File size: 11,064 Bytes
76cd8d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import os
import glob
import ast
import numpy as np
import json
import pandas as pd
import matplotlib.pyplot as plt
import pdb
from tqdm import tqdm
from nltk.tokenize import WhitespaceTokenizer
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import recall_score, precision_score, accuracy_score
from natsort import natsorted
import warnings

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torch.utils.data import DataLoader, TensorDataset
from torch.nn.utils.rnn import pad_sequence

from Multilabel_task_head import MultiLabelTaskHead
from singlelabel_task_head import SingleLabelTaskHead
from base_network import base_network
from multi_task import MultiTaskModel

np.random.seed(45)
torch.manual_seed(45)

os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "3"

# Check if CUDA is available
if torch.cuda.is_available():
    device = torch.device("cuda")
    print("Using CUDA on", torch.cuda.get_device_name(device))

warnings.filterwarnings('ignore')

batch_size = 32
epoch = 1000
max_seq_length = 128
input_size = 128
# device = 'cpu'

# Load the data
with open('data/data_Xtrain.json', 'r') as file:
    X_train = np.array(json.load(file))
with open('data/data_Xval.json', 'r') as file:
    Xval = np.array(json.load(file))

y_train = pd.read_csv('data/data_ytrain.csv')
y_train_s = y_train['Intent Of Lie (Gaining Advantage/Gaining Esteem/Avoiding Punishment/Avoiding Embarrassment/Protecting Themselves)']
yval = pd.read_csv('data/data_yval.csv')
yval_s = yval['Intent Of Lie (Gaining Advantage/Gaining Esteem/Avoiding Punishment/Avoiding Embarrassment/Protecting Themselves)']

y_train_m = y_train[['ordered_list_1', 'ordered_list_3', 'ordered_list_4', 'ordered_list_7']].applymap(
    lambda x: ast.literal_eval(x) if isinstance(x, str) else x)
y_val_m = yval[['ordered_list_1', 'ordered_list_3', 'ordered_list_4', 'ordered_list_7']].applymap(
    lambda x: ast.literal_eval(x) if isinstance(x, str) else x)

print(type(y_train_m))

y_train_m1 = y_train_m['ordered_list_1'].apply(np.array).to_numpy()
y_val_m1 = y_val_m['ordered_list_1'].apply(np.array).to_numpy()
y_train_m3 = y_train_m['ordered_list_3'].apply(np.array).to_numpy()
y_val_m3 = y_val_m['ordered_list_3'].apply(np.array).to_numpy()
y_train_m4 = y_train_m['ordered_list_4'].apply(np.array).to_numpy()
y_val_m4 = y_val_m['ordered_list_4'].apply(np.array).to_numpy()
y_train_m7 = y_train_m['ordered_list_7'].apply(np.array).to_numpy()
y_val_m7 = y_val_m['ordered_list_7'].apply(np.array).to_numpy()

# Label Encoding of single label dataset.
le = LabelEncoder()
y_train_s = le.fit_transform(y_train_s)
yval_s = le.transform(yval_s)
y_train_s = np.array(y_train_s)
yval_s = np.array(yval_s)

# Tokenize and pad the data
tokenizer = WhitespaceTokenizer()
tokenized_sentences = [tokenizer.tokenize(
    sentence)[:max_seq_length] for sentence in X_train]
tokenized_sentences_val = [tokenizer.tokenize(
    sentence)[:max_seq_length] for sentence in Xval]
vocab = {token: i+1 for i,
         token in enumerate(set(token for sent in tokenized_sentences for token in sent))}
indexed_sequences = [torch.tensor([vocab.get(token, 0) for token in sent] + [
                                  0] * (max_seq_length - len(sent))) for sent in tokenized_sentences]
indexed_sequences_val = [torch.tensor([vocab.get(token, 0) for token in sent] + [
    0] * (max_seq_length - len(sent))) for sent in tokenized_sentences_val]
padded_sequences = pad_sequence(
    indexed_sequences, batch_first=True, padding_value=0)
pad_sequences_val = pad_sequence(
    indexed_sequences_val, batch_first=True, padding_value=0)

# attention_mask = torch.where(padded_sequences != 0, torch.tensor(1), torch.tensor(0))

X_train = padded_sequences
Xval = pad_sequences_val
y_train_m1 = np.vstack(y_train_m1)
y_train_m3 = np.vstack(y_train_m3)
y_train_m4 = np.vstack(y_train_m4)
y_train_m7 = np.vstack(y_train_m7)

y_val_m1 = np.vstack(y_val_m1)
y_val_m3 = np.vstack(y_val_m3)
y_val_m4 = np.vstack(y_val_m4)
y_val_m7 = np.vstack(y_val_m7)

X_train, y_train_s, y_train_m1, y_train_m3, y_train_m4, y_train_m7 = torch.tensor(X_train).long().to(device), torch.tensor(y_train_s).long().to(device), torch.tensor(
    y_train_m1).long().to(device), torch.tensor(y_train_m3).long().to(device), torch.tensor(y_train_m4).long().to(device), torch.tensor(y_train_m7).long().to(device)

Xval, yval_s, y_val_m1, y_val_m3, y_val_m4, y_val_m7 = torch.tensor(Xval).long().to(device), torch.tensor(yval_s).long().to(device), torch.tensor(
    y_val_m1).long().to(device), torch.tensor(y_val_m3).long().to(device), torch.tensor(y_val_m4).long().to(device), torch.tensor(y_val_m7).long().to(device)

dataset_train=TensorDataset(
    X_train, y_train_s, y_train_m1, y_train_m3, y_train_m4, y_train_m7)
dataloader_train=DataLoader(
    dataset_train, batch_size=batch_size, shuffle=True)

dataset_val=TensorDataset(
    Xval, yval_s, y_val_m1, y_val_m3, y_val_m4, y_val_m7)
dataloader_val=DataLoader(
    dataset_val, batch_size=batch_size, shuffle=True)

task_heads=[SingleLabelTaskHead(input_size=128, output_size=10, device=device).to(device), MultiLabelTaskHead(input_size=128, output_size=5, device=device).to(device), MultiLabelTaskHead(
    input_size=128, output_size=7, device=device).to(device), MultiLabelTaskHead(input_size=128, output_size=5, device=device).to(device), MultiLabelTaskHead(input_size=128, output_size=7, device=device).to(device)]

model=MultiTaskModel(base_network(input_size=7700+1, embedding_size=128,
                       hidden_size=64, num_layers=2, dropout=0.5, bidirectional=True, device=device), task_heads, device=device).to(device)

optimizer=optim.Adam(model.parameters(), lr=0.001)
loss_fn=nn.CrossEntropyLoss()
criterion_m=nn.BCEWithLogitsLoss()

def accuracy_multi(prediction, target):
    prediction=torch.round(prediction)
    return torch.mean((prediction == target).float(), dim=0)



def recall_multi(prediction, target):
    prediction = torch.round(prediction)

    tp = torch.sum(torch.logical_and(prediction == 1, target == 1), axis=0)
    fn = torch.sum(torch.logical_and(prediction == 0, target == 1), axis=0)

    recall = tp / (tp + fn)

    return recall
    # prediction=torch.round(prediction)
    # return recall_score(target.cpu().detach().numpy(), prediction.cpu().detach().numpy(), average='macro')

def precision_multi(prediction, target):
    prediction = torch.round(prediction)

    tp = torch.sum(torch.logical_and(prediction == 1, target == 1), axis=0)
    fp = torch.sum(torch.logical_and(prediction == 1, target == 0), axis=0)

    precision = tp / (tp + fp)

    return precision

    # prediction=torch.round(prediction)
    # return precision_score(target.cpu().detach().numpy(), prediction.cpu().detach().numpy(), average='macro')

def train(model, dataloader_train, optimizer, criterion, epoch):
    model.train()
    multi_accuracy=0
    for batch_idx, (data, target_s, target_m1, target_m3, target_m4, target_m7) in enumerate(dataloader_train):
        target=[target_s, target_m1, target_m3, target_m4, target_m7]
        optimizer.zero_grad()
        task_outputs=model(data)
        losses=[loss_fn(output, label)
                  for output, label in zip([task_outputs[0]], [target[0]])] + [criterion_m(output, label.float())
                                                                               for output, label in zip(task_outputs[1:], target[1:])]
        loss=sum(losses)
        loss.backward()
        optimizer.step()
        
        multi_accuracy=model.accuracy(task_outputs, target)
        multi_recall=model.recall(task_outputs, target)
        multi_precision=model.precision(task_outputs, target)

        multi_accuracy_label=[accuracy_multi(
            x, y) for x, y in zip(task_outputs[1:], target[1:])]
        
        multi_recall_label=[recall_multi(x, y) for x, y in zip(task_outputs[1:], target[1:])]
        multi_precision_label=[precision_multi(x, y) for x, y in zip(task_outputs[1:], target[1:])]
        if batch_idx % 100 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(dataloader_train.dataset),
                100. * batch_idx / len(dataloader_train), loss.item()))
            for i in range(len(task_outputs)):
                print(f"Task {i+1} Accuracy: {multi_accuracy[i]}", end="\t")
                print(f"Task {i+1} Recall: {multi_recall[i]}", end="\t")
                print(f"Task {i+1} Precision: {multi_precision[i]}")
                if i > 0:
                    print(
                        f"Task {i+1} Accuracy Label: {multi_accuracy_label[i-1]}")
                    print(
                        f"Task {i+1} Recall Label: {multi_recall_label[i-1]}")
                    print(
                        f"Task {i+1} Precision Label: {multi_precision_label[i-1]}")
                    print('----------------------------------------------------------------------')

                else:
                    print('----------------------------------------------------------------------')

            print('*'*120)
            
            # pdb.set_trace()


    # save the checkpoints
    if epoch % 10 == 0:
        torch.save({
            'epoch': epoch,
            'model_state_dict': model.state_dict(),
            'optimizer_state_dict': optimizer.state_dict(),
            # 'loss': loss_fn,
        }, f"saved_model/EXPERIMENT_{experiment_num}/checkpoints/checkpoint_{epoch}_{loss}.pt")

# def validate(model, dataloader_val, criterion, epoch):
#     with torch.no_grad():
#         for batch_idx, (data, target_s, target_m1, target_m3, target_m4, target_m7) in enumerate(dataloader_val):
#             target=[target_s, target_m1, target_m3, target_m4, target_m7]
#             task_outputs=model(data)
            

dir_info=natsorted(glob.glob('saved_model/EXPERIMENT_*'))

if len(dir_info) == 0:
    experiment_num=1
else:
    experiment_num=int(dir_info[-1].split('_')[-1]) + 1

if not os.path.isdir('saved_model/EXPERIMENT_{}'.format(experiment_num)):
    os.makedirs('saved_model/EXPERIMENT_{}'.format(experiment_num))
    os.system('cp *.py saved_model/EXPERIMENT_{}'.format(experiment_num))

ckpt_lst=natsorted(
    glob.glob('saved_model/EXPERIMENT_{}/checkpoints/*'.format(experiment_num)))
START_EPOCH=0


if len(ckpt_lst) >= 1:
    ckpt_path=ckpt_lst[-1]
    checkpoint=torch.load(ckpt_path, map_location=device)
    model.load_state_dict(checkpoint['model_state_dict'])
    optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
    # scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
    START_EPOCH=checkpoint['epoch']
    print('Loading checkpoint from previous epoch: {}'.format(START_EPOCH))
    START_EPOCH += 1
else:
    os.makedirs('saved_model/EXPERIMENT_{}/checkpoints/'.format(experiment_num))

for epoch in range(START_EPOCH, epoch + 1):
    train(model, dataloader_train, optimizer, loss_fn, epoch)