File size: 6,144 Bytes
f05c392 a3603a9 c39c49a 9a39bce c39c49a 9a39bce c39c49a 9a39bce c39c49a ac0824c 69cd453 0e03f7a 4954e6c 6de545b 0acb69f 9a39bce f05c392 c39c49a 63e80a4 ac0824c 69cd453 0e03f7a 4954e6c 6de545b 0acb69f 9a39bce f05c392 30fbc48 f05c392 e8faa17 f05c392 04244dc f05c392 04244dc f05c392 93affc4 b13110d 93affc4 f05c392 e8faa17 f05c392 04244dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
---
license: odc-by
pretty_name: Asta AI Citation Logs
configs:
- config_name: default
data_files:
- split: all_time
path: 2025-12-01/sqa_citation_ranking_all_time.parquet
- split: last_week
path: 2025-12-01/sqa_citation_ranking_last_week.parquet
- split: last_month
path: 2025-12-01/sqa_citation_ranking_last_month.parquet
- config_name: '2025-10-07'
data_files:
- split: all_time
path: 2025-10-07/sqa_citation_ranking_all_time.parquet
- split: last_week
path: 2025-10-07/sqa_citation_ranking_last_week.parquet
- split: last_month
path: 2025-10-07/sqa_citation_ranking_last_month.parquet
- config_name: '2025-10-20'
data_files:
- split: all_time
path: 2025-10-20/sqa_citation_ranking_all_time.parquet
- split: last_week
path: 2025-10-20/sqa_citation_ranking_last_week.parquet
- split: last_month
path: 2025-10-20/sqa_citation_ranking_last_month.parquet
- config_name: '2025-10-27'
data_files:
- split: all_time
path: 2025-10-27/sqa_citation_ranking_all_time.parquet
- split: last_week
path: 2025-10-27/sqa_citation_ranking_last_week.parquet
- split: last_month
path: 2025-10-27/sqa_citation_ranking_last_month.parquet
- config_name: '2025-11-03'
data_files:
- split: all_time
path: 2025-11-03/sqa_citation_ranking_all_time.parquet
- split: last_week
path: 2025-11-03/sqa_citation_ranking_last_week.parquet
- split: last_month
path: 2025-11-03/sqa_citation_ranking_last_month.parquet
- config_name: '2025-11-10'
data_files:
- split: all_time
path: 2025-11-10/sqa_citation_ranking_all_time.parquet
- split: last_week
path: 2025-11-10/sqa_citation_ranking_last_week.parquet
- split: last_month
path: 2025-11-10/sqa_citation_ranking_last_month.parquet
- config_name: '2025-11-17'
data_files:
- split: all_time
path: 2025-11-17/sqa_citation_ranking_all_time.parquet
- split: last_week
path: 2025-11-17/sqa_citation_ranking_last_week.parquet
- split: last_month
path: 2025-11-17/sqa_citation_ranking_last_month.parquet
- config_name: '2025-11-24'
data_files:
- split: all_time
path: 2025-11-24/sqa_citation_ranking_all_time.parquet
- split: last_week
path: 2025-11-24/sqa_citation_ranking_last_week.parquet
- split: last_month
path: 2025-11-24/sqa_citation_ranking_last_month.parquet
- config_name: '2025-12-01'
data_files:
- split: all_time
path: 2025-12-01/sqa_citation_ranking_all_time.parquet
- split: last_week
path: 2025-12-01/sqa_citation_ranking_last_week.parquet
- split: last_month
path: 2025-12-01/sqa_citation_ranking_last_month.parquet
---
## Dataset Summary
This dataset tracks which scientific papers are most often cited by [**Asta**](https://asta.ai), an agentic research platform that uses retrieval-augmented generation (RAG) to answer scientific questions. Each record is a paper cited by Asta's _Summarize Literature_ tool, ranked by the number of times the system cited that paper. Across more than 113,000 user queries, we track **4M citations** to over **2M distinct papers**. By making this data public, we aim to create a transparent, trackable measure of which research most directly powers AI-generated answers—helping ensure that scientific contributions are visible and credited in the AI era.
Weekly updates reflect ongoing usage patterns as Asta continues to evolve. We invite researchers, bibliometricians, and AI developers to explore citation dynamics across fields, assess how AI systems surface influential work, and help build a future where credit and accountability are integral to AI-assisted discovery.
The most recent update to the data can always be retrieved using the 'latest' config:
`dataset = load_dataset("allenai/asta-summary-citation-counts", "latest")`
Older checkpoints can be retrieved by date. Eg:
`dataset = load_dataset("allenai/asta-summary-citation-counts", "2025-10-07")`
## Column Descriptions
| **Field Name** | **Description** |
|---|---|
| `corpus_id` | Unique identifier for the paper from [Semantic Scholar](https://www.semanticscholar.org/) |
| `title` | Title of the paper |
| `sqa_citation_rank` | Overall rank of the paper in terms of unique citation counts across queries on Asta Literature Summarizer |
| `sqa_citation_count_queries` | Unique citation counts of the paper across queries that powers its `sqa_citation_rank` |
| `sqa_citation_count_total_citations` | Total citation counts of the paper across queries (A paper can be cited multiple times in the answer report to a query) |
| `authors` | Comma separated string of paper authors |
| `venue` | Publishing venue/conference/journal of the paper |
| `year` | Year of publishing of the paper |
| `s2FieldsOfStudy` | Academic field of study categories assigned to the paper in Semantic Scholar by their [classifier](https://blog.allenai.org/announcing-s2fos-an-open-source-academic-field-of-study-classifier-9d2f641949e5). The possible fields are: Computer Science, Medicine, Chemistry, Biology, Materials Science, Physics, Geology, Psychology, Art, History, Geography, Sociology, Business, Political Science, Economics, Philosophy, Mathematics, Engineering, Environmental Science, Agricultural and Food Sciences, Education, Law, and Linguistics. |
## Dataset Details
- **Dataset name:** Asta Summary Citation Counts
- **Maintainer:** Allen Institute for AI (AI2)
- **License and Use:** This dataset is licensed under ODC-BY. It is intended for research and educational use in accordance with Ai2's [Responsible Use Guidelines](https://allenai.org/responsible-use).
- **Update frequency:** Weekly
- **Source platform:** Asta (https://asta.ai)
- **System Paper:** [Ai2 Scholar QA: Organized Literature Synthesis with Attribution](https://www.semanticscholar.org/paper/Ai2-Scholar-QA%3A-Organized-Literature-Synthesis-with-Singh-Chang/6dfbddc07e942116c7a95b23a393e9deb5a47484?utm_source=direct_link)
- **System Code:** [ai2-scholarqa-lib](https://github.com/allenai/ai2-scholarqa-lib)
- **Primary use cases:** bibliometrics, AI transparency, citation dynamics, evaluation of retrieval-augmented generation systems |