Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Size:
1M - 10M
ArXiv:
License:
| import json | |
| import os | |
| import datasets | |
| _CITATION = """\ | |
| """ | |
| _DESCRIPTION = """\ | |
| """ | |
| _HOMEPAGE = "https://indicnlp.ai4bharat.org/" | |
| _LICENSE = "Creative Commons Attribution-NonCommercial 4.0 International Public License" | |
| _URL = "https://huggingface.co/datasets/ai4bharat/naamapadam/resolve/main/data/{}_IndicNER_v{}.zip" | |
| _LANGUAGES = ["as", "bn", "gu", "hi", "kn", "ml", "mr", "or", "pa", "ta", "te"] | |
| class NaamapadamPR(datasets.GeneratorBasedBuilder): | |
| VERSION = datasets.Version("1.0.0") | |
| BUILDER_CONFIGS = [ | |
| datasets.BuilderConfig( | |
| name="{}".format(lang), version=datasets.Version("1.0.0") | |
| ) | |
| for lang in _LANGUAGES | |
| ] | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "tokens": datasets.Sequence(datasets.Value("string")), | |
| "ner_tags": datasets.Sequence( | |
| datasets.features.ClassLabel( | |
| names=[ | |
| "O", | |
| "B-PER", | |
| "I-PER", | |
| "B-ORG", | |
| "I-ORG", | |
| "B-LOC", | |
| "I-LOC", | |
| ] | |
| ) | |
| ), | |
| } | |
| ), | |
| supervised_keys=None, | |
| homepage=_HOMEPAGE, | |
| citation=_CITATION, | |
| license=_LICENSE, | |
| version=self.VERSION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| lang = str(self.config.name) | |
| url = _URL.format(lang, self.VERSION.version_str[:-2]) | |
| data_dir = dl_manager.download_and_extract(url) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "filepath": os.path.join(data_dir, lang + "_train.json"), | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "filepath": os.path.join(data_dir, lang + "_test.json"), | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={ | |
| "filepath": os.path.join(data_dir, lang + "_val.json"), | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath): | |
| """Yields examples as (key, example) tuples.""" | |
| with open(filepath, encoding="utf-8") as f: | |
| for idx_, row in enumerate(f): | |
| data = json.loads(row) | |
| yield idx_, {"tokens": data["words"], "ner_tags": data["ner"]} | |