZ+4gkBZ/oMVwpW2n1FEgjkjt3kVQrtuYAnHJx1qZupB2b1NsLgMvxUXOnGVl1Zx//CNADAjX/vs0n/CNn+4P++zXu5+HOk9prv8A77H+FcD4h06LSdbubKFnaOLGC555AP8AWnU9rTV5MywmEyvFzdOlzXtc4X/hHW/uD/vum/8ACOt/c/8AH69R0PwPe6rClzcv9ltm5XK5dx6gdh9a6eP4e6Qi4c3Mh9TJj+Qq4QryVzLEUcooS5HKTflqeDf8I+/9w/8AfdNOgygfcb/voV7he/DmydCbS6mhfsJMOv8AQ1w+r6Je6LciG7jwG+5IvKuPY1NT21PVmmFwOV4p8tOTv2e/5HCnRJR/A35imnR5eRsf9K9G0Lwtd64rTK6w2ynaZGGcn0A710Q+H1iq/vLy4Y+oCgfypwVaaukZ4nB5XQnySnK67a/oeK/2VKoA2PxR/Z8o/hf8q9evPh6mwm0vW39lmXg/iP8ACuLv7CfTrp7a5j2Sp1HY+49qU3Vp/Eh4bLcBidKVR37f0jlPsUg/hb8qPsrj+Fv++a9STwAZYY5BqIG9Q2PK6ZH1rnL/AEWa01ltNhzcSjAXYuN2RnpTk6kVdoill+BrScadV3Xl/wAA5DyHHY/lSiJx/DXpUXw+vHjUveQI5HK7Sce2axNV0iPS5/I+2w3Eo+8sQPyfU+tKUqkVeSFSy7CVp8lKq2/Q5mO1JGSyD8ad9lx/Gn51q+UPSo5IFOMqPyrP27Ol8PrpP8P+CZ6WrKDkoec9af5DegP41orbpj7o/KneQn90flS9uL/V99J/h/wTKKlTyhpVAOSBXTeHrK3n123SWJHXPRhkV6HDpFgYFzZ25+sYrSE+ZHjY7CvCVPZt3PFPNhz1xj2p67WGR/KvaG0bTT1sbb/v0P8ACozomlnrp9t/36FNuxx8547sX060u0eh/KvWLnTNBtgpuLWzj3cLuQDNVWtPDJ/gsR+QrKVeKdmNM8vVQiEvxyetG6LONwzXpbWHhojpY/8AfQqJtN8OHoLL/v4P8an6xEZ7TspdtOor2DmG7aXaKWigBki5jb6GvLviApDaef8AYNept90/SvM/iIuI9OP+yawxP8Nnq5K/9th/XQ4YDimgfPUg6Uwffryj9AuPxQRS0UyRjV6X8MxnRbwf9PH/ALKK81PSvSPhpPDFpV6skqIfPBwzAfwit8N/EPIz3XBP1R2s0EUqgTIjKpDDeMgEdD+FKV3p8rdRww5/Gud8dXEb+EbxYrhNx2DCPyRuGRXNeBvF32Ux6RqUv7k/LbzMfuf7J9vT0rtlWjGfIz5Wll1WthZYiGvK9v1Oe8W6Tqem6u76jM9yJSTFct0censR6Vj2vF5B/wBdV/mK901O003V7GSzu3ieJ/8AbGVPYg9jXj+r6HNoOsxwu6ywmQNFMp4YZ/Q1x1qPJLmWx9PlWZxxFL2M1aSXyfp/ke1Fa8q1i0iuvikttOAYpJogwPcbQcfjXq3mwn/lrH/30K8f8bO0XjW5ngkw6eWyup6EKK6cS0op+Z4eQwlKvOK0bi/0PVrkmC1llSPe0aFlQd8DpXh9/rep6ncNNc3kxJOQiuVVfYAV6j4e8a2GqwpDeSJa3oGGVzhXPqp/pUuoeBdD1OdrnyXhdzlmt32hj645FKrF14pwZeX1oZbVlHF03fo7f1v5HEeDNf1Ea1Bp8k0lxbz5Xa53FOM5B/Cux8XWMV34avPNAzEhlRv7rD/OKu6d4d0bw2jzwosTYw08784+p6fhXHeM/F0F9bNpmmtviY/vph0YD+Ffb3pfwqTjN3Lv9fx8amEhypWu/Tr/AFuJ4M8R2MGmrpt5KtvIjEo78KwJz17Gt7VtEsNejjaZ3OzOySGTpn9DXN+F4fDGo2aWt/bRJfrkEyOVEo7EHOM+1a9/4HtWdJNLuZtOYDkRklW9+tOk5OmlpJBjo0aeMlJSlTld6tXXqrO9n8yu+g6vZ24i07XJAifdSeMNj23da4XxGNWW+Caud0yphHAGGX2I616np9jcafZeVd3z3bAk+bIMYHp/+uuD8dapaX08FtbOspg3F3XkZOOAe/SpxEIqnfbyuaZTiKksVy2Ulr71rP1vZb+Z2lsf9Ct/+uS/yFRxWNvFeTXaRjz5sb5DycAYx7Cp7SM/Ybfj/lkv8hXG6tr93pPi9wzs9qiqrQ9sEAkj3rec1CKbPJw+GqYipOFJ62b9ddi/4xu9UtLNPsnyWr/LLKn3wfT2HvXn4FeyRG21OxDLtmtp079GBrzjxH4el0S73Jua0kP7tz2/2T71y4qm3761R7uR4umk8NJWl+f/AAUYmOKZIOlTCmuvSuI+kewKOKXFPC8UhFIaNPwyP+Kgt/rXpNumbZfx/nXnPhcf8VDbD3r061T/AEVPx/nXVh9mfGcQ/wC9L0RXZKaUNXGjpnl1pJHhI5TxGv8AploP+mb/AM1rmvsk8EXkx3bl2YsGYdBjGMn3Oa6rxKuNQtR/0xb/ANCFYs6K0LblDYGQCM185i6nLimntodVK3LdlAuW3FCx2tls449v0qozSPHKxnPls4KuqAbBnp61M1xkrvjjZV/2aluYowgnSPe3BBCgmtaVFS2X9fcWqkGd0PjFp38Wk3g/4EtOHxi0rvpt6PxX/GsD+wZQc/b7/Hp5w/wpf7Dm/wCf29/7+D/CvqbT7nLyxOgHxh0bvYXw/BP/AIqnD4waF3s74f8AAU/+KrnP7En/AOf68/76X/4mop9FnjTd/aF0mWGW2xn/ANlotPuHIjqT8YPDxBH2e+zjpsT/AOKrj/FPjnT9chtBbW9wphyG3hR/WqlrbahJdGOa4kEfzYYBCeOnGytfSNNF7M6SXtwAoU8JH3I/2acqE5qzZeHxP1eoqkN0cn/akOOFb9KiGpDzCSvy/WvT/wDhGLbAI1K56j+CP/4mpv8AhErfH/IUuf8Av3H/APE1h9SXc9T/AFgxXdfceX/2pD6P+VNGrRliGRgOxBzmvU4/CEToD/atxz/0xj/wpp8FxSsVOqTgKQQRDH/hR9SXcX+sGJ7r7jy46tCP4X/SmHVrfPKt+letTeFTJMN2qyNkcn7PGP6VG3glY4wE1NtvQL9mTAo+pLuNcQ4ry+48o/ti29G/T/Gg6za9w36f416u3gXK5Gp8/wDXqlKvgZyM/wBpr+Nqv+NH1Jdx/wCsOK8vuPJv7ZtT03fp/jQNYtM4y36f416uvgaUn/kJx8etoP8AGmN4Hl83b9vg+ptf/sqPqUe4f6w4ny+48s/ta2/2/wAqP7Xtf9v8q9TfwNICP9NtDn1tP/sqH8CSKhIvLM45x9k/+yo+pLuP/WLE+X3HlZ1e07lvyqxD4k+zrtiu7mMeiOQP0Nelr4Dldc/a7H/wEP8A8VTF8BysSPtWn8etqf8AGj6ku4PiHES0kov5M8yl16K4OZriaQ/9NCW/maj/ALVtP7zflXp58Ayl9on04/8Abqf8ajk8ASggebphz/07Gl9SXca4jxCVko/c/wDM8zOp2h/jP/fNTx+IWhXbDf3Ma+iuwFegS/D+VV3GTSz/ANsDSH4dzFN27Sumf9Sf8KPqPmOXEVaWkoxfyZ55NrZuhia8nlHo7Mf51B9oiboT+Vejj4c3DLlTpP8A36P+FRj4d3RJC/2Tx/sMP6UPBeYR4irRVlGP3M4QapcqMLeXAA6YkaoJLkzOZJZHdz1ZiSTXfP8ADm+ZtqnS1b1AP/xNTN4BuUCr9k0on18x/wDCj6k31EuIaid1CP3M4KDVbq1j8uC8uIkznajsBmpJtZvLmIw3F9PLGeSruSK7Gb4f3u4P5GmKB2WZwD+lRP8AD69GD9m08knHE7/4Uvqcu4f2+78zpxv6HGLKh/iFDSxj+MV2Fx8PNRtbKS5ezshGi7ji7bOP++aw59CaNyrWKHgH5bs9xn0rN4ORr/rFN/YX4lASxH+NfzpGdOzL+ddHpfgS91K1Fxb2EYjO4Za87j8Ktv8ADXU0IH2ODkgDF56/8BpfU5FriRreC+//AIBjeF5Yl8Q2paRAN3JLACvULSa3NpGRNF0/vj1rgJ/hhqxG19PjIY8A3i/1WqT/AA91GzQJ9hJUYAC3qHHb0rSnQnBaI8jMMasZVVRq2lj1AyRf89Y/++hTS0f99P8AvoV5gfAmqIpY6dIABkn7XHSDwTqmwP8AYJdpGR/pcVDjN9Disu53GraUNRuIpkukjKIUIK7gec+tZknhyUqV+2wEEY+4f8a5VvCepR8/Ybk/7txEf61n3Gl3dsczabqOOxCq38q4quAhUlzzjr8y4u2iZ1knhaXP/H3CfwxVa48NzPD5TTwlAcgBiOfyrjnmtoTtmju4f+ui7f506GbT53CRzsWP8Pmpn8iaFhFHbT7/APMaPRxChmMA8QyGYHBj8xN2fTFN8uNmCr4iYsxwAJEyT6VyMdjpEutteQ6m6yi+DACJgw+YDbuz0+bGfeoYNI0o65ZtDqcxmEj3CRm3YlhvJIyDj24r2OSJr9YqeX3L/I7waZc/9Bi6/wC+V/wrL1c3VhNbxPfSzxyhiQ4A6fStDTdXt9ShaSCRnVXKFzGUBIPbNZPiqTElk2e0g/QVE4pK68jbD1ZTm4ytaz6Ls/IZDcSC6VDAwByd+eK0tEKiWbeu1Co4Y+4qnYJJcWzhDu2Y+Y8YyM063uU0y6aJg0rMABg8dR1rpqVYQjzSeh5dtTpWktQBgx5yP51MJbMj70f51z8mtRiVY3t51y4G4xPjr67cUw+JrMEr5FzkdvIk/wDiad0FjpoXtfKXLxg4/vClie281x5keM+ornU8R2UeIzHOWABwIXPUZ7LR/wAJTptqPNuBNGrsQu6Jx0A/2fei6Cx0pa384Ykjxj1FSymEKMSp1HcVyi+L9FkZpFlcrEu5v3b9Mgf3fepF8ZaHcvHDHKxd2AH7tv8A4mlzIOVnXDZ5fEqdP73/ANenptI4kXHs/wD9euPHjjQChHnt0/55P/8AE1P/AMJXosLbHkcMAD/qHPUA/wB2ndMVjqVPJ/eDr/fP+NMb/W/f44/jP+Ncz/wlWiqqyvK2xy239w/br/DTW8U6IQ8wmxGhXcTC3Gc4/hoA6mUYC4lPX++f8aV8CFv3zZx/fP8AjXLR+JdEu2AhnDYDE4jPAAPtSN4o8PmMr9rTPoY2/wAKYHUKU28zuD/10P8AjTEdNuTLJ6f60/41zh8R6AJJImuoxIjEMPLbg5+lB13w+iKZL2BQyhgSh5B/CgR0O5S5AllHP/PU+3vUcrESKFmmOf8ApoeKwBrnh4x+YL638ssQG2nGcD2pP7a8PSB2TULXbGAXIHTkDnigDduGdYxtnmJyP4yacTMLdj58xO3+8a57+2fD08qRw6jau7NgBep/SnrqmhyQ4j1G1LY7MaYG/E9xjmeYYPTJoRrgn/XzD8ax21HR43dXvrZWBIKmTBFJ/aWkoV33tuAVBGZMZFK6Cxtb7gyf6+UcnnP0pJJJg2PtEh6cmsRr/S2UOL232lmwRLwelNF3Yvu2XsGBjnz+nP1p6CNt5JwDm4c8HsPSk8644PnseR2H+FYYurTftW9jYbSSwuBgcfWnpNbybRHeRsSRwJ89/rRoItalqNzLYyiSYsqRnCkcDiuKv7y4e/kjjVGIVesY/uit68k/0G4An+bY2Pnrj9Re+W9keOSQR/KARKAD8o96iei0Ljuei+EtVMXhqIu5Ukyn5cKOuBWjceIIY3EzXeERlclpAQAOvQe9c34WFg/h+KXUIZJ7r94DyzDAPy9DitaW+sYP3kejx7Iyr7dgBOOo59ev4UlIfKMuvHdhJho72SUR8sIlLdeB2rMbxVJeuUttP1KU9cmLaOOcf0q2/jgAmSz0GziKdNxHOeOwFVZPHGtXJK/Z7KFcFhtjJORyOSfWsnXiilSZIJvFFyu7+xJYLcj53muEBVe5x16dqeuk+L7mMH7TpVtFj5cuztjtkCslvEOr3syJPOBG7AMFUKMfhVR9Y1I5U3LEDgZ5rN4hWuaKlqbkfhrUp2Pn+LUTB5FvbhcfiamPgbSX5v8AxDqVz64mwP0Fcx/aN+el1Iv+6cfyqF5JpTmSWR/95iaxeIXY05Do5tA8AWX+thknb/ppI7H+dJa33g3TT/omiOWB4Oxf61y1vGPKBx3P86m2Vm8RLoVyIs2MeowqjT2loGIkEhhjUMxydueg2njpznrVfy9Zig8yOzsTertVZBCoAHtz0HA+lVItRIGH1+Fj9MU1ryTOR4iiAzn7o6enSvS9z+ZEclT+Rm7ENRW3kRLe0jkWQuhCjByvJwOjbvXrWd4hkmFtYG5YGbMm7AwOnHf0qnJezOnyeJYoz6hAf6VZN/a6pBZTmNp0HzIx+XcehJHocUOn7RWi0yoVXQlzVItLX8UPe5uLSCG3aRkkuY8iFThnG0dR26H39KwluZY76Job+eKKMhghj3BsHnPzd607u2tLjURdM06TkEl1xjJPX6/4VVk0m1vJDcR3MkbMQSvl55Ptn1rOvh8Q7OmcvtoHd6dqa31o7RFm2HB3Ar7irTMWOWRSfU1j6HEYLGRVwVZt24jHp2rVdgmSzovueK2pc/KuffqTpuOR2KjHy/7p/wDrVz3i2Az2tup85sOT8uX7VtxTI52iSMsOwPNTCRlY9KqUbqzHCXK7o85trDZBdjbcfPGAcxdPnU+tLYWKx6hbuBOSsgIHlY/rXoxmbcBnrQZ2Azmo9ka+2fY80j0+JXBzN/35/wDr16FZeJdFgjt7a6v0j2RqrbcnBA6HAOKmediOtZK6Lp5juZIrcieUFmYEkknk8Z/St6EKab9o38jGtUnJJQS+ZV1LxRp11fu9tqclrDsGAQ3UcY6Hk9RWxo/ivSrK1k+23pnSQ5DmFyuMAd1rkbnR7WXRYrmOJXZZGRw8IDEgfwr371oRaVZrqtnboqPbyRqzRrGGQcc89cdea6pU6PRs571bdDotfuLLTLdngfy450yFB+U8jp6cEGs/T7jTBLDKNcjf94uEkzzznHtTbprF5bn7RD5yW4LgPkqu1QOB06AVx41S0hGfs1rkYOfI24/WsuahBJSvf5Fclecny8tvO56BrXiOynQWgnVWWQB2H8IwcnI9+KybbUdO3Ki6mkmVLbW546Z+lXZNP8P3sKm605XdxudkcpuY9Sce9Mi0zwzZZMGknJHJ83P+RVSdBRtG9/lYTVTfQqprFpJvgt2klzIQWjiYheh6ge1PinslLYvXbJ5UxM2OPYHFKLDS32vCv2bcSQEyd2OPz4qrHYaPHIpWOcmRvmBhI5PcnNc8qk11VzNqUUrta/1oXIrm1VhIkpLqSAvlMDnGehAP41DCuoQBHEoAlXhSpB/H/wCvV22fTrWPbFbojE53BDuPbOc+1Xo7hP4LyFP+AHP0qnUlJe8ddLCtRv8A5mddyfZ5nl8uyjJOS0iMT9TyKhVVvF+1teRJwGKkrhR9MVX8VX+n2thJcz7XnciNXCkc+/PoKwtAuZNUETx2161ryryxIWVT24C5rnTlGdkjepSgo6y1Nq9leSWOCDWLWJgxJAcEYO0D9c/nVtNPneySWa/jXGVYsVH3c5YjHHtXF+JHSy1KKOZ1dEcbmlUnI549a17VBdW8rHzbcIpaMPBtVl9cjgfjV058zfcxqQUUtTcljtI7mGW51RVgkicfuNuOcjv36VVXUtOkkDrqLIByA4GAAM8np+VZujC3ubQTPEhkZ2JJGO5xS3GnxvEcwCQbvuomfzrdOK82zBxb9BZb7SdQeXyykswBLHe3QDrjpjoKz21Gzz++ltpUmwAFVsk4/XAFLqUkVhaxPBZwPJLJsAMeCvBP9KbBqjwgb7KdW/vJGFwP++a46tWzeh20sNKcU1qjci1qTSbKC2tdRS1G1uq/eJ56fTH5VL/wmUt7p91atqKzXDMo83soXIIOfXNcpLqQu76eZRbpGr7Qxxlvc5HWrFxqtsunzJHPvkIXCMFK8EE8AViq7tt+Bbw1nqy9byJGrGaaN4SCxMbc47d/XFQxTETEJPFKMEYRiT+GDzXI3PiPbceX5EDlVxudOcHrx+Fblnri2ItryCONBv2EhcYP0qlPb3Rey0epu2ls5kEqC5AwcE78AngdR+NVN10kzlzcFc/d8sg9e3HNV7jxVfzW0c0YieZpdioY9xPGarReItbvH2QwRPJjGBDnH15rRYfljoYupdlxrkRkB1ulOP4iwo+3xAdbn/vo1MIdRnt4/tscUUikgKgxgdfemvYyBCcrwK82cIxlY6ottXC2u1kCLF5uxujFq04lOzkk+5rHsExHbeuM1uIBt61lNJbFJknlW+eYIv8AvgU5RCBxFH/3yKh3D1NG4Y6mu+5lclbZtbEUfQ/wiszw5AZfD9pdm4MSsnMarkKA2OKusR5T8n7p7+1U/Dj7PCFiR/zy4z9TW9GTVzOavubQERXcBvHQHaKS4tEjtTIipwQQAv8AQVlxXczTSLMqgdOFcA/p6Vo3ihNOIV/lYj5OMD9D/KtlN9zNRi+hHo+r+czW+3/lqy5HHQgVqTKsk/lyOSpU5+UE/rWD4Ysx9mecKNnmyYx/e3mtWaZobxJvL81BwU+tUu5LXQt20Maylt7bgCAdo6flSX15LaqDHE0oPUhgMfpQL5Z0Oy2dD0y4AxVmKxundS0A2d97YFD1ElYoWuoy3O1vIdUPDFiBj8Mc1c8wn+I/kP8ACrcmlSeTiJIwc5A3VQmtLu2BZ4Gx3I5H6UAKzMejn8hWHrOpvb2ciISGLohfpsBYDPHtWokm4VWa2humeGZA6SAhge9VFxT95XQpJtWTMe60tI5ZFe6cIRkMcHPsazZtWksID5DK/ljA3Jxite90TU2gENtfK0S8L5uQwHoWHX8qpWvhG5zi/vFaI9UiXlvYsaVoyaU7OKHGPs03TTUmMj1GW/s7sOFTz4FALZwcgZrNGkkIssbDapy5JJDfnXpWn7LezWJFCopwAOwqPVYXv7FrZGC7mBJPTipk7u62Ki7Kz3MayvWEEKuQNyZ5B5PPf8DUtu4Nu+05Xdwc/nTDot6qDF3CFVeAVPAqOGwufMRnuYxvAI2r1FZ6uV+X5hJJ7Do5lSG0ZpAoE0gwR15P+IqydyOblrnenAIABJGT/iPyrHaG+d2iUxRoHcjMJf37mqk8+s7GhZoXYMAES2LZAOAetNtt6IvllHRp/wBfM2HlUTOsEolwMnnplicUuyRomKv7kY6VzyX2qQBo3syJSeCIGXIz3HNW4dYlhVlSxncv1xGepo5nszthK1NOGnqVvEruNPtxLtbdMeOo6GsXVtSurazsktbm4hVVORE5CnnuBXQRn7Uog1O2kSSMl1DRMccdeKiaTzHhCwJKplaNWMLAEDHOM8Dms5L3uYVRe0fJGxz90Zp7jTmMhZsxlmbkkd6nv/EWqnUZbYaldC1JK+T5h249AK37iOwMxe+sZFnif5CCQpAPBAzVZbnTWu5Ga2jaI9iTnHfJzRFqMdNTkmruz6D/AA5dRraAOdvXj05NZnie5EyJJE7kKc8Z9+1WWj0ITln08MhB+UTOOeOfvfX8609I0Xw3qEbf8Sdg64OfMYgj8605k0tbGaXkcqq3l3Dut455YoGV2CjIQYPP8qZc3qlpATOCT90L0+td1LpVvpOhXPkWMdtNKG3Mg+8mcgZ9hXnk7A3UpPrWM0k7o2jN2UX0LWl213cQSmO1uHVnLZVCf5H3qabT5o7+O0vI7iAtglWXBAIyOMntirOi6peQWs9pbEBWDODtyc4HFZr32tXl7aNdQyHe6+ewjbcnOD+mKcKcdxzqzcuZir4fsp71i08xLTmLGByApx29q2F0CMQ/ZA8hIVJNkhwM/wCRWm2gWdorzo9wxTLjc/fHXpVuziR8XPzlygQ7jngVMpx5OZIS5r8rKlnpkUdq0VzbJJlgy89CO+avxs1uuy3ghjT0FZniu8udM8NXd5aSeXPHs2ttBxl1B4PHQmuSTVfFFlqOhC91GKW31Jom2xxplQxU7G+UYbaytx2cc56YJ1Zq9xtRi7HojuZAC33j19KZIP3L/wC6ak20kq/uH/3TXI3d3ZslZGRYD93a46ba1xGSSdkZ9z1rM05f3Fr/ALtbKDg0T3BFQvSb6iyaTNddzIld8QyH/YP8qz9MneHwvbpFHvtRCNkrdxnrirFy+2znb0iY/oar6VL5fhLT4hkMbdGyelawvytpgrXs0Miv99wzSbTtAAyF6n6H61rXWoQnTAIwTyDw2f8AD+dZYVlZmKgg8k9RTpFa5UWkMf718EELjj3OKwc699DZU6aDTpblY1W2vLuKKVnYoEG0HdgkEg8fjVmO7uoNcso3vZZrefeCr46gewrF0+e32QsY1d2mIPzOOjdwD/Sujs/DdxaapBftKqJGzMkX3iQ3Y9gMeld0LtK5k5Q/pG7FDPKfMXaIgcEZ5Na9nJCIVeZ3ZgO/QVmLcFWl2t8p5xUiSzfYvljDjkEFsZrY5TW+32vzH7RGFGMfOOlV5L6K53CJ1cDrtOa5qaUQF1WzgG5QOX646D8KLHdGwWNY0L8sFcn+lFjRxildF+Wya2h84Sq0Z7E4I/xri/EOpXkOpwRWt5LCjq2fLwDke9bWruVSSESMIycuBxzniuK1FTHqkALlvvkE/SjmaloZNJo0tOu9QvJJI5NXv8jGCJsf0rev7AR6S8yX2oNKq53G6f8AxxXGWTAXLkkjj1rq7l5F0baGyhjGapSZLR0WkKsek2wVnbdGGZncsSSOeTVwtWfpDZ0q2/65r/KrhNS3qUloLLJiCT/dP8qwruWSOKN4m5CjOVz2rYmP7iT/AHT/ACqhy0CcDGwfypPYa3Obkvr2NiV2ZyTkxL1/Kqg1WWKB5EuoRLnJQQL1zn0rduEkCEoYyPXOP5mg3d/BH5aTxLz2IAzj61w4io6bS1Oqn712c7/wk2soM+agXqT5Kf4VZk1WYWatFdpI8oBZVt0AI/Kqd9LePdRlXiDBtxIkQAnH1qRrzV/IcG+iy5wyK0YBA9eamU5uz1/r5GEqyhJx5bl2PUtfmszOHUxAHP7pP5YpLG/1i8cLG0II5+aBB/7LV+C2iFuu+YAkcgzAckcd6ovpytdyNNeoqRthF8xfQE8Z/nUKvN6O93sdSpx00JM3t2zJdlTJGSo2oFH6Co5dJFxhZI3OOhUkY/Knxs1ortDPGyljtVGyFHp3o/te6/hYH/P0rsg1a8r3OaompNIdBpRgXbHEwB6liTn862tHhFuJ/MXqARxn1rEGr3jY+7/n8K2NDup7prneQdqDjFP3b3V7kpy2NHXTu0c84Hkt17cV5Nc5S7kB9e30r1fXD/xJpOnELfyryG4P+kyfX+lZz6mi6Hofw/nUadc7yAPO4z9BXW3OoIsDLE26RhjI7VxPgkD+xJDj/lu38hXREVg6jWiNEiJ41kQowyp6impCkS7UUKM5xUuKKyu7WKOc8arF/wAIneecXEW6LeUALBfNTOAe+K4pfFC69q1pBPAsbJrMU1kIoI0EcTHaysVALHCwgE5PyHmvU7i2guoGguIY5omxujkUMpwcjINVI9C0iGVZItKsUkQhlZbdAVI6EHHBrSFRRi0RKN3cubabKMQv/umpcUki/uX/AN01zW1NDI00f6Na/wC7Wug6/Ws3Tl/0a29lrVQfe+tKW4GRSUmaCa6LmRBqDbdNuj/0xf8A9BNQ2QjbQ9MR+R9kTgjIzirMqq8ZRwGVhgg9CKydTsLWHSp3it0VkQ7SvGK1pzsrAtHc0bZRCyyCXOPVQOP6VJFKsniS1ZWDDA5BHofxrzxdWW1tUzbJK02SA5Y7cH1BFOt9ejE5BsvLc8hopXGPbrXQlZ3uVztqyRtWV+IxCXMrgbmCKo6ZPT8q2tG8S6jd6gmnlh9nUPI74+bHYfmap+GtHtNa05rkGRUG6IhWwc8eufzrb03RLbTJ5ZlLvIybCWOe+auMZJ6mfNBx8za0sf6BIdxydxyTz1rRR7UW8iXFxFCwbgu2Mg1nxapb2losctjJLlfvR4/rWTceIR5h2RTKnTD24bGPxrS9jNRbNj/QTLkapAw6Y3EmtK3m0+JRi5jJ9lNcxDqyy4Ju/KPYGzxUwm1GZ8w6hmLHUQgUXCV3uT646N57xncjIDnGO9eZa/rcCX6mBhK8eRgdMkVd8Z+LJ2L6bbzMQnyyy55c+nHauA3H7xOSahyvsKxsR63cqzNvAz/dFaqeKtQe2eAXpdSAPLdRyPY1yO7inJvZuM5pc1gsepeHviDbwxpZ6pCYlUBVmQZA/wB4f1Fd9FcQ3UKzW8qSxMMq6HINfPjW0hiDMDkV1fw51iW1106bJK3kXCnahPAcc8fhmhTuxuLR6xIcxuPY1Q3KtupLkEKOB9Kuyn90/wBDWbFzbINv8A7+1W2IqXFzZtC26f5j1DRn+lZ0+r2hbnysjsUPX8qllRpLiSGO2klYYLbBkLnpk1DbxzWUs0c1kvJLK3BOPTBBriqzoylackrGsFKK91GTeS20kizRSWaleNjQMf1xUP2lSAPMtBz/AM+5/wDia0Ndd3ZWezaLauMFcZ/KpdMsb+xR2ltEIlUMmG5xinFU5/C7r5i9hKbvbUE1qLbH+/iGwAcW2Tj0GelRi/knuZ2juITHIcgfZeV/HHNW72wubyH7QYRFHChyWHUfhxWdo2rvayNGLC4kimUbZEhfmrjhouV9zWVScN1qXlikjgRWkikDDcNkYTH14FQmNh0x9MCtC7nacxsYJYsLx5iFc/TPWsm504XErS/aJEJ/hAyKtxSla5hKTl71iVUcd8eoxW74dAWW5DnAMeeK4aWa30m8ZJmuHKqHRix5P930x710em6tGtr9sTzwjqCBGoLY9xVxpylNKOtyOayu9Dqtc/5As3/XBv5V5Hcf8fD/AFruLvxhp91pr2irdvKyMu4w4UE+pz0rhrgEzv8AWorU5021JWNIyUkmjvPBP/IDk/67t/IV0RrnfBHOhyf9d2/kK6MiuF7m62GUUuKQ1IzK1Dy31CGG8k2WjRsR85UO+Rw30GCPen6UwL3SQuZLVJAsTFs445Uew4x/Wr7xpKhSRFdT1VhkGnKoRQqqAoGABwAKz5feuehLGp4b2NntbfTe90u72fl8koby8gsLcz3MmyMcFsZqgviXSJz5SXil34UbTyaj8UDdpqR4yHkxj8DXk6rdQ6gsJjcSq4+THNbwpqSuebKTTPXtNYNa25B9q1ox9761z+gOX0yzPqT/ADrfQvlsKMZ9axmtSjBR9y06qEE3bNXA2RnNavQzFbtVbU036Rdjp+6Y/pU5I4JNRX3OnXI9Ym/kaLjPM3QtZ2Td8P8AzFEO6K8jlGFaMBhkcEg5qwm2PTbXdGG3b1GT905HNPe5ha4kdYg6KAm125Hv+FdMm72RtSVop+Z1fgq9FhqNxZ3EqwpcKJYIyMbi3PH5cV2lvJG/n4YEL19q8zlubJdR0wpDtTA3ZYvgZ6j0713ljPBZG7F7Mpjm53ba6YOTipNbnNWioVHEvnUtHt4PLu7gK+c/Lk/yqrJqnhyTpdH1/wBWf8Kq3N94dlB33kIP+6RVm10nT2CTiMPGwyoIxms6+IjRjzTY6cHJ2iWbW/0m4bELyS4/uws39K1fIh+z5V3jUj+7yKrh0ji2IFjQdFUYFZ11KrLtaQgegJFeRPNqktIJI644ON7yZ5H4r0mTTdVmw7S27uSkxGN3qD71hpH50qpkDPrXrGp2dreW7wSl2R+uR+ua4S70MWkwik+aNjiKXoT/ALJ966MNjFONpbkVcM07rYpx6V5kYYHnvitWz02KJBlQWotI/JIiUd+BV5iyEqVIb0NdDk2SoRQyKzE0wST5Uzya7jQPCmm6XP8AbRAzXOcrI56fQdqoeGdHWZGubxAyn7qHv711zPW9NWVzCo03YWZv3bj/AGTWbFI32ePD4+Rf5VZuZNtvIfRT/Ks+JlECgg/dX+VW2ZlKLU5bC8umR2JkIBx14Hb35qRIGuC0i3MrORn951A9Ko3spAKByFLkhc1c0l2HJRjGf4ieBXzteLdSTitbnfGyirlTX7OQaM0mSzRsDjPOK1tH1hYrCLzSzx4ABJxtPUfmD+lV9ajF5p720cyrvOHI5IHesD+2ZILQ2KIMJtUOOQVUY/Wu/BOUIvSxE0m9zqdU1Y/2bLZxK+2OFy7MQT8qnHesLw34uMsUNtI8rknYn7vIPoDjp3rKudZMMbTiHAWFwUGcMSuATzXO6LqFrZ3ccszFFWQv8v04716UJNwba1MKiSmrWPRte1JIT5k7zPHG/llzEQMnsMnJHvQmnXVxGjw7GDAHG4EjPqK5DVNas76GJIJHdvNEjnGAMeo71eXxLtaKWGGXfn96zzcOPQDtXG6tWWrjZm8aEZXsyfxPpwg0tpr8pG6/6s9Wye2PSrnw/EN7plyl9EJoo1AjVWwSM85HHShHmvCl0r3EQnk+VZckew6jr61Jd6pe6HcwQtYofMUuCzEZwcEda6aVapSXM1/wDCph4S91PU6PVUtIdGuUtLZEkkQoEGOmOcYFcZoVvHLe3Ec1rFIwG4eamccf/qpv/CV6rJIVS1jZdxIGzI+nBxVh9d1H/j5u/s8ccPPlIAGJ98emadTFQqTvNkQoOmrI2ZtSOnNHFbRQwxzLvKxwhRuwRkflVrTNWbUVjyFBDMpwuM4A/wAa5621lNfJdrQq1uygtnOQTn0+taXhsCNJgsZJS6kjOSBs6cc1lUlG0mapS0VjozSGn7f9uP8A77FMYqvVl/76FcPtI9zXlfYTFOFNppZGBRiPei4jJ8SBjFbKBz5v9DXHnQjPrguvMIkLZIPQcV1GupDBFE0YAYyfM2e2DWJplwsuosiyK7DJGGBzx2rRSajoS1qdBokfl6daKex/rW/H0b61i6UCLO2yOc1soeD9azluM8uk1qaCZg7kAE4IQetXodceUpHFcgyNwAUAFc/e2s0107ohK5IP5mooSba4STZuCnkMOtexGjCUfM43NpnUTatfxxFlZWYDdggDg9O36dafp+p3V/b3aXPylYpAU2gEEAf41X8uea3URsznagwWChmB3E/XoDxTdFhmhN2s4xI0Uh659KwlGPI9Fc0Td1qc7LEgsLJiW+Vn6An07UQaTFcHKB3dzwvRiT7GrVtEHsLIl8YL8Y6nioXn/f3Mwbi3BQD9M/maCk+hp2thY2jpJdWssghyTvfHTkDrjrWjL4ot7meO2XTp/MmICiQqOpwKzLLVShAe4kCbSDio5/DN5ct9qt5oVRvnVnkIOPyqqdS6sXWp8tmnc7RPDflv50tt8q84bGPxrUe9SOMBmG4elcXZy3IulWW4Luo5JcspOKszXJBOWBPsa8fMIOVXc6sK/cNya9llOI2X/voVWPm5y0MT/lWKdkg+8QfbmoGktlkEZdWcngK/Ncio9jp5jo1eU8C3Kf7pWobmG2njKXIIA5w2CM1jCF+q+eB/sgVahYhhukmGP7+TSdO2qZSd9LGTrOlSWqR3llLuKMDxwT7VY3SXlvn7Qt04UPt/jXI9CMn8M10EcSXURiPzBu5AzWFZeGNSt9Ya8+1iNo2Kx7VB3L2J54+lepl+I5r05PVHFi6VrSijrtCYrpcAIIOwZBrQMme9Y5u3061EuoTxAcKZNuMtzzgZ/wAiq6+J9IYZ+3x/Ta3+FekziSZsXTbraUeqH+VUonY26kDgqP5VSl8U6GEZW1KEEjoQR1H0p+n3Nre2MckFwkqhQpKHOCAOKTEZt2ZDM4MWRuzml/tKeFT5W1d38JX5c1bmiG44J/KqbWzM3AJFcDwvvcyZ0KrpaxUvNV1F4mQQxSK2AfKcg/TnNVbeN5kLSQmI54UtnitmO3YIMJViG3O0ZStoUrakyncxxaIyYZRyKrHTog3EKf8AfNdIIcAYT+VNFvuH3f1raxnc5w2iKOIwPoKFtgcYT9K6D7IWGdvFOREt7O5L7AWC7dy7uee1Q+5cfediKZ7gSJHBIwY84BPbb/StO007VWlsbi6wbdf+ejBgSRgcc98VU0q4jv78RBWjZFZj8owRxzmtKWeJBcwRzycYEB/uscE/TpS51z8ty1HTVGTPpmr29u7G/hlQuFQI5JQ88EgdelNbTNfuJUkR0WFE/eb32nk/qPepzqTC4fy7iQ5ImAePgA9T19DSnUhMZW3bUijAAAOeuSTzyawmorVF8q0RVg07UrW5lh/tFA1xGzIjSEbCD3OMHAI6Z61JGl0JppI9SE0Xmea218YDJjAHU/MOtWNXiSO/gu1kZFiOCiqTjKgH6c4rJso007VJGFyDlt0ZKEYXJx/6FXTFQnTtL00MpXi7xNgfa47ZXklmG/BQluCOen41AZpzqMSm5lwyKcF+ppYJZpZbzzrkuDJ8owflzzj8yakVGfBEpz2yCDXg1ounVlCGqR306inTUpaNnR2y7tOhbJZ1UZJ6ketMMMbtllya5cGSO9/5CBKt/Bk/l6V08EyzwrIoYA9Nwwa64VHLpY5pRsMltYXjIIAHc1Wt7SyjWVoDGz7SCVxxU+oSwxWjidgFcbQM4yT2rH042VjLNEpZZJBgFmBz3xWmtiTQsBi3tx7Vpx/dP1rKsGzbW/0rViHyn60nuB5jHHO5kaI8b24/Glm0+6uAN4z6cVc088Scf8tW/nW3DyBXoqs4bHK4JmCyHy5I1XdNHgMy5G3gYA9evapNKjuIpZluCS/kyYz+FRQXMcszA2+EeYszGc9sYyew4H41tTD/AImHT/l2f+lKc3yuLGoq9zkbHM1tADGAqc/KT3x/hVOCEyabfFoHZpXXy8cE5bH41pacGS2lCf6wxHaCfbiqVraXTaddWKsrTqi7MN0IbPX2pSdikiKGB/PeJlwfmTHpVzUGuorK2dJWRSCh5JGR/wDrqeMeXrOJpIlLBS5JJUt0PQcZq/Z2Ntcxz29zcDzFmJWIKTkf3snjpWcW+a5s4txsjm4NW1APbpHOF2nghFz6enNbUGtyLYo0kXnzEnJd1Hf0rprTW9IhtUgjtLd/IAQyC3BPHf8A+vUWrwWmq2ttcQx2RQAtuYFMA/hWsqVKorT1+Y3z0ndaHG3ep3V1lSI4geyMo/XNZzHy2G8gZ5GGFdc2hRIRvSxTd0yev6U6Kxs4J1tLqKyDHkP5anOT6mmlSpqyjYaq1Hu0ZVnqduY0juIG8zoHB4b681qp5vWO0iX3clqx7zTygjcM0SSOVBRRkAHpxUFoZJLwW7XU6IWIJzz+Wa4qmGhN3jobYeu6kW5KzRu3k1+LSUExAbTwicj6VV0V9a+0KLbzNh6+cDs/X+lbWkXFrFD9hOnC7kwXEgPJ9ee+OKWe50iym+zT3bQOgXMT3ioUzz04xjr/ACrqpZfVjC8LamNTMqcZOLTZc1nRr3VtIjhbyxKriRgmcHGeBn61wUnh3UIWMbwxhgMckjPBHp716DpN3b3ccg0/ddFCC5juPNMec+nTp+NAiCzFJLORUBJ82V92fbnmtKWFxcW/aNNIwnisPNLlTTfkcPpWhxSW2rPNp2m3N3DfWcCC/vTbxokkcxbDeYgJOxPU8HA61taCbXR5NZ09CIFg1SeOOK45kVVwoBxxkY596o6taeI4dV1GTSrW2fT7p4ZCs0dvMpaNCqkCQEgje44x1rQ8L6dfQWNxNqrut3NdPMSzBy+4LliRnqQacqkKbtN2JjTlPWKNF9RtcKTc2/zdNqMc1biXegZGQqwyCF7fnUJt7cyRhpJCUPCgDBrOvtdi0y+NqYpXIAwQy4PGenaiNSE78vQbpVI7rc2/s7Y+8o/4DSiB1HDj/vmufTxrD5eTZTZ27gAw5/8Ar10FjfR39otwiMisSNrdeKYmmtxpgb/np/46KFgPQSH/AL5FWDg0KOaQFWQNFhQzsSCcKq1n3LLcWuImZjnAzj+la0sTu25JNh2lc4zVVNKEagLKAACMBKdotDhLld2Zmlr5L3EjM2CuzKAsefXH0pINsdkZN0jfvdqjaSBz1LfStePTVhQkFGAXGCvX9alg05beIRxvgc9R61zKk3Uk29Ohv7VLVIwdlwc7UZom3Mkg52jHTNUrCK6aAxSkq0snLYz8gx1x0/H0rsrqNIdDvIo1CoIGwFGB0NeWy8TNgnnFLkWopVGzvtVuWMwETIYiMNkDnn3qjLIyQBH8kyA43bV+73HTv/SrvhCOO50VnuEWVlmKguMkDAroRbW4/wCWEf8A3yKwbaYJ6HM6fIHhk33AJ6AquOPwH+cVXU7ZdzLIQOdzcA+x710moCOO32Iirnn5RisS2jzewcZzIP50fV+ZObe5SqNaIogSmfMARNrfwRsx5rtYd628aucsFGeKdkjpRms1HlBu5T1S3iu7URSrkbsg+hrLFvDpdpPcSynbLhAxQE5wcVvMiyABhWN4pQJoqqBx5q/yNaQ95qJL2K1lrenW1vBHNdqGQfNgH/Crq+LdHGQLxevHyt/hXm14SlwcegruNL8H6Zd6bb3ErXG+SNWba4AyR9K0nCEdyU2zFs7iGJpUd1VvMY4J7ZrS0/UY5x84EZ+bbk53AHGf5Vxl+kp1tDFkkNnAOCfmPAq1q8syQLhmdk2h3U9DznP5j8q3cboxubYj1VVcxS5O9l24VgVyMHoOP5c1sSL/AMTNf+uD/wBK8/ttduLc4OGHqetdXoupDU5w4GCkTqf0qZJ21Gncy7Z5ICjrNGFzyWj3Ag9sZq3FHHDMJBPh85YhQN2fqeKxoLrapG0qqjOSePfAqa2a3uJbiZgxbdkAEDApNJuzNuVpXL14VRWkR0IcjAON3WnxKrWzPNJIwkBUKG5471mpeeXcOmxWXIIDqD+tJe2tvPdxITCPMLFzGQMAYop6aPU3crQ03NG2t7d7R3XVEEgBUQtEd34djVbU7pP7It7BSsxQAFkJGMYwcHFVoIYrQSwRzOwXbk5798YNaUD26wsk1jGWC5ErE5PbB5ppWbMJVG91cjj1SSaBIZkjUIMYU9QOgNTzC2unjZ5ih8sDCsAB+lQtdRW80u2JBHx0Gc1iyajNPKz7FZQ5RccN7Z9a09nfdmcqqlsjamijlKoZQy+Z1BGeTWlB4ZsLe+VJdSUybd3l7SCPyrlo3cZfkMo3EZG78DXUWotLqKDU4rpDKMLIrHGfqKxqwcfhNKE7XRoS6Bp0Y+0m4hnSMjzEzjAz9eK5LW4NO00TanNpkV81xem3SKWSREiSOKJifkYHc3mDGSQNp4OeOpnhsfsWoxWccUd3Mu3Kn/WnPHGetceZtegvJjYLCYZ2R9k6QyKHRQNwWQHaw5GRg10UqjlCzMp00neKJvDUSxX2rxW8NzHAlwoWOZf3iKDIAHAx83r71p6lp2ZrwJZnH3k+U5z+dZWkadfQjUX1FlElzgl3nUs7c5Ocn17+tbMlsWuDLvh4z/y0GDk5/OqhCKcm+v8AkRbValvT7qK1014nTbsBKjGQParFvqGnG3VnEsmQVwWwOR7Dt9awoI0tZZmSTBm3FlyDkg7uortbTU9FNpFl7NDjlSADXn4irUVrP8Lf57dz2a9DDwX7vu/tKWnR3VrN9V08tjmpNYijmeG3sklRfmzJKwIOPrTLXWbm4mkka4WJeNkO3JH45ya6h9X0pJeXsumQRt9arTanYTOwSa2XJPKr2rLnktHr82cMabU+a5W/tWaMo0u0QjksJMkj6VqI63ESyRXKlWHBDYrkZr1pUSPaxGRlU6Y961bSYgLuVc46HgVlVnKNNRitzrSvLmb1RvmIvGWEqYjwCwXrTzb9AsquW5AAOce9cvqGqGyMLKgLycHa+ACPp9aSBkvW3Na+ZJ/E6Zb+td0MU3Bc618jl+rJvRnWw2jSj5XQnsAwqx9gjG0PKAW/IVj2lpDFbqYI2Sfo2T5YH4k/0pt0z20DMs245ztEit+uc1oq3dEyoW2ZuNp0YiJaePae+ahaK2hG6W5G3Gflx/U1x15qzeWrGOQrjOwMOD+fFc/qXiKYyBZ7cxLtxtDglvc1oppvYz5GtzvrzVtLfTbtI5ZWBjKltnAyK80u2VbtxGcrwQfwqCTVneErkEMMYpEzIqt3Ipzstglboei+CDnQpP8Aru38hXSVznghSuhSA/8APdv5CujZH2ZC/nXJyOUrId7IydQcuxweOgqrYxmS/i9Fyxq5cQMxyFPHpS6dbNHI8zDGRtAxXVV9yFiYu7NGgUZorgNBQKxPFjY0hP8ArsP5GtsGsDxgcaPH/wBdh/I1VP40KWx59eEG4bHoK9Y0PjQ7L/rin8hXkdycyn6V65ov/IFs/wDrin8hWlfoKJ5RfEDXF3NtwxOcZGdxrcgit547iKYKqs3JdsZOByARVa60ae4u2lURdSQW54zmpR4euLt913OCAPl2da6OZW3MLMwrzSZYS2xoXTPVXBNbXhCLy55V3Bshun0FW4/CsCNy7MD13EE4/Krul6TLYXBdjF5eCAEGDzipco8r1Gk0zjoJLdb+NZAH+cgq3IGT1rQlW2WbFu0UalfutFu5PUZz7frTtSt7cXSmQRZb7xQYycEjvUEMcYuF8uMthcHaD97Pf8K6Yxly+6Kq+Yfb2ourvdHcQg+WR80BC4/xrS/sOSxWNVuYrgjIDRRBhk4OCSQaoTR3kU/mwwyiNsDADAg+uPwrattY8y2jWUlJY5A8m44HAwe3FTeol723oa0lRsk9X6leTR52tQ8phWNCDg22D6ZHPT6VBa6VBLASL2Ha7AkG2Jxjjjmrc2o/2zqaWcJjjG3liDg4HJ9e1TQ+Hph5W3UFSJm4RVOfeo5KstITt8l/kKrGklfl/FmSNMigvmE00LQg/MPLZVxjrxz3q9Fpssi5tdUtS8KBQq27LxnIydtbMul6LNbPLcazdWcYOCrRE5Prjk9Krf2dp9nE01trr3BbBO6MxAg9OSeaurXq0aSk2m9FszJQpydkmvmc3c2+oSnE0yNx1yKkktrnToLPzrhRAyHypYo1IyeqnvkVo2FjNdSlo3s7jaNpWWTcF960bvwvc3dtAjNb/u5TJsjkAXr0H4ZpQrVb3kvwN6lKio+7+ZhrFNczoBNPI6Ykwtng4znr9a0LpPtF0bu2gdYrg4cMNo83AztIJHcHHvWqNA1OQZW2kBI28nfkfnin22j6tFps1jLaeXC8nmlpCMgj+6B361jWq1Zf8N+B6WDw+Fs3N21X2krLq1e935f8Oqi2dvBHMslyjvGi53McKTnrgnPbOKzxL+88ooxGMblJznI962Y9aeFR5dnC+5R8xj5NKPEEobmwgPPoRRdLRswhXturmKJiZCBFwQSuR27f41l6lcmGylKxpkjGdnP+cV1z67IR8un26+4U1Um1CScYa0gPvtJP86OaPcqpiOZNJWM3TLaa7Dm5t1SNR8jKclv8KrG6uJLmFYoHWLLeY0MLAgY/2xz+FbMNwd4PlInug21BqetC0mjCS5lA+u38xxWPs1KTld27HMm9FFalG2fUjPCk2ko3mJnftAI56sfpzinrpt1eXU63VtGtumQZEjKsx9hk8fWobnXL6O5QPeq8bD5gijiqg1mVLxZftNyU2/OqyEbjWboK946G8YtrXUt2Qe2sfKWBlUOcMylSa0dDuzNYTlyu9n2A4Ax7/gM1mQazNJdGOO7KQEfdkUMSfxqez1GO6mayVIldidrxxhQx9eK0aUIt3JaemmxoyxsHLj5EBPmZOflPTH+e9cvfX87XUiWylYwdoHU/pXSi3uIGihMYu0b/AFkkhAx6cYqwtkY7oPGyrGGyEAxxjBGP1ri+uU4O6107ikuZWZxZvHJVbhmVW4OONvvTHxHKwLCUg43Yz/Ou0/s5xeNcPN5iHJ8pumewp1nHN5032m3gCA/KQvP4djWkcdTe7M/ZLojhpZGMbbRjjstLBFJJEu2KRjj+FTXaTabAN8qeW83OxpFGM+470qwl7WOO4liWRG3Hy8AccdPxonjoL4dRezY/wpNcWWmvGY1jbe0n75ipPAwB+tdGNSmkKCSB2LpvGxgwxx649a5iextbm2iheYlYx8hDD6Z/pSyLcwyQ/ZrsQpEBuHGdvqfXpWcMdr2+8bpnUQzx3CB0UjPTcpU/rUmaxrO8S4uLZY2VwjOu5T6rnH6Vrk10e1dRKRKSQ4GjNNHWlpDHZrA8YH/iUxf9dh/I1vCsHxdzpcQ/6a/0NVD4kJ7HnlwMytXrmkcaPaD/AKYp/IV5PMuZWzXq2mRodLtiRz5S9/YVpWexMTmhjNW4RVMHmrcJ4oZJZwOuKXNNFLUgYFnZsksqyxQSpIN6Mwzz7/nWBfz3EeqXIEzqS+35WwOOgrpoZArfe6ZHTjPA9fas25ltzp1wjMPOCyAA5PJOefSvVo15Rq6q6aOecOaFttTGL3EoO+R2AOTlycU+MmNHDg4ODjaTu+lbFjIq20iFgWeZRg5JKkeuKyrS3iSVQwXd5BOW5546frRVxUm3FpEQocrvc3DZX0tqb+COzCbUjKkc4xuBGB14/WruossdvMsttFHLEyiVAAwJOMFT36jr+dSWt3YjSpLbziGYqCF6DAI4qnrEwuZdRdW+9EhG/wDvBR+vFZfWJ+0TZnKnGC93UjtXmtbp7eeK3kghkWdliKqwJ6Yz9OldMLjSrdII/srO8u4oxIwATzn29hXGtKq3kjNKqF7cAY655/XpWgbgFYSXTCrKq7gcc7WA/OpxNepGaszolGCp8ySubdtBouoW0gsoWjZ0KlsKAy5Hpnv9DUn2M3Sp9iubeF2wz/acFThcfKfpWD4engC2sTMpIV1YY5B3DGfwrTs7WI2kqh9kiu2XA5A5UfrispV61HENyneLtoy6dOnUotpWZDeWGoaTdxXm62mbfndaDkk9j3x+FZ914rnttQdJvOU4AMLscAnoc4rbsHYXQWeV2AjwOvzHOD16da4rxnbl9cEin78KEZ65HGePpXRKvKpL3uxnh7RjZLrqbJ1OO8/0q1LLuB3RnoG7/wCP41CHmcHbEWx1xzj9K59PMTw9eOZCXS4ibIYg8hx/hWr4Iv7lby+HmuQ9schnz0YVzShd3Opy6otf6T/zxb8jSKLtvuwsfoprTGotD527e8iykKgZh8o6dKlfULuC93W0kkOWVXT1zgnHHTmlyx7/ANfea+xncyxFen/l2f8A74NUZ7KY3MzzWU7HjGImOent9a1fPvmUN5lwSEkPJJ5JodpUbmaXymkRd7JzyCWxxSSSLVOUXozFaDZa86dMrqBktERx9fyqKUQscLAI1wckISck9sntWhr5lHh65Mpflgqlxgld4x/KuFuAqsu05HtzVqNzOVeUXY6jzIkgYLboGJwNxGQPcmi0ljjukYGKAjPz+cDjg+9c8Gi2DcFOR3FW7awtZyA6spP901MoKzTD202rJHXnV7QAg36AMCWAlBJP1xxVc6jpm6MtqI2gksqynuCPXntXNRaZbmJi6sX3FQAe4qQaZbGKPCMZGxnnjBrlWGpR2b/AVpnRf25pvmEtfJhuWxz6cD8hzUR1nSgARfsr7i5PJ5JB4yfSsT+zrPzciJvLC88nk04afbhceR8zHjPYUfV6S6v8B8szX/t3TVLn7Sjbjn5lY46f4Uv9u6X5yyieQygEBiueT1OMfWshrC13gGHaqnBx3NItlaZkJRiM4AyeKpUKT7i5J9DptOu7W9YLBOhG8II5JArMSc+mSM1o6fp0lxbebbIojV2UBnxllOM9PUfSuKW0txsHlsSvXk812HhrWLWwsHtpIpAisX3A+v1pPDQeiBqUVdmvbaNJBdQXBujlCWdAPvsRjk+30rWzTVdZEWQKyhhkBuDj3pN6scBgT6A0lFRVkA/NJuppakzSAkBrC8WMP7OhH/TX+hrazjvWD4uOdOgGf+Wv9DV0/iQnscVMAZWP0r1PTeNMtv8Armv8q8tJ+dua9R08/wDEvt/+ua/yqqvQUTmB1q3DVMGrUJqmZlrNLTRS5qGM5hr9EkkX7Mrc4PzkZx9Kqy/ZZpGdrT5m64lYVWnVftMuS332/i96iAXzCCTjHrXQpNbEtdzRWeG3X91a4J4/1z/40qT242t9hjDAYH7x+P1rPdECEjOfrS7IyMkCi7buFjRiuoYHLw2yxuf4lmcH891SSal5qsssYcN97dM5z/49WRsj8w8DGKHSMIcKM0Nt7sSjHsaD3Fs7BntIGI6Fnc/+zVJLqMUoTfa23y/dwWGP/HqzQI8Z2j8qauzzG4Hak9dxtX3NCK+t4H3x2toreuWP/s1SHW3VcBLYKc9Af8ay5CnlngUpZcdBRJc2rGtFZF8680bblW2DevP+NUbjxFdzynFvYyKvG5oQxx9TVfI3Px1NU0K+e4YcZ44qkTZLYsXupyy27Wuy2iikCs4jjC5I5HNXfBzquo3fobVhx9RVULEQCyZOB/Dmtnw8sYnuSqbf3P8Adx/EKLj6G2jKxhC4Zy/IU4bv3qORbhZ3RYJzGgXbl2PP1HWooGQJat5ca/Nnf/EeCTnirYmh3KN3PGAM45FOWjNv4mpDZC6ikZ3tmB5XBLdAQR1P1qWe41GS42i3hkQOpXODgdz1609VWT5SB1LHAPrUlrFFFcltpznCHnjjmouLlt1MPxAbqbQn+2AJKXQY9snH8q4Zl4xsPH+zXpHiaQ/Ym4z80f8A7NXHO78/J/49VJmRhqwVxvBwOMVu6NEJ3VI34z97uKyZ033gDjG4etX9GlNs0u0ElWwB/WnUu4+7uNF6BHj85CS22VuT3OeadGriCLruAUdeexqztEju2QW35IAJzkA0gjUhTkYIHY/L0rBtHVG3LqQbW3dOCPf6/wBKFVzngZySOfXNT+UMFecjp8p+alCrgOPcHjgcmk35Fe6Qr0YHksOMD6U0ITEV5yGJ7cdKspCzsVjcDALfMQC3SoxbT/ZpG3ruDsNu4ZHp9atJhzRT3/qw0q3ms2DhwR25qWC5NmOEVmLfdcZFLJbMtwF89NuGwcj5jxj6d6y5mdLwByNqNhSp45ppMipKLVkdVbyLqDYuvOyRn5ZSKmhW1tZSbeOdX6bvO5/lVXT/ADWUFpMjn8u1TJzLye9ZQnzK5lJWdh7a7NDI8cYLkZBLOWqJvEV0YZChVCgy22PB/His63AMkkzXDAtK7BMZA5OO1Vo4/LF0m5zGTjJJLHI4rSwLU6/w/rE2qxy+aqHysZde5PbFM8Ty+XZQE45k7/Ss3TEaCyUr5qE/M6hsFj70mpRXN7CBhmCcquSSahJc9xXdjm7hi8zt6+lep2Jxp9uP+ma/yryu5jkgnZJEaNh/Cwwa9Qsm/wBBh/3B/Kir0CBzoOKswsPWqtWYcU2SWgw6UZ6c00UVAHEXLD7ZOOTiRv51CGHmnr0pbtiL+5H/AE1b+dVy5Ep57CuhbElmRvkPXpShvl6VXkY7Dz2oVyVHPagCXcPMP0pHfKnj9agLES9e1EhIjY57UWAsb+BxTVcbzUCknvTC2JW57CiwFh3yp4FPMmFHAqrJnyjgEmlCSN0jc46YU0AP8wZbFQhxjnBAkOePal+z3O9sW8pzj+A1CbO88w/6NLtz12GnoBo71REx0Kg1s6C+WuiP+ea/+hCuYmeSN1TOCqgHPrURlkIxvH4UWuB6Ii26tuVFU44wvSpPNjBHzKOO5715z582P9YKd58v/PT9K53hU95P7zT2jPQjew8L9oQjPzHdVaSaAbgLuEA9zIc/zrg0kkGcSYyc0peQ/wDLY/ka2pw9nsTKTZ1mtahbvp5jWVHkaZSNr54+bP8AOubeWqbAsQTKx/CmOq95X/Af/Xq7EiXDf6QjfhU2nhpL50BwTzjOM1X+zoTkyyf98/8A16kiCQziT5n9QeM1XQS3OttLWFXn+2yMkgEZO09fl5x69KdFb6eLWAtK+WI+X05/Ssga88czSxwDLKF+Y5xj0qMa5MIBEsSAZzkjr3rDkk9Te8Vpc3xDpfmvlnOAOQDzyenHNMjXTRZqzRuWJORjtnqfwrF/4SG785nAQErj6VCdau1tzEpUJ1xR7KXcOaPc6GcWonUQRSqcHnbwar/KsUmEfIJLDA/SshtZvHfeXBbGAfSoJNavssA/U88daFTltcanE3HOJI/kbB+6cj0rNuXVbgq5t0YEEbw5J/LiqcmpX7tjzHwvTg1Gbu7UJMXfccqSRz+vsauMGtyJzTWh1ejToxaM5EoUsRVzzPKjkkP8Kk1j6ChN95rMSohdmx1x/wDrrVn8ryWjeGcqx2nEg6+nSo9mlsDbe5SiXyoEWWOVmZedrYA7+tVRLNbGd4ydylsMp5BHQ5qSWOEXZ3TPGFGQZXBK5656UmpR2dpDGsM8kzuhJCgYH19P1pOpFSUX1C8kXre+uWtIwBmVhuJZeo/xpqareoMCbZgnOAB3qGWJbV4zAzKGtkJLEErnAqzonyOzMiTKoOd6BueMHn6moT1ZUkY1750s3nS7mD5AkbPzYODjPvWpHr2oRRKi3HCjAyop2v3LXRiVvvRDOMYCg/Tipl0GQqp8s8j1q209yNblurMJ5qkQ2fv4/CpoVbPLk0Mk0AeKTPNRgcD5jSjryTWYzhb3d/ad0Ap/1rdqgMchk4iY8DnB9a37rcss2Y5Nu9vmC/yNVAHkXy1W5XjG7nNbxeg3DazM/wAqV1KiMkkdMVLFp94etuVzjGeK2IYG3hnDA7eWztOOnWppUzLEyyNhmDH5s4J+pocuw/ZNbmFLpl1G+XEaf7xxTDZXLxkYQE9MuvNdBqIt7gLGWSQq2SCQM/Q1UnjiMcXzxqyZyFZBj0wc9KqMZNXYOEejIdEt1S4nW4ETEKMZw2K1cptDRwrjOD8gH9KoWUkas26aIcDJLjr+FaivEV4mU/QH/CsKqlzaK5tTjDl1YxiSxCowCj1xmnEsi7yrHjGNxqBoirlxIg687scflUkN5YxA75dxAydpZsVk4TfQ3TpxTEJl3ZKkqRnGTxTNkjLl1XkdKsf2lZbty7zn1XAqnd6gN2UG3g4yaThUSukiXUT0VzJudOaRlmZXMO90BXGBjBxn8TUK2NmZxDmTeW25LDGav6bdGWxuo/MJEdwJCMcDdx0/P86n86EvkyQ8cH5lHNdivaxzxhGUnqZq6ZasJcM2Yzg/P/8AWpzaVApxlyBg5D9vyrRSSALxNbrl8n94vrUpmRCT50Q44Ab71O/c0VCm/tr+mzHbTrZFz+9Jzjr/APWpRpkBi3qspJOACw6/lWoZ4fmLTxgEAfxYz+VV5o42bAlQ9MLtcZ/Si6Iq06cVeMrldvDdyCuYkbsdsnQ+nWmvoIQK0sZERIAZW3HPbgHpVuGYbyn7t2VcbQhI+nOCKuLcWjorklSQR/qyf0x2quYx5TGTRYGvfszyyRtgYypHXP19KtHw1AEDGSUnbkj3z06UyBLqa8DxCOJ1BbcykZPQClj1PUhepBcpsUttZwuQPfNZzcubQ0jGNtSQeGYwhYlSMf8APU//ABNMj0SzLOhKhlzwXbk1eNzeW+4C4hYZJxioId88zyyXZiZ+TtUEfT8qmE2n7w50k1ZaE0Xh2xWRSJo8svPU46e9Zuo2y2c0Max7/NkKKQOvOK0jaqSn/E0nQjglQQB69KZc20Fxp5T7TPM4O4byxz0wM8471TqxEqTWnN+Y2PSlMUshmYJEfmbHUeg/SrLaMjGNY5JFZ13Eseg+n41zK318FYC7jCqefnNKZL6aMyG5jZR3yx/pXK6FZu/Oae0gbS2T+aIily3zYDK5GfwqvrdklhZOxkld5E4UkkL+OeTWOJ5Vkx9pjznB2g/4VZk2SHa7ny9204GMdK0VKopJuWhXNCS0LXh1neWcoflSIhvpg/1roViuAheKR41c7z+6J3Dv0FYvha2K3FxbzHa0m6M47HkfzFdXZwrJZq8ltevtAAC8ZGACF/LvXVFO7aORvRHNz3sh1OWNWiaQooh84nC5UdBg8/Wq80NzYaS8F1JblJOY1YsJBzzgYHH14rWTSraXUZUkt2d3th5SvjKMp2nPbtVm80BJbBRHbbZlRgTwfpj/ACK8zEVoU63LLuXFNxuY2pSiMQSYBjkt4hj8f/rVNp0ssUMhhOC5A+7u7VHqMEb2FjOuQroibfRlYg/zFPs2ihjUSE43AAA43cdPxrsiloxybuypdXElzcsJZ3dk/dhcAdRnJ/EV6LHbjykHP3R3rlEtFEoV4RDDMdyMTlgeo5HQ9a6LSr77Wz2rSq88I5I4Dr2P19RWM5fvHBhFaXOezUsRqDPNSxHmt2ZlxTxTu9Rr0p2agZy13NG+oXMfkyHZIcsXIHWnQRwtlvs6+xLk1Qvo1GuzsZ4QPM3YkJ/IjFa0N7Z/aEne7XaiklFViobGODj61bhNrRmitYR0t+ps7dj/AHSMmnq7BCIrS2AXtgcUserWRZXeYb0BCNsLNz1J4FKt9ZTSXCo8jB2L8R89AKhxmlf+vzG0CrJLcxQskSK/VowAfwrPa6WS5lVbRG2qxDkEklQfp6VpQ3cJ1CJVWck9BsA/rStNbwsziDBBCsfLUHkVVO7inIl36FA3UiwzYVIZIyoCbclyR061WurqSKEM8jGVWxIEjBVPqfWtC51K2tLMSNHMWk5UnGc4xWYl5atpEo8mdkH3vnGTnv096pJ320uJ36s0oB58YcGJFf8AvuQPyq0kMMXyskeehORgj/Cs/T7m2msoo44AxRN2HlG4Dj2rQ32rSJB5aLI3K47/AI+tS6dnoQtdW2SyRRl1SGWKKPGdwQHP0qJkjDAvMWUHrtHIqCUN5+yODzCnXLU+SNnXHkID16n/ABrGfMnb/Myk3cgmeIzy29sQzSwtjIH3l+b+hrO0hRPp1zK0ayTeZkKzEDt70TXYiv7fy4ItyvjODxn8aZZ3EMEtxttpHQMcDzFAB49q25HKnZGlJrdl5kaO4jBkh2lSxRcgjH1J5qbbbrI58z70WcM/IbP86oLqdtHGW+wy5EZjDF8jnPfHvQt7G8yRx2CAysGGZj1xmoeHb+0aqouxpFrZmlAQSneMKHwMYGTTZfLMJwiiIzbSXJHy+3eqbTvDIEW22NsPWRvUVfA2RQSSeX8xG5MEkZB6889KmcPZxXvDTTeqMyEwLdz5V2j3YGN3T8KtI1jGWMsIKk/u9249ue9Z0tzH9rbzIIAB0+Q46fWr9rcW0rN+5iZA2B+7GccV1P3YKTuZxd3Yct7ZrfxrbRhFdskkAY+vNVPEN8ZZYrbyztQ7yx/j+ntVhnt31EIFiWIIC2Ix6/T0qzdmylhhLFhKVzuVAeB14qVq1ItvRoLW5gIYxWqu5OeoyB2pyqtzLvO5QzYwpIxwapRuynaplCfwnOMflV2GVwuQ7H5vX2Nc1fayNYp8txUikiDqqBscLuZicHJ5/Sr1hCvkbtrb8sueant3YwIdxyVHOfaq1mCJGBYlRnAJ965qsEoNtgjlV0pmaVVkJy2T+7PGO1Pgt3gXY0VwDu544I/KoQzC6lLMwBl4Gf8AaqmvzygFu9eoldanPez0NW+tGnVLiGJUZMBk4BI9feq8sMzGRdg53fxD2qzAI1WUMOcHaM9OarMi+Ycjru/HikbJWi2jZs5PKuI7jcpdxDI+1gcMDz09cZ/GuvtMxrcK27y0nK5EpUKp5z+teexzKtrsWMK5HylWwR+Heu0scXSRtIV/eQRyNuXdk4w3H1rSG7MH8I2ZfJ1PIdy6GRfvgtyoOCTn+61PNxOYd6uzbmKv++UAErn0/CpdThSCSB1VfLBQltm3dg7Tn14eoF0+7t4ZfOghVAwcMjHPGe34mvJzFR9spPqkXSvy2MXUYdmlokYIFvdIyruz8rpnGe/IrP1LH2QYOCHXn0rclRXgmTj5rRXwOzI2f5GsK+bNt/wJa66EuaCbHM2LO4jvdPYybNy9WbOc+g9j/Wp7a6lt7iOePf5kRztPyrg9Rj9PyrD06YwXW0nCyY59D2/wropYIDcRTyl1t37l+hx39jRiI3hzLdCi9SDNSxnmoM1JG3IrRkF1TxTs1Ep4p2agDlZ7eGbWr7zY95B45xiltHRdPlVIgFOcDr36USH/AIn18PUA/rTLRmFjKvYbsY9c01J3a9C10K7h8rsiVBjIxH1/GrsFyLe3ndlUkLtwEAOSafGZG06PLkHcBjHSobc+bDeQyAngZI4I+YUJ8+jNHfUs6VcNcX6u42sCFwOhqxcxn98qsAoZSQfXA5qrpkYg1EKrErkfePJqxcTCIyBnALMvBPtV8qVlEhO17lW9smvLSNGbBUfJjt1rKk024jsdmFOOWAbrVy+M8kKrbSEgMS7K31xVGQSNaAOzMR1yc1tSUu5FWzeiJLTTpJIg5LoI4eWUZGQ3Q/hV6e1mNrDLKsww2N0rBVUeuR+gpNJuvL0eS0A3MSxwTxitCK+mlK2brG64yxIIwvapkncSG2UMdjKxdZIhKdx3vuJ64P5Yq7LPDyxYldp61RkmiuLgxzMYzGQoIH3ialkeCLA8uaYDoQARn/61c84yc/IjlfN5GTNNDczqqoVdW4z6jnt+NP0+F3iuHQAkXDDp7A0y+dVERERRjKp4HbNMsJzFJcEE8SEhc47detbpWRez0Jnth5ZSSdcrv+QJxwT3qrJa5jTbId4C4HAx2qC6lY3DOrEEMwAJyAD6VJJsMURLM33ck5x0p7DtcseXO16sdzM8oVCAFkBxgjp6VuzhPs1thwVDLnPDdO5rnIniWdcqqqFyQR15HpWyzD7DbSxrGqtIuGAwQMn1rjxMb8rKWlzBvyBcyhs8Nxj6Va02YxRbgoJwR+f41U1Bj9slGATkdfpVcCTyJApGcdvqK7otOCTMtnc1oQby/myFjOwAEcgc4zWulm3lI3mvI3HGdoXAx2rjomcP8xK8H15qaVnMhy56Dp9KU1d6DTNySOSIFU2BVYgHqfen20qAhXlQc8jNYIOYD8x425/WkjIUnls49azdNPc0VSysdnHeW6xIhkQEADlhUcF1ECWMi45Aww9a5t45nmYjJG7jmrKW8jRkEnORwM9qxqUIzVmxqo+xVa3kN7MVZSplyD7bqqOFjkdXc5BIxjithbNl5z+ec+v9KiOnq7E7GJJzwDXTHREESqZC7rknJX6GnvPFN8qKRgbThf605racIDAkm4ksRj1//VUEEE1vc7p1ZC3Yjg0nFMrndrDBEwxxngjNdbos0h0u0wzowSSI7MZwGz/I1iJZmQsPNRSvXkYqcWLBMG7jVe3z8fzok30YQaT1V0dLI/2qzb7XcMWBK7DgdeMA+v8AKpA3mM8VxftsPBBYYUe56H6CuLnt9px9rjc+0gqLa46fN/uuKxnRVSznrY2VWCulE7Hbas8DiXf5rSRszN0BGOn5c1yFw6YCSOByM881FvVePKOP8+gqvIkb3CytC7EY7GrhTUdDOpNStZWNSwOky3TJf30ltGfuMFzz7+ldKbEG8zZkXluVBEqkEHPXnoOQfzrjrq7tZ49kdltmPV2bA/IZzVrwszadq8biZ/LOQ6L0YY7iqlHTcmE+VmwDUkZ5qHNSRnmpILininZqJTxS7wD1H0qLAcrekjXL/aSp2jkfWnWUsT2Ewdtudx4PPWm6hErapO5GGLc/lUCwRr0UDPsK1UQTEMzIhQykKTwAelS6ZOqfaDNIo3gYLH3ppiT0FKCo6H9aaikVzsuWt3F/aaFZQwP8RPvTdQDNdGRQxBIyVxjFVd4HIb/x40bwep/WmtNSZO5NCSlu4w4Zsdec9fSod2Y3GyTJ7YPNKGXPIX8qlBQ/wL/3zT52XGpKMUl0KkHmW4OI25yMnAwKtw3TJKJNnbaQWHT86flccAf980A+x/KpbuTdgl5slZvLY5OflYfzpHvJpI9ogAYHqWPP6VIpPYNTwW9D+NIDPuFuJ3UogRRyQMk5/Kkt450aVmibLPuGB7Vo4I6Dn0zRsY9v1p8wrGZPb3EjzlYyA5yCSB+dNNndSRxowXanYmtTy2z/APXp4RuwUfWjmHuZh0+4dtwKK2CMk5qxHp9wqBS8RHuM1dEb5/hqYRt/eH5VN2FigumEuWaTGQBhTinf2YobIbjGCMmtARnu5/IUhjwPvn8qLsLIz2sYiNu1M4+9ycUJYRoc4VvYqT/Wrwi/22o8sZzub86LhYrx2sW/JRSP7u3j+dT/AGWErjykGfReacIlz1Y/jTvLjHVf1pMdhdgjUBFC49FGaiYLuLFm3H3qUJF/cH5UwqgPCr+VAEThGwGZj/wOmbUHduOnzn/GrGQOMAUmRmgCr5Me3hP1NN8iPPMWf+A1bLehpufegRAIoh/y7IfrGKVo0bGLZBj0QCpS3PWlUjOSc0hggZVwsAHvtFSpFNKu3yz+YFPXaVHzUpm8rDBunvUPyGUZI5B34+tVWgZhy4rTu5Ul/eJwD/OqPmRgHcwH41cXoSzNjhBuyjE4rY0xUi1ADhRg8n6VniWAS7wdzeg5qzD9okkUpG6A9yvJqmwQN4gsh080/wDAaQeJLVT/AKqY/gP8a5UEk8A/lS4f+435VpyIi51L+KYNpC28v1yKy7bVmiuhIRI4B7t1+tZgEnaNj+FSJBOXXMTDnvRypBc15phczvMy4L9s035B2FQRxzN0T8zU6QTsSPL6UgH5XHAFAYdhSpDIccqPrTxbSAfeB+gJoGNHT7tJgntViO2lZR84XPcin/2fIclZRx14oAqr97mrcQDjjj1pJbJ5GDIqooGMIc598mmrbuvIkfP4UWAsiMH0pdgGKs2+nw3EIdJW391LVYi0mMn52I9g55qCigoQA8ilAX1FX20qANhQ2e5yxqRdMgA4jU/72aVwM3CgA8UM6AdRWuumWyjd5KOMenFH2G3U5EMa+2wGi4GN5kXGXX86Qyxj+NT+NbgtLfooXd2GBUyWypzsT8s0XA57z07Gn+cpHG4n0CmttoULkhTn0FLsAO5QAR0IPSgDEWVj0jkYeyH/AAqTMmP9RL/3wa3GUghiQcjnA70ixRjBRVyOgPrQBiGO5AJ+yy4HcgCmFLvORavj6r/jXThDMAHUg5znjmgQYTDDg9xxRcZzKwXTnatud3pvFDWt8p+eFQfd66YRsigBAy9hUfkhcbSoJ7cUCOdW2vT0SL6ZJ/pS/wBn3zgsfKTnoxOa6EI5JUckevepPs6bRuiVv60AcvJpt4jYdgp/3c/1ppsLvvKAOmRHn+tdW0Mkgzjb6YHP50htgerZPfFFx2OY/sm4Iz9p/ELjNKmkTMwEk8gB6HC/4V1BiQLwremTUflYVSFAH0yaVwsc9JobKARPIc+4H9KBoUpOFdyf98/4V00OIz90qD/eFSEg9V4/3sUrsDCTw4QhLzSk+iyMKifw/GeC+36uzE/rXSLHkgKCPfNOkCbMffPqT0qbsZzB8NWwXmUnnptwP1qVfDlr5gXyAo/vcZre2LuAIUj3JpCMMfvY9uKNQMaPRooWxuwfar0NlHG2S2fr1qycZLAdPepAygYCD6ikB//Z", "path": "images/3pts_ADE_train_00010127.jpg" }
depth_point_84
images/5pts_ADE_train_00001963.jpg
ADE_train_00001963.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 290 y = 110),Point B is located at (x = 177 y = 207),Point C is located at (x = 22 y = 103),Point D is located at (x = 302 y = 137),Point E is located at (x = 233 y = 127).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_23><DEPTH_45><DEPTH_119><DEPTH_0><DEPTH_41><DEPTH_57><DEPTH_94><DEPTH_42><DEPTH_121><DEPTH_119><DEPTH_12><DEPTH_11><DEPTH_69><DEPTH_74><DEPTH_44><DEPTH_25><DEPTH_2><DEPTH_2><DEPTH_1><DEPTH_55><DEPTH_23><DEPTH_29><DEPTH_5><DEPTH_35><DEPTH_49><DEPTH_76><DEPTH_58><DEPTH_41><DEPTH_33><DEPTH_66><DEPTH_12><DEPTH_36><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_74><DEPTH_40><DEPTH_1><DEPTH_76><DEPTH_41><DEPTH_23><DEPTH_36><DEPTH_5><DEPTH_59><DEPTH_70><DEPTH_17><DEPTH_31><DEPTH_29><DEPTH_76><DEPTH_76><DEPTH_23><DEPTH_74><DEPTH_5><DEPTH_70><DEPTH_59><DEPTH_5><DEPTH_67><DEPTH_59><DEPTH_49><DEPTH_74><DEPTH_23><DEPTH_36><DEPTH_5><DEPTH_70><DEPTH_70><DEPTH_5><DEPTH_59><DEPTH_60><DEPTH_31><DEPTH_29><DEPTH_23><DEPTH_74><DEPTH_67><DEPTH_59><DEPTH_59><DEPTH_70><DEPTH_35><DEPTH_0><DEPTH_72><DEPTH_49><DEPTH_23><DEPTH_29><DEPTH_30><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_70><DEPTH_73><DEPTH_9><DEPTH_25><DEPTH_32><DEPTH_35><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_5><DEPTH_5><DEPTH_81><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
5
[ "B", "E", "D", "A", "C" ]
<DEPTH_START><DEPTH_23><DEPTH_45><DEPTH_119><DEPTH_0><DEPTH_41><DEPTH_57><DEPTH_94><DEPTH_42><DEPTH_121><DEPTH_119><DEPTH_12><DEPTH_11><DEPTH_69><DEPTH_74><DEPTH_44><DEPTH_25><DEPTH_2><DEPTH_2><DEPTH_1><DEPTH_55><DEPTH_23><DEPTH_29><DEPTH_5><DEPTH_35><DEPTH_49><DEPTH_76><DEPTH_58><DEPTH_41><DEPTH_33><DEPTH_66><DEPTH_12><DEPTH_36><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_74><DEPTH_40><DEPTH_1><DEPTH_76><DEPTH_41><DEPTH_23><DEPTH_36><DEPTH_5><DEPTH_59><DEPTH_70><DEPTH_17><DEPTH_31><DEPTH_29><DEPTH_76><DEPTH_76><DEPTH_23><DEPTH_74><DEPTH_5><DEPTH_70><DEPTH_59><DEPTH_5><DEPTH_67><DEPTH_59><DEPTH_49><DEPTH_74><DEPTH_23><DEPTH_36><DEPTH_5><DEPTH_70><DEPTH_70><DEPTH_5><DEPTH_59><DEPTH_60><DEPTH_31><DEPTH_29><DEPTH_23><DEPTH_74><DEPTH_67><DEPTH_59><DEPTH_59><DEPTH_70><DEPTH_35><DEPTH_0><DEPTH_72><DEPTH_49><DEPTH_23><DEPTH_29><DEPTH_30><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_70><DEPTH_73><DEPTH_9><DEPTH_25><DEPTH_32><DEPTH_35><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_5><DEPTH_5><DEPTH_81><DEPTH_END>
290
110
177
207
22
103
302
137
233
127
126
2
153
92
51
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD0a3j5f0KjFOZfmA96sRx7WZfQcfnTWX5x/vVm9jdPUpwL+95HBJFRW0fkXMlueh+ZatxJgg/7VLewkKlwg+aPGfpWE2dUNysT5E+zsw4+oqR5eM89Kj1bi3S4QZx8wqgl9kfdz6YNTFuxo0jzTxbLcXuv3QupCyxOVjTPyqvbA9T1rC8gdhXoHirSVu5o722j/eMQko9egB/p+Vdho3wm02K3jk1WaWecjLRxttRT6Z6mtacXIJThTirniSwL3Un8asxQW+ctHJ/wFq+h4fAXhiBQF0iFvdyzH9TU/wDwhvh3HGk24+gI/rXQoxXX8DneJh5nz0YoCuEuLpfY/MP51RnhbnbMr/7y4NfRNx4B8OXCkGw2e6Of61z+ofCLTZwTZX00DdhIocfpim4p7MSrQZ4ta6vqelsDbXMsQH8Ody/ka7PQviFDI6QaqDA54FxGfkJ/2geV/lUWvfDHX9JR5ooReQLyWtzkge69a4KSIq5BG1gcHIrJwtuXdNaM+gg0zoGBSRTzkjOR25FMZyOsRU/7Jrj/AAJcXI8PRrM52LIyxZ7L6fnmuqVi7ZLkn60ctjK5MZTHEzNnGO4rML5Jc9Saku7jc3lg5FQRje/+yvJpLuU+xMBtT/abn8KYXJPWlZwxJHemRoZpQg/H6VnrJl6RRask33Ibrt5AP8VdDGA210JUqevcGqMdurRrtG1lHGP5j2qxBI24g/f9P71bLTQwfvO5dyV+YDpyVHb3Ht7VMjKemOeQR3qsrnAIJxnqOoNPB25YYIPJUfzH+FUQ0WzhhzxjoR1FGeCrKCG+8vr7ioklyBg5B71Jncvf+oovckCg27Sco33W96jIy21h8+OD61Ir5JUgEnqOzf8A16CoxtJJB+639D70WHcjR9jbZDyOjelTgnrx7j1qBgWOGHzDp70kUuDsJwM8expbA9SzlSvX5T0PcGmFMsQeCO39RQcjLY5/iWlyHC8+6v6e1DQIdDIBweD2qRv7wquV3k8bXXqKkikzlX600xNdQ+6Q69P5VLneNycMOopuCue49PWmE7DuXkUATgiQf7VRg7CVI+T09KOv7xOh6j0px2yDI60CHh/L68qeh9abIv8AFH+IqNWzlW/X+dOV2R8UkwsIJMdacXz0psqY/eLjB6gVEGPr+FPYVrmVGP3hHtTSPnB77ufzqWL/AFx9dv8AhSMuHz/tf1qZGqK0I6f71XliWSNkYcMuDVWIcD/eq/COPwrmmdMTnrgn7LPav96PkfSubgnRQUYuGU4++P5EV0fiIG3uY7hRwRh65J2VbxgT8rcggU6SNJy0TNRTFNGUZmKsMEFRz+Rr0rRLsXmkwPvLuq7HY9SR3/r+NeUp5RPDr+KkV0nhrWE0u68uWRfs0uA5B+4ezfT1/wDrVtH3WY1VzxPQqKAQRkHINFanEFFFFABXknxG8NWGoeKbM2qCKd0Ml4UHG3Pyk/7R5FesTTR28LzSsFRBlie1eZ6nqAvb6a5ZMbzxzyB2/SpkzaitbjLZIbWFIYoESNBhVXIwKkmuESInaQxHHP8A9aqIlXp84+jVTubnfKUViVHc1N2bW6k5mycnqatBvLgwfvNyaz7Y+Y+49BVmZzuA/Opl2HHuyYMSwAHJ4ArTtoGt3/eDKtzkfzFULa3aUBh1PIHt61r28gYeU/J749fUVUVyomUuZ26FtcqQc8HkMP6U91WQZ4DDoRVcMYnKMMqeRjv7ipgcAEHIPQ+v/wBemSPim2ttk4bv6GrQPPGfX3z/AI1TfEi4J/H0psMsiuUPOPfqKLicS4SUJkTGP41xx9R/UdqmSUEbkOV71AsgfBUkHr9f/r0w5VjJCRj+Jex9f/1UbE7l4kE4HQ96cpJJRhknqOzf/XqqkgKEr93uD1FTJIGGx/wNO4rEwIkAVj/ut6//AF6hkQ5PZ/8A0KlYOWAyN3cdnH9D708ESfJJ97+Fumf/AK9P1EMilL8Hh17nvUoG0nGcfxLUMiHdj/lp2P8Aep8Uu/jOJB+tIGSMCMFTz/C39DSnEiFgMMOo9KbuHPHHcenvTSxRgRyR09x6UMETQy7xtPDClY7egyD1AqJl3jenDDtT45QwIIIYdRTQmIrGN854p5/dsrIcq1IVABz90/pTMbfkc/IeQfSgCSUAYfsfSm5Y/KeoHGO4pyMBmNx/9eo3UpwOV7H0pPuC7E8Uildp/WopISG3JyKhhnM0rQuojnHKjPEi+oqwkhBKtnj9KE7oGrMyoR++7fd/wp5Hzf8AAv6023Pz8f3T/Sng9B/tf1oZfUrpwR6bqvQdqp7cAH/aNW4DyM1zTOiOxkeIYw67TyNprz15MOC3JjbB+leia99wfSvN7hdkp9GySaqiOeyLqTQ7h978hVmOWLPDDr3rHhndkx5YJXjIB/pVhZl7xkfia1aITO00fxPPpiLBIPtNqOi7sOg/2Seo9jXQy+NtDisnuWuWyuMwlCJPyPWvMUuYx13j8RSzPbzxlHcke46VN5JaA4Qk7s9K0nx1oesXS20E0iTMCQJU2jjnr0rSutf0y1B3XaSOP4Ijvb8h0/GvHbCCOGPMzoZGJJBXgf59av8A2gKMJKgHoDj+lVzMmVKF9DpNY8QTam2wAR245EZ5z7msN5cjon6/41VNzL2lB/4EKj+0yZ5IPpwDQh7KyJbmfy4GbauScDBrNDe/JpLm4M0uOAqcdO/eoBJ8/Hamu4vI2IHWJMHrUmGl6c+prLhLM4Gea17YGMA9COSOuR6ilbqNvoi9ZzGIhXOOeD6VpYDsGBAf1HQ1jiVHy3Qjt6e/0qxBdGI4OSp61Nx2NZXbaVkTI/n/APX/AJ0qSlGI6oe3r/8AXqJXDRhkOQenvTsb1/l7VZBZ9CCCp6H1pU569B+lU95jbD8g9h3+nvVhX6HP0NAErgnBBxjnNPjmLN8y4fPOOh/+vTeoLL93+Jf6iowfL5HMZ6e3/wBamSXCORLEcEf5xTlYSKSBtI+8vce49qZG5ByPyPf2/wDr0H5T5iHAHGT/AA+x9v5UhFpJAV2P07N6VI2G+WTqejA9f/r1U+/koMOPvJ6fSlSbauG5X+7TFYuMdw8uT7+MqfWqzA7s9JV6gd6kDq6BWPy/wv3U005J2vgSryCO49R7UgQ+OTzwOdrjofWno45BHTqPSqxXcxZRhh95R/OnLL5mD0kHQ+tFwaLWHB3Kef8A0Kl+WQB04YUxHwM9B39qcw482Pr1IHO6mSKsjHkcH+IUmQcqeB2J7Gmq4k5Xh8fnUiMrZUjB9DQA0E8I/HofSpY2OSjjn+dNCY/dtyD900qqSdrcMOho2DcZLAN6naCV5Rj2qTb5q5HDj9frTWu4YwVlYEjqBVCbUSH3R4QD+ImpckilFsjtxm4wP7p/pUrDHP8AtU2KMLcA/wCwT/KnyjCE9smrYIgz93/eNWYfvVU6bB331ahPJFc1RHTEzNf5h/CvOrxSyDHYmvRtc5h/CvProdenU0Uip/CjLVgHJI6ipVdweCQPrUMnySEjjnipFlzjDE/8BBrdmCZYVsLnzBn0IpwcY52E+uar7h32/itLlfRM/wC6akq5ZWVQcEj86UvkHjn2quG/3R+JoJGOQPwagVyQscZwfrio3k2rkM2e31qMpgkqSPoaiyxc7mJVf500K47dsTjr70qN0HU/zqEvubOeO1WbZAGDP0PQ1S1Fc0rRArYdfn6qex9q0VYcZyFzwR1U1QVxwCfoalSY5w3Xofb60MaLTfK4OQO+4fzH+FSoSDjpnoB/T/CqwI7g4Pb0p28jG7lfXuKhopM0ra5Ktg9fTsf/AK9aCybhmM5z1BrERi7bW4brkdD71cilKknv3Hr9aaEzROHXj7vfJ6fjTRmPhjlT0PY/4Go0l38r17D19j71IrKRhhlT1X0P+e9USSxSMHBzz2b1qx1BeMf78f8AUVSZtjY48s9Pf/69SJKVYMGx6NQInWUJt5yh4Ge3sasBznPfpz39jVRiHVnjGCfvp6+4piTbQqk7gRwfX2NAWNAZwCjbSOh/u+x9qlXbPlWBWZeuO9VopOmeWH6j/GnMrfLJGw44B7fSlsLclw0TYPIP61JkMgUk7c8N3Q0yOVJ/kk+WQdRU3lntyehH96na4r9yHcwlIOFlX06MPUe1OYBwWUAOOo9aUxh05JCj7p7of8KArAgEYcdxU7FBFI3c4PZv6Gp/mHzJwRyV/qKikVQN7OqHuPWmfb40XCqWYdD0pcyW4crexaZd6+anT+IDt70PJEoHmuAw6HqayLjViuS0oUHjZHWXNq237mxPc/MaXM+g+XudM+p/u8LGB7tWZdawGwHm3kdlrBkvPN5d5H9sYFMEqA8RMaNXux2S2NCTUJXP7sKg9TyaqyEycyM8h9CeKYs8oOUiC+5pGMpBLSAeyihRS2E2zsU5mTP90/yps2RG+Kkj/wBegxwVPNNmXAYY4rZma3KmcuAD0bp+dWIzhz/nvXM+LPFlh4NsE1HUIrmWF7hYALdVZgxDNnkgYwp71zemfGrw5qmrWmnwWWqrNdzpBGzxRhQzMAM4c8c1zyi2joUknZndascoK4K8GAf94/1ru9VbCA1w96vBJ65P9ammaT2MabqfrVdW+ZlA6GrFwCHP+9VGMb7iUFyuMdBWxgXF56mlyVH3sUiWpZc+dx9KlWwYHhx+IoswE3Ege/qaUkjGRn8aU2cw6OmaYbS4BzuT8CaLMZHJKUwAOScCmsMAIDyetI8UyzAsjNgcbRmiNgoaSQc56elCEyVIgwz0x0qzGCq4xle6/wBahjY9D1P5Gpg3HHGP0qrkkvGwFWJHY9waswyLIoDcOBwfUVUBBJI4fuOxoBZCXjycdV9KBmkrHJB+96HvT45QxKEHPpVSGdJ41OSD2PcGnyMQeR05yP5ik0NF0PhQM/L/AAt6VNHKxPzYz2YdDVFJCR23Efg1PjbqQCVPDL6VIzVimAOVHsynvVpZOQwyQeM9/oax45CpBByOx/oavRzZXI47EGmmJovE/KUJ+VuR7f8A16gKPbyAsd6nnd2/+saI5sjp8vcGpcFs4yykYxniqvcWw9ZQQp3cfwt0qTG/OMA9weh9xVDcbZ/myyMcA46+x960IVO3cvQdQeopMCSKXYoVjyOAT/I1bjkyxK9T1U9/8/rUHkhhuyB9e3+NSQx7BycgdCe3tSuFiVkDEZOUP3XHVD6H2qYTNbjExUehz1ouoXhsmdFaWR1BIT0Pt3rnmnlbopGO5od1sCSe50EmpQIN6g7h3PANZ0ushjlWwOcCMdvrWSyySA7iTTfKOMHv0OcYqbN7srRbFmXUZGJKLj3PJqq0zyDMkx+maa0QViuQcHGQcimBBnAFCikDbYpaIn7wNIDFngg0rCMDnk+wpmUXkgD2piJdyD+HP40pk29QFFQ/aB0VQfwprGR/RfrQInNyoXmoWuS5wq0zZGvLvupDdQxjC7aAO/gwZgec84/Km3H8ePaiBA0yn0yR+WKWf+MdRgVqzNbnn/xKEJsdMEoi3/2g3kebjb5/2afyc54x5mzrx6143YHXv+Et8JDxD5v2n+1U2fa932rZ5sf393OzOdue++vcvHng/wD4TbSI9M+3/YvLuln8zyfMzhWXGNw/vZzntXE6N8D/AOydesdQ/wCEh837HcR3Hl/Ytu/Y4OM+YcZx1qLpLUpxbldHp2pn5APrXG3Z4555P9a7HUCMJn34rj7zhBkdz/WsoI6Z7GNcD5/qarW8YNw7Y5PU1aufvfjUVsuZXrQyLiIMDjntmnbnDAYxx2705doHOdp60gYCUPjBUc4pMYFmGRnn6VA00oHIH5VPJ/rXJPeo5nV1YL1Jz+VS2xpISCQuHJIG0ccVPC6MpV1U7upx1HpVCNihYDuMZq9GuEUHutOMmEoor3NobX548tD3HdP/AK1RLJ0JOR2NaCyFRzjaeM+hqrc2e0eZAOvJj7H6VT11RHkxA+Oe38qePmIKkA9vQ1TSUAbhyO49KkBx8ynIPai4WLKdSyDB/iWrCy7gBg/TuPpVNZMgMDhvU/1p+4nBztPr6VSYi9HjG0kbG5GOxqUPg8nDDo3r9aqJKGG1xg+lWU3DhhuXsaTQIkJK/PnAzhhVgMykMh+Y8bT3qBAiHbvDIeCvWpFZFG3qvbPapLLsBLnchw3Qg/yNaKBcAuQPYmsYXJByOWxgnpmj7a5H3wvsKpRZLsbzNDsIflSOQ3FRRzpCBsZm96wjd468mpI7w+gHvmq5V1Yr22N03bn7oC/zpPNZjlnJ/Gstblm6N+OKkSRifv5+tWlFbEttnZ6M2+CA9fm/qas6jpUUoaVE56kD+dUvDx3WNuT1LN/6Ea6OpIbszip7UKOABWbMuyun8QpFY2zXpfZFkB+M4J7/AErjrq7ik5VyQelZy0NIu6IpXVepFQvOVYoeo/Goikkh/dwsx9QpNKuk3065AVB6FsfypFaHAX3xMu7e91KCLw/LcRafKyTTJOdqgPsDNhCFBOByepxXS6Br6a3odvqJg8kzbv3W/dtwxXrgemelcGl1pemarqel3smZNW1S6gmkW5VEt0G6JHkBUkgNI74yv3Aea9A+Gei2s3w90yedCzOZhkPwMSuO30qmtDOMtdS99sx93GKfGLq5bESyNn+6tdLFYWax7I7eJJB0IXk/jVgOWQKSfMX9aViuY5+PQ7pmVZUZGbkGRhjH4Z/lVlPDnlt++lG3/YXP8/8ACtxjmLy59wB5V+6n1qJJ2jykuCAecdvcU72FdmxB/rgfY/yonI+f6CiA/vl47HmkmHD9ulaPYhbnM3+q6nPrM+m6JBaGW2Ebzz3TMFUtnCbQMkkAHOcdR1qzo2qnVbeaV4fIuIpXhng37/LdW5G7AB4wcjjmoNT0SabU3v8ATdSk0+7kCxylYlkSQDOCVPVhkDOegxVnTNOi0m3e2heST5nd5ZSC8jFslmIAyff2Fcdp82u39WPYqSw3sEoW5tO97296/Rpva34a3XUORH9DXH3vI9sn+tdbfN/qxXJXnIH41pE4ZbGTKP3n41FbHZcEY6n+lTy/638abAqmdgR7/pV2My4oydvT6imMoB65yKGB83ofzp4O5lwuD3pMtCTgCT2I/WoGCcEAqCCBn0q04L5PQZwAR+tRMqkEt2ODg96TQIRQCnyqNncnrTlGNpzSKmxckFdxIx+FPO0IBg9Mk+lAEbCMnG4hu47Uo+4PfJpgAILDlsfNkU6QHYpGRjkkUXtqFrlSeAOTJGQsn6H61WWXYSCMY+8p7VoJGXyfu5HQ1UliEvPAYdCKNxWASKPmB4qaOQFeFZh+VR6XGH1NIJVyCDx68dqvX1qbJhnmNj8rf0qoq5L0IhK3GAFx6U8TuB14HODVYyD1ApnnqM5PHtV2Qrs6YWxuLX7Uv33dsqOB17VRZ9uQRz6GtrS+dIhbtvP9Ky9adYWQqgO5iCenpUpu9htFQTMQQT+ApynuQaoGRyeFAH1qZWYpkNnHXjtVXEWiC3Tj60u0gjcVFV1wy4y2c0+JvKk+YKQehxmlcC9HIAuAcn2rix8XNDHS01H/AL9p/wDF13cEyunB4/lXjt/HqTfDzQ3trnXVtRp0vmRW1uzWjf6XPkyOHABx1+U8AevFXMpNo+lPBV2l/wCGtLvYwwS4jEqh+oDEkZ9+a63vXEfDVdvgLw7/ANeUR/8AHa7OSZI2VWPLdABmhbCluY/isgaKc9PMXP61yVmtui7RBGvGCAvBFdd4ije903yLbDSeYpx2xzXNRaFfqQfkUehfpTHHYazRiRVdvlb7rk8g+hoYtGeTj3HQ1ebw+8oAklQZ64FVNdgXQPDN5fSTNMYU+QBB94kKueemSM+2azlZJt7GtKEqk404bt2+88+v/hL4e1bUru/mvdTFxczPPIqSRhcsxY4ynTmu00DRrbwzoNvpli00trBuH74hmO5ixzgAdWPbpTGsdR0C/wBLk1W/gvba/ultpI4YSjQSMDt2HPzLu6lucAcZNdXfz6HosC3Go3VpZwswjElzMsas2CcZYgE4B/KlF83lYuvQ9jZ3Uk+qvbz3SZkNGWAeLBX9RS7ZZ0+UNuHXC1ctvFfhCSaOC113RZJpGCJHHeRFnYnAAAOSSe1bX2uBR95RWiic/MYFvbXU0ZRoJMf7QxTl0e9OBtQBfulm7ehFa7arbx/ekAFU5/EunQcyXUCD/akAo5O4KXYmi4uYhkc5GM0k2CWwwxxQMC5i9mP8jRKT85x2FNjW5Sf/AFnUffqNiPOl57H+dOkJ81uejio2z58w9j/OsWtDaJTv+DH3ya5S84A/Gupvj86c965i7Hyj8aUS5MypBmXHvULsYWlIbBA6/gKsuuZ+fWo5lAunBHYfyFWZdSOO7Mi4L5/CrKPlt2Tn6Vq6MqrC7bFOZAORXUpo16VDfYAVIyPlFdEaKau2Zyq2drHBlyer/pTCow+HHzHJ4rvzot3304H/ALZ1G2iT99N/KKj2K7i9u+xwMksqhfmQ7RxmohdzYwViJ69cZru5NCfB36Zkf9cv/rVzeu2VrFaK8VvGjiUKSowSMGolQsr3KjWu7WKUeXjV2AGewpWAcYOcCoYCVhAH3ecVL0j5GDkLXOzdCDI3KeoFRxoHVk/izwamP8WcE4qvkpJvA4wf8KQ9yaxjKavb57Mwz+BqfxDcwz2QiikV5FlBKjnGM1DBIYbmFyrNsyTtGT6VHez29xG32eOeFw3LkAfh1P8AKtOhm1qZSxSHBEbA/SphBKVOI8+3vVeaS7iORcyFfXA/wqE3lxtbNzIGwcHj/Cpuh2PRtOIg0KNnzlWxgfQVmanDJdPGYR0Jzu464q3ZanpraKsUt/agk5IMyg9B71harPF+6NlfErkhvKlDemM9aegixFpFyzYzGo9znFWotEdWBNzGuewFc5510DzfXJU+jgY/SnESSDLXl23/AG2NN6iTR1aaDBkFrrAH90AVbj0jTkHzzsw75auH8jGMzXDdvmmbn9alWytW5MbkjqGkY/1pDO6jt9Htzu3ID3Jc15BL8I9Jh/1njWBfrZj/AOO10VxDYW0QdbGGSR2CIhA+ck9Mn+dEbG3Y29zaWiu8TmN4U4JA+6QRnPfNL2kVKxvHB1KlP2iWmvXV21dl5f1sz2HwfapY+GdHs4phOkFtHEsoXG8KoG7GTjOM9TW7drJjdEu4kY61wvhPxn4ch0PT7WbVYbea2hSORJ8x4IUA9etdMfGXhk/8x7T/APv+taRaaOKSaZna1qN5o1r9pmspZI2cIBDhmyc9s+1c3L44vA+1NDvj7tsXH5tW94k1zSdV0gR2GoW10VmXcIZAxXg+lcxgvEFJ3Y6N6+xqn5DT7kz+L9bkwsei7T2MlygB/LNV7rXfEd7aS2s2n2IilRkdXuW5UjBHApI2IXDcr6VNuDDrnPQ+v/16m9yk+V3Rzun2mt29/DM13bq0GRbCWWWVbdSMFUBI4xgc56CovGdjf6lJ4as9bvor2xutdtYZII4jGCrbgfmDZ6Ejj1romVc849jmub8aW+t3um6eNDTzL6y1CO7iO5BsKBsN8/BwSOOfpWcEoaI1xFWpXfPN3f8AX9ep5polvZanLpmo29oumTw6za2rfZZHKushZgw8xmIZTH64+Yccc+2t4egDbp9W1WeNupN0RtP4AcV5Rp/hvxlLrujy6hp0SWVneRzNHB9niRRuUs2yMgE4A5xngCvaMIRmM59VP8qt+RhDQor4X0jIW5gll9Hlndgf1qc+F9DiAZNMtgfUpu/nVlJhGuOqHg55x9f8ae0jIp2nK46dcUkytb7nWDHnoPVj/I1HISQ+BngU8kLcRkd25/WklJy/XoK0ZCM+YEO/+8KjbAuJuT/F/OpphlpDnuvSoHP+kzfjWTNomfenDrgd65y6xj8TXRXvVea5+4wQPqf60olS2M3GZh9agvX2agq5xv4/QGraD9/+NVdSjzqSE/wfN/47irM+pu6QubR/+uwr12D/AI94v9wfyryPRTmzf/rsK9cg/wCPeL/cH8q6J/BEwfxMkooorEBr/wCrb6GvIvECf8Swt/08L/6Ca9dl/wBU/wDumvJvEH/IHc/9PKf+gmrj8LBfEjnYjmFcHkZqfaHRvoSKrIwSNMAZJqzCcg54OCK5nudi2GRjKBs9qYRu2YPUgfkaeDs2r9RTQApx15yP50gAOBl/r/WqzuVOCBgkk+2DSycW/H97+pptyMRBh1yf502CSGyxEZB5ySAMdqzZ7UqdyDK9x3FaksjKhbuT8v5VBtOB/ug0gsZaEKcMox64qyjADAIA7Us9vyWQYPdaqhyje1Ami+kn/wBcGpPNZBkDcv61TV8+3oR2qZJD3xn0z1q0yGi2sm5cjoe1SK/OD1HQ1UDEfdP4VKjBxgHDdvemIlnRLmPy3JU5DBl6gjuDS2ULC4E9zcNNMilUyoAUHuB6/wBKap3g4+93H9RT1JPGeex6Z/8Ar1DhFu50QxVWFN04vR+S672e6v1tuXZEglYGSGMv1DFQc1Iiwq25LeJWH3lCD8xVNZjt2sBntnof/r1MknIIyD6H/GrMDSR4mT5EAB6gDFPV9hGTx24/Q1nRMwY46jn6irQfcPqOmetUnchqxbyowR90npjoaVtoPy8nHzD3qosu0HPT19qf5qk4BIPr0OPahgWlZG9CfcdapXupQ2cohjjuJrjG/wAmGIswXpn0xnj8aewKHlzk889/oazpPt1jqU97aQLcrcKokQybWBAIyM8Yx+NZ1JO2h14OnTnNqfbRNpJu60be2l38rGpa38N0izwMrRtyDtxnseDV9W3gOCA3rWJYWUlrbu0zL9plmaaTZnaCx6DPbGK0be4RmeIELIvJU/z+lOm3ZcxliYU41ZKk7xT0/r9fwLm9X4LBJP0NCPJGcPx/dIqo8+44denvTxK6x/NiWI8YPamzFHePgXC5PVhjH40yUg7iDnilkYedFnu45psnR61ZKKM5wzA9ODUEh/0ibnnmprk8ufQCq0n/AB8ze4NZM1iZ942XX8awbjqK27z7yn61hXHSki2QxDM5PvVTUedQbnHH9BV6AZcmqOqcaj7bf6CrZmtzb0Mf6C3/AF2FeuQf8e8X+4P5V5HoX/Hk3/XUfyr1yD/j3i/3B/Ktp/BEwfxMkooorIBk3+ok/wB0/wAq8o8RDGiSf9fKH/x016tP/wAe8n+4f5V5V4l40OT/AK+F/wDQTVr4GC+JHM7d0ETe/wDWp4ThcnvVdXVoYh6VYhAwfpXK9zs6DA2WBxzjP5mg8Pj34/I1GrAyEegx+tOJ2d8tkUkMilOI8js3H5mkn+a13Z5Bx+tRu+Y2/wB/GKJCTGExx/XNMLaC3ZxCuCOTTApZlA9AP0FOvBkKKbGx27xn5Rj9KQ+hFJkzS89yf1qtPBv6cN/OrA+aRye4H8xT5WHlsh6g5B9KBNGTzGTng9xUqvkY7dqmuIlztfg9mqo6NGefz7UyWi2rnv19afvyRzg1VSX1p+4H6VVyWXRJuxkkMOhp3nOOoBPoe9Ug5HBJ9jU6yBhtbGaZJZ37vvd6mhnOdj4OOhqkGO0rjOKcsmR3/qKBmmr7eVOO+PWpjLx8vJPO31+nvWWZXUDPI9amUswGDx1FO4rGgjbyAOVPZqc6YG08jqD3FU9zFuG96m83gHjOPwNO4ixG7BPKl+ZD0OOaeDKnQ7l7HPUelVPMIHzLweh9KkSZ0IwCVPajRgXVnJIHTjgk0rDziHT5Z06H/PUVW3Bk3x9uSvpTBLsYOucdwf5UMSLu/wA5em2ReopsdwUbB5B4IIqJ28wCaI4YHmkbEq+YuA4+8tIZ6ORungPcOP6U6U8t34qMsFuoe53Lk+nNPl/iPatXsR1KdxyJD/siqrkebL3O01PdHEbj1Vaqsf3r/wC6azZojNuuSpP41iyjI/Gtu7HQCsST7v4n+dJFvYZAPmYe9Z+q4N+3sn9BWlbj5z9azdV/5CLj/YH8qqRmtzb8OAtZ7T18wV69CMQRj/ZH8q8b0SUxocdnyPyru47/AMQbFxE5XAwfKHSuhx5oIwlpJnWUVyjX3iAqR5TjPpEKYt94gRMCN/xiFR7N9xcyOqm5hkHqp/lXl3ildukup/5+V/8AQTXSvqOvhSXVwoGT+7WuP8S3Jk06Qn7zSqx9zhqbi4xY46yRze0C1TjAzUwlEacg5xx9aiQgwIOenNObDBTjJ7D+tcT3O5bChh9zHJIFOk6sOuAP51EAF6/e6rzT0JIkJPQEfWgZXf8A1Rx13ZNOc7Ah98/rTdv7vGP4qWT7656f/XoDoPQgiQschc1XVv3TAe39amg+YSr3JNRumGdUBIxjigCHcVfHQ8CpHXKM3uKScfv0A6YFPT5ht796SBjHUSTqCMgjmqsiYjUDlTV1Rlgw7Y/nVaT7ij600J9CiYdwyjbT+YoG9R86fivIqZQDIBjuam8s7AwNNMlorqwIp4Y9G/OpPLUkZXFRT4gAbkqTjHpVXJJVJ9Tx+lTFifvD8RVWOVHwAwz+VTAlG2kfWmiSQMVyOqmnJN5Z2n7uePamqQOO3Y05lBByMj2osFyz5oYYPXsRTo5gTzjd79//AK9U1JVcZz6GlC55U/8A1qLgXw+R1yOlOEpQYK5XPXPI/wA+tU0dlPPU+vQ//XqQSYIOMDoRTuFi75pBDq2D6+tShg4LBcHHzAdx61REqjlc7T6ilWXY2VJBHP0qhFlJTG3HIPb1qXeIyHBOwnr/AHT71X3pMNyj5h95R/MU9JQRsfv0PrRZMLnpUr/6dbjoCy/zq1cHAP0qjeErd2uByZF/9Cq3cHGfXJquhHYzr4nseqr/AEqs5xK30Ofyqze9D64H8xVafi4b6H+VZs1RRuT86DvmsNzlT/vYrZuCTMPrWMen1b+tCGx0A+bj1FZmp86q/oEH8q04PvGsvVONTbn+Bf5U5dCI7l/STlX+o/lXsMH/AB6w/wC4v8q8c0c8v9R/I17Fb/8AHrD/ALi/yrp+wjCfxMcTUbVKaZjmpIKd8H+xzCMgPsOCenSvLNeb/RMf7Q/ka9ZuV/0eU/7DfyryTXR/oq/74/kaH8DKp/EY6ZEMXPU9DUoztxnBIxn+dQxEGKIe/NSsANoXtXEzvQwsED8c9c1LbuRGT3bPWq/mASbH6BtzH/Puam3AHCDgA/jSTBoYT+7VsnqDTLh+UX1PX6GnDlFx6jj8aR4y2wj+9gfzqgI42KSk56HpT45AA59s/jiodpeVtvUc06EFmI9if0pDOTbx/pRcH7Pe9APuL/8AFV1Ftcpd28F1ErBJ4wyhuCA3Iz74NYNklx/wgumu95qUVkNBvQYjbFrF3865xvfeAJM42/KTuCVp6KD/AGLpQGP+PeL/ANBFVOKWxlTm5PUvr/riPcD9agY9AfQmpWYpM59HFVy3J/3f61K6mj6DV4kqyg/dD3/xqqPvY781ZT/VoT0yKFsJ7kkYBOCOAtQzWCT7QHIJ5weRU3RmHqtToNxX2GaZLMWTT5U3EAkL1K80kbyp0fcPQ10EY+9x161E9rFMrl0BO4DI69aAMxLkg4dPyqdJUbGH59+Ke1jG0xjgnBbONjnkVE9rNGMvEdvqBkU7sOVFjb7cHuKANjdOvXFVAzJ9xiPapBcNj5lB+nFO6ZLiyzkYx2NNV+SD19+lRGVCO6n/AGqmQI67gcEdR2piHhgFKg4+tGRkY6Z6elMZSpyBn1pdoPzL+tMCZTj5lOGHI5pSfNUsOv8AEKrF+d2Mr61LGwVgwOKYj1i8hLPARniRSfpnNWJzy3AzzTLmTamM/wB05J9xS3By2R0INWyDPvTyAepA/pVWY5umx2B/lU9+eU9eKrSHFyfp/SszRGfO22RSexrIyMH2Nal1wc/7X+FZDnGR6tTQ2Sw/eNY+stjVcf7C/wAq14fvVh6yc6sT6ACiRMdzU0U5L/UfyNey23/HpD/1zX+VeMaIeZPqP5GvZrX/AI84P+ua/wAq6fsIwn8TJSKbjBp1Iagkhuf+PaY/7Dfyrx/Xsm1XH98fyNewXP8Ax6Tf9c2/lXj2tD/Rh/vD+Rpv4GVD4kZSKdkQz0xgfnUhbdgngg4qtG4PljJzn86nbByc+9cT3O5bFZ1DMduMtgfjVkRiMEk+1MQD7Q5/u4A+tWZceUaEgbKikJEWUn1z+NSk7VQZ6n+lRMMw5XocCmuxMsagcD5jTETeWsbMVI59fT0qGD7kg/iKkYpytvUAEZJzUD3HkhpFTcS4VEzjJJ/+tUtpK7NKdOdSShHVs4YfD75yv9qcDqfs/wD9lXcWVr9it7W1Dh/IjWPfjG7CgZx+FQbpo5ik4QNICVZM4OMZFXVw4Rm7jj60KfOh1cO6DV+q0ad00V3Y/aj/AL1Rg5d/YVMCDcHI/wA4qtn5n/CmtmZPdC5xg9+asA4jT6gVWxkjHarB+6B/t4oQMmQFpAParCcN9FqCP/WDHoDVhOXk9gKCWOhyWf2wKUDAfB7j+dLD90+7Ug5Vj/tUDMy/jCPvI4Jxn3qW1ubiADZKcf3W5FXk+a2fOMFjnNI1pDJCGQbWGd3NN7iWxCbiCZwbq32gty8XpSCxjuctazq+CRtbg0G2l2Ehcg9x9KgMY38ZVh+YpDFmtJ7YlZYiuOp6ioB8rZXg+3FaEF/d25yX8wEYIk5/WntLY3AAlgML9CydKAKKTsnUhh78U9ZlyecZ7GrLaQzxebazLKucY6GqMsMsPEsbJ9RwafMwsiyGVs4/HFNOIyMGqqErnaSPoaBOSCr8j6U1MlwPab5WKbieOFp0uFO32IH04qLUZWWBuOOMfnUtxy49ga3Zj2Mu/PKfhVeY/vh6Y/pU96fuE1WfmYH2/pWZoULsjAPvn+VZEh5H+8a1Lw/KKySc49mP86EN7EkJ/eVh6w2dYcD+6K2YT+9P1rD1U/8AE5kx/cBokTHc1NCOS/1H8jXtFoc2UH/XNf5V4jokyRu4dgORx68Gu1g1m/KKqPeMoAA2hsY/AV1Rs4IxmnzHf0YPpXDHU9RI+7efiXFQnUb8tgxXOPVpCB+rUrLuRZnb3qO9jOqsUJjb5gOnFeQa6cQqP9sfyNdDNfXJUhxgY5zOP6vXMazN56KqqSd4JwQR09jSlZRauXBO5lqAscBHXJqVmGDxUAP+pU8YJzUjHG/8a4mdqCMF2cqP4h1+lTSB9rknjtVeB38yQkjnHX6VM0jbDkg49KEIZCcImR1PWoywEqkjnmnA/KnpkUzOJUHH+cUMYuQz8DDrnNQGATwiNmIwSQR1BB7VMGA8zjnrxUUTn5umBu/nQ0mrMqE5QkpRdmhiQNkSSTmZ1yoyoAUH29fepU+WBWzkZwBVcOQ+AeN2f51InKRrnr/ialRS0RdWtOq+af5JL7lohEO6c9gM/oKgHV8e1WAAPN6EAHmqpOM+5H8qpbGL3RKCArjOD/8AWpytwM/3if0qE8ye2KkHGAfU0AW4z87H0UVNESVc/Sq0R5kNTw/6psd2xQItW/CquehJoAykns1Jbfdz6Cl/gk9N1ADYuLY/7xNSo2yFz6io4P8Aj147ZNOfhVHqKctwjsKzlYFVeGJ/kBVsxxTuPMQEkDnv92oNmZeegVjUqHG1h6f/AFqQMjOmEgiJ8kdQ9V/7PkEwSRGUdSexFasUxPQZYjnNPmcERj0H5U4pMTbRNFGotkCMqngbfah7YzDYANgPzZqG3YGRTgkgdewqy+OJN5DZwvPFMNjIk0i3mn2bShJPK8Vm3WjTQIGRllU9B0NdO3zNFLwC3X8qikXdbRE+9Kw7na6gxa1l9FxjFTT/AHj/ALv+FQ3roLV26AJz+ualnICE9MqP6V0HOZV6fuj0GarNxIo9v6VZuOc/7v8AWq0vEqH1UfyqCzNvjgE1kev+8a1L05FZTcM3P8ZoW4+g+HiUmsLUjnWj/uDP51uIcPXPXxJ1kH/ZFKQo7l6JlC8Fsn0FSfaF7tIRVOLLE8+oHPepEGZAvYDn8KnnZfKiyJojwVb8aQXMOWxGeO571AMEjPakT7xXbzk8GjnY+VEzXKgEiIHFJ9pORldg69aglYLG2SAACTTGw8SkHAwKXMx8qFLYnVsZO8nH508nGSfSmSZ3RFSBkkn8qf8AekI7YqRhGhLk44AA9ulSNjkAVEHJ3AEYyMflS8iMlvvY5NAAFDRkdhzUTH96o/GphhY/lGfl/nUBU+cjdtrVTEmSyYAyB9RUUWCjEdD/APFUrsWY4GAOP1pIciNs/wCeTSAgRdwJP97+hqQD/SeOgAwPamKeSOgLnpT2YiWR+2KQ7jwAbaT3yapH7o+o/lVmNiYJ+g461WK7R1zgj+VPoJ7gp3rkdc1Iv31+p/nUCHaMe9So2ZBz3pAWYeVerK/LAB3zmqttySO2anaWOJXeZ1SMdWY4AoAswtiMfhTiRsb/AHjWWmuabGo3XsWPYk0x/EelqhAuck56I3+FOzEa8I/0LPTj+tPf5pEX2rEi8V6UkBiJmY47R+/vUbeLbLzC6QXB64zgf1ptajWx0QkBJI5+U/zqZT+7HuP61x3/AAmCICosmwQBuMnT9KkHi24cYS2iAAwCWJpWA7GOYBix/hXH60kkwBJY8c4NchF4muxIGeOIpjBVQR+ua1YNWtrwBUbY4ydjdf8A69VHclm+s/lwIqYyRkn+lLFIzom4988+oqjGSY09xkVIk5RW74ORUX1LtoaRYeShHQSU+IqY3jYkBGNVRIv2dVOM7/5GpbUjYxb+Niee9UmSzrb8f6HK+MAryPQ81auGPlIccFB/Sql+zSWUiEYY8mppHJtoz2KL/StzApyEdv7hqpKSZIwPQfyqy+QP+AGqTNiaMZ6gfyqSjNuTlM1lucs5P985rTuOmPf+tZJI3Sg/3zSRRID81c3fN/xOF/L9a6EHAJ9K5q+H/E2znAC5z+NKQovUuoVUgltuPmpd2Jsjn5Sf1qr5qnhiD+FPE+HDBjwMYAqOVml0XAQAaYrDLdR81V2uVBJZyOMdhUBvrWPOZ1BPPLinysOZF2QAxyKRnIINM3BEQc9OO9Z76rZjrdJ+DE1A+r2Q5+05OMcBqOSQudGs7MzRkYXBxyParH+10PvXNNrFkcfvnP8AwE0xtZs/78p+iU/Zy7B7SJ0qsiu2WXOe59qSSeIKxaRPpuFcm+s238KSt+AH9agbVx/DCfxaj2UuwvaROuFzD5fMqj2z9Kja8hEg/eZGD0B4zXInV5O0S/nTTqs56KgqvZSF7WJ2Q1C1Q5DMe/3e9QLqMKxlcOW+grkDqN0T98D6AUw39yf+Wn6Cn7GQvao6038e0ARnPfmkOpjn931965E3lwf+WrVGZ5W6yMfxo9i+4e2R1w1MBGTC/N1OaelwsynoCTn2riySTyTV/Tr3yGEUh+Q9Ce1DotLQSq3ep0zAj8afH98Een+NQxyeYqjuOnvUif60D2rE1LttlW/E1Bqlk2oWiqjlSnzAA4yasQHIP+8alRwEPP8ACaAPPZADIwbCuDgkdDTCpU9+KfO6rLIzDI3GmrgpuU748evIov3NOUTGaerZ4Y/Q0weo5HrS9qZJL060KXj5Q/hUYYqCOq+npTx0ypyKBFyK4Vht6N6GppD834VncH61ZhZiuGOTQhNG7Z69c2mwS/vogMDJww/Gt6y1KC/VxG4DEfdbgjmuLxlSufpSqSCMEjHQg85oGegySYCYPPzGnSTFYoAD0XNchBrM8WwS5lXBGe//ANetpNSgulQxODhPungj8KVgTPVb1t6M4H3lNKTmyt+2UTj8qjuWb7O2ByEIAp4/48rTuAiZP4Cug5ynMfk/4CaoNxNFj0FWbltqAd8Efyqo5O+I59BUlFK4PzL9f61kuNry+7mtO5PT/erMlPzv/vcUIYgPUZ9K5XxYjxwwuhIaWVuR6AV1Gev4Vh+K48rp6dxGzHj1NXCPNJGc5WRxiJNuyHbPrk1L5U7dZHP/AAI1ox24OOKsx26+ldioo5nUZi/ZHbrk04WLehre8gegpfJHT+VUqKJ9ozn/ALA3oaT7Ea6DylHaoniXpT9kg52YRtCPemG3I7VtvFxVeSH2qXTK5zKMBHSmmIitEx8VG0fPSpcB85n7KTaaumIelMMY/Kp5SuYqEUmKsmM0wpSsO5Bg5owam203b7UrBcjxSYxUpXnpSbaB3NDTNQ8siGZuP4WPb2rooTubk88YriyOa2tL1HaRBM3srH+RrCpSvqjSFS2jOmhP3vUE0uT9ldvRCf0qKJwAcnqOtTSKTZyKv3jGQPyrmZ0HnlwSfNIGfmI4qGBxFA8ofDKVGzHBz/k1YnWS0uXikGDuzUbxxuHIBw3UA457GqikU2+hLAUuAWjba3dTUjxPE2GA5HUHI/Osw3LoFjQBTGchgMEnHNX7W/WbEcoGeuD0P+FJrlGmpeoueaFJHK8GpZljyWVghzwp9PrUXIOD1pBYkUhunB9Klgb58HNVvxp8cpDZb86ZJpZG480Fs4Oe1QB8g4NPUg4OenNAEjn5kHtSLkqrKxBHQjrTXY7mI7cU9TsUZ60CPf7yQi1dhkMqkD60QnGl2ZPJ2Jn8hTL5iLacjORkj6022bdpNkevyJxW5h0Klyf3Y9ef6VWdsGH6Cp7k5jGfRqqXDHEOOvHWpRTKU5457NWXJ95vrWhMRtb61mOTvY+/9KEAjHAX3IFZ/izA1WKLtHAi4rRjXzJIl65dR+orJ8TuJfEV3/skL+QrooL3jCq9DKUA9qmTaPrUKsQRU0Z+ld6OVkufekzg1Luz1CjHaoXk646VRIjH88VExz2oLe9MJ560hpA2MGoZPu4/pT2Yd/rUTH3qWUhhWo2HtTyaaT1wKhjIWUVGQKnaoiKloojK80xl4qU0jfWk0MgKHpTStTGmkdamw7kRWmlalIpvU0rDuRkYpMU/HNJjNKwXNnSdU2ssFyeOisf5GujZv3XtjArguhrf0fWcFba6OQeFc/yNYVKV9UbQqW0ZQv5YZnvGlUeYSFGfaqV9p09gBIVPltz64q/eQKL541b5JJQpB6jJxx611V/pk8lrDFLay7JnIhOw/P8A7vrXDe0rNnZJ2SaPOJIkmUMDzVF1KNg8Hsa6nWPC+o6KFmktpkRjgF4yoP51nRaVdaj9nSC1llkuSfKRF3M5BwcAc1Ua0bXvp3E49ina6gUIWU8dm9K0TGpQYG5TyMHn8P8ACqH/AAj+rm8mtI9LvJZ4TiWJIGZk/wB4AZFNtzeWd79hkt5RLvEZgdSrhjxjB6GhuL+FjjLoy0QVJHUdOmPzHajPpWgmm3t5aXN5bWk8kNs22aZYyVjPcMelVjp94LJb02k6WzNsExjPls3oG6Z9qhVYN2uNx7ESuVPH5VPHMD6j2obTNQRbZmsblVuji3JiYeaf9njn8KW80vUdPRXvLC6tlY4VpoWQE+2RVKpB6XIJFbI+ppzPlsVSjmKnB/OpRJubNWI+iL9gbW4xk+9Q2Tg6NZ5POwdPrRft/o82PlBGf0qCybGjWYI/gH8636nP0GznMftzVG6basXtj+dW7k4iAqjc/wDLMf561BZSuDgNWdJ/EBV+6P3ueMf1rPlO2RwexpoHsWdKj3X8Kk5/eA/1rl9Um87VbyT1mb+eK63RcLPLM3/LKJm/SuEd98jNnliT09TXXh11OWt0Q/oRTgwHHrUOfelB49q67mDLG456n86ZuJP1qPdgg0hYZp3Cw8sCODUbEfl70E/kKZgA47kUhilueMU09eD+FITzikJxnipAaT7U0nvzTifXpTD6HNIY0jJphp7NnpTCOuaQxCOKbS9qQ4zSGJ3zTTgHpTqaeOKQxp/nTSCDwOlPP1pppAN6U0/rTz+lJ160hjCBTSvyn1p9Nb7p+lJjHwztNbRowB+YDJ6jtXr2tzztFrSGZ9ltcxNBhj+6IYqNvpx6V4tC5S1UKcMW6/jXo0/ivTb+J44FuVub+dJbkTBQkRHJVSDkgsc89OleDWoyqVItK9n93vRf5J/kd9SSVjY12WaTTbLTriWSchBLJ5jFiXcZHX0XA/OuZ1Kz1DT9S+y6Km6ZrUadGV+8CxBfaR0JbcM+hNdHdXsM2ufbSCLZSHUMOcqowD9SAKZo95a2l5LPfGcM8LBJIlBZWbq3J64J/OsvZOFK3Jqle3m/8gT7GS2q2AutW0+bxE9hNDbWdq1/GHZ53iJDldpBIycZz0Ga5F9OutH8U6lcXs5uZdNV5mlZixeThY2yeTlmQ89q6e80Lw0ZbxZTfLayJG0V0satLCwJ3LtzghgQM9sCuc17W4tQfUXjjaGW9vATG3VIY1wgJ6EnPP8Au1NCDhJxinZpXuvRafK+nR/jWjLvhLWLiHSTezzmHTdFgmVo0JAuZJtwVGGcMWJ69glbv203kl3ozyt9mXw9Cwtyx2A7I5NwHTO5ic+9c5Hd+GLjwjaaTdzapbTxSSTyi2hjZJJTwrEk5wFwMY45p3/CQaQNMe4ZbyPXJbCPTH4XyQq7R5qnOSSiqMY9ampQdSbkou97beej/N380JS5Tf17ULt/+EtikuJRHYXsDWmGP7ja5QbfT5eOKxvFGoXn9n6TpNzdTzmGAXUzyyFyZZRuAyfRCo/E03WPFmi6hY3q2cd2l7qssct55wURxFckqhByQWOcnGOlZPiHUotQ167vbfcsLhNqSDGAFVf6UYWjKMo80bW1+dkv8/zL0eqKJNAfaaZkMhYdAMkHtUbTIM5dR+Nepchpn0Tq0220mP8AscZ+lNsGzpFr/uj8Oag1ds25XOdyelJYy7tGticfdA49jiujqc/Qmuj+7z7ms+cklT6GrV037ofU1Rc5kXng1BRXujyx+tZ03LyGrtw2S30NUX++/uaaE9i5byeRoWp3B4xFtH41wpbCDH0rsdRk8nwZLz808wX8AB/jXFsT0PP1rtoLQ5ar94fnNAaow2M8c0ZyCRnFbmRKeoyeM0jN83tTeueeOtITzwe1FwsPyTwOlNLc9BTAew5oPfjmi4wyc8igtz2ppOTR1HT9KQB0ppzx6Uvv0pD09DSGNye1IfbpSnnvzSDpQAwikpxHHekxSGNPbijtmlPt0oJFADeabntTjmk6DNIBuCBmkxxSnFIevTmkMQjvTG6H6U6mtyp65IoGVYRmGP2arOTVWFvliHqTmrBz1rkwy0b8zoxD95LyOl0XXAVW2u256K57+xrdkQAZBJXH5V56PXNdHo2uZxbXT89Ec9/Y1dSnciE7G9typGByQB78CuQ8YWcVmkM8af6xypUdvpXYKQjDrsznA7GuW8bP/otmO3mE/pXJy2dmdKd9jlopFcfMeG6NTJ7fvn5u3vW7b6OLnQoZVHz4ZiPXk1juHibZIDgd6lNrVGmkvUoKCsgGOQelaVwvyAkjcynIH1FQPEHYHuOeKXP7w/SiTvqNLoQysyRsOqkDrVUkk8gVcuseWKqvwfwppiaPo7UG2wkk/wDLPFM02T/iSwZ9Cf8Ax40zU2P2U4POyobCX/iRQY9Dz/wI1t1OVbFq4fKY9zVOU7SjZ71JI2V+pqpdv+7Q571JRFO3B/GqTHL/AIirFwwx1qmzYPvimgYvieQQeH9OhOfnYvj8TXHlyRx+ddR4yYLNZW//ADzhGfY4FcsPqK76WkTkm7yHZ4znPNKPWmZOcmlB546ZrQgcefypT155wKYT+tKSCO9ADuMAikzkcdelN3dumKC2QeR+VADmIHTtSDnim5PQdKTn0oGOOKTPFJk+nemnvzSADyaPSkNAGOvSgBPbFJzTup9Aabz04oAQ0n4Uv0pM+tIYhHpTfWnHI4zxTe/qRSADTT06k07gim8460AITjjHFMYfKcelPJ9gcUxvumkNFS3wVi9smrH4VWthgJ/umrHaufD/AAfM3r/GIaM8+1KTgU3OD15rYxOg0jWtmLe6fjojn+Rqt4yINvaYPBdiR+FYxb86j1G7lntYIZG3CIkqT1+lY1Yq1zalL3rHW6YCmi24HTygaztR037YQ0WBIOo/vf8A161IYzFp0Bj6eSoYevA5+tNiOZBXLy2jZmt9bo4qaGS0kKsDjOKjVt0hxg8V2d9pqXccmQA/6GuQntXs7hkYHBPeoa0NozvoQ3J+UVVc8Gp7k9OarMflNOOw5M//2Q==", "path": "images/5pts_ADE_train_00001963.jpg" }
depth_point_85
images/4pts_ADE_train_00000978.jpg
ADE_train_00000978.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 191 y = 125),Point B is located at (x = 319 y = 175),Point C is located at (x = 53 y = 125),Point D is located at (x = 309 y = 145).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_17><DEPTH_67><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_17><DEPTH_11><DEPTH_71><DEPTH_17><DEPTH_5><DEPTH_67><DEPTH_70><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_7><DEPTH_9><DEPTH_1><DEPTH_5><DEPTH_30><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_17><DEPTH_85><DEPTH_54><DEPTH_82><DEPTH_78><DEPTH_6><DEPTH_83><DEPTH_73><DEPTH_38><DEPTH_27><DEPTH_20><DEPTH_53><DEPTH_50><DEPTH_63><DEPTH_44><DEPTH_27><DEPTH_9><DEPTH_57><DEPTH_23><DEPTH_39><DEPTH_51><DEPTH_50><DEPTH_63><DEPTH_58><DEPTH_45><DEPTH_44><DEPTH_25><DEPTH_64><DEPTH_44><DEPTH_25><DEPTH_48><DEPTH_36><DEPTH_64><DEPTH_25><DEPTH_64><DEPTH_25><DEPTH_44><DEPTH_19><DEPTH_19><DEPTH_58><DEPTH_78><DEPTH_49><DEPTH_69><DEPTH_74><DEPTH_29><DEPTH_74><DEPTH_72><DEPTH_40><DEPTH_69><DEPTH_72><DEPTH_49><DEPTH_72><DEPTH_72><DEPTH_36><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_25><DEPTH_58><DEPTH_29><DEPTH_69><DEPTH_16><DEPTH_55><DEPTH_16><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_57><DEPTH_14><DEPTH_94><DEPTH_94><DEPTH_END><DEPTH_END>. Since point B has a higher pixel value on the depth map, the answer is that point B is closer to the camera.
B
long
4
[ "D", "C", "A", "B" ]
<DEPTH_START><DEPTH_17><DEPTH_67><DEPTH_5><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_17><DEPTH_11><DEPTH_71><DEPTH_17><DEPTH_5><DEPTH_67><DEPTH_70><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_7><DEPTH_9><DEPTH_1><DEPTH_5><DEPTH_30><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_17><DEPTH_85><DEPTH_54><DEPTH_82><DEPTH_78><DEPTH_6><DEPTH_83><DEPTH_73><DEPTH_38><DEPTH_27><DEPTH_20><DEPTH_53><DEPTH_50><DEPTH_63><DEPTH_44><DEPTH_27><DEPTH_9><DEPTH_57><DEPTH_23><DEPTH_39><DEPTH_51><DEPTH_50><DEPTH_63><DEPTH_58><DEPTH_45><DEPTH_44><DEPTH_25><DEPTH_64><DEPTH_44><DEPTH_25><DEPTH_48><DEPTH_36><DEPTH_64><DEPTH_25><DEPTH_64><DEPTH_25><DEPTH_44><DEPTH_19><DEPTH_19><DEPTH_58><DEPTH_78><DEPTH_49><DEPTH_69><DEPTH_74><DEPTH_29><DEPTH_74><DEPTH_72><DEPTH_40><DEPTH_69><DEPTH_72><DEPTH_49><DEPTH_72><DEPTH_72><DEPTH_36><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_25><DEPTH_58><DEPTH_29><DEPTH_69><DEPTH_16><DEPTH_55><DEPTH_16><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_57><DEPTH_14><DEPTH_94><DEPTH_94><DEPTH_END>
191
125
319
175
53
125
309
145
null
null
64
90
41
15
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD12SwZGxG2R/t9arMjRnDoR9K2t4K/MBTSiSccD3rrjUa3OeVO5hkZ6flRtq7dxKJMIOMdar7MYJPFap6GbVhgU+lOCksBinYNKuQc96e4rXLtuqIAW61M8oA5PFUNx655o3Ejk1nyXZpz2ViaSZT90VEXOOvHpTRQDt6dafLYlu4p3DBNITSnnnNJTsTYKDQPu5wfbFR+fF9pa1EqtcqnmGLODt9R+Yp3CxIORz1ooGO59j25o4phYKKUYpSPRaQ7DeD0GKKUjtSYNNCsFFLg9xS7SSAFNK62CzIyOaXpU/2dwuWUimNEcZzRfpcOWW5CeuV6+9Id3G4L+FPAPYN9e1N4zTuTJBtB5pAOadRigL2Eam9FPFKDkkHtScMCPSmhO7FBJIyKYx54p5yB93NNKHr0phsNoHFHfFGe1A7jjhhUZGaXIpMn0poNBAvWkp4PFNNArISk2eppaDz1oExAaaRzTsUlBJv/AC45FOYDaMDFR5bHyrketSADI55rjPQZWuWwNucg1U29u1X5oBI2T+lMa3UetaKVjJwuU+expce9TGLacAUx1ANWncytYYRxSBeKdgGlFMBhBoGadmk6c0c1wAKR1pdp7c0oYHrSq2AQOtGpWw0528KW64XP38Dp+dZH223k1zSY7v8A0O98qSXyJIh90ZHEnTv0zWyGbIU9uwHWqcqeZrC+Y0b2xsmUxFc4JcfMD1xjI/Gs3cSZaUAopUA9Mc5BHYj/ABp6oSwGwnPpRFbrAiQxLiKNQqKBwABgCta1i8uAZA3GlOpZGkYX3M/7FNuACYJ70v2KYSBW6eorX68Y/wDr0mBn6Vj7aRp7NIzjYJj7xHvUTWbKQFJY1q5xmmBcnd/F7U/aSDlXQrrp8O0F1O760JYoj5Un8audeCeBQWUcVHMx2RH5frzimeUmDlRzT3kG3IphcHgmmrgVZrZSPkBqk9u6DJxitJ5AO5xUEhV1Ix1raMmZSSZQx37UE9qkMWM88CmEDqK2TMmhuMdKQqMU4UH2p3AaBxigg/WnYNI3AoFYYy55AqPPOMVKpO3nrSFR1ppiaIyuee1JyKlI+TAppXNO4WGUmKU8UHimR1G0UGlxQMTNJwe9Lxim4oJOhbbt4bB9BTN7DqQPepHjA6HrURUdCeBXFE7x5k46/lTGkJPAzUZHdTwKiYupyD1q1EhuxK0vPzDFVywLEjkU13JbmjoDWiVjKTuIe5pozUjDKAjpTdpJ4qhCAU5UZmGOaeIz2Ump4EKtnFRKSQ0ncRLORiDgCpY7NS2GBz7VZTczcEYqwo2jPGawlOS2OhQRT+wqWPJ681ylgumSfEu/aO6eS8lstoQzNsCqVDAL0ByK6fWNRj07TLm6kKjykLAE4x2H614IviNdJ8Z6BrEhZkSZ0uQvBKyMeDn0Yg/QUk5NXYtE7H0LHEFxgYI4xU+ePeokYnkcDPBByGHrTy3yj1qHqX0Bjz1xULSEnrTpBkjJpuwZ61SSANxo3NS7PTNKFIp3QIQlgKaSeM4p2xg2eoqOQlTweDQrPQTBidlVnkBGc/NTmLNkhCagYEdsE+taxiYtserggrmojuHBNGCeDwRTdzA4rRIm4488Z6UYHXApu5vSjc3tVWEB55wKbjPQYqQHI5xSZ564+lLYLDMGm1N8zDofyoWIt2waOYOVkJAxSEcVKYSvB5zSBFIIAO7oBRdAkyMjC03AI4q6LKTC4x05zVeSMq2x1wR3FHOmDgyDA/OmlMVJtYjO3pSMCBkAk1aZOxEV74ppGKm6/Ke9N2889Kolu5HtpPanMhx7UhFMLG6XBHNQlwzYJxQZAf4aiPzEkdK5FE6ZMJRtHytx6VAeTyTUvOOmKTaO5FaKyMncjwM9c07y+26nMAvYU3Jx1qhD9gxjdkelLjBGBTV6ZJp4+9kc1LKROMqO9TKqlcg1BuOMHBpecZzismi4uxYXCng1MWymSQONxz6VSBbqD0qC7uS4EK8NK2PoPSocSlM4r4napnTLSyVtv2ycOf8ArmnT82AryDxOxuUjuZWzumI987SR+AIrtPG2pf2l4huvLwYbMrbRZPH3csPzBrg9dYnT4n+b5JgT7cHpVqOgH0T8Pdbj13wHo97HkEQCBy3d0+VvzIJrpt/0rxX4EazmXVtAldnYYvLcH7qrnDAfi1e0MOQDgVlbU16Dt4PWnrg9CBUBGKUHA4oaJLBYLwBSgr1qAMQeTSFu+aXKO5YyD9KYCpJGKgEppwm9f0p8rFcl8tRzkVVkty7Eg1J5vuKGVyuR1oWgmkylLbyJyRwe4qIKScAE/hWmkGSGeQ/7tQlG+0HB2jtWsapm4FeGzd8lgVHvTzYF/uvjFX49+MFs/Wlxg1DqSNOVGcmnytnLAD1q5BaLCDkBm9SKmBxzRuOev4VLlJjUUmNY9tox9Ki2KcgfyqV80zOOc0khtIgNnkg+YR+FSrbhGBUDPrUivxgmgyAY+tVdishMHBz1qvMgYc1YDAkjPFMaMEZzQtAbKvklYmUYKnp61TeKRecYA9a1BtPfBFINr89vetFNozcEzHPIy3BoypHFXLl41BwvIqkeRxW8XdXZjJW2AfUfSkMannpTcd6Qk1ZFzZBUNtxwajeJMnacVKQDgjrULxOSSCK5kdTRGsecqWz7UhjRuBnNPCFVO4c+1CyhW5GfaqM7DfKkxyhNMMUgP+rOKtJOGPXntSicyLuGNuODU8zTK5UysqHOCvSp4o1dCelIXBGaRW2jjvTd2CsgeNkxtI5p21h15+lN3jOCMmlDHmi1haCOwVc8474rI1K/Wxsb7UWIIghMg9zjC4/HFX7yQhPJVsFu4rgfiRqDWnh2DTozh76YK2OoRfmP6iobTdh20uedGaS5tg0wy7sZ+eu5zuP8zWVrQY6ZIxYna4I9q09wKEqpGcjms7UEX+x7sNkMUBPPfcMVpYI6jfBOuDw5430rUXeQQeb5E6r/ABI3H5bttfV57hgoNfFvLK2XZSV4I6huo/UV9S+BdcXXfBGlXzlmk8kW87MfmMqYVj+JBrFrU0vZHVEEjpim/hUYmYH5jyaaZ8dRTUWTzkvOelKB371GJh6UhlHXFOzDnHFSDk96bjuacrbx9zNTJET1xSbsO1yGNS3SrgTGODSrGAOBj3pSazlK5cVYaMAdqbtBbOMmmMxyOMU4Ng5oSBolHAPY0mBjmmBwWyDS7xSGB+UcVHvIY8VIWFMYgmqEHmetBIPpTGqPcBxmqSJbJsZ9qTYcetRCX5qnU5HFJ6DRCcA8g5pPNYjGMVLJt/Gqb8HjOKEJskBU5z1FMaRVGc/hVd5GQg+tMMhPWt4wM3MSQ7yc85qLBHSnE5PpSDPY1qtDFu7GMMUw1Y8l2HBH0qMoUOGXmncVi75+RTPNJ781DnBweTS7CWxnms+VGnM2SebIOQ2fagncMk4NNA+bB607H97kUWsJsz9buXsPD2qXoJ3W9nK4CkbiQpIx261bs/3djaElsmBSQ3UEjPPvzXM/Em/Om/DvWJFIDSxGBR7Ec/zrp4EP2O17Zt4z/wCOCov7xSWlybJIA7mpFjlIwF6VEpC7c5yO4rQgfepIHTsaUpW2Kgr7kH2eTBbgewqNg8UZZoztHUmrwBOeeeynoeOlee+Nda8WRau+naZY2UFikImW+nk3bux+Xtg56+lZ+0tuW4X2OhYGW7LucKR8ua8u8b3iat4lPkOstvbReTE+eC2cv+uRTZ9Kur+4YeIPF1xIMRmSC3/dxuGIAAA9cjn1NcXqGn6TDrF3axQtA6MxjR5CSEBwST3NZqqr6DdLQ0Xt5Admxj3VlPyge9U722mNjOjRg7k6j2rK3aabH7UJZUh83y0y55b029uM81P9lt4jLELm4AQB3RJjuAbofyNX7ZgqdjnwjYUkEHrXsXwM1XfLq2gM7MSBeQAnhccOPzavLm02UIGSeJ0JKokgBBI7Z61d8Na9L4S8VWGrSRSqsL7ZlUjEkTdenbODz6Uc3UdujPqs2sgwVII96QxgH5hg+lT2l3BfWNvdW0iy208ayRSDPzKRkHn2qVWUvggDFHtGL2aKQhkY7iny1KlmM7i3H92rZP5Uu5SuBQ5sORIiWMIPkFSq3HTmkBI703d8uKncrRDy4AppYN2pjDj1pn3TTSC444U5IphcHtTlO4c8Go3AwwpoGw8znlcUok7moyCMYpp9e9XykNsm35Oe1Bz1qNWOBmn+Zx64qeUakhHPvUTtjvzTmlUnJOKrs+Cdpq4xIlLsDSAY3Nip1ulj75FUX3+1JuPQnNaOFzPnaLrXSs1V3nLHFQkndR2qlCKE5tikliSabnJpc4puMVRLYpppIxS0YFBNxQccgnNBbd1Oab3ockLkHFKw+Zhmng4+tJinY78YHWkUOHBBpynIBweewqM/L94gf7xxVPVNStdMtGM0gjuHQrHGx+bnvgc0mw3PNvjfq0S+H10xZAZpHGEByRtOWJ/A16h4eYaj4d0u5ikEkb2iAODnpxXzt45l06bULSy0ZVWOyRlnfGN0p5Iz1bqOteh/ArXoodOvPDcpf7SsxubcO4w8ZABVOe2CSPeueUrO50QjpY3PiT4t17wfc6LbaDZWF3NfC4aU3gO1FjCHdu3qFADEksccdq5/wb8U/FetfEHS/D+s6dpEMF4kknm2gZtyiN2BRxIykZTGRnoR1qb45XlrF/ZVpd3At4r+0vLZbgqzLEwktpASACcEx7TgE4Y8GvOfhULWH4u+G4bW+e8WKGdXkwwjDGKZiIwwBC8jqBzuPes222Wkkj6p2gDP+RXkfxLv54vGRiikCRQaJK0oPSQOWXGPxzXrDPnGCADkZNeNeNbW/v8Axlrkot1jtfssdh508qqBnDkoM88HFEtEC1ZwHhLzLy9hiuLl5DJbISJeuEcMqj/vkGqt1cFpNUumQHe0ig9wCTzXXaNoNloqShdUkS6W3eRFVMtIAp+7ntjuK5yLT7a6aS3NxO1w6CWSEZxsIzknp71jCXvGklZHEKP+JTbrwWkuAevPSuqUYgaUxAyZAZh1IHAxUS6TpM4MdvMsoh+YCNvu8+/WrCRb4TNb3paJ8qrADkjqMdhW0tSEYd1NJBdgRBNlvG0irJn+I8/qavqpk0+FZl3o1ueejFyQB+pqO80e6cPMFV/MTZ8jbs8g5GPpViJ0lmt7cZE5ljRkcYJ+cHA/LtSGfT/hK3u9O8IaLYX6BLy3s44pIx0UhQPz4rbGMng/Wkdd0rYPBIP0pjA5zzVJEXJdyg8g0FgegNQk4HfNNLbcf407ATFseuabuyMcimZH97NJ8uOtNIRIrkcYNcz8QvEd34V8E6jrdhHBJc23l7FnUlDukVDkAg9GPeug3Vw/xfCSfC/V45JREjNbhpCCQo8+PJwOTim1ZDRwulfGHxrN4i8PWOp6TpEFrq88AR4433GKSQLkfvTtODkAjuDjBGfeCiMPmNfK2m6/p2t+LNCihghtTaeILX7GqeYTLAzKhLFiQCoihGBtHJwK+pA3GCMevNTG7Q2P8n+5UbDDYOc05W29+KPMweMnPrVa9SWQy78cYGKgErAe1WWQtz0z2qrKjAnjitYNGUkHmHHSmMSetIDx70H61qkZtjTz1oooyADTJY3nNO7UdcYpPUZA/XPsPek7Br0E5OOKU4zjOadtPIBwVyX5Hygdc+n402Ix3EaS28sUsbDIeNwysO2CODS5kNJ9RCMUVIyZB9utMxjimmJoYTzQTuGKdgUm2quSXFtgB8+c+1NMOxh3XBJB7VPGcyk7sin4LNy7gA5wDjjvXO5NHTyqSOI8T+JJdPWbT9OdV1LyiWkYZ8pj93iuQsJrhVgmvIfPvBzNMudrH8c4qz4stNT02/1fUtUvdO0yw85c3KoZ3YNwuxCDhuDnj0qLTdE07V11ea41jUryPTnaKQJII45GChg42YyOe/pzUSqpBCizxaa6lnu7i43Es87Nj9M/pT7XUJrO4tru1eWK7jk3rNGcFSOm33z68GtK8s7KLSlvpo3C5xhcDOWI/GoDp8JljjguMPLH5iRsMNj0z+FZ81zflPX/AAvqehfF1YdO8X6fHNqumxs8RSWSNZVbG5sKw+b5RkHPTjrXbaN8MfCHh7VYNU0vSPIvYQxjl+0zPt3KVPDMR0JHSvHfh1oV63ieOS3kayjtLZ5brUVYDyODtyG4K5+8O464r3vwtqVzq3hfTr29jZLiaL51Zcbscb+gwGxuHbBrKnV5pWt/SO7E4GVGnz8yeya10bV166dv8m9Ag7hnqXGT6jNeGeMrma61HxZqYYIsDrZoG+ZCu0EnHZuTzXu4wJEDZGDn5a8H1GGTU9B17S7DdLe3mpGVm8soiR52gkn73IxxWstjz4rUi8NwufBb6nPPJI9tppijQ4IjHm8FT1Oe49zXLJAG0yd5JJAzDzRsbHOMYJ7j2rtTp1/Z+Cr6y2QR20YSNpJpBvL8ZKqnGM+tcWbS5ezFvtSNQMIy5DH1JHpWUGkayuZGkW4OmSSPewbZbjabaI4lRgp+c8cIenfkitZojCsgUYYxrggdgMYx9O9U7DSDZLK64kd/mWToRg/dPt3qxdSyxWiXBhVS+TvMgJ9wB6Zq7EpGZNcXdk9ha2p8uL5pVCDLYJ+6c/WtiyklvtZsIhDGJvtsb2w6bT/EpPc9fyrDmd5NQjujE6xrGFLdPQ/hXV+EVGoeOPD8cTqAb0SMB2ARufxoC59LswWRsHjJGKTzMLioCw8xiM8uTQJMZ6VuomTZKH9aMo3FQmX2FIGB9vpRyiuWNi4qPGT0xihJQOvSpNyk+lLUq5ER2qlq+i2HiHSpdK1O3+0WU7IJIi7JnDBhypB6gHrWkYiDkdK5bWjeX/iqx0H7fdabaTWzTtNbkI87hgBGjEZUqBuOM5B5GOazqVOVXN8NQdefLeySbb8lr/X6LU8b1Lwbp2hTw6ppcf2a5t79Wt3DswUowI4YnPNeseAfFeo+KI9Sj1OC3WW0kVRLBlRJn1U5x+dee6vK8Wm3FhI7zxwX6iO5Y/eyBlOnLLjk9fm7V1/woRFi1tkPJnQc9e1Y06nNqjTE4f2E+Ru+z+9XX4M9KCKQCcDij5c0RkH1JHpQUXljgD3OK6LnKyNsA8H86glkO7BFMuNTsbXJmvrWIAZw8w5x2HNY9z4u8OwuVl1WPcCAxQEg9+v6VUZJCcJM0Sw3cd6Ov+Fctc/ETQYSRH9quS3QKhHfp9O+az5fiWMYt9IkxgkNLLj8wDWntUjNUJNncYo2F+ACQehA615lP8SdZkUGGG0tzuG0ou4j1+9WS2peItWnkI1i82s5+VJnQ5JyAqqeR9Kh4hFPDSPZNg+65wQM7Nw3EeuM9K5HxL8RNB8P+ZAJWvb5AVNpaOCqnOP3kmPlz7A15Hr+maxp+qqt1dXJaSIsPNVlYjPIyeSKxIL1bUyW7wJH0IEa/IOc89z+FZutzFRo8p1194l8ReJ/NMmy20yBvk06Bigc5xhm5JOMjPQ+ldH8MfFMVrq114WugYYnlL2CM3ED8lofx6j2FcZBr8V04n8pIZSu1g/Kle3zDke2aq67bMRBqlrKqEsNjxqMxsOd28denrSje5TinofQOoa9pWlrC2o6lZ2RmzsFzOse7GM43EZxkfnUFp4m0HUbtLay1vTbm4kzsihuo3dsDJwAcngE/hXjvibX7Hxqnh2fUIY7i6tbPVHu7diyK0sVsJEc7SCAzIDgEdKzfhzbWknjbwrq1raLZtcy3sElvG7MmY4Mh13ksARJjBJ5U/QbKr71jJ0tL3PoYtg0uRimkHPPSjjtXTY5mtTUTH3kHPpTo4HaT5mw2OvpUaOinIP50k1xMkErQJ50yIWSLeE3nsuT0z61xu9js0R5V8XFu77SpLOyglklvL1VaJBnKrjk+g5Na98LSx8GSAI0UVtpTK6xrhg+Dy30rPnv/G2oXU7pYWGlh+P3k25x6jg84rK1Xw7qo8Oave6t4nnleK3JW2t4wsbk54bIzWF9S+h5jrCST6QIId0vz5kIHKqORxXRDwxpzSaVe2V9GNT+wrLe2rAlVbcwDBu3AGRjjr3rFSG5iljKyMXOAqr/ABH+7kd67nRZdC0GB9P1C6jttTuE3XT3cXlFA3GAxxuocrFJI1fhpoWm6zNqU2p2Sz/ZJ1EfmMcBuDjA4YfXivZYo4ooUiijWOKNQqKgwFA6ADsK8p8M6mvhXUru1vlVdNvGDpej/lkwHG7PVCMYPrmup8QeM4tM0Q3mkTWOo3UkixQW5uVHmMxAz19+npRDkV5JFVq9SolCUm0tlrZeh091cx2sTSyuqIqkklsAEDjk9c14vcy3M/iaK6dCgW2ECO3GZGnJ24HB+U5+lQXlv438SXYuNY1CytlRwVtdhkUAHOABwfqaZrNpN9v02K51UuxlX9zDGF25bHcZzipnUT2JjFrc0dUuLaz8MX1ql3G0kd2Flz8hL5ztAPb3z0rjDe2M7uJr3cqk+ZbWQL5Pu2Oa9CuPDGkT37vdW0l66KUBvZGfIz6E49q17C2g07Z9ksLe2IIASOBFP4kDkVlz3dkatWPCkv8AyLl2t5QYWOTCwwAOwHoasXV0byGJNuWaZYyv93PIP0qz460R7LxhqkdraOIXZZSIfmUOwycEcjk9KyvDUf2rxVpVqzspefa6Y+YAAkgj6itr2RG7Ok8Q6UulX1ra2reVI0ReUAbgzZHOPTmp/AlkT8RvD8kMeZVndpivGAEYZ9+SOKv+PHit/GYhjBCfZwASc7emBnsPauZGkeIPtKSxr/Z7QyefFPcXAt29AysSODnPvRFhKJ9MowYfLz+GKXk1wHh7x5cW9i6eI5re7u4wojuNOG7zTj5t4HGc9xxVqb4lWI3NFpc7oB99pAATXSqqMPZSO1wfUUYPrn6CvOJviZe/J5OmwICctnLYqhP8QNblCqHgiGD9xDnmpdaI/YyPWQCfl2n+VNeRIvmaZIyeAzuMCvE5/FGv3Eaq2pSlD1AJGPas6W4uLhykl28oJ5+c/nUuqjVYeTPdp/EGlWqh5dQt0BPG07jXOa94n8F6pCsOqILxQQqgR/MpJHRgQV6DODzXlKRlcnaPLYbQxPIxT44ULwwlQoeVRvBwSc1jOSkrNG9KMqTU4OzXVaM3/GenxWHhyxtbWKOHM7HCj0C8n1OMcn0rM8JeJb/wzYXttarGzXEolEjjJXpxjv0rb+ImEttLQkEtK+cDg/KtcbbbQrSD5nzgD1qY+6tCZc05c03ds6S58beJrhvl1A/MMCKMeX3696yJtV1GcSJPc3LOMF0ebaOueoFQmJUDZyc91PQ+lV5Lm3t1eWSQRBscNyTii8iuWJOVViJN/mA4KhgTg96SZ9ygCLYCcbwOlQQ30V0JHjZ/lIUlh/IVOEIR5CSy9sEAfX+lHM0WooaFbcwkZI1HUkZOO5pltewXhmktBMIBIIgZRh2wOT7Lmr1tB58yGVlitd4Ek0jbVUYyRu9aqD7NBdzQQ3UUyTOWhVZ1clfQ470Xe5F7Ow5QCTuDYX7pUcMfSu9+F+myPrt9qBVRHHAsK7v7zEN/LNchawCJTcyHakQJUd8D19+1d5Y3Y8J+AZLy5bE90DKnGTufhFPuFYH6CqTJqHHeK9T/ALW8Y6nOq/uYz5EbDj7p2tj8RXL39hbCJz5MZ9zVm2D7VMxAfJ3NjOWJyzfnUGoszRyh2QRMm0b85/CnYz6HOWlrCbshJ44woJ2nkfjTIr+a3MrCzVbefJ8tWJU+/wDnFUnhkhkCFSdoHJHNdJp8CNE8Ui5Rhklvp61d3YjzOde5u7G5j1HSpomaKOSNzJGjAK6FGUo+QwKsw6GvQ/AfhDxoPGmha9q+npHpkUMhjkjkgSNEeN9u2OM8ZZs8L1OTUPgew06y8Rx32pac2pWUNvvcNbecLfOCHOP4QM5JBr6BtbtL63hu4WWSOZFkRtuMqRkHB6cGnTlGUtHqi61CrTpqU4tKWz/r7/TUqYDDgZ9T6mjYR2K+9aBjRm44PtTtuBgjI966/aHF7KJDDcW1wqmCe3uAf+eUqnP05p91J5FrM+whkjZgGGMfj0r5Dt2a3YmCWWFvWGVk/kRitm28V+I7OBoYdfvxE/yskjiQEf8AAwTXM5X3OnkPbo5Z7mKKSWRnDA4IOQT9TiuZ+IE5h8JFIZSDPdRqSM7QAec/TNcNZ/EPXrS6nupjbXZmVUkSRSqgLnGwKQFPPJHWrOtePF17TrS3vdE8p4LpZma2nJV0BGVwSTk461i4l7Gz4M0PEUmvXUW2Z0ZLCMjBVCMFz+uK5fxQBP4nu4igYB44QO3PP9a9MsvENhqV/aWNlBMEYBVZhtCAD7v0rzW8bf4muZozmT7aCoOCCQRWdi1foer39jaXVl5N0gkSJF5X5Sh2jp/hXOtbCPUDY6larPI6b7eR4j+9Tt04B7fhVefxNq7ysUlg44wIxzWdNrOoPtzez5DZ2qwyD7elCjoX76dzdOlRRR+dbS3Vg/3dySgqp9GU4zWNqFjfLqK3MutWFx+8jaRpMiUhSOPlBHQetUfMlaXzPnlwSW81yfxIpy7VX92igEH5wO9KMVHQp6nav4u02IDBmkGflEUWNo78k1Tn8awlgYbKVsch5Xxzn0Ga5sJtO9pNwYcZPSjaJBkqEA+6QcZ/CmklsS1ctXWqrdXc90bC0E87AO75boOoHGK0tAnvbnXrGJyqwKxZiiAcYI/nisiKOMOXfBYdMsCPpitjwz5k/iKPHylVLMgGBjNEnoNQtsYHjyT7V44v/umJFiUcfdbaM4qQQBVACF0wMuT1P0qh4mcy+KdRw+T9oUYHtxUuo6nBZyFGnAlIHHp9BVKOguZdSSZIInAWI+eeVSPj8D/P8KnVDHGEeV2I5+bkmucGq3t/Nt06F1Q8tI4wSfXPatPT7Oa3Qi4upJZmOcjkD2BoGnfYvmQKCoclT/F3phjUMXY7iaeCu7cgG7+LNMAMcrNhiT0GamyKuxAEZco2CD2GKkYhEbBBJwOnSmFuFG7KnkkDApSE3khSpHPB609CtQ3BlyMDafTpU9ntOq2SiIvm5jGT061W2eYSxYk4DbRV/Rv3ms6WiEEvdJxnGOepqZMXQ2PiU219JXoQ0rc+m1a4aLULWzhkWeUIxYkHGePYV1fxdvG0+XRmeN2ZkkMaFe/+HtXnFjoGoXs/mXZ8kPyQ/X8PQVUNtTG7excm8S3GAtjCIiTneRkn3AqO10i8unEly7IH5ywyzf4VtWthaWGwIqnHBfO5/wA+lXhjymZ923dgbev496q9jVQuV7OzWyhKwL5Ls3XO79andVBXhtyU5kWKBt2zAbqGyVH0FXNPspL2V4YiihV3F3B79qh6lO0Vci0zSLTWNWtLbUTtslLs7E8RDaefr+dU4dK0nT9alFm9vOYGJhkifqp9B1zg8/jXR3uirBBa6bvUm8je5mlkDI6FcgCMZ5B2gHOe5rgBZJaXyzQqsUyuQZIwSRkYzz9aqCuc0p3d0dvo1p/bniG002INt3efcORgCMHgMfcgfhVrxt4gTW9YFlYSIdM044do/uyz4x8vqFGV+ornovGN3b6ZL4fsrO3055R++vYyWkuF74Yk4yOD6dsVUhWNII4oGXYgIIPGPb/6/etHElybHxNmZwCcspJBHvTLuVks5y64+X734imwuDcYTaRtIBB5NF63+gzbSSSuGyOOopR3E2zAuFaSc22xQdocSD0x3rQgguFKhWP3c88g8cVnvgXzYUiRUA3Z4I9K2reRclT8m9AMdhxVysiUzoPAV3e2WtLHp9rFPd3tqYo/Nl2LGcjLHjkA/wAI5I6V6Ibu2+HngFbq9WeaGxRfOEGGYs7gHbnaMbn744968m0nUBpeq6LqmGP2S7UyAHA8sgg5/EivS/jZcQ23wv1WKQ7DcSQRw997CVX/APQVY0qcFD3kdOIxc68OSSS2bavdtKyb16JvZIytM+OHh3VdXs9Ot7LVVmu50gjZ4owoZmCgnEh4ya9J85u54rw3WEuF8bQfarzUpWbxjAYItRtigRPMk/492Ltuj+6GwAP9X0r3hIDnJANbwnfc4pRtsfITKQwII5p/OCxUsF647UKGBIZcZ6UilgxQEjd8pPY/WsLm4m0Fz8uKmtomnu4YuNskgHHHFQqfl4BG7rnp+FaOjL/xNI3B4jQn8T0pX0Kitbs9A8JQx/8ACRRMrlhBG8hBPTj/AOtXE2r+dqodycSXDNn0+au38LSJbtq947AeXYSY+uDXmcF9NDNDFYgz3eGBUehJP9ayhqXUfvKx1ks5ORGi5UkKzNtCj1JrPGp/vhFa77q6Y/O6khBTItIur9ll1KZlU/8ALCI4APvW1BbW9kojRI0B6Knf8epq3oPVoVIPOYtM4EgAzjpVhU8leCduMEA4pI2yuHYb94GCwBxn8qUlHLA5CbsEscn8Khj5WNVYwQAHKnszcGpDsBxjcw/h7j60jMEjKBMqOhoztYHoh6EUhpDzIGCkDODwCvSuh8GhpNfkkZQCkXO7gHkdzXNEybiNuR6g06ZICT5kP2hmX7rSugX3Gxhz9cigLnJatNdanr2pw6fEGDXsu6XPyr8xwM1Zs/DsUKiS+d52GCMHAz6H1rdjiSKLEaCPOOijB+vqaaiEuzFuD/GD1/Cnfohcq3Y9V3L8iIIxwNvQfhSj5CcsMegIpohAYbSQe4Y7aVjEhYDywo/iPX8Km7NFYAxYZKcA8Z70hLKFUEZU9QeoppniRTukU4+6aj+0xJ85bcU4Py0yU9SdtvX76+g/rSRlh935sKcjHAqA3IUHCZ+lJ9pdl4jbjsTjNMHItKd0hOMKRzjjil85oZEZ5ZFlVs5hkKyH6P1X61nSXzBMF4E5yAW5Wohq1pFLvlvIA+7ruFPluVzKxqSWdtJOLpLcAgYVpJTK2P4jkjP6U1lCyABfkC5+UDHNY8mv2avu+3Lvz95Fzx7VF/bVq8OU+0OF4O2MgUuVk8yRuK0IzG2F4PSnl4xIHYsWHRh6Vy516EtuW1uDj1wP6VKdUuCgkW1hVD0MkvP5DFFh3OgWVS24sMK3y7eePTnpW3oOnavqj3D6RqFnYmEgPPfRghieyn6GvPnv7gTKtxMIYmX5kgT5mHrk5qtd6pHK+21e/HPO+XIIA9ABRYicj1DWdF8SR6hZBPGFm7LAzTMk4XbyeFz2PpXEanb6nATK2srdvEQVDckgnGAe+BXNvfyMyxPbKV3g/vAS2fz/ABp63FvH5ZZJJGR87gxz16Yq1oY6GxLJqNvInnwR3ULA4dfvLVuLUrZ1VS7W7hSMSjGfxrnpZ98rPZPNDnnZv35JPOatfartomaWG2uY8AELkNgduTVcwchuWkjJOqDLBVwCr9RS3bZtZoQxTgFS38I681zBntxJMWW4ti4/d7ySFP4VPHql60Ri3Q3Slcbhyfz7fjmhdyWrDpGkEpuHQiMp1/rWzps4dHHyuNnA7jisJC08MiIskexfn38qB9au6Crb7l8KqkAoA2d3FW2mQjVEYntYo2OIXXDhu5//AF4rofFev2Xij4aaXoV7dmDVILlDckIpO1FK78FgDnORg9jXNI6pBAqnlvvIe1V7+2sryXzZerKFyoOEwR14JxjPHbNQ5KK1N6NGdafLH110SS6v+vxOt8J/BayXUNI8Rad4ujv7WG5juYvLssCTYwbaT5nynjHI4r20TkcGuS8A+I7HXdHaO0tLey+ykRmC3UhOn3+QMZIYYOSNvJrrdwK9ARW1NxcbowxFKpSqOE9/89U/RrU+RSO5YAHstOwrqMLjHrUBlKqA8D7exXmmi7jDchh7lawumaXJ9mQ3Y+vpW7odukdpJO6gGV/lP95RXPh1cYDqC3HXFdFFqdlZRpH9ogXands5NKRUWrmylzdJY3lpa3LRJdr5cqRxDLoeoLHkZHpVe0tLfT4/LsoUiyvzEDJPtnvWQfEFv9/7UgB/55jJqNtetVJZZLhw3JCxY/rUqLLur3Oi2A7gMkYzgjGKXKKAchCCMrnrXKSeI4jkCC5Zf98D+lQjxBM5fy7WOLAyTI5JNOyQc66HZ+dHuYiQKCe9PF3bqSomVj3xnNcJ/wAJBf5A2xDscRkj69aeupalNFgzMNzYAhiAJNFkCqHbG6gzmIPIe5VSMVEb7AJWBiR3HT8a5U2Or3AXL3R3D5RwOffFUm0693kSNIdpwwMhGfWlZMHUZ2P9q7VO4wox/heQZP61Xl1u3iAMlzAg6nHzEH8K5ddJLMMmND/tyZqR7GKJctPCwzjgdKVkJSbNp/E1spLC5Zt3A2oTmoD4gt/vAXTk/wB1QP61QisbRR896GyP4V5+lTRWdrIAFa4Zh/djzmi6QOTRIfEKmTCWlwSf77Af1pBq05BItYcdw8xJp8dguA6WVwQAcsy1q2Hhp72yN6tk6RBzGWl7H1xReI02zFGpXS5ULbqo5ACE8/XFVItT1C45F0QQcMscfzV1Mmgt/aUVmLN/LG0vLGCxz3/CptJ0yz1DXdXTT3SeWAK2yBefLGdxA9RxkdqFaxPU5KQahv2yXN0pA3YPH5VH5E0pGRPKSDkM+c+9eh3ng7V7gxPYh/LkByz4GV7Y4PFLZ/D3W7mGIb1TnOS4GP0pKQWszgE0iScgLal38ppFXGHO3rmnrYSoybIo41k5IK4KY9a9X0v4f3Nql5DPcW0hlA8qRZeYzzn8Krp8OL2+aRlktnUAKSWODj8an2l3ZF2sjziPTxJGx8xABj7xCgn2NTHTAThp0Yk9AwINel2/wzd5XjGr2sjIRuWILn6YOafa+BLN8FtQuME5V/LUA/QYolUUdwXMzzi30Izyx/vt0jHOza2MD8Kvf8IqUtfPm8wxbwArL8uCcDk+9el2ngmyS7iEVxel+gJYDOfTisq91zwDaRz6c1/fajJvCssEZk2kHkdRzTWuqE3bc4q+0dNMWKCeL99cMWRgyYEQGduSeuQTUuh6TaTpLOqujsTHIjTsqn0K7cj0r0e1HhvxNpEGo6bbyy2yzGA/aotrIwUDOM+ldDYWFlYqVhsk54ULEMY/Gpbs7BpJHi/iqzFtcWBMdm0rW5TCBm2IpJBPHLEjGfSuX1GKGOFBvDGQBmjCsAD+Ir6C1BIJNbt5JNPClLJ9oaMHOWYc+leb+I4o5jtktwUUEEEDP6VcZLYnlODhlW5L/K0Plx7i+eMDioEnVlHlzK6NyCRyKvXtpBuxHuhGznPcelUFtGJcBkOMDAxhh1xV6MlNxZJFPM0zC3xsiTzZB/e5xnn3NVJJTNM020I+eSBjbV6CCUNdzSRfN5HlgA4/iGP0qGytJWVgwbzBxyvA7U79Byd0T2WtTWkzvPumBhMabXwVYkENz16U9ra1khF8JlRggacqcDcepUHp9BVS+sJre3YvEQFxuYrwp9RVuUR3Fu7q/BgUqccZOM1WxmiOK+cMBBeo0eMgTDaW/GryXhkR/tdjJAD/AMtozlD+A5/EVzrRXG0ySBSAdvTjFTx311ZkwrcFV252/eXHpzTspKzNKVWdGXPB6/f96ej+Z7d8Ib61NprFijxG6SRJOEwwTnkk9R/ifWvTTyPp/nmvnnwJ8R7fws9ymp6b9phupVdriBgskYGf4SDuHPTIr3zTr2HVNMtdQtxMILiMOnnR7HIPTI7VtTSiuVGGIlUqzc5PVnykzIURmhj+cnC428U1oo2hDEEbuyv0qeY+TbmXCljIEXcM4zUMUrXEjI8UbCMH5xwfyrkS0uav4rFC5hw0QXli20Ainw2rSMVAJIbAKrnFPmj33cK7yo681p6Vqf8AYt8sosPtXmoFaNn2jJJAI4NVJtK6BJX1KcelyuxHk3JYLuyEPIrR/wCEcuhhhZOAcDLuvf8AGvYrfTo0iZ/JTh/mULwBtBx+tcz4y1fU9J8VxaHoFraMyQpKFaIszOSc856AYrBVZT0iXKCRx8HgzUZY2ItIuOn70EMPUDOeK0bXwRclZGYxqVXgLbuRn0Y4wK9Uty7HcQqsWUnaoUA7RkDr3zXDfErXNY0+6t4dP1Ga3gey86VIgAJGDsAW9+BWcJ1JSsVKMYmZqXhKTRdD1HUbwTm0jjCoIolGGPQtnnbk44rYt/Az3MVq9jJNtktFmjmjH3SVwd2emDmty7uLlvhgkt9cSXV5PZxRSvLj5t8uOmPQgU3xxZpYfD1bCzZ4oxcQxKEYgqAis3OcnPPFaXvZXE0lqQXfgaYadZsVuNhBSSQ3A2yHHDAg9c81Wi+Glio3T3MrbwAI8EnI65J9ab8NLcroOrzM0h33yQoSxICgBsDJPcV39vl79HPOCTye+CaicnGXKmXGzVzz9fD3gi1u0tZ9ZslvGbYYjKWKk8AZXIzntW8ng7RURkEG/axQtzgke3XFcT4b8PQ6prGoSvGv7u6eUlcZP7/vmvVByZgeN0jBQONuDRUuloKnJNnM6nbeHvDukNf3towtlkESmMZcuecD8AaZ4f1fw1r11PFp+n30c8MJl/0mParKCBkH8RTPiHGX8FxR4B8zU04+kbVN4Wsre1tI5YYcSPpjl2HUkyIfwFOK927CbXNZHR2+nWgYA28WAOCVH5+9c54q15fCtxZW+naHZX13dwtO73H3QoIBAXp/EK7AEjhtrZzzmuI8YQpceNdGVlGFsgoGM4yV/wAKilrLUdR2ianh/wAUX2sWV6L7TLTTpbO4gjYWhOJA4Y/+y1UtNLgb4o+INVgIgkgEJcKg+cyBi2c+u0ZrZCxLeawFCxgahDFgDGNgYfj1rN0zfN4m8ZTv937RboGHsHrSTtcVNdWZHxH8Ta7o9/Bp+j3z2VsLJJpTDGPM3N0+bqBx2rU8E3GutaX7a1qV3dyK9uYPOP3A27OPrgVkfEGPPiu1VVUt5dqp9CDu6/lXc2vy2hdQTvmTJzkNjPTgU3/CTIv7xLgod+Qvy4bHcmuQ+JCSTeFdJtkdxDJfN5iqx5A28cV2OSCCPTHI/WuV+Iq40XTWKY2PO+fX5V6Csab940nexzHgjwuLTW/DGsfZFjWW8mJkCEAoAu3txznk16baBzbRIg+YFvm/4Ea57w3ahH8MhosFZZpGbYTgFVwfvf0robVna3iO85GR9PmNa4ndEUtTStci8tmdQGByW64x3rxnwpp0d54juI3ICec8rLt3EpvOT/snivX7J2+1xsG52sefYV5h4SIXxnIxZAywzs46f3j1q6LuTVVkdd4SsYrHw3HboSytfzMN+SV44611MH3GBztPocAmud8Pbk8PacD8ubqY8rjt9TW/aFmV9785yMcVE3744aRKGpBTrJJfaf7P+bBHTea811FUEcm0khmIHO6vRdTC/wBr3b7slLBRjPcv9K86vXJbY0YxuO7J6UktS0zmb22U3gjLfK6jOW/oawEsQl0JFDqA7dAR0JArpruNRdxnG0Zx1rIjUJbTMwCHzGwM8/ereK0Il8QfcjZN5LM45Iz2pt4He2CrtKtKu7aMZ+YVYeZisSg8bhy30qrdvIFjIwD5wx7c0o7hK1iHUZPM1K/jEpMRY4UOdpGeOK0WtoTbRxhwpEC7VBA5IFVbuTzdQnhVVCLI2Pk7Z6Zq5IFaeEFVI8ocAc9K0mZRMJ4ZIo7tixYqoQYb9cVE10S+G2mJeMPzVq5CgSLjYxOPqaoxqxuAskakHkmnHYbOo8B6tpGla75l54aOs3E8ix26JtbYT02oeC3HU8ivo6EGSeWd0njmkVDJDK24xHnjPTP04r5k0Cc2viCyuzECsFxHME6B9ufl9ute8v4sZJJBBpkQ3NuLSTEk+3SqdWMLXJ5HI+e7rBFoMZV3LY+lV7Rv9FkkIwSCMVYmQymMuJI2iDIG2ZznvjNRosdtB9nLMzf3tuAazi9LFy3uipKR/aJXGdq8VbjJXUYnA3GKVTtPfbzj9aqI4kv5X47DNadvaSNcm48+ARh95Vic/wAqpdRNrQ90sbyK909bhHwJ1DkL27f0rkNRRbv413pT5TFEybiMEfux/jU/gHUUns5bNl8z7LKGC5yGRu3t0PrW7/wisVt4n1DxJNrsRM6lxbranK4X7obPPT0rkprc2q2urFxAscDKybCRkDuPevOfiUVOuGE5KJZpEP8AgTH/ABr0SJZXhU+U2WG4Ag/r6Vman4N0/W7+PVbvUbq3810YwxWpdQVI4LEg449KmlHW46qbsWPFUYj8OQ2yJhTc6fAuOx3Rt/WoPiEQmlWqAnc1++QemRFj+lWfE7zTf2cAh3y6xEVXaeURU6D8M1p6toena/bpb6mb+NYJneNbVghJbIO5jnsfSqi17RXIlf2ZheA4lj8B6YXUhpb2aTp1xuGfpXURbI5w57xSt+SNVO20S10uz0vTdKjuGtLRHKeb87AsxYktxnkkdKtNFeIrSfZnYNlWUADcpGDjnjg1E9alzVR9w4LwOhaPU5thYSSgAYI6uG613ET+X5ibekjnCnoS3Sq9jomnabBNBp2gRwtKu4b5yW3Y4PpVmGzuI7eJJcbsAMCwY76dZrSwU4WV2cx8QnA8OaWGEa77t3GTg8BhV/w8Yxp4RGR9tjCgVXBc7grZx1xxWzPpkUo2apYWU6K5MK3J3898Y6UXEZlW1iVbaGOJwQLZNuQAQFJ9KblaFiFrO5KUCQy5HByAQc4Ncp4hMZ8f2cMkuGFlCpQjoTjnH4V1zW0vlBxLGQ33QDn6g1LCssMIUXEef7zQ7mHoCaik7O5dWLexlWQEt5fDA2trM3mEJjLK2Py5rN0ZVk1XxYFJGdXCZ7YBaukMX2iaCee+UmJjyYyoAJ549a5bSpHg1HWoora6uLm81meTAQxxwRg8Su5HIOeABVys7sIpx3M7xxZ6ne+L1a00/ULiNEttktvbyFON24blHHbpXakSxRCOWKSJZbxnUSBg23jkbuasJM0US26zzSxk53Dcgb9OKb5VvPPDK7yxyoTgbicfpTdRcnKSoPmuNdkZN6n5OgLVg+K9F1bXNItINIthdmMSmQNKkQG4AD7xHpW2InySkEhzgc4wf1qaNpl8ziUD0UqMfrWUJWldmk4uxk6VouoaWNKnurSKKGyhkNxLFIjMrEDoF6jjrV2Db9ngBZemQQevJ/OrIRSHEokbKn/lqgyPfmnI1qsaobYgIu0ZuI+n51rUlzO5nBWG28yCWUqSWETgALnqPauU0bwheaXqs2ofbrW4E0MqGEkoU3qVyC3HGea6lr2wiDBViR2QruM6f41lytpjRkm/tY1C/MGnUkn86mN09ByVyfTbQ6TpWl6bczwTzo0jeZAAAc57Dpjp+FaMcscMLbomdhzuDY4qkmr6PBBCzX+lsyoVJe4xjP0Bqhd+LdGVW8vV9IUYxs+0P1/BKTTvca2sPv76B9X1FWby82iDLOem4c1wF7LE+RGyyENgbZOv51s3HjTSTq91FJdWqx3FuoM2S6KwboDgHOBnpXLXF5ps042anp8UZ3NuYMdxGcdBxmrhGW5MnYgv3tYZ0SeR41cZwwByR05HvWNAz+RIsqhCGJYsAM5OR0rQvbVL2NJHt0ZmGVeGUNnv0OMVmTWDuZVKS28x2hWfkY4OeM1unZWIeupYkJ8qGRE3fvOePrVO9JVInIAJlHGfeprhcGMrMN0Z+Y8/MPXGKqyNPFH5shDQAk74yM/kaIrUT2JJpA+q3BXGPMbkH3qxey/v7Yk4GwDishJGcEh134DHcOT61Ib5prhFZECgYBBrSSujKJYuQDIQrc7/AEzVZhl4iQeWIOKfdvsdvm/5aHmkyJGiK4wpO7miIy3pi+VfLzhQRtLHge/0r0WTVdIBXzNcsGdepE6kH9a84sljnu4onJ2SyLG23rtPXBr1GT4XeF7aSRPs90cZCtLMMj9K566g9zek2tUeRG6mjbIjIP8AsuabJfTMPnSXI6EkH+dPljXcczRD/ZJ5BqCSJgACFOecqcitkZ2sEN3BHPLIquxbGRtGAR9BV+21YB+baYn/AGVH+FZVlEzqdvPJJHSr0UGVO4AjuVOTTYoq+523hLxfHpF5KTo2o3Uk8eyFbdFOevUY5rpZfidIJAJfC+seZjlWKKV/DHFed2fmIyywEtMhDKc4+7z1NesxRwXUUczLaSb0V2VWVmXPGDg+tc9R8uqRsoX3MtfildDLjw1euOhLTqCPyqRfijqsj/J4auiPRrsD+tbiWdrHHj7JCI8biPLGD+tMt3t5p2iQ2G8DJjWRTgVjGrbTlLlBX3MGbxprOpXGn7PBpeaFmltZZL1toPIYghsE4zxVabx74iSZv+KftwQfnDXZJb8N2K3p0jk8eaSm0KkWlyykjoGLOucVX1rxBpGgWEkt48bzAAR20fLyse3+yO+TTlJvZCUIrcyX8feKDEuzw/YJjoPtUuSPoGp7eLvGcSiSXTNOKyEbVklk2gY7YauSuPipqqTN9nstOto+yeXvI+p/riur8F+PbXxBc/YdQjs9P1AIXjlJ2pOB1Bz91sZPvirXOt0Hu7Jkb+KvGDv8tnpMXHIG/GPxNNTxP4xhDeWmkEE5UGIMfwrtoby0mDNDd2k0ceN3lOGPPQ4HuQKtxvsJAYoyfeAUCsfaNPY0S0PPF8TePXlAX+z4vRUslfP6VYh1Hx7eSpbtfWVuG5dvsscfHpkrXYyatptrOyXWqW1vLjLLK4U4PTirazxzRpJDeJOkoJVo2DA4PPNNzbWwuVXPO55fHBu50TWIVAO1RHbIwIHfIFOjTxy8rZ1k7GiO0vAIlJHbIA+b0HfmvRA4IUYJGT8q/pVK+1zQLDfBc63YLOGw0W85U988dqUZzeyJascNa2fjbUpohLrlzZFlCrus2Yk+/Gc1HHp/ivUtLS4i8WX9wBcy25iVWx8hAzkcd69MsXt7qaJrd/MRsS57EbThvfNc94JU/wDCJWE5UkXVxPIuD2YjFXzu2w7XerOSTw940uWO7W9TEfUHzHGf1qwng3xNKn7zXdTJPrcuuP1rsrrxP4fsGe3udbs0nVvmjYtkY6jgHmtGG7huUintZFnimUtEyA7HX69f0qG5LWw0l3POj4E11ipfVdRmGOpvGGfY809fh5dyOqy6jdhG+Yg3ZJx35zXb3euaTpkxjv8AVbS2lHysjSEsD6YANV5fGHhi1eMza9bbGA2soYjb3JwDihSm+gml1Zzen/DpUlVLm7u2JyHzOCNv1qI/Da3dsrDcmNSQA84JPvXcaZrGi6taXM+laxDfR2wBmCowKZ6dQKshg3JHJ6Gm247grPY4GP4b6bu5tZc7TlTMnNNf4X6TMEARYQHDMVZWOPQ5r0BjBFbz3N1di2tLWMvPMy5wO/ArCk8f+ByViXXZNo5Z0t3K49TxxRHnew5SilqYg+GulAMRaW5ZjtVWwRj1yKmj+G1lEzNbW9soZcl2DHkdR1rtA0Mjwm2m+0RSxCVJSvDqTgHFX7f/AI9z8ueSOBVKT2ZGlrniHiLwWLLX7uBEg8qG3SZtqHnOB/WuUm0xllAjSLqMY5yPcV71qaQyalrbvaFmVYwGIH91eOtea6rb28bNJDFIjE5JAAxWim9hcuhxUkHkF/8ARgjZ25VsCnRPKDtE1ykZ4YlyQCBVnUUW7hKrKuFk3MXyO3bFZsceLpdrhgOqjI/HFbR2uKXYnOoXck3/AB+FgifLmIfiOlIbhmt386zt7hHJJYBlZfyOKlSLqScEniqkzHazAjjKjnv701qZSVimnliRd4dQR1BzU1o1rDdqfOLKQRiRMgVWx+8BlGO2R0B9anhDozQsFLL0P9a0ZBbaKO7QKlxbcknh8H9aYumXUUu5YZCu7cMZYEfhxVcQ5iXOxxnADLj9aTyykZKgr6eW9IDSs9q6jCzttxOPlC8rz1r2292azDLZ3B2RSuVLwuV2sPcHNeEWMk32q33PIdrqVV2xXuFuxS4vXjZY5lII8wEhfYiuasdFF6WPArhVlnnYkfNIBuI9KeGK24A4CqTioGO50HZ5S1TyMBbuc9V4rqaSOe9xLc7dPkJ4yOo96m04xoZBH3IJOTxUKKU09Ce5HBp2lnas3qz/AKVLeg1a5uhm+xXYzx5DZJ7Eg1rfDW3SHVpyhXbtUsC2eBzWFIxWzlGCVcqHJ7DNX/A10ln4ltHcDy3Vo3X13cCs56wZrCS5rHq2p3QttKvpFYqUgk5PbKnArzPwDpUC38Wry3MH2kM4itPN/eyA9W29cDnj2ru/FcrR+HboOw37CM9BiuW8Dxstk+BxJc8kYO4BQev8/auejflbLqX5jt4zu+IF8zkJHbaQgdm4AXeWJ/I14r4l1WLWPEl9qEI2xSSYTH8QUbfy4zXb+O9e/s3VfEdrGzfbtQggtxID8iQjaxA9zyPxry5gR8oIAXgCt6cW9TOpJiEqenXt/wDXpBtMq7hnptXGcnP8qQk7SDj8ajTBypJG4YJHb/61dGxkrnsXgnw6mi/6YZ7OS5uYRG8NrcLJ5eXDDcF56Dqe/FeiNj96VcHB615/8O76HUdI01I41SSz3W8+BgyMSXXp1AA/OvQT8yl8/eJPTHv+debXu5nXT0jc8s8VaONe+I8lurWyYSHzZrllRVUIM8nqa7rwzYJpViunwSRzW8DSvEyMrAqzZHI/yK89nZLr4ixTNiT9421WPGAp5HvXoXh2XdYDMYTGWwOi5OenrWk2nCxNNPnudBD8so3KMjnHpwea8W0zQYte8R6lcztaQwi4mZppnVS7sTgAN29+1exzTKyugyPkLD16GvH9CjH9tarJJGrlLNiNy5AYsufxqaF7DqLU9e0Kzk07S9OszsEtrpcUbMH3KSEPQ9D7EVV8Bvjwl4bVUBYpu9R0q/aBbLTXjDjFvpca4HUEIRVLwawh8IeGjxhLFHOeOoqnJ7ijtqeX6f4dGs+M7yeVYYrSC6lkuJJWVd2cYC7up612c11J4O+HELLIFubWzeGDbIJFEr/dww4J4rjPDqg+NZ5nQOUjkcHG7IPTFUfF+tRXGjaJolqVKWNr+/KLtBlPTj/Zx+tbNNpIyukzjp2y7zPKzuzfPI/zFm7kk85qqS6+YVAViCcL/F9RU7vwcA+/19agYASc468MOo963jtYi7bPoLwnp1lZx6rqOn3MVzZX8FrHEyupJwzfeRcFeSRz6V1uNrtuAyG69xgdK83+EmopP4P1KzKxm4tbiJchcHy2PH1IOcV6QMbTgkcYAauKvozopJmX4pkK+AvEj5Ab7LjPY9a8/wDDvhuwvNAvJrvUbO0FzbqkcckyqyjHzMQfu9+td54x+bwJry9Mqgzn3rn9FtYZ9B8uWGJw8lsHDpneoccZ9K1oySVjOodwkaW7Wlvwyw2ccayD+IA8Hjir1v8A8e208fMcKRVGSGO21O5CHevlpwzfcGegqU3bxKI0iVwD3yTzWEpWkaxj7pj6ooe61sB8ZkQDaD2jWvONTVwh3ShlI+7g5/Ou+nuzPP4gBQR7J02leM/u14rgdYkkCgRyMBt5G73qo2YrtHKOsf2kwlx5bZyF6dKobFjuQw4Ozb1561ekL+c7cjBOMN3xVORWZIpmJbcBxnpzXTFLlM5L3i08/lrF0yc9R6Vlorm4XzQ/lyydAPfr9Kv3LYS3yO7c/jVEgZiJI+/uI29QDnA9/enFEyC8S3ja4iXzDIjMrAjjg44quJJmYO6qZNo6Gn3F1FJPcSA/613OwDlcnOKn8sIYgDktGDyOlaMzRDKztCqkc9QKhDP5nlnjNSy5DkZ5Bxmkc/6WmOeBk0raDIXL5VixAUgjnvXQXviDVb22jga+lVEjC7lOGk9C5HU1zzkmUA/d71KrAqPmqHFPcabWxGkYV1JZtq8/dpxBaL92wYHj5hzVxgc4XJVThm/u/WmPaXfzpHGWTGd2RjHrVXS3JIJdqW6xOwEnUZ6VNpiAQMFcO5Pzgdqnlsrh3GyFpAqjcVxge1OtrMwJkKfmPJbH5Uc0Whp2LDqfsxjBBlZtxGewpdNspokEkbKZsc8/6vHIY/0rQtfJt5v3scjMyk7YVVm6ccHoM9fQdKhXylnkuh5TlwIwnfjnHt1qG1axS3ueiavBNqvgb7bHlGdFKxldzTMOCqj14z+NReDfDd9Z2EVxfIluI38+SBnDSBcc/KMYwBk+1J4CtbO6Jmu7i1MNqrLBHKCSGcYJAIxjBx+Bq98Ql0zSfB8s9nHH9qllFvDIi7AoOPMI/wCAk1zRaXuo1nd+8eP+KNYOteJL/UcKqTSEIo7qvyg/pWNhuODt/Wny7VlI68YBqMsQuK64Kxi3fcRh2AOPVutREDOBTmyecim9+SKpoSep6B8JdQSHxY1hLJsF1GfKHYyAcfoDXsrl9uwKfMHyhMfxnjrXzNpd3JYapZ3kbsrwTo4K8EjIzz+lfUN+L+XT57i1nu4vtkatG/lBvK3YbIPtXJXh7yZ0Up+6zyCCLZ8RhCYtj2zSmREBIQ4IIJ+teh6BG9rpqxyI0cjRJLsf72CMj9DV24ZdL8O3FyNUzd26ql3NFIPnfHDOVOQT1OaytM1u2t7i2tdV8TJLqF8wYO9udoUDoSRgL0wTUTV42RcbXu9DXuGkkikSGJpj5bMfLHT3ryrRAEuNcdCXK2RiUMcZJdP8OtenX+pLbXsVrY6/ZxS+csVwxiBYowOFXsc47Vof2JYaOxSC4tLeOSfyvKgt1OZSCVD7eAeDyaKS5UZ1Xd+6V9QmWDS9ZjClbiO0KFWGCfT8Kg0AtD4f0RYd0nlaagEajOcCmGS4tfCup3+q6hp8uoMsiTTxhYzvBAVcdFbBPHU/hWjYzW2n6Xp1paT6Va3C2oh8rzAzxAD5gffpx1qWr6F82h49pd7b6Pq2p6hJC7xx2oi2AENufOCeeAMcmuJklkfmR90nUn1rvfiXFbaRqdjpVlaW0LrB9pmeDO6R3+6HY84GDgH1rz53UPg+mcbcV2Q1SOaW5GWLHmomOW+lS8EcHvUfYjFaoR2Xwx1v+y/GNvbSy7LbUMW8o9/4G/Ak17vtwWSTdlSVya+Vt7R4kVtjocq2eQRyK+qtOntdS0jT9RENwYrq3UiQFcMeh75HSuPE0/tXN6UrGR4vwfh/q20kZliX/wAerN0VGOiQ5IANxCDk+471v61ZjVrGTQ4LO6WOcozzdHQg8YP3cfjWbZWtvHayWlra6jMlhKjPLMjR5kyMEM+M446Zp0bWFUV9DorkKNYuyMOoVQB74FXLQSLFHtVcH7vqecVmLI91qF7cy2t5GVdYVQgkE4BJGPXOOaurqFpAUSVpUYEDa0Dk/oDWVnzNs1jJONjmtSaTZrTNGgR7wZbPPEYH9K861clbdym0nA/9Crt77WtJNvqEJlmcS3pOzyWH8IHcfz5rhdSK3E3lRqYsHC7l5A681a12B7HMrv8AOx0+ZufwNRSnNvASDgEDIqa7EWnsWM0chlJXKjLRnHJxVBriCaAQBwCGVVaXIAHriuiK0OeT94s3xUC3PzY+b+dV02u8C46sf4vY1YmtZJyqi6gPlbguZAM5PbNV7SINdGKRlO1GYFT6VUdxSZnQDLsP9s/zrVuyUngH/TNazYdqNFIG3Fm3Op9TV++n33SlvlxjGOwqmSmVJiPMb/fNOc/vUA65FFxFIr73VVR3JBDfezSSMGdcYyGHApoCIsC5qQMQMYqMq6ZLqVB7g00tkYBBH1pWAutaahDb4ksrlGVstJt+V/rU9tJeJFJmCR2ZwyxhSM/WvfYks2dUEsoBI5C8DPriuCfx/NJqzW8WmxS27XBt0zIQ+exPasndo1dNI4/TLxbWErcKVxJvBZTlz71DdrdXEweNh9mjfcHAPBPc8dq92eOyMhiEufTKD+VIsFhvOXIbGBtj4/Ks+WQezXc8C/0wXM0qiQhlPmXBB+Y+gpkMtyzzTMohxGQishzjHUe9fQv2Sw/vkYIIzFxn6UosrJj806s2M7vKx/Squ+o1BdzwOyvJ/lWUGBdwwWJGfyq1rcsl/bRrDK8mGLlXY5bjHA6V7n9ltDkmRQT1/dZz+lNOm6cwU4tyFGPmth/hUcmtx8i7nzTNaTKcmB1/Cq54B3bgc9xivp5tM0vj5LY/71qP8KjGkaTISphsSO/+jD+RFbKdifZtHzCWjb+NRjvToJI1kw5Ug9DuzivpOXw34aL5l0vTmYdCLDr+S00eHvDW/cNG08ccY07+u2n7Un2Z85tPbruIAO08c4ya7Ndb1yGG1ih126kEiqiQrKDkYzg8cDjFetf8Iz4bm+YaNpp+tnjH6Uv/AAh3hhmOdDscEYIW3x+OQOKiTUtS1dbHieqa9cXct0CZo4LwKlzEBhWKDaCMdenesu51Wa6mSS9VyIoUgiUfKAqDAz+Ar6Dj8JeHYRthsbaIYxtCsAP0qVvCegTIFez0+QcZDxZ6fhQrCcG9TwPTfEN+2tafJAIHltpd8aSn5CwBAye4AJxXWaz411Gz0+ewW5LLcsJ5Z0AyZW5J+ua9MPgnwvtwdK0nA7eVz+eKjj8D+Fovmi06wB68ljj6VMuUcYtHiSeM706ZFZ5SVUuftWWTkyHO9yD1yT3qbTfF1xp97b6nN5cslujRQtImTIpI4PsMdete1nwl4ZlQp9gsPxiJx+OKQ+DfDTAqml6dt56of0yKfu9BWZ4l4w1ObWNdk1B45iskcaxSsuPNC5+bj1zXNFxkgnGD0Iz+tfSsfg7QAcpp9kpHePKn86RvBnh+aPY+m2bAf32JNWpJB7NnzSDgZHT3OaaOc8/pX0bL8OfCcoO7R7Qe6SMv8qhPwt8HlgDpKbvQ3Mg/rT9oJ02fPKruO04GeMnp719KeBRFc/DXw67+bujt2T5HwOGPbvWbP8LPBsUUkx0wLGpGSt2/GfYmufuJPC+gSi10/wDtIxKAymDVJEVcn03DBqKsoyVrl04tM9SiuFsn81PNDsuwb2yq/hUi6z9oEnmEny+NhHr3968lj8X3LF49OZ5oSR5JuGDkkfeyzd8VImr+JZZbhLi2illjw8CxgDys9Sf7y4/rXG7Q15jrjR5ldJnrH9qwwqCJJB5pLEkZOMY4/Kq0uuRoyiJXf5geRk/jXlDeK9TgVjLpbMXU7GTLDj720jt16VZuvGMdvp9reJYSeZcIRIM4VWGQoLDgNnBx1oUnUE4Rpq7Rs6trNtHZ6nBNOxIussDBjyiUBwD36/rXCXWqRsu6N1ZcZGUwfTnmt8eM7WaGS11WATPtG152LK5xk57AjoO/AqfRtG8Ga7dsv2RrRtm4obhgSemMZ/GrpuzsyHUizziRIZWZ3m5PU4qCW3jkUhX3f7RFeyxfDXwXdRNOs1yItxUnznGCDjqac3wm8I42/ab5R1xvckV2JowlFPoeNm2hlSPLKCnbFPLpCV8qNcBSpb1r2IfCXwtj5L++Qep3Uj/CfwztGdYvQM5wFNV6Gbg+x4RGjoULKTjmrRmEiNuA3HgEjpXsT/CLw8dxXW75Cx+XMG79cVVf4N6Vn934kux6hrQ/4U7i5GeQvGSiqW3d80LAuMhh67e9etP8HbEEAeJrj6G0P+FRP8HbLOB4jlH+/an+YFLmsHIzyaWLYm5mB9AM8U6wFqdQtTdMog8webu6Fe4r1UfB+Hfn/hISVH961Yf0qKb4PkxEQ67BvYc7rd8D/wAdoug5GdUku1RIIWJC85bO4/8A1q4vSfCVnBrdxcNeXDrp10piXYMyMDk7ufcV2Rt5XAAYgKvbtUFvYS24kMTlklmMr5UE7jjPPXtWF2jucUy4bqNt42ptXkYHIpBJGACuCPpUIguVX52hY5PJVlOPwp/l7tyyFA5GEIySPxpajLSyAKXOdvq3aj7UG2+WAR6g8Vy1/wCFJLyUyx69fRyMMHc2f5VljwPrkanyNajYLzhiylvY44pXaIc2j0Bbog4JHPQ5qU3OwbT/ADrzGbw/4mjUnypJx1xFMPl/DP8AKqEv9uWjjzLO9Rx3Ut/MUe0ZDqdz2D7ViNXLYDHaCac0yocmRASM5yAK8Vk1y9ilH2q4vFYDILOQaifVLe6Y77qQuedzztk8dOtJzfYl1o9j2o3sAXP2qEZ7s+MU9LgFN4kBVeDlwBmvF0kspljGC5H3gTyOetW4tssjlJZzEuWfJxk/TsKlT0JVZdj14T5bbH8zqMsquDt+tSpdLu4lUHvzx9PrXjUbIJGkaeVAwAYK5G49hmpN7xIYUuJVx8x+ckj6EUKpYr28ex7MtwCA3fke4xSLJ95ixx7V5Cl3MpZftVwwYb1Mc7bgfRjmpbXV9Ti3zRXcwHTyzIW/Hmmpj9vF9D1sOSDh3PtxSNKQBnd9SBXla+MtTjBT+1ERScjzEy/8ulakHji7jIS5W2lwPnOSjH0NUqiGqkWegG4IIAJ6ZOMUfaSf4j0ztxmuCX4i6eCQ9nLuVsF0kV8j2NdFYeJNNv7gQRvcpKe0sLAEfXGKOddClJG4Z+T8+PUAUsUwz91P94d6rRkNlwMLjBBFPRNqEbOKNWVe5ZMpRDlQT2X1rM1jxLp2gw51Cdld8eTAg8yWXPoOMD6mrQgUoFwWxyHLcis680GxvpZZp4d00ygPMjsrHHQ+30FVaxLTOF1b4gLqiRb9MdLeO43eRIxCnGMMxA5B7rx0681z8j3+o2lui20Sw2o2K+MAqSTk9z1x+Fel6l4K0rU12ym7jjIAaOOc7TjvyetU5Ph7aecsi3t4GX7jHDbQOi88YpRhF/Ei/aW2iebSHU0tXiIgSFmDQpuxn12/1rRs5tQ+yRq1yVuQAkRjbcypn7p9RnP511E/w0SZQI9UmbGQDKg3KT1IwKhl+GV3sVYdWWNlIBlCEMfrRKFNq1glisQ1boc8lzqNvvhZ7dCGO0xyEBDj05zzzVG7tDdeYtzdxTLGpkke0kygY8Z2nqfbiujT4UaikiuNYjlxksOmPz61Yh+GEqkq2rQwRu2cRxfMR69MHmohTUepnUr1Zq0kcfd6UNlummyyzRlBJJLcnGT0wPT6ZNQ2dybCSSMyukm05w3JbqP6V6J/wrOGW2a2n13UGQ4KRqAqA5+9tph+FNoBj+2rtfrEGJ/EitW4vcw5X2Od8KeLtQutX0/Rn8t0mm8ti5+U87uR3O7pXqGo+JbDRZpIJrfUpXVzudYMgtnnPNcva/CnToLlLhr69EkbBo5FAjKsO4xgZrtYVu7SHbJrNxNz1mZQzc9SRUNRWzNYOS+IwW+IekH5WttSVh3eAhaiHxH0iT5YYLh3/wCmny/0ro31a0Eh83ULYHgYeUGqsup6OpO6WxdskH90j/0qde5V2zBl+IIGGt7aEIfvebNg/wAqcfHxCKVsEVW7tcD8+lajDw9JtL2FgxYYJNmp/pUMlv4duGXGh20pwdrx2wCn26dal+pDbM7/AIWD+9VWsI5Iz/Gk4J/lSf8ACeuWObO3CEZCCf8A+tV65h8NWa5/sKywOyxrnNQHUtARdy6FZlQcNtVT+VL5heQn/CwLHMQktJlZuq7sgfjTo/H+lSoCUuBnk7F3CkTV9NGXj0S0WMdCERuPcUseuWVuCLWwsEjz/wAs4toz7gU+ZhzHRiztskCNl9eP/r1G2nwBcRyumT12Z/rVeHVZSuJIVcjqynFWk1NDlmjdewwua6nYGpoVtNCgYmHP95c5qIabcFcbYn56rxVo38KbVMqDdySAeKmF5CwAE0eP4eKVkJSmjNawnA5hfH1BqF4NgyxaMe61ryanbQHa8xGegRCx/Snreeag+S4I7eZAf6ilYXtXfUxB5WRtlH0x1pyxDuQfXj8q2WWInLWzt7iLH9KZ9mt5TzDLt7/KRSsWqkXuYstnDcYV0ic/9NIgazZvDFhORusbGTrlWhwP0NdONPSQlgs646b6Y1g6LlFYjPY07BeBxg8D6a7N59hawRY+SS0uW3j8Cv8AWq1x8ObKRf3WpXETHHVt2a7o2TAk+U/TuuRTRZ4BKwj65pOKDlgzzp/h3qFs8ptL6KSPgBW+8T/Ssyfw3r9spV7SYlW5AYMMV6v9kPmbmypPpxT44Au7Z8r9yO/1qHBC9lHueRPp+op8j2Fwufv7Y8gge2ajvGhiZDcQXKlV4LRHAxx1HSvYPnkP3lyvf0pR5j/K0an/AGXGQ1HKhOl2PF476zKZMufl5WTkn2FT20lgkcW0I0wyUBHPPr64r1abRtNuSftGkWpPr5QGD9RVUeENCJY/2VFuJyTub/GpcEQ6Muhxaa7qFvA/krbmP5VExt1yG/76rRi8cXdupElpFKc4MiAID9a6NvCegmMxnSwo6nY7Dn161F/wiWgOpjFgwQ9V8xzn9aXIylCaMaLx9byzRRzWDrIGOSJcpt/KtKLxzoj7UlllhwOSAMj9amh8H6Fb/JFpiMD182R2x+ZqwPDOgxkldLtV7YOSG/WqUWarm6lzT9T07UEDWV5FLu5AB7fSriiMykEk8dqp2mkaVprZs7CG3dhgkLzj69hVkuqJlXUHOMAVol3KVx3lOOqtz70piOAAXz6ZpxLKFzLksOBQhcHBIHvigLDXgYuBlthGDmqt0t5FbyNbWv2qQcLG0mxf5GrqsQQCBz/FSMsuRlqUvIZy9xfeL0n2f2LbBQNytE+8D25xzWPc+JPEsETGa01GJA2WKW4+Y/3TzXoMmSVZQvJ5pGldRt8yU89Fc1mqabuyeV9zyg+Lr9UZftmoxxNklXhIIOemcdKQ+KbtY2j/ALTnEZHBEmOfxFerszOMSHcvo8Yb+YqtJp2mTAl9MspAxwd1so/pTdNGbhPpI8wk16S4iT/SVQA4YmbcTSnVZomCechRl4z8wrvpvCXhydWJ0S1GSeU3KMfgapnwB4bEfyW9zGgPGJyc/TJqPZkunPq7nGwaiq7h5duXH94Yz/k1M93PIu/zRC5XB2OGAPrjArpJvh5pX3ob29gJ4GdrfzFUZPhrOyfudaVlPO9rclvocVDpvuZuEzDhDBcz3qK2wgE5IZvXjvSASIrKZdwCjkOQT9K1JPh1q6RExX9s6j7qL8gz3PPemHwNr0aP+9ti4ACjd+uelPk0EozfQqSRSgO0uFBxhmfI9/xpria4QMsL4U7UKuBsA9u9LP4W8RWXmbbJp484HlNvyPXAqnJpviHYrS6Reuq4GYoT096nkYOMluWXjU7Skzr5xyRu24NSRpdhGjjmQqhxskTIPvnP9KzH/tDfIJbG7RVOADA386he9ZEAYSRAcEEH9SeaLNE2PRWnVchnySuQDzmnYU7WJ2HuAcVTjjcKPl42/LnqKmRmHABbcPunnmuqzPRLjXCrJtjACgdjTlmbO7zj9Aarp5hGWUKD27UpyThjxnHyjFAmi8t1d5QLcPnvtbj2qY6ldDG52ZjxyucVnKrKCEfAJ9OlKJHEuASRwOaE2S4JmvFqRUbSCX7kDFSjUUPzHzGXOMIg/wAayd4TB4A78UqtztXGw80+YXsomsNTgO0gScnG1hjFWI7+F9wWRGZTyCcViR5YqpyI3BO/PSnOqBMq4YA46YzRcl0kdCksrLuQ8fXGKDIwOchj6isFJWAYK7gr0welTPqFyoG4qR7qKLk+zNoqXG5sH0yKDbqxPyRbh1xxWSupSDh4lx221ZTUYzI29ZFbGc8GnclxkWhaRvz8646hehpDYg/8tGGOhI6VD/alkoBkn8rIzlwQOtWoLmGZCY5VceqnOaSaFdogNnICFWTcDySTTXtps7dm78avbs/LhcUEgJnkU9CuZozRHJGSDGyntxmmZUAgAA/XGa1t4HVmoxEfvBW+op2GqrW5lBhjlTn0HammRBhQR9CK1zb27nBUfhTEtYMsQu3nHHOaVh+1MnGSBhGLevWlJbG0gDHcHitN7KLg72yB6CoHsAF2qcg0FKomUt5DYCZJ7k4Ap3mIrlS24jqMZFWRbSDAMW4LxTDFMD9w49Digq6K7Fe3Jx9xf4fepQ2EG8gHt709FSMElQvrjqaawj35C85xzQO40M+CrfKc59aUO20h157EU9oxJgEkH1WmmA4wGb60ILjSpKjLNWfcLMju0SakSAcCF1ZW/AkVprA6872pSCkgILZPcYFJq4Ox57qHirWrS4LN4duIYxjMzAsTj1xntWKfHutpM4E6J5jbgGiPA7D2r1358EEkr3BJIqu1vFKpWW1tnGMcwrz9TjNS6fmZuMujPLI/G2rIrP8AbkdS+W6MQ3sM9KhfxFcXMiyy3k7OXLMVcjj+lekzeF9BnT59ItlY8loxtOfbFZbfDvwzJIziznDHOds7c/rUezfcycJvqcZb+JdRMnmrqUzjdgFnPC+lXB4l1kTbhqdxtGehB3Vs3Hww0eRd0F7e2pH+0rZ/SqM3wxkeVpE1dj8m2NiuMfXHWl7N9xclRBD4j1nYHGpLlhkBkDEfrT/+Er1yRmmM0YMY+ZSoXfj0wTVI/DPV4UPk6pZSyLwQGKE/maZL4O8TW8KrDYx3CRkYEVwGyKTjNEtzW+psHxpqksMUkcAhmOQSTjmom8a6ukp82KzZsdDHyfU8DFYF1pXiOF3E2j6gqh8Zhj3/AI49KoyS3Nr+7niuI25yHTGD6Gs231Jc2f/Z", "path": "images/4pts_ADE_train_00000978.jpg" }
depth_point_86
images/5pts_ADE_train_00016541.jpg
ADE_train_00016541.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 212 y = 146),Point B is located at (x = 157 y = 141),Point C is located at (x = 94 y = 149),Point D is located at (x = 65 y = 201),Point E is located at (x = 17 y = 124).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_121><DEPTH_66><DEPTH_49><DEPTH_40><DEPTH_17><DEPTH_5><DEPTH_67><DEPTH_49><DEPTH_35><DEPTH_17><DEPTH_42><DEPTH_58><DEPTH_38><DEPTH_40><DEPTH_5><DEPTH_5><DEPTH_70><DEPTH_69><DEPTH_49><DEPTH_17><DEPTH_12><DEPTH_72><DEPTH_3><DEPTH_75><DEPTH_17><DEPTH_17><DEPTH_67><DEPTH_73><DEPTH_49><DEPTH_5><DEPTH_23><DEPTH_31><DEPTH_63><DEPTH_1><DEPTH_22><DEPTH_36><DEPTH_22><DEPTH_64><DEPTH_64><DEPTH_17><DEPTH_24><DEPTH_59><DEPTH_66><DEPTH_41><DEPTH_66><DEPTH_2><DEPTH_74><DEPTH_69><DEPTH_44><DEPTH_5><DEPTH_33><DEPTH_66><DEPTH_36><DEPTH_2><DEPTH_69><DEPTH_74><DEPTH_59><DEPTH_11><DEPTH_76><DEPTH_20><DEPTH_39><DEPTH_14><DEPTH_72><DEPTH_69><DEPTH_82><DEPTH_29><DEPTH_1><DEPTH_43><DEPTH_31><DEPTH_60><DEPTH_65><DEPTH_65><DEPTH_63><DEPTH_55><DEPTH_38><DEPTH_3><DEPTH_0><DEPTH_14><DEPTH_19><DEPTH_35><DEPTH_8><DEPTH_24><DEPTH_27><DEPTH_12><DEPTH_18><DEPTH_77><DEPTH_72><DEPTH_64><DEPTH_25><DEPTH_17><DEPTH_27><DEPTH_61><DEPTH_9><DEPTH_76><DEPTH_76><DEPTH_31><DEPTH_64><DEPTH_76><DEPTH_74><DEPTH_49><DEPTH_END><DEPTH_END>. Since point E has a higher pixel value on the depth map, the answer is that point E is closer to the camera.
E
long
5
[ "A", "B", "C", "D", "E" ]
<DEPTH_START><DEPTH_121><DEPTH_66><DEPTH_49><DEPTH_40><DEPTH_17><DEPTH_5><DEPTH_67><DEPTH_49><DEPTH_35><DEPTH_17><DEPTH_42><DEPTH_58><DEPTH_38><DEPTH_40><DEPTH_5><DEPTH_5><DEPTH_70><DEPTH_69><DEPTH_49><DEPTH_17><DEPTH_12><DEPTH_72><DEPTH_3><DEPTH_75><DEPTH_17><DEPTH_17><DEPTH_67><DEPTH_73><DEPTH_49><DEPTH_5><DEPTH_23><DEPTH_31><DEPTH_63><DEPTH_1><DEPTH_22><DEPTH_36><DEPTH_22><DEPTH_64><DEPTH_64><DEPTH_17><DEPTH_24><DEPTH_59><DEPTH_66><DEPTH_41><DEPTH_66><DEPTH_2><DEPTH_74><DEPTH_69><DEPTH_44><DEPTH_5><DEPTH_33><DEPTH_66><DEPTH_36><DEPTH_2><DEPTH_69><DEPTH_74><DEPTH_59><DEPTH_11><DEPTH_76><DEPTH_20><DEPTH_39><DEPTH_14><DEPTH_72><DEPTH_69><DEPTH_82><DEPTH_29><DEPTH_1><DEPTH_43><DEPTH_31><DEPTH_60><DEPTH_65><DEPTH_65><DEPTH_63><DEPTH_55><DEPTH_38><DEPTH_3><DEPTH_0><DEPTH_14><DEPTH_19><DEPTH_35><DEPTH_8><DEPTH_24><DEPTH_27><DEPTH_12><DEPTH_18><DEPTH_77><DEPTH_72><DEPTH_64><DEPTH_25><DEPTH_17><DEPTH_27><DEPTH_61><DEPTH_9><DEPTH_76><DEPTH_76><DEPTH_31><DEPTH_64><DEPTH_76><DEPTH_74><DEPTH_49><DEPTH_END>
212
146
157
141
94
149
65
201
17
124
36
59
100
133
186
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDmYY0uZoUbnDZDDsRXdeG/Hstg6aV4ibMBOy3vwPueit7VY1vwaj3D6hpKBJADvtx0J9q4uWPKvBPGc9HVhyK63y1ldmTvTloe13NpHd2vkzAS2zrkhTkY9frXn3iPwtcafcpcoTNYHKBh1QU7wXrk+i6WsMrPc2bO20M2TGM9q7me4g1HR5WtJUmt5UKqy+uOnsa5o3pysjodpxOQ02OObRNFaYELBLICT/vED+lbXhl/tGs62hJ8uKRIwR2yoOR+dZl86jwo9nEv76C4hi+hypP9a6TSLb7HBKY0x5kgYt3J9KqTu7mbVlYybrxLbXQ1DTTCVuLGRSmOkw4OfzrivECNHqivMigtFvEifwNz/wDWrpZNDk0fxFNdzsJIJB5mT1BJ6VyF1M0t9fycs2795Ee49vTirpLUJvQgjlkaVe92EPP8Ey1ImxbdlLE227lV+9C3r9KgkCrA43f6MSAhX70ZqwodZNoZFnLYB/hmX0+tdNzEUrIsuRt805+k6/4j+tOVo4rdZEQyWLgB4f4kPr9KjIQQDcGWEMSwP3oj/hUsTyQXH7sBpGAUk/dlT2HrTEZmo2exzLGfNRssGH8QqzomsCyYWsx/0aQjD/8APIjr+tWBGkELTHJsZCVI/iibP6Cs29sjCQ64ZSDhR/HzSauB6HaXIgIYEYfByP4hW0pyARwrdBXmmg62IW+xXTboS2YpD1BzjbXpajaFDdQoH6VcDmrRsOHBJ9adTcds/SlFWc44YPWnKBjAptKh7Umhko4HSlApnJ70tSA48U4fXFNwDSjAPSgokIGOOaUYxTVB7GgHmgCQdKUU3J4wKdjFIELSgEimSyJDE0khwqjJPtWJaeKBf3/kWtuBCFJ3O2Cx9hSZrGDlsb6r6jJ7H0qvd6nZWWGnmUKeOec1x99rOoC1lbUL6CwLKSFHzMPbFc9d+L7dYooLG1M5jBxNc85J6nFNRuPkaOxvPEVzdM1rZ2zxxkHM7namB0rlL7U7CGJ4r2+N1OrFRDbjC8Hua5i+1a/1E4u7pmX/AJ5q2F/Kqea0ULDR1tj4pnfXbGOCGOytnmVZVTksD0zXoWm65JN4n1PRLoKHtW3QEd1PP9a8UhlMd3DIDtKyKcj6ivSbq5Sz+K1rcykiO6toznPUlAP51jUVpFdDvgPm6cjilpG+XO44wSDQCSM0jAWikzRmgBaKSlNAGDpWqWesQW15plx5sZXO0fejPoRVXXfD1prqsU22+oL0ZeA5968qsLy90d4bzS5vInALMv8ABIpxww9a9L8P+K7HxCNhAtNQT/WQOeD/ALhrilSnT2PWjOM9znJLObSrVoLmMpLCnPofeqvga6mtdfjhjlYWdxJhoc/LuwTx+Vel6hpsGtWL2l3Gx3LxJ/Gn/wBauI0/w3c6J4gsLZ5VcLOZ4pB/EoB/xrSE1JWZMouL0NVI2+x69dSYCrcNMoPXKgiuht7k/wDCEf2kHCyC2Mik9jjr+dYV+rvrl/pkb/JPbmcL/vOCf5musj0yC70WLTJV/ctD5bqvBC4rOQ7anFWmuz+JNLt7m/jAktgwmK9HUDINcZczLPcyGXEMkj5ilXo3oK7GXTo9A027so2LRqJGf1EYWuFtvK/s+Exg3Fg5LLK33oq2pWImWU3neVjCXCth4T0kHqKQCLycAMbfk7m+9AfUUgf91C00m9WyY7kdvY05pJTIRtX7WEGeySj0rZGTHN5rOikgz7Bsmb7swPY+9ORo2R87vIV+QfvQN6j2qPCS7kwz26kZjHDQt6j2pQ8i3Ebb1aRkO2f+GUehHrVCJhvDOSA0rAbwfuzr6j3qNBGojTLPBJnDH7yH09qdG0YjxhtikblPWE+o9qdtdHflXLLhsdJR6r6GmmFiibBk1O3+RSjzqOPunDdq9Xlx5hGSCOK8+09s3VhAfmtvNBjz1T2NegOT5jcZJzk/jVxOeuwB9etPHIzUYp6n5ao5x9Aoo60CHrin+9MC04EkVLGP70oODSClHWkUhcmnA8U3FLTsA9T79aUZBwTTAMn6U4DceelICDUpEj0y5aQrxG2FJ+9x0rxFtRu/MMizsjKxC7f4R6V654o+bSI2yRiZR+teNSECaUd9xqoo3g2kI7tI++ZmkcnJZzk00EkfMeaQnb1pPXNWOw7qOgH0FJSZODSc0BYHyFYjqCDXceMpig8Nakh+Y2anPfK4/wAK4ZtxRlHcV2viDFz8PfDl1jJR3iY/nWVToykr6HqFjcpqWmWtyckTRBz9cVZ56HjHTFYPgmcz+ELM9Sm6P8ia3T94cGoa1MGrMfj3oqPkGnkZ74pCFzSZI6mm7felyHGfSgGeL67oN/oU3l3UebbG1J1GQaoWUYfU7aTJR48sHXqK9zurOO4tJ7GaJZozzsI6H1Ga8+uPCMml3r3diGmtwpBjI+aOueFdSVpHqSpOLujR07xpFaTwW+qv5XnHYlwvT/gVaHiTdFZT6lC6H7KgVWU5XDMOQa851xI5Xit9pKsMHjuTXUaLun8Dz2e4usN3skVjnKg5H6CkqaXvA53djXR0h8SW9zIfMa7jjjiPoNgJrS8bXEtro8H2W5a3uUl3xuvXjnB9jisy2K6trmhmLKrbpLICBwwBKgV0+tWlnqdjNazIXDRk5B+aNgP8azv0Y3e+h574ku7y58KXl4gBvb9VG1eOgAOPrzXm0F1PpdysaZK29vmaA9CTnrXoviQNL4fjjg3I2FSJFOCQp6j8Qa4y8SHUI5onCxXQAVpR0Ps1bU1pdES7MuRzQyQia3TzYDF+8sT1T3FSytCYkjd2e1yNsiffjPoa56Rrmz1GSRA0U4dYkJ/iHt6itu0u4byV5bNRHKHxPA/STHUrWqM2i0FlW4UkhbhTlHX7sw9DUTEGJ0VDxjzoO8Z9RSxMrRlgHa1OSyfxxn1HenMqjBeX08q5X+L/AGWqxWHuhwh8wFmz5My9GH91/enhgz5VSAh5Q9Yz6j2qL5gpRk+YjMkA6P8A7S1YiUtMgMqq+MRTH7v+61MRc0dSdatgABIXywPRuOoruZOpIOeTzXF6Cu7WI1xgx5LRnqp9vY12Z659ecVpFHNWeo7A6dqcpFR9sU4Hb1OaZgS5zQKarZ606gLC/jUo+tQ04MPWkxEwozTQfypakpMcOKcCabnNKDTuO48Hg+poXPSmZ5p27BB96QGX4kG7RG9pkP6ivF7sbLu4X+6x/WvafEJzoM5HZ1P614vqXy6ndA9S/wDSqibw2ICaQHmkzRmrLFzyaXcAKYDg80E0ALuJBx2rtf8Aj5+ESnqbW959gc/41xAOQw9q7fw7i6+G3iK27xMko9uRmsqj0RUdzqvhrOZfDUseeY5j+RrsOfWvPPhbcbodRgzx8rj9BXf5Ofape9zCe5IDg0gxzTQe5pMmghj+M07iohS596dg3PO/DvxCltfIsPEnzxhsR36jkf72K9DSaJningmjnSRc+YnKsPQ14FFeCCSSKRPMtnJxuGfyrsvC9/NpOnotqxeFtz+U5zx/SuOrQ6o9OnUvudfrfhe01a0ae2CwXiZcrjg454rL8PJBa6Je7gPNkSSYr6HkD+daekeJ9L1q1kezlK3SnY1s/DehIHcVSitli8YXFomPsxtNjkcgEsKmMnazLaV7oueDoUj0y0hJ3XUabyfTcd2P1rn/ABJqdyfiNFFbTvG2xY2jHCvk9/zrf8FxysdXl2/uo7jyI/8AaC8Z/Sp/E9hatDb6ysSG6t5RtkXvzjB+hqL2YrXZwnioxzT6daCYxMjMqMpwC245rCkhe4fy7mNYZhIF39nArU8RzZ1pYJIN1vGCzSD+Fj8x/nVGKdosJKPtNq4JWXqVrpp6xM5aSKko81hbX6NxJujfHzL6HPpWW9rNp1zDmT5lVpVmTofQfpW+qboozKxlgKEm57r7Yqq0QgikhnHm2zLkEfxZ9KtkjrG+S7D4cRamsYyx4SUHtj1qyjOwcJFtIP763PX6rWLdWHkr5sZMlu8q42/eTGevpV2w1DzzAl3KUuWBeK6HAHTGfWhAaJVGjjKyN5I4jkH3oj/dPtUqkuSssS+Zk74s/K4/vD3qPLpcuQqxzEfOn8Mw9V9/pTJWCxExhzEp5J+9C3+FXcmxueGVL6qrD5kjjOJD94DPQ12A4A/n61x3hCdrjU5zMgE4i5dPuOOxBrsB6fnWkGclfcdTh17U0U4dM96oyQuSeT2p6tuHSmDmnqMCgTFpRSUooYDwfbind6YucYxT/eoYWFpe1Ao70DQA5p3XikxQMg0DM/Xhnw7e46hM/lXjWsAf2tc/UD9BXtWsLnQr8f8ATFj+leLa2MavIfVA36U0zensUCRmjIoIJJ6UmPWncsM8+tBNBIXpzSbvXii4CjrxXcfDwC4svEVgx4ls2YD6f/qrhhjNdn8L5P8Aiq57c9J7SRMevFRV+EcfiLPwuuNmtTQf34MY+n/6q9SHQ+tePeCpPsPjtIP+mskZ/M17E333x/exSMqm43FL2oooM2HajH/1s8Zo79qq6ldJZabLcvdLa4OFmkGQDSbsCOc8T+BLfWLZ7jRmWC5HJhPR/pXOSW82mW/2eeIwywR7Sp9a9IsrmDU7IXdhcLPG33XQ9Pr6UzVrCz1dFhvkJypBkUcg1wRqNP3j2JU017p5JpR+z6xZ3yA7luFVivGQc8Gu81kS2GvDyztjv7hULdwNpzj8RWR/wjR0rWLa3lk863lbzQ/oFGa2fEN2jW+n6hIAbZI3njf6nA/nW1Rp7GMU1udBoMH9laRIjsWWOWUsxHqSRXnXhu7muL7VY3uJHtg7ziJjkZDdK9M0tp30q2lcoA8atz3z2NYGp6Va6Vrsv2SIQpeRNJKB/CwGfyOKyTNLdTz/AFOSaPWr6YfPCQpeDr1AqpCFhIu7QCSFVJe1B5FQs6X013c27tHd78OrdCR0x+GKUFZ3kVP3F2oHHQMa6oaIxerJ4triSS1+aML+8tj/AA5pHIa3Z4ozNHkbou8dAdJxLx9luwQN54ElKQXnAJ+yXob7p+7LVITIUVo1Mtu/mQMx35HH0NULjT/Ng82yGVCbWgU5Kj1rUy7SBoo/KucHfCfut70zCGbfbkxzKRvj9PpQ1cFoU7HUlDtDckmLzG2SnrFipLieUToJJRFM4BhP8NwuOh96S5tI78vJCojuypJi6I4yOT71mrOFke2uULWwJ3A/eU+1S9hrc7bwCyPeX/lo0RRAHhb/AJZnjgfzruB0/D+tcZ8PojHFfMZBImQqN/Ftx0Ndpt4z2reHwnBW+IBTgKaOvepFwe1WZ9AHHFOFGKWgQUqikxT8c0MaFwc8U7GD7UnfinAcVDGC9acOKRetL1oBC96O1J0paQFfUF36VeD1hf8AlXiuvjGoRH+/Cp/U17dOu6zuF7GJv5V4n4jXF1ZHPW3x/wCPNQjensZJbFH3sc4phYdMUmTVo0HEgZoBz2ptGTQFh2/nGK6X4fXHkePdMJOA5ZD+INcufatTw1cm28UaZKCeLhR+tRPWIJGx/wAg34mypyNl+fyJ/wDr17Q4wx575rx3xyBYfEm5kHGZY5R+levo3mRxSf341P5iojsZ1R1FFFUYoD90jGRjmoL6ztdRsp7O9USW0gw49PTHv1qcnAzznt9aq38c0ptEij3os4aXPYUpDieXadbzaJrcU+m3LxRuCZYc/K2PUV3ln4t0+a8gt76ZbS6n+VC5+RvQe1cVJvttTeO6ieORIzwwxk1z3iiKLVCkMoysYyCpwVJ6EVyTjGctD1KblCOp67rmxLa6uWKiW2j2Lg5HzDHBrm7uNz4Ls9Hm+dmkijJHZDg/0qXwdHJf+FrrS55DNJAVQM/UjqP0FS+HFS6uNTtbpCV+1bYj/uHt+VQ1yqxTlc6Lxe6WfhGWGN/LUIkSsDgjGMfyrkdMubi98NwXN3O8s6u9uXbg7dp5r0XUbK0v7P7PeQ+dbzKAy90Yd/wrznV4xpvh7UrKGTYtvKIopG/iDYJ/Q0lZgkziyIpVMN3+4mWYhXHRhninTOCixagpU7/3Uijk0h82KCBL4CWMA7ZRyVFSDfDAiKRc2jZYsedv411rYx6hICsccd4PMRn/AHcg/hqV5F8qNLxfOtzlkuBwUqCHdFbK8GZbQgmRDywNIjEQ7rTLwbfmt26jNUiSa4kIhRboloNoMdwnUVJKhaZVmIDqR5U69D9aiTMTlrbEq4Ae3boo9qlgZNjtADJbEszQN1H0prcBsqPK0kc+2ObZkSDhX+lc+JRNcG3vgYrgbsPjtnitq5l26YzIvn25A3L/ABQ+4rGmaF7dIZ3M9qRmO7X7/J4BqJPUpHofgC3a30m9LgZkn7emK608VzHw/geDwy4kkD5uGww7jnFdR1H410R2OCprIAeKevSmDGcVIB8tUZi0CilxQIUHNPzUYp4GBntSZSQ4dOlLSBsilJzUMQopaaM06gaCgdaKKBgeY5B6xsP0rxHxN9/T2/6ZMPyY17ggySP9k14j4qwiWpJxteRaaNqRg8gUm4HvULXCAkcufQU0STNnbGF9CadzWxYB9vzprSonVhn2qERux/ey5PoKcIlHGzPuaVwD7QT/AKtCfeprOWaPUbWUkLslU/rTM44zj6UhOCp5xnkmjoC3O/8AimmPEtrddPPso2z+Vel6PKbnRLCYfxQL+GOK85+JGLnS/DN4By9mEJ9cD/61dr4JuTceDrE55XKH8CayhsRWRv0UUVZggoxgnBIGPWiigDP1aws75zb3kKyJt4ZRyK4HxH4B1G0jGo2Li7tVXLp/EgHpXYDUzcPCb5FsricABPMDKfxBroLlxZWUksoIXZt46EHjj868mEpKVz3JQTR80W3ivxXomlW+oxeKbK2e/ia5jtvsu6V1V3i6+SVByjfxdMV6t8P557q80iK4Yu8tiL2V8Y+d8HJx67jXiNzrmn3XhPTtOMskdzaWjwsp0yCQOxnlkBE5bzFGHA4HBB65r3j4eW00VvbXsw2rJo9nFER3AiT/AArW/c5y78QdcvdH1TTPsU4QgEyKehBOOfU81ieLWij0y6inZnjuEjkVu+44zXReJ/Dg1uJdR8xheWqfKjcq6Zya5DxbfAQ6XMsZeOWPbNEe2DtB9ulXFp7F6xWpzg8yGJVVhLb7Oh6imwhmm32xzhTuhbvSmIurSWEnmEfeQ8YHpSJtmldgTb3O3bzxXUtjDqSE+ZO0lt/o90E4iP3TTiv2iY9LW8AALfwtQzJNOIbtDCyYCyL3pzErmK7jEkQbEcy9vc0JkjGxJcHzSbe4DkKw6Pj1qQMzSbnP2W7CHbIPumkm3RqRMwuLc/8ALQclaeCYrRfM/wBLsG+4Ry6fWncCvdy4CRbRb3JOAP4ZcDvWdGrh5FjCxXW0CaFvuMMc7a1dQgW4VIDh4XG5ZSfmjp+h6JFqWrWen3TSXCO21ZE4ZAAec96mSe5SZ2ngiNU8IWwRCiNIxCnqOTXQD096S10CTQNLS1SVrm3jc7ZiMMOe4pyYKhgwIz19a2hJNaHDVTUgI5HrUi9Kb+FKK0uZC0oHHWge5pR16UgQCnL156UgyTjFKAc4pMocBigU7Zg5zRipYgFL+NGKWkCCjsaKKYx8X+uUV4p4yhUxR5XIF3Kv6Cva4f8AWpn1FeN+NQQkqgD5L5x+YWg2p6HIYVeihRTdwPctikPXpzRn3I+lBsx4YnqQtBI7/NTM9yCcUjHkZOPamIfk/wB0AUMfkbksccUwZZtqhifQLmrg07UGs5rkWjiCIZkYjGB0obVgsd54mH2v4XeG7zOTGxjJ9OtdF8MbjzPCssR5MM5H5iubUm7+BytjLW11+QJ/+vWj8JrjfZ6nb55VlfH5VjBhU2PRaKKK0ORBRRRQM8RitWsbG6eSVjlWO3OQh9ielQeEvGuvNF/ZF/eG506VwkbycvGx5Az6cVreKdF1XTtGug9s7lh95BmuN0KOHFuJ5GhTzwXcA5QA4LY65Ga81ySg5dj3KFGVWvGkna7segeLvBekWdsbiz0uxRrt4YkAt0ARhy2OOOhr0fw75c1msMcSRx2p8hVRcKEHAwB2AGMV5mtvZSapbppErtaQGW5mgWUsiAfKr4J6nOPXAFeg+DWmt/ClnPI2ZXd3U9yDnGfzqISU4u5rjKCoSik73V9VZ7taq7tt32sznbDxtd33i3UvC/koIY5GSC5z2A5U/rXP+IjcRyWqogLwFxKOvGTjjvVy08MX3hrxlNqOo7Z4ryYvBLGecsecj8ay/EMcg8VXUltcM5h4EQ69M9O/NbUkr6HLN6GQqxTSeZat9mmLZKHufapJJxMTHfw7JN4VZF7+5qMSQXJAulMFwzbgVGBn3p+6eBo4r2MTxbsiQchfeuowJJfNtyokUXEDMBuHO2lUtFITEwe1Y5dG4xS2ygx/uDi3d8/NyTSXUiWUIlKecxPRuBWkYXM3IWJQs2bZXeM/8sscUuz7PuHnJDuPKKcms0393cTGNZ1RHGfLjHK496zLxtRto4HtbT7TdTXSwwrLlixIPYEegrRpQV2SpN6HUiCNCxVC+ehJz+ldH4LDP4y08FcbckAduK8vbxDr9rf2EF3a2Hk3UoRJLaQSq3zAMA6Oy5GRx2yPWvUvAP2pvF0TJGgCxMxVjkmspVFKD5SkmnqemLqdtc6nPZP/AKPdRsdqv0mX1/zzVW70wly9shVxy0Hv6g96qappx8+e7jia4gb5p4eRNGexjNOstZuLaeK11RGkhkUGC4UfvIx2DjsfeuaL5VeA3FSepXHXGORwaAD3Fbt7p6TqGYhZCMrOo4b/AHqxpYpLeTy5Vwex7H6GumFVSRyzpOLG9a4zxz4l13Q73SrTQraynmvEuZHF221VWJFcncXUABdxOT2rtQvbvXnHxJvbOx1/w9PfSQpbtaanCTMshTdJb7FDeX8+CzAHHPNFWTUG0OlFOaTJfBXjHxHrXiZ9L1qz06GM2Ju4pLQ7xIN6oCHDspHLDjuMdjXoiqTjFePfDvUtLn8dRrZm3jittCaB/s5l8nf9oDfuxL84BDAnP8W4969L1XxboWhHZf3wSYDPkpndSpTbjqVVhaVkjXzxgsM5xTh78Hoc1wlv8TbbWNVXTtKsnTeCTNMPSu18PxXOp6Q028POshDE+lU5pbiVFtXJ/wBfpRSsCrlGG1l60namtVczatoFHfFeM/ErRV1v4o6fbTQ3ctsmk+dMtmu6UorynCjB5JwOh61P8IoE8O6t4tsL5iGtZ4YWODyVMoz/AJ9ayVX3uU19j7nNc9gUgOpPZh0ryPx4pjbUc4Cx34O76ha9Il11Ed4oYTvRd4z0Nc3eWNlqd/Hc3kRdL1w8kWeAw4H8qtysVBHkQzI4CBnJOPlUmtG08P6vebvLsnAUZJbivRore1ttPm+z2sSGKTCnaM1faZv7QK7/AJXgyR05NLnNDg4PA9ziJ7q6SJJDg46iti08F6TbyzxzGS4eNcg5xWozg2UWSSyyEkVL53+lznAKypgZ4pXuMgitLKzhtXt7SNNxwSRnvitWwQXl5qGnzAGCeAqygY78Vkl91sI+0bcVo6MzHW1bu8Zzn6UnogSMzRLKS2+HPivR5ATJbS7xn+7kEH8qo/CWcrrN5AT/AK23Dflz/Su8SySS11pRgNc2bKf9ogdf0rzL4aTeR4yt0zw8bx898ZpU2KovdPac8ZpaUjqB2pK2OOwUUUUDM9Zp7c5dPtUfYHBI+o6VyGr2NjF4lfVbGBIo4LN2lRVx8xwM4rq4vMVlTkEcfWua1hTeQa35Mi+Y6LAEHXOR/hXk0Ja2Z71VLoM8K2s3/CLJpcTp51zavI5A5yxUjPvgYrrkEekeHIriTO20tlaVR6KADXH6QJrbX72RMJHGkNuqk9Hxzj8jXR+OZJl8DamtvE0s7Q7SiD5jyK0kktEYNuU+aTuyjP4gtPE/h9NQ0ZjNDFIjneMGM5HFcHrMkV/r17cWknl3WBuVmxk45wa0/h5FFbeF7mB5fJM0JdlIwQV9vqK5fdbXKSl8wzeZ94nhua1pKxE2S/aMBIr+LICn98Byp/rRELi2iSS2cT2oBLIeWP4dqcxuLWN47yISwFeD1H4Go4YgXkeylIYJzHnoK6ImbL8bJHHGW2xZXdtFVrpYbweWUeTDcdhVqOFR8zDe+3qaJIj5YwcbueO1dUdDnkypHAIkIURw/QZJqjq13baatnc3TSrDI8lvJIBkxiSCWPeB3K7934VrNEAwG78qj1DTrXVrZLe8g8yNG3D5iuDgjsR6mlUjzRaQoys7nnEENna6lo9ta6p9ucXgeQwq6wplkA2h1Vtx2nJxj7o7V798PY1Gr3LkNuW2JUjqDkc15xD4W0S1uIpo7UJLGwdG81zgg5B616h8NCkWoahcS8IsQUufciubkdODT6mjkpvQ7S31AMFjujhgBiZOo+tWGtLY6jHe3A+fGBIvKSDpzT7nS4boGaAhWYdV6NVNJJ9OtZBJHn58CM8gj2rBpW90IzcfiOgAQoFABUjgY4qnc2SPEUZN8XYd19xUFpdhxutnDD+KFjyPpWlFMk65XPHBBGCDWesXc20mjlxpspvjBIP9D2F2uFPIx2NeH6/r0HjTxTb2Go6bDNaW9w0ED+Y6FQxG4/KRn7o6+lfQ+uqIdC1GVOHMDZwevHWvl2xxHrtqEZIzJIXM7DOw5688cd6t13orXubYbBqq5Sb5VHd6vd2Wi1/rvZPp/DOgaVpt/qE1pahJYpfID+Y5+XIPQn1ArE+IgX/hObw4UsY15IzjrXReGJXlt9QkdtzvcKWPqSBXNfEFs+NrzDE4jX+tXTmpWa2ZNai6U5U5bptP5EXgtseKLfnja3NfQ/gE/wDEpnx/z1PNfO3g0FfEkLEcbT1r6G+HxzpFxz/y1/xpV2RBaG/qGmi6UyxDbMOh9awWBSTYy4YdRXX1n6hp63S748LKOh9aKVVrR7GNWlfVbnzj8XLfWZfE0kVhptxcw3VjFA80UDvgLKz7ARx1CkjrwKd4CGplNdn1SwktJTFZxDzIWj3+WrJn5urYAJ9z712/iPWLRNae0N3F5kbYYbuEYcEE9Acg8Gq80iIJmmljG7GSWprklJuLNpUqtKMVUg1fa6tf0Lk06/bZjn5TCFGPXFVVuB5Vngcxn+tZ1xrenWsriScMyRlnC+mKyZPGNrm1S2t2fzn4NaaIz3Ok3EidBnDENikJbfFI5wNuMmuJufFeqXEFy8KLEyOEHHaqzXWo3OpxiS6PlvADjnrRdILHaz3lnbwyGW5QDdhRnvVCXxLpsVyYkZ5HRMkdq5GDRrq701F2uzLKGyxrSXQ2S+aZgixFArOO5xS5m9kFkWZfGGbRZYLbiR9p9hV3T9buf7fhR5AIu2PcVTtfD6raCGQNu3BvlGB096sxW9nHfJLAENwAMAuDjA600n1HoenWkvmR+YnVlKMvrxXkXh9jYePbUONrrdFSPQFj/Q16TpdyysgmZd8ijcQeC3Yj2xxXJeNdP/s3xRpusxriKaVA5A4DA0o6OxMtUevyACVsdO1MxTmO7Y3ZkB/MUnQYrY5GrCYpMUveigRQhvYZZ97RkFVztPXNclptiqSXe+YPc3l4ZRk8KBngfnXR3C4tiQMkLx6msH+znn1XR5JH8qG3aSeTnGewz+dePT0Z707X0KcFhLJrdnb+YTJPqUlxuB+8qbgPw5r0ISB7nqqzPyA/G4dxzWNp+m2f9p6fdRTrLJHE5Qg8bWINc18WYtTnt9LeyjuAIpSzzQA/KcnANbyV1c5VNKWpoatJbWWsSSxW4EZhkEiAY5wen415gbm3uwPPg8p9xHy9+e4rvdba4ufBFlP5qm7j+QhfvMx55rhXlRvLN5b/ALwcF14IP0rekrLUmer0JDHeWcBaORbmKRgPUAehFC/Y7p3eLdBKHUHn7x9KSO3eOJns5y67t209fyp0E8N1IglgCTb85QYzj1rWO5Eti/8AM3BO3jBodwuByQO1G/jheh709zuYsABXWjmZENxJwoUHrVdlaa5kiaZo1QAgKcFvf+lWSRnqTTJbeOfG+IMexzzWVenKcUo/5XOvA16dGbc+qsmkm07rVJ2T0ut+vcZaZki3MN5Vyobsw9a9H+HFqbqPVkf5UOxeOvTNefrFhQowqjsvFdRpNzq1n4RvLrQkZriO7QylRuJQKe1ZyUoUlFu7IrShWrynCNk3ov60+7TsehGO90gvIp3Q459Mf0q7b6npurQKFnjbc20LuHJ7getcp4d+JVhqgS01hBZ3DfKSx+RuO/pU/iHwNBqOmQnQ7gW0kcpuIyrcMT6Ht1rlEo9GO8TnUtAtze6bYm6RRksPvR++B1rbhtru9m0/Uhc+SvkAyp03MR3FcNpXjzVfDt4ul+LLR2GQiz45xnv616NHfwm9W1jBMjRCVTjhlNEm+pUY22KOuzzf8IzqKTR4kWBzuXowwea+ZNCLy+IraBzuikn+ZG5BGa+lfG07W3hG+MfBYbD9D1r5q8MqT4qsfmyxlPFVCMZRtJXNqdapSlzU5NPydjstBAQakqrgfbSAB0HSua+IJ2+Ob8D+4v8AWui0Ft6agwPW+P8ASuZ8ezpN41v2Q9Aq8+ozVx3Ik7q7IvCTOfEcIJ6Ia+hPh4QdJuB/01/xr558IvnxJEGGPkNfQnw8ONLuAP8Anr/jUV9hU9jte1FJ2pawT0GeG6z4a1cxnRk0+/m1CKWWQ3SIrR3iFy3mSNn5WI7Ek8L61wElrqF1Ff2swuFljmX5WBzwR3r2HxxrGp2XiOS2t78QwvEvCr8yjvXl2p+K2ghmuYoWbbJ5eWPLH1rXD4ZxV7/8MdeMzB17RcUtW35t/l6L/KzP7Dke7nYR/LNCEDHpux0q7b+HmVbfeQrWrfMMYyewFa8VzO+v2lqsf+hz2BmVtucS4OOfXOKoJYaxd6FpbzB0u7e+MlyGO0lMjH1rpVOx57nqOGlWcKXRlZdgG+ck8x/WrNvBbedZoGQPcDEJXHKjvSzaNGt74ja4ul8jUIAXXOTCuDyR2oSPToG8O7pC83MVlNjAYccmrUUiXJleW7Mel6nc29uGls5PLCk/eH96i5lkGraVCqn7JPa72AXOHwOtXEntUi8RfZbcb7RszKx4Zj3NQXt/cwjw75KqkF6h87AyUIxx7VaFqcv/AGP4lu2lyZBiQhC5wCKuWPht7OeGe9v4lli4Ch/vk9QaGGvXXiK5jZZ3s1dhFg4GM8Uknha/a6jvJJVjRXyVZ6TBHp0GlhoE+zEPH5HnJIpzyDytVfEESar4VuS4yUXzFx/Cy8/0rZ8Ik2RtLZtr2t4GIP8AcbByPyqtq9mdPuL6yI/dXEL7fqQa53uWldG9pcxudGsZeDugUk++Mf0q19KyPBzCbwhpxJ+ZFZT+DGtzbxzWqehyMhxxmipNi9jzTcVSEM1WzhutJuJdPKrcbMrt5rinee6sJ42ZjKLcRuTxgmtrVNQbRnsZ42UF5gpU9Cvf+lVNQsHsfEd2BJvi1Aq0I7Dua8mJ7ezOR8d6j/wj2laRBB5scKIqtPD95SB1p3h/4o30cKx3Rh1S2GAT/GB7is34n3DnxLBbW90sE0UOAsn3JRx1riGhjNxEt7YvZzO6gXFpyjZNdUPhOKWrPY1h8J+MLm8ht7ibTNRcrzI2FLYz8o9awtc8DeINKcySW41K1Vc+bB9/HuKxvi0lvY32h2SxunlWav5kfUtgcmqPh74l+KPDlrE0dz/atnu2+XMedvoKq9hLYctukskf2aZopl58p+Gz6Vbg8/z44buHEqgtkjBFdIfEGgfEuxkjtdJNrr6Rs0bMvClRkkmubt/tAws8pdVXCuxzuPQ4rWm7uwnLoW1xnaW4NEgUOSpyKoLq+kkYOpWX/gQn+NW4ZEuIlmt5Ukibo8bBlPbgiulNMweg9WPVVAB65pc8/eFIVXcpJJA6075c5A47CrFqNHzEjk13vhDXLDwzoUT6lJ5aX1yUVh0GAetcIGCkEJ2713WkeD7Hxb4Ct4L15I3Wd3ilj6xnP8q58Q1y6mlJO5ua94N0LxZZm4tmRJXX5Lm36fjXMX2pa/8ADbStNTyXvrcM3nMvKYyQOexxisOTwz40+Hl1LeaRdG5sM7igyQ3PceuK9B07xzpt3a2EGrottPexF9jD5Dg7SD6ciuOzNyLSvFHhX4hWf2OcIJyMm2mADKQf4T3rsIlhi2x4TfEgUAfe29BXCar8LdKvbuLVNFYWdysomxGcxsc8/pXbQadHHf8A20FjO0Swtk/LxzkVLGjC+IbFPBdz65FfN/hbjxppxJ/jY4r6I+J0gi8GXAHVmHWvnPwswbxlaD+IBjW1PSImdn4aP+iXbf3r1v6VyvjHafF+ogDndXTeHMmznPrdtXL+LxjxbqDkjHmdKcRvYXwpIv8AwkUKkY+Q19A/Dxv+JVcAf89f8a8J8I39tGr6eYd15K/mLJ/sjqP1Fe5/Dxj/AGXcH/pt0/OoxD0HTWh3YNOFRBuKeDkCuNMpo8p+Irwp4kBYEnyQG496821zW4NJciDSYmcrnL8gmvTfiQsA1uOVgW2wgOB9a801zXU0txt02CeTZlHcZxXrUXenc5J/EdRb311Jr+hQcCzuNPaSQhflSTnAz+VZIsdZvfCUaSrL9tttSMjb2wfKyPzHWtW11O6k1fwumzZZXdsXmCj7rZOOfSsiS11y+8JahC5lW+TUAylzjMQPahPQpG1JpgPibXLozosWoWQTaDkx4BySKqILe20PRA8pm8qQpBKB1PHP4VcbT3bxjcagHQQ3WmiAxZ+ZWwctWQllaWvhKwt5tR3w2l2RHMh4duPlpDNQTWq6pr8a2uJEhMk5bgTVmXGtMug6HcwxIkd5OyMMZ2Z9K2StsfEd8nzG5ltt0qE8bfSsN9Vhh8GxXltYx+ULsQiNv+WWc8j8qpMRk65eeIX1+azs5Z/sqkBSq4qCbQPEl06GRmYo2cs2NozWh4j8RatpmpxWlmpNuY1YbFySSKoGTWNSDKVvNzkewA60AkeqeETLpUFq0o8yG5l8sqefLcDkj6/1rq/EOnHULBinM8PzK/tXAeEpbrTbNJblTLa71iYEcq+Rg/yr0+M7224+VlOPx61zT0ZpE4/4fSGTwu0TH5oLuRD/AD/rXUkhjxXK+C3SK412zjG1YrvdtPuBXUk4Uetax2OWa1EJUcYx70hABwKCeQTSYA5qiLHH6/ZDU9a0OGRwttbM08gHfpgVr/bLC7tbOaSZBCk7Ms7HAA9M1jagM3VzOpwVjKqT6j/9dc54zSHRvhNBp5JRH2qXHJ3dzXmU9T16zaRueLvhknie4k1C1uo5i4BWNj8owOzdvpivOR4S1nwzrVlDeSTRWrTrlH+ZNu7sa53RfFHifQdj6Rq7TRYz5TOWH5GvTtC+K2o6rZxyaxocctvC+J5lUYUDv7V0o5Hocz8WLsS/EGWK2u1VoIEURuOG+UVxF6ohhgE8b28hBbzIvu59695udM+HfxKja4S5i+2SDHmBgsgx061yHiD4L69YRGbQL0Xtuqf6mRvmI/lQNHS/Cq1trb4fXGp3Dhg3mB51HOzHPFcDoyTLLqU3mB7eSQmAZ+6pP6V6Z4VZNN+Ed3BJbm3mtoJUmRlwNxB5Hr1rzLQYUh02Rlfeksu4EHp04rSi/eM2c3p+m6VcHwrpcumRGTWLc+deiWUSxu1zNErgbtmFCISNvIB7nNdB4OJPhazG4/x8f8Daubjt/GMWnw2UcESxQxPBE4jt/NSNmZmUS/fAJd+/8RHSus8MwXGn+HrW0uYtk0e/cuQcZcnqPY1WHjJSu0Oq00auxsEhfzNPEZKjBwaZvY+goIkA5YlT6V1mA/YqlixzgdzXT3Nzr2l6Bouo6KJPIjjfzVjG4MSw+8vfiuWMW7cAp5GOa9S0TxJpWh6fpuj6hMLeWS3VwSMocjpn1rCs7I0plPRPidYXQ8nVYhaSH5PMHKnnHI7Vra54R0nxLbJPGwjl8srFND0weckfWjWvBWi+I7M+XHHE7ciaADkn1xXM6xpfinw3d291o8rS2VvbrE4U5DYHJI+tcqRtqQWln4v8F6pbwq32jTJJVjbb8ygHAz7V6XFHeHUJy7g2hRfKUdjnmuP8OfEe11KdbDU7Y210ziNcD5XJ9uvWuygvVkvLi2EbKbcjJPQj2qZJsaOM+LMpj8GsCC2ZOPwrwLwpC3/CWQSbcAKwJ9697+Lj7PCCkjnzDXhPhOSR/EyxnG0xsx+ta09Igzp/DSFbB885umxWD4ntLU+KL+SWX5mk5HpW/wCFnLaYpPe5Y1xvjFyvivUsZJaU5pxY3saPh2SwGtxRW5LSBTls17r8PTnTbk4/5bf4187+DAg8RxYXnyya+hfh+QLC6O4BfNBJPQdazxGqKpndA09TUO4YUqQQ3Qg8UobDbT1rj2LaPOPiN5Q1mGTklYfnUcZ54rzbXNZh0sLKmmwyyEcFxnFekfEmW2h1KCSVuPKCtj/e4/WvNdf1y20maNG0tLh2Tepfkf5xXrUH+6OWoveN211aaaTwgVjWO0vQxuFVPuEE4+lUZY9Zv/DniC3Bm+2i8H2Yk7S0eexqW31qaWz8JvHEkdvqExWZVX7gB7elJNNqtzY+LIVMn2mGVfsWODt/2aE9ANAWU58YWGq5H2ZrAW7jfghznJxWVFo9va+EG065uI3hgvPNEsYyMnt9eK0Ft7weJPDuobWNtFahLoZ6MfbvWfbaJNB4a1bT5buKJnuxPHLuyFU54NMDY3Wj+L4Wyw1Ca1AZcfKyY6/WsNL/AE6Hwld3FvamW0guVRY5DnLc5JrZ2Ide0q8aYecLcRLCOjcdc1mJHo8Oi68hilmtbeTfcxdMvnrQhFLXPE1xo72EFvZwP58IfzXG5l4qh/bniK5LEvhQoKlF6+1X9V1my02x01zpqXX2hP3Tvj5F7CqCeMg6yiGCKDauAdv8QNMaOx8IX97DaySX6u9q2POjPVTu4P54r1K2kBMe18q4DKfT0ryLwbrl1c72uwJ7aVSLgheQOx/lXqVo8TWkLxt+4bAVvQ9h+WK56haMTQ5h/wALD8QwiIxtJGjlPcfxfpXU8HntXJLcyj4t+XLH5ZmsSgYD7+Mmuu4AyRx7VcWc1T4hrcUmfanH5utJgelWScCJbptX1ayuowojkAj98/8A6qwvi7NJBoemWsEaykud8bdwK9C1e0h1GKyvfLIuHlXzAp54rg/it4V1nXLiylsYZHgt1bJi+9zivPpxsejVndnirGyZ2LRTWc3HzLnFeraKjWHwF1SdSs73FwQjdz81ea3VtrGnq0d5BvAHCzJhgPrXpPiFodN+BGh2xYwfaZ958r15NbGEmeXWa2q3sTETWUqqTv5xmux8N+PvGWlXcFrZ341CKSTYiSNvPPTr0rl7I3BEjJNFdxLGeD97nitf4fW0V18QdGh+zSwy+cGIH3TjmmU9j1v/AIWhp9pcy6J4ys/s9yVxIUXKEHnB/OnXmg+C5dJl1HSdXhtYI8SMUy+NxAHygE9SOgry34gyy3/jvWpgsFzEsu3aTgjAArCju7fTL5GVp7SRYsccbT1BX3BqJSlGLcdzTDU6c6kY1XaLev8AX6627M9BMd1BqUlte289nvQNCk8BjkI6Zwe2f5VJtj3EHPHvRe22up4Rttc1+/aS3jJFqzNmQ7yvzYAPy4B6nOR6VzsniKxVQV3njIBNdGGrScff/wAvwDHUacKiVPtqk1JJ3eia0eln87dDo90AYDGac0ydFBxWDaa9aTxGWSMxIGVMgZJJ6fyrfMB28sSM4wB1966lK5xSVhGncLgKASeDmvSL3wLaeINE0+6eZ7e+W3Qbxyp+XgEV52IoVGHPVhwfrXTa54q8R+Gte/0eHfphijEaSp8nC88isK1y6dii+m+MvBUoNo7SWivuzGdyEHr8v/1q6+L4jWVpqB0/Vk+zukcbGVfu5ZQeR+NN0P4maNqccSXimzml4w3KZ9q1NZ8H6F4ky8sambA/fQsNw9Miub1NSQ6H4f1u7g1SFYZJ0YOs0LYJxzzit4PExcgrvBw+Ov415tpXgLVfDXiK2urG+eaxMuJFDYKr7r0/KvQraxjgnuJoyWFw4dgfb/8AVUy9Ro4T4yME8Jx4PBc/yFeG+Emz4qzjpC1e2fGlseGoBjALmvFPCTA+I5SMcWzVpDYGdR4UI/sqH3nb+dcT4vz/AMJXqHzf8tWrtfCzf8Sa15HMrfzrhfFu7/hLdQOOPNajqU9iXwY3/FUQ8/8ALM167DqU1l4TmtYTta6lwWU845ryLwdx4ljyP+WR/pXpsrH+w4eOPPP9aJK7HDYsaD481DQWW3nzeWI+Xy2PzL75r1TRfEGn6/arPp9wrAffiJ+Za+fLh/nPPemWd9dWNwJ7GdoJgcqyHBI9xWcqSexdz1f4kJbSX1uJSMeT86H+IZ4rzbWtS0/TUilm00TEfKpc52nHFb1/rZ8YWEQ1JFjmtxseVTguOorE1m90zTYolurNpg33A5z0HWumguWNjnq/EWoNcZtB8MzxWsKRXl4YpF2/6vkdPSpZr/Unfxdbqzb7SPFmQuCeP1qrHrUC+FtEu7exjSG5vjAiN/yzzgEir8mo3S6x4ntV2j7Fa+ZC+3JJK9/WrJIh9ufUPCV2d/kxx5vQc4z6tVeHR7o6V4mspW8o3Nx5kEjNnCjP5daY17qE1h4RuR5hWWQm9QDHGRywqwlteyXXiy2dHZZ8m23tgFe+D2FAE72+NQ0C9a4VHt4vJ2Z/1xGOlMS1sk/4SO2e5EsUwLXQUfd5qCfT5pbXw3OdsbWTEMGPXp09auLYxDXNdYOgW+ibzEX+D3NAGReXOhW+iafLewvPb/dtcemO9VH1rT4o0FtoUe1lyuQD71O2n6O/hi1t9Qv2NpathJkH3j6VFDL4bikQQzTyPjC7vShgjW8HeJ1uLtvM05EglzFIqDoCMZ/CvU7Awx2MZhkEluoKFu3sfrjFeXaBqulWuqwN9lKQMcMq+h4/+vXpWnRR2lkEikWWNWbgdNrHOT9AaymXEydXkurf4j+HXlUG3dHjil/vZB4Ndqw+Zl9DiuF8XG6g1Xw3cqd1gl4qlz/CxI5ruZZI0VnMg25wBkDmiJjUjdhikIqq+pwrkRp5j4O2JWGWPes5PEjXGPsdoZCzbCWYYDf3frVpkKDOPv8AVb6y+G0OrO7x6ose8KOgc9P5GuX0j48atZbU1nTVn7F4/lJ98Vu/Es/Z/BEVt5ywvLKoDH0GeK8dI1FEG5Y7peucDpXNFOx1PWR7lF8SvA3iezkhvbco5HziSL7o+uKt+ItG8K6z4WsLM6nHHZxOBbKjbmDN/eA6CvK/AcOkA6xqmqWGRaW+VhYkCRyRjAqlLdWaSyTMxWSV/MKBiNpPOPbFY1a3LsYyep1WrfBfULG2urmxuY5olTIaNtp65qp8NbCfTfHWnXF5cq9uu7Bxyr4IAqpN401h7SO1/tB3hReYx6Y9ayNG1S5g1E3Sy+WGfKE8/wCTWMsQ5K6ByZT8RyQ3HivUpbqCeCV7psMvTG7FVrgyzXDLFcQ3SEhQkow3T1r13wtp3hnxHbTx69JFFfebuikdwrOOv407Vvggnmfb9JvUmZHEqxt/EBz1FdVOami4u6LXxFsd/hvw7Z+c6KsGDEPuucDGfpXBf2TZSAbrcMFG3PTmuv8AiZH4pu7fR7i10qZVgh2zpEN209OK81Y6xPNi4guI2x0I2iumDXUSV9TpIbW2tV27IkjyOpyM9qvxTiWQhLneeuFPauS/sa7l0uK3Wb51lLszt1HpWroGlvpVwZprgSArt2KeQa2T1FJKx0EMLzTRDaWJkUcn3r2yHUtHvd2mPcWzzQjy3hlwMHpjmvHbK4D6haoiNkzKM/jXU+Jvhhe3usXGp6ffK8kztIY2O0qSc8EYrGvZsdPY29X+Gmh38q3MCPZujhgI+VOD6Vzet+H/ABXour3OrabLI8cjJtWEk4UADBX/AOtVTTNQ8ZeGtYtbG5M/2SQqG81d65JA6/8A166aH4qaVHqV1Y6lE9s8Mxj3odwODjNY6mlyv4U+Il5qOuQ6JqlkFuJCy7x8pGBnoa7uzN0xn+1L5e2TEeP7tUbGfQNZmjvbJ7S4uEJKOoAcevA5rTt7tLpGeE70VirE+tQ9WCPMPji7Dw5Au45wzZFeO+DY0TV5pMlmNs2fyr1345Op0SEcgbGNeS+Ehsu7hgc4tSf0rWGwHR+FBu0ew95Cf1rhfFrn/hKNQPbzmFdz4TOdG00d9xP61wPil93iTUQDgee1LqW9i34LX/iqEyc/uj/SvTp8f2HCD/z3P8jXl/gkn/hJ4/8Arkf6V6fdkDRYMjGZz/I0PcIbHK3DYJNTaJpU2u6ibWCRI2RSzOe4qnckgtit74ftnxPICesJpvYUjctvBDRWkkFxeZ83+NT0q8ngrS7ueygvC86hgnJOcVvBuMbcipLVgdQs8dfOX+dSptEWucp430Wy8DWVjbwwCeymugIVkP8AqmJHIrPe+ZfE+s2SxIr21kZlfHMvy9G9q7j4vwW6aBa6lcw+alvcKuPQscA/hXDtcRf8Jfe2Qg/eiwM3mt1cbeh9q1pyugaMd9avm8NeHrxNqtc3jLcqE6Lx+laW68fxF4mg3M0Qh/0QEcZ9jWQ2vMPCOm3sUESme9MJjxlUGR0rbF1L/wAJjqllvIRLQNHx3I5rRE2M+VNQk8O6GWXdcxXB+0D0HrWgkEi+Mb672gW9zbeWvPfHcVjvNdzeCbWSOeQzLdjcwGCR6VrOJR44gnG428tqFKj7ucdaaCxjR+Hftfho6VPdwwiObzPNz8o9qqr4f0O3ZTcauu8EglTwanh0m7u9D1TTVXM7zlostjIzVSz8H6jFD5VylqQSDkv0I/GmI1vDyeHbPVUCXjTqWHmluQvNenabbmwin2NvRpC6gc74zyK8qsfDkFvfbnmhBdgGRG7V6bptrPp014odpY0CNEc5DLtHArOZUTP+IEV0PDUF5anzLa2uEleMHnAIPFR6p4n1a/jsoZ9Ihsknj82MvMoY4HGRnvirHjS0mvvBGoNYt8iqJHTdg474rirC8N0unz3MtozblQOzMxA4464qY7jki7pHiPURqTMJrGN445DHiQOVJ49fao9J1O+uHlge/X96WfEMJxu9c4qvYPFFrMUQu4QPMKkRWo7+pxUmjtNHqoVpLt1EhAxCFT8wK3SRmzO8f6/b+IrYWSxM9vbOTEycn8a4U6SluUf7W0Tv92PdyPfFaGnWU9nK7y3qoyfeDchqq3dxbqxyDNLKcA/3a8VTk9Ewv2NFtXgjtHtzIGZV2s44yfXHesEMt7J5saF5S3zDu3vilgW3jiniuVJyDyOSD2qnZXUlvHtVdpY4V/enGDWr1Eo6XNt7mO3WaF4PJikX7x+9n2rCV3WaMRyklZBtz05q5qExk0y3kdwZlcgt/eFZiDMygHGT3/nVRgrFqJ1U11BbuDfZe6RcDY2Bgj/69b3habxA/iOys9B1qaJLzISOVt2zH17Vx0MiS3MaxxFxHwZH7muu8H6v9g8VWl1JbgXEDEJ6EEVEHyMzXus6lvjDrXhnV7jSdQsV1GC2k8rzwCC3qT2roIPiX4C8QN9n1a2+zXHQ707/AFGK8qmtm1rxw0Ntex27XU+6Rp2HljnnmodT0aSDxoNMkigu4WuFCXMB4Kn0rsUrs26HT+NZtI8OXtp/ZL/aNPvEMkbZzgjr/OqOgan/AG01x+6SNIRxt5ya6Dx5pFkviCGxFsGisbZI4lzj8aybSFLHItYkty5G4DnJrrh3Zn0Oj0G1WXWtNBJXc+45HQgGujt/iwIdRu7bUbNWiikZVkhOGABwMiuc8JmSfxXpq+YXKyEkenBzmvUtU8GaDrZJuNPQ7ufMiOCayqyi2VBWQzTPGfh7WXjihvo/NbG2KZcHP49aj1TwLoGsuZpLQRylixlgYfMfesJPhnaWer299Y3u1IXyIpRjtjGa5u9s/HHh7UJri3hnNt5zuGiO8YJOOPxrL0ZZ1Xh74fP4b8Rx38F6stqA2UYEMM5rt4YYYCywr5eWyQehrz7wJ471PxDrUmkajaIrxRlvNwQ2fpXdWkEsFr5V1KXlDltw9M9KmT1GkeWfHT5tOto+ATEf615V4YQw3F7nqLU5/I16Z8dnIt4QG/5Y/L7cmvLfCczSpqJflltSCfXrWsNgOq8KYXSNLwOSefzrz3xL83iXUiMf8fD16H4WI/svSx9P515zrvz+IdRbP/Ly9HUqWxf8EEnxNF6+Uf6V6bdtnRoAf+e5/ka8y8FHHidCv/PJv6V6VdEnRIPXzz/I0nuENjj7pjl8VufDxifFLD/pieK525cLlc5OTyK3/h7JaQ+IXnmM8koQgW8CEsw9TQ3oKR6duJU4p0HN3alSARMvP41EWXJKKyoeQrDBH1pYXAngOOkqkj15qCTtfEuhQeJdBm02f7r7WH1ByK8x1Xw7PpviX7SbSQO9t5Rk6hlGeK7jxf4nvPDs+jm3thPHdymJwOq8DB/WrzXEkyKXG/kY3D7uazU3Fl8tzwtHYeDRLa6FcNGt7t8gxHI/2hW2Yb4eKQj6fILc2gP2koR8390mvVAGM8zjyxHtC+WoAG71qOSIyJj7y56e9X7dhyI8Wubm7svCUtxeWclq5nCoroVDr6jPWrk9y6eJ9GQE+TLCCxx0OK9di0+31+G/0nU4Y57OIRiMEYK5B/wrhfE3gfVtJvrG402I3llEdrn/AJaKD/StadVPchxscLbm/K+IYY3k84St9nOORz0Fc9BpGvXaI8jXIOPmBJGTmusS4urXXtajaIxvApeEMP1965mDxbq903767KZ7rHwa3IsW7Xw9qceohnVxAQNzFjkV6rpIvrO5WzmdnEECvGhH8J9PWvJk1C9lmVlv5nbP3CuA1el6Dqt88dtZz4lmhiMhYj5tnOBmpkNGzqthJrehXNnYyqklyhQEnaAfTNchb+F9b0vTBFNLaJ9nZWysWTgHJ+prsZIW1C2l+xyiF5VyOceWR3riYLyf+0YUvLmQr54SYE/KwB/rWV7GnLck1e1u9N1q1le5uriK6KzRPbRoIx2Kk7eox096qywyw61Ixt71lEmd0k6qv5YrX1e705dT1LQZ7hjpsu24sJI2x5Uv93PocCsHUU/4mLO1pArMA2ZbscmtabbM5Kxw0qG8tY7uBSHHWVzhcfSsO/XDCdXy5++FHArQW82NNFNyWj+WInhBWfZwXV+PmLCH+Jq8uMeXciKtuQW149sX4BD8c0kk24RROoKRDGB35rUg0aCOYmWUyxNlYwPX1qJtAvbe4Q+UXjIzmtOeN7F8ybKNy8bSI0SmMf8APM9qjSJppI48bFfozdx7UBn81+MtnkHqK1Fv7ZbI26RFnAyjFc4NVJ2BuxBLMLeaGC3LbUOCG710nh2I33iANFerG0UZc+Ye4HQVyM1zJcOrS4V1AGQOldj4ClsLbUYrnUVDwxyZl+TdhfU+1Q4XJlEpPq98908UUFttWXhzzgk9a6KGxmHxC8P2t0YkmknSRWgHysc9+al8Yf8ACP3Hi4N4a+z/AGWaOMkQ9N2Tn6V2WheEJtZ1X/hJ7K+RL2wcJBbuMq5AHJ5rWKSZfQ4v4njVLj4jaitp5nkrtXg8ZGay9OE+maJLNf7/ADZX+UseBXe+IYk0fWJJfEJWS6vv3ixwHGDXm3iW/jbWI4F3CzIBRXPyj61cqyScVuZnVeB7q9k8W24tbYyzzwsrc/KCR1q0w8b+CnHm3VzBCr48x2zGcg1zfh/xE/h7V7a4gZSyuBOyn7qe1d18S/G+n+KPD66do9z+6EymRn6sPTFcsanKve3GpWRs+FfiTrl7fQ2WpwW00TRsxnTgkhSf6Vu6f8VtDuspPFNayb9rK65APrXhAa9gMVtbu5iiy/nD+EdwKtWl6LhiyyMGU8lv4vf8qlYht2BVGz6Usr3SNSVrrT57WeZVyzxYDAd81atbr7TaLcRKyxvkYPbBrz34ZeF/7IZ9eMsbxXkW0RJyVOTya9GUxg4XKYHQ9Bmulao1R4t8eZc+SoH/ACyX+Zry/wAJZ+z6u2ekBA/KvSfjxKPtkS5DDylzjtya818LSBbHWGXp5NbR2A7HwztWx0wYrzfXVZNf1AMMH7QxxXo/hxibXSx9K821qR5Ncv3blvPak3qW9jS8Ftt8UL/1yP8ASvR75iPD0fr5zEfka878IRpBqpu5H6JtC465r0C/bb4ejz2lOPfg0nuENjjJiBD05PU1u/DkkeMVx1MLDPtiuenYlF963fh0ceNIwR0iYfoab2Jkes7Bjmo3BV42BACuvPrzT2YLxUcjcAfwgg4P1rMg6fxdZ6RdWFlcaxd/ZYbZvMRs4y2BxVKXV4IbAX/2lFs1GfPByAOxHvXC/HPz7iytYS7C3iiWXaDwxPH9K4rwxeXOqfCrWrCWVvLsiXiwenHSs7XNT2DSfE9nrVvNd6ZfCaFSRMf7mPX2NZOmePNM1rV5dNsrtmu1JADcBsdcV5F8LrmYa1d6fHIwgu7dvMQHrjp/OsHTpZdO8ZxNEzK6XezIPbNVy21C57L4g+JVjo+tDSzLOk+4LLLGeB6flXS6FeS/8JFZNJfNKGODubgqRwa8E+ItsLbxhcBcgOgYk9zXStNfSeDtMmjkdWZVDOvUAD1p7rQNz3DxF4RsfEc41SykSO+j3Rlv4ZQOMGvD9d16+8Nag9lqPh1LaUNhdy8SD1BrW8N/ETUtBm2zN51uMg7uoHp7/WvUY77wr8RtNS1vo4pZCoKg43KfY1UajW4nE8GfxnOZYlNpDGHYDbt5r0LQfEa3skVvLYBL2FT5cqD7ydwf1qDxP8Pk8NMLmOwe+sVO4TxjLxgf3qboOoaRP9mmidkv7cnaSPlkQ9fx5NbqakiOWx1csQuraT7M4jWZDG+TwD6mvP57WWzuGhd1kkjfG8HrXevGsuZLNuJgQy54IP8AKuCvbCayupbR5Fll67wcg+n5VLK6Eni9dPkv7VtKDG3khClX7P3qLUV2XEDumlxyeSATJlmOPxqXxXcxX1rpcsVr5Dxx+W7LwJD3NVLy4hSwsGjvbJFUMu57fexPHGc1VNinscFHbW0sLtchhNMvyg9QR/Sqy6pLiJCuIgCpRO59afpupGLUXknYHchJz0z6CmRSW8FnJOsYkuJjx/sVwqL6maXcIrkmRChG1fuknj3Fay3N0yhIHEsuMmMHhR61ywznrwWyR7+1b1pF9ijmdgxjwAkndj6VM4LcHGxLazWdjIyfLLLLnzzjO09eP5U/fFHbqRFHAcljn0zWUbhbW6lERVXI3bjz74qa0uLeWUxzZmVxvAPGT6USg73Is9zPvx5d6xX5lcbh6V13haeKDwvqkbQN5U3yPKB830rn5RbLcDfGWDjG3+56CtrQLloEfTp3CLICQccU5y7FSdznxBFc3ATTDLHKMsQ/yhQOprqvBdvquo+IY7SHWZYoZFO5gxAJH9ayWtLmW6nW4jikEas6FOCfanRXtxb2cUUKPaM5wHVuEz2rVvS5Tehp6/qckuusZ7lrqaBjEGY8Io6Vny3cF48avAjxorOOcnjFRHTIm32omzKjBnkP8WaqrZxIxFpOftCEqyN0IrBW5rmcSK3uEa4nt4IfMWbnngirNnIZo5Y1hHnQ/wAGeeKy5He0uTsYAE5DLU0kzXjK0aZO4KcHBJq5RTRbjodBDftHH/o9yspA3NGP5VVWS6gLMSGa4J3Hsi1XtGSxeT5cT8rxyD7VYWQJp0tsr7pSC7L2XvjNYWV9DLY9e+Ffie3tdIudLv544BsJiuHPetDS/il5OnXj6nFHKLJjt8s5My54IrzvwFYT6oqyvAVsIx+9duBWQjznUdTRLg/Z1WQxIBwwGa3imkbRehv/ABI8Q23jKL7Zp8MmQijyyORg5rkfDLINM1JcbHaPbg9zzVqxvYjBAXxHKQQ/tUN03njB+RkP3lGM1P1hx0Jc9TrtBHl/2ajDBXGRXnWqXcZ1W9/d4/fsa7/QJ/tN1bAgExn73aubutB02WOaRmuvtskrHMa/LiuiFTnNVK6KXh2YPdycADgc16Beo7aDHHGhdvNJ2jr0PNefaNavb6k9s/Lo4HTHNd/eTXFtoivvIkWZuUP8ODVscHocRM/7sewrb+HhJ8awDuY2/kayJortoQ4gYgqOWFangFXh8c2qSDZJ5bNj2wab2B6nsBB5+YVDKpaJuRnI/nUrnJJ681DKT5TYrMgofGiJm0WIqpYm3QcfU1578NoxN4N8Vxj/AJ5ZH5GvUvij8/h+Fjg5tc/pXl/wl+fSPFUJJ/49gQD+NStjQxvhQpPjm3HRWjcE1jXsbw+O5VII232f1rW+Gj7PHWmqON7Op/OqfiSZrTx1f/KDtugB+daCZr/FeHZ4shYD79uDXoXw/giuvh7D5sSyrs5DdeoFcV8VmCapprEAmS2+9+Vdt8K5Fl8Dqg/hVhj/AIEKiWkdBr4kR6x4ChuXMunuI3Mjjy274NcNNY6t4du/NCyQPGchxwK9vdAYy2MhXdvcZamzWcV5aNDPFHPGxHyuvSuf2nc2aOS8J/FxoUFnrymVG4EoHBz61pa/oWjDUbLXdDeGMTDzHRT97B5wO1Yus/DeC8mc6RIUlAyIZOmfauZ0rSdSilbmRntJQs0e7IHPJ+ldNN32MpKx6KUxJ9psyMOcmL+E+wriNVtJdOvpopZA/mZdShzgHtXZPCbeQXFo+eBmPsfXFchrdrNa6mZWbi4JdFB+7x3rcSDXrq4uvCWlxywKIbeQxpOOAxOMgn8qz2u0XQof9LNnslAAWDeee/Wr9yb648DSfL/xLLeYEk8kOay4b+O38Pnzb2S1VXyvljJOKVPcUkeYxRPcHZCCxxkY5Apx2hFjVgpc/vCO1bsl7bXHmXlpprW0Xl7JFjbjjrWRNIt1OIrSDbvYKqY5JrmuJEe2OK6GcsmMqF7VbuJriexjfLCMdw3T8K1vD/h6C71uKw1iKaBXuPJd0P8Aq8Ak5/Kuw1rwZo/h7w3ea/8Aa3hSZ3t9Pt5VyJsHAY+mQCaTK5L6nlKjIPAYk1bLJZIivEHlIzuB6elMjjjlEVtAuyZz88rnAFOiaC3kvILmPz3YeXHIp6NnrVEtdCa2us3ElxcDLgYC7eMVsafFBLJuu7gRqBlHB61ufDXQfDviqeTR9Xnmi1EsHidBkYHY/lXsuj+AfDYur6ym02GaKDaqkk5+tYyWovZ3Pnq3ltnfUpY72RlVMNIRgDPTGK6H4e+GtP8AEEeuJf3DTw21qZIzuPyPzzXqGofD7wy3jWy0eDThDa3Fs0s8SMRvxnFWrjwFpHgrTb+bSEuAt8ggnjzubYc52+9aqURuB81S3cziNvNA2OwyOrfWkF28VwZfvux+YDritzxdp2haTrq2ujtcyRCPMi3Iwyt3GKw7Npn1CNrOINOvRSMginZE2sV3ZS7kH5N2QAOlW7Sylmga5G6NEPzPmrX2G51mYXa20ccSv5bqjYyRUV9eLb30kNnkQAbdjHqfek1cGiy8lvYRqMmQSfPvPOTSmVrmG4EISGNyDuxjHFYx4ILEso5x2HtWpphQrI0hDIf+Wefes3GxEkdppuunTPCEkHnu1qyFTtbHP0rltO163tzKku7LRMkbDoCc9fzrT1vS4IfCgvreeQShhui2/LtNckuRpDuFXZJIATjlenStVqi46otWX2qWeURrvlJ+Z2PAqT7dPEGjlYSsrbTiqdrdSIqwsSISwYle9Sz/ALm+fcFAHzcehrNxTdmS0adhqT2+mSSGcod/ybTzXaaT400qO0givWAkjXcx29a89tj5eGlgHlscqh6132keD9F1O1gllWR3IxLt7CinpKyFHRnPDUIb/wATX+px5EBcNkDjaM1ZvfElreP5QmwjMXCr78imJptlZ+Kr/TLUsbIShBk8kHPWp9S8P6JaECCKZpgSuc8AZwK69S1uVbjxXaz2qRiVkjRQpC8HOK0fCL7/AIlac2fv23Hv8tQXfh/Qra1BEEjXBQHrx0p/hXK/ErSwBj9xhR6fLSk9Cj2Bx87c9zUUwPksQalkI3t9TUUrAwvn0rIXUk+I0z2fhiyvVhWdooc+WwyG9jXmvwtuPtt34lYQLEtxa7tinAXrwBXqXjkbvBlmx5zCw59hXk3wdwNT1dOSWtWA9+tTE0Oa+H8pX4gacNuAJ2Ax9aZ49Ah8c6iu3H70N+Oad4RQWnj2wJYH/SyOPc0/4kxlfHeoYB5KtWiIZu/FGN5IvD0yjJNtz+Qrq/g+zf8ACLXKHqu4Y/H/AOtWF8Qxu8H+GZ8YZgMk+mOlavwZlMmm38YOcytj6YNS/hLW56MZEaHJBGUB/Mg1MHjRRvccEn3xVeP57dV9Y4h/47mo41H293bk+QSv51xm5ds1WZvPDZUtjkc15Feanqem+J9XEEhUebhsjqp9a9bQFZIV6nAI7V5T40vBZ+KtXtxCTJKi4IPA4HNdGHfvET2Opt1mSCGaB/MQqHZe/viuc8QwSi7N64/c3B2qhPKEdak8I6jczaEFP7wwMQcnBFVvElx5+rKE3ACIEqegNdbRlEW0gvLrwnrAgnAtbceZLDnG49jj2xXITwtLaRPFvd1OGVecD1rr9CtDfQ6qI7lYUig8woxwJcZ+WuUttRuLG3WO2wryyhdzDIAqYOzHIyPCUEdzr2mwSSHyGnG9M5DDvkV1fj3wtpVvqmqa3pt+pjW4IW3hUgwn1/Ssb4ewbvFGlARF/wB5vI45xXq3jzXdHPhtrm105bcTXYhmd4sbyAawk7MpR0ueFi7v7qWJ5LiQBgZHYHlj6n86t6v4s1PV9Nj0+7ufOtrP/UZUfL9KpXsnlF0jXau9lz6CmaXbrIQpTcC4H1GaaVyW7aHQeAvCsXiq7vlvRKtvbWr3DupxghSRXIqAdypnltsfrnPWvpDxJBoWl+Ab+XTYPI1NLKOKUruQqCo69jkV84rIdiMPvAcMR0NKGopWWx6b8KfFH/CP30Ol/wBhx3N7dXKp9pbG5AcCvXda8WJ4L0++1e/tjPE90IdsWMjgf4189eD7oW2v2N9dTt5ccoaRxwcCu78dXen+IdPtNM0HVXlie5M07XLDapOMfyocfesXzJRubSfFzRLnxTH4ie2uls4rf7Mq7QW3HOf51e8YfF+xXw/aalo8LvcediNZVwVIxzg9etePHR7m3sntFeJ3hnyzq3yngdK73w62gweF2fWbiE39sknlwNHu3ZAwc49qHCzJUrnk2savda/q1zql+6NdzncxQY/QVWtriSzuBPC2HVcDNX4tNSa2DKVhmXLA54J9Kgj09pYLiRmUSRyBVXuwPWqsQ9y80SQaKmoWs0kVzkiWFidp/wBoe9Y0aSXDJHDE8kpJbAGSa7C+8Hy3Fhpy6O893fTlvMsscqB0f6GsPy9b8Pzyo9lNBMp2O/l528dM+tJAZTbURlYHfnkelaOnW11s2vGBEwyWI6VHpNpLeXoVbG4u2JJIiQtg+vFdPJBdQLi5tZYVHCB4ymcduatRT3Eypquj69YaR9pubqM6e4G1FcEkH2rK07y/7J8uRQyzSMBnsccVd1fW31yK1037LJbhXCBm6detJf6Ff6dp4g8id1Ri7yeWQIxjg5qZK2g1HQ55AwnRCCdrdK6C0e1KsHCyZIG81gyTCVy+cSDqw6GpFikUMQSqAbiB1NZzjcmSNC/uFiv1eNgW+6GP3VFb1smptpgTTrtknA52n7wPSuNjAKyFyWAGdp610mianDawpNKSPKIaQBvvCocWmrE2JNPgvYbvUILnJ1HIGf8Aa7Uk9h4jiljluQ3kjhie571LYaqtxrd7q3/LHzA2D1K81u3Wp213ZnUL2WSKCVv9Dtg3Lk9/pXWtrsuJgf2H4klEkxkEVsRuDOf4av6POmm+P9Gk3+c7IqcdiRUV74sguoxBM7osY2GIHjjipPDyRSfEjQw6hkdAw/75yKHsUe0Sp+8fnncaglTdGQPQ1Zn/ANY/GPmP86gkljjhd5P9Wgy/pj3rJsSRJ4xvIJfh3a3ULrLGkcmSp44HIryb4R3KR67fOyMsT27heOp5rqpNT0y3+H0mjRajbyzLJNJJGWzvVugFcz8J5pZPF86yxqqLAwSPHHSlEtnOaVLZW3jW3MSv532vG5ui81qePWlk8XzrbwLdIyrmXsfWudU+X43/AL2L48djzWh4jubnSPEEaSu3lhxIUHQqeoqrsOVM3/FGt2WoeA9MtLZnlvLfaHjI4TA5xWv8E3Iju49h8sSnD+vB4rm/GU9ldxJrGjWotrGVVUgevc12Pwi1axl0qDTIkCXsU5ll9CuD/jUSk+UpRPQIprdFhRp4w3yqV3DIwhGKhjYf2hAufvQ4+vNeb32manfa/dNp8UjHz5HBDHoGrrPDMWoQ3tqNURg4Dbcn1BNc9u5s/I6xPmuSeMIQOa808e21sfF9xI7BVe03Y7k16HA5aOSRhhmkwR6CuA+I+nG48R6dKCSJLcgEd+ta0H7xE17pwUF/PaaRcfZ5HjbzFbep4I4q5FfS6ncWVzI+5mjKSY9qxZWdA1uXEccjhW4zyD1q5Ck9rqFvAJo541OTLGMA5rvaOdPodZ4ftLa91VoLq5EERhZw3QZHQH61yMpkjNyqgFRL83fAGeldTocNrPr1vb3shjtpTtZx2rmNWiUX2oxQttQSHbzjgdKxWjNGtNDf+F9lcT+KbdYY0dreEuQ3QdK6D4yzTroGkWc3lRiS4L4Qc5Ht+NM8IafdaRqk2p6fJF/Z95Efs53gsqf7XvXXXd/4avIvtGttFPe20LtAkp4GR1A/KsHqw5/dseOWngjWvEpT+yoBJDEo3ynpu96lt9A1ODWbcvpzwwrcxwMQPkLjrg+nFesfC/U7Cw8Ix21zcQwz3EskjBnwcZ7/AJ12P2nR5gqA2kvPESsOueorR6IwdVqRxfxXdofAF2DCsTyypEzqOoAHf8K+ehD5hSGIh2fhFHJc/Svoj4q6Tfap4Xa2tJohAJhJIm7LAd8VS+HuheBrC2iuNMxqOopjfNcHG1u4A9qINJFTq31Rw/hHwZqltr2l2+saQfss6lmRuFOOeT2qz8UNK07Sda02106xFksqM0kat1GTXuP21LiAzOsaoSRkn+teX/FWxtLmzTXkMMogxbqQ+WyT/wDXoveVyI1rqzPKYVmays4U3ZlkbcQe1dfbeD9Nu/Ds2oSTXAmUNgc4OBWbZSWdtZ2aSZRnzsPetUeJWj8M3lhG0QXaw9zTabE5anN+HfDMOvWss8195SBzlVHT0qXS/B9tqf2uWW8IFvIUQJ1OPX8qXRtTmsNHjjt2jjPLsCRlql03W73SYLy7t7eFopW/eg8nn0qXdGkN9SlZ3OpaXN/aVreyRsCYoWU/Pj/CrY1W+uoJLae8E0cjGSQOASW7nNU7GTR1t3/tFZ/tEkhd2BxtQ9NvvWlpNtoAjuria8ZDEc20BPzP6ZqE7sc0+geGdTutOufstjcraBiSZfLyx71Jqmt6hq4VL+8W4igkOxgm0j1Jqrp2qWcEvmXlhI+12czR8FeDgVpeFYNK8V6hJp0y/Y42yXuG7g84rRSV7BGzNm31zRJ7W3t7o2BaIqwkTG4rXS+PtftrPwjf3b25jg1S2W3ssryWHUkelcd4g+DMum3Ml3o5Oo6aoyPLfLrxkg461N4ouJvHukkzW0um2miJHEI3U7nbjJ9qUpJs0SbPOpDa3PhUYjWO7SYFePv9OKpX8J05ogbjdNIuZYx/B7VrroyLdRW8LNIAwaPHOD61DdaPBZTPPq07Ncs5LxKMY9KW25M4tbm54O8F21++n6hdy74prlYjbbvmINdxqHhHw5D4kvrWOwHkxykMhbGweg9RXl+t+H9d8JT6fKbiQC6jFxA0R+4P8ahs77UtTZ7i51OVWGV83dyR3zVISibcFjZnxdqdjAmLLzwgQdhzTbtNPk1Ge1S2Z2tAwibccKAcYqmJNL01Zzb6w1xLOoIfHzKaxVuDFOjQXZkLcSHHJNXoDVjrH0PRZdLW4ntpGvGXJ29K7Lwf4Ce4u9H8VreKEi+X7PjnABWvLml1p7G8vrcSGwtiI3mA+UMegr6G+HoZvAelOUz5kZOc96mTstAsa0tnC7u23GSTiqzaZbzhoJFLJINrL/eFbDQ4/wAKoajPJp1qbuO0luypGYYh8xFZJlnj2qajoFvFrWm3GiJCLPJgu4jlyxGACPSuW8C65Foesi9v8+Rt2blPPNd7feGJ5V1PxJdW7RQXSyRizlGXjO3hj+dcZ4L8JSa95M66ZdTWiXH72dOEbB6dO1aRaEzlp545vE5uomJje73KfYmu18XeGNV8RajFNp0QkCRhSpODWPrfgzW7TxJcGHR7gWyzgx7FOAK6j4iXOuaPdae2lrcQiSH5zGmRnimKxQuvD2onwZHphgAu1b7u6rvwx0TVNC8QNLfW4RJQFU5FTQanqU3wsuNRkaRdQjY/vGXB+tV/hV4g1PVfFYt726M0YTcMgcHIqbaajVjvbaKW08Q3UhyieZMMjvmSr95dRW93ZTzTeWhuDGHb1IIArQvrGQXVzcOR5QmJLH3avIvFni3UovE8VlJCv2SG6LRx4yHO7hjXPq2bXsjsta8f2fhzWJNNu7CUtGN2Qfvf5Ncr4n8Y2/ia+0xtPSSGSJGDg9s5rjvG+pXF/rr305DSyqFAB+4OtZEFwbR1ulc/MMEZrSK5dTGU2a6yrBcpI2GZHOQaZ9uC3SsJFRC+5selVbyZHspphg5IPy9R9ayMoQCXz9K39o2tDHrc7+x1vSF1CGa5lkECSAvgc7e5FZXiq70ubVnm02dmhmkbAPZeOa5k3DjbIpXCjAGOtNllAZduOmQP7pqE3fUtSZcttS1W2jZLeV48jHB4A9AK09Mk1PVpAk37xYMF3J5C1mEXCj/VMa3tB1JrfS7mzKbJbpxyfQZpuFioR1sLZaJq2s+IrlbGBpY0425IGPaumh8FeLUmWWO0WEKPlw5yK6H4UNBPcahLbqpuIPlKg5JB713erapFpdncXM+RhORjvWEm7mkqMWeEeLU8S6HbWp1KeRfOJ2yB85Az1q34T8G+KNX0kalabIIWYtGzHBP1o8a+JYNcS0bzUCJGymGQ988EV6p4SvtNsfBumW5u8jy9z4PcnOKd2kCoRSPPtf8AD3irw5o0t7e3xltFADpGTxn/AOua4BdTur2NrdJXZFBK5ORuPt616z4p8Z2eq6dPplq5Nw04Xa3IZQRXnP8AZ8k/iN7LTY1SdsMSOin1pwuJ0EtRNcW7tRpqSweSUj3hj/H9K5j7S8txuydp6KP612vjnSdT0Qacl7erfQPHlJh/Af7tchHtRm2x4JP5Vqr2I5FuacXLKVjQYQKcmrtrCYY7jO1lm6r6VkwTnzPLH+sq61zNHGobAycGhocUia50u3niUyMA2dxx39qkstBuLrFzFLH5Q+VR3QjvWkfDev38KTWcKi3df3LnvVzUtGk0XwrA62rpfGXbPIrcSZ5rNrVWNVyu9yC3stNh8Pzi6nY3LOyFFPSs/wAMWcUet21rJMwtZ5VWUE4wvfmqM4cNl3567T1H1qNJXilWdGIkXlfrWihZmSUb6HuvhhtAHi9rLR7e+gvkRjiRiYwikgZ+uP1rkdZXxZqd/rEOmxeZaz3W29dFwCcAAflivRvhibq98F2l3J5ZvGk2y3G35nQN0/Dp+FR+Brmx1SXxSkTOVN+wffwAQoH9KxkmmaRqNM830fwvqumRX+qahYtH5ICRyrzsP0pwj064uYXuo0kzIpdnHUd813PirxHbeGtXOiy20s8Wq2hKknhGGRXGfJtKC3Zoz/EB2qk7blSfNqdD8R/D114hm0+88OXdufscBURdVI9M1514h8K/8I7BbKzRm6u4TNNHFyIm9M16Tp+sWGieCXlMMshkmKqH4+b0rh9dkuNXmRlhMDPHsxnJNVFN6kNpI8tixnICjIPI5rU8O6Mda1I2q3MdqYkMu+To2O1XB4RulJH2tQFBHIxitTw3o9xpN1ePNLA6z2xiXHJJJH+FaNaGd7s7Kx+Fesy+GJLeLxNbQ6XqxSbymXhmxkYOa9R8LaBe6D4VsdLlkguHtchnRsADNcfZ6vokmm+HLS+ljA09coI2/wCWgQqAfzrG8KeIGuoL9bt2ec3zxhBJhgCTxWUouxoonqh1GzMTzR31rIIztZElByc4xT7aV53kQWE8M4G5CGzG/GcBsd68u1Lwno9kJdUXS79LiNvmVGyrZPO7/GrbeDdVuSsdpqWo2cbKGjKtlVBGePxNSh8pLJouqG01aWa+mu7qWZoRaKMiLcBgk/jVHR/Cvizw/wCFYLOzu4lV5d0mx+EOeR9SMVD4Jk1WC11eGfUmDNK0c0svWXjGRR4ctfE/hm61CGMW9/p15KGcvLl4f9sf57VakkTKm3sdlqGpXkV2Ft7uRIwm1kMGR09ary6tcFI/IvbUsMeas8ed3pircV/NdEIkCCTuO6j3rC1S48X2XiBSuiC60E4BeCLLj1P4VtGpHYycGjc0ua4vtQgtrldOlspXw8aYwR9K4dbG00b49zR20UdpbPEqxxjgMT6Vsav4o/s6xFzBazWk8U8ah5YsbVOc9/aqPiLxl4Q/4Si+mvLOe7tz5cq3US/ckXj5T+JqJPm2LjGx6LqixvYajHvDNtDbc/Mvyk5x9a8X1Pw0Li+0nUNzxtK6/aXl6EH09+a6aPxVpniLx3Z6vLqU+kWMcPlReeuPtTnAxj6ZrpI7v+2ZzBDd2kVnp8rRm2kX52fJ2OfbOD9KxtYtu54d8RPB8/hrxC/kxyHT7j5oZmbIJ7jPY9eK5630rUdQtgLSwmmVAW3opI468+1fSN3pGr+IrO3stZTStT08SMbvy2wyNztZf0rmdWbW9E0298MeFrOJJoVLMtuNzFG/+saaIcbni1rKqW0yGEmQDJU/xCqLDzp9yQ7FbooPSu18N6Z5mtf2ZrCrYi5Uq8s/WNhzj8a9Gi+DPhrUbaVtNv1Y7T5c6t0bHcematzjHcXIzwNIHc8/ImcE1o2tjpQCzyXUkyocvBswW+ldZe/DC+t7pVh1O2ucNsuJM4CZPHFUZ/COqaXqUlvpaLeJbOC8qjNKNWDKdGdj/9k=", "path": "images/5pts_ADE_train_00016541.jpg" }
depth_point_87
images/4pts_ADE_train_00005058.jpg
ADE_train_00005058.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 221 y = 213),Point B is located at (x = 227 y = 116),Point C is located at (x = 147 y = 120),Point D is located at (x = 89 y = 153).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_67><DEPTH_17><DEPTH_5><DEPTH_70><DEPTH_5><DEPTH_17><DEPTH_30><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_35><DEPTH_0><DEPTH_16><DEPTH_42><DEPTH_94><DEPTH_2><DEPTH_72><DEPTH_32><DEPTH_78><DEPTH_40><DEPTH_49><DEPTH_41><DEPTH_2><DEPTH_64><DEPTH_72><DEPTH_39><DEPTH_69><DEPTH_31><DEPTH_45><DEPTH_15><DEPTH_45><DEPTH_19><DEPTH_41><DEPTH_25><DEPTH_25><DEPTH_19><DEPTH_33><DEPTH_15><DEPTH_49><DEPTH_78><DEPTH_85><DEPTH_41><DEPTH_1><DEPTH_1><DEPTH_0><DEPTH_41><DEPTH_1><DEPTH_94><DEPTH_57><DEPTH_69><DEPTH_29><DEPTH_2><DEPTH_1><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_57><DEPTH_0><DEPTH_57><DEPTH_32><DEPTH_64><DEPTH_36><DEPTH_1><DEPTH_16><DEPTH_16><DEPTH_57><DEPTH_0><DEPTH_33><DEPTH_41><DEPTH_1><DEPTH_19><DEPTH_58><DEPTH_2><DEPTH_16><DEPTH_94><DEPTH_57><DEPTH_94><DEPTH_94><DEPTH_42><DEPTH_81><DEPTH_71><DEPTH_81><DEPTH_58><DEPTH_55><DEPTH_42><DEPTH_57><DEPTH_32><DEPTH_50><DEPTH_16><DEPTH_78><DEPTH_94><DEPTH_61><DEPTH_33><DEPTH_50><DEPTH_44><DEPTH_76><DEPTH_76><DEPTH_76><DEPTH_33><DEPTH_44><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
4
[ "B", "C", "D", "A" ]
<DEPTH_START><DEPTH_67><DEPTH_17><DEPTH_5><DEPTH_70><DEPTH_5><DEPTH_17><DEPTH_30><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_35><DEPTH_0><DEPTH_16><DEPTH_42><DEPTH_94><DEPTH_2><DEPTH_72><DEPTH_32><DEPTH_78><DEPTH_40><DEPTH_49><DEPTH_41><DEPTH_2><DEPTH_64><DEPTH_72><DEPTH_39><DEPTH_69><DEPTH_31><DEPTH_45><DEPTH_15><DEPTH_45><DEPTH_19><DEPTH_41><DEPTH_25><DEPTH_25><DEPTH_19><DEPTH_33><DEPTH_15><DEPTH_49><DEPTH_78><DEPTH_85><DEPTH_41><DEPTH_1><DEPTH_1><DEPTH_0><DEPTH_41><DEPTH_1><DEPTH_94><DEPTH_57><DEPTH_69><DEPTH_29><DEPTH_2><DEPTH_1><DEPTH_94><DEPTH_94><DEPTH_94><DEPTH_57><DEPTH_0><DEPTH_57><DEPTH_32><DEPTH_64><DEPTH_36><DEPTH_1><DEPTH_16><DEPTH_16><DEPTH_57><DEPTH_0><DEPTH_33><DEPTH_41><DEPTH_1><DEPTH_19><DEPTH_58><DEPTH_2><DEPTH_16><DEPTH_94><DEPTH_57><DEPTH_94><DEPTH_94><DEPTH_42><DEPTH_81><DEPTH_71><DEPTH_81><DEPTH_58><DEPTH_55><DEPTH_42><DEPTH_57><DEPTH_32><DEPTH_50><DEPTH_16><DEPTH_78><DEPTH_94><DEPTH_61><DEPTH_33><DEPTH_50><DEPTH_44><DEPTH_76><DEPTH_76><DEPTH_76><DEPTH_33><DEPTH_44><DEPTH_END>
221
213
227
116
147
120
89
153
null
null
183
98
141
162
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD0nTrPTbucQW2pSSMRkh164rR1NLfTNDt7YsNqSAAn15NZ/h0SNqqt8rL5bbiD90+lP8dOiWFmr4IefOPotZ1NIjRNb3a3EavHyemCOp9ql3jdtTDlRyuc7a5NNQykdql0YGB3HBxn/Oapxm5s4rlbUvKs65O1vmDg8HPpntSjW6EuGp2EztHMG3YUqEx6EtzVjfl2UONycN/s+1ZVnefa44ZwpZZIVfkY53Y/pWYt8U1CS6jc7ZGxtbn8xVe0tqFjpnkA+84z1xRpVwpvY4Uf5RESR74Fczf3FxcsGDhUVhnaMGr/AIbZ/wC22VsEqjgn1AGB/Ks51RqOo430iXDdjs5HrVee8E01q28iMOAU9GPFUIbhpE3MpJC/e9s0rtC3lyP5yxqcsUXJH4UlPQpwRb8UTiGOwtFaQOkit13DaQRn65H5VlX2syJZ2sITlVICjsPX86JdVtIDGLSCby5HVWMy5f7rDOe3WsJJIru/lDySAxy+Su3uV6/hyKmc7sqK907TQr5HGyVghaMjkZ59630/dySzN+6jdFVWfhGPPA9647Q9Re31aS3t7UXEzRKQGOB83GT7DrXSQ6fPc2t8dVvlvGu4fJaNo/LjjTP8K5PHv3qo1bKxLp3ZoNuACMOSMAE5xTHnjSQI7hGb7o9a5ie31Hw9b/ZV1FLvS3T/AEbI/fQkdFz/ABrj6YrLmvJpogHdj5bFlYfez161ftnexEoWO3N7bCQr5qmRCAVHytyMjn6U2CYTSTlWYE7cKDuVcL1HtWHoFvaXqNq+ozGWeWBxNHIMIzHDghfYKfzrnLvxXqsulSTaNY2FpJY3QtZ4Gi85DG6/LIOmBuXH41pFtiagtzsNdkY6HdMZMoZolVgP+myZz+Fb8ckix3Kxkk7n5U8Jyefxrw628Y+MdRv/AOyYF0WBLiRQ2bTaMluCee3WvTfDepa7Kt/DrVrZGeEA4tR/rUOcsPXJ4x2zRNNoItLY6dJJzAqtKzMGGX2ZwPzp7yv5SbZCHwfn8vr+tRGMLaZaJ0j3ZYNHg9fr0xQ4h8mLMTbGBKjb0rI0JX3u4w4QEDjy/vevekYOjP5coTJyi7cYGKz728gttRtYZEX970bbgAVmp4giubicWwimC+a6snHCjAz6DNRJlLcfZ6pBplskNxKx86VUL5x5Y8lDuPtmtHTnEtzflJUkUPGAwXA+4teT6uJJ4hevPvtF2r5jfKUIQYyPfGK9AgvLq7uUubS7iRGaJpRuwAPJVsj1GARUqQdTW19xBodxKZ2tyEyssZwQ/b6DPWq+vypF4ajE9+bR5BhGSTaHbb0PHP6Uy81OU6ZqwJs7kLE7W8aPtYwbeT069ai1nWLdtBuIYojOoibe4OAOMZ/HOKG9x9UQ+Gby1drO2XUp3uNoBsi/yKQDnjHHVTWz50c+lGSKdpozINr7t2f3nrVXw9JK9rprPaKgYAiRWzxt47emB+FTz3ASwwF8rdIcI/HR8nHtTpaCluyjrsu3SL5N7AvCyD8eP61g3N4Eu3t5dzkcnb3PAra1+eJ9Futk8LZKAYfpmVRXKT3EguftdoyNKHYAE8MCOa2lPUjl0NS1uI/tMsiOXSLPyns1bWmatBfL5UbuJggZlxwme1cZpV5shRriImGRcybWwSGIOfrgisdtY1HSLy+W23xhrhoTIvJKqMqSO3pSU9SZxuj1vdnqevHAqOZ4ziKSZcnqN2DgVy9p4l1KfSor8RrKIiyTAD6EH24Nc3cagbxHvrpQJWO4NG2eMgYPpVzqrqRGB215cRRi0uUf5DOFV16nPGDWZrLRzXks8U4CqcEN146msiK922aWgV1UFHB29GUj+ec0zW3ke5u4WhJRIQPOTjce5FR7RNaGiVi9oryz+JLVpHDLHIiqB/EMg7qvZ3+MbyOW4aNxK82RyuIxnBH1xWT4MjWLVrdXmRp5ZkO1n5A7ADthR+dbvhmazvPHupRiRZLiNp9+D0UvjFYx+M0fwnISSQyahIzyyKGChZ0bBT2UelTpCLO6MpzJGrKjZPJ9D+v6V6lfeFdCvUHnafCjDneg2kEY71Tn8C6UYfLiNzHxGoIfcPk3Y4/4Ec/Qelbumm7kG1aaNBYS+dAZt3QgyZBrnvGqpMLQPkALIwPYHjrXZt909fwrg/Gt6i67pVi1rNMZ45XLR9EVCuc1bhzKxLly6nNLCdzMqB2bHPB24Ip1v9q+xRylsSxOQ4j55GP61geILZoZDeNpyXlnqLq0UnmbcgDGBx7c/WsldautBkd7XT0sS6E70mJ4GMkjHbIrX6opK6Mlibysz0pZzMku+4eGVYCqIExnBrJ1W6ijv5nYFGXbllH3sj0rn7nxZ4iMEY+0lMOHV42z5ilOg/KtvRvFVjpkMU3ieKaRmh2qJIBlXB6LzyNpWs6mGdi41UxGvQluh3HDNke/FdF4dlI8SGNhjiVVB6tycn6VwNt420ddlvNoMt8Wb5fMbYACeOOa0j8T9NtbjzbHw7bJcLkNIX5QEnjpULCy2L50ouRueZHEiQh8KMgn15qjNKy4MyKGWTZtPBXms6bxlYagsIOleQm4ylreXlOOWC4+Yj0yO9dnr0NhcW6KiIPNtg63Ese1JlKgZDf3hhcfWonh5QHGrGSbOV1QMZgXZkxcKo56jPA/Sqdw9xFdCKziCkkEtjocjOfwJp0/ifSbpTbiyuoppr9EiaQbgGBJYfSqMGs6fqWsJocLzfbDdGNvMi2rnO75TnpkH8Kn6vK5fOlA7TwvAv2qeUti52LH5ncDOCRW1FbXlvf6gLq+kuJZI0O4DaFHmYwq9hXDWGvm2123torJ5zdz+UJluSqhlAyQNvSu1tL9pLvVXvdKu7ZYUYhJF3eYsb/eBz36ip9k4tCVTmK2rJJd3CMsTs7DCd2G3g49BXOX8Nza280ssE8cSoQXZOM52g/TJAredY/F2hT3mjXt750BeJYJ28v94qgAHr1+Uj1rldTudS0/Q00bUJ79b2NHu7gPyrjOEAOenC/iK6FRV7mMpvYteEdXNxoNnbw6fdSrL57o6DG9lURhcd1I3VW8OeFNai1K/wBKutNmhtLrTlgWYp8hmjIKFjng4AJ/Guh+HnhyFPDvh7W/tNwH/s1IzAPu7izOWx65Y13MtlHcwXENvI9s04LGaM4dCe49Olauy2JjHuebRfDTXY9ZXVLbUbGOZUA2JHkA4Kn9Dmt618OeK476GW5vLK4jhYlVT92QD2J54712Vrb/AGaBIBNJLIihTJK2529ye9LZ3kV9YfaYgTG27aOhO1iP6UOTZVkcnHoZtbJh4h1a+Jdym9bo7AuOD04qy9hZaXav/ZuoSySoMpC8u7c393PvWlJqsLwMslhcPGybmVQCMcn+lcJ4jtNO0DVvLklvIrK5tpZldbor9n2qThUx0+T1rNRTKuy9NZ6rd6nFNabXKOy5kb5FUj/Hipre3u0866GiiMtKG8uHkFOcqfY8H8q8/Or2F9DK7eKL+B9u1Y/tTSBW/ukEDHGa6iw8eCS3hhMFhd3vl7JirkMzgHIAx32/pTlhhRqdyjqGnnJdluUm89kmg7MAiEbh7HOPaug0eVrm1tVhMiT2UJKEDKHcCWB/DioBc6hdSLPb+GYwzjeZZVVW+btnNWGh1GAIrafcxSzRYVYXG1fXvzxWToWK577GffIZ7Oa9iMryfZpEMe3aWVQdoxnueDVa7knSxks1P7qSFSqY4AVQMH33HP4VryrpU0DR/aZbWWMsFAPzKT1z9M5rJ1C5e3Es9jcQyuEG0yfeGSSSB64xS+rtpsrn1R2nh9rcaVpcAaMloozyMlsqScfninXlnPPJCst+w27yB9nAyCRjv2HFUfDc1kJ7KGG986YwBmgQcxuI1BLfWtKWVBO2ByM4A554qYR1swlI5/UNANpZPDBcrJG8lumWj5zJKAvf1IzTbrwXqUlm0K3VosjJhW3Y2np6elbNzukjjRgVH2uy7f3WL/0rcuZZooEkDRMBzyPatOSIlJ2PHbCxktre4hnmxImYIxnOOTz/AN8jNY93bGO5uJZJpd0i71YHhztH3v8Avk/nXWMVhsZSkttKmJXYyAggiM8fXPNcxP4kafTbaGz0iL7ZvcTlVJAAZgq9O6kH8KXsJXug9okrMll8bal4dgGl29nbzxqoLz7OQXCsf51lap4k1C4sLGeWSKOe5i3PGy4EaF2VMnucJn2BFe0aJoWl6hoNnJqGk2k1xIgWQuozkZH9K8U+LtvDY681tawxwQrK0YRBgbVigwB+LN+dX7NbtEqaMdPEOpS3kUX2xNjzRozwOWxliCTxweKybnxHrlwXV9RunBLRgF+2f/1V2PwogimsdTMtnBcgTJjzh91tjbf1NetWfg/w7d6Slxe+GNKju2JDGOEDB3YGPrTUF2DnR5P4IBPxk0yDzPMUO7nJyc+SxP612PwwzJ8UPFch2kIZFyB0JlFd0ng/w9pepw6tZaRbW95HIMTL8u0EbTzik8P+ELDw9rt7qNi0wkvhmSOVt3JYsSKzcVzlOV4myqmVpopVLRuS3PRhkbRntUil7lTE5McbqCskbYPHWpZYkcFWiDrt2kk9s5x9KekKeWqqNox09Oa0EmWTjbzXlPxN8QppusW2nuiYntcu5fYR8/HOPUV6gsjtxheRnjn8vWvFfitpy6j8QNJtngacSWqI0YHL5kIwPf5jzVRlyyuRNcysjGuXlaw+zf2mIyrb4Iwv+oY4Lc55zipLHT7jX7SPQreaK58tnnSR1APJ5BPYc1E2qWlg8VgLDTLnyAsQmlUb3IXGSMf1re8N6houpDUrfU7O0sz5QMQgTyfOweVJA5HA4rp9ukrIz9gtwl8EQ+GoUvLvxD5UsKs6W0cYZpeCNinPQ5xXJzXVnqdokrS3iXkEZigincyKqdgufehbnUbecaxq0Baxv3ZbfYvyxhGwNg9v1z7V0nh+xvfFjF7aAW1nECBeypnBP9xe/wClYe1k2ejHDUuTmbPPEsbu1ZfKwGI5LHHXrir0GgXupXjizhmkaQDIRN388Zr3TTPB+jacFleAXM+P9dcHcc98DsK15AsKgRKNv90dBXQqj3M3OlGDglc8csvhvrkSxsY2JIBYH5SnXjHavRtJtNSi0qHTtds4L6FD+6Ln5guPpzW6rOyAYJzg8VIbcBS7cZOCAdv/AOus6k3J6nO5q3uozbSxsbSJUGk20aAkxBoQpRfwzyayLzwt9vuXliZLYMTysIyAfxrp4dLjVzIXZM9ATxTp9R0yw+W5u7dGGDgt/gKytZk3utTk08EWjbc6hdBgMIyJt2+4OatJ4NkR8vr+tSDbt/eSkrt+ma3/APhINGABF8jA9lBqtL4s02PPlpcSAf8APNFP9abXMCaRmx+DYo0cQ6jdIjkMwQ4DEcAn3FB8HLPG4vtSvNQVgUZpm+YJnJAq23jnTxlf7Pv2J7LGh49fvVA/j2xc5SzmO08MxAz9eaNbg3Erw+F9asYxBp/ic21qAVigNgJNgznqWHrWlY23iGztJ0uNStby5cjy3NqLdYx6YBbJrPb4h2W4jyYiB/E8uM/pTW+IViqnbFbDPUCf/wCtUj5kdFbz3yL/AKbHG8gPBtzkn19Kr6Y2qo95/ac0UkbSA2rxxbCE2n5WHsx61if8LIs8fNFDj0Wb/wCtSD4iaSRhrcAk87HGDTDmQ290uW0tiBd3YhSDywF5RmCuckfU1H42tY7mwihW3ilvRbusJMeZV+RgceqnIGM/xVfX4h6E2MpdKwHO1Vx+ealg8WeG7gjypWiXvkAD8efp+VJJoLo8tb4ca5rNyZr3y7FndpXZxgFiQM4HfAFdlD4BjDLPPqMjlIkjGxQnClyOc8/6w10NxLoE7xzwawIjGSwQSHYSRjLL36151ffDfUdb8TXk02tXMOnzDz454JN8ZyfugZGD7VXNJikl0Opj+HPhZWPm6a0zHgvJON2Mcn6cVpzaBpk7xvcafFcGKEQp5xDbE7AV5xdfDAafdKDr15aWOFzPPMVd+OSqDOfpmq1p4U1CaQDTPE+pQJuIWSZuFUdM81XJOSujPnSdj1k6Rp93M8s1hBLOUAdpEySBxj6YFPj8P6bGd0OnWSH2gHFclZ65qfhvw1cw6ncpqV1aXTRidSQZYtu5d3pnpnmuSv8A4leKNQto4bb7LbSAtuITORu+UZ9his1CTNeaKR7BDpUNrKZoYIbeTGDLEgVqeYzG+7+0PLkb+MtyfrXhoi8b6jmRNXXYTkfvCp9v8KzL/TvEkTlpdRkcg54nbnn6en8qcacUZuo2fQ7XBQf8hRB77qjNw7khdWh29/nxXzPImsYO66uC2P8AnqcZpR/aGCPPnXOMHzCaapphzs+kTpcEsbKZbe63877giTYcY4JrnrjwVrcUaR6R4mktE+Y7doC5PpzXiobVAflu5gB0IlII+lW4dU1+ADbqdwcDALSk1rCi1sJ1LrU7rWdP+Ieh6NLvuXu387e17bH5oogvp6k9/SuLd73xXLHa6kxuDNF50d4YsPbOepJ7g7ACPpWjp3jbxJp8oI1AOAQQki5BNautajcz6T/b9nN5C79t1Zx8mIkY8xfY9xW0IuPxIUZJuxzeh3Os+GbYw6boO5XO+WSVclyOwroovHvishUuvDkzIpyNr7VHfnj1FYdr4yuppdtvfGR8ZwCVc+wHvXVmx8RxwR3F9d6bYxOAyvdXZDc9toBrOco31R0qjpe4+Pxtql0DFqtjcC1MgEgDluMhgw9wQB+NdJdfE9NOu2juNDuyoPyyKcgjGc/XmuUDqnyv4t0XIHK+cxH/AKDT0urCIc+MNIGTkgMxz+lRyxYnG3U6OL4zaTLIIk0y/MjcKBHnn654rcg8e2gMaXNnNCTgbdwZxmuCS80nnb4j0V5GGCyggke5xVQWGjyvK0N1pkkk2A0kNwVcY9Dt4oVNCseg6R4qthMlrG8kp3HdCFO5Pp/hVHxN4fvPEfiOw160kktktLdoVR0BcOSfmxnsDkH1rvIrG1ilaSK3jSVjuaQKMsT1qU26sSdxUnk4rCTTCEeXc8NPwnsFmEpOorMrbhLv5z278U678GW/lpv1K/uPKbIW6vXCL68YNe2m0IHDZ9jVSWwRsl7aFwRzkcUjQ8YmNlqumaH4VhuVe4e8MEsULFvLKgkyKSB1B/SunufH2mWF9/YGgaZcapNaEI0Nqg2Rnv8ANngg8H3q343isfDXh291iytEj1Ep5FtsUAl5BtBU+wJNcT4P8Katr2iqlhfPpGkB2E15bD/SNQcHDE9PkDFgBn3oRLTeh2EnjW/tYzNqPg/WLKPqZNiOFHqcNxWnpvjLRNYREs7+M3OMtbtlXA9cGsxvBS6QFlg1nUWQ4iZJJ2w5Y4yR096z0tDqdpajW7exuruS3inW4WMQzAMM7VYDO4DditIy0M5JLY9DbUraC3LSypGiKWZz0AHeuO1j4hC2i81rmPSrTna0qh7m4/3I+m0+pIPtUepWqXXhTVYFupJzHb7AHG1ty88jpxt59eteC301w9+80rGSRyQHbngcYHoOKp6mV7Hf3vxOSS5ZbGK8mfnL305Ye42cjHPr3qa5ub5Co1DxHpGkXbKGNqqlTGCAQGwOOtch4Zs4/tS61ffu9N0uZJbjH3mJOAierHGfoK0vEHhcWtumt6hfGO+1SQ3UFiykv5TsTl27NjGB+Faq0Y3YrOWiNqUvommxX+v6neajc3Zf7LBZXTJEyLjLM3pyOMd6ydMaz8TazBp0BvdPvZ5AFQTmaNl/iBJxzgHFbP8Awhqan4ffS7LVZZNR0CJpZrKS2AUl/nkVXBIODx9QKp2ngW9s3s4/7bhtNWNxFH5K7t1uHUFWzjBfPGM4GetCqRF7ORmX2oeHo7+a3TQbmSxhcr9oa9YTNg43Yx/47mpYPDsWqJPf22pxJo8Sea1zOm2S3OQBGy85YggjnkVp/wDCuNRudQuLVNWsptVgjM1/byO2YyQSCpxz2OamsvC2spq+reEYvs7iRI5bovyFVSCro2M7iSAPcGl7SIezkc5HoFneu50nVYby4HS2uE8uWT/cHIP4kVkS4R3Xy13IxR1K4KkdQa9Bh+F9/JZQXbSJiX50XcSwIBOGHZuO2eafqXgu51C+EExI11bVZHJY4nUcFpD/AM9RlQeuRgk03KMloCi47nmxmGeEXHqO9OwxwRF+ldU/gTVrHZLdrEsb52hW3Yx1/nVu08LzyyqZJVEK9eOvtUWS0HzXOKJBODEPXOKcs7IQVJU9flNaGpWht9Ruos42SsmKq2VuHuUDDI8wDFXyXDmGrfXIO5bq4HpiQ/5P0rV0zxVq+lNmzu5I1LZZA2A3P+fzpToKEDLbeOlVLnSJbdfMjO5R19qpUroXtkdzqGvprOlm/NvsuQEiwoCrGec7fQGsqx1+W1nAYQMuc524b/vqsjS5liZROA8DfK4J7Hgn8K6Y2eiq20JBleME1tCyjYicb+8bN7qkWt+H7ueNXKQGKJlkbdzsfnP8XQc1yNtaxu4IxXTWptl0LXILYKIh9ncYPqJgf5VzcSxKw2yVgtLoqy0udZp1zHaxBWwRUd/f2rAnywfwqvZS2oixI2auwnT3bkKRWTjdnQqcWYyX9o0mGth+VXjFp08eREAfpWylvpTfwLn6U97SwC/LihRsP2C7nHXlpbxglFFY7opbgV1OsW0YUmOuYcFWPFdtDVHHXjyvQkhCIoUqpz1BGa09OIsn87g2znynJHC5/hI96xQxDHANXrS5GTG7ZQ9VPTP+NdDSscvM0xniDTrLR47bUbe0RNs6EyBcMG3fdz/u9K5vxpYeb441EANK87rcIWbJw4BwTXeWphvrSfTbxfMhddhDdSOxH+0MVjeIIG0y8tJ8CdXtwnm92C8D/wAdxXLKKud0Kl4PU5VPD6RWwaeUA7sBVGajubEQeWEfIfP8OK6cvC6g5Xy8BgDWNrEsRmtzEwb5WPHbpVWRjGTbK6WwAXlhyB0q/b6SkzhfvY5w/NRwEvbkv3XitqDy2lWSNsbgBiri4ly5lFtH0y5whPPTtWbqmtWGh2RvNTu47eAHaXf+I+wFaMjARMWbaApJPpXzn4j1t/F3iC6vJpmi0m1by7aMN8vlqcFyO5J/nXj37HcehT/GzwnDceUTqEin/ltHbjbj65zXX6J4k0fxLYve6XfRXECna23qh4OGU/UV4tHpepXNkLiz8MXMtkAWVhIFeRBn5gpPseKwtN1d/DGuQ6/o7F13D7TAgKiaM43Ky9nGfwxTYHqvxBuBdeLPDelrgpDIbuQHoTghf/QWq74PM1vbzwQQKltA6xoPXK7j+prib7Um1X4p3ZD7kiWcj/ZVE8tcfiTXcaFBO9h9q87yooLh3fv0UADHfpS6DLuuXqHT35USRvv464UMf6VUn04SWaBYt8kCKIx/wEVBqKeZdqC24PCQ7FcDccDp/wADFbMrOryFW2kNgmhOxBhWULpo99FKMMLSclfQ7a8SvbaOa7ZlHyh3Ufg2f6170x8ya4jXjzLeTeP+AkV45YWIvre5UsI5I7ngnnIKKTW8NVcxnuJb6XJd+A723tkEstvqK3LxDqYzFsz9FJ/WvWDfWGuWNpfTXGnf2HPbCPUoLlP3qOB8u0kZOCWHtyRmvMY7DULO/jvLW4EewZYRsQW55BHcc9K67xclpcaNpkNroXnTSRh4JZ8MEckjYTyeCxOPQ4qcRWjGyHRhO7NHUdR01PDAtdG8Rw2Gky27RQqkDPLLIAdw3YyN2V+buSa5zTfGVzZkPNZy6hPhQi3V4zRIVIIYKRgHgHPWpNNsLiHV72BNVu2vrCJ3vCkQ2SFP4Yxn5/XnGKkvPs9nfWdrJpdvdzanEk1pIB5BcswUIyqMBhuyf92ojWhayHKFTc0pJfEK23/CRNYW4lVJofO847poJACnb+E8D1xT7PxZrk17LPF4c0+1vbhFR7zzQZHRRlXK45Gc8E8Zp89kDczaXp2pRytBMoubdUwlq3l4Uk/xAYH4tnrWLLoTwSXdwNrxw7JUmQf68SZGQT3yOR6mphVh9oudKolc3ZvGt5psmZdKgSI5uAoYnLMeW6d23ce9QxXbaxqY1EzXtlcwwGN7hQfLZGcdh3zgEe1ZV7b69pdqst0kcls7YIOJCpIyM5+h59adp2peKobGzu0v0gsNYlaIKkIP2ZcMVdB0G4IwHvzXRVnTjFSiYU6dWpJxkXr7VIpGu4LwyR2rSr5bOhG3pjn3FEQURhUwccA/d7deetcpqK69Dawfb9TmntZYo5vsssxaSJCW2s6ngZPoT2qjcane3Fqttc3cs0UbblSRy2047ela04qsro55RlSdmV/E0bQeILvc+7fslyfcDNY1s4imaQ/wEMPwIb+lWL0s9xuLFvlHJOaqou6R4x3HH5Ef1rdR5RqVzo7jPnuBgAMRz6DgVGwOB0PfApbh0mfzRzvVW/QVEuRgY4Jre2hzvR3JbW0JEsckWAUMqj/ZH3h+IrO1OAKyTMFBOY5D/wBNB/8AYlT+FaNvqJ/tTznfJjOQMcEDqMfTNT6rYmTdAqj95/qz1yfvIf8AgQyv/AahKzNlJuI3wu+3RvFESYwllC5x67nXP/j1c6ly0UgLMa6/wXYMl3rdpcR5W701vu8btjqT9MA1xd7Y3kU8/wC7OxHYD2AJ/pisdLu5pJ2szoLXUkmwgroLW3UxbjJivNYLqWJg0ZHHfH86vJr2puBGJB9AgrGcHL4S3UdrnfJKiTYMwx9a0kmhIH7wH8a8wFzqbuTjJHbAzViO+1UD5Vb/AL90vYzIdWZ6FeXFuI+oNcxdyIznYKpwSapdxvuBiCkctH1qeC2uz5geIucfKwGMH6VvTvFGTm5bjTHdGHh1SNunzYNV0DxvsZCpHPJzmrf2GWQAyAtID6dKttpztbxxiBgyZJYt1zzWyqMzcRLeQ7VcH5k+Za17i1j8RaQYAUW4j+eE4ztfup/2T396zE0+dVAXgVZsXuLKZGEbFScMUODinKzCLcWcLq0d5ZollcRmMFvm5zkjqM1SiA4G3GTj616tq/hV/FMGzS1gW9XMjmWXYsmOmAO+Cc+tUoPgx4kl5efTkB5AErH/ANlrBzS3OuEJNaHKWkUS2wEgkVsnAVQRj86mXyQwHm45HBXmu6h+DWqkDztYtkxxlF3Y/MVbT4P3CsN2vKR/1xApe0j3LjTmjs/HuqtpfgLXbqKQpIIGjVj2ZvlH868Y8G6b9suYFjtjc/YYTci14/0iRcCOPnA5LZ/OvQvi19oi+G/2afIe4u4I2I9dxY/yrk/h5FLsupbjTJJoikLxGU7NxSQNuB9Rwa8uk77nWz1f/hGbO586S5ub17qRGjMxkKvGjSeYEGDxg4HHYV5n4h0M2/iu11CaO2KPJJcX1vbsWRJoP3hHIHLIUyPU16nJr8IceWsrqM4IA2lexz1Fcr4hYahZ3EVraRR3k25kCgKC7AZ3HuSEUZNatCRwfgaze51jULssHmcpahSfmJZt2fpkGvTtMvbOz0e1s7meKCWRmleNyd3UklvoBmuN8MaO+maUV2sl7KSxbuSpJUj8q7XWvDyXMc1/HbrLJJGyygdWBXazKf7xGalpg9Ctquo2l5DE1pcJNDJKqiRB1zIB/JKsreAJCsoLPMmeOg68n8MVy8FqYYdFslyo8pDjGO0rYPuMiuiC5uJcDKoFjHsMDd+mKTEjOjeU+JmiXdtb92M9STgfzavJJdWutGe4WGKFw0oOJDznaBn6cV6xol0L3WkuM5bz1i/4H5zE/wDjoWvEfErONTbk9Tj6V00NrGNTcvt401HeWEFsDn0/+tXU+DfH8MV+tpr/AJMWmnE0coyfKmT5gTx0bGD9RXl+ABzRGXBJB4+maupSjJWYozcT1nw/4++0+I2j1Ca1t7ImY2VwsQQxtzsLkcle5HriovF3iNrWXSLuC/sL/VfKBumiBMfmKflZMj5c85xXl5ckFdgIPQP3p0RRR8uPTpXO8GlJNGrrOx6NdfEHSv7Ri1Gx0eWK9lY/2gJH2owZNrBAOueOTjoKnuPiXYTWn9nf2HJ/ZfkxosYuGDhlfceff1rzVyGx1HpmhGYMAzcVawkA9tJ7nqP/AAmvh+XQNRRIb6G7NiLKC2YgrwSyPnPJBOSfarHhvxyt7rej6G9mE077PFZxxkD5Jhj94T6fL+teVBjuDbhu6Z71bimaJ1kVyHDAhlOCPpQ8KmrEus0ztvFsulSX3mt9sTWIALSYAAQzCNgAxIOeg6YxXPn0Bzjj3NYl1rtpFL5c87GUfe3hiRnnrj3q7Y6ta36uIT5hTG4hSMZ6dR9a6cKlTXLc56/NNp2JplIILcVXGEuwemMZrb0/S7jW8RWqxRpE5aW6l4CAj7v14q5NF4NsGMMr6hqV0vHmxHbEfoCR/KtKkyYU+5jR/JCisSOMD3pwcp0J/GtkWOh6lldHnmtbgbv9HnORJg9Ac8GsSWMoZQwKyRna6kfdPpWsKl0Z1IWIi7JKJlUb0IYD1INdLCgvNOCxsVeM7FkPXGd0bfgeP+BVzCvuB45IIFb2hsv7uJn/AHUq+WT/AHe6/wDj38qqTsyV2IP+Erl0nxEb67tZJY2t5EjjXC/LIpVs89myPwqGDxFpF3cPLdWF4VdjmKI9Rxgdaj8WWB+zrerGg2tl/wDZJ+Vh9MqD/wACrlILmW1l3JIyupypXqCKwcY3uayex6VBceD3t5Q3hm8EgxsVp8An0bnioAIt5e30CwtlBwBJOXx+BFcQ19rGqLfXcmtWOn2tvcQRsbiJjukkRyD8kbE8RMSTwKv6Zq5tpr6w8Rp513b3TwyFMAArhSPl4PIPNYJpytE1lF8qbOsW/uFkMSjRrdh1ItFP64oe6unYA6zAozgmOEACqNrdeH55ATJIsPeMdj9a37d9FEZmtlRyDnYRngVT5yYxuZDyzujyrqdxMiMAw5HWmwRXUpYrcTKG4J805q5qOo2LRxpZbypIeTK4z7VRE00kjOm4KTkDFXBy6kyirXLS6c2fmnlbHdnJqYWO3BaRmHqXNJD9skxkBQR941eSzBKmWfcfQVtZtGehXW3VR93d9HNXre1hIz5THHTDHipoUggPAzVhJVjJKYUnqKmzRS5djNkmt4WKrZOpGcHzCpH0IrqNB8btDbJa6mrSouFWdMbgPQ/41nJc7s+dFG3vim/Z9Puc5VFb34x9KxqUm9TSM4o9CtdUs70D7PdRSZ6J0arLF8ZKFQPxrzI6Tt+eC4kRh3BxVyyvdfscrDdedGe0h3/oawdOSNOdM+f7vXdY1QfZ59Rv7jdLlIpLh5Bv5xjJr1H7dq2lMsU1w8nkIqCGR9yLgAZX0NPs/hzpenX8V7avN58L+ZCGY7dw5GRTbmW21kOrp9nuUHzRdCx9c+tYxUeh2WOl0jWoNRQ4bEy/eikbGPf3q67xXEZ4znoQMZry9vtEFwzgOs8ILiQLnHbn+fpxXSab4u+1XC2l00cN6oAK/wALcdeen0rVK5LaR0Ju7yxn84NviPG1uWAxzg9qfpniC40aHzUluLzTgf3kL8vEufvL9Ov4VG5XadxOzq27jj+tVbiW4MYk09PL2Z/eOMcHrx3HtT5RM2JEbU/GkRgKmGBZJEZTkNhIuB/30eavXZNtDcTF+m+Ug/w8Hiuc0LUTpd208VoQN7AxFuCrYL7Cen3QQOnFXfFGuQX+i6vHYwzKbaAGWSRQpyxwVA74Hccc1jUgyUyl4LvFXTtNm7y3qKR6k/Mf6V5P4u3LqsoPUySY9sO4r0vQE+wp4cgYEhZhK59GZQMY9cCuI8eWSwa5dhSTGLudAx/66vx+taUdzKqzjGlPepI5ARwKbsGTkcU5Y9oJPT+VdFjNakowQAaVkIXIGc8YpowQCDxjrUtpIxuo12vICcBUXcxzxwPyppWHYakcjMMqTgY4qVomT5WUjIxiuq/4QPxIiQ3UFg0qOgkKedGrDn0LdxzVS90nV/N2No96JFY7tqK2Pb5SaV9dAZgKj4wVxVhUbZjqRV250y8s2Rbu3niZ13ANEwBH1x1qHydjYJ/LPFXzIXLco3BbT9LOoW1lbXN5PqBt5TPbJOEVYo2RQrAgFyz8jn93wetP8N2FxP4j1S0gthZgXOx4S+8QDc/y7u+MYzTV07Xf7Vml0jU2tPtW1D5Vy8RfAAAbb7+tdF4e8M3vg+4nk1DUbJLmRkxDGxl3pht2eMZ6Y/GuazU7m7ty2LWr6iGi/sy3V49NQj5VbBmb++/+0O1Y8f76dGjbJyAM10upWOn6lOtwt5BbM4DOACd7Hq3Timw6X4eto1L6jLPd5OEiibYh7EnGTWylHqYNS6GGhLSfKg2l+i9c4A4/KtS+CyLDNcyESEeWzH+MD7rH3/wqV4tHtXU3E89qz5KsYmZT/wB8gkVZTTH1W1ZLWeyuIjt2B3aNiFzj7wGOv41SkrkuEramI6JF8wZWAwTil00lIxjGQTkfqtS3vhnU7YBzZSJ33K+9CPwNV9P0jUPtRLrJDHnJdhwOOlaykjPkZ1c8cWqWEiuqlJU3N69Arj8grf8AAa89fTRFNJDM6CWNjGwY4LEdT/M13unPJHHsaHDIRj5l78Hv6Vyfjm0i07WlmdkxdxCTkhsMvykcdz1qbrqXytoyLHXLLQ21WyuHaOSW7tLiN10+G8TEaSggrKwAJ8xcEZPBp+l29trs+o6ika2sVzfyskKniNWwwX8M4rHkksmO5kjYn1QZrR0KVH1G1tYcRxyTKG2p+fT2FYqEVJybLlNuHLY6Q+CpplLWkrNtXnKZX6Z7Gs06LqtuWNvOp2nBVGZSDX0Bcvp+leD4/L+4oyRGMNNJjgEd+eOfavHfFurLp/iaeKINCjpHMI36qXjDFT9CSKqEk3YmULK6MCPWdX09szW4kx1Z49w/OtW18awuALiEo/QlOB+VRweIQSAXBQ9VIyD+FOkTRb0MZ7YRsT/rYzgj8B1roStsYbm3b67ZXAASdeex61bW7BbIf8zXGy+Ft+JNLvEm7hW+U4qr9o1bTn2SoxCnncOav2j2kiXF9Dv/ALUc9aX7X71x9v4gRgBMrRn1IrSivklTKNuB9+lWuVis+p0S3hx1oN0rD59pHv1rBF17/h6Uv2n0I/Gm4hsdFHqMsbfJKzADhWPFW4taiZlWdTG+R8y9K5L7WQeTz9aPtvzD5upFJ00x8x6DvXod+MnBBrmPEHh2a6u5by1mVZZG3bCcHOO3pWlq+py6bp6zwcO9zFbbiMiMuSQx/wCAqw/EU/7QJpQ7DKnkE9z1zXgQTR7Zx0769p9o7Swyxz8BbkIrqwyPlYdxisW5vJ9VkBuoLaNkVUfy8hpXUY3sccEgCvS7/UFhtZGDLjbtAIyBnjNcvqmiJexC4tsLPjrjG7AxmtW2Q46lLRPEElvOlpqcu+1UFkkc8oQM4PqK7pZxM2bhg2RlVU8V5eNJupraWaV7ZWRmURTHDSbQC20n0Bq5b6lqfhK/ew1G3LxBsqrNltpGQy/7NaJaE81j0mWe08oCXYiD7qEcA+tZFzcNcu9s8Lz2jIVDhsvGCMEAnkqODiorbULO+gW5tphPG45Yjoe4x2xV6x5zsiIXP3gefwoUbasdkzJtpr2z1XS1u089EvY/KvoemzKqFK9sDqSO9UfGFob7W9USJQwh1CZypOM5kOQM+5rp5SnnI6IYpCfvr0bHJ3DoRwPyrN1rS7WeDUtQunH2uZZLgFXbarlc8Ae/anHe6M5Ruea3OiXUNxLG8TIysVx16d+O1aWk+C9V1G2F08lvp9gw/wCPu7cBWIPRVGWJ/Cus/wCEUtobiWC5v55jFJtkkhlOGyMjqelUIJfBtpKhmv4rtY8+X5uo7gmf7q7sD8Kbm0TGBY034e6ciSzXT3upLHj5bVljRz7FypqaN59LuAdF8NWumyxtlJrifzXB9cqWwfpW5YeItFuQVtvssy4yGEjSrgcfxdfwq7J4ktYSVt7OIPj/AJZ2kag++QM0uectGXyHGnSPE2oyEm9iLE5/dwyFsk9dxXmn2vw88XwMPI1PXAueXiuhHx+LCuouPEWqFVFtHcEMOvmlB+QNJb6rrEo/0hQG7O8hcfkamzDlSLul6P4vsLdUl1e3uYlOfI1YLKD/AMCG5h+FWdQa1tyG1fwnaSQ43yT2H3FA6k5wf0qtDLqRwTLbRHOcKn/1qS4tJbkSrcX8rxyqVZEYgEHqKT5uhcVG65tjCuJdAuFlntvDMtrZnaEuXkHG4gfOn8K5/iye3rV9fC0EUvmxXNsqocqY4wzLkdRkc/jVI6PezRxWN1dRPYxbQXCMJHVcYRhnAHuOeBXRwWkaYdWOTyfesqXtGvf/AK77dDvx8cKrewt12u1bSzd+r1uvTRbFS28MQTOWlvHY8ZYWkXT8amk0SztwR9vkhUnKgQqp/MVezI2Az4CrgKDjNNeZV+VipH+0M1pZnn6EFnYaTCrl5pbnnguzJj/vnrVbUdI8P33yuH8vg7FBwcVbMoJzFIgPoF61ItyCMPjcewAosxXRgy6dZxROumajc2J6hAzSJ+TdB9KvWAjazki1GcSvvVlCRttYDru4qa5lCDIHTnoKjg1aAnaz7T6ZIrRRk0F4kr6fojk7rSIbjz8pxj8qy/EPhTQtZ0a4t1tNtwFMkEkXysJAOBzwAeM10UF3DIMLMHPpxUu5DwTg+hAqWpbDi4pp2PFJ/C00sNrJBqmm3VtdkRpYxrieJ2GOARwQe54546iuWsHvfDviK1GoQzWxhnXzEcEd+Tnp0r6SSztVna4ihjFw4wZguGI44JHJHA/Ki7s7LUIvK1Czt7tSCCJYlLY9iawpUvZ7/wBefqzvx+MhirWT0vu7vW2my0VtPV7bGbrd1Dqlvbx28i/ZCsamZHyMSMEZiRyMHB9eK8P8Z6pFrHie+vInZoWfyomY8sqDYG+pxn8a9vfRorOyez0gxWtvICHhljBHbaQRk5HX8K8x8YfDLVRqVxf6JZrPZTEN5UbgyRnHzZ3dQWyeM1vr0PNcbnnavKjZV2B7VZttTmjYlycjvVKeO5sZ2huIXgmU4KSKQR+dRq4blxmqVSS1IdNHT22qhiGSQ7j6HHNdDaa/vAi1CNbmE8YIwy/Q150Nuco53Vct9SkjOJeV9a6IYi6tMwnSa1R6AdH0/VSWsZ1R88QSn5iPr0/Wsq40i906Q7AwIPQ9DVKwlaQCSNyIx0kBwM+nua6m3v7uSAQ3Wn3E0ePlmY4NaqUfsmN5XszDe9+zRwec+6aRC8gUH5PmIAOe/BNPF+pTfglfX0qW+t8Ssjxu3csy4z/nmqkejXf2Z71YyLRJEjdzxsL5x/Kqc+XUzlNJk5vgOiqfqeaaL52kUDaORxW03gPU1Yq9xaDH8XmA596cnge4yPM1KzXBHRhUfWIdTF16admdlf2LXqwoJhE0MyzjdzGxXkI4/iHoeayodY0x3+zM76bcq5RhLmSEH1VuW59+K2lljD5Ysfwrg/GNqyX988RbZNAZF9CcEfzH615R9CdR5vknFyi/vRlN3Ib3B6flUEl0Bl3Iz6elec+FfHMlhbS6XqkbXtlIQYizHfbNn7ye3TI9q6m5lIQTxv8AaLN2+WaP0/2h/CfritYi5g1vTodVscznBR90fsSCD+fH5VyF0tyly/2yeeW4VvKMkzlyoXouTngAiutluXlu7VEX5NwYt1HFXLzS7W5tUs/lBUs3m45JJycnvTYuU4i0vrzSplubR1AJ+ZD91/rXc6Dro1bd5E3kOOZY2PI/3R6Vwuo2E+mXBVwXhycHHFUjL5f76B2Rxj5lOCPTmqjLWxHKewzxuT8zPj1J5/8ArVRuIJGxsmZsdq57RPFcuoNDZ3rKl23ypKTxMf6GuiN3dWofzLQNjgEdc/4V0JJiehDd3V15/mBUiDBVVF9hjJrz3T9N0q4PhXS5dMiMmsW5869EsoljdrmaJXA3bMKEQkbeQD3Oa7GTUjcXI8xQh6H2ri4LXxithBYwwQCOGJ4InVbfzUjZmZlEn3wCXfv/ABEdKmvSaS5UTCV9zr/AtnC/hKxuPJV5AZMsOqne3X8K6CS7lt3DKikduOTWf4Q0W7sfDtlDP/o13CXLIGBVsuxAbGR0I5rp1ltpoXU24jnjP7yNuq+/uPpUK60Kvcpm6muIwViKtU1q11uyUqe2u0iyjpgdiRVtpgE3xkGnqJkLPIAdysfaovtkqE/uXxUsU81zIQxAq4IHC5LACiwjJe5VuXkdT6GporxmIUMcVHfpGTyvP0pLR44iC65Pam46AacUgbhiabKiN0kNSQzxNk7OaZLMq8hMCo5SivJC4GVJNIs0Sr++ODTJdcSIFBHk/SsiS9e6mOITg1qqd9yeYs3tw7KPKDyJnqvUf/Wq1ZQwtFukiDcctjpVZbg28Y2xc+1SW2rAyYltyg/vKP6VbslYSXU0Y7a1k/1Xyt6rxipvJvYOhSRP9rrWZJfwRy7ox5bH+EnGauR61G6DfGQV71m1cZeWchfmWRW9e1H2ok7WkB96zzrYDYwWX0xTk1Wym+Ux4P0xUuIzXVlI6gj1pSQpDAlPQqax5Lq3VeHIHYjtVT7YRJgTMUpcgXLms6bp2rjGp2Vrc5G3eyfvMe7AZrgNX+EFtOok0LUAjk/6i54X6A9fzru4mUjcsu4HqM1MJrdRguMnru5o5bjufP2s+F9W0F2F/aTRBSQZQA0f4EVj7vmxkY9ulfTkrRzQmFxHNEw5jcBl/I8VwOveANI1KVpLNTYTkfwDKMfcdvwpOmBU+E+mHVrm8WRbb7PAiZeRC7RhiclFwRu+UDJ7GvSNa8N22nX0GoQm7kgQlJYnbcpgIwWAzwwJBGcdKyvhTo0/hyw1a2u0H2qWWMo0Lbi8aqOQPxJ55/Kun1WO/iumjEskyXdu6OxGOqnGf0rPVGajqcNr2lTLpllNZmESskklzLNKBkeYQgAY8HAOdvpXPR2d8dGvy+q6eY1eJni+0Dk5OPl79+leo+IfDmm6nrWgWMsCyWj2chYYz91RjHpzXEeIfDul23i/TbXS9MWHaVYlY42J+buZPkxx65puV9DKdCMndla40G5tZmt31XTCAO12vQ9O9QDRZQwxeacwPPzXaAHn6+1dLdaP/pMoW0teCoyYNOLcKBzuNNvNKdWswtvbgi2TcxtNM4JJzwT7jpxWZn9RpPU0I4HVixYHHasXxVp7S6bHdKCTBw4/2D1/LArX3XCsScYzTts1wjR7dyuCrDGeCP8ACoPSkfN6KYLhlIIZTg4GcHNddpurXOnES2rAF1xJBJyki+jDv9ad4h8O2+j+Kb2G+nMEckDXNnIozubGQpHucise3dmsYSVwQMZ9ccVotCEd3Z31lfvJJaI9u8abpbRskIPVT6UR6gSWlyDnoM8Y9a5G01S60+4jubaQB87HDrlSh6hh3zXSp9n1KFpdMj8udMtLY/3R3aP+8Pbr6VRaZfcRXduVmAINcnquhy2rF4hmPrx2+ta0d6QAQPlB6Gr9rdea22T/AJaHaAR0zRYGcAjb1wFI4/X69j+tdloXjCRYksNUkJU4SO57r6K3+NJq9hp0Gk3S/Y5o74yb7dk+ZJc9sDoR1ycVyDRzLGHmQ4PGSPfqfetItx2M3ueh6jHbINwPzdyDVKCV0f5Q3qPWuc0/VTBIltM7NGD8hb+D2NdUiTyeVIIhtAO3BznPet1XnKSjFaadPv16W/ry7KWHw7wznN+9r1StZe6lHd3ejfTytrqadO8igm6MeePU1bulnl2MlxtlQ5jkU8qffPUH0NYqywq37pGRx97Iq3HPFIuGdmPQgVtKnrc81SaRdk1qZk+z3MAjnQZwvRvp60yPVJo0yp+U9RnNVbiCKVFDBsj7jg/Mn4+lN011Eu2WMecvJx91/pVKCtqHOb0F3MUEqpz7VK+o3hHQge9Mgu7RxtJKH6VpwWckq743V09DWMrFK72KA1C58oq9uT/tYqJLzzJFATGDzmtoRbQRL8v4Vj6qI4AZIyM+1KNpaBK8TU/tO2gj+YYPfism91gyrthBP0FZ0Ms18u0kYFaVtAEGBgn6Vbgok8zYzTmilfdNw3oa3DBAVzGoFUf7ODqW3fN16UkKTxnburOUk9hpXRY8hGOD+tP/ALOIBMZHPWmiOYHOM1Mlw0OdxNRe5aQ37HA8YS4hDAchv4qga3jhPOPLPQ+lTz3itw36U2AhgRuyp9s0aodh8VlC3oM+lTHTYRyUH1qWJVjUNGcoOsfUj3qyqggYO5exqOZjSMt7NEHCAjuDSJZxfeRV+hrVZFIIqnNC0Z3p+VHMxcqGraQf889pPpT/ALJasMMgPvRHMCPmHNTgxsOad2OyK39m2+CYnKt9agewni+ZVV/rV5o8EFDQHdT8wJo5mgsUk2I6uRJC6dCh2YOeTkfyrUTxE817CNRIlhDffQYbtjI6VAzJJ1QH61Qu9OWUbosxvjse9S7PcGaOiXR1HxZFEszL9j0spG+OPmcZPPXgD86wfFTWdl4qtVmllLLFGRIsLSKT83BQAgYz1I9asWN5f6bcrNakeYox+8QEMv8Ad9qzNSFzq3jqCcwyw2bIvzlnCb8HI/d/Meves5RsxOJJqR0n7TI8uq3CMzMSv9h25wc+uzPbvUV++mfaIw1/co0ccaD/AIkkLZAVf9j9OlT3FjYvdXUrvZjfI5PzXxydx9sD8OKW40u0N4XaS0Gdox51+cYArPUEVYLm53GOVVUgnLMeK47xlrt7FPAtnqkYgKkNHbvh1Ycc/UVt3Ok398WCXZAIO4nuK8+8RaBN4evUjcBopRuimx+hNEdzWeqMu6vZXePzpZZyvCtO+4gVbiUi3jjB+5EjZHfP/wBfNZgia4mSP+JjtH1reT7GNFstrN9uYFJIiMBY1AZTn1JYj8K0fcyTsUWBKNgcjpUlveSROrJI8bpgq6Ehkb8O1KOG3HODzzVeZTFcEKcYJNTctnY2mqWWunbdbbXUuMzbQIrjHqBwr/TAP1qF3ay1DE25XU5Abg8entXHmVl6HIIwR/nvW1p+qLqCxWGoyrn7sF7KeY/9l/Y+pqohc6KHUGZ978qDwKz9Zea4tDCsEb7flikThlViSykfxHuD2qC4820umt5lZJEOMevuPUU6Zyse0t8zDGQea1WxM9jnzaSpCCcSMF5HdPr7e/4VraB4keyX7FcOzQMflY9UP+FOls7i6gYW+3eRjJ447j3rAmt3tJTHIOgxz6VabhsRFN7np0FxbEgyYJ9R3pZorV0MkMmyT0HeuH0vUmTZaSv8rH9257e1bxWZME8Y4I9DXbSmqiMZppl1JMybHkKmrJZ0ZI1kQY5ST0NZ7Rl0DjHFRBmD5AJ9q35U0Z3N+O5Wc7ZSBKpw4X+Y9q37Q/uR5U7fnXCFp5GV4yFdemeAfY+1W7TVrmNBhHBzhl/un0rCVFM1jNo6y51ia2ysgyvqawLq5e9Y4B2+1ULvUpbnKsCKdBcIqbSSPpVQpKKuTObZqaZEwcKH21tGGaIF1IKjk1ya3mxsoxB9a2bfWisWJRmprQb2KgzftNQVxtbqa0PID4cYriBqK+ZlRwDmtqy11cBWPyn3rmlSfQ2jJHRRyIvytyaSSGORM9KzY7uJ5M5GO3NS3F8uwKpz7VjqmUVriD58JUkEbxgVatlDIGarLohU4ouFiqqOrhozg96sRSGMgdIz0HpVfeUbCipSWkTnjvUWGWRL81DvuqtFnOG5NTKu5WOMY/Wh6AROgf7vWq4naGTDDjpmr8cZLDjFNurdHiIxyKdwGLKWIIOQasKCTmqFqrJwQavK+e4+tJgI8eTmjy9ygHqKnQq5AJ4H92pPJDk7QWHsOam40ZUsZyWxyDyKlh2tt+VmAIYqG29D145q3cQOJRIQoLfI6lhnngH8yKrLbSJKVVSxwSQhB4x1/wAaObTUZkW8F1PqVzbXVhboRunt3jvJv3sSkZJ+bAwXHXGar3h8Qzak0en+G7XUk3k/aF1GSMnBGc/OB+XHFbWoaXLd2bi2dln25jdTjJx933U+h9K8s0y/urfxXo0Oo3F5FarukeJHCDLeYe/XJpW0uZOL3Oje5vYYt0Me5R6VRvoYtf002mpT+WT8y7wAEf1+lWbRryE/MpMe45xzioNRhg1ABUbYe+4YrC5u9jy2S2m0vVxBPgPbTAMQcjr/AC5q/wCIJkTUYbm1UrBGirjsWHb8sfnWp4g0oPbpPEwee39BndGOcH1IrHuzvt5bQxlkVTIrHj5hhP8A2Wtb3RHKCtvRWLbh0JqKc7p2J9azbK7MRMMn3Tz1rQmIYKw696QiKVQV4qsrYJUgHPXPf2NWJCcVWK8072A6HTtVSaCK11ByVXi2nPJjP90nqVpXE8d6YZlKuvPrkHuPUfTpWBFkrtOMHjmt3S9ViULZ6iT5S8RTjl4Ce/uvtWtOa2FI3bFh2GWHSotW06O7j3YxJipNp00kSOsi7dySr0ceoqA3huH44rVe8S9DkpoJLdzFICAOh712Phy5OrwG3mf9/Cv/AH0vrVW+0wXVuz5/eAZFYmmXc+kapBcJ/rIX5H94dwfwoipU5XGrPQ7y5sHt1U5ODVRFaObHrzW/PdwXlsk8RDQuNy+w9Kpzwp+6k2kA9eK7YVLoynTEKxRxBtvJ71etLeASpIRuinZUlx0ViQFb6dj+HvUM1ujRKUJIA6VLp3yO9vMpMMgIbHoeKicnYqMbaDNR0sK+ETB9ahh0ndjdkGuwgtRfWSS5BdcxyH1ZeCfx4b/gVQS2TRj0wayjiLaMqVNXOTvNHeNMqM1UhR/uODmu9ht/tMJBXBXqSKi/4RsNJ5mPwrRYpLch0rHIfZCy4UGmmwmAJTdx+ld1Fo8asVx2qb+yYx2xUrEobpHFWF15biORmyOtb0KqSHByDVPWtHaBhNEAMdQKdpd1vdEZTjsMU5JSVxJtOxuwB1Az91hxV6OMlMnA+pqe0shNFlWUKVwAxxiuR+IXijVfClxottpFtZXU+oNJGUlBc7gUCgbWGMlz1rik7M1TOpNkWGeODzg9Knhssnt+dcR4G8cavrXi+/0TxDb6dY/ZYHkdoFYkyK6LjdvZSMMTkdeMGu5m1vSrNyRO0uD/AAAD9TUXHcilhHzGMZaNtrL3FSwgMFYoSvfFZl3440kOVW0YdctI4IP1281z0njwxNIYWSCNex/pmmlcDtXVtpKKSAOcDgfjTP3QjZpZ4gAueXGfyrzDVPiDFKCJL9AMdAx5+u2shviJtkR7OOaZkwQojBDH3yKLk8x639us1mMaS+djr5aE4qd1c2Yu7SFZgxOEWQF8DvtBzXjUHizxKJw+naaI2P8AE+V3EdevGM1rW03ijWL2E3WpMnP2iaK1jEYt8naASBk5JA4OM0uYVzrNS8Yw6cxjeW2jkBwQGGax5/iVp8E+w38siHjCLgsT3xjNF14R0a2glsp4DdOw+d2Yllb69fy4qjpXgmwSOae1hhQhHdbiYlioUE59BRLcaZp2uqXmsxRyWNjcFTIC7zSbcjBPHPHOOtTWGs3MOqSWssE9rqUEbSRWpbeLpO5QjILAfw/pXZ2fhq1l0aKC08y3tnQSyMxy0pZQc8fd647da4vxl4d1HQLaCWzZl+zsLywkZ9zRSp95d3cEHPPpSHzHomharYa1B+7ljaYZAaMghiMBsY7gnGeh6jivNfH9jdeH/H1lfxx2sqS2/wC6S5H7tcFgf/QuK6nSLuxtksbvToY4Le4Ec6Igx5O4cgnpjJZce1W/H+gWnjSLSIHultQJZC0mM4woOB7UuboNao8ytdUjuB5fnMku45Oa0JrZLi3KmUdOo6muBa4H2xzpwyAT98+9dHpjyXUZ+2XaxKBjCkZFZTiXcoX1nNBOy7i0WOQD26E/rWdeRyQeHGMsX7uRYpkn/vBwBgf8CRs1f1uCGUH7NelwnJBPXFc9rN/dfZILA3BOmIxliUDIjZuoz1/wzQm7WFdrY52dTHcMMd60rNxcQcnDp196o3DiaYyKc55NRwytDJvB+vuK0JNVgR1NIVAGSM09o90Kyocq36VGJSPlNAEZXaoPrT8eaoPRlHPuKduXaARTZDhSRxxQBp6dqQEB067kP2RjmOQ8mFv7w9V9RWta2UkLHewburDow9a4RZpBICrc54zXXaBqbXKtY9WwZIlPUsOqD6gHA9cVrGdibam/DExYMeQB+FZ/iLSEWFNQg5ZcBwP4vetO0Iu7aZoLhF8uFrhTkclSMAZ65z+VUZdRluTIzooLZLovRc8lfwzitFJsppDPDGplnWzkPy/fUe3cfnXbaj5MliNhIYCvLbWX+z9ZgfogkB/4CeMV6q8cLx+UCrbejDqRW0JEho8CSKokPJHetxtGLKGij3N1ABxVWG1hFssm7Zgc0tzqlxFG2G3cYA6bfpipqS1DmsW7JGsNTkTeuy4h83Y0gG0xnY3X1DJ+VdGlpBdJ5glUZ9PmH5ivJLtWe48+OaS3cAr8h3cEgn72f7oql9uMDgSh7pBnMbzOgP8A3wRWD3DnPX5J9K0q4BnvkDnA2fdB/OtVY3mh82Kwk2EZJd1HFeL6f4qh0+6V7bwvpm8EfNLLPL/6E5r0Ow8Z6xqNuCyw247LGvAHpz2qHcOYuX2v6XpGGntLiVj8oZIJGQH/AHgMVRPiV7hy0drsizxjBP4g8isDxHZXeuQ+VdaneBAcqIiE2/gBXIz+Db14m+x3+oSbeZP3gBPpQmr6E8zR6Bq3iBzbmOZFRG7sVFcg2raakm9rq1yp4In5/Q1zdx4K1mSMkLcNsOcTSls/rVm0+GeoyTKxECK467ScH8a3XO9EZuSb3N0+O9OtXRV1InjpGjN/jXO634us7zXNP1KVJCLCOeWETxsBLMVHlgbcEYYAk5HA6g4rqrH4WXkQDNJ0HJWMc/pWnN8MtJu0i/tOQyGPOF83bjOM9CPQUpUpWBTjE810/wAQxnXYdT0+yge6m0xYJrUM6pC6MEXBYkkFEQ9TyxrTbV9evd29dPtm6FQSxx68GvQ7HwB4Q0TfdmS2ttyFTJLOzcZBIwWx2FNOp+A7EFVvrWQ5xmIDJP49aUYW0YOd3dHlNxZ6hOCDqTTKeCkMRBHf09au2Xg2W6jjV7a5bzFy00zkAe2K7afxLpXmyf2Rot/d4OPktWx+YGBT4/Et81uxFrZaftVj/p97ECP+AZDVbjEnmmYum+AGtkBEUG7PV4yT+tb0HhMIoLlIwOoWMD+lYb69rl2S0epmZR95bCwlfH0fBWoJR9tEb3NxdbiCXF7qUMIHJH3QQ1TeHYaU+p3Eem6dYWxmmlto4Bw008oAX6ZOKuwS2hu7e201YHEsHnyyBW+YBhsQn05L59RXB2dskckYggspxuBxFZXl1nH0LKfwrsdHuJ1vtRu47d3ZmCbIotpRcAH5SPl78HpWcpRlsWlY7OBbDyRaRW32iFcCST5QzscEcnkfSuRmt7e0v9S0wCRLRgHUlhgh2BOfoR09M12CWl3DZ+bFHbzKBuAlOHGeeWXC5rj9WjudY1wblAl85N5XgRqpZSfz/nWdtTRvQ6cXtnBB/pjMkGFCKhxvA6H6YGfxrL8b32nahosEkDlo2kJYZ4xsI49Ac/pW/pmkWSzs1xCrsW/d7yT8wByCO3/16yPGNhZNaXBUoieWXEajGT0AH4sKcggcho17JF4RsdJGGEIwxVcs7Fievplqi1Dxff6R4ktLaOKJ57WKQzxvyAz4A/ECsW812Pwjp9ndkLNdSoVhtgee3LfSvO/7Uv8AUdTuLu2djcSN5kjs2eScY5/CsktbnRUtFWRenSS3crBbO5yfmA461AjTyuUOYyetd3Y6XAY2PnnIJ5LCub19oLW9CW7hn6nFVe7M+UowW72LE7fMB/vVoWuoWFsc3lisgPVByKyZbi+vQsbKAqnIIrTslijnU+WWY/eDjipeg0UfEJtNbjWTT7JbWW3B3KBjctcYy7T159K9leOza3LG3BcDG4DGB/WvNPEGjtYXXmwoxtpyTGSO46iiMr6CknuU9OugkggckRMeCexq3LbMlww/L3HrWLg9ce9adpdmSMROSSvQ9zVkjvKPmbfRc/WmTcKfpVgNks4ydgyfaorof6Iz96AMjPNWbW7ktryK4hO2WNw6H0I5BqrUkH+uT696EBv6hMiXv2iDKwzASKik4XP3gPo2R9MVq299Hc2G7zVF2D88WMblPVwf6daxLIrcWUsOVJt3MibjyUbgj88H86b5bRvkHdhsAD+ea0U2tBJGzqNkP7OW5HJQjOOpWuu0e9kutKsLkY3JiJsd9vGT9cZrl7G5W5tXgkIwykc1teAn8xm09jnEmR7dv6VpCepTjoeiSRCRPJJCgknJ4AwNwqmLRpx0rQ16VbJ0xGkvm20Xy5/iJ2k/hip7F4x1xUSlczkjnbnRZCp+WqdvoKNJ+8GK7uWWPaRgVgX7hWJQ4qLk2MG60aGKUbADXYaDp6/ZxkVzUbmSYbjnmu00g/ugoqr3Q0JfWUQQ4HNYf9tR+Hy6nSbjUpbniOKCNnYbcknC9ua6u7tWMZOK5HxBD5dkN0VvKTMMJcXf2ZDw3WTcuPpnmoWjG7NFOfxvrL5+xaDYWeOjXd7HH+jNXM3PjrxLDebbi80u3U/885Vn/RCaSOTRkmY3P/CM28zA8gXF4w5PZZCM1nTpbwXQlt9SlmY8olnpTxfkZFNdCkzPkRqPqviLVoDK/iG/8rrttNLmx/31txVRVumZ4XmuZpCcB7m5SE/UhyPyAFJJ58sH2mb7W6Y+7fanFbj/AL4Xaals57C+McCDTLaUHJW2S5u3OOeSHZf0rGtCU7W/Ox34GtSoSlz9Vo0k2tez012/4F060cOn/ZfMubLRpUyRuvNRcsT3zGsgI59quW8dsxh/s60jtcuMvp+mTNn/AIHKGX8amFtIkS+RJfH+Lcuk+Vn/AIFImKilvIxdQC6lWdEYFkvdQRFHP92IqT9KqMXypN3Zz1pxnUlKCsm20uy7Fe5a4hMzF0kQscrd6nFHjnskbKxp9lcwi3lktbWGKbHzNZ2Usx5IHLy7lqsv2WSWV9Ml3OzH91p9g7f+PShquW+l61dwS7tLnePb8z304UdR0EW39apRfUyTRX8+5muMGUyD/nnPexp/45CVJrQjtYhAsiQGF13BpI7NsA5z96YMPxqxpnhm7R0d7u2s1A6QRhj+bZJ/CtmbR9GitYzeXslxIuYxmRtzn3AOO/pTejsyFd6owHuZoGEv2nzUwCxmvozgf7kBVhXf+Go1S4id3wLyJ2jCsdvDAcnr37msIHStLi3W2kxK6NxLJEVHTqS3BpLfxtY6g62yXlrBqcMgmgO9RE3YoT0wfT1rOTsWk3uerw6lALAQyoDIBs8sdGPpn1HeuTvLzTtMurmKbzPtlwhUIBgbc4JJ7ZIYirw1dbiENKtlHM0eZfInWR+nYAkDPqa8+8T+HNW18Ndy+JEhdgAtsIiY0UdEDDnAHcnkmpbRqo6HpNpfWtzpzQzSTRXEAXdIqFtwx8rZHXis/ULmHU72PSX5eVPMZyMlMH5VGOpJGT9K4XQ7bXtFeJ5fEEt3HE6g2iIoVlJC4DEds+tW9a8YaZZXUf2aK4S7YbBdkgiDcpAOB1OQRWcmyoJRep5/8QtJkb4g6rbrKkUNtsjQu46bV4A9yapXAtNJgjZ4oDHLtKiN/n+UuORnjBwSPaugSy1bUkaeG4iu5CyB2uVAADqNwPcFSq9fWvP9VgvbTVriK/tvIulkyyAHg5zkZ7HPWtOVqNyW+aRsWlzM0zQzzSxwBzz3NV9T8ozZt5i2fXrXa6zaWV+G+zqqN3Yd64UW7WepDzh5kat2rJMq7NCy0/U2tPNjXMfYnrVi0mv7OQmSMOM5wRW4mrwPagQW8uMdAKzm1lFmxJAYQeNzCpcrvUNi5DqdxJMm5UVG6jHSta6i07VNHmsZ2RRIBsm/uP2Ye2etcu9/aiZhJOhXHGyqUt+scyBZDJEfvZotbUrm7nL6jay2N3PazgeZG20heg9/oapozKwKnBrrfENnBfWS3lsCJYwN6t1ce1chWiMzTt5hIHHQSDDD6UrEyxPH6rms+GXZJz0NatjE0lyq/wALBh+h/rTAxO9XLZUjEk8gztOFHvVQjDle4OKtyEiyhXGA7Fj/AC/xoA3tB07+2YrmVo/3kYVEdOAD15H4U2eyuLaUpKhOOjDoaz9H1OfTr5ZIZNueq9mruIdTstTCmVRHIRgg9M0ykro5IFohkZGe1b3hG7az1VpQOgH603VIYIGJOzI/u96b4fXdK8h+6Tk+wod0ikepeK9Sil8W6fp/yhZY4WOOyhXb+ZWtC1s5DjGa83ttck134hfbIlP2aLCIrDkRKAmfrkCvWbCUKvNVT1WphV3GvYSCLJ9K5vUY2RiK7V7oOm3FYF/bLIxJptJEJnLQEicZ9a7zRHUIpNcpJaxxNuyK3tInUKFzSTsVY7CR42i7VxPjF4o1s4xdpbyyOxQPYvdK2MZJVOmM9TxzW7NdLHHktxWPN4tOnOTFC0uQcsqglQPqOM5/SnuxWZyjPrTuIdPOt324YZ7XTIbdD/wKSL+tZF14K12V2mbRJhIed+pX6qfyQriuy1Lx6kIzKsoUr/HcpH+nFcZqPjq0EqyxfYyQefOleU/gFatItX1Jd+hNZ+EJ4n806poGnzDqI1e5b8izV0lloTTxqt34m1C52kZ+y6etuh9s7M/rXGWvxEndGMcTS4zhbS1xj8WB/WnN4t16/wA/ZdP1Ak5A851C8+uAKHKPQfLLqdq3hTwtYxEXNrf3LYyfteoFVH5EYFVhceG9KfdaWmlxEEY2gznPXrk+lcof+EvuIB5406DAwPmLsB7jNZzaDqNxJ/xMNXLxk5ZYIwuPxxU+0SLUGdfdeJpbeBvMaKCHJwGVYc8/gaw7rxnbOoihu5Z5AP8AU20bMx/4FyKZZ6HoEcwLWt1fOOhuJCwz/Ktdp7Sy/wBTYwwt0VUXmn7WctELkgtWU7WfxDfxKtj4fcmTgSXkwU/UDitT+wfEMi/v9bttOt9uPJt4ct7k7sn8aij1W9mYploscAM4Ufkeas+RPHIi3d3C24ZzC+7A/M1KpVJPUbqQj8Iq+DPD8KLLe6nc30jdnmOD+XAqRPAWhXHzQaAZ3JwpDnaD9QcZqWE2NuI/9GknkBJ3O4w34V0Vt4k1NLUxWcEcEA/iVc7c9/rT+ru5Lr30My10N9NQWEFnHYwITI/z7ivsWJyPxrXg1LRNCtXmvrhZd/zNGe3HUe1cbrfjIPcyRXV6vnIjKvlr8gwu7Pqc8Ae5Fc1d3z3LKNRjkms3ZG8mN1Z3BThgBzjPJFE4xgtRqTZ0/jDxpPrEV3YQ6MtrbKxUXCMNxkjZSwDDjhSxx1JIpPCOhuxkubi0uL63mYBNwBYrnIZuOD83t3rc0H4btc+CLiG8BW+ndGUMT+52Yz+J7/SsX4gQX/g+w8MWdtOyv9jeOUqxG5kdSCf++zWUZIppy0R1Wo+HpCTLa6VNaxsuGVELbj/e47muf1Lw5b6w0FxrVg7S2nypI3yGRSeh/wB2sjw3rniXUhN9nvpVEXJk3ZU+3NdRDHdysJdSvnvJkGFLcBR6cUe1XI4j9k1K55Ib66IZFIK561r2trDNbtnY0pHXHepdc0y2hhLwEKfaszQ45UYvKxxmsXrqi1obuh3Elm/k3UabQeDireuWFnqVsfKjQkc1kXmowbWQsDJ2wax11y5tZMINye5osBFJY2kRKSRhZB1IrJnWMFo1U47U/UdVku5sMoXPcVWguzbn5wG+tWkJiRzXMTbQ2/PHzdhWfqFlLauHdMJJyp/pVySR5pswjJY9K0Rp1xqVuLd2OQeMjhaqwjlDWnpd75VxAH6CQZ+mao3NvJbTvFIpDISDkUwHbjsaALF7AYb+dCR8sh59s8GiXJigHon9TUMsrzOXY5Y4z+FXLuDYtuMdYEP5k0AR21nc3EkfkQPIXbaoUZJPtW1dabd24yVdV7g8FTXVeBLrTNM1G4k1GbZIlsEtVxx5rMB1+ma6fU9KEhkWVRuHynj+vf61vSoOpFsh1OSR5GDLuHmMzY4GTXaeGLPesMijBeVEORwScn+lYeo6U9tPl+AW4+lepeDLGD/hFS+zNxHdQzIO5A+Uj/x4n8KxqJxvE3p6u5w2pXDeGPHk90U2QtN5rbV48uT0HpyR+FemaVqdteaUNRtZluICxXZD88gPug5rE8ZeGrfxBJAHuDa3FupSN8cOCe/0JrhW8K654emL2urIkoOCIWwxx3qKTIqR1PcrcrJC0zK8ECJvee4UxxqPdjwK8+1bx3pM0vl2U81wTz+5hZv5ViJFrF5bxNrl/dalEp3fZA22MkdnA5NatnYWxlT9xNC3TbbQ54J7mtGm2ZppFC71LURZR3n2K+8iRmVT9nbORjqMcdRj1p+keM7S3bbP9rDDqot2JH4V0LRTyblsod1wWCbLmXaPdmHYLgc1Y0jRdJt4Zzq2tRmdyGSS0USFf9kkZyKOVjU4sq3+uvc2Jmjiuoo+g86FoyfoD1rIu/CdxqNvDd6hPshI3xpFdqrSBuuR17Cuj1DQtBMklx/bM12OjLJKAxP+yuOlYrwQovkwiSSFeF3HBAq4UpSInVjEof8ACF6QxwbYZH8dzKQPzJxVG60Gws5iiXOn+WR0QiTb9MGtI6cjH7uD3+Yn+tSx6XsfMUbvx0Ren44rdYbuZfWEV7AwWwEU1zti/wCmVo3862bebRlUZe8JAxlGUZ/Aiqw8PajcgGPT5Sv94goP1qRtNttPG3UtW0qzYdY5LlS4/DNX9XjHdi9s5bIL3UNM3gW9jdvxjLuGJP4Cq5nmHENlAP8AaOcj9adFfeHZJdianeXhXOVsrJ5MfiM06bU7OKaNF0m5ijbP73VJRAp9OCAc0n7KOrGlVloilJb3VwS7uqn0AxUkOnMRuMcj7ern7v51QfxzCBhP7PtEU7SY7d5ZMdyCGx+lc/f65Pq1y9tYTandR/MWLYGOCT8oAxwD+VNYiiug1h6r6naFrS1jDTXUKDoBCwlb3yOcUjavYQKp8mVh2d2Cr+IIrkbNhBoj3N/I8c087Iirj5VC8ZP1NJHbTmIzwsl2kUSXFybiQLtBkwQB3/hH41EsVJ/CaKhFHTy+JXiiZ4kiA2E706AAcnJ49KyLrUbm98lpb2WBGLjzXyo27eAR6lgQKgtbT7W995Fq7lFeSdh/qgh+ZUH0BwfpXq2lfCV7hrW48QX32xnIeZI12q+F+U+2DXO68mVyRWx5lBDqGpXsi6TYrNCZAyz7clGVcKn0wFPPcV674G8C2um6VoV48YmuZQ01xI4ySHjOF59C1bOkaFZ6NNdCyg2W0xQeWoyQQdm/2ztBrq4YvLihjTAWNAoA9BxWOrd2W0hTB8rBTt3HmvKPjHDDJfaPJP0igmYk8KBuTk/kK9Y80O20euK43xvawXF7amaJZMwPGQ/KlSwyP0p3HHc8z8H69pd/ajT7ZBb3KMT5THAm9GB7ium3o74X72eQB0rzTxV4Nk0ctqukmQWiHcwX79rk8Eeq1peGPGn9oPFp2ousVy4Cw3GcLOfRj/D9aze2hTZx+q6804ZEcsv0qjBrV3DGUVCVNb9rpdtLp4n2gElgVx0IJFJBo8cshKAHt9Kq6iSkzmZLm8mlEnlt+Aqfyr+ZMpCcd8iu7stKt96wlF3fSttrC3ijCrEueh4ocyuW55RHo19et8sZBHtT5vDGpKAdhNelW0YguWWGJSKttC867fLANT7QOWx4+bO608hprd154bFWjql6wDKu1hxwOtd1rJERS1lRSG46dM1A3h+JLdcAMBR7QLHnF3Dd3jtcSxnfznHfFZp616ZNp7WJEyhZIhy8Z9O9cvq3h1RHJf6fIsttnLR/xRZ9faqjMXKc4vWtvUEIOmsOklpG3/jzL/SsbBU84IHcV2NxpUk2g6VqAx5dtp6M+e/+lSJ/VaslK5Ra4g+15mVvKU+VMAPugk4f8Dg112ha49mw0bVJFdetpdbsh17YPcGuT1u0ms9Xv4biJo2WPlXQr6MOD2NSafNDd2g0q9bYpbfBMOsTHtn0zW1Ku4PQzqQ5j0PUrOG8t2WYfMDw2Ku+FbmxaZtMlu47ZlXLCdsIyeoPrXG6Rql4l4NI1LCy42xM5wGI6BT3Bq/cWe+URSDnO5AeufrXfOlCtTck9TmhOpTlynaXetQX8wtdLSSa4Zts11HEf3XHygDuT69K1I7LTNAjeG8tYftDxqHEwMgjCjgDBBLZOT9a5bTraaxtSVKkylXyD3HanTgOTc38vlRNhS5bv1AAP3j16Vx0sLpds1qVpPQ1pfEV1cqBDbxqQNo2xjFJHJqMiHdMEJ6qoANRWOoQ20W+LSJrgdpHbYp99pGf1qtqHjPVdN2tGltao7Y2xx7WxgngsSOgrWdWlBW6mcKc5Mstot5cSExW88rOMFip5B681OPDk1vGPtb2lsp6LPKNx/AYrgdS8a+KdUfBu0iiPQTygkj224rPtz4gvMxR6uxWQYKW67yw9B1rJ4tW0RvHCPe56Lcz+E9LTde65GW/uQx/1rJm+I/gqzB8jT7m6cdGbhT+lc/a/C7ULkb20rUpd3IZ1Kg/mK3LP4PXQIEsNlaY5ImnDN+QxWX1mT2LWGjfUzLj4vwA4sPD1uj9m5JqI/FLxNc7UEEkMbZOIowmB9SDXWRfDS2gysviCyUDkhLc5H45pP8AhBdO8zEF5f6iSMMtvDxg/hUutJ7sv2EF0POpdV1DxFcs89xO2I3kAMhxkHGPlxV8f21aQrbaJpUFyrt5e8RGWRmCI5OST/fA/CrmpaSugxQ6eVVLho3kkizygMjEK3+0AoP412uhapaad9lEt9BaCG3ZN7sF8tmtouWJ7bu/tWbnJlwhHZHHJo3xJu7LE8U6W1u3k7MpEAz4A/hycFhmm3vw61e2nFpfXtmGcJI85dpNgLbCc7sYDHBro73x7caTqQs0L6pcWrPJdSK+VmXcrnkcLhVGCexrmta1NryS9upddRZItkthGeGiMjrIyn12jdkeuPpTWurNFJQZPb6N4N0291GxnaTW7vK29iinbEzbOTu9QwIHPIx9azJNRu7jTLWA2/8AZ9n9jf7N9kTLSezHrywYfjXS2vgjVNYuJbeC0ttJtnvvOmIbe8O6IsvfPAz9N2O1dDeaFoXhyOK/Fpb2TvFKtszsfnQ2h4UE/wDPQ5+p96NCFdvQ83sLBZ9VdYb9pYEYzJPLEQJAVCuMe5JA+ldZ4F8N2F34zih1Gf7Tb2doZtp4UuXCgH1xnpXAjXZLeOe0teHZVh3+gAO7H1JrvfhPYTXWswjOREWWTB4A+9mocm3YTSUD1jwz4WisPDYsLiOMtOZWkyvO1mYgfliusQbUUYxnoPSlUL83HvzSBwG28Zz2qkjMjjhWLA2gt0J/HP8AOo1ZmKM4wFYldp604OzySNt+QNtz346mmWkYWJSg/duSwz7mqAljjIYkjHzZrkfGR/02256Qt/OuzJ4zn6Vw/jRiNRtxn/lj/U/4Unsxrc50yAkkKpK9n+6fYj3rzvxT4IUBtQ0SJnXdvntAfmJ9V9K7x5AMHPOaQzDcD1z/ACrCDsW1c84juI0ka3HJNxOceuZDXY6Vp1qbUSIBkjJFecXu6OVp48747uePj2Of610Wj67JHYiM5DH1qpR11GmaUtvNbXzzJ90H0rQi1JJdqEbXPc1HBfRSQKJGXJ96rXqwbQ68c9RUNDRpJboJspModvbpUrXwtvlmiO71B61n28STqjKxDAd6hv52hxE7HPr6+1Iozr0LqOpqeQOuTzityS3eCFduCAPzrOtxFNKWjAGKufbst5W1s9OaCWN+xLOGEi9e9c5q1idKkae3XfGw2yRt91lPrXWW8UzqTzzUF3aiSEpKOOnPegR4tqUCQ3sixrsjf5lHoDXUf2mU8E2asrFZY7i2HoWE0UoH5bvzpvjDSUt4obiNc7X2Nj07VzwvZW0hbMviKG4Mqp/tFcH+VdEXcz2NzUZFnsFmJMhEJ3ljkkkdz+grPf8AeZIACnlce9TW6tdaOkUSlpdwjbHbBzk+2KcYPKYQk5kVdzAds032EXrG/wDtPkw3BUSQ4Cu3/LRQcgH6V0MGsOmoMs0Mf2N13LEnBT12se3pXFNCzg7cZ9+Pyq5aR3rusaEsVGBu7L6Uo1ZQejHKClqe6SeNtGXwiYLO1ZpMKiRykbsnuTiuYsbaXWtRE8+2fHEQIxFF7LXKeH9G1XWLyYCaKzs42xJdTPjHso7n2r0bTdTtbW1+yjVrpBbHy4zptv5W4BR8zM27k5Oap1na1wVC5raf4XvPJZJ2kMSEncwwmPr6UyXRfD86tHLPYXEsZ+VIZg74PDDHrjIrLl1OwuRsutOur3I+/e3W8H6hQtXbbxBNbW621nDb2yKPlW3jwP1yf1rK8epqsPIt2fh/R9OA+w+E3lIA/e3EZZj/ACrR+13FsqKf7L0wA92VePoa43U9av7okS30rLjo3/1sViiVEDSSthAM5LdPzqfaN7I3VBRWrPQ7vWbMS4u9Ze6B6C2jO3/vrOKzpte05Y9sdhPOf4XnmB9PQD1rzy58QafGxEVyHH92MZyRyBn3IxVC713URd3MMVuDFAxR5oTuRjtOCD74FNQbJvCO530XjC4gZo4IdOttx6pGd36k1h6x45vVZ7aW5uCs4+Qsm0MuSMrgDIJGK46aOSa4mM96LRUt/Pj3/wAb8Bo/rjoKhLhgLlIjMkUDQq10pBHGVI9OafJy7kSqJ/CSXN7Nc3RlQJIXtxMXlb5uTjGe5FaumWtzfat9qOmvqUy2jqqRfcMirtIY98Bx9MVgXRt7W1h+3zK0gUlYl42juAe4rr/C9q9z4N0u6E1pBaw3E8s0txOI1Vy67Vz34Qfgapu5NKPPO7Zf0rwc1rpl1Bdy3gvJvKtUs7QBhsDh97SYPBywz2PBrpP7Gla1/sqzt7Kw0l4PJkk1AB5WIYsTxjk78H/dqhrvjfSrS5gN14vAUw7vL0aIOC5OT83O3njnNeceIPGul3ltLBp9ldvM+FNzeXO87QMYAAGOlBvFQje+56RrfijTdAh1C6l1ePUL28VYDDZSgIcKFAYcnI5zz615frHim/vdTe7+zi1gjgeCGNQdiBl2nAOff86wL/XZr29kligt7JGO4RW67VHGO5PJ6n3JrNlnmnYiWVnPu3FNIxnV7CrcyEqqnAH589a+if2d7dG8O6rdsd0n2zZk9ceWp/rXz9b6PqMgEosbownq6Rk8V9JfAi2Wz8L6jEsE0QN4GAlXBb92gz+h/Km2rnO7s9Kkkd3mUjCLhf8Aez/hU1ugCk5yCePbAxTQuXLD5gX7dsCp4U2Jj1JP60xiLEBg9wMfn1pHdYkJbA44AqU1SnJdFZsAD+IUASx5fDg4UqNqkdK4jxmd2qrzjbCo9e5Nd2MLGAM9MZNcB4smtTq9wjq4nRECFRkHr1/SplsVHc5eUKoAY9e9MiC71Yt8gPWnF1lIVQMnt3JqFFbOwcYYE59a5zTY880CNNRjvPN6iYzf999a2rfT4EYpxkdKw/C7CHUrm3bncViA/wBrax/9lNdFPG8Uu/kVtWVpWIi7q5TurOaNj5bfSq1w10sKqSTjk1sxx/aI96Nlx29aZcW0jWwKp8w+8PWs2Xc0vD88MsGHI3gVHqFk1/cnZwFGRXNi4vNKl3Kh2N1NdVo16buHziOTxUjTuUNGhVbiSKRsEGtie0jDeYq96yXVbPU5JHHDHgV0CvHLbF+hx0oExYFBiG0c02W281WB69qjsbhWcqW5xxV/crdDgigRyGvaH9o0y7hl+40TbT3DAZFeQJgQzqRliisPzr3zUZFlR4ieowxHpXkL6J/Z/i+DTbrKW88nlpIemx/lB/AkVrRYqhT0TUo7OUpOcRPghh61G2oGXWJLlWzGcjH+yP8A9VU5rd7d5baVCk0TlHX0IOCPwIpLZMeYXIysbEZ+mP61ra5mbyFXCyJyhH5Vr6Wu+4AHauRtLm4hcxRI8iMf9WRkY9a6TTbie1ZpHicDGThemenNZygzWnKK3O4mvRDbi3QqMckDoff606wYCzkm4BaV2APpnA/lXKrq6TsoWRTucIc9mPf6VHBPq91OImVvskbAO44CA5YEjsDjA+tQqcjodeC2Oun1CK2LF5UGP4c1UvPEkdvp5uo42mjR1jb+6jsCVz7nacVzF1YretZyXbi2c7IZyp4TcG2u57nOAenaqb3tnapPC0hw6mPPeMBcfqRVqlF7mUq7exuJ4jm1USRxjyXdHMLRj+Ndvyn0+v19az7a4vo4rbUzdRKC+USTopXO5W+mB+dc83iWfch8sAcb1H8R7k/WobvxHqV39pVpyqXD+Y8aY2g8f4CtNtEYyk5bmndSWNtHNlG86SQFeeTGQDz75HFM/wCEhSK12xyTJNJGqSohwpC5xn3GTXMtI7feYnr1pC7EYzRboRyrc3P7fmjjCWsSjvukbc2fWq1xrWoXIKyXchBGGUDFZm49+RSEmlyoq5O8zzOplkZwvHPYUpmcRsm9gnXZu4+uKr7qUlgvXg02hJjge9G7mo8n1pMmgCRm5oQbiBxz603rTloFY9j8EeL/AO1YItJvpQt5Am23cKB5qgdG/wBoDp7V7T4IYmK9JwSHXPGCOK+O4mMciOrFWU5UqeQfavpv4IeIp9e0zUo7tf8ASLQxI8n/AD0yGwfrxzU8utyrnqqgKMD60EgE88+lQ3Mkke3yhlj29h1pN6mbCjLE4J+lUIlYFUbPINQRwRo0bYK4TaEJ7f41bqCWTyiuMZJ5PoPWgCRx154ry3xu+7xHdInXCAn/AICK9OUHYPmzk8mvI/E4Nz4mvy652zFcn0AAqJvQqO5mW0WAZACSOnPerQEhXYzAAEfzp0MCqmFA5FS7UDDa47cH1rA0PGbO6Npqtxcf88r2F2+nzKf/AEKvQbp1ktyR8xI615gsnmRa0/cr5g+okXH869MsoTcWMEq/xxK5/Lmuipq7mcPhK+lloXyQetbsssRiUgYbPPvVW2hVAdwzWnb26NnK9PWsWaIytSit2sgDj5h1qrpLfZht4C54FXb+ykuZAlsA3PasaeaSxvRBMFRgRwTSsx6I6K6tI76Hdgbl561BYFInMTMxOPr+FZM+t2tozpLcKJADuTdyKhsdbgkuoU8h3eVgsYB+8SeKfI2LmRvGIQ3IcMAue/FaJX5GYN16Y5rz2+8d3TytFFZiKMOUVwM98Z/OpLi81fUd2jfamivRJGqFhsUbgSQx7Y4I+pq1T0Jczr5mhtZN11cQxOcYWRsZ+nrXJ+ORpt1HFHFexG+t5CQVOfLx2Y9sdax4NJlSwnvL53RfLZrJg3Lyq21l98VPZJbazBaJflppbUpBMydRAFAGxe7Akk88+1UlykNtmfrNmms6rd6jBJFAjqZpAz581hgN5Z/iLOWIFUFjgtIxmDPmkxhs53AHnA79KsyImn3Bhy8qozCKSZNp2buqjsT+malbXH/s7+zUt4vIW4NzE2MujHqoPp3q07akcpMtl9pv7WzsAbGAxhEMrZPmEZ5P+0ckelPVm/s240++vDGZphlQeFCknJ9c1Rm07VrmyZ0MZQEHAf5jzwfqP5VhzRXP7wzo68Fjv60+dMLLqb02t6XG9pPFb/6VbRmGSQH5ZSCcPt7cVRuvFt08TR22U81Nly+eZwDlc/TAxWCwJ64ApCpUcmk3cat0LT6ncSQmFnYxk5K561A0rO2+TkkAfWn29nc3bbba3kmb0Rc10OneA9cvwP8ARo7cHqbltppXQ7HLnr/9elIK5DLt/SvRrf4Wyrj7XqSf7sA3Yrasvh7o0a7jC0rdR5pyPyqedIdjx4KT05+lXLLSry/ufs8EJaXGcH0r2UWcWkqI4rWNI+g2rgflUN/cWdnbvd3ziPZjLDAOeyj3qXVY+Sx5H/Yt9/af9nfZpGugeYVXLfgO9ampeDbyyN1MzGG2i5T7WnkyyjH8MZyc9e9dfceL7g6glrptsYXAzNJJDul3EfKfpjFRaX4XvNViWfVpPK+0yrPJuQmVSowQDnjdVKWgNHnslkLVN8siMzBSqqcgqRwc1Tbpt9677x74Vg05hqelx7LJiElhznyW7fga4Jgc9KpO5IzFGKXBowaYABxT1FIOlOWgCaP7w9+DXuP7POobdY1iyx8s1tHKfYq7Afo36V4ate2/s7Qt/b+sy7cqtnGoPplyR/I0CPfrhS/l8Y+fn6U+GHylPOWz1xT8YHPPvTfMDKQDzjg0DHM2MDHU4qJog8ucdAAc9xThncu7sOTSmVVK7iBuOB7ntQAMuBgHAJ9K8o1RWfVtQcjlrhz+G6vWHdQMkj1ryS+maTULpgxG6RiPcZqJ7FRKw+V2I6L29amjYAndGrZGBz0J71C7FgR1DH8QKdDEquGVt+cAAVgaHgto5WHUkKtmWBgAR1+da9B0LxDYJ4es4bst9riTyvLQZJA7/rXMfapp9GuljsoTM6x752HzIdxOE9N3GfoKXR9BfI1O+3mK0uIxeRKMkI2ccenFdbRjFnZy+J7aPTbi+W3lkSAgMSu1VLE7Bn3wfyrGi8bX2pXAtra3WKYoSoWPJ45wDnmspL22sPEXnw27SxJN5ltbMmECAYyRWpbu8Vqt9aaTPJeieRreSNdySIw+ZWH8JX1561Fh8xLNfa5qcTWumXLpe25ledUHl7Y1A5Zuck5xjFYFrDqF1HdXN3K4kgiWaNjy7biRtHr0rasdK1+9uEuxFFZxOSMd2B6k/XFal14LLW1on9vzrHbJ5aBouEGc8c9Mk0rpDs2c/JZ2V9pLXN2+y+g8pUgt1whhUfO7HP3j1/CqN/Hp+nOthHc28yQszPNC+9pA3IXPbrg12+laBpGmGGQQyXU6NkzTcgnsRVzURZJctLDYwxyvyXVOSeuaTmLlOFW+uLoRvJZiRYbYW7RF/LO0HKNnBzg/pS2cN/e6i093PEnmMHdh1cit+7sftU+75ixHaksNOmtJ2BRihHI9annKURV8K2N7AqN5uELMVim4bJ+9jHtg1p6bp9rZsIrW2SMp0I+8a0dOkhB24wc/rWh5EW4lQNxrJzbKUTnPEOnQa7YmKfIaL/VXAGNjV5fcW0+lX5ivY2QqfvAZVh617e1ou7O0Z9aw9YsPIfz1VcA5xirjJ21E1qcCmqeZ5cVnC87jgCKI85981fbwR4j1dY2ZbO2hzvAeTDKe+R7+ldVYag90UB45AwBXSi42kKF6YFNztsHLc4XTfhQUw+pakVBH3Lf/ABrpdO8BeGdNXcNP+1sOS9y279K6GJ8x4xUwGRS52w5Sj9hhgTbawxwJ2VIsVnSW8qOSGY/Wt8rleRWbd3FtYxySzyLHGoJOevHpSs2NIqRbt3IOasPqNpYw+dd3CQoxIyxwWI/pXI6x4vu7jTkj0fTpYZrxC8M8jZygIHy8cE1Vj8O6xfax9vvbq6to7ZlNvNeLhs7eRiq5RXJda8arLLdLpXkSwQw7xPN8hm5wQo5yaw7fwtqWom2lv1P2cuzySSP8zq3QBe2K7vQvD1jo1mYYY0uJN2552Xlj1FacsAxkoPmpN22GlcxLLSLCwDSWcbxyMoTfNycAYx/n1q+FEY3ck9qdDH5UpA7nNXhDvwfrUXbG4pFJo4byBraSITxyJtaNv4h3/GvGPFGgyaDqrw5L28nzQyY++v8AiK9sdGUlQAFJyRVTV9AtvEOnPZ3QCu5/dS45R+x+nrVwlysmSPAsYpD1rQ1LS7nTL+ayuImWeBijj19/xql5UneNq6DMjpy07yZP+ebUoV+nlGgByc19Efs62gTRtbvMZMlxHED7Kmcf+P189JG458s8c19PfAOyNr8PZJj1ub2V/wDvkKn/ALJQ9xHplxnyzgcngU2OMqvpgU+WPfJGewPSl3ANgDigZFPLKJUSJeD94mh2jZly33Dnn1qKeV1aNskBpNpHtWH4i+33tuYNPKgMcuv8TjP8qmUrIaVzP8Qa812WtrVilv8AxyKeZPpXMzqGtpFdPnBUoo7f/rz+lEnmQNJEEKlCQT/SmpPgglen9awlO5slZkcqyR3DREBnUFVA6H3/AJVSkW8lsNyD/SWRGZR2OVz/AN881qEMlvtjhZmYNjB4ANR3cUltKIWznYrFV6gEdPzrPmKsf//Z", "path": "images/4pts_ADE_train_00005058.jpg" }
depth_point_88
images/4pts_ADE_train_00014605.jpg
ADE_train_00014605.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 321 y = 119),Point B is located at (x = 314 y = 98),Point C is located at (x = 278 y = 141),Point D is located at (x = 238 y = 96).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_45><DEPTH_83><DEPTH_83><DEPTH_13><DEPTH_20><DEPTH_6><DEPTH_73><DEPTH_13><DEPTH_22><DEPTH_17><DEPTH_64><DEPTH_32><DEPTH_41><DEPTH_27><DEPTH_24><DEPTH_58><DEPTH_66><DEPTH_80><DEPTH_7><DEPTH_26><DEPTH_25><DEPTH_44><DEPTH_64><DEPTH_64><DEPTH_44><DEPTH_66><DEPTH_78><DEPTH_19><DEPTH_84><DEPTH_65><DEPTH_44><DEPTH_25><DEPTH_36><DEPTH_58><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_58><DEPTH_9><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_19><DEPTH_25><DEPTH_36><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_25><DEPTH_44><DEPTH_19><DEPTH_2><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_25><DEPTH_44><DEPTH_44><DEPTH_19><DEPTH_41><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_2><DEPTH_25><DEPTH_19><DEPTH_25><DEPTH_58><DEPTH_2><DEPTH_19><DEPTH_9><DEPTH_2><DEPTH_44><DEPTH_2><DEPTH_36><DEPTH_44><DEPTH_19><DEPTH_64><DEPTH_44><DEPTH_36><DEPTH_74><DEPTH_70><DEPTH_49><DEPTH_29><DEPTH_31><DEPTH_31><DEPTH_49><DEPTH_3><DEPTH_29><DEPTH_31><DEPTH_70><DEPTH_5><DEPTH_END><DEPTH_END>. Since point B has a higher pixel value on the depth map, the answer is that point B is closer to the camera.
B
long
4
[ "D", "C", "A", "B" ]
<DEPTH_START><DEPTH_45><DEPTH_83><DEPTH_83><DEPTH_13><DEPTH_20><DEPTH_6><DEPTH_73><DEPTH_13><DEPTH_22><DEPTH_17><DEPTH_64><DEPTH_32><DEPTH_41><DEPTH_27><DEPTH_24><DEPTH_58><DEPTH_66><DEPTH_80><DEPTH_7><DEPTH_26><DEPTH_25><DEPTH_44><DEPTH_64><DEPTH_64><DEPTH_44><DEPTH_66><DEPTH_78><DEPTH_19><DEPTH_84><DEPTH_65><DEPTH_44><DEPTH_25><DEPTH_36><DEPTH_58><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_58><DEPTH_9><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_44><DEPTH_19><DEPTH_25><DEPTH_36><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_25><DEPTH_44><DEPTH_19><DEPTH_2><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_25><DEPTH_44><DEPTH_44><DEPTH_19><DEPTH_41><DEPTH_19><DEPTH_19><DEPTH_19><DEPTH_2><DEPTH_25><DEPTH_19><DEPTH_25><DEPTH_58><DEPTH_2><DEPTH_19><DEPTH_9><DEPTH_2><DEPTH_44><DEPTH_2><DEPTH_36><DEPTH_44><DEPTH_19><DEPTH_64><DEPTH_44><DEPTH_36><DEPTH_74><DEPTH_70><DEPTH_49><DEPTH_29><DEPTH_31><DEPTH_31><DEPTH_49><DEPTH_3><DEPTH_29><DEPTH_31><DEPTH_70><DEPTH_5><DEPTH_END>
321
119
314
98
278
141
238
96
null
null
129
155
108
86
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDqZfFxsrMwQ225hCVBkfcCcHHHp2P1ry+z1W6tbppA6mbzC5CrhR68dOp6d66WBo7+FJW++FYYOevoay9UsdgMcSgs8Y2jHcHA/nXnrESk0pMbopaovaLqSLqkMV/bRy2cuXc8DnJ9OwyTXs1gsEVjFFbypIkShAVxjGPavnyCeWCzCyMWfcQSBg/Q+nBrotK16fTtO8y2meO4dlwVH3h1JPbk4HNdNLE8ujOerRUloe2dOuBRmvK73xlf61awW8bNbknD7DxIOMZPUHOfzrV8Fa3eNqBsbuR2WUkqG5YP6H8s1ssXFy5SVhJOHMmd/ijGaZcXUNrF5krbUyB69TgfzqVdpGQQR6iuq5y2G4zRjAz2HWn4FUNXZxo16YGHmiFivPA4P/16Li5b6WLoIYAg8HpS89q4nwnrl7q91Hbq2+2jjDM20Y284GfU8flXbjBPB59KinNSV0aTjKDsxKMZpcUYqzO7E6U3GDT8UYp3FdjMUYp+KMUXAZRT8UYouAzFGKdijFFwsM20bafijFFybDMUYp5ApuKAsIVzTcYp+KMUDGUbafgUYpgMpCKft5oxQmAwDAoxT8UEA07gMxQRS4oxRcTQzFGKfijFO5NhmKTHNPC0beaLhYjI6k+nesy81W0toJ2upoIUicpJ5kgA6Z/Mg1rkYFcD4m8LXrR3i6ZHFMLzdvSZQcMSADnty5Y9/lAoTGo6nHRo0MbWjSMo8wkOR0UdqddzJFIb6SXEQGwKeuWPr+AqlqEkp1cQqrGPyRvcjsSMbferuo2kdzYR2sikI5BYjk5HI/lXzK0dz6C91YxLYBoWBlUh2yHYdRmpGtXyhDgqrYKq2QR7VJfCJI0WQIluCIgRxz64796mitHgtoXRsMfvMV/h/wD1Vq5JIzincbGfKQFQ2/ccFD6k8+2AP1rV0y6nS+3RMfMc/fJww4A6/Q1mzxSMjpbv84YMQDnI7E/hmm2d1mTa8hUkY3ADr6fWs+a5cbxkeh+LdaEGhaeJJJWmwCzgdXBC4Poec5pvhzxukaR2l5ExXoJB/L6dP1rzrxDrc96zWGxoj8nlKec8AM5+pWn2zeU2+OA5LZwOjgAZxz7/AKV1yxElJOJzeyUlax9BF48AmRRuxgk9c9K4jXNUfStemEc6TROh82FugUjkZ/E9fWuIfXZpYDdS3MiwwRjALHjbgj+dU49TeW+R5JQwmUsG6lh6H17Vc8ZdOyM4Yezuzd8M65aadYXkMIlaW4zFbhT+OSewHAr0vQWkeyMswbdKc+ZIfmkwOTj09K8t0vU4reZmgtLYJK+8uIgwGccD2r0XQrkXii9uZHkMaZDbdkcYPQAeuM1th6il8JNaPU6PijFUoNTjmv57U/KYygX/AG9wzmr/AErqucvKNxRinEeopkrBUJzjincOUXA9aTAqm+owRLGzSjawJ456dvrzVi2uIrqBZomyrc+4+tTzxva5o6M0ua2hJijFOJzSDkZqrmfKJijFL0op3EJikK06ii4WGYoxTsCjpTuFipcahZ2k0UNxcxxSy/cRjy30FTo6SDKOGHqK4vxJEknxB0XfuIW1c4/4EK7G1hWNX25wTkjPA4FYe1ftOU6HQSpKoSbeaUrTsUVvc52hu2kxT+9NouKwmBSbafikxRcGMxRtzTyKTFAhm2jAp/1pCKdwG4FGBTsUYouFhpHFN2/Wn0H2p3Cx4Uc+cLx1OwRlcdTx0AqD7ZMFJyN8hCxMvUD/AB7UXdm1zb26Oj/LIfMKttA+o7jmp7fc9rvtlaMpKVSJ8Fhjrg/0r5iL0R7liK9gjkQPMweOHDk92OKsRRyvPHOsrG0bjysDGCP8R+tUyXuL54sSRoobzN/POOPw5rb06GFLMoJvMj3kOVbkAD/64xUV5uMTswcIym+YrXvmWtxFIY0MLDbu3fMM9jXJ6pqraXrAMinyGYnAxyD3/Wu5YQtbFJt3Qs+45I46/nXN6xY28gmlmEht8De6rzgHqOPcZpYaqn8RWNoOEuaOxz73hfUp7uObzFgUeUhYYGf5iprbWGQyRyCTcFJikA9cYBHscmtr+yrZ7BLeJUfy9rZbAIHJHTr2qwltE0vmKkazY2pwAOf7y10yqQOHldtSKW2i1vTCiS7N8i7iBtJx1B9yKhGlRQuXtkH7psHzc/KB1x+Bq9Atot7HD5SJMMgpkc+45/zmsuCX7PrN1FCSytNuJHQDHCk/WoT6IqUUkbFi0dpFJJCi71QbkI4HGM/1zXa+HvGEmoGeK7SJrIRhcRcGPAAI9yev4VxK3iJLJCzRDZz5ajBK+3r9KeglELGF1T5g3HGTwD/hmtKVV05XMpUlNWO9sXmHjBYZZI5FhZQZEbO/CnGfTjr9K3tf1YWItWKN5bSBg6HqB1FedaLLLp13I9w0q5XHDDdjoPxIzzVnU703c4gJKLgsEJJUdsD9a7Vi0kyJYXY9Hh1qOXTZr7aPKjO0EHO48Z/DJrnINfX7LJDfSFvPk2bjxgetYFrrb2mnyWrNGCsbrHGRkAY5x9etYL3P2q13u4iuI3BAxnAPcc1nWxvLFNG2GwXNJ3OlmmNxcmMSEAYOTxwOhxVm28RDSpXhT5zISCAepA9f89a5hHYT4Py+UnGONwxmm2czvcI0zDc43scAAAHJwO3WvN9vUUudM9idGDh7OS0PRtD12e7uWMu0REjKnjYO1dPDLFPGHidXQ8bhXlVvfzQT7F3Kk0ZbB5Xngc1Lo2q3Fj4jE7vL9hQFMbsjHOSR65PX2rsweO5tJHn47Aac0EepHGKaWQdWFcxL4709Z2t0ilaUt+7GMBl/vZ/OuBt/EN3JfvqaTeZulLMGBAHJxkegwOK76mKhBJnmU8JKTsez8AUGuQ8KeIGuEmOp3o8xzlA5C8D0H5Vbh8ZWb6pNZtGQEkKrICcN6VpCvGUbkvCVLtJHREVRv9WsNO2/a5whbOBjJ4//AFj86z9Z8RwabqWm2/mJidiXyf4cZz+hFcv46miWe01C1JcTM0THOEDqAQSPpn64rScnGNzKEE5cpo6q8d14/wBJkikBjaxZlPqC9doi4Xt17V5R4Yuze+LbZnlLbLUjLYOPm7enSvVCwAIDAY5PNctKXNV5jrrQ5aHKSUVn22t6ddJI0N3EyxkBjuwAT0/pVx7mFJEQuA752jPXH/667bnn8rHkUuPSgHuaRiQCVBPt60wsGKXFZ1hrljqKM0UhUo21g/BBrRpJ3E42EIpMU40lMVhMUmKdS9qdwsNxRgYpSOKaQDxnnGaVxCcDtSHGaa+YxuBJA6imiZXRWByD6UxWPCbGQynbKHMWchipwcZ59easTajapHLMSkZU8FhyWBJ5FV7WzlS4uEkmZ4ghRAwI2kU8Q2M1yqyTqXZsm3ZlOW/HmvmYQtc9pyM+e6mubUGxKma4QL5rZxGpPIJ9a2dBg8vTJ4kLlzISckDIOAT78VDqiJNF9kR4wBjcqngYOccdOlaWnoY7GMkMXAAG8YAPUEe1Y4qVoJI9HAR5pXJI44DbuYYm8xWx84+6D1+vSsfUdQhs5Eh8pmyu4I53DHTAPfofyrc84MjTKudoAAIwFwDnPsc1z+vGGW4t50j8t1kVZgCPuYGPwySe1YYfWWp2YyP7rQtWs8DxwyEl/OCgkL0GP/rVHex7rsTReWsQUBgo5z14punweVcyKjgxuh2wqcDIyevYH+taIihDTbz5fzhm4yWOAvX0rZyUWeR7O8TndWkawljlAimeZlwO67QSTkdQR29qvRst1DFIylHDhz5anByD1/HmkvIY59SiQZRogT5ij5T2wPwNPimKSxB2k/eAhiR905456d63+yhRjpqYepOsGoR4jZhKm9ZUJ3Ag88etbloxjtPNaTewQZwOcg88evIrLhv7a8vvNRZd0eVO1f4d36datwSeYGmikLfMdx7MQP0OcireyTM1e+hduroPeR5OZIxlowOGBHB/KpZXW8UGFiJQvy5OAOef51lyRC7gimbKuG+8GweB0+lU7i7msb+W3fBKsGDEdVxwc9sEU+W+qOqpTnHVmnDK3kStbSBpVl3s7D7meoH+e1Vo5xcyuWnJjkLA5OCCRkY/HinlorqzkMW3MwEoAztHOefzq1HEt5YRK0SxXPI3KOo53CsKjsaUV7tx1iWS1d5Js7XAZWGAQABx+n51Zuot1xHHHKijafmPPBP/ANaqVuri5a3nlWVZMfKxxhenf6/yqaC+RdUuJ0g8pVm8thgjPH3fqMEk1jd6nVF89ma6StIHkmYZHAOSFfbxgDtUOoyzyWk32eRFwNwLA4HqSPXoPxpJJ5n1Fo1Q+QhKlhyC2B2/rSrHJcTSXYAURgxhc8yDHUjnH0rminF3OlyVrI5U3M9wI/IjLXUq7i2/dlOmB9DWhbOIxEwZQCrI5jbjG7hv5jpWLqojtvE1xcpp3mWsQAwgKAf7Y+hzz7VoxXlpOfNWd1VYtqkKAHznPHYZr0p7KxwUYpzd+hom7lETs8B2FgDGrcLyBkfl+FJBdG2JhV45JCwUbn+7jk5/Os+6izYWjWbB8ttKDJEhzjOM5/8ArVPaCC7BuljZCn3gq5ALcAj29qSk9zqTW0UWddv59U1jS7iSRgLc+UWiXhFwMH04JqvqtxqllemC6dnt43J3L/y1yOy5/WsjVL+aZpbSGWM27gICWxgrkk+vOaW3sYbi3+e7mkkVsod+Cqjgr9Cc13wqSdO0jxMRGHtW4Kx1nw4JfxO7M24iM9+26uv8feJZfDrukL7GubZVVxjcDlug61yvw1iKa/IrIF2xDaBjgE5rX+JtqLzXLAM7LGLcM+0ZPDEg+pwe1VTajIipFumcJY3zzNGiylPuyNGenHQfng129r4mkvbu0muGdmgfdJsIAfsP5D615nYySXl3cusAltxguzDBB5yMjv7VvAi3tPJaRYwNu8xjIUdef89qcqjg9GZ06Snoe4aHqLajatI4AO47fcda0ZMBWG7adpwe4968Si8XGx0meytd5kuCF+09Noz2HbjHNVbvxRrdyYokupJFt1A+Q/P3GQfSuj6wramf1WWrXc6XRr0weKJLu5dZYy582bpEP9oA9TnPHWvUbaTz7dJQrKHG4BuuK8d8O6jLp2LubZ8sR2mQZYN069sV3mgeKku7eIXRUMQcvnqxPA/ECqpVoyVjKrRnHVnVYoxSgkgEjGaXtXRcwsMpDTunamyB9pZBz1x707iGu6ou5jgep7VA8oV1+YAk8e/tULXWJfLX7xxmNupHt+v5VmXV1FJIfKcKwGXVvp3HrkVajciUrGo18mCQRu6sOmCOoqhqNw0Fu0toyCUnmJzhc55PHfANYc2rxvDL9sADAYMoJ47cjqM+tcf4p8bw6fGtrDdRzvJblpGkUj5cYGCOrZ9hxV8qWrIXNJ6GebgNdLAWwSNzgHHTn86zPt1naX1wG+aSIgBy27eSeQcjtWhdRpa3Czhi4kJyTyEA6DH9ayrjw7ZXd8t2lwwkkYOwySMg5zj3xXy1Bt35tj3Zxs9C2yWt6XkhKSOZfNMgTAz6AgDNdNbttgjk2ud33S44XHGPpXMWulzW0gWSREVSrfKSS+M5P8q37eZ4pklIma2eLcWZwAnOOPbmubGJaK56uX6JstmT/lomXaTlA3YdMEfgea53VrdH1K3lSPy45iwlBI5P8JwOvSthbp/PO+SVraRA6ykBVj6jGfy5rE1qa3XUmUhPs8rICkcgJ3g8tx+X41jhk1I6cVaVOzJ9KtFheeOJw3mEMqkn5fYn2yT+HtWqhRrVI2kYBJNqjb3J4z+QFZOn25ht5LW3lWdmDSRojHccjjv17Grtre3GoQJ9ogKeWCq4bPAOCPzraabdzyre5ZFVbjdcSph9idN3AY855/Cq108a2UkUYKMxST5gT0OcEfh2qwlyoHlyo7EDGw/w9Rj61De+WI7eKBlLrcBiv3s8dCOvetoq7M49mZTXKDVVvrZihHEikfL+X4VBcX1zBeu0MWy3kYMgIBIHOT9eamEsVpq7Trgq3Dxctk98U5ndbeeWdAEjfCqfQ9B9a6G0rF0YNyLFtcm+dcJjZgqce/PX6g/gah12eO1uIpQrYk3JLIDkY5wCPXmp7UxpcHC7VQhiw5IHofxqtr00VvqECsreU65LryGORgYHQ4qKbvOyPSr60WTWCotvuiTLYAQPnIUdBzWzbMqfZ/Kj3OxKMYmzkkHj881lWYGDnJcjO1uy/j061b0y4WGWWG28xXVGEYGDkgEg+/NZV3dmVNcqSRXvkZblbyBJZufnXHzJjHb061pWawz3L28gVVug0o8tztycjOPX5ufrVGOSW1jjYIZVdQJHXkpyeCPYc1cskhObKSKOWSMCZJV4P1XH61lNJRudEIpEQ8yQoiSTQbnMbPImGIGAP60C+e30+8tUljZ4FCszAgkjng+v86u7Rc29vDH5ka4xGrZ+8TlTWBrOpTWuo3FtPGsu7bLKCpOxh2BHUHj86imlOVgkoqOpz+oajcPd+Y7SeYCAfV/QY7e9aEt7dw2Rli22zE7WQJgMDkd6rajcwOoEES+a0wcNGDiM5yBzzV+41i41CJrRLXewADSuPuc9weh57V37xWhwqKTaTKWkvfPcvcSeYY1OcgAYx368VvXV2kNq1xayqkSZAmHILdQpXsSTjmsOHU3tHleeMrayDLEIMnGR06c9T7CrM/lXGjTQCB0CRp/qxtcPjJBX+IE8g1MqfNJPoXCajC19TM8RXJl1WG5hKnzoyQgcMqk8Edq2tPsjBp0Mnnk4YEgDBAIzyOePesRNOtba5tjcS7PkzIsnUNwcfQ1v2s7pG2ZAw271IP5jFbzlaKSPPk+abl3Ok+GdubfX5v3u/dGHBznqc1P8X57mPxXokUMzRq0BLFDg/eIOPwNO+HhVvEF0wwMRoAM5P41c+J9iLnxHp07gmOCzZsjsd9PmSuzR03JKJxSW/wBmjP2SNArPlwD94dyB60mo6paafbh72RIoWYRqShOeODwD0waeZo5FbGY1VTxt+YZB/wAazpIIZtd8LWNyqXETavao6SqGDoWwQQeCCDyDRFKckiFSlGLk+hWXXNFkuIYLPUhulcJ80TjqcemBmtuOO1M+xJJHeKQndG2Rg4H49K4iyxq2mWV9dWtrFcrq8FvDJBbpAJkYMZAQgCnaRHzjP7zk9K7R1j0poWZgVz2XGOMEU69NQaSKpVrqzNIB5AuH+bAZto5b8PTirdpftZ3dvIxwkUgkCDozDkg1j3Nw8Yt5YeIkUFgABnnoe/Ss9NV+1zIUjk2RcvI2ME+n69axgmndFVGqi1PZdP8AHMTaZI8yyPOF3BmwA7f3QPbr+FS6P4phu9SndmK23khwSc5OfSvKrK53JGEfDkZkU9xj9DirsjSS2IdWMYDBnB4Yce3Wt/rk00mjJ4OEj2qx1iy1G3kmt5lZI/v4/hq3HKksayxnKOAVPqK8JHiH+zkeA7IEwVIf77DOS2PX0r0DwvfXMNrDFNJ5kciq0IVw2ARna3p1GK74VOay7nHVocqbR11zHBJGxlQFccnoR6fSsDUbeE7hMqXVuCMFmAkQ9irdxz061PrOtQaVG0skuFCF2Qg7iuQD+PIr53Hhqx8Taldamllq91Hf65exNc2XMdrEvlusjJ5bE/61jjcuQuBzXRzcmpyRp+00Oj8SeIILaSd4WlJEwjG19rkA4w2M/eznHtXmer6gmoTiZYFg+XacHO7A6/U81WtY7kaZ9pWFjbocGQKeGz69qrNIJSQSAOv09qiVRy3OinTUNj2RjFqlu6Tyo6sQqAKVIYHOTj+lZCyWx1IwPLcQiLdGxiIwxwRnnmqFtcPpzS+aJkhXhdwyQ57n29SOKzdYuHF89xFCzwuBiSHO1+5Y+5NePSpNXidjkeiR29urwsLgSiNSM4wzD3wf6VpiNzHIjKyqTtUMflbH0/A1wemvrGpiG4NvJEkCFmYDaT3GcdeO1eiXiKdFhm+0KRtBMTchiDjr6/1rzcbanJI9PA35Wyo0MtxYzQGF5A3/ACxbgPtJ4z9RnH0rl5/D11LeRO0Ytoex4wzk427s5Bxiu11G2ll0+3lS4RC2HWMABt3cg+39KxZL8hxZSxszyzDdvUttHPOemeB0rGhVd/dOmuk4XMuz0e5s76G5gYxTuCOV3JGvdmx1PA6VYezv4phcpfARyHMzAgh2JIHA9VPb+dNXxCJ9QFpJbuedsQjUg8HOD+g/WrVwba5gtRLaPG86EkgkL1HQdj0rqvJ6M4EkkWP7PmaVidzsuCrAZBJxk++PeuD1y+1O21Z0nkMmwhkVVAyvUEgdz+dd5plxtjIEc+1gUaQEceh/PtWBq2k6btN1HLJFKeG6HdknP0PTFa0J2laRnON9UZ+l3cl08k0lulu0QOf94c4xjOetabQxtbKsi+ZGTzuPHGOc1RtYoYpGljdj93DM3APByf1rUtuV8l/LbYS3T7w6irq2vodOCScrMbDGgkaPJ5Y5AIBI9zTNUtXN2Loo7Kpw2BwAehOOtSx2qXBRZQm1W8zJIyfb6VFC88upPE8pHm42qONyn6elZwbcrnouOlmiayhEXmtIWLZ2ENyCMD8eAentUvlQw3UUqFiJeCFPCnH/ANeopIS0sQhuN0kW+M4baUUrxk9z/jQ1zDaQpEZY9yOSYVBJ6Hvj161Eou5VNxluti69ttt7iKIiMdNy/Ny2ef0qC0ntZ7VYngjY25IaVSQyjocY7e3bNWZAq6cQdyea6crjAG1jnP41gXNxLpR8q3RQI5FUAKQXyDgcjnk9abhdWRNWUY6vY6fyIr0xr57JiMBfLbcVxg5HvisHxWWN8AsyKvlhWwhDY9CQOeagNxqel6pH9r0xFcsJSkLk4XBB6dMZFQeIJniFoGM0aMmXWQMOQfXoeKiFJwqI55yU4X7GMUiu7390rxRhBvZuWJHBrqNP0mG7tU+ztOsMhOCep5z1/A8GuctpLWW7nWSKVcMo8kN1H8RJ784r0LTJlNnGIASvlYZUAyvJ6+nat8RPkijLDe83ocnLY6S01x5bTttH7x3fOzgg4HQ8E1nfZLnTJhHaXsZzwTKepA+8Tmu31fRrKOG6vVjCuJd7bSSDnGRxXIXAsLm9Se3li+UMf3wPJJJzj8xWlCpzx0OHFRlCepTuNMvruSCJzEwdSyyAhlbHv264rVslmt4QZl2KVBA2jIyQM9eOTxUkksUBtmTIMg2qEU4yD2/z2q7dWFtqJdoZ5GmhRXUbcq/TCsP89Kc27a7GVOPM7Lc6j4fSPP4hvpJNm5Y0U7Bwev61p/Eu4hiu7aF1DSTW+F3dMZz/AIVi/DSaWXXr95hGGwgIjOVXrwMdcVf+LVu76rpchU7EhbLL67hxnt35pyj7jXodUW1NfM8+kvoLW5yZEG7BKkYJz3PesnXxLqUFvd6dM1tc20wlWQOU2Y6MCBkNnBHpisvU2La0Z1LNBlcO4OeFx9a2bAA+ZtYTLJEVyzbeMcnn61XKqdpo1pRniFKnFfikvvehkJpOuXWuafPqWpi/MciMnm3DyEqGB2jcOM+ldfdlDatGHDyJ+82Hk8YyAR+IrJWNo4YboEJIh5KsSAM/0FTySPDNtV/LnkOVYLwQD1+narnJ1LSOGpSlRbhNWZLbTyfO2HZFIwpHIFS2djbr5kfJySF4yQKLrKXCXKgKWX5+DkkD1otLmKW0bemXJBbBwEOKzlKyJpbjrOznihaQSCVzypK4ULnkGr0qY3bpHWJl25A7Y/T0zUcYWG1E4kxtXaeMj8e1VTeLbR3EMs/ykZSRlBBbGQB6/Ssrc0jq+HUoXttNdXbTGF23fKMjGAOldpZJeWGl29zLFNGrW4UF0ICjbgMDz7VW1GD7Ne6dK8pijUw+aHIAJbJ5/BTWx4m1S+uPC2oOLjNqJbSGJAw2x/uwT09TivSUeVXTMPa83utaHFavqt8heNbr7QXjeKdp/mCk4HA/qK44eJr+1u5GttKt5Ht9RuNQtbho5Q8Ej7MkBXCkDy0IDAj6irVzDNNI0nm7ZCRnBOQPQetY8+m3qRhth27d2c9O5BrRVdlJmf1WbTnTi2lu7aL1JYr6aXwpDaRW0Wy3kJkkz87bi2ARnp/9asTblwoH/wCqtePW9PtTGbazOQirJvQHfkYfnJ6+tdNqFz4avo7PyLTyLVwJZEiIMpcrwuTnABOPfHFbbnN1sbAi05U2zwJK4fKH5gcg8HAP4Veg0SyE08sFmIpANw8uQt354PSsrSbiIT5e0hDOAHKzbsDPTr7VtzoJ7Lz4UjknjIwvn7eMjqc/lXjPnjszpunuSQXHk38SCO5jjlOJCy8KOB26DtitS1jRbprQytEjsXYFc/LnO306GqdrfYu4pbm0LM4G5BPghhyT1wR06c1b0uSO4bALxynB8zbkEE5x+GK4cRCcnzHoYWtGMbD7S1mJjjEpWONyzqxwQCThVHsD+tNuohps0MqukkTEiRigzhfTHfg8VLObTS/35uczh8srEDjgnA/EflWNrOoajqU/naXAkyEZJRlJXIx+uRXLThOUux3TmnHQs3ENlasLv7PgWqOAFTPUk7vUYyPpmo75Jr1rcwSvbyRRmZuNvf7uOx+UVNb3d09tNa3iG3uNo2rKgJb2x0x2z71mpff2pbO1uZo5o2xLCoCkHPOD06V1xi/uOR2vqLc2F7ZQW7W0ru4y0y5+ZixyQOx55qe5umuNMlMsKKwQtHkd+2QP5097uKztFhE+Ap+VyGLBh2P16UlxFILKSBRujk5VgwyDzwPWtYLZszcVrY5jT7mG/uAscRLRAli33Rgeox19K27dZImNyrsYlQb4ycAnt+hrMt7F45ZJS5YlQWAXG8j1I+nSrEcM63EkE1tO0W/KRxKTnjPQc+lbVEpPQMI+WWpoRmaObz1LeUqBpUOOp6AHsPapZALmKMQRYuAu4HGAMjpkdKzrNhNY3bTM628cmWIByQOn64FQRagW0rUkKM0LFd8kZw2M4U59OVrOC9475VEo7lq2jnn0178RPDK8q8Y98ZJPYj+VWZtJuobqFnbepPLBRhdvU45+lVLKJja2lmsrsGDfKQcLzkHJ75zkVtzzNZO8E0BgjEY3ttGMHvn0NTUbTKp1IzhbZmUbhbeyMdxdxgTTeYC6sCFI2gdOuTWBf6tdFbnTd8cfmGNGZJQRx1HX61sai8dgV1MxG68lsRquCPMYKc56Y4pdBWz1IXF5cWEMUklyWMbhmJ9T9cV0OUYx5rHK4Sm1By3K4uLSG2SW9idWQfu3SQhmCjoAPU45P4dKp6xrtvqVjaiMTLOmWlIcFS5GCRnn8BWnq2h23/CPXVtFG0tzEd0e8gFMc4U+4JP1rzqeO/e8FrOpHk43Ig+4M849TVYeEKq5uxy4mVSlLkOu8OxrFeC4u9xO4lW28jJxuIOQe/512NpbtBJNNGMRSkiIZ6qDjgg9RWLp0kS36WEYVrXayRTAfe3c/hz+oFdLqMdtHa2izSeWfNDu6j6jgds4/OuDFzi52OvD3hAsLC8lstqIlG75X3d85z9Tz/nFeZX+lpBrV+lurPFGzyBQ+3MY5xt68f0r1VPKhDTqrgyEmLOSFAH6elcv4nsYEU6hO7RXJxGnIwVA6Ee/9KzwFVKbj3FjI88L9jnBJFHpyrKySSsAIij5K8ZBP410iSy22qS2x2eSEjUjODkxrnn65rkCPtsgtwiZBB3FsFzjoTXSR3n27xde2QtOULq0khJxjAHI79a9KXvRcTz4QtZo6f4doV13UdiiIEqduc44z3pfjJOYtR0pQ2MwSE8ZyAV/Krvw/TOvagc7iPKBOP8AYFM+MNjdXN7pk0GNscEm4t35HH5Va+F38jRtc6R5JPYxyM1+6jbv5VnKrgfh3rQsbNbyPbCI41C5IJ+UBs455wc03xJI1/HZxm3a2mRVDHDDzQR+VbNn4YubmzlkhkENuJdsbyMI1kHYDJ5OQCKn3qkUa0Kqw821tbW+qa/4cVNDeKxlMkkTiRWWNR346/mKoafbyiBZdrAlSjKecDP8sYGfet660yW/D2xlX7SqMDCwKMrHvjpjP9axF8Pa9aBTJZ+Yq/dEUoI/x9eKcKM0ncjE1YVpc7d2yWWKQFg0LiEMoQk5wQBjk9uT+VQXUaR3EzGMDzDgHOGZu5A9uRxUkulXUI3SQzybzuEbEgKPQ+/FVbOVxMol03cm8kOHGRwBx/hQ4O17HOkotG1H5MkYiZAy+WCxUFSM559u9ZN1d2Udkbe5LQspJj+UttPr19K6ebR428LN4gMzqy3HkeVjjaecnvmsy00myubETyxtPK7kqSMgj049KujQ11FOtdJIfP410lbOMLbsbkopSZpGbbj9T/TmtLUdTl8S+G1ktLOC3EvlrIzBn86RFA3f7P1I6Ac1nW+hW1spuPs0byjJ2tkgZx0/Wuw8OaZb/wBgT3DSIoDuVQsBGFAGQM9CAc5ruklbQ54WT1PIrvT7yznS6kkt5ofMKOYexHBzkZ465rNE32RJPNvVmD5CoPUkcn0PtWt48vBLq6i0ZxbhGUNtChvnPIGB9OfSuXt0zKpVQxzg7+OT71l7Lm1O+njnRhyKKe7T10urP107/wCae3ZQ2v8AwhLaC0s32+7tpNUSHyRs3IcqS+7OfKikwNp/1vXtWRpi2/lxmVldtg+UtgDj+dV5PDyRmH/TRtlQupMfbOPWtqay0+HToIJRG7qg+cEfieOeea1lI4FudHpUNvb7rhV2RsinHQhgeRx+Y+tbWhQyAeVcsWWQsPkY5YZ6fWuYvYrvTFyjRtau27huU56D6/56Vv6TPf8A2lJhNBFbFkVo2PK8ZIJ9cfyNeVNSte51RSvZle606YTvNa3/AJp3bgHJyrA/15rodFM52LOFitiuQ3GTgZ6eua5bT1ubq5uL3zRGokfCiTLMQPf2rqbON4ZUaZZUVIX8uVMcsMcEfjXLXlaPKzppwbauW5bSHULyTUIkKKU2tBxl8ggYJGR71n2CtaXRiCwhshQiA/KO+ex6VpObpdLhWJo3DOWE0g2bR0wecdxVC/1SPQ7a2WK4jurmYkAMQcKp6jPY8Ae9cUHOWkdT0f3cFzBq0t3FfWrR3u0Ef8sxkBTj1xjke/eoLhBZXMlzeCIiWVXEuwLyTjHHpkd6rvrcV6ZBNImVCsPk53Y5DdxyMenNSrci4QW7IMxspwehHXj69vwrupSkkoyRw1ZR5rpj50ivoEkNoguF4UB8cZ6/XHNJbL5IERMhXaChdgfxyO9U9QvYI9KSe3aMMCyqjSFQfmwfqfr2zVGW7ePakA89WhBRmblWxkrXTFJ7nPze9obb2v7tlJdFAzkLnOMnt1otL3bdxS2d48MkI5+VgOfwrJurxpIjDFdCOSNVPyHnnIOfpUJ+36ba5AkuJHbDcg4bg5we1aRS3Ki3zWRduUjjgnsUvvMmkGX2ts2nPBb1GTVa28ltPuILm7jVSfnKSkZAxj9cVDArJdTObwnIBJOTknqoHemvaPcuzWdzJIsILytggZIwMDuOc/gc0k4XOiSmmtLmrLo17cWYFvt8vacBZeSc5wT6AVo2uh3l1YvZXDqjS2pjZpJQAADlVP4dqw4Ll0jh/fhVdSzuQW2jceR+FdFPchJTawxsxLeZJJ8rLjbnH6jntXNUcVJKxpTTldozLnw/aJof2a2ni8lbhymyXAZlHQbuSMgiuMh0jxJpWsNIlvIVOSyxtuUqe+Afx/Cu5lnsZtIhCHy8vJLEnc5YjHt/hUZlthdqg/d3boCNp2kjsK6Y1rXVhOlz2beqMI6nNcXCrG8mWRW3upjDNgcEdN2c/lXMXuo3n9th8yrCr+WHQ4DH+8P510ttBrNlM27U/PiDMGL9A3bAOeM1Bq818k0UnkQTplT5ZtwQT6hulbw5YvQ8ipKbqal7w3qf2i5g3lpFwEIA+VyTx9Peuq11nspR9ogia22fvdh5GT8oHvkZOfwrLtNT0+yvVtbOytUFy/lSoFJ54PHTjp9CK1p5IdSvyRgfZztk5Iy2eMjpjqfwrx69va83Q9KEm42FhjNzaWsrNP5MYYsS/wAzZ64HqfWodXtIL4+aUMoiR3jQYJcfxjnvwBU5eJdQg02F9kbpkJtGV5yefz/OpII1kt2UOm9dyZdSvOckfh3rnj7kuZG107plCLTkt4HuILWHGQiOoDnJHzKeOw7+tJOYNP1iU3ULQs8TZlAwWXgkZH3u2e9UXlnja+xeMY4plOFk2gjIyMfjWL4v1PzYm3tGZFkaLkEMMdeh5Ga9OlTcuvUJNQXM+x33wvu/7Svb+6zkSyZByc4xx+GMflS/Gi5vYbrRrawjLyTq42IuWbBXj9ayPhJPdpYTfZrWWSQ7f9Xt2gd856V6dFEXuY7q7W4ku1XarPbqRGPRcZwP8K9BUdWuh5U6qumjzvw34buzqttDrwCoGDNbIBnOCRk9h7Dmuu8YaDc67ZWFlYRwxR206uQ2AqqvYCqWp3ZtfEfmmSQbWRifJb8e1dA+p2yEF7xkJP8AFC9dnsowSaOJ1HJu5FJoljrWmk3MTCVJ5vLmU4df3jdDXO3djqWi5M6G+sh1njHzp/vL3HuK6DT7tXsmiS4l3edLwtq5/jPsatjci5ZLmT0xBt/nijfQd2cdm3v4BJb3CjI4dcEfQislpYYpTBqCxLKD8k6qAp9iD9011d/4eFw73OnQ3NneH5t5kQRuf9pQTx+tc9q1lJKos9Y063tpWH7qZnZo3PX5WwMHPYmolBFKRQ1zxDfaR4Kig0eO2uL+41gQrbOu/go2CACO6jnpXIt4+8S20tjYXOlaJHDdzhYp7Q+YByFZUZJWQEZyR7j1rS8Qz3PhyyhtdQa1/suS9lHnwRfvYzNBLHux3Ch8ge1efada2UWvaBZW+of2izaghkWIOkIDOgAXeFO44OTgDG30p6MEj06+vZfIbEJdgSYtzDcxz2HQd6k0LUrSKCSTUhcylCzLb24xCGIGGwe4IP5VbtoZRdokSxRKwPykZ7HB9/rWNdxiOONZBmQjcWUkhj7Y6j2pDMzxe8Op6kl5p8ECxtH8+AWKtk53Ej09OK5u10+S7mhiCMGmYhT0A7H0GSSPpmuiKzyMoHliDPzBR83HOMf0q14M0oa1ql3BdSOiR2zSFhgMuGHIzwPfPrSlGXK+V6mtCdJVousvdvr/AF/lqZOo6a6WlnNIUkWVG8k4HB8xhk9Oc/oR71Uuo/IitxFFCyyEMSIxknJyM969J8O6Ujadd3N2v2hlsZhBG6D91tkjOQOx+Y/nXKX2nQSXaKsSBQCBtOAjHH4Hjn6ms6anbU6cZUouovZW21te19dk9drfO5V1K4+yrb2sUzCOW4LklNxCHAz79a3LTRoobsRrILuDcGjkdQDyM9Pdc8+tYzXJksxc29tE8se9omYEEr3IP+etJpvihHLC8WWOaQFQOqEcY+mMEceorzZRk4e70M0/euzUt/D0Ni13FLexpcEiSMLGcuu7Jwc98itNrvUb3xBFa3vl2sMOQuAcMn1H97AqS31AXYFsVYeVMEJ2jAz0weoBGKTUGhg1ES3cskaKSyJs3ork5wx7en8q5avvR1Wp3058xavFt4bhllhuLmBctKucpER9zI7gDPH41w19c2l34iMzTbrdNql4k2EAcDg9egr0W8mivtMa6klgtSyANKUJYKwx0H4iuNPhS0tZ3/4nMKYO6RbpDGyqTgEdQefzqMI0r33RVZOTUTltQXUbW2EqHzoVztlVMMR1G76VS0nUrs3cc88jmMYTzW5ZcjtmvQW0VdOVUvEZ45lASTfmN++Bnvz0rA0Pw23nXvlRrN5TONzD5CPQ16dOrGUG2jz6lOSmkiWRdlh+4uFaAyYkhJDKxJyCF6jPeoZbO9MxkKMueuzIH5dQMU2bQriUz3MMSxNGAxSJjtB7EH361d07xC1oFs9WVpxn7zckcDpnGK0i/d01HbXXQproN4t3JOzxsJSSfnxtzk4z3HArecXZtlhSNdsUfzyKwYqPY+4qzayWF8W+z3DQHqvnfdPrzVo6ZeQWzzxI3kswLT2jhsHtng/qKzmpS0RtSlGm7szhpaPam5kjU3RXEZUgqMe3c+9LaalLpL2llcWwM95nyljI5U9cr+lXYb+eN03LDchW3A48pyf/AEE/pUVxd20/iG1V7YwzrHuV5Vwycn7p9D65rB0nF3ktDto14ztrYluo7afYwVUnfhYl+UgZIPAqa30t7a5F2hYbduVI5Hqc9uBS3OktdytMj+W5Dqkg5A+Yk557+o9Kw49M8R6TextDMZrZpFVtrbhtyOoPPeqprm3Zz4urCmuWBszQi/uPOEcKp5kjEFhydx2jHTHSq2o6PceWbuGJxexr9485XqBx6Vc8ZeIodG8TvBY2VvNYeUjCRDxuP3sEcZzTbHxbod7GPOM1rKPvI7ZB98inUg1JtI5FVVrXOf06WW4VnlRwzj5o3XH4fnzVudRMYIwCjAszqpx91e34kfnUUmr/AGjU2ljYGGNgD82cgdzW5p6Wmp6kHgyVjgYt0JyWA/L5aUlK9zODV9TmdX1C5F4uxCk25WQH5ucZyCa6TQjMPD88kmI3uJgkmVHJz1II7c/nUfifTGtrRL2MSEW+NqKBkH1Pt/jSW2oQSXVnDE6sLkN5sY/vk549+orjr8zhZHZS5U2aZt3t0W+ukjIi3AMFyEBPGfbr+dRx3MZxJHFujlOASoC/L/Ef0pniK3kvmjghk2r5rLI7SAAnbnaB3xz+dY2pRhpTpDXOUlKlmUgBOnv61hQpurYqdWMGzCuPEMGpa1awPZRxlLoNLKHOZOg6dulSahHpdz4i01L+OUWszO8qRjDO24gj8cLVOXwJq2l6lbXSOlxEZVBdCQdu7uDQt7PJ4i0mG5jCXEF4VPBGFLccfmfxr3KcIqS5djB1G4PmPVoPGdpa6fFbaR4adIYsBU2BQPx4NVJfF+vSw5gs0t0HzcTD/wCvT9MYPqVskjABplySOOo4rkNCaaxi1LeAz/agFBYMACQMcfWutSOG2txzahqfia/K3WomIhM5Udv8asXmk3RhQf2xJJGo/iUgcehFc8mo3FhrMajykAm2njtnnj8a9Bu5zH4bkeNlBLyblAAOCq1Um09RJIwYbLW9kYh1NlwBwCeTjkjj2qXz/FMI/d6sX2nJBHT+XpW7ZF/7QtVY4Ownn6Nx9Kr3ErG5mVyrH5CAD/s1HMx8uqMiXxB4qtHUSaiW38qoPXntmmz+M9dNr5N3CkyEncsij5x6YI96Z4jVv7W0CZpo4ypHyM+0n5z2+lbkQjaVDMkTAno3PqOv41TloJR1OautZ0q+0iDTL/RrG9tYGDIHkljcMAQMtGVJ4YjGcVi3dv4aJxa+FbaCT+GRb24Oz/awzHNdbcQx3mrTW7M9tHDGpCw7VZzzk59BnH4Uuno11bO8u1ljdwJmQbZQO4wPQgfhWUaybtY76uBlCl7TmV9LrtzK612fn2++1K48YzSxQILO0UQxCJXBkDBQoUZ98AVRfxBstY4Vs7ZmUEM77y0n+8T3x3rdu0a00y8vUSEi2wxRu+WC4/Wsq1kfV9OhmZI4klyGYAfLyfzrbn8jh5TDi1rdd+YLGBgp3LtZsLjkD88GrWn6vLZTyXFpDCDLhJVeN3DAc8jI4zzV/UZRpGo2thBFE6XKJIrHAKhiQM/l+tbVlYJLJjfskZWZjgHkDI+oo5hWM641q8bw2p2YkkvJGbZEfu7FJ78DvWfoUt5d3iwzxIqyMqsxiHAY5ODng8/oKitLifxDp96SGSO3mjEnHBVgRtJB77R+VdB4Nto/7Zs5pgmY7gEKeAg4A+valeyaG1coP4UubGK0ae4MiTsICqwsAzNkZwew69O1Mb4YSlkT/hI4nVW3kNbFXU9sAnpXWSNNeEieZJTERMmOAHVlweP5VoJrGpG7KST28sJjZhvjBw+5cZJGema4lUSOyVNtHNWfgu60S/E0+rTXZadIshMLIA3fnnr+lCeEJjG9u2u70YhgJrQ7gBnjOcYyT71r3d5eSXJEggK+ZG8flKAFJJznH4VIst3Bd5kuY2iMTEYYEiTK45x0xms+aDepSUkrIqWPhiextZBHqlrI8xCKzxts2jHBXp/+uk1PRbjU7eOGa+tJZY1BRmgYFCCMgHH3Tk8Vtf2jqH2lInNk0YjdhwAQ4wR+HXtUIuLw6goKWJSSJsbCB869MkfjWfs6d72Lc52tcwm8J395bR28t3Ztt5By454+YD6CtXSNAXS7Z0cwvliWZHwDnHWrMmqX6SKoezSIIzJtYglwR3z0wTS2mp6n9omHm28cQhV9vB+YMAc5zxhqvli0Ze8pXuJJoULrJIkRiDfedZlA9OhNc3ffDKHUGMq3FzuP8QKMCfwNdOup6hM94jPYNGRGy4CnnJzu49hilN7eXQKvJaLtfGURVBHGD055BpxtF6Mb5paM4af4YahAVW2vJQzEqilCAcDnAFSWngbxXaHdb6hcRzA4IgkK/LXYRSXR2Obi33wuy726YO3HGPqPzqSzvrwJcm8ktftJDJDIqDAYE4z7Y2frWil1uRKLRz7eHfFBHl3UtxIv982o3cf7Q60uk6LqtpqVzcahaSSNNsijMsPyCPJLZ46it9ta1X+zVMU1mLhYsFWQj5xntVwLruoWyPY20TW8xG5tpB2Z+baT0YZPNHNzIaSWpxcFpN5m+OCZEYnEkL7dw3H+E8fpXeabpNpN4Ll1B4ibuNZSGkbHIJwSBXPy3Fz4Xjis7oGBDA7QoWyZGHKnIPHPU12XhK9t/EHhCaISBpX3x3O3O1XYZIUkcjBHNVTjGV7oyqtWPNIbuQWYiFilwiA/KGHJz6GsDXIbW7sJlXw/cQ3DDiSHB/HAr0SHwFrkQfetswWNdhEvO7POePTFZl3pmq2UwGoWEaRlDskYjJcEDaMH0yfwqHGUNQdNS1ueS6TDcxPi5WQKvB3Ajn8fx/KuhtrTWpI5TpEvlz7gGVZVUsmCeAevNdbb3EunxzxXdos1rONzPJIrbCoJUc9cngfWuQS1RtchuYrjyZvPJChQAquxOAOnA7e1VdS1F7NouRX/AI1tW8q606S7TOdrIGPHuDUtot7PrtlK+lzWhVgV/dsRkknk+ozXWza8lujmTTHfaTs8uFMMB9MVHL4jW2nbzLItGY1dSkeCMqDyM9RyK56sFNaHRCLWg7WxcRxxr9hW42nIXbuGfUY71w0mi6rFeSuunMkbMWjCEcAnj6YH8q7lPFenx2kE1zZSo0ymQBEYkAMQMjePSq0ni6x/sQXYss7pTGAQ6sSvVsbuhzSo0vZx5bEVEm7md9mn0pba/TUJy6yJvgchk5IU4/OoZtDkufEMepzzxTvIS4QJtKEE84+g/M1V17X7fV9Hiu7K0EMS3gjxvYMWUbtwBJ45AplhrIbRzqKwyO0EhhYSPkv5m4/Ke+Mc++K25Wo6Bry2Ort72O3u4bmZWESSKxOCTwR6VzFtaR2EN0iOZfPvI2RlUjOSOcH0qzBrn2myvrmSCRPsYTcvlbTICdvAz1Hesdtc/t5pRp8kaGxiFy4lH3sMBsXHckjiumnLQylFoq6zpFuNY875wBJ5nHQnP/1q6y/mhl0d4JJPLIdzgqSMFVxz+FcdYahda5fS2d8qJIkEkivH8iqVVm+bPrj86s6RKNau7SC8EzLIwRXMf7pAB1OOvStZNGahI7Wzv4jFb3Du/lFdgwhJ5DDPuM1WgV1kllL7g5XarKRkqOfwqtHrKjTrBo7C5TzHNuI/LK7Ap++eeF5OPoaZJ4giEF/JBb3EzW04hCrGT5mdx3r7DHU+orLmLtqF9plvreqadMly0LaeDIyvEdshViSobsTWsXKmNhIrSE8jpkev4Vl3HiC3tLu9jltZD9nhDxuFIE7MVXavvknn2rNvfFjaasEgsJ23xiX5sARMSR5f16ZNDd7IVt2dvZ+GNP8AEBle8Lo8RUAoeWBznJ+tZVxpEWkas9tZvL5YUYV3zwQMnFc54f8AEF6NUkvFkmgW5UI8JmOE5Ufnj+ddUZdPmnVxbxNJISrgzSHICf3scc4raMIrW2oTr1JRVNybitlfRfIpazMV8PaizJvzGm7PAP7wVmeH1P8AYsDBNoIY4HPOTg/rWql9pzK8bafbNBIwREeWR1J6+nqP0pBPafYUlGmQ+YBy/muNpJx0xjp2pW92xF7sxPEyKNc0aNo8t5EPznOcbm7CtL7a8T4WPEqlk3Ff9k8j1rL8XS2lxpybLO2hdXADRO5ZVXOBzjik0PU4obG3RoZJ7iGyHl/vcIMOwlJ9AqNn1JpyjZBG92UvCzmPw7fhUX/j4jDAHk/Kwz69f51uaMskV/YGRgUWRSA5+QAEHn1OKLC40u3t9QMNqYLESqysXIZk3OEkx654C/ShdUspNQtUbTblGiRpprdNzM0oJxCB/fIw3tWbd72La2NaRo4rcyqchPT0P/16jFwBHuZm2AZIY/d6/pUJkQ22yJ0XYeQecqM/1/lV+BYfsqbWTyypyWOc+ma8uzR3WvoRLLGu0v8AMXwBGeMD1qciN22MWDABSD+Bwaq3MqJcRsGwUJyMgADPINaO+KSIzKyDLDowB4yB+NJDjC3Ug8ozg/KSrLtOP8aqtfRWwC8pJ0AHdR1Jpt0NqO8MyuN+04Yjg9B9c1mQFbm52ttZyWAyw2jHWqSHKKSNdjJHb+YrR7iu6MOclj9PwqH7VMgQTMsFxj5vRxVkvZXUgJClmXYR1I9gfaqk7JcJ5iKkmw8DHIz2zTRnbUuXDM8PnKURSP3nzBc+nHesS+uLmzQTWt3KIQvzBjkqeOPcdauyI90kbRSRlxhH3nHPriqTxSQ3jW8iqYnYc+p96uMrMrlLXhfV54tRkuprwFUgcKkgGN3bHvn+ddZD43DWQVtPhcq/zsUxvHpwPXFefajY3NrG8sEfmIwDKVOdgwOP0FGgauk26Ny5SNS3CkHitk7rQzcYp6noMvjkbPMXT4FVPmB2jn29axk8d6nc3XNy6I5+VVGNp9qzlkjEGFkOACRkc4Pb9azZ7SKO4ecSoY5G3bDn5TjsfwoTktA5Ibo3NVu31a5he4ZjIMhGYZDe36nmu4+GbE6ffo1uICkyghOFJ2Dp+lecwywiWNzwSWQMWOOAT+XFeh+Ftds7KwZpCMsAcLj5jj/9VOlK0tSKqVtDuZ/lt5MDnaf5V48Z9QuEAlYzxgFgzE8evWvQo/FcEocKEDZ4Vj2rFu9eihaRg0BBbIiVM55q67T2MoRep5pr8DsqSZKx5LOuf9XgZUiufdRHMkk+9Y3OQ6jheMgnP+ea6TX7vVdRtVUSQx87SRHt+XOeTjtms+JDIjwyTeYu3axUZCZxyB9a50zZRurXLyayWso3Qk7j1IGOOtX0uPtMkMYKSLIpYEAZHoPzNZEuhhrCER3K9D8pz68/Q8VLHOiSRRxyY8qPOMdSDj8uKhampqXM1vY22ZQm9ePL25//AFdayR4lhkOyGDIxuztAWlhsvtrxujh1LseeM9iR9KpNpElnHtllVpQxO7PEgFaK1yZRR1FlCt5aR3ExCrISQoiLHI+gx0FaM2mWUNiSJZHBBZQsC7eCeT6dTzWNa6klpaC0VpvKdRt2tjB53A+nFJHqyTRmCUXDMMqEWTAK988e9a8qZg7mw+lxSGT/AEjczIZJFVFbPPdfU1xeo6/DoetX1pBplvvtIN0reWq5YYbbx1AIHNbdhILeO5DLJAXDBSGHIzw31IritU09JLrXLrzCSbUlfXODkf59aqMUnYVmzRt/EwkurJP7OtVaW2eV2CdBgjH6Hr61BaeK5BbaS8dlbxtcSsvyLjYAAeMe5rMSzSPULUb240x2Bx3+biqun2sbDw8GdgrPIWz2+7WvLEppo6S48b3DWVxm1jcC48uMt1XBPP6frUkXiSOe7vIDbIixW4kdhxkhC2PoCcfjXIiFW08gufmvyDnsBvqG9YQz6oyTMMqsYz1bKrxRyp7Cvbc6b/hMLe9aFbhVEqnGSei9Rg/UUT65p2oQpFcqYQkhYMr9D1z+grzxGiB5LcDI9M043QVOB8wbO7ufaq9kjFzex0TXsMaSyxXTDawdFP3nOfUcZ701NeKSPLJql2sjkjh279R171zySrz87gjoOgFJGwkTDEZDdTW1rGZuxa1cROwTU7geWd+0ZwCO/wBccVsiXUrfToWOoTyWeA5czEbcH5Rwf0rjlMf2ufeTs5ztPOMimNfMIZIA7+SWzt3dcZxn86TVxxdmdit7JqTtcIjzQFguJZi/PQ8HpwetbguYreGS2iwpMTo6x9do5xnPTP51wGjXc4je3hPyk7yc961Y9TWK4a2mYxzbijuMcfjWEovZG8XHqdV9ve1iEuFaGYCR1kGcAHcBj0BJIFO+3zxN5sDM0xfzjMDg7mGMj/axx9K5L+2YJrry5ARAmNhHOQMZzW9YIZbTMcG4qpCjPIx1P0xisWmi1aT0OpxGsLsu3d0JPpVyGaNYEiCoAoPGPaqpCeQfl/zkVKirkjb0Brl5bm97aizhGkQLj1bPfmryyRrD5Squc5zgVUk2iUZXnco/WpuPMxj+E1FrMrm6kU6PKhCYQFt3A7Cs6GGaG4D5+bLYP862lA2Lkdm/mKpPw6kg9D0p36Fyd0Ss0cIGFGAuTVZsvuSL5R1JHHFSy7Si8Nwp7VHAFzKQHwFH86pRMboWTzYYgkTKu3DOQO9Z8skxuPNZycHKjPetJ9oil4boOcfWs9tnGN3X09hVRQ+Yr3Au9VzEsxjVQduWIGAKsaPoDWqPIyodwKkBvzp9gFWf+I5DdPwrct9v2TpIOTitVoiW9SgbJki2lV5BAAPaqj2t3Pc+Xsj2dFyfrW3IF2pxJnb+FMjVFulx5gOf61Ou41ZmUY/s0yBh03Px9K9H8G6fZXmjPPLDmMgAFvUda88vyPPByx+VuvFekeCRt8JcmX+LgfWqpat3Iq7F8afpMIfY5Uk7gdh4rlb6+0p94kZymTtG3nGa2LhwEOJrnG3pXnt83GS0h4PU0Td2TFGPq0qrCq2dy4YNk7lqrDdHdnqxHQcZI9ajnzufBOPcVFD/AK0DnHqKytYrmsbEt7ciyhUbBgEEk05IszKRgMyYP1+tVZUzGvJ69xV2MZkTHWsZT5TaKvoOQXdoUKABAzcA561nyXN5JGWmXkuRx7n/AArauFIVPqayrgDaenLY/SinWb6BKKNKBbWS3SV3wRgKvoec05bS3jgaUy/MScEH36VkAN5UfLcyDHFTS7t8IyxG7njjrXVGbsYyhaNzUtIS4l8w7upXPoTwK5DUTc/aNYgjjYr9mKoR3NdppCgXaBiSN69frUV7JA5lCQxK+fmKn3HFbpXZmnbU4UPcNqEGUb/kHOuM9GG6odPjn3aDugkIVpBIPf5a25Cn9qLtVclT/WtvbELaE7Y87jjB9q1cUiVUZwYgvPsIzBMT9tJxjkqd1QXtldTy6nthlONpRiPRR/TNelWwi2RDan3uOahLR/vflXGRnnvihW3E5XPITpt9uIeCfIGcFT/n0qN9LvQo/cSAk8fKa9butolj4XOwg8+9QuI8L644quezM7HlC6fdNkeRKcdRtNCadcKDut5M5xgoa9p06G2OnTNtTzd6g5PIp2y1/eb9pkOTyapMTPFhaStJMvkkKM4JTHUioGsLrBb7O+3oPlPNewslr5EnyDGF3c1oWI0P7EoeEMTjBbNN7CW54zp1nKrt5kbqCMZwR3q49pO0rQrb74w5xI46jOea9O1g6NHNETBkFVKrg/hVrTzpTjabdOIjjcvReamUG9RqS7Hlkkcz23kf2cAwYPu24/Afn+lbdlaXMkom857aMRFTt5Y4/lXd2T6L/Z8r/Zw2JFByvOecVNaSaY99AiQDcTjBXis5U+Zblwqcj2KnnLsXGMHHb3FWw8fnMOnyn+Yrkvt37uMp0Uc59qd/aMjy7lXjnOR9K4k0jo5tkdbcYNwwHH71F/U09WXzWJzjyyM/lWLBdu9yC3/PZT096mkmKyBDydoHX61lKcVqbQi2jdUq0cZ7YYH8xVWXCsScY2HH4kVGkpSxJJwQO59xVK8vcoqgjlQOvvWKrRbNnSa0L7MmAGPBUj+VTWYjZJ2B42gfqKwZ70xxx5znHrUGnaz+4uMMxIY55FdMXzRujlkrSszpQ0RiueVIyvGfrVDMOACVJ3Hp9BWN/bf7mZct8xGeQR3qBL3c5bcTz6jFWogzoLd4opo+nIYVqWt2nksigjGfbua5BbndJ9/JXParttdARvnJ9OarbcXK3sdJNcxeWgAGQvNS2s8D3K8ZPcEVzouS20YGKILwrqwTsVByT7mpclsa06cpMuXRWSYEYwEYcV6X4UK2/gSOXaDhHJ9+TXkrS7cZOG5GPXk16Do2pBPh48W9ARFJgE4PLGqoNXZliIyT1GvrMbQsCFB29z061wupXZ8kkYwByakv53juzHk4CDOfXFZ1180B49Kib96xmr7mSs4nSU5BIOBg/Wn6epkuT6A1n22RLIOmTWvpy4nbOOVz+tEmhRbkzSuFUQjPrxTIm3alAo6NiotSm8uNFJwcjp9aWzBe7tZegHBH41xV5qMbnVTWpr3uFVAfWufunCr158w1uaq+DGBzya568UmU4H8Wf0ow81JImoncuM5EFqg+8039Kkjn3BYyfmy2Pzas22ufMv7JMj/Wg0LORq9ugIw7N/Nq7U7qyBxtTudLZbjc4U/MzqB+dc/By1wc8syj8dwro9LXOpQA5wXFczYEmF+Olwv8xXXBdTkcijuC3zevlOB+RrVtoWQWrN90M38hWGxaTU1+VsE4yPrXUXUfl6XDIOPnf+laTWooyuPtov3Nn9c/pUCxfubjJ6yAfpV61GXiXHRCf/HTUCjHmj/bH8qytoVfUingVryQekWV/wC+qrT27HygpP3RVy9cRajbLnJltx/6FTtgLxkemKbWwhuj2jNJKHPHmDr+FTzWyi+cDHVvvDir2mqiLIx6F+M/QVWmkU3sp7c4/StU9DNmfJa4sZyxAAK5P+fpTLa2T7LDz12nmrt2yrol2RjKyR8/i3+FVLKXdYweyikthpamb4hj8ua2GOcJ/wCg5rU06HdCh7m0DfmGqn4nAbWbKMKQDHCef9wVraaoCbc/dtGyfojUpLQpblGzTOnTkHC+bGMD1w1X9Ojzq0CqcHDH8c1maNIG8O3bk5AvFX/xxq1vDrLJr9oMjJJHJ781k4mnNc4i4YIsQIyCxWtK3tQk5QkYHp9BWVfSBYYW4yJicdyOK1LKfzboMo4JHX8OtefNOxcdZI1YWQAsDgq2f/HqHy+shOf4uOnesWxvvMWVdoGH7DI4PWugVQ+oxyqGPyufwrlrPlVj0KSWhfvXAheNcglf5VxlxfSG88vcxwTjI+tdbKQyCR8lSSCPX/OK5jVbOb7ZFKFYoeT8vQe9YYZq9ma14tO6KtxfO0GeOB6d6xbC7ug8iA/ebPHvWjPZsE+XHQZDDGTTbXTSs2dqbflr1KU4qNjzayblcdufyCXzktirInI+UA45ps0TJaqwXHJJ/OmhW3E5xhQa2jK6Et7Fn7U3msu1cA461opLshck9R2rNliCK7bVLEfep/mgxoh7nFTP3tTalpKxq+fttmdcblwR+dNR/N1CCU9kwT+NURIPmXpuHWnQ3CplmAyFOBurBpndBxizQuZMyR8+v8zV61vJ4wYFY+WcKRgdM561i+ZvEZ6ceue5rRKBJGI6/wD6qfPySsZ1IKrFlzVLiOXUXlX7uAOue1Z95cBU2gAkgd6ryTHyyx/v4qtMpe75A2qo5HUU27yuYLDtKxVt8B2Y9sVcMwinXHG5Djoc81mxs4ldSDnJ4NRXdz/pkCgg5bGNtacjkcSfLKxp6pO7XUaBlxuAxj+tbWnnfYJOPvCTHHTGayEiM+oKNoIEnOR71rxjyI2iOVG/OOma87EK/undSja7LF4fNEZDc5JFUpIC+Sc5GTxVndm6QEcBTz69acijyjn0rnpXiacquczCZE1C0bG1RKc/pxSZZvEelLwNwY4Pbk1faHeyMFwVmAUn6iqFxmPxBayrg+WG69B17162Hd2iKytTaR3WmI63kMpxgOf5cVgW1nLDavuXB8zdxn2rq9FUXEEThjkYJ/Wny6QsahRIzJnsSDXpJdDyWmldnmttBu1YFhtIbPX3rqrpPM0qNFP8TH9RVWTTvL1kxglgWA5z04rd/s5giKxXAB6H3q5R1TJjLQoWhImHOMIwOf8AdNVj9+RuSNw4/AVsHTZVO7IJweQOelV3sJS2THnB/pS5SuYx9VO3VNNAXB+zqDxnAyTUwciRSO3er13ZB54G2Dci4JVv0FUbyJUUhQ4IHPrQ1oLmL9s2YSvmgE5bBGe1UXbaXkJBAHHWtGwgLNGOSDEpJPB5FPuLB20m8lCjcoPRenSouVuY165bSbuID7zxnJ9tx/rVO0Yx2kScnAxkVpXUIaaWM8rsLEAZHCmqCQOUConbOB1FX0FfUh1V/tOuQSFjhI4vfogFadlPxOF6/ZpB7fcYVnSxH7ZvYcgfyFT6Hm6F6SCdkR+6cdQRTtdCuN0xfK8Izg4Ba/z+SGtHwoQ/iOxIbjzD/WqhiEfhMqgzmdpCWPQ/dFR+HLn7LrWnysodS5bAPTrU2ui72OVKfakBJKlctx061taVGGnDD1/irHsP3hKHuo/ma2dPBih3nrk5rzZprQ3UlcowR+TNKvP3jhe3NdLYSCacZbIMTDHuawJI91yQDyW9cVs6SDvDHnAxXLXhzROmhOzSNORwLEKSQ6tu44PSqBxcFV3McEcA8Zqe63Zk2/cYkDHqBWervHcneSpPYjBrz4QfQ9RyWzEvoikqJtHJHBx0qMgKgIjGQVGRVi8ImvAxztQdulVAxLOeo38fhXpUY2icFVXkE8aG1UcnHbb70xUUt06qO2KmlyIQM4xSsuIsgc9PetoOyOZxfNcryIJOBjnjGKrzQKuwYxjJ9quhQmST3zzUMrbpQrD6GtLmtNa3KZLebwcAjGalhgMlvI3BIOOcdyaa5Cjd1O+pbdz9kmBP3WA6euadlYt73LCoEt4+mAPT3PetYKCzEKRhd+c544rEL5htwMkEHqe+TWv5scM8ikkDyh90cVjNRdjSlzX0Mp3Cxup6l84pIpPOldh8vBHNUpZt10QGxvLbfXHH5VJp9wFL7yq/vCDuY56etVKyWhom3KzY6aMpI8hPA7HrXOyzKdTUYIIbPXmuh1GVV06R88MeBnmuSYOuoqzjCseCrZ71tQleLuediadqt0dzo8he8Xr1HU57itXUcpdjqoIB9eawtLkA1AEnAwen1raviDLA3XPBPPzV5OIf7w7YR9ws4I8snnCkk9O9V7mXykIJIIUdKslQFTIxgHAznvWHr1yYyRkdCTyazoLnlYuouVXJRIGTHIzLntVK4hM2oTn5gURipU4PWqVrfEyRKcnL85bPGa0rd1k1O+3YZSWHt1NelBOJz+0UvuOx8ATyzQvHOYyUIAVT92ul1WZoL5IYdxJTdz+Ncz8NQqS3asDuWYqO+aX4j6hJZ69arGwX/R1I3dD8x711RquMtTnlSThoRpCJ/ExD/KC+DgV0k9uiMOOffiuE07WXg8RRlgxaRSCQMjOOuK6TVNUIjjIXJI6Mh59K71OM1dHA4Si7GogU7sHPqDUEzJCNzHp0wOlY9rqeyKQyDbxn7+39DUE2sEqFVmwf7xDUcytcVmXp7geaTkuCvft/hWLd3Ku5Oc5I6nNRzaodp+fP14rOa/ErruwcnnHFQ5oqMWbulXYUtyo4AGPSumuQqeGLg8AyBxlh16dK5GJYYdMsZQRuk3byR1w3Fb1zqMc2n28TBGjAkYkPjJHSpeuxV7GIW/0qYr8w8phjGe1aGmafHNZGRoi2VJHy+jCsfzwXZvm5XHX2r0Xwssn/AAjMBTywGJALZyfnok7IVjzfXIxaagyxtgbQcH3FQeFpkS01JnG792Bj65qz8RXCeK5wRgmJM7WyM4/+tXJ6ZdxW7TbnkVnXAAPXr1pKY5QdjtJcr4Pccn92GIGONzk9/p2rlRdNbSwMj7GRiQ3Yc1qahdInh6NWmIkNvBtBBGRlskfSuYuZXypByMZ6cUc2g7alqwj8uUkc/wD662ANsMgxwBXPJcCMMCGODwQeadLqJheUF8HHY4Fcbi5Mu5uvIkVye30PSruiSoyIT97ZmufS68xSQxUnlcMG+lbunDybV51HzqNgP41y19ItHZhleRoIVuLgclfn5GM1R1SIpdLtBbJOMdTir8sX2SC3lYEEgHK985rNednuo25Co+365rzqV27np1WlAfMQltMRyegB7VVkQLgKGHGT+dNN208qIYpQm05ZsYPJp11gi3YE/PHtJJ6813RutDhcupLLxbR5Xkj/AAqMNmzdueMHmoI0a4WNzklflIBOMZovJFigC+ZgsQPTNaR2sZOVyxMwFspJ4zio9SiMSrIqnI5x+A/xqK/YLaJEN25nHOeMVqXIW5TZGRuEf5kD/wCtWqV43Kp6ysZE+6W0bb1R85xRbx4+1RgbiCDz/umrKCMQNkN+84qSSAmchAUaRQpJ9cUX6HVGC3ZUQ7bGFxtADKp/M1Yu5/PkG3qVIP5VUwBiDqVOTg9xSM7rKhHAJIBIPPFZ8uupsrW0M4ku9vsXkMxYH9MVG6CNJN3OZ+QenNaTIDLEDktkkjHGOaili3x72LIPM3cdsCtHJI5HCVyO4ieWEQxZyOeOvFUtatnie13EklQfati3V3vGcA7tjL8v071W15WIifA2JEMseoqKc7SSFUptwbHaPIGkGCdu3H05roRIXjhzgEEkH8cVxulSFSCrKrb+49q6yx5Ubh1CnH41hioq+heFd46moJAqnjIyeeueK4jVbsz3VwuR8rEAA9a6e+uStv8AuiA2/A56VxksaPevt6tlm9c5qsFSSTkzLG1bPkRaT5Xt3GT84zkcda3pkMWtahtwAJnXOO2axSuJIlzlRgketa+oXX+mXZwSZZS+RwRk11TskclJ3ep03wxkH2q+bn5pvyqj8WHb/hKbflmH2Zfl6BRuNWPhkSJ7tD1WTJz9Kr/Ex2bxRGCi7VtlAJ75JqXpI6vsXOHn1F/tcTh2BUgZ3c1pXGqzzxRAy5JOAQ2TiuZn3i9bnA3HAq9Y5NwCTwBnGOtdL91JI5N7tnQwalcR2LHzs4BHzGkTUpmVdwGcA5GKyJZDkQFVAbqQelIjssuMk8AEDnJz3pKcrEzS0sact7Luw4/ixUC3B83kcKx9+9Q3DhZsYHAyaagHlb+mTk8ZqJSYQSZ0j6gq2VqhTPlocEcc5zUM+sh4rdU3Nw24EcDP171khyS/tj+VEKmR4wueWGB+NNVWmaSpo3lbBAVTg4PzAZHFej6Jfx2Xhu0N5JJb/M6YIxnBz/WuRltkfVIbdUXzSwJUHqAinn8c1seOpGsdBtWjUOVu5Uw67hGPTFdM3dHPBe9ZnGeOJ4rzXGni/eK0a/vO7cd65uOMbCfL9ehqee7+1SxqBCqgYOxSP09atxWRC7QHP3stxgcexrFJyehrUaiilq7bZoYWZyfJiG09uB6f55qovlmLmUgheTiuyvtGW4vkmaTJEMPJXqNg/wBrj8qozaXHDCCDGVC5y2R1/DFdUaTauc/tVzWOdtoPlkkYcHoTVK5t2lvWB3bSeMHit6aMQqQoznv3rPYAXW8ngfeyM4ripSvqaTVh9vaPviQYPy4BPbmultzttJI3OCZDn86yobiJ5kYBSABzitJCd52KSN7E/kK5cRqmdmFepp3kwkt4lDKdgAGO1YZZvM3bQSH9frV12Zo9o+YkAgE+9c/dPcJf+VllXqR1rioQ1sd+JdoXNAAm5AQoSRzxwvtU10GMcIA3Ko59jmqdoWaQnqqpnJXocU9AXUOV4HqK6upwXujRtjgOHIPHXFczqh3XiqryIygcAZB5rWEzGUgsR3xVMRiTUJHZAQM87iMc+la0tHdmU3rZEFrcSvxINxTkAEjvVw30kTgnAOD/AJ/WsmNi1woRgWbcM88VNcqEihOdx+6P61tbUmM2masLyTQqspbb1Az71NJcyxN+6PJI+YcY7YqpppR4Qdx68DPSnSjbfpGWG3GcZ6msGvf0PYg06d2SrH8hY5DbSMdqVdzyQZfjnjHtQrr5RC8YJzz0qYDy5UJPQZPHTis7u9maJJbGfI7fbHVdpCp0IHvVcrIbJSgYY65Xp24q26KbotwWIxlh2qW2AAIaNhz2qpbXMG9S1poVYfmwrHOBt5A96z9ddDJLERnCgFfxq8z7ZIwiheBkHOf88VkXhF1JK7tufzQoOOgGKzpr3+YdS7hYyoP3VzsUqOR9411NrfiK1DvtGFHO4GuRuH2SxEjksBzjmtGZRa26PHySRnOO9ddSKkkclGXLdF67v45NxL5UOTxnnmstpVMxcLlduOKSJ2eGV1wCpweetPvYhbQu46M4HUelOKUfdRhUpub5mPe6AnBWQIAgxkdKuy3Bnm8zzBJvYZKjr1rBkbN4FLgfKMHNa8Q2R5zljjn6Vc4qxgrpnc/Dcf6ZfMoOPNAyfXFQ/EaFH8RGfgFYUUn1JzTvh1I4vL0jIHmg/Q4qt8QbxD4rktcncYo3JwfQ++O1YSi3PQ74yXs7s4h7ESTtJuIOScmrNrEIiWZwTt9KlRVjJwd2eR71J5bFCyuMngZGTWrb2MkouDsVgVlvFcAFQOpokGxVO0AlsjB61YjsLi1X/SUUMoydrA1FMqzshUn5eeBmq2djmavqiLG5y5HJzxnNSQyhrZhjAAPSllSRFcAZYrnpVeFZDGyFGDbcmiyYopx1L0bq8ZJ4ycVKuAcdNpB3enNRQ200cKu0TbScgkdqmmj/AHRIQEghuP0qOR8xtzJlxNfiGtxTPcpGFJDSbf8AZAJIFdv4plh1DSWZN9youGfK7kzkD5h7EV5TKjmdUFxGAzj5Txn2zivTdGLfZ5o5HVyVJIAymcdq9KnS55JHJVqKnHmOQstHhnvgoSVCTnG7n88V3ceh20cG1VOcDDHk9KdbadHE4mCgEkFvc1og+9d9LDRijzK2KlPYRbVCpAY5YAcjoAMD+VYp0wx3b28gR0yCeuOegxW7kgVmX0ohdZCMlnCkhefzrSdOKVkZxnJu55tKQ0yg9PWs1nX7e4CRnkDdjk1ooVedjwcD16VCsRM5Zhncehxzivl6Xuo9pu5Gh2JuAGVxnGK2rGYlfMIwAW6nuABWXcR+WkgVNo6jmrmllmt23AZJ6496VfWDZ04aXvGpEm7YxI5ToD7ms69t905m3Ej5Vxnvmr+ArDHBCY985NZ17PglQwGXx7nvXFS+LQ9Ks/3buFnkedjdwSBu7cf/AFqcyrFbMUGDgHg9RnrVe0IZJSxdvmYDP0q62fKCkYz75rZu0jzW/dKEZzJlh83YHilmKx27ttJdnA4HHNRyNhypGSckc9KVyGnAJPAzjPtW6Mo9zOjQrfgIQ59u1MuWaWVcRnCnG7nNPQ/6USh3Hbz+dSxRDaQrBQSa2v1IjrIdakIhRo8cjuaW/f8A05MKeBxzjt61J5e1oxkHuTSTxGWYsxDAcf5/Ksl8R6M5pQsmS2vmbuZOCvIyOeKtRFzKAwPA9etUUbbBuGAM4GetOWdlAKKuSvPFKSKhV90svKftAiO09wAakgkyvDLkjAA5JNVbc7pDJkg7sECpbeMo4hbACsTnPPUY/kaxlsaKd9xWlZCmQTsyCuPTNRSws1k8wiOTJkMO/FWo42UtgnByeevJp5cRwvESBs5JAxxWSnroDvY4+b/j5VMA7XyR1zVy5YyQICpwOSBnjFMaIm7nIDBS2VKnFXNh2OWIJ4PTPFehKWxyU48yZV08gRuElDhvUdOO4NXLtGmgWNcZJXIK0S/K8IboV4OB6ewqzHyuA5HI4zWcpO/MbRVo8pzN0QNVcbcr8vHpW5n/AEdOvQkH8KzrtE+1viTdnjae1WEBSAICx4PP+FdMlzJM82btJna/DjeNQudrOQGXrx2qD4gSJ/wmh+Zgfsq7hnAZuccY9DVj4bFvtNyBnaGHX6etV/HEUb+Lrou43m3AjG/CqQueR3PWojG9Sx0TlagjmY5TKuGBG47T6EZq75SmNV3EAPgkmsmymdhukUHY3B6Z/Ctja0saYXnzOmcU5L3rHPCbjFkl5pz2qvLHsZG475z+XNVbWxvIo2821nj+Uk5jIGPUmtm60G+kghnVnZWfHL8flWffWd1YySgs+SMMfN5984roqU3uKFVJIaclmJzg8A54rT0rT7q5vVWFVLFH6gccd81Noy2wgla4jcrgAeWM8+9d1Y6ZpMiKV06EbVA3vGAWyPpTw+G53dmOIxXLojKg0CWO3XzRDICOUSRQCff3qtHpERiuN0dxCC2FVHAx+VdosMSxCNI0WNeQqqFAP4VUntI3KqUBG/PPNek8NGOp5/1uT0Me18L2LW6uxducn6/lWmtpHEf3a7QeuO9XI4RHHtGMdgABimk8fSuiEErMwnUlLqM2DbgjimbFzTySRTARnGa1MbikDFNFqkjgsCcc0+nKcd6T1GmeK2zuxfvkdPSpCRHkqx4Pb/69RQuAy5+TPr/EKlVVMI/iyT14r5GJ9HYhu7jegOGyAOKvaTIBaqWB5kxWXIEYsrLkYwAAa1dM5smfawYMQgCnHQVNd/u7HVhF75fMi/ORng8AisfU2LyRkYBHJy39K0PNl8ohmJJyc1nTOJJDudd3fNc1GNndHZip2hYktMquRgh+MelTPcbGEbDODnI7iq5xGineBgDFVnnXzizTIV9cgfhXRyXdzy3LoMvHliuVxjYRjNWQS21v73OdvUYpEVZZVDbHUAdTkZ9veqUDEzup3hFcjk9q0SugWgyeUpelVcKeMjFaMCDYvPGQDgZxmq62m52kbDAEEqRyMd6v2UTSGNsPsDdVG7bj1rSzloiU7O7FEO+bEayEAdAtOmTEgBRlAHHy81f0eFLq4lVlcdcY44Bp2rWkdpNGY/MDspzuqvZStexc6ivuYvlIY9pDcFj901DEnDEKfukA9K6iXSkGiNc/a4lLJwrtz19v61hCJxFGqAeYT0QZ/Gs61OUbaGuHnGaaEiH7vnPL+mKCQLsALycY+tTrFI7TZjbPOO+eKS1hfzMFSpxjJXpXNbRnW1roXUUhnVuWGM+tBto7tZI2nEW/hT5ZbH8qntbUO0s/nEEYOzbxx71qeGbMm9dWkVwFyC1uCMdc5NaYTCupLUWLxKowt1OLbR3Wd3juIXboV5ycD0pI08wdD8yAAHqPwr0ya0somaeKQrJht7ouwfidlc1Z6daSXQKwXkjsTuEc65P6CvSr4NqyR5dHGK7ZzTW8rmJ1R8KSPu+lLb7vORfM2nd/EMc5716lo1lEtg0b21zGrNzHcPkketLaaBY2km5M4zwpVRj9M1Sy+TSYSzWKbTR5df8AnnWW8yEPsTl0Bw3NWvEWmrbCCRfNbzELnPFeh3vh60vdQmunEu6WMByspAJB4OK5PxLp832uKIbnjC7UG1vl55H51dXDyhFWMIYmNRsPhqxSa6jIYMGBOR7VP4x01ri61G/SBnYMEBMbDACgZz92k8IwyWniO9g2hBhGIJPOQOa7PUNMs9RinivItySdQT7dqxw9PmrNeR0Ympy4dNdzyTTtIikkt97uomch3YDYv456+1draeFrRLoRi/8AMGzcoSIn8c9KtQ+ENNt3icC5ba+dvm8AenHSte10SytLozwK6sVxzIT/ADruhhVe7R5s8V2LFvp8KWiQNtmiX++mc1R1jSbN9Ou2FvHuEZxgVrHMcRWNRnHC9MmobzdLayqm7ew4w2Oa7ZU042Zxwqy5r3OR8Iw7hKjxSKcBslTjrXbpFEuCoGcDmsrTLe6t1Ju7yWcjpvAGPyrT35qaNNRjYdao5yJiw9aZv5OPzqJmOKTcMVuYWJHc460zOetNJ4phfFAxzPgGq+47s5pZGzVfneD70DsXw2QKUGolI25pN+Dx0oEzxiZQWi6kpkjHOTn0oWYFI8sQhbk9SOaSQqLvKk7tmc9uaeVUEhxwCMkZGTXyiWh9HfUawMLPIv0/OtK0k224HIJySQRjpWNdz7FjDLkM+OG5qbzhEIsouQSMZ55FTOnzRN8PVVOWppXJCBELOG/2a5m63nUm2Rv14KkH19a1pbsufMAJ5HAPcVDAA0h3BuRjJHAp0Y8gsRV9pLTYooP37K5BlDjPzYIGPpxRIiqZAUOWJKnOc89qsaskUd1vWQEZAZlbJUdMY7U+MYA4AGDgdcd63kmmcyldEgDpaIdjSrvGFxTC3PQEBjkORkflU8ljdXFmUitLmXcf+WSEnr61XihInIEbrtTBR+o+v41Di0rhzJvQvxZaAjcVIGeOT7iuk8HRJ5l2A8zMIySuzAP681i6NZPLOkzDdCpG8kjkcdBnmvRtKhgiP7ogptwMDHf0rrwdBuXMc+Jq8sbGdp9nGuvykWzkbhlsHbjYM9fc1t3emQXU0EjRqfLbkFscYqdVRGZgoyTk4p4bHfFevGhFKx50q0naxXuLC3ayeBIkGc4XavP5giufm8PyrbxEqism4bVI6Edc8V1G7g9Oahu3HkckYPdulTVw8JrUqjiakHocTJpMtlcqZZIiTyAp5x9auDQria28w3E20/wKQR19c10AntRMEE0QIXGAQM1eGAmAMD2rhhl0HJs9Gpmc4xVkYuh6YYd32iI7eeHUfl1Nb6KiD5FVQeDtHWog23s2Pc0u847V30MPGjG0TzsViZ15XkSu2VIPfjrVK3svJl3m6nk/2WYY/lU/me5pNxPvWrgm7sxjUklZEwJAGST79jQQhxlQcdCRUG4ijeTVWI1buTFhnPeqVxZbpQ8QTIOWLsw/lU+6jcexqWk9y4trVHL2kY/4WFqDt/diwQD/AHRxXW7myee/rXJBpU8d3O1zhoY22t0PGP6V0/mEgE4Febh0vrUj1cS/9kiTZx2x+NJuJORzUW8Uhc46D8K9Q8cn3Z60bhUHmUbx60CsTFvyo31Dv96TcMdaBk5bPXimM23nrURakzQNEpkyOKiMnUd6QtxTC3NAx27HBqMtzjtSnBpNwzQBMr8AGjPPFR7s0bqAPHp1zdFlIJ2cH8abqP8Ax6RZYcOD9asW8amHduDEnPTpUNyZCxAj+THC5GK+XW59C9ijJnGWQLx93rUqxGRQQp2jpgcUyMjyWVuvvya6Sw0iO70yEKJHldsrsdB1Htk4/Ct4QcnYwlPlWpgRR5VCAA5JPzH+ldB4bsnvdRU+ZHGo6lsE49ga1v7DlgswpgiVsBd4wSOncj+tbGjaSlo5d4w3UiQhefwArop4RuabJlXiqbaGeIvDq6lbWwiWJpY8L8xCbh6nHeo9E8MLYukl3JHJMP4UXKgf1roflypK5K8j2pQfTtXo/V4OXM0eZ9YlaxMMcAYAHbtXJX1lBBFftE8om2MFRnGw+vQZx+NdRuxUF5At1Yz25ACyoVOB606tFSWwqc3GRw/hrThewytJGd8YDRsMgg56eld5ZKyWyGX/AFgGCep+lZ2m6RDpj5t9wDLiTcck4xitLcMcLU4en7ONma15870J9w65ozmoQx9OKN+K6bnK1YmyKTd6H86i8wdwaTcPWgZIdjHLKpPrineZ71FvHqKM0JJbA22tSXfnvSE1EWxSb6ZBLml344qHfRvPpQWTbx2o3VBuPagSEdaAJ91IXwah3npnNIWIpAYUNhdJ4tvLtgfJlClGA68AEH0AxXQRMVQcc9TUWQW3H7w70b8VhCio1HPubzrylTVN7E+/1o3ioN9G/wD2q3MCbcDSZqLf+NG+gCTcewo3VEXFJvFAE+6k3e9Q7s9KTdQBMX45/Smlxio801nxxQBJvpC/NRB6Rm5oAsK9BaoA/FLvzQB//9k=", "path": "images/4pts_ADE_train_00014605.jpg" }
depth_point_89
images/5pts_ADE_train_00012414.jpg
ADE_train_00012414.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 120 y = 173),Point B is located at (x = 310 y = 202),Point C is located at (x = 276 y = 117),Point D is located at (x = 229 y = 190),Point E is located at (x = 193 y = 109).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_74><DEPTH_36><DEPTH_36><DEPTH_76><DEPTH_60><DEPTH_14><DEPTH_119><DEPTH_121><DEPTH_98><DEPTH_119><DEPTH_29><DEPTH_74><DEPTH_36><DEPTH_72><DEPTH_45><DEPTH_7><DEPTH_46><DEPTH_98><DEPTH_42><DEPTH_121><DEPTH_29><DEPTH_36><DEPTH_36><DEPTH_64><DEPTH_36><DEPTH_62><DEPTH_6><DEPTH_61><DEPTH_42><DEPTH_121><DEPTH_36><DEPTH_44><DEPTH_64><DEPTH_64><DEPTH_58><DEPTH_84><DEPTH_5><DEPTH_9><DEPTH_0><DEPTH_16><DEPTH_31><DEPTH_69><DEPTH_36><DEPTH_74><DEPTH_58><DEPTH_62><DEPTH_5><DEPTH_61><DEPTH_57><DEPTH_16><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_44><DEPTH_62><DEPTH_17><DEPTH_61><DEPTH_57><DEPTH_16><DEPTH_74><DEPTH_64><DEPTH_64><DEPTH_36><DEPTH_69><DEPTH_77><DEPTH_75><DEPTH_68><DEPTH_16><DEPTH_16><DEPTH_31><DEPTH_29><DEPTH_49><DEPTH_31><DEPTH_61><DEPTH_25><DEPTH_69><DEPTH_61><DEPTH_94><DEPTH_42><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_29><DEPTH_64><DEPTH_72><DEPTH_40><DEPTH_76><DEPTH_57><DEPTH_16><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_25><DEPTH_19><DEPTH_19><DEPTH_63><DEPTH_44><DEPTH_1><DEPTH_END><DEPTH_END>. Since point B has a higher pixel value on the depth map, the answer is that point B is closer to the camera.
B
long
5
[ "E", "D", "A", "C", "B" ]
<DEPTH_START><DEPTH_74><DEPTH_36><DEPTH_36><DEPTH_76><DEPTH_60><DEPTH_14><DEPTH_119><DEPTH_121><DEPTH_98><DEPTH_119><DEPTH_29><DEPTH_74><DEPTH_36><DEPTH_72><DEPTH_45><DEPTH_7><DEPTH_46><DEPTH_98><DEPTH_42><DEPTH_121><DEPTH_29><DEPTH_36><DEPTH_36><DEPTH_64><DEPTH_36><DEPTH_62><DEPTH_6><DEPTH_61><DEPTH_42><DEPTH_121><DEPTH_36><DEPTH_44><DEPTH_64><DEPTH_64><DEPTH_58><DEPTH_84><DEPTH_5><DEPTH_9><DEPTH_0><DEPTH_16><DEPTH_31><DEPTH_69><DEPTH_36><DEPTH_74><DEPTH_58><DEPTH_62><DEPTH_5><DEPTH_61><DEPTH_57><DEPTH_16><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_44><DEPTH_62><DEPTH_17><DEPTH_61><DEPTH_57><DEPTH_16><DEPTH_74><DEPTH_64><DEPTH_64><DEPTH_36><DEPTH_69><DEPTH_77><DEPTH_75><DEPTH_68><DEPTH_16><DEPTH_16><DEPTH_31><DEPTH_29><DEPTH_49><DEPTH_31><DEPTH_61><DEPTH_25><DEPTH_69><DEPTH_61><DEPTH_94><DEPTH_42><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_29><DEPTH_64><DEPTH_72><DEPTH_40><DEPTH_76><DEPTH_57><DEPTH_16><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_25><DEPTH_19><DEPTH_19><DEPTH_63><DEPTH_44><DEPTH_1><DEPTH_END>
120
173
310
202
276
117
229
190
193
109
68
207
175
28
7
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD2PS7TSdJElnbxL51sgMjCPk575qTWL0Q6fNMXe3aMgRsSAXJ6D6Gquqatc/aHS0tGMcDfvJ3+VM+/qBXOabNeeJNXW5uNkttbyBWJUAD+6R+ua5uZL3Io3UW/eZ3yzrDZRyzyAAINzHjmktJXmjaRiNpY7MDtWBrepWl5bG3t8yM7hC46KAa2bCBltlZ5HcFAqjoAK2jK7sjNxsrnB/Em/N0tzpcH3ltlZ5B/Duf/AAzXO6LZRRazFB5KYjt41AIzzx+vNbPjDTDHfX9x5ux5RHGiM/yhQOM+p71T8PwY16R/tSSbdqsVcnoP4vyrVGHc6f7HbFvN+zRefsPKoA351xWorA2rRDygAGmZuODjIH8q7sWVwwDLOXQfMTE4II9D7Vxt/buk8Fwl0MSWskmXVRtDFuMenvTWwPc0fB1nHLpytNGJdytliO24f4V09haQLEqeWNihsLknHT/GsbwpbTjSNqzruKKRtxgDLcCt+1trmKOQySMu5fl6HZz2PehjWx0FvDGkEaquAFFP8pPT9aVRhQM9qzr/AFK2jWSA3OxyRGSAeGPQZ9TkVDZaLdmT5TA5+V2Ayc8ZqxUVspW3QH72OfrUtABRRRQAUyaVIIXlkYKiDJJp9cb4k1j7RKbSFv3SH5iP4j/hUylyoqMeZmXrGpPqV20hyEHCL6Cspjmnu2ahY1zM6VoNaozTic1Gc1IzmPFMSSxnKgkMMHuKxIIojGQnA/U10OtfNMy/7SGsm922t6EEO1ZAPmxxT8hPuQLDJKwAycfgBUgjFt88mPb61ILg2wKRMzu30xTVspZ5BJcZbPIUdKLE3K0jTXj7IsqOpYUHTEifPlmWQ88jOK1Y4JFk2kBFP8C/1rTtbAAddp6j0NLmtsPlvucZdaeqYmQ7SDyKlsY5LmbDZbHetrVbNkVmHKnrj1rLRntbhMHAPIPpTcroVrM6qC2WG3XIAwOaabZZXyCuKz4riWQ4LHHqa07WBtpOdoIrLc0Q77GY1AQ5/CpUhI6jmlV2Xhhj3p7zIjBjIM+nU0hjWUAfNwKgkmRATxx3PSq91eMxYICD6nrVVywQb8knk560WFcS5uyx4OfQn/Cs53aRjkkmrWGLHcn0xSCHb978hyaNhamed7cL1zUpHyjPWrQBXJACAd6ay715UEHv3ouNIph8HB5X0PNOwD91tvseRSmNB0Jz71G424yeDT3A9y8RxXGp3FtYvdRwJs3SqrfKXJ4Hv3/I1iSava2E8llZCV7aP5Mo4UP6n35zSapJZwW008TRXMVw2I5JGKyAY9QeQK4wsYZ96ylueQTwaFUUveRkpK1kdpBrdvCYyLSVgh3BS4wT71uJ46U4BspB9CP8a81fVTG+FiQg8inJq7H/AJYD9aaquOzKdOUtzsNW1LTdYZvtdrckMwbgLgY/GobG40Szu5biGO9JfG4CNMdD7+9cudVIbJhP0ycUh1rjH2cfrVrEPuS6D7Hcy65pzjiK5BPcwLkfiDWa40adkeUzMyW624L2wJKj8a5oa4uebYfmaeNdiyAbU/gxqvrD7k/V/I7PT9S06ytVt0ZiiqFG63IAxnsOO9Xodc01TjzWHGMCFwOv0rhF1qAkfuGH0arA1W1cH5XX3zmj6y+4fV32PRv+Ev0wDln/AO+G/wAKzX1S0vdQilimTeJfM2PG+DxgduvvXJwXFlcRgSM5/wB4f0zXQ6RBbQqZkYu0nypxzn0qXW5tNzRUXHVo7tBhFA9KdVKOW/WNQ1nGSBzib/61L9ovf+fEfhMP8K7EzmsXKKpfarwddPb8JVqjqOt3dnGAmmvvbpvkXH6UN2CwzxHrH2OA20Lfv5ByR/CP8a4V5CTVi6a/uJnlltyzMck7xVRo7kE5tHP0I/xrmlzSdzeLjFCMaiY0Mbgf8uco/KoHlmXrazf980rMrmQ45ppNRPcMP+Xaf/vmoDdZ/wCWMw+q0WYcyM7VVzMx7kqP1qW+8kWvlTRq+9eM8Ae9VtQlLzou1l3MDgjHFb7aM99EjooLKOAe9KaStcqLbTsczbaUgiDowA9W5/8A11pLEqR5iILdCT1/D0qdbfy3YbfmU7SG6rTBbKrDuCeeaJXFFCPCiJwMt6jrS+awGQwAHGSKlZfkYbsjHX0rNd5IXYIQ/GdxOAKixTL80JuLcglce9YFzBGIdrLlkbg+lWodUjVjC8pbHOSOM+1UruVGm3C54J+7iizE2mSidAiqvqM+tdBA0ZgXzW6DK59a5KTErjyVbH95q2dPtGQh2JOe5NJoLlm6md22hsgdKi5yCDzjk0tw6jjOW9KbHHJO20Ice1JsFqNJycKCcUhGWySW9vSrhtvLXLjaPSqkswztjU59qm5XKN3KSdx/KmmeMAhBk+wzTQN+VIwT3H+NIYAFB3DB42D+tFgGiN5iRt+bGcDkj/Cq6L1BkIYdQ1X7ZJEcGMfMTg1NPp0EkjAMA/XaGqkIyWkj6Nz+GKidQ4wgI+vern9nyu+yMAepPQVaW0EMRyuSOvpQM0rnQbyHS0vpbdUgbJV2cAt9BWG0G49K176/uL5186V2RBtjVjwo9hVQLWT12GimLXtjmnraH3rY02zhmkaSWNWZRgEjpVq/NpYwoRChkkbagPTPv7VpGlzESrcrsc/9kY92/OpVsyR1P51YFzK3RtMHsm5j/KrS654eiAjurm1jnUYkXng1fsLdSfrHkZv2Nv7zfnTjaMBnc+PrWsuueFj/AMvln+JrU0Z9B1a9aG3FrdBI2dwjYwB7040Lu1w+sLscqLdgM75PzNSR2rv913/Ou/XSNIYgCwCk/wDPORXx+YFUr+20fTbgxTi2j+baDJhc03h2uofWV2OUWzlH/LR/zrt/Bvh+S6Vrqee4WFDhNkhBLe30p9jodpeTJGlpDhu+wdPWu7s7SGwtI7aBQsaDAAq6dBXuxTr3jZFQaOB0v78f9tzS/wBkntqN+P8Att/9atGiumyOfmZj3OnNbwvM+sXyIoyTvU/0rhLy4vZ52c6hcsP4dzAnH5Vv+I9X+1zfZoW/coeSP4jXOMeetc85XehvCOmpCWvR/wAv0v5D/Cmb74f8v0n/AHyv+FTE0xmqLlcq7EZmv+12T9UX/CoXuNQUf8fKn6xipiaic0XfcOVdiA3V+B/rYj9Y/wD69NNxeHqYT/wA/wCNPJ5pCTnpQmx8kexkTvLe61BBNtByq5QdASK9ttfD1paxKiFjgYye9eKsv/FR2jesiD9RX0DXXyJwV0c7k4yaRj3fhfSbuB0Nqkbvz5qDD59c157rvh+50WT99GZLcnCToOPxHY161TJYo54milRXjYYZWGQRVXTVpbEqTTujwK4mIDIu73A6fnVf7DPLFvfG3snTNdp4u0Ky0bVIGtwVimBfa3IUg9q5O+uGZiRkL24/pWNSmovQ2jNyRiXtuPNA4BxwPSqccBa5CnGcVoszFyzsu31NVDKvnkxJnjrjisW9DSxpeXHBCo+8Rzx0qOS+k4IVgewHOKqkll3M+T1x2FOWVFKqQAT/AHuv4DrWLuXZFmKZ1kZptmOwA61p2eoq1wI4xwR16VjvBI4wMjPTPX8qt2sX2WaOQp+9HzfM3JFL1D0N2WFnXn5s+nAqpPpzIQQAV9K1BqVk1uHkkVRjkGqTaityGW1hbHTc/ApBcqMEjUbgBUDyKx4G5x90jr+NWjaMBvkJc/yqIgKSAMH1oQMh2XDklm2575yaqSWo+1MVkKv1q9Jdwwn944z6Vl3V9/pG/ZhCMA01cV0XIru5tThh5ifWp5NTheEkIQ3901mRXqsSerds1JFslYic4yOKAR1eueGbrRJU3/vIZBlJAMfgR2NZAiPpXuN1aXV0pjM1v5RBDK8O7P5muc/4V9ad72X/AL4Faug94mcaq6nD6XCRE5x1NZutMX1CBOMRI8hz9Mf1r0yTwhBYWkji8xGiliXSvLtQk/4nExwSqwY4APVvcj0q4xcWkzGbTbZnWkAa4QhFxnkq3SuEvoftOq3bhusrfzr0KIqgaTy5FCrkM23H5BjXB26+ZJK5GctmtJaIcEnIovaGM/er0j4S27LPrE3BIt1UZ9z/APWrgrpQJD9K9N+FESDSdXmdmX5o1yoye59R/Orp3Y6iSR29ushniXcOWHCj39a5Px1E9xeWgIBzck/mSP6V2tmIpLyILeMx3ZCNCVzj35H61Uj0ZNU1S0M4ASOSOUAjO8bicVT6GPU7PRLAWlorsP3jqPwFalFFMYVz3iTV/s0RtIG/euPnI/hFaGsaommWZfgytwi+p9a89nuHnlaSRizsckmsKs/so1pwvqxjNzUZYU0sc0wmsTcVj6VGSaQ0mcnrSGIWNRux6U4mo2OKAGZ+al3Z7U3caTg1SBlFxnXbQ/8ATVP5179XgbLnW7LB6TR5+ma98rtXwI45/GwooopCM7WtMs9U0+SK8jDKASr90PqDXjXiPQrzS5dgKyQn7sqjrXtl+wFsVYkBjjIrAWJZ5WjYBwzhBlc8VjWrONlub0YXTZ5CvhXVr2xa8e3dIl6StwPwHesOSBreXbL8rjow6GvobVQDp7IvQEDA7Vxvinwnb38BubZVSbbllxw/v7GsHPWxrFX1PNbM+bIEJG7+961pLZw24LjG7u/esO4il02co6kAH6EfWrdnqYdtk7sFPcc1Ekx3NNbpTlljIPRff3qBvNeQs2VH61ailgCnHze9I0ilc8KB/eqCrkDIFAP6mnwyyK48rOB1Hakz5rBY1LH1bgVci0525mk+X+6vApPzC/Ya96VG3G9vRearPHdXTYP7tfQda1o4IogAsYAp7uuOTj+tLmSFZsyE0tEbLKXPqaS8t4jEo2jg1elnRFJ5/Gsq+vXEWUjDjNNXYWSKkmnxnpwfUVUeC4ThWLAetX4b+GT76lD9eKcTHLnYQQO4Oaq7QrH0lRRRXpHEcn4w1FljFjGSON8h9fQV5TJhry9lJAICpz09a73xRKW1S6PXB2/kK4m2lgtxdy3NxFF5rME3HJJAAxiua95tlFK4Pk6dcuAn+qOCv0riLGPMbH3rtNUljfS5xbzIxZSGO0gYP1rmrW32RkAhhuOCBjNE3ZG1FXbZj3wIkb2r1X4YJ5fhS8k+Ub7kDLd8AV5dqCHzJPrXrHw9VIvBke6WKMyXDN+8IAPbvWtLYmvodhZOPtIbdkKrE4GB0q7oeTqQXnaNmAe3y1nwFCz4mibMbAbZlbr7A1oaCzf2ssZHAZs8ei4q3ujA6+orm4jtbd5pW2ooyal6VxPiDVvts3kRN+4jP/fR9ampPlRpCPMzL1XUJNQvHmc8dFX0FZrOKfJVZmINch0rQcWpm6mlhTTz3oGOJxTc00nFITQApPHNQsxPSnMajJ5oAM+tBOabnNBNNAVUfHiG0ypxvXJ/EV77XzvdXRg1a3K9fNQ/kc19DBsqCcDIzXZF3gjkmveHUVDJd28IBmnjTPqwFJHeQy/cYkf3sHH507k2KmpSDzApJARd3sfaqllGFdWOMIu4/U//AFqrTXQup5COA77Q3sKvWyMbaRzxvyfw7VwTlzVNDriuWBXuDvtpc5wWxVW9XNvwecAYp1qfN08L3L85Oe9Qam5EZKnoM1jfU1R5j4khQvKzAbw2M4rkJYTEfMi+ZO6eldlrZ815fXJrnNvX5So9Qa6HsZt6l3SllurIFHUJnHqRWnFaRKSzfM3qea5yCe4s5TLbuCD95Ozf4GtSHVEuPmVWVxwVPVaxkmUrGsZFI2mPGO9RfbkjyCd1UxPLK2fLbYeAw9atR2i8MwJNRbuVcY2osQSsbYqIPLMNxbYtXREqsFDjn+HHWq9zDhhsUD8afoAz7KhwXJenvEogJCjAPanwncvTH1p8oXypFxnI6DtSv3CxQazinOSie5HWoX0dF5ikKH3q3DJ8g4P1qdSGYDNO7BJHs2paxFp99Gkk4VNmXUrgDJ4bdjtzxV4y5AKzEhhkYXjHr0rJ8QSRT3dlp6xK9zM+QzLkKnfJ98VusQkZPQKM16Se5wvZHlGp3Ruby4P2gAM7ENIAAefwNYmkX1rpcTy3cscbySHcTypGfYnnitrVHDW0pz95q85mF/fXWryqjywxyCOMuMquCM4/KsYpO6Gm00zuLHw8PE1xc20M1uYQQ4bcF3LnttzmtYfCsxoUV4cAcEzHr7/LUXgqafQlJ8sSsY0SQvxwATgY9yT3ru5NYvoLQXUlpAUYgALLkrnpmteWNrMaqyWx5rffCGVobiTdBkJuUm5IBPv8nSquhXceh6Z/Z08samIkqwXeCT15zXpGoeILpNMZ5bAIk6lFYydcjrjFeT634Zln0KZrJmPnuk8kTEYZuehyMdvypq20SZTctzsbW7jFvJcjUrKRdmC3PBJHAG6tXwzfvd6wJHuLfG1+DjJ6dMMa8cm8R/2PfeXaTOYvuy20iDCNx9046fjXpfg7xPbD7JHsDSzQu46ZBLZp31IZ13iDX0tbeSC2u7Zptp3KCCVH/fQx+Necxaxv1VLOWSA+ZGXQxnkEdjyea6TVbhZbS+kYAsz8kj6V5/dD7V40t2RR+4hJPbFYz1eptT0R1DPlutQt160m/nNNPJzWJuIaSmk03dQMcxplBNRlufSgB56VGx4pd1RuaADf6UbjTNwzSFsCgZhawWOoKRxsKtx+Ve42dr9q0lL6WWeV1izsaUgHjvXhepu39og+oCkfnX0F4dTdoMEciYBQBlI9hXTBJrU55tp3R88p8VfF9tpsWpnRvC6QTxmaPzZMSSKGZCRGZ95+ZGHTtXv2k6xJqHgrSNRmWKO4v7GGZljBCKzxhjgEkgc8cmvky9vNKvPCGkwCbTDe2llJE4mW6E6t9omkCptHlEFXXk+pz04+ovCunSXnw/8ADLpNgjR7VQjDj/VLzTlFqL5FqTGV5LmZZih8xmBxljtXH6mtQsEJiHQJ0qtYWrwMwlXBT5F/qaXJN9OuSRsGBXAk4q7Olu7M6xUrbscj7xI+lVdT4gZtxz3HtWgseyIfmaw9Xkf7NK/qMLULVmhwerOV+0HBY84A9KxHx8oPPtWzftunfHOEwT74rOSOL+J8n0FdD2Ri9yrc2rEIYhyR09apTJNDIG4Eo5yDWtJKyuAg6Cs+e3NzIU8weYxz7Gle4Iv6fqom+R8JKfxB+lbsEwMeM9OvvXm982rW2pG0sba1YRwCeSSeQRpGCxXJdmVRzgDJ5Jq3omuaxNrk+m6jBFC8EO8iMHJ5XBzkgghsgjqCCDQ6LtzAqivY9CjdSqn5QCeOetPdElUh1Cjsazra5SWEFmVSp61JJqlrEpVmB9l5NY6mhE0csc+0EEHuDU8Xyf6xxj8qzp9SkuBthiI9CRzUa291P99yq+lJrqxplmOVGZgpHBNPLFQWGMisg2klvM/lswINO8+4U7Xxz3ptIFc9w8ORXd5cTavdgg3T5RP+eagcY+ox+Vb1/mOwunDEHyzg+nFc3pnjOxnuDbzRyW7h2OZMBcduenStLUNb0+WzkhS8tyzjH+uXgfnXdGUVDQ45J8xwOoLIsSjdxuyBjofWuJvLqeDTtQdrmTZNPkRIqjcxzx0JrvrtkvI3MboiqSAzOv5gZrnoPCMbWEafbYmKzicm4ZQSwIyc7vr2qaTWrZNRPodZ4TvtFa18jU3jivWYhdwILKBjsMCun2aAI1xcQr5Z+8z4498/zryzXPD+qeasuianaRzADEjzKMcknjn1FQXeheLbmOYLr9tIpjGxXuVAD8Z4x9eTVuV9rDjHTU9J1b+wodLnktryBpcboV80Hn2HevMtY8XNp9ldwRtNA6FEQJtG/wCUc8g8fSsjWNP8UWH2eS4v0uo1i2vHFNvLPg84A965q+ttSvZmmmglLtjACZwBVQfcia7Gfe3s11d753aV8jLMeTXU/DhppfE3m+YQkURG369q5mTTL0vuFtMR67CK6XwPL/Yl3cz30U0QdQFOwnNXdCSZ6Rq8jNpMuyTYTOM45yN3T9K4/T23eK7rJJ/cLj25q1rfiKOTSFis45JJ2k3BWQjjNZvhy5M+q3UkqNHK6qu0rxxWEtzansdPyj4NDPSTt5krEdqjyxHFZGw/PrTCaTee4zSF9o5FIYpam7h61Gz96TcaBjnbHfFRk8cmmu59OaiJ4OaQEhIIpuaj34pN4zQMxdVYC/z6BT/OvoHw7qVnLo9tItzDiSNXwZRkZA4r521qTF9kf7A/nXW2Hi/xBp/gOM2NhZwRW8vkfa9vmS9SfuldoHbJz1FdEZcseZmcKMq1VUo7t/1/W53C/BT4dMoZfD4IPIIvbjn/AMiV3NhY2+madbWFnH5draxJDCm4naigBRk8nAA61414C8VeIP7bi025v57qCVJGYSt5nlkLkHcQTjgDGcZNez2kjS2sbucsRyauE+a+mwsTh/YuNndSV0/K7W3qjPvJVjuAhbBd+BnrVVWK6pLxkeWKNWIGp25KjhutSFWWRpB36H2riqv3mXD4UUbmYIrMTzXO62zrb7c5ypA+ta2pnKhhypOCKxNTut9uu1fuZY/XH/1qyjuanE3Dn7TIvfoaooDuB74qvZ6gbr/SDn9475B69TWtEkQRCFLZHJY10T0ijDdlCRZWbCDNOjh2SIXYAj0q9M7xxsflHHboKzwGfP8Ad65zUXKOf8WT2Ukt3pNzdpZNcRW1xHcSI7ITG0wKNsBYZEmc4PKj61n+EPs58XXS2tzLdQpZhFmlyC23ywcA8hcg7QeQuK6q98P6Zq8iT3tt5sqpsDeYy8Ak9iPU1JpfhzTNKmM9lb+XK6bCwkZuMg45J9BW3tVycpn7N81y7JaiQdcA9RU0OnJCBlAM1IFwMHinAuOBz7GuWV3sdCstyZYY1Gdo/CnkqvTFRxkSA5JyOopWZVGSaixVytMitOWIwDUE6R5wME9hReXSF0IJwAQajtIx878ncc5NDQJm699I+qOk0xlRlyshjC9OMYqT7XbgkF+e+UNck1hC3Zh9HP8AjTF0yNScSz8/9NW/xrZTRj7NnYfbLT/noP8Avg0n2y0/56j/AL4NckdPXtPcj/ts3+NRnTSTn7XdfTzm/wAaOdD9kdf9ss8f60f98Gmm8sj/AMtl/wC/Zrkxp3rcXJ9/Ob/GhtNLDAubkfSZv8aOdB7I6s3lkP8Aluo/7Zmmm9sf+fhP++DXKjTWA4urn/v63+NJ/Z8meLu6/wC/pp86F7JnU/bNPPW5j/74NIbzTv8An6j/AO+DXKnTZd2fttzj08w0xtPlH/L3cf8Afw0+dC9mdNc6hZRwSPDLFI6qSqgMCazdKsJ5Z/MaRlaX5z8ucCspNLmZgTe3AH+/WjBYXSDK6ldqemRJjirjJEum+hvjS3UlhNyevB/xpRYXA4W5xj6/41im3vv+gte/9/KPs99/0Frz/vv/AOtVc0Rck+5tfY7o5zcL+Rpn9n3X/PwP/Hv8ayPs+odtWu/zH+FOEWojpq11+O3/AAo5ohyTNU6ddf8APcfmajbS7o4AnIx3Dnn9KoFdTxxq9z+Kqf6Uo/tQDjVpvxjQ/wBKXNEOSZbfTrrOQzH6Sf8A1qhawvc/ekAH+0D/AEpnmasAf+JkT6ZgT/CmGXWO+or/AN+Fo5ohyzJjZXnYH9P8Kb9jv8/cU+5qPzNXx/yEv/IC03ztYH/MQX/vwtJOIWmY+v2k1q8TzjDyEEYIxxW1p2pW1x4Zl8PgyG4u7pCCiEhQXXknGP1rndeurya9igupllKAMpCBev8A+qu28KRXVlp1sZT5UVxcxtGHGcjcvPtyK6I2sReSd+qPQPD3w4sPD9+LyO5llk2lcMBjB612aIsUYUcKKfSFQevPtVxioqyQqtapVlz1JNvu9Tn7/wDfakMHO0k4/CpXbcCA2B0qe7RRdO/AI/wrOnYuu2MfMTk151bSTOqnqkZOoyLErDO4ZI/Cubv5Soj5wsgOB+dbd+yyMsecDJ3t7Vw8mrx6jqU/lf6qF/KT6ClBFSOYtMQLsA/jb+dbELE26hVznjNYcreVOxLYAkOa07LUJZ7SFkYBMdAMV0VdjCO5flt2K5dj04GOBVUwMQC2OPSrIleSPLHFIOQQTye1c9zWxmq8r2r3JuXjdA2E42rj+Ejuf8RWvCWaJHK7CwBKnt7VWFjbvMJGgUsO5HB+oq6SB161EYs9DGYmlVSUFbV9ErL+VW3S7v8Azumc0/GBTVwPl6cUKcAmqOESUMwyDtPQYqo0xEojFuS+OrNV/Abk0zYGcAHB9aNwehUNtNcYEu1Rnoo/rVldOj8rac8VYA2nHJNSDIzwTRcDP8oUvk1jHxHGv3ozn0x/9enjxCuwsUCgDPzEAn6ZPNdP1SXdfeYfWYef3Gt5NJ5QrNOvqsQkxGQeyupP5A03/hJYx1jP5f8A16Pqku6+8f1qHn9xreQPSjyPasc+KEVQ3lHaTjOKaPFqdrZzR9Tn3X3h9ah5/cbfke1Bt6xz4pAUMbZgOmSam/t8BQzJDg+kqk/lmj6pLuvvF9agaH2f2qNrb1FMs9UW8YeXsIJwfUVeYVNTDypNc3UuFWNRXiVVhANTjgVVurg26hgASTjmufufGNtBIUGZCOuwcVUKMmromVWMXZnUkilGK43/AITeA/8ALGQfh/8AXpy+NrcdY5P++f8A69X7GRPtYnYjFKMVySeNrRmAZHUHuVrdsNTS9CGIq8bfxA0ewnZvsP20L2NHFBrLutZS0uTC0Tk9iMVXPiKAH7h/Fh/jS9jPsP20O5t9qaelY/8Ab0bKWEZ2g4J3D/GhdZVvuxO30INL2M/6aD20O5q0EVUs777SzYRl29Q1W8saiUXF2ZUZKSujlfEBC65DkZyij9a990rwNo8UdjJM13dGONZEE9wxVSMEYUYA+leAeIFEmtYZtm2EMD+NfTWkSOmiWbSzLJM0CHcFwPujtXVBpQ1OafxM1arXGoWlrPBBPcJHLOxWNWPLEDP8qpXmrxWT/vFd3C5AU9K8O8Xajqtz4huHupoySf3YaBPlTsOh6VEMTTnNwT1RFrntuoNuv9oPYZ/KqM4CFmBxlMYFcz4Lv7q50SJ7yc3ExJBc9cdh+ArflffOpbIj4BrgqS5pNo76a91GBqjmOIncMucBe5FcBalYbm5QIMmQnI7V0GpX803ia5jZVEEaKiAH865wv5V5ebjwXzWtNaCkzndbd0SbYhYknoK0PD8Ms2lWzKrbdpBPbrVO6nglurmISZkjUtjHH51reGiW0xFzwpOB6c1tW2MYbmosAjjClgTTPNCgqMccGpZCxcZHy1Tdf3rberH0rnNSYyEjrTLZyEkXrhuppiRSHA4OOtTQ2zK7E5weetMCZDuPvUuMrzxSKAPYUu4E7RyfX0pNDQu7IAH50q/K3PHNJtCnk596WRF2Mwz060AKCglJ3jHu3NNa7QAlGdj6AZqJUVcELn8KcMDPRcelKwzzdpWYgls+hNamj2UGoSOsl9Z2hA4N1IVB+nBrBZ13YDhh2xSlmQfMCPrXoxfK7o85pPRnZ6Lf6RpGpS216lreJu4nUbk/AkUviXR9MWM6jo+oWzwnl7fzRvX6CuK8wE5zxXYeFCskTLcaNa3SN/q5ZY+Qf6isZxafPcaeljLsNOmuViLzxW8MxKo88mxCR15PHeotXs4tOvTDFewXQwCXgfcufQHFdJ4v/sKezjGn6mqTWYMbW3lsEJzk7SBgHNcQpe4IVFLOeMDrVwquUbPYTSTuX3lDRIk8x5wRwCB9fSt/wbNoj6kbPWrKGSGYYiuGJAUj39DXHTOySFZCQwGMHtTBcAtgsSMdAaTjzKyYJ2PadW0bQrBYJNJSBJGk2uIpd2Rjr1NUWjNc/wCFJ9Nnso0htFivo2IllDE+YuOMjsc11G3NZTTjGKbv/wAOzqoO6bOW8RKwsmGSMggYrhZreC1TLBdx49a9E8Qx5jiUfxHFeeX1u0dyyzhsCQ5A9K6KfwIyqfGyIPGZ9hjQcZ+77VbisUuVRIyhLHqqjj9Kmvv7OdVFrGwmAO44xxj9ateGoN7qRjPm/dPpjrV3ZmV9Q8PG20+4ufMBEUTNt2gcgVl6fqeueHtLg1JLWE2V27LE8vzAleDwGyPqeuDjoa7/AFuL/im9ROP+XeU/+OmuI1HXNMutCudEjSBYrW3t2tLlVl3TyocOCCcKD507fdXoM80o31GdJ4g5u2Oe2K55IllmCllUdea6TWsNPISOM9q5kyRQz7ySV5GMc057kobebVdTHjb6GiGRUG84ye2aLwRy7JoWOzGCO4P0ql1B6g/WoWozvfDtx51sX2hQRjArZ35rnPCZI09gfU10OemKxr/F8kdND4DjvEkjLrmAeGhAP0zXuWm+NYdH8L6YLiEy3TW8e1WfG4YwMfL1AA49+9eH+I1H9pu5HIjA/WvVNHtZD4es4poYl2xK0csagHbtzye/41zYmrKEIuJEoty0G674j8R6n++h0VbWFRlla4AdvwxwPrzXMX8f2xkN7PbWtwygbJCxODzjP9a2/EjNbWTEOzJPIATu5Ix61g3+nX+oahZpHao8CxKS/wB38SSM5rgoqc5c60v1CNN31PQPBlu9rpuG2kZ+XZwMVd1jVRaS21qobzJz97HCgU7Rf3Wnqh6jj5elZviCYDVLUnlua6UjsSsjm7x0bX7vZ90AEflXJ6jcSI9zJtJbOQAOtdBqTE6vNtOGx+fFcpcXyy300KLkDOZM9D6AV1wRlJmBZtIbiWR2+Zgck967Xw0v+gBzIqckEE1yEceJXx2zXRaFIzWLDOcPWlX4TKOjOkd4weWLH2pm+Nm3betRR4YetSgKB93j3rnNbj1f5j8oxin8sowQOOpqElmPHH0FSqdi/N6daQx6hc88n3o5IOKZ5mRlUz7mgbjjLdewFAxCG353YA7etKZGb/dAp+AB6mo2HBoAHk2gfIWzxx2poPHI/Co0ulI27SSO2KHucDIQDPvmiwrnlcUBkPGetX49Jvr0jyrS6lJ/uxMw/lXrdkviFrRJLGz06JXyAguFRhj16etczr2u63Z3r2d+BBOpwwB3j8Gya9Dmj0Z57jNbqxmaZ4QtbELd+IL1LaJeTbhgWb2OOn0ra1Hxtp1rapDo2nFo1XasjsEH5Dk1xGrXDSvEZHaWQgncWzTGQvaRKmMk9+BWU4p6sqLZAsytOXfPlk/MAcnnqcVb0uW2sbk3ARZ1EqhY5l4Zc55warWul3FyDJnZHnGcE5/ChrVFcBPMbB5LcY/Kh8r91GTkk9STVI0Wdp1J2SEnA7H0qjHOq5VlVg3crzWrKq3FuI9p354GOtQf2VcDcfs5UL13DFKD01J9tC90dD4EQCe5YdDiu7Fcd4LCbZSqgc4OFxXYZoxG8fQ78M7wb8zF8QdbcA4O7r6VyGr31oF8qYfbJgcb1AQL7e9dX4gLNJAictg15+ENteI80e/a5LKw681vBe4v66mM/jZLaXVst25mti6Drh+30rpdHuoJ74vb4EQ4UAe1YOpahFe4EUAj2rgttwTVrwxK0LFQBwSTkYJzTsSdfcQx3GnmCVd0UylHXOMg8GuYt/CehSXskZscovQea/8A8VW3cXZdLaBC0e8/MwIyPaodPBGpSoGZwB95jn9awlUtJr+rnfTwMpUlV5le17a7J2eu2/Tt8r0tVBYTN23EVyNxG3m7SPz4rsNQk2pNzjLEdK5C7JeVizZ9K3nuefEqngkBuPalXJIVTkngDFL5f97j2p0ag3Ee4KFLDIzxSGdh4WwLNhnPJrfzXP8AhcAWrDtk/wA63Sa56/x/cdNH4DlfEXN65z/Ate16Zb7vCVuArFjbCPcfVlFeI+JHVLpmPTavSvobT7cy+FLQx8N9niI/JTWFaN4xNIfEzm4NBQNBaag5lZsygHkDA6c1atf3F5djCBF2hS/QcVryxb7tbg5WRVIBznrVJ1CS7mJLbs5PJx9axSNR+mB2i8tSfvsc4xxWJr8gXUoAfvAnn8qvyap/Z2nXd6se7Y20DPcmsjxLPuubVlIAfDAAZPODVJaiucL4o1W7ttfht7LTZr6a5V9sMBJchRkkAAnpk/ga5GK+uodVGn3WlT2UzgttnyrAYJHBUHtXUeIIobfxfCGuY08+w1GISXEyxrve1dVBZiAMswAye4rlRItrBoOmvcQ3F7bSXMjmCVZVjjdV2R71JU4Ku2ASB5nrmu6nFOFzlnJ89iaRyJMA4yea6Pwyu61k4JxJ2rm7ldrRsD1GcfjXT+EsC3uAxz84OPwqavwBH4joFiwvWmSFlfap4xUjzqSUUZP6VHI3z49RXIzoQAt0yT708qWHHWo05PQ1ZUFVAI5pIBqplQep+tAU7uuPQVICoPrSlW3AjAFUIUR7gTTWARfenbyqkZzmq7v8oLHpTArCJHXdxnNSMuR1zjpTYCTIysFxnIqd8AfLjjtQB10fhnXIAQtgW4xnIrkfGHhnU3tFnktNrxsc/MucfTNep+NfEq6RYGCFv9JlGAPT3rxuSRpXaRyWZjkk16eGyeNlPmaOSvm03eFkzj7zTr2SLe0MvmA7VxzxUcFpfoFLQM2M4BBFdjRXf/Z0f5jz/rb7HKW817HhZbCVguf4OKmEswVgthKNxyf3ddJRTWWQ7mLqpu9jnPt1+GDCzlLKMKWXkVWuL/U5lwbKVm7sQxrrKWqWXxSsn+AlUivslbwg0qwSGWDyX/u4Iz7811QfIrDtATcgg4AWtZGrycbDkq8vax7WElekmVtR04XzqxlePaONnWsqXwrBcY86eV8dC2K6LPvSHFYKrJKxq6UW7nNJ4PsYm3KzbvcZFS2vhuC0lMkUzBicnNdBimsBmn7aRPsImQdHY8Pdu6/3WUEfyqSz01LGSRlkZ9/Y9q0GxUfPeplPm1dr+hrFzjH2ab5d7Xdvu2Mi40rzi4aQAM2axb3RLW1aMSSvmZtoxjAPuT0rNlm1Ce5vnXULhFikIVQ3FK8F+zRKdSuDvBPJ6cVupTerONqmtETQaTZXKqUaXBbHzFQeuOnU1cPhSEniZsVhW8l/PczR/bph5XQg81YH9pFIm/tO4+cgfe6UNy6AuTqdTp2nDTUMaybwfWrp4FYXh+Scy3kd1cSTeWVClz0rbcgn5T8tc9S7d2dFNq1kcj4nIaZwPYV9EeBCbnw47SOZBlU69AEXivnbxRxOf+A19DeBx9j8NIm75nfeR3wQKU7JRuNXbdjoX09bmVVBCKg5x1NZd7bQW8c0caDKgjNXBfPHO7OyxqV4GeetY0t6t1cSKhOc5IPf3rO0WtC1zLc5a8mLaRcR8eW1x8w9cUuoWsX+j3BZS4jXbnqAAKiu1L2Go4HC3WMj0ou4vMEKxN84iXdu7cUnEpM4XxXottrNzC9w8q7C20xkDOcZzkH0rmE8P2mmXYnhkndo843MMHIx6e9dretNdXM4R1WON2QfL94qBn8PpWJebTFG6gglea1pVG/dNMRg5Uo+0bT2vvdNq6vp2XS5gyH5we/8q6PwnJAn2kSu4JIxtFYNzFslVc4GAR6nitHw4xM9wDjtWtT4Dhj8R28j28cak72LDPaoY58yqFQZJwCaZImI0Ge1JCMOvsa4mzqSJpJCQw5z7UkJ2wqWY9ecnmkkfEhUKc+pHFA3CNQ5GSe1USTb9zfKQfpTlLZwcn+lNLJEOT704Mm3O7J9AKAMTxLp0GsSaBpk7OsN3rFvbyNGQGCvlTgkEZwfSua03QI9N13Qbj+ztU0+S7a5VrbUBliqR8OrbEyCWYYxkbfcV0fiue9tLfS77TbVrm7stRhukjEbOCUDEbgvOMgA9Otc14ek1SXxBpMUuitp2n2rTuqJFKEV5I8MxaRmOTtQdccdOTnrptezZhJe+jtg5jmK7R9cUM56hetIwZpiV7VFJ5hYjGPeuc1LOr6pNq2oSXMzE7j8oPYVQrCbXZh/ywQ/iaa3iCZePs6H8a+s9vTR88qUmb1GaxBrkh58hMf71OOsyhQzQLg9Dk0/bw7h7KZs0ViNrkq/8u6kf71NbXnVc/Zh/wB9UvrFPuP2M+xuZozWK2uOqqzWww3T5/8A61Wba/lulcrFEu1dxDSdvypPFUoq7Y1QqPZGxZnE7f7taiMMVi6LI10ZJHQLt+XCtuH51tgccV4GNmpVm0ezhIuNJJjGuIVYq0qAjqM0n2qDPEyfnWTPaC4vbl+6EVLHZIBzHGfqK5K9SjQajNu7Se3f5lxqSleyNE3cP/PVP++qb9rhP/LWP/voVnSx20CM7pEFUZJ21ky6xYb9ogGP73l8VMK1Kfw3fy/4I+afb8TpTdQd5k/76FL5iOm5WBHqKxLVI7yZUVI9pBzgVetxsssDoN1apRlDni+tgU3zcrRx0BBTU2/6aNV1j/pFvg/wn+QrPtSDaage/mNV5sfarfj+Fv6V1rY45bmdp3/IRvj9e+O5qyp/0a24/iH8qqacf9Mvsdyf5mrXH2e0C56j88UAaWkpIkt1Myfu5ZAqnPUgc/zrY61i6PNJJNdxO2Y45AVXHTI5/lWzkVyVF7zO2l8COR8VHF0B64r2vS77+zrO38rOwxrlGOTnArw/xS3+lqPcV6bb6o7WUQEaD5F5ZvanKKcVcSbUmdk2qw3KfvflZeo7fWqkjwnPlkNkZyTgVzRvGcjevTsDVe61IW1rLPIQI4xuyD+lZ+z7F8/cp+I9V1PSdFd7bYiT3zrKzJu24AI9ua3tKnu7rw5ZX94irPPHztGOM4B/LFeW6lq764CJ52I3FhGp+UH1x61e0XxLPo80EBlmls1OJI2JZVU8ZHpXZLCSUL3RxrGRc7WZ0uqWsZnebLqW+9tP3u2DWBqHJjBXAVQAK63URBPAGjYEHBBHcVzupW+WVl5A64rmpxS1R3Va9WpFQnJtLb+v600OXmOJic5PatfwokT3NwJGYEhcFaypV/eNxWr4YA/tCYHsAePrWtT4Gc0fiOyEasVXJOBxmolkiVsBOR604TxmULnDCqZkJJAz161xHQXWlLk9MCo8uSuegOetRI/PelDkkDFMCWVsMQME9TQshbgrke1LKBvyWxim+dGuPmBHrmgQye7it1CyybTjgHk1JFJ5jIwcMmeoOQaqySC1vpJ3RpI3VQCmCU9sZ6d6S0cQRHcpDM5YRjogz0qYuTlY9CthqMKCqRlrp1Wt1qkt1y7O/wCGl3ja1+WLFTyNnY89atTNgYjTLkZ9qgSJriQvuKLngCrDWzooxIfqRWljzro47+y33ZEgz24pRpbtkNICOv3a2b6N7ePEa5djgY7VnItzCC7MxPueKcMbXmr8x0LAU7XsVW0xgvLjj2ppsWVcmQYAz04q7dAXTK2CqbeFqGC0nMb7c+WD8wzVrF1rXcifqFPsZ6wrIwQS/Nnupq3JCwi8qR7cZP3jGN/59atLYtJjykJOevYVLJpSLcYLliec9amWNle3MWsvp9ijBpss9u8kVypEZxtAJx/hQWljt3h2oMjBKjk/jW1BH9mg8qP7vf3PrWNdg+YQOMDtWSrzqytJmc6MKXwo3/DiBNP5GCa2c4FZGh/LYL+H8q0y1dNf4/u/IypfCUoTmW9P+2oqcHK4qrbn/j8P/TUU55MLxXnZsr10vJGNDZ+rK2ox+bbOhIBrmJEErBFOTjA/xrZvL9oJPuBuM5J6VnSa+A2DbDHcg0YaNSMfdVzoZqaAuy7XngKR+laKPtsD9GrL0W5iubwSxccNuU9uKul8aa3+6a9CmmqLv3/Qx/5e/I4Jb8wJcQhQfMcnNTf2uzSo/lcIpBqqtvM4mmjA2qxBpzWN0XWMn7w9a6znYlvemCSaQKD5n6VOmpM3kxomWUjHPWqkFvJL5qqPu/e5o+xS4Rgv3zwKLisjp9C8zz71pV2szKcde1bfTvXO+G0aL7Uj/eDAda3i3Fcs37zOyn8KOS8U/wDH4v4VuwateLBGqyLgKB29KwfFP/H6n0FOS7UICcg4Gfn/APrVtBXijGTtJnQ/2vdAFvMX3AA/OqF/d3OpOtl5w2H5pOccelZnnBuWOQe3mD/Cmjyy+8LyeD8w/wAKqwuYmubN/MZ4nREHy4K8DHoarxGe2LFmDhxtZV4LL3FaCyo9jJExbcv3R/kVmxzGOZVYZCtnHercnaxkoRvex1ekaiVs0guGA2qACT09jUktwHMm0huccViNOJM7Ivlx1LEH+VIl20WdkPJ65Ln+lY8nU35yWaNWkZunNWdFcW+oSEIpzF0P1rOErtlijDPqCKu6RIDcOWHVCOtKS91iT1OiW6VZQ4gUH60x7gFshApPPFVSw/vChnz3Nc9ka3ZYEzbx1xSiQhmOABjg55qsW59/enq3A5osK492LnLMSPduKFiBIwgPtTVPmKRwQKsRAgA4FABgfKBxT9hDfKP0qNm25bFQSTMScAg0wNW0ydwyM/yqwXYEAkce3Ws7TpQxO5ug9KtuwUnJOO5ppAZsckl1L/yzEa9QTk1HfCK2CkKXXPKs3FZdrKysHKsrL17Zq/DCtz+8J4HTc1cMaD59Nj13K3oSQNDeKA64degHGKhupSkgg3rtBzgjGfarMNncSvuhZVk6gKAcmpzM0VtIZhHJcONqc/c/2vSuiOEd7yvYydez0HR3KJAv3cEdulZIuWjnlePaY9xABFV51ff85ySSeDTRGLjaFbaccDNcsaUYt+ZopWNETznJwmSOAOKzp4n+dztxkA4I/wAmpZEa1lIllViVAG3pVaZkjkZQ+QB1IrajCzOOtK50Ol/JZgD/ADxV1m496p6cQLUe5qyzDFdlb+Iznp/Ailbti3uCe81U9SumSERxcySfKtTxN/oUp9ZqhM1uku9mHmICB7VyZil9Zu1fRGeH+EzGs5jAGmJIxg7utVZYoR8qrgnpxWlNqSSsVYExgYyKzjIrS7hkqp9MUqbn10Ny34fQxag4UkDY3X6VpyN/xLW/3DVfTWV7kSLjPlNnFSSn/iWt/uV2xlzUbvuY/wDLz5HMWuf7PnPrIf5irh/4/I+ONh/pWZDepDbTQEElnz7danOoxNMjhX4UjpXScrRHp2BJeH6/1q26KIbMhsliMj04qjayLCZi2Tv6Ypft0QWIYbKHJoGbGkD/AEm+/wB9f5VrFxjFYuiSrIbuRejOD+laZkAOM8Vy1PiZ10/hRzPifnUIh14FV4hIDjZJg+jVoatFFc6ihkJ4AwBUiQ2rdY4x/wABrop/CjCfxFNHlU4DzDntJStLPkkPc/8AfdaK2tgRktEB6HIpGsdNPQwn6PVkkFkj3JLTNIQhyWkOcAVky3hkvmfdIHJyD3rUm062bPkTmMH7wR8ZqutlYMwCMmR2DZosIfFe3Dry1xx33VJ9ouDg7rgf9tKmS3slGCsR/GpljsVXJSPAHoTRcCqty+Mu83pzKKv6Owa/cHdgoeWYNzUZjtSgMccAB/2DVvTYY47glfL3FCAAuP1qJ/Cyo7l0nHIXIpm45GRUufmOeMcUzaOST+VcpuOjO9uT2pyjHfFIijGKQkZODSAEzk5PGetWY3zjPXHaqyL3zyKmiA3AAUwHPIGbB6VHIeenuRVhI0AJGCc9aYUCOWIyDQILFsSMD0xV1iGJyCRngVUjwjF1GParLTbcBQcn0pgc2YJhai4OfLY4B3U+KC4mTckblex55qOC0ubkLF54EQOeSePwq9f2tzo8ERF8GiP8KNg/lXrRq0ZPlja5wOFWKu7kIt7xF2+XLj/ZBp8sN0U3lJ+Fy24Hils9SaYMHlcsDx85Bx+dOt3mnuZA97cQxBeoyQfasp4qnGTg1qjaOGqSipp7lK1TzrgRSRzlTySoOPYZqvcwvFqcYijmVSR9Ca1YVSBJDdXm8nITyzyB+Peq4tlJWa31KQeWwITZg/zrzHPmbkzvUGkkieSB3DFoZC23oKznhdpiPJkzj7u0k1pz3k0shP22Tj0krNmuZ4Zy8c0gdurbuT+NZ07bCnGS1OhsyEtVBOCO1PdlAPNMtTutkJ5JGTUrjETHIHBruqUk5tnNGs1FIowZOmMwKhfNJyTjtWS0MczvuuFDE8BRmpJyf7GjAycyn+VZyiSNgwVgfcVji4fv5MrD/Aag02JVCm4+h21F9itcnbcoW6cgimRXBIwzFT67c06KO0fIZ8H12kVzRv1NS9pNrNCZjgMnltypBpzKWsCo5JSprO0RY5pLd9yCJuVYHFRSSbbVSBuO0cCuunG9P5mMpWnc49tPuMH/AEZySc7gKFsp1YZgk/KumjZBuyvAXj2qdbi2wPlAOOtbcxm9Tk2tpVOPKfH0qH7FPJKqCJxuOMleldYLlhOv7wMpYAjaOldMPD6DTjczMBKV3CNVH6mnG8tIoWi3PPoYrrSlfMI8vq3zcmtFXkmhWRFwGGRnNTQqXuLhmjDLEDwy8ZrodO0hrvT1nMiRyNk7SODWcabqPY3qSVNaM42WKdbgSGAyKR/czipsYXiBfX/V10DwrvaNyQQcGozDCmeRwKei0uZavU5t2kCkm0Rv+2dN3yDGLOP/AL9mugxGy71IxnGNpNNwmQQy57fKaq67hYwmJdObJc+ysP61TbyLeUEWiqfdmArqTKg+9LDn/dNJ5kDHBMR/4CaPmIwYryEsALeIkjtk4qR7kN8ogjx/uZrZMlmp48oH2WkFxZ9d0eemcUWAxzPJg7YFx6eXV2wuZGu1QW6rwfm2Y/Wr4uLfGfMXFPWeBuFkUsemKmS03GtxpkBYgrgmnbeg3VEeueMd6Rsl8DjsM1z2NiUuFyM5PoKVFLHdniowhUc1IjFenakAxmYbsRkn2qeI5QFRyOoPWqzMSTgc1JCzqp3dc8Yp2AnST5TgEc+nSnGVMgE4z3NMU/OVIqpMzlyMAAdDTsBeSRSSEbnr9aSeVcgnGQKqwPuRSPvDg+9PAbbJnIAHekMdZWeqA+a1kuPQEnP6VVv9P1W/uCrWUiFeFBXj86kfUtXklWU3tyHUYBCqP6U173Upgokurl8HPJxn61tSw84T57ozlWjJctilb+H9SkuY1ayuBk4yRgD9a3v7EvorZgE2quQN7gcfnWPKbhpBIZJwwGODmkVJhHtcyup5+brRiKM6sr6fei6NWFNWv+Btf2TdpErM0KjHGZl/xqnPpskanzmh3Dg4kBqqGZQB5clG8jpHKDXP9Tn0/NGv1qPf8GOgtI42wWTaxzjcDVfVo4UnXa45UYA+tKyOzA/ODnjioLiJ5Su+R8r0yorWnh6ietvvRz1KsZO6N+1cfZoh/s0+aU+SypjcRgA1kwXu2BQVcYGOFND35xwkh/4Ca6W9TFIlsw5hMJEToh/i9alaPB/497b/AL5NUrKSWPzC0cnzH+6akkunwT5b4/3aG+bVpfcJK2xP8v8Az72//fJqFmK5/wBHtvyNFs/mAmQkdqsLbQSDuQe+6p93svuRVmUxcTOkiQxwRkgqSuc1PFHdPCqFUzjrnpU66ZEvzRNtb1JzU6xumNy546rUuVtLaDSKVtYTQSlpQJYz1x2qwNgZViAHBzxSPK2/ayg4/vCsnWtVu7EpHCFjRhncqjk0klJ6Mex0lgks94qb0EY5cswHHt610Et9HK0kcRDcYGOea8+8NalcTTTyTTZjCYBIGc0ReJotPeczeb9oJIKYG0+hBrqoSUbxZFSF0pHRamiQxEKFEZGOO57mmPeJFpUR4BxjhutcVqXiS6vzy5SMfdQdvqaZp+qtcXIiuHznhSe1Je7JtdRt80Un0Ot81JUEkjEdgFXjFIzQyHYLhQT2K81W2yvAgWRcDoDUQgnBJGxif9queWru0UtC01qFHyXcYH0qB1ZfmWSNyvAAOKjMVyesY49GoEE+wgwFuc9RU28h3GraTuCWkhBPbfStYzAcPD/33UcyTBB/ozL71TRZ1ZmaFjnoPSiyAttZTY/5ZE/74qMafNt6Rk/74qJUmyD9mYge1Nkjm2cQuv0BpWQXLS2c4UKY1J7/ADipLezniuFkdBtGejg9qz4vNRDiOUknqQaniEhlTd5m3+IEHFDSBNmlI+EIHccEUibmUZHPrUO1fJKqTgU6LlCOciszQs7uRUiHc2OMVCMkZ4oR2DfWpYyRohuyW/ClK+pqMy4JHXNORsEnI5qkImCEkMMAVGxG/djp1z3oEuGA55okxswcnNAyKIYdiPu1KXZCwXlSMVHFgBhnkcU/BSLIAPHIoYx4GVHNGQOM9aQDaPvE896MDrxXSc47ocHNBOOQKaRkbcn04NQrBsYFZHPGPmbNAFgnjr+dQkSv0cfhQCHBUn9aXGFAIP8AwEmgBnkynOXFNa2c/wAYqckgcfMfc0bmwCF3Z9DmgCoqZcoGDHuA3SpJE8pCzSbR9alRnY9gPTHNS7VbqM0AV0jZ1DCTg881IsBzlnBPv0qZVUY4z+NPJXsv60ARtbRFAA/z+vak2NEoGwkdyvOakJz/AA/rTWz05/A0nG40ytJM2f3T49QRTheyRAfdYmpiFb7yVG0UDcEFTQk0BL/aIZfmjUjvlc1Xukt72IxSxKykcBeMe9DWsZ6SkfWkMRQ7llUnp6UmmGhylzbXmjTs0Db4jzkjP5iseSR5HLuSxPU13s8bNGVLo2evIrnbvS4Y3L9M/wAPahStuHkYeTtBrQ0e3M2oxuwwiHdk8AmohZtIC2QFDYqxCn7zC9BVcwrHTz21xNzGI8E5+Vu1VZLG7BUiNjj0NV4JJUI/ePj0zVo3cp2hJGPqaltXuMheK6T+GQfjUbfaiuFaXPtmrjXMpwH2NjuVpVuCvKmNWx2TFK67gUSbwDG6cY780w3F2o5eXPvU8l5cFjuC5/Go01GZDtIU+1PTuBGl7eK+DI+36VMt5cZOZjj2qQ6hIoDGNCPrT/7SwB+4XP1p38xDDqMqAfviO3WrCX8rSLGLglW4IPeoG1Qd7ZD9adHqqyyIhtYlJOM9xUv1Gi0TtU8URP8AKc8UOV8pipzxmoYyHJAOMc1kaFkSFDxyO9HmL+H0qNlIyRyP1phYn+HikMd5hB9al87H1x0qr0PXNO3bu4piLHmZKnoPpT5JD5S7eTUCnA9TTmbKDjBFA0SRynec9M44qy7L5eBVJGyuS1TSsNtIZaI9KTGe9OHQc9KXHB56V1HOMxj0NIM5O4jB6DHSn4/Wmn17d6AFCqPugc1EcKfmSRs8dcin7u3el7cmgBcA9BSbOPalIAOR1PpSgk9qAGhBnOKOScYzT2VipAOD69aQIccncfpikMQB+4x9DTgAepxQOOtGPpTAUpjoc/jThHxy9IPaloARk2j7xNMCr1JqQDHc0hGfYd6QDSiY61GUQ8FKl2j3pwQe9MCqbSF/UUfZExirWxRTT+VAGe+lQyHJXNSQ6TBH0UZ+lXAxp6miyAg/s+Lg7FyO+KiksYjgMg/CrpbHSm7g3Vc/jRZAUW02BhzuGPQ1Xewizw757c1rFVPY/nTcKvIB47cUnFAZB0YFNxkP4nNQNo8nZx781vswb+HA9KiIBzhTS5UFzHOlOVC7zgd+KY2lMB/rDx7Vt4wOVpdoZM4x+FPlQGGNJbAIkYj/AHab/ZRjYSl2+Xnkda6Ax/L8oJqtcxt9nkJzwppNIDNjdEkDA/1ptxOVbcVQKf4gOazmmKHOcU8TiSMhs4NY2NDSilkmG7gjFJJOEIDKwpY3UxgL0AwKRgCORyeopDI0kV8k/L6Zp4ZVlUDkEZqo+DIVz+FWooEPzchvUUwHZweTjmnlx5Rzmh0bHBBpiYYHORjigEEJIB9eozU8pPlqcdR1piIFc9MkcUrA+X1z7UrDNUxuhIZCvcZFGcYP4V02oeJre4smhtdItLYHgPnL4rmAODn610mDE2AEkD8aTaSc5A9qeOe2BTdoHNADeR0FJv29adk+tA+Y4xQA0uSvybc+/SnrkjnGe+KQIB2xThSGGcdAacGycYpBzTsD0pgLspCMcmgEincNQAD3FO25ppDepoG8dzQApXjmmkccU4Anr1pSuBQAwfWnY4oA9BTgKAGkHqKbk+gqUDj3ppWgCKlIwOtNbfuwF/Oq0lxIjbSnP1ouBZ3Ckz3yKrh5SMlAopRKuSGbFFwLAb0pd+OvNQCRQcqwP404ygHkigCbcD2ppIqJZcmngg9xQAjSDGKcsu4AelJ8ucf0phjIP3qQDZ2ldP3UpUn24qJPNWzdJ5Fdyp5Gf606Q7B1H41Rnvoj8rDJHoOKBmLOpANRj7m3OBV6VoHPEUhHqBxVd4FfiPeD6MMVnYZYt5GVOWwPTNWPO3r04HSqSwSKvXn3pxEgXlc/SpsVcWdtseRjcauQzEqNxJ47Vmv8ynsasxEqi9gfWhoZoq4PGe1EZ5Kk9aqhwOfSpo5AHB9RSAcYj5oZTyO1SYynH0zjpQCA5OODQMFWAJzmmgbPRPDdkolbztFuZ0PTEG44+p4pfFWgrHGbuy024tz/ABLMyKoHsBWWnivViCHvJtp/hU7aaNQW9kH2lmHqzFnz+Fa2IdmYGJwfm2D6c0/jvXT3MekS24RTMZjwPLt9uf1rDurGa2fEsMkanpvXGaaJKfWlHFPKgU0+2OKYCE4H9KaG56UcdqQkZ6UxD93tRuNIDkgYp5KINzMAPUmkMaWOOlKCe9IZYzzvX607A65FAD1b1qQYPQVAOtOB96AHNnNLzUZJz1p6k45oAB1qRTTaTNADzk9aaRkdxQCPWjIpgN2FASGJPuaY0Stw65qXoM/lRxSAhMe1MRhcehNULn90w3heemK0jkn2qF0VxhgCPcUNDRmiSLABJBPpT18kHhs+5NPezQg7UUH1FSxRFRhgmO3HNSMgN1Gpxz9QKsxMsg3Dn8KcVB5wM00cetUIlJGPemEbTnd+BNGfamFvXFAhWEbrhwDUZsrdmyIkP1FLkZ4xQWwDzg0WAgltI0HyrtxVN4fmycH8K0/N4w2DUUiqw449qlxHcymTHakHByMirjw4PbFVZF2ntUFbjDtYfMgI/Ko2VcYViD6GnMTyOKZ5gyARSAVHYZVh+I5qxG+GGO/rVYttOVqSOXDDPAosO5ocfpSr/Ec1FG4bIHpTSc552kc0IGf/2Q==", "path": "images/5pts_ADE_train_00012414.jpg" }
depth_point_90
images/3pts_ADE_train_00002879.jpg
ADE_train_00002879.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 193 y = 198),Point B is located at (x = 253 y = 184),Point C is located at (x = 127 y = 184).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_57><DEPTH_41><DEPTH_25><DEPTH_44><DEPTH_55><DEPTH_51><DEPTH_83><DEPTH_10><DEPTH_24><DEPTH_12><DEPTH_1><DEPTH_25><DEPTH_58><DEPTH_74><DEPTH_9><DEPTH_35><DEPTH_85><DEPTH_98><DEPTH_121><DEPTH_98><DEPTH_0><DEPTH_25><DEPTH_72><DEPTH_29><DEPTH_25><DEPTH_84><DEPTH_43><DEPTH_16><DEPTH_119><DEPTH_119><DEPTH_2><DEPTH_25><DEPTH_69><DEPTH_38><DEPTH_19><DEPTH_9><DEPTH_68><DEPTH_57><DEPTH_94><DEPTH_42><DEPTH_2><DEPTH_64><DEPTH_31><DEPTH_3><DEPTH_74><DEPTH_19><DEPTH_33><DEPTH_9><DEPTH_94><DEPTH_42><DEPTH_78><DEPTH_15><DEPTH_72><DEPTH_36><DEPTH_36><DEPTH_36><DEPTH_58><DEPTH_1><DEPTH_94><DEPTH_23><DEPTH_58><DEPTH_81><DEPTH_45><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_72><DEPTH_0><DEPTH_14><DEPTH_32><DEPTH_82><DEPTH_16><DEPTH_60><DEPTH_56><DEPTH_77><DEPTH_55><DEPTH_69><DEPTH_0><DEPTH_14><DEPTH_57><DEPTH_73><DEPTH_81><DEPTH_119><DEPTH_18><DEPTH_98><DEPTH_46><DEPTH_3><DEPTH_81><DEPTH_1><DEPTH_61><DEPTH_69><DEPTH_17><DEPTH_7><DEPTH_33><DEPTH_75><DEPTH_6><DEPTH_11><DEPTH_41><DEPTH_29><DEPTH_68><DEPTH_END><DEPTH_END>. Since point B has a higher pixel value on the depth map, the answer is that point B is closer to the camera.
B
long
3
[ "C", "A", "B" ]
<DEPTH_START><DEPTH_57><DEPTH_41><DEPTH_25><DEPTH_44><DEPTH_55><DEPTH_51><DEPTH_83><DEPTH_10><DEPTH_24><DEPTH_12><DEPTH_1><DEPTH_25><DEPTH_58><DEPTH_74><DEPTH_9><DEPTH_35><DEPTH_85><DEPTH_98><DEPTH_121><DEPTH_98><DEPTH_0><DEPTH_25><DEPTH_72><DEPTH_29><DEPTH_25><DEPTH_84><DEPTH_43><DEPTH_16><DEPTH_119><DEPTH_119><DEPTH_2><DEPTH_25><DEPTH_69><DEPTH_38><DEPTH_19><DEPTH_9><DEPTH_68><DEPTH_57><DEPTH_94><DEPTH_42><DEPTH_2><DEPTH_64><DEPTH_31><DEPTH_3><DEPTH_74><DEPTH_19><DEPTH_33><DEPTH_9><DEPTH_94><DEPTH_42><DEPTH_78><DEPTH_15><DEPTH_72><DEPTH_36><DEPTH_36><DEPTH_36><DEPTH_58><DEPTH_1><DEPTH_94><DEPTH_23><DEPTH_58><DEPTH_81><DEPTH_45><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_72><DEPTH_0><DEPTH_14><DEPTH_32><DEPTH_82><DEPTH_16><DEPTH_60><DEPTH_56><DEPTH_77><DEPTH_55><DEPTH_69><DEPTH_0><DEPTH_14><DEPTH_57><DEPTH_73><DEPTH_81><DEPTH_119><DEPTH_18><DEPTH_98><DEPTH_46><DEPTH_3><DEPTH_81><DEPTH_1><DEPTH_61><DEPTH_69><DEPTH_17><DEPTH_7><DEPTH_33><DEPTH_75><DEPTH_6><DEPTH_11><DEPTH_41><DEPTH_29><DEPTH_68><DEPTH_END>
193
198
253
184
127
184
null
null
null
null
101
166
78
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDiGtAU5yfrTYYggwRk5xSm9wnKk470JcrK+5Oo61zmhOYQpG2kmiWIuQvXAPHepW+aPg4z3qukp8xkkOSD19RQBfyI03dyKhVA37w9e1OwWwRyMDFSBTtOO1AF/QWxc3KEY6fyrWEOydn3E5ULtzxxnn681z1jcGzuHcxkllAI+lXZdWdVMgiXIHrWikrENO5Nr0du01sYxtJgAk5/iDH+mKoW6LtI9j/Ko5JptQkV5QAFGMDvVmFNrbWBBz+dQ3d3KSMHUfmjiAJBC4/WoIXEaANksKt3qfKpBxglTVUR73y3ApFFmKUeYj8nsfyrXjcy2gLksVwBk54wMVz9uMFtudoY9+9bdid1sQMZLY/8dFPoTItaXL5GoxtGdrAMP05rXidY5Cw6461z1xbgnAPzetARtoXJPHJBpqViHG4x1BLeoao5WClZD/CMY9amxt6dKgljeRVDYyOoHeoLEl2iJWYYGefaoZLlWVVhByT1qaWLz1CFsANyPWmMmZSBxjgYpDK7fKAc8+tVrjH9laiP+mOf/HhWlJEAAo6jliapXiY0jUCBx5PX1+YU1uJ7HFXPSOrJHyCqtx/BVvB2A/St2QiM9amjGVGahHOfrVhMbRSGKBSgYpRTwCOaQiVub+0T1eMfqK74kNGxxn98a4JOdbsF/wCmsX8xXoKx5s1OScuTSlsXEikYtGVAAGMVVX9zFl03Fhgg9frVphlRhevOfQVHNEgG/kseM/rWZoVGiVXwOpFPCDOMCgiRWL4ySMg+9ORTIwTIVyOvakAjIN20gYqtLAZJAEGR6VeltpFXfnd7AVCrvHhl789KYEWzaNrEnLAY9cGtN0VozkcHjFYV5P8AvUXPIIwB6+tbatvjDZJJFNCZlSQJFMwVQD7VEVCsQfWtfyBJ1Hz+tZt1GYmIYYosFypgmQqB+NEKD5g55zVgxYQIoJzyTVfcRID6GgBYhj5WGaSWzIYSw8H09aeFJII7VcOSgPcGkIjOREFbty3tUbQmWUt3xnNSqueG59afuwig8A8UABR3iRA20gg5HepdoLbWOPpTkTCrgAqBkDFTFRwO46CgCNRn8eTTiBH15Dd6kC56fpSbNwAbI74oAEUdQRx2qwpDOdxwFPFRKieZtOQe9OaLDkg8e3tTEZN8DtYBeN5qokZyeR61p3q7Vd/vEucgHgCsvyl87cCcdMUhiBSrMe2K1dOkxbSA8/OMf98rWcERpWVT0U5zV3S8ETDtuHX/AHRTWwpF3DFRheo6mmqCowe5qVyCFXpz26UzfhyDwaRIbRkcVHKpXGOvtTwoyXXkkcmldTlW6kUhlcJ/Fkcc02NVaYE/WrJjIJYcjFIiRBssQM8EelAyrKQ8zBeFxiquoqF0S+UdoT/MVomPLMyAbScflVPVEA0a/wD+uB/mKa3F0PPLj+Crmf3YHpzVOf8Agq6zZjGOMDFbsgh/i/SrCHIAqBT83Y1ZCj0pAO704dKQDNPABpASxDPiGxA/57R/zFekQ2s0lhFuTC5J615zbYHiWz3dFlQn8Oa9c2FbGBdrfcDfd9qGroqLMJyRvjIwR7UyRlSMI3HzcGp2BO8sCCT3HvUUsZfK4GayZqig7O9zHHtG306ZqxFCFuYwuM85NLJBKJUZI3JyOgzUj287SZWJwTyOOlCTC5dEZ2gbfvHk1j3Hcg5DMcCuhYblGRgkenSsWW2Mce8qWYHGPTmnJMUWU47RZpA7DdjB57VoIu19nXj1qOBXX5sEfhUsxIUOuNynNCvYHuTmMLjgVSvFW4Vo1XJHOash2lUbQNxHftTTF5anIA9feqEY0rKiAoc7R+dU8YyeeeavNBIvzEDBJpiwO5ZVUsfYVIxgGHYflUsTZKqeQSBUjW5M5UDkCnKuxFBQFgck+lIQOApdVXkYpyxBucHjp9af5W59yg59fWnsvyhB1YmgBsDHDhhggnFO356Zz2pyqNrDrgdadtIfcwAwOKAGRRiNQu/kcc9zSl8MO7VI8SFfv/KByaigjkLEzLj5sLg5yPWgCY71K8ZYcE099yLuIGG5z3pSBle/OSc9KVWUTESDMZGOtAGVeyYeZEGULDnFVAq/Nux7Vf1ELFdPnjIGB3rOVlC7Opz1ApDI5CvmEqDlVySKvaOryiZAeAVJz9DVVyPmwOcAGp9IkCRznJ3FUxg+7VS2Jka2Q4VsAYOOKimj3EFXwcjPfNOAHlZ/lSD5FYMQAfzqRDjJGoCjA74NIXB/HkVBKvAZRuIPWnqpxwcjHFAFqKJjHv6LjNRPblhvDDcT0NWQztY4YbcccdxUDAAnFAFJjLnapIA5xVS++bRdQJJJ+znr9RWnJHujbI5rJvhjTdRXOcWx/mKFuD2OBn/g+lXpFAXHfANUZuqVoOPkzXQyCuB82KthcVWXhvxq6FzUgNGakVTQFwanVQAM0hnZ+EvCwGrJreqAJaxAPApOfMbsfp7V6BNem8BEVuAg7nqK4vwDd3V3Lf2kz+Za25BjVudpJPA9uK7V7cl9saAdOa0jsIoTgAgFUBI6MOtImkRzMrvGEbrgd637XTVRA0p3v79ql8oMxUD8aqwXMxbDaMKAo9BTJNOUjOwZrcEJAwQMjtimtGWOAPxp2EYJskUBWAJPSh7BFX7oyfatj7MqsWIzQIgxyQaAME2KAYVBn6VFLp6YxsBrofs4znFRtbgv06UWA5+PSYgCxUAdgBioJrTYxCx5GO4ropIs5AHyj9arS25kB449KLAcnPYxSE7sJ7KDRZwpYzM+N6sMcCujexGSCBUS6ed+QMAUuVDucKk8hEhyFYkEHH51NAEcEk8k96dBboE3Pyx7VI4WNiUPAGea5TUXaQMYz68UwjlgRlsd60YjHNGCPunr/hVa/VEkDqRllxxQ1YLlf5QoTA47+9RvcBN2VyFBIOf0p0m7aduMnH51XlQjAjJy7biPSkMsRzM8YLDHfGKnH+qJ2HcRxzUCuY1UkhiBg+9EMxZwvX2oAmjGCu4HJ6ZpZgQcKMEc5xQWIkUbeRyKecSjqN64oAytULykt3VBzWfbOZW+ox071rX6ggcDO3IrJjjKS554oAc4Uzgnh9uKm0n/AFko/wBhePxaq13w8bA8le31q1owL3MoGP8AVA/r/wDXprYUjWOVj2AAnGSKZKrNEpz35qykS4LN6YqHYZF2D7nNIkbGuyME85705fvPgdKbGpRdrLxjOAaLZt0soPA4xSGX4QGTaTx1APpVeZAkuSflpSTuUKOUGPrTHBcllBz35ouAyeUIuQQQf0rKvwP7K1JuMm2Y4/EVqSRhYWVhyRnJ5rLvlH9j6iep+yt/MUJ6g9jz2Q5KVpSEFBjHB5qCzYoxbHAFTSSgvtIIX2rpZmNjXdIvrmt6+s4rZYfLBy0Ssc+pHNc9E+2Qy9EB4Brqr69h1K3gmhVgqRpE24Y5ApMOpkMMYxUi4GC56kUkxCDPeq6EvKmfUfzqBnc/D29ji1fU7VmAeQB1z32kg/zFehPq9ja5jnmEbqQQSMjpXhmnL5viAg4I+fr+Nd42n2oIxCisV+9jJp83KNRuem2d1HqFsksEgaM9SOxq5HEI2FcJoWoHSbxVcn7PLxIM9PRq79SGkDDBHqK1hLmQpRsEqEAMPTmmFdoPc1ZcZUZqEjy+D07fX0qySIRAjB5NI0WG4HarKJ+dI5XJzTsIreWKiZc5C8D1qUl5XwOBSlcAKOmefekMptEG46AUx4wB04xVzb1457VCV38npQBT8jecngUyYBUwBgVdYcGqd18sTHvSA8zzuH1qWNeME571AGwo9c1NCfM4XOa5DYtWe0hgBgZqO5gjEnmZIJHSrEUOwZHQjn61HMNrs45KqAM0PYCqw/dEj6ikQAfN1LHJ9qkVDsbJ5wagi+eBQTg5qRkhUNGcgbBTLcxb+BwOM9afICxCA7t3HTipILcmMqxXd7cCgCRF3zEgjA/WntCEJx3OefpVM3MaTqgxkdqvzIz24dCMgggetMCjqEflvEVwcpgg1jAg7sgfnWzcE3HlZ9+1Y0qBZSvTHekCIJlLNGOnB61a0iTybxx/0yb+YphUEIT6kfypbDA1PGMgxsMfiKpCkbwDCzJH3m7UWkDpExkYknnigMfvdeOBUjsHUY/KpJKz/Ijv/dziodPYhpDIMtnOCOKsSgGMrt61HbxgMQM5yDzSKHsxZw+CB9alYjadvXP5Uh24YYAPpSKf72M9OKYg80SxnoARg565rN8gzWt/bSthXhIJHYZFXGXY2GPBqrqRU6TqJXhvszZx9RRHdA9jjNUsYNL1D7NazNMMKW3dj6VnJI1xKyuFVsYAUYqdrdkkjcnh13gk5P8Anir402G+Kybjby5A3KuVZv6Gut6GKehlF2kbywOpAxW5aRvb6dIDnc0mdp7cVZtNEgtZ/NkkMsvUfLgflVWeUreGIuysHJyv4VDGNfYeWBLU2GP98mf7wrTlSJY18wIxI5ZR+tVyIlmjEe4jIzuGKhjTGaGu/wAQ/wDAX/nXpkkKRIJJmwAowB1bivN/Dwz4hBXnCE8/UV6JMhlk+ZiSMd6U9zWAxF3Pl229zmvQNAZ20q2VySwTgnuK4Hyt8oBfYFBY57+1eh6RHt0q2xnKoCB+FVS3FM0/vLTHQMNpqVSGTI703PIroRkRKx3bT94dff3qNgpO1fmNS3MPmJgEg+opLZPLGTjPbA6UxB5OxPfvUTJzVlmznmq75yMdTQBCy7m4P1NMYDoBj2qVsKABz603byKQyBgMVQv22Kvy7iXAwO9aTD8zWZOpfUbdc5Cgt+PQUAeaHYy8YJJ4FT2zImVyN2eTnpVJSAvyKM549qsKqclkHoTXEbl2aYxxkgE544qNGQ27KWJYmo8lsSOeOlNjKvlhnI45/nQBNjYnl9SRWZAQhCM2AcnNaxMTFTzux1rEki3znbnbnkk0mCNIqVbOAVxwR61atQNoLL075qrbFmgww6dzUygbepP40ATvbI+Tgfe9KaWYABMlccCpEVpQYk4JHU9qYIiy/LkY4OfWmBTuMs6naNuDkVSnT7RN90LgY4HU1ryQCSLhgAD1Pc1lOGikkBxwcjPf0oAqToYlUY5yQT+VJpwzqcZwSCrj+VS3PKIx6k/N+VVUbY24MVdSdpyR+tNBLY6WGEMAVY9abOQ8zHPGeKyINVkRRiX8HTcP8asjVC8mXhRwOSY2xn8DSsTYtSjbtRhgUkYwpYHBxVc6hbyH52kjwOA65/UVas5Ipidro3fgg1LGRuxyM804LjnHOc0rgebgAhR3HrUpQqw5wgBJH4UICtKuXUnGegzUGqxLFomoPj/l2OSPqK0tqrbLNjllqlqaE+F9Rduf3G3bnryKqO6Jex5vHKZDjd0XGGbt7V0wmghtImZCzEDeQpAZfX6iuShiYsPNjOzHXbWxbW91dRRwIk0uBwignFdMmZqJ0TsojieNyYWYfNjJrltZUtq0pVhtJ7Guht9AuIYSt1OYYyc+XvJP5VWuY7GxQNDbCVicB5Tn9Kz50NIxbCK+dXChthFXgnkMrSzhmXnavP60yW7nm3BnwB0VeBUJyFJ/Ok3cdjT8LKTrjZ5Pl/8Aswr0eQRxs2/JkPYdq868HMF1wucnCj+dd5MWaWRuefWpnuaQ2Jp48sEyCWWvSNPQJYwJnO1AP0rzVEYsmQecda9OtFCwoOmBirpbsmoTBSsgGPlb9DT9mD9aUrlSD+lIh3jaTyOoroRmIRkUzHzdBipmGMcVEcLljTENY4579hUf3Qe5NSgY+Zhz6elQuck0hkJOWp2OM00feNSY+XmgCB1zwKzYgJNTlb/nmgX8602ICseTxWZp+W+0y/3nxn6cUwPNEiSKRX6hcHHrUgjwWYAY5OKrM/mbmRvunAx6VYd2EOV5YjFcJuNc7Qi9R3pqoy8nGAO3envjdjg4FTEKE6jOKAIdrpEpHBJzzUUkKm5f1IyBVxQCnPfgE9qieP8AeSMRwMAH8KTGJEGA2ipQvQDjOc1FwDuX72BmrcceVVF5Zj19KQBbsUkVhkkHpVybbGjFjgH9aqJItsSpGXxgD0rMur124LAuTyuegpisX9weD5vkA5GDWbOjSuFB5bgHNSRy5tctkNnavvUDYRACMY4oGQ3GNoOe449OKr46YPerU+GttwGDkZ/WqwBK570DLEcMcltlkHXrikNqpAIJB/On2/MQXOMmp0GcA8cc0gKUtpcLGXRw3t3qGKOQFjJECMdQucVvRINoz06VD5IinZQPlK5WncVjKW4lQ4jklX23ZH5GrEep3AO0lH7YK4OKtSbMFXVT6DFV/scTueCufQ9KLoXKWV1KHyhFcwuqk5ymGBqdLi3v7OewWeKPzozgy/Lg5HrWbLpbIA0M55GRmqlzaXxjCyxCZAcj2/I00kJo1YtF0ewUNNI15IOy8JQ99ISIbZI7eE9ohg4+tYWREpUxsn/AyMUJdzIpPmKyjuwzih3YkjTmkI8znqcE5zxWLqCmWGML13VM2obgd8Y6YJVqrSzI8eFbnOcHtTSYmUWUISPelwPLx65olOOhB75pcfux/uk1YjU8GR7tXk/3Vr0HaHmYEgZPFcN4DRm1h8DPAzXdSDbM+PU1Mty47EkcTCZeT1Va9Itx8g4rz+wUSPCGGcyqPw4r0KAYQVpSJnuTVXnRvvocMOvuKsnpUZrYghW4XGN+8+g5pygkhm49B6U7gdBgU0mgQMeDVdulTOeKhbpQAxeuakYfLxTVp78JimgKl04jtnbsBVPTU26eCeCeam1RsWbDuRj86WHC2C56YpgjyK1ULu2nPOfrVjAUMd3Hv2pscZT5ON2M/rQmSWUjjNcJuIgXbuVt471KGy6h8YHQVEI8RkKAeelC8yEMMMehNJjJ/XJwMinucKMfdxT4IjkEsPoadcARsPmGCM0CIoovMYqGA4wPelL7I9kRw68bqr+dG7eU3C4zuHc08ZNor4+ZjzSQxnngkhjiTuxrNaLNyzJnAbJq2zhJ0G3OTz7VNIFLhWGD3PtTAjc+ZGq+nb0qF1dlI75wM9KS7LRRK0YJO7ke1TK25VIHHdaAIJtywuhwCjDgVXByR6VauYj9lYgkE9c/WqIcxlQBlT+lAy3EuY2ywAzU6jCCRctkVXjTzFKn1q9AMq0RGDnjPpSAnt3VxjoR2pl3/qjgkEdKg+dMICAVbk1NI+0nzMZPFAFC4jJeIkng/dqZdiMBk8+tK4LcEEY5D1BaqX3tINxU5x6Uhl9iHUDspwKlEZ3Jj7pUDH4VmW9wxuGiYYG7tzW8FTYCCOAMflQIrmJHGzYrD1IqldaRZMgzEFZj/CcVriFmiLoQMDPIqrPhmTj5v4jT1QtzAm8Krndb3LDPZxmsq68O6pEG2RCUdfkbP6V3YJGB1GalUeVG4ZSJGxg+1WpPqJxR5PMl1bNiaGSMjsy4pBeMSdx6jB4r16eBGTEkasvQhhnisy48J6TeDcbQDI+9EdtWprqS4mD8Ps/2lOwxwQPw5rvZok37j1bk+lZmgeHLbQbiaWGWSRHwArAZH41quyyOTnt+dRLcqJPpQ3X0SjnEma76EYUCuD0NSdUiI6ckZrvI/uitqWxE9ySmmnZprZrUgjJ/GmjmlfjNIKBDXPr0qFulSOc96jfgUwBOAO9Pb7uKRaVvShAZWqsf3SdMtnrU7fJZKO+0VV1A7r2FOvB/wq3d/JbkDsKfUDyVX3s3HOOlOCgDJ/Wl6RiXhfWnXEWUhOcITu3DnNcJuL5SsRsf5SPTBzTChbCbsle5qwAsY6dBxnvUa3CQnOCzDtSYIljXyFLOTgHpjrUGqGVpB8owfuhe4pFme4GSm0BuueGp1w6nyycghucDpQBU8sKrZc/d6Gq7XIjUbHYg8c9KLyQllHPPHFVSjEZxgZ60DLcUvmP/ALvc96uyvkM5GR6d6zbdllkwpJGOautvdShXaPX1oAidg5GMkEjk1OcEBUAwv3vrUart57Lz9KJmbyvlHHfilcLBcSo0DISCOpx2qg0MgQsgzjlSOaczf6wdipx+VWbf7g+lMY+0by5Fz/FxWg0ZKh1/hIz9KpyFVCsQOD1/CpDdYLEdCMA//WpAIYyrnJyCae4Dzg5B2rhvrSkCUBkwcdarOC1x5oXHbPtQwLTjdEx4K4I+lU7dXhLxvuZSOCKlR8Dac4J7U4uCdigg+tACQRpGzORz2rR4AGM8gY9uKpR4Iy4+Utg/41obQrAgjAxihAyxM3l24RepAFVHXcynP3amaTzWzjAAwKaB1H502JBGMnHU1aO6ZwWGcAAfhSQKqls9v4qmiT5Wk4I56d6AEAcFzIc4OADT1m8llOV2McH1HvUbSZJ6delRPEZZQqMM4JAJpgWpLnLOqqNpAG4d6SNVLkE5JpIjC1sAzBWUc7uKTzoQ/wAucgdaANzw/GDdIw6qp/nXYr0rlfDynzQ3YxiuqXpXRT2Mpbj+1I1HakY1oSRtTc8elKxpp6UCGMc5z0qJue9OLZOO1MbrwOaYEqkd6U4/Kmoc8UP9w9KEBkv+81cA9FAqxqL7YT9KrWn7zUnf/aI/IU/Vmxbt9DQB5xeqn2URjAO4MBUUbGOyMLtv5yvtT5AGYjg8/N9KgYZjeJBkgZT3NcRsK9wWAC544BqJYnALYJ/wqOGZQoYryBnDdM1alllmRShVV/nRYBiFQfLjLbsfKp/hpkzssIEn+tB6HvU0UaiYMuNy89aS4ZW3c7wBkEc5oGVwocmR1HtntS7I3i2BSQe9IyuXOwZAPJNWBGxADcD2FIZXijEYYqFC8A460+NiQNqE59asqijggfSnkgKG4A9qQyusTFW5HPrUeSUKEcnikkn4wo5pIyW/lQBUaPaxXqoyenApLac4xjmrTrgn5s8VnpGyyMwOMHPPpTQi+zCSL8RTSNqKpznvTYCGDc4we9LcTxWls91cTbIY8bmIJxkgdue4pWGTuWSJQnBI5pyZdfmwV6+/SsZ/FOisOL38PKf/AArbz5ah9vQZAp2a3FcTCkgjPrg04J+8Dr8wz1HrT7fbJtcgKcUqo4LCIMdzb+D7UhiHYc4zkDGBV1RwOcgKKrbQ0Z81M543Dg1eWDbaJLn5cgdeR9aEIcFypBQZxwc08WjBc7hk9TULzmKOMfeA+9x1qdbmJlOSwA6A09AFJkjjO3aQRgimWs21ishwnp61XjZslj2HemqpfkZyaVwJZZRvO3O0n8qaJSvzjJIGeOpp7QbRg8knrUR2bSpAI6HNMB6S+ZGsi5KvT1DeYP7uORUCkooWILs/lViM/wAQG7HY0Adn4f5UcHhAK6RenNc74dGEYnoMD8qsa94t0Pwt9m/tq++y/ad3lfunfdtxn7oOPvDr610w+ExlubuaY1YGg+OfDnia+ey0fUftNwkZlZPIkTCAgE5ZQOrCt5zirEMzzTWbjqKXvUbnH0piI+rHFNJII70oPvSP1HNAEyfdqOZ9sJJ4p4ztFVdQYraP347U0BT07llfuwZvzNN1hsW0h/2TU9gNo4H3YwKqayf9EmP+yaAR5bFc7ZCzcLtJGT3qaO7M7oQjIcfxcVRLhR93vwwpWnwwk4J4riN7FwqocBgT69gab8zD5W24HGe9MXLBsH8akyI5Ajdc9TQBFJ5qEvn5e4FXIUBhHOGIz9KSIqbjk+vWrHy/OevGBQA1YlPUUoDHOwe3NOiDMMucLTmnSPCqM0rAQtlXAYjmqd1dNGABjrgVI05mckjjtVS7j2gEnLGkMYh/eDOOmKs8EcVNp+i3V4FfGxPVh1roLfw7BGB5hLmrUGxOSRyhVvNVu3TFV5wxDSKSoVcNkV6Jb6RbKwCxqPfHSpH02EjBRT+FV7MnnPO7YbsKCG3AHIovLOG7MFlfSmO1uLu3imbONqGVATn6E12moWSW1jNLbW0bzKMqCOKxb2xHivwbcW9qtvFfOVVt+QqlXBPQE8gUKNpWByujzHWLi6urG6+0aLa2gtr0RLJBAsJhOHzCQAC/3Qctkjbyfmr0SYbAUDdBWBffD3xdqKRC+1mC7WIYjE11K+we2V46D8q7WTSMtgBwOnY1VRXtYUHYyYjiAAcEVahlIbIHzMMAVoLowwcq/PuB/Sn/ANk+XtKOQVzgOP6is+RlcyM1oyoJbBViPoKtGcvabFHyrz9f85pDbvAAsyng5+tQz7vsgK5UE8Y9KmxRWYlZg3PTFPWVwpZlBwPpVc7h975vWrsUamBi5+U8YqSiNbpHP3sEj+KrEUhABzwDx6VwCeL7j7K94ujSm1VxG0wkOxXIJCltuMkAnHsa7DTbkXFpbXATYJYkfbnOMjP49apxcdyU09jXuCkkYDHhvQ4qo3LE471ZliQiORVywPAzUBOZMY7UMB0SrwG6E1fSAGJm9uDVJeMBh0rTQ/6OAGJBx+NCA6vQVxC/HVq5L4lRQzeI/Dyzi22rY6tIGuYRLGjLa7lZlKtkKQD0PTpXYaGMWuc8FjXO/ELwjrviW50e50DUYbG4sRODK87xOPMCD5Sik9AwPTg11R2MXuc38OLeKLx5bSxtYSm48PNK89jEYo5m+07d2zYm0jaFI2jO3PevXn9q818A+AvEfhzxXc6zrupW96ZrNoN6zySSE7kIyXUcYU9/SvSWNUhDCelRO3FPY+9ROexpiGZ5oPJHoKQ9OKTIJzQBYU5Ws/VH/c7c9WxxV9elZV+xadF4z1pgWbMfK57ZArM15sWUg/AVqWn/AB759STWN4gfFsR6sOKOg1ueSCQsCBSnKndxio1GGznnFScOuAfwriNi9DMJEADdByMVLuZgDjII4NZ0S7J1PIXpWkq7G3ZwCQcZpATLHhwzZpZMpFkEgk0ru4BLLtJXI44NZwnebCu+CO3vTGaTXUYmAP0INQ3l2jgAAgiqrEtOWPIFTxaXc3rDYm1f7xos2LYhjmKyDbk54wOtbulaI00oursc/wAKHt9au6ZoMNph2+aT+8a21VUHPFaxhbchyvsCRhAAoAqVVzUD3UKcE5+lRC/67FwPU1ZBpon8Kj5j2HWmEBW61ni/kByrEH1FN+2N60AXpFGOnBrjdSk/4R/XRNbhTFMpZ4d2M/5IP610pvWA5wa5PxcY7u6sQvySyHy9+8LjqRyePX86zqJte7udeDVJ1bVdrPe9r20vbW1+34bnTWGoLeIx2NHJGQHjYgkcZyMdQex71ZMg3CsTwrHG9g8qsWkk25J4wAMAfhz+dbLxlT0pw5uX3tycUqSqtUfh0++2tr62ve1+hMCMZzUu3I5AIrC1LUprC4tI40VlmcqxbPbsPetpG/d/XtVX6HONltYp4yjKGU9Qaw9Qs5LWEKg3Qg8HHI9jW/Gx6jpmnyxb03KByMcjg+1KUbjUrHDFRuwcc9BV1YiLYKB+VX7/AExRE724IK/M0eMkfT2qtAQkQzyBWDVmap3POLS90tPCo8Pu/wC/ubOa7af7UgijnyHVSu375SFE+8MGQjFdJoef7Isct0t48H/gIqhN8PdIQfJc331Lp/8AE1r29qtnBFaoSViUKCeuAMVdSaexMItGkXJiCk4GevpRLIyKVxxnhqYBut2Zu3X6VAsjXCsM5Geo7Csiy5B8p6Eg5PB4q6JGRQF6Y6VQtuBs3ZZeuKnmLAMyn5QMD1zVIR3+gt5mmQuV2lhkj8aiuPEM4vJ4dP0me+itX23M0bqApwCQg/jYc5Xgg4HerGhJt0m2GMfuxxVJtJ1eyvLo6Pd2kdtezGWVZ42LQMQAzpz8xPJwcAYA9a2nzKK5TfBqg5S9ra9tL3S311Wu239J7djfQ6jYQXlu26KZAy8gkeoOO46H3FSN0/xqppWnRaTpVtYxHKQpgtz8zdSeScZJJx71aY9a1jflXNuctb2aqS9l8N3b06ETHB6VEx609zURNUZCMeeOtKDjvTGNKDxQBMp+Umsmc7rpie2AOfqa0ycRdD+dY7MHlcjux7fQUAakOVtEGOdtc34mciBADyXFdM3yxhQO2K5LxK/+pj7sxok/dZUdzy4HLZJ6VJnAGCDz3qE/L9D3pN43da5DUur79AelWLeVmeRgOBxVNXyuO471JHMxn4+6eoHSkBqO5kgI3dBx7VnctICV+bPAHrUgY8nOAa09BsluLozOMrH0+tCV2DdjQ0nRsIs1yvzkD5ewroEiSMdAKjaZIVxVSS5eU4GfoK3SSMm7l2S7SMYXk1TkuHkPWpIbJ5eXO0VeitIoxwoPuaYjKEcj9FJqZLSfsv51tKdqFQAAevFKib2xRYZhyRSQn51x+NJtcDJRsfSt+4topiuVyF/WmMgx0osBz7SdsGuV169E9y9o1vkAjaSOBjv+pr0GW2ik6gZrlfEuitM0JilgjQk+Z5rFQwHJGR3OMVDTBHMaa807usU21NwwsTkZYk8deK6y0ungjI/teJipx5TEvj/gXSsrQ9EVIt86YVjnbjjp0/n+dbD6XG0qGNkQk7dx+XHtkVUQbEu5bi8ntwGt5YYmEhZCQwOPT8a6G1kW4TK5BHUHqK5i6tVsQwuiEcBmjliYckD7pA4/xp/hzWprq9kWaORFAGwOPvAjIYflVCOrVzHlcLjpkjmrULSQDy5FDIwztPb39jXAeJPFNwb0adppwzOVLdDkdTn07cehqtZ6N4hvo472zu5WLDaWEuN3J96lysNI9BljSU8dexHUVz2tQyWao8IUvNKsagjjcfXFZVjLr9prEMVzPKU3DKsc5Hfr+FdfNHBf2729yu+N8bhkjODnt7is5Lni7bm+HnCnWjKorxvr/X6de5xglmjukgmm8wPnB2bSCO1STRgLu61rXnhyKFDPHJNPKOrTPuJHpVEhSuD6d6xUJR3OnF1aVSadPtq7JJvXVJbaWXyuRwuNnOAf/rVDGkaM5Xbh+CPelZPLD/NggcVRZpUljVxgdfrQcxpWbbtzFdpDbasynavHAGOahtzhcD16VI/7xvLweWFUhM9L01dtlEBkYQfyq3Ve14hUe1Tk89a61sYCk0wmgk0xj3piI268daiOac5zTM5HNMBpNKOoppPFKhy/TOKAHykrGTnjHpWVB88y+7D+daF64W2b6ZqlZj/SEHTH9BQBpSkBTXJ6v++1SCPrjBPtz/8AWrqZ2wlcmT52vuMdO/bpSlsNHl/VcDnn9Kj+6ee9O3AYXt3xSnafrXKbE0ZUDGetWt6xnCgADFUAcuqqOnWpQ56ZoAsead3OBg8Zrb0S88uCUICSXPNYEcbzTLGh5P6V1FnbLDGsaDAFVBEyZcTzJ37/AFrWtrZIgD1aq9sgRelX4wWzg4xWqMyVSAKcKjGQcGpFyTTAevJqwgCjA61CCFqVG3HHegCQDnB6GonTuKcwKsQwwRTd3GKAKzdajdEkQrIisp6hhkVPIOc1CaQDBBEI9ioqqOgAwKZ9iTngMCMMrDIYe9LO8kdvI8Sb3UZVPX2qGy1OG7yqNhx1U9RQMoXujWki7R58Y7xh8r+Gc060srXT0Z402ccsSTxWu6pIOetUby0822khYna4xn0pMRw80UUmtzakjAxIuGXg55wRjsa77w9cRjS0aKIxwZKxjGOM9q4638L6hGmoASxt5qrtOBzhgeSeR+FdJdPc2lpbpASIohtbjOR0zmiLuDVjclXzstgBu4qqd0fSmWF0ZlRW4l25x/eHrV2VFdcjr6VTVgTuRLOGTBrDvLYpdBoxmNuo9DVudmiz6io2lP2ZpT1GMfXtUTVyouzMe4iLSABsKeoxVaNN7Msg5UEgn1FaOrMUlxHHjeNwA7cZrKmd4oy+7BB54rna1NS9CQrBsc1NGRNdwBTnMqg/nVKFslAwHzoD+FWNOjRNQt9uW3zjJP1poGepwcRr2qTPNQxEhB+lSk5XIrsOcCeKiJ44pzH5ajJ4oAiY02gn5jTSeMj0oAQEZNOiI3HI61Fnk1LETtz0+lMCDUHBiC9ywB56c1FYczlvYn9aS+b51+ufyFLYfeYnsoGKALNy+EPPNcxpqb9VuJc5G4jHp/nFb94+I2P41iaGN3mydAzk0n0GjyPepYAH5utKJecbhnpioWtSuG3HJ55qFQIxuUlpBwSelc1jW5ejkC3B54x2qQ54Y9DUUUca5ZlGQOacA08mVXjIxQBuaLACDMeSTxXRQdc1m2Eey3Ue1aMZwa0SM29TThNWFYjvVaE/IKmBqhFpG9akDVWVqkVqYEwNSI+CCKhJGflpymgC7c3cl3JvmIMmACcYzUOaaHDDB6joaKAA+9RFfmx2qU03GTSAgqu9lA9ytx5YEy/xrwT9fWrbrxmo80AITikL5GG5FKelRt0oAgkj2sWUkg9RU1xsfTZPLjWX5CdjEjPqMii1YC8jVvuk4qxeLBBOWSRV9V96admDOMhuZ0li1UMxZW2TJkbUHYAen+NdxHMksSyryjgMG9KxIdCd9dWSMAWUwzJ6eoH+e1dFcWf2CxaCOIBR93AwAtNqy5Vt0Nas4ztJb9f6/rSxkXyiVwEH3jWbq0gt1hgU4OQzf0rbjAIeeTAVBgYrlNSnM05dj941nLYiO5a1OZWnD5ztUHr0O3FY+8SKwlHU4OauXBV0dx0Bwc1V+WVVUOeeQawe5qi4oX7/AASBtB9BV3THUX0IYDJcYz9azYSREFOOO9TwnbPFPz+6cEgd+aEJnqMJzGKmHXH61RglYIu5WH4VYWTPODXYYjnODimHpntSzMCoIpqtuSgRXP3jSOQARSrzIajkI5oAYDzmp1OAAagUccDmpc4Bx1oAz7xi05A/u4/M1YtAFMp9wP0qnK2+6PJ+8B+XNWbZwIWY92NMCvqs3l2cjZHCnrUGjR7LBMjGRmotcYtZMg6sQOfc4q7aLsiUD0pPcDxY/IrY5I7VXEMhO4ADJ/GpVcvlicn1qVTuIX1Nc5qKbUGErv5/lVqCJYYwPbk03OABxQ8ijljhRQB0toQYVx6VayRzWXpFws9sApyUOP8ACtYDIrQhl2CTKirAas2F9jbT07VfQgimInU1OuMVWWpkOO9AEoHoaUMRTN2Caf5m4YNAEqsCPen5xVUHFSK5xQBNmlHNRBs1KBxQAjPgYxkVW6GrBGaiZCD0oAb2qJqn28VC460AVJCUYMOoOQamtytzbsso3ZJzmoZehqSxUrFn1NIC2lxdWcSRRqrxL3IyRVq61SW9thCF2l/lNVTJtHJ4qaBMZuJuFA4FVd7BYq6tILeyS2Q8tyfpXJXHzSgd84rY1G4ae4dz36D0FYc0ircRljgbhmokVEnuECRyF+cnC/nVHYVmiZW+X27e1XJLrePLXlywwD3qgUlDPn5SGJKjtWDNUXFkHOe/bNX9KiFzqMUT/cY/MPpzWVEx2AkZ5wa2fDn73Wo/RFZv8/nTjqxS2PRokTYMNj605gMf6xf1qCNuP507O7iuowHfeyvUexzUfKZGfwNRK5Wfg4qxM2Blhn3HWmBWiYeYc9+ahl6kZqRuDkfMpqvKSrY7UASoSeKV3+U4/Oo0bOOabcvtiZvQUAUo23Slu2Wb+lWoT/o6Y9M1SU+XE5P8KCrSNthXA/hxTAoal+8khTr84J/Dmr8Rwg+lZM0wk1RIs5KqWNaithRmgDxKM4G0cVYX5GUmqSyBTk9hRNcGQcdfauY0LE94kYPU/SoDKZGyxP0qoCWJHValB56YNMDW0e++xXylz+6fhvb3ruI8EAg5B6H1rzMkY611Hh/WBtFpcN04Rj/Kqi+gmdM0eRT4pCh2ueOxoQ5FPMYYciqJLKNUm7PQ1RUvF7r+oqZJAehoAtxtg4bvTwMHrxVUPTxJ70AWhz2o5HWoBKKDIOpbNAFlXxUwkfbwvA71ntchAWboK5zU9WuLm6WFA+zGdsfb3PrQB17SEnk0inccZ6+prmdD1N5lELMzcnbu6jHWt8PxQBYJIFQSmjf71E7FjtXk0AQupkcIO/WrgxGoX8ABSQwndtRd0hrTitEtl3zHdIe1ICvBaFsSzcAchag1C4LLsXhR2qxdXWAeaxriQsMk1WwGddP941z99IpkRGJ+YgfStm7l+Rq59X8+6kkxlE+QH1Pes5FRLrkH54zyp59qXexut7chuCffuKhCYHytjjvU6EFdrcEndj1OKysaBKwiEsaqRjkVt+D18y/eUk8RYx6ciudeYO27J6DIro/BnOoXWB8uxce9OHxClsd4DwKkUjFQAO3T9KlXKjBrpMSrM+2XPvWgCJYPfFZlyOTVvT5d0WCaYFYsY5WH6U4osq/L1/u029+S4471Gr8j1oATymU4DY9iKrTsXkFuSDnliOQBWgZdwAZQfcdaoylUucjPKnrQBWY7ldQeXfA96tPbnGASBWcG2TRSZH3i2K1JZhs4PBoAxltxHqjtnOVUdfrWkD8ucVRjIe7kJ9hVzfxxQB4arFhgjH40jD2xx0ojAYlu4HemO7Egn/IrAsUHaKfkdTz6VEeaUMcUASKatQJvj3KcOCdpqkMk7R1NWoSyREg45pjOq0TXQ6iC5OGXjcf611UbBgCOQa8sZ280SRnDD9frXQ6Nr7R4RiSB95D1H0q07ktHbhN1Ma35yOD6im2d3FcoHjYH29KugZp2EUtsi9RkeooD+pq/5ee1BgU9QKVgKQNLmrX2ND0GPpSfYh6t+dKwFZgGUgjINZkmjRmUyRTPG23bkAEgema3fsK/3mpwsk/2j+NFgMmx0+Cw3MmWdvvO5yTV4MSeAT9KupZL2SrC2RI6YosBnLGzfeOB6CpoY97iKJcsf0qa4s5Nu1DgnvWhZ20Wn2pYnMh7nvTsA6OKOyjwOZDyzGqFxc7mODn3pLq5LkqDx396z3frTASaQseTWfcSYBqWeZUBJPFcjq2vmWc2engSznqf4U9yaGAmragzSfZLc5mfqf7i+ppluFt4wifdUY/+vVOO0Nq33y0zkGR26tViJ9zbcck4rJu5aViyJAF9zUiNx7HrVUfKcZz/ACqVW7VJQ54y75Vhx1HrW54UulttXVGwBMNvJ7isIHJZt2R7U8qNjZ+q/wCe1C0YPVWPZF6cFQfpTHYjpj864vwlPHJaNBJNI0yNkBpWLYP4810xjyOJZAf94muhO6uYtWFuGBPoabp8myRlqCVnT5ZOfftTbeQLODnINAF3Uhyjdqqqe+Kt33z2m7uKz43yKYFvIIyD26YrKvZWW4UAckY/M4q+W4/xrMnbM5HHYfrQAMqtI6j+BQBVmN8xlT/D0qghXfJL5nIfBGe3+TU73YiJIXO9cD60ARwSK0shH941Z3Y78VnWoKZ3DnNTO5A4Y0AeMI/JAFK/T6VErDPpinb9w6HnvWJY3cCxX0p68DPbFRevripAflCjtQA+IZbOask8YqFRxyADTt4HXrQA/JDj0pkhIcMjFX/hYUbuc0uN7AUAael6+9vMqTkxv/eHQ13NhrqyIvmYYH+IV5e9uXH7xR+dLa397pr/ALpjJH/dPWrUu4mj2yC5hmAKOKtKma8x0vxVaz4V38t/eurtNVDKDHPkfWqEdMI6eIqyItTkP8VWV1KT1FAjRWDNTpaNs37Dt6ZxxWUNRk/vU19RcjBfj60AbWIUHzMPwphvIEPTNc5cavBCpMs6r+NZUniqwV9ol3e4FAHYPqEZbhD7VXuLouMngelc0viSxK7jOq/U4rJ1Px9ptspWNzM47JzQB1Mk3JJNYmreIbHTIyZpl3dlHJNcPeeLNX1VSLRPIizgt3/OsmO2xe5uJDM5OSWORnGR/WpbQ7Gxea7f65IUi3W1oerfxMPap7IWlqBDCQD1JPUn3rNlkYPhWIA6dqaJCTuPWspO5olY2ZphJLuj3KycFqgdiCSOmaLeVTDhh35PvSuMKcDoeM96QyyjMyjbyAORnNPDheOhqsjr5ZwWDd6RnIIU8n1oAvAnI7VesbU3TFn4iHH1rN09ZLu4WFeeck+grrI4VhiWNBgAYqkrkt2GxRLBjylCEdCvBrVtdalhIWdfNT+8OGH+NZpFJitFoQdXHdQXce+Jw2ByO4+oqGSMxOHRQR3X/CuaG5HDoSrDow61p2usEEJddO0ij+YqriNkTxzQsiP82PuntVOFuPSg+XMobIYHowP9arqWhmKk5zyM9xQBdZtoOOaynf8AfOT6n9BVua6SOIs2cjtiuT1vUpYWFrEVWWRCXY/w5zwPehuwJXIo7+WK5mkRg0cjElT09jVvTb2e6lkWQAKnTHvXOEuoT5wTwOOldBoSEW5Y/eLc1lGTbLklY6FNrIN3BqNoz25pyn5RzSO4A961IPFB16cilJwuOlMJ96MkkDqKzKF5zUgXBGD9TUQGGwDVhBkc0DHZNDADnvmmMcUgf8vakA4ufqKejkNkVXDHDE1JG/OemRxTsBYkbewCnkVWncJ8i9+pp7y+XH7mq24EdKSAQwpKmSMEfxDg0Rz3tqw8i5b2BNPDDG09CDUYOMmquIvx+KtYtvvEsBV638a6nIQBHntnHArBRGnbjGwdSRV6FVjKpFIFVmClcnJo5gsdBH4h1iY7du0+7KtT+bq1wMyXMEY/2pSf0AFQ2loWhVlZcHqjjIzV1LCT/n2h+uTTuxGfNbZ/1l60jf3YYwP1OaxNShO0bZJdrNtJLZrr208mLMrKF/uIMCsDxEBDZROq4UMMAUAcrMnluyb2OPWohGCM+la1ilrqYkgmHl3JGY3zwT6GstI5Hl8heCTjmhPoOxuW1xG0SCIttKgMpPfHP60jDddj6DP5GqGnExyFM5yM1ejOb/6c/p/9ep6jLCorIDn2pBESMq2c0S4hcAE7WpVO47RxUlIsW0hSORCvPWpZZl8nCMGBI+oqtvI6EYxzUQlKgrgYzmkMsGTK47Ec1NuLAnGQOc0y2ZQSwIOex7VY/dudpwGPQ5oEdH4bhAsnnx8ztjPsK2utZfhw7tLKd1YmtUVaWhDArTcVK3IyKjNUIaRUbCpTTDQA2K4urXdJDh4lxujJ7+vtVsaxaTJicGP/AHun4GqLqD1FVpLZHOSW/OncRpvd2WSTOG284aTPNc1qlpLf3jXaEYOAFIwcCtPYFUKOgpvQ0nqNaHK3DPb8MpU5x0rq9Cz/AGdEx/iy361WuYIp0KyIGB9a07NFhhSNRhVUClGNmOUrl8MAvPeopG+WkaTjtiq8swx1rQk8gzz+FOBGOKZnj3o+79KyKJVbqcU9eAPU1GrcUrNgcUAPdvemg4GD3pue5pjuW4Xj1NAxXcKvQEjtSxOWlUkHOKhPTFPjOGB96YFiY7gAPXFQ8Z2r6c0buCTTFJwTnk0gJeufYYpI4jM2T8sQ/WnRxblBfO309anLDGOmO1JsLC8DCqAAOgpUA85Gxg7hTN1Ck7gfekB12nYaB1Pqf51qROfJHPasbTH+WQe5rThf90K0JJpTthIrm/EcZk0pAOuRXQSsDGa5/WmJ0pgOooA5WOQW0ylACy4JYVBOXE8jkFSxJ/OrUca7BITz2FTcEYIyPelfW5SIbFDvVwO2KswTJ9rkywB5A4+lOjbyUDDGewqrF8szSOpw2SSRwee1LcWxrApPFuDhx2I9aijys3PBzUNsxXcCoEZbIA6irAGATuDA8e4qSgWT95JxxQ+N2FPB5FIEAKtkDPWnMgBUdvWgaJLfgEkdakB3DjOQepqIAJgg9RzinhiMnj1pAzs9GJt0THQj8xW4YxIu+Pn2rltAu1uLbyif3sXBHqvY10UUpXkGtFsZkq0jL3FSCRJevyt601wVPPT1pgQmmmnsQahY4NACNUbU4tUbGgBDUbU4mmE0CGE88+taER+UVmlgGBPTNXo3G0A00BM78VRlcyPtFSyyjkd6roygk5pgf//Z", "path": "images/3pts_ADE_train_00002879.jpg" }
depth_point_91
images/5pts_ADE_train_00006520.jpg
ADE_train_00006520.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 254 y = 180),Point B is located at (x = 160 y = 157),Point C is located at (x = 41 y = 210),Point D is located at (x = 185 y = 123),Point E is located at (x = 152 y = 96).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_17><DEPTH_67><DEPTH_3><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_3><DEPTH_49><DEPTH_3><DEPTH_70><DEPTH_70><DEPTH_3><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_70><DEPTH_31><DEPTH_49><DEPTH_49><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_49><DEPTH_31><DEPTH_49><DEPTH_3><DEPTH_74><DEPTH_36><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_36><DEPTH_36><DEPTH_29><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_25><DEPTH_19><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_57><DEPTH_57><DEPTH_57><DEPTH_1><DEPTH_1><DEPTH_1><DEPTH_1><DEPTH_57><DEPTH_57><DEPTH_57><DEPTH_42><DEPTH_42><DEPTH_42><DEPTH_16><DEPTH_16><DEPTH_42><DEPTH_16><DEPTH_42><DEPTH_42><DEPTH_16><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
5
[ "E", "D", "B", "A", "C" ]
<DEPTH_START><DEPTH_17><DEPTH_67><DEPTH_3><DEPTH_70><DEPTH_59><DEPTH_59><DEPTH_3><DEPTH_49><DEPTH_3><DEPTH_70><DEPTH_70><DEPTH_3><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_3><DEPTH_59><DEPTH_70><DEPTH_31><DEPTH_49><DEPTH_49><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_49><DEPTH_31><DEPTH_49><DEPTH_3><DEPTH_74><DEPTH_36><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_74><DEPTH_36><DEPTH_36><DEPTH_29><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_64><DEPTH_25><DEPTH_19><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_2><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_0><DEPTH_57><DEPTH_57><DEPTH_57><DEPTH_1><DEPTH_1><DEPTH_1><DEPTH_1><DEPTH_57><DEPTH_57><DEPTH_57><DEPTH_42><DEPTH_42><DEPTH_42><DEPTH_16><DEPTH_16><DEPTH_42><DEPTH_16><DEPTH_42><DEPTH_42><DEPTH_16><DEPTH_END>
254
180
160
157
41
210
185
123
152
96
110
89
140
58
35
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDyTTrY3E8bIGG/5ck1qW8hKCNlxsYnPrz/APWqtDJHbwxFFPmxnduJ4NWLdy0bOThSD1GcVMSYxK05PnH0JzTGC596fKSW655NNCIVZmbBUcD1qjQYeRk9BUS/8fUP+9Ux2lfvcVGgBuISFP3qAOrlQR3e3AyB/QVXeMhpBjOVyv1qSeGRr2EtIVEke7cOuMc1I+n3XlRXHnho3V2xgZAXPtWYdDnbpTAWZolY4/I1b8G7f+Er05U6NN8w9OKparKqTNEQd+Ac/Xn+RqLRdSTTNZsrzyyVgkDOo/iqokGh4njEHijUkVI2VrhvvDO3pzXNSyNG/ByAeGFbOr6lFqmr3l1EjRfaZWbGegOOKwm3hjGifKD1NJCFaXzBuLEkVbtF3MeeXUjFQKYANpX5jzzVm0QC6Rgwxg8Zz2olsBe0y6k05rO5iRfMjl3qSO4zUxMhkZ8j5mOfrULO6JANuMdRTkcLJMCD989++aUNhrcm3sEyVGKdGxJzjAqEH95jqpFSnPAGQPrVGtrmnpbDzJjkdBjNXyVZ+Sd36Vn6YFYShc8AZq4d43bm4z0zXDW+JmsdivMgKnJwc8EVRkCHqOavSHABHA9cVUkwedvPBFQhlN1VTkDmoj8zZPUVbZQ2VboO9VwuCWwDg/nVE7kJjP38ZNRrA24Blq0zNs9MntQQxlG1j+JrSMtCeUdZlkuV2fw5FSaowcADoCfzxU9iPLuuFUkjuOKj1Xy84QjBZug712YF3qmFdWiUJCUtIWXhg7YPp0q5Yxh50uIkUq24yE/wnFVbgD7FAB/tZ/OpdDfF08Tn926nfXq4h+7Y5aemp12oSpNZ6ZHFjeqHeCPeqkR+URn7w5U06bKeQsfRY+D60yIAg/MAw5Ge1eRUenKzsprqI7su595UJypHY0638Ya1aoB9p8z1DLkUlwp8vco+X+NfSqxhR0Q4HSudfu9ToXK0asfjy/lDCe2tZB0+dAKrXWpzaxcxMIY4UgVgERRj5qzIoY/Nx5an5iavxpGNzBAOBRKrdByroWdm8j5FHPehJ4be8inaPaFdSxHUAGofOQYBxwfSmXZYpkHGfSsYz6hym7Bf6UZ7iaK+QmaExhGHPJBqzFJC32tEljXzbcRoS3X1rgZbdgUwcc0SW7eWSHwRXYq2hHs4m5qa/ZhY2zsjOJJXJQ5wCAB/KqjKvOfuk1Ss0kWTe3zcdTUtxcFojkrzxWFR80ikuVHNec6gc9fap0uJdmNxx6U3yjIEVEdmDfdRdxPHpVmOzmeQxLE5cHGAvX/CuuzMdiubhyQp9fSlMzKoYYwDyGro9J8NiKf7ZqYAt4huMWeWNWb0afJpTy22m28OWG3IZm6jvn3q1HQlyOR+0tjrH9SKdDLPPcRxxsuTnHHWt2E2syTFreEjfkAofQVr+ENPtrXWGvjGvlGNlVWwQG78GqjFdQvc5cG9MhR7xFaHCff5AI+lJcXMsPySaq7Y/hTLAZ/GrnjHUEGt3scEcaq5U5VAD0rmlZRGeBuPqKzaSYmy/wCZayZeS8dnPOfKHpj1qsY4GlxBcu8jkKq+V1btVWAjDnA49q1PC5DeKtKLDg3ceR/wIU4oRTdNkxVyFkUcqwxjnp+tQHEZI3HJPOf6V0vjWziXxRfgArvmwvoOAKxLiwWOJtkgk2djwRzSAq/IygZGB7U+3ZFuECetQshHToO4psJAuY/mAOe3NJ7DRrXUpAyw9Kge7/0ggd2OfrmptRhZLdgwbhhgkYqg3F2Tgf6ypjsUjRWdQVTnJHBqVJQQCCxIHP1qBVJuYR3AarNsmFk9yaluxauamms26RlBIyB+lTlyNzMuSQT1qOwBQSLk4Lf0qQHKtlWxs7/U1yTV3c1WxHKxwyDI+YDr7VWJDbW5yAf0q1MR5hB7OP5VXIJYfLhQG/nSGVg7FORx6/iaYSNx2t8uTzTzkAj+Hj+ZpkYUq57Bm4q7Egx3JzyBTPvOMEDn1p7BUTBPDCodg3j+7u5ppCZagmEeF2jABJ6+tNW/tJR+92qQSeQefaomlZWBBGNpHStMvpV1rG4lBb789MYG0f1rpoPkd0ZVFzaMhENveRBIZUxGpYkgjA7kc1XtYore5YGdWGPlK961dUsUs47KWzLNF5W9z1BGeh9qpTwRmQSxY8t2JT5eg9P0rslVdRGHJbQ2bq5gi8lOTKETaPXJxio8BWPmDB9MHn9az9Yd4b+2ZcEgRqMjGOc5rs9C0zStct0ebJmkGcK+MeorGdNVDSE3F6nPrLGGK5whXEm7nilMQVwmQMdPcdq62fwbYi9igR5QkiMT8w4Ax7e9JP4Mtt0UD3Myx/dWTAJB7Z9qidBOKVy4ySkcXbptlYSADJ61cKMsQ8tfl74rpj8PCPu37gjjDJn+tRt4BvEX5NQUj/aU/wCNcssM+h0KcbHLFlLHOc9OlE2DAFK8/WugfwTqq8LPbkepJqCTwdrYGFFu/GPv/wD1qX1eQc0Wc06EulLPGXBA4rZk8La8jY+yxNj+69V5NF11QQ2msQO6nNP2M0F4mXGrRnI+lQ3OSrAjIHOcCtBrLUIVIaxmH1XNZlyl0JOLKdgByApojTkpak1LOOhLpDO3kBoZZPs7FgLZf3gyD19elbI1WaG7jWO0kjidM4eLDk+pNcjPNOl60VvI8WcZ2nGcVfvbh5b1QZSWVQAQa2lVdtDBm7d+LLS3c208LMcjKhcmsi98XQTW7RQWwXcQfu4xg56VX02ybUdYMXWXGAT15rH1qyFjq7QJ8zgANg962U20Djpc0o/EzQrIPs6kMcj5aQ6lcW7pchyY2ZiEBxgkCsPyZVkXMbZBBIrXubm3Z443slCjPCn2FDl5kx0KVxeC4vJZZl+ZlAwT6VWIBBINLM6yTMYoiq9lxmmR21zMCyo20DPAqboHrsPjMJGCHBPcVoaNJHba3ZXClj5EyyENgZAOfX2rMWyvGZiLeVgDjIU1atNOnt7uOa5gYQhxuyOtHMr6BZl/xRqEepa5dXsRcCVgwB7dO/4VjlzI5cyfMwwx9RU0llJdtJLAuYg+FyemTxViPw7ecF2RB1PPNDnFbhZlJERB+7uCp6AYpJJykoVxBJgjBxz1rWbQFIx5zD1wKP8AhHYEGS7Mc96h1oPYEi5qUb3Vp5aAM5KAAViT28sdxHvQje3ynHXmuhjgYKoVyCCuPrTJFKrBHJ84U7kJ7daz9quhZXtoGkv7ePGGIbrU0SFQ+SueTjNOkQ/2hATkZL89+1WEgXyAd+RsBwR1PSolO5UXYlgMagknktxg47VG8uU43HCf1NSLGDMQVA+fp+FOeLbGSMD93/iazuWpFdx++bJ5Ljg/QVBuyBtPQN0PvWi4V87lBBkAznnoKb9hh24BKsA33eR1p6D5jLALRnOeSB/WooR+7PfJY/rWomnOy/K4J3gY/Cs5YZY42JRiPn6D3qtGTcY33SMdhQF/e89CSMUjtghWYKSB1pUkBY+oY1fLYLkU0eLcY5JGazo0zI6846YzWoRlASDgLVWBMXE54wCauFyJWZ0Whaj9psLqwlYDEQEWfTd0/WmriyuZLCeLzEjYso37eo9ce9YUTPbXKOuMhlII+oNb+vzx3UNjdwnDTzHcB1HTr+daKTuQ1oaF1faRDeWaXNn5k3nIJC0nBXrjp712lhrGgWUu+2s4IyDncvP415Dr0jrrpwxIBXAx0wKsQXkgg5ZW7c0OTQ0k9z20+IdFuXS4Eqq65UfOOAce/tTZda0u4iaJrlTk9nUkfrXi0EjeXljGDkkL0zUUUrbzIVy2cjmlzsOVHu1nqkDRbLh1WZeBucDcPXrWh5qMgYZwRkY9K8n0qCLU2s4pFMm5tkrjPAzwB+VeqoiRRLHHhUQbQB2AroktLkRHeYu3v+VVm1C0R2QzhSpwcgrz+IqC/vrfRrGW9u5QI16DuxPRR714nrPi3UZdSlu1EQEr52beFA6Vm2Ue6rc20uMXMZB9GqYQiRCY5I39dpzXz5b+M7x5RE0Cbm43BiP0rdsvE18sACzMn+8uf61LnYdj1ye2kUfcOP8AZGRXG+IdTGmuhNvK+7IIjXkVz6+LtRjyftAbnHKf/Xou9SuNY0/z3fa6PtG0Yq4yUhO9jLl0p11qMSrlfKyWC9GqjfQC3vYAuSPMKZ9q9KlRJlKOFGe/fNZk/h60nkDtu3KdwPvXPUj0RbRiaPpNrHdW+pNI6uh3EZ61Q1h7U6zJcQRqTJyS3qBzW5gWzSQMoO0HB9a5hgbq6PyjcrYpO+iDZE0bxHLGEYqWWWAlHMMZGeTjpSmylHzAHB9KryRSKxKLg55NJpgiyIbb7WHVEG9Qm0e3Oac08EYcKvAJXA7UqXUuzHBIPGcUyVklDSGBN3fI/Wp5WOw5rpEjK7jjJXj8T/WmXjvtiJClXkUjPQ9qoG3YYLRKM9BtNSBSGhC/MY5UO0dOvpVQjZg0VdLKm1uFXgeapA7YBraaTcG2GMnByR2rF03ZPHOzDgtn0xWqoAWRIlXHf36UTp3Ykrjj+8P3+MHoKTyyBuLrtJON30qFLQ78F26dqTZIkZUljg5GR0qfZ21Q7EoDAqMqc4IwaSeB3CfMuVz/ABD0P+NVnDljgvz0wKaDJGwKsWOOSRwKSgwsWmBN1F8mQAx3A9OBUiB/LAUchAOT3qrGSyykuOAMHOKdbuyxszSKT2ye1U4MC8skshIKgbTyfWmiOTyduw424/HFVhMTvJc5B4HvTDqDKBliXyMNnipdNgaarGGUMP4wfun0pBFhWKK3QgYGOc1nLqBZgrYA6qSe9W2vmIwoAJPHzVPIBajDowIGDvBAqG1YG3wzgZ3k/iagnuriMqMgk84/+vVdbmXyPLPIx028g0+UZauoLFpN020sQu1geepqA6bHJh4ZRnc/XvxUabjh3UkcZPIH6VIuEjBKtyD69apXQmV1sbiKNg3zBlX8iaradZvLfSxkhAwOGPTOa0PtIQmSPI24OHNWYrm3WJ1kjRht3KR60+doSRkXllJazGOVfmBGCOQajt3MklrHztWQ4H4j/Ctme4tgMujNIwyO4FV0a1e6t1jjYNv5IH0qlJtiktDN1tCdXkY/3zUltb7zGoGcnJpb5EbUriTPzByvP1rVgs4Y7BZ2IDA8qDyTirkOKM7yl5Y8YOBntTrWJZJWD8ru2jaenrU1wuxpRu4YfJj1IqZY4o0OXJK8ls5HNKzHodr4bhWO00tQPvOWY4/3v8RXbXU8FrbyTXDBYY1LOScYrjdEKFdN2yYhRDufPHTmuY8Z+LzqtwbOyZhZRnBI/wCWh9T6/SumWkU2YxabKHirxNLr+oER7ls4ziGI/qx965S/4AB71aThhjjjvVa9JklHGABWCk2XYo2yE3a4HTmuli3eSmBjjisKyUfbRnsM10iwsYI5BkLjrUyepUdiFm/d5LEcit7T7fzNFVt7EM5PpWEsMrxEKu7BrqNPjYaPAgfkgnAHvVUou+gSNtJVXhTj2NSeZnqayFe8gwskYnk75Gw1J/aTqdsmnzKMdQwNVcZekt4JTuZFJ96hXT7RGLrAoJ5OKzv+Ei09AplaXcecbelTR+ItOkyFZwcE8ikxF8QRr92MD60j2qd0H5VTTXdPJAa72Z9VqVNQ0+Q4W9jJ9WzzSTQkwawtyeYlJqMaVaCRXaIEA5x7VMb60R8faYT+NP8AtcDjieL2+endDuUZNDtpWPGzJyBms7VrW1sLV3jYtJFglfvDGR2/GukQCRcGaIj/AHgahvLRLm2aCSVdsnBAOc/hRpe4NnIaNaJJC5UMQccIMcYNa8WnSXOUjMhCDOMdAKv2GljT1PkP8rY61cO9h84DYqWm3e4J2OeWyjZd4bGecNHzTzp6yRnDKB/uYzXQhNw5Vaco4KgYz3B4qbMo5Y6arDy0K5U1FPYKCMxDI+6B3rrUt4VIdYkBPOQMVOrBM4UZ78U1FiOKfT2MRMdvsORkhyab9lKKWEUgYEhSB3rtfvdRS7F/u/nTaYHD3sd0hkupFZYkG52x2A5NZreItMNusfnnI77G/wAK7nXoY18Pakdi5+yS4/74NefeLfKt7Wzt4J9JRDYWLm1isQtwGa2jZmaTyhnLEk/Oc7qpITdjSexmKD9zMXBzmo/sErLykg/7Z16METPSjykHReaVhnn+1Vi8trcOuOXMfzCmhGKJiMKc8YTGRXoP2eMAjauOhpPs0J+9GpH0pcoHA+SrRDZIwcfeQiiGGYIMFirEryxGDXemyhySUGe5ppsI9hQLwSCPqO9JxBnFxxWphMYO2TdjlzzTpbaJXBMuOgxvrrm0qFip2AEfdI7U0aPb4YGNWz13UreQI5eS1VlUJNgjqd/amCxVdQjlWTcqkE5bNdUNEg5wg+lRvocRIKKqsDnOKpITOXeyjRJZpAhLtkZ69aDM0duqEn5WPSumHh+Bn3OVPttpf7BgznI/2floeoLQwJrkPFBHCSHjGSz8ZNMt45ZvMM53SM2FCtx9TXRNooJ3Fw3b7o4po0KMNlpnHttAoGznpbG5k0+G2tZDEygl3B6kn/Cs1vDlzGAN6EDvXbnRYMYSSZT3Jaq8uhHGPtcoH15qpSbIUUjjTo86thVQZ7461Dd6Bdx4adGjVx8pKfKcenpXaf2FIpDJeSt/stTv7Fd1AmuZsD0aki7Hn0Gly20zu+CMcYFdTaQC5tkt3G1gu4Hj+orW/sJcbfPmwxzyaedKkCkeacHiiwHLbWGAmR1JwP8ACtCLVUjtVi+yoVjQAseprTTSDHIX8xycYGDUb6IjqFZmwPWmrp6CepsS6hLeBRdeXJt5DlADQjWY5aCYt6x4A/mabtyRkD8qcBitCCGS10+QbWtmQf3zhiP5VRk0SycFRPKoJzlYx0/OtcgZ6D8qRkVlwQKTSY7mH/wjWmggrcTHqP3kX/2VQnwtbsqrFf7drZywNdB5KlgMmnx2jXEoSMpkngswH60uVBcwLjwtZvtMV2qyAfNuywb6AAYqaL4c6rcwpJCAYcFgSNv867a30O3s3E01/ECg3M0Uikr+Hes7UNWvbhniS9uHtT0DYGR+FHIgucTN4evrabyfMiBj4I3nr+RpVttYtjmERAkYBByR+ddERgc5po65H60uRBcyku9ejQF4oZgP7wA/rVyHUNQKgzab8vcxmrSbcMzgeWOvvSu0pAaUTRxfwbF6/rT5R3GDU4MAva3CE8Y25qaO9tT/AMtJEz/fjI/oalTStVuUE0cDMjD5WBAJH0zSnQ9XHJtm/FlH9afKPmFDwsNyTxtjqORQtxb4P7+Ie2+mnSNVVc/YyfXGDQNI1I/8uLf98ijkDmJfMgxn7TDn03079yWH+kRkdfviqx0bUB109z9FFN/sm/Bz9gmA946XKHMO1a3W70e9t0ngVpoHjUs/AJUgZ46c1wcvhbxReWCWc/ia3ls1VVWCS+lZAq4CgKVxgYGPTFdnd213G8UTWUpklyIohHy2Bk49h39KZFa3TTG2k0+ZLhUD+UYyTtzjI45HvU8y5uW+pv8AVqjpe2t7vqr9r23tfS9rGurQnpPB+Lj/ABpVaLoZYuP9sf41mvptwcBtPn54H7hv8KT+zJhk/YZ+ev7lv8KrlMOY1C0YUnzI8e7L/jSjZk/vYSM5H7wf4mso6fIUKtZS7fTySKjOnL3sz/3waOUOY2sKOTJHg/7YP9afjH3WQjsfMFYq2xCbfIZRnpsNNa1UPuaFj68EUuVhzGs88UUqpJLGrMSVLSDpQbu1Qc3Ef4cmsmSws5kLGJBsOcF8Mv0zUS6VZvkhpSo/i3AUcrDmL82s2sMsarudHJBPpikbXrHGSXyT0AqidFsy27MrEeslO/sq2A4iIP8A10o5WK5ojVrM/wDLR/wUf41IL+1c4ErfiKyl0i1ZwuDHuP3i5I/QVu2/gZZYhPFdedGByLeQM39B+tHKFytHe2rq2JIxg4xT/Pt+P38fPbNUn0PTbOR4muL+OTOWV4VH9eagfRbGQ/LqFwPrGP6GjlY7mxlMZ8yMg/7YFBZeAGT8JBWIdDtun9qsP95DQdAhGCurofba3+FHKK5sMfm56eu4UuxuhGeM8GsY6D5yBE1RWyexIx+dN/4R27UnZqh24x/rF/xosx8xslGx06e9MxnkgfnWR/wjt4/y/wBptz/tr/jUY8N3Kv5Z1Jsn/bXn9aXKw5jaKjHygn8RUZVuwI+pFZv/AAis0QPmX557+cOPyqF/DKFcHWHOP94/0p8rFc1ASaXk1JHCjPtWVevU8VLNaiIKVmjlz2jbNWSQHJ6D6n0p8cMkoLJG747Adqsw2jhRK0SunT74qR7sRELHG6lARtB4oAbb2yxyFrpJggGRhcA/j2qzJfWUAPlWol/ullxge/rVG4u7m6CrNIxCjAUHj/69RY3dc0AEknnvuZVXJ4AGKUYPU9qacl896cRgc0WACkeDuOB61WYx5wchR696dIxIz0jzx71EjQyz7Z/M2gcCMqTmnZgOaJ2AlmgcQdgFPP6VastCv9SiE9shEAbCB26mqa2U10XFnBcSwg9SOn1rYjuPEcSIkdvcqFG0AQHpRYC+bLxTgATqABgAEcCgWfioH/XZ/wCBCqZvvEy9Yrkf9sDSf2n4lUElJv8AgUBqgLptvFAcJvUsRnqKkFt4pXo8f4kVmLrWvk7wGyRwfIpT4g14feP/AJAoA0vs/isdAp+pX/Gmt/wlaDmKM8jH3f8AGs4eKtYHVov+/IoPi3U2G0mDI5GYxzik0BYvLPxVcXNrd+QguLVmMTALjBGGBGehGPf0pILfxWmpvqU1vE1y0QhHAwqZzgc9zzzTR4v1JuqwH6R09fGOoqMbIv8Av2RUeyjzcx1LGVVS9l0221te9r72vr9/dltr/wATr80lnHhOeEH+NOGo+JM/8eCHv9yqX/CaX3IaCBh6FSKcnjO9RFj+zQttABPmGqscpcGp+I84/s4fgma8ZtZNYu4NHiHjLWl1PVoWktoC7+Vu86SJUMnm5BYx/wBzHzD3Nev/APCa3XeyhP8AwNq8ItfE9ra2+jyrpsralpMDRW05uR5QYyySq5j2Zypk4+fGVHuKTA9X8D67rs3g3T5HtJb5j5mbiUNIz/vG6tznHT8K6L+3Na6DRjj/AK5N/hXM/DnxPJp3gXTrVLdXCebyWIzmVz/WuqHjcjrZ8f7/ADTSAxNUa91C4SeTSTDKo5Plttb68VnkZkZpGjhlHWIIR+ldaPG0eD/obfTcDWNreqWmqlZY7V4px95mAKt9apIChG6uMbgD6HrTwCG4JpqCe7dUt7RA45xBHtz9alXekpjnjaKReqsKloCMoS3JOamgmubZiYJZIye6tipBgkEdM96XJB7UgLltANYkQXl/OswGF81Rt/A0uoeFr2zXzAVli67lIyKogEnJA4p29s7mdx67WP8AKgdyoYFHfH0pvkIBkCuittFtr+LzYbly38X7vOD74rNvLC4spAksZCn7rgZBoEZ4hTH3elHlr7D2qblSQRzRt55U8d6AISmKaRg5qbBJxgU3Gc8dKQEBx2yPpTSBg1ORknim7RjkUwHxIhdRNuEfQlRzWpHNp0EQSOR1GOT5Yz+dRX0en2gCRN58xHzfN8qn2rOVgCeAAe1AFqa6ZxsiULEOnyjJ96rnJyW5JoH1P50dsZoAcCMZA5oz0pF6cdaCCOT/AProAGO3JqN2ON7cY6U9cjLOMEdBUTCWT5/LYr2+U4qkA1vO3LIImAXkFl+XFE17JdBFmSNVDD5o0A/lUqXV9KBaxyTMHwFj3HB/Kt1fBc5AZ7yMORyNhP8AWmBYsfEOjadaJbwiUBByQv3j71aXxbpXXMv/AH7rNbwVcn7t6n/fFNPgu9B4uY6VwNf/AIS3SD/y0lz/ANcjTZfFelNEUjnk3Odp/dkYHesg+DdQ7Swn/gVVh4T1RncKIPkO0nfQB0yeJ9HRQizsFXgfu2pf+Eo0c9bk/wDfuuZbwnqqjmOI/R6b/wAIvqv/ADx/8eqbeYHXL4j0ph/x9AfUU19Y0qWW3IvIf9Zlstjjaa5M+GNWwcW/61E3h3V1YL9kkyc4wB/T60cvmB241XSGwDe2p+rA043ukOOLm0PvkVw//CO6xx/oM3HHf/GmtoOrL10+c/8AAc0coHbiXSnPzSWZHY5FNRNJaeQbLNlZQQcLiuFbR9Q6NY3AP+7UZ027iUE2sij/AHTV2A9DFtpDnAt7FvYItMt7fQr2MvbW+nzoDgtGEYA+nFebX+n3hgA+yzMu4F1CEkrnoKpwR+fdpLZwsYwpV3SMhT046de9YTquM+W39eXoelQwMamHdZt9emisr2b7y2X/AA9vWW0PSpFZfsNqMj+GNajTRtLcFWsYQy8HCCvOwky/wSKPXbS+dMgOJZFz6E1ueaehnQNLP/LpH+VMPhnScH/RF5/2jXn/ANquRz9ok+u404X90DkXdwD6+YRQB1eseE7c2jyadGVmXkqGJ3D0rkoYRLuMl1FDKhwUbrxUo1O+U/Lf3QPtM3+NVXZpCXclmPJPX+dAFmOZnbbkFh0I6GrQcEnB5HWq0FtZSQb5LsxSj+Dysg/jmmRygttfAx0NTYC4W+bBPGM0mQANrHn0pinjLU5h8qkYpAPhmlgnEkLlHH8Q61ojW7yf9xK0IVhg7oVx/Kss8gY601skYznHTJoAunTZGBZJYW9kNU5FeNisgZG9GGKfbzGGVdwJhz8yqcVce4spI2WVzKT91jEcr+OaAMzaw5amktyM9KVz8x2sCAe/BoCSS52KWx/dFADATnrQcjrj86njsbp9oWByW6cVZGgXrJvfyVHozjNAGTvI9Mewpytkjjg0MpbhcYFIAw69qAJTgHC9B3oD8YyevpSZIIA71JtPtQA0kEbtxB707IAEjdF6L3NCIHYs5xGvP1NRyt5jlzwOwFNAMkkLHcUJz09qsf2rfx23kpcTLHj7gYY/lVpDowtgJo7tpcclSAM1kyDcxVdwGeM+lUBueGp9OtHa8up9k4OIgR931Jrpl8S6YSf9KAHuK89OBjHFFAHow8R6T/z/AEX6/wCFSjW9LdvlvYjx6mvNePSkI9B/WjlA9Q/tKyEbOLiJsDIG8cntRBdW0cKJ9rhY4yTvHJPU/nXl3l7udvI9qCq5yVGfpRygesfaLcjJuIf+/gp32m3x/r4v+/grybavcD8qTavoPyo5QPWBcW7f8toiO+JR/jUZlia/jUSodsROQ3qR7+1eWqgB4HHsKcrOv3XZT0yOOKLWA9Z3J2cfn/8AXqjr1/JpfhvU9QtxG8traSzoHyVLKhYA4PTIrzcTTg8TyD/gZFUtdnnPh/UgZ5SDay5BckH5D70gILr4o+PbPTzeS6XoYhWGKdhHJvdI5ApRmRZiygh15IH3h617VPE0sDr/ALJxxXzVrOtaHNoFysDWcl3caZYWyvALlZw8SQh1k3YiKDy2Hy9SEPqa9FGoXqjC3k5B9ZDUq7A9PjJeJJABlhngfnT8EV5jDrGpRRgJeTKBwASKkGv6sp/4/wCX/wAdP9KqzA9IdQ3DLn/PvUZtYGHzQRkf7grz8eJNYXpfOR7qv+FPTxRq463WfqgoswO2jsrXe0D2tucDI/cryp6dqe2l2OP+PK2/79L/AIVxR8WaoWRg0O5MkZU856inf8Jjqo6i2/79n/GizA7A6VYf8+Vv/wB+wP5Uh0jTyMGxt8f7lciPGWqf3LU/WM/407/hM9S7xWv4Rt/jRZgL4k8OizP2yzQfZ/8AlomPu/SsW106a8jJilhUj+FpMGto+Mrt4zHNa28iMCHXafmH/fVc1IVeRyFCgngZ6UAWkLJK0ErfvE6EdKlRgTg/eFUOVUdB7jvVqJw4G47X9aGBLuIY8dTQck/dpxYkYJHFJsGzIJ5qQIyTzSZGcGl/H9KGUDnPTigDc0iHSbu3aGeP/SQOrEjPvxTpNOubWJp9NvN6j78Stjj6HOawhhfmDEHsR2rVtNZWPBuPlZeA8cQbP1GRQBlyXdw+TJNIefuj5arSYIyVLH/abP8AStm9lsbpGlWZ1nJyB5e0N+GTWQy5GcY/pQAxMrxjPsKcOOc456d6GycknocD6U4oADxnAoAIzlt2M84pwXexVWwo6n0qJ8qBgFCepHapGaMAKrZQDk+tNAI5MvyBCE6ADuaa0Eyfejf8RT4pWt7hZomHmjpnpVm71m9vIfImlXyycnApgUY4pJp0jTJdzhVAzk121t4RsYYEW4DyTY+dw+AT+Rql4U0plX+0ZhlnGIgeuP739K6jew7A/jRewGSfCumMMeXIB7S//WqM+D9NxwbnH/XQf4VubyeoI+lKJBjkGk5Ac9/whtjj/Xyg57imHwXaswC3rDPGdua6XzY/U1Fd3HlWsjoRvI2oP9o8D+dPmA5ODwd5wkdbwhN5Vf3Y5x1PWpf+EJb/AJ/v/HP/AK5rqreNIoEjU8INp+vc/nUvA6UXsByH/CFP2vV/GM0h8Fzf8/seP92uwz/tYpePWjmA4v8A4Qq56reW/Prmox4PvGnaAT2+9AGJ3NjB6fw13PT0qvBg390QR91Bx9DRzAcl/wAITf8A/PxbZ/3m/wDiagufAl7PbyQStbSRyKUYb2GQRgjpXfe2M4rC8RXNyLrTNPhuJLOK9mZJbpMZUBThASOGbPB6gjjNTOpyq5th6LrVFBO27+SV3+COBb4O2ajI06Fvpcyf41sN4U1jPNtn23iuh0h7iy8Q3WjteXF/bR26TLLMQzwMWPyMwHJbO4Z6AcDvXRZ/2jShUUle1h4ig6M+W900mn5PX+v8tTzhvDGqKwT7L87EnG5en/fVB8N6so5s2/Bl/wAa9AuRiS3lD/ck2n6MMfzxU/OSD9avmMDzQ+H9VAz9ic/jmmf2JqS9bKX8Fr07n0o59P1o5gPLG0y+U/PZXH/flqhe1uBIFFvKC3OPKOa9ayepH61XnjygdMCSP5lOPzFHMB5b9ju/+fWb/v01I1pcjk28o+sZr1hGSRFkUDDDIoKofvKPyo5gPJPImP8Ayyk/75xTfLfptcfhXrRjiJ+4v5VwfxY1q+8NeFrW80eZbe5kvUiZvKR8qUckYYEdVFHMBkWl89lKzqkUhIwUmXI+opbu8F5KsohiiIGMR5GfeucsL3xZf+PrDw5rep284kSRw0MMaqSI3ONwRTkOhU+6nqK25LVopzFJGBKG2kE/dPpQncCxG4k4P3hUgY55bkcEU2TRry2TzmtnVAM+YGyKSNhKASBuA7UmBJtIPHI9KNpb7u3ikiYMpx26g+tLwBjPB6UgGFWbGccUmCelOzjsSPamE8ZBKgc80ABDAVLDay3Cnyl3yY5XPaovM3AFQTjrTop5reTMbMgbggdx60ARN8y8gH0Ip3RVZuO3Pc01WDKzZxx2FSIQsO4tkHoD2oQyNJcDdgmTpz0FN8tcHocHrikZ1Y8kgH0rXtNYgtbZYTZRsQOWbuaoRjEDOAOnJzSMC3yj8ferN9eC5nM3lqinhVUdKrqR1zzQBcXVtRjUAXs4AGAN1Srr2pp0uWPuRms4kmgEfxc0Aaq+I9VH/LcN7NHUy+K9TU4byj7bcVi5TH3RS5HYYosBur4tvl6xRH6ilbxXJK6mW2h+RtyhW4PFYeQBmgsCowTgfzoA6YeMmUcWae+Hp48aL/z5n/gL1yuc9M/nTgB/EM0AdYPGsQ+9aTfgR/Wl/wCEztywf7Nc9Mbd64/nXKZGMY4oyMYx3zQB2H/CZ2u0/wCjzjjrlafB4qsUeaV1cCVgVHfGP/11xZIA4FNBx2PIFAHejxdpjdTIP+AE/wAqivNa8P6lbG3vV86I/wALwscHBGQccHk8jmuIDZ6inocfw5FDSasyoylBqUXZo7PTtR8N6Rb+Vp6rAp+8RCxZup5Y8nqep4q9/wAJRpQ6Tv8A9+m/wrz4yZ/hpd2OduaSikrJDqVJ1JOc3dvq9zurzxDpktlMBOQ23I+QjkEEVIPFOlsB+/6gH7tcD5gJ+5ikLdgDTIPQf+Ek0stj7Ug/3uKcNf0snH22AfVxXnOcjJHNJz6mgD0f+3NMbpqVuP8AtoKcNZ0wrgalb+v+tWvOe1NAFAHolrqVik8sSX1u0f3kw4OM9qtHUrPP/H1F/wB9V5i0YbHqOlG0kAjHPtQB6b/aFoeRdRf99VwPxX1Owg0fR7iaRbiGDVYpnijKsW2xyEAjPQnAPsaoYx1qG5s4LyMR3UEU8YO4LKgYA+uDQ0ByHhHXn13xf4fNyUTUrd7pWlSGOGMxNGzKMIAN29pSeOdw5r0/WdMM0DXSyxPIoy4D8sK5iLSdNtpVmgsLWKRfuukKqR+IFW++aErAILy4K7RO4QjG0tTAWUhh19RQVxxnNHkeY+1Yt5x0C5JoAnQhu4ye/pT8E8ED61X8qW3QbomRTx8y4zVhCsqDDfOOtJgBB2Hn6Uw/ePBxjHFKhJbaRtNKMYLZIGeKQDULAYyR2NDHhuR+NKQAcg9fWkAG4kDdntQBGm0HDOcZx9ajlWQ5EJHP97oKJXV3UpjaoIAq5Bp91PbrMiYQ9yeaqwFELMBglT6jFKA+SCO2eKtXVtPa7fOwM9BnnFO02ze+vFQg+UPmcj09PxoAda6TeXUe9IgFPTe2M1P/AMI/fAcLET/v108cbBRg7Qv3VwOlfOV1pujafBHaXkl4uoSWSXQnV1MSs8Ykjj2bdxypUFtwwW6YHMtgeynQtQBwIVJ9npjaNqCD/j1dj/s80/4Zkj4eaXjH/LXt/wBNXrrQOKLjOLOmago5sZsey0w2V3nm2mX2KV3iqpHQZ96GICYxj6GncDgza3KYZreUDGclKQK5ONrc842mu8VizgZ+SMbiCT940/CsMvk/U0rgcBsZTyhA9xinAZ9K7swxH+BT9VBpDbwk8wQn6xqf6U7iOG49P1pMfSu7/s61YbjaQ5/65L/hTRp9oePs0X/fNFwOFIIB4/HFOYDdgc4ArsZNH0+Usv2VUbHBUmmw6dp720W63jfgjdzk4ouBx4HPQfjUinaf4fzrrzpemL/y6r+DMP61H/ZGnueLX/x9v8aLgctjPO0flT/kwTgCul/sGw/54n/vo/40o8P2GMBX/wC+qLgc18mOcfXFJhc9ByPSujk8OWRX/WXC/Rx/hVWbw6omRIrubawJ+YjtRcDBfAz8uKiUgnnA/Gul/wCEagfrPOCOD8wP9KB4Zg6efN+Y/wAKLgc0ceo/Ok6V0p8NW+D+/m/Mf4U0eGIcZ+0v+VFwObOcelDHHIYEfyrpP+EaiwQLlwT/ALOarSeGpFHNyGQdfkxj9aLgYYJJ6VQmEMt9JHeSBY1VTGpfAPXJ69e1dcPDUe3cbzr0/d//AF6G8MQyKBJLvXrhkzWdWPOrHXgsSsPNyd9Va6dmtU7r7rejZy9gzPbElmZN7BHbksuepqc5Broj4cixxO9IfDsQH+veqguWKjcyxFVVqsqiVrvb+v8AgehzxbjhQKfbXU1pOs0L7HXuRW5/wjsJP+vemyeHoghCXDb8ZUn1qrmJUvNfur62MM6RMD0OMFfpWZGdjfLwT1NNkiljkaOQqGU4Py0w7+zD8qEBaGZSxLfMvTFNDkA7jgDtUKsSwydvOcipZSxIIAJ+nWkwFZWb5gc8dBTVLYLcrxRnPzgkew701pS6gkYzwAe1AFXOOMVoRateRoB5g2jhRjgVm7jg5FAkA6q34GqAuy3Ut1OXkYySEYAx19hXVaZb/YbYRrje2GY+/pXK6Xd2UV55tw5TaPkypPzfhXRR6xYHG26DH/dYf0pS2A1/NIILNk14Bs8UGyWFvC073KWxtFvWsZjMIiCu3rt+6SuSuQOM8DHt51Sz2bmu4FHfc4GKjs9ZsLxSYbyI4OMM20/kcHvWbaTs3qaxo1JQdSMW4rd20XzM74d2s9l4H023u4JYJ083dFKhVlzK5GQeehBrqwVqksqE/JIrfRs1KrNnkGqILIIyTwahMymUKTjHJ9BSYOSentTGG6PYQA0p2DPXHeiwD4XfaCf+Wh3N9O1WM4AB/SofmL7ihUdOnShiMgZ/KmBYVsc4NPDLnJqupA+7kn3oJGeTg0rCsW/OXGMZ/GmB+TVftnJxTlNDCw5pNrmTqVBOPXio7UKttCAuBtzg9Rnn+tNkUhZDn+BufwNNi3BI1J5CqCfXikFi6cfSkBx0pnK9wfrSFvX9KAsTAkjtRyD1z9Kj3cYBGfrSqxP8OPxoCw8rkYLHFQSYVQc5KOD+GeamDc44qGbJ3LxllKigLDxgM3Uc0nRjgk/SoUcyRpIOQVGR71KCccKRQFhxwOpNNyM8ZpGbkZIpcZHHNAWFDHPBI/CmE7X3+nUetLg8ECmlSxOQaAsQx/xoW+78y/SrAHHH41TclNsmD+7bkeoNWY5NqY4OR1z1oCw8gDjPFRkj60HcT6e5phYk44P0oCwM/oKjxuz2/CpGAA54po+6SKAZh6xYeapuFH7xfvAfxe9YUMLTyrErKCxwCTxXayAuBgZIH51yup2X2S43orCNjlSOx9KpMQ6XQr2JWLKDtGcKeapJMRgcZX1/lV5davyuRKOODkVnMwaQuQASckUAWWiDqXQ4buBUJG5QD83t3FIZQV3KcOvbPUU+Q7SJY/usOT6UAUFZiOaZJKsS54JPQetL97k9O1Mljy/zD5h29Kdx2HBlCgfjQST9KYOwqSi4iOaN3jG1d2GB2nHze1IgaW4WQIyKoOSy4z7YqbLdqN3FZSppy5vT8DtpY2VOl7PlT3s9dFJWemz8u33WkycYyfoOlSLLKOkjAemSKhVuKXdWhx3Jhc3AbKzSD6NU0Wo3SzBhO7Mhzlu1VN+1SQMt2Hqe1KR5WFzk45+vegLmp/bF8Tj7Q7fWlGuX68B1P1WswAnbtPTrTg2M560Bc118QXwGD5X/AH7/APr09fEd2OCsZI7hcVjKex604KSeKAubg8STjlreNj681InieX/n0j/7+H/CsIDGQaOgpBc3ZPEZkhdTbBQwxw1KviJA5P2c49jXPMDIAvQk9KcCAMDtRYLnSDxNCM/6PL+BFKPEdqzbngnz/wABP9a5vOevSjn0zRYLnUL4ltu0M2PwqQ+JLU9ph+Vcqv8At8Cm0WC51o8RWfU+d+IoXXbHzQxd+vHy5rks5oziiwXOpGs2SKUaZgyk9YmOBn2FSf27p5584/8Afpv8K5V2Uxq5B3lsMajDUWC51412w7TMPrGaT+3rPf8A6xsf3gv9K5IUp4FFguda2t2J4+0t+MZph12wTn7Qx+kTH+lcmWppJxxRYLnVtrmmvKD55OAcgwt0P4VFDq8aWwBEjFAfmGMY7Vy24jk0PPtiPIC5weetFgudQPEdu3Aik/JR/WnL4itCQHMiD1K5H6VyYYY4oDfjRYLnXPr2nqpImZj6CM1A3ii0H/LJx+FcsWOfSkJHeiwjql8Rae38TZ942H9Kq3GqaZeRvC8kig8grE3X8q57rRuPagCUSqpwdxI64HBprOhHG7/vmofN+bjp0qQOBxTAb5oVgfmyOnyGrMbsI2kgYmPqysMVXdlPJNEU3lOp6g9R6igCISbWyO3J+tNyXbnqxpmQpI5Pue9OBPUdRQO4vOcN1BxT84qPJPJJJ70ob2P40CH07tTB0p3PpQAAZNLggHgUdOcUKNx54FAE9q0SygyrkAZ/HtTS/mSMx7mhV2oSOTmkwR1BzQA6m4xSgEUYoAcOlLTelFAD1607PzUwdKO9AFiBR5p3dNhqLv8AhUsPLEnpsNQcnvxQBIKVSu47vwpnI7009aAJC3NGc8UylzQAucHFGR3phYA8mgkYoAeWztXOFzQDhsUxtpTOcEUzeSQRQBLnnimtuzyeKZmjPqaAFJxSbj2NGQelIaAF3N60080hNG6gBin1+8P5U8HNRt97dTx/SgABAzmkZhjikamZoAUfLkrTfMLdaXNMJBOaAFPSlRiwKHt0ppNN3Y570AaOm2cV9cmGWYxtj5fer934f8q1d4JS7oM7T3rEWVo3SRGKuOh9KsNrOpDpcH8FFAFJcSDchOztkc0pjz6/gateXz0x68Uvl56UrjsURbKDkFh/wI1MEION5xU/k5PJ/TFPEWOnBphYhC8dc07n1qUxkelJ5ZoCxEBzTirY4FSBOakchQBSuFhiN5Y+4STTjMuOUbNG3PWmsMdqLhYQOr/wtS7k9xTVFPwaLhYZ5keeXxQGRj8rinhcnrT/ACwD3ouFhoC460ny7sFgKcVGaQIpbJUH60XBE0EiRGTKqwMZA+fhenNQCWDccSof+BVMihY5AAADgHAHSovKiBz5af8AfIouDGmWM/8ALWP/AL6o8yL/AJ6J/wB9D/Gl8mIn/Uxn6qKU20HeCL/vgUXCwK0ZPDqfbI/xpNyDqyg+maUQRA8Qxj/gIoMMbHmNTTERMEY5BB9gacAcdOPfik+xQHPyY+hNL9liXop4/wBo0AOHy9sj3pOSOABj2p3ljAAJoMMbJkryTycmlcBgVj2P5Uu3jkY+ooWGNf8AlmD9WP8AjSmMHhSVHpk4ouAiqMHNNI96Tyzj/WY+lNZGB4kz9aLgDKe1MIanFWx96mlWP8VFwDYdpzSIcjP4UAEdScUMPmIU4zzyM0XAeULdKTyT/EuKbmTjLjjrhaGc56uR70XABCxJ44qMx4J+bHpTj8w+84+hppUhcdfrRcBfJyPvA+1I0SL95qiaLPOT+BpdmRwBRcBA6q/HK9KGX2zTWjJUjIGfamRqwYqZGz254NFwOnZFfhgCCPpTRa2/91gfY1B9tljfFzbMiEgBsjC/WrS3tgFI+0qH7Keh/Gs7sqw0WSkfvJ2Z+2PlwPSpBpmR/r2J9+aaChkLA5z78H6VMHI5zg+lCbCxGdLP/Pxj/tn/APXpG02QfddT9eKtrMcdakSfsf5VVwsZh0+6AB2RsPRW5qM2dxnJgfH4VrF2DuxIaPHyrjnNOFzHnqqt6CmFjFMTg4Mbj6rUTmNW2vIin0JrpA+R0464I61IAmBmNce4oCxzAVQcb1P407YPUfmK6I2sBJPlLg+1Itnagc26fgKAsc+I+eCKUjuMfnW+bS0/54L+dNbTbR14hAPsaAsYG3Pr+VOWM5wM/ka2/wCy7cdm/wC+qX+yIiPlLg/71AWMRU+VgCOT6ihUGOSPzFa/9kYXi45/3BTRpBBObg59kFAWMwxDAOQKbsJrU/suUcC4J/4Dik/sqfGcxfmf8KAM0Rk9BR5eBzitE6XcfwtCPxP+FN/s25bq0X6/4UyTPC0xlq+1hcr/AAKR6g4/nURsroE/uCR6hh/jRcCsEz3xSH09RirBglUE+W5+ik1CY5c58mX/AL4NIBNtATHelHuCPqDS7lHVlA+tADDHxzioyvPQVOZIh1kT/voU0PGejofoRQBAVB7Unle1WDt6jBFBBA6UAQeXjqKYY8c46VZIJHIoVRnB70AVhjrg0hznp+dPdSkhUjI6jFAIxyMUAQkHPSkA46VYCgn0pfK+lAFQ/Sk5A6VZMfPamlOKAKpBIqF0OQR26VbK9sVGyLjqM+maANq5YC2IJX744PPNKYlZEDHKjjAUYNVpHmkhZpGU8jIA6VcBU4C1mzUqmwjiuUMWULA52sQPyq1HBdbl3Sgj0OTSTox8n59uHxuHoakETDJMr8d/WpTAjRJlLbkbjrg0+K9hkbaDgnjkYprnyrqOMlirKT171ZWFFkAcFjjuelPmAcpBjLAbgKQQbz5jpznjI6GmfY4SzBYcKeVIJHPeh47rcRFdHysjKkdKLgWlG5wPM5HXcalVu24N9Dms0rdEbhdID/dYVG0upQ8iGCQHurc4quYDY83il80ZAyCfTNZq3N+I8taKwPTEtRnVJY8BrGcE9hyKOYDWEqk4OOKkEgAytZA1dC5Q29ypX/plxTjrtioAd3Qj+8uMUwNbK4yRk0b1xwDWYNd0pshrpN3Y56U4alZycLdxEeu6i9gNLeBg0GQFuv6VQW6geQoJ4yR23VOssZA+ZWB6EGlzATqecEZB9eKVWJ6p39ai56gqfxpMt2/SjmJZOz7f4aAwA5B6VDuyOaYzNuDFyABmi4icMrZxnAPNP2huRzj2qjE+4TMjHYDmlaViFIC8j+IUwL3l55+f86QqMY5/OqBmkGAPL5/2anSV9gyRn2ouBOYlPUDP0ppiC84A/AVCJJGZhnmjzXB5NAErxZOOKj8qMnkA/hmojMwcAs3tgZoaWTPXP4UAPa1hbkxKT9KjaxtD/wAu0X/fIpDMcfTrTPtLehoAcbC1I/49o/8AvgVHJZWiRs32ZeP7owacLpiM9vWg3RCHOMUAVY7KyuFyI23DsxIp/wDZFr6MPYNThcfMDtHtUhnkxkkAH2oAgfSYDjDt5fdQeaZ/Y9sMfNN68ympZriVlwhx64FNZbhYhIxyhOFoAgk0u0B+bc3s0hNNNjYgjdAn48098k/MaYUUjB5pXAaYNPBwLaMgf7Aqs7WqOfLtgSO2MCrByPlQfUVHIViXdK6p/vHtRzAQ+fNNE6GAqW6ZPFSo86j5Ykyo5qJZ4yOiA9hnoKf9rTGRJknjhaksfIZjAS5VRkMcVoebvjVRzx1rKknD27xqruSOu3FTxTusaKIGLKOTuxzQBPcKsphEu3hse+DU/lGNgrSykDoaqyeaY28yP5Rgg7uQasIxbaydcUAMEai5G6aVo36AnoanEMe7Gwn2IzUc4cwh48Bwd3Az7UgjmEZ3ys2B2ABH5UAWNqjpGF/DFOldAmC4HGOKogQyMGEjMB1DPk/lVtUi2ghEL9iVoAiUobccsHBI+T0oTfjDJIQPuu1WE2rwxVSaBPCm4M6ntt649+KVgJFKyw7ymc+nrUMsQ2hlXBXqcDpSRvIhbbE5TOVOcD/GpB9oYlfkUEdScmmAxLKzcbhEpJ5yRUM2kWOdzQIYyRnHrVmAhCY2ALCpnAdNv3TQBnrp+mRMEW2O/riNelIdJtTNhoWHpnirsbjBQt8ycUOA6FckHsR60AVV0m3UbUJXA6iQg1J/ZyArtmuR7+aadFNIxYRwquDtJY8H3NOcS7CTOBtPCquP1poCCWykVl8u7nwOuZKeLcFcR3MzDGMN836mpkMZ+fbu74b2oY92Oc+9AiFIZIQcvuQc7G70b7iSTJ2AHsc5x+BomukjwAzMw+X5RmmK8r8omwHrv5o5gJS0qjdtUKP97r+dKGlwSAhH+z1/WonHKebPJtJ52U4s0XysCyHheelF7gMF3MhCNa7iTgNmpllkCsSmG7ClkAUMHwo7VAZ2PCqSB3oAVLxvMCvbuHPGc1YV8IS8Rz7viq+CoHTJGcGo2XcwEhbPYFuMfSgCYTq7FRE3HX5s01mI5CHrjrUbqCgKYyPSoTdDATDBg3K/3qALBuHMny2ylBwcyEHNTKYvL3MHX1GOPzqh5kjMxHy/XrTTtLYctu7jNAFo3EAJPlSEdqmW4gdfmifb2qgxYDCjj1zmiOVY8/NuLcYoEzQ3xIPkGc+tNS5ZbfyHQMucDNZ6zZJLDGe1Me47BeBQIkvIbrJSJ40IquY7jcN84Tj+HvUgncjkg7e1V57yJQSfnY9hQUiw0UZZfnYnHJqhdAw/IVBOfvdyKkhudygsCATgY7fWm3sbywMrMvTjbQBMFTyyFjTOOu0Ulqp+zqFAzg9qdEowPmxkVBawboSXldcN0XvSGaQPyct15FNEqiNixHXGdwqGOCDAON2D3J4FNtDH5k6BRlX4HrQgLP2iFkZfNHA785psNyEjVSrliccIakVBuBVQfwqYEluSRjqPWmwIRM7BlW3kweCW45qaCbzEQhst0JHFBbDYYZGOnSqsE8MasjNjaflGO1IAn00F3e3kCSdTlSc1NbWkiKHedmyOmMCkNxuQlBITjjjgVLbSFodrZBXtQBIYUWPJBY+5zUsYRRuUDLc/KBmmgDbkr+GahRAVMbKTnIIJ4A9qALD3CRgEleAc7vWmLcLjKqzse4HFLGiKPLCLsxjHWmxSmMlHwNvA7U2AuZPMLhSD3JpWhkkcCS5JGOwxSNcoufn6/wAPXNILjcThSXHOO1IBAnlSEqThupPWrBJDDg49aiKyTKwchCccdTTo7ON3/eyOwzwM8UAIzxI6uroQeCAe9SO25Rzn6dKabZY2aPYuO2PemA7RtkbbtoAZIpjYMpKgnv608QRHaXZn+pxUctxGyMgJYewp8EoZNvR+wI7UACsIn2rgK3fFPd0RTuYI/pnOabLgqRgE47VHCoJ8sRhXAyWoARrg7RtjkJz3FK6SyDMjBe+2pWYshX249jVdbgKVDhiQCOO5oAkECD5nO7aP42PWpNyx4Kkcjmq3mu67FjYZ/vGmRR7pMTOQO4WgCUyICQxGexokYTKoVTkd2FKgALeWoAzgZ6kUjEDgsR3yaaAYshUFT97vTJMEBh94dDTJHSTIX5iO6+tMIlwQwCke9AiZD5gIcjIqN18xs5+btmmFCACCd+epNOxzyfmHJx2oYEXzPhXd1KnkL0NJIp6oADRIUJzuz7CjzBsHOPYikgEEg24cfOKQAuflXn34FG0PyOT600ykgr+YpgMZGkjy2VOcgDpTQi7CNgLewqXcCvzZ5/nSMQeUOPXNADVKIoDLhO/rTPJZwwJ2R54PciggeYJI/mZem7vUvmpMMgncOqntQA0zRYG5xj2otD/rEGcBuDRGFTARAPwqKEl7y4y2CDxikM0Y2AZhgdOtVUMq3s6wgLuwSW5xTo2G0l6VTi8WQD76nJoAn8qV2BaU477FxTDCv2oozybCob71Wl+UjBPNVbx2t2icpnnB9xRcC5Bbwn7iDg9W71MIkOPkGfpVGG7mf/V2zuo7NxQZrzKbysabtpC8kZoAuu6wjaZBgmoVMaTBt42nnr0qVLKEsctkdRmlCIr4jVcnOeKAIpLmMgmMFzn+7xToSCf3o257+lStFgkZxjjiozH8reo6E0AT4AQkHgDn1qC42O6OyE54JzQbiPaN7ruPBprTKy7BExGPvUATBUXpjHqBUch2MrBsDv70K5ePGMYzQ8YdCrc5FADzcRIATIo45BpftZEOUilYZ4bGF/OorcKq42jd0Y9+KsjDxENkKRhvpSZSBluZlBkYR5HRRk4+tC2qquWZnI45NMgYRb4nc5Q5BJ6rSS3KHd5SPIoP3hSEx5wAwUbQTxiq05cOrqwGOzelKGl3KsrhOOgqb7OFGdu4j15qhEckvzHy0aQ46KKaDK5OV8spyOeTUxG0jadvqB1NI7rlmbAwaAEDkqJcjGenpQU3EOh5Bz0qDeu8PH8+7qB60rPdTEDhFA6d6AHkl0PHIpJBtKlMbhTOFUkuc+lS4DJuHXFAEIaV2cYVOfvZzSSQrjmUse+TSODGS69Dy1L5YkTevT0oENUqVwq7RjpTXBGWYEjpTpQyAkDJHNRhd4DOS3tmmA0neSUUH3phjLE7m2tjnHGRUzJ/GBjHYd6YxBySenAoAYqhFICjGetREkvlWJx60GQsCqDcwPemrEWb95ye4HSgB0sgXBB3N6CmMZC4JTGP1qTeu77nygUhIbIBK5oAY0gJATtTd3I54z0NRyADcBktRJucqzYGB90UASlstyB7AHkVFINz55BHpwfxoLBUGBtzwDTAxK5PWgD/2Q==", "path": "images/5pts_ADE_train_00006520.jpg" }
depth_point_92
images/5pts_ADE_train_00002747.jpg
ADE_train_00002747.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 19 y = 184),Point B is located at (x = 313 y = 157),Point C is located at (x = 10 y = 213),Point D is located at (x = 169 y = 176),Point E is located at (x = 83 y = 209).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_28><DEPTH_35><DEPTH_11><DEPTH_74><DEPTH_49><DEPTH_59><DEPTH_31><DEPTH_36><DEPTH_77><DEPTH_77><DEPTH_21><DEPTH_35><DEPTH_3><DEPTH_36><DEPTH_31><DEPTH_70><DEPTH_31><DEPTH_64><DEPTH_5><DEPTH_17><DEPTH_37><DEPTH_11><DEPTH_36><DEPTH_31><DEPTH_31><DEPTH_70><DEPTH_31><DEPTH_72><DEPTH_5><DEPTH_59><DEPTH_37><DEPTH_30><DEPTH_74><DEPTH_31><DEPTH_3><DEPTH_67><DEPTH_49><DEPTH_40><DEPTH_49><DEPTH_40><DEPTH_48><DEPTH_22><DEPTH_29><DEPTH_3><DEPTH_3><DEPTH_67><DEPTH_59><DEPTH_69><DEPTH_38><DEPTH_15><DEPTH_24><DEPTH_13><DEPTH_31><DEPTH_3><DEPTH_70><DEPTH_5><DEPTH_67><DEPTH_3><DEPTH_69><DEPTH_64><DEPTH_12><DEPTH_26><DEPTH_44><DEPTH_72><DEPTH_30><DEPTH_31><DEPTH_59><DEPTH_70><DEPTH_49><DEPTH_74><DEPTH_98><DEPTH_43><DEPTH_81><DEPTH_40><DEPTH_15><DEPTH_59><DEPTH_3><DEPTH_49><DEPTH_3><DEPTH_49><DEPTH_98><DEPTH_5><DEPTH_31><DEPTH_35><DEPTH_3><DEPTH_19><DEPTH_31><DEPTH_3><DEPTH_49><DEPTH_31><DEPTH_121><DEPTH_6><DEPTH_5><DEPTH_17><DEPTH_17><DEPTH_35><DEPTH_19><DEPTH_31><DEPTH_59><DEPTH_3><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
5
[ "D", "E", "B", "A", "C" ]
<DEPTH_START><DEPTH_28><DEPTH_35><DEPTH_11><DEPTH_74><DEPTH_49><DEPTH_59><DEPTH_31><DEPTH_36><DEPTH_77><DEPTH_77><DEPTH_21><DEPTH_35><DEPTH_3><DEPTH_36><DEPTH_31><DEPTH_70><DEPTH_31><DEPTH_64><DEPTH_5><DEPTH_17><DEPTH_37><DEPTH_11><DEPTH_36><DEPTH_31><DEPTH_31><DEPTH_70><DEPTH_31><DEPTH_72><DEPTH_5><DEPTH_59><DEPTH_37><DEPTH_30><DEPTH_74><DEPTH_31><DEPTH_3><DEPTH_67><DEPTH_49><DEPTH_40><DEPTH_49><DEPTH_40><DEPTH_48><DEPTH_22><DEPTH_29><DEPTH_3><DEPTH_3><DEPTH_67><DEPTH_59><DEPTH_69><DEPTH_38><DEPTH_15><DEPTH_24><DEPTH_13><DEPTH_31><DEPTH_3><DEPTH_70><DEPTH_5><DEPTH_67><DEPTH_3><DEPTH_69><DEPTH_64><DEPTH_12><DEPTH_26><DEPTH_44><DEPTH_72><DEPTH_30><DEPTH_31><DEPTH_59><DEPTH_70><DEPTH_49><DEPTH_74><DEPTH_98><DEPTH_43><DEPTH_81><DEPTH_40><DEPTH_15><DEPTH_59><DEPTH_3><DEPTH_49><DEPTH_3><DEPTH_49><DEPTH_98><DEPTH_5><DEPTH_31><DEPTH_35><DEPTH_3><DEPTH_19><DEPTH_31><DEPTH_3><DEPTH_49><DEPTH_31><DEPTH_121><DEPTH_6><DEPTH_5><DEPTH_17><DEPTH_17><DEPTH_35><DEPTH_19><DEPTH_31><DEPTH_59><DEPTH_3><DEPTH_END>
19
184
313
157
10
213
169
176
83
209
152
50
235
6
30
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD0D4g2/neCNXXHSAt+XNfLr9a+uPFlv53hnVYsdbaQf+OmvkdqjqaUyJqYRTz1pCKZoRmmkU/FJigYzFNNSEUwigQxhSU8imgUEj05Nd5ouTp0PcYrhEHNegaIgGmW9Y19jWnuc/KMSt9TVWViowKvTr+/kHox/nVOdeKaO97FQ5ILE10bec1h9mDZjYrIF9x/+s1zpXiuki3MFJ6hdqk88V1UY3TRwYh8rTRk7gCQeCOtDEFTiu4u/DmkzSxNcLcxyGCMu0OMFto7fzqk/hDTHb9zqs6DH/LSLP8AKpeFn0LWNptanDI2y4RsZwwr0zwvqXlcR2u4Y5wKwX8C7m3QazaMQcgSKVrsNAtG0tMTCKU4H+pkU8/ic0pUZ22OepWjJ6M3zqsL2587TTwOJNvT9K8n8dXcVxrKJFCI1VMk4+Yk+9ewPqMQtGjCXQDH5o/Kyp784PrXjviyDUL3W5pxp00cCfJGQh+YDv8AjWapyT1Q6U03ucsRU4srmSza5C/ulOOep+lJ9nmDhGidWJA+ZSK65kjg09IjKuIQEZj68f4it6VLnvcqtV5LWOJHWmkVdvLJ7SbDDKH7retUz1rJpp2ZqmpK6EHSlxSgUoFA7Gnptpayxs8rguVbCntjFWbQ2qTvsIDYwBVLSLQ32r2lspwZJAuTXZP4Xtkvb/fCvmIvnIAThE469jnn86zdPmvqROpybmJbb5XBit5JTkhgqknBA6fkaW91CKG3BjkUzooQxtH36Z/IV6DZXbTeEdOijdilvcqy4OFZec59Mc1W1jRkcWyLDG1xJtHzAfeLKPT3rL2cbczF9YcTzQ6tfsMC5dB/0zwv8qrPJJK26R2c+rMTXsX/AAq3Tb7ULm6nnuFDzMfKiKqq89BwavR/DLw/bYzZtL/10lY/yIqlyrZGqrRPDMjvTkRpDiNWc+ijNe/QeE9Gtj+60y0Ujv5IJ/M1oR2MMQxGioP9kAfyqridddjwCDQdXuQPJ0y7cHv5RA/M1ow+BvEE2M2SxD1klUfyJr3D7Ov93NHlKOiii5DrM8hg+GmpvzNd20fsoZz/ACFaUHwxgGPPvp39QiBf55r03yie1J5RPFFyHVkcPB8PNGi+9BJKf+mkp/pitK38K6VbcxWFupHfZk/ma6lLKeThIZG/3VJqxHoeoSfdtJPxGP509SXN9zrNXh82wu4z/HEw/MV8bSrsdl9CRX2pdpuVge4xXxnqkRh1S7i/uTOv5Ma0e5FMpYFMIp5FNNBqNNJ0FLijFIBtNYU8imkUwIzSCnkUzkHigl7kqDmvRNETOk2p7bAf0rzpCeORXpmiAHQ7IjBOxc/lWNf4TSG5zNwP38vH8R/nVSdRsq9cKRdT5/56N/Oqlx9yiJ6H2SiRwfpXTWsbOkQUA7sDnvwP8a5o966mx+VLdiCTgMDjgDjiu3D7s87F7I9Ns5Hls4TJEY2CAFGHIIGKl8uF8hoYzn1QU6JB5KAEkADknJNNAw34139DyepBLp9k/W2jH0GKyrnSbMkbUK89mNbzpgH1rOnGDTQ2zBl0tEJMU8yH2aqzW1ymdl/L9Dz/AFrXnWqbKc1aSJuzMlivj1uI5B6Mo/wqnLbTsMSQWzKevy1sOpqCcAKpPQd6fJFhztGLfWcQ0y6d0TKxkrjOAe1cUcV3GuTpFpEoySJlCjHvyP5VxGOa87FJKdkejhb8l2Ap4poFPArlOw3vBtuJ/FNkCuQpL4+g4/WvT9QsbiWa8kgKjFuI2H8T5PAHvkVwXw7jB195GGdseBj1J/8ArV6FdyLHqLNJLhEK/ID1JOefwAqHuc9ZXdkU9Hif+wGslTElvcuxQcnG3aP1JrpNFtI5I5nl2ysigK55xhkOfbkVS0DzpNZaGELvCLJIW4GH7fWtDT7qK2aeOR1HmOVyBx94fpUzd0ooxgrSZ01jbAWvH/PRsfmatJp1xcRB1hwrDIJYCpLGMi1UNjcHOcdOtblqMWkI/wBgUQjfcpuxgL4euG+80S/8CJ/pUq+Gc/fuF/4Cn/166CiteRE8zMVfDVqPvSyH6YH9KmTQLBf+WbN/vOf6VqUUcqFdlNNKsE6WkR+q5/nVhLeGP7kUa/RQKkoqrCDFJilooAimGVNfHvi2H7P4u1iLGNt5KP8Ax419iuMrXyV8R4fI+IOtpjrclvzAP9all09zkzTaeenakxSN0MxRTsYptADaCKU0hoAjJppFPNNIpksbivX9PjUaBpbLn57eM5Pc7Rn9a8hxXs2lrnwhoEvXdbAfkcVlW+AcPiRxd8uL64GP+WrfzrPuR8taupL/AMTK5/66t/Osy6BxUxPTfwlDGc109pk2kPzHGxePwrmh3FdRYgmygxgny1/lXfht2edjNken6fuOm2hfljChP1wKlC/vD9aztLnkTSbXcjklMEhSehI/pVn7UoYknH1GK7DynuWXGCazpxyane9iP/LRc/WqclzGSfnU/jVxRLKc45qq61ZllUngiqzOKtEkDj2qrchhGCrBcckkZ471cLA8CoJx8qj61aEc54gj36L5u/eQ6tuAwMH/APXXHHrXfa4hbRLpVUHCg/QAg1wZFeXilaZ6mEd6YgqQUxakWuY7DpvB11JZXvnR4yZArFlyMYI/rXT38ryXqXW4uhmVW6jkcDp9P1rL8K2Bk8OSTFE2POwLMcHgDH8q2NDtJpleOObCSTAbHGcd8/pTbTSPPqTaqux2vgKVbjX9WjlCpcII0yCMrtXjHXua46ymlm1PUYYiWmheTgc7unT8Aa6vwNFaW2s65dSLI14JVVN2dqjpkjv0rldPt3bxVeLFIY2nMqo6LjqrDOaG4xfNYnm0s+rPbLH95Zo/975vz5ragGIIx6KP5Vm6dDs0uBe4hUc/7orVQYRR7VnT3ZchaKKK1JDrSABRgdBS0UAFFFFABRRRQAV8r/FyLyfiRqnH3vLb80FfU56cV80fG6HyviC74x5ttG38x/SpkXT+I82NIaU0lI3Gmm+op5plACGm0+mmmAw0hHFONNoEHavZtDmS58C+HY1UZiikVyO/7xq8Z9q9X8GSBvCdkpJOwuPp85rKt8DCPxIwtTH/ABMrr/rq386y7pflzWzqi/8AE1ux/wBNDWVdLmOpjsj1fsmZjk10+nj/AEK3IHPlr/KuZ7mum0w50+34JwgGfSu7Dbs8zG/Cj07R7VP7FtPNVi2zOQ5HUk9j71c+zxKflaYfSZv8aZpin+x7NTwREv8AKrBTBFdh5RXeBDz5s3/fwn+dUJoyoIE8uPfaf5itNxjvWdN1NXFIlszZkfcf3xI9DFGf/ZapSQknl1z/ANcU/wAKvzc1TfJJ9K0SRN2UpLbnO9f+/YqCa327cuD/AMBI/rV1qgnwEBPQZJrRJE3Zlapsg0e9Zj1hKjJPU8CvPiOa7vxKV/sGUk/edNv55/lXCEc15mMfv2PUwa9y4q08UxakWuM7kegaRDMfCmlwxZVZJJZnfsAGK1ueEzAJBHuLz/auG742j9M5qt4WsprrStNUlfLFscHPTLkk4pdLuHtdSuZEAwt6UXjkDnj9M1Tjd2PP5VKUpvp/mdV4ceO71jV4GZlkW9yhwdpwMHJ6d+fpWS9vdr4n220QkjRZAwjPTluTVjwDOLibUZcKzi9d4gOrEdevXqD+FXtPglXWY5HlIaSJgRn7wMjf/rrB+5J3OirHmhA9O0yORNKgWQkuIUDZ9dorSHSoVXbFtHYAfpU46VpDqczCiiitBBRRRQAUUUUAFFFFABXzz8e4Nviuwlx9+zx+TH/GvoavEvjxps11e6RNCgbEcinLAdwe9KW2pUPiR4aaaRWh/Y99/wA8B/32v+NA0S+Y8RLn/rov+NZ88e502M000itYaBqBH+rQfVxS/wDCN6geix/99f8A1qOePcdmY5ppFbg8MageP3Q/E/4U4eEr8/8ALSEf99f4UvaQ7hys580hrpB4Ovm/5bQj8G/wp48E3hIzcxY7/K1HtYdxcjOYAr1HwMc+GYx/01kH6g/1rm18DXO7m4BUeiHOK67QLFtK09bIkth2k3kY644x+H61nVqRlGyYRi07mJqa41S6/wCuhrLuP9Wa1NU/5Ct1/v8A9Kybo/LTjsj018KMw/eNdPpR/wCJbb/OQdpAHr1rmsc10ukc6fAO2CP/AB413Yb4jzsb8CPXLR1ext2XoY1x+QqQnOKp6Lzotrg5IjGe9WySfoOldh5Ax8Hisu4kRXYMenNTX2oNao2I2dgOFHGfzrirrVpIbp5SJVmduVYcdeOelX8KuJe87I6GX5sEY2mqrismLWpnB83y/mbChJA3Yk4/I1oxTidM7HXjOWXGauE1LYmUHHcYw561Wus7Fw+zHOcZ4q4RUFwB8p9q2IOY8VBv7GgPmeYDNu3YA4IOK4xutd54lG7Qpfl3EMnI/h561wjda8nFq1Q9bBu9IBUg4GaYtPAyMetcp2o9o8M2r6bZWfmISptFYEfxZAOPrzis3Q7db3UYnMh8251CRhGf4AM/nxW/qW+1s9Phjfyx5Wwt6AKtUPC1kP7T0dlm3uplfnJ4wOPpWjf2jy5S15SHwY7WGuT29uWKfa2Tb6846Vs2Wore+IoUMRjlhzH7N+8NZ3gqSf8AtDzyIgZ7vciYBIO49T26037Rd2njGKa6RRCC7KV/iXew/OsXBttPc2niZT5Y22PdD0/KpKrxyrLCjocqwUg+oOKsVUd2ZBRRRVgFFGaRRgY60rgLRTcBQTnH1oRty5BBHqKSlrZgOoooqgCvNPi7Gv2XTJWYLh3XJx6D1r0uvM/jXB5nheylx/q7sD81NTNXjYunrNHlbSW68m5Qf8DFIL2zGc3CY+tc6wAPSmE1z+yXc9FUzpDqVkORMufoaT+1rRc4k/8AHT/hXM59qN1L2US1SR0n9t22epP0U0v9uWncSH6LXN55ozzR7KJXskdKNftx0SUj6Cn/APCRW46Qyn64rmQcinil7KJXsYnSN4kjJBWCQY/2hinJ4nUA/wChsTjGTJ/9aubFPFHs4j9jEtXM5uLmWYjG85x1qjd8CrCjioLlcpVo0asrGcOtdLo3OnQ/8C/9CNc3/F0rpdE/5B0f+838zXdhviPNxvwfM9E0OS4/sSAwywoNzhhMCDwx6Vof6W3/AC/WY+gJ/rUWgQhNEt8chwW59cmtHAUH2rsPHZkXOnyXJzLqMef9mImsybQLaWUPJq8y7eAFgyP1Wumfp+NUJQMniqtzKzFzcrujnT4a0hMbtTvH2nj9z7Y9PT+ZqWS2gU4W7u3Hr5aitCUDniqjjqaqFOMdhSqSluUZIgM4kuj/AN8j+tVpYyMfNOfTLirz9agnx8tbKJHMYmtrs0S8JJx5ePmOecjFefnrXeeK9o0NiSQ3mqAAevWuEbrXmYt++epg1+7uAq3Yx+bfW8eM75UX8yBVVa09CQPr2nKxwDcx5P8AwIVyHc/hPc9YtVmSAGRkEYdyVIyQF6c03w3YWsN3pFxauzRyRMybuqjHP6isPxNrQaUQRsQoVwcjBOQcHHpmum0C2Npc6RbHAZLZiwznBPP9cU5xaSZwJRau90YPgezhl1mXIkinExeNVzgruxn9KuaxZyXFm00WA6yuYy3GF3Ed/pUvg9zDOJ/L2sxKKxGSee1dNeWsVzfwxSLlA6nH0OaxcnfmIhTvds6jTlZdNtAwIIjTIPbgVo0zGCo96fWy1uxBRRSFguMnGaoCKaLzCj+YyFDn5T19jUinKgjvVV5yZvICkkk5J4wuOvv6VZZlVMkgDFZxkndoYxJC7DGCuDkj1p6FWXKkEeorIS6Njb3E1xKIreEMxZ+AO+c15lrvxytrSVrfQrEXAU4NxOSFY+oA5/E1zYeq6kVJp/Mai3sezA0teEaT8cNWaSWS+sLWSGPGRHlT+Br1Twn400nxjZG406XEiD97bvw8Z9x3HvXUpdBOLR0dcF8X4vM8CSNjmO4jb9SP613tcf8AE+Lzfh/qXGdgRvyYVT2Kp/Ej5sbriozT260wis2eshtJjmnUnekaIMUoFJml/CkUhRTxUYp4NIoeDxT1amCnCkMlU1FPyhqRfpTJBlTQgexmnhjXQ6C+bbac4B6enJ5rAcYfpXRaAM2Bw+w+YRyM56V24b4jzMav3fzPUtDUpo1opP8ADn8zmtCQ/u2PtVLS8DTbXjA8lf5VacgxP/umu6x4txr9PxqjKOTVx25xzVOXqatEspSiqsnerUlVn71aJKTtnkdKqXsnlxZYuowcuozt461eW3nupHWEJlcZLNj+lF7oV3NbMheEKylThj0I+lRPEQhdN6mkaUpanGeLZvM06z252tIx5GM4GP61x7da63xZxZWK4+6zjg+y1yTda87EO9Rs9XDL90hy9K1/DkK3HiKwibO1phnBwayF+laehs661aGNnVw/BQZNYM6ZPli2ekXmnxLey3Ezl5WhcxoEIG4cA57nj9a3vC3mW/iBhNMzlbcuqn37fpVLTmW4e2SWRXfYVMYTAVSw9uatWVmp8V36tKyskf7vDHHQ4J9fpT537JpnArVKil0L3gLzYkMMyL5krFlyAcAgfzOa6aUkavGD1DAVyfgSVp/EbwBmKoEz6dP/AK1dFJJbalrDqGZVhuWjcEY5B5/D3pTilFEptNpHd7vnA9/6VJVVNomQL07flVqnEkKayB8ZHQ5FNmmSCJpJGwigsT7CuKvviVbWtxJHFpN5cKpwHQrhvoM0pTitJMqMZS2R2TqovI2OM+Ww/UVGpighVuTx8i9Tj0FefXnxAury3SWDRryFxuAAXfIRxkbccZ4wT6V0Gg61Hf2E87abqFnNHFnfe7dzD2wc/hgVkpxctCnTlFanmfxn8YSXF6nhu2kKxxBZLwKfvOeVQn0AwfqfavGpJTu2nBA4FXdbvn1HWb29cktcTNITn1PH6YrMYZNao1tZWNO0/wCQbcMOhbH6VL4V8RXvhjXoNRs5CGjbDLnh17qfY1HCu3QnYDkueaopauNhK43cj3oSvcye59u1zvjuHz/A2sp/07Mfy5/pXRVmeIovP8N6nFjO+1kH/jpqnsRF2aPk81GTSs3FR7qzuezEdSU0mjPPNSzRC0tN3DHWlUhjhfmPoOaBjx9aUGrVvo+qXWDBpl7KD0KQOR+eK0oPBniSb7ujXCj/AKaFU/8AQiKQOcVuzGBpwrqIPhx4jlPzQ2sPr5lwDj/vnNaEPwv1QqHn1GyiXj7odz/IUWZPt6S+0cUDQ/3TXpEPwpj48/WXPtFbgfqWNR6r4B0mw8PX19Hc3ss0ELsm91C5HqAv9aaizN4qlsmeVSffNdH4dP8Aobf9dGH6Cubb79dJ4d5s3/66n+Qrqw3xnNjv4Z6lprg6ZbYIJESg89OKskHa2fSsTRLu3tdOczFh+97LnPyjH8qvPrVmEYIsrHHHAH9a9JHhvcsu6gkkgfU1UaRJBujO8Z6ryKzbnUXmfMVo5Huf/rUmkxSJJctcWUiJJyBGeM+v86VS6jeO4QV3qWmilk4WJj+FU3V0k8t1YPyRkda6Dz4ordR9lcYGN0rhRXIaxc2rX7yS6vbW4Yf6tJwQoHrg9eayp1anN7+iNJU4te7uaGmJMbmcDCnjHGeOauzRXKF2kkG3GcY6/wCeK4dtY0S1dmGpTSv0zFGx/XintrNvcabJdRJczxoDuV5Ap468ZNZVYRqTbTNYKcIpNFPxAiSaDM7KC6FSpPVcsAcVw5FdhqVzb3PhqWeBPLWQqu0+u7p+hrkCKyxDTkmux14RNRafcUCtXw7IItftJCm4I24isoV0Xg22juvEUcUhULsJO7p2rnOmt/DZ3WlXs1x4rtoipVSMbWHzADkZq1f3E8XiK/vLaVUMcflOzcgZHYeta9vpNlba3YzwRbXCYzknjBrCvngjl1G4d5Q7SFcIflOADyKp2k/dR5y5oQ0Z0nw2sZG1qS7JGxdyn354qPUJLseJr63kMeZJm8tc4BUk9ffFbfw6jWLToCBgsNze5JrG8WvLa+I/9FRTK7lgSfQ571E58zsyZRsrnptsCkscbHLKvJ9TirrsFUk1i6PffbxDdcjzI92D+Aq3d3QCkZocuXQtK5SnnludSSKJgDyeTjtTJ9IS5mDXNpZTkttZpUBIjIywHHXPNYV5OxuRIjMpVuoNa9rcXDQqftDHI2jcQ2MdT/Ks7LqVr0LiaDZM6l7CyO4srlYgPk5249D0yak1HT7VNKnCQxxkKWGxdoyB7UR3M2Mhhgndt4z9Pr3PtU7O89uyPtcbecDqfbnp2FWlHohXfc+NLlGjneNgQyEqQfUcVEAQcg4PtXXePvD02leMLtFhIiuWM0bAcHPJ/U5/EVyrxGOVo2BDKcEVSd1c6Hqb2nW6SaVEkoJjZyWA7jPT8a6weCP+JsRBDE1vuDnyHZ0VTztDHrxxmsXR41+y2cZ+6cE5FfSXhm0tofDtpHGqsuznIGfoadOW6Oaa1NqoLyPzbKeM/wAcbL+YqemuMow9RVCPm2P4bahK7CS/tIwpwQoZiP0FXo/hhCkZe41aRsDJEUAH8ya7J5pIL26CW8kmZOnTFTyvOV2rANrL8xZulTyo6vbVL7nKxfDbQxAJHnvpcgHmRV/ktaC+BfDVqEP9neblgMyzO39a2YPPMAyY/J2cAZz0p88br85mkYFhhQAMc0cqI9rNuzkR2/hvQ7bHlaRZKR3MKsf1zV228qCSRFSKFVYBQqhe3tQlogiZGaRg3XLGmRWcImkDRKVTGwnntTsiOa+7HTXKLbGMzASFeFJqWK8ikVyhdtg5whprqjW0igoHIYA8Z71YRwEA5Jx2BoFpYrx3Dec7JBKwcjjGMU6ZpfLxsTyhj5ieetSoMSu4Vstjrx0pcGSHaVGM9z70h3V7gVumiI82NJM9QueKwtcjkfwvqp85iv2aYbNoAzg810Xz92A+grM1uHdoWoJk4a2l46fwmgcZanztgk1uaDK8djcusfmeUxkIBwdoAyayY0yOe9TxO8EbpG7Isg2uAfvD0NFOpySuepWoe1jyndDW7bSdKW5ltftYlkAjTfsIG3Oeh/yaov8AECVRi20e0j95HZ/5Yrn7zVJLzT7S0dFVbfcQwP3iQB/JaocVrUxEr+6zno4GCj+8Wp0Fx4812QERy21uP+mUA4/Fs1j3XiLWbv8A1+qXTeyyFR+S4qo3SoGrF1ZvdnQsPSjtFDZpZJm3TSPIfV2LfzqHIAp5phqbjaS2Iy3NOWeVI3jWR1R/vKG4P1pp602q2IauWTfTvYCyLDyQ27pzn6/iaqt1oBoPWhtslRS2FFb3hL5NZEuSAignnHccZrBFdZ4GsvttxqKYB/cqBnpkn/61CM66vTaPVNMkDJbzM33UkJyc7cDBGa4q1Qajr13MrlowzfuycA49PfH8qviXUrO3aB4BDCELBdwJA6du2RmsPQbh/PlkV181gSyk4BHI/PmrnDlV11POdnD0sexeCuLCJvxrlvE+qQ3HiCWFcLNbuxZsfw59fzra8ITi4VERjsiHzAHqa4LUZpG8XarGWAje5fkHBI3Hjmudq6NoQVW6vY9a0Oby9KtG5A8nA/SuY8b+M49Agji3YuLncIzjIUDqf1FdBpTxzaRbCIkgRjG5uTXmfxW0HUdRvtMmsrWSbYrxsqD7uSDmmmr6kRXunMaPr+qXXjGxaS/uXiaZVaNpCVIPUY6ele+2EiNCARnoPujJ9Mfjn8K8n0H4eFdVttUvbxEeNg/lA4w3Yk16Xps6h1D8hOOB17fywPxptp7CNyOQAYyx75GPXGfx6Cr9uyk4Ge/Uen9B0rMhOWDDGcnOOx6Z/DoPersTYwdvHHfIGP6fzNJNoGYni7wda+JbLY67JV+aOQLzGf8ADmvlT7Drt1YrqYt7VopYXuVUXEfmNEjMrOI9+/AKPk4/hJ6c19oxynpjn0zXyJa61ocXhiwWZrN7yDSLqzOBcrcxySSzlQpGIiuJFznJ2sw9BWkUugcz2O48JeENb1iy0ueK0KwSxJI0znaoUqDkete4adHaeHNHkSW4LeRgzMTk5PSuc0fxDFonw28MRx7Xu5NKtdqeg8peTWLDrWoeIJJD5duRIdjrIGQkKeD/AIVcabUbgmnKzPWaD0ooPSgk83uU8nV7xvmO5+gB7UB2I/1Zx7kVk+KPHPhrRPEt7p9/qXk3UTjfH5EjY3KGHIUjoRVjRNd0zxDZvd6Xc/aIEkMbN5bJhgAcYYA9CKQXL6oyQeWAoAXHXNShWZRlhjjoKAARSxf6tfoKLDuP2Z6s354pwjTuufrzQKdRYLiRYCkADqalFMTq31qQUIBaE6H6n+dApUGN3+8aAHVW1BN+nXS+sLj/AMdNWqjnXdbyr6ow/SgpbnzavC/hS7iRSHjikrA+gFzS02kNMkRqhapGPFRNQSyM1SOo2h/5a/8Ajp/wq8etaOlxwyt4Q0uSxsns7+zdr2Q2sfmBftVwrS+bt3goiA5zgBPTNXFXOPE1XTtbqYiyLKgdGyp6HFFQ6eP9Bj/H+Zqc9KZcXzRTG4/nSnrSd6XHNIYvauh8J+IU8P30jTwGW3mAEhT7y4zjGeD1rn6WgTSkrM9SstctdR1DVL3eVtPsn7lZBgnA7j6k0zQIbJZr2C5Vo5GtneMcgEgHJz+VcZpfiKTTtOubJrOCdJgAHbhk/EdRirmm+Jo4pi13aqxKFCwGcjaQPfPSibvsefLDzTvY9S8O3A03SysaqklwrlZXGMuMnHv3IrmbaG4vNSu5oog8u4ynPUYYcgn09PrUdp4v0yHRlhN9mcRjaGU/K56447dOvatjRfGHhaS3MVxeJB+7wwljZc55IBx61CT5Qq03KVorY5Y/EPWNI1a6tYjb3FpFMyokqcgZ7MMGuj0/4s2MwCahYzwHu0ZEi/lwa8v1h4Ztcv5bcqYHuJDGU6Fdxxj8Kqinc7Vh4OKue+WniPw3rGBBf2+8/wADN5bfk2K6GxS1tiCA2D3xmvmI4PWtCw13VdKP+g6hcQD+6rkr/wB8ninZGcsK+jPqaCSNz+6ngGQBtZCD/OtCOOYAf6kgdMAgV846f8UtYttq3kNvdoOpI8tvzHH6V1+l/FvTHwJ/tdi3uN6fmOf0osc86M10PYDMsTkP5e/AyFznFea638HfBMGlebp/hxTOZIx817PwpYA9ZPTj8adrHjaK90uGTTNRtjNJPHEbuMjdbqW5ZlPUcYwcdakt7u50vX7PSv7TvtQsrlHlljvWErwMhUq+4YbaSNuOBnPUmsZ1Jxk0v6udNLAudL2l7PVpa6qKu/JeXf7r3NV8Hpa6ppqWEbJYxxRxLFlm8sRgKoyckjAHU1S8X+FLnSoF17R3dJ4/nnROQPVgP513raiptw6XVruGN24Ecewzmr6YkhAfa4Yc4HBFdvO2kmefYkpD0paD0qQPmrxlaaYPi94ovNZks47Mta2ga6jZwDLEhZlCq3zCNXweMEg5HFaXwjtJrDw7qdncLtmt9UlikX0ZUjBH5imfFD4aeINf8c6hf2t/ZJY3JjkjhlmkGGWJEJKhSM/J+WK2vAnh/U/DukXdvq11Fc3c929w0qSM+7KqOSwBJypoA6te1EX3B7ULSxDg+xP86AJBThSAcU8LQAifeb61IBUZKRFjI6oOPvECo21C0TpLvPpGpb+XFIZaFKg5b61ROpsT+5s5X93YKP6moJdUntyBP9mtzIcqGYnPQdTii47GwetNcAISxCrjkngV5f4v1jxDaNHc2+ry/YZiVXyUEZRh/CSBk+xrg7q/urw5ubmec+sshf8AmalyR10sI5pSuV5MB2HoaZQTRWR6oGm5paSgQ1ulRtT2qNiB14+tMljDmqQfXV04acNWuBYgFRbC5fysE7iNvTGST9TWxBp13clPKtpirsEV/LbaWPQA45J9K2o/BGpvqSWUrw27OhdWlbrjqBtzk98Z6Ue0SdiKmF9rD2j2V+q+em7t1tschbQtBbJGxBZc9PrUhFej23w1tV/4+9RmkIIBEMYQfmc1qW3hDw/aO2+zWQofvXEhbPHXGcfpV2Zye3hFWXQ8hxjJpcc163d6z4d06dNKlWJHlIxHHb/Jg5AzgY5rN1DwZpV3F5tuWtZDgZiO5M+6n+hFPlZKxCb1POBS4ra1Pwpqul5YwG4hHPmwAsB9R1FYowfepN4yT2FFOpKWkWHanU2nUXGhaQg0o5ooKExS0GkoBi+9FJmigloUMVYMpIb1B5rV0zxJqmkXJns7hUcjBzGpyPTp0rIzS5osr3tqVzz5HTTfK910Z6Pp/wAVrhMLqOnxyDu8DbT+Rz/Out0z4laPcqI01GWzY/wTZQfn0/WvCs0bsVaZxyw0HtofatMmljgheaaRY4o1LO7nCqBySSegp9eA+Ifil43m1TXdItdF0S406O8ubCNZiyS3CoxUqo85WdtuM7B1PbIq35HBG11zbHX6r4pku5rbUJtGurXSrhVEN1M6AnJADOmfkXOfmycjB71cZki5kdEH+2wH86838MatrHjbwfZf2td2Nvp9pcGzRU3I8wRUcKwzggKw5HPy/jXQadd6JPHG8My7pZPLC4+Yt74+nesabnrzHdjFhmoujZPXa700te/V63tpttsdCdTslzifzP8Armpb9elMTUydwhtJGySQXYL/ACzSpbxpjCCp1X2rXU4SIXGoSdBDEPZST+ZP9KXyrmQYlu5D7Kdv8sVYCU8LikBVWxgQ7imW9TUg2LwqgfhUxHFRhST04p2C5SuPEOiWFw1teazp9vOmN0U10iMuRkZBORwQa5zxBNouoQLd2d4l40t0q7raUTAsF5UBSRnGDz/KuL8X6bb3PiTxVetp+n3dzBd6fFH9vvDboqPbyFsHzIwSTGnGT0PHWovA1v8Aa/CksYVY92ozAeW2dn7uPAU56duvT1oC56Td6bb6t4cksYkRFdN0RC42t1B/P+Zrx6WN4pnikUq6MVYHsR1r2TSJSlvGrcDlcemDiuZ8Q+GYbnxpp5felpqT7JWjwCrgHpkHrwfzqJI7sJW5bxex55U1va3F3IEtoJJn/uxoWP5CvaLHwd4d06bA0+OUhQd903mc59Dx+lbJlhtykVuFRUPzRxJgYwew4oUGayxq2ijxu18C+IrsbvsBgUdWuGEePwPP6VvWfwruHwb7VIYx3WCMv+pxXo8ruYXKx/KwJbccFRihUneL5pVU9ii54/GjkRhLFVH5HI2vw58PwrG8q3VzkZPmy7QfwUD+dadppOiafu+z6fZwupPIjBbAPXJya0liTyUMrMwccq7cDjsKjiCxBgqdWOCq44zxTSRlKpJ7u5majAdTthEjvHJHMs0ExTIRgeOD178e9Vbawv59SW91GW28yAMsccCttUsB82SeuOMdK2HDAHGBl93PPem7OuWYk9e1S4Rcrm0cZUhTdOO2vTVX0dn5rf8A4LKoj2uxklY4bHJwDwOcVHFFFG7ERg5OFOO2B3NW3VVxgAHI5qL/AJaDNaHI2c5qmlrc6xDqH2aF2gfapY88HPPryeK07i3QKgAIcY5HGenPvTpCDDKNy5Mx25b8+KsXAyV9MCgm9mVyXj2ZBYAjkdScelUtQ0HSNXfFxap5pHMsfyOPxHX8c1ohTwRzg5AP0oKo0ql124/Dn60FqVtjgdR+Ht5EN+mzpcqRkRS/I/4Hof0rlLuzutPm8m7t5YJP7sikZ+nr+Fe3oJFkXB3fLnB4wKJ4ra9Vre7hSSIjHlzICCfbNTynRDESW+p4UKXPFel6l8OdPufm06d7SUjdsb54/wDEfma4zVvCusaNl7m1Z4R/y2h+dPx7j8QKlpo6qdaEupjigUgwRkGikbC0ZpKKAFozSZpKBC0E0hozQIKQ0Un40xH2xXyP4zudLvfGV21zqrWEml6nexyRoj+bIPtUsoeJlUqH+cr8xXG0Hnt9cVw9/wDCDwJqeo3N/eaF5l1dSvNM/wBrnG52JLHAfAySelanjHl3wnsrO5+GM817Grx2+sTPlicD9xFnPrxWp4M/sy6guPs8W8faGlgaSEABScjaSO2f5V2+q+E9I8KeBdQsdBsfs1u3mTtGJXfLlNpOXJPRR7cV5p4CtzaX9uPn+a2Ky784VgScD8AP1pDR6KBzipFQ9cVWbUII5ymNx68U2TViSdkeKBGgqHvTi0Sj5mFYzXdzMeD+C80fZ7qQZ2t+JpXHY0ZL23Tvk+1UZdTbkRJj3NPTTv8AnpJ9QtI0+nW+QrpJICQVU72z6YHSjUeh5N4r0/xbceJ9YutMsbaSwvGglcTx20is0cWwMBLnGNzjgDrVTw//AGxoehXTzW5geK8MzMpULl1UALt47E4HQV6D/adrqt7FJLFcR20rrHBI0B8uVs8Lu9evGAODzWveaJZ3trPbSxkRT/fCsRz2YehpRmpfCzWth6tBpVYtX7nL+FdfTVLJ48LviP31BAbJPY9Oa6Se6jmNuzxF/s8yyqQeQR6fhkVBo/hix0GxkiiLSs5yXdQDgdAAPx/OhQcYHA9KbuZxZvW/2WQiRCrx7ernJDZ9+9WnG9kKqflbPTGeK5hLiS0ule3b94/VezD3rponMkasylWI5X0ovccr7gdzGQHaAeD37Um3jlmP44/lSj7z/UfyoNBJC+FZcADn+lRPzUko+dPr/Q1GwoHcgk6D6j+dNIp8vTp3H86aQc0xEEhzj6ioiMyCrEqHAJ6ZHNVJZ4o2GH3nPROf16UCexTYkIOUGZW5OMnmrVwfmFcOvi9J9TS02xnNwY84OR82PzrsHmDSdc0iU7kyHg/Wn5yD0xiok5H408/Kp+hpmiJY1IxtOOO/Ip5I3Mzr24PUcZpIzT3OI2+lAxioVl/dsRxk55H0qRp9ky+YCigEZ6g0BOcqdp9v8KXB80M65GMZHI/KlcDF1PwpouqKXltFimZyBLb/ACN1744P4iuN1T4danabpLCSO9iHIT7kn5Hg/gfwr0kxBtjoxDM3Vfx7VJK0ixbWXdkYLr/hRypmkKs47M8FubW4s5jDdQSQyjqkilT+tRV73dWllqsCxXUEVxDz8rrnH07g1xWpfDe3nMkmlXRgIYjyp/mX6BhyPxzUuLOqGKi/i0PODSVo6roeo6LLsvrZo1z8sg5Rvo3Ss41J0KSeqEoJoNJQAUUlJmmI+wfFmpXWkeFdRv7KJpLmKElNoyUJIG/GDkLnccjGFrnWW+8P6nodxb+ILzWBq1ysc9vI6OsqspJmiAB2IudxC8YKgkAV3EsUc8LwzRrJFIpV0cZVgeCCD1FZOm+E9B0i+kvbDS4IbmRi3mAElCc52ZzsHzEYXAxxSnCUpJpmGFxVGlRcJrXXone6sk29VZ6pr/JqDxjt/wCEYvS7bVC8n0HT+teCLd3DyQR2s8ds4z83Uueg3en04r6D8TRLL4evkZdwMRyPWvLbHQ7eQK8yKUj+5GBgL+HrWjPORQ07+1hcL9tNs6MQP3RIbGQM88Hk9M9jXZR2kKY+QMfVuarwwRx7QqABenHSrobcMmgGxRgDAAH0qjc6osErxRxSSyr1VRV3OKA2CSOvtTYijptxqNyZWvbNLaPgRANlj65qT+zbYWFxZorJHOrq5DZb5s5OTn1qaS4jj+84B9M80xXlmP7mF2HqRtH60tNmVGTi1Jbo557LWLvSodCubW3jtoxGkl2k2d6KRwq4yGwByeOD6iujdwoyxAA6k1IljcOQZJUjHooyasJp1svzOplb1kOamFPl2OnE4qVeyaSV29L7u13q3vZeXZGZI5uFMcCtIxH8I4/OmwaFcuAZHWIfma3wVQYGFHtxTDOgPXJ9q0tc5b2KMWkWlkjzANJKB95jUkJ3R59zT7mYmAoMBm4APU0yyVvssYddr7clc5wfSptYe44Al2H0pStSHy4WYu4BIHU1Xe6UZCIze54FK4WGyr8yf739DUcuyNS8jqqjuTgVDPNNJ/Ht9kH9TVJ4ZJOOdx4Dsc4NFx2JprmML8mXPbHA/M1UlvLo5A8uIdto3H8zx+lY2nWkX/CRXFm98ZJYAhRGz8x28+2Rxx710Ez2Vih+0XEat/dJyfyHNDfcqxgalcXVvE06wmVUALSyuSASQMbR/StG3sr2dD5yIhzwFPasrW76DVLX7JCrGMsGfcpAYDt61SOt6jaWkNok4RY1271UbiPr/hWbqwXUtUpPoVNf8KWWgwrqyx/vvPBRSx2lzk5PtxRo2tXd5O8F2FzsLo6+3bFZXiC9kuUgEjMzFiSWYkn8/rUGnziG7Q5/hYY/4CaanfVHo0MJD2Dk9zsDqc+z5FVfc8mtliDHkEHI61yelahc2uVe28yLPUjDD6GthrqSSISIBErf3uW/wrKFS2smcU6etoo24WzUrg7DWTpDubuVpWkK7Mbm6ZzWy/KjHTI/nW0JqSujGS5XYeqinAYxQOKGPyk+gqyGRrGrIrDIbA5HWiQOU2n5h6jg1IvCge1LTERMkc3y9O5xwQaig84ZYENGSeD97NTlVdvmHQde9GGQYHzD06GgL6WK3nRXEvluBsKkNHIByc+h61g6p4G0fUjLJHGbObd9+AYXp3Xp+WK33hjuZ28wZXaAFPBBoYOsTMr/AC85DelFky1Jxfus8o1XwNrGnKZYYxe2/XfAPmA916/lmuZYFWKkEEcEEcivoCKUBdjKU2jqen51m6noWl61KVvLRHYLkSr8r/8AfQ6/jUuPY3jimviR4fTa7vU/hzcI8jaXcrMi9I5vlbpnAPQ/pXHXun3enzmG8t5IXBxh1xn6Hv8AhU2OmNSM9mfaNFFFanlFHVI/N065j/vRMP0ry3TphE7JJIMN8wLNXrFyN0bL6givJHhgEzqYxwxFK1wRptcRKMmVP++hSrexkYjDyN6Iv9ajsbe1IJ8oE+prTUhRhQFHtTsx6FVVvZfuxJEPWQ5P5CpVsC3M9w7/AOynyipjKq/eYUz7STxGhb3PAosK5LDbW8P+rhUH1IyamaQLyWwKzp7oQoWuLmOFfr/jWedZtpGAtInuWJ2hycLn609EG5uG6XPyBnPsKjlumjQvLLHAnqxrltT1bVEu0tFzG7xlwsCjdjtyfoa5y+ivJbiVZ3kJiZX8yQ5ZQecYP5U9LXJlNR0O0ufE+lwAlZmuXxxtOAeccE8Hn0zWXfeItVbyBbQpbxTswVwMkgLk9f8ACsa1H2jVo47xYpoduVYDGxV+YjGPVj+VdJqGnCNIdsrBbaKUxhfcEj9ABU89mEbyZPpN4txKLkKQxhUlnYljk8cH1/wpV1SVdVvIp5yQs7BFXACrxgcdTWXZ6iIJehCtN5ec8cBSc+46fnXFeL9cn8PfEO7dcyW06RySRZ65UDI9+KyhrudE3HmaXQ9aEqsCy96Yz4GW4Hqa4+08RC7tLaSymDRzZ+bHIwOnsas7pJvmkdn92NY1aypu1rs0p0udXua2o6xbafaPLGVnnH3UGSOvPI9s1TPikX0CvbwqmBk55wf0rE1SVWVcNwp4x9KxljYEvbnEgGSnZvp71n7eUttDX2MVuWtVd3/eoSZ/M3sU6Anrj34FR22qIFEc4UPjhsdfrWha29xe2wLQMo6YPH86dH4YhkmDTO477VP8zWPM/tGui2EBzDnKKG5BJ61WkhaaQCONpPf7o/M1vfYLe3wqRA4GMnmo3IDfLgY7Ur2Fe5hyaALyWN7pgoQYCRn+ZrQt9KsrbBjhXd6nrVoyKvUj6VZjs7qZdywlAf4n4qk5S0QSqNKzehWkKhQoHUHnHAq3p1ojJ5zqMfwAj9ani05AczuXI7DgVdUKqhVAAHQCuinSad5HPOpdWQpgVkBXg1GA0bYI79O1WlJ24pcBuGGa6TEYkitwflPvT3HyN9KY0OPu8j0poZh8uePQ0ybE2OlJQrhyRyCOxpSMULUTGjqaDQO/1opiY1lVh8wBqBVYwYzlWHQ9fzqZjhSfQU2PiJR6AUCE3o42MMZH3W71XEbLI4gO3bjg8g1ZZQwIIyPeotrJ9w5Hof8AGncadiNrgQsS6NtZuWXkA9KiSKC7tDHcJHMpJyrgMOvpUol/ctkFWOSM9KiitUURyHKyhRkg9frQh6JHsdFFFBJFMMivHr+UxancpsztlYcH3r2GboDXhfieCW28W3kqRxtGZnJDHGcLnp68/qKTdmVCPMzesLgk4C/nVifUra3VmmuUULyQOSPyrkLGOWTUBLNC6RgACAPxnAJJGfStfWGit7NofLjVC654wDznp+VClfYUo8tyY+JoJY52sLZ5/JO1mc7Rk9PeqlprN7qbqJZGtkkVmRETaSB79f5VQ+xJBcx2cQBVnbGMchSDk4+uKvaujadf21xEESMSPEQBjA2/4A1rZcuu7M+bW43WFNna29wlsW3yYl8wb2Hy8AHvn3NN06G5s7BCg8yJX8wKTja2Av1yefSqr6vd6lDNbeQWhdUZ3AO1TkdSOnSrMd+IdIsZAyMssyDO4Eoc4b9Bjn1rnadzaEo8spM6K9RJNIluQnzrb+YueoI5H6ivPrq6vLzVpYpmKzTBIwccBA2VPH411Wpasr6I627HyxDIjDGCwDY49etZM9tGqWUsknkyTRqwbIHAIx1rphCPI3I5qkr7Ged+mXLRzXD+Y6biRk8McHB9AAD+Ndjc3kR0aWZ23osKPlT1GOtY01lHNo1rehmMrfID14YkH8OT+dZdzZzQ+G2t4p2WRGVXUtjKc5X+VZcnu8xpGXKuUWyWK7uJbJ5mDM25iDzyvJHvn+RrkviaS3iG0kPJaxjBJ6kgsD/Ku306KMlyIwAzebGwUk9Oefz/AMmuK+JNs8F7pjy5Mz25EpxjLBuf51lF6m7o8kLvc5/Qtcn0W7EiDzIWP7yI9/cehr2DTNctrzSDeQP5kSoW468DJB9DXhINaui61caPO5TL28o2TQ5wHB449D6GraTRnGTTPYJbSC5mV5EKhuSqn5R9alie0t1K2tuZjnGIVz+Z6D86bolxpms2Ec8DmSMjBBPzKfQjsa2GtU8sJGWUj/aJBrz54ea1Z3RrRZWhZ2UtLGsZ7KG3H8adJMsak+1WI9NnmALMsaH/AIE1XoNNtoTkp5j/AN5+f06UQw83voKVWK2MAefdn9xE7DpnGAPxNWbLRTdRpLcTFVYZ2IOfxNdBt4qGyGLdV/ulh+TEV0Rw8VvqZSrSewttp1nZjMMKhv7x5b8zSzHk5q0R8tVJq2sktDK99yoyZ5FMPB5FS8g0hw1FgEVuKkU1DtIp6tgYNCYEwNKyq3BpgOafmqERtEQOmRUTNLGCU/eD+4xwfwNWgcUhQNyOtFguRRSLIMgFT3VuopSKHhBGGGffvSDcvX5l9e4oT7ia7Ec3EL4/uml6DFDlJUIRgeQCPTmnGmSMNNJ7041FKcRufY0wEjH7lQfTmo2Qj7hx7HpUuMAD0FNakB65RRRTAjm+5Xj/AI6shcajfJFsF0CHUEffG3p+pr2Cf/V15J8QLiOx1+OWdUaFo1PzZyrcgHjt61LNaN+bQ5jw5qcdzfbJAfNeIbSVHA2Hv+ArW8QYlRvKf5onVWXHUnHFcal3DbLBeRyf6plDhR1w5HX6Gt5r1rzxPGpAMFxtJTtkA/41pThb3uxhKpzvUb4Vkm1PX3QnKWwbOT0HH+Fb/im1NzpkoUhSsqyZPbgg/oah8P6VDpd3cyxsSZ94I9MGtu8RWilDAEbQefWirJSloNR91pnC2UUa6Lqn7+R3VQFjU4GDj86juoLWPQLQWyIiXLMN+7c2V7E/8BP5Co0tWa5ZElAiaHL5YDD5IA+gxWs8ENr4fttOXL+UxjVlUYYjJJ569unepk9NDTD04yjZ7ljQLZLzSrX7Qo2wtKJMg5IODirOtfZUltzKm5Ej2oNuf89KzPC1zczanNa3PmRuhRtjY6bevv2rU8Txsx3JnoVz6fjVU9XysitBRvFEXmrJo9jboQS0qbgvYbhxVXxnZpbzBEmEQlzJkKTwOo/WsnRLh94iCsfKlAIIJGAc/wBK6DxxO8YtUhA3Thoxnpngj8OKua5Wome8bmTp17AsUaRM8j7WVQoGUweGIPPp+tcX8R5zcaxDJ5u8GPKgAgL7Cu40GeOG++wiNXnMknnyKSDgZIPsOcVw3j+Ly75AWZtjlMt1wQDXOtGdk0/Z3l5HGinD2popRVHMa+h67d6FfC5tnyp4kiJ+WQeh/wAa9s0DXbPXrBbi2fPZ0P3o29DXz8OlaWjazd6Hfrd2b4YcOh+649DR6gpWPoyJin49vWrKncQVNc14b8R2fiCwE1u2HHEsTH5oz7+3oa6BCV5B/H/Gpasa3uWDUFqBtkUdpW/U5/rUu7INQ2zDz7hAf4g35qP8KBFrJC9agkGetWguRVacY6UxFUimFfSnvz061HnmlYq4ZwcUpUEcUh5pwJGBSsCEBK08MD9aCAaYRjrRqgJc8UoqINjjtUisDVJk2HhvWkKA8g0lGSDQIiki3cng9mHUU3c68ONy/wB4f1FWN2etNKDqKB3IcbhkEEe1QSjKEeuB+tSvEckodjfTg/UVG8mAolXYcjLfw/nRfuICKjapWH5etRN3qiT12iiigZHP/qWrxb4wcX2nKAf3yEEj/ZOf617VNzE30ryP4rwq6aTIyghZXBJbAHy9zUs1oO1RHms0putNg06OVdyysjKq5JO4Y/Cuq0vR5/Ns7t8AwHY4I69uK5fQJY47+6uWB25Kkgd+1ehWt5u0q4eEbyHJAI9wf61p7V2aRzqHvWe5Dp90X1m4gXBjXcQffj/H9K1dSk2Wlw6kArETkjPQVyml3En/AAkMbFOXhYMufutnuemeK2tfv44oPIJ+aWM5A67azppydjapaJ53pV25vdQlgLOZOAyjLDuCPyq9BqVzNJcoWmkVQyAbcSDJDbsDsMD86o+HxaQ6rdM4AKAPF+HX8MD9ataXLFeavduXQLKHLYHHTtWjj7t0FGvyO1tGaWm6ir+JbaeN22xQHzvMwGPbH0FdemorqJuJFX90MBQR2x3ryixlePVZHjJKgGEknJwcj+eK9B05ZbWN1nASRoQ7LnpSSXI2Ovf21i9aQQw6VMI0VTkscdar+L5AbfTpG248z7xHTj9OnWq2mXUbtcRBi0vl7m54xn+man1//SNJsf3gT515Iz2JxWSbkxVY8sbGVoItVN5qDTfvpGKCRumP8ePXmuL8bTC7RrlAdrXPBPcbSP6Vv30Upmv5rdUl/ebWlPUOOoA6diBXO+KnRtLhxnPykjsMZAx+dVKLizX2kPZct9TjyOhoFC/Nx3p+0imcoClFFJQBo6Tq13o18l5ZS7JF4IPIYehHcV7j4W8UWniKy82I7J0wJoCeUP8AUe9fP4OavaZqV1pV9HeWUpimToR0I7gjuPagE7H0oOmc8evpWNbxa8vimRiLcaSVGTkFmwDjHcHJGe2BVXwn4rtvEVnlcRXcY/fQE9Pceq10wGBuXp6elJxtsaXuThsVWmOaHcqM9RUJk3NSuOxG1RmpiM5qEimIKeBkUwU4UAKDg4p4wRTaB0pDBkpnKmpM0cGgVwD5pc1EQRQr44NFwJc0u6mBqCaYhxwahdDjHUHsafnimlqYFVojH/qGCj+4eh/wpnnqzbJFMb+h6H6GrTgN7VXkXjDAMKWqA9eoooqhDZOY2HtXlfxThEui2bMCVS6BbHptavVTyK81+JULv4VmdCQ0UyMPzpMunLlkmzxyGRBf3YV1QsVIQjIIGR+ddLpWqMNFvnhk81kdMNtwTnjp9RWPYWcEt+7zSIrPEXDZwN27p9DmtiysJ7W6ntpkHlTxKylWzja2eaatYyb5puS6jrLVHl8RIZYkjjWNyXz1IFRvCNVvFnDnzW6ZJ6Gl1dUhvIJQoYMXU7mwAGBz+FUPDdz5F0z4eXcpRdoJ2c8E+1XSlyxbCdtFcz3sbmO4a4l4nnaQID1wOv6ZptleeVpjmOAlIwxdj2YjoK2tRuJPJhKhGdgQ2eoXIzisWVpUkuYrcqsW0SHIAJAwfxNZ68upKtGaM5JfsEyh9u5uG29VPBz+Gf0r0LUJYp7ydZJCEa3BLA44NecTzxlyUjymQAjE5OTknNegwrb3mlJJsP8AqlXryuBSvodtdKVqkepHZXUS+a1kombYY5GPGMYI/r0qpq11Jd6fp9qQVQR72bPRsf8A1jU9ksdnFc7mP+qBUZPvkj3rN0y5jvL57W5/eQ7dyrnG4Dt9eTSp7syrJuCM/wC1NFDcxjJmmnDmPt06+/UVMLSM6tbrJtmjZPJO4d8HgiqF0ZJ9SkAUJIH3HHYegqzDcIJbZl/5ZOrOf7xJAz+VXOV9zlT1Mjxd4dh0xEv7NPLiZ9jxjoCehFcykgYc16J8QmMWipbnqZVZvbGcCvNUHNDRoTMuBUZp56VEetADgTUqVEKkSkIvWN/dabdx3dnM0M8Zyrr/AJ5HtXtvg7xjb+IrYRttiv4l/ew54P8AtL6j+VeDk1LaXdxY3UdzazNFPEdyOh5BppjTPp4puXKjIPVaqTQFfnXlf5Vz3gnxrB4jtxBMVh1KJf3kfQSD+8v9R2rryN3zL+K1Mo9UaKRmB+x/Ol61LPb4y8fK9x6VXDY+lSmUxSuKBTwQwpCMGqJAUtNzijNAhTxmm5pSab3oAdTGTNLnFG7JpAR7ip5qQPmkIBFRHIpbAS54ppNRCTFLvBqrisOLUxjxQWFMY0AevUUUVQBXCeN4Fm8OajG5woG4/gQa7uuR8URCTTtRjKhgY34PfikyZbHhUsUa3EdxGjGKIkKI1AGTjAz6/wAsV2EjbprWT+8pX8xWRZLDcaaqBAYRMVxVi7leN7MRnCq+09/YVD3CCsrmJr1zvijRZAWMmwbj05wTVnSoptMhePeN8o5K84Az/wDWrI14CG9a3LTbtygkfdJ4rRlmktbXdudn27XLDqDjp6dPxq4yajyjnFOaSM24ujFe3IlLAKSoJ7VpWOlLcaVdXDTSDYCe2CSvOa5x5HaVrlzkGQHbjtg5r0mKKEaMEVAqSQksFGM5XnNXOzirE8nvPyPNXtBFbLEyASPIX3L6dv8APvXTWEp060mjadXiYjyweuf/AK9ZciI1oLjjzHbhc9uflx24p2ovO+nRwWkLbXKsj7cAgDqD698/WspN2Kw/vSs9i7qU+YgM7t0bDAIyvpx78/lWfpsrJqjmbkouB6buP8TUhuGt7QwhZpJCAojKjYTgc/h7elVo/OTT7qKZVLK5O7d3x0pw21KrJRloKZlOoy3SuQynjB/TjrzV22hlGiXEuzETfOu4jOR1xVHRtPW8upIicEDfuI5x2rqXtvL0b7Ozbm2nJHGSaK2kiKcXe5zXj9zJYRNnO5wf0rgF612/jFt2hWZJydqZ/KuHQ1bAlJ4qPPNOJwKZSAUGpUNRU9aQEmaTPNJmigRZtbmazuY7m2laKaNgyOhwVNe4+CPG8PiKAWt0Vi1ONcsnQSj+8v8AUdq8HU1Pb3EttOk8ErRyxsGR0OCp9RQnYL2PqMru+ZevcetUp7bOXjHPda5bwL47i16JbG+ZY9TRfoJwO49/UflXcFQ/I+9/OlKPVGsZGKCVP9KkDBqs3FtvyyjDjqKpcqcEYNJDZIRTOlODZoOCKYhM0wtS55prc9KBBmjNNz6UZpAOzSHkUmaaaAGstRk4NSk5qNuaVgEDUhamHg0zf2NNMR7PRRRVgFc3rse9rmM9HjI/MV0lYOsj/SvqlJiZ4nYyRW2jlWIULKRWPqGqxrNM0b8hgRkdadMzR6pdwlsCKZsL75P+FZeolQ5XCqjkuV9KucEtTNy0SGa7drd3azoHSTCuyN7DnArRluLeCZCDi3lTftB6t0rLSPzo1MmTGqDAK89O/tz1p0V007pIGAZdoGfujjgClG3K7lODcU0WNOihOtwxrCxtt43eYfUdD+Nd9vDWgVSNpUjivPZrVZLqWF5hvfnI/vZ7V0+gXSRW409nLPGvAala8b9hwfcde2KDw580KRTbVcgKBhunauUklu7WwimyGjRXQKTwc/5Nddr5lXSZXjIZgQSB/d9K5DULpZNIgsgrCQuTgDOfSqSvTNKatVSYlnel1jlEhWQZD7ugBGB9B2pfMzaXTq+djK2zA+ZSP6GpY5I3togCo2nBQE7gR2P4fyqnJMImkiACCQg5A56/y71MGvhZVSjy6o6nSZrczr5TRCR4huCkZrUcZjI644rjXs1Mdtcw/u5FTBZOPxNdJpt59piaJnVpUAJwOtTKOnMiYy1sct4tOdEtx/dbH5EiuJWu28VKX04oOqy8fzrih0quhAMabmlY02gQ9WIz7jFOU8UwU9aQDs5ozTc0oNAh1OBpopaQEsU0kMqSxO0ciEMrqcFSO4Ne1+BPHia5GmnajIqamo+VjwJx6j/a9R37V4gKejtG6ujFHU5VlOCD2INNOwJ2PqkqJBkcN61VntxJnjbIP1rhvAfj9dWEel6pIF1ADEUp4E/t7N/OvQyVkXngjvQ431RopGIwZG2sMEU4Hir88AkGGGG7H1rPdGjbawqSmHWkIxSClzTJYwim57GnmmNQITOKUnimE0gPFAwb1pmadnioyaQgbpUDipGaomagD//Z", "path": "images/5pts_ADE_train_00002747.jpg" }
depth_point_93
images/3pts_ADE_train_00007923.jpg
ADE_train_00007923.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 191 y = 184),Point B is located at (x = 151 y = 187),Point C is located at (x = 281 y = 182).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_35><DEPTH_75><DEPTH_38><DEPTH_63><DEPTH_14><DEPTH_23><DEPTH_121><DEPTH_119><DEPTH_5><DEPTH_70><DEPTH_38><DEPTH_45><DEPTH_46><DEPTH_33><DEPTH_57><DEPTH_40><DEPTH_16><DEPTH_119><DEPTH_67><DEPTH_40><DEPTH_58><DEPTH_36><DEPTH_64><DEPTH_80><DEPTH_0><DEPTH_42><DEPTH_121><DEPTH_8><DEPTH_5><DEPTH_59><DEPTH_29><DEPTH_64><DEPTH_19><DEPTH_66><DEPTH_9><DEPTH_1><DEPTH_42><DEPTH_98><DEPTH_5><DEPTH_59><DEPTH_74><DEPTH_64><DEPTH_64><DEPTH_19><DEPTH_41><DEPTH_57><DEPTH_42><DEPTH_98><DEPTH_5><DEPTH_67><DEPTH_29><DEPTH_64><DEPTH_25><DEPTH_19><DEPTH_41><DEPTH_1><DEPTH_42><DEPTH_121><DEPTH_31><DEPTH_3><DEPTH_59><DEPTH_74><DEPTH_25><DEPTH_19><DEPTH_41><DEPTH_1><DEPTH_42><DEPTH_121><DEPTH_74><DEPTH_64><DEPTH_29><DEPTH_31><DEPTH_72><DEPTH_19><DEPTH_41><DEPTH_1><DEPTH_42><DEPTH_121><DEPTH_64><DEPTH_44><DEPTH_44><DEPTH_64><DEPTH_49><DEPTH_38><DEPTH_2><DEPTH_1><DEPTH_16><DEPTH_12><DEPTH_25><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_64><DEPTH_76><DEPTH_3><DEPTH_1><DEPTH_32><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
3
[ "B", "A", "C" ]
<DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_35><DEPTH_75><DEPTH_38><DEPTH_63><DEPTH_14><DEPTH_23><DEPTH_121><DEPTH_119><DEPTH_5><DEPTH_70><DEPTH_38><DEPTH_45><DEPTH_46><DEPTH_33><DEPTH_57><DEPTH_40><DEPTH_16><DEPTH_119><DEPTH_67><DEPTH_40><DEPTH_58><DEPTH_36><DEPTH_64><DEPTH_80><DEPTH_0><DEPTH_42><DEPTH_121><DEPTH_8><DEPTH_5><DEPTH_59><DEPTH_29><DEPTH_64><DEPTH_19><DEPTH_66><DEPTH_9><DEPTH_1><DEPTH_42><DEPTH_98><DEPTH_5><DEPTH_59><DEPTH_74><DEPTH_64><DEPTH_64><DEPTH_19><DEPTH_41><DEPTH_57><DEPTH_42><DEPTH_98><DEPTH_5><DEPTH_67><DEPTH_29><DEPTH_64><DEPTH_25><DEPTH_19><DEPTH_41><DEPTH_1><DEPTH_42><DEPTH_121><DEPTH_31><DEPTH_3><DEPTH_59><DEPTH_74><DEPTH_25><DEPTH_19><DEPTH_41><DEPTH_1><DEPTH_42><DEPTH_121><DEPTH_74><DEPTH_64><DEPTH_29><DEPTH_31><DEPTH_72><DEPTH_19><DEPTH_41><DEPTH_1><DEPTH_42><DEPTH_121><DEPTH_64><DEPTH_44><DEPTH_44><DEPTH_64><DEPTH_49><DEPTH_38><DEPTH_2><DEPTH_1><DEPTH_16><DEPTH_12><DEPTH_25><DEPTH_44><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_64><DEPTH_76><DEPTH_3><DEPTH_1><DEPTH_32><DEPTH_END>
191
184
151
187
281
182
null
null
null
null
130
96
215
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDP28Zpu3HFWpYWiYxsPmU4NRFa6GjiRDtBpCv5VKRx0pO3Ss3YsjwMHPao5f3cYOAS33V7mraRkq5VN7qMhe341XWFky8p3O/Jb+g9BRZpC6ldYSp3P8zH8h7VNAo89SzhAO/pSkHOSaTAzxURVtWVY0dR8Tu8S2lgpjiC7DK33m9cVjxoT1yT79ajC/vWPqauwRZ7VEpSm22NRsT28JNaSW2V5FFlb7scVsLbAL0rFs1jG5jPa47UwwkdBxW01v7VVkhI7VSQMzdntT0SrLQ47UBAMVsjNiIvNTqMHrUQOD0pRnsK0TJsWkfFW4Ac1VhiLEVqQQn0qgRctYySK6Gyi6VlWsXK8Ct+yj5FFyjUt02qKsdqZGMKKjuLyC1UmaVV+vWspPuawWhPQSMVhz+I4xkW8Zf/AGmOBWZNql1c/flwvonArNzXQrU6WfULa3+/IM+g5rNuNbdvlgTaD/E1Ye48+/WlByRWbqXHYsSzSSNukdnP+1UZbmkAZugJqZbV26/LUWbHohoPYUo3HoDVmO3QcnJokuba2U+ZJGmPfmrUH1IbRElu7e31qZbZBjcSfasy48RWsZxEGkP6VQk1y+uOIlCJ6jj+daqKQtWdHMiLbvtUZ2nBrNJPfrS6VJJJpUrTSeY5z82c1GT/ACqZ7KwRH5OaZknNKGwKbnmpQwY/K30/pXNN94V0Tng/Q/yrnW+8frVoSQpNRseae3Won61LNEY0kZ9zUJi9q0HSoSnNd7RwIpmPimtHjtVthz0phGTjFZyRaIoI5XYxQk75Bt4ouIY0yMnzM4xUsbvDIJE4YdDTCCTk8n1NF9LAlrcqGPHHWmFORx3q2U4puys7DM5Y8u2R3rRtU6VDtxITWlZxhmHHesmUjX0+DIBrYEACio9OgHHFarRACsG9TqhHQyZIcDpVOaOtWcVnSqSaqMhSiZ0w64qERl60JIc9qVIQBW0bsyaKiW5NTx2/PIq2qDFPCj0NWnYlobFEBitCBKqCSKL7zD8KDqDD/VKAPU0SqxQlBs37famC7BQO5NWv7ctbUYQGVvbpXJNLJKfndmHpnipo8AdePSsZV29jZU7G3c+IL2cbUZYVPZetZzyu7Zdmc+rHNRICxGB+VPdGjOGBB681k5Se5cYomQ8VIrE9TmoEPHNSKeM0hsnyMVYtkRgxcZx78VTJ4q7ZKsiSIwyGGDVwWpEth02o2dpndKoPovNZk3iRd223gZj6tUEumJ55SMBT1y3PFaMGhwJzLIz+w4FOpNU9SqdH2hjS6lqFydpkCA9FUf4URaXd3TbjHK/ux2j/ABrqobW3gGI4UHvjJqyG5rmeJbOhYZIwLfw3JwZJI4/ZRk/nWnDotpE250MzDvIT/Kr4NBPNZurJ9S1TS0sV7lVSGRUjVF2nAUYFZBrXuOUf/dNY7H/P4V2Rd6aZyTVptCZwAKTORQT0pO9NEWBvuNx2P8q54/e59a6B/uH6GufYAt+NaoSFfqahflqnccVBJw1RLY0RC6VAyc9K0HSq7LzXos85MpsnFRFOauMvBqIrnjFZtForbKbtxU5TmkxkVmy0QkZFNKVNsJ5o24FICoqfOfrWpYR/MKohf3hrY0+P5xWUio7nTadF8oOKvuntUOnp8taDqNh71zSO2GxjTJgmqUiYPStGf75rLu7qKE/M4J9BzTjoRMhk9BURIVeSB9arTXzycIuB71VLOxyzE1q6qSsjDluXnvUXhfmP6VE9zLLxuwPaqoznoKkFYuo2XGNiZV75NToCx4Gc+lNtlDSoGGQTU1xqUNpuQROxQlcKv9aSV9S27FiO1c43YUe/WrqwwwrukPTuTgVzTazfXDGOCMRj1HzEU5NK1K9Ied3Oe7NgflSckhqMnsbx1mxjkWFJA7sQoCDNW9QP75c9di/yrGtdCSB1d5MlSGAUVr6h/r1/3F/lVKV0PkcXqRKcipAe1QA1Ip9aBMnzxV7Turf57VnA8Vf04/M3+e1VD4iXsSyQKQ0wHzZ21YU9KZn9w3u9APSssU9EdeFWjJgacDzUQNLmuS502Jg1Gc1GDxRuxQ2Fhsp/dv8AQ1jsea1X5R/pWU3NehT/AISPOq6VGJ069KB65pD60matGYrfdb6GsAjB/Gt5uVOPQ1gnk/jWkdhICe3vUMhzmpjwPxqBuc1DLRcdPaq7KKvMAKrOvNekzzUVGUc1EUq06c5qMioZaKzJ1pm2rJUGmFaxZoiuVxRtqYqKaB81ICsF/e/jW1YL84xWasRaQ8cZ61oQyNEMAgH1rGTSKW51dtJHBFukdVGO5qre+IrdAUgRpW9TwBXONI8pJlYt9TUMp2EA8FhxnvXO02be16Imu9TubhsM5VT2XpVQguB1/Cm9eKmaWaO2DQxq+SQSe1JKxPM2xFtpG5IK/WnmKKEfvXH4nGabbaXr+qgGNBFGf4j8orXtfAPPmX16XYDJWMY/Ws+dJm6oyepl3caxXG1BhcAio15qxfgC4AHTYuM1XQ035EFq1/1yfWtnUbJXmSUrmNid69s81jW3EyfWux2CS32Hvnr+Nax2DqZUUUcKjy41Qf7Ip5P+TUUbhgVH8JxUmc1zN6netgLUmoH9+n+4KaelLf8AM6f7grSm9GY1viRCpp4NRA9qetaGLJgeK0NNPzt/ntWbV/TT87fX+lVH4kQ9i9/yxI/26YDwKcf9Q3rvqvE+Tj3rHFHZhdmWgaM1GGx1NM8+NfvSKPxrjs30OptLdlgH3oJ4qqb2Bf4s/So21GP+FSfrWipyfQl1ILqXDna30NZZI3GrsE5nidiuODWeT8x+lehCPLTSZ5tSSlUbQZpO9HammhEgx+VsdcH+VYh9a2j0b6GsMj+daR2JFPvUTfeOKlPX8KhbIb8almiNFzUDnmpXPFV2Nei2eYhrGmcUySdFJ53H0rNOrgMymLGDjrWM6sY7msVc0TTCQOpxVAaoXHEe3HvTklaU5Kn61zPER6F2sWiw7GhevTmooyGYDse9UpfEUEUnk2tq803bIxzUSn1CKb2NccNzS+YibmdsKBmqsM80yRyzqEkaMFlHQcmplAlSROMFam/UdtbFGfxHbplbSB536fIMc022e9upTc30SxYGI1Az1qa3iSzm2hVBP8WOtWZ2yo5rndR83KdPskocxED1rT05BLBIjDOVI+hrKBzmtXSCTG/0NaJmcPiOs0v5LRUPY1o54P0rLgbbDH7irqyZX8K4Zu0z01flOE1L/j5H+4KrKCKs6ln7Qp/2RVdOprqbucTWpZg/1ifWuzQ/Iv1rjITiaP6114mijiXzZUU+5rWL0Jtqc/HPsupF/wBo1cDZGaxpH/0mRlxgsTVuO82rjBJrms2zt54pbl5jmi/P76P/AHBVJbp2IAUDNW78/vIh32CtYRaiYVJpyViEGnKfeo6VetaGbLAPFX9N4dv89qzQflrQ0w/vG/z2q4boiWwyXU5vnjXaBu9KrmaTIO7B61E7fvZPXJpAScUmk3dlRcktCTzGJ+ZifxpB3NNAOeaCQv3mUfVgKLpB7zH5oDcUxZY34SRGPoDmnKcrirTT2Jaaepp2R/0eT8f5VUb734VYsP8AUSfU/wAqpk5Y1cvhRMdx2cCmkk4pcnvTeazRQpPyn6ViZ5rZc/Ifof5VjMfxrSOwuoE8ZqJjlqfnj9aiY5qGy0W7iXbC7jsCaxluZro4yR6Ba0Zz/oko/wBk1zF2ssllIsTujjByvp6V04mbjsefTVzUkdVIXerPnkA8j61iuf38n+8aZpmEkbg7scknmnP/AK1/rXmznzxudUIcsrMmhciUgAEgAgGq8Go30upQwySJFHu5RB1FS2//AB+qOxHFQ3YEet2hA+8RUJmiim9TfhbEiAcdxWVrMX2GSG6i4D4J+uK0I2IZc9mx+tVPFJxp1v8A7/8AjWstYmVPSRet5hLawSDo0ef1NWbdsu3+6aytMb/iUWueDtPH4mtC2cCUlicbTmhNrQJbi3vHl+vNM8zeB7Ul3MkzLsyAO9RjCbcHO4ZrJr3rnTzpw5SYHFa2kMAjkkL15NYqt71YY/8AEvb3cfyNaRtYx2Z1zanZwRRhrmMHbzjmof8AhJrKPOPNk9wOK41eR0/SnAkcdAKydON7m/tpWsa2ondNG2OGjBH61WSpr778J9Yl/rVdDVvcm+ly1Cf3in3q1qx/4mBH+wv8qpwn94o96tavn7eM9TGvP4VotiXuVhzUinHBqIdRT+lTcdiaM4cH3rR1DPnRH/YFZan94B71pX/+ti/65iqTfKwsuYh3U9TUWePpTl4HWhsomHQVo6Wf3h/z2rMB+Wr+myLGzO7YUckn6VpDdGc9ii3E7fU1w2qeOZdOujbGN3bGRs47+9dsXV3MinKsSykeleT60E0/xdp8kgLx+Zlhxz859aapxnPllsPmtG6LU3j+/lPyWj8nA3Mf6CqU/ibX3UubMxpjcWaF8D3ya7q9jnniSFdPhQlhscuowynOOB34rN1u/urfwrqAuIIGFwMkCQ5Tp049SK9GOAoWuYfWJXsi54QupruzsriZgZJFYuVGAefSutU88dK47wSgGjaa2edrD1z1rsF6k5ry6as2vM6ajvZmnYn9zJ9T/KqZ6nmrlj/qJPqf5VnTh/LkET7JMfK3XBraXwoyjuSk8ZzSEjPFR28u9NkgIkC5YnofepCApx3qShGPyH6GsY9PxrYb7jfQ1jHFXEXUQmozwalbA/GoXIz1qGaIWYn7NL/umsKLJUjNbr/6hx/smubZiInOccdfSt8WtEedTKNkfKeR25DMcD05qVpRvJx1pC6SYZGBU9MUw15Erp8qPQilK0mKLlYrmOU/dUHikv5A+p6fIvRsfzqrMcjipLkZn03/AD3pJu5pyq90bSyET4z/ABf1ouJjJKyOdyqxAyOBVct/pLH/AG/61Q82aTVbh1uQ1uSwjQD2BzW0LtHM1qbpYCCLAwMEYp9u2Xb/AHD/ACqCRv8ARYfcmmCYW6tI33Qp/XiqvqhPcXfxj2qV24hI7r/WqYbPtxirLHCQH/ZNJy3LprUkRvyq0W/4lsns4/lVSMnDBmAx096ju5WjggQE7ZJsHH0pqwnuc02oa5cySrbLEIllMfmbu47Yre0ueSXT7YzHc5hG767jmuciuZraS7j8mJw07sGdjx2roNJGNLswGDAQ9R/vGtq9OMacWiqbu2mdNqGMwf8AXJarx88ggj2ORU2of8u3vCKrQMqOyBOvGewNZP4hrYtRf61M+op97epeXjlFIEeIzn1AFRQn96n1FVxbS2t7cLKT8771+hAqo7O4dUWVNSduKhU9qlXoKgokT7wJ65rUvvvxf9cxWUn3h9RWnfn5oR/0zFWvhF1Ksod4sI21sg/X2qVHDxk42suVI96hJJXG7BI6+lNt8ASEDlm556nGM0LzHZlwdvellcrpd2QM/L+dMDdvSrlnClxHNDIuUdSCPwNaU/iRE9mY+nSeZptq6jAaJTj8K888VWgu9ftx9o8nbGWDhC3IY9gDXpMUYiQRoMKgwB7CvMPGt1PZ6zCba4eJ2hJJjOOCx61tRX737xP4CWSbVbhYnfXLlijZHl2knB9elM1Bbl7OQajrOp/ZmXBLWbBB6dR64/SqsOheLLy1juIjO0Uq7lJnHI6+tUNS0zW7K1El+0vksQPmkz1Jx/I160b9jmsrno/hNY003T1hkaSPBKuwxuH0rql4HFct4NT/AIkmmMDn90SfzrqV6frXiRVpS9Trl0NLTz+5f6n+VUycOT056+nFW9PP7qT6n+VU24Y/WtJfCiIblQeZJqEEjfu/LDxtGc4bcBg5/Crhz361FPyo9jxUh7VF7qw7WEf7jfQ1jd62X+4f901jY6VUQEeoycVKy81EecilY0QN/qn+hrk70v8AZJFQZzkN9K6sHII9jXKznMEw/wBk/wA66MVsjzaZUsnV7SNlUAdAK09PYAvkAjg8jNZGnyCSzjYADHGAPStWwyC4BwcDmvPik6+p26qnoVtX2+ahXAG3sKq3JKnTM9c/1qxqw2yLkg4XqKq3jfutNb/a/rUVLc7Nqfwo1ixW4Yer5yOo5rHigkt9YeILmNAUMhPXIzWq7f6Q3+9WdcztFr8sasCrAsQR/s1VFptmEom5L/x6R845I/So0iW4QwvkoynP4c05j/oURP8AeP8AKltT+9Hup/lUN6ofQhVQOKsyAiKD3BqqpzzVqU5gtvoaGtGVDRgFGQe9WSofTpSVBKupHsaqqcL9Ktocafcf8B/nTi7CaOIj0gX9zfyyzTxhZ2SIJ91jXR6NG0ejWaMCGRGUg9RhjXN3M00EtyIZbwZnJKRHC/Wug0iV5dLti4cPtYtvbJzurrxD/dRFSvzM6e/6W3/XEf1qogPJzVm9bMdsf+mQ/marBsVyS3NYrQsQEhkHuKt6vxep7xIf0qnEfnU57iresH/TY/8Arkv8qtfCyXuiovepgc1XVsZqQGkhkyffH1Fad/1gP/TMf1rJTO4H3Fat/wD8sP8ArmP61XQOpVXtmnINi47E0wGnDkCkWyYVpaTzK34/yNZgPU1paUf3jfj/ACNaw3RnLZmcc7m9cmvN9esYdW8dWtndSGOEwYZgwG3gnn8a9IPVvxrzTWv7Nl8UXQ1ND5awpsbB68ccfjXThleqRU0gdoqR2dlb21vrqMkShFzt+UAVm3unQaxpBWfUZJYgobau0EOpY/1ri7seGLe2aS3heebcP3Ykdfl9evNZrXmiYbGlXCkkkZnzj8xXqSbRyxitz1Dwcu3RbEdwhHPXqa6QHBOOmK5zwkyf2TYeWpSMxkqpPOM966IdSPavE+0/U7ZbI1NO/wBS/wBT/Kqj/e/Grenf6l/qf5VUYgsRVy+FER3EI3UHk0o7YpD1qEUxj52P9D/Ksv0rWfhGPbBrJ71cdhIaxO6ojgEVK3WomzgHNSy7EanP61y0/wDq5lH3trAV06EEiuZnzulBxgFq6MVsjzqe5maRvWxCyH5gxBBq6zbeMt6cVFCoRSB/eNK7Z/OvHm3zXPQp6xK87/NgnjHei9OLTTz/ALf9ajm6nFLetnTbE+kh/nRBm1/dRqyN+/kz/erKv2f/AISg9AgjJHvxWlIwMzk+tVtQty+omVDg4AP5U4S5WzFo192bGP8A3v6CltSTOo9j/Ko8/wCgJz/F/QU+zb/SU/H+VPqibaEKmrch/wBGtj9aok89OlW3P+jW3/Aqbe44ascp+SrUZzYXP/Af51TUfL1q1Cc2d0PRQf1pqQ2tTz/VbuJLq5idZWxKSV34Wum0Bw+iWrKmB84xnOPm9axL7STJqTTrLAH37tshJyPp0rodMxHYRRkQrIrPuWI/KOR0+tb1akHTSQ6as2dHfH91aEf88v61XByKmvDm3sz/ANMv61WU8CsZblR2J4Sd4+tXtZOLuI+sK1QiIV1x61d1n/j4g/64rTj8LE1qimrcGpFb1qFT796kB59aEDJlbkf571q35P7j/rn/AI1jKckVrX7YEB/6Z/41fRiRXUnHSpFPrUUZ4p6nmpRdybdwa0tK/wBY34/yrMHStLST+9P+e1bU/iRnP4TOc8uPrXnd5NdxeJ75ra3S4HlR7o2cKQcde+a9Ck+8/wBTXj/iDULmy8T3cltKY3O1c4B4A+ldGGlarr5kyV4M2LqfWJLdooNJSKVTlJGdHwPTkVmmbxIhdW0+FieubeM1h3eq3l8iJPMWVCSvAU/p1qBbmdR8txKp9pCK9GVW/cxjGx7D4S3f2NYbhh9jbhjGD6YrpM85rmvBzE6FppJJJjYknnvXSLyT9K8hO8n6s6ZLY09OP7iT6n+VU2++1W9OP+jyfU/yqoSd7fSrl8KM4big8Cl600HjBFLnPSoRTGy8RPz2rJBHetWTIibPoayhzWi2EIxFMY8E+lOI4ppIx9azZZUQ81zkwAmmGf4mroYzXO3BxdTf7x/lXTivgPOhuU/PSNGZyRjktjjmhZPMTdxg8ighWiIPIJpuCo2nqBjNeNPVno0tiCQ8nmi8OdJtG9JSKZKTS3RzokJ9JacDVmm7fOfp/Sn3RxcNx2H8qhJ/ekf7I/kKku2ZbjcrFTtXkdegqWYvYt9bLB4YOMj0p1l/x9R57mo1kkey8yRtzsw3GlsiftcXucVb3QlsQsfmI71aLZsrU/7TCqjlRKwZ1T5iMscCrMksQa1tUlVwSzGReR07U97jjpqPB4zVu2ObS7/3B/MVSPBxVyz/AOPa7H/TL+opRZUjLks0mfeW5x6VJb2wt87SDu68VKDn6U7PNU9wRrXZ/wBEsj/0y/rVcHiprn/jxsv+uZ/nUA6U2xrYmiPzLV/WT+/g/wCuC1nRn94tX9Y/19v/ANcFqo/CxS3RSTpT1qJfY08fdxUpgTL94fWta/8AuW/P8H9TWOpwB9au6/qFrpenpfXsvlW8aDe+0tjLYHABPUitEroXUE61MvBzXL2njrw5d3UVrBqO6aaQRxr5EgyxOAMlfU10wzt60rNblMlzmtLST+8Prn+lZYzjrWnpH+tb/PatYfEiJbGe2Nz56c15Zqejz3OqXdzc2c1wHf5GgkAIHTGDXqR5dvqaxr6L/S3YAjgdKvmlCXNHcE1azPLbrRbuKYNDp155Y5xIuf5VsQ6tpv2hRqPh1UTZtyA3HuRiuwWLGDub86kUFSThW/3hWyxdWOtiXCm+pP4YaJtNtGgUJHtbavPFb6nH5VkaZuFwBhQuDgDtWoCcmsIXbbehcrbI1dO/1Eh46n+VVCcsatadxbS59T/KvJx8VtRfT21FfCF0bJTg3InYxg9OW8vHXFaSTaVjKJ6f6c0fdIrI8Ma3/wAJF4ftdV+z/Z/P3/ut+/btdl64GemelazHmpKGS58tvoazFJAHFacvMTfSsv0qkAN1NRE+3IqRuTgVGx/nSKKCHmufuf8Aj9mH+0a3UOccVgai4hvZ3IyF5P5V0Yr4DghuVgeMUyUkA4pY38yPd2OCKa/3a8ae56FLYqy5p1wc6EvtNTJDgE0suP7Bcek1VA0kaOf36+6L/KpLs5lHuin9KgZvmjP+wv8AKpbn/WIf9hazfUiRbjP/ABLgPRx/WltT/pkWP79Nj503/gX+NJat/pcX++Kb3RKRFMcSPkZ+c/zqzAqrY27qAGWZsGqtz/r5B/tn+dW4/wDkHQ8dJqFuy4IM81eszm3uh/0z/qKz885q9Y58q6/65Gin8Q5ldTQl3bW8jNdJLsQ5JVcgjAx+uaaO/FI2GKoQCOpz3qmStjYmkVtNsXTJUo2M9cZqAc881NMMaXY46BWA/Oq444qpblIx/F9zNbeFb2e3mkhlTZteNirD51HBFc7dw3mn+IBCvirU782OsJp08V0Gj3/OwJT94+5fkIOcY3L61u+N/wDkTr7/ALZ/+jFrnL3xzL4l1q2g8u9SG51mO+KXd79oELbmASL5F2L85yOc7V9K6aK9xkT3PRl4qRTn8KiFLLIsUTyNnaqknHYVgUWV+YD6is/4mBn8DTKoLMyRAAdSfNWr1vLFNEzpPCAF3KC3zHjPSl8Zaddap4cFpZTLFdOkbRyMxUKVdWzkAkdOK0pyJaPOb3TLC31bw8bCSzeTTtRh0+8NtGyneCpDOSo3MzrPyCeFUZ4r1cHAryvSPAHiCz1W2uJdQtWgW6iuJ0WaQ+YUbOSNuCeWxn1PrXqQq6klJqwRVlqSVp6Qf3jf57VlVqaR/rG/z2pU/iCexQbhm+ppCATkgGgn52z6mlAq3uTbQb5MTHlB+VMa1hI+51qcGlxlaBEcVskLqycVMBSDGBQvWrvcDV07/j1f6mvnS8Y3Edvqdnq9rbWkekLamLzkMquIdkkXlZ3fO+5twGPn3ZyDX0Xp3/HrJn1NeYn4PeHtxH2zU/8Av7H/APEVd7JExNf4aH/i32l/9tf/AEa9dZnJ5rO0PR7fw/o8Gl2jyvBBu2tKQWO5ixzgAdSe1aAOetZX1LGzf6t/92sw5LAfjmtKTmF/pWcRz+FWhCN2qNhk1JkAe9Rscc0ijJRvlBrC1HH9pyqRkHFZDeNwFxHZnPqX/wDrVRfxE13e+a8Kx7iMYOa2ryUoWRxRhJM2EI+YDtTX4HWmDKX8qc7Nm4fnSueMGvJmtTupqyK8h4pzndos/tIKjlyOKeM/2LdcfxinFFyLRbIhJ7xr/KrNwfmiPHMYqkDmGAj/AJ5rUpleWUhuAgG3jrxUPdkvZGlD/wAg1vZv8abbErcRkf3xS2/OmSH3/rTbf/Xx/wC8P51L6AhtydtzN7Of51ahOdNjI7T/ANKq3ny3kwxn5z/OrEPGmp/18D+VUt2Ebhk8Vesf9XdD/piaogfNmr1h1uR/0wb+VTD4i5FUHNLj593tikB5NAOapk9DXm/5BVn7bh+tVc1ZlI/smzJPdqqqRnFXLccSTzEjUvIyqo6ljgCtHVXV/sjIwZWhBBByCMmueu/LS9iluk32yoQPl3BWyOT9elWYECzTyQRNDZysGhVkK5+UZYZ/hJ6f0pQnrY9CeCisMq93tfbTe3Kn/Mt35fJuypqTgoQRnPGKjUc+1Sd61POKY023+1oYl2NEuOPetrWb0wCzt4YmuLl4SdisBgA4ySeg/qKzoNxnlb3Aq/rNnMZbO8tXjW4WAxsJASrruyAcdMcnik7qL5TpwipOslV213va/S9tben4bkNjdi5EitG0UsR2yRsRkHGfy9D3q8tZ+n2rwNNNO6yXEzAuVGAABgAew55rQGO1EL21FilTVVql8On5a2vra97X6D88YrU0c/vG/wA9qy+1amk/6xvx/lW9P4jknsZzcu31p45P4Uwn5z9acOuKYh3SlBNJ6UvGT6UwHKOQOvtSgcH2qpdajbae9sLmTyzPII0JHGTU9lLJMW83ywpdljUNhhj1FJzSdgsyS81KXTtJT7MqNcXNytvCZASgZj1bBzjAPTvis2Ge+sNVt7K9uku0uVcxyCIIysuCQQDjGPxya2ba1g1LSbu2u4/MhaRgVyVztII5HPUVQstJgsZmn864uLgrs824lLsF4O30xkZpVIz5k1t/Vzvw1bDxw8oTXva9E73XutS3VnuuvnfTQxkdTR0pR1pD1rQ89jZSBA/0rNOAc57Voy48hz7VnAc5xVrYBCAaikFSmoHJ2n1qWUjyFdIUryx/E0+XSgVXBCke9aax4HTPFMkhYn7h+vNcrqMyTuJdXu24WQKGbZsIB96iOoxsWG8Lg4IPrTJYZeDsH1rMnspDKWGOeTTioy3NL9jQe8gKkGYE9q17koPDckq42sAciuVFhNn+EfWugeaIeFRZtIvnhMY981UoRWw9R8Mga0tmU8eUKuzHEUB7lOfzNZVq8Ys7WIuvmeVnH4mtacY0yKUjlAf51hOD5nYbZbtedOm9jmmRE7wcdGz+tVtMvobiwuERwHC7mX0GRU0RBYZPBbHFZSVmkxx1EkuFuZXnUYDkkA1ajJ/swf8AXwv8qqzQpbTPEgO1WOM1YjP/ABLGPYXCVS3Gh/er+n/fm/65N/KqP8VXdOH75x6xt/KojuXLYqqOf5U4cZNNH505TzVMlbGpIM6Vaexb+lVh1qyzA6Ra8fxv/Sqq9apsaJUPzVo6v1tfeEfzNZy8Gr+rnm0/64/1NXDZky3RSU8VIOmajSpAKoB6cHPrWtqB/dW/+5/WshT81a9//q7cf9M/61UdmLqVU9qlAxioYzU47ZqYlPcd2rU0k/O34/yrLNaek8O34/yraHxGc9jOJG8/Wng85qEHDHj1qQdKa6iH5pw71HzT+xqkIo6tpMWr26RSsVMbiRWHY1TtNGmt9eW4Ny7RoCwUk5Jx3NbeeOfSoS/+mHr93FKVNSd2NTa0NbSFK2E+RjMkjDPoTURPX61asj/oL/8AAqp5q5/CiYdR2eaM5FIOooHQVKGNn4t257Vn9xg9RV+4/wBQ30rPAyfwrVbCQjVXfJb8anaoH9ahq5aOCXKIMOlRyMB1mH0ANKjLjAiyaVi3TZGK89mUVqV2VXHO5h7HFQPERwiAj/aNWWd8Yyv0FHlMdpLrj0NCdjeJQbKHDBR+BpCVKYznPotX2RAcmQD6LmlBRRje5+i4p85djCvlkZ43RXARQu7HvXS6cz3fhF2fLMA3PriqciRuPuO3NKhmitGiiWRIzn5e1bKqmkmZuDKXhc4uLwYHMH/swroYs7x9c1zdosunpeToNhMGNp/3hV7T9ahnKxzfunzjPYmprwc/eiC00N3UEYXsrYxk8HtSp/yCZvaaP+dO8SSeRp0ky/e2Arj14rnLLxGWgNm9vmSWVPnHYZpKlL4kCkjpv4jSTyvFY3MkbEMsZIYU1Tk5HSrtiBJOVYZBRhgjg8VzQ+I1lsV4zkA04ADJqNfujB7U8D3qm7yEloap/wCQRb/77f0qqvWrX/MHhP8A00aqyfeNUxrYl7Vf1bkWh/6Zf1NUQQRV7VBxZ/8AXI/zNaQ2ZDWqKSU8VGuccVIPuimAo65rXvvuW3+5/Wsgf1H861r/AP1dv/uf1qk7Jk9UV05wKnA/Sq6kgjFWFOWzRAtik81qaR1b8f5Vl1qaT1f8f5VrD4jOWxl5+f8AGn55qPI3E0/NPqIfnmnetM9PenjpVJiF7fhUDKTdq1T4yDRt6HvVoRrWI/4l7/Rv51SP3vxq9ZnGnv8ARqomieyFAcB0pF680v8ADSCpSKGXB/0d/wAKzlPNX7ni3b8Koxgc1othICarOOD9amcnFV5G4NZyNEcIqyMeFz9aGic8kKMUoLHkFjSZwOg/GuBmcdwFvJkEsABSm3xyX/M1GZGbIHUU7ynfop/KoZvFCiKIcGUfRRzSEW4B5Y/hilaHZ947T2Bo8yP+5mpLGm5VVwqOV9C1RNcFxhV49M1ZALf6uJfypfnCHcgJ/KndAZssLSqVkj4I+lZVxpckTbo1LDP3a6NVkPIRR9RSmKVzjeV/3RWsKzh6EyianiPEnhtyCCfLHG76V5/ZJi8hPpID+tdZeWpEJDbnBHIzWMliyXMbxxMBuB5+tbUqyaaRKp21OrU81f0w5vUHqrD9K4+y8RhJ2ivF4DECRR0+tdZo8iTXcMkbh0PdTx0rn9nKMrsbkmhJbeW2YiRSADgNUYb09K1fE12NN0qa5aPzF3J8g964aPxWvn/Pa7Ij6NkirdGTd0h3Sjqdyp/4k8X/AF1b+VQrRaXMV3oEM0LbkMzYz16U1TUyi09RxemhKozxUl7fCe7FqEINuigtnrnmmIcEGormye31SW4ZgVnjQqPoMVcdmRLdEoNSDpUQNSDgA0IY9Thse4rWv+Y7fP8Azz/rWSvXNa2odLcesf8AWtFsyepUUYx6VZWRSpGOlVx0pycGpWhTRYFaulcb/wAf5Vkj7ua1NJOVkz6H+VbU/iM5LQyxySaep+YVGrZO38af0IxR1EOHUU4dBTB1qQYqkAoOBmnHlRTaUHoKtMRq2Yxprf7pqn6j3q3Zn/iWH/dP86pHv9aJ7ImBJkdqSmg0o61KKZHdc25z1zWegGSKt3wcwgKTnePyqqgGSRWi2ENbjP0qq4zn34q03Q/SqjdKiRaOWESDjy+Pd6jZI+wjHPvUIds9RTXDEdT+VcMjOJMXRWyXyB/dUU/7REWG7zcdzniqflvt4zipFhPB2tmsWjoii159mesbMR3PNBurccR2xP1qNYWOcI3vUi20jADAH1OKnYtFiO5i8n5lWMntimtLb7cKSe/QVGbVgcPPGPpzT0tIfL5mdj/srSa6laELzqV+SIn3zURuJecRr+Jq8IkXgRuc+tIVCcGJQD3bk0gKZm/dHzB83bFV5JtwUKp471anjHXeAPQDpVcEBhtLN+FXF22Gkc3d6XJvaSEMQTkir3g2aWDxNbQ7nCsTuj7dPStb51OVUKexJpttbmDVIb1Wj82NsgnvmuyGJ93lkjGVN3ujrfGVk9/4ceOIgOSnXpjOa87h8MzFsyTqv0rubrVZLywe1lULuKkMo6YrKaznUbljd1P8VYSxLWkWdFGgpK8jR0m0Wx8MRW4feFnb5qlHQYpbVHj0bZIu1vPJ259qapz36VLk3ZsiUUm0iZSRVzUuVtCef3Z/nVEGtS9tnntLZk/hT8+TW0E2mjKWlmZ4+lOGMYIqIEq5U/eHVc81IrZxijYZKvata+wVts/3P61kA5I/z3rWvh8tt/uf1q4u6ZD0ZWJAAp64wKjB4xgU9elJFk3StXSukn0P8qyv4Qa1dLyEk4P3WP6VtT+JGU9jHUjJqTp0qJep+lSdzmjqBIvSng1GvWnnIHFUkIdk5NKPvZpDR2xVCNa140s/7p/nVEnk/Wr1v/yCv+Af1qh3J96cyYC96cDzx0pp604DioRZDdnEP41TU/N+FWrvPlDPrVRT8xrVbEjHY5NVWPY8c1YY8E1WYbj+FZyLSONBPoOaX5zyMn6Cr/2S1Q/PMtSRy2yYVWZgPQVyOJnFlONJ8YW3L98kU8Jd4yPKT8elWXlBz+7mx9cVE1ww4WBV9y2axdjeJGkUucveIpPYAmp9loB+8lZyPQVV8osSzuAT2BpVijAOXP51mzVRLK3FimdsOfcmlS/j3Dy4eR09KhCwqBhc1KGXGQhOPakxpEgupWJwq5J9KkMdzPgNHkCog0jAFYvzqTzLw/xEfSpepQhspsHhB9RVWS0I5aZQPQVdFnNIMvM30zSPpyJFvcMRmhJoNDPK2S/eZ3bpQk1ujqUt84PGasv9lA+4Tj2qFbpUcFbYHHrRcqxYa6meIhIAAfaljm1LYEwxjPbGKrve3LZ27UzUTT3MowbhvwFRy3NU9CPxVJPa6FbPHI8cgus5Dc9Kz9L8WD5YtQGPSZR1+oqfULF76LZI7YByMnoa5a80+Wzf5xlexHIr06HJKHKziqqSnc9LhljnQPFIrRt0YHiuphUvpiY67M14ZYard6ZIZIJSB3Q8g17jo8puNGt5TwZYQxA7ZFawp+zkZTfMjzLxXrN7Y+JLmGAqgXaQ2Pan6Z4zRyseoJsP/PVBxn3HasvxspXxZdrnoF/lXP4rVwi1qJXR7BbzxXEayQyLKhxhkOR61t3xylt/uf1rxCw1C50+ZXtZmTnkdj+Fe2XhLRWjesQNYypqC0KTu9SuDxUg6CogeKkU9KyNGTA/LUOsXk1l4cnmt3McpkVdw9CeakB+Wkv9OfVNBnt4zht4f8BzW1PdGU9hE5X8KlHU1Ag471MppagPzgn6VIp6VF704dvWr5hEjdD9aAaQnNH8NUmI2IcDSv8AgAqjnirkfGkj/dFUM9qqbFAdnAzTs8cUwgnilHArNFkN4f3K/WqYPWrN7/q0HqaqA8D3rToSNc4Uiq7nawPtUrn7xqu2QKzbLRziGNukWfrTwznhVANXG8tDtOB9KjM0Y9T9BXNJGUSHZMeSSKb9kyfvHnqKs/agF+WMn61FJeMT83lj6mspWN4ix2a84GcdSTTxboGHy8DrVc3fBxKqg9kFQ/aFzjLkVkaJM02WJDwQOOlOW5iCkBF46mskXIBP7sfUmntcF12kL9AKnUqxoteKFxgA/lUBvznAJP0Gaqb3P3IiPpUyW9w4z5ePc0m2Wib7fdYO1W+uKUzXMi7pHVB7mkSykP3nUD86kW0iT/WSZHvU3GrFQmP/AJ7A+y0ish4EUjn8qus1pGw2fN9AaX7YFI2QgH3pWKuU/IuDjZbqM+2aUWl0T8xCDvgVYa/n6AqOO1VZHnmGdznP60wGXKCPiQFueDniqExDAgQjHuKumKeTjy2P4U4afdHqgA96uLa1RLSe5yV7pW4M8Q2n+7XqugalZp4fsw9zCrLEFIZwDkACuXOlsfvtVqPT7UIM8tjp2rqhiZLRmE6KbOY8Zotx4nup42VomC4ZTkHiufEK+tdpex2MTMjAH/ZVawbm1Q5a2hb6MK2hieZ2ZSpJIyhHhx8te23Z/wBHs/8AriK8WJlVwGXBz0r2i6JMFof+mIrSo7ozkrMrg8AYqRTwBUIPQ09DyKwWo2TpnHNaunjNrP8A7rc1lK3GK1dPz9kn/wBxq2pfEZT2MpBx1pw6GoxnvxTwQRjuaQh+eKeO1RAfMPpUhPFMCTIOaAMA/Smj1px6E+1XFiNYcaSP91az8nH41fb/AJBa/Raz1zTmENiTrSdc0nOM0i9akogvDgR/WqjHCjirF8cFKqgk5zWnQlbjH5xVdznip3PBNV3ODWLLRirbztziNfrTJ4XhQP5i4zg4p7SwqcFic+5qM3MQxtRmz7VhIyiVWMkgwN5pFtZm5Cgf71WjdTBPkhwT6mowLh2JZlWsWdCuC2LsOZUX6VMLGBV/e3H5HFQGM4G+c/hShYFHKs596g0RKFsIhlP3hHqc1IJYD9yBm+gpiFCuVCoKeGQc+an0pMpDmubogKkRAHT5qcpvHGSUQdOvNM8xe54FNNyijJYfQtUjJfJPO+YsT6VD9nlY8L+ZqeAzXX+qKgD2qyulysuZZyPXtStcL20KYt2QDfIopQlunLSk/wC7Vs2NrHndJk9cFs0g+yp935votJxsPmGxtCfuWxc+9SOk7jMaJGo9+9SC7kRCI7dmz6kCmGa8fO1I4/cjJoYxsNrcRy72lLE9VHSnyiTPzSFR7HFKY7o4VTuz1JOBSfYJnPzzKvsBmkrg0iPECRklgW9WGaEvI41GCjH0qZdMhXBlkYj68UhWxhTiNSOmQeRV27iutjHvp47iQkJhv9nis2SNlOdq492rXaCESkq7uM9xin7Fx8tugPqaUZ20NLo5qW1W4A3Ak5/hTFa/jTVrzS9V0w2sxCizBZGGQee4qWVcnLSquOw/xrF8V/a9SuIJ9yypDEI12pggZzz6124aqnK0jnrxvqje0bxdaXzLDckW1x0G45VvpXTIRwQcj1FeJFSBgg8dQeK29H8T6hpJCB/PgB5jkPT6H1rplST+Ew5+56wOAfU1r6V/qHHXINchpHiPT9YQLDL5c3eKQ8/ge9dfpPMLn60qaalqTN6FXWylnpN5erGDJDFvHocVx2j+MtO1ELHNm1nPVG+6T7Guv8WfL4W1M9zbtXg8VncSgbYWwQOW4FaSUXvoOKb0Sue3KwIDAgg8gr0p+7NeX6PqGraRgC7Xyc8wy/MPw9K7XT/EtleuEdvJl77+h+lYXinuaOjO17G8CcGnE/IfpTByMjBB6EUucqR7YrRMxd+psSHGmR/8B/lVAGr05xpyfh/KqANOe4Q2HcsMUoGOtJuwffFIDz1qSipet8yA+maqZyeD3qzfn50z6VUB4zirewLcazZFQvy2Kkk5zUTEnrUMowowYgfMKP8AWo5ZztPlyKPYCm4fAxEeO7GkIIOd8a+oArluyUkBkZkGVkY+/H5UmXByEVf940mY8ndKzewp3mR/wxk8dWqGaRGbXJ+ebA9FWpEhhcdZZP0p3nvtACIBTkZ3f5pdo9qhmiY0QBVwkKqPVmpSQi8yovsq1YMcA++zNTdqfwW/51DRSZWJRh/G9SRQNkbIcD3qztfuUQelTRSQISJJQS3T2pWHfsRQi5jYlGVOO1WBHLJjzZpW46dBTjcWqHd5hyOwHWkk1BpiPLjYgetGiC7e49LReu0L7nmpkhA53/kKriWc8hFH1NJ5cjtlpiPZRQ9QLmEUEnH1Zqab21UhQdznpj1qobaJmy0jH8aUJaQtyOaG30GkWd8rHIGB/tGkxKesoH+6KpzS72+Ryq+majGzA5Y/jWbL5SzIsf8Ay0lJ+rVExhUDCbvTAphYKOiik3gjhufalzMOUY7zPny0CD/aqEryfNnP0FSNHI5AEbMM9B3qQWs2OESNfcZNPUorhIhgrGXPoac5cD/VIp9qteRGgBkct+goaaFRjgEegprTUl6nNX+j/bCXEZD+qjrXOXen3Nkf30ZA7MOlegPc5B+Tj3qnct58ZR1BQjkYrro4lx0ZjUo31ODR2jdWQlHU5DKcV7X8Ory4vfDAkuZDJIHddx9ARXlt7o20GS36dSn+FelfDIgeGvKBG9ZH3KOSMkdq9CNSEtjlnFx6G94n/wCRfvG/uwkZFeRFiwAYsR+lemeLi7xPAkhANuflzgE5rzz+z3AG98H0Fc1eaUkj0sFG8W2VdqjoAaUHgYjBNW1jhQ4JyR681JvSNAzcL2+WuZzO7lRPp2q6jYYCNuizykpz+vauqstctbtdsh8mTHKsePwNcSbsP/q1LfUUkf2qSVMsEUuOB9aqNSSephWw8Jq6PY7o/wCgJ9f6Cs8VfvD/AKHHn/PArPHSu6Wup4qVrocDigdaQcUZxnApIClfEeYgP901WA+Q1YvT++H+7VZjhTVPYaI25NQk4JqRhletQvxk1mUc/wCW5bcN5FH2Z25Kn/CpTdyAYCYHvTftb9lGfYVgyI9AFrkckCpFtlBG4/0pjG6k+6uPenpazE/vHOPSs7XZqhSsMffPtTDOqnKxfnUzWtuuCWGfQ1KJrdOBGCfYVLRaZUFzKQQqH/vmgC5deQ9WzckghFA+tRF2P3nx9KhotMiW1lblyBz61KLaEfekzjtmmgKeSWY+5oyAeAM0iiYG3jxhMn86d9o2n5UwKgG5lz0FO2rnkknuKTSFdj/PcnAwKYX55Y5pCqhsnjinKVHT0qbFoQEkjqaeQwHCE/pShicBR+VSpDIcEnA96lq5VxYrSWTnaiccZNTf2YRjdIPfFNE6xJgygkVC96GyBvf8aFGK3C8nsS/Z7SE8sW+ppyMn/LKEsPXFQRrcuMpCseejNTkikB/f3C5/2aNOg9VuTTSSqvDIAO2eRVF5GYkFic9hV/FsgBCGQg9WNRSNG0m4IBnsKAuZxVzn5CPqaXaSuCvNXWZduelM2yOcKuRUgVBF/fbFNYLnHUCr62TyHBXnvmra6dGijfIoPoKpK4XSMHyQ4JAAHpjrV/TLcRoSsckbnq0RwTWxDZQNIFGCcZ6VYDWtm5LXCj/ZFaQ51qhSaeljNFpODuWIgYxukaq8+jG5yzSFm/2RxWpPqlvtxFGxPvxWVNqNxztYIP8AZqKjV9zak5JWSM+XTxanDjZ6GonuIVXYf3g9MVZecyEiTL57mqr2fmcw/ePYVMX1Z1IrOVP3Rs9hRBzcwjBPzjr9acbOSNsSfIBU1osX2uFcEkyLg/jW6a6Dfws9Svv+PaMY71QHSr1+cQRjPcnFUA3SvSfQ+e7jqKDwuaO1HUGUL4/vh9BVdjlalvT/AKQfpULH5BiqkCImBzx0FRN941K54qFmABqCrn//2Q==", "path": "images/3pts_ADE_train_00007923.jpg" }
depth_point_94
images/5pts_ADE_train_00003852.jpg
ADE_train_00003852.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 256 y = 209),Point B is located at (x = 209 y = 183),Point C is located at (x = 188 y = 214),Point D is located at (x = 303 y = 223),Point E is located at (x = 312 y = 205).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_36><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_44><DEPTH_44><DEPTH_25><DEPTH_19><DEPTH_78><DEPTH_36><DEPTH_3><DEPTH_31><DEPTH_49><DEPTH_29><DEPTH_15><DEPTH_36><DEPTH_29><DEPTH_49><DEPTH_59><DEPTH_38><DEPTH_49><DEPTH_3><DEPTH_59><DEPTH_60><DEPTH_60><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_74><DEPTH_29><DEPTH_74><DEPTH_3><DEPTH_70><DEPTH_67><DEPTH_70><DEPTH_49><DEPTH_49><DEPTH_31><DEPTH_15><DEPTH_29><DEPTH_74><DEPTH_31><DEPTH_29><DEPTH_59><DEPTH_5><DEPTH_30><DEPTH_40><DEPTH_70><DEPTH_49><DEPTH_49><DEPTH_74><DEPTH_3><DEPTH_5><DEPTH_70><DEPTH_70><DEPTH_5><DEPTH_67><DEPTH_31><DEPTH_11><DEPTH_29><DEPTH_49><DEPTH_30><DEPTH_82><DEPTH_78><DEPTH_2><DEPTH_40><DEPTH_53><DEPTH_24><DEPTH_77><DEPTH_60><DEPTH_11><DEPTH_22><DEPTH_23><DEPTH_39><DEPTH_78><DEPTH_58><DEPTH_41><DEPTH_14><DEPTH_32><DEPTH_11><DEPTH_60><DEPTH_63><DEPTH_33><DEPTH_2><DEPTH_1><DEPTH_1><DEPTH_9><DEPTH_1><DEPTH_0><DEPTH_29><DEPTH_40><DEPTH_64><DEPTH_74><DEPTH_36><DEPTH_44><DEPTH_33><DEPTH_57><DEPTH_16><DEPTH_98><DEPTH_END><DEPTH_END>. Since point D has a higher pixel value on the depth map, the answer is that point D is closer to the camera.
D
long
5
[ "B", "A", "C", "E", "D" ]
<DEPTH_START><DEPTH_36><DEPTH_25><DEPTH_25><DEPTH_25><DEPTH_44><DEPTH_44><DEPTH_25><DEPTH_19><DEPTH_78><DEPTH_36><DEPTH_3><DEPTH_31><DEPTH_49><DEPTH_29><DEPTH_15><DEPTH_36><DEPTH_29><DEPTH_49><DEPTH_59><DEPTH_38><DEPTH_49><DEPTH_3><DEPTH_59><DEPTH_60><DEPTH_60><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_59><DEPTH_74><DEPTH_29><DEPTH_74><DEPTH_3><DEPTH_70><DEPTH_67><DEPTH_70><DEPTH_49><DEPTH_49><DEPTH_31><DEPTH_15><DEPTH_29><DEPTH_74><DEPTH_31><DEPTH_29><DEPTH_59><DEPTH_5><DEPTH_30><DEPTH_40><DEPTH_70><DEPTH_49><DEPTH_49><DEPTH_74><DEPTH_3><DEPTH_5><DEPTH_70><DEPTH_70><DEPTH_5><DEPTH_67><DEPTH_31><DEPTH_11><DEPTH_29><DEPTH_49><DEPTH_30><DEPTH_82><DEPTH_78><DEPTH_2><DEPTH_40><DEPTH_53><DEPTH_24><DEPTH_77><DEPTH_60><DEPTH_11><DEPTH_22><DEPTH_23><DEPTH_39><DEPTH_78><DEPTH_58><DEPTH_41><DEPTH_14><DEPTH_32><DEPTH_11><DEPTH_60><DEPTH_63><DEPTH_33><DEPTH_2><DEPTH_1><DEPTH_1><DEPTH_9><DEPTH_1><DEPTH_0><DEPTH_29><DEPTH_40><DEPTH_64><DEPTH_74><DEPTH_36><DEPTH_44><DEPTH_33><DEPTH_57><DEPTH_16><DEPTH_98><DEPTH_END>
256
209
209
183
188
214
303
223
312
205
29
3
60
107
82
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDTxSgUoFKK807wAp1JS0ihwpwFNFPFIAFOApKcKBjhTgKaKeKTYxwpRSCnClcBQKWgUop3AXFLigCnAUXATFOopcUwEpcUtFACYoooxQAlGKcBS7aYDMUu2ld0j68n0FMCSTH5vlX0ppEtjWk52oNzU5bcsd0hz7VOkSoMAVIBVJENkYQKMAYFOC07FLiqEM20YpSwzgcn0FQyzqhwxy39xaV7BuPJA4HJ9BUM06R8O/PZF5NQSTyuMD92vovWoNoGcCpc+xSj3FkuZX4UCJfbk1X2gZ9T1J6mpSKYahsq1iI1GwqUj1qNmApNjIitRsVXqaV2Y9OBVdlweam47C7y8gUDrXPeKbFLqSNmk2LEMgHkE5x09a6KEfvC3oKznmjnuJQw4BwpbvWNaq4K6NIRuzeBp1QgmngmuowJKUU0NmnA0DFApwpoNPFIBaeKYKeOlK5Q4U4U0U8UgFFOFIKcKBjhSikFOAoAUCnUCloFYMUtFFNBYKKUCl20wsNxShafgAZPSojMXO2Jc/7R6UxD2KoMscVHukl4jG1f7xp6W+TukO4+9ThcU0iWyGO3VDnqfU1MBS4pcVRImKXFIWGcD5j7VE8oORncf7q9PxNO6QWuSlgDgfMfQVBJMqnBO4/3U/qaYxdhgnC/3Vpu0AYAwKlyKURrySOMZ2L/AHV/xqLaF6DFSkUwipKSGGmkU800jik2MjIAqJjUrComFTcCF+T1qJulStxmoJG4pARu4FVnfnNOc96gY5NIY6Sf7NZvL1PYetZkf70RyMuGLKfpwavXZGxIQAST+VVgMOw9JUH/AI6a4cRK8rG0FodIYQfuHn+63BphBU4YYPvVsCOZN0bKynuDkUhQgYYBh2Br0zlRVBpwPNPMQP3TtPo3+NMKshwwIqWxocDTwajBp1IZKKeKiFPBoGSCnjpUYp4oGPFPFMFPFADhThTacKAHClpBSgUALSgUoFMeeNDgHc3otNASYAGTwKjM4ztjBc+3Sm7Hm5kOF/uip0jCjAGBVJEtkQieU5lPH90dKnVABgCnAUtVYkAKWm7uPl59+1NJLf7X6Cnohaj9w7DJpjPnj73svT86Npb7xyPQdKXbxUuQ7EZDMMMeP7o4FG3AwBgVJtpCMUhkeKYRUhppGKQEZFMIqQ0w0FDDTWpxNROwApMBrVA7YpXeoHapCwx2qBzT3NQOeKBkMhqJBmQenWntk0xgUid/bFS3ZDGuQ82cfMowT9aqxHeZH7G5A/IGpoo/KgLHqcsfrVTSX83Skk/vXTfzIrzW+a8joWmhPDNLbvuhkZG9VPWtW211h8tzHuH99Ov5VmY/Ok28V3qTWxg0mdRDPb3YzDIrew6j8OtP2MPdfQ81yXKtlSQR0IrSttZuYcCXEy+/DfnVKonuS4djYMSnp8h9D0phRkPzClt9QtLvgOEf+6/Bqz5ZXhenoavR7ElYU8VIY1P+wfzFMKMo5HHqKCkOU1IpqEU8UDJRTgajU1IOaBDxTxTVFK8iQrl2A9u5oAkAprzJFx95/wC6Kh8yabhQY09T1NSxQKnQc+pqkhNjcSzffbYv91amjhVBgDFPAp4wOTxVJE3ACndKbu9PzNKEJI/r/hTukKwbuOBkep6UbWY88/XgVIEHXr9adilcdiPZnrz/ACpdtPopAM20U7FGKAGH3php5ppFADDTDTyajY0DGmo2bFI8gFV3kpNjSHPJVd3oLE00qe9SOxGxNRnJqbb6AmgoQOcCgCqynFQsufc+1XWQdcE+9VLi5ggz5syL7ZyaQEXlkjgY+vNZN1BI2sw5lJQxnC54GOvH41PPrUCnEcbyH/aOBTbGeS9kknkRFC/KoX8z/Ssa81yM0gnckvm2WsxHZMCotPtvs2k20eMHzQT+NOv/AJoVQ/8ALSVV/UVcnAWJB0xOorgjtY1e5Vx14pMU+lxXoMwIio/Cjb1OKeRQB1qSkR44q3bajdWoAWTcn91+R/8AWqDbg9KMUr2HY37fWLabCygwv78qfxq+EBAaNgQe45BrkMc1NBcz2zZhkKeo7H8KtVWtyXDsdO0Y7jafUdKZsYDPUeoqjb64rYW5jwf76dPyrTilinXfBIG/3TyPqK0Uk9ibNDFp5ZUXczACmXDlEGFG4nAI/wAKjSIs26Ri59+1UJknnyScRDav95uv5VJHAoO45Zj3NKijFSjA69atIlscBUnCjmowSeAMfzqVU5yf/r0XQWAHPAp4TuacoA4Ap3A6mlzD5QVQO3PrTwKZ5g7Um4nvSCxJkCjOfamU4GmgsOopM0oqhMCKQ06mN0oENNMY4oeQDgcmqzyEng/lzSuNIV3Aqs8pJ4p7A454+pqB5EUfeJ+nFS2VYa2e5A+tRSMqLnBY/lVS71S2gBDSouOy8msa48QIJQsUe4suRubtUOSW5SV9jow4K5Jx7LT/AJQNxAUf3mOK5X+0byY/fCD0UUM0kvLuzH3Oan2q6ByPqb82p2cOf3u8+kYz+tZs2usc+RAq/wC05yaz9npTSmKh1GyuVCXN/dz/AH5mx6LwKosOcmrTLmoXWpvcZVcVt6WqpaBieWzWO61q2kgkjj2jAVcY96xrfCVHcWdhJeWMfrLn8uf6Vevvlt1P/Twv86orEy67p0bDjyGl/EmrmpnFgT6TL/OsdiyIU4Ctyfw+mT5MxUj+FxmqEulXkP8Ayy3j1Q5/TrXpuDRyqSZRxzS49qV1KHDgqR2IxQKyZohu2jFOpcc4qRkZFLin45pMCkMZj2pVLRuGRmVh/EpwadjFNIpDNOwv57q4EUxVgqkhsYNa4wOO9c3az/ZZvMKluMdcVrQ6hby4AkCsf4W4reE9NTOUTSDf5FSKAKpvcRQoXlkVFHUscVnP4osFkMcT727MeF/Or5ibHRJ6CmS3tvAcPKu7+6OTXMT6ld3KkM5WM9ojj9aoBZIzmM7h6d6aVxXOzXUBIfkGB708SZ5JzXI2+olTgnBrWg1ENjmnYLm4GpwfFUI7lWHWpRLSGXPMo8yqRlx1IH1pxbaMscD1PFFwsW/OHrSiYVS8+Ifx5/3RVabWbO3PzSJn0zuP5CnzCsa3ns3Cj8qY24n5mA/GsCTxKGz5ELv7sdoqnLq1/N0dYgf7gyfzNQ6sV1KUGdLI8MSlpG49WOBWXc+ILOEEI/mEdoxn9elYps57tfMZmcf3nbNRG2ijVuTKy9QDgCsZYlLYtUmT3Gv3Mx2wQhfdvmNUnW/uj/pE7KCcYz/QVYimTDGNQNpK4TnkHvTLmRpTuwFQJuGOvSuaeIm9jRU4opLHbR4JXcCcbmPHeqF22L1Y4FXgfNke/arqQAlEAJKqM59cEn+YokiDagRj5tu41MG3PXUb0WgltG/mPK/LOcmrYWnxxYA4qUR8V1W7GdyuUpCnWrWwU0rnNFgKLLULp+tXnQVA6jp3qrCKUigKadp5b7UqKcBs5/Kien6cP9NTHof5VlV2HHc1Yy0msW7sPu2+wfQGjVj/AMShz/00z+tTIuNViA7QD/0I1FqwP9it/vn+Zrkias6m9mZbpiJCFwPpTYbp3OMow9uKhkO85PtWmlvblQREuSOSK95Jtnm7ELeVKu2WMMPRhmqUmjWkmSm6M/7JyK2RbRf3T+Zp32aLOcH86Tp33Gp2OWl0SdTmKRJB6Hg1Slt54T+9hZR644/Ou3FrH6sfqaDaR/3mrN4e+xoqxweRjilxxXZTaJZT5Lpg+q8Gsi40JUkdYZmABwN4z+tYyoSiaRqxZiYpCOammia3leJiCynBxUZHFYs0IyuRUZGeozU7DAFRkcUijNvYjIwyWOOgJ6VQeHHata5HzA+1VGAJoJaK8E89qf3UhA/unkflWjFq0TjbcJ5Z/vLyKosgqF14NXGbRLijdZY503oyyD+8p5FQBpIXGHJB9RzWHvkibfG5RvUHFSNrFzs2ssbNn7xHNaqomZuNjr7KdzjLfnWwJ40j3SuFHqx2ivN0v7t+s7geinb/ACq/b5Y5JJPvSlU7FRidBqWvJE+2IGUAgL5YPJqqdQ1O4ICRLFnoW5P61UhDLOCFXIBwT3PNSwzyqqybVGOD36Ad65J15p2N1CI6S3upDi6u8+xYkfl0qe00yGYkCfkdQFprrLvYggF2GcCrmkQy/bN7P8pyQMDp/nFZe0nIrliiFY7SJ3QNM5ViCFUDke5/wp/mqB+6to193Jc/0H6VpwaRZxtJJd6ggaRy+xMZGTmrAGj2/wByGSdvVj/+qtvYxWs3+JKqX+FFC3nkms5lkO51PHAAwe3FYv2dmuJEkcsJI+hOBxkH+YrqHuo7j93HbJCoH8PesS9iKOzxjLQtuwO6kcj8j+lYyS5vd2LV7amfEFitpm2gHG7A9RgmlLKVVTnDKF/z+Rquw33UkCZYsWCkAn5Wwc49OlTRQt9p+c58ofrz/iaTiSSwRj7QWPALBPxPX+lMVQ927452KKuWsW+5t4scgGRvr2qpbA+a5xVUPjFPYtgY/wDrUuMdKUDj1obhNx6D0rsMxrRSeV5oX93zznrjH59RTCvH86nfUoFhES20km3OBI2Rz16YqujySu0jIqA/wqMAVKd2MYwxzjrVeQYz/Krbr0NV5RkdOlUIz5Rk1Jp6kXY+hpso596m09c3f/ATWVb4WOO5sgf8TZT/ANMF/m1VtXYJobOxwA2T+Zq4oxqY9oI//ZqzvEYI8ONx/wAtBn/vquaC5nY1lodCrbo81oW8h8teecCsqE/uAfr/ADq1DKcr+Fe4nqec0aafaT/y2j/GP/69TIJww3PGV74Ug/zqvFLk4q0rZFaoh6D2MmAIyuSf4hxSZuv+mH607+JfrTgaBBGZMHzAue23NVSAZ5Sf739KuDrVJzi4kH+1n9KifQuBymoD/iYzemR/IVXIqzqPGoy/h/IVXx1rzZbnathpHFRsCM4qYjimMMCkUihdcYqmT3qfVmcWTmI4kAyCBk1yfnSTffeSTPZnJ/QU1HS4Wuzf86MttDqT6ZpH6c1Q0tWE5QJhWGTiNe31qyCgZiXYEn+IY/8ArVEpKJoqN+o2ReKqshPbvVpywGQAR61GJFwSQcZ69qqMkzOdKSFijORxWxZpkVmxsrfdYH6Vr2C5Umra0M1uWUiwwx1zTJGVLWQjqpPH6fyq5AMzxcdWAqlNBK9wvkxkpIfmXYW5/D6VzTSczZbFxVL3OwNlnk2gegA5/kfzrWswEnuHAwsce0f5/Cq9nYNbMZpFxMy4VSckDqSfcnH6VbgRzp05VSXYEAAdev8AjUK1x7IzLVcY461dGMdKW10y62AlAn+8as/YAv8ArJhn0WlyMakVomxKPcYps0X+nMcZ3EceoxVgxxRtgKCfUucj8AKSc4nhf+8g/MGpasNO5iXeiXDXKNCltNbdQ0ud0XtgdamjtY7ZNi9M5Y4xn8B/KrjM8Gp3u1zs2JJtPTuD/KnmMC7Q5z8xB9Pu5qm+hNupXtUC6oSRg+Rk/rWbaj5pP96tVTjU5T2Fv/U1mWgwZDz96rofH/XkTPYuDC4zTXZAMMQRVuy0iTUY2kEoVQcEZ6Vop4agzmWZm+g/xrrUZS1SMnKK3ZzpkjUHA/SgyMR8qE59q66PRNPh5MZPuzY/lirKJp0H3EtwR6AE1oqFR9kQ6sUcQtvdzgiOJjnsBn+VU5FdJ3jl++uPpzXpSTpJkRk4BweMV53fnGrXA9xUTpuDWu5UZqSehSmToRUumj/TCP8AYNJIBn2qTTR/preyGsq3wsuO5tbf+Jm/HSGIfoaq6qivpSo5+Qtzn8as3Ewt7i6nKM+yOIbVGSflNef65qd7PchzI32RmCFAcBTzjn09axw9PmkXUlZHosI/0Y/j/Opbc/LHz2FMgH7gD3P86dB92P6CvV6nCX43xIfrV+N+KyycSN9asxykYrRMlo0weQfenCq8cmcVODVJkDweazrhwt6w9ea0B1rJvv8Aj9/4DUVNi4bmBqX/ACEpPoP5CoB1qzqg/wCJi/0X+VVlFefLdnYthSM1EwODTby8is0DSMBTba6ju498eemcMCD+Ro5Xa401exVvFzbvn0rlrdJNpVQqjntXXXakW7gdhXNW3KFvrUTdomlNe8Pso3+2KPMYbg3I47GrAgYPhJMkjJDDNNszi8Tn1/lVi4j+YBgdvoO5/wAiuecnojqgilJBJnmME+qGoHY5BzkHjDjH61oRJtlA5Az0NQShlC7QO+T+NOMimik+FTeBjvkHNdBojSfZVEhJ75PWsK4jBGdgUjj5e9dTpEarbLK/KgAAep9K6aeqOSs7M0rWGRriIheN45P1qzHavDIZNuGVyB6darRmSW5i3Mw+cfKvAHNaibopZFyWX5iQ34VhWUb2FFvcMlgXY9Gzx3/zirVhbs9kAuMnnk4qGVQlvMR0y2PyP+Ndd4Rske1MkiBsKAM1rhaHPPlM8RV5Icxzkts0SZxI31OB+Zp1ppl3fA+SnA67Of1rqPECrHeQFVAAXOAPZqh8Btv0u4J5/eL/AOgLXowwUVPVnG8S+S6OfvtEn023WW4TZGzhARj7x6DrWRfjbCjL/wAs5iPwP/667jx82NDt8f8AP3H/AFrkNSi/dSIB9+JZB9VOD/SuTMMPGnHmidGErSm7SKF4ubuU95LQ/of/AK9PB/eQv6uh/NcUy5+Z7J/78Eif+O//AFqDxHGfTyj/AOPEV5id2djViMcXsx/6dl/9CNZ9pwJD6sa0GGLqX/r3X/0Yao2ijDn/AGjXRQ+P5GVTY6fw4M2cw6Yb/Go3u3LEFn+hbFSeG/8AU3I/2h/WoJ4I/tLeY4BJ6E10Va9SlSj7Nb3/ADMYwjKo+YjkvmjBOEGPUZNLY6wJGkjcyCTHybVAHXnNMnit4yEYHPsCayLm7EGqwRwlNu05IPQ471phsTNytJBVhTa906nTbgzSXWeNsg/lXHX+f7WuBjjPP5mur0ecTpM3GcjOMelctqAA1a49d39TWld3lH5mdFWTKUgP4VLpv/H44/2DTJMnrT9M/wCP2T/rmf6Vy1fhZvHc6BeL66z28r/0GuZ8RaZBNZmQg5csWXsa6cD/AEu7PvH/AOgCsXXf+QaMDnLf1rlpNxd0az1Nm2/1I+p/nREMCMD2p1t/qh/vH+dJGMBB7CvaPPLLf6xvrUo7VE3+tb61IvaqEXIj/KrKNVaLofpU6dKpEssKeazL8f6ap/2TWinWs+//AOPpP9w0qmw4bmFqo/4mL/Rf5VWUcVb1ghb8kg/dFVUYMSozkdeK4JW5mjrjsVbYQz61JHPFvEaBwSPu84/rVe9iFvr0H2Yt5D7lZQflBx19vuj8qmvWmsbj7bBbidWQxyx9yvtWRpCTXep/afIlihQZHmE55/h/rW6fuWM2veNe7X/R3OM8Vy9soEbcdz/Ouuu1/wBDk/3TXIWzDY3+8f51xVvhOql8RPY4OpQpjqcfpXoT6dbPqiR+UoQRocAdyH/wrzzTiDq1v/v16cxI1MYBz5aAfk9XQSvqu36l1G+nn+hx11YrFqUkeM7XbaKzJoEKJkd+34102sRGPXJVxgnn+VYVypVBjGQ3+NcU/dm4rv8A5nXH3opmXcR4hfBIGBx+ddJZgJaW6c42Bz9TWBcjMLD0xn9a6S1X91Ecf8s1/lXVh3+7Zx4he+i+jNC8KR4Dkgsx+taYYSTqjcyEkcDtkf4Vn4/0uMnoStakYxc8f56VFd+8kTBaXI5xmyc9zvA/EgV6D4aiEelg+rfy4rz8/PZxD+/Io/Nv/rV6XpEfl6XAO5XP516OXq8r+RxYx2jbzMnxGM3UWP7n/wAVVL4fHOl3I9HT/wBAFW/EDZ1GKP8A6Zg/+hVmfDeQNZ36f3Wj/wDQK9Dm9+xycv7u5b+IJ/4kMJ/6e4/61zmo7RLZg/xK4P0Jx/PFcj4p+OnhnW9MS2tbHV0cTpITLFGBgZ9JD6103mjW7XSru1DqtzYS3MSuPm6K4Bx3rlxsHKLRvhZJNGbJ/qLHPVLhoz+IIpjEiD/thu/75Yf4069cfY5JV6LNFOPoTzQ65Qp32zIP5/0r5yPQ9eQ2b5bib/rgP/RpqpaD5H/3jirUuWEknrCP1cmq9qv7s+7Guuh/E+Rzz2Oh8NjC3I9x/WqEN3Nc6pMsFk42j77ITnt/nmrOj3cNoZzM5UMRjjOa0Rr9hGxJlP6f412w9k4rnezZzy5lJ2V7mI9pqk/iOPMU3kqQPM24BG3FZi+E9Qj1ESNCPkyuWcHd711D+JrIXAkXcQMdx/jUU3im3l2kQncOpBPI7dq1U6Mdn1E1VeliDQtLudN+1faPL/eMCuxs8c9a57Ucf2tcZ65OPzNb7+Ic/dgP/fLH/CsC5Yz3Us5QqG9RjnJ7VlUqRnKPKXTi4p3Kcv60umH/AE1z/wBMz/Skm6UmmH/T2HqjVhV+Flx3OnX/AI+Lo+6f+gisDxCM6Pnn5WbI9etb0WTcXf1T/wBBFYmvLu0eRQCTuYYrlg7PQ2kblqP3X/Aj/OmpnCZ68U+1/wBWf94/zpq8Fa9s84sN/rW+tSDtUb8TP9akXtVCLsQ6/SpkqGHv9KmSmhMlWqN+MzR/7hqyxO9QGI6niq95lmgY9ShomtAi9TE1mIPeENn7g6VUjjAYtzkjB5rS1hf9NX3QVTRcYHNck4LmbOiL0AjAHFQycSGrLg8D8KqyqfNJqWi0yO4GbKb/AHa4uDhSM/xH+ZruHTdZzg/3DXDQ4HHfcf5msKy902pP3i3pwxqVv/v16U7hr7PI+RBnPs9ebaeCdVtV/wBvmvRcY1AdM4Xv7PWEaji/68zq5eZFHV9suuM4BOVGMfQVz14pUAer/wBTXSXqg3+WK5Kgj9Kwr5OgGCd39TXLUneo36nRTjaCRjzpmJvXArprBfMsIm7qoBrnbhcRN2OPWuj0s+XboQMjaOK7cM/ddzixK95F1JEBXzTjaRhq0Fl3XeEJ8pVySe5qmsaScxuB7HtVyaWODJLb5PL4VfqaqonzIyjaw6BCz2kXcYY/Xacfzr1KBPLhRB0VQK8vsnMZMzHlFaQ/gOP5V6fbHNtET1KD+VelgErNnn4x6o53Xh/xOIv+uI/m1Yfw1kymqr23Q/8AoJra8QPjXIF9YP6muf8AhqQ39srjoYv5Gtm/3pC/gv5HjVklx/wgumu95qUVkNBvQYjbFrF3865xvfeAJM42/KTuCV634H2/YvBIIyDpZBH/AGySvNNe+BEmh6Ub8+IRMvmLGF+xbepxn/WGvUdAsv7NuvCunCUyfZreSDzAuN22MLnHOOnSqqzi7JGdJOzfr+RianbG3Go2WOYfMjH0BDL+maZA/mSR57uD+DIR/Wt7xTaeV4kfj5byEHJ7kAqa521OIrRu4jXP/AXAr5qpBwqNdme1TnzU0/IXrYE+sSD/AMeNRWn+q/4EalPFnt9wv5M3+FR2v+pXnrk104de8/QyqbEphjc5ZFJPcigRoBgIPbAp5/8A1U1nHY112M7iBQDnHFJjJ700sfWl3cdfrRYBGXgHvVacZHA6dasFxz6VWnJ555HpSsBRl9e1R6dxqSj1DD9KWZsck8+lQWkm3U4Pd8fnUVF7rHHc7GAAzXh9wP8Ax0Vj60udImxwQTzWxYjfLf8As38lFZWrj/iV3OezEVxxRszVtR+7P+8f500DkVJa/wCrb/eP86YeG/GvbPOJ5P8AXv8AWnDtTW2vIzBxgn0qQKCOGH5UwLkPf6VMlQwkA8nAIqdAn979KpEsa5+dfoahuh8tt/uGppjs2sqs4HXC5NR3AIS23DB2HNOWwLcztVA+2J/1zFV44gQO2Kk1mVUu0yf+WY/rXOXeuS27skSjI4Jrnm0pG0U2joWiAXNV3iBlPOa89n8SapJdy4vJlXdwowQB7Vt6VdT30G55Wdy+wYGD2/xrNu+iNYwe9zp7iILZzH/YP8q87DAE84w569+TXWobUh4rgszsMKC57deM81ox2GhPCvkaciOvDl+c+p5z3qJUudb2No3g77nHaYVOp2p3cbxk16Jk/bQwAySpx/31XCT+X/wmxihjVIkeMKq9PujNehyqfNAHXcD/ADrza8XGVkdtN+6Zl1898Dg9CvA9/wD61Y11GRwSc+YT+probxVN1HnAAz/Osm6gXaMvwvzE49zXJaSZ0KSsYF0P3bY9K6DTB/oseR2FY1xEjRtl8ZB25HX61vaYn+ixfN1TNehhU+RnDiWudFtYPOfYqqXbOM+uCa0La3gE8ZYAptHbqCCeadpKqNRhLAngnpx0qFdqQoQ5KuiIe+OCPWuynBNJtHNOXQ0op9OWxnE0bJ5g8tmQ4IBGSRxXY6LrNlqcAS2dt0ajKsMHHrXmU2GhMbPgAMCfX5R7+1Yx+Id54R8RQWdh4en1mWeyEoSCVlbG4j7oRjxt6+9dlCb5lFI5K9OPK5NnpviT5dat3PaEf+hGuS8Oa7/YthdtFEtxdSTQwQQbthkkd3AXdggcAnJ4/OsvRPifJ438Uz2VxoL6XLaWxZw9wXYFZFGCCi4Pz/pVa0u7SNr6yuEkZZpo2jnjlWN4ZIySGViDg9Rn6+tVVjLnbRWF9k7KrrG6v9/9bfI3/F+s6ymjppmvW1islyfOt7izdyjbGXKFWGQQCTnOOgHOa1bN9niHQnJ433HP4VweqalPdWXm6pPNf3ufKhfMYihTcpJCKOGOMbs9DjHFdtbzRwa54fklkREMlwCzkADg9c1lFSbu/I2xXslZU7Xs72va+uyeu1vnc0vH8HlW1hfoP9RPhiP7rf8A1x+tcTInlEoP4JZUH0I3CvT/ABBFbar4fvbVLiFi0ZKAOD8w5FeZL+/tkmPXEch+oyrfyrz8fTcavN3/AEDBzvT5X0B8C3cntK/83NUlvILTT/PuJViiVcl3OAKtXTeXps3rlv8A0H/69cn4umEfgubccB1CYHrTwsbyY6srK5b1Hxhptm6qt3azKVDBoLqN+D268H2q9Z6nHdIuzcshUvsI+YDJHb6GvL9T8O21r4Js72OOEX8fly3JW5VnZJtxTMe7KBVEXJAyZe/Feo6TbW/ny38MaQ2rwTCIngglzjH4cV6lTDxjBtHHTruTsySXUIIFQyyhFkztJ74ODj8aa9xMLmaBIxvgGZVYkYq1r2kWUXh9r1YczqFbO4kAllyVHQZqkt3IdR1QwpkTEE715UbfQ9OtY+zRq6jHSXqRRGU5KAZ2jqfpUS3sN5DvgmR1PXac4PoayvEkrQTW4hLRKSpKleoyxOfwWsrwi/8Ao90AwYs4JxnI46H3pOlaPMNTu7Gzqtw1rpt1cIFLxQvIoYcEgE1yF1rviLS0gvrm30pMrFOkf2lGkKuodCYxJvGVYHp3rptdf/iR34/6dpP/AEE1xfie80rULK1ntJtMadLKzicqt0LktHbxxup3DysAqeR2A/HbD04zi+ZGNepKLVme66Sv7y+Y/wARc/pWTqvNhfL9D+Yre0obpbvAz8rfyrD1AZgvV/6ZKf514iVkejfU1LT/AFbf7x/nTGHzH61JZ/6tv941G/3j9a9s88clTpUCVOlAFqPoKnQioE5GKnUAd6pEsl8xAikHLHoAagvDkwDI4ByKZHaQrcGVDyeo3Zx/hUl2B/o5xyQ2TTewLc53V+b0E/3B/M1xmrNsuJm7V2+sxkXIbt5Y5/E1wGokyRyMepzXHP4jpjsc+rPJM0gXKtyOeRXUaAZlsiYoZiRIThEzg4HftXM2yEY2sRXdeE032xjaVI1MrZkbHHyj14oSWrZsm0K0d2Qpaxxg8M8ij+RJrasdJ1C4Vs3FlDt7ZZz/AE/nVa9k8u4MsimffJjEf3cevHPWrunbkNzNLEoichUC/wAIx3PYmko0U7s0cqrVloYmqaOmleLrFvPMstw2X4AA24AwMn+ddqw2yBuTjBPH1rmPEDtceKtIncgMxJOPqK61ihDddx24492rzcTJOpePY6KcWoJMzZyDOm7PAPQdDWZdsDC3XLHbz9TWncAi7UZPU8isy5x5Gcfxn+tcHtXfU7FBWuY10YzaneGJRegHBra0t0+xxfeyI8cVgXuBbSH/AGR2rY0lv9Ej+lelhJe4zgxK99G/ZSiK4VwWyoJI7cDNQROXjby45MFBgbgQMHsevfvSW15ZW90pvJtkRyGAPzYIx061ny6zaWluLXTZZCsZ+R5/41z0wOn+eK9CjFyRyVNGPvWmjwwRiiISzA9O1ee+LpY7+O5sILmKG8uLS1kRrmZYhLEkk+9N7kActG2CRny/XFes6athqlkl2/mFZD5ciFuDxXM+IvA3hnxFrqy3H22BYIUgEdlIiDjJz8yNzkmuinanO8mc9RSnG0Ucd8NnkXx3qry3R1I2+kqrywYOdrQLgH+ILjbnvjPevTZfEenLgPa4A6+bAcfkM1V8MfDnR/DGpzahoup6mkzRGBhc7GwCVb+ED+6K6lodS7akj/78dbyld3RzxjZWkc0uoaLqM/kQWNrNICAVSA7lz3OVFa7WFnqEcEN7biXyydu/5dpPvxV2H+17Ri8Bstx4LKCrH6nAqWbVNeaMpJaRSqRg7ZR/jUrz/Ip+X5lJvDGhKpzbICOf3d0CfyDVlPbLBeTW652ZYLn+62GH9amsrSDTb37XH4bKzAk7lYt168U7Wb/7bcwTrYyWzoNr5jIVl/8ArZNcmKgpwvbVG9GTjK19Gc/qTMI9iDJ5bHvgYrlPFGn317oMVpFays2CcrjqFOB+Nddqk5gQyISrBwoI960biWCwtfMuZJDvYRoqoXZ3IOFA9TiubC+62+xvOEqjUIq7Z4VPpHi4i5uZbOTF9GIJjiP5kUqwXA+6AUTGAOleq+DpFaD7HcW0o8uLq7bOrt0654xWtDeWV0jh5vs0kZAeG7QRsmc468cgZ4NW4tLN2V8g28nHDAdB9RXoutKcbWOd0FQqWmmmi1eadbXmntaTmdYCACVkXoCD1x7Vyt/5cHiG6dVm8kxIfMwCpY4GMjjsK76DSFSDZLmc4wwb7v5VX1WFf7Me1SFRFwyooCjOfpU8kkrslSieW+ObpY7+ZGZ8RoXAzxkhhx78iuN0vVToiSy3SMYpsSbYyCW6DB5r1650uO5yZ7Fjnrhwf6VyPjbQbG08HX11Hb+XKnlhfu9DIo7CnGom1FolwaV0zmLnxtp9zaS2z2cpSTIJxg7TwR96rdh4Z0e4vrdDYM8bMNwWR+nfoam8bHVRe+Mv7d+1/Yzev/Zf2vd/rPtHHk7v4fK8zO3j7ue1dxELmyu7vT/ONxFHCHDthihJPykgdT1GewoxEeSyg7XNcLT9tGcnb3Ve3l1/Q6rw8DJd3Y7EY/MVh3gybhP71v8AyP8A9etjwnJuu5yT/Ap/Ssm/GLor6wyj9Qa8hr3UvU6U9WX7I/um/wB41HJ98/U0tkf3bf71NkPzH6mvYOFDpYEEzDLgegc/40eRGMHDZHq5/wAakl/1zf57UhPy0AX4VWTKuoZSDwRQtrb/APPCP/vkUW5+Y/Q1IhqkJjoo442bYirn+6MUt50tvo386FPzn6Ul6cLa/wDAv50PYFuZOp/8fEf+5/U1xtxZQ3DuORuyMDgV2Oqn9/F7x/1rnI4M3DA9lLVxVPiOqGxxS6Tf2pBaHeM4/dnd+nWt/QrgxwMgjZ33n5AOegrqrHThLGkmOSorNmsDayX2nxuVnuruJk2nBAcZcj8Fb86V3bU0i9TS04XFxGrtbyJ1JVVGVAxyxJ4HPoaZLqVrJbR5vm+yRuxeKEmTeQeu7AHBHvXplpYoPDkoVQM257f7NeR6fY50abK5drnZt9mbr+WamunTSa6lUantJNdgubyO917ThGsoELAZkxnnnGB0x0rvRb71dsdCn6k153C0UWtRySuqgShmPXHXsK6jUvHNrZwOljD5jnb88vQEHPQdfzrzkvaSuzqqNpJIt3if6WMDJyc+9c1qF/bwwsjyxiQP9zOTXN6j4pvr+Yma4bB/hT5V/SsWe6LHCZGfTvTp4C8rzf3DeKajZI37i+iZHjO4hsc9KhOqzBBHHIUQDGAcUml+Ftf1Yq0dm0MXea4BjXHrg8n8BXa6d8OdNt8PqE8t7Jj7oPlx5+g5P5161HCqKsloedVxF3du7ODWW4uZ/IgSSeVjwkSlm/Suq0fwPq12yy3zLZRMM7T80h/DoPxNd9Z2drp8AhsraK2jHVY02g/X1qwX4xwQfTmuyNOKOeVaT2KunaFp2nWv2WMSSLu3bpH5z+GK5SO3u7vS7jxLYyW0NugleOyeJyJY1Lcu27Ifg8Djgeprtg+0dhWNL4VsLq5ldnvFgncyTWiTsIpXJyWZeuc46EDgVNWnzbI6sDiKdK/tfLopaa3Vns3pZ9PLc3bFLS8soby2MsaXEaygSAEgMARnH+NTGzkAJVlcdeODTVz7D8en1oe6WIf3j+grdJJHnSbcm0RmNx1Rv++aZnFTR3LyP8zn86nmEc0LAY8wDIPfjqKVk9gvbcoMx7E1T1KfytOmYtxgL+Zx/Wpy1ZeuFW00q2SC46HHTn+lZVXaDNKavJHJ6sfMW8C9ElAH5gf1rQ11o7OewvBcwx3kDMVhmk2h1ZSCBx97pjPFUHI+3XCt0aVj+WD/AErJ8Xq93q8TKpZvOCADnJK8CvMwsU1K53utKlNTj5/irP8AA6Wx0q61y+bULxIE3wiKNFYS7VySSxxjPpjscV2Vlp8FlAIbaNEHVsAAsfU1n+G9GGh6PHbHmdvnmOf4j2HsOla5A7tj8K9KFNRRy167rTvay2SWySGuJITu5B9apX8nnWpkx8w5IHt2qzI7ouM7kNZt/J5UjAHMTpkVT2MVuZoBaSRt77GwdpPC4Has3xDoUfiHRLnTBfLbNNt+d0zjDBumR6etaybCnBHIrL1Ca4N9HY2CQyXLRmRvMYhUUEAH3zyMCuOT5Wmjuo0XWfIv6R57L8HJITh9ax6H7J1Hr9+vQLCC0tY57aOFY/kyCvO/r1PU4zUVnqExea3uoVE1uwWSPORyMhhnpnnj86WY7J4Zk+63p+RFV7VztJ9BTpSw/NS2vZvXR9U/PfT1NbQklsZ5JZkKo6ALgjJ4FRXdm883mBlUfOD/AMCFaUIBjXngAAVJ8meaawtMw9tIyLM/I3+9/hSSH5j9TTLNvkb6/wBBSufmP1rUhE8p/fH8P5UE/LTHbLhumQDRng0AaNufn/A1KhqvAfm/A1MppiZKp+Y02+PFr/wL+dKvXNRag4VLTd0+b+dPoBn6sMyQe8f9ay2QRzOQPvQsK3buzmu5rcxLlRHgsTgVBc2FnFLFHc3qec2UESHk5rGVNtmsZpKxPp6BIkT0UD9KzNSutPtvHNtLPv8A9GsnMm1c4ZuFz+BP5iumgW3tJFUhQegzya5iF7ebWr/xMYtzR6olqjHkeSgCNx05bnP+zQ6dhxndk/iH4jXtjbW9np9s1vCYMyPOnzuDkDb2A4PNcHe3s0UCOZJPI6gbjjv/APFH866r4vvBJqVpc286yLMhtWIzt3Lgjn/gZrgLt2mtRCM/d4FZ1Pi5ZGtG3LzJDn1E8BTgdhVV7t5pBGm+RycBUGSa1NA8JXmuz7YMeSpw8z8Iv+J9hXqPh7wpYeHwWgIluCMNcMuD9FHYfrShQuwnWscLofw+1LUGWbUh9gt+uw/NM34dF/H8q9A0fwtpOhjfZ2wabvNL87/men4YrYLFR1H+71JpCxxzj2HeuuEIx2OWVSUtxSeTnj6GjII6ZoI+XccgeuaTKjGC3PTitDMDycCjYQOBj3xmlLLnDO30xR8oBCkn6UaAOCgZO0n3pfNVVIHHtUUjgrhTh8VSkmJAYZBHX60nKw1G5dkugVGDgkdaqtPn5mOOOc1nNqMTt5cAaZx1WMZx9T0H41atoJGZZJ8Bh0QHIX/E1nzXZajZF2FnY5OVXsO5/wAKvRORjtVaNalHFaxZDRYZkb70SH/gIqnd2Vndx7JYuM5+ViKlL4qJmqnZqzIWmxj3HhmxklMiyXCMTk4YEfypkHhu1j1SO/eZ5TEwdUZRjcAQD+ufwrXLE0wk4CjucmslSpx1ijRyk9GyYOWJx0qzGB8pf8qroAiAmmyXASIvnkYOKr1FYivJBDKw/hPasLULlWsWQk5DYH0NSTXFzeTMqKCM9ewo/s0MA0wLHrgnArKUr7GkY2FtYlaACqupaM13Ilxb3X2e6jUorqAdwPZgeo9PQ81fjjgJ8phsP8LHp9KkksI16x/rWLgmjelWnSlzRev3/nuczFam1aRJXaa4lfLzPjJbAGP930HamojEeWeQWH510ZBtW/dqGHUxuMj/AOtTzaWd4vmRxiOTr8vrSjDoFWrKpJzlux8ACxBTwQKf5e8cNzVGaW5s2CkeYmOrD/CnQ6jbs+1yY2A6MOtbKS2MHEy7Q4Rvr/QUFsjIOQajtT8r/X+lPPH5mmIsHon+6KXnBqNLiQKACMDgcVKJ5D/GaYFy3OWA9qspFJ/cb8qoxMQQQSD7VbR2PVifxoETbWQ4YEZqlq5xHaj/AH/6VbXrXM+NtYm0qPT/ACYUlaQSfebAGMf40wOotHzGvsP6Vy+s/wBnw61HqVxqCeZbn5IIjvYk8HIHSuXk1PUdXANzKYoR0hiYqn4+tZsrGO7WPIEWRhRwKp2tqJbnWa34ume4m/s6ELjOJJuv4DOPzNZWkaZcJpnm3MkjSKpl2M5Kqx+Y4HTrUU0cdwJBjh1IGeOorc0eG4OjW/2gNE3lAYkG3J6fd61nLqaRv0L3jOAav8Lk1BUxLazxXByckA4RuPx/Sszwl4MbWkj1G+JSw/gUcNMQf0X3rp9Hsnu9LXRZJfPtAd8zSIPm5yBjp16fSusWOO2t44IEEccahEReiqOABQqam1J9Ac3BOK6laGzt7WBbeCJYraMYCRrgfSpQmSWK47KAelP4BA9KN2SfStrGNyPYB1BJPQUhjVBktg/qamDZ5oO0nPcd6LAQFGRNwzjsO5NNy2csod/foKs7SWBP4CmtlW2oBjuTSArb8jHlDNRzTbIzySewHarEj+WuWHJ4GO5rLeTAlLkAHnJ9KTdhrUdLcdG3bc8HPc1SdpLkGODPXBk7D6eppiWs2quu4PFaKck9Gk9h6D3rbit1TaFUBRwAB0qNZF6IqWGnQ2FqkEMYVBzgdz3J960Ei9akEYzUm3AxVqJDZGBilxTsUhFWSRtTCOKmI5pCtAFZhgUQJvJJ+lPkU7Dj0p1qhMI44I5pMaGyNhST0FZjRtez4yVjBzkd6v3TH7vTPSq24RoQvFRIpEywCNP3WBjsRxSKRIp5CsOCrcYP1qWCQSKVGMgVWaZVn3A4cDDKTkEeoqJOxURZ0PljcinPHrRayt/qJc5A+Vj/ACqSeLzIcx8HrUCnzoCR8sqHv2NTazuVe6EkQxyMSM/1qoy/ZmDqcKT8w9D61dLrcRq5GD39QarTqHQrSavsNMkbZMgY/iPesq8giE7NnaSOParUTbEKlvmHBHr6Vn3NvJqcwtUkMacNM4HO3+6Pc/yoeq1BaFK2lY2+SeSeanc1Tt2At/xrNvfFWmWcjpLKxKHBKgEE+g5yatLUzvobymp0NcWPH+n5IS0um9Cdoz+tSxeOYpG+SxcD1aUf4VfKyeZI7mM1aSuSi8TgxCTyUUH+9JWVd/EK7gldLe0tXCnAO9jn8qbi0CknsekL1rjPiGAf7Mz2Ev8A7LVWw8UeJtTUPb6fboneRo2Cj8Sf5Vdm0+bVLiGXWblZ3QbUihUpGvrz1P6VDkkaKLexzFqsrlY4kd3I4VAWP/1q1bfwvPcTLJdSeQOyKQzn8eg/WuogtlhiEUUQjUH7qLgGriwoikOx45wOcVLk2UopbmdZ6fbWYAghAkI5djuc/if6Yq4sLE/O3t71ZaNVUbPkHvVizj82UJzjqc+lK12PmsjU0u2SzslwMM/zHPWrTt374zTWb5R9M1E77o8jrmuhKysc7d3ccJOSaaJOpzUbZEfQ8nrSMcD680CJ0YFCTUiYb1x1qtn5QKnQ4TFAyRWPJp6bSOelQo2AKHbbA+T14piKl5LvbeDhV6dvxqtFZ/an3yD911Vf73uf8KeYnu7lY+RChy/H3vRfp61rRxYXgVm1dlrQhWIAAAVIEA7VMEwKQiqSJuRgd6XbTwPajFUhDCKTFPPWjGaegEe2kK81KRgUzFMQzaCKYvmRKUUKy9jnBFT4xUZOeMVLGjKupXS4CFPmYZGSMfpVR3kyeij86sajHcxeY/lvJETndHyy/UdT+FZ8d7BNkBhkdRnmueTd9TeKVjQ09yJsEjmkYrNcvDJ1Jyp7g+lRwSIu/pnGVyajvH3SpMmQcA/jUyeg0tS9bOVRoX+8n6io3wr714PRh6im+arskwx84xTS/wA31FV0J6iDCmTtuwaikkAyRUckm1qy9Q1BLaN5JHAVR1J4FS2UkT3NzsY7F3ORtUDuT0rStLZLSIgcu53O3qaytAiN1ENQnUlmOYlP8I9frW6OTmiK6g2eITeKdRurdoY44reMnBZSS5/HtWK+nRvIX+YMfepoQAh+tT4J9hW+2xiVE02PHLOfxq5BpsZO1Fkb2BNXtHtra71KG3upXjjkO3evY9q9Fg0e10r5bSLEhGRKeWx9T/SpnOxUYXZx9h4TmlAaaNbeMjjzBlj9B1/PFdPZeH9OsdrLbLK/9+UZ59h0FaSSqkayMnU4buR7k0KyStlWDt1GOPpWTk2dEaaQqwzSsoHKjg+39KtR2aIcyNk+gpqXLr8jAA9wBn8RUnnMPnyGUkDG2krA77E/yovAAFN835j3wM9KeS2cFQFpjbFbIGe+aogH+cq+CMdq0NNjIjaYnJfgfQf/AF6znBkYYbII6dOa3ooRCkUQ6KoFXBa3IqPSwpPb/ZqInKj6VIcrMAeeKi6SlWBAxitTERm+RRn3od9zAdhxUecuV9BihTliewNAFgkeYoUfWp8EFRntVVPv8+tWN2ZD7YFMBxypUEdqjun2xKv4mpC25qo6vOsFs8mCzBcAAdc0mCL9ko8vOMGr4GFrKjVhgrKy9yvYmtJX3KD7UkUx5WmkY6U4HNLiqJIjnHWkqQimEUAJSUvNIeBTQhrHJxQBijHNJQAh5pMAc0v1qNju6UnpqMViCKxNa0iK/h3jMdwv3JV4IrYFDoHGDUtc25SfKefebqdjxJEbhB/HF94fVT/SrlrrdrdnynkEcw/hcbSfwNdLLpcbEkEjNUbrw5Z3KbZlD/VQcVg6cka86ZXikKho85B5U+hp7zKFDZwOay5tCvtOJNhdtJF/zyl+bH0PWsDU5vE4kEYt44o24EqKWIP49KnVaFXRu3urRW7LHkvK5wka8sx9hWTdeFdb1u+gkvJoLexVg5gVizN/vH+lT+G/DMlpcm8vbh7i4bnc/JFdovAppEt9iOG3W2hWNTwoxUgGKQtzTlGatEs+fIBwQBx61NkdTzUMWfoKeSBWhJMCeO1ej+GdU/tfS/s8z/6Vb4G4nlh2P9DXmwY4GOlX9L1KbS76O5hOSv3lzwy9xUyV1YcXZnpciOm50yrD76KO39frUKSuytGm6TJ+UFQMflV23uYdTs47q3bcrDscZ9VPvUDKLcl4Qu1vvrjJFc7VmdcJJoVU+Qu0xyo/h6Cp7eZQ+4DHYoAfzxVaKVZWBTJYdS2MD8KsJDgmXzCD1zQgfZlptzsc/c7YPUU5Qy5wAF7VDbzLyB26j/CpguQdz7h7VaMndaFqyiFxeRn+FDu+v+TWxJwQfY1S0pPkaUH+LaPwFWZnIQse3PArogtDnm9RjnlTn2NRF901JJJ+6Bz15H1qssw2B8/X2qiSwSHnORj6UxVbz2WMbkbPLMBiooptzZzyeaSBmDGRm4wSBSAtRyANtYjcOCPepY2zuY96r2TOsLPKwbcSduOBViKNGQLyuBjIoAkiOTWbqbbopuM5GKvplVPrzWTdsSgVxhnkHHtmh7AtzWjPJ5q3ayjyyDnIqlnbtb/awafG4jmGThTwaSGy8srZ6D86mD5qm3BpyycdeRVCLmQaDg1AHHGDThIDigRIfamEc0u4etJkFuCKBjSKaRT8U0jNADKh2MCfSpiOR700uAPWkwGBG+tHTrSltwGDimnPQnJoGNJ5pjc9ac3WmnJzQIgaMSZA+8Ox71DhQpyvzD1qRnKSbqfOqlPMHB/nUMoqRxBvm6fQVIYwOM04DagFKuT1FFh3IxH3JpyihsinoPlH0pWA+dYjnpUrACoYjxx09akJAPOaY7kmMAc05SBUYO7HpT1I7daYHQeHNcbR7omXJtZMeYueR/tAetekkq6edCd6uoYhejD1H4V45Hkmux8K6+loF026kCQc+VIxwIz6H2/lUSjcqLsdLKvl7prZcxk4yRSrkqHky277qDirrxhMuqkqT8yj+Yqtn7M/muhYMMKM9KwtY6VK6JNjEjaUVh0Ve1KHJYt/GOx6Go/PLErCnXv3qS0haW8ijZchmHT8zTW+hLWmp0tsvkwQoeCVzj37/wA6TeQ0ins3H41JKf8AVtzVK5m8qQMRwxA6117HF1BXjKuoGVXse1VxBFI7KwYY+5tbAxTLgiKV5lOFcYceh65/GoorpFdd3BkHBJ/SgAjtjG7Rq+QTujIHzKff2qFXaG2ZW3hgxVmPQZ/p6VYgnZldsjGMqM9fem23kytNKVAJUgnPLf8A1hQMtxviBQRjJAHvVsNiM/XFZqLNiORT5sRJXIPIOO/8ql+0HzNr5XPJDcEGhAaJ4Vj681l3BL3MEZ6B8/jV/fiMHsazom8y/BHOATTlsJGk3KOO3XPpTOfL3ZAI54PU1LH1bIqEKquRtGfWkMtJJ5kfv3oD4PAz9DVeIlXwelStnqPwFNCJgSDg46Zp6vn2NV92cc05TgkDqff+lUIm3jqce2aeGHTiqu5sEHt705G560WAthsDrS54qBSW4NOLErgfjU2GSfxfhUYUA8jvTlf5se1KRyPSkAwqNx4xTWXvUxHPPFIV9KYFYimYqdlxzimbMYpAU5k3DI61FJ81sOfumrrLz06VXuIysbsPSpZSECjYC3Q1IBgUsa+ZAvoVpkbhD5bkZ7UxDJhzTlXCinSruYUO6qvHOKVh3Pm2JieB1qQ+/NRRnjH6VIQaVyhwycCpVXA5qNWC8DmnBsn3oYyxGxHNSg55b8qgVuBUinn3pAeheE9fF4i6fdyf6QnELH/lov8Ad+o/lXRSwqMkgmM9vSvII5GikWRHKyIQQ44IPtXpHh3xDFrEJgmdVvVHzJ/z0HqP8KUo31Ki7Ftl8hX3IdrLgVq6PCCXm3KzIm1cHjJ/yB+NVHUKNpUmM8ZPaqiXMthOjrloh0Hbb3H/ANesotRlqayvONludaXWaMEMQMcjP41WuIIriLDllP8AA3cH1rNhu2niV7U+cCMmPhZBj2Jwfw9KfJqMcmIpA8bMCCGGCp7Hmuq6ZyNNFryY5EIkDMANpYEjd9BWaLEughilR4lOQ7HkH8O/anDUWl82IqAEQk+oIOCKy0mayadrYK43ggFuGz/XGaAJxHNbKIHwHXOza3Eint9f8abDMYNPJclpHADleoHYD/PXNaFldNeMCP8AVqNxJ/kPSqk8G5mnBAiHzDtu/wAnvSA3IztghG0IFUEqOgqaaBLiAbwN+cq3pWdY3D3UQZ/lKPtZfwrUQ7155ByOKpaiZWa3doyhk254zj86htY/LvGUkFsdB2FWpSyqQ3UcMfXHQ1Ss5N2pyA9fLBP4k0MEaiA7+KbIuJM46c09cbqdIuefSkBCy4YNnINSrgr70wD5SKVD9R9DVIBSNvUYHr6fX2oKMR0BHruFSYzk54+lR+Uh52ADvycUxCg85BBA4yT1P1pec56UoXjAGPQinBQCaAFXIxg4/ClyAwY546kUAdTjnrxSnnkdD0oAbuzICMc+lWc5C/WqxXAzkDHcjpVgD5FOffIpWAUkZPtQPQ0qd/WlIw1FgGNTCKkxn+dMk6jHXOKLARsvBpCgYEHoRTwQwpF/pUjKsAKwomT8pK/kaS4QIwZQBnvUhG0P7SGnXAzFnuOlLoHUrPJtjLH0qikpdyePpVi4OIgePxqpAVVct1bvTQH/2Q==", "path": "images/5pts_ADE_train_00003852.jpg" }
depth_point_95
images/3pts_ADE_train_00014964.jpg
ADE_train_00014964.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 224 y = 131),Point B is located at (x = 260 y = 188),Point C is located at (x = 299 y = 216).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_94><DEPTH_19><DEPTH_44><DEPTH_49><DEPTH_63><DEPTH_46><DEPTH_11><DEPTH_58><DEPTH_78><DEPTH_94><DEPTH_33><DEPTH_61><DEPTH_66><DEPTH_60><DEPTH_80><DEPTH_41><DEPTH_3><DEPTH_58><DEPTH_32><DEPTH_61><DEPTH_50><DEPTH_27><DEPTH_46><DEPTH_20><DEPTH_9><DEPTH_94><DEPTH_26><DEPTH_81><DEPTH_42><DEPTH_68><DEPTH_50><DEPTH_27><DEPTH_46><DEPTH_70><DEPTH_36><DEPTH_71><DEPTH_26><DEPTH_19><DEPTH_12><DEPTH_68><DEPTH_55><DEPTH_78><DEPTH_77><DEPTH_15><DEPTH_22><DEPTH_20><DEPTH_38><DEPTH_15><DEPTH_50><DEPTH_39><DEPTH_1><DEPTH_81><DEPTH_58><DEPTH_38><DEPTH_20><DEPTH_17><DEPTH_77><DEPTH_15><DEPTH_76><DEPTH_32><DEPTH_41><DEPTH_44><DEPTH_72><DEPTH_60><DEPTH_67><DEPTH_22><DEPTH_3><DEPTH_76><DEPTH_64><DEPTH_2><DEPTH_94><DEPTH_66><DEPTH_77><DEPTH_3><DEPTH_74><DEPTH_69><DEPTH_31><DEPTH_38><DEPTH_2><DEPTH_57><DEPTH_39><DEPTH_82><DEPTH_69><DEPTH_58><DEPTH_25><DEPTH_25><DEPTH_58><DEPTH_74><DEPTH_76><DEPTH_32><DEPTH_41><DEPTH_1><DEPTH_94><DEPTH_94><DEPTH_42><DEPTH_16><DEPTH_94><DEPTH_1><DEPTH_39><DEPTH_41><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
3
[ "A", "B", "C" ]
<DEPTH_START><DEPTH_94><DEPTH_19><DEPTH_44><DEPTH_49><DEPTH_63><DEPTH_46><DEPTH_11><DEPTH_58><DEPTH_78><DEPTH_94><DEPTH_33><DEPTH_61><DEPTH_66><DEPTH_60><DEPTH_80><DEPTH_41><DEPTH_3><DEPTH_58><DEPTH_32><DEPTH_61><DEPTH_50><DEPTH_27><DEPTH_46><DEPTH_20><DEPTH_9><DEPTH_94><DEPTH_26><DEPTH_81><DEPTH_42><DEPTH_68><DEPTH_50><DEPTH_27><DEPTH_46><DEPTH_70><DEPTH_36><DEPTH_71><DEPTH_26><DEPTH_19><DEPTH_12><DEPTH_68><DEPTH_55><DEPTH_78><DEPTH_77><DEPTH_15><DEPTH_22><DEPTH_20><DEPTH_38><DEPTH_15><DEPTH_50><DEPTH_39><DEPTH_1><DEPTH_81><DEPTH_58><DEPTH_38><DEPTH_20><DEPTH_17><DEPTH_77><DEPTH_15><DEPTH_76><DEPTH_32><DEPTH_41><DEPTH_44><DEPTH_72><DEPTH_60><DEPTH_67><DEPTH_22><DEPTH_3><DEPTH_76><DEPTH_64><DEPTH_2><DEPTH_94><DEPTH_66><DEPTH_77><DEPTH_3><DEPTH_74><DEPTH_69><DEPTH_31><DEPTH_38><DEPTH_2><DEPTH_57><DEPTH_39><DEPTH_82><DEPTH_69><DEPTH_58><DEPTH_25><DEPTH_25><DEPTH_58><DEPTH_74><DEPTH_76><DEPTH_32><DEPTH_41><DEPTH_1><DEPTH_94><DEPTH_94><DEPTH_42><DEPTH_16><DEPTH_94><DEPTH_1><DEPTH_39><DEPTH_41><DEPTH_END>
224
131
260
188
299
216
null
null
null
null
42
81
118
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDhdSO03qYzuOMf8CqHGAFy2CRjHWptR8x43nkUKZQJOO3fFNiUBI2J5IBPPSuHc7zdmDSW2m245/dE49ycCm3d5JbSxLBIUt41xHg4z7+5NMa4ChJR/wAsoBge5z/VqzLwsVRpDxnOM8isa3NokxxNuZ4byW11MJkEMsw/2vf61RaZovMjRiGIZcDqRjpTdFn82O7tjzkeaoI7jrz9KsykSzwDADOjAnpn3oa5kpDvbQyNHmntZRJbkMzMMD3FddqaJci21ER5jkx5ig9GHUVxluz20CbwACSQcen+RXXaNepPptwlydsLoWDH+FlGQayvduL67epeyTMSVJpJIIYE+YZlLp1bJwB/OpZLxnuY/MBI2LESPXH/ANep7ANNCkgOHEBKkdcgkjj60/UojdJb3CKN7KPMUMFIYemfTkfQisormVim7PUokrA8znjC5zjPPQCsKaUzuPLJOHDFcjDADPXr+FdDJaNMGD5jLYR1ODlT9KyrO1kv9XkkhhLw24IEa/xBRg1dNpJ36EzWpYu1b7SN8RWKRPMBHQ5XC/yFQwsVwB37VcDK8skb5QhNsefmAOMgD9fxqrD94kcela4eWmvQia1LG3y2aU4AHQ1Jbx7x82ctz9agypbBPyCtG0Rvnlfpj5VxWi31Jd7C26BGO7gDsKvoF3KqqdoOeev41DbHE3mtGHcY5YZA/DvVuNSWZiVyD87k8D6n+lJtL4tg32LcONzgEBmQ5B9qZZkf2x5Rj3Z3ADr1Gf6VV+2qrEQKWPQuy56+g7VY027jF6LgIzuVOM4APGOa5HZ1XK2jNldRsWyrLaElvkwwHbqcEVLZWw8lEEuMKrYPv/OpIrUf2qYJv9VtBGen0/SlltDFMEViVfgbevygH+tarbUREbeERzQBMlpMHjBAHJzx0rKtoSsgTBOGz+ldDbhYriMME5iJyx4JI4P58Vz6zSW9xMrqxaPIYNhSP8is8RH3UkVB6sx7ldkrNjg85pmzcQ46VbkjJ3MhMifxAj5lH9frTIYw+B2PTHeqpPmRM1YgEAEqMckE4yadJGHj80oAw4bAq3JCETb0HX8aiGRlf7y1TWtxRZVNvE43BTG3Zl4I/oaqSRzxrkt5qjPIHP41ri3O0MvpgD8arXSxhQzOUVQScHnJyMfrTbaWgrJy1MDUPKS0jeMsJXZSozyfw9qjtS7XDwoCd21hn+9/k1JqKxtp6PEhEiNtU4+6ucg0WiQjUGAzvXlec9hnNF1yN+o7WZrW8e+Uup+b5UHGMEf5NOvbmK3sMIC24uCB3HGM/lx9DRIu2DYgO7p9D3NWZrOFLZN6kysvyr02qOSfyx+ftXLF3fMzdmdaQlGleJj8yAqx9CCa07S2QWzX9w2BEwEQx94iq9lbeZ5FpFjMiAD681Nrhtwq26EeVB8q89T3OKpvW7FbojAF9Jd6pE8wyNzMSDkHGTnFW7i5N0hOMENgA/wjsKoxRj+0tq4wsbnr7VdjDvaIg+YuwVRx16VvJaJIhPXU1NH0gajNJcOoMSNlQ3QnGM0a3p0SQvPDB5bJ1O3aGX1wK29QmfR9NtLC0IW4ddxYrwAKonUJ76BLOSaO6M6MH2oAU/Kup0qajy3945/aSvfoc5Iwk0URnnZNj+dY022NSccntnPFaanbbyRnIO8H6EZrNvCPKYjr9KwjuWzob7C6btlU7Av5EDp/KqcQVGwck8D9K0/EVjNY2RjClojtKse+ev48VSSDfLEBwXXPv0/+tXRawjQgCSQuWbbkqowM+/8ASsu8cEYB3c8ccVdjH+hRozbEaXluuBj/AOvUd1ahGWMsPukxsvGcVz1fiBXItGmEeoLI7AAAKAO4JrU+zkX6Lk/I7rn0zj/A1jWiJNckGTa3BU9s11CBWvt3d1Vz+WP8aqn710weiujlivmqsZBymQCfXNbslvHb+Fo54lYh0w4P94n/AOtVG0sjfRBY1LPudmOccKDV9on/ALHa2Yli6RzKDwAScEVjZK6aNVraxLa82kE6IehVvQdP8aoX9y7z7rcYg2bpA8YOGGAxHpXSaXCLS1ltbsALK/lHHQHGc/qKyLuwk+0JayKcI+xlTqwznH48VlH3YpoqTfNYJZ43WCQbP342Hb0+UDH0+n0qnb20lvdXTQSiIyRsWHZsjkVYu7OKKxjliYhS5XDHHluOoJ9+R+VHmIxEkvMDKRJgjgj3pzTWvcSsVJf3Nooz90oG9T2qow8qRz09600k3O3yAx8Pk9Gwen45z+FZd4WcjjqSGxWuHW6M6mgtsPNbew+UdP8AGtiyJkOWHyouAMepqhZJvdE9f0Fatige7kjVuWGFX1Nb3Sd2S/h5SaNUELFvkjX7zj09B71N5JnUjKxRx/MsRbnHXJqvdGNyNrfuYsqpzw7d2p8sc10ryqyhFADBT8zAcZ/Ouao3N36FxVkVZiHjfGBH0Cn6/rW9o628i+aiopTJ3e4Ucfz4rBdAM7EJ7gHtxW/pEflWc4lIcycj2zj/AA/Wpe6LbNZ7bdd37BwFBBB9Ce+fTipPsc0dvegIzS7B5R/vHaM/r6VaVD5Nw0AVnECAhhwTnk8/Wp70SGZIQuJWiZs9Bgbf1z0rVvS6IME27RR2zS7mC2vztzwV5wKwL8k3cJXBm2AHJye5FdfeAw6fATtYSxPuIrj9Ui8u8dSOuGV16g471nUknJW/rYqCGx2r3bl4QVlXkkHHHuKgaJw7Js2sQfu9PqPxqWKOZHHlkuz8bMZ3DvTrly8UCL8kkPGD1Vs55rL3k7op67kMkgltQ4PzAYYZ6GmW43DB+9tyKgmDKzSAY3cMv9046fTvUts3CknDAVvGXNsZtWLdupILZ7cg1k3aF5/LJwS2RWwh2QHB5xn+hFYl6WadZM/Kh5+nSqldJkx1ZWvrKJp2t38wFgOV9cE4/lS2VjFFOZkcuwXBJXvn175qaZFuBGo3Bk3Fn3ZP0FTE+TEAqjc3H0JH9K4+d8vImdCjrcWc21qI/tKwmTJLb1Y5546VLJOs0/ng8SIyJ2+XPP5mqt5DNK6zTKTG42BSOQSOD+ferNjYPLdrDv8A3QUMx/uLjn/PvVaWsgKX7+2kt5VRlJYMp6HHPNUtSEiXQBBG5dwz3zWreznfEsLnZFhVzzkf/Xqvr06y3iBMsYY8Hb/D61UNXdDkZ9qEM+VTD+S2TnvjmtXw3b/atZs0ODHHmRvw/wAiqNnGEu7hBkfujtHXjiul8FwrENQvXHyxLtBI6YGT/SuyhHnml0OerK0WzT1jSbjULnegCrt2Y749KXStKNiGaRFXYpIwOKyF1/USzNHcDJOVjZAeK6V53bREnkOXm6YGOO1epTVKpUco7nFOU4xszzDUo/KvrlFBwZGx275/rWZdR5VkHL5/Pmt7W1H9qSZ74b8MCsi8Oz94g4DDn3zXlbSsdm6ueheLog2iYIHDIRXJmUIYJEYLtxXZeLMLogO3d8yYHrzXKrJE8qFl+QHBGOoNdM1qRHYbdRukCKGKmMj5ex/zxTLufcLbYrHy1K5HOTzVnVDNbSRFkyJCCuRwykVSuJJBHHskJQZ2+31rkqv3ti0iHylihiCggkncT7V1Fl85tHBzmMqfwNcsZ/OdnxkDArpdLYfZrUhcKsjLj0yBTo/ED1QeFQ4vl2ZwwkDEdQOeR711A0xBcwW8sqkPFtWQgckZ5+uTWJ4KPlXyEKvmssoQt68/4V2Zs4IYU1GZ93lQGUL2ycA8Upq9xrQz9QsPtHkPGd5Mu4lurcAH+VZGrpJHNbXLJ+8RF87nvnj9K6yO2lSKEIyExq6YJ6HZnI9TnH51z3ie8tYtUtEmXdHPFlsDpzwDScVyhfU5q/ultgoX51mcllAGVPqQfXr+FJNGgCFQBHJHjAGPmAGf51JeWfltJbADfuz5n95TgZ/Kqtzai3itpFkZoQTsPOV9Qf8APasrN+6zTTcj3KLCa0z82VYnPoDjNZzfPsJzh2Bq/cJuIYHbwMn1HpVO5KrEmCNyknj61tQlozOorMntnEbMwPQHbV2wU7SeQ8vyq3ov8R/pWTbsZFESDLuQoA+v+NbkrLDvRBlUQRqR3A+8fxOadXZIUXcWQieYRQ/dHI44AHc1LFuiik6GQpsXtuJxUFsERWkLZZj82DjNTQSwiNriYHz94Kr6jHQD8qmaSjqVHfQk+yMJSJWKknaQOzf5xWtpNteAMYWZsjJVugwev5Va8L6S2qXoeXLE/M2eg5612NubbRNcvYQitGsDOCeW4GayjFzWuxUpJaLcy7PTrq5imMezaCFIHUkYJNaVxbyS38aRRq37lz35PGP1qbw1co2mSTRjDFnPr1Hr+VW4X+x6pAzMcPHgL+NdEILlTvuYuTu9Dir15Vs7aBov30QZcHnByetc4YmleR2cmc5DBh1I54r0FI4LjV4Z54MJJLwSepzWPrehmdr+7hX9zHIcMvVM1yShJe8vQ2jNbHJ2UstvLtKlZWify2A4Jx/Os57nEw3Z3K33zzk+9bCl5Qtq8mx4jkMR/DjOfzH61k3MQcsyfMVPLdM+9FO0ndjlpsWJPLltTKVIIGyUDsOxqpAoV8Nx0zU8DlIQXGQ6FSP8/gaEiwyAnJjAVj6jGVP5cfhVR9ydhNaCOSisuOeRise6iM+yJiFEjFSfTPeta6POAcMDmsyd1S5RmwADn8q3n8JnHcIU2upLBgARnPB/zirqWjPPE7sRH94jb09s/hVPc0UHmBRuY8Dtk9qddiS4uV3KwRuFI9epH864lq7s6i/M6zRSTsSSHCoM/wAAH+NWdj22nLbxjdc3Cb356IBkD8arQwPK7tOq+VGR5m04wvT+lbWhQSapFLcxxq4gm2lj6bcYHqB3+tOnFyZMnZGZc+HWSyF3G+ERYyQw+8zY6H+lOuPD6XUl/dshtxhtgzwVVCT+ZArt7axiezeNZN8ZVQyYyMqc5HvjinrpsdzbXIKEE71UdwCApA/KuylRV2jKVVs8ftDvvZ2zwIPy5rrNKiMPge4Zfla4Zj9cnH8hXJ2yeQ14SDlItvPrkV6RosESeH7KKUDmMHB7k8/1rqwceaXyMazsjibOyZ7okFAc4B+vb+ddnqqCOK3t0ONicjPSrf8AZtiGBSJFbOcr3NUtQHnah5RJzgAn0rvw9FUkclWp7RnCeIhnUXEeCE+QNnqcc/lWBdDNs65PBGPzH+FamqfJeMg4SJyi5PoetZ8jbYQ4wG3g5PPfP+FeQ3779Tv6HpHi1c6EF3YO9Oa5e2hdzHHt3ZG0nvnrmum8ZMF0Q/76fzrFtWMRdgccfK3uRXVP4jOGxa8RKJtF0po/vCMlRjlhgf41yUWGidXPyEjd7cdq6/xDIIdF0nYMN5WAR2GBzXLEC4DPGgDEguP6iuStfnKhsEcHlqqsMc9exrp9CtmubVVRSW88Fceh4rEuXiVI0JC54B7D0z7V6B8MbVbm8KSPgo4baR3ANTHSaSK0UWyv4Y0mVdWVJYn/AHJbeAMcAc12racrvFBGAbfCoUI6qcf/AFqqR6h5Hi7UZFQYMcxwPYVtxXLx31nI+3y5HbaB2x/9YVpGKe5nKT6GZq0Zs45BDA0rmZWYryUGAC36fqa4jx8gt72ykRQZFSQkjv8AMD+XJr0PVrxIxfXKx7kVWjkUnBBBA/ka57xNosWs+J7OzgcDdAoHHAyP8OaVWNk0h05a6nGyO1zYxShQZLfG4/7PbP48Vn3F5JHcokaAwnDuckYJODitbUwdH8UzwToXgaQB1UcdBkVBPYfZ9ReIYkVEZ4s9GXGRWDutt9jZamdqCpI8yxk7vvgjtkc4rIdDGvD5M5XcSPu57Vv3MSSs0kTAoE5TvjuKxL4eVazY4Kodv5cGlrew3Zq5HosgikDlwWTIiz/E5OB+Qyfwq/PKFkRQQVAxk96wrRI4oLU+Ydyufl/TNaTgyuFX+8QK2+KVzNKyuX7GNnIkJyFGV9v8mrBQQ7WkbdMxLBR2B/zj8DTVP2W13jgjgf5/SoLYSTy/ICztwKl3m2+g00j0DwJctHJqDeYC6WxYg9OoAAqzeiZPEeptcbkV4ZNp7lDWF4aQ2U2oAyEv9kOcdjvX/Guuu5BqXi9rOSNTGbIKT3GRmqSvFRRL0lc0NN01dI0mW13tt3hNx6sNv/6/yp8xjW4twGJKoxAPXGRViVEuprlBL5a2rgY9flH+NQ6gohuoZlcYWF0KgeuMGt7WRkndmW7sLbTRGQY/tJycc5yKtaG5u0ubYgsjXC7h7ZJNUtOuGk8PxmW35W8H7xT0Jb/A1s6A8MGmpIgw7ySbz64BNRBJy8hu6R5l4kgSPUp3tGw8TtjHcVkwOJIfMxtZVyR6jOP61tXp827Zjt5JxmsW4j+x3QIX9xJkgHsT1X6VyyhyrmRvGV9CFyfKfaecBvy4qwZUSG3YsN8h8ojvxyD/AJ9aqzLt45KnkH1FR6nsigtmccBhkg8lfalLVXKKV3ct9vkt0chlwB9ef8KqxvPeTR+fEsa5Lcdx0plnGs2pXUw8zbuGwv34/wADWki7TI4HOABjmipUa90IwT1JZEijVXnO0FuASelWMtP8wGd2Cg9Fxgfj1/OqhgeS3jZmOQPuN3BOCT+daENuqRC4/wCWMQAJJx82OPy4rF7WRp5jtVZrOzWyifa/3pSB/Ee34V1Hw+gE/hiS2LlCbtvmxjjAJ/wrhbwyXBiuescpODnnPrXe+ClkXSTCAQtvdHOOrbsH8ua3oP3mmZ1fhudHFp8cZhhUMhjYyMwOMg7uPyqd4QrS28DOrsrKrH+E4J/Kr8dm5ku98ZORwfbB6VBICdR2RKx+05VCemVBH+FejFcupyN3Z4XPbvFdXVvId0q/K59Tu5/lXV+IHa1sdPgBwwTJA9MAVRvdLnXWpvMUmeWTle4+bnP61peKLdftEJlO3KFQT25qKEmqc3Hc0qJcyTK3hzMtzbEys+AxIY/dI9a0v9ZrMh6hWJ/IVS8ORJBdqoO8+WxIHQMatwuBc3EhPQMf1r06V/Z3ZxTS59Di/EFqFRronmSdsew5rn7vhR+FdTrzg6TZ5GdzE1zF0vTg5LCvETu7novTQ9F8YD/iSoVGcsox+dYUCKcHafnVvzzW/wCL1/4k6g9POUEVmratLB5kY2BUJXPsM12T3Mo7CeLF2aTpQbgiIj8cLXLWjHcSDjBHNdT4w2vp+jqXC7oiw9+FrloFIR+eciueavUdxrYfeRGSNGQfJn5h6f8A1q7L4b3rr4kt4g7CMbs/7XymuVY7IU287jgiul8B2TQa+J0P7pVY4PUfKePzqErSuVe6Ou0a2fUvFWo27SBXczx8HpkkZrcna4MOkZVPMjmMTBD2BIJ/IfrXM+GJzH8QbvbkBpZiT/wL/wCvXbS2kK2URjlZngfeGPfPDD8cn86uKdm/66ES0aKWsz27WmsR3KeUpU5HdjsHP51hxG4j+INuXUqzrEYiOmzaB/iKveJdMlura8lhdpLiW48vrxsAG1frn881j3N46fEeyDHJQwRoP7q4HX8c0TV9/wCtRw2JPiLYpaLb3iOPtUgbfuPcen5Vzcfm3NmMkmeBMEDsvX9CavfETUXudStVZv3Ziy2O2XbB/SsOyvpF1ie6K4Rtodf7wwB+vNYztzPsXC6irkKRFZ5JUHzHd9XJ5J+gqjLG0kG1kLNtKbTxu9K0dSiaGR/Jfbg5Rz2BPX8qryHMcSSrtZgVYtxx1FZWsrPc1TKcsEEdvZfKuQMEjvgDI/76NOtlIl3cA5yM03jMMHH7lGbH/AgBT2AhdvMbgNj/AA/lVJskbO7zMWYnGMAHtjp/jWlYj7LavO3VvlSsyMtK6jGQOv1rRtkkvrlIAf3YPSujlsrGd0buhtzezNxG8Ixu/wCui5rp7a5DeNpNgYkQqNy9F/dg1zE4js1kgtw0lwVAZOg2ZB/pWnFb3t5rRvILl7PPOzbuUhVAP6ZqbWdh7q5vHVZljuzI8PzBimTyRvVRk/gas6rdxzg3CgOsSBhhs8Z5P07ViajpVrqBETkRlHySCeMnn8cmobnS4ryxMMc0kbwK0cYQ43DdkAn607u1mSoo37pobHSo44WJiadZR+OT/hUeiTBNKhXPRp2/Ss25W5stDa2tJUmkJxvn52gYU4NQWmoJZ20NtcSqk5gmPl/3iTwaq+ocvQ5jWXkVEMRIyp3eoNZ1zMs9h5b5ypBRs9D6Gpr653xMpPzjkEVnrmWHy+j5JB9fasG+hqo6XZNbTefbsG5KArkf5/zmlvoY54oo+khjZVz0zg//AFqp2kwjkkBHDjkfTr/P9K2FgDNA2x2CuMbfTuT7YzWL926KRzumx3HkvvVmdSIg5PHQcY+lX5ZVjaRY13OqAD3/AAqeNVjnumMn+jRvhABjJwBux74qs0qreyLGmCesn0xn/PvUN3k5FrRWH2pZo3L5aQ/KNo4PPGKtao+6BNPicqqr/wB9N3/wqe3SO3smnk+6v3B6H1rMVRczW9zJktITvVT93ngUld6gdPo2gSalosRWEF4ojI7E9FDdPrxXceE4bVPDgjj+SdpWQk9c4q/p9pDbeDvtFqMP9lcMe5Nc74TuG+zQxEkiTUCGJ6gbS39AK7qcOScW+pyylzRfkdlaTyW9rcRyIXZCVBz97p/U1VS/WDUtMtpFIeSSTbkdQB1o1P5t8VrIyu0U5Zj0BOKjsLEXcljePJl4EkOT1OQM/qa65N7LoYK25j+H57bUPE19cyWy4YMVYjOcZzVfxGtnp9yEvFDMQGAK5xmrfheS2hXXCAPMj3Mrf7OTz7VzXjbUmuddngDkPFtUAHgjAowjcVtuXVV5CwappET5UhH/AN2o9V1GwignVGQTBCNuPauW80OTvU7uec4qpqFwJozGq4Y4BJPOK9KpVtBs5o07zQ/VcS6RY45wSSPwrEuECxL82W3jj8a3LgbNLsAcHg4PrxWPcruZQwwS4yfXmvnonpPY73xgQmlqSMqZUNZ7SGCMMi7ewU++efyrU8bR40qFT085R/OsgkSskQXzEVsDHBPbFd1R6mMFoV/GaBLfRWbB8uI8evC1z0K4tyeTzXUeN0Uf2KmAVMD53dei/wCFYESYJjkdVBI+ZulctWVqg4LQiblF9jXXeDZvKeeQ9omIHqcGuT8smCSQDIRsE9gTXQaBD52lyjcVbHLI2GU8469RyavqCOg0eQr47lwPvPIWHp1P9K3ba+u4NLsEAZjJbruOe52nn86xItNjkvIJMSxXAnYSOjbS3TH0zk1c1IXMuotbR3hjWJUZGQdecEH8hQN6s17jWrlLWcNBG0yuHOThRtzx+Y6+9czJfxXvxDtJIo2TY8SPnuQOTWtcu0Ol3FvLcwC5aR0SSRfvHqRjt3x9a58W89v4jt7+72xAoskzJ91cDbnHrjFDu0EUiDxBi71m3ikBKm3jDH0BZyT+VZEd1bRte7VIiZGRCeo4zn86u61MW1HMZ+cW0SA/UEf1qlf29sscbRIYww2sfXj7341Lt8xrYl065/tLRSLgfv4ADux99f8APNQyz4u2iIBgwdueo4/lWfo0/wBiJkZ8jKx+X3KnOT9O1a2qxrbyPJBg71DJ6EHjB9uT+VYvTUszJ0R1juFYxsy4J7fSq73bliqKZIzkMScY6fnV4NHJAIGTa5Tdtx0IPSskR4JjADYJJJz0GAanyYNX2NezTBY4z1AxVyxnNqx8sfvM/ePYVVt2wojyVDndn0FaVhAjFnkJVVIIIHX/ADx+dbTk7XJSRs2ELNI3nlNp3KSeo44rSgeVbyTb0VgVz0PAyMe4qvZbXheURkRhgADyxB7/AFq7GwknLxuQ4zx+gB/KiC0QmyRxIWy7ZLkYz256Zp8pkWRyqqAccepJqJnZmI4Uufue/B/nRbTu90YpVV1BUqBxx2z+tWkInk2ZeJ0JRFBZx6k8f0rINr9rIuZCqzNEQCexJ7VqyMpu49sZaJ2DuP8AYU9PzqCABPtUsBUYXAUnoQM8fmM1rGKb1E3Y8/v0MU80LLtMbcc5rNMrxsHGcqa1dRL3itNuHm4J6Y75I/DtWFK5POTx2rjg7uzNpPQtNPDEzSuD94Yx6mtmO+P9nvIkuxvLCowPBOcHP4Vz8iRmOGQkncQG9VOePwrS0dBLaMZyDGikuffP+fyrKo1ZsIrYn1BY4rby2fGwhn2knLGnwWq3E8bomwMuR7D1qMpC91cR/M7kghj29x+OKu3A/s7TWkJx+6IRe5/zisrbI0vYptcQSyyWsbgxwKWY9i3p+fNQWkb4jZFKryQx6D1P61kWa7p5icgMRx78mtyFZreDyJkKyAbwPr/kVvyIi56joeokfD+4GSQIHx6nisnwGgukYyyfu47ppC30U03Q5C3w+lGeTA4J/wCA5qt8PZylm+0HIus4Hcf5NddLWcTnmrRZ6TcshtnRMb2IBdR1ODUBniWdjhVmMTKnP3lA5wO3OKzprqYyssY2xm7ZTkcng4I/KqPmStcG6XpFDKoU8HBI/wDif1rqbbi2ZJao5zwXcGS617eSR9m5z7uRW3qVnps+pzSzwQmUuclutcx4NbytQ10E53IiD/vs1Przn/hJHO07P4vxzWuBinpYnEtpmr/ZGjybilvEzKM/Kelc3rWm2gjIt4EVuTuBzwBmtvw1ASL3cPmOCQPTmspNq6fqM7r92PC49Sa6q0L05WMKU7TSOfv0A07T8/wqf5ViT43xA/e3r/Ouj1HAsLL2H9BWHcQqxh6cSrnH1r5+J6rWh3vj1cabDjp56k/lWRblRdoVQ7Vy36Gt7x1Fv022IOB5wJ9uDWMsez5M4VkBz6kV1Vn7xlS+ETxjFBN/Y3msUcQEo5+6cgcGuVuleJHDLh8/5xXYeMlAGkoU3D7P+XSubWMPG0ciM8fTH8S/Ssa2lW44fCZZkJUAdHYj+Vdd4ZGzTZ1Od2OR+eK5+4077Kyozhwr5DDpyOPxrovD5WGyeaTBCcjd0zyQT7cVcJJy0JastTaEdwjNMu5gSGG0cnjH/wBerH2QrPJeAmQmJUBU9s8n64FQW93suDBkheWO3vjPH06VaVGkuIzG5iTBY85zyeT+BFaOzJ2LFxbw3lyizIjxoWYgkjHIAx+dQ3xhmjj5GACiqemc8/WqiXwFm6JvM8VwYmz0YE9R6c5/KrJmYr88IHlIWdSPud8fj1qopdQexyniNWttXdpFYYiQhiOCAOPxqmtyb1ERtvyhRx3/AM5q94wuS7QQAAp5AZG3ZzuP6dKxbIGHnPRSSfoRWUormVyk2RxWH2eSCWQq0RYEAnk+tadldQahHdW7L89u58t+zLn/AD+VVykcsJL5LKo2enTJz+f6VnaZK1hfPKhL5f7gHUk8/lWc4pFovpvEkshUOg4T1HP/AOv86ryxiK6JwDEW3sD29a1NRjTekkQZYixkBHbjnPsKz3CXMe+R1IY7srzwa55GiLMUSyxhwuPmIU/3vWtu1tgttHAX3YODjv8A5NYoR1lFyqEpgAjPA5zn9MVrpdC1tUkY4Z+nqBQpN7kNWNK2YGaRMb4o3Bcg4wcdBWhHcLa3FwvlpL56DBIxjkZI/L/Oa57Tbs/2hJGTst1Us23nbwMfU5rSbeLmXndFt81dx9eCAfqM/jXTCK5SZblmSciZFYH75GPQ8dfyP51ZlmjjkEoGwqgYH15PX9ax1N2l0CoJQrl1Jyc4PH6U6C5muVeSb94hGdpGMKBhQP0raMX0IZd+1PGxdY97bfLh5xuxk4+hP8qdJ5dvYSzbhtUMSw/iboW+mc/mKiNpJJawLNtDYBLd+h4/DIqrr/mw+H0VBtWKbBweoIK/lVctk/QE7s5mUHKyrhVfGNvTOKyZof8ASTgAxuc4HUD0q/byeZHJA5OeWSqF08ixqqD5+QDnqPT9K85No6NyxDvuNLYAqfKwvAwcFupPfPH4VbjEdvpv2dxiRk3kDr14qpBa4u3SNtschU7fQLzzU2rzzppl5NH+7dbeYEr94fKSDnt2rJvmkkO3KrmrY2iXO24VVTCFjz93tz71m6zeNM0NxA+6BCyBuoY4wT/SuGu01e18LWupjXb1/tDbZrbzXAjVi/lkndzu8qQ4wMADrnjpbISpap8rOq7iynsO+a6Z4V0rXd2zGnWVS9kWNEtzNqMELcgygHHpjP8AKtzXoJob8zswKTbgmD90ADiq3h3fLr7kADy1ZwAOmFwP51Bcq62Zdgwk3EYznt1+vNdKilR9SXK9Q6/SLqOLwUkUkqo8q7Yx3Ylccf571N4Vs72wSK1eKCMb2eXeTuLbuP5DHtVfTLUzeF7VBj7qsrAZKkgYrX05ZYpXWe48xt8hxjkLxjP4VVKm002KUtGjR1KwmuhETcvGFnLOkTbd56n39qrX0F0NMlEU8iy/P82BuIyMA/hViOYbbl0BGH3L8x+boM/So7pUi02ZpyWd4wNobkn0BrrVNS3MXKxhW1pNYT3s9vs8y4EWTIOGHJJOP4s1Hq1qZ7wuJfnaMZ98da2Wfz7i0d3PldVYdCSpxkVnai0g1FgckiADnjAJ/wDr10YaKjdoxru5qeHo1LXIU/wL+B5zWRewLBol4CnDKBjPvWx4cV0S5LLjKDv9axL0ltKvMseDXRU/hy9H+RjD44nO6ugOnWIBwSp/QCsyaDNtbzbjv+0KmPTkc10GrQqdM0wjqIySPwFYcnC2iHqbpCR9K+Y2Z7K1id541X/iT2wP8UwB/WsRlcw54PGNv+fatrx5KVsLNOfmuQOnsazHt8ukaNkHCgd+TXTXfvGdL4RvjRF83S15BFvj6dK52KE7k2lixcAEdyeK6vxmsf22xVieID0+tQ+HdNS5+045CIHQkd8is6t+cIO0TJ8QWz2mqToAhKkBlHRhgVe8OQxXFleQtGTGIw21+R64rV8VaVMkXny43+YOccnIH8sfrUPhmLMN3uGBswSPyNOmlzhJ+7crXUpadblggLRgY249h+PA/Oq1vfPBeSQSKcYOHxwRx1/IVqStbSrbixAa4RZDKjjr8wIIP51Qu4Ug1G3VXLO642sOgCg8fnXRyoi5KuoiPVJ9u5Yk3bj/AHj65+pqe0eTJEhUb4kBQ9QRkZz15GKgs4B5BZ48lXZCq8YIIwRVmK4tYJr4lFDQgSDd15UYA9s01GxLZzfimZJL5FmjVZEjw23ptz8tZsS7YmXG5TE2D6cf1q74kZJdUMi7gjwJ164OazYXaORYyN28lAScYBFYVPjRa2LaJ80TBjwnT6ioisUDiZTudphlCOOOf8KtQOrMiELnaAKiQhRJEWHzlgM9eppKzvfuU+lhmk3b3tlc2TyDeHZ4kPXHOVB/z0pyKpJBiJH3QQOD65FZKvLaXX2lAu5G3BR35xW7KySM1xEGEYIAUHDDIGf1zXNPRmkdh+GkihhQBcOCWPfA6fpUF7c+ZdhQcrENo9z3p0rTRlDCm5gw2huBnPB/Oq9xEIrVI1KvJI/JX1PUZ780qdlKzCRLp87CWSVmKq/y8dSc5rsIXW5ZEjhTcIwV54GOufXHSuQtbcy3axR42jge/rW1aPaqQVcLHHlVbdjPOTW9Oo1O1jOS0ubssUkW54SEKgqSeQB3/Smxm3EcY2Bgybh6rnnP4elMsrhtUDLB5m3Py5/iG3rUssMtmS7xqP3fDY9Ouf0rrjOO6MnFk8lyYLdZFTBhIYqfp3/MVz2qTGexaNVxk72BB4HbH1q1cXkN9EzwTlyy8ovD8HkH8sVlNKHdHTgAAbfXj+Vc2IqO65TSnHTU5/zHilD45HIqS5hEuRFubPzLgd8ZFOvYWSQ7VLBk3J71DZzySwMiOVKsAGH1/wAM1zVWrJo1jdMuJiNN7EB2+X5R1x1/X+VLdxK3hzV5PmCG1lb8djY/WmPMTKAjLhcHGMnb3pdXuRHamytCx2bXm2nA5GMfrWFNapmktVY4C88W3N7ZXmnyidtOkt4oba1a4LJbGPZtcDGCdqsDwM7ya9M0Kw83S7/Yyh2URhpOOpyf5VW06w26Kb1QQyOAn4t81XdM064vvDqxwKSxuST9AMZ/WvZjN1pJuPRnA6fsk4t9Sr4UfydSv5iP9Vb559eKteIr8XWkqfKVAzk7kPB6g07wzaGa71mBQok2BBk8E+/5Umv6U1hosSOm0ebgYbOcg1olL2Gi01/MLp1dTofDk+/Q4HkBIECkx44K54A98AfnVmzcXcq3cIAVHkiyRt354yfx4+grO0YM1vYwqyrGbH5h6kf/AFuamsZRaW7WwcuImZAQOGYNkD8BmimuZKw3obcU5O4TSlFVyqgcBto6fzpl08aRxXEpDiJsnvtwOcj6VWt5vL0+N1GdpJ3Hkkk//XqvJMhS9eHayFsog6EE4J+nIrd6LTcyV21cu6c3m28K8NFGiqCOm4kHJ/QVX1SMy3QlkZssNpyMemKfpUPl2SKT/qpcIRwW5wc/iDVjVEd7gBRgYByfcf41vhttTGvuWNCTbBctjgLgDPpk1zd0y/2NeEDnIyO1dfoyCDS5JCQAdzfkK5C/VU0y7VOVfDCtakv3cjOEWqkSrqCEWumKOS0ZPPsBWBsLPY/uwuLhf510uow+fBpijoIifrwP8Kx54lE9oEPBuUOPQZ4r5i/vntL4DqvH/wA1lYEdftA/kao2cTS3kTu4Hljf+HU1e8aAtHpqHnN0oxVeyiaK+kjVg0hjwB2x/k101/iRlTfukHjmXytQs327gYP610/gv7KourdYtsjQRsM88lVY/wA65/xfbie7toyCSsWOB710thi3uT5AAARVbjGPkx178CqlZVLkauFjqbrT7XVRELpFYAYyOucVyMmlLpd9ewq6svkbhjsOa2tNv2mupEZg2x1BYduDWDG5l1nV1LFljj2Z9gMf0rS8ZNNIzSkrp7HLaZK8QRkAErxNhn5wO/6DFSAJM1ldACRUjGT3yVAyP1FOsosi2wQf3TMfpg03wVPZyW9zaXDKCdrRlzjAxyKzpz6M1kupMkzeRHEoX93OyYfqF56+p6flWZqU9vLqdxFbPIscsEaYf1U8gn0xzWiJUuvEN19nQtawyoA3UbiOf5GsERiS9uSCFfzXyW6feqpTbVwjFLQr6+pjmEuDtEMfH0rN05ReaiIn4GSynuMDOK09fBMrjJIEUYGf92qGjIDrCdQdr4/75rOTXOhodIzieNvuhApJ9c0pfN4gIBHmMdw+pqteEicQ8nKjGD7dKstEBexKQQ+7DL6c9al319RlcW8tzOY1RmBRcY7c10Vto01pBPFIgJRtoI/vf/XGT+FO8J2kdzrkQmXh0Zcduh4rv7qzt20yR5ZFDBWuFOeAVHb8f51DgptsfNy6HmKRHZJCvDYKqxP5H86oTMq3NvtQhVh+7/dPTn9a2JsbYrqMALL1CjOPUfgaz9RjWNXmCnaoyxB9jx+p/Oua9pXNHqO09Wk8/a4WZ1wDnhRwCfwFaDR2flRxQxB1iYkO46tjBrDjm3KCvylhx6gVs6Zbx3dxbWbP888gXdngZwDmqm3e4tNjd8J36tFcfPJLJCwXGOG3Hpj04rb1y8RNJuJZFAkVNqqh6A4Of1FaWl6BY6Neny5iGZmhfjhsrlT/ADqXxJpVvqCpaK7I4jDDAzuO9Qc+2MV1Ri1TdzFyTloeVwyrG/nMglbacMpxn6+49agvJfnF1A2YXwMngk89RW54h0BvD1/5THzA0ZbCnAGeM1yFzuRgFcmN2OSe3+eK42nzG6aaLsl1G1vGPMCyq4GO43f/AFxQsQied1QRqxyuB2xmq0kO8RoPvDHzEc9eP1rVaNpmSFWyxAwR3xxyKibu9CoruRxQs1tLcc5A+U47df8AGssRSm6kmmViokBfK9sn9K9M8O6TFcWEMkagokrxSbumMY/maz/F2lLa2ltIU2zMGSTnqBjbWyotU3M0oYn2dZNLa/5W+T7M5WyW58u4ltUZLVzhvl4bBbGPYDr9a0bO4ms9I0xYmcGV5C+3r94DNTrfS2WhwLFkCcyh+M5wcVFpmrwQaXbwT2aTiMEq5bB5Oa9XDU0mknrb9TjxuI9vJzt2Xd6K2r6szdNNxcX135KSfLJksn9ai1T7SVxKsygdN54zzXReEZGih1iWMAESqQPbHSofFMktxpQmmI4lxx6bWrX3vqr/AK6nNde2IdMeRL6HeMQfZVDZPqAMfmRXSW1tBfQSToD8rspOOpLHP4VykN1HbzR5j3KbdFk56DAxXS+HZJrnRwqHaJGLSE9FXce/0rlwsr+6jesrK5INNJV5xcDnJMf8S8gZ/n+VWRYxWlrLGMl0bgHuvUn+VCRrtAWTl5VGU9AcHP8AOtCa6jilnMm1ozmNQR15BB/SvQtGKucylJtWKeluJrCLA5eUyHvt5PFX5YGn1KNNuVYqKxvDM3m3V/Ev+rE6lQf4Rg8V6LaWNvAvmuN8ki5A9OlZ0KvuN+gq0bSsZcti8WmtGyKqMshAz7V53c+b/ZF2s64MeFX3Ar1uZFiEQnO5FYjHt1xXnHiP7PLaXMlvkKyhgPSr5rU5LyYor30ypOqrb2JKbmMOE56E4rG1ODy7mwEeN7XCdPrWxqEieXp4OQEi5478VkzOrXlhk/Obte3vXgfbPTXwnReL2Qz6WzkgLdoeKk067hhv5pkOWLMRuHQdP8apeL2Cvp7MeBPu+tUhuimc/wAIIbGecV21l7xhT+E9Fg0yy1BjJLGWmRfkHbHFZEwbzUit0ZTC3lSbud2Q1benanFbSNbyRknaGDD6gYqnr14yLcTeUgBh3lwcEAdPxracV8zGLaduhzU17LpMri3WRybkMDn+Dkc1PYSM9zrMzZBeLeQexK5qdbVmlt553JWSBd6KPvNyfy5NUtNZhLrIOTiLHP0NZ+zcJamnNzIztIVX02F8c+SwB9flauFsGYI7EkkkdPpXoOiow0u3yAUEZxjt8jVxWioz6nBEsYcG5VNvqO4rFr3DW/vHpvh3QQNGWRcoJlSVyf72Tj9K4We0zqM6u20eYwz0z81ez6XdwSadbZCqpjUBF6ZFeb+Lfsg1l5oVKoyb3HbJbnArRw5YKxlGbcnc5zV4lmllR3VB5cf7w9PujH61l6LEy+IlWQHIV+nf5etbGoIzXbLtJPlRcDudoqpoyFdWC9Qm7b7fKeKJx95SKv0Mm4UtqaDt8vP5Vo6j5Kao43Mpzldvc56fWoNQhkjvbZiuAxUBscHpS6pGF8QQjPWY/wDoVZvVMa0PVfC+j6Umn6VfBm+0SSMCD2IB6/TFdLqOm2UlrPH5arF5Dq7DsK4LRLsppNjtO7y7uUlM/fHzDFdDq18BpUjLEy5gdeGPGUJrWPKou6M2pNp3OS8R6RBo91DYxTh47iFXjXP3WxyPxxXL3kJe2IOCV4Nafi2dpb+3myd8cEbAg9CFNZ8somjSbgCZcMB2bv8Az/WuGcVd2OmG2pirksrt8qFunoAAa6TRZBaxx3Y+dpJlRVJ+5ggVzl2EgSQyMARhF98//WzUujMz6pbwxvx5ykk9DyCKcHcTR7HbT/bbsSThtsFxG2f7w8rp9Mmrl/cyw3Ml6jbY47Z4xngkk5J/ALWTbO8MRBmfczA4XocAVPcsJbORGkZlfcu1uckjP9a7IxdrGD3OY8UX0U+rSrNIS6rjntya4G4UZcD/AFbDeF9Oa2fHDPaazKTIu9og3H1NYFm/2hnaU4kEmAO3NclWLi2zeNtEjWjTeUnGAoX58jvW3olnPe3CLEB587bYQe3vWd5ZkVIAMbuW/rVjQ78R+J7OWJyixSLGnPbcP51zQV2rmsrpaHqnhvw+2lWclvI4J+0FgP7g7/nVHxPoU2rRItswJQSOyHjoBWrpeqvcy6mCQQl55eT6YFZt7qkkN9PGJAWNjI7sB90k9P0/WvWnGPs+X+tzhi5c9zh1vrOLQTZS2zvKqSBJc9GJPNLYabpcehWL3Fs7SyoSSpPXNDiyXw7DNJbyPcXEbssgOQp3EZNaMMeNA0nPOYW/nXfRjeUb/wApjVlZNruZ/g9Vax1g4OPMUD9Kb4vT/iSRheMzf+ymrfg+MDTdUOMfvV/pUHjYbdJhA4IfP/jpoX+6P+upP/MQYVyhEMbAZDRp+Hyiuw8KxM/hqRcbR5Zz+dc5HbPeTQ2sSFnKRgqO3y9q9S0Pw49joiQSkCU4OPUGvNwbaqcyOyvZwszI09YLe2gRkHmBvmH941ka1kpMAMA3BwPTg10McPkantfhg547d+lYOtnCMQf+W5/Hg16WNjahJryOPDyvVSIPB6L5l23fzEH6V3xmMcNs4bDEhME++eBXBeEiQt8x7Tr2/wBmtPUr65E8M8YDLAzORjGBj9ea5cLf2XzN6y/eG+2pfabd2P38lCPTgEn8q5XxBFDDpbpH8v7pQ2PXPWtCSU2+hvJFGvmzDIYdSSAOaxNScvoUkpLEMFI3dhXVJPkfozKO6F1e3Oy0wpKi3wcfgaw7uNhPpUhwFN0MED/PpXpVwdOW0jjmUb/sg2n0IxzXnersiS6ZGvIF6OK8WUbTO6M7xsX/ABeQf7NBPWbNZkM2bxFB3FuD9MmrvjVwG0tTk5m6j6VkWp8y92/3cBhXoVY+8Y037p3898tvcONn7woAj9lznr+VU9UmWaOZ4oyUCq0hLZUj0qvqjGK8eVnPliH5wBk8ZOcVx194iiljaK3mDIV+VX+XJ6EH04yPxqK75JXFTXMj0zT/ALPM+byZhGsYRdnbHQ/zrLjMMd5rywtujCHDHqeD1rn9O1li0rCZG3qAdp4B6Ef596vaczfY9aZiMlDkj3BojU9rYHDlY3SwRpsJ8zdi2bAHrtP+Nc9o3lJfwygg+QPNBXjJC5/+tXR6LbuunWec7Htmwcf7JrmNHtpv7UtkgPzGUr068dP0rBx935mt9T0WHUvKiglY7ISpTr3HOa5rxG66hNFcIQu+1VNo7MDj+tbEtqYZo7Z3WWFdkgbsWI5FZ2oafKlpbSGHEbzRRhvVi4rTlla7JurmZeIPOuWJKhY0jz6fuxUOladMk0d2qrtKs2c9QQcV0P8AY0upWmqxLGzbJ0U7exCL/hS6lpk2jW2lRjafMik3Ecj5U/nzRUcraCi02cdfCRbyBFIZWVCVboeBUV7ZyyaslwFJSOY7m64+bvV68h8zV7GAt5atCg34zg461s2Wiz31/cmHOVVywXv8/f24NYJ6tGj7jtFXy4IvvYcuV46Hd/WthNkxYeaxHCkNz17VhWc9zCBbk5MbbFX0z/hmrVvLcPhQ3/LPDf7Rz1+uK6bXRkzC8RKVuI8Nuby8MPQYIArKtiRO9q/+rlyyE9nB/r0rW12VD9/BaMhS46kEDr+JrOktzIGKfeByPrmuWotW0bRM7V7OW5jVo03Nu+Yfgf8AGq9jbXltfRTtas2x1ZgrdQCK6JIZiqLKfLmkJLBuCecdPzqylqYpI/NkA4C4zjgVzKpKOiLcU9TrrVmljDtkKG4XoBnpmphIskZQEYHIIP3ue1U7SeKXTUiVWa4LY5OQwPQ/malZVtoghiKEDac8EV6dNpxucr3seceMJ59T1u4kW0lVFURjI647/rWVpNtKJGadShAHX612NyJpZt+/c5wx3EHP+c1Qe3l27XIzjkLjnnpXm1Krk2u51RglYgubhobItn97PlR/spVjTbF459O2L++Mxb642moIYJZbgSTIRyRtI6DBP8hWujIl5aO7EiFmbapxg5A/lWtGj7jk/wCtUTUnrZHZWDyBJgu1JJbnzW/2hzwfwx+VVtRs5E+03EcpkDQMjZ9NuR/I05Lpre5MU0Wxi5CsOnAzk/Wmajfxf2Xcs4KbosH6twB+lemqceXU5eZ8xjxLH/wiNmSefsz7cDuWNaNtH/xTmlcfdgJqmrBPCllCfvPA2OP9o1qRR/8AEh01STj7L2rrpazj/hOWrfld+5n+D1Y6TqRPBM6j9BVLxtzp0eOvmHH/AHycVp+EwRo+oMf+fgfyWs7xp81hCAORIT+S1H/MGy1/vJxmo6rr2neJJpdJ1m20uOy0+O6lluIfMUAyLFwBG5Jy69sda9A+GfinxLqV7r9p4i1SK/e2W0lt5IokVSkiO4ZdqqcFdh5GR6DmvM9d1i00jxJfC8Lr9t0eOBXW0juQridHyY5CFIxGR7Eg10vwy1WLVtc8U6hbRrBHJDaooEax5dUZd2xeF3FS20cDdisKKSpp2Knd1LHqTqRq8DbiVaPdz1zz/jXMazIBG+Dx57fyrobOQS3Fu+Tu+bI9q5rX0VYjsbIadm/Stsb/ALs/kTh/46HeFDiO+yP+Wyk/981s3cbzOIg21Dgn3B6/yrK8LbQ2pIOR5o2+/wAoq/dXZjvSjyLHDGwUn229/wAc1GAjek7l4qVqhVsjIhuYmyNgZIy3TpWXfK8WhujvuAIArUilS4hm8uTcVjO3nkE5/XA/I1iXbtJocrMxJE2B9K6ZRtRl8zNSvURd1y8Zrm325AEHPP0rAvGT7RpOD8xuMt+Qq5rVwUlgA/ihxn8f/rVhb9+qacM5HncV4CXvnpfYN/xq3z6ZjqJ+PyrKjX955+8gOwBPrzz/ACrR8aMfN07aM/vTx+FZPVoo1UjaMke5PX9K9arH3jlg/dOxu9Rlg1cCIKdsYkDMvfPSuF8UQQXTJcQwJEyvsbyxjcCByfeup1S3jfX8SOQptySBn35rntf0eOy1GS1hud9uQZY3J7EA81GLa2CjuWvDegW4t2ecB5HOVGegHt25rpbLyzZ62RwPLAH/AHyc1c0mws9KaGNysrNboxkBznPWoLqWGVtfe2UJE3CAdB8tTSppJdxzk22bPh1zc+ErO3ES/u4ApbHIz0riLSKKy16MXIJgFz8xVsH8639CnuIdNhRNwV7dWYeo25H61ymrwltQaJ8gNNyQenv+tYVE+RW7lR+JnVnULe4vWjtVaOF3CCMndt77h7nA/OoE1S6vfCkNkGDPHdCRc/7MhwM1yOjW902teS9zIsCOQdvXI/8A1Vpx6nBFpCQCNhOJWkLrxxvwB+dKEpyhqU4xT0O48P6wbFNZkwpdrlXOT0+Raz/EN6t1d2jKoXKTuy56fJXKDW401q+0pVYyl1fzOxIQZH6VcaVpJ43ZcZilyR0+4c1pJNuzISW5qeJtCltxpk8YGFijy4PFdBoF2NNgnlOMySkA45+8Rg1jajcfaIY45JP3MSRtjPUgDH/oVXJbZfsULI+3zixfJ7iQ/wD1qzUfeuht+7aRBJZy6r4vuVihVRnf8vTgDFUdRc2CxQhAZmjO5BwYyO3vWtpd0dO1qZY5C0jQx4J7/Lk1V1aEX199o8wuHcKHAxzjH5cVUuZLQFZs4W4jZpMNggrgjtkKK2fCmk3GoahHbjYwjIc57gEZq9qvhi4s7eKYxu0flbgwHfgfyqLQ3az1DI3K20rkepIrFrWxpe60Ok8Y+FpmFpfQRLstc7sH5jnGPyry/U5Lma28ydiZFJUeo4r262vUvWxPNwVJ24z0AP6815P4xsU064mhtQ7Jv3+aej5HT9airCN01sxU5O3Kza8H3sX/AAjcaspDmQhZO47n+f6Vs6hqMf2SWaYmRhGzFgOnH/1q5TwQytazwyMQQVZc/d29P51qeLZwnh+ZLWXc5IXcBj5TwR+Wa7KdowM5X5jhdLM7I00cnzjpk+p/wruvBmhT6lrcV/ND5kHlEMf4Q+OP5VyPhqyFzcC1Ib98QgwehzjNezRWreH4LGCEqqKhLqrdcADP5muSFJOd+iNJzaVlucp4x0ptNvVlWIiOUELt7sEbJ/UVys0EkF9aI+DNLIfNdejEOBXceJ7k3c9sC7HAmwB0Hyf/AFqxJdLnvNas1jTKrJJk+mJCT+grslFcrt/WxlGWquXoGN5NJHlnK3DoqkZOB/QZFWtW0hriyjJVkjkuEjBI464z+tZlpNcW2owTW7AGW7lDH/ZbYMV19zq32yCWIbWWPZtGOCwI4rafwuKITd0yn4k0W2tdDs/JclYPlGON3B/TNU4gV0XTU4z9mWr09291pjQtHuLIwIznaRk1TjkCWGn7VztgStqC/efIxrP3PmQaJCLaz1K3xjbdYGRjstV9Z0/7dp93MoBFtDJIR/wA1oR3P2xtXmIxm7zx2+Vf8Ko31yLbRNTBGDJGy/htP+NFv9jf9dQT/wBoRgab4btPEOr3EM9laSvDGjCS4iVsD6kdM5/Ot3S9F06G3Eml2dta+YAzGKJY94A4LYHOMn864aK4jCXNxPcSx38asEZZiGRskbV56dj7E1u2eriPRVtzdxpcqiKEY4PUZwa83B14q6kexmGXyopSTvrba21tu613/wCAdbprf8TFYx1QEfWsTUbdjAULbh9pYrj6dK0/D9wtxdpmRGl2lm2nPb1qCBLea42XEwiQSOwbryBXp45qVDTyPGw11VKXhQlby/VuP9Jx/wCOiq3ivVo7TUbmFoZsHAZwvy8gVp6OUk8Qa0ygBftvybehXHWua8X+JtBtdavdM1C/8uVFCuhhdsblBHRSOhFZYWL9jJJ2/wCGNK8kqibRQs/ENsXkH2iXllaIBQvTAOfXjitae5in0WYRq6gSrncuAc+lcx4JisNbv5xCwmFrE0rDYRzjC9R611uoDGjEDIHmA0qPtPYSlJ2KqOHtUomf4ldVurYdAsWKyEkRtVsNvXfn8hWl4ixLeQ7cZ8vBJrIVVi1rTcZ++evbjpXmpK52N6HUeLtvmWLHAKS7xn8K52B3F4Acks4HJ6jP/wBatrxo7ebYqDzvPT8KwLV916hdfuuOh969iovfOOD0Op15mGpLg8+Qx468VzutT4W2ZR5uWw4J56D9K6XXY1Ool+hELAe9cbqMbTLA8e3e3ctgDgVjj4e7dBhpa2Os0+4vJ5MyERhVCKoGQvAOB+dXLYGPS9WJffncQcY7Gsq33W0Mtv5pd1Zfn9cgZrRtXH9iamewjYj8jVUoNKASlqy94cvxbraO2ZAkIUr6gDOKo+Jb601HVVMNsYXZwzYOQOO1V9GkbbENwwtuc/8AfPWse5mP2qMsctlc8+1Yzpe4vUtS942tKjg/tL7RHu3yShSx6fcPb61g6lIttpz3BYEjPy+3mVc8OK8esqjiTJdmyx+U8E8fnWDq0hfTpUwRtcY47b6VOL9k211ZUn7xItvdvqeq6uIwEZNyID83IArW0++mezCSynKtJtXr1jNVWnkispo1GGUASFT3/wAMVLYyGdyrJtWMSMpA64Q1mlKTsU7I7W6+zx6TNIkbZCJsbdn720f41kXeuXEFzBA1tJ5RLLE4PDfPk/TrUt7qpl0P7MkiKGaMABec1iC/lvGMHRopGwH4IBYdPxqKzcbJDgr7m3/aSRXcW9S0jxwpGR/DhR1/Ct6ze3lsTlgCbxV64+XnOK4CdUvLuCP5lKtyyt1AUcVpQXzRxQqmTzkeg605S5nboLlstT0ZNaSPzoGxLBtKJuHQA4xXP6ZpDX+qyiJ1Q7WYBvrwPrXMWniC8hGZI1J+YBuu304raHiIRyATERs78OBgjHas202mPlaWhoyvNY3WyUvvGRkDGB2q1rOj2mqeDJBCXNzEpnG4jJbqfw5NRya3pt49ot9Gzstu+yRDy31rE1PU47K0vbdZW3CIoBn1X/69Nzi9BKLMzwwgVjjvC2c/7wqz4sZEtxbR5wVLEZ6DIA/rUPhsPIyyLt+SFiQe4yKb4lYi9lkfG3yVwPT5jXU6UlR5kZe0XteU6bwX4ahg8M3F9ctslnz5RdegHQj61cmvHnjgHmB5I/lHfOe1Y/h/WhLodrBLKcKfKALdfmPFb9i+m6feAGRbnMO8Y/gbPX8KzilEqV9zO1S2uYprT7QpUkSYyOvyGums7uzsLRfKjBnZ2DkjPUk1lalqKXb2r3I8wqJNu1uMba5+/wBfS2ujEsZcmUkr/wADKjH5VrLS93/WhCV7F+SBY7gKoXAnWRSPQlOP1qu19bxNbI8jLLJJF8nTClup/CoPtTy3FuTgFrzYPXC7eP0rl4ppH1GUmVpF8xIju9+Tj24oqTcI3CnHmZ3ltqEGUktc/vAXIcc8qR/MVGu4abp7DhvIUVy2m2/2e0bbK7PcIqxKzHAJXnn6muoA26ZZIchhAg+h711Yd80rvsYVkkrLuR6cSLTVl53/AGsjB9cCue8Y6lFa6WIiGaWdmUY6AYHJrZ0lmNnqTvIHb+0Gy47+9c347sBe6fZCOVRKszEIRkFcDdz7YqW7YPX+tRrXEaf1oN+12sN1dGWJZHK7I3KjKHB6VHdack+i6Vc7MsT5LMPdcj9RWdbOL/VW3ssbIcsueDhScV0VtqCWfh7ToHCkylX+YdAqg/nzXl0IxafNsehVlO6Sep03h6FYrsBANqJ5a4Hp1rNMKzSrGzYPmPtHqeOPyzWtoDATID3RnJHvXPXl7JZzJNEUcyM/lk9gQMfjjNetj1+5svI83Ca1NSXwoAL7URk5FyQAT7VwXxCLadr+paha2dtdXc+orbyme2ScIgt4WjUKwIBcs/I5/d8HrXa+EyTqNyxb79yxPtx0rk/GPhzxGfGurX+kaqLNLgJuWO5kjdgqKMHaOeQe9Y4aLdHTv+hpiH+8LPwnt0S/8ZJ9mW0mjZEWAPvMI3SZQN3AwBnviul1U7NGBOdxlCn3rjPhrpV/pF9qDvLEyTQHfsYnhQeTkDuwrqL9mbRoiWP+vJrZyUsPKxnGLjWVzN8QOHaBRgMAc4rI3E6rYMV6MefXirviByb9ADx5QP6ms6Jt2r6eoJ5Y5/KvJjE9GT0Om8YFWurEdMSc/pWPYiEX8e8kIGB4/iwc1seK5Majp4BG5iwAJwOcVlWtoq3Sm5mgUqd7APn3r1arSnY5KfwnT61E7XW8A7RGQT+FcqXEdm8bRiRjH+7z65FdDq8trLfBPtUiPLEpXHQ5HFcrcF4pYYmbeSp5HUVOYWcFYWG0k7mxp6MbJDIhjJUZJbOeQR+hFa9udug6iGHAQ9PpXPWd9cNaQoMoPkBUjk9P/rVuwO3/AAj+o/xEgjgdeKmhNWil/WhU07tlTRxgAgEZtj+q1lyxF7oADkFQP1rTspfKiDeWys0G0Kx6EjFYV1dyZ3htj7+APY0nUjONl3HytSuzoNFI/tiDCOAAcFm6HHIxWO0K3EUiOSMjJ49HrR8PXHn6hA65yqODnvwTn8qpRsRsTDMXBUnjoTn+dZUqsVG0urZc4O+nYZJcKdW1m0K7diIwGPvcf4VY0bG2QNjAWX/0Gs62LzarqdwVk81wd6qeBjgcenFWNIO65u2Zv+WUnAPHIpucfaNgovlsyzKci2VQD+9Tke1WLeMyXt1cKo/d3igtjsWIx+lVm2lrN0IKMy9D34qd7xhOkcYURG83SlehweM/nXPKoqnKy1FxTRXhiVtTJ+YsiluvHp+dW4D8sBAJHlNUcPlHzplIZlCIylhyAe35VVg1Vds8KwyH7MwXOOW4Jz/KlSqJXlbdjlF6IteVtsJHaXJDEbcdaaN0l0GYbkBwQ3TJIGf1qtDdP5BgaPGHZgWPqOB/hS6a1xeSwZeJMqCxz8oJz+vSsJPn2RolYI9xvVCbgArk89CTgfhU+tytuy4X94OGHOcKKrzxSxXKkM+Q2TgjJ59MVK1/MbZZZra4k875DGYwSo59uBSgpO8kNtbGz4Tf/RpTj/l3fg/UUzxd/GAP+WK5+uTU+gkuLiRwsObdv3bYXbzio/ETKmoq7bZlWAM0a4bdjNe1zf7JbqeXy/7TzGN4fnd3iiVR8sivycY561Zvri4gvPMFwynY6DaM8Bgf61Vi1NbYiaKB4hEpOww8gHtTmd7yU3BBKmQsPkxknH/1q8h3UW2rM9HrY3lcJesigIqq/AJ6+Wcn+VQXu86xaSLGpIkYFieMmZuv86gur5dPhaW5UEqWZyOgByOPwNKdUt55YpwhCAo5J6jLsxP610e09yz3uZ8vvXRcglLahpwJIzfyEcZB5FZJiRtQvI1dgi3HVf8Ad4/U1sW01s02nqsqeYb13wx5A9fYVixZTWLsrhonkYAjuVAyf5VeJqRlBW7r8iKMWnr2LiSxnKToSkdiskW1uh2jDH8eMV1U4LaJA+cMbQE/lXMi2gVIiSq+dpirIXz82Mjj34FdPcnOgwAEZNmv48V0YS6lK/8AS3MMRqo2Mrw8rL4VuXJGTcbyfwrE8TXDSRW5QYQiTLen3a3PDKsvhi4SX5VF0VIPpXPeNlSK2tIgdxEu47M9CV6/lV1FfBpegQdsTf8ArY5hS8V1M/IcnB54GAcYrt0s0uvDumMZUidJVUbv4gygECuOuVRbycjbjeWJJ7YNdPdFP7C0Z/OKOZgowMjG0ZP8q4KSST0udU7s7nRwFuGOABsIGOwFcNr0rpJZ7ivDuOBxjt+ld7poEcoH3iIyM+tef+IRLcvAY4mO124A6cCvUxq/dfd+pw4T4/vLnhCdTPNI5VFWVi7ucAALySe3FNutYN1eT3n2WaO1nZBHNJtBX03DPA5POfSovBsST/aLeZSY5JHR1ORkFcEflU0ui3zE6XJdwNaoQok8sh3C4wCM4A47HPA965qPtVD9359t9N79PQ9OnHCSb+sW6b30jrdxtvLyen4tXfDlhY21jr0sEokl/wBUq7vuLwTj8f5VU1DCaJBkZPn4NReG7aaQ6vM06hbdSpULy+eB+WM1Y1EhtGtwF+b7R69a0pvmwrdrbnnyVq6t5HM+Izs1QYPHlDH05qjaDOsWRGeCf5Va8SKW1AMcfLGB1+v+NUNOY/21a85wT/KvPSOxnVeJFL6lbfuo5SQBHu7HP/6qlkS8H/LpaQc9PKQH8e9Z/iS6kGotmMMFC7SX6fhUiXdzIQqw2sWcD7m4/ma5Mxc3WfK9DXDJezWhDrFsy3lpcefvmAj3ED5QOeBj0rK1O5j+02YGcs7An15HB/HNa2oLcSvH586FQpBUJgc+mK5zU1tgLdY5iZCzHeR15H/167/aKVBaW0OdRaqbmrYjyoGDqPll/vZ4yMV0cLj/AIR+8YggNjtnFckl7ss0Qxr5gc7lJI5Hp6itG11yT+yLpPLXiQDOffFOi2lfy/zCdrmhFKklokSBRgAbljJP61g39tO7JsjOFdiS2B3NaVlq8ptT+5hX5uGduueelRSSxSeaJAvmbDIAOh9Qa48PGVHmctmbVLTtYk0a+gtroyynyxhgcdjggfzFLZ3C3SMI5y5WUMFPBI/zms60ii/s0CZwH3bsZ5PXA/lXT6Vp2nW9i00Zmcy4dVLYx8vT+ddGHpqs1HtdkVZOmnLuc5pgD6legsSGY/jyafam9+0SfYQAoZ0JGORirWhMkWtXCbVJ2upB5AyTzUel3Cw3ZSNtxZ23Dpxj/wCtXTOnFSTfmZKV1YnvLW7GlRGd/LGC3ykZ4qGCCN9PtpZ3Zo52Z5FHGMdK1tSw+jMxPIcKMnpnFVXEaeHo0MkWQoVdpznGaxcYxqcsVstDS7cbvuZzA293DEMBJG3njsOg+lVY9Vls9YnhxEwZmD4U4IAI/lV28WMWthPsxKNwYF8hlHT6dKwA0LiVg25jtOBn0OSD+PNRGP7tNDcveszeDxmVyFLBnJG3oi44/U1Do8MktldLAfvIrGT3PPH5VpRXVukTJaQq2UAIIIOM+9TaBphiMgDNtcgle3fH86wj7upo7snfTJbu1jVYvLYAMz55J61V/su4CZDuRjGc9K7SG3KKoA/hoez22jHA6UkxXG+DtGspkuZLuBLhigH7xc4qLxbo1rDexS2cKwMEwSnGa2vCSERz9MYpnitT5iEYPFexzJUb+RwqL9sefHTLtn3+fJ0IznNOj064tY1WRpH/AHhbeOoHH+FdrDabrIMQM4pUtt7MpVenFeXNKSsdqdjz6+a4uZJYZ8NHt3EFeSPSqVmZLm1YGRYgQhKuce45rb8S6Tdvdl4WCjb0BI55/wAaxrq3jSwZI1MbFlHGeBnHNY1lbXzNYO4t5Gn/AAlGnzfagtopBmdAMqQCCB9f61ahZrS8tmmIWFyyl853Z4z/ACqO6sIZtK+eNhOYjJ5i8D7rFR+n6VUgL3M9rDLIp2H+IHBJx29OtdU01D3jFb6G/ezX9taaeLkI1u0LxQlDz0BBPvkVu3muL/YFpbxxYkaJEWRwSGAHNZN9E00OnW6K+1UbD/ws4z0/Efkane5mk8MafbXMaFEEYCFeeSQDn6V1WalNd0v0uc2jUX5mj4XW0m0y6tbiULm5ZsLx2FcT4+mhW/Mdv5gWM7N2eHA7122j2Gn2lnNNN5qq05T5GPpXnnjK2WxuAkcrSxM5MbHlsdgaeJjy0IxjsKk06spPcfaLNJE8oljVUjCEODzx9K2b4F/C2nNlWIkc8eoUHistZng0lwkJAZd2dmST7VA17NJpenuwIERceWeh/wACRxXnwi480n1OubTsketaU0jxJM0bL5kJcceoBrjNQthdXAaUMjAcAsVI9jXWWevWyabC52LEI1Ay3I4ri5prm4luHS5DKzMeQG4JNdea1X7KMIbtnLgoe+5PoSeDHzeuozjzG5PPaujlb/iaXZzhUYqDXNeChs1SRA6uQSQQMdq7m60u2mtrpxG/mursNrdWwf6114BtULsxxaUqqscL4fvymo6paxg/Z5oSwIHowxz9Cau35B0WA/8ATyQPzrO8AlZ9Xu7S5Yl5Lcqp6YwQSB+Vb+u6fHbQ29tCxI83cPMYD3PJrKk/9jbfmaSX+0L5HI6jp1zeXTv9ln2gYDRkMCB3rKWJrPXrRWSUHOGEi4PI4rsX0raOPOXPPyoHH5g1zWrlIdbto/PPQbvlII/OvCo4yU6nLY9J0ko3K2u388l7ISqsOMflSvqc8cMTKEjYgE1au9CWS/kUzNhmAqe50W0guVViWwMfM1e7Vw8W25I4YVHZJGYdRuHQyS3DSDjdjtzVHV3ZdWRoABAOY2Yc7T612VzaWf2CBI4kMbBgwAxnpXJtbrIpuGzIsMZVs8FACME/mRXNiqXs2rdTWlLmTXUvC6QA5iVlXEqHHBVsf1GK6KLSdOktbhkj3ozq344z/M1xdkGkEMDAGJcLg8ckZP8AjXb6KuzSpFXOBJgZ9KrBxfO29rE12rKxUlXTdOWCH7OplbLD5fesnXbhINSVTEriSQ/KOOMdKva1gapa8c7Mj/vqs7XreQ66JgTJGJCuwDlTj/6xrSvGPKyabfMia2s3Gsm2Ebfu1XAY8kBR19RzXSPKIGjiyACrnjtxWFb3sb+IrbUIHZknjCkNx82MEfTI/WtbUolkfdJII90ckagc8kdqzy98smViVzJHNaJeY1+7wSy7mA9eMmqOhalE+rT3czERFsL6gdB/Os/RIr2XU5bdVRdjjzJSSMDOOPetL+x7ZNfvBZr5nllSFz8qkjJP510vuZo6rV5B/Z6CBgyyPuYn0wMAVVvUD6TDvRRsU7T6knFQyyMNKSIJuYOoYrzgc9KuahCs+h24EjFs/MpUDGOlcU5fvL+Ruo+78zP1OGaKw06RYMId4DEcdjWLaWMr3kgPCHPCjgDmujkUyWdtCSdiZwDzjNSWNvGZwmOvFZ81oJF8uty1b2JZQeelbuj25WXbjgVLbwBYs7cYrQ0tFM7HGa5tWypPQtmPaw4P3aSXAtHBH8Perkq8rjj5ar3Sr9ncc/dq1GxmO8LEpHLnGDR4nyyoyjIxTtBysL46Ua588aj2r0JS/cJGKj+8uQwf8ecagdqfCh3N9KfaKPs6A4JxVq3TBbjtXIkzS5y2rKxlwE3Vy2sWLyWshEGS2MkHkgGu81GIC4xtFUL2HEPCfiBVyjeI4yszyC7guUldlW7YYPAJwPYVr6duivrNArj5FYlhyT75rqLiAlSFIBxzxVa2gdbhGd1OMYyvSrdP3LApa3Q7U71jBplvuYMu5hgdAT1/Q1fnSOXRoLgOz3Ml584PQKGPbtVDUbSV7y2ZZRJgsQDgbFLZx+tSThooYIhKvmec4dAfutkEfoRWsZfvJ37IxaXLE6SCN30hxGpYtcMemQDt615n4tBGpbRyA2Pm7cV3WiatcppzK0iMxmbn24ri/GA/0xZ94bz3LHHYgYxXRi/4UTOgvfky/o2oC2+zRXeWtgqtIAM4BFRasoNla3SyosLSOFjxwAQMNn8MU/S12zMpGQLcbh69M1HrMSRaBaW4YbkldgO+wDP49a82ppe/U7I6vQ6zwyItR0We0vLTaDGVLY69cnP5YrmBayxy7lQSqMgAHafaum8LQTwBzJKSjWgZFzxz3/SuStbiYeIWiEhMTSsCp7YFdVr0acmYKVqk0iTR475dcLGF8suFEZycZz/StXxHq+pafAiQvLFvRi249hSG9l02ZLiFgrAhdx7A9aoeJL6TXLuVfLXdFCUVwevJP8sCrqV+WDoxetxRp3mpy2K3hvUI9Fv2u7zeVRCqyKMgE4JB/AVua7qEF8Yh5gYdTuOOCOK5iHUPs9qbfC+TNsWQYz8ydD+II/WtnWrb7TYW19bjIZdgXqQB3rnpVHOhKlHsaTglVU2V0j2YMUkyjtskNY2rB/tqlrp3Y4+/gnFHmmFj99AB06Ut8yTRly6OwHBrioYJ3cr7G9Stojp7lM3gLLn5h+dYF0zSapcMzkgSMBk9Oa37jP23IyMsDt/KuamOL+5GMnznx+Zr6CS1fqectkdEzEaXabevzjj6isVLW2Gn6ncODl5EjTk8ZY/0Fb1qwGmWuXC8P95c1zVpdlVutLnhEhni3rJ3Uj5gf5/nXHmF7pev5G+G6k+gxDUrO6yv79ZfP49gf8RXRaQ//ErmPpJXN6CWDTIJHiwqnK8ZBBz/ACFaGnaxDFpboFZpDLyB2qcE+Xmv/Wg66vYfq0FxcahatDGW2gZbsOTVPVbgi+vJhwbeRiNv948DP5mrlxraxW8cg+UKx+9UOmRRatq88n2cyoys5UMBz6nNLEVIt8q3HTjb3ilbxyy2VrLFGyrbqAWxgBskjP1NWtSvYrd0aElxM6MC3JUlckfnVq4KRRtEE2r3Gcg/hVXVoVnsISiKNuFZVOc+h9sVyYepyzt1Nqsbq5QsIGmubxZJh/pK8YH3cDj+VQaSJk1FWcgKI3DYPqtSaZHtuizDlQRipbaLZcsfWumU22ZxgbRiCaQWI53gcU5SWswONop7qRpZG05LCpoIN2mszLgjofWuSU9TZR0K4A8tOv4VasYgZ1Ykj5vSmxQA8E9Ku2KlHGFH3qlz0sOxuIjCI5IxirWkRt5jEFtv6UgUPbsVIBx3qXSWTLgMRjtULch7GjOPu49KqXQIifGelW5iMjqazbz/AFbblIHsa0kyEW9DO1H65PquKNY+YDjHtjNP0YDyTyfxpusEbRl8fSt3L93Ym3vDrXIRBg8DuKtwnk9OlZVnn5SGJHY5rSjz2OazixtGbqIxc44qCcZgAPpUupBjP2+g70yfH2UcFeO9aN6BY5u4O2fHABqttjaQZLdfWrcq7p925foaryQYfrjmtnK0UgSVxbqOEiFiqk9AT6VKYraMJOEjWRmLZxkZ/wAiq95ETHGB2pJ4WNpGveuhWvJpGLWiNa2bSprN2kgjgcZ5TgE15r4nRZ0gjMmHySDnpXZ29uxscEfxGuM1zSXlvo5fLZ1HBAPvU4tylGLCgknI3tNvEhs41dTIyrtLKOTUF/h9PjBJyZZFUN1A2+v40tvBIFWQj5GwoJOCPWoRZl0MbttTJAw2SM85rzpu6szrS1Ou8MyhdLEksqjMYQJjlRk5/WuNtOPE5I7zP/WtzTJ5IopBKpGW+9jqMD+tU4Le3bUUuI8hwxJAPUnrmu+Uo+zpJHLGL55s1bXTodXnazuFJDIcYOCG6g5+tcfam4s5riKRWV0dkYHt1B/oa7/w6mdXYA52oT9elcxrEg+3aq6KX2mTp1J6c/57Vni0oqM1vcui7uUXtY5a2mWW5ZZE3RhRuX/aFdzLcKfDNvOsZiA3FF9s1yumJb3OoMso2hkU8D1rqtQiMPhyFTyBCcf0rHCbTfkXXdnFGAt/bzuBIQM9mFaE2m2rWq/ulwV7VyuN9yM8DPeuzm/dxqCRg4relo2Zyd7E96gN4cEj5wBXPi2kkvrjYpZjK34fMa3bg/6YeRw4zk1RvdQt7WZ1yOTkhe9d1SSi233MIxbSH3L3NnBZQgYXDmXGDxx0PrisCzmEl3fTRlQ4iCgZ6jPQfhxVy41GTVLuCBH8tFOwKBywOM8046TBYtvjYFvY9PzrzcZWVSWh00KfKiK0tyLuN5tyI21HRuOCThh9DipLu1SL7WkEJGyVSAO3eiaT7S4eY73UDG5vToK0b+dooFEAQ5Ayw52+1Z0KqjJruXUg2jnryNvssYZCNshJDdabo+vw6a900ts8mYiqjONxBBH8qtNE8hDOSWznJqXTbWEyTCWNT8nGRVSs5qQKPu2KkfimS9lKNYeWucggkmtC11F7u28sQeUoG5jj+LkfyxUTwIASoAA9BVmNQIcAYHepjJc2iL5XYp2gYXDZ6VejQmXPbNQ28a72INXo41WRQDk9aUpDijVlT/QAucnrirFuCdKwR36VHIpW1THJNT28h+ztGUx71zNlEcSDPC9O9TQFd4BJzntTkBUccCkibfLja2c9QcUgN5ci3Pyk5HWpNLPX5SD9KgPn+VgAEY4qfS3bkOpDD2px3M3saUxJThsA1k3QdujA5PQ1q3AHl8sPasi4B3/KxXnqOlXLclGtpu9YDkD8DSapuZRhefc03TyRBgsDRqLkxgKQPc1o37oupTs2csvzAexrWBfYSRj6Vj2mC3zMMitZCRHwQfxpRGzK1Ap5wLBs56illdWhwDkY4yaL+TEoyoPPamTeW9ucgDIqxGUYwZstz9BRJEDyF49KVVhWThiT7HirG4dlH1rRiM65T7uB2pZoj5KcVYuFzjFRzsBGorsp63MpdBkCKttgjv2rG1ARiUcFfm61swkC3PODn1rB1SQ5IA5z1qqrXIiad+ZlW8kImTaAyeXnr3rOaTc2TGwx6Gn3lvcXJjdJiCikD5eOazr+11adIvJuwhU8nGM15UqPO3qdnPypHS25E2jyDkkMcE9Rx61z9ndO2oPCxJIUsGU4NWIhrH2GOMsGKyEyc8OMY/CptL0KSa9ZkmjWQoR5chIP4GuqlTd4J9DnlL4maPhy7vRrTfZ5DzFgnrxkVT1KULr+qPwQ8cjM3QZ281q6PoGqaVPcTzpEU8khSHxz1Fc/eSqluYzKrz3ILu39xc8r9eOavEpxhFPpdhQalJtddClYwOt2sm50iwkbleoJ6fyrqNZfytPW0Dbo4oMDPU4xzXMNPNakshPlybR9dpyB9a6C/Ml7zIhELR4DZ+nH1rLCNKnLvoXXXvo5aMbpR9RXX3AO1FPoK546Y8b7o3DgN0bg10LZJj7A46VpSd0yJK1jnLy4keRmIYEuTwfQ1l6tcutwqp8uW5Pc1fuILtpGIgYjnFZmoRHeS53OOy9qqrK6dxQVrGhoQSfUIxKpO1GfOSM4Fa9z5f3Ut1U+rEtXI6Rf3FjfeZIsip93CjdkEe9VbvVtduifMu5SN3AzjiuVU1a1zXmOv8ubDDyx+C9KuoR/ZUSMfnGM89s1w8Et8YdrSMcjByxrpNOeV3mkcBd4XKjpkDGamMEpblczaLufu460+NljZiw5K9qjbgrmggnHIpzZpFACrDoatR7fIxiqqjDD2qZeFPeog7O45CQIAzYzk+lXYE/eKT9KhtsFiAKsgEbeR1qZS1BI1ZGHlIeFqeAM8Rx92qQ/eQjnn1xV623LHtJyPyrJAWI0KrkYP1qAzDzsBcHPJq2kYKnsPeqUhCzcg8UrgaZuWSNQ+cY6+lX9LlVsjzN3uaxwxKA9vQmtKwUOMnao9utUiJGnckhOSDWVJueTEcmPXNWp+V2g9PU1mmcBtpjI56g1TeokjdtCyxAHBPtTb4s8fyhQfc020kBjyG6im3cg8s96vdE21KcCF3+dgSPStaNSseFYfhWGko8zhfmPvWnBOoX1PpSjoDIb0uHBKjIqKWYeRyhHHrSXtwplzIpHpVaS5Qx4Gaq4WI444Wl3NIo+lWjsHCZ+pqlFEjSZxx7VoNGMDGfxrQRRmPNVp+Vxtq7OmDycAelVXdBxg120eplPcghH+jkBQOe4rLvIUZsM+Oa12fMfDCsi8XL8g1pV+FE0/iIvKQKMYOKibIA4wM9hVgKfLABpjQPtGEJrjtc3uWLeMGP5Rg5zTQkbyYPDDgGrtqI0hI5Y981QklBkIACj2rqtyqLMb3bRHqepzvCLB5GZVO4se3HGfWsWUPsyY4nPr60uqvEl+FabEkkeQD6Cs1hKigi4+U8j5q8uq5TnJyOqCjGKSLD7JVCS2/3TkbT0NWb8zpp9vIEnWKNQQzHgVlrLOrE8kfStOR5pdGQlsAA9frSoN3a8gq2smUodUKuqtiRSfvA1stq1oqIwcjaQDxXE25kivDnK5II963bgEwynCbs5xjtXVRukzGbTsJf6nLMSpOxP7q1kyFpGwoPHpVoW7SPzkc1MIVU4Uc1chK7I7C1LOS5ZiFJA9Kkks4kH3ACauwR+WVI6sMYqKZfmw3b3rmk+htGJWSFOcAcitC3ULHgY6etRRwfuzJwBnFWYsheRx9KUdy3sLk8Hn8aCCaXGR0phLZx0BokNEij5vwqUdMHpTEA4GcmpQPakgZZs0Ak3ZzVmTAHHX6VFZZVzx27inyD5iXIA+prN7jJ7ZiTjArat1Gzkc1hQrvYbCPo1b1mp2YOQ2Mcnj8KhiY9OjAhs469qoygCSrpLKxUtkVRn68D8ancSFO7savWcjYGDg1mq5HBq5bSkdvzqrWBmk7Mwy3WoUO1ucc1DKSVyGIx6Go4XcsCRke4oTEbkDgLjFMuWIQkVHETjpimz5K/NxV62JtqVS7b8lc1ZSYbentVAyFW4BP0qwjbk+b9DRYbEnBfnkD61B5asMMaS4aYH5WGB2NVzOSRvXBAxxVxYrF+3CxuNg4zzmr7yMeMCsy0cMwKtzV75Q2Tge1acxLRFOwHPrVGWUKRgr+dXZ2HIC8HuaznSM8k8/WuqlexlIaEL5AQD3qldQ7MkuR9KtNcSKhGfpis+5kO75gST3NdE37pEVqMFwUBG0N6Zps1y7qoYkew4pm5W46E0SIcg7SfcVyXN7F+GQCAlcVlTudzZ6HuK1YY825YjA96pSxxhs966al3FGUN2cxqOnyTXKTxyssiqQG6kCsfUNNuJoUX7QzHPRh0rtXi3Anjp61ReDPbI9q5U3Fs1aUkcS+napHMpScEKf7/OPStS6k1CQQKiukCoVeN5MgsT94V0BtORwCf8+1WPsw8kFkycdhTTTexDi0tznbfTJryaJoiC64BjYgHGe1XdQs76IOxtJhkn+HNaH2TEgZVI7j5ea3dO1uS2Iiu0MsQ4DEfMP8a2pQi04t2uZzck7o5Ntu/09gKQLlqcRlyQMCkVSz4BrmkzpSLnkkxK4+8vIqrIxd8nFaEakQ8k9Kziu5iR1rCTu2aJWJ3fciJgce1WNu1AOKpElJMEnj0q87b1zRDQciMnjimBFZvmGfxqQLkcE1JHFg5JpSBCKm0f41KCTgGpAYwME8+9ISueCKSAlgOGI68U5ix4AP50kIBzgYPekeV0ypAK1D3GW7YuGwd35VuW5/dgc/jXP27IwBUc9xuNbNu+FH+OaliJ3UAN83NU3znGasOSaqyA9zSSYEbZGRtFTQNk4xULN6mpoZVwD39aYFvaSvTmp7chSF7D0qmboj73I9RUlvIHlGDz7imtCbGwp3KMYwe5qKXcBjj8KWNuOuajlfnpTEkVHkOfu0K/HUD61Ez4Y9KCd4wv60lcbGSnLchc9vmoSNmAwKQstu/zjdnp7Uv2zJwq4FaR8xMtwIEIJ4Pt3q2ZACCox61nROSQd34VcGDj5Rz71fMQR3UrDPyA1lSTqeOR9K0rghegH4msuQAtyF5966KTJaE3LjnkGq0sik7cHBqVoyDhOM1GxNuS74Yew5rolsZrcbHaM5yVAU9zT2iEZG1zxQLxZOATSNuYfMQcH0rNNF69SyrZiJJB9OaoMy72yDtq2BlCBiqch2kg1vU+FGcNxV2kYBPT1qrJGVBJOBn1FW4grKTgVWlVtxCkEehHFZTWhaZEm1uBn86vJFIIv3h2KB3qCAMjZaBCB/EOKtSsHQM5z6AUoQ7ik76FZYzuyoJ+p604xCRcEEfrTUmctj7vvuxVgAN1O73L5q0l0JZ//9k=", "path": "images/3pts_ADE_train_00014964.jpg" }
depth_point_96
images/3pts_ADE_train_00009445.jpg
ADE_train_00009445.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 28 y = 198),Point B is located at (x = 167 y = 164),Point C is located at (x = 17 y = 216).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_67><DEPTH_70><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_67><DEPTH_17><DEPTH_67><DEPTH_63><DEPTH_35><DEPTH_5><DEPTH_70><DEPTH_67><DEPTH_5><DEPTH_17><DEPTH_70><DEPTH_69><DEPTH_2><DEPTH_44><DEPTH_19><DEPTH_59><DEPTH_5><DEPTH_70><DEPTH_5><DEPTH_40><DEPTH_17><DEPTH_78><DEPTH_74><DEPTH_49><DEPTH_74><DEPTH_2><DEPTH_35><DEPTH_17><DEPTH_67><DEPTH_73><DEPTH_17><DEPTH_58><DEPTH_74><DEPTH_74><DEPTH_49><DEPTH_74><DEPTH_64><DEPTH_83><DEPTH_6><DEPTH_33><DEPTH_35><DEPTH_58><DEPTH_76><DEPTH_36><DEPTH_38><DEPTH_3><DEPTH_40><DEPTH_40><DEPTH_51><DEPTH_44><DEPTH_84><DEPTH_67><DEPTH_20><DEPTH_20><DEPTH_5><DEPTH_59><DEPTH_11><DEPTH_80><DEPTH_27><DEPTH_11><DEPTH_15><DEPTH_53><DEPTH_61><DEPTH_9><DEPTH_16><DEPTH_98><DEPTH_119><DEPTH_119><DEPTH_119><DEPTH_78><DEPTH_46><DEPTH_46><DEPTH_33><DEPTH_33><DEPTH_0><DEPTH_2><DEPTH_41><DEPTH_1><DEPTH_16><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
3
[ "A", "B", "C" ]
<DEPTH_START><DEPTH_17><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_5><DEPTH_17><DEPTH_5><DEPTH_67><DEPTH_70><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_67><DEPTH_5><DEPTH_5><DEPTH_67><DEPTH_17><DEPTH_67><DEPTH_63><DEPTH_35><DEPTH_5><DEPTH_70><DEPTH_67><DEPTH_5><DEPTH_17><DEPTH_70><DEPTH_69><DEPTH_2><DEPTH_44><DEPTH_19><DEPTH_59><DEPTH_5><DEPTH_70><DEPTH_5><DEPTH_40><DEPTH_17><DEPTH_78><DEPTH_74><DEPTH_49><DEPTH_74><DEPTH_2><DEPTH_35><DEPTH_17><DEPTH_67><DEPTH_73><DEPTH_17><DEPTH_58><DEPTH_74><DEPTH_74><DEPTH_49><DEPTH_74><DEPTH_64><DEPTH_83><DEPTH_6><DEPTH_33><DEPTH_35><DEPTH_58><DEPTH_76><DEPTH_36><DEPTH_38><DEPTH_3><DEPTH_40><DEPTH_40><DEPTH_51><DEPTH_44><DEPTH_84><DEPTH_67><DEPTH_20><DEPTH_20><DEPTH_5><DEPTH_59><DEPTH_11><DEPTH_80><DEPTH_27><DEPTH_11><DEPTH_15><DEPTH_53><DEPTH_61><DEPTH_9><DEPTH_16><DEPTH_98><DEPTH_119><DEPTH_119><DEPTH_119><DEPTH_78><DEPTH_46><DEPTH_46><DEPTH_33><DEPTH_33><DEPTH_0><DEPTH_2><DEPTH_41><DEPTH_1><DEPTH_16><DEPTH_END>
28
198
167
164
17
216
null
null
null
null
2
48
81
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD04LupjpzVpUOM00qDniugRTMfNN2cVYK4phBqQIduBShOlSbM08KKBkDx1CU5rQMeVzUBjJNAFTZzSbOateWfSkMdAysUzR5dWRHS+VxnFAFUrxTSnFXDAcdKjMZHGKAKu2kK4Pf2xVgoACxICjvVZi8x2xHYh+9J6/SgCOSQK2xP3kv90dF+tJHAwcPIQ0vb+6PpVhLdYhhUDH1PX61HJKcmKIeY/cnoPrSAbI6RLukJx/d71EIHnIefheqIP51PHbbG3u2+T+8e1SlcAs3yDuTQBHsAOOvoKZIUiXdI2AehHf2pRI8vy2yZH99ulSw2oV97MXl7uf8ACgDOtg1/EZJA0cPmH933OPWrwiVBgcKBwKfYxMYWABBEjgEdsmnuyq+yIGWU8YXt9aAISgGSflUdf9mohvn4t1Gz/nq3T8KuJZNKwa4OSOiDotXo4Mdhn+9TuBkxWKxMWOWkPVj1JqYQ+orS8gAZPA9aY0aopZyFUdWNICl5BI+vp1FRSgRnYF81/wC6P61bzJP8sI2J3kPce1SpBHGpCjd6lu9MRkfYi7b58Mw6KvRak8knk8dsVomIetIUBGMUXAzTFTPK5q88XtQIhjmkBRMWKb5dXjEM0eSKaAzmjppjq+YhTDFQBTCYp20Va8rA6VEU5oERlARUZjGKtFMjiomXFAHZCI9MU42/y9Ks45paVwM9rY46VEbc+laL8UuxWHSncDI8rFPRM1bkt8ZxUapigYmz5TxUQiJPSr2wEcd6QR4agCi0BHamCEntWw0G5elR/ZSD0pXAoi24zik8rtitBoygFQuFUbmO369DRe4yq0WRgcAVTmKxnYAXkPIQdverh82cERjZHnlj1/KpEt44k2opOf4v4qAMkWbStunJduyL0qVohGhJKoo65/pVuZljOw8ynoqc/rURtmlZXuAGI6IOi/40wMxkkucqm5Ye+OrD/CpY4ViUKihU7Ac5q/ImRgdjjjiqzNiTy4h5kvp0ApAQSbYVy/4Ack/QVGLZ5mDTgovVIx39zWhDZFW3ynfN69hU3k84IOfTrQBR2DpwAOoXoKc22JA8hATt706VwH8qFd8nt/D9amgs8P5kzeZL79B+FAGdZQzyxOOUjMjEAjDH8PStKK3jiUhAB3b1p1uMxsfRzU209h1oAYEAPSjB6U84AJPbr/8AXqAvJOcQjbH3lPf2FIBJJlTCqN7notRCBnYPcHceydh9asRxJDnaOT1J60EUwGdiAMCmkYGKcc0hpCGYppGKkppoAiI56Uw9amNNIpoCIijFPIFJQBGQKbsqQikoATbxjFQvHzVimsMmmIr7aidcZqwwwajZcjmgDs6WminVICFc0AYFLRQAzBIOahZME1Y6VFJTAdCMrzUwQHmoIj81Wl7mkMcBxil2n8aFxjJOF96ZuaZSIjhP7560mBFO6KdoBdz/AAiq4tmc75juPZOw/Gr6xKn3FOe+eppkkgVgoUM/ZB3+p7UXAqsoQ5bCqB16VWYvP/qcpGerkcmrxtS77pjn/Z7U4x4+6o47HoBTuMz47dIgdmf9pjyaJCiJmX5V+vJqaVvm2RKXftjgfiaiW0+ffM3mP/dxwKAKeyW4B2ZijPGSOWHp7fWpYrdY12IuB6dT+dW9mTypx9elQyTDOyMCR+yjjH40ABKRx5chUqBvNuvlQmKL1I5Ye1SrbF28ydhI3ZMYH5VYxgYHI/l7UAVo7dIV2rwPpyfqalCkZyOnen4OeKTAC9eO5NAFa3G2Jsf3zSyOkeNxJc/wjrUNvM8quluo4kb5j2qxFCI8kfM/8THqfpQBEImmw1wSqj7sa/1PepSONu0ADsOAKlxTGFAER575phqUimEUARkc00ipCKQrQAzFNIp+2kxQBGRTCKmK0wrTEREc0bakK0mKAIiKTbUmOaQrzQBHRinlaTGBQIhYc1Gw4qcimMvFAHWAUtAFLikAlFLijFAAOaNgPBpR1pHZVGWPHp60xiLHtbpzTmkRCB95s8KD3qICWYZ3GNPTuanihSMfKo56s1SwEETyPulP/AR2/wAamLKignAHpjr+FReexOyBN5HUnoKekQyWYmSTvnoPpSAT97N1/dp2OeTUiRJCp2jHq3c1Jx1zx6HpURlaRikQzj+I9BQASuka/M2fQdzUDRyTL8/7uP0HJNWEhVGLEb37saUlUG5jtT370DK6xqq7VGF/KoZ3SIjfyewA5qYmSb/VqI0/vMMk0iwxxHcCzMerNzmmgKvlS3HMhMcfZQeT+NPEaRrtRQPfHNWMUxhTAgK5ye/c0U5yEUsxwBUDPJOMxDCd3PUUrgEsqR8McseijvUOySbBm+WPPyxjr+dWI4Fj5A3Mf4j3p4XJyPxz2pgU7RAI3UDAEjdKn25/Dp7UlpEwjkyespqcrQBDTSKlIppFAERFMI5qYim7aAIStGKm2UbKAIQtNK1Z2U0pmgCtt5ppXmrPl80eVTEVStNK1aePiozHQBWxzSkYqTbzSMKAIjTSM1IRSYoAhxxTCKsmPIqNkxQI6krRtqcrTdvtSAiA9aXbkcc0rMqHGct6UhiaQZkJVOyr1oAhaTLbYgGPTPpSpAqsDISzep5xU+1EGAAFqMyMx2RAHH8R6CgY55Fj5b8F/iNM8uSY7pPlU9E9frT44Ah3E7nP8R7VLgBSc4Hct1pMAVdoCgYx/COgpWlVAA3J7BaiDPKP3Q2p3c96mjhWP1ye9IBnlvMN0pATsi/1qfAAAAAUdqR3WMbmxnsB1NRbZZx83yR+g60gB5vm2Rrvb19PrTVh+bzJTvPoegNTpEEXaowP1p20elAyEgmmMhJ+tWNuKZI6x9Tz2FMCDyyOBwPU1BI/zbYly4656Vc8t5h8+UQ9h3p6xKi7VUBR2FFwMwWxZw0vLDsegqXyiTV7yuCKQRgUAVhDwfWk8nJq5sGKAgz9KLgULdFKSeztSslTwIux8f3zTzCT2ouBQZKiZTV5oj6VG0XtVAVNtGyrPle1L5fHSgCsE4pShq0sWe1P8kYoAo7falCe1WWjx2pu2gCtsxQR6VYYVFigREycVG0dWW6VEwoAqMlRsKsspqNhQBXINKFqQrSqvNACBPl6VDItX1UVXlTmhCOmbap5PzVBG08xYOnlICee5qdY1HX5j6mkeQA4HLdsVNxgkarjbz7mmtIoPA3t7UoWRxmQ4HotPSMIMKAD7UrgV2heTmZvl7AVIqAABeg6A093ROTyfQUzY833vlj9PWi4DTIofai5f0HQUogLENMcn0FTKixrtQYFNaZFOBy3tRcB5AGOgx0qHzC5KwjHqxpwjeQ5kOF/uipgoAwBgUgIkgVW3Nyx61Lx0oxR7UALTWIUZJprSAcDk0ioWO5/yoAaWeXiPgdyackKx9OT3Jp4wMDGKXqaBMBjtQSB1NJnA/xrn9Y8XafpgZFcTTD+BecH3pNpFJNm87hRlsAD1rmNa8cadpissX+kyL94J0HtXGax4i1HVcrJJ5cLf8s0PGK5/UXKWMqqcHZjI9KwlWs7G8aN9z2zSNYs9b09LyykEiMOQDyD6GtD09K+btC1+/8AD16lzYy4Qkb4mPytXunhvxVYeJLPzLdgky/6yJuoNaRncynBxNmAAK5/2zU1RJhSRxnPSpa0IGlQaQxqe1PoouBF5K0nkipqKdwIRFigrUuKYRQhkDL1qEirDDOahI5qhELCoyKnK5FMdcUAQmmEVIwxUeaaAjIphXNSGm5oAjKUKnNTBd1KFAoAQDimOmanAFNNAjYy0owBtX1p6Rqg+Uc+tLnjJ4FRmUk7Yxn39KzGPLBFyTj+tRkvJwuUX19acseDuc7m9KezKg+YgD0oAakaK2QuT/epXkVTjOSeijvUe55DhQVX1NSRxLH05J6k0AR4klAz8i9xUiRLGMKPxqSigBO9KaQkAcnFRGUtwgz70ASMyqMk1Hl5OB8o9aVYv4m61J260ANVFQYH506onkSJS0rKi9yTXL6v4zhty0VinmvyDIfug1MmkNK509zcw2kTSzyrGg/iY4rnZvHGlosmzzCy/dBHDfSuHu9Rub+XzLuYuCc4zgflWbG8bTN84IBrJ1OhrGl1Zvar4nvtUBXmGA/8s1P61iGRGjLCQe5NSMY26SDiubmd47mRVbCl8GsZNs3gkjSubyOIEM3P92s65uZZoZgqYTYeDU9rArtJGgy+OC1PmtXjjKOjhWXnIqUjS6sc0r4GCOeKv6dqN3pd0l7ZTtFMp4x3+opslkUtvOcrnftGDziqSkxyY7A1a0IaR714O8bWviKFbeXZBqC/ejB4b3X1rsK+XIJ5LadZ4HKSKcqwOMV6/wCDPiDHqITT9VcR3eMJKeFf6+9bwn3OedO2x6JRUYYnrT+orQxFooopgIaY1OJphBNNAMaoT1qdgcVERTAbilZQRSjpTWNMCGQLjFVnFTyHmoDQA0imYqQ9KjNMABIoBpO1JmgB+6kzmkzSZxRcDd8lmO53yfQU8bUXstM812+4tKIsndIcn0qAEaVm4iXn1NOWEdX+Y+9PHA6YFKORSATBB6/hSg0GmNJzhRk0APJA6nFMaUZwBk0gjLcucn0p4AHagBmxm5c/gKeMKOBilPIH1rH1nxFZaNH+/cmVhlYxyTSbsNK5rlgoJJAA6k1z+o+MdH02dY5J9+WwzRjcF+prhtY8X6jqpaIH7PAeiIeSPrXI6pKFsiTjBfnnr9axdXU2jR7no/i3W4b5reC0uVkt/L3u8b569q4u5vlQjaSCRVDSyP7OVRgbiNwBzTmi+f5uorGUm2bRhGIryySBeSo/nVXzjHuGMc1aYqIh65FZc048519zSKtYnF2jyRguRg/NWZ/bMB1Ga1mIR0Y7SeAaXI8wH0Oc1jTW8c2qzySDcomznv0q4RuRKVix4nu7kwrFZyFQWG9kPPFZNj4l16znWNZS6E42yDcOPc1qXDw/8TScowFsu7/vo4FVJbIJGbhZMIpXr6kVryEc50ljP9s0fE0gLtPuyB0qvd2LxklWDbjgAGsm4vZtK8PpJEoc/aMHH0pbfxT9uRU8kq4YDNZONmWndFtS8MhR+qntzirEbjHynaOoIPI9wadNZXMhaVQGDHoOtU8SRHJXIBxtpalHqvgn4gtAItO1eQtGflimPVfZv8a9WjkSWNXjZWVhkFTkGvlmCZZI2KfNzk+1d14O8fT6K0dnelprBjgN1aH39/pWsJ20ZhOnfVHt+aWqtle299apcW0qyROOHU55qyOlbmAYoxS0UANIFRMoxUpNRsKaGQsDUT5qdhUbLkUxFdxmoiKsMnNMZaYEB6VGamdcCoiKEAw9KOMUpFGKbAaeKYaewqMmkgOkFOx6moweM0GRV9/pSaGSY9DTWkCcdT6Cm/PJ/srTkQIOBk+pqRCbXk5Y4HpUgULwBSAYPJp1ABRRRQAh6V5P4+mx4mc8ZjiQD24z/WvWD0rxrx0xl8XXYzwuwf8AjorKq7I1oq8jDDlnz7VmawQLJR3L81qcDAHpWNrzbbdP941zJanU9ifwq0klhcNKwIEoRMDsAK1p3VF3ZyelZPhkj+yX46yk1auZRyoGcUPcEgkYu3DBVX1rHdN0jNu6k1blffkMcfSqGQWIzTQMUxMkZJbqaqSwlXWQYKs361alIZApPFMBimsyqEEryeeQc1rF2RnNXIZI7V21C1ZXHnBVmJk9Dnj0pkiJc2zQbgVLq2R7cVV1S9/s64ae3iWWSbBYSLkDFQx+J7SRdt1Yskh+60LBB+VU5PoCSW5c1NFl0YxqQP8ASCT+CmsWO3aC4RNuDlWJz2qS+u5V8LSXMZ2EznbuwTg8fypNS0zVNM1F2uNWsb02l+mn3YtlYGJ8thTujXIPlvyM/d+lNRujNyszcj8U2treyW0quNj4yD1GKtRzf2pHObVdw8zjscVzGo2Ze9llZBg4bjtWtpOoR6TZSXMmSvmbMDjrWbj2NE7seLOeKEzorxSgnch5zzU1tdJK5VTiQdVPFWxrttqDxLbuG3H5iRVe60wylpk/dTKSQV7iiW443sdR4T8XXnhy6BUmWzY/PAT29R6V7jo2tWWt2CXVlKHRhyO6n0NfMFreMriK4XypRnP+1XQ+HvEN9oN559lNsHWSM/dcemPX3qoztuZzhfY+jsn0pawvDfiey8R2KzW7bJgP3kJPKn+tbZNbJ3MLNBTTSmmmrAYaaacaaetADGqNxUrVGRmgCFhkVCwqyw4qBhTAhNJmnsOKj7UAIxqFqkJqNulCA1pr62gnt4bqdI3nYrHGT941cjCgZXaxHGR3rw/xJrsGp69of2a4kaO3jCySHO5Djgn69fxrsPA3iuS+1G50y4YGEKsltIAfm7EZ9eKhXA9EH1zS55po4paoQ8GlpmacDUgLRSZpc0AB6V4f4rkaTxhqGegmx+Qr289K8H8RyhvEWqMWGRcv/Osa2xvQ+IqCTaze9YXiFj9liPua0TKGIGeRWT4hcmGMexNYLc6HsXdJDWejhGPzsWY/jT1kZ+BUWkmWTSoZZwAWZ/yyasJtRcDqaT3HHYaIAXBaqhhXzXK9qteYd3Pr0quoIkbg4polkIh3nPaufsYy94zrIU3OynHeujB2sxIPQmsnT0G7KgZZyRntmtYK5lNtDp40kWZhJuSJtjZ7c8VmXOmgFsohKcFh+NactoTaahbrLGWnmDDAPy85pj2zsJ1IILzKwHt83+Na2iSlJmXrYFv4TSIj5mlFWPEni3Ttcu5ls4mc3Or/AG5Hk0+G2eJSWyhaNiZCdy5Lf3Pc1Pq1r9o06GMqCN+dprESwjhmj/cqr7wRlelJOwpK7RuHAurvJ+/CqD65qCaHzNLliPOJR1qGTULdL6SN38uQPjLdKcspurC72nnzVwwqEzVroiPSovs9/EmNu1jnFbo8RWk0bRrIRIDt2+vNZVurpqBlxkSSnbn0NZrWwhuS2zDFjz+NEkmwTtozrb+xF+yl025wVkX+GqFvPPYzLFeDgjCSev1qc6/bWd4bSZmUgLz2ORVlYzq9rGyqrx8g44x9Ki3cpF7S9UutLuY72zuPLmTnI6MPQ+or2vwl40tfEcCwzFYb9R88eeG9xXz1LDNpMTPIC0IO0dyKvWV88BiuLWUoVOY5EOCp9qcZNMmcE0fT4z+HbPU0d65XwH4iuPEOkStdrie3cRs4/j4Bz9a6rFdMXdHM1YaaYRUhFMNUIaaZ3pxNMPWgBrVE4qRjTG5FMCuwqInip36VAwoAjaoz0NPamE0AeT6FqFvKNWWOyM5mZQQ+NwhwAD9c123haJobiPTprIrJaeWylR95csQPw3H864GK2s9B1aCGe3lhnvbYXMckPJhyOFOfQ16Z4I1w6veXVvc2MqXlpbwrJPIBmTG7BOPrn8aSGdwDxzn8admm5zXm/jv4qXHg7xVZ6DaeG5dWuLq2WePyrgqxLO67QgRiT8mfxoJPSgaeDXn3w0+Jf/CwzqgOkf2cbDyv+Xnzd+/f/sLjGz36132aBkmaKaKUGkAp6GvnjVW87Vb2Un787n9TX0K7BUZvQZr5xnffNIxPV2P61z1jahuR/KGGKy9eOVQf7NaJOW4rH1mRmkjVRnIAANYr4jd7GtYyqNGtIwSTgn8zTgMgMahto2js7dGPzCNeandl2DByaHuOOxC2dyuPxqLzXZ+PWpucjHFQFWRic80IBGcndn+6RVaOBbXY+e+alydr59D16VmR3NydkMwEu7uvari7GbVxZZ4LW+lF1OYlkbII71MlzDJEz211DKR253VRv7SO7ffLE25flyPWsd9MEcisknIHI9601FzdDdSaWaxWSNfm3EA/jzUd8o3xOGIY7QQaQ/6Lo1nulCEu2Ofaq93cFI4QzJgyDlTyay9n7/Mei8ZF4b2NntbfTe/Ml3ez8vklVv7MSXkrsgJY7ifSprUx2ulTu5IUSLx+NTXX7ye42E/NGoH1B5/So/L8yxmixn94vWtuh5qdncdDfJLeW6o3mJuwPY01oGaVX3E+Xv3D33VBawCO7hXbjDcimyagoadEJU7iCPXBpFaPUt6tAGvTJ8pYqg57VoW2uppGnWsUsRlSUk5Xtiql1F9onRicEqhFMu41OnRSkjEZYkUNJi2OmsphrELSg4AlOA3THpVG506bT5XntfmXd+8TsPpWZFqF1pelxSWqh2M2GU+hFb2hSvq5uPM+V9+cL24rNqxVz1D4L3KXNjq23PyzLkHsdor1LHFeY/CkxWt9rFki4fKSN6+lenDn14/Wt6b905qnxDSKjYVMRxUZFa3JIiKYRUpU03bQBAwpjVK4xUTUwImFQsKmaomoAgYVGalaoyKAPMrk2Gm6ml7aXccmmXdsYJDMeIyeRg/QivQvAGn2Vjoshsb43scjDMjYwOM4U9xz3rz+4uvD9xG3h5oysTOZBcnoJCBx+FdZ8PEvoLm9spXaS1t1WMHaAN3XIx7VMXcZ6AOnWvBPjDd2ul/EZdTuWcvBoSRwRxTrFIzyTSoSpKt0Quc4OMD1rvR8afh/38Qc+1ncf/G6qaz4D8JfFxrPxQNT1FoWt/s8L2xEasqSPklZIy2dxYfgKGSYvwQa1k8ReMrmyZPs10bO6REcN5fmLK5jJHdSxU+617NXHeBvh3pHgH7f/ZVxfTfbfL8z7U6NjZuxjaq/3z69q7DNNDHZoBOabmlBoAivZNlhcNn7sTH9K+bixbqeTzX0Prcnl6DqD/3beQ/+OmvndUI2564rmrG9HcljG33NYess0d2hIyVwcCt9Rg4rA1k778+2Kxjvc2lojXt2M1rC7cHy1qZVUn6CoLXItowOcKKnG4ckcUPca2GyOOT0qEsCMdTUrKCDn0qIKoyc0ARsP3b8djWRYqZb6ORRtI446GtWTHlSYPO04rM0tHWeISghS3BrSGxlLcn0qWZLFMlgW1EocgZICiqc+Z4LlxhiL0xg47ZNTxXzzK6SEk+azIEH3T61bebT3s9gASTO8gdS3c1tKSsJQMbX4BJp1tGABtk/oaxIbXY8eGLjzB1NdJdTiS0gKOOcgEj/AGgP61myyRXNzHLDymVHHqOtRbQbuPkljS+kXzUBDHjNNt33RTsef3y9KqahZZvZpGDDnIIqS1CQ6fOXY48xefxpa2C92XWw2oLIBhS/HvVG6tgkjH5SWZsY+tSC4U3FqFcMN+OKuXVszLvUgqpY/SgGraIr310bW8iXYzAxJyKICLnTUjkbarORk1JdIrkP3SNT+GcVUmllgso/JUEmQ5zRqO5flA+wyKoyA5Ix7LSQS3MGlXEltJ5UgkQlh157Umlbp4pd8bPmTlR7jFWZU2adfIIyGDIQvpzQwOg8I69d2Ek14b4RSu+DIx++PSvYvBHjM61JfR31xEoiZFhyfvcc185mPdo8qyBgUlBIFa+j61Do9hHJKshMkrBSvbHNJNpkyjc+rsg9CDRgZrybwF46t7XRxHqDSNvleQzNzgHkCvUbK8iv7OC7gYtFMgdD7HmtozuYSi4k5UGm7RTj060ZHrgVVySpIKrsDWmUU1G9urDjrVXAzGFRNV2WArVd0I7UDKrCojVoofSoGSgD5fvNRnYRxGUHbyHHHJPJr2b4OajNdx6lHc3JklUqyf7o4z/SvCXjim82ZmZf7i9utej+Dr6TRtOs7lT+7nusTGPlgq4G0+2SKxg7D6Hn92ptUg0200m1ubSTSFumlMKeYzNDveXzcbhsfcu0HB8vbjJOfV/hxeeILL4ZWV7ZanZpb2cFxMljJBuEqiWQsXfO4NndgDjhfU159ZfD3xZeaZqVjDrlsum2BzNCbqYQsep2rswSMZPFdlonhQabo+k6PdTS/aHlkW6jhmbyJcSEgkEA8jaM8fd/GiopOPu/nY68DUp06vNV2/wqV9tNdm11/Lc91sL6LUtOtr6FXWK4iWVBIMMAwyM4+tWc1HGoSFEC7QqgbfT2p2a1WxySabdth2aM00GjPFAjK8WSeX4S1Vs4/wBHYfmK8Fzkg/hXt3juXyvBOpt6oF/MgV4czHZwPWuatudFHYl3AMKwdTbN3IevsOtbaL0JrEu8JqxdmCjnk9KzRpI2ovlt1AGDtFTfMUG7rUMZzGT3OMVNyWOemKXUpbEcjqA2BVYMNmcVOyfK1VyAFoCw2TYImbphSTWbDcq+xkcHuB6VenBW2lYdRGfxrF0q1RrqN8MC45Wriroyk7MZqf22CcPZlVUDJwM5NVl1zU8+VcQxyLzg7Qp710raTGwTfLIpkcqAq5rMnsmijMnmblDeWAVwc8Vo46E8xXYlNKsWP3snPFV28mMRCMbcyAEVY1rzoLOxEJAYFs5FZUd1dTSxLKAMSA8J1qUaX0Nq4Je7mRiCvljntnPrVVIPNsriMKCA4P5VaNzLHLJCIvMhL5JCc0aaj3Yu0jjO7dwg61V9CXGxlQWyRX0SqjKwcEg9qJb/AGtcoGZCrNgY681rXVpJDqwaWN0BYbS4xmsy8iBkk+6SzNnFOwLuXkWKW3TcxV5IVB4465/pVeUg2rYXdtd8fhUNxJPEtuI13J5K5A60+zLNaPvGT5rcUrha4xkkexYRuyPvBJU/pV/TZRFYX7TSEj5BuPPcUyFg/wBoWNcYkU4Puhpbe3zpt9FIpH7tW/8AHhSFaxZSWO6hu1RwQxABNQXAWLTVUEZWYr68kf8A1qrQyfZbO5kjTdhlwKuW063FpIZYwFeb7nfOKC76Ej6hd21nawQSAQPEQ64684/rXpXhz4g3enC2083EcsW5YwvGYlryy4Tfa2rICVQsMDtz3qxE+zxCGAAYhSdp4Pyg0rWJaTPpTxF4ss9L0VdTt7yFlSUZTcMyLnDAfhWJoHxN0+7juDqcvkz5aSOLH3E7A+9ec+EFh8YXN/Y6jEyiO0keNQ3CyD09a4vVZJjdC4MLQGUAIGGCcHAJ+tVzaHPKNmfVOkeILLW1kezZmjU4VyMB/XHrg8VrAV4b4K1UaHf6ZYapcy26vI3lL5eBOwO0Y9BkfjXuQ6VpF3RIhUHqKjkhVu2KlpjtjirQFKVFHAFUpUwTxV6Tk596hkAOaYz5S0e2guEmWXblBlV3dDj9a1tJ1n7NPYosDbIifOT+8eucfXH6Vzln5kDLIQuUwwA6k+h9avWPnTalJI2ELBpSPQdf51zSbUXy7m2HVN1Yqr8N9f6/y1PRPDOtRraXlpLG26bzJhyCsg/5aDPc7c8fjXQaTb7/ABNZxyMJ5oIkCsZMBQAPmI/iPtXn/hJRFr0cbqzeWpDBj9zcp/kD+td58PNOW88RX2sySGSIOVgTOQD0OPpjHvV0nJr3jXGKkpr2VttbXavd7N67W+dz1Mtg/MwyDx/WsS/1tYPlQ7pDJtRR3A71NqmoR2qpHI4XcwUt0xnOK5LQFbXfEb3AcrFDzCduVdQcE57Vr1OQ761SSO3HmPukb5m9s9qmHb61WmuY4UJdgO9Rw6jFPc+UhyQoYn69KAsYXxFcjwTdj+9JGv8A4+K8ZVcADsK9e+JkhXwntH8dwgryI5Ax6GuapudFLYcBmuf1BA902Rkbsc10KZrn7lv9K5brJUI0kdAq4QVJ260x2AxTS2B1qXuUthJCu081X4K0+Rsqag34XFFhXG3I/wBGk91IrOsDs8vHLIcn1q/Od1uwJ7VQjQQz+Yp7YrSLsjOcLu5tLqKNdQRohBRy5JPqKhubZ3tGTaCVfzM/kf6VhSXyJf4kuVi44O3Oa1jq5XTpFR4ZcqQSGAPSr5hchS1NY3ECyIcBS2QfcCsua1W31JYlJ+Qg8+9XJnaWxtXHV07ntkH+lRXOZb37Q3/LRlAP0phyGZdC5GpTtFMy/P8AdzxVzTLiW0hnmEpSQtgvmrOpIiwTyrFltoOR9aptCJdPnjKkglW4pW0EnqaN5qU97eWrTyJIFZRww9KpTwEvNtwQhYnn1NVLK2WO5iCn+MdR3qWW8t1uLpGDq5LDjv1pX1KvcutAGsUkXIZIqoSRM1i2xirebk4PtV9JSILZM4DQgHNFtGrRTqef3hwfwoHYo6e3kpcSTTFBvT58Z9a2LB4bx7mL7UGSSEL5m3G3mslIgba5TBz8vXp1p9ifJt72SNAT5WVHY80Cv0Lk1v5KzwxuH7humcVWV8wFSNrFgwIPfBpIbhrhZJZV2tGuAAcCs93k37YjncM9enNSzKe5fjuo4bfbltuWOfetGGJGuLe5U4LKnb2rAty7u0bjGRjkcA1pSzTx3NrFuXaRGMCkn0KhLod58KxKniu4giXE8kE4jLdC2Dj9cVX8XeCLvw/dyT6lcG4SZCY23YG8IzHHpgA4FXPhpeRP8RbOON92BMrDGMHmvRPi5YLqXhGVJoZCLd1mjmjPIfOMY9ME1tFaET3OX+HmlHXfDyX72jXNxbM4spLiX5lXcTtwf517FYzTS2MMtxD5U5X54w2dp7/Wvn2yTV9N8O2mvW989nBBEbZLcv8ANcYb5pAO2f0rtPBfj/UdW8XzaZq7xwPylvCqctxu6/TFOLMz028uTa2U84XcUQuqk4yQOma4vT/iNpj6Wtzfv5atCky7TkkE4Kj1YHIx6c10Hiwb/DOo26uVmmgdIvmxh8HBz25r520izvNX1G300JFaLaQtKBKwIZ0XDYbuWINU3ZDPpaK5guIRLBNHKCA2VYE4PqO1I45OOff1rlfhza27eHYbpbO5s7vBSWOaTfnnOc9wc8V17IBxTWwj5S0+AWkTXskaPh2dFPrnj9KgtpG/tC7eFQFKnBbqgYZx+FNmtrmznvYJmO6C4MbYPyk9OB6YHHtiqjytHJKAeGUEk9awYzqPDOqG2sdXvpoDJJDGGibpvY/KR7hgf0FetfDEwx+EUni2qhPDgYB4rx/RIJNU8O/YZJFj8y4VISesik52A9uQOteq65qsHhHwXbwWkSbFRBEq8Kw6Z/StlogMHxl4rGqXU+mWxzFIuyQp975Tk49O3511HhrU9P0TSpdPgaTzkzI6M24hccZNea+GPspv9S12aFxb25yhPWRm5K/TpV7Sb1rh9TW3ieG8uMHdIedp4Az6YNCKR6BfanNPc3KwnzI4WK7jz0Y1paBNm7lhMLYOGEucDHYY+lcvCLu4vIILVfs6yP5kUx+ZX7kOBznmvR7O2W3iBKKZG5YgdDVIDk/ihIF8PWiZ4NyP5GvKldWB9c16X8VJAul6ard52OP+AmvLojk4x71zVNzemtC2mPMArnUQT3jBj0zj65rfGQ2fauYUyG+XymGDJ82frUot7nSlcj5nppKDvmo2BJyaAo79KXUbCWXCYUVWMo7rU7/dOKrE4XnpRsTcbdS/6LKyL84WqMFw8rlXj5AzVu64spwMgkDmqcJKEkNhvLJ5+lVFaE3dynf2cFy+fLZXI6461QXTo43LA9eBxXWMmyO3dSRw+c96zrlN0Vp8indKQSR2FMNblTUZYra1sI5Sy4Qjiqz3UMslv5Fx5nzjICkYrR1e1M6QNs3Ig5H41lRwiG7jj2bXDDIqug7l2SRnuZ4S42ltuPahG22t0FOMMB8tZtzdywajcDyVdTIQOKs2bMbK5kGFzIuBRrYLJ7FlYv8AiaNjs4xUF5bhJmY43O7fpUokKSQhhyXHzUlxGZJDj5vLkck/WjS5PKyK7edVthEEZfL5UrzUlu0kds7sAD5+Dg4ouf8AjyEihvliyGXrmo2iWaxYN94y5J79KLdQUiwMTy3C4wu1eh96WC38iKdWPymBjVO0P2W3uJANwAXA/GrttcpdPKwidV8ggqxzn6UmPRlOGNpbOcA43L1PbmkuLWO0MMdu29lX5z75zV+Nka8VdiiIqCVx1Oau+MbMQ6nG1nCqgqS+wYA6YpEVNDAjmIgbKDeWxmpY90t2jqB+5C5/Oqjk/ZWYnH7zAHfpUsdwhIcqynaEG3oTnvULe5lHe53nw2Pl/E20PQtJIB+INfSF1BFdW0lvKm+KUbHX1B4NfN3gxhb/ABC0p2XYWnxk98r/APXr6UD556da6KZdQ+ePi7YCw8SQJY3ErWsNqo8kP8qHOCB74AJriJdff+11vJbmSOVY1jeaDKuCAPunsfU12PxVvbG81Jbm0iuIJC8gcyH5G+Yguo9yK89t7ZJLiAPmK3iYNLKxzkZz+vSo+0Zs+m7rb4s+G0cunXnlGe3XbNcg5BHUHOCc9DXk9poOo+JvE94I57SyuLOQz2luF3LLgAMoweOPzJrY8R+P4dW8MtouhW7i3ihXN4ONrZGNvp3zUPw4FvaaoLvfC7sGVhtO9QqgiRT2BJwfetNGrAe26NaJZaRBErOy7AV3nJUHnH0Bzj2xVxlya47wR4ivL3QZ7jVtkaW07W6ykg+Y2c8fTOPwrrY7iOeMPESyHvVCPkPULwXEjFsmRf3YYn5mUcLn3C4H4VmzvulDZOCO9V1ZMlRuye9SSEFwT6ACsGPodV4dEdwbWJ7hhHHLuMcf3gx4GPc81q+LNaa+WPSWXzWhyiBOhXqpHviuU0e9Om3n27I3RAYH9z3P1qWe6jF1cvDMR5IItievByB9cGtL6Abt1qZutD0/SrSbyjFIzPtHLEMQAffBrodGlF5FHsmhjklCiJrtSSQOOMfjXF6S7NfxlZcLEu847MTy31wa7u2utOsZLa9ilEt2yjZAB2bofw60JjR6h4c06Gws+sfmsxLNGMBz6nPet7PHT8+v415/4YvtW1a//wBItmtrWFvlB/iXsfx613wYdfQmtFuNnm/xbkOdHjHTMh/SuA6Ecdq7j4rkvqmlxg/dhc/mRXDL97k9K5Z/Ezop7Dy2Ec/7JrnbZQb6PjgsCfzrfkkAifn+E/yrCtCWu0wPutmkhy3NwtQBuXFGwnnnHtUiAKQSQuP71IroVJcgZrPup2gkjc/cPB+tXL28t0wHuEyTjAPSsHU7uOe5VUO8IMFu1FtDOTNa5ObRs9xVWFhuzgcIetPjnVrHy8oAgwBmo0jwXUk425qk9BLXUljvnu5FErAY4AHanSKrRR7iAImLD61kxNEbqMEHGSGBrSntYvsMjRtghTxRcqLTQ2+kD2LHJOVXAB/2hWfJg61cMOB5gAB9hU02AlucZAjwTUM0iieFNpGZetUmJR1H39okUlxIHwVXzT+OP8aqCMnSbhQxUl1YMPrV6+vI55biJQQxQRZPsRVGa4ukeWK28oKuCw55qlsLVMZbRTB4Azl139TUsl3Ek9yizhXLMNtMtJ9Qe6MMpkAI4Xjg4qNraRdgmQFnO0n3pW1HcvRzK9pCsr7RJHzjvzTwB+9CDKpMBVaY3FvFaRxKpBQqR6c1KkoW3nklZI2aUdalvQqyHWsRZZEYcFQce2aZYjf55GVBjcAn6Gp4JvOmkwyECJeU+tTWcMcM+0NkMjE1RPXQzbNmjaRmdpNke7A6nHNXta1G91WUzfMoEasF9BVa2gZJJFIwChI/pTXe4nNykzYKQrjH1/wpWIkrorSOqB4ZgAwORx7U21dhJGnGwnGT2NTRwSS27nLSN5gwW9KpzQTwIVYhcMSo9RUNdDN6HbeFML460qXzi7Ncp1PFfUDbSSzcDBr470m8ltryK5jJjEcij5OsZ9RX0tY+KLJ9DmtJtQ8u/toQrNMfnyw4bjiqpStoyW2ziPi8unzeD42iRVvXdfs4kHzCLOQikdM9ea8Khd0Yh3kaIZDKvb/9XWvXvidqGn3CQWcGuBorTZ5MQ/5aSgfMx4ryuOCafU0S1z87kKWU/u/c/UVbabHqzdg0m+TQpZtI1HzwU3z28fDIhU7ic9wOvtVu01xYId+nXFtCbSB0hVwd08ajGxvrya6EeHpX0rTbTT2ns7ecSS3Nwcb41cbXU+zA1hf8K8v2Hk3F3awwxOfKYk5Zc8H8aG0gUWwsvFTWXhqz0y3uBGIrgXEtuwJ5LHOMex/SvWLv4o2MWhWV/p0W6ye5S3ndesWCNwP1GcVwFj4V0vTJ5JjeeY0kDQyCPpzjJ5q1Z6ZoOnWs1pBbNcJLgMZTwcHIqfaFeybPJDIQwQ59M05RulAPOASB3NQyk+YcnkGrEEnl7pSzGQJiMY6ev86ZmJC2yQzjqTyPX0qSFfMYsQTySBVZW3rgZ645q9CSi4X/AFmePpQNG5pcEcQjkdRm4ZlibPzOwwAv4Zr1PQ9Hi0+0iu7mSIlArn/pmysDt+nb8a8m0+dDLELuZY4eqKT/ABdv6/lWvN4lu7uOZZHJt4Iw2OhcKwz+n8qpWGj2+HW7GytJJ+F3Reb7hcZFVz42ikmhjhjd3aJJXK9FVtxBP/fJrxa2e61K31FLq5MRadYpH3f6uNRk4/PFaOmanO95DaWUExiun2LcBcswGBg+wGfzqk+w2bvjnVpNR1W1d1KlYOh68muXS4ijZ2mkWMDI+Y9cV2Xif4Z6vqENjLaXsaS7tlyZGwVQ/wCAzXnPxF8Fp4Pns2t76W6hvAzIZOMYPNZuF3dmkJ2Vie51qyiRh5qsTwNtUYNTtkDuJkVj0zXJK7qACAaHLugbAwDS5VYrmuzoLvxLeg7Y5FUeq1nTarczBjLdOw9PxrM3OflPrVm0iEtwqOvcj9KfKkS5jZJEdTgkn3NaMasIUVMhXXJBqpbWW6WMEcOhNXN+2AbmwRx+FTLsiZPS5HJGyMgDFd44APNXh9ptrAyecWk6YqibiGHIY72JG0+lOEx3PlyUPaps0KM3Yd580TGVZMOQOPWp4NavJ0aGcjaRxVVV8wnJyccVTgBgvGSU54OKtR0GmbKzeYvB/wB0VZvXWc2BVl/1vUVlxFslBne3Cn0J71Wv5NixtGSERtqj3HU0+USdjVa1lmu2Kvx5uT+dVYUnkupFQMz7yAo781Fa6zIroHturj5hmt63tVtNt7sZBMRIsp/h3HGPzp2ZpzoghWWO7DTKUZiS5b+HFRczqhjXeom3Z9qk1uRDIJXAWSX5pVB6NnpWrpvh+9lhgnVowrDOGOCKlyJi7mXdp/oisi52o5GPpmokiMmnsrc/ODtNddF4PmkVRI0jjBU7R6mtSz8FwW6lZI2x1/ecUuZGnKzzyzXbDdPCu0+VwD9f/rVZ083c90u+L7sJ+6K9Jt9A0+0BCrbrkEHDZNWEgsIc4Ytgc7VGBUOWpSizgYdG1C4VSYcDYefSq1jpcl9q9/avKqyLGqE/4fpXoUupWEIBIhHYeYxFUJfEen27uYpLdGf7xjwScUc9h8tzm5PCd5BAiWgnnbzArHAx71UHgXXpbuQkxJFnGZiQQK6Gbxerr+5juJGY9EWqba9qdwxWKyIPYyEjmp5yXST3GWvgQ203m3WrRBcglEP3v0rpobLSbZg0MchIGODn8a5YvrkoJMqxA/3Rn+dH9k38wzNeyn6jFJy1uWqcUbjwaMkrzNYROyvu3SE8t0zSt4itbRfKhmtrdAMAIAdv5jrWInhxHGHd2UdfmNW4vD1oihvK5/2jSvcqyQlx4tjdji4nmJ/uAVRfXLmY4hsm+shNbcWlWydETPoO1WFsUUcKB+FFxXOaN1rU64AihGf4c9O9J/ZV/ck+deysMcL0Arp1tlHYVMkShuRilcDxN+JGz1Ldal3lFLY54ANSXCKNo7kmost5flBSWJzgV1HAOiRgcdqsRvuJI5bOMVVVytsWz8xpEYNsRWwRyDQNFy7KRyxqrZwvI9CetP8AtEty4VmYbuCVH9KoO+TuYfMT1rS0O3a+1GCBofNikkEbLu2nn3pjNrTtMutT1MWts5e2JUOkh2seBz717R4e0/SPC9m6wKHkABdm5wc4BHpznP8AumvOtC1q30n9/EqMocrHkDKkDI57jmnReIoptR/fSMkKhZC2fvODuxj0zu/yaqOgz0XxL4zgsbe0mYF18xg0Q6k44Brxjx3qupeIZ7a6v2Xe+TFGOFjX0rf8R3a38LeWys1tL5jMpyHDDgD1x39K47WnXUI4RA2PJwCM9cmpc9SotI07DQPCOpWrRDxAbe+EAdfOUKhfuuc1zt7pM2mB7aRopZA2A8DbkYHvmtnWH0mKOKB1FxEGUExxgYbAzhh1qtqqaZvJ0kTpZEKF88kMP73BpSehcVdmFf6Dq2lCOXU9Ou7WJ2wGljKg/wD1600sEVI545V3Lg4z1GK07zxlrgt5dMlvY9T09l2qJYwW+ueoNUNEEhSWO40y5uBtxC6KcqfoKqTRnysjsyPMC4PC4zjjrVedFVcDdu6njiuitvD2q3DBo7CZSx/5aKVHWrD+BtalXe7WtuqjktIKxb1KabjY4faJHiLHjeNzDqtXr1Y1lKwjEfb1P4V2Vh8PW3Fr/UIxEcE+WoJ/KtJfBPhxG33d3NMwzwRtGPrmm5DjTbR50nLKQSq453DFOMMVwxljwxHHHXFemx2vhTT0wlrCx6DfPn+dSL4h0i2Gy206LIGAUiDClz2HGizzqCzmWKSV4pAmOCy4xW3pHhePWRHI0AfA6kkBRWxe3kl/80yKAeAm0LgfSm6fNfw2rW2nOiIrZYnr9KPaFKkbVt4UsLWNRI0KnHbBpJ/D2jy+WLuWaVEOVULgD8qzGtNXmcmW+2+wQU06BNKQbi7lk57MVrPmZp7NGp9j8L2z+a9pCZOoMspqVvFWn267IniwBgCMBsVmp4atlALb3/3mJq1Fo1qjcQrx/s0nIpRiMk8ZKQRElxJ7eXgVSfxDqlwSILBiT3dyMVtLYQgACMD8KUW4Bxtx7g0rlHPq2vzAkzLGT6AHFA0a+uSWub134wQPl/lXSwwhFPy/rUioD1yQPakI5qPw1bZy4Zj7uTVuDQrVD/qlP1rZxwSBT0TB7UMDP/s6FWGI1HbgVMtqgP3RirEmdw6YpWBoQPYqvAoGMUCIbelTSA4FOUfLQybkIjAPSg/ezUp5pu2khiA9eBn6U/acUz1p65xTJGBfmxUhChulIRx70FwvXH40D6Hik7BSAeoFNsLs2t15uAeCPmGa0v8AhFdcumXZZ8/7TYq1H4F1skb1gjB7mQHFdV7HHySOenlMsmQoAJycDikjU7+Npz712C+AH5N3q9tF7AA4/Wmt4W0q1k8uO/8AtEhwC44ApcyBU5HLKnIJGD056Vq2YETBkmAkXldjc57V1NnofhqwU/bZpbyT0QlQK0U1HRbTH2bTY+vBMO4kfWp5zRUjknkmdXeK2lLHbsCxEgAAA8fUGlSw1Cc70sbg55YtERyPauyXxHKwxFp6jP8Adj2006jr1yCUAhXoAWzScyvYmPaaR4geze0W3iSGVvM3uwDL/s0W/gKfDtd6hHBzxsAatVrbWJj+9vwB1wF704aI0mPMu5m9cMRUOZapLqUh4O0KGBYrrVC4jctwu3+tTm38LW6rH5TTgesmatpoFpn5hI/+82asLpFkgwlugPrtpc1zTlS2KEesaPbDFtpiA+pg3VIfEs+MW9jj/di2VrQ2ESnasaj8KfJbCI8DNDYzCbWNan+5C6Z7l6Y0OtXqeXNMFjJ54zXRNCFTpyakhjKISehOcUgOdbRLmRjm+kI9uKlTw1ARmSWdz7uQK6JUCrnAzQVGM5NFwMKLQ7RCR5KEf7XNWVsII8BIUH0FX9oBJxTRtLqO2aVwOP1SXy7iUnqDwKn8Glrn7czj+Napa6f9Jmwf48Ve8EqyreZP3mXj0qugHUFAJGGO1GwdKmI/eEe1Jt6GoGJ5fyg0hT5qmP3dtR5+ahiQm3C03bnmnE/lSH2oGKqHBxShCFp6Aign5aZJEEp2PXrSA4OSadkYHr60hkMg5p+ePrSSc96T+Ee1AEcnA/GlUcdaRxkUq4oExCcnig9KCvPBoPSgBpNKuc0081Ig+XNMBrEgYpuAwwRT3GTSquOaA6GD9l1acYkvxx/dUikTRCcebdTMTycMa2wgBOBT0TBFNtisY40CzA3OGk/3jnNYuqQxWkqxRwxovB6c9a7RwNh+lcd4hOdUVR/sChXYzci0632jECcgZ471YFiiBQsar64qeMYyPepyOB61LYyBYdqcdjTfLUdQSc9c1bX7mD3qEr82KL6DEC56LUgQDGKRVJJx1FOHb35pAGcGkZgg3UvXp1pWUFMMPw9KYD4mOSac4JAJPWobctsyetWGwQM+lAhmdy4Pan8GMZ61HwBT93y4oAeCCAKRxxxTQcAGlYgrxQBGMc5pnG4Y9RS00N8w+opAcLrx/wBKl/66EitPwUS0d0T1ypNZHiDJuJecHzeta/gl1dLwqwILKx9q0ewHXH/XH6ULwPm7mmk/PSck9agY8nn8KYMbqD1ppOGoYhWpRk03OVpUNAyUHApGb5KYTSZOOaYhBzQetIvSjvSAa+c04HjFNcc8U8DIoAY/Smg5pZPSkXigBSaTJxQaeAo5J7UARd6lHAxTWK54ApWPGaZLGseacOlN4NKAfWgYi8GnjjBpinJAp7UAI5JXiuL1jL62i9/MUYrsGbAIrkL07/EkYP8Az2Apx3DqddH95s+tTqCxAFQohbcR0rQhjEhCJ170RjcJOxXA+UHt2qP+M5rUufI/s1QOHzisrPI/GiUbOwou5JDldz44yB+dNJ/eMPQ4qWNGSJyW+UsDioQwJY+ppSVikSQkCdCegIpZsM7dgWpif6wU5+S1HQOokfHNPIJNMX7uaeGqUHUay8D1qXaAlMY8iplxtOaYEeMrTOxqQ8Amo/4aQDO+KYqtuOR3px+/SEnP40DOB1og3MoJAYyHGa0fAcXlDUQHVlLKeKzNcUNdPn/np/Wrnw+kwmo/7yfyrZr3SG9Tts/NS7uaYD81KfWsi0SphjTXGGNKnAz3pG5NADAeaVeKCMA0nbNIBwNDdOKRe9Ox8uaYhp4NGKTrThyRQA0gihSad1bFNPHSgBp5PNO27aSgtk/QUANbg0fwc0E5Oad14piI+p4qTGeKAqr9aeGzyaBMi+7Sb8Ec4p5I71ARyfSgZ//Z", "path": "images/3pts_ADE_train_00009445.jpg" }
depth_point_97
images/4pts_ADE_train_00011151.jpg
ADE_train_00011151.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 137 y = 218),Point B is located at (x = 256 y = 221),Point C is located at (x = 61 y = 214),Point D is located at (x = 104 y = 98).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_31><DEPTH_59><DEPTH_70><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_29><DEPTH_31><DEPTH_3><DEPTH_49><DEPTH_67><DEPTH_5><DEPTH_67><DEPTH_49><DEPTH_31><DEPTH_49><DEPTH_49><DEPTH_29><DEPTH_67><DEPTH_3><DEPTH_70><DEPTH_70><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_31><DEPTH_49><DEPTH_72><DEPTH_69><DEPTH_25><DEPTH_70><DEPTH_3><DEPTH_74><DEPTH_31><DEPTH_31><DEPTH_64><DEPTH_29><DEPTH_11><DEPTH_3><DEPTH_84><DEPTH_7><DEPTH_67><DEPTH_59><DEPTH_31><DEPTH_74><DEPTH_64><DEPTH_49><DEPTH_60><DEPTH_69><DEPTH_4><DEPTH_77><DEPTH_60><DEPTH_38><DEPTH_11><DEPTH_3><DEPTH_59><DEPTH_3><DEPTH_72><DEPTH_29><DEPTH_52><DEPTH_54><DEPTH_3><DEPTH_50><DEPTH_81><DEPTH_17><DEPTH_60><DEPTH_78><DEPTH_78><DEPTH_75><DEPTH_18><DEPTH_46><DEPTH_80><DEPTH_0><DEPTH_23><DEPTH_32><DEPTH_63><DEPTH_25><DEPTH_15><DEPTH_25><DEPTH_14><DEPTH_94><DEPTH_121><DEPTH_121><DEPTH_121><DEPTH_71><DEPTH_30><DEPTH_40><DEPTH_38><DEPTH_72><DEPTH_121><DEPTH_119><DEPTH_33><DEPTH_57><DEPTH_12><DEPTH_40><DEPTH_36><DEPTH_76><DEPTH_64><DEPTH_64><DEPTH_END><DEPTH_END>. Since point A has a higher pixel value on the depth map, the answer is that point A is closer to the camera.
A
long
4
[ "D", "C", "B", "A" ]
<DEPTH_START><DEPTH_31><DEPTH_59><DEPTH_70><DEPTH_31><DEPTH_31><DEPTH_31><DEPTH_29><DEPTH_31><DEPTH_3><DEPTH_49><DEPTH_67><DEPTH_5><DEPTH_67><DEPTH_49><DEPTH_31><DEPTH_49><DEPTH_49><DEPTH_29><DEPTH_67><DEPTH_3><DEPTH_70><DEPTH_70><DEPTH_31><DEPTH_31><DEPTH_3><DEPTH_3><DEPTH_31><DEPTH_49><DEPTH_72><DEPTH_69><DEPTH_25><DEPTH_70><DEPTH_3><DEPTH_74><DEPTH_31><DEPTH_31><DEPTH_64><DEPTH_29><DEPTH_11><DEPTH_3><DEPTH_84><DEPTH_7><DEPTH_67><DEPTH_59><DEPTH_31><DEPTH_74><DEPTH_64><DEPTH_49><DEPTH_60><DEPTH_69><DEPTH_4><DEPTH_77><DEPTH_60><DEPTH_38><DEPTH_11><DEPTH_3><DEPTH_59><DEPTH_3><DEPTH_72><DEPTH_29><DEPTH_52><DEPTH_54><DEPTH_3><DEPTH_50><DEPTH_81><DEPTH_17><DEPTH_60><DEPTH_78><DEPTH_78><DEPTH_75><DEPTH_18><DEPTH_46><DEPTH_80><DEPTH_0><DEPTH_23><DEPTH_32><DEPTH_63><DEPTH_25><DEPTH_15><DEPTH_25><DEPTH_14><DEPTH_94><DEPTH_121><DEPTH_121><DEPTH_121><DEPTH_71><DEPTH_30><DEPTH_40><DEPTH_38><DEPTH_72><DEPTH_121><DEPTH_119><DEPTH_33><DEPTH_57><DEPTH_12><DEPTH_40><DEPTH_36><DEPTH_76><DEPTH_64><DEPTH_64><DEPTH_END>
137
218
256
221
61
214
104
98
null
null
93
69
49
16
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDsLeAW8YQfePU0O+fl/CnO/lgqeSaIoWbDkcdq4bWXKjtb5tWEceAOOTUN1MHPkocY+970+6n8pSgB3nj8Kpxn1+9WdSppyouCb1ZKqggGpQgIy34UiKM8nPpUqqQcnqawSNG7Do0x8xAJHrVmG7ubWNo4ZSqt1xUCj5vekZgowTWsXymclzFWcE7mzuYnkmqcvJ457fjV5lkk+6pb0AFSQ2D58yVCgHRSKXK5MG1Ez44RbxOzDMwG78KS4uA6l87UKhgfT1q5dRyBwVHzdsjp9a5i+uBGlxBu/dxNvJ9Ae1bJNGTlchv7pW824fhEJCL/AHqr2tzK+hMyoWk3AKPQE1kG7N5G7t/qkYgCul0VAulwnHzFfzrOc2jSmrlOU+TIV+7tODU9vcsLe4jIYoUOG9OK1DaRNIHZAXPrSXsaxWM6gAfIenFS6rNeVGQJ5PsiryQIj/KvPrB2nuLiNVeR3ygSPnqeefpXotsubWM/34iOveuN0W2uIXu13tEgdj5hbamOvB7mujCVbXObEU7mpEmswRWyyFlCfKYAMBsf3h3rufBd1b/2bJaB1LxtuLAbRg9sVQisdVvNFtmLw3MU0i/Mq4aNem4e9dEunQaesjBUBkQ4KpyTjHNOrVlU0IhSVPVFPXpryCB1WTy7RpA0kq+3Wue1vWZNRshFaxbLQ/fn6B/90elb9iZdRs76w4eKAjeX6D29zXGTXV5e3rxNZ/Z0tnKwEjjb3H8qmFWS0ZrOTcfdMqKG4bVgLONru6OCscY+6p9DUl7ql8pmhjtJWmThgR9098+ta2n6e9lfrd2zCCfcElJ5Vl+laf2S10gT3jH7VOSZOuFUH2rX6xZGcISs7nlk15cCUq5IkPLKBgiuyR4pNJs8lnl2btmenFZs2lw61dS3VxK0by8qqL8tdFaaOUscwvGfKj2hivJ4orYnmSQqFDkbZu+FVP8AYp4wS/etKVsnBxmqPhr5dHQEchz2q3dDa2ce9crkdSSK7pnIz1qv5LtIB2zipWzs3dfSnZZdrEdCMVKlqDRwur24GpS283BBJR/T2rGnjeP5JBgjnH8q67xja7NXIxgMuawLiL7Raq+N0sPJ9xXXCpoc011JYLZbnTZVLjcv7yEf7PcfypsEH+iKQMEkZqexUJBBIOAr9cdj2qS4AjlMGGBjfaAO9F22YOdhlvYhl86X7g6ZrSj0n7UqsrGJuqMvarEdizx20DDAJyVJ5wK6GwtlB4XCjtilHmbOhSikUdE8R3/h2+FrfqE39CfuSj/GvQ4J7bVbfzbc54yynqK5++06y1DTjbXMQdcZXPVT6g9q5S2vb7wrfKJHeS0Y/JKO3s3qK3UnB6mTgpq6PQZrULwVGKzLmyDZMf3vStvS9UtNatxtKCfH3c8H6Uy8tvLJ4wauUVNXIi3B2OWcYO1hgjtUfB4Na1zbrJ94c9iKy5UMR2t+dcdSDR1Qlc0UBkk+bHHrUk0xVflJ46Yp4jjSM5bmsySQOxw5AqZy9mVFczHb5ZG3OATUqZJ5QZqJQuB85qVAufvmuNXvc32Jlyeq4qUZ69c0yMKB94mpM4PHetUrkNiM4UYFNK5+8eaXG09MselSxQPPKFA+pFaxjciTSC0t5J5Q+5lVffFaphaUbNxI7k9qs21usaCNRmodUulsLZkjX/SHGFA9PWuuNJRV2ckqnNKyOe1WfypGslYGQjJb2rgtW23V2FiYiDJVj/fPpW7qUjXVx9nhYmRTuklz09qzrq0/0QxoMbTlQBySKxcuaVkVJOC1OdS1b+z7gj5WDAY7V1mkJiwj67VGKyLSMzWgiGC80ilvpg11FrCI18kDAWsqkTajO4pGX46dar6grCymbPG01eKZYhR0qvfgmwlGRwh/lXPY35jHtQDpqAnBVeDjisKezZ4cyBJFXJVZeVj9x71u22VsU2Hd8vAIrOi024MckjITvzuR+me1VB8uwSimdOniGw07w/EGuTJN5YCRKOf0rZ064OsaelyFaANkeW3Vs+/auI0yymgUeaIRJnHC/wBSK24JJrBVeO7WMYO+MrkMKrmRk6bKWp6nc2AXTLBAm2XMgbqfcnvVW91HzwZnO2NcKOOpqzFpDGaSSee4md+nyD5QfSmr4dgjcyuk8mOdhLAE9uOlNzRMYSTOeR5ohKlx86yyZSQvgAVcjl+UqqxiIpglmJyRW1Jp8DxNnSnIBBAOO9D6YBEWaGGJR9xTtqXNG1jmbq4ZCkVu4SMDmQDofQCtewu0WBcyFBjDADJarS21uF2vNYoO6se/4CoSLWORUaSBQjZ8wNndUuVxs0vDEo+wSKeNszAD6mtO5JxzWN4cAV7vJBQsXUg+9al22OmSK0voT1Kxcj5RSyb2QZ45BpqHe44wacdzAgms4vUp7GV47X/SonXk7BmuYkhcGEKSCRyy+hrsvGNsZZ0VThvLBz7VzFwEQQRqjvhSWIFbxdjGWxfSyWykhkcZWXcsg/hIWrlnBFMxe4bb9oCsnsTT2+0SabpomjQ+W+yZM9u/9KrXuYorKBUQS/aCi+mAa3W5xT3NxIoDq0z4+SFVhQ/3j3P5itqFoRj5gM8cetb+naTYS2YYW8TOv3sE53nr/WrR8O2AOfJZec7s5ANX7Ga1TNfaJo52RUCj5gazry1E8bq6Bo26qehrpbrQ5iMo6yKDwvSsS6ieF/LdGRvQ96ipe2pUGnscb5d74fuPtFoWe2Bz5eeU+ld9oviW31m1VJnXzPu7j6+h96yGjGCGAO7gg1zd9p02m3JvNOyP78XY+4rOnWcX5GsqakvM9AurcxsQe/SsydA42sv41U0PxRHf2/lXByV4weq1pzoMBl+ZW6V1XU1dHPrF6iyQROcAHFVnsyPuAN7Gr+04AHNTrCRjjFZyoxnuXGbRi4ZOGiIP6U9Oei1teTuGCM1E+mo3KEqa55YaSehsqye5RB+UfdFKeRy3NOlsriLqm9R3FQKwDfdOfQipUWiudMmQFyFQZc8VtWtutugUffPWqtlEIlErD5z0rTiCoDNMdqjmuulC2rOWpO+xM0kdlZNcTfePCrXF6pqcc959nV5ftU4wrADagq34g1liA7DczHZbwj+L3NVdM0nyI3luGL3U3Mh7r7D0FRWqu9kXTppK7K8GnCODEBEpUZkO05LfjVC+aOxu7eeQtgklwBjPHSuvS2klYi1wMDlweK4zxVewW9qkDqXnjnyc+mD0xUqNldEzlzaMy9Ke2mS1EEZ85nZic8FM8CukQ7XlLjGSMZrnPDN7Dp9xDc3e1LdbYsjhcgMOACPxrXtLr+0YUuC4KyDII4ApVdI3Kob2Lpkx8vSq14rNbyjAOVPX6U7zNxxSuS0D4HbvXE31OxLU5v7d9nSJIzLvA2kKoP8AOpBqtweFti5HeRsfypxhxJ8oGT1IqUj5c4y30qXItRGDWL1vkkt42XtwOKX+1dQEiOIoflGAGGRik2kclce+KeVJA6nPtRzhyq4/+3tXkXarRRvnGVXtTZdS1eVcPfyfgMVBuw7dB25qYjKc5P45pqbHyIrBbuTJkvJm/wCBmoJLUPyzSMfc5rREEwxtgck+g4pW0y7IyEAHoTinzMlRsYn2KEvyv508WUQICpmttNGkUbpJAvYgc80sWmbnOZcD2pc7HZCaQBE7qvGV6VrOxKc1WtrIW7l0kJPTkVZbLfeIx2xVp3MmRHhx61FLIUGevrU5wGB64qJ13bgOBTjuJvQPFQVpYRnbvjH41iSC3a0EsbvDIqMsnIxjjpWt4qvUsb+GSWNniSIZc4wD6Vyl8rS6cl21u7QruKsGwMnH51ukYtqxXTUGUTmaQCUyDd85464Pp61rXs0UNtaXS3KTSW8pXyx/C2eSffiuVtNGvtRVls7a4lBXMm5cH65/lU7aT4hjnggmsCieYJGcDIY+rY71vbVHPJK56LaeJHlVUMkkRkcyLsc7iDzgj1rpbDxJeiRlZjsA+6wBI+o9a8x0yWePU57iazbdGD5Yx8xPr+FWhdTm5ZxO5zgmZSRnI9PWvRwtFTT1OPE1nTa5Ve57BaeILa4wJ08tyMZ6g/n0q7PbwXcIVlEinnJOSPx7V54bsaTodpJqoea9umJVVGGSPsfxrY0vVWW3F1aTi4tc4cd09mFKVHTVF066m7J6jdV0Z7JzPGWlt+w6lfrWLJIG4PT+92r0KG4hvYPMjKsh+8PWuR17SjYMbmAA27nleuw15tehbVHbRrX0e5xGq6cUn+1WrCGUcjBwG9jV3Q/Exk/0a4AWQcGPd1/3aXUdGS42PNLIEkHRT933rlZNIgsTuS8aYSHEMw4Kms6cmkdMoKR7DaXtrOnyyKfxxV5CjHCtmvPFiIYHJDexxWrb3F3AV2zEjsDWkMUjGVA7VUP0qTyvxrBtdamXCzIK2YNSt5uG+Q+/FdMaqkYSpuIpUj/Cq00Kk7ioyPar+Y5FyhqFlBPT/wCvVOMWZ8zRBEAxDsflA54rO1bVUSFndv3C9MH73tTdR1eCBdizCNScEg1kNaT32qH7VF5dvBhkjHR/QmsazcVobU4pvUm0y0lnn/tG8XM7/wCqQjhF9RXSWFibqQuCRH3Y9/YVHbQiVAmSBjJbH3RWtNfQ2dgv2fYwIwgJ7etZ0ad9WXUnbYzr7XNO0lTbOqpLg7UzkH6mvGvGevSrqrXu1CrqWjKDIUjqPrzXe+JbrTUiU3mLhpG+by+qVwMmi6DcwPcXl5NJvl3+SpwFJ/r7VvUVl5GEdZHKx6tc3FokYbmVQSmcY9K9P0eJItJgjXJ2L8x6fN3rzPWZLFfEiLCiwwRt8pU5P4+1emaS0b2FuLefz4iuRJXNiOVU1Y6aC98v7QeQOSKd5ZeJkznPWm5bdkHJIp0ZIJGevWvPvoddtR8NrBBHuKDp1aq4ntEkG7Zk/lUlwx8k7s4rmrkNIGSRgIycqc4IprUqKudOlzYMGVpLckdRvHFPa6sIowRNagf74zXn895YQOweeJXHXJx+dVzrGlrw1zBWip3B2T3O2bWdHZ2iCxyP6ikttf0WO5HmL5LHvgsK4Y6zpQDMs6/8BXFQ/wBv6SVCiYlicD5aapvsJuNtWeqPr+jxxlv7RB9hCf8ACsLUfFVqFzbRzyc9dpArAFqRGjYUbuck0r2knXchH1q3EhcvRmyuurcFY4leOQrlw65ya1IHzCvAVu+K4+zUzXcZbhw2CR610VlLIbieLqqnisZKxq9jTSTaxH86XfkjIHXqKhRf3mSw21JgAEg8UoszHu2BxTHIEbHvUTyEHAGakcB4Tt5PFXEmWxh/EARx3MKk7i6hmj3dTWDd3tubFo4JHMUcZaO2dsLubv8Ahiuq8QaJJrPiE20SEyDBLjnArA8U6Tp1gscIDM3lhQOhB75rshornn1JRbstw8P+OL7QtM+wiVftIj3BnQYA7DOO1dFf+P45rCe0eANc/ZlUlSFG44+bP5/nXlupNJ9vt0YcbPLCkf59Kwr+WWa9mZncYwvB4OPWteXmegRdtz1m0/s3XIpIDM8E1qI3SVZOWJ4Yn1BJroodKtJdQaO+mEEdsquXi6PjjJ7V5toFu7WUM0aN586eX8v3WORgV0WqXN3YxS6XdErcERm6Qc8hRhc+nevQo0JK1nuefUr72Wxu+I7XUEk/tGeT7bYPhYpl6IvYcdKxLDVrvS7wXFkvJPzKOQ/sw9PerPhPxFewagtgkEl5ZznZLaAbs5/iHpiuw/4V3DHezyRX8kKSfNCiLkoO+SePWu2VRU04M4403XanDQvaTqC3Nouq2iPHETtngYYKHvgela+q3Ua6RLLsVgy4wf8APWuas/Cs3hzVV1K01SS6gxsuLaUj5geC34Vq68Ps2hXPknfDgSRnrxXmVWmmexT0ascdqV3JFbKzBckg4P6VwGoXjCzgVmO4OR9PyrqfE8zfZ4pQeCgbGa4i7lR7aPJwxbIxXmrU9SWlj1RY90o461oeURtIGcVheFtVk1e1aeeExkNtAZcV0i5MrLjBArBqwkxzQlME8k1MRjGRziiFvNODwy8VdkhDbSBziqjfdEykr6mXLLPbhTE7A+hpk+uXMMS+bGshPUKeTWjJECjZAz2rFuospskHBNN1KkdieSMjgvEeolPEy3N1OwsZU+VCOEPp9a6HwK+qy6hdQzR3E0WzdHIyHCL1AqO90K01STybpTuVtySDqDiuym8QS6d4fBgty9zEEhEUaZO3PX6962ljEoWkR9XtK6Oo0eBorTzpUHmSHOD6elZeoxXG6+uhF50cS/6NGOAWrGXxHq8tjF9n06dLrPLzriq+v63PaRLbGTy7gDLlTwpNb4aPtqqjDoc2Jqexpty6nI3Vrc391MbfEl0VKru6A9z+Fef6k954e1OayMhdhxKeqtnuK9wsLuJ9BhutSRYLm5DQJcxD5tvqa8m+IujHR9TtmSWKeG4i+SWNuGAx19+a7cRSildI5cPOUpq7OW1ORSftA5mZVOK9X8JqyeHbPcu1gm4D6149q5IwnGRGoPvxWhc6BpBmbTrYXsd+ukx6gJpJkeJz9lW4dNgQFRgsAdx6D1yOCpSVWKS0O2lU5G9D3CIc89aXIUn1NZXhgg+GdI45+xQ8/wDABWm5Ct6ntXlSVnY9KLuh0qh7WTceQK50Qm6t3lY5O3Ct75rYvLkw2UzlQeAKpQfu7bnITbuGPeqgxxW55L4mULrlyiZzxwe5rIgTdJIu05CkkN2r0dPCcOp6xdaxqVxHb2Uc68buc8cYqfxJ4f0HzGh05WfUH6yqfkVCOOPzr0IVYqKVjiqU3zNnAJEv2YE4GRVCBd1wo25ww4/GtCeFlsZMBR5Lhd39/P8ATiq1sqSSF2bDjksBgA1rHZszfvNJHtMUEcHlTS2yfKoILH+dV/7csJL6QefDkqQQq9/SuUute1bTZkgkvY52eIMqvHkAHp361WPjFlnSOWztZ+xcx4x9Oa55xk9S41Eny2OytIAFhkCBd0xJB9Oa0rEIbq6LcndwKpRtI8NmUj3I+HIzjbVhCxu2ljxsZq45t3sd71imaLbNwwuAe1EkQxwT9KQptZT61Ybr0P1qYmbRRYMXCgYFSxttBTNLJjdyOfWodzb88A9OaavcHqjL8Uatfad4hYW84jDMhLdwK5XWLyTVNSeTcWZ+fYV0fjC2Gr6mr211bkKoViz46VjW+jm3V5GvbXjgDdnk966Yz0szB0le6WpzWvMYr63YnkEZrC1GOSC8lHHzsSOK9EfQrGXUFuLzVIVEYDIpi3qze/NMv9Ps725EkmqQADpstj/8VW8a0UQ6EmaHhfxXqPh/SbO0jt7e5gRBNsZPmBPPWugfRNK8RSN4kh1B7S1Yl76KTl1Y+lcokOmiFluNVkcDAUJDt6fjWvpOu6Po0d9Cq3FzBeReUyOeAfXpXp/XMOopp6nkvAYmU2mtBt34tt9JhksPDVr9lhI+e8bmWXP8q1bHxHMmgWiqZZkXKuVJ3hiScg9+tckw0bygptruR+mA3b8qs22s2ljC0VvYzbD/AH2/+tWeKxdCdO0HqdOEwNeFS817pY17xJqRZ1MrdAqSE4b8RXceF3l1j4YSRSytJdqrhyeoI5x/KvMbjUYbl8vp8n/Aq1NK8c6notrLbabaxpHIctvXOT0rhpV4KDUnqehVoSc04rQz9ZvjPZxR8HyvvZ/lXOwwtPKijbmQ/KPStW5vjdM5lsgN7ZIIwM+1Rw3T20qvBbxo6/dbuK51LlTR0Si5WZ6aGzckRAiPPAPGa0ImYuX9qpKq4huQTJHKmUarcMheMKM5xWcm7mMWmi/CqlBI3U1diZuCD+FZUW4wBc8g1YmkaO2IDYOw8+hxTTsJ3ehdmjO7BAH1NZGoDIwMcHtXncX9tTu4luZ/vtjLduanFlelcm4Y+pMlROonobww7auzqBE73SEFeT3NTXlxqlis8+nxeb5gAIJ6EVyS2E55a4iA/wBqQ4q5FZRJtLX1uB7zHP5Y6Vi3GWjRt7FrqepaAbWLToLi8u4muWG5wxxtPpiuH1mwmu7+5n82Eo7ZGX6iqMUGmIBu1G045OGJP8qSRdKA5vYmbqMJmu3D4yVBe5FI4q2AhW+NsteIEhuodNht9QgRbaAKwD4ye9cbf6PNe7FlubHy4VKxktnr/wDqroHi0xiStxxnosA/xpn2fTyc7pvb9wP8a0nmNWcbMVLK6MJc1zhdT8Jk2tzd/wBoRTSxwNtjjT7xCngD1rKmu/EN5akw+Gmimks4rJ7yG1nMjxJGsYHLFRlUAJUDPPYkV6dNBpkUDtO00Yx3QDP61c0ue1ms41tn3IgwRnkemR26VjHFyjujoqYD3faRT5e9tPvE8OCSHw9psMyMkkdpErKwwVIQZBHrWiPnbnp603cMkgHGOfapfJZU98Zx7VySd9RpWRmasN2msM4+cUyGc+QqOQSq8jHRavXtqz6fMDxhN1ZtjG3kiV9u4p8yjrxVUylocjNot/4i8T3kVm80aKPMkVTwBjrj8K6Xw38Pll1KPU/7Vmkso2wY2HzSEdVNZNnfnTvFF1dyiQxeaNuw9OBwR6V1Vh40tYWkitwSsuXVyNqxv2BHpXQpSRk4xvdFfxPYaFfax5Exgt4bWJ/PES4Z89FA9Rg/nXmWm6bDJcKA6sCSwMpxtA7e5rvdBt4J/Et9f624eO7DBZGHzRk/41A/hrT5dUubK1mmkiiIKuT1z1/GqlVSRPspOSaRz+t2QvpI9RF7EEHyMueY8dsd6wNTbT5ZENqAGTapZeN59a7LWPCcIhYQyEs3JJPP41zQ0UrKYiN0gIwQOMZp0qqsRVhJP4TvY98lpp8IJGQo6ZJ4zWuFI7D5WPSobVEAslLHeuAAO/FTM6pK+T1c4HrXNUd27nStIpGgFB+YjPFSNJhQOwqlb6ppUsDiXUIYpVO3YxOSfSpCS7jaeMVGyM+a7JJsMM9jVISlZlG3J461bVHO/P3QOKg+8oBGcdc07XZSRzEulxG6nZrmzTc5JDScj68VG9lZJgNqNgoz0zmprmIfaJuv3zxVJ4cSsAO2aSkjqs7aE62+kpjOq2n0WHOf1oLaSow2pgj/AGLX/wCyrJXfIrEyOAD2FN2M/CGQ/jirVmTZrqbAuNFXn7bdMP8AZtP/ALKni70QE/vtSfjGVhA/rWA91BZoRcTqGz93qaoz+JrSNSEiZ8dzxVqLbukZykkrNnXfa9BC/NHqre5YAVA91o5H7vT75h7z9f0rjW8WNkbLZSPdqavizLfPagj2f/61aeyl2MnWp9Wda9xYE5XSpvxuf/sage4tCMDTY/8Agc2f6ViR+JLGT5ZBJGT+VXoJIJk3QyxSAnoDzUSjJbo1hOEtEyczRE/LZWwHu2aaJNxwlta/XGaUBNwDRhSfUUW8YBk5wB6Cpv3NbaaHZaddyRW8UBBa3VvxB/wrpY3ziQupyegrjItSeJUChMn5TwcZ9OmcV0FpciJVRwitj5eK2nY8OjN3NlJwG2cDJqS5/wBQ6E8FTz+FU8LLtZeS3IPtVDU9SzJ9jtgZX2nLqeAP8aysdvMkzkZUELSRM21snAHJ/GpRCPKhwilcc4XpU1jEySjaqhySGdh8x59aoajrUOnuYVDSuScInHT1rC3M9DsjKyuyw0KLk5UEfxYwKoy6tZQMVLb3H/PIYFUYNYuGMU86wokkmzy5R8oFO1i7jh1RYV+zGGQYPkdu/wCFawpq+pM6q6DbTxWl3I0UFmRtBzubrViz8Trcwyu1nLGsZwxXn+dV9M0E3Mj3yFIbJQd87ngegH1qLw9bDV9Lu5Em2rBKQyN/Fn7v4cGt50odEZQry6s6HT9S0/Ujm2ukZj/yzfgitVIcEjH1B6fhXAasNPt9Nkitti3UR++h5XNR6V421GzVYJx9ohHQvyy++e9ZSw11dGixKTszudStZS0VwqNKkRy0Y7jafm56kdh70aMr/azcGN4ojEECtgGQgn5iPbpz2q5DdJe2rSorKhGVJ7jtTocQWatJ8soXgVyKDUrHbLGr2PIktrX8r39N+v8AwLaPnRxHe+Rkc49KvW8Md7GfIniUgZ2EfMRXNy3ymMCSQB2XC8Hj8qgji1WXYLXeXmO15I1OMD3rsp0eZHkVKvKbuqTvHpr/AC4ZiEBHcVTggKOMFMFQVccVBL9rOlJaXCsXSQZkHXrV2C+C2yQXNoG2fdkA5PPP6VMocjsbU58yOO1LwhrF5qtxcpJGI5GyAZMdqkj8BaxAof7RbqG67pM11b3VtHhvsBZy33e2KJNUj/i0qIovuc/QU3NbD5OpmSeFr6e3jgguYlww3lXxVr+wNRtxHEJ7VQOjNJyfrxVgapaqZCumtnI8sMAAB3yR1p9xrNkXWWPSzkjlCoIb6HqKm0XuUrlI6BqLyFWurAY5+8c/yrPv/Dd2yEtf2yjIyOtaB8RNHmWfSLZE6AFjn+VFx4i0/wAhUudOCSSEYVVDBh6VShFbClOTFsdSsoo5IJ7O6lmUhUmiACr+tWsqsbuyhQSdoPXNdJpmjRXNjJM3lxo0WY4l6qetcldu4vrdpc+Wj9Pxoqw1TMKcm7nTaX4UgutLe4kt4g+wugK/MTWdGDHgEkEcEe9b0XipLRUkyDFkIAPSse/1CKS+uXhjA/iA7dKqootKzIpys3cZkByD3qqzhZMo3U0i3XmQxOYGZmz905AP1qnLeo05itsNIu0uCOmTWOqNVNN6DbqJDeS5AzkmqN1CqXELKowyHP4VoSpJLcTtGjMV9BmuQ8eXNzaWunvBM8W/ep28HtUUoc07HVKpaFypc6zplkjYka5mDH932Brnb7xHfXmUVhFD/dXrTbTQb7VHb7OhbB+ZieK1v+EDu1QD7VCH6kE816EY04bnFOpUl8Jy5dpOSSSf7xqcWYBRyg2kZPNWdU0G70zLXEY8vs4Oc0xE/cgOWYMucDoK3Tja6OdqV7SKsgh3fKi9atPbRpKCdnzJuBA4FVUtRI6qnGT1NbkFq0cLJw2EOMU3Inlt0OWbq2eeetSQv5eWV2Vx0YHkVEchmHuaCPlGa0sieZo2bPxHdwYScidP9vrXQ6Xrdndo7NtgVexPWuGxjA65qQKMdKxnQjI2p4icT1O9vTb2EcduDGwGSx++G9TVzTNRt5Vja4lcfLkgjlT6fjWBdXRMnkSyA44SXH3h3B9RSGZLaZFaRWi43bSOvasfZ3PNhOSZ1c/idGjktrb5JWYJGrHBVe5Namk2UMVmXAPI3O7HluOMVxWmPbrci7uIkuJCxIDSLkkdOM121reTTWchvIvs+U3IjFQF9AKxnGyPRw6cpKTM23A+2Iccb/z5rkNWgZfE11+7foSMKa6y2O67iycZbOaxdR1W9hv5whjyJCASmTiueloz1KqTSKEG42wim0zzduSodT1qG7t5HsZT/YRSQrgNCDmrn9v6sCoE8WfdB/hUo8T65CAUmUgHkeWM/wAq6EzFxRS02x1B/Cc1tNFdEEFxGY2HPYVe0TRptO8MH/Q7kTXPzyfIc/TFWP8AhMvEIwFmAXHHyCqlx478QZVVvNpzyNoq1K5hKlY44aRqsd87tplzNDvyyGMgv+NdMuiwXVo7W1ncWLhQI4JYySW9yacPG2unO+fzVJ+7jbn8qfaa7rutzzeRKFYHB8xvkXHXk1srvRGFRKOrNLQ5dQGjrHeo6lAUCsuOB0P0qez1ES2xNwNuyTy2kc8Y9cdaxbp75LCWV7mSZJMhlhkLFsdMDsKzbG+nn895iAXTDMR931G31zR7FPVmDrvY9G0Ke2/tIx4Em8FU3rw3uPwr0XTNtuqBCNg6ADAz7ivnq31+4065USBw0TB4WcYOD/D+teo6N8QdJFoBOJRMo+YLGzDPXqBjihR5S4z5kdP4iSP+z5EjiRSzZyoGevNcnKu2NAATzW7qd/FqMMf2Ulk2by+Mbs9qppCPJLEcKM1xV5XlodlG6RRKhfmwxyOecYrFfXbBZ/KnMid/lHzEeozW1dQXkthNdiNhaxoWJXqSO1eaO08N1/aLo7MrFYlkUMqjvmlToqWrLlXtJI7meWG1g82W4CF+UWIhiF9T61ycusTxXrS285nHIYgAf98jpTIbLUL2c31ouWncCGNuMe/sPUCsuOGWDXp7bUE8ny5MsB0Ue2K3jSirmdecnJcp3umrbTWEdy8E9zPLkFHJYgj26Vk3wli1NJXYuEYBQFxj2Nd7pGoWUemRpZz2ijy8qzKcsf6Vy+oRyajcxhoEWYN92F8hvf61DSvoLnl1OntNXlMCTwQHy2BLAKehrNuopJ0MnAJfJ4rPew8VWVu3lmRLFWAdFA3BatWxnaYqzu8C/MeOVHTmpqKTaJhOyZlWmvajaa5PYDSBc2oADMAcDPfJqeXUoxuCwu6yOFT+FkJ4J9xVHWtVv7S4ea1lie2D7JATtxjkc/SsWLXLnUZZQIIlmjjaQSSEgIOeR2NdEaEbHJKszWSd4riSzaRgFbKlWKxkdTkDvVn7ZCUSVIWK9C4HTHrXOX11brbWl9HdwRTuxjuTuZwMj7208fkKm0++1C5gjGm3UDwpGdyygLvOTj86uVC5MKridUs8hEpMvlsi/OASPp0rkviJkaXphPHzvj9K14571dQe0lsg11Iqr5CuDkf3twOD+Jqz9h07XtPiS/VJHRmADswweMgEdf5Vz+zVOdzuhVdSHKcz4Y1LTLOzkhnuCJZG6BiK1JmtDMHju8xnk/vKvjwdoA62UJyOf3kh/rT18J6EoAFpHj08yT/GqkoyNYKUTnPEV3p8mhzxtKGYY8v5s81zdoypaosigttr0o+FPD5+9YRMF6AvJU0eiaLCBjT4TjjGXq4SjCNiJwlOVzyp7YKNykDnPWrcMkcUZH2n+AnJ9fSvS/snh6KVEexhV27/ADGnzaZobjd9hiGcjAjJqueNiXTkzwdmG5ssOSe9G4EfeFezPoWh5/484v8Av0f8KhbRNGxxaRg/9cv/AK1auvFEfVpNnkSbe7DNSAgDr+Vepto+mAHFtH/36H+FRGw06FSfJj/79L/hUPEIpYV9zmJ7onG7aWHr2+lQSI8KmcDcrDHqP/109rZkSPzyyNJzEgGcfWr91MttbpbWrKJRxJI65/75HTNdFkkeKtHoYQmw+4xfOcD723GPeuhsRPc+W5MhHmBf9YzD8ycVhDTmuLhyZWKgZb5cFq7fwlaSJo8kMce52kzhj0X1/lXNWemh6eDbUrvY07eTZexr331yPim4Kavc2+942J3KV711fkyQXq+Z8hzlSOQawtb0G41TXpg8UyKEDI6KSGbFctFe/wC8elVkvZ3iY+lC51DzI1APkRiSRm6kZxVrxFa3Wl6dBeW1yrRTDGG+8D/hT9D0TVbCW+aWzuMuEH+rPOG/wrU8U6ZqOqaLZRWum3DSJIQVEZ4711KMfa+Rzc0vZX6mHEL2+tbb7HL50mP3ijtVa7sruCTNxA8UQHLYySfajTNB8U6bdebBpd8jZ5xE2K2NWtPEkyReZYXjHb837k9fyrKStLQ0pvmjeRgpFInlMpJ3kgA9fxHap45v7MkigkbMf8cWDgn3xzUf9naxa7m/s+5DHq7xthRUNx5d1cOsYYzKoAww5NdFM4cS+hswl7acxqGNpL8pYcFPTpzj61nvpWrT6vNJY2k07R4L+UMjBORntSRSX39ntbTps3knngvz198e1dHozXVjbSvbzFY5kG8u+35h0AqpT5WYRptsbLpY1C+jgjhM19dKFbCOQpXqR2yMY4r1PQvCw0TS4IIlctGNzKYgd7Hucj3ri/Dt3dieOf7P80O4Fi3Uk5OK6wa/dN8zRAe/mH/GsJVkddOg7GodFkghUKGk3MXKlSNue3FPbTbhonVYnB6dKyW12fPEeT/10/8Ar0067c/e8nj/AK6//XrFuDd7G6hJKxfutHv5dKay2zAbt3ycdOa4LXPCXiS/v3t7WzkgtNnMmzO49664a/dnpEcf9df/AK9OOs3EnZ1P/XX/AOvVKcUJ0mclYfDfxNHbiJdSkhji5UMnzfnipv8AhWWpR2s0l3NLdXUzBhIByD6GupXV5f4vMP8A21py6vJj7ko/7aUOUepTTasZVt4Yvog4WwmTnpt61r6L4XuW1HzpbdoEQ7gWHOacurS4ACyfjL/9ennWJccIx/7a/wD16mPs07kuDasdVdWLTo8YnYGQYDba89vNF18XM0SwsYskM0a43jrWqddlA/1DfXzKrXniNltZN9tKylSMLNzW0qkHYy9jJJnk3iK2vEkmikhmVFbG1eQP8aoNZXhVIfLkeR0x5K9fx/DtXb6fam9gczmQxMW+UyDI5z161akhs9Mhe7trZ3eNe0gZj2odZLRELDt7nmM+kzvcNGI5GmHzeWVwVH0rYs4pLazaeO1MMEkZSeJ/lO4fxhj2+laWmXCP4hS6nWYs+dmGBPPUGtjxPcwHw9cQzJJtcfKMr8v6U/avYfsFytnOW8YhvIJYb9oowAZJSSd4/uqT/SuptljQW4hUeWqtt2ngdPWuGsBaTadNZ3EkiXUT7odnIRe+PWum0mfdbQHzN8fzbCRgkcVniIu1ysHJJ2ZatZL6VpB9vaIBuBsB/pVjbeg/8hZv+/Q/wqCB8yP0AzU7NwK5HJ7HqKOl0L/pv/QVP/fof4VXvLjUbaNWXU2ck4IEQ6flVgtmq9wcgCkpNhyoeJGMluXYudpO7jriqUM93M8q/bJY0DdgOKmzmWD6GoLT7sn/AF0NVdjshzifd/yEZf8Avn/61QOtwT/x/SH8MVZfIbJ6VC5+YYoUg5SB4pghY3UhxzVe2lYwSF2Zs9M1blbEUn0rPh5tvwFaLUl6GdLOJZt5Xb61BHErOWbOOgwcZ/E1AkodjIv5GrShpSgwM9QccCvUZ8rC9y1FHJNIsNnGjSnou/JP1rooWjstPhtt3lyrJukbkkD047VhrdjT1WeJgbllxtzwF/vfXp+dW9IM8ETXN1C80bnb1+Un61nKyR2U5OTsdDPexymCJHWVUPVRg/rXM6vrN9YzSEXcsXJGF7Vdglie63iMxDdkjO79axtVeJr5mlIUFvl3nr+NckU3M9ByUYWQ228R65Md0V/dlOpJT/61OHjPXYSY11O4SYDO11A4/KpraOCdGIvwCq8RxsMIfWsPU3WMNG1ys8gX/WD69K2SV7E875bm6vxB8TKin+0nx7AUtv448S36EjU2yDjBWsRNLf7HHJGNxYZIqhGLqzlOAwjU5I9KppWFzu+p1UniLX7hpLW5u8KwIO5eCKyY4Z3lKhNjbCy7Op9zUMWtl2eORNxc8Z6/hVwIokyDJ5uwozdNoohdGdVKb90n0x3TbLL87wqQnmcqcnkV3GnxxXumhhGoX+OLHQj0ritJDz6X5ccimHzDkfebr3rufCpjtjPJINyNhUNZVXdmtKFldovKmxAiiJQe2cYzTorQGbHlxSBOvzdf1q1NdWoXKoD82DV6Fo9nyxgLjP1rmaR0rRGcmnJIWYxwqAem4/40p0qPOdkZ9tx/xqaG0ikidznLNwBUyafER/EP+BU4xJbM2TTlt1MnkIyZ5+Y5/nT/AOziMEWIORn75/xqxdadCYZCckY7mktNMilthIzMGPGNxocXcpNWIfsGP+XD/wAfNSDTkyc2GPo5/wAalGlRs2GJA/3qd/ZkAIwxH/AqdmK67kJsI0AP2Lg8f6w0NpcCjJgGSM8OTThZQK7hmds8DmnnS4lTALnj1osF0VZtPhVCxt2wB2Y1i3WnzQW0k5dwrAlCrdPY10Eulo8ZBZwpqnLpkMNtt3O0Z6qx70luJvQyNIkZRHaNbnzX+dG/vVdv7e4Fudtuy4bDAdabq9jbRi0njVkkVlXg9RWs1pZjAyegOC1PlT1GnoczLp5tLwNBZNE7x/PIT90DnI965vWG+0MEjVtiD5WY5ya7HVoYALsAszqoI+bsa5K4+SFpNu5VX5Vpp+8hNe67HMxh1vGkR9s4GYwp6n0ruLbVYLo2d1c2728mw7Y8YR24ziuPlieKOIxqilmLF15J/GtXSGmRfKmlXy+GQSNn8q6Zu8dTgUWp3Rv28nmXDOVAYjJUdAatO2AKo2R/eMQOGwfpVx2z2rz5LU9mGyHq2TUE3DCpARxUUh5569MCpSLYin97B9DUFoTsk/3zUuQssHPY1Fa8q5HTeea0toSiV+etV3PzgVO/BqueZRUpFMZMcRSfSs+EkWx9MCr1xjY49qox82p+grWJnI5yEb2KqOWrSVI1t0mjmhDKSrRlvmb61nQK7s83IAYkbev4Us1tKY45AAyOckjt9fevWm4o+bpppXsa4a0EXmCSIHoI1OcZ6ZNb1qmknTNwvbVpo/mZChHJ98/0rlY7WKPc7XCKfTbWjo9lNeyuY5kCAHO8YzXPKSOmMb7Fi3EbXirMuI2P3geM07UdOvZzKtm8EijlNx6GpreEW4WMdN/asDUmZb2XEjr8xxg1zqV5WR3xpcsbyNr+ztTiSIQ6XBO5T94yvgbqqX2g+IL+AQxaRHCucko2SayIHnHzLfTAj/aq3Dd3yE+XqN0D7NWi0dxNJqyOj0rRNdt9MWC50qUvH0YCs2TwxrE5uZbjTrhD0VAn3veoodX1YDjVrgY9Wp/9u60smx9RkMeeGJ61KbuVZNamIfCuq21zGTYXZjU7mKx81ovo17HaSA21xukGQWXDCrcviW7Sbyn1QmX2FV38Vaoj7ReH61s02ZKMI3DRILmBPJkheP8A6ZyDDfWvQtEimeygYKGjyUPua4mC5nubeK/mkZiQQWrqdHnlW2XyySmQ+c1zT1eptC6jZmzd4tXQPAOX2Cr8TpGhVzg+lZBZ5bmIyDJMmefrTNQ1qDT72WKe1kfJ+UqPasnEov2upBAyLCXw56VaGqoBzA4/4BXPp4j0yOMKUmjyf+eef607/hJ9N3YMp/EU0DNa61NGhYJFJkjsMUljqipCEeOQY9qyJvEekyqFaVcfSkGtaMAMSEDH97FP3gtE6M6zAP8AllIfwoOtwHA8px+Fc8Nb0bjNzgn/AG//AK1SLrGkEKBfEfjTXM9wtE021CN3JwQB69amfUbbapBIOO9Ys2qafJEdl+CQeCTU4vbFwAb5CcetJphZGj/aVoRgyD86q3uoWjRhY5NxJqJbqyPS8HHHAqK5Nu6rsuAf+Aj/ABpMSIbqRHv42nJ2rgIvvirsfkTbyS2V6/hWNeR4v7adZCdvylc/0q//AGjFJb3RIXIIGPbpTtoUtTO1Nom87ymY4i+b364rmb2ZjaYRd3y43joPrXR3iI1pdzR5wFAAFcxcRvN5cYBIdwG+lOO5M9imsV2ro8nls/AQJ0ArVNo9xLbyFCVUMzHoAeMf1rLime4vAUOzaSqr6rW7C3KcYwhGKc5WHTpqUSzZbixz6c+xq4RmqVmcl6tp3rme9zrS0FZc4xVeXhl6nr0+lWs9qq3P3k+p/lQhsgzcmSDa8fCnZn9c0lgCsUmTlt5z6U//AJbwH/ZNMtCSHP8AtGtFqiNieQ1XJxJU0g5q9oOjnWdRMTHEEa75jnGR6UQjzaIJy5dTGn5iY+1Uov8Aj2b6Cu5vPCtu9tMlv5izYOxi2R7VxCKVilUjGAFwfXnNaODiZ8yZhpOtvqKhiFAU7FHQfjU8bqS2E8slNzKTwD6j61QslWXVI1lA2OCCx5rTWzi2fZo5ST5hDEc4A64rvqp30R4dJ8sLXM9287aw8xkzhpD0z6AetdNoujW9vEbi5QlmXMe5sfpUMdzBBbBYV8q1U8FxwW6bj7064t7943aKUhgvzXJAUL7fjUuPMrDdTkd1qX1ibzFwVPz8kHpXD+I966rICWA3VtJdlkMk9yMRkGVYs4Yjp+Ndf/wrrTfFNtFfWWrOXlUMwCZWM+hPrWUKapyOqOIdWFjx8uw+8zfnVqwllBJVsnpg+lepL8Dbkysh1qMBcZITnms7xT4Ntfh9e6XCsF3r0+pCRViify2BTbwoCsSTv/Sum6a2M9V1M7QbC3utOMs0ayM0pQFn2gcDn9aqeILaO1vreCBQoIOSGyM10XhDXdIl1218LX3hK4sXldiz3F22+P5C3KGMHnA7jrW/4m8GaPr9rJPpUhs7q3jJAZv3bD69c8elYP3XqbR5mrRPHbxPJkYOVaRhzg5Iql8zACJnPHzbu1dYng7W4YfOXTXkLHIYMpyPXrVSTw7rNvI7Pp07ZOTgDj9a1VRWsZ+xknc29C3DwzGrc5znNdTokBFlIIF37EB2E81zVgkttpKQzRNG65yrdRXTeHnkMUnknDMgGa427yZ3OPuIvQTNNPGSgjK/M2D0AFRaisM+Z5HJxz160t6Cm2IN87naxAwazbgvJqS2kY3YwoH4YrCdOTd4saaQsSCWPchA+tQqkjDeTH9DU9zaTWs/kzL8yrn5Txisy5lG4eXv46/NxVJCZM+RzsQ8dBUUgRIzLKsSADqTWffaktnAMjezcA571yt9qLPne5ZyeFzkCto0nIylVSOylvbRkEytAUUdM801bm2YK2IuR0GK4H7ZICW2oSRgcUfa2wqmJOB1AxW31dmXt+x6EYLeRQxgB7nCikFjbGQN5OUJ5+WuY0zVjDGTnMR4ZepFdLb3pMY2MpjPAYVhODibxkpE32S2Vflh6ng4pHtIQVDLge1PS4kWHG7geop8UwchQRx61ncuwabFbjxDZ4ywAbg9+DWwIFIuJBtxn7pPvVDT4guv2si7WADE/ka0JI7a4lkbYy4J3elU9hxGRqWsJQCAN2PY8ViOAiNgj5QeScVtXLxJpMixqRHHgAnvzXNXMX2qyCMNzdsGoW4NFewQFppiBub7vtWjER5uDwVQ5qCCH7PapGQAyrg0+AhrmRjnlKUtWbQVkW7RgGbBq5G2c1W060uLx3jtYjIQMtj+H6094prSR4512MDjB71Lg9y4yTfKtyyT0Peq103zJ7k/ypxSXoIyT2x3qOeC5Vo2e3kUc9V9vSkosufu6SGA5mh/3TUdnkK4H9405ciaMEEEKcgjpUVq2FY9QWPNVsZ3RcI3MFXliPlHqfSvRNG08aLoOxj/AKRN80hHYntXmyzyRSiRDtdSGHGcEdK05PGOptFiRo3CchiMZ+tbUJKO5lX97Y7PzActxkdPeuA8UWYtNSmmQDyp0DDHTPeuo167fSNC0q/iQtLdKXdX6A1x+pa2+q6d5ckCr5eGVl9e9dFWUWjGndHKSxxRat9kiG2NRlnPVvpWokkNsFcxuzyghQDgAdzWVeET6otzEV3HllNagAvr5ShDbAFjHYetdVaSR5NKnzdSBbiEWcNuxWXJZot3Td7+1Ykt/dSErJcyAKchAeD/APWrodU0238uK2iTy7oktG3b6Vy08cgmaKVCmDgr3zWUZKWpU6Li9CZdQkjaZljRRKACCOFA7/WvZ/hxrkWleFILaREQySM7HHJ9P6V5NomhPrmp2lnHKY4Z3MRuCmVTAyT07Yr07xP4Nk8OaTZ3Gm3kl7bQLslb+LPrVaXEk4q6PRP+EjgUCSVUGBliO9eefFTWLTUhYxRXcMM11YXcNtNI4RVcvbsQWPC7kV0ycD5ueKx7TVXlUoWONmPesbUNIg8Q28SXDzg25fyxGwGS2M5yD/dFZOradjvp4Zzo8/UwfD9vcf8ACZaHZNqUVxNDbOgMTq6wcSsIw6khuucgkDdjtXfXVrc6ddGK4nbYw3B0BZD/ALJ9KueAPhxoNm6+IZ7m+WSEskMMzIFYlSpyNuTw3GCORXet4ds70sLK85GcxuvU98jpRUjzaozpVOTRnkdrdGZPkuriPOcfKQMfhTnvsMyR6jJxjgg5NamuX+nWkU0cKLM8bbCqMVK4/wBngflWXZ6ddapGXjUwoBlDMuNx9K5Z3idtOUWyu0jTZaaSR8/df1q1banNpVs7qoVhwec89qzEumgujbTkM+7bx9win3Fz5TmaZEVchHj25x6GiMW9TWrUgo2Rvw6gl4Ypi/70sNynrnFYt9debqjRxs2S21ipxwevNZ9rera30kt15wlcbY5NvygduKsT6hAtytwwEsY2htoAOe5xWrXY89Tu9S/dTTWpNqZOEGArNkhcZBzXD23hVp/AtzrvlXnmxyF1YJ+58lWRDk4+8Wk456I3Hp0tzcedKxyCJTlT32+hrkY77V4poSunHbBZPZCIwvt8tw4YkZ65kZs+vNXh3uLEK1hqXrz20EDkgIgC/gKriJnQuSOuDk81tT6dF/YtpdxKIpljVXH8WQMHIrCIOW9uTxn9e1b07MxqJom+ysWUBSc9MDrSSw+Uqjfk9x6Vt2VrI8HmRSfvlwPLzwg9c1DeiNIVH2Y+cyne7d6fNrYnldrmKjtG4IPfBHrW5aatHZp5M4PHOBWPGAbhVK5APSmTZ85sjABwKUoqRcZtHaW3iLTOFaVhnrkVqJew3EQaIgxnowHJrzQ4x0rtdKbGm249q56tJJXRvSqtuzOg0yXGtwDPY8fhW7x5jDHGTn3rmNKlDa7CD1wf5V0wG58++Kwa0OhPUqXwzptyqjjI+X0rCjbLKVXAXity+ONOvT6EVz1tIMjDAZIxx1qUir6k8zZLHHrVW5uDa2dxOqjcluzAHuQCR+HFSTMrOygjJ7ZxxVyDRlvPD2tapPnyrbT5xCp/icxtz+FFGk5Tsy69XkhdGfD4w8X6BoryR6Voy25iiuJCkgeVUkCmN2RZSygh15IH3gO9dnd2a3kh3N++65PavN9Z1rQ5tAuVgazku7jTLC2V4BcrOHiSEOsm7ERQeWw+XqQh9TXoIvnmkK20aSMn3w+dpb1yOtd1SShG1jgoxlKTnfYrWerJpUjTIpudQjkCeXtzsB/iXsT0rpNWGoCYvKjok8CsbpsFnOBkHsMf0rj4tS/0q7g1FIrSaV2SKaBSuRnG7HT2yOavRXZgD6ZPPc3FpCyh/MmyVwOowc4J5rFuKhqh1Kk5z3NTUfsiwW9x8s2PLjLYwMnHzN/nrXO64unpNK0d8RJuAMSj5j7AGnz6lcWs3/EveNoV+cGcblY9hj246+lYV7cWmqa5HqERV7lhuuWx/H04FZLa7RdLmlO1yeOKCTcovZUccnepHFI1mQAyX25euCp5/CnSXLrJyA+ez1NZaW+rGRbK7CXC/N5UnAP0NSpJnfUouEbnTeKI9TfwzpAuNQhlicfOojAK+nIrjJY/JgkAKsu0V0PiPz4tGsLQWZinQHMnm7lPrxmuXlW9WNt4G3HTirla5zxvY5u4dldtvycgAj1rttLs0tNLtkI+YDe57kn3rnfEOkyaN4kOnSr8glBUn+JT0IrqmZIlIyTH6d62xDk9EcdCMY6sra7cWqacRdZDs2Yih+YH1+lYUM0V1brcXLRtOnyqh4LD1NSarf28obzovMlxtRSCNvvWIZSAm45A68VpCnaJhOveWh7V4e8VaLLo1nBE1lBcQNiSPYAW465rpLNUuLa4ub27gNjOjKMSDjtjFfN65eYhDtb+HtkVv6KuryWrQ2VtcXZ80N5ce5gPUn9aOVrYuFZS0aNO7hl0rVpIoxvtnJMcmeCM02IzravOu7yw2DtwcZ/WtnT/AAh4q1CERzaUY7bcxXzZQpwe3J9aLn4d+LIYiIbW1YdgsoyPfk9axqUpy1R6mCxdGmnGp20dlJfc+66/8Ouz0O6TUNJ01FvLZYUgKNDIQJBJkjPX8vbFXNYvLrQPD19dvN5QnXaFX5nye4I715ZP4W8ZWa7/AOyWYL3Vsn9Ke2sahDEttq5urNlGVEoyoPY8jmtouSjZnDWjSnVlKlom3ZdkZ5ia7vElMwmVOko4Y/UVqao2oy2Nus6yxZGNwJVSKjt1W2abUWhW4djtiCA7MdmOO9Qajrl5dWrNcushHyjIxt9gBXO48z1LUuWOxmS8s2GwABs9q6fwisM+rO1/D5kix+Zbo/IlOQOfzrjnv0lugtwuwIuF2jFImqzJeSS2lybaYLtB64X2rR0nytIw9snLU9furOHULV4ZLeAQksWcKP3Z+v1ryCd44r2Uqoa3gkKtKCMsM1Hf6rqmPs63kxi2AMVP3s9TT9OaFrcQiIFgS0jPnGMccetRSoumveYqlVSfu6GzNFCTttGE6MoLEkDYD0/WtDw3Bp3mzNqETNKcBFZs1iafBd3PnNBDcGPZh2CYVfQ9KmlltInEcIMRyNxBJIOOtRNyvyxPTo4WhWw/taktVfqtLLRW3fNsrfjrbe8V6FaW1kbyDahcYUZ53Dn+tebzvE8gLPtLcMqDg+5rt72+OrQJbTTgrAcowOCfrXJ6lpkEcTzQyANEQJIz3z6Hoa2w6airnk1JRc3YdDfNZxNFbHKscsduakmvInRpb8Z8sELGDgnPQ/SqNreGH5LMNuIyQ2CPzpt1qMdzIWa3VmHAz/d9K3cdQctCrbj/AEgFmC5Gc5zmmSsXkJPPvSs6m4EixLGOyA8CphbyztiOIs+M/KOPzpgVciuw0xwLGAe1cmsDOSAVyO2e/pXTwpdW2mpIIGcIPmC9RUVFdF0tGbOlFW8RQYHQH+VdXGR5q47sQTXC+H7+J9VSdyQqggnHtx9a6+3uFcgq4I8zGO//ANauVqx1xdx16hOl3ZJwS2SKz/CK2/8Ab1n9qj3xIWbaozn0q3qE5ewvig5VSBz7Vj+F5DJr1rGJTGC2WZeTtHWlFO422ex3/hjQ9Wt2SfTJUZRuMka7SCenSmy+FNMbSv7J23K2ZiZJQVOWDDDcj2qpFeWkvlr9u1KQyS5PyEDA/CqOsapIJ7a3tdXvbaG8ldJrhxxGAvCjjqxPBB4x3rZy5FexNKh9Yqez5++/krv8EZF38Mvh9plv512kqqxwu95QB+RpJdd0nTLwpZ2SukeDvhLNu9SRTb+61C3vW05dTGq2kFv5uJwGIJPKljyT3+n0rz3zGkvGuraQW0ZbaUyTt9RWam6jNq1F4f3U000n6p7Gp4h1CC9m8tx++nkD20cfLRk/3vT8K1IGTfufZLcxj9+yYHyqvI9zkVy6b4rxZba0aW6wVikwdsYP8TGtqG01HS2ae+tYbeLyipuTIGyTzuAB5yefxpuKe5xOyZT8QXC3Whw39rEkTmbOyN8/Lj+LB4NZWlBW8yYAAdyB3pNS1NmUWmxPs+d2VXBc+vHaiCQJAFUBc+nGaVRWhZHXhLc1yxJIWY5OfetfwpIzas8v8CJx9a5tpGZWA65wK6rw5Ebe3eQsvHLcdaw5bHXVqcysaXiyfdDaFHwPm7VynnvLHKztu2jjitnV5vP0WxlJzl5B/KsKMfu5x2xWktjniegePfD/APbWl22rW4/0m1I3ccslcPd6rJGjxzxDk4YKMGvVdP1C2u45oJ2OyQFHDcAe4rza9ms0llsI7UM5kKb36H3ru9pHl0OOthakJb6HOzzWt3dosSmNCNxLnnI7VnXMgMkiBVUA8Fec1t3mlaRpF4JNSvluI24Mdkc7Pr1rN1S0sIJVNjeCeAgyLj7yAnhT+dO7OB09dGZ2Qqn5sqfvHuK9K+D8c1trF5eec8Vuse0oekhPvXB6R/ZDwTC/Em5DmPH8Vdbp3imN7TagECp0jAwOKiU2lob06ab1Z7f/AGzCWIDLleOTzVSXxJbxSbVwT9a8pXxOuc+epJGcA9KpXOtGV9ySgfjUe1la5v7OKketHxVHFzv6nseKxvEmr2Gq2D288EchK7g20FlPqPWvOlv5XVWjfzFHXbzUY1YRxkynlwV29zmlzyY+RJ3Rel8Q3V9pa6darmIAZCxj8OQOtZMtuGtxC2d6nczj19DU0UMlshjLMrBQVCds+tTXF5PDEIBEisxGSRyxrK7UjqVONSHNJnNXCSu8ypHnzOAGGCKu+HtOsp5idSYKCPLVgeuP/wBVQ6gtzYv+8LCVsjcR1H90Ut9HHbLbCGUbTEHcZ5DY5/rXWk3E8mWk9EVdTgS11T7PaTbw7YBP8IqGJ30+6nMuWkI2jIra8FaLB4g1ppLwObaD94x3YDHPC59e9dz41t/7R0uXT0sEeeBBJDNGAH46q3vjNYSrKLUWbrDymuY8/wBL8RX2nWckNmfMeZvn39CB0HtRAI9Q1AQu4t5m+Zm/2qWx8L6zqMMflWkkUR7y8V0MHgxraLfc3cAcfx46frVysldF0qFSUlzLQyJLeC0jk85UnYcRKM5z65H8qZf3mhXtla26BlugcGUKefVWHers2nWm8xLdyz5OCY1wAfrTH0uxuHSF7BU3HbkNl/rmsVVS3OyeCeskjmpYJpspbLGqg4CrwTVBrC5XBaGQq38QU4rs5fCSWvi3TrKK7ZrW6fK7uGwuMr+tekTxQWe2NbaGOI8AEdfwreNXQ4XRd3c8Gh0+WRyIUMzj+AckVNZ3b28fkzwGS3Vt+RkFT65r17UvDdu0Zu7WJrRyMPtX7w9RXLeItPUaFLFaJHGIxv6fMy0nU1sNUrK5jxaxpkEEph04xyyJ88uNx59O1Nhk0d7GUTXF0ZJeFZThQff8K5mKaWMhVBIKjqOlW1gLIiEnyg276E07AnY6eDXLJdPhtI9PM04YeVKg2kAHnPrW1ZRT+YAkcaeYc7mfofeuX0j5r5wyrG0SgIQM5rr4bS8uEzyQR3Xg8VjNXOinFs6Oz8N2X9nk6nfxSo5yxjcAfTNWdMi0Tzp4vD8NrFJaYL3M7ZAB6gHNcjqNjPI8aCIwQbNrbCSAfU0f2hHp+mx6ZBpoliVSs06tgyMelTdpG6oTbujrJdVvYJYFj17T2O0sMKKoz6pf32nxwXA06+haQ/IRznpkHOQeeoriH1CNFSR9NSPyjgg5JIrLbxFYiUxyWMka79ymNiuKnlcynN0nzW1R3t2i2lvcbdA2GNSUktpDIF/3jkn8682R18wO0h824clU/hro7PXhNNNHotvfXVzMmzBb92hPrxV/RvAN/DbtFqF1FDFdv+8Ea5aLr0PatYQ5UcWJnKvJylq31uYD3c/lSRwvN5nAbavCgds1GLi6lUPLIWm8oqA7ZVx1yB2wK9PttC0XSLONJpTJtHHnSDDfpXP6zBp89hJ/YNjCFUF3k3ZZSeCB7c1qrGEotRuecQN9ovF858ZO0e3v9K1riKSAOpKvtxyD1X1Faek+EI/sbzagHjBO7zo5BhV9xirE3hnTmaAW+vrIrnaxdMbV69c0qsTbDzcUc/ZKZpsgHbH0PrXSrMbPR5GJwXO0US6Ra6fHtN5AY/VG5NZ89xJqV1BbW4Dsp2RKTgMe1czTbsdXP1ZcnBPhTTc9d8n9KzYzhJ/wrrL/AMKavD4as4DbxySwM8sm1+gIH+FctGoaCf8A2Rhj6UTi0ghJNnY6XpXiEEJLpd4hTjcYjzVPx1pqW+nrqF1HJZXoICl12iU+le+fa0PU/n3rzL40XtodBs7ae2+0StIXiIOAv+c10qmoqxjWx05ws0eFzPJfzmWUDdtyQB90VXMO44CBgTnA4J96fH5kayMqtkHDMp/T6URzPBE0bR/K/O4j5s+xreyseU7j4jHHOQHHlY+Y46V0vhVNPstYW4ldZbWT5HVh0GOtcqVG0smQrYB5610fgfQZ/EXiuzsoy8luGDXOzosY9/wqZRuiqbkpaHps/hXw5fKd1muD8yup28GsWbwJ4fkufLt5Z1C8sScivUrnwPpskeyC4uIcDAIOeO1cze/DjUA8n2PUYpUY5VHG0g/WlCCtZm0qkrmBpOmaZ4a80xXUcsDEffIBH0qHXoI9St1k0+ON5icRiIfM+OuR261FefCvxXcTK8iQSCP7p83/AOtWhpnhfxRpFnPA2kec27MMgO4g9zmud0nzaG8Zrl1OdsfCF/IN15M0auwJhQ5dyOzegps9nML64s0u44VT5kd/mUAdc+9aGqab42lLR/2XdQ84YxdwfesyXRr7SNHha4tpxPPIS52nKitJwSVx4duU7N6Grf6tpN00X2myOoyxLtLnhfwFRf21ZuQ50CJsdDtrn/tCNJsc7T6EYNXYLhoxjcfb0xXG6s72PdjQo9Fc2E8SCIbItH8pCc4UYBNWG1+4B3Pp0vzdwf8A61UFvlcBGyRjrimnUWhb727HTNHOupt7GKWhdbU9RuQPIsjGMY3SHjFVZrUu+69nM2OREp+UUy41DESjk7uvNZU9621sttUdecU/aOWiKsoIuTXkMSMsEaocdAPT19q0vC+iLq0Ul7OzMpO2Ly+p9T9Kf4b8CXev7L3U82mmDkK3yyTfT0FenJZWujacscFsEhiX5ViHJFaRoXV5Hl4rGfZgc63hqzuIoluoFmeL/VyMPmX6GrVrp1vYQkMDKiHKtPyRWnLexlkVfnRxuBHBArNubyDZumcZz06VrFRirHm6v1IrnVoYrdmjAfaSp4rjdZNtrKxW0rzRq7kkwrkfQ+1WdX1eM2s6xyDeHGMD61zbanc2dp5cLDa7bm9aiUkdFKi5OzFvPAtvCkYg1HzGJ5Vo+n15pLfwpbRo63Vy0pY5KoMKamt9aRxiUFSe+a0YrlZFyrBh6UvadD0qWEprcW2sbOwVRb20aEDG7GTVg3DZyWzxjiq5b3wPpSZHap5mdcacI7InM7H8sVEyxuwLRqGH8QFMaRV+8QKpz6nBCD+8yfSk2N2LjRAg7Sh4x8w61nXlrYyg/brBCuP9YF6VQuNfbBEagVmSahcSElpCVPUUua2xhOUHpY6PTLyLQbVxpTxtAxyydadqXjeZrFhFEqlQFLL61x4nb7VGoPG7vzT9TZRZmEDDzynBHtVq8jzq3L0K97rmoX0jguwHfPetXwgs7SXiTXyQmRfuyHlvoKyrCW4W5S2gERcMA28dfbNbGoJcWt6kN3aFRLxgLkHB6g+ldMY6WOCTd9djX1+O5Tw69vPfRlcBSBwduelcWHgiCJFvZuinPFdgtzon2LZLawQzRnDGRTkiop7rQo1E1rAjsgyFA71pUTdhQaRgxEsyrMjexYda6zwrDpNteC7v4HmKcxqn8LetYv8AbemXEga5sF2r0xxXSwy6F9miaB0iYfM2Gxj61kqbTvYuU1ax0z6vo08LK8siIwO9CO3oK8/1NtPF5df2dE0UBHyq7ZLGte91nSjD+5uvNlfgqiZxWBJ9pv4tmm6XLIwP7yTbhTTnTbQqdTlZ6zN4nRgcSH1GaydT8QPfabNbyQxOjoVDOMlc9xWqng681Q+csMSW0y74wGKbfUYx9K4rXkbQrqW1uSMqcEr0zXLzVGXy03ocbJobRR/ZorzMe7LErkmq13oyWU0Bt73zXfc7K6fd54rYnvYBC0hlGByPesaLVoJHM8p+ULgKa1g6jInTpxOx0HwVoGoW0F5qGoyC5cktEn3a9L8PQaN4btGtdMhWMNzJKv3mOehrxHTvFKonlSQEY+6wPvmupi1BxFlJWG7nr605VJLRhGnF/CexnWlJyGHPXBqYX6ONwI9xivG11q+TAEuQPetW18UXEbKJBu9aFWB0T1MXoXG3AB7CplvUY9ePrXm6eKVzuIKj+VX7TXoy27zeMZ5qlVQvZOx6Cs+SGBx9eacGRicnP+8M/pXJW3iOOTJDjI6Zq0NXU9GHPXmq9pF7kqnJbGpc6Fot+5NzplpM395ohmsa7+HXh25k81LZ7c9NtvJtH5VdXUlwOevfNWY9SUnbup2psuMqsNYyOUn+FOmux8nUJ4h6Fc/rmsy4+E1yXAt9XTZ/tJz/ADr0db0KOSCD39KlNyhAKkGl7KDNFjKy+0eVS/CbVQCU1C1kx0DDFWfDXwwlttQ+2695MqxHMNtGcpn1avTTcKFyQKry3ca9xQqcU7iliqk1ZjCGCBSgIA4GOg/pXH+MNVvNKgSGCNwJ+s3932HvXVy3UkiEW0BkYA8huPeuM8Xz3EOnzq3z7VUlCM7Bz3qaj00M4L3lc5mLXJ5bpGddmyIp16k9z71Qv9Rlkt13yHOe9ZMl2FXe7AKOc+tYd94gCSssA8yUnGewrnjFy3OuTijbnvIkIjkbAZskCopZ7aaMRRO3mAFtp9K5qMSgtNcOGkkboewrb0TR727tjeDbhyVXcOMU5RUSacrsQHFSxyyR8oxUj0qK9ik026FtORlhuBFIkisNynINZ+aPRp1YvQ0U1eZF+cbveoZtbmPCLtqswyKqvU6mspNEst9NIcs5qsWZjkmgn0FNdgOp5ppXMXJvcQ9eetNfdwM4p6B3OEQkmpf7PkA3TSKgPbNXymMqiRlLPi9CE4IbNaF6imWF2yxAO0DsT3qjdiGLU41j9OvrWld3SxNHuUFscCt1GzRyOV7jLWMR3MUiI7MHG445ODXsqXGgxW0C3beVOw3Fnb5gfQDtXjUOp/6RHhRhXXf7c10HjRmE1oQpJK5HFXzyRi4Jney3WjTNIlu8cvpvxuzVGW904OqyaYsqdC2ATXka+c33QwLEjOMVc03V7iwvFDtJCgO0svPNV7Z2JVNXPQ7jw/pmsQiM28tnhiwYrjdmriS6RpyhE0QzBR5byFPTvUehX13qAkR18xlUHJPJB6VUv9Q1S4WSGG9WCMHbgICR+Oa0jiFGPvA8O5S0NKPU7JcNaaeYXPYHAxUVu1pBJII7tPPnOXiX+GuPn0bU7gkvq7uCOh4q54d0d9M1MtK8UpYfeXrSp4mE3YqWHcUejRfEeWVL4zRxRtC+1AH3A/QVyyJdeJjcyPaMYUcyOzxdfX72OvtW82seEtFE0siWSOzZwIw7A/lXL658SJ9SdbTREdVf5fMk6AewrlhFsUmoszrpdB1+URx2X2IIMGMfKc+tZdx4Z0dXAWSTng8g/wBatagksVqVuLu3MkZDABRk59SKoGCOaPzAxAI7HGKbi4icoy1Y260ayt44ktgd7uApZ8Ctmbwd4ntwGga1uY8AhUl6DFc1fywCa3jkkbywfmK8kVegezDg2viCeBs9JNwx+VJpsqLitiy+l+JIIy0mk3BC9SvNVhqd1FIFks7hXHXMZ4rbt9T8RWwC6f4mt7jP8BY/+zVaHibxfDJmazsbtQOcBCamUGaRmjBj8QxjiQlDnkMMVowa1anI3KM/xA1K/ihZS0uo+EreYdGaOIjH6YqD+1PCFwm2bR54GJzujI/xqHF9C1NbGlBqULqAsv4cCra6hKpG2QkDpzWOLbwddyoU1KayA7MGJP8AStCLwrBMd1rrZMXYkj+RqJXW5pF3NqDWHAG5gatrq8pIOeB71ys3hfVIkcw6lBKythVycn8qJtF8S2bKvlpJkbjtJ6UJ6aA13R2kOvOGwwyvvV2PX9vbj0rzgPr0aM8unShU6nI/xpraveADfZ3GCccKaaqSRLpxPRrjxEME5ABrDvPEczP8jcVyTa4u3y3Vo3HYqapSauMnlMf7wzQ3UkNRgkdRJ4lu4nBFxJGT0Ksaxtb8Z3b2ElkWMxuP4FXc5x1ya5u717c3lwfvpP7q8/nUemLqkE5mAKTv94mPPHoM1UVb4mK/NokV5tO1W9iAe2ljiUcKo5NWJNDTS7RJbgoZH+5GByPrXdTalJpWkpc3BV7txhQO34VxDu93cvPOS0rdz2pwk5MU4qKKXkEkt1c8D0Br1nRdR0q00iC0i3MLdAjsUOC2Oa4fw/oUviLWotNhYqCpdmB6Ad/1rtrnwVrX2ZbSO/IhX7zIAGcVpONzHm5WcT4wubG+8TwkTosDKAZADheKyLmTSrNyttqfnYOPu4FddfeA9RggEdtbmaIdfMwWPFcJqvhK/s5TttXJHVdtOEY9ROfL7yNNHSULscFmHy88H8agkWQMVEbEjrxWNp8z2dwbW7jdYJDggggp7iuoEtxZ6S8Yw8gYhCR1GMipnTV9DopYqTRnrazv8zYjTuWPapdtjbP+8YyygZwORioGiluYUa/uPLQglhnH4VTn1iytWb7LEXkI2g9cVShYynWbeppSX85jUWttsEjbEcDJ9yR2FZk8s7mRpy5KuETPf1NVT4jvTJ8m2IYxwOlC6zJPJ++TzD0XFaOGhlz3Yt4hOpxKCM8DmtLUIYxcxPK20qOOazL63la/jd1KqMbznpVvxNEqC2MbHBHfvUu7aGmuUrfb7aGbZBF5juwLEjOTkV0/jy4kgbTuWUmEHOOnFcXYFre9trgqR5cisSR2z6V6rrnibRVMRv4BcmVdyr5YJ2mtCVdnla39zn/Wkgcjmrlpe77iFZm8xGf5hXWPq3guaLY+lMnP3gADTM+C5RxBOgHI60nawlFo7Dw9BHAzSLIryFAQY26DPSuCtdQSDWLuW4MrLJI3fgHNdn4eFokNwbTcsGAB9OtZo8O+H5nLefMGLEnBPWqlTUlZuxpGbTuMivIbhQI5yR6Nwa0tMk2X33g4A6Cqn/CLaQPmTUJ1/Crun6ZBYzsRcm4U8DIwcVhCioz0kbzrc0PhMpbHwrIZJGkeEo2GBbeGqHULWzaBv7Hv4WXad24YI9q5W01C/sJd6xQXGTkpKowfyon1QzzO8liIg/JWHIFbRjY4pNsbLa3UaFt244+8W6mhNSvo12taqxxwcGopLq2lQJ5ksWD/ABKSKkt7ua35trqM49QB/wChVbimjNStoxLK5kn1y2e8jAjPyt8vGPWu7Og6fIQUaCRTzgOoxXJrr2ooFZ44Lg9x5a/0FaLasJY18zTVQHq0eRUbFxaexuS+F7JsCIID7OD/ACqzD4Xhs0E9zNIo7RxOQW+prHt/EkenxgWdivmHjzJGzimXfiPUHi867kSGL+6RjP0p7lONjc1RtRvI1toke3tFH3UOSfqTXF6lcWWmOYQTPc/3Y8bR9TVa/wDFWo30fkwTSQwfdJA+ZqyprZ4ERmQgtz6n8aPdiDTZJEtzfXIkkOFHO1egrprWYpaKRnd0HUVl2iLmPBxu464rQiQrBIufutjrXDWlzHoUI8qNeOadGjZJ5FLDI2sc1di1rUE3M1xPkdS7ZrIgaQFC5PynAq28soeSKQKOcjjtXIzsSR0CeJb5442ZonJ/hYf4Vo2/ics7mTTVkZDztYgCuUl8yGOJwAwJGMECrcP353eMkHquTz+VLmaG6aZ0B1LS7nLPpzIX4L4U4/OmNp/hucbJYoEjPVvLwx/IVjpMv2WNl+Ub+n/66syzB54wAWUDnpQqskZ+wia1t4f8Nhh/ZjWkRP3i4O5vzqLULm302CV28ksowq4GayY3t/NLSAMu7AKnkflXP69Oz3TKpLJzg9xVxk5vUiVNRWhRuruS+nMsjEjPC9hTEwBkjk0Ivy5xgAVKgyDxxwK74qySOKbZ6P8ACnTVjjv9TKHexESv6Dv/AEr0Z0VlwQAR6dq5zwXbCy8J2agY85TM349K394AwwHrW6VjmlqyGSN1HByPXvVG6tIrtCsqg+hAGfxrU3gnaOlMeFGPTApcqEnbc4HWPCkc0bCS2jlXs6qAdvpXn2q28mko9qZC7oMwrtOQp9TXu9z5NvA8r/cQZ5PU+leX679gzJd3e2N5ZPlZySoHoQOaiVlKyNYS0bPIpnub2bEoeTnAC9BUraakEojuWaIkZ+VS38q7e20rRtT1JYrCScOeWEKEIT/wIZrdaTTNIiK3bBlQbXV4gx/MCtHNLQzUObU8zg8PLeHEMzP+GM1dTwneJcRqsTKhBIkPPIrr7Y6M8Ey2yy+XIMKADuU+3etWxuI5YF8i4M6KNj5xnNTKTsNU7M4O40m6gDvNbyFyQCT0NWZNLju44y8UokU9GyRXZ38bPHCmcZO7BNU5Ip4UZgR045rjlN81zupU1Y4e50O7iy6oHTqVU5bGfSr+twRX91bzQzCIR26KysOcgAcVvBZRab9yCRycyDlselVLm180AhEGRyatVGwdJLY5OOOwiAa4tZpPm5bd1/WrMt9aJD+4slVexdiavPpIFwqtJtjOapPppScqvzL6mtY6mMo22O0+H1/Zx6bdxyOobfuYSdkxyf51zN5q1vFqNysAbYJDsKngj1rR0C2iS31YzSxxMbc7RjJf2rASDCDfb4+nStpQ5kRGUo6l+PX5Sduxjnj71aem6hNembaD+6i3HewArDSCLcDsIwc1Zito1DYcpuG1sHtUqkk7le0kZ2VI2lcEelMcYGccn1pZGXB24BFM80zbQR8wrJX6FXW1hHKsApQEik+xQSrkpg1KFUHP8ecYpxIDAk49eKFNrQbhFq7KTadtP7uVl+hoWO9jIWO7PPQNVlXxOQrArnGcUoPzq5G4oeg7DPetPaNGPs03oMiu9UtZN7Rxy47ECqc63N1MJbhy5Y9T0Htitkxh2+ZCSwBGDwoPcVVm4ba64IBGT6UKtcJ0bK5XtkSM7jzg9+1Le3KO2zBYMMg04SxvEqnk5qOeFmRp8hVXuam+tmNKyuaUAYxREAY4xWhbSBbiTcBg1m2E63ECFTytX5IiGDLnnrXJUVmd1J3VyzGSImZgdu6rp2zuCODjrmqlrh7NxJkVOkqwtA23CkYziudnT0LqXW+y8kyBShwAQOafbSl7sxO2Pl7MOaoeW7xSNyfmzgDHFX441jljlQdV7mpaKRPLGPswH/LNWyTT3xHLGuSMjjAzUcR82GWNjjntzUwDrNGUbco4+7UlBFb7ZEkc7VDZIArmL7Mt4xP9411lzOYrF2xjcCMGuQdzNcOQMbuua3w6uzCu7RGqdzE9h+tWIoGubmG2jXmR1Xj3pkUXIH5f/Xrc8JWrXPi3T41XID72+grvW55ktj2aGFbS2htkACxIEx9KcTzxSsO561Hu5NbmCJAMLnimkngn14pvb71Vr68SytJJ3/hXCg9zSbsrhu7GL4hv1kf7EjKxHzOCcfSvONWvtIv9UXT9Sd444jxPGflU/wAq2NS1Wzt4He/WQlmPzRn58H/CsG20nQ7uUmDVWcOc+VJESfxrKLTfMVLRWRJa6G9pePPp1x9stDw8UcoD49QasTSoCImuZosn7txakke2cYNTWehWCEvp9+6TrwzxNx+Kmi6h8TJueLUYbwIOAyDcB/WraUnczTaJpHTTrMXl1KogHG6KHBH+Bq1C1vcxJNaweQk4D4K4J965zVbe7urm2sLnU/NeSRSIY02j3OK6yGNI3WPAwMDjtUz2NItszdQjaS5VN33F21T+xnkncf8AgVW50aW4kkHGXP5VFtkH3STXFJ6nqQVolVLR4ySg+Q9V60SWRUArJjP8JFXELBgDkH1FSO7Z67vXimmNoyXspSuMRsD781CdO+ZQyHn0rUYLg5jz9KYqKRlVk4rSMrESgmU/7J2B2BfkdqbDpvmADcw+orVSMsCQXGfU1EVYHHmNWrqsz9mU20V1xhkI96aNH3MQzIB7Grp3f3g31qWOZ41I8tCD3pqqS6R5/KrspAXH0oReASACOpqRMhd4ywXrTOfMwRhW5rJSsHJdgVC7m74yDmkSLzNquxUHnJNP8sh8rggetIuBuDgqT03UXG0PlSOME+YrYP8ADSackbSMJ32A5JHqKbiNZATjaPSrK2sc9tK5ZhPH8yrjgirjK5Di0tCvc6im/CQsNpwD6ioWuxPCNy4k3c454rof7N0m4sbcQo3nr/rJc8E9SKqXnlrf/NEiKse3aO47GmhScmY6QBNrNjr2qPVH22oTBwzYAx1q4PLlRirYAPFUrpfPvo4sn90PzNRF+9cco+7Yl0+NY4gRnIxxWyk4IQAEE9zVOBBjBIz1OKlIwkbZ4Gaym7s3pqysXYQxVyHyD2p8P7xAkij5TwaitnG/blgccfNVguywMVZTzz61i0dKJ4lZZ5QucbOg6VZkcoINp4I7HmoLYsrlmRjvXHFOiiyFLnHz4GahotFpFeQSEDOF69eaWBZGkhOPrwcUKFSaZwyldvG08U21k/1YyDhvlXb1qGhj9WkEdvHGARkkmuejKo+CfmyTmtHWLkrdOp7DbjHQ1gpJmUBj8wNdeHiceJl0NaLBVmyfm/Suu+GsIk8TzTMpzFCRn0zXCxz4QKGxwa9R+EssNxomoSR258wThPNP8Y54/D+tdkVqcE3od4SOnpTT82BipyoY7vWmFQe+K3sYXIcDHTrxXJeI70T3X2dD+6iHzZPeuk1i9+w2LSKP3j8JXmWs6sNJtjMB5tzIcKjfxdyTXPUvflNY2SuZOtRrqEyXKqLq0hBDRwvhwf61Y0GdEieOHTLmKGQEHcu44+uKw/8AhINTvZFghFrEzHICjAxXXxvOLWGS0aKVhw+19oB9uKtxcI2JjyylqZM/hi1NqbnRpLiK5VsGFmwHz/KrtoZrCw8+3Z3MWUkhlHzFupwfxqC8vvESagipabYhgnnfu9s8YqWee+bzDbWzoMbmgf7xPrG3/wBahJ2Lko30NB7iFp4WEIaaMbwXX54wex96Rpj5UzjgqvGOfpVeyvG1G1juJIRCTxt/iIHrU0rGOKIIcM7byMdhWNRs0pxTdimJjnaDg8cNxTWY/wB3PrzVuW5faVdFbB64qNJAwObcsPauXdnftZECPg7cEZ70jyYJG4n8KtK1vg5WRD7jpRttJMAz4PuKtIVyn54Q84IpfMDL8pYA+lWGs4mzsdSKYtowUBefpVpCbFEhCfNn8qiEoB6Zqfy3RcE/nTDG3XAP0qrE3EDq3WMEfWnAK3/LL9aYE7EVIEUDqRTURNn/2Q==", "path": "images/4pts_ADE_train_00011151.jpg" }
depth_point_98
images/4pts_ADE_train_00003917.jpg
ADE_train_00003917.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 47 y = 183),Point B is located at (x = 285 y = 217),Point C is located at (x = 318 y = 223),Point D is located at (x = 165 y = 184).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_64><DEPTH_64><DEPTH_74><DEPTH_74><DEPTH_29><DEPTH_31><DEPTH_70><DEPTH_3><DEPTH_74><DEPTH_44><DEPTH_36><DEPTH_64><DEPTH_74><DEPTH_29><DEPTH_29><DEPTH_49><DEPTH_70><DEPTH_59><DEPTH_69><DEPTH_64><DEPTH_36><DEPTH_29><DEPTH_72><DEPTH_49><DEPTH_49><DEPTH_49><DEPTH_70><DEPTH_70><DEPTH_29><DEPTH_36><DEPTH_36><DEPTH_11><DEPTH_72><DEPTH_49><DEPTH_29><DEPTH_59><DEPTH_5><DEPTH_59><DEPTH_29><DEPTH_36><DEPTH_29><DEPTH_30><DEPTH_31><DEPTH_49><DEPTH_70><DEPTH_31><DEPTH_70><DEPTH_17><DEPTH_40><DEPTH_76><DEPTH_31><DEPTH_64><DEPTH_31><DEPTH_70><DEPTH_77><DEPTH_31><DEPTH_82><DEPTH_30><DEPTH_67><DEPTH_3><DEPTH_15><DEPTH_64><DEPTH_19><DEPTH_64><DEPTH_6><DEPTH_60><DEPTH_63><DEPTH_66><DEPTH_41><DEPTH_2><DEPTH_41><DEPTH_57><DEPTH_39><DEPTH_47><DEPTH_24><DEPTH_82><DEPTH_22><DEPTH_78><DEPTH_57><DEPTH_58><DEPTH_45><DEPTH_119><DEPTH_98><DEPTH_23><DEPTH_121><DEPTH_46><DEPTH_11><DEPTH_29><DEPTH_72><DEPTH_49><DEPTH_68><DEPTH_65><DEPTH_41><DEPTH_41><DEPTH_25><DEPTH_78><DEPTH_63><DEPTH_19><DEPTH_44><DEPTH_19><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
4
[ "D", "A", "B", "C" ]
<DEPTH_START><DEPTH_64><DEPTH_64><DEPTH_74><DEPTH_74><DEPTH_29><DEPTH_31><DEPTH_70><DEPTH_3><DEPTH_74><DEPTH_44><DEPTH_36><DEPTH_64><DEPTH_74><DEPTH_29><DEPTH_29><DEPTH_49><DEPTH_70><DEPTH_59><DEPTH_69><DEPTH_64><DEPTH_36><DEPTH_29><DEPTH_72><DEPTH_49><DEPTH_49><DEPTH_49><DEPTH_70><DEPTH_70><DEPTH_29><DEPTH_36><DEPTH_36><DEPTH_11><DEPTH_72><DEPTH_49><DEPTH_29><DEPTH_59><DEPTH_5><DEPTH_59><DEPTH_29><DEPTH_36><DEPTH_29><DEPTH_30><DEPTH_31><DEPTH_49><DEPTH_70><DEPTH_31><DEPTH_70><DEPTH_17><DEPTH_40><DEPTH_76><DEPTH_31><DEPTH_64><DEPTH_31><DEPTH_70><DEPTH_77><DEPTH_31><DEPTH_82><DEPTH_30><DEPTH_67><DEPTH_3><DEPTH_15><DEPTH_64><DEPTH_19><DEPTH_64><DEPTH_6><DEPTH_60><DEPTH_63><DEPTH_66><DEPTH_41><DEPTH_2><DEPTH_41><DEPTH_57><DEPTH_39><DEPTH_47><DEPTH_24><DEPTH_82><DEPTH_22><DEPTH_78><DEPTH_57><DEPTH_58><DEPTH_45><DEPTH_119><DEPTH_98><DEPTH_23><DEPTH_121><DEPTH_46><DEPTH_11><DEPTH_29><DEPTH_72><DEPTH_49><DEPTH_68><DEPTH_65><DEPTH_41><DEPTH_41><DEPTH_25><DEPTH_78><DEPTH_63><DEPTH_19><DEPTH_44><DEPTH_19><DEPTH_END>
47
183
285
217
318
223
165
184
null
null
58
84
104
20
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwC/9pQFFYMC4BXjrmn+fErlGcBh1B4rF2fPGFJXcc5B96ddF4JZNjuXUnBJyf161ymhuK6sMhgQe+akArFJmOnjMoMatwmwcH1zU5muF09crBs6AgEOMH8u1IDVApwFZslxOEj+URnYDkPu3e544oW/lOGU/KTxuHNAzTxSFaqpfoYCXJ80HAHlttP49KauoguAyhRnBO7pQBbxRio5rqKIjLBwehQg00XcJUEkjtyKVwJcUhFK00abd7qu4ZGeMin8HoQaAIiKTFSlaQrSuBDijFSFaQigZHijFPxSYpARlabtqbFNIoAi20hFSEU3FADMkA/SqyoRliOT+lW8VGy0XAhxSEVKRTSKQxgFQ3TBFLHsKsYqG4j8xlP8I7e9UnYTMMoxl81yd5bJ9h6Uy3tzDCssQ2zLK/zeoz0NaksHcCmRxkwjjqxP8qrm0FYt2sizxh+hHUehoI5qKFDHJuXj196nHNTKVwSGhcmnhacop4FIZHsGKPLXcDgZFTAUu2i4Ee2l20/FKBQAwrRtqXbQFp3EMC0FflqTApHHFFwMzy8l8dwf5VGwZmi5xuAzVmJCZG57CoW+9D9MfqKY7Bcu0UIAPy+YMj1pzXLyxGAjCoCcjuc0tym+JQeAXWkTDeYSOVbafzzRcLFx5vPQSEBAFxyegFIyDaMEYByCKjvInOk3KxoWkMDhVUZJJBwKdbq406ASIVcRJuUjBBwMilcCeO4jjt5IGJ3E5H6VF8qzKzY2jrUMi5ufpz/Kn3IxEx9BRcLDrgxTS5twoBAJwMU1wA6+/FRwqVk98f0FSXPyoreh/oaBlaKyukufMubx51IxGm8kIP8AGtO4g/sq2FvCd0Lv5mH5YHpjPpVWIkg+74rT1sf6jPTv+dFxWsaKKGiQ7RyoNKYl9KfEAIYx32j+VOIraxJAYR70ww+/6Va20hWlyoCoYT7GmGJvSrpWmFeOKnkQ7lTYQOQfyqI1fwcVha5DcG+s5I2IhXcJB/KpcQuWzTayori4ikIc+Z8xIXcRkdhThqDFFwpBY53HGMelQUaRNNPSqUd+rOFYj/awpOPSnvexB9oYOPVaAJyKQioVuo5HCKSWJwBinCZD/GODjrQA400rRkHODS0gGFR2qNogvCjg81YwKZIKQyDbT1FGKcBTEOUU8Cmr2qUCgAA4pcU4CimIZinAUuKUCgBuO1LilxTsUANAoI4NPxQRwaYjPtlzIw/2arMozH7MR+tXLQfvvqtQsmCMf3/60X1LJGj3QREjup/Wo7ePdLMo7y1bA/0KA+rAfrS20YW4Y46yZP5Uhlq3j3XEY7GUD8qS6ixPcL6E/wCNX9HhEl/ahhwQ7mptWthHqbhRw8YP6EUtbA9znGjzM7Y/5Z5pL0YtHPtVtY8yyD1iOPyFQXq5sn/3aLisQAYm6dv6CkvP9Qo9XAqwUG5T6r/QUy5Xci/74NNAMhXLovrJ/hWrrKFzEo6np+YqhAmbyFfV81uSQRzsDLu4HGDimhMgE0Z7Px3DdacJV7SSj8jSHTLQkkDBPU4FRnSov4JmH/AmH9a05ybE3nEf8tvzSl89v78Z+uRVU6bKPu3Lf99/4g0n2K7U8S7/AGJX/wCtRzhYueex7Rn6PS+c3/PJvwINZ7W96P4VI/3P8DSbbgEfuR79R/SjmCw691qKxfbLZ37Lt3b4bZpF64xx3qk+r2erRMbUy/uiA4lheMjPThgPSrjXDxYJ3AeoJqKd5JoHlfPbaD1ApSkmhpamTOzJNG69QTnH+feq5bBMeOATj6cVauDhgff/AAqmxPmj/drJFk0JETb+uO34VDK3mXbP0wobHuf/ANVS4xvNUNSnNnYXtyuN0UG4Z9QDimuwmWMGM7DnAHX86Ri4ZAGOD/P1qppd7JqWlWl5Jt8yaIltowMg4q2CTGMHBwcH8KbVnYW4ouJxADvBMknz/L+o/KrEEl0QrqVaJMs4ZiC3HQcVTgO6BAeu0Gp4ZZACqHg9aGMtWVxcTSFnGYiOMDkN6H2xV2Sq+nLtt2H+0asyDgGoAixzThTe9OFMB4p4pgqQCgQ7NGOaUCnAUAIBS4pcUUwADilpe1KKBCAUuOtKBS4pgULRf3kZ9UNI6DP/AAL+ppbU4EZ7hmWnzDn8R/WkUThAdJtTjnzsfof8KWFRuc+5/lT0U/2VY+hlJ/Q0+0TcQB/E39RR0K6nWeGLGKTVGDoCIrYD8San8UafFDdWksaYDAqec9x/jV3wtEBNqEv+2sY/Af8A16s+J4d+npL3jfP5iujl/dmLfvnnnkbb9UP8UZH8/wDCs+5TdZMPVK3b1BHqFq56Fv6//XrJuF2wuvpkfrXMakMiYSM+o/oKhlxsFXJx/o8H+f4RVSb7o+opoGSWq51CMemTWzWXYrm/Y/3U/rWrTRLGmobm4jtYTLKSEGOQM1PWZrfOly/Vf5igQqaxZP0uFH+8CKlj1C2lGUnjOe27BrnrfSHntRMz7WbkDHGKrvp1wgcmFiEOCQKjmHY7FZAwyrA/Q0oYgda5jw8SNQkHPEZ/mK6aquAjMSME1TuRmF/pVs1BIu5SPUUDMKdcqx/Gqvlb5MjoErSRBI+31H9Kr2cYdZ2P8Mef1qSgjg3wSP2HFYniqPZ4e1Vh/wA8FH5mups4d+kzSejY/QVd0jQotb1V7GeKOSF1G9JRlSACeacb8yG7WPOvBmZvC1qRz5UjofzJ/qK3dmEBxwGrr9a8I2/h0JBZ20MEMql9kPTcCMn8sVzqxFrKcY5Q5qpt8zuRFaGZAu1Yx7FadbE5bPqR+tTbAuDj+I/zpsa7JXH+0am4zR0/m3P+8asuOKhsP+Pb/gRqdxxSAg708Cmkc05aBDwKkFMWpFFADgKUCilFMQClxRS4pgFGKKcBQAq07FNFPHSgDHgfbIyntJ/Sppmy2Pp/WqRfZeEf3sGppn/0gD/Zz+hplGkG/wCJXp/H8Tn9KtaYMzwD1Yn9aoo+dLshnpu/kKv6a4SUOf4Ii1IfU9C8KrnSpJf+es7t+uP6Vf1eLztKuF77cj8KwNFvri20i1iTZt2Z5HPJz/WtE6nNLCyOkfzAg49K61JctjnadzitWz5FtL6f0wf6VmXY/wBd/vN/OtDUmzaLGf4JGWsx33xyE9SAf0FcjNxJeba3z/ngVVk6L/vCrMp/dW4Hpn9BVeQ8r/vUlsDLmnrmedvYCtCqenD5JW9Xq5VEiGqGqp5li6ZxuZRn8RWhVDVHMdkzgBirK2D35FAhFbMaR/LuxjgYziqsV8n2uSApIrr2dcZ+lQpdCZRLn2IH8Jp8eqROfLuQFYcK/rWSdxsngijGpeaE2uyEE+vIrQrMtN/9o580SRGM7SD7itOrQCGo2FSGmNQMyohtvVX3IqrZHEN3/wBc2H/jwq4/yagD/tA/yrPibatyB3LL+opFI1dNOdFlH/TQfyFdV4NjB8QSnH3UJ/QD+tchpTZsHT1cV2/ghd2rXz/3Vx+o/wAKun8aFP4WanjGASW9pJjpIyfmv/1q8xjj2z3cJHVDj8DXrniaPfo5b/nnIjfrj+teVXf7nV29GJB/Grrr3iab0Mjb+7FRkYuG9/8ACp2GEH41C/Ew+lYll+xH+ir9T/Op3HFRWf8Ax6J75/nUrdKBELdaVaCOaFOKBEq1ItRrzUooAcKXFAp2KYCYpcUtLTEJigUuKKAFFOFJSigDnLs7buFvXFPmbN+B28s/1pt3yYGHoP5imzHOot7QmmUaMTZsLQeiE/yrSsgzLOqqWYosYA9Sayof+PW1H/TEfqTXT+F4BNewgjhrkE/RRn+lJK7SH3Z0MKmKFIyMbVA/Sp41kbO1CQPSi4/1749a0tHbCS89xXSlrYwucDrCtFczRkEYcNg1lD/VsP8AZrqPG0WzUxIOkkYP4j/9VcuDyR7GuaStJo2TukxJT80I/wCmYqKTqvsakl/1kH/XIVHN2+uKS2Bmnpy4tFJ7kmrVR2q7bWMf7NS1RI01nax/yDpR9P5itE1m6xxp034fzoEzm7e38yOSQMRio8s875JOEH9aVXeNXjXoeSBRGoSSXBJOFX9M/wBazZSNHQeL+Rf9g/zFdFXO6F/yEZP+uf8AUV0VUgENNPSnGmmgDLvRi5B9VrKRsiT/AK6Gti/X5o2PqRWNEvMw9JT/ACpFIvaY5wq54LZ/U11Hh6eWOa6eKR0y2DtOM1yemjlT6E/zrtfBdjFftOspYDJYFfr/APXpwTctAk/dNS6u7maymjed2UqcgnrXDar/AMfIkB9/616q3h63KkCWTB47V5drEJilZG6o238iR/StKsZK1yYNPYyHIMef9s1DJ/rAfan8+Q/s4qJzyD7VkUzUtBi1j+lSv0pltxbR/wC6Ke3SgRA1KtDULQBKoqQVGtSgUCHinU0U8UwClFGKKBBRRS9qYAO1LSCloA524GLa3z1B2n/P4VFKT/aEh/6YGrWprshcf3Jv5n/69VZR/plwfS3/AMaaGaFucxQe0SD9K7fwjEQY5VBOxHfjrknH+NcJZNutIm/2B/KvSPD9u8OnfJKEJAU889P/AK9ZzbSvEb2ZaupN93IVACnBHr0p9ndGBipd13nA2f1qvMhSTDE7toB5zU9iNshPUNySTwK6k3uYmT4tZZ7OGdZjLtJUn/P41yQPIPqK77xFCJ9IlVSMKNw9fT+teeI3yof89K53Jyd2rGkdiWXk2/8A1y/rUcgJdB70rNuaIeiEf+PGnxqHu4V9WpoZtAbVC+gxQaVutNNMQhrM1k402U+4/mK0zWbrH/INlz6r/MUgOW3EoeOx4p1u26JnH8TE/wBP6U0cmmwfLEyjI2uw/WoY0auhkG/c/wDTP+oroq57Qv8Aj9cf7B/mK6GqWwCGmGnmmGgCpfLmDd/dYGsNeJrkf7YP6V0c0fm20qjrsLD8Of6VzzqRNOfUKf6UikWNM4jz9f513vgMiOYBuPMRsfXI/wAK4CyO2H6g13XhoCE2rsSNoJ4Geue341dPSVxVPhPQBksemK8w8Y2vk6ldYHBfePxwf8a9CGpQhMKx3jjlCP6Vx/jJRPK0y/daMAcen/662rNOJnTumeekfJMPYN+VQPyqH2qweXx/eQiqqsWjjrmNTahGIEH+yKc3SgDCge1DfdoERN1oWhqQUATLUo6VCpqZaBDxTqRRTgKAFopcUUwEope1FMApKWk7UCM3WIsiQf31Vh9en9BWbMP3l03/AExA/nW1qy/6PG/sVP8AP+hrHb5mm91UU0MtWEZ+zW8PchV/lXqkSfZtHtsD5mBbjjPevOtJgM+pWsS9S4/z/KvU76ONrZIVydowAO4xSbik3IUnojFdi3LfePWrFvM0SMQoORjOelU8bFVdoXaMbR0HtRJdNbRrtjV9zAcnofX9TTrKXsny6MgUXpn8+0KSOJQQD1A+lcGymOV0xja/9a6C0upJNSLLkDO3r0H9KyNZjMOqT5AG7D8dK5MOmlZlxVimpP2lx/dFXLEb9QT0VSaqAfv5G9hV/SRmaZ/7qKPz/wD1V1DZpk8000pNNJpiCs7WOdNm/D+YrQzWfq//ACDpfw/mKQHMY2vSQnM0q/7WR+NOJHQdagik/fzkHnjBqCjZ0Ti/cf7B/mK6A1zegqVvmJJP7s/zFdJVIQ000041GaGBa06MT3qRN0cFT+INcvMpXOeoXB/Our0njU7fPTd/Sue1lPK1K6jHQSMB+dT1KRVthhFA713+hube5Rc42wkc+vFcNp8fm3MEfqa7azGb8jbuyrfh709k2KWuhuPLIx2pJtOd2cZrP1yJptOJYhnBPOPatCMpH8hIHGB2/wD11BdJutgrdC2OfTms6DTbQnpY8skGyY/7L/pVOAEtGnpIV/WtDUozDdSoeqsyH6jp+mKo2g3XY9PNJ/rWpTNymMeKcaY3SkIY1C0HtSrQBIoqdahUVMvSgCQdKdTVp1Ahc8UUUdqYCUtJRmmIKMUUUAM1FN+lse6kH+n9awQPnI7llH6V0sy+Zp0y9Mxn+Vc3EctuIIBOf0poZ1PhCEza5GxGRGCx/wA/XFd/NBOyYjYeYTxk9q4/wVFGI7m5OSThBg4wOpP8q1JtSuRfyxxRB4BhVZGJYH3zxz/hWM6tOL956ku9xCjRqquCGAwc9aSYSG2IjR2JGDsXcRTp5TK6sd2SufmGD+PvSwrNMWSGTyiozk9DXRUcfZ3exKM6CyukuWKWjxxuMsQnIGff27Vl+JrN7c28jRlAVZM+vcGtqaS/tlIe5y3IEpBAAHseDWPrAuLizm8/eXRVkBDEp+HocGuOnKDely7sw0IDN/uj+Va2kJi0lf8AvPj8hWM/ySZ+grobGMppMTcDPzH8TXSNjjTaUmm5oEFZ2snGmSn/AHf5itCmuqspDAEdwaBnEF8L15qtA2Lh+nI/qa7v7PF/zyT/AL5FIYIf+eUf/fIqbDuYehOXvGyP+WZ/mK6KokjRD8qKD7DFPpoQGmmjNIaALujqG1W3U4wXwc1l+MIPs3iGZf7yq/6c1qaOSNVtsdd4qj42kSfXZPMO3bEqgjjtk/zpeQ0N8J2ouL+RyuVjhJ+hPA/rW3HP9nuPNABPTBPXNReChHHo1/dA5bds9wAuf61d0qEy6nCNoO3LkHnOBWnL7vqS3qW1v0aIS7ht6AFcfh1+tTzTCa0jcLtBbGMY9RRe2DiaScQAxsOEx8u76D1qGPf/AGbHvi8rEuAu7OBzj/GopxaeoM4nxPb+VqDS44mjWUfUcN/Q1h2C/wCl/Qk/0ruPEtl5+i21yMboXwc91YEGuKs1Md5tbqVOOfpQyjTzxTD0NLnimseDUgNNOFNzThTAmWplFQJU60CJBS00GnCgBaKAKKYCUUUUCCjtRSHpTAsRDfCVP8SkVyiO4AUYwBXVWxyn4VyQYAsewxQNHZeHrtrWymf72wghRgZJ4HX6U9L+/vpUSGaNVJ+dzwB9QOTVPwzKTqE8IG5TGNynBBH4/WtmTTriOcvDJatGTzE0gGevU/lXFWpydS6REpWZcYEbF3bwqAbjkEnPWrFk3lNJK5G0Y7dOf/1VHcKFlIAUL2C9MdsfhVHVdctfDOi3OtX0c0lralDIsKBnIZwvAJA6sOpFd1Sm5U+RCudBIRkSMA5HyqOp5+lUNUgtzZ3D7AH8sgYXpiuOtPjV4R1rU7HTbLTtYjubm4jgiZ4Ytu52Cjd+8Jxk16HqRtU0q5xaSAiJvmZh1x9a5Y4GUJXuJSPJ7k5fpjHJNdKpP2eIMoUhB8oOQOK5q4UF3XPVMjnvXQ+ZviRvVQf0rpNWOzTc03dRmgBxNJmm5oJpABNJSE0maAFzRmm5pM0hjs0hNNJppbNAF/SsnU7cAgEuACe1Z3jEqddvAuMBVHH+6Kp3fibSfDl3aSapdm3EjEoRG7Z24z90H1FYl54y0TXddljsb8zSTH92DE67gF9So7A1XK+W9hX1Oy8GTbbXVLYnhk8wD3HB/mK3bB5Ib9XiKh8EAt0FcXoU8cN0WlbCFSD1/pW6+qWhbhmYD0Q1XNpYHE7WW5gkVQ8yB1yA4bkjNUJ5UNrGhmR5Nwzs/H/GuY/tm1T/AJZSH6Rj/GnDX4Oghk+uQKOZC5WWPFEpXwptU4LyKPyyf6Vw9sczl88jA/Ct7XtWjutLS3VSoRi3JyT8rVylnqERvDDyMjAJGASPSpZSRuk0jHg80wNxSMeDUALmnrUG6pFbkUwLSVOtV4zVhelAD6cKaKcBQIXpQaDSdqYBRRRQAUh6UtNJpiHWr5T8K5eM5LDGckCtS11W1W4W18396TtAxwT6ZrLhZY3d2yQjZOPYUIZu+GpPJ8RMjbTlcfMMjoa7n7QwPyugP+ygrzPTr0x68JoyVORg9x2/rXRX3iBrSMvdai8SjqC5z+Q5qlKwnG50sju7l3LsT32GuQ+JkUtx8PdThhSRpJWgRUC43EzRgD86ryeI4nUMkk8wPQkkD9f8KxPEc58QaHc6ZxAJtv7wneV2sG6celSq8VJXZXsZNHPN9gu9f8NmxuJZhomsW2nSM8SxqIyy7NpDHKlopmyccydBXuOqzoNKudrqSUxw4J5+hr5yi8KT6NqFpf21x9rktp0lEYi252sD/e9q9Ck8T6nPbGN7a3jDAZxnI/WrqV4PZihRl1RckdTd4P8AdrXhf9xGOuFArhp9UulnErIn8OQp9D/9eui0bUVvbUlQQVbBB7VmpJ7FSi1ubDSqilmYKo6knAFKkiuoZSGB5BB4NYniEs+jy7WAwVOCfvc9Kd4cONEg+YH7xwP4eTxSvqK2lzb3UZ4qINS7qAHk0mabmkLUAOzSZppNNLUAKzVQ1K4kg0+eSH/WKuR/X9Kss9YmvXIj02VTk+YQn5mga3Of1G5N9f6XPcwxTGKy1WSNZ4lkUlLVmRirAgkMoPI6iuct5Rjw/q7W0EF/O90jCGJYlkiVVCSbFAUctIuQBny/XNaOrw6hKbObTtQ+x3No0xEiyuj4cAEKVGegYHp1rJtNL1q51uO8u7p764AIJaR5ZCNpA6jPet41Iqla+pDg/aXtodjBqcg0ltswS5DceuM1nSXl6xLPdykepcirVn4b1S8cCVDbRHq0n9AK7TSvDGh2EavdQm9mH/PZsr/3yOPzzXOoSkbucYnnX2qbGftT/wDfw/409NTvYv8AV3r/AIvn+de020+m26hIdLs4lA6JAox+lWpr62+yylLa23BTtzEvB7dq09j5ke18jx621aS7tJBM4MojIYjjP+Qazre4338Z3kgPwM8DkV6v5+hXcf2fUbG0abG1plgCFvxXpXK6n4GgtWM2i3XmJnd5ErfMP91u/wCNDhppqSpLUmSTKKfalZhtNVIWIjCsCGXggjkGpC/ymswHhuamRuapB+anjfmmBoRtVlWqhG/SrSPQBZBp4NQq1PVqBEmaQ0ZpKYBRRmkzQAuaRuRRmmk0AcHEVTxCmZP3QuMjjndjOPpmr6yZim56tj9ax3GLhp8nes+8fga0bW1vru3k8uHagbJkY8CiLRUk9BsTO07sD7ZqRiCdhIZj/DjJP4V0GkeG7YxqLqRmOMsqtgfn1rt9Pez0yFY7WCOFfRFAz70lQlN3bsV7VRVkedW2iaxfAC10u7cHoxi2KPxbFOHhfXBqi6Yluv2x4TclHnXCR525Jzjrxgc16j/awIzurJ1SA6hdQ3treyWN/EhjSeNFYMpIJV1P3hxwM8E5pyw0UtNTfC4iPtf3tra73tfpe2tvT8djibLwnq17fXtmwtYriyKiZXm4wwypBAIwR759cVcPgDW9pIm08egMjH9cVsyQR2NpOktzLc3F1IJbmeTAaRgAAOBwo7L2ziptK1rCi1c/d4jJPb0ohQhtIjFV4uq/ZbaffbW19bXva/Q4y/8ABev2ylvssM6gZPkyAn8jzWTpt7/Z90xfcIm4Zccg1659sJ67jXMeI9Ah1WMzwqEuxzkfxj0NE6KjrAyVW+kjk9b1SC8sVt4H3l5F3cEYA5/nitDw1IRppiP8DkDHvzXJH5JSpQqwcA54xzXT6BJ/o0g/2hWUZNy1LlFKOh0G+opbyCDHnTRx56bmAqpeedJbOtvL5Uv8LYzXC3Ji1K7D30ssc4GzKt8vX6VqZJXPR47qKVN6Soy+qtkUjXUS/ekUfjXHWFlFYW/lwyMUJ3Zds5NTmWMHmRPzrNzXQ09mdG+p2y9Zl/CmrqlrI21ZcH3BFc4Zk7Fm+ik03zGb7sEhHuMUucfszqHkypOeK5/xE/8AoH/bRf51B9ult3EaA+YUMgiDZLKDjOPrUGtTyS6KkkiGNzIuVPbmrTuiGrMoXW1pOSAaNL1aPSdWBlysToUdsdM9/pxUN4yK2W3c88VNoul2muXs32qaRRGoby0HLA+9ZU1K56mLWGVFeztfTvfbXmvonfa3/BfoUF8rJG+AyFRgg9RV7AI3AAjrxWFZaaNPtRBASsI+6jsWK/QmtO1lEUGw5wBk5rqTPHZK8hXJJwM81XnvUgTLEljwAO9U7y7ld8RRnaB1JxmsX7TN9oPn4R8/IwPBH9DVN6Elx5zK7MzEHtirFtfNDhW+ZKzlOWIJx9aVm2j+tZjN24hgvoTKjqswHBz19jWHIzIGVwVYdQe1V7i01OVxJazlI8fdVRn8zUTm5ij23TyO443SdcUPUaJ1lqzFJnFZSy81ZilwRSaGbMb1ajcVlRy1bjk6Uhmkr8VIrVSWT3plxqllY7Ptl5b2+/O3zpQm7HXGTz1FAmaYalzxWbaaxp99IYrS/tbiQDcUhmVyB64B6cirwbNPYCTNJmm54oJoAdmkJ4puaQnjrQB5674MvTiQ/wA61tL1pLMPbzN+5YlgevzYxz7VhTffm9N5/nSbwki4idxkfIvG729qhaSujW142PTdIDSwJJ0VufrWuBySxya57SfEVpex7YbeS1ZQAElGMY9K0XvlU7jKAvuetdS2OdmgQO9VbrUYbVTzucdFrMvtU3J5cRwzdyCM/Ssl5GkI3dQMUpSsItXWoSXUhZj+AqJJCpyDyKiG3aSSc9uOtKvFZjOhstVWUBJzhweG9a1AyPgqwOPeuPHTNX4PtEsIUyyBe204P51cZdAKHjbSIxaDU41USLIqyEH7wJwM+9ZWhuPJlAOcMK0NW8MrqMgl+13KOOxkLJ/3yarWelXWmLKJcMhIIZelZSj710aqS5LF9n+U1wMhDySBhyHI/Wu3Z8qa4WRgs8gzzvP86GETVhtmksY5EkVBHITICuS646Z7VajuTtAW1HAqKxfOluPV8UsUmYxhgOPWueR0In8+4PSKNf8AP1qOSS6VCfMAwOgwP6VQntEk1OG9a6dWiGAing9eufrU8twpU4JP0GaVtrDRtWwVrCORsGQLjcevWsjxGcaZ/wBtF/nWjabDpkbFcNkkZ9ScVk+JW/4lZ5/5aL/OtqWzMKnxIqJp82pzlIXjUqATvP8AKu30XSIdJswqANM2DJJjk1zPhdGa6numA8tVCD3auzhbdhQeeKuEUtSZybdiQjPOMe5oEWeSTUvADMfurwB60BgFyelaJGbK8lupHSsy9s1fjGR+dbhVT1pjRqRjaPyp2A5MxSQ8FSyD+IdR/jQrCSREyOT1z2rqDbRE/cX8aT7Jb94UP4UuUClbr0CHP0Nai2vnJtlSNh6MM0kcEa/cG2p1cr9PUVSQGddeGLGdcpuhf1j6flWTN4bvIDmJ0lUf8BP611ayg07fn2puKA4h457Zgs0bRn3HWp4peK6ySNXUh1VlPYjIqjJo9rIchfLP+xxWbh2GmZaSVgeILO31PxBpNvc28VxGtpqEoimlMaM6W5dNzBlwNyqTyOnJrqpNHkjJMUgYejcGuT8U6b4hW80+80e1DSwJPG5dY3XbIgRgVfIIKlh0NOmrTVxS1RX8OadFpniy2MdnBatc6MZpEtrgTwljNtzG+98jCjOWOGDD0ruleuA8LWGvReIHvNYgSONbQwRiPylRBvDbVSPhRnceB1JPU124fmiq05aBDYth6zNe8QWnh2xS7u45njeQRAQgE5IJ7kccGrYesjxB5TnThL5e77S/kebjb5/kS+TnPGPM2deKmCvJJjbsjPsviRpF9fW9pFbXwknkWJSyJgFjgZ+bpzXXs3FeQMde/tnw6PEHm/aRfDZ9r3fatm+P7+7nZnO3PffXrJbirqwUXoTF3PPJGb7RKoBJZ+MVt2mkuzedOOnIQ/1qtotmxmN3OMSS4IT0FdVHGGCopxk1mo3dzRydrFa2tEeRWcA46ZrYXgdP0qWCyREHrVjyhjFbJGZmXCF1Pybh/tVlSxskhYYK+gOcV0E0LHpnFUJbTd95D9aGu4rGeuGGQcg96lwVHIxxQLJ43wpJQ84PY1JFbyPIN6kCs7APtoTJyw/CtiAFQFGG/kKZBbNtAVMD6Vdjt9uDu/StEgI2gZsjPFR+UcbWwRV/JUdqacHqoosM5+90h8M9vgn+56/SvK7pnivZ1kBUo5yGGCOa9yManpWJrnhmz1qFhIgSbHyzKPmH19R7GpcSk7HA6ZLnTfYyioP7U0iI4M/mEdVG5qvvo95ocfkXKgr5mUkX7rDH6fSsUxLg4AGRnpXPyq7ub82mhbXxFYRL+5sJm91hC/qail8UuylE07H/AF0l/oBVB1wuSKrSLycetUox7CcpHY2N41zpdu5Chj95V6DmqXiQ50k9/nX+dT6S2NDtwPU/+hVW8SErpJYEgiReR9aKfUme6NvSYVtLWK3PVB5kn1xk/wBK17WclkP4GvO7bVNYTzZosXSIAGVx8wH1HWt7Q/FNhd3CwyMYZiw+STj2wD361sldXRB3DPmBvZQfxNJv4wO1QRSfIynttH5Z/wAKW3O5QT9aQiyDj8KU8etNjySgP8RqYDLsKoRHhsZBz7HrSgZxnipAuD0p20MMGmIjVcHLdO1PU7QTgcdKXDDjqPbrS7AT7UDEXGM9T7UvAGScelKR8vFNZGbgDJxn6UCAE/UU4PjqKaqsKcFGepoGIDu5zkVQudXt7e4aExzyGPBlaOMsIgRnLH0xzxnoaz9dvrmC/EMUzQKsW8Mq53Hng0mkSarFZmWG1imF45l3GTb5bHglhjkZGQB2rGVTXlid+EoU5XdTtorqN/m+y6dfwe15UF3EkyqGR1DK2MZBGRVaawRFLrIEA67jwKyr3VR4Y0u2so4vOn2ZLM3ygkkn3POcVxOp61e6k2bidnHZBwo/ChzVtdzCpSiqklB3jd2fddDrLzX9Ps3KfaBOw6iHn9elcn4q1RfEFhHZpGYVSUS72O4nAIxgfWswsehb8BUyQoIxJJvIYkAIOfrWftXF3RpRwrqtpdNW3okjHstLaxv7e7SdWaCVZQpTglSDjr7V2qeNpwcTWcZH+w5H+Nc7PGYnCA5BAIOMZFQshJJHSq9q56sipQ9lJwkrNHoNohU7yeRW1aEEqR1A4rIjwqgenWtWyYF87uDxg1qtzmZvQA7AT/jUu3n1qnFMFHOfwFXEbeMg8fStUSG3PagxKeopScDpQHJ6KaBjRAuOlOESD+EU4EntTgCaLCCPC5A7U84NMI5pNx+tADiKZS7ucd6XrQMAKMU4CnAUgIJrSO4iaOVFdG6hh1rhtZ8E3EUjSab+9hPPlM3zL9D3r0IA+lLt46VMopjTaPCbuB7a5ZLgPFIvBjYYP5VQlILMR0r3DWfD9hrVuY7qEFwMLIvDr9DXlviDwff6KxkjJubUniQDlf8AeH9ajlsXz3Et53t/CzTpjdGjMMjjINcjda/f6jthnlXyiwJVUAHWuqhTOgm0kGHdGUj6msEadBHkIgDDjJ5pUWlcqfQzNRuJRceSjOoxyFJ5qkLe43ZWNwfpiuiaEhyccnvinLbtI+1RzjJJraMuWJm9WWtF8a6jpgWHUomuICMb8/OPx7/jXYaR4y0y8/cvKYCeFaQYH51wl9p8luq7gdrDowxWVJaFTuhO09x2NK8ZaoNVpI95tp0eWPDAkDBq0FzIfevCNP16/wBKlQxzPEVOQCdyH8K9E074i2UkafbYZIpMYZkG5D9Mc0ttwt2O1jyTzUiAEMe386qWGqWOoW7TWdxHKu3+Fun1qzG6+XtHUUySRBnPrUmwYyQM0kQ5+tS4z+FAEXl/7JpPKI/vD8KtKvQd6ftAHNAFFkIwcZ+nWkVeMg1eMYxyOKikiKnIFAHH+IZFe9aNl4SDIIznJrX0ubztLtpSoQNGOBXG31/JJdXUkjEscgc+/A+lUx4lvYdLGnptAUEbwOdvpXLCfvNnTKF4pDfFmope6qVQgqp4+g4H9aw9hPPb6VPCizTGSToDlmP8qjkYyMzB+GJNRe7NLaAYlW23Fcs7YU+gHWpCPJVYnQNgZIyQQTT5QPPgh6hQo/Pk/wA6Ri0zvJgneTj25pb7mtKrKk7w/JNfc9CKaLe6zsScjGOwx6VFMgDnaqgHmpHDeU3HAbiopUOxGLEn0PaqVkZ1JucnKWrZ3UYwN7cDsK0LdGO3n5j0qnbYuJd7AbB90e3rVqzuFSaWTGQjEJn3OBXScRvxJsTLct6VMqEjk1Wt5N8QXOSOvNXRitFsT1ECY/8Ar1IOKMegpQKYxwNLmkFOxQIKTFOxQBQA0oDx2oA7VJgAZJA+tVLjUrWAZL7z6J/j0qXJR3ZSTexaAp4FYcmvHnyokUf3nbP8qoTazcuSDdED0jGP8KwliYLbU1WHmzrunXge9RtcW6fenjH1YVxj32RlvMf3Zqga7Yr8kYHOM1k8Z2RosN3Z2p1Cyxn7TH+dQS3mnyxMrzxMhGCG6EVxjXUiNjCj8Kja7lR/mfPHTFT9bk+hX1ZdyPXPDkAkW50u+iaNSWa3LjJ46AntXKPaMCSy7eeldHPfZbjk+9RWcUWoX8dtMRGsnyh1HRu3604VrvYUqVluc8YQByCaktP9Hu0fbuU8Ee1beo6DeWEpSWLKn7si8qf/AK9Z8lu9q0bSpt3/AHcitpPRpmMV7ysQ+IJTNIieWVwM81glD6V0urZuJ1yAfl7DispoO3Q+hootKCQ6y99mU8SsMFciqxt3iO6Fiv8AsnkGtlrfHWmGId62TMloZ9nqctnOHR5LaYfxocA11dj451S3jAlWG5UdGPyn9OK52SBG4ZQR71UNvLCd0D4H909DSa7FJrqezeHfFtjq7CIN5Nxg/uZDyfoe9dOjgjrXztFcgvtmQxsO/aum0vxNq+mAGK68+L+5Mdw/A9RS57aSBxvse2DCIX/KhRnk9q47SPHun3+2G5Bs5SekhypPs3+NdTFOs5CqQB296tO5DVtyyuDk/wAI6mkyCM4wP5UsnaMdB1pJlItJMfeKkChgePXR/eTnHVm/nWNM/wC9PvWxeuqwSPkA9Dn1JrBc5lGTXAjuZYmJWOMLwCuSPU1AuAVBIAz+VS3vytGqsD+7B61DCf3yE4I3CmnoDLYkT7aW46sR+tQx3Q8vjsaRQPtr5OTlh/Oqa5UY7UITLXmuYCSQPmApkxOE5/hyaiYlYVHqSabO4DgA/dAFVYls7bQ9VguFaRsoY8BlPb/OKvp/x5bh/FIOnsK4XTb1bC8ErndEQVdcdRjrXcwMr2VmUOQ5ZgR3HFdLRym1YttC5PzVsxtwM/rWDAc3W1eQp2j3rehYL8g5I4J9KcWJlLUdesdKmSCdnaVhu2RrnA9TVjSdVtdYgeW2LfI210cYKmuQ18G08STTNjMiq0bMMjgYIrS8BwOqX9wwwsrqF98Zyf1qFUbnymrglDmOvC0oWpAtGK2MSvPcQ2y7pXA9AOSfwrLn1pjkQRbMHGZOv5Vlz6jvv7lkCnMjKrE8EDj+lVd0jlnLuSezE4H0HauGriZJuMTsp0I2uy3cXcs7/vC0vHQ9B/SqZM7sAoUH0A5prs4GWbH44qA3JjJZWJI71yNuWrOhJLYdNkDLsxA4NQCVF5Ckn3NLKWuP3jLjC58zPXPbFJGm5SW4RRyaaQ7jHumyQAoz7ZphmlZcc/lTzOBwi4X0Ipjt8oZeh4+lADCXJBwcjuTUUpd1wzjOePYVPGwY4Y8Hv6VAyqpOcUAR4Gccc1DJ8rHG7K89cVOSpYBc/hUJ817o7kCqBkFuh+lUmJnVWniu2lshDqcTiUDBZRuD+/sa5PVDDcXm+1eQxpk4l69elLOhU8kZ9qiRNwlPPCGtXWk42ZkqUU7k0jBwR7cD0qnIuPU56Zq2q/vAeCeOvSrc0KPkvMm7sFGa0orR2M6z1RhtEp+vpUD2/PetWS1c4Ygj0JqIxsOGGR61tcxsZBgIzUZjPpitWSLI4Xj1qIxZHSqUhWMtrcNwQDUP2eaE7oH4/unoa1jGgNNKL2H5079w2M5bpT8kyGNvXsa6DRfE+paIyeTL59sOfKkOV/A9RWVLAHGGUEVUNvLD80Lkf7JpcttYj5u57N4Z8W2WvXP2Yb4rraW8tx1x1wehrpp2whAPOK+e9M1yXSdUgvFHlzQvn2I6EfiMivWNU8WRQ6NHqFsolEyqYxnuemf89qpS01JcddDiNahMNzcwddkp2j8eK5yY+XOR6VsXEkkzSPJIWkfksfWsWf8A14BOenNciWp1sluHYuq5/gH8qjGetS3C4kBx/AvP4VCUJPX8qBMnlcJciUfxYcCorhSkpVAdrcqfUGlkZXhRD99M4PtUe7AHJPpTEK+DMqsflTioWXcSxPJOal6DPFMbpxzTTExwQFc45FdP4SujPMlq3S3b5f8AdOTXOY+ar+gXK2OvwyyOFR1aMk+pHH611M5Ueg6W+3fMTyMhc+prXs5csc554rE0wZiiDdyWP0/yK0bRyz5HqalAYviWUP4iSOXb5UUQIBPc9/0xWr4HlJjvbfIKRyAp64Of0rnZ5pdQ8QX8u1AEfygSueF45961fDU403XJVmlAiuYiSW4wynj9Ca51P99qdLj+6R3oFZeual/Z9nsiI+1TfJEvp6t9B1/KoLzxHBHGRagSSY4LfdH+NcvNO01y9xPKZZn4LnsPQDsPatKteMVZbmdOjKTu9iWPy4UwT8qjHqTUZuHlXKqI0/vHrVeSQyt5S/8AAj6CkdsnjOPSvOO5Ic7qDkEsfU0xWWSQKx+QckVHhj2x9aI4/wB2WJPzHt6Ci4xZZdzM2OOwpXlCxKgOMcnnqaRY03op5y3c+lBOJccAE4zRuBXJcnhTj1xQqPIxQnbxmp2BMWOhL9T+FQs8cJUq+856CmgGGIjjcc+1KyZAbb1GeaYbgk4VG/E4pjzM6bRuG3OTt4+goSAcQ4/wFMdguNzgfU1A7MwILNz6nH8qi2qOTtH4VSQie6uECrtyfwqETsYpf3e0bDyetFw54wTUI3Mkhzxtp2VhGjaxeffQxNwruqk/WtaeKe2leNhBBsOM9zWZZER6lbOxwBMmSfqK6bxIkJ1RX+ztIXiBODx3rpobM5q+6MJzE5Hm3DyHPAHAqBoHctsibaO5rQQXJH7q2SJexxTJIWP+vu1x3Vec/hW1kzG5lGPnr+FRPAOoFX2SDBSEOW9e1RSwSxkK69RkZqWmh7mZJDjqKhaMVqFAR7VBJESPl5/nSTGZ5jPY8Ux48jmrexelRtGR6VakTYzprQOCCoI96gVLyPy4FuH+zpJuWMtwCevFa5UkfdqJogSCaq+gLcklbKsMkH1rNKgzkk54HWrznKnnrWZLNsnYBWY8dBXMk3ojpk7blnA7c0xlO48n/Co/NnfG1ET3bmgW8jn97Ix9ugq1Sl1M3UXQaWRSdzAU3eWPyoSPfiraWip0UA1IIB1INWqaW5DqNlVY3bG4gD2qdIQPf6mpVTn2pxRsZxmrSS2Iu2VsDPvTdy+dGR95XUj8DUAl+cnPQVCXJO4dRTchHqmnOfLOTyRtFalv0G3gP0+mawtMuY7uwt7iFgUcYJHZu4+oro7NDKdwGATsX2FSJnIhzHqupIDj/SmOPwFKWZtRtcc5Eg/Si8TyfEmpL2MuR+QqEyBNRtSRxlx/47XDUXvs7qb9xGl5b/xOB+NRSgIygv8ALtJOOvGKPP5OyHI9cYphaQyANjGxuPyrHU0LCBEXCgAdeBUbzBfTH1pjqwGDnFQ7Dg8U7DuPeXDccewFC3CPbRhCSNtRuj+W2CAcGm26RhRvZVAXpmiysBIsh81ccYB5pjZ3BsnOc0skkMcq4YHg1E12T92Pj1JpgWGHBJBJGeT9KqMirjeRjI4qOS5kZvmbHsKQbSQTknrTEOkljHCnj2FRGVkTcOFz0J60jtzlUOPpSSK/lqoIHc5oQEDzM2cDPsBgURq7DcAOevtStDuHzE49qdGscYITPvzVXENumbfgc8DpTER/Kk7fLU8zDd8o6gVGmTE+M9KTYItbikwJTdt556H2ro2vbjUIbWSMhGWPZIG9Qa56N914qDkgg4/GtqGF0L43ZPO0fdroouyZhWWqJDaM/wDr7k89gacILSJdyoXYeozn86nMOxMk5759KY8YOSCTWrkzKyIVmLjJUR/rTJJYgMsTJxyCKVkIHFV5FIxx+lQyipMAzfu1wD75qIwnuMe9XSjDnNRtwMYAoCxSaNCSSpPvioJIW5KEY9hV4ofwphjxkg496dybGb5Z/ipGQ7SB6dcVeZQeuM/SkaL6Y7U7isYrKfIaQ4BHb1qJYSw3FcH0qe5hbf5eSqhjlcfezVvylAojpqXPoUFhxziplHH9KtiIbaTyTnpVcxnYhVFfocexp/lYp6xfN0xUioFHBNFwsVimOcUbARwR9KtGMMMgY/lUbW5HOfwHNFx2MKO0YsQfSka1KnkGtLndSPGSc8/WqJLng+KdNRnjV28jy95TsW6CvYdMsxDbK0mMgAgf5715f4LjL62YAMh48k+mCK9bZ1XBUAJEufxqkTI8518BfEtyehJ5rJZz/aVpzj944/8AHTVnUrn7Rr90xOSHK/kBVOY+XNHJzlJM59OCP61w1P4jOyn8CNYE5+9+lRXEio6/vB9xx1+lZTXLTNj52/HilH+sQEDkMMCs+Wxpc1Tew7QRljjsKqtft0VFH1OaqbS3Td+VOS1kJ5AH1NSx3J3lkI5kAGOgFRGTMKfxHH5VKLYY+aT8BSoqoxjxwfmFAFEviVC0RdQ2cdqssDIT8u0A9/SnTAvEYkfZu4LAZIFNTG0Jv+ZeKYxPJGQT+dKAiucEdO1NZCSBg596SRSAFyM98UARXVxdSXaQ29uqw9N5PWpJF2E5bNCkIV7/AFqQZY/KM/QU3sBAQxHC/iTTSmPvOPotWxbueq4B9TThbqvcmloBUYKyjrmmn5LeQ8fdIxVt1RV6Cs+6uI44XVmALDCgnrTWor2Ltuf9IjPfeB+tdTHuYDGBXH2yE3cTsxJDjA7da66DK9q3pKyZhV3RaMYbhizfjUZTZ93p6VMrZ6nNNfBzg1qZFYqpzjPvUDoMcCrbKCPf1qBx8vIyO+KQFKSI9zxUDoR247VoPGpGagZMLxzUMozyvJxTG3dxV8x4OelMMYAyRRcZR8ssRxTtuwYxn2q0FB4xjFNeMDGaYiB1Upgge2armBc8jBq2yYHTikA5wcEDtQmDKnk7ehpPLY9uKuFRnKgf1qMlf4qdybFcoqnnrQNucED8ealZMqeoBpm0oARincLCMRxUbEZqUxj7xJXPY1G6kjAH40AZ/wCP5U2QDbTsYHpQQcd60IOt8ALClxdvjMpCqDj7q8/zOK7LVp5YdOXyvl3thm/uj1rzzwlctb6uEzgOozz6GvQNUXfpSNwSsgPPTOcVaZLPKbRibqdirKxmYsG6g5PX3rQlAOc47Hmsexlzf3SmXzf3zHf/AHuetbErdScdK4q3xnZS+AgC+gJ/QU5VxNFnA+boPoaeEXPOSfc08jheP4hUMpE0S7Y8cnnvSFlzgmlzx8oXqc5OO9JtO7Jx+BqbFDmkH8KHHrULlmGchSO9S7Nx+Yn8KYYcDgAe5pWQyOTayKVbr1Gaj2/MOPpirKwL3yTUoXb0A/ChsCsEkHKkg+9PW3B5Y8+1JcXVvbjM8qRj/aPJ/Cs59fg3FbaCWf3xtFVGEpbITklua22GLDFcgevNO3kL5koWMHoM8Yrn5NQ1C5xtMcK+ijJpVsZLghp5ZJj/ALRrRUH9pmTrLoasuq2sRwsgdvReag+13Nwf3UO0HuxpbawRQNoUCtGK2VTzya0VKCIdWTKKW0snMkn4KKpa5YJHYJNwrLKoBY9c108cSjnAqjrca3FsbYQyO2Q64HHWrTSJV2zN0vMt9Gh7Lvwe9djH8uBgY9qw9J0We0uxNIiKNmBhs10PkEDpj6GlBWQ5u7HZHQim8EcdKMHoTn3pMndjqKbJG4IpGxjpTnIHUgU3KkHmkMgeMZzjr6VEVx0zUz/Xg1CVYPncMelJjEZd34UxlJXBHJqz8pB28Y65qInPOefWkBX8sDOaaFGOnIqZgpPvT0xtwQKQyttDDjkVG0WPrVsgHtxURI+tAFTac/eIpxUHqMH1qXYM9KAB6UIRWMXJwaieMkdD+FWyo3ccUn3iQDyKYiqAANpHAphQZBQ4q2Qc5IFRug7UwP/Z", "path": "images/4pts_ADE_train_00003917.jpg" }
depth_point_99
images/3pts_ADE_train_00004218.jpg
ADE_train_00004218.jpg
Multiple points are circled on the image, labeled by letters beside each circle. Which point is the closest to the camera? To answer this question, let's think through it step by step, and we know the image is 336 x 336. First, what are the coordinates of points in the image? Second, what is the depth map for the image? Which point has a higher pixel value on the depth map? Remember, higher values indicate that the point is closer to the camera.
Point A is located at (x = 28 y = 98),Point B is located at (x = 232 y = 112),Point C is located at (x = 282 y = 147).The depth map for the image is <DEPTH_START><DEPTH_START><DEPTH_59><DEPTH_67><DEPTH_59><DEPTH_29><DEPTH_49><DEPTH_74><DEPTH_36><DEPTH_64><DEPTH_25><DEPTH_19><DEPTH_59><DEPTH_67><DEPTH_35><DEPTH_29><DEPTH_31><DEPTH_29><DEPTH_36><DEPTH_36><DEPTH_44><DEPTH_44><DEPTH_70><DEPTH_67><DEPTH_5><DEPTH_49><DEPTH_31><DEPTH_3><DEPTH_31><DEPTH_29><DEPTH_36><DEPTH_44><DEPTH_59><DEPTH_59><DEPTH_67><DEPTH_31><DEPTH_70><DEPTH_36><DEPTH_15><DEPTH_29><DEPTH_29><DEPTH_64><DEPTH_38><DEPTH_74><DEPTH_35><DEPTH_17><DEPTH_30><DEPTH_36><DEPTH_72><DEPTH_19><DEPTH_19><DEPTH_11><DEPTH_31><DEPTH_5><DEPTH_67><DEPTH_15><DEPTH_66><DEPTH_36><DEPTH_29><DEPTH_74><DEPTH_29><DEPTH_15><DEPTH_67><DEPTH_25><DEPTH_94><DEPTH_2><DEPTH_64><DEPTH_25><DEPTH_19><DEPTH_2><DEPTH_78><DEPTH_39><DEPTH_61><DEPTH_42><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_2><DEPTH_41><DEPTH_57><DEPTH_50><DEPTH_63><DEPTH_29><DEPTH_41><DEPTH_94><DEPTH_16><DEPTH_94><DEPTH_57><DEPTH_57><DEPTH_57><DEPTH_77><DEPTH_15><DEPTH_29><DEPTH_69><DEPTH_64><DEPTH_0><DEPTH_42><DEPTH_121><DEPTH_42><DEPTH_25><DEPTH_31><DEPTH_74><DEPTH_END><DEPTH_END>. Since point C has a higher pixel value on the depth map, the answer is that point C is closer to the camera.
C
long
3
[ "A", "B", "C" ]
<DEPTH_START><DEPTH_59><DEPTH_67><DEPTH_59><DEPTH_29><DEPTH_49><DEPTH_74><DEPTH_36><DEPTH_64><DEPTH_25><DEPTH_19><DEPTH_59><DEPTH_67><DEPTH_35><DEPTH_29><DEPTH_31><DEPTH_29><DEPTH_36><DEPTH_36><DEPTH_44><DEPTH_44><DEPTH_70><DEPTH_67><DEPTH_5><DEPTH_49><DEPTH_31><DEPTH_3><DEPTH_31><DEPTH_29><DEPTH_36><DEPTH_44><DEPTH_59><DEPTH_59><DEPTH_67><DEPTH_31><DEPTH_70><DEPTH_36><DEPTH_15><DEPTH_29><DEPTH_29><DEPTH_64><DEPTH_38><DEPTH_74><DEPTH_35><DEPTH_17><DEPTH_30><DEPTH_36><DEPTH_72><DEPTH_19><DEPTH_19><DEPTH_11><DEPTH_31><DEPTH_5><DEPTH_67><DEPTH_15><DEPTH_66><DEPTH_36><DEPTH_29><DEPTH_74><DEPTH_29><DEPTH_15><DEPTH_67><DEPTH_25><DEPTH_94><DEPTH_2><DEPTH_64><DEPTH_25><DEPTH_19><DEPTH_2><DEPTH_78><DEPTH_39><DEPTH_61><DEPTH_42><DEPTH_41><DEPTH_41><DEPTH_41><DEPTH_2><DEPTH_41><DEPTH_57><DEPTH_50><DEPTH_63><DEPTH_29><DEPTH_41><DEPTH_94><DEPTH_16><DEPTH_94><DEPTH_57><DEPTH_57><DEPTH_57><DEPTH_77><DEPTH_15><DEPTH_29><DEPTH_69><DEPTH_64><DEPTH_0><DEPTH_42><DEPTH_121><DEPTH_42><DEPTH_25><DEPTH_31><DEPTH_74><DEPTH_END>
28
98
232
112
282
147
null
null
null
null
6
52
85
null
null
{ "bytes": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFQAVADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDs9AURfELXIv743f8AoJ/rXdqtcRaDyfindr/z1twf/HB/8TXdKK8yp8TOyb92PohQtIVp4oIqDK5UlXisHVV+QH3ropRxWFqo/cn61BqmVox+7b/drnpv+Ps/Q/zFdDDzH+Fc9ccXJ/H+Yqol9SWyONRi/wCBf+hLXY6X8viq+H96PP61xVu22/iP+0381rtbI7fF0o/vQn+ldVDSRlV2OjooortOUK8y1w/8TO//AN5f/QjXpteX66f+JnqP++v8zWFfY1pbmNqH/HhJ/uj+tV3GQ3/Xyv8AKrGof8eT/Qf1qu/Rv+vha5ToHaaP9Hi/3CP51tWw+QVi6d/x7xfRh+prctvuCkBaUcUuKFp1IBuKMU7HFLQAzFOApcUoFMQm2jbT8UYoAbt4oxUmPlFGKENkeKNtSYoxTERbaNtSYpMU0BHigrTyKCKYiPbSFakxRigCEr7U3bUxWk20AQFKaUqwVppWmBVZKiZKtstRsvFAF65HlfFK0b/nraD+Tj+ldworiNbIj+IOgyjpJEVz/wACP/xVdutRV+JhL4Ivy/VjwKCKUUGszEgkFYeqr+4at2QVi6oP3D/SpZtAzrblAPaufuuLhvof5it+0PyrWBecXDfRv5iiJp1Gg7blT6M/9K7OJtnjGD/bhI/8dBrin/1uf9p//Qa7JefE+mv/AHoh/wCgmuqj8aM6mx1dFFFdpyBXleuN/wATHUv98fzNeqV5X4iG3UdT/wB8fzNY1tka0tzK1D/j0k+gqu33XP8A02T+YqfUP+PeX6CoG+5J/wBdU/mK5DoH6f8A6iP/AIH/ADNblt/qxWJp4/cxj3f+Zrcth8goAtKOKdikWnVIBiiilxTEGKAKWlxQAAUoFKKcFpgPCfu196TZVoR/uY/pS+SfSslI1cSnto21YZMVGy1aZDRCRTSKlIphFWiRuKTFONGKoQ3FGKdinKKTGR7aNlTBeacI8mpbHYrFKYUq6YuOlRMlCkNxKZWo2WrRWomFUiWiXxgRB4j8NXHQecyf+PIa7ha8l8S+L7XXn0429tLE9rP5hLkcg/SvWUO4BvXmpqNOV0E4SjTipK25IKDQKKgwIpOlZGpDMMn0rYfpWVqIzC/0NQzWBiWZ4H1rBv8Ai4f6PW3Znj8axdR/4+ZP+B04mhG/LD/fb/0A12MLbtV0WT+9CP8A0E1x6jc6D1kx+amuqs3y3h9/VAK6KXxImpsdlRRRXccYV5Z4m/5COqf7w/ma9TryzxTxqOq/X/Gsa2xpT3MjUP8Aj2l+i1A3+rk/66L/ADFTX/NvL/urULf6uUf7Sn9RXKdBLpo+SMf7T/zNbluMKKxdMGfLH+2/8zW5CPlpMbLIHFOpopwpCFooooAXFKKQUopgOAqRRzTVFTRrkipbKSL2FWOME/wipQFK9RUAtbm71AwI2IUhRjwM5Of8KlGhzFmG9xjofWuVXa6mnOktyvKBk4quwqWKKRftKSj5opNmfwpHXFbxYpFcimkU8imkVqjNjMUYpaMVVyRMU5RRinKKTKQ9Bk1ajhBNUmcRcsQB6k4qWLUUTqCR6isp36GkWupcaEAdKpSpipjqcLDAzVd5hJ0zURUluU2mQMMVA44qdjkVC4rdGTOpj0yyQgraQjHogq+vpUS1KprMyldjxSmkBopmYx+lZl+MxsPatN+lZt79w1DNYHOWhwT7GsjUv+PuT6v/ACrVtziVx71k6l/x9uf9p/5U47mg21+ae39DPGPzGK6GzbFnoTf3Jdv61zdm2Ht29J4T+tdDEfLs7If8875l/wDHzW9P4kTPY72iiiu84wryzxXxqerD2H9a9Try7xdxq2qD/ZX+VY1tjSluYl6c28n+4tQsfkm/P9RUl0c2r/8AXNP5VC5+Wf8A3T/MVzHSXNKHzxj/AKaP/M1txDArF0n/AFsf/XVv51uR1L3Bkw6UuaQcinUhCiiilxQACnCm04UwJF6VbthlxVRelWYG2tUS2Lib+nqPt1ye4jjH6GtOsfSpQ+pX65+6sX/oJrYrqwf8Ff11OSr8RizoN9yfWX+grNnGDVtrkSNcc/8ALdh+WKpztk150L8zfmdsVaOpVbrTDT2PNMrqRmxKKKBTEOAqVFyajWrEQ5qJPQuKKmrW5ewIX7xZQPzrp4tGhit1jAzheprGugG8hP70yiutp0Kca11PoTXm4W5TL/seExkNGu49xXMwWzpcaihJ2RyBFye3Nd1XLgA/a2/vzn+VKvSjRS5eoqE5SvczWTaKgfvV6cAVSkpRdzWSsdcpqVfWoFNSg8UjBkoNGaaDXgPxf0ZNc+Lem200N3LbR6MJpls13SlVeY4UYPJOF6HrV04c7sZS0PfWNZ959015D8BtOl0fWPGemzf6y1nghY4xnaZhn9K9dvD8pqakeWXKaQ1Vzl4ztupB71laj/x9t/vN/wCg1p5xfSD3rL1A/wCln/eP/oNTHc1IIW2wI3o8R/WuhuG2ROv9zUm/9CJ/rXMK2NPY+nln9a6HUmKpfgdrxX/MA/1ran8SFI9IHSimxHdEh9VBp1egcQV5d4w/5DGp/wC4v8q9Rryzxef+Jzqf+4P5VlW2NKW5gznNkT/0zT+VRSnAmH+w381pznNiP+uSfyqOUjMvvHJ/7LXMdJoaSf30f/XZv51up1rA0j/XR/8AXY10CjDGoe4MlFOFIKUUhC0tJS0wClFFFAEgp6sRUYNLmk0Mu6LqMK6rqnmSqpLRgZPotdELyIoCJVx9a4WbTreVjIY8SNyWBPNVTpIX7kki/jWKpP7MrClBN3Zp2F35qSnOczuf1q0z5rMsbb7HEIwxYZJyaubq05Uti+a44mmmjNNzVksdmjNNozQIkBqeNsVWFPDYqZItMdNPnUdPjz96cV21ectN/wAVHpak8CQt/n8q7tZlPRhRCuqDs1uZVk5WLLtsjZj2BNcfaXAksw/9+Rm/z+Vbur3nkaTdSFvuxNj8q4/TJv8AiXwDP8JP5mlVqqvrHoVh1yp3NGZs1Tc1K75qBjxSirGsnc6tDUymqympVNIxZODXgvxu0vxDfeKwukaHe3tvc6XDDLPb2kku3bPI+zKjA5CEjrwK93DVjXHi7QLXUhp82q2yXPOQW+VSM5DN91TweCQfzFVCp7N3HDD1K11Ti3bsrnnXwTtNbgudfuNb0m60+SSKyiQz2zxeaI0dM/N1OApOO5969OvD8hq27ACs+7f5DSqT55cwoxsrHMyti/es2/P+l/8AAv8A2Wrly+L81Qvm/wBIU/7Q/kaUdzQphv8AiVTH0UfzNdBqjc3w9Xhf80WucBzpVyPRP/ZjW5qb8zn+9Bbt/wCO/wD1q2h8SFI9QgObeM/7A/lUlQ2hzZwH1jX+VTV6BwhXlXi4/wDE61L/AHR/KvVa8q8Xj/ieaiP9j+grGtsaUtznmP8AoI/65J/Ko5j+9Iz1jk/kKef+PIf9ck/lUcx/0lR6rJ/6CK5zpNHReZof+u1dFj5yK5fTJWhRZF4Ky5FdIswfljz7VDTbBlgU6ogR2b8xTuexU/jSswJKBTPn/un8OaN+OoI+tAiSimBwadnimA7NGaZmjNAEobOM+lLkHNQh+BQX96mxTYy8u4bGznvLh9kEEbSyPgnaqjJOByeBXK/8LT8G/wDQZ/8AJWb/AOIrU8WNnwdrf/YPn/8ARbV4/rVla/8ACPXwjOjsbfR9NnW3itfKuYXdLfdIZBGA+S7ZG8/6zP8ADXRSpqS1Mak3F6Hvm6kzzUe6jdWJqSZpc81EGpwbmgRLmlLcVFmgniiwFG7sXuLqO5Sdo3jGFwKeLvWIeFuVYe4q0KUgUnZ7opXWxmahf6vdWskDDcHGCFx0qzZAxW0SMCCqAGp2UUzoaFypWSB3vdkpamMaTNITSQzqFepFkHrXMXHiXTrNd017EPYNk/kKxb34h2MVtcG13ySpGWj3qQrN6etNUpy2Rk5JHonnAd687/06x8N33hmTQ7q9vLhpit4QnlT7mJEzuSdrjGcHJ+VeeRjl0+IGtX3ImiiQjjYoGT+Oagl1zVLxiLi7lA648w4P5Vt9QnLVux0YbH+wv7t1dPrur229dj1gajBpenW8F3frJJFEqNLI2GkIABY5JOT1rEvPGWlpuUTmTHXYpNebuJDONznB7g0027LLnJbPY10RwCW7OSVZyd+50U3iiGe9LrBII88sccD1q5dTB3Ug91/rXIgBI2XrurXguPNgVj1wlZYjDxp2cS6c2y7G3/Euux/sN/6FWxqD5RT/AHrCA/lmsKFv9EvR/st/MVqXcmba0b+9pqfoTWMdzR7Hruntu021Yd4lP6CrFUdFbfodi3rAn8hV6u84nuFeV+MDnXtQ/wCuY/kK9Uryjxcc6/qAH9z/AArGtsaUtznT/wAeg/65J/KmTc3kf0k/9Bpc/wCij/rkn8qbL/x/Rf8AbT/0GubqdBPZf8en/AzXTqAc5GeT/KuXsf8AjzP+9/hXTxHj8f6U1uNkoRSR9R/KlC4HDHpQp6fhS54/A1RI7Dg4BHXFG+QDJBPGeDS5+b/gVA6f8BNFhB5gzhl74zio45CpKEkkcZPepCeD+FZ6yH7Q/puNJx0Bsvl6TdxUW/iopriOFC0sioPVjipsMsB+B9KC9YkniLTYeDcbiP7ik1Ufxjp6n5Unb/gIH9ajmRoqU30NfWrWTUtB1GxhZVlubaSFC5woLKQM47c15Tc/Dbxrd2cdnc6/bz2sQURwSXkzIgUYUBSuBgcD0FdxJ41tFQ7LaZm7DgZNPtPGNlOuJ45IHHUfeH4H/wCtVxrqOiZo8BWlT9ry6fL8t7eex1G6l31kwa3YT8R3cefQnH86vLKGGQQQe4NJWexg01uWd9ODVWD04NTsIsh6XdmoA1ODUmMm3Uu6ot1LmpsNMeTmmmk3UUAFB6UmeaWgZ41vd1O9zmp0jQ27DOHIxnvVXPT/ABq1DG31757V7qRwswrGZoHHztweQK6K3lEwDFuvtXMhCtzIhIDBzW7ZOdo3dvepgBqxDchY9qcH5J69qbCN67s4HpmnoRlmHTOK0EMGGU9qdZSYjkX0x/Oonz8zdBUNrKCZiOhUYPryK5sVG8DWm9Tdt3zHfD/Yb+lX7iXOn6cc9dOYfkax7WTJvR6xk/pVmWbOl6Xz/wAukq/yrzuV3Oi+h7V4XfzPDGmtnObdf5VrVy/w+umuPBenFgfljK5+hNdOWHrXZzI45LUWvI/Fjf8AFQ6gPZv6V6y0irtyw5OBXkPils+ItR+rD+VY1pJqxpS3MMHNuOf+WSUS/wDH9F9X/wDQRQMeQP8ArklJL/x/RfV//QRWHU6SaxP+hkf7VdLAflX8P5VzNgf9EP8Avf0robVsxr+H8qaEy4p6fhTs8fgaiU8D8Kdng/Q0xEufm/4FQDx+BpoPP4ijOBn2NAFyGJJbb5xgkn5h1p1vZxxwNCxD5Yscj1NSW6FYEB6gc1LgHqKdmNWOf1jRtVkX/iWXcUa/3XBB/wC+uf5Vw+o+HdfhctcWk8+f4428z+XNesYI6E0ZYdcGs3BPc2p1XDZHhrs0DmOZXRh1V1wRTGdDg5r3Ca2guRtnto5Af76hq5zUvA+kX0m+KN7Zv+mBwD+B4qHR6nRHFJ6NHl7KGwQw3CprOFHkPmEZxxXX3Hw6YZ8nUyPQSRf1BqgvgDWBOVE9sI8cSbzg+2MVn7FvY6vr37v2d9NvO29r9rmHdW0cah0JGe1RW99eWpzBcSL7A8Vf0/w9qeq6fc3NvsIgkMYQnBcjrj9KzJobq2O24t5YyODvQinySW5ipRlodDZ+MLiIhbuISL/eXg10thrVnfj9zKN/9xuDXmnmqRyKVX2sGQkEdxTUmjKeHhLbQ9bElPV64DTfE9xbbY7nM0XqfvCuQ1C7vX1OSW48Xajp66hdTmxjV3MSxiVkDSNvHlruUjgNjaTjpnamvabHFVjKlue47qdurz/4V6jeah4ZuZb67nuZVvHUPNIXIGxOMk9OT+dd4DSlGzsKLurkueadUYqQCoZaQuOacF4pVGamWMnoKhspI8Q8sAZq1DL8u3npiqJlBIUGrCHAGOcHmvoUeeZOoR+TqU3HDYcfjVyzkG0c1HrYBuIZP7y4/Wq8beWud3FZ7SYkdJEW8vrx6U17hkj9FzWXFqBKBI1Zmx2FSIlxPGynA5/iNa37AGpaoEi8uNsluCfQVSt9SeI5BxRcaRduygAZ7DFUZLa4t22yxMtZScr6jR12m+Mruwk8yLZwMcqDXYab4kj1+1kh1aKNxMpVJQgHkkjGRj3ryFSw55xXZaJMD4cvAFy6gHcD0AOaFqtRnr3wznH/AAhlmuc7S65+jGupedSWDdK4z4WxNJ4HtZA4++4x+NdXcRSLklTj1FeLUclN+pulFsinmJiAVjmNsrk15jrshl1m8durbia9CcnJ5rzjWD/xNroe7Uou7NLWKC8wrn/nmtJIf9OT/eb/ANBFEXMSf9c1psn/AB/J7O3/AKCK0W4E+n/8ep/3q37M/uk/4D/Kue03mAj/AG63rM/u0/4DVrqJl1TwPoKdnj8DUan5R9B/OnZ/rQBLnn8RQo3uiZ+8dv603PPHqKltF33UfouWP+fxoA2ABiigdKXHNapE3EALH29TRtHYk/hTyMjGOKa3P0p8qFzMjOT34oIwOKfjijFNRC5GFGeRUbQsQwUke57VPjrSN0AFJxswUtDO07T49Ktvs8WWUu8hJ6ksxJ/nVp1jkXDqD9RUuKTGazcWXzHP6h4S0nU8s9qsUh/5aQ/If8DXMXvw4uo8mzvY5B/dlUqR+IzXop6ZFN68sfxpOC6miqyW2x5fbeA9YluNk5hhjHWTfuz9AP8A61ec6tqtlY6vNYX+m/bptJu7iK1kMwRGXzWYLIm071DljgFfvEHNfSoA5IOSe9RQ3dtcvLHDPFJJEdsgRwxQ88EDp0P5VpSioGdaU6q8keWfCRgPBkyhWLNqUmCFJ/5ZR16HHFKw4Q8evFapGRyKr3VzDZ2zzSsEQcbjwMngVnU1bbHCOiSKqGp0UmoIAGAYHI9RV+FRXLKRokSwW+481pQwKoHAqCBelX0Fc85Nmj0R8ybwvzA/UVKt6uAF4z14oSwwR5jFj3GcVu6foRlUEIsa/wB7H9a+pjGTPLMDU1ku442iikcpnopNVLdUjP8ApCncOisMCvWNP0LSlISSWe4fGSqDav511VlpekwoM6bb47FkDn9ap0W3cnmPFrNlBUAJljwQK7XSvCxunimubhIFb7oPLH6AV0et/wDCHW4VtQtLdA2VDwjY4I+nf6157ql+dCuo77SNQe6tZ2YRySrtdCuPlOODwRzTXu7gpXPVbXwxo0SZa2M7DGTJkk/gK2IbbSrGAN9hs4mAPzNGufyrxiL4oamLKWFcwuWBBQ5JHfJP9MVkv4nkvYg1zPIZg+8FpGbPtgmplKL6hqetX3xE0WwL2ywwzMpIYsgxn6AdK5qTX/C2ti4igtRaX1xGyZgiKxyEjjI9fcCvKZ7h3ldy3LOWJp9lLItysyc+UQ+fTBrLmV9ENI7PwzrOraLbrFa3ssBjJDRZyuQTnKnivQtM+I1xwmpWSuP+etucH/vk/wCNecRzJqN3LcRbUaQ7ivqe5rQiV4zhlIrkqRjzNG0VdHrltrGj6uQIbiMSH+B/3b/kev615zry+Xr18n92RxUcYVlG4A1VuD+/Y8ng1xuCi7o1jcjt+Y0/3Fpjn/Tk/wCuh/8AQRT7blE/3BULt/p6/wDXQ/8AoIprcpk+lnMb/wDXSt+04jX/AIDXN6W2IpCenmGugsbqCUFY5UYjsDyPwp31Yi8vT8P60/PX8aaACPTinlTz369KYBnn8RVzTRmaRvQAfqapgEnAHORWjp8TxxsHGGZtwHtVLViZoqKUCkXpTxyK3RAYpMc06kxTENxSEU40hPFCExuPkz6mmkc1J1jT86a3XNJjQwikIwtPPNIVyfQVNh3IiM8ClCc881JjFFNR7i5jF8RQXU/h+/isz+/aI4GMlh/EAMHkjIHua5+L+zLrU9KTQbJoLq2mH2ljbsvkx7SGSQkcscEAnPIPI79setNNROlzSv8A1/wDvw2PdGk6du/Wy1VtVbVdlp17jQOMVyHxCufL0q1tFPM0u4/RR/ia7JBkmuC+Iqg3unjPSN+PxFYVpaMWGjeaOStr29tGzBcyJj+6xr0LwbqN5qME7XcvmCMhVOBXnITpivRPAybNJkfH3pT+grjlrY7a0UoXsdrBV1Kz4WqZtRtLeURTzLG5Gfm9PrWMjjktDw1ZLSO/miYbnSQhQe/ua6vTDPcMPMwFxwQK8oa+d7t5WJyWzkda1V8S3ZtfIM7qndV4/XrX1sasep5NtD0a51ix0m4BecGXPEURDP8AiO341kar4+1DzGt4oEs4+hZiHkHTkdh+tee3V9vkJiAQei1Xku5Zm3SMXOMZpSr9hcpe1G7murh5HuXuNxzvc5OapXF1JNHGpI+ToAKhJLHJP5Ug4FYOTYxQ7elKGYdGx9KSjNSMdU0MhRXUHG5arinA+9PYDpNKn/cgce4NdLZ3rAAbjj0b5h/jXCWqtIm5GKsp6itW11K4tiPOUSKO44NROHNqXGdjv4pInALAp7ryKo3BH2h8EEZ6iqmn6vbXWBHKA/8AdPDVM7hpnOec1xTi0dCdxbTlF/3BVctm/H/XU/8AoIqxZH92P9yqYObxT/01P8qlbsbJtMciCUjqJDWybO0uds0kRjcjO5P85rD004hn/wCujV1GnxSXEcUcSF2IHAFVZXFcgW3vIiWtbzev92T5x/iK1dLg1C8P7+2WFB/y2D5VvoOta9poMEBWW4xJKOQo6D/GtM4x0wB0xQBVhtIoVwoy2Mbj1pduDxUxNMoQyF/MHKEA+9CXBAxKhU+o5FSmmkVaqPqS4IkV1ccEZ+vWnA5FVHiB5xg+xxRvkUDnJHetFNMhxaLnXmoLp9kDnvg4pq3H95Sp/Q0y4uIvJJdhs6HPb3rRWIZZQfLGD/dApDyDTgR1ByMcVGOp9DSY0HtTsUnQ4pQaEAh4phqSmtigRHTTTzTTR0GtyW3i35NecfEK4EniSODPEEKj8SSf8K9NtsLGxPrXjXiW6+2eKNQl7CUoPovH9K82o7nq4aPvXKAXHTvXovhVfK0WEf3iW/WvPI+cEV6Rog8vS7Vf+mYP581glqb4l+6kdDCea5fxVLI92yQth8qM+ldPZqZZAo+p9hT7jw3a3c7ylWWZgCzI2PpweKxq36bnMpRi/ePl6TIYGm5JPHApScjmjrX0h44mKXNHU0HmgBc0UlBIFAhaKZuJPFSJBJIfagBpb0qSKGWVgVX86u21gGIyK1I7URpwKuNNvcTdhtrH5cA8wIp9hTJn3HC9KmfAGKhYYHvWrQrlR1Oc9CKvWOuT2six3B3Qd3IJYVVc5561XIzwR17VjOCkrMuMmtjsNL1i0uQY45QHVOQ/y/zqW2Jnvo0iUuxdsBRnPbtUfhr4W6rrjLcXu7TrI87pV/eOP9lf6n9a9g0LwzpHhm28nTbYI5HzzOd0j/U/0HFcM4xi3ZnTGUnucloHgm6aMy6kfs0bOWEQOXI9/Su3gtraxgEVrEsagY46n6nvUztk1GQM1mUMZsmmk08jim4p2AYcUhFONIfpQMbSU4mkxnpTERkU0ipCMdqaRSGRlQajaIH3+tTEU2mnYGrkSh4seWSABjAPH5VIs5x+8GD6joaKaQPerUyHAkWZSQCwz2qQOD3qoVB6jP4U0oOxYfQ1opojlZe3A96Xg1RVnXo+4e4p32hlPKnHqKq6FYtnpTdtRLdRnq2PrxVhGBbjn6UpOyHFXY6WaOysZp3PEaFj+FeEyTG5nkmf7zuWP1JzXs/iKGWbQL9IkZnMDAKvUnHavFACoYEEMDyDwRXmyR69DREyuOn5V6dZfu7aFP7qKP0ry2L57iNP7zAfrXZpqr3WrQWVo6kvIEduyDPP40ow0bIxErtI9M0m32W4kb7zjd9B2rUt48hnycuc/QdqzftC29s7scIi5P0FJbaxLFD+/iDMkSM4Tg7mPyrg+3qa5WtTjqps+UO1Jk0ueKaSPrX0Rwi5oLUgVmqxHaE9RT3EQDJ6VLHbM55q/DaDjir0VrjBIxirVNsVzOitAMcVejtwByMVdSEIP/rU7y+eozWygkTzDI0CkYxipQNwwR2poUD73y84qxDBJPwicf3icAVQtWVGjUE4Wo/IeUnYjNzzgVtLp9uo/fzbnPOF+7+dTK8S/JHGVwOMDg1DkuhoovqV9A8JnWL0x3d9b6fAuNzSsNzeyj/GvY9D8JaBoUUbWVlHJMOftMoDuT6g9vwxXkJnRCUZmRz0Hb8KtaZr+p6ZNvtbmXy+6Mcq3/Aa56lOU9maxsj29pc1E3NcpoPjez1ci3mK29102sflf6H+ldLvzXHKDi7M2TTHEUw/WlzQeakYw/WmkZpxpDQAzFIadTcUWAbSYpxpMUWGNyaTgj0NLg0lO4hpppFP57UmcelGgyMikp5x6U0ilYLjKac1IR6immgCM8Gk/GnkU3FFwsAI6HBHvVmJEyGXKkc8HFVe9Twtziok2XFI0UJbGea8++IuhIsSavbIFO4JPt756N/Su+hPGDWP4mMMmkXcM7hYXjIY+nofrnFc/Wx0RdndHi8aTTzJHBkSk8Edvet610g2agwzSeYDktnnNQ6XAIGySDIeprpNPnSG6ilkiEyIwYoTjP41x1cRLm5YuyPQjRVuaSuzobGx8W2lnBO0VnfRMhL25bY+D654PH86tnxFY27odV06706USCU+YnyswGAc8g1qWXi7T5sCfzLdj/fXK/mKb4ovtOu9LSAyQzLNnawIYA44/EnitnKPLzM8rlqOooSja58tLGxPHSrEVpkjIrQgsyzYCk1vWmiKAHu38pcZCgZY/hX0kKLZ5TmkYNtYNIwVELE8YArft/DvlYa7kVSeka8t/wDWrQW4trBNsC+WcdeC7fU9qz5b+V+Eyo9j/OuhU4x3MnKUtiCa1SByq449DnFMCgdTjvSg5J9KckTyyCONGdz0VRkn6UmykhByfQVPBayXJPkoze56Crv9k3NpGJbuwucY6vCwUVYF0DDiGUHHTsB+FZ899jRQ7kEdjb25XzvnlPODnH0pzTea3lbFQr0UcCmPdPKuM7vp3pFjE67gd4HVSeR+NTqy0kthXTyFBYLs7gc/lSLL5m3kKvXOMH9KYLqIOI3JUDhe+Kl2pHg+Ygz0G3OaLDK0lo5I2EuDzwcj8+1IYyEZJA4K9WC8kVI6SKNwcp/udDR54RNsimTvtWiwFaRn42KuOuWXkflXU6F4y1OzKQzhbmADGGb5vwNc4uJRviLMPryKefMiAYgMCce/0xScVLcadj1rTfEmmakQkc/lzH/lnKNp/A9DWv8ApXhYZJ23DgjjqTg10WmeLL/R0WNmN3CP4HbkD2PUVzzw/WJan3PUaKx9H8T6XrQC29wFm7wyHDfh6/hWzisHC25dxhHFJ9afimkVNh3EIppFOIpKNAG00040hBosO4wimkU80hApWAjP0pCKeeKaaVh3G0h+lLSYpgIQD6U0oR2pTTckd8UaAIaVDg0ZB4700nbUSiVFl4S7Vz7VxXinURclrfGYh98H+KupMnyda4fXcLPKf7pJx6g0UYJy1KqSaWhxM9y0Fy4hZlUE4AOcDNXbXxBLFgOA4/WsSZi0jN6God/PNROhCe6OiNecNj0Cy8Q2sxAZ9h9GrdguIZVBBUjIPrzXkquQeDV211K5tGBSRl/GvPrZan8DOqGNX2kbCiCzXEK7W/vvyx+npVWa/kcEKcA9z1qg0zMcsxJpRgg8/rX2Ln0R8sodx5c5yTz6k5oBPUj8+9RjrgkD1rtvDXhRXEd9qqfuz80Vue/u3t7VjOooq7NIx5tEUvDvhC81thNLm2se8jDlvZR3+vSvT9J0nTtGiEdlbojdDIeXb6mljlAUBQAAMADoBThJzXFOpKfodEYqJpBwww2CD61zOteB9L1TdNbj7HcH+KIfKT7r/hWyrk1KshX3FQk47DdmeP6ppWqeHp/KvofMticLOgyP8+xrMNysEuUOVbupr3aWKK6iaOVFkjYYZGGQa898R/DsMXutGJz1NuT/AOgn+ldEKvSRDjY410Sdvn43fxDnP1pH8yNf3allX72ev4GnQbraR4p49ko+V0kyMVI+8ZaMFR9c10WJI42LjjeD3FSIksZKsgZeo3dqoOJN24tk+ueat2s88S5nOUPQjkD/AAoSAbL5kDAxnA7qB1oT96A0aoGPRScGnM38aguhPUdqc9vwWXKt1BxRuMiQb2YOrJt/iB5z7U8yiNcxqX9icUySaYhVKhQejYzn8aEWYMCy/KO/GKdgE812fejIhByMKAR+NdboXja/t2EN4vnwqOrN84+h71xzm3ZsYlJ/vd6mTAIdSWVemP61LgnowTPZdN1yw1UYt5h5neJ+GH4d60cV4atzJuDowVx0YdRXTaT421OzAS7C3cI6FuG/P/HNYSoPoWpHpRBpDWTpXijS9WwkNwIp+8UvBz7djWzt9RmsJQa3KTISKaeKlK80xlNZtFpjCRSEUpFJjFIY003FScUhGaLBciNNIqQimkYFHKFyM03j6U80xhgUrDuMfio3fIBpXbFQlu3rQA55cKSK4vXn3C5ccYBP5CumuZhGNrHGe/pXC+JbphaXAVuDIEJBqqas7hJ30OPd/lYerVFmnZyP7wphAzx+tTY0uOB5p4bI5NRYI6igk4xxj1osDkaIJFKMYxnmogfQU/dhDzk+letc8s6rwnoi3dwt9dJmCI/u0P8AGw/oK7o3amQjkH0Jrn9Nhe3srZBbTMgjXa0be2c1buGmYZIGR0P8QrCUHJ3ZqpqOhtxXAP3SfcVfilVxnIzXJ2995qjzP3cg/i7Gtazu958qQ7X6g+tZ8pXMbynP1qZT61nwzFG2uP8A69X0IYZU0uUdyUdcjipQ2evX1qFT2qUe1KwXMvW/DWn65CftEQWYDCzIMMP8a8v1vwxqWgS75YzPbA/LLH0/H0r2dc0rxJKhR0DqwwQRkGrhOUfQTVzweK5tp/laPDeuMmpxGYUPljcp65Nd5rnw/gmL3OlEQTHkxn7p/wAK89vrS/0y5aK+ikifPGeh+ldEZRlsTtuN2SqwMBIz/AelOMxjGJSwHTHenQTO7qrAYYcECnzw+dlWwyY/L3q7AJJJGUwW+Q9ttVXhVxiKRDxwuOKQxtDJgTDaex6ipBB5qBldT9BQBCbfht74I7DoKXzPJAVflj7c1NIVgi+6Cc8ZquUWfhiQR2xTEBDAhlYFe4Hepo5N5IJZSvr0qNIgmQMnnvUo4UANkeh60WGNMIPzCYA9SQMVtaV4v1PTMR/azPAv8EwyAPY9RWHIiv8AMrkMPyqHDjjZ36+tS4rqFz1PS/H2n3o23SPbP3Yjcv59RXTQzQ3MQlgkWSM9GQgivC4i8bAbgVHJq3b6rc6fJ51lNLC/+y+AfqO9Yyop7FKR7XimkV55p/xCvY8JfW8c4/vL8rH+lddpXiXTNWISCcJOf+WMnyt+HY/hWEqTRakaZFMIqcimlfas+UrmIuvXH8qCntTiPWmfdPX86aXcVyNhioJOKsyGqczYU0OI1IgdvWq7Pg+o70rMScVDJ0IqLFXKOrXn2WzeTKknhM+tecazcBrGNS2XeVnI9hmt3WdR+0SuqEeVG21fc9zXEXUrPdSqWJUHgHtWqjywM+bmmhm7GKcHzxwfrUR+U4puaxZumWAc9D+BoPuPxqJWp4cdiQaB3LYAHXvT89ee1RBiDT1PXtXpHnHp2lyMbKBopW2GNfkPTOK0Xj/d5J9CfpmsjRJEh0638xh/qVbHqcdP5VpPcGWJgxA3D8qUNgnuZpTyJZIyc7WIz61PDll+RtrDkVBNl0WYHP8AC31HQ/lRC+GFZmh0NjfiUCG4G1+x9fpWpFM0ByTlPX0rmEfzPlPfr/n1rRsdRKERznI6Bz/WiwrnToyuoINSrxWXC+w7ozlD1X/CtGKQSKCDmlYdydakAqNalWlYLjttU9R0q01S2aC7hWRD6jkfSrwFO25pWsF+55Lrngq90gtNYhri16lR95fw71zLZYDY+wqeQTivfmjByCMiuO8SeB4NTD3FniG5I5wPlf61vCr0kJq2x5W5WRm34BPUjvUew7wWcgZ61bvLCTS52t76B4pF/vZwfceopu9ZFGMMtb8rEncdKwePDAezCq/2ZiAwDEY4OcVYKgphCFPp1FVSJkOS+D/dLUmkMlUZXLgqw6Mx5qCWKVH8wsMHq47CpmbeMOTtHXI5pPMQZIdSPSnYCJdmN5OfwppuHGCpC+gHenuscjZDhT0x2oW3XcCxyf0NKwAjGVeRgdz60yRzGcHkD0FOkAZgicbf1qEnkn8KAJFbjOOvembyJAykhl7im4DEY4PYin4wAGA+oosB2nh3x5Na7LbVt8sI4E45dfr6j9a9FhniuYEngkWSJxlXQ5BFeBsR/Ca3PDfii50G4A+aW1Y/vISf1HoawnSvqikz2L681HItNs7621Kzju7SQPFIMg+nsfQ092wOa52irlZ2wpXvVKVgeD0qa4fBOOlVGZy2MD61IxDswSSK57XtVFvA0UIIkYYDelX9SlMMZbtnCgHqa42/kaVSztli5pKOpTloZlwcQqvpk1zBcNLI3XLVraxfBB9miOX43Edh6VlLEAgwcmtKrsrEUk27jCQSaTNBQg4PFNbcKwN7j14IyMj2oLKWO3OM8Z603NJmkHU0lODgil3EfU+1Rgc5p4bn/GvROE73w1cR3WmrJKwLwfIV7+1bG1pVJYcufyFea6dfyaddJPGNy/xrnqK2r/xfPOoSzj8hcYLMct/9ahaA9TqGR42ZJF2pMPkJ9RUETfMcjkcEVh+H7+71K7eO6maVVQAbu3P/ANetW8b7NdcE4bv+lRJFR2szUjbBqzEVZQrdcday4Jwy4zzVyNvmA7UkM07e5ktiFPK9QP8AD/Ctuyu0mAZGAbuPWudV8k55GKlVHQ74Www6g96ok7KJ9w9DVhDXPabqokYJLlXHrW/G4YAilYZYWngcVGhqYUWATbxTStTAZ7UpQGpsFzE1fRLPV7Yw3UKuOx7j6GvKNe8JXWgStKqGezJyJAOV+o/rXt5XHWq89vHNGUdQynggirhNw9BNdT53M/zsFVQB7dasJMjYy4LehGBXceJ/AHLXelKA3Voex/3fT6V561vJHM0MoZJFONrDGK6U1JXQX7luYb0KlevGR2qo6NHgFcjpvA61cjcBArfNjim+fF8wXIYevShoZU2McfIDmnxKVOWB4/hpTKwKkN8o60qXG9sFaLAMdl34GRxTfKAXkknHHpSzAbtw79RUQLIeDkehoGKyDgjjvgUhcilJ6kEY9PSoS24nPX0osK4EYJK9PSgHmjt7Uh46dKLAdP4Q8RNo+pLDK3+hXDBZAeins3+PtXqkrAZrwMmvXdAv5dR8PWU5O5tmxz7rx/SuWrHqUmX5XFVXmWKNnbAAFTSRP3xWPqoAXYXyT/DXPYtMzr2U3LeaScA5UVy2q3ItrJ5cjOTtHvXSNhbVmY/Ki157r1+J5Y4FPyxjc3+8f/rVUVqEnoYxJZ8scknJPrUgYimKOaecVFTcqlsPEvGGANLtDD5D+FRGkzWVjW4rKR2phzUqyEcHkU7ajcqcH0phbsWMdPWnBu23FMD4JHvQSSfSu84SXOT/ADoHB9qjVjt5P4U4df8AOKYHVeC0D3twR2Rf61u6tFgqxHqDWH4KIF1c+6r/AFrqNUjDW24djUyKRiRl4RvU7kH5itS1uVkwc1nwNhgDxzintGY5PNiH+8vr9KlDZuxuM/hirUEhzj2xWRa3KyAEH2xWjA2X69apCLqhZMAnB4KsOorT07UngdYbk8H7r9jWNG3AI6jIq4jJKCrjKnqPrzVIR2EcgZcg9e9WEOa5Kyv5bFwkrFougc9vY10kE6yIHQ59qVhXLymngCoY3BFTA1LQ7gVzTWT2qQUuKm4yq8YI4H4VyviPwhaawhkUeTdD7sqj+fqK7JlqJkHemm07oGk9zwLU9JvNGuDDeRbf7sg+630NZkkXVgRz6173qmk22o2zwXESujdjXk3iXwndaK5kRXmsSchx1T2P+NdcKino9yNYnLbyOhBp4JzlhS+SmAeTSkA9PyNVy2KvcHUkcYI60wRg8kgHHY07f8u05Hp7VE6nk9SKLAOwFz1z70xgCM0ckYzQTxgUgGE8YxTW4HFK2euaYx4zRYLjT1r0T4fXQOj3UDZJimyAPQj/AOsa84J+aut8E3LQR6iQeMJx6nmsKmw0dnfX02dkQCDqx6nFYs+fMc5J571dXJjYKjMSSWYetUbhsSPmuZqxd7mLr96bTQblk+8zKg/E15wzFmJJyTySa7TxdKF00R5yWlH6Zric00KQoNO34qLPanZodnuSm1sShh60majJxShjis3T7GsavcfnmgmmbgaXNZtWNVJMtg9qf2zmoVJyc0/ccYrtOMfkDpTt2F+vNRBsd6UkAe1NMDq/BrkXdwMj7q9PxrtJxvhZT0IrgfB8mNQnX/YB/Wu7LgqRQtRvYwOUkI7ip0lOB3B/nUF2NtwcetOidTkZ681CKNK2sTdCSSBtsqKDjs31p9rejdtPyup5B9as6E+ZpQccqP61VuLRXvJUOVYNkMOtV5k9bGnFKC5weGqzG5AGPQj8jXPrLLZuFlGVzww6Gte3nWVQVPfP58GmBqRy/vFyMq3BB71ZtrmSyO5CWgHUd1/+tWYj8L6qauRSlZWAP+etUhWOotrpLlAyMNx/I1eilBODwfQ1xolezlEsOTE43FB29cf4Vu2moR3Uaktz2YUNXEbq9admqkU2MBiPY+tWA2ayasMf/KmsuRxThTsVIysy+tVpYFdSGQMp4II4NX2XNRMmPpVJjPMfFfgFXV7zSF2uOWtx3/3f8K82KyxSNG4O5eCGGCDX0g6eorjvFPgyDWFa6tQsN6B97HEns3+NdFOr0kQ1bVHkBJ7mmnn/AOtU+oWk9jcvb3MTRSocMrCqq9T+lbjuPwM8dfWmGgnj3ozz7UIBrZH0qJjzT2JqJqiQ0Mbiuk8KLlLgju6D9DXMuw6V1XhBP3Dt6yfyArnq7FI75RstAAP4a5rUpQjuxxyAea6QE+SB7VwPjW7ltbRUjwPNbYzdwPasmgRyGtag19csFbMSnj3PrWUelONNzSENNJmnHrTfrSAdntSmm0lAB+NKHI96bRSauCdti6Tk5pynOD+BzTAB7kU4HHWtSRxAPNNLjH+NLnimOMd6YGt4Zv7ex1F2uJPLR0wGI4BzXZyeItJjTLahEfZAWP6CvMM04HHNEXYbO6m1axvZf9FuQ7jnBUqT9M9asxspAPrXnwYhgQSGByDXS6XqomQRuQJfT+99KTGux2+iPtnk544q1dHbqWf7y5rI0aYAsw6bgK1b5h9ogb1BFCeg3uWYkSaXy3UMrIcgis+SKbTblzGC8HXHcCrlk+b0f7lWLk/MT707iGW90kyh1Oc4P41dV/3iH1+U/wBKw7i2a2T7Tb8ZPzR9j9Kt2l6lxGRnB/UGmmI2kfdAFJ5UsBToCwAkh++PvL/e/wDr1Uiky7j+8AwqW2kxIPcYqrisdDYX6yoFJ+oPatSKUqODlf5VyeG+0SNG22UAEejexrTsNT8wbTw4+8p6im9RHSpIDUoas2GYNyv5VbSQNWUojJ8c5oK8UKwIp1ZjIGQGoWTGcirbDimFQapMZx/i7wvBr1iWjUJeRjMb+vsfavFLi2ltLmSCZCkiEqynqDX0lKoHWuB8f+FxfWzalaR/6VCuZAo/1iev1FdNKp9lktW1PJW6fzphbjGeKVyRwaYT+Vat6j6AW4qJj+lDNyajZuKiTBDHJ3V2vhRdunofVif1rh3PvXc+GDs02AeoJ/WuebuUjsg2UA9RXm/jXUbW4Etqj/v4Z8FSPbr9Oa9AEwC/hXjviF9/iC+b1mNJiRmHrTTTietN6nFQAnQUn1p2cU08nmkAU2nGkoASg0GmnpSA/9k=", "path": "images/3pts_ADE_train_00004218.jpg" }