# import all standard libraries import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import pdb from sklearn.model_selection import train_test_split import json # load the pandas dataset df = pd.read_csv('data.csv') l = df.columns # Remove rows with nan values in particular column df[l[1]] = df[l[1]].dropna() # Replace Nan values with a string df[l[1]] = df[l[1]].fillna('Nan') df[l[3]] = df[l[3]].fillna('Nan2') df[l[4]] = df[l[4]].fillna('Nan3') df[l[6]] = df[l[6]].fillna('Nan4') df[l[7]] = df[l[7]].fillna('Nan5') df[l[1]] = df[l[1]].str.split('/') df[l[3]] = df[l[3]].str.split(',') df[l[4]] = df[l[4]].str.split('/') df[l[7]] = df[l[7]].str.split('/') unique_words_1 = list(set(word for row in df[l[1]] for word in row)) unique_words_3 = list(set(word for row in df[l[3]] for word in row)) unique_words_4 = list(set(word for row in df[l[4]] for word in row)) unique_words_7 = list(set(word for row in df[l[7]] for word in row)) def create_ordered_list(words, unique_words): ordered_list = [1 if word in words else 0 for word in unique_words] return ordered_list df['ordered_list_1'] = df[l[1]].apply(lambda x: create_ordered_list(x, unique_words_1)) df['ordered_list_3'] = df[l[3]].apply(lambda x: create_ordered_list(x, unique_words_3)) df['ordered_list_4'] = df[l[4]].apply(lambda x: create_ordered_list(x, unique_words_4)) df['ordered_list_7'] = df[l[7]].apply(lambda x: create_ordered_list(x, unique_words_7)) df.to_csv('new_data.csv', index=False) l = df.columns # remove unwanted columns df = df[[l[0], l[8], l[9], l[10], l[6], l[11]]] # Split the dataset into train and validation X_train, X_val, y_train, y_val = train_test_split( df[l[0]], df.loc[:, df.columns != l[0]], test_size=0.1, random_state=42) print(X_train.shape, y_train.shape, X_val.shape, y_val.shape) # Save the train and validation dataset os.makedirs('data', exist_ok=True) y_train.to_csv('data/data_ytrain.csv', index=False) y_val.to_csv('data/data_yval.csv', index=False) with open('data/data_Xtrain.json', 'w') as file: print(len(X_train.tolist())) json.dump(X_train.tolist(), file) with open('data/data_Xval.json', 'w') as file: json.dump(X_val.tolist(), file)