# this is the main file, where we shall integrate all the other files and run the code import os import ast import numpy as np import json import pandas as pd import matplotlib.pyplot as plt import pdb from tqdm import tqdm from nltk.tokenize import WhitespaceTokenizer from sklearn.preprocessing import LabelEncoder import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import Dataset, DataLoader from torch.utils.data import DataLoader, TensorDataset from torch.nn.utils.rnn import pad_sequence from Multilabel_task_head import MultiLabelTaskHead from singlelabel_task_head import SingleLabelTaskHead from base_network import base_network from multi_task import MultiTaskModel batch_size = 32 epoch = 1000 max_seq_length = 128 input_size = 128 device = 'cpu' # Load the data with open('data/data_Xtrain.json', 'r') as file: X_train = json.load(file) with open('data/data_Xval.json', 'r') as file: Xval = json.load(file) y_train = pd.read_csv('data/data_ytrain.csv') y_train_s = y_train['Intent Of Lie (Gaining Advantage/Gaining Esteem/Avoiding Punishment/Avoiding Embarrassment/Protecting Themselves)'] # yval = pd.read_csv('data/data_yval.csv') y_train_m1 = y_train['ordered_list_1'] y_train_m1 = y_train_m1.apply(ast.literal_eval) le = LabelEncoder() y_train_s = le.fit_transform(y_train_s) # Convert the data into numpy arrays X_train = np.array(X_train) # Xval = np.array(Xval) y_train_s = np.array(y_train_s) # yval = np.array(yval) print(X_train.shape) # Tokenize and pad the data tokenizer = WhitespaceTokenizer() tokenized_sentences = [tokenizer.tokenize( sentence)[:max_seq_length] for sentence in X_train] vocab = {token: i+1 for i, token in enumerate(set(token for sent in tokenized_sentences for token in sent))} indexed_sequences = [torch.tensor([vocab.get(token, 0) for token in sent] + [ 0] * (max_seq_length - len(sent))) for sent in tokenized_sentences] padded_sequences = pad_sequence( indexed_sequences, batch_first=True, padding_value=0) # attention_mask = torch.where(padded_sequences != 0, torch.tensor(1), torch.tensor(0)) X_train = padded_sequences X_train, y_train_s = torch.tensor(X_train), torch.tensor(y_train_s) X_train = X_train.to(device) y_train_s = y_train_s.to(device) dataset_train = TensorDataset(X_train, y_train_s) dataloader_train = DataLoader( dataset_train, batch_size=batch_size, shuffle=True) # ### define for validation # dataset_val = TensorDataset(Xval, yval) # dataloader_val = DataLoader(dataset_val, batch_size=batch_size, shuffle=True) # model = base_network(input_size, embedding_size, output_size, # hidden_size, num_layers, dropout, bidirectional, device) # , TaskHead2(), ..., TaskHeadN()] task_heads = [SingleLabelTaskHead( input_size=128, output_size=10, device=device), MultiLabelTaskHead(input_size=128, output_size=10, device=device)] model = MultiTaskModel(base_network(input_size=7700+1, embedding_size=128, output_size=128, hidden_size=128, num_layers=2, dropout=0.5, bidirectional=False, device=device), task_heads, device=device) optimizer = optim.Adam(model.parameters(), lr=0.001) loss_fn = nn.CrossEntropyLoss() def train(model, dataloader_train, optimizer, criterion, epoch): model.train() for batch_idx, (data, target) in enumerate(dataloader_train): optimizer.zero_grad() task_outputs = model(data) print(task_outputs) losses = [loss_fn(output, label) for output, label in zip(task_outputs, [target])] loss = sum(losses) loss.backward() optimizer.step() if batch_idx % 100 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(dataloader_train.dataset), 100. * batch_idx / len(dataloader_train), loss.item())) for epoch in range(1, epoch + 1): train(model, dataloader_train, optimizer, loss_fn, epoch)