import torch.nn as nn class MultiTaskModel(nn.Module): def __init__(self, base_net, task_heads, device): super().__init__() self.base_net = base_net self.task_heads = nn.ModuleList(task_heads) self.device = device def forward(self, x): base_output = self.base_net(x) # Forward pass through task-specific heads task_outputs = [head(base_output) for head in self.task_heads] return task_outputs def predict(self, x): base_output = self.base_net(x) # Forward pass through task-specific heads task_outputs = [head.predict(base_output) for head in self.task_heads] return task_outputs def accuracy(self, predictions, targets): accuracies = [head.accuracy(prediction, target) for head, prediction, target in zip( self.task_heads, predictions, targets)] return accuracies def recall(self, predictions, targets): recalls = [head.recall(prediction, target) for head, prediction, target in zip( self.task_heads, predictions, targets)] return recalls def precision(self, predictions, targets): precisions = [head.precision(prediction, target) for head, prediction, target in zip( self.task_heads, predictions, targets)] return precisions