# In this case we shall use the same model as the one used in the previous task import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from sklearn.metrics import recall_score, precision_score, accuracy_score class SingleLabelTaskHead(nn.Module): def __init__(self, input_size, output_size, device): super(SingleLabelTaskHead, self).__init__() self.fc1 = nn.Linear(input_size, 50) self.fc2 = nn.Linear(50, 50) self.fc3 = nn.Linear(50, output_size) self.softmax = nn.Softmax(dim=1) self.device = device def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) x = self.softmax(x) return x def predict(self, x): x = self.forward(x) x = torch.argmax(x, dim=1) return x def accuracy(self, prediction, target): prediction = torch.argmax(prediction, dim=1) return torch.mean((prediction == target).float()) def recall(self, prediction, target): prediction = torch.argmax(prediction, dim=1) return recall_score(target.cpu().detach().numpy(), prediction.cpu().detach().numpy(), average='micro') def precision(self, prediction, target): prediction = torch.argmax(prediction, dim=1) return precision_score(target.cpu().detach().numpy(), prediction.cpu().detach().numpy(), average='micro')