{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv('/home/dwip.dalal/AIISC/ScratchIMP/data/data_ytrain.csv')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" ordered_list_1 | \n",
" ordered_list_3 | \n",
" ordered_list_4 | \n",
" Intent Of Lie (Gaining Advantage/Gaining Esteem/Avoiding Punishment/Avoiding Embarrassment/Protecting Themselves) | \n",
" ordered_list_7 | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" [1, 0, 0, 0, 0] | \n",
" [1, 1, 0, 0, 0, 0, 0] | \n",
" [0, 0, 0, 0, 1] | \n",
" Nan4 | \n",
" [0, 0, 1, 0, 0, 0, 0] | \n",
"
\n",
" \n",
" | 1 | \n",
" [0, 0, 1, 0, 0] | \n",
" [0, 1, 0, 0, 0, 1, 0] | \n",
" [1, 0, 0, 0, 0] | \n",
" Gaining Advantage | \n",
" [1, 0, 0, 0, 0, 0, 0] | \n",
"
\n",
" \n",
" | 2 | \n",
" [0, 0, 0, 0, 1] | \n",
" [1, 1, 0, 0, 0, 0, 0] | \n",
" [0, 1, 0, 0, 0] | \n",
" Defaming Esteem | \n",
" [1, 0, 0, 0, 0, 0, 0] | \n",
"
\n",
" \n",
" | 3 | \n",
" [0, 0, 0, 0, 1] | \n",
" [1, 1, 0, 0, 0, 1, 0] | \n",
" [0, 0, 0, 1, 0] | \n",
" Gaining Advantage | \n",
" [0, 0, 0, 0, 0, 0, 1] | \n",
"
\n",
" \n",
" | 4 | \n",
" [1, 0, 0, 0, 0] | \n",
" [1, 1, 0, 0, 0, 0, 0] | \n",
" [0, 0, 0, 1, 0] | \n",
" Gaining Esteem | \n",
" [0, 0, 0, 0, 0, 0, 1] | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" ordered_list_1 ordered_list_3 ordered_list_4 \\\n",
"0 [1, 0, 0, 0, 0] [1, 1, 0, 0, 0, 0, 0] [0, 0, 0, 0, 1] \n",
"1 [0, 0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 0] [1, 0, 0, 0, 0] \n",
"2 [0, 0, 0, 0, 1] [1, 1, 0, 0, 0, 0, 0] [0, 1, 0, 0, 0] \n",
"3 [0, 0, 0, 0, 1] [1, 1, 0, 0, 0, 1, 0] [0, 0, 0, 1, 0] \n",
"4 [1, 0, 0, 0, 0] [1, 1, 0, 0, 0, 0, 0] [0, 0, 0, 1, 0] \n",
"\n",
" Intent Of Lie (Gaining Advantage/Gaining Esteem/Avoiding Punishment/Avoiding Embarrassment/Protecting Themselves) \\\n",
"0 Nan4 \n",
"1 Gaining Advantage \n",
"2 Defaming Esteem \n",
"3 Gaining Advantage \n",
"4 Gaining Esteem \n",
"\n",
" ordered_list_7 \n",
"0 [0, 0, 1, 0, 0, 0, 0] \n",
"1 [1, 0, 0, 0, 0, 0, 0] \n",
"2 [1, 0, 0, 0, 0, 0, 0] \n",
"3 [0, 0, 0, 0, 0, 0, 1] \n",
"4 [0, 0, 0, 0, 0, 0, 1] "
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"df = df[['ordered_list_1', 'ordered_list_3', 'ordered_list_4', 'ordered_list_7']]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" ordered_list_1 | \n",
" ordered_list_3 | \n",
" ordered_list_4 | \n",
" ordered_list_7 | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" [1, 0, 0, 0, 0] | \n",
" [1, 1, 0, 0, 0, 0, 0] | \n",
" [0, 0, 0, 0, 1] | \n",
" [0, 0, 1, 0, 0, 0, 0] | \n",
"
\n",
" \n",
" | 1 | \n",
" [0, 0, 1, 0, 0] | \n",
" [0, 1, 0, 0, 0, 1, 0] | \n",
" [1, 0, 0, 0, 0] | \n",
" [1, 0, 0, 0, 0, 0, 0] | \n",
"
\n",
" \n",
" | 2 | \n",
" [0, 0, 0, 0, 1] | \n",
" [1, 1, 0, 0, 0, 0, 0] | \n",
" [0, 1, 0, 0, 0] | \n",
" [1, 0, 0, 0, 0, 0, 0] | \n",
"
\n",
" \n",
" | 3 | \n",
" [0, 0, 0, 0, 1] | \n",
" [1, 1, 0, 0, 0, 1, 0] | \n",
" [0, 0, 0, 1, 0] | \n",
" [0, 0, 0, 0, 0, 0, 1] | \n",
"
\n",
" \n",
" | 4 | \n",
" [1, 0, 0, 0, 0] | \n",
" [1, 1, 0, 0, 0, 0, 0] | \n",
" [0, 0, 0, 1, 0] | \n",
" [0, 0, 0, 0, 0, 0, 1] | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" ordered_list_1 ordered_list_3 ordered_list_4 \\\n",
"0 [1, 0, 0, 0, 0] [1, 1, 0, 0, 0, 0, 0] [0, 0, 0, 0, 1] \n",
"1 [0, 0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 0] [1, 0, 0, 0, 0] \n",
"2 [0, 0, 0, 0, 1] [1, 1, 0, 0, 0, 0, 0] [0, 1, 0, 0, 0] \n",
"3 [0, 0, 0, 0, 1] [1, 1, 0, 0, 0, 1, 0] [0, 0, 0, 1, 0] \n",
"4 [1, 0, 0, 0, 0] [1, 1, 0, 0, 0, 0, 0] [0, 0, 0, 1, 0] \n",
"\n",
" ordered_list_7 \n",
"0 [0, 0, 1, 0, 0, 0, 0] \n",
"1 [1, 0, 0, 0, 0, 0, 0] \n",
"2 [1, 0, 0, 0, 0, 0, 0] \n",
"3 [0, 0, 0, 0, 0, 0, 1] \n",
"4 [0, 0, 0, 0, 0, 0, 1] "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['ordered_list_1'] = df['ordered_list_1'].apply(ast.literal_eval).apply(np.array)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "pal",
"language": "python",
"name": "pal"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}