{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv('/home/dwip.dalal/AIISC/ScratchIMP/data/data_ytrain.csv')" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ordered_list_1ordered_list_3ordered_list_4Intent Of Lie (Gaining Advantage/Gaining Esteem/Avoiding Punishment/Avoiding Embarrassment/Protecting Themselves)ordered_list_7
0[1, 0, 0, 0, 0][1, 1, 0, 0, 0, 0, 0][0, 0, 0, 0, 1]Nan4[0, 0, 1, 0, 0, 0, 0]
1[0, 0, 1, 0, 0][0, 1, 0, 0, 0, 1, 0][1, 0, 0, 0, 0]Gaining Advantage[1, 0, 0, 0, 0, 0, 0]
2[0, 0, 0, 0, 1][1, 1, 0, 0, 0, 0, 0][0, 1, 0, 0, 0]Defaming Esteem[1, 0, 0, 0, 0, 0, 0]
3[0, 0, 0, 0, 1][1, 1, 0, 0, 0, 1, 0][0, 0, 0, 1, 0]Gaining Advantage[0, 0, 0, 0, 0, 0, 1]
4[1, 0, 0, 0, 0][1, 1, 0, 0, 0, 0, 0][0, 0, 0, 1, 0]Gaining Esteem[0, 0, 0, 0, 0, 0, 1]
\n", "
" ], "text/plain": [ " ordered_list_1 ordered_list_3 ordered_list_4 \\\n", "0 [1, 0, 0, 0, 0] [1, 1, 0, 0, 0, 0, 0] [0, 0, 0, 0, 1] \n", "1 [0, 0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 0] [1, 0, 0, 0, 0] \n", "2 [0, 0, 0, 0, 1] [1, 1, 0, 0, 0, 0, 0] [0, 1, 0, 0, 0] \n", "3 [0, 0, 0, 0, 1] [1, 1, 0, 0, 0, 1, 0] [0, 0, 0, 1, 0] \n", "4 [1, 0, 0, 0, 0] [1, 1, 0, 0, 0, 0, 0] [0, 0, 0, 1, 0] \n", "\n", " Intent Of Lie (Gaining Advantage/Gaining Esteem/Avoiding Punishment/Avoiding Embarrassment/Protecting Themselves) \\\n", "0 Nan4 \n", "1 Gaining Advantage \n", "2 Defaming Esteem \n", "3 Gaining Advantage \n", "4 Gaining Esteem \n", "\n", " ordered_list_7 \n", "0 [0, 0, 1, 0, 0, 0, 0] \n", "1 [1, 0, 0, 0, 0, 0, 0] \n", "2 [1, 0, 0, 0, 0, 0, 0] \n", "3 [0, 0, 0, 0, 0, 0, 1] \n", "4 [0, 0, 0, 0, 0, 0, 1] " ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "df = df[['ordered_list_1', 'ordered_list_3', 'ordered_list_4', 'ordered_list_7']]" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ordered_list_1ordered_list_3ordered_list_4ordered_list_7
0[1, 0, 0, 0, 0][1, 1, 0, 0, 0, 0, 0][0, 0, 0, 0, 1][0, 0, 1, 0, 0, 0, 0]
1[0, 0, 1, 0, 0][0, 1, 0, 0, 0, 1, 0][1, 0, 0, 0, 0][1, 0, 0, 0, 0, 0, 0]
2[0, 0, 0, 0, 1][1, 1, 0, 0, 0, 0, 0][0, 1, 0, 0, 0][1, 0, 0, 0, 0, 0, 0]
3[0, 0, 0, 0, 1][1, 1, 0, 0, 0, 1, 0][0, 0, 0, 1, 0][0, 0, 0, 0, 0, 0, 1]
4[1, 0, 0, 0, 0][1, 1, 0, 0, 0, 0, 0][0, 0, 0, 1, 0][0, 0, 0, 0, 0, 0, 1]
\n", "
" ], "text/plain": [ " ordered_list_1 ordered_list_3 ordered_list_4 \\\n", "0 [1, 0, 0, 0, 0] [1, 1, 0, 0, 0, 0, 0] [0, 0, 0, 0, 1] \n", "1 [0, 0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 0] [1, 0, 0, 0, 0] \n", "2 [0, 0, 0, 0, 1] [1, 1, 0, 0, 0, 0, 0] [0, 1, 0, 0, 0] \n", "3 [0, 0, 0, 0, 1] [1, 1, 0, 0, 0, 1, 0] [0, 0, 0, 1, 0] \n", "4 [1, 0, 0, 0, 0] [1, 1, 0, 0, 0, 0, 0] [0, 0, 0, 1, 0] \n", "\n", " ordered_list_7 \n", "0 [0, 0, 1, 0, 0, 0, 0] \n", "1 [1, 0, 0, 0, 0, 0, 0] \n", "2 [1, 0, 0, 0, 0, 0, 0] \n", "3 [0, 0, 0, 0, 0, 0, 1] \n", "4 [0, 0, 0, 0, 0, 0, 1] " ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['ordered_list_1'] = df['ordered_list_1'].apply(ast.literal_eval).apply(np.array)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "pal", "language": "python", "name": "pal" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.13" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }