antitheft159 commited on
Commit
507feab
·
verified ·
1 Parent(s): 09ed12a

Upload 5733_252_159 (1).py

Browse files
Files changed (1) hide show
  1. 5733_252_159 (1).py +667 -0
5733_252_159 (1).py ADDED
@@ -0,0 +1,667 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """5733.252.159
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1tAXux50pAJVnm9bD6q5i20TFu4-eyI38
8
+ """
9
+
10
+ import numpy as np
11
+ import matplotlib.pyplot as plt
12
+ from matplotlib.animation import FuncAnimation
13
+
14
+ def generate_brainwave(frequency, t, phase_shift=0):
15
+ return np.sin(2 * np.pi * frequency * t + phase_shift)
16
+
17
+ def portal_organize(frequencies):
18
+ # Example of organizing the data: averaging and normalizing
19
+ organized_data = np.mean(frequencies, axis=0)
20
+ normalized_data = (organized_data - np.min(organized_data)) / (np.max(organized_data) - np.min(organized_data))
21
+ return normalized_data
22
+
23
+ def scramble_data(data, delay):
24
+ # Simulate a delay by shifting the data and adding a scrambling effect
25
+ scrambled_data = np.roll(data, delay) # Shift data by 'delay' samples
26
+ scrambled_data += np.random.normal(0, 0.1, size=data.shape) # Add noise as a scrambling effect
27
+ return scrambled_data
28
+
29
+ def update(frame, lines, t, duration, sampling_rate):
30
+ # Adjust time shifts for different movement speeds
31
+ t_shifted1 = t + frame / (sampling_rate * 1.0) # First layer speed (base)
32
+ t_shifted2 = t + frame / (sampling_rate * 1.25) # Second layer speed (slightly faster)
33
+ t_shifted3 = t + frame / (sampling_rate * 1.75) # Third layer speed (moderately faster)
34
+ t_shifted4 = t + frame / (sampling_rate * 2.25) # Fourth layer speed (fastest)
35
+ t_shifted5 = t + frame / (sampling_rate * 3.0) # Fifth layer speed (fastest)
36
+ t_shifted6 = t + frame / (sampling_rate * 4.0) # Sixth layer speed (with delay)
37
+
38
+ # First layer: Alpha and Beta waves with financial frequencies
39
+ alpha_wave = generate_brainwave(10, t_shifted1) # Alpha (10 Hz)
40
+ beta_wave = generate_brainwave(20, t_shifted1) # Beta (20 Hz)
41
+ financial_wave = generate_brainwave(15, t_shifted1, phase_shift=0.5) # Financial frequency (15 Hz)
42
+ combined_wave1 = (alpha_wave + beta_wave) / 2
43
+
44
+ # Transfer mechanism: Influence the second layer based on the first layer's financial frequencies
45
+ influence_factor = (financial_wave - np.mean(financial_wave)) / np.std(financial_wave)
46
+ # Update frequencies based on influence factor
47
+ theta_frequency = 6 + influence_factor # Adjusted Theta frequency
48
+ gamma_frequency = 40 + influence_factor # Adjusted Gamma frequency
49
+
50
+ theta_wave = generate_brainwave(theta_frequency, t_shifted2, phase_shift=0.3)
51
+ gamma_wave = generate_brainwave(gamma_frequency, t_shifted2, phase_shift=0.7)
52
+ combined_wave2 = (theta_wave + gamma_wave) / 2
53
+
54
+ # Transfer mechanism: Use second layer data to influence the third layer
55
+ transfer_factor = np.mean(theta_wave) # Transfer factor based on mean value of theta wave
56
+ delta_frequency = 2 + transfer_factor # Adjusted Delta frequency
57
+ high_beta_frequency = 30 + transfer_factor # Adjusted High Beta frequency
58
+
59
+ delta_wave = generate_brainwave(delta_frequency, t_shifted3, phase_shift=1.0)
60
+ high_beta_wave = generate_brainwave(high_beta_frequency, t_shifted3, phase_shift=1.5)
61
+ combined_wave3 = (delta_wave + high_beta_wave) / 2
62
+
63
+ # Transfer mechanism: Use third layer data to influence the fourth layer
64
+ transfer_factor_3_to_4 = np.mean(delta_wave) # Transfer factor based on mean value of delta wave
65
+ mu_frequency = 12 + transfer_factor_3_to_4 # Adjusted Mu frequency
66
+ low_gamma_frequency = 50 + transfer_factor_3_to_4 # Adjusted Low Gamma frequency
67
+
68
+ mu_wave = generate_brainwave(mu_frequency, t_shifted4, phase_shift=2.0)
69
+ low_gamma_wave = generate_brainwave(low_gamma_frequency, t_shifted4, phase_shift=2.5)
70
+ combined_wave4 = (mu_wave + low_gamma_wave) / 2
71
+
72
+ # Mirror effect: Reflect the fourth layer's wave around the x-axis
73
+ mirrored_wave4 = -combined_wave4
74
+ combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2
75
+
76
+ # Combine data from the first four layers for the fifth layer
77
+ transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4
78
+
79
+ # Incorporate the transaction data into the fifth layer
80
+ retained_frequency = generate_brainwave(60, t_shifted5, phase_shift=3.0) + transaction_data
81
+ beta_high_wave = generate_brainwave(70, t_shifted5, phase_shift=3.5)
82
+ combined_wave5 = (retained_frequency + beta_high_wave) / 2
83
+
84
+ # Security layer: Delay and scramble the data for the sixth layer
85
+ delay = 100 # Number of samples to delay
86
+ scrambled_wave6 = scramble_data(combined_wave5, delay)
87
+
88
+ # Apply the portal to the scrambled sixth layer
89
+ portal_data = portal_organize(np.array([scrambled_wave6, beta_high_wave]))
90
+
91
+ # Update the data of the lines
92
+ lines[0].set_ydata(combined_wave1)
93
+ lines[1].set_ydata(combined_wave2)
94
+ lines[2].set_ydata(combined_wave3)
95
+ lines[3].set_ydata(combined_mirrored_wave4) # Updated to use mirrored wave
96
+ lines[4].set_ydata(combined_wave5)
97
+ lines[5].set_ydata(scrambled_wave6)
98
+ lines[6].set_ydata(portal_data)
99
+
100
+ return lines
101
+
102
+ # Define parameters
103
+ duration = 5 # seconds
104
+ sampling_rate = 1000 # samples per second
105
+ t = np.linspace(0, duration, int(sampling_rate * duration), endpoint=False)
106
+
107
+ # Initialize the plot
108
+ fig, ax = plt.subplots()
109
+ alpha_wave = generate_brainwave(10, t)
110
+ beta_wave = generate_brainwave(20, t)
111
+ financial_wave = generate_brainwave(15, t, phase_shift=0.5)
112
+ combined_wave1 = (alpha_wave + beta_wave) / 2
113
+
114
+ theta_wave = generate_brainwave(6, t, phase_shift=0.3)
115
+ gamma_wave = generate_brainwave(40, t, phase_shift=0.7)
116
+ combined_wave2 = (theta_wave + gamma_wave) / 2
117
+
118
+ delta_wave = generate_brainwave(2, t, phase_shift=1.0)
119
+ high_beta_wave = generate_brainwave(30, t, phase_shift=1.5)
120
+ combined_wave3 = (delta_wave + high_beta_wave) / 2
121
+
122
+ mu_wave = generate_brainwave(12, t, phase_shift=2.0)
123
+ low_gamma_wave = generate_brainwave(50, t, phase_shift=2.5)
124
+ combined_wave4 = (mu_wave + low_gamma_wave) / 2
125
+
126
+ # Apply mirror effect to the fourth layer
127
+ mirrored_wave4 = -combined_wave4
128
+ combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2
129
+
130
+ # Combine data from the first four layers for the fifth layer
131
+ transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4
132
+
133
+ # Incorporate the transaction data into the fifth layer
134
+ retained_frequency = generate_brainwave(60, t, phase_shift=3.0) + transaction_data
135
+ beta_high_wave = generate_brainwave(70, t, phase_shift=3.5)
136
+ combined_wave5 = (retained_frequency + beta_high_wave) / 2
137
+
138
+ # Security layer: Delay and scramble the data for the sixth layer
139
+ delay = 100 # Number of samples to delay
140
+ scrambled_wave6 = scramble_data(combined_wave5, delay)
141
+
142
+ portal_data = portal_organize(np.array([scrambled_wave6, beta_high_wave]))
143
+
144
+ line1, = ax.plot(t, combined_wave1, label="Alpha & Beta Layer with Financial Frequencies", color='blue')
145
+ line2, = ax.plot(t, combined_wave2, label="Theta & Gamma Layer (Influenced)", linestyle='--')
146
+ line3, = ax.plot(t, combined_wave3, label="Delta & High Beta Layer (Transferred)", linestyle=':')
147
+ line4, = ax.plot(t, combined_mirrored_wave4, label="Mu & Low Gamma Layer (Mirrored)", linestyle='-.')
148
+ line5, = ax.plot(t, combined_wave5, label="Retained Frequency in Fifth Layer", linestyle='-')
149
+ line6, = ax.plot(t, scrambled_wave6, label="Delayed and Scrambled Sixth Layer", linestyle='--', color='red')
150
+ line7, = ax.plot(t, portal_data, label="Portal Output", linestyle=':', color='purple')
151
+
152
+ ax.set_xlim(0, duration)
153
+ ax.set_ylim(-2, 2)
154
+ ax.set_title("6517.159.252")
155
+ ax.set_xlabel("Time (s)")
156
+ ax.set_ylabel("Amplitude")
157
+ ax.legend()
158
+
159
+ # Create the animation
160
+ ani = FuncAnimation(fig, update, frames=range(200), fargs=([line1, line2, line3, line4, line5, line6, line7], t, duration, sampling_rate), blit=True)
161
+
162
+ plt.show()
163
+
164
+ import numpy as np
165
+ import matplotlib.pyplot as plt
166
+ from matplotlib.animation import FuncAnimation
167
+ from scipy.fftpack import fft, ifft
168
+
169
+ def generate_brainwave(frequency, t, phase_shift=0):
170
+ return np.sin(2 * np.pi * frequency * t + phase_shift)
171
+
172
+ def portal_organize(frequencies):
173
+ organized_data = np.mean(frequencies, axis=0)
174
+ normalized_data = (organized_data - np.min(organized_data)) / (np.max(organized_data) - np.min(organized_data))
175
+ return normalized_data
176
+
177
+ def scramble_data(data, delay):
178
+ scrambled_data = np.roll(data, delay)
179
+ scrambled_data += np.random.normal(0, 0.1, size=data.shape)
180
+ return scrambled_data
181
+
182
+ def encrypt_data(data):
183
+ # Simulate encryption using Fourier Transform (for complexity)
184
+ encrypted_data = fft(data)
185
+ return encrypted_data
186
+
187
+ def decrypt_data(data):
188
+ # Simulate decryption using Inverse Fourier Transform
189
+ decrypted_data = ifft(data)
190
+ return decrypted_data.real
191
+
192
+ def detect_anomalies(data):
193
+ # Simple anomaly detection: Check for irregular spikes in the data
194
+ anomalies = np.abs(np.diff(data)) > np.mean(np.abs(np.diff(data))) + 2 * np.std(np.abs(np.diff(data)))
195
+ return anomalies
196
+
197
+ def update(frame, lines, t, duration, sampling_rate):
198
+ t_shifted1 = t + frame / (sampling_rate * 1.0)
199
+ t_shifted2 = t + frame / (sampling_rate * 1.25)
200
+ t_shifted3 = t + frame / (sampling_rate * 1.75)
201
+ t_shifted4 = t + frame / (sampling_rate * 2.25)
202
+ t_shifted5 = t + frame / (sampling_rate * 3.0)
203
+ t_shifted6 = t + frame / (sampling_rate * 4.0)
204
+
205
+ alpha_wave = generate_brainwave(10, t_shifted1)
206
+ beta_wave = generate_brainwave(20, t_shifted1)
207
+ financial_wave = generate_brainwave(15, t_shifted1, phase_shift=0.5)
208
+ combined_wave1 = (alpha_wave + beta_wave) / 2
209
+
210
+ influence_factor = (financial_wave - np.mean(financial_wave)) / np.std(financial_wave)
211
+ theta_frequency = 6 + influence_factor
212
+ gamma_frequency = 40 + influence_factor
213
+
214
+ theta_wave = generate_brainwave(theta_frequency, t_shifted2, phase_shift=0.3)
215
+ gamma_wave = generate_brainwave(gamma_frequency, t_shifted2, phase_shift=0.7)
216
+ combined_wave2 = (theta_wave + gamma_wave) / 2
217
+
218
+ transfer_factor = np.mean(theta_wave)
219
+ delta_frequency = 2 + transfer_factor
220
+ high_beta_frequency = 30 + transfer_factor
221
+
222
+ delta_wave = generate_brainwave(delta_frequency, t_shifted3, phase_shift=1.0)
223
+ high_beta_wave = generate_brainwave(high_beta_frequency, t_shifted3, phase_shift=1.5)
224
+ combined_wave3 = (delta_wave + high_beta_wave) / 2
225
+
226
+ transfer_factor_3_to_4 = np.mean(delta_wave)
227
+ mu_frequency = 12 + transfer_factor_3_to_4
228
+ low_gamma_frequency = 50 + transfer_factor_3_to_4
229
+
230
+ mu_wave = generate_brainwave(mu_frequency, t_shifted4, phase_shift=2.0)
231
+ low_gamma_wave = generate_brainwave(low_gamma_frequency, t_shifted4, phase_shift=2.5)
232
+ combined_wave4 = (mu_wave + low_gamma_wave) / 2
233
+
234
+ mirrored_wave4 = -combined_wave4
235
+ combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2
236
+
237
+ transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4
238
+ retained_frequency = generate_brainwave(60, t_shifted5, phase_shift=3.0) + transaction_data
239
+ beta_high_wave = generate_brainwave(70, t_shifted5, phase_shift=3.5)
240
+ combined_wave5 = (retained_frequency + beta_high_wave) / 2
241
+
242
+ delay = 100
243
+ scrambled_wave6 = scramble_data(combined_wave5, delay)
244
+
245
+ # Encrypt the scrambled wave data
246
+ encrypted_wave6 = encrypt_data(scrambled_wave6)
247
+
248
+ # Detect any anomalies (simulating security breach detection)
249
+ anomalies = detect_anomalies(scrambled_wave6)
250
+
251
+ if np.any(anomalies):
252
+ print("Security Alert: Anomalies detected in the data!")
253
+
254
+ portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave]))
255
+
256
+ lines[0].set_ydata(combined_wave1)
257
+ lines[1].set_ydata(combined_wave2)
258
+ lines[2].set_ydata(combined_wave3)
259
+ lines[3].set_ydata(combined_mirrored_wave4)
260
+ lines[4].set_ydata(combined_wave5)
261
+ lines[5].set_ydata(scrambled_wave6)
262
+ lines[6].set_ydata(portal_data)
263
+
264
+ return lines
265
+
266
+ duration = 5
267
+ sampling_rate = 1000
268
+ t = np.linspace(0, duration, int(sampling_rate * duration), endpoint=False)
269
+
270
+ fig, ax = plt.subplots()
271
+ alpha_wave = generate_brainwave(10, t)
272
+ beta_wave = generate_brainwave(20, t)
273
+ financial_wave = generate_brainwave(15, t, phase_shift=0.5)
274
+ combined_wave1 = (alpha_wave + beta_wave) / 2
275
+
276
+ theta_wave = generate_brainwave(6, t, phase_shift=0.3)
277
+ gamma_wave = generate_brainwave(40, t, phase_shift=0.7)
278
+ combined_wave2 = (theta_wave + gamma_wave) / 2
279
+
280
+ delta_wave = generate_brainwave(2, t, phase_shift=1.0)
281
+ high_beta_wave = generate_brainwave(30, t, phase_shift=1.5)
282
+ combined_wave3 = (delta_wave + high_beta_wave) / 2
283
+
284
+ mu_wave = generate_brainwave(12, t, phase_shift=2.0)
285
+ low_gamma_wave = generate_brainwave(50, t, phase_shift=2.5)
286
+ combined_wave4 = (mu_wave + low_gamma_wave) / 2
287
+
288
+ mirrored_wave4 = -combined_wave4
289
+ combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2
290
+
291
+ transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4
292
+ retained_frequency = generate_brainwave(60, t, phase_shift=3.0) + transaction_data
293
+ beta_high_wave = generate_brainwave(70, t, phase_shift=3.5)
294
+ combined_wave5 = (retained_frequency + beta_high_wave) / 2
295
+
296
+ delay = 100
297
+ scrambled_wave6 = scramble_data(combined_wave5, delay)
298
+
299
+ encrypted_wave6 = encrypt_data(scrambled_wave6)
300
+ anomalies = detect_anomalies(scrambled_wave6)
301
+
302
+ if np.any(anomalies):
303
+ print("Security Alert: Anomalies detected in the data!")
304
+
305
+ portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave]))
306
+
307
+ line1, = ax.plot(t, combined_wave1, label="Alpha & Beta Layer with Financial Frequencies", color='blue')
308
+ line2, = ax.plot(t, combined_wave2, label="Theta & Gamma Layer (Influenced)", linestyle='--')
309
+ line3, = ax.plot(t, combined_wave3, label="Delta & High Beta Layer (Transferred)", linestyle=':')
310
+ line4, = ax.plot(t, combined_mirrored_wave4, label="Mu & Low Gamma Layer (Mirrored)", linestyle='-.')
311
+ line5, = ax.plot(t, combined_wave5, label="Retained Frequency in Fifth Layer", linestyle='-')
312
+ line6, = ax.plot(t, scrambled_wave6, label="Delayed and Scrambled Sixth Layer", linestyle='--', color='red')
313
+ line7, = ax.plot(t, portal_data, label="Portal Output", linestyle=':', color='purple')
314
+
315
+ ax.set_xlim(0, duration)
316
+ ax.set_ylim(-2, 2)
317
+ ax.set_title("Complex Backend Security with Encrypted Waves and Anomaly Detection")
318
+ ax.set_xlabel("Time (s)")
319
+ ax.set_ylabel("Amplitude")
320
+ ax.legend()
321
+
322
+ ani = FuncAnimation(fig, update, frames=range(200), fargs=([line1, line2, line3, line4, line5, line6, line7], t, duration, sampling_rate), blit=True)
323
+
324
+ plt.show()
325
+
326
+ import numpy as np
327
+ import matplotlib.pyplot as plt
328
+ from matplotlib.animation import FuncAnimation
329
+ from scipy.fftpack import fft, ifft
330
+
331
+ def generate_brainwave(frequency, t, phase_shift=0):
332
+ return np.sin(2 * np.pi * frequency * t + phase_shift)
333
+
334
+ def portal_organize(frequencies):
335
+ organized_data = np.mean(frequencies, axis=0)
336
+ normalized_data = (organized_data - np.min(organized_data)) / (np.max(organized_data) - np.min(organized_data))
337
+ return normalized_data
338
+
339
+ def scramble_data(data, delay):
340
+ scrambled_data = np.roll(data, delay)
341
+ scrambled_data += np.random.normal(0, 0.1, size=data.shape)
342
+ return scrambled_data
343
+
344
+ def encrypt_data(data):
345
+ encrypted_data = fft(data)
346
+ return encrypted_data
347
+
348
+ def decrypt_data(data):
349
+ decrypted_data = ifft(data)
350
+ return decrypted_data.real
351
+
352
+ def detect_anomalies(data):
353
+ anomalies = np.abs(np.diff(data)) > np.mean(np.abs(np.diff(data))) + 2 * np.std(np.abs(np.diff(data)))
354
+ return anomalies
355
+
356
+ def detect_anomalies(data):
357
+ # Simple anomaly detection: Check for irregular spikes in the data
358
+ anomalies = np.abs(np.diff(data)) > np.mean(np.abs(np.diff(data))) + 2 * np.std(np.abs(np.diff(data)))
359
+ # Pad the anomalies array with False to match the size of the data array
360
+ anomalies = np.concatenate((anomalies, [False]))
361
+ return anomalies
362
+
363
+ def update(frame, lines, t, duration, sampling_rate):
364
+ t_shifted1 = t + frame / (sampling_rate * 1.0)
365
+ t_shifted2 = t + frame / (sampling_rate * 1.25)
366
+ t_shifted3 = t + frame / (sampling_rate * 1.75)
367
+ t_shifted4 = t + frame / (sampling_rate * 2.25)
368
+ t_shifted5 = t + frame / (sampling_rate * 3.0)
369
+ t_shifted6 = t + frame / (sampling_rate * 4.0)
370
+
371
+ alpha_wave = generate_brainwave(10, t_shifted1)
372
+ beta_wave = generate_brainwave(20, t_shifted1)
373
+ financial_wave = generate_brainwave(15, t_shifted1, phase_shift=0.5)
374
+ combined_wave1 = (alpha_wave + beta_wave) / 2
375
+
376
+ influence_factor = (financial_wave - np.mean(financial_wave)) / np.std(financial_wave)
377
+ theta_frequency = 6 + influence_factor
378
+ gamma_frequency = 40 + influence_factor
379
+
380
+ theta_wave = generate_brainwave(theta_frequency, t_shifted2, phase_shift=0.3)
381
+ gamma_wave = generate_brainwave(gamma_frequency, t_shifted2, phase_shift=0.7)
382
+ combined_wave2 = (theta_wave + gamma_wave) / 2
383
+
384
+ transfer_factor = np.mean(theta_wave)
385
+ delta_frequency = 2 + transfer_factor
386
+ high_beta_frequency = 30 + transfer_factor
387
+
388
+ delta_wave = generate_brainwave(delta_frequency, t_shifted3, phase_shift=1.0)
389
+ high_beta_wave = generate_brainwave(high_beta_frequency, t_shifted3, phase_shift=1.5)
390
+ combined_wave3 = (delta_wave + high_beta_wave) / 2
391
+
392
+ transfer_factor_3_to_4 = np.mean(delta_wave)
393
+ mu_frequency = 12 + transfer_factor_3_to_4
394
+ low_gamma_frequency = 50 + transfer_factor_3_to_4
395
+
396
+ mu_wave = generate_brainwave(mu_frequency, t_shifted4, phase_shift=2.0)
397
+ low_gamma_wave = generate_brainwave(low_gamma_frequency, t_shifted4, phase_shift=2.5)
398
+ combined_wave4 = (mu_wave + low_gamma_wave) / 2
399
+
400
+ mirrored_wave4 = -combined_wave4
401
+ combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2
402
+
403
+ transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4
404
+ retained_frequency = generate_brainwave(60, t_shifted5, phase_shift=3.0) + transaction_data
405
+ beta_high_wave = generate_brainwave(70, t_shifted5, phase_shift=3.5)
406
+ combined_wave5 = (retained_frequency + beta_high_wave) / 2
407
+
408
+ delay = 100
409
+ scrambled_wave6 = scramble_data(combined_wave5, delay)
410
+
411
+ encrypted_wave6 = encrypt_data(scrambled_wave6)
412
+
413
+ anomalies = detect_anomalies(scrambled_wave6)
414
+
415
+ if np.any(anomalies):
416
+ print("Security Alert: Anomalies detected in the data!")
417
+ scrambled_wave6 = clear_anomalies(scrambled_wave6, anomalies)
418
+
419
+ portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave]))
420
+
421
+ lines[0].set_ydata(combined_wave1)
422
+ lines[1].set_ydata(combined_wave2)
423
+ lines[2].set_ydata(combined_wave3)
424
+ lines[3].set_ydata(combined_mirrored_wave4)
425
+ lines[4].set_ydata(combined_wave5)
426
+ lines[5].set_ydata(scrambled_wave6)
427
+ lines[6].set_ydata(portal_data)
428
+
429
+ return lines
430
+
431
+ duration = 5
432
+ sampling_rate = 1000
433
+ t = np.linspace(0, duration, int(sampling_rate * duration), endpoint=False)
434
+
435
+ fig, ax = plt.subplots()
436
+ alpha_wave = generate_brainwave(10, t)
437
+ beta_wave = generate_brainwave(20, t)
438
+ financial_wave = generate_brainwave(15, t, phase_shift=0.5)
439
+ combined_wave1 = (alpha_wave + beta_wave) / 2
440
+
441
+ theta_wave = generate_brainwave(6, t, phase_shift=0.3)
442
+ gamma_wave = generate_brainwave(40, t, phase_shift=0.7)
443
+ combined_wave2 = (theta_wave + gamma_wave) / 2
444
+
445
+ delta_wave = generate_brainwave(2, t, phase_shift=1.0)
446
+ high_beta_wave = generate_brainwave(30, t, phase_shift=1.5)
447
+ combined_wave3 = (delta_wave + high_beta_wave) / 2
448
+
449
+ mu_wave = generate_brainwave(12, t, phase_shift=2.0)
450
+ low_gamma_wave = generate_brainwave(50, t, phase_shift=2.5)
451
+ combined_wave4 = (mu_wave + low_gamma_wave) / 2
452
+
453
+ mirrored_wave4 = -combined_wave4
454
+ combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2
455
+
456
+ transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4
457
+ retained_frequency = generate_brainwave(60, t, phase_shift=3.0) + transaction_data
458
+ beta_high_wave = generate_brainwave(70, t, phase_shift=3.5)
459
+ combined_wave5 = (retained_frequency + beta_high_wave) / 2
460
+
461
+ delay = 100
462
+ scrambled_wave6 = scramble_data(combined_wave5, delay)
463
+
464
+ encrypted_wave6 = encrypt_data(scrambled_wave6)
465
+ anomalies = detect_anomalies(scrambled_wave6)
466
+
467
+ if np.any(anomalies):
468
+ print("Security Alert: Anomalies detected in the data!")
469
+ scrambled_wave6 = clear_anomalies(scrambled_wave6, anomalies)
470
+
471
+ portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave]))
472
+
473
+ line1, = ax.plot(t, combined_wave1, label="Alpha & Beta Layer with Financial Frequencies", color='blue')
474
+ line2, = ax.plot(t, combined_wave2, label="Theta & Gamma Layer (Influenced)", linestyle='--')
475
+ line3, = ax.plot(t, combined_wave3, label="Delta & High Beta Layer (Transferred)", linestyle=':')
476
+ line4, = ax.plot(t, combined_mirrored_wave4, label="Mu & Low Gamma Layer (Mirrored)", linestyle='-.')
477
+ line5, = ax.plot(t, combined_wave5, label="Retained Frequency in Fifth Layer", linestyle='-')
478
+ line6, = ax.plot(t, scrambled_wave6, label="Delayed and Scrambled Sixth Layer", linestyle='--', color='red')
479
+ line7, = ax.plot(t, portal_data, label="Portal Output", linestyle=':', color='purple')
480
+
481
+ ax.set_xlim(0, duration)
482
+ ax.set_ylim(-2, 2)
483
+ ax.set_title("TRCSIngenuity")
484
+ ax.set_xlabel("Time (s)")
485
+ ax.set_ylabel("Amplitude")
486
+ ax.legend()
487
+
488
+ ani = FuncAnimation(fig, update, frames=range(200), fargs=([line1, line2, line3, line4, line5, line6, line7], t, duration, sampling_rate), blit=True)
489
+
490
+ plt.show()
491
+
492
+ import numpy as np
493
+ import matplotlib.pyplot as plt
494
+ from matplotlib.animation import FuncAnimation
495
+ from scipy.fftpack import fft, ifft
496
+
497
+ def generate_brainwave(frequency, t, phase_shift=0):
498
+ return np.sin(2 * np.pi * frequency * t + phase_shift)
499
+
500
+ def portal_organize(frequencies):
501
+ organized_data = np.mean(frequencies, axis=0)
502
+ normalized_data = (organized_data - np.min(organized_data)) / (np.max(organized_data) - np.min(organized_data))
503
+ return normalized_data
504
+
505
+ def scramble_data(data, delay):
506
+ scrambled_data = np.roll(data, delay)
507
+ scrambled_data += np.random.normal(0, 0.1, size=data.shape)
508
+ return scrambled_data
509
+
510
+ def encrypt_data(data):
511
+ encrypted_data = fft(data)
512
+ return encrypted_data
513
+
514
+ def decrypt_data(data):
515
+ decrypted_data = ifft(data)
516
+ return decrypted_data.real
517
+
518
+ def detect_anomalies(data):
519
+ # Simple anomaly detection: Check for irregular spikes in the data
520
+ anomalies = np.abs(np.diff(data)) > np.mean(np.abs(np.diff(data))) + 2 * np.std(np.abs(np.diff(data)))
521
+ # Pad the anomalies array with False to match the size of the data array
522
+ anomalies = np.concatenate(([False], anomalies)) # prepend False instead of appending
523
+ return anomalies
524
+
525
+ def clear_anomalies(data, anomalies):
526
+ correction_frequency = np.cos(2 * np.pi * 2 * np.arange(len(data)) / len(data)) # A low-frequency cosine wave
527
+ data[anomalies] -= correction_frequency[:len(data[anomalies])]
528
+ return data
529
+
530
+ def update(frame, lines, t, duration, sampling_rate):
531
+ t_shifted1 = t + frame / (sampling_rate * 1.0)
532
+ t_shifted2 = t + frame / (sampling_rate * 1.25)
533
+ t_shifted3 = t + frame / (sampling_rate * 1.75)
534
+ t_shifted4 = t + frame / (sampling_rate * 2.25)
535
+ t_shifted5 = t + frame / (sampling_rate * 3.0)
536
+ t_shifted6 = t + frame / (sampling_rate * 4.0)
537
+
538
+ alpha_wave = generate_brainwave(10, t_shifted1)
539
+ beta_wave = generate_brainwave(20, t_shifted1)
540
+ financial_wave = generate_brainwave(15, t_shifted1, phase_shift=0.5)
541
+ combined_wave1 = (alpha_wave + beta_wave) / 2
542
+
543
+ influence_factor = (financial_wave - np.mean(financial_wave)) / np.std(financial_wave)
544
+ theta_frequency = 6 + influence_factor
545
+ gamma_frequency = 40 + influence_factor
546
+
547
+ theta_wave = generate_brainwave(theta_frequency, t_shifted2, phase_shift=0.3)
548
+ gamma_wave = generate_brainwave(gamma_frequency, t_shifted2, phase_shift=0.7)
549
+ combined_wave2 = (theta_wave + gamma_wave) / 2
550
+
551
+ transfer_factor = np.mean(theta_wave)
552
+ delta_frequency = 2 + transfer_factor
553
+ high_beta_frequency = 30 + transfer_factor
554
+
555
+ delta_wave = generate_brainwave(delta_frequency, t_shifted3, phase_shift=1.0)
556
+ high_beta_wave = generate_brainwave(high_beta_frequency, t_shifted3, phase_shift=1.5)
557
+ combined_wave3 = (delta_wave + high_beta_wave) / 2
558
+
559
+ transfer_factor_3_to_4 = np.mean(delta_wave)
560
+ mu_frequency = 12 + transfer_factor_3_to_4
561
+ low_gamma_frequency = 50 + transfer_factor_3_to_4
562
+
563
+ mu_wave = generate_brainwave(mu_frequency, t_shifted4, phase_shift=2.0)
564
+ low_gamma_wave = generate_brainwave(low_gamma_frequency, t_shifted4, phase_shift=2.5)
565
+ combined_wave4 = (mu_wave + low_gamma_wave) / 2
566
+
567
+ mirrored_wave4 = -combined_wave4
568
+ combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2
569
+
570
+ transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4
571
+ retained_frequency = generate_brainwave(60, t_shifted5, phase_shift=3.0) + transaction_data
572
+ beta_high_wave = generate_brainwave(70, t_shifted5, phase_shift=3.5)
573
+ combined_wave5 = (retained_frequency + beta_high_wave) / 2
574
+
575
+ delay = 100
576
+ scrambled_wave6 = scramble_data(combined_wave5, delay)
577
+
578
+ encrypted_wave6 = encrypt_data(scrambled_wave6)
579
+
580
+ anomalies = detect_anomalies(scrambled_wave6)
581
+
582
+ if np.any(anomalies):
583
+ scrambled_wave6 = clear_anomalies(scrambled_wave6, anomalies)
584
+
585
+ portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave]))
586
+
587
+ for i, line in enumerate(lines):
588
+ if i == 0:
589
+ line.set_ydata(combined_wave1)
590
+ elif i == 1:
591
+ line.set_ydata(combined_wave2)
592
+ elif i == 2:
593
+ line.set_ydata(combined_wave3)
594
+ elif i == 3:
595
+ line.set_ydata(combined_mirrored_wave4)
596
+ elif i == 4:
597
+ line.set_ydata(combined_wave5)
598
+ elif i == 5:
599
+ line.set_ydata(scrambled_wave6)
600
+ elif i == 6:
601
+ line.set_ydata(portal_data)
602
+
603
+ return lines
604
+
605
+ duration = 5
606
+ sampling_rate = 1000
607
+ t = np.linspace(0, duration, int(sampling_rate * duration), endpoint=False)
608
+
609
+ fig, axs = plt.subplots(7, 1, figsize=(10, 14), sharex=True)
610
+ fig.tight_layout(pad=3.0)
611
+
612
+ alpha_wave = generate_brainwave(10, t)
613
+ beta_wave = generate_brainwave(20, t)
614
+ financial_wave = generate_brainwave(15, t, phase_shift=0.5)
615
+ combined_wave1 = (alpha_wave + beta_wave) / 2
616
+
617
+ theta_wave = generate_brainwave(6, t, phase_shift=0.3)
618
+ gamma_wave = generate_brainwave(40, t, phase_shift=0.7)
619
+ combined_wave2 = (theta_wave + gamma_wave) / 2
620
+
621
+ delta_wave = generate_brainwave(2, t, phase_shift=1.0)
622
+ high_beta_wave = generate_brainwave(30, t, phase_shift=1.5)
623
+ combined_wave3 = (delta_wave + high_beta_wave) / 2
624
+
625
+ mu_wave = generate_brainwave(12, t, phase_shift=2.0)
626
+ low_gamma_wave = generate_brainwave(50, t, phase_shift=2.5)
627
+ combined_wave4 = (mu_wave + low_gamma_wave) / 2
628
+
629
+ mirrored_wave4 = -combined_wave4
630
+ combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2
631
+
632
+ transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4
633
+ retained_frequency = generate_brainwave(60, t, phase_shift=3.0) + transaction_data
634
+ beta_high_wave = generate_brainwave(70, t, phase_shift=3.5)
635
+ combined_wave5 = (retained_frequency + beta_high_wave) / 2
636
+
637
+ delay = 100
638
+ scrambled_wave6 = scramble_data(combined_wave5, delay)
639
+
640
+ encrypted_wave6 = encrypt_data(scrambled_wave6)
641
+ anomalies = detect_anomalies(scrambled_wave6)
642
+
643
+ if np.any(anomalies):
644
+ scrambled_wave6 = clear_anomalies(scrambled_wave6, anomalies)
645
+
646
+ portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave]))
647
+
648
+ lines = []
649
+ for i, (wave, label, color) in enumerate([
650
+ (combined_wave1, "Alpha & Beta Layer with Financial Frequencies", 'blue'),
651
+ (combined_wave2, "Theta & Gamma Layer (Influenced)", 'green'),
652
+ (combined_wave3, "Delta & High Beta Layer (Transferred)", 'orange'),
653
+ (combined_mirrored_wave4, "Mu & Low Gamma Layer (Mirrored)", 'purple'),
654
+ (combined_wave5, "Retained Frequency in Fifth Layer", 'cyan'),
655
+ (scrambled_wave6, "Delayed and Scrambled Sixth Layer", 'red'),
656
+ (portal_data, "Portal Output", 'magenta')
657
+ ]):
658
+ line, = axs[i].plot(t, wave, color=color)
659
+ axs[i].set_title(label)
660
+ axs[i].set_ylim(-2, 2)
661
+ lines.append(line)
662
+
663
+ axs[-1].set_xlabel("Time (s)")
664
+
665
+ ani = FuncAnimation(fig, update, frames=range(200), fargs=(lines, t, duration, sampling_rate), blit=True)
666
+
667
+ plt.show()