# Code for making a Two hidden layer multi-label classification model import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from sklearn.metrics import recall_score, precision_score, accuracy_score class MultiLabelTaskHead(nn.Module): def __init__(self, input_size, output_size, device): super(MultiLabelTaskHead, self).__init__() self.fc1 = nn.Linear(input_size, 50) self.fc2 = nn.Linear(50, 50) self.fc3 = nn.Linear(50, output_size) ## Example in case of 5 w analysis output_size = 5 self.sigmoid = nn.Sigmoid() self.device = device def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) x = self.sigmoid(x) return x def predict(self, x): x = self.forward(x) x = torch.round(x) return x def accuracy(self, prediction, target): prediction = torch.round(prediction) return torch.mean((prediction == target).float()) def recall(self, prediction, target): prediction = torch.round(prediction) tp = torch.sum(torch.logical_and(prediction == 1, target == 1), axis=0) fn = torch.sum(torch.logical_and(prediction == 0, target == 1), axis=0) recall = tp / (tp + fn) overall_recall = torch.mean(recall) return overall_recall def precision(self, prediction, target): prediction = torch.round(prediction) tp = torch.sum(torch.logical_and(prediction == 1, target == 1), axis=0) fp = torch.sum(torch.logical_and(prediction == 1, target == 0), axis=0) precision = tp / (tp + fp) overall_precision = torch.mean(precision) return overall_precision