Amanpreet Singh
commited on
Commit
·
7474d71
1
Parent(s):
0dbfe9b
new commit
Browse files- README.md +379 -0
- scirepeval_test.py +197 -0
- scirepeval_test_configs.py +99 -0
README.md
ADDED
|
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
dataset_info:
|
| 3 |
+
- config_name: fos
|
| 4 |
+
features:
|
| 5 |
+
- name: paper_id
|
| 6 |
+
dtype: string
|
| 7 |
+
- name: label
|
| 8 |
+
sequence: int32
|
| 9 |
+
splits:
|
| 10 |
+
- name: test
|
| 11 |
+
num_bytes: 51276
|
| 12 |
+
num_examples: 472
|
| 13 |
+
- name: train
|
| 14 |
+
num_bytes: 5873604
|
| 15 |
+
num_examples: 54131
|
| 16 |
+
download_size: 3194762
|
| 17 |
+
dataset_size: 5924880
|
| 18 |
+
- config_name: mesh_descriptors
|
| 19 |
+
features:
|
| 20 |
+
- name: paper_id
|
| 21 |
+
dtype: string
|
| 22 |
+
- name: label
|
| 23 |
+
dtype: int32
|
| 24 |
+
splits:
|
| 25 |
+
- name: test
|
| 26 |
+
num_bytes: 820660
|
| 27 |
+
num_examples: 51738
|
| 28 |
+
- name: train
|
| 29 |
+
num_bytes: 3283053
|
| 30 |
+
num_examples: 206949
|
| 31 |
+
download_size: 3203144
|
| 32 |
+
dataset_size: 4103713
|
| 33 |
+
- config_name: cite_count
|
| 34 |
+
features:
|
| 35 |
+
- name: paper_id
|
| 36 |
+
dtype: string
|
| 37 |
+
- name: label
|
| 38 |
+
dtype: float64
|
| 39 |
+
splits:
|
| 40 |
+
- name: test
|
| 41 |
+
num_bytes: 121260
|
| 42 |
+
num_examples: 6012
|
| 43 |
+
- name: train
|
| 44 |
+
num_bytes: 483822
|
| 45 |
+
num_examples: 24000
|
| 46 |
+
download_size: 477603
|
| 47 |
+
dataset_size: 605082
|
| 48 |
+
- config_name: pub_year
|
| 49 |
+
features:
|
| 50 |
+
- name: paper_id
|
| 51 |
+
dtype: string
|
| 52 |
+
- name: label
|
| 53 |
+
dtype: float64
|
| 54 |
+
splits:
|
| 55 |
+
- name: test
|
| 56 |
+
num_bytes: 123284
|
| 57 |
+
num_examples: 6000
|
| 58 |
+
- name: train
|
| 59 |
+
num_bytes: 493073
|
| 60 |
+
num_examples: 24000
|
| 61 |
+
download_size: 518506
|
| 62 |
+
dataset_size: 616357
|
| 63 |
+
- config_name: high_influence_cite
|
| 64 |
+
features:
|
| 65 |
+
- name: query_id
|
| 66 |
+
dtype: string
|
| 67 |
+
- name: cand_id
|
| 68 |
+
dtype: string
|
| 69 |
+
- name: score
|
| 70 |
+
dtype: uint8
|
| 71 |
+
splits:
|
| 72 |
+
- name: test
|
| 73 |
+
num_bytes: 1439013
|
| 74 |
+
num_examples: 58255
|
| 75 |
+
download_size: 3477938
|
| 76 |
+
dataset_size: 1439013
|
| 77 |
+
- config_name: same_author
|
| 78 |
+
features:
|
| 79 |
+
- name: query_id
|
| 80 |
+
dtype: string
|
| 81 |
+
- name: cand_id
|
| 82 |
+
dtype: string
|
| 83 |
+
- name: score
|
| 84 |
+
dtype: uint8
|
| 85 |
+
splits:
|
| 86 |
+
- name: test
|
| 87 |
+
num_bytes: 3144107
|
| 88 |
+
num_examples: 123430
|
| 89 |
+
download_size: 7464157
|
| 90 |
+
dataset_size: 3144107
|
| 91 |
+
- config_name: search
|
| 92 |
+
features:
|
| 93 |
+
- name: query_id
|
| 94 |
+
dtype: string
|
| 95 |
+
- name: cand_id
|
| 96 |
+
dtype: string
|
| 97 |
+
- name: score
|
| 98 |
+
dtype: uint8
|
| 99 |
+
splits:
|
| 100 |
+
- name: test
|
| 101 |
+
num_bytes: 1283980
|
| 102 |
+
num_examples: 25850
|
| 103 |
+
download_size: 2188731
|
| 104 |
+
dataset_size: 1283980
|
| 105 |
+
- config_name: drsm
|
| 106 |
+
features:
|
| 107 |
+
- name: paper_id
|
| 108 |
+
dtype: string
|
| 109 |
+
- name: label
|
| 110 |
+
dtype: int32
|
| 111 |
+
splits:
|
| 112 |
+
- name: test
|
| 113 |
+
num_bytes: 15277
|
| 114 |
+
num_examples: 955
|
| 115 |
+
- name: train
|
| 116 |
+
num_bytes: 119083
|
| 117 |
+
num_examples: 7520
|
| 118 |
+
download_size: 100492
|
| 119 |
+
dataset_size: 134360
|
| 120 |
+
- config_name: feeds_1
|
| 121 |
+
features:
|
| 122 |
+
- name: query_id
|
| 123 |
+
dtype: string
|
| 124 |
+
- name: cand_id
|
| 125 |
+
dtype: string
|
| 126 |
+
- name: score
|
| 127 |
+
dtype: uint8
|
| 128 |
+
splits:
|
| 129 |
+
- name: test
|
| 130 |
+
num_bytes: 110997
|
| 131 |
+
num_examples: 4223
|
| 132 |
+
download_size: 258802
|
| 133 |
+
dataset_size: 110997
|
| 134 |
+
- config_name: feeds_m
|
| 135 |
+
features:
|
| 136 |
+
- name: query_id
|
| 137 |
+
dtype: string
|
| 138 |
+
- name: cand_id
|
| 139 |
+
dtype: string
|
| 140 |
+
- name: score
|
| 141 |
+
dtype: uint8
|
| 142 |
+
splits:
|
| 143 |
+
- name: test
|
| 144 |
+
num_bytes: 2321483
|
| 145 |
+
num_examples: 87528
|
| 146 |
+
download_size: 5384963
|
| 147 |
+
dataset_size: 2321483
|
| 148 |
+
- config_name: feeds_title
|
| 149 |
+
features:
|
| 150 |
+
- name: query_id
|
| 151 |
+
dtype: string
|
| 152 |
+
- name: cand_id
|
| 153 |
+
dtype: string
|
| 154 |
+
- name: score
|
| 155 |
+
dtype: uint8
|
| 156 |
+
splits:
|
| 157 |
+
- name: test
|
| 158 |
+
num_bytes: 210605
|
| 159 |
+
num_examples: 4233
|
| 160 |
+
download_size: 358760
|
| 161 |
+
dataset_size: 210605
|
| 162 |
+
- config_name: peer_review_score
|
| 163 |
+
features:
|
| 164 |
+
- name: paper_id
|
| 165 |
+
dtype: string
|
| 166 |
+
- name: label
|
| 167 |
+
dtype: float64
|
| 168 |
+
splits:
|
| 169 |
+
- name: test
|
| 170 |
+
num_bytes: 89892
|
| 171 |
+
num_examples: 2043
|
| 172 |
+
- name: train
|
| 173 |
+
num_bytes: 359348
|
| 174 |
+
num_examples: 8167
|
| 175 |
+
download_size: 408432
|
| 176 |
+
dataset_size: 449240
|
| 177 |
+
- config_name: hIndex
|
| 178 |
+
features:
|
| 179 |
+
- name: paper_id
|
| 180 |
+
dtype: string
|
| 181 |
+
- name: label
|
| 182 |
+
dtype: float64
|
| 183 |
+
splits:
|
| 184 |
+
- name: test
|
| 185 |
+
num_bytes: 94864
|
| 186 |
+
num_examples: 2156
|
| 187 |
+
- name: train
|
| 188 |
+
num_bytes: 382756
|
| 189 |
+
num_examples: 8699
|
| 190 |
+
download_size: 434232
|
| 191 |
+
dataset_size: 477620
|
| 192 |
+
- config_name: trec_covid
|
| 193 |
+
features:
|
| 194 |
+
- name: query_id
|
| 195 |
+
dtype: string
|
| 196 |
+
- name: cand_id
|
| 197 |
+
dtype: string
|
| 198 |
+
- name: score
|
| 199 |
+
dtype: int8
|
| 200 |
+
splits:
|
| 201 |
+
- name: test
|
| 202 |
+
num_bytes: 3396582
|
| 203 |
+
num_examples: 69318
|
| 204 |
+
download_size: 5822714
|
| 205 |
+
dataset_size: 3396582
|
| 206 |
+
- config_name: tweet_mentions
|
| 207 |
+
features:
|
| 208 |
+
- name: paper_id
|
| 209 |
+
dtype: string
|
| 210 |
+
- name: label
|
| 211 |
+
dtype: float64
|
| 212 |
+
splits:
|
| 213 |
+
- name: test
|
| 214 |
+
num_bytes: 111212
|
| 215 |
+
num_examples: 5132
|
| 216 |
+
- name: train
|
| 217 |
+
num_bytes: 444784
|
| 218 |
+
num_examples: 20523
|
| 219 |
+
download_size: 454231
|
| 220 |
+
dataset_size: 555996
|
| 221 |
+
- config_name: scidocs_mag
|
| 222 |
+
features:
|
| 223 |
+
- name: paper_id
|
| 224 |
+
dtype: string
|
| 225 |
+
- name: label
|
| 226 |
+
dtype: int32
|
| 227 |
+
splits:
|
| 228 |
+
- name: test
|
| 229 |
+
num_bytes: 180048
|
| 230 |
+
num_examples: 3751
|
| 231 |
+
- name: train
|
| 232 |
+
num_bytes: 840048
|
| 233 |
+
num_examples: 17501
|
| 234 |
+
download_size: 923863
|
| 235 |
+
dataset_size: 1020096
|
| 236 |
+
- config_name: scidocs_mesh
|
| 237 |
+
features:
|
| 238 |
+
- name: paper_id
|
| 239 |
+
dtype: string
|
| 240 |
+
- name: label
|
| 241 |
+
dtype: int32
|
| 242 |
+
splits:
|
| 243 |
+
- name: test
|
| 244 |
+
num_bytes: 169488
|
| 245 |
+
num_examples: 3531
|
| 246 |
+
- name: train
|
| 247 |
+
num_bytes: 790944
|
| 248 |
+
num_examples: 16478
|
| 249 |
+
download_size: 862299
|
| 250 |
+
dataset_size: 960432
|
| 251 |
+
- config_name: scidocs_view
|
| 252 |
+
features:
|
| 253 |
+
- name: query_id
|
| 254 |
+
dtype: string
|
| 255 |
+
- name: cand_id
|
| 256 |
+
dtype: string
|
| 257 |
+
- name: score
|
| 258 |
+
dtype: uint8
|
| 259 |
+
splits:
|
| 260 |
+
- name: test
|
| 261 |
+
num_bytes: 2668042
|
| 262 |
+
num_examples: 29978
|
| 263 |
+
download_size: 3717272
|
| 264 |
+
dataset_size: 2668042
|
| 265 |
+
- config_name: scidocs_cite
|
| 266 |
+
features:
|
| 267 |
+
- name: query_id
|
| 268 |
+
dtype: string
|
| 269 |
+
- name: cand_id
|
| 270 |
+
dtype: string
|
| 271 |
+
- name: score
|
| 272 |
+
dtype: uint8
|
| 273 |
+
splits:
|
| 274 |
+
- name: test
|
| 275 |
+
num_bytes: 2663592
|
| 276 |
+
num_examples: 29928
|
| 277 |
+
download_size: 3711072
|
| 278 |
+
dataset_size: 2663592
|
| 279 |
+
- config_name: scidocs_cocite
|
| 280 |
+
features:
|
| 281 |
+
- name: query_id
|
| 282 |
+
dtype: string
|
| 283 |
+
- name: cand_id
|
| 284 |
+
dtype: string
|
| 285 |
+
- name: score
|
| 286 |
+
dtype: uint8
|
| 287 |
+
splits:
|
| 288 |
+
- name: test
|
| 289 |
+
num_bytes: 2665461
|
| 290 |
+
num_examples: 29949
|
| 291 |
+
download_size: 3713676
|
| 292 |
+
dataset_size: 2665461
|
| 293 |
+
- config_name: scidocs_read
|
| 294 |
+
features:
|
| 295 |
+
- name: query_id
|
| 296 |
+
dtype: string
|
| 297 |
+
- name: cand_id
|
| 298 |
+
dtype: string
|
| 299 |
+
- name: score
|
| 300 |
+
dtype: uint8
|
| 301 |
+
splits:
|
| 302 |
+
- name: test
|
| 303 |
+
num_bytes: 2667953
|
| 304 |
+
num_examples: 29977
|
| 305 |
+
download_size: 3717148
|
| 306 |
+
dataset_size: 2667953
|
| 307 |
+
- config_name: reviewers
|
| 308 |
+
features:
|
| 309 |
+
- name: r_id
|
| 310 |
+
dtype: string
|
| 311 |
+
- name: papers
|
| 312 |
+
sequence: string
|
| 313 |
+
splits:
|
| 314 |
+
- name: metadata
|
| 315 |
+
num_bytes: 3564977
|
| 316 |
+
num_examples: 668
|
| 317 |
+
download_size: 3576339
|
| 318 |
+
dataset_size: 3564977
|
| 319 |
+
- config_name: paper_reviewer_matching
|
| 320 |
+
features:
|
| 321 |
+
- name: query_id
|
| 322 |
+
dtype: string
|
| 323 |
+
- name: cand_id
|
| 324 |
+
dtype: string
|
| 325 |
+
- name: score
|
| 326 |
+
dtype: uint8
|
| 327 |
+
splits:
|
| 328 |
+
- name: test_hard
|
| 329 |
+
num_bytes: 50603
|
| 330 |
+
num_examples: 1729
|
| 331 |
+
- name: test_soft
|
| 332 |
+
num_bytes: 50603
|
| 333 |
+
num_examples: 1729
|
| 334 |
+
download_size: 222236
|
| 335 |
+
dataset_size: 101206
|
| 336 |
+
- config_name: biomimicry
|
| 337 |
+
features:
|
| 338 |
+
- name: paper_id
|
| 339 |
+
dtype: string
|
| 340 |
+
- name: label
|
| 341 |
+
dtype: int32
|
| 342 |
+
splits:
|
| 343 |
+
- name: test
|
| 344 |
+
num_bytes: 44513
|
| 345 |
+
num_examples: 2748
|
| 346 |
+
- name: train
|
| 347 |
+
num_bytes: 133570
|
| 348 |
+
num_examples: 8243
|
| 349 |
+
download_size: 134151
|
| 350 |
+
dataset_size: 178083
|
| 351 |
+
- config_name: relish
|
| 352 |
+
features:
|
| 353 |
+
- name: query_id
|
| 354 |
+
dtype: string
|
| 355 |
+
- name: cand_id
|
| 356 |
+
dtype: string
|
| 357 |
+
- name: score
|
| 358 |
+
dtype: uint8
|
| 359 |
+
splits:
|
| 360 |
+
- name: test
|
| 361 |
+
num_bytes: 4779565
|
| 362 |
+
num_examples: 191245
|
| 363 |
+
download_size: 11473140
|
| 364 |
+
dataset_size: 4779565
|
| 365 |
+
- config_name: nfcorpus
|
| 366 |
+
features:
|
| 367 |
+
- name: query_id
|
| 368 |
+
dtype: string
|
| 369 |
+
- name: cand_id
|
| 370 |
+
dtype: string
|
| 371 |
+
- name: score
|
| 372 |
+
dtype: uint8
|
| 373 |
+
splits:
|
| 374 |
+
- name: test
|
| 375 |
+
num_bytes: 1188859
|
| 376 |
+
num_examples: 44634
|
| 377 |
+
download_size: 2751049
|
| 378 |
+
dataset_size: 1188859
|
| 379 |
+
---
|
scirepeval_test.py
ADDED
|
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
# TODO: Address all TODOs and remove all explanatory comments
|
| 15 |
+
"""TODO: Add a description here."""
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
import csv
|
| 19 |
+
import json
|
| 20 |
+
import os
|
| 21 |
+
import glob
|
| 22 |
+
|
| 23 |
+
import datasets
|
| 24 |
+
from datasets.data_files import DataFilesDict
|
| 25 |
+
from .scirepeval_test_configs import SCIREPEVAL_CONFIGS
|
| 26 |
+
#from datasets.packaged_modules.json import json
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# TODO: Add BibTeX citation
|
| 30 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
| 31 |
+
_CITATION = """\
|
| 32 |
+
@InProceedings{huggingface:dataset,
|
| 33 |
+
title = {A great new dataset},
|
| 34 |
+
author={huggingface, Inc.
|
| 35 |
+
},
|
| 36 |
+
year={2021}
|
| 37 |
+
}
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
# TODO: Add description of the dataset here
|
| 41 |
+
# You can copy an official description
|
| 42 |
+
_DESCRIPTION = """\
|
| 43 |
+
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
# TODO: Add a link to an official homepage for the dataset here
|
| 47 |
+
_HOMEPAGE = ""
|
| 48 |
+
|
| 49 |
+
# TODO: Add the licence for the dataset here if you can find it
|
| 50 |
+
_LICENSE = ""
|
| 51 |
+
|
| 52 |
+
# TODO: Add link to the official dataset URLs here
|
| 53 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
| 54 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 55 |
+
_URLS = {
|
| 56 |
+
"first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
|
| 57 |
+
"second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
| 63 |
+
class Scirepeval(datasets.GeneratorBasedBuilder):
|
| 64 |
+
"""TODO: Short description of my dataset."""
|
| 65 |
+
|
| 66 |
+
VERSION = datasets.Version("1.1.0")
|
| 67 |
+
|
| 68 |
+
# This is an example of a dataset with multiple configurations.
|
| 69 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
| 70 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
| 71 |
+
|
| 72 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
| 73 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
| 74 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
| 75 |
+
|
| 76 |
+
# You will be able to load one or the other configurations in the following list with
|
| 77 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
| 78 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
| 79 |
+
BUILDER_CONFIGS = SCIREPEVAL_CONFIGS
|
| 80 |
+
|
| 81 |
+
def _info(self):
|
| 82 |
+
return datasets.DatasetInfo(
|
| 83 |
+
# This is the description that will appear on the datasets page.
|
| 84 |
+
description=_DESCRIPTION,
|
| 85 |
+
# This defines the different columns of the dataset and their types
|
| 86 |
+
features=datasets.Features(self.config.features), # Here we define them above because they are different between the two configurations
|
| 87 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
| 88 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
| 89 |
+
# supervised_keys=("sentence", "label"),
|
| 90 |
+
# Homepage of the dataset for documentation
|
| 91 |
+
homepage=_HOMEPAGE,
|
| 92 |
+
# License for the dataset if available
|
| 93 |
+
license=_LICENSE,
|
| 94 |
+
# Citation for the dataset
|
| 95 |
+
citation=_CITATION,
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
def _split_generators(self, dl_manager):
|
| 99 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
| 100 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
| 101 |
+
base_url = "https://ai2-s2-research-public.s3.us-west-2.amazonaws.com/scirepeval"
|
| 102 |
+
data_urls = dict()
|
| 103 |
+
data_dir = self.config.url if self.config.url else self.config.name
|
| 104 |
+
|
| 105 |
+
if self.config.task_type in set(["classification", "regression"]):
|
| 106 |
+
data_urls.update({"train": f"{base_url}/test/{data_dir}/train.csv"})
|
| 107 |
+
data_urls.update({"test": f"{base_url}/test/{data_dir}/test.csv"})
|
| 108 |
+
elif self.config.task_type == "metadata":
|
| 109 |
+
data_urls.update({"metadata": f"{base_url}/test/{data_dir}/reviewer_metadata.jsonl"})
|
| 110 |
+
elif "reviewer_matching" in self.config.name:
|
| 111 |
+
data_urls.update({"test_hard": f"{base_url}/test/{data_dir}/test_hard_qrel.jsonl",
|
| 112 |
+
"test_soft": f"{base_url}/test/{data_dir}/test_soft_qrel.jsonl"})
|
| 113 |
+
else:
|
| 114 |
+
data_urls.update({"test": f"{base_url}/test/{data_dir}/test_qrel.jsonl"})
|
| 115 |
+
|
| 116 |
+
downloaded_files = dl_manager.download_and_extract(data_urls)
|
| 117 |
+
splits = []
|
| 118 |
+
if self.config.task_type == "metadata":
|
| 119 |
+
splits = [datasets.SplitGenerator(
|
| 120 |
+
name=datasets.Split("metadata"),
|
| 121 |
+
# These kwargs will be passed to _generate_examples
|
| 122 |
+
gen_kwargs={
|
| 123 |
+
"filepath": downloaded_files["metadata"],
|
| 124 |
+
"split": "metadata"
|
| 125 |
+
},
|
| 126 |
+
),
|
| 127 |
+
]
|
| 128 |
+
elif "reviewer_matching" in self.config.name:
|
| 129 |
+
splits = [datasets.SplitGenerator(
|
| 130 |
+
name=datasets.Split("test_hard"),
|
| 131 |
+
# These kwargs will be passed to _generate_examples
|
| 132 |
+
gen_kwargs={
|
| 133 |
+
"filepath": downloaded_files["test_hard"],
|
| 134 |
+
"split": "test"
|
| 135 |
+
},
|
| 136 |
+
),
|
| 137 |
+
datasets.SplitGenerator(
|
| 138 |
+
name=datasets.Split("test_soft"),
|
| 139 |
+
# These kwargs will be passed to _generate_examples
|
| 140 |
+
gen_kwargs={
|
| 141 |
+
"filepath": downloaded_files["test_soft"],
|
| 142 |
+
"split": "test"
|
| 143 |
+
},
|
| 144 |
+
)
|
| 145 |
+
]
|
| 146 |
+
else:
|
| 147 |
+
splits = [datasets.SplitGenerator(
|
| 148 |
+
name=datasets.Split.TEST,
|
| 149 |
+
# These kwargs will be passed to _generate_examples
|
| 150 |
+
gen_kwargs={
|
| 151 |
+
"filepath": downloaded_files["test"],
|
| 152 |
+
"split": "test"
|
| 153 |
+
},
|
| 154 |
+
),
|
| 155 |
+
]
|
| 156 |
+
|
| 157 |
+
if "train" in downloaded_files:
|
| 158 |
+
splits += [
|
| 159 |
+
datasets.SplitGenerator(
|
| 160 |
+
name=datasets.Split.TRAIN,
|
| 161 |
+
# These kwargs will be passed to _generate_examples
|
| 162 |
+
gen_kwargs={
|
| 163 |
+
"filepath": downloaded_files["train"],
|
| 164 |
+
"split": "train",
|
| 165 |
+
},
|
| 166 |
+
)]
|
| 167 |
+
return splits
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 171 |
+
def _generate_examples(self, filepath, split):
|
| 172 |
+
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
| 173 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
| 174 |
+
# data = read_data(filepath)
|
| 175 |
+
if self.config.task_type in set(["classification", "regression"]):
|
| 176 |
+
import csv
|
| 177 |
+
import ast
|
| 178 |
+
with open(filepath, encoding="utf-8") as f:
|
| 179 |
+
reader = csv.reader(f)
|
| 180 |
+
for id_, row in enumerate(reader):
|
| 181 |
+
if id_ == 0:
|
| 182 |
+
continue
|
| 183 |
+
yield id_, {
|
| 184 |
+
"paper_id": row[0],
|
| 185 |
+
"label": ast.literal_eval(",".join(row[1:])) if self.config.name=="fos" else row[1]
|
| 186 |
+
}
|
| 187 |
+
elif self.config.task_type == "metadata":
|
| 188 |
+
with open(filepath, encoding="utf-8") as f:
|
| 189 |
+
for line in f:
|
| 190 |
+
d = json.loads(line)
|
| 191 |
+
yield d["r_id"], d
|
| 192 |
+
else:
|
| 193 |
+
with open(filepath, encoding="utf-8") as f:
|
| 194 |
+
for i, line in enumerate(f):
|
| 195 |
+
d = json.loads(line)
|
| 196 |
+
yield i, d
|
| 197 |
+
|
scirepeval_test_configs.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, Any, List
|
| 2 |
+
|
| 3 |
+
import datasets
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class ScirepevalConfig(datasets.BuilderConfig):
|
| 7 |
+
"""BuilderConfig for SuperGLUE."""
|
| 8 |
+
|
| 9 |
+
def __init__(self, task_type: str, features: Dict[str, Any]=None, url="", **kwargs):
|
| 10 |
+
"""BuilderConfig for SuperGLUE.
|
| 11 |
+
|
| 12 |
+
Args:
|
| 13 |
+
features: *list[string]*, list of the features that will appear in the
|
| 14 |
+
feature dict. Should not include "label".
|
| 15 |
+
data_url: *string*, url to download the zip file from.
|
| 16 |
+
citation: *string*, citation for the data set.
|
| 17 |
+
url: *string*, url for information about the data set.
|
| 18 |
+
label_classes: *list[string]*, the list of classes for the label if the
|
| 19 |
+
label is present as a string. Non-string labels will be cast to either
|
| 20 |
+
'False' or 'True'.
|
| 21 |
+
**kwargs: keyword arguments forwarded to super.
|
| 22 |
+
"""
|
| 23 |
+
super().__init__(version=datasets.Version("1.1.0"), **kwargs)
|
| 24 |
+
self.features = features
|
| 25 |
+
self.task_type = task_type
|
| 26 |
+
self.url = url
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
SCIREPEVAL_CONFIGS = [
|
| 30 |
+
ScirepevalConfig(name="fos", features={"paper_id": datasets.Value("string"),
|
| 31 |
+
"label": datasets.Sequence(datasets.Value("int32"))}, task_type="classification"),
|
| 32 |
+
|
| 33 |
+
ScirepevalConfig(name="mesh_descriptors", features={"paper_id": datasets.Value("string"),
|
| 34 |
+
"label": datasets.Value("int32")}, task_type="classification"),
|
| 35 |
+
|
| 36 |
+
ScirepevalConfig(name="biomimicry", features={"paper_id": datasets.Value("string"),
|
| 37 |
+
"label": datasets.Value("int32")}, task_type="classification"),
|
| 38 |
+
|
| 39 |
+
ScirepevalConfig(name="cite_count", features={"paper_id": datasets.Value("string"),
|
| 40 |
+
"label": datasets.Value("float64")}, task_type="regression"),
|
| 41 |
+
|
| 42 |
+
ScirepevalConfig(name="pub_year", features={"paper_id": datasets.Value("string"),
|
| 43 |
+
"label": datasets.Value("float64")}, task_type="regression"),
|
| 44 |
+
|
| 45 |
+
ScirepevalConfig(name="high_influence_cite", features={"query_id": datasets.Value("string"),
|
| 46 |
+
"cand_id": datasets.Value("string"), "score": datasets.Value("uint8")}, task_type="proximity"),
|
| 47 |
+
|
| 48 |
+
ScirepevalConfig(name="same_author", features={"query_id": datasets.Value("string"),
|
| 49 |
+
"cand_id": datasets.Value("string"), "score": datasets.Value("uint8")}, task_type="proximity"),
|
| 50 |
+
|
| 51 |
+
ScirepevalConfig(name="search", features={"query_id": datasets.Value("string"),
|
| 52 |
+
"cand_id": datasets.Value("string"), "score": datasets.Value("uint8")}, task_type="search"),
|
| 53 |
+
|
| 54 |
+
ScirepevalConfig(name="drsm", task_type="classification", features={"paper_id": datasets.Value("string"),
|
| 55 |
+
"label": datasets.Value("int32")}),
|
| 56 |
+
|
| 57 |
+
ScirepevalConfig(name="relish", features={"query_id": datasets.Value("string"),
|
| 58 |
+
"cand_id": datasets.Value("string"), "score": datasets.Value("uint8")}, task_type="proximity"),
|
| 59 |
+
|
| 60 |
+
ScirepevalConfig(name="nfcorpus", features={"query_id": datasets.Value("string"),
|
| 61 |
+
"cand_id": datasets.Value("string"), "score": datasets.Value("uint8")}, task_type="search"),
|
| 62 |
+
|
| 63 |
+
ScirepevalConfig(name="peer_review_score", task_type="regression", url="peer_review_score_hIndex/peer_review_score", features={"paper_id": datasets.Value("string"),
|
| 64 |
+
"label": datasets.Value("float64")}),
|
| 65 |
+
|
| 66 |
+
ScirepevalConfig(name="hIndex", task_type="regression", url="peer_review_score_hIndex/hIndex", features={"paper_id": datasets.Value("string"),
|
| 67 |
+
"label": datasets.Value("float64")}),
|
| 68 |
+
|
| 69 |
+
ScirepevalConfig(name="trec_covid", features={"query_id": datasets.Value("string"),
|
| 70 |
+
"cand_id": datasets.Value("string"), "score": datasets.Value("int8")}, task_type="search"),
|
| 71 |
+
|
| 72 |
+
ScirepevalConfig(name="tweet_mentions", task_type="regression", features={"paper_id": datasets.Value("string"),
|
| 73 |
+
"label": datasets.Value("float64")}),
|
| 74 |
+
|
| 75 |
+
ScirepevalConfig(name="scidocs_mag", task_type="classification", url="scidocs/mag_mesh/mag", features={"paper_id": datasets.Value("string"),
|
| 76 |
+
"label": datasets.Value("int32")}),
|
| 77 |
+
|
| 78 |
+
ScirepevalConfig(name="scidocs_mesh", task_type="classification", url="scidocs/mag_mesh/mesh", features={"paper_id": datasets.Value("string"),
|
| 79 |
+
"label": datasets.Value("int32")}),
|
| 80 |
+
|
| 81 |
+
ScirepevalConfig(name="scidocs_view", features={"query_id": datasets.Value("string"),
|
| 82 |
+
"cand_id": datasets.Value("string"), "score": datasets.Value("uint8")}, task_type="proximity", url="scidocs/view_cite_read/coview"),
|
| 83 |
+
|
| 84 |
+
ScirepevalConfig(name="scidocs_cite", features={"query_id": datasets.Value("string"),
|
| 85 |
+
"cand_id": datasets.Value("string"), "score": datasets.Value("uint8")}, task_type="proximity", url="scidocs/view_cite_read/cite"),
|
| 86 |
+
|
| 87 |
+
ScirepevalConfig(name="scidocs_cocite", features={"query_id": datasets.Value("string"),
|
| 88 |
+
"cand_id": datasets.Value("string"), "score": datasets.Value("uint8")}, task_type="proximity", url="scidocs/view_cite_read/cocite"),
|
| 89 |
+
|
| 90 |
+
ScirepevalConfig(name="scidocs_read", features={"query_id": datasets.Value("string"),
|
| 91 |
+
"cand_id": datasets.Value("string"), "score": datasets.Value("uint8")}, task_type="proximity", url="scidocs/view_cite_read/coread"),
|
| 92 |
+
|
| 93 |
+
ScirepevalConfig(name="reviewers", task_type="metadata", url="paper_reviewer_matching", features={"r_id": datasets.Value("string"),
|
| 94 |
+
"papers": datasets.Sequence(datasets.Value("string"))}),
|
| 95 |
+
|
| 96 |
+
ScirepevalConfig(name="paper_reviewer_matching", features={"query_id": datasets.Value("string"),
|
| 97 |
+
"cand_id": datasets.Value("string"), "score": datasets.Value("uint8")}, task_type="proximity"),
|
| 98 |
+
|
| 99 |
+
]
|