File size: 11,064 Bytes
76cd8d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import os
import glob
import ast
import numpy as np
import json
import pandas as pd
import matplotlib.pyplot as plt
import pdb
from tqdm import tqdm
from nltk.tokenize import WhitespaceTokenizer
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import recall_score, precision_score, accuracy_score
from natsort import natsorted
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torch.utils.data import DataLoader, TensorDataset
from torch.nn.utils.rnn import pad_sequence
from Multilabel_task_head import MultiLabelTaskHead
from singlelabel_task_head import SingleLabelTaskHead
from base_network import base_network
from multi_task import MultiTaskModel
np.random.seed(45)
torch.manual_seed(45)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
# Check if CUDA is available
if torch.cuda.is_available():
device = torch.device("cuda")
print("Using CUDA on", torch.cuda.get_device_name(device))
warnings.filterwarnings('ignore')
batch_size = 32
epoch = 1000
max_seq_length = 128
input_size = 128
# device = 'cpu'
# Load the data
with open('data/data_Xtrain.json', 'r') as file:
X_train = np.array(json.load(file))
with open('data/data_Xval.json', 'r') as file:
Xval = np.array(json.load(file))
y_train = pd.read_csv('data/data_ytrain.csv')
y_train_s = y_train['Intent Of Lie (Gaining Advantage/Gaining Esteem/Avoiding Punishment/Avoiding Embarrassment/Protecting Themselves)']
yval = pd.read_csv('data/data_yval.csv')
yval_s = yval['Intent Of Lie (Gaining Advantage/Gaining Esteem/Avoiding Punishment/Avoiding Embarrassment/Protecting Themselves)']
y_train_m = y_train[['ordered_list_1', 'ordered_list_3', 'ordered_list_4', 'ordered_list_7']].applymap(
lambda x: ast.literal_eval(x) if isinstance(x, str) else x)
y_val_m = yval[['ordered_list_1', 'ordered_list_3', 'ordered_list_4', 'ordered_list_7']].applymap(
lambda x: ast.literal_eval(x) if isinstance(x, str) else x)
print(type(y_train_m))
y_train_m1 = y_train_m['ordered_list_1'].apply(np.array).to_numpy()
y_val_m1 = y_val_m['ordered_list_1'].apply(np.array).to_numpy()
y_train_m3 = y_train_m['ordered_list_3'].apply(np.array).to_numpy()
y_val_m3 = y_val_m['ordered_list_3'].apply(np.array).to_numpy()
y_train_m4 = y_train_m['ordered_list_4'].apply(np.array).to_numpy()
y_val_m4 = y_val_m['ordered_list_4'].apply(np.array).to_numpy()
y_train_m7 = y_train_m['ordered_list_7'].apply(np.array).to_numpy()
y_val_m7 = y_val_m['ordered_list_7'].apply(np.array).to_numpy()
# Label Encoding of single label dataset.
le = LabelEncoder()
y_train_s = le.fit_transform(y_train_s)
yval_s = le.transform(yval_s)
y_train_s = np.array(y_train_s)
yval_s = np.array(yval_s)
# Tokenize and pad the data
tokenizer = WhitespaceTokenizer()
tokenized_sentences = [tokenizer.tokenize(
sentence)[:max_seq_length] for sentence in X_train]
tokenized_sentences_val = [tokenizer.tokenize(
sentence)[:max_seq_length] for sentence in Xval]
vocab = {token: i+1 for i,
token in enumerate(set(token for sent in tokenized_sentences for token in sent))}
indexed_sequences = [torch.tensor([vocab.get(token, 0) for token in sent] + [
0] * (max_seq_length - len(sent))) for sent in tokenized_sentences]
indexed_sequences_val = [torch.tensor([vocab.get(token, 0) for token in sent] + [
0] * (max_seq_length - len(sent))) for sent in tokenized_sentences_val]
padded_sequences = pad_sequence(
indexed_sequences, batch_first=True, padding_value=0)
pad_sequences_val = pad_sequence(
indexed_sequences_val, batch_first=True, padding_value=0)
# attention_mask = torch.where(padded_sequences != 0, torch.tensor(1), torch.tensor(0))
X_train = padded_sequences
Xval = pad_sequences_val
y_train_m1 = np.vstack(y_train_m1)
y_train_m3 = np.vstack(y_train_m3)
y_train_m4 = np.vstack(y_train_m4)
y_train_m7 = np.vstack(y_train_m7)
y_val_m1 = np.vstack(y_val_m1)
y_val_m3 = np.vstack(y_val_m3)
y_val_m4 = np.vstack(y_val_m4)
y_val_m7 = np.vstack(y_val_m7)
X_train, y_train_s, y_train_m1, y_train_m3, y_train_m4, y_train_m7 = torch.tensor(X_train).long().to(device), torch.tensor(y_train_s).long().to(device), torch.tensor(
y_train_m1).long().to(device), torch.tensor(y_train_m3).long().to(device), torch.tensor(y_train_m4).long().to(device), torch.tensor(y_train_m7).long().to(device)
Xval, yval_s, y_val_m1, y_val_m3, y_val_m4, y_val_m7 = torch.tensor(Xval).long().to(device), torch.tensor(yval_s).long().to(device), torch.tensor(
y_val_m1).long().to(device), torch.tensor(y_val_m3).long().to(device), torch.tensor(y_val_m4).long().to(device), torch.tensor(y_val_m7).long().to(device)
dataset_train=TensorDataset(
X_train, y_train_s, y_train_m1, y_train_m3, y_train_m4, y_train_m7)
dataloader_train=DataLoader(
dataset_train, batch_size=batch_size, shuffle=True)
dataset_val=TensorDataset(
Xval, yval_s, y_val_m1, y_val_m3, y_val_m4, y_val_m7)
dataloader_val=DataLoader(
dataset_val, batch_size=batch_size, shuffle=True)
task_heads=[SingleLabelTaskHead(input_size=128, output_size=10, device=device).to(device), MultiLabelTaskHead(input_size=128, output_size=5, device=device).to(device), MultiLabelTaskHead(
input_size=128, output_size=7, device=device).to(device), MultiLabelTaskHead(input_size=128, output_size=5, device=device).to(device), MultiLabelTaskHead(input_size=128, output_size=7, device=device).to(device)]
model=MultiTaskModel(base_network(input_size=7700+1, embedding_size=128,
hidden_size=64, num_layers=2, dropout=0.5, bidirectional=True, device=device), task_heads, device=device).to(device)
optimizer=optim.Adam(model.parameters(), lr=0.001)
loss_fn=nn.CrossEntropyLoss()
criterion_m=nn.BCEWithLogitsLoss()
def accuracy_multi(prediction, target):
prediction=torch.round(prediction)
return torch.mean((prediction == target).float(), dim=0)
def recall_multi(prediction, target):
prediction = torch.round(prediction)
tp = torch.sum(torch.logical_and(prediction == 1, target == 1), axis=0)
fn = torch.sum(torch.logical_and(prediction == 0, target == 1), axis=0)
recall = tp / (tp + fn)
return recall
# prediction=torch.round(prediction)
# return recall_score(target.cpu().detach().numpy(), prediction.cpu().detach().numpy(), average='macro')
def precision_multi(prediction, target):
prediction = torch.round(prediction)
tp = torch.sum(torch.logical_and(prediction == 1, target == 1), axis=0)
fp = torch.sum(torch.logical_and(prediction == 1, target == 0), axis=0)
precision = tp / (tp + fp)
return precision
# prediction=torch.round(prediction)
# return precision_score(target.cpu().detach().numpy(), prediction.cpu().detach().numpy(), average='macro')
def train(model, dataloader_train, optimizer, criterion, epoch):
model.train()
multi_accuracy=0
for batch_idx, (data, target_s, target_m1, target_m3, target_m4, target_m7) in enumerate(dataloader_train):
target=[target_s, target_m1, target_m3, target_m4, target_m7]
optimizer.zero_grad()
task_outputs=model(data)
losses=[loss_fn(output, label)
for output, label in zip([task_outputs[0]], [target[0]])] + [criterion_m(output, label.float())
for output, label in zip(task_outputs[1:], target[1:])]
loss=sum(losses)
loss.backward()
optimizer.step()
multi_accuracy=model.accuracy(task_outputs, target)
multi_recall=model.recall(task_outputs, target)
multi_precision=model.precision(task_outputs, target)
multi_accuracy_label=[accuracy_multi(
x, y) for x, y in zip(task_outputs[1:], target[1:])]
multi_recall_label=[recall_multi(x, y) for x, y in zip(task_outputs[1:], target[1:])]
multi_precision_label=[precision_multi(x, y) for x, y in zip(task_outputs[1:], target[1:])]
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(dataloader_train.dataset),
100. * batch_idx / len(dataloader_train), loss.item()))
for i in range(len(task_outputs)):
print(f"Task {i+1} Accuracy: {multi_accuracy[i]}", end="\t")
print(f"Task {i+1} Recall: {multi_recall[i]}", end="\t")
print(f"Task {i+1} Precision: {multi_precision[i]}")
if i > 0:
print(
f"Task {i+1} Accuracy Label: {multi_accuracy_label[i-1]}")
print(
f"Task {i+1} Recall Label: {multi_recall_label[i-1]}")
print(
f"Task {i+1} Precision Label: {multi_precision_label[i-1]}")
print('----------------------------------------------------------------------')
else:
print('----------------------------------------------------------------------')
print('*'*120)
# pdb.set_trace()
# save the checkpoints
if epoch % 10 == 0:
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
# 'loss': loss_fn,
}, f"saved_model/EXPERIMENT_{experiment_num}/checkpoints/checkpoint_{epoch}_{loss}.pt")
# def validate(model, dataloader_val, criterion, epoch):
# with torch.no_grad():
# for batch_idx, (data, target_s, target_m1, target_m3, target_m4, target_m7) in enumerate(dataloader_val):
# target=[target_s, target_m1, target_m3, target_m4, target_m7]
# task_outputs=model(data)
dir_info=natsorted(glob.glob('saved_model/EXPERIMENT_*'))
if len(dir_info) == 0:
experiment_num=1
else:
experiment_num=int(dir_info[-1].split('_')[-1]) + 1
if not os.path.isdir('saved_model/EXPERIMENT_{}'.format(experiment_num)):
os.makedirs('saved_model/EXPERIMENT_{}'.format(experiment_num))
os.system('cp *.py saved_model/EXPERIMENT_{}'.format(experiment_num))
ckpt_lst=natsorted(
glob.glob('saved_model/EXPERIMENT_{}/checkpoints/*'.format(experiment_num)))
START_EPOCH=0
if len(ckpt_lst) >= 1:
ckpt_path=ckpt_lst[-1]
checkpoint=torch.load(ckpt_path, map_location=device)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
# scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
START_EPOCH=checkpoint['epoch']
print('Loading checkpoint from previous epoch: {}'.format(START_EPOCH))
START_EPOCH += 1
else:
os.makedirs('saved_model/EXPERIMENT_{}/checkpoints/'.format(experiment_num))
for epoch in range(START_EPOCH, epoch + 1):
train(model, dataloader_train, optimizer, loss_fn, epoch)
|