--- task_categories: - translation language: - en --- # Information * Language: English * The dataset contains both RGB (frontal and side view) and keypoints (only frontal view) data. However, the translation text is only available for frontal-view RGB data. Therefore, this repo only support this type of data. * Gloss is not currently available. * Storage * RGB * Train: 30.7 GB * Validation: 1.65 GB * Test: 2.24 GB # Structure Each sample will have a structure as follows: ``` { 'VIDEO_ID': Value(dtype='string', id=None), 'VIDEO_NAME': Value(dtype='string', id=None), 'SENTENCE_ID': Value(dtype='string', id=None), 'SENTENCE_NAME': Value(dtype='string', id=None), 'START_REALIGNED': Value(dtype='float64', id=None), 'END_REALIGNED': Value(dtype='float64', id=None), 'SENTENCE': Value(dtype='string', id=None), 'VIDEO': Value(dtype='large_binary', id=None) } { 'VIDEO_ID': '--7E2sU6zP4', 'VIDEO_NAME': '--7E2sU6zP4-5-rgb_front', 'SENTENCE_ID': '--7E2sU6zP4_10', 'SENTENCE_NAME': '--7E2sU6zP4_10-5-rgb_front', 'START_REALIGNED': 129.06, 'END_REALIGNED': 142.48, 'SENTENCE': "And I call them decorative elements because basically all they're meant to do is to enrich and color the page.", 'VIDEO': } ``` # How To Use Because the returned video will be in bytes, here is a way to extract frames and fps: ```python # pip install av import av import io import numpy as np import os from datasets import load_dataset def extract_frames(video_bytes): # Create a memory-mapped file from the bytes container = av.open(io.BytesIO(video_bytes)) # Find the video stream visual_stream = next(iter(container.streams.video), None) # Extract video properties video_fps = visual_stream.average_rate # Initialize arrays to store frames frames_array = [] # Extract frames for packet in container.demux([visual_stream]): for frame in packet.decode(): img_array = np.array(frame.to_image()) frames_array.append(img_array) return frames_array, video_fps dataset = load_dataset("VieSignLang/how2sign-clips", split="test", streaming=True) sample = next(iter(dataset))["video"] frames, video_fps = extract_frames(sample) print(f"Number of frames: {frames.shape[0]}") print(f"Video FPS: {video_fps}") ```