Datasets:

Modalities:
Text
Formats:
parquet
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 6,350 Bytes
2a4eacf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2df9014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb0f11f
 
 
 
 
2df9014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
---
pretty_name: SEA Question Answering
license:
- apache-2.0
- cc-by-4.0
- cc-by-sa-4.0
task_categories:
- text-generation
- question-answering
language:
- id
- ta
- th
- vi
dataset_info:
  features:
  - name: id
    dtype: string
  - name: label
    dtype: string
  - name: prompts
    list:
    - name: question
      dtype: string
    - name: text
      dtype: string
  - name: prompt_templates
    sequence: string
  - name: metadata
    struct:
    - name: language
      dtype: string
  splits:
  - name: id
    num_bytes: 106759
    num_examples: 100
  - name: id_fewshot
    num_bytes: 1588
    num_examples: 5
  - name: ta
    num_bytes: 709785
    num_examples: 100
  - name: ta_fewshot
    num_bytes: 18675
    num_examples: 5
  - name: th
    num_bytes: 294955
    num_examples: 100
  - name: th_fewshot
    num_bytes: 5742
    num_examples: 5
  - name: vi
    num_bytes: 158410
    num_examples: 100
  - name: vi_fewshot
    num_bytes: 2927
    num_examples: 5
  download_size: 459628
  dataset_size: 1298841
configs:
- config_name: default
  data_files:
  - split: id
    path: data/id-*
  - split: id_fewshot
    path: data/id_fewshot-*
  - split: ta
    path: data/ta-*
  - split: ta_fewshot
    path: data/ta_fewshot-*
  - split: th
    path: data/th-*
  - split: th_fewshot
    path: data/th_fewshot-*
  - split: vi
    path: data/vi-*
  - split: vi_fewshot
    path: data/vi_fewshot-*
size_categories:
- 1K<n<10K
---

# SEA Question Answering

SEA Question Answering evaluates a model's ability to predict a contiguous span of characters that answers the question about a given passage. It is sampled from [TyDi QA-GoldP](https://aclanthology.org/2020.tacl-1.30/) for Indonesian, [IndicQA](https://aclanthology.org/2023.acl-long.693) for Tamil, and [XQuaD](https://aclanthology.org/2020.acl-main.421) for Thai and Vietnamese.

### Supported Tasks and Leaderboards

SEA Question Answering is designed for evaluating chat or instruction-tuned large language models (LLMs). It is part of the [SEA-HELM](https://leaderboard.sea-lion.ai/) leaderboard from [AI Singapore](https://aisingapore.org/).

### Languages
- Indonesian (id)
- Tamil (ta)
- Thai (th)
- Vietnamese (vi)

### Dataset Details
SEA Question Answering is split by language, with additional splits containing fewshot examples. Below are the statistics for this dataset. The number of tokens only refer to the strings of text found within the `prompts` column.

| Split | # of examples | # of GPT-4o tokens | # of Gemma 2 tokens | # of Llama 3 tokens |
|-|:-|:-|:-|:-|
| id | 100 | 16000 | 15099 | 19380
| ta | 100 | 709785 | 83356 | 110080 | 314181
| th | 100 | 33266 | 33052 | 37164
| vi | 100 | 25064 | 24086 | 23722
| id_fewshot | 5 | 372 | 375 | 466
| ta_fewshot | 5 | 2459 | 3260 | 9165
| th_fewshot | 5 | 781 | 885 | 926
| vi_fewshot | 5 | 574 | 550 | 548
| **total** | 420 | 161872 | 187387 | 405552 |

### Data Sources

| Data Source | License | Language/s | Split/s
|-|:-|:-| :-|
| [TyDi QA-GoldP](https://huggingface.co/datasets/google-research-datasets/tydiqa) | [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.html) | Indonesian | id, id_fewshot
| [IndicQA](https://huggingface.co/datasets/ai4bharat/IndicQA) | [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) | Tamil | ta, ta_fewshot
| [XQUAD](https://github.com/google-deepmind/xquad) | [CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/) | Thai, Vietnamese | th, th_fewshot, vi, vi_fewshot

### License

For the license/s of the dataset/s, please refer to the data sources table above.

We endeavor to ensure data used is permissible and have chosen datasets from creators who have processes to exclude copyrighted or disputed data. 


## Acknowledgement

This project is supported by the National Research Foundation Singapore and Infocomm Media Development Authority (IMDA), 
Singapore under its National Large Language Model Funding Initiative.

### References

```bibtex
@article{tydiqa,
      title   = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
      author  = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}
      year    = {2020},
      journal = {Transactions of the Association for Computational Linguistics}
}

@inproceedings{doddapaneni-etal-2023-towards,
    title = "Towards Leaving No {I}ndic Language Behind: Building Monolingual Corpora, Benchmark and Models for {I}ndic Languages",
    author = "Doddapaneni, Sumanth  and
      Aralikatte, Rahul  and
      Ramesh, Gowtham  and
      Goyal, Shreya  and
      Khapra, Mitesh M.  and
      Kunchukuttan, Anoop  and
      Kumar, Pratyush",
    editor = "Rogers, Anna  and
      Boyd-Graber, Jordan  and
      Okazaki, Naoaki",
    booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = jul,
    year = "2023",
    address = "Toronto, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.acl-long.693",
    doi = "10.18653/v1/2023.acl-long.693",
    pages = "12402--12426",
}

@inproceedings{artetxe-etal-2020-cross,
    title = "On the Cross-lingual Transferability of Monolingual Representations",
    author = "Artetxe, Mikel  and
      Ruder, Sebastian  and
      Yogatama, Dani",
    editor = "Jurafsky, Dan  and
      Chai, Joyce  and
      Schluter, Natalie  and
      Tetreault, Joel",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.acl-main.421",
    doi = "10.18653/v1/2020.acl-main.421",
    pages = "4623--4637",
}

@misc{leong2023bhasaholisticsoutheastasian,
      title={BHASA: A Holistic Southeast Asian Linguistic and Cultural Evaluation Suite for Large Language Models}, 
      author={Wei Qi Leong and Jian Gang Ngui and Yosephine Susanto and Hamsawardhini Rengarajan and Kengatharaiyer Sarveswaran and William Chandra Tjhi},
      year={2023},
      eprint={2309.06085},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2309.06085}, 
}
```