Datasets:
Tasks:
Multiple Choice
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
| """Cosmos QA dataset.""" | |
| import csv | |
| import json | |
| import datasets | |
| _HOMEPAGE = "https://wilburone.github.io/cosmos/" | |
| _DESCRIPTION = """\ | |
| Cosmos QA is a large-scale dataset of 35.6K problems that require commonsense-based reading comprehension, formulated as multiple-choice questions. It focuses on reading between the lines over a diverse collection of people's everyday narratives, asking questions concerning on the likely causes or effects of events that require reasoning beyond the exact text spans in the context | |
| """ | |
| _CITATION = """\ | |
| @inproceedings{huang-etal-2019-cosmos, | |
| title = "Cosmos {QA}: Machine Reading Comprehension with Contextual Commonsense Reasoning", | |
| author = "Huang, Lifu and | |
| Le Bras, Ronan and | |
| Bhagavatula, Chandra and | |
| Choi, Yejin", | |
| booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)", | |
| month = nov, | |
| year = "2019", | |
| address = "Hong Kong, China", | |
| publisher = "Association for Computational Linguistics", | |
| url = "https://www.aclweb.org/anthology/D19-1243", | |
| doi = "10.18653/v1/D19-1243", | |
| pages = "2391--2401", | |
| } | |
| """ | |
| _LICENSE = "CC BY 4.0" | |
| _URL = "https://github.com/wilburOne/cosmosqa/raw/master/data/" | |
| _URLS = { | |
| "train": _URL + "train.csv", | |
| "test": _URL + "test.jsonl", | |
| "dev": _URL + "valid.csv", | |
| } | |
| class CosmosQa(datasets.GeneratorBasedBuilder): | |
| """Cosmos QA dataset.""" | |
| VERSION = datasets.Version("0.1.0") | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "context": datasets.Value("string"), | |
| "question": datasets.Value("string"), | |
| "answer0": datasets.Value("string"), | |
| "answer1": datasets.Value("string"), | |
| "answer2": datasets.Value("string"), | |
| "answer3": datasets.Value("string"), | |
| "label": datasets.Value("int32"), | |
| } | |
| ), | |
| homepage=_HOMEPAGE, | |
| citation=_CITATION, | |
| license=_LICENSE, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| urls_to_download = _URLS | |
| dl_dir = dl_manager.download_and_extract(urls_to_download) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={"filepath": dl_dir["train"], "split": "train"}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={"filepath": dl_dir["test"], "split": "test"}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={"filepath": dl_dir["dev"], "split": "dev"}, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath, split): | |
| """Yields examples.""" | |
| with open(filepath, encoding="utf-8") as f: | |
| if split == "test": | |
| for id_, row in enumerate(f): | |
| data = json.loads(row) | |
| yield id_, { | |
| "id": data["id"], | |
| "context": data["context"], | |
| "question": data["question"], | |
| "answer0": data["answer0"], | |
| "answer1": data["answer1"], | |
| "answer2": data["answer2"], | |
| "answer3": data["answer3"], | |
| "label": int(data.get("label", -1)), | |
| } | |
| else: | |
| data = csv.DictReader(f) | |
| for id_, row in enumerate(data): | |
| yield id_, { | |
| "id": row["id"], | |
| "context": row["context"], | |
| "question": row["question"], | |
| "answer0": row["answer0"], | |
| "answer1": row["answer1"], | |
| "answer2": row["answer2"], | |
| "answer3": row["answer3"], | |
| "label": int(row.get("label", -1)), | |
| } | |