Upload 5733_252_159 (1).py
Browse files- 5733_252_159 (1).py +667 -0
5733_252_159 (1).py
ADDED
|
@@ -0,0 +1,667 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""5733.252.159
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1tAXux50pAJVnm9bD6q5i20TFu4-eyI38
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import numpy as np
|
| 11 |
+
import matplotlib.pyplot as plt
|
| 12 |
+
from matplotlib.animation import FuncAnimation
|
| 13 |
+
|
| 14 |
+
def generate_brainwave(frequency, t, phase_shift=0):
|
| 15 |
+
return np.sin(2 * np.pi * frequency * t + phase_shift)
|
| 16 |
+
|
| 17 |
+
def portal_organize(frequencies):
|
| 18 |
+
# Example of organizing the data: averaging and normalizing
|
| 19 |
+
organized_data = np.mean(frequencies, axis=0)
|
| 20 |
+
normalized_data = (organized_data - np.min(organized_data)) / (np.max(organized_data) - np.min(organized_data))
|
| 21 |
+
return normalized_data
|
| 22 |
+
|
| 23 |
+
def scramble_data(data, delay):
|
| 24 |
+
# Simulate a delay by shifting the data and adding a scrambling effect
|
| 25 |
+
scrambled_data = np.roll(data, delay) # Shift data by 'delay' samples
|
| 26 |
+
scrambled_data += np.random.normal(0, 0.1, size=data.shape) # Add noise as a scrambling effect
|
| 27 |
+
return scrambled_data
|
| 28 |
+
|
| 29 |
+
def update(frame, lines, t, duration, sampling_rate):
|
| 30 |
+
# Adjust time shifts for different movement speeds
|
| 31 |
+
t_shifted1 = t + frame / (sampling_rate * 1.0) # First layer speed (base)
|
| 32 |
+
t_shifted2 = t + frame / (sampling_rate * 1.25) # Second layer speed (slightly faster)
|
| 33 |
+
t_shifted3 = t + frame / (sampling_rate * 1.75) # Third layer speed (moderately faster)
|
| 34 |
+
t_shifted4 = t + frame / (sampling_rate * 2.25) # Fourth layer speed (fastest)
|
| 35 |
+
t_shifted5 = t + frame / (sampling_rate * 3.0) # Fifth layer speed (fastest)
|
| 36 |
+
t_shifted6 = t + frame / (sampling_rate * 4.0) # Sixth layer speed (with delay)
|
| 37 |
+
|
| 38 |
+
# First layer: Alpha and Beta waves with financial frequencies
|
| 39 |
+
alpha_wave = generate_brainwave(10, t_shifted1) # Alpha (10 Hz)
|
| 40 |
+
beta_wave = generate_brainwave(20, t_shifted1) # Beta (20 Hz)
|
| 41 |
+
financial_wave = generate_brainwave(15, t_shifted1, phase_shift=0.5) # Financial frequency (15 Hz)
|
| 42 |
+
combined_wave1 = (alpha_wave + beta_wave) / 2
|
| 43 |
+
|
| 44 |
+
# Transfer mechanism: Influence the second layer based on the first layer's financial frequencies
|
| 45 |
+
influence_factor = (financial_wave - np.mean(financial_wave)) / np.std(financial_wave)
|
| 46 |
+
# Update frequencies based on influence factor
|
| 47 |
+
theta_frequency = 6 + influence_factor # Adjusted Theta frequency
|
| 48 |
+
gamma_frequency = 40 + influence_factor # Adjusted Gamma frequency
|
| 49 |
+
|
| 50 |
+
theta_wave = generate_brainwave(theta_frequency, t_shifted2, phase_shift=0.3)
|
| 51 |
+
gamma_wave = generate_brainwave(gamma_frequency, t_shifted2, phase_shift=0.7)
|
| 52 |
+
combined_wave2 = (theta_wave + gamma_wave) / 2
|
| 53 |
+
|
| 54 |
+
# Transfer mechanism: Use second layer data to influence the third layer
|
| 55 |
+
transfer_factor = np.mean(theta_wave) # Transfer factor based on mean value of theta wave
|
| 56 |
+
delta_frequency = 2 + transfer_factor # Adjusted Delta frequency
|
| 57 |
+
high_beta_frequency = 30 + transfer_factor # Adjusted High Beta frequency
|
| 58 |
+
|
| 59 |
+
delta_wave = generate_brainwave(delta_frequency, t_shifted3, phase_shift=1.0)
|
| 60 |
+
high_beta_wave = generate_brainwave(high_beta_frequency, t_shifted3, phase_shift=1.5)
|
| 61 |
+
combined_wave3 = (delta_wave + high_beta_wave) / 2
|
| 62 |
+
|
| 63 |
+
# Transfer mechanism: Use third layer data to influence the fourth layer
|
| 64 |
+
transfer_factor_3_to_4 = np.mean(delta_wave) # Transfer factor based on mean value of delta wave
|
| 65 |
+
mu_frequency = 12 + transfer_factor_3_to_4 # Adjusted Mu frequency
|
| 66 |
+
low_gamma_frequency = 50 + transfer_factor_3_to_4 # Adjusted Low Gamma frequency
|
| 67 |
+
|
| 68 |
+
mu_wave = generate_brainwave(mu_frequency, t_shifted4, phase_shift=2.0)
|
| 69 |
+
low_gamma_wave = generate_brainwave(low_gamma_frequency, t_shifted4, phase_shift=2.5)
|
| 70 |
+
combined_wave4 = (mu_wave + low_gamma_wave) / 2
|
| 71 |
+
|
| 72 |
+
# Mirror effect: Reflect the fourth layer's wave around the x-axis
|
| 73 |
+
mirrored_wave4 = -combined_wave4
|
| 74 |
+
combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2
|
| 75 |
+
|
| 76 |
+
# Combine data from the first four layers for the fifth layer
|
| 77 |
+
transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4
|
| 78 |
+
|
| 79 |
+
# Incorporate the transaction data into the fifth layer
|
| 80 |
+
retained_frequency = generate_brainwave(60, t_shifted5, phase_shift=3.0) + transaction_data
|
| 81 |
+
beta_high_wave = generate_brainwave(70, t_shifted5, phase_shift=3.5)
|
| 82 |
+
combined_wave5 = (retained_frequency + beta_high_wave) / 2
|
| 83 |
+
|
| 84 |
+
# Security layer: Delay and scramble the data for the sixth layer
|
| 85 |
+
delay = 100 # Number of samples to delay
|
| 86 |
+
scrambled_wave6 = scramble_data(combined_wave5, delay)
|
| 87 |
+
|
| 88 |
+
# Apply the portal to the scrambled sixth layer
|
| 89 |
+
portal_data = portal_organize(np.array([scrambled_wave6, beta_high_wave]))
|
| 90 |
+
|
| 91 |
+
# Update the data of the lines
|
| 92 |
+
lines[0].set_ydata(combined_wave1)
|
| 93 |
+
lines[1].set_ydata(combined_wave2)
|
| 94 |
+
lines[2].set_ydata(combined_wave3)
|
| 95 |
+
lines[3].set_ydata(combined_mirrored_wave4) # Updated to use mirrored wave
|
| 96 |
+
lines[4].set_ydata(combined_wave5)
|
| 97 |
+
lines[5].set_ydata(scrambled_wave6)
|
| 98 |
+
lines[6].set_ydata(portal_data)
|
| 99 |
+
|
| 100 |
+
return lines
|
| 101 |
+
|
| 102 |
+
# Define parameters
|
| 103 |
+
duration = 5 # seconds
|
| 104 |
+
sampling_rate = 1000 # samples per second
|
| 105 |
+
t = np.linspace(0, duration, int(sampling_rate * duration), endpoint=False)
|
| 106 |
+
|
| 107 |
+
# Initialize the plot
|
| 108 |
+
fig, ax = plt.subplots()
|
| 109 |
+
alpha_wave = generate_brainwave(10, t)
|
| 110 |
+
beta_wave = generate_brainwave(20, t)
|
| 111 |
+
financial_wave = generate_brainwave(15, t, phase_shift=0.5)
|
| 112 |
+
combined_wave1 = (alpha_wave + beta_wave) / 2
|
| 113 |
+
|
| 114 |
+
theta_wave = generate_brainwave(6, t, phase_shift=0.3)
|
| 115 |
+
gamma_wave = generate_brainwave(40, t, phase_shift=0.7)
|
| 116 |
+
combined_wave2 = (theta_wave + gamma_wave) / 2
|
| 117 |
+
|
| 118 |
+
delta_wave = generate_brainwave(2, t, phase_shift=1.0)
|
| 119 |
+
high_beta_wave = generate_brainwave(30, t, phase_shift=1.5)
|
| 120 |
+
combined_wave3 = (delta_wave + high_beta_wave) / 2
|
| 121 |
+
|
| 122 |
+
mu_wave = generate_brainwave(12, t, phase_shift=2.0)
|
| 123 |
+
low_gamma_wave = generate_brainwave(50, t, phase_shift=2.5)
|
| 124 |
+
combined_wave4 = (mu_wave + low_gamma_wave) / 2
|
| 125 |
+
|
| 126 |
+
# Apply mirror effect to the fourth layer
|
| 127 |
+
mirrored_wave4 = -combined_wave4
|
| 128 |
+
combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2
|
| 129 |
+
|
| 130 |
+
# Combine data from the first four layers for the fifth layer
|
| 131 |
+
transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4
|
| 132 |
+
|
| 133 |
+
# Incorporate the transaction data into the fifth layer
|
| 134 |
+
retained_frequency = generate_brainwave(60, t, phase_shift=3.0) + transaction_data
|
| 135 |
+
beta_high_wave = generate_brainwave(70, t, phase_shift=3.5)
|
| 136 |
+
combined_wave5 = (retained_frequency + beta_high_wave) / 2
|
| 137 |
+
|
| 138 |
+
# Security layer: Delay and scramble the data for the sixth layer
|
| 139 |
+
delay = 100 # Number of samples to delay
|
| 140 |
+
scrambled_wave6 = scramble_data(combined_wave5, delay)
|
| 141 |
+
|
| 142 |
+
portal_data = portal_organize(np.array([scrambled_wave6, beta_high_wave]))
|
| 143 |
+
|
| 144 |
+
line1, = ax.plot(t, combined_wave1, label="Alpha & Beta Layer with Financial Frequencies", color='blue')
|
| 145 |
+
line2, = ax.plot(t, combined_wave2, label="Theta & Gamma Layer (Influenced)", linestyle='--')
|
| 146 |
+
line3, = ax.plot(t, combined_wave3, label="Delta & High Beta Layer (Transferred)", linestyle=':')
|
| 147 |
+
line4, = ax.plot(t, combined_mirrored_wave4, label="Mu & Low Gamma Layer (Mirrored)", linestyle='-.')
|
| 148 |
+
line5, = ax.plot(t, combined_wave5, label="Retained Frequency in Fifth Layer", linestyle='-')
|
| 149 |
+
line6, = ax.plot(t, scrambled_wave6, label="Delayed and Scrambled Sixth Layer", linestyle='--', color='red')
|
| 150 |
+
line7, = ax.plot(t, portal_data, label="Portal Output", linestyle=':', color='purple')
|
| 151 |
+
|
| 152 |
+
ax.set_xlim(0, duration)
|
| 153 |
+
ax.set_ylim(-2, 2)
|
| 154 |
+
ax.set_title("6517.159.252")
|
| 155 |
+
ax.set_xlabel("Time (s)")
|
| 156 |
+
ax.set_ylabel("Amplitude")
|
| 157 |
+
ax.legend()
|
| 158 |
+
|
| 159 |
+
# Create the animation
|
| 160 |
+
ani = FuncAnimation(fig, update, frames=range(200), fargs=([line1, line2, line3, line4, line5, line6, line7], t, duration, sampling_rate), blit=True)
|
| 161 |
+
|
| 162 |
+
plt.show()
|
| 163 |
+
|
| 164 |
+
import numpy as np
|
| 165 |
+
import matplotlib.pyplot as plt
|
| 166 |
+
from matplotlib.animation import FuncAnimation
|
| 167 |
+
from scipy.fftpack import fft, ifft
|
| 168 |
+
|
| 169 |
+
def generate_brainwave(frequency, t, phase_shift=0):
|
| 170 |
+
return np.sin(2 * np.pi * frequency * t + phase_shift)
|
| 171 |
+
|
| 172 |
+
def portal_organize(frequencies):
|
| 173 |
+
organized_data = np.mean(frequencies, axis=0)
|
| 174 |
+
normalized_data = (organized_data - np.min(organized_data)) / (np.max(organized_data) - np.min(organized_data))
|
| 175 |
+
return normalized_data
|
| 176 |
+
|
| 177 |
+
def scramble_data(data, delay):
|
| 178 |
+
scrambled_data = np.roll(data, delay)
|
| 179 |
+
scrambled_data += np.random.normal(0, 0.1, size=data.shape)
|
| 180 |
+
return scrambled_data
|
| 181 |
+
|
| 182 |
+
def encrypt_data(data):
|
| 183 |
+
# Simulate encryption using Fourier Transform (for complexity)
|
| 184 |
+
encrypted_data = fft(data)
|
| 185 |
+
return encrypted_data
|
| 186 |
+
|
| 187 |
+
def decrypt_data(data):
|
| 188 |
+
# Simulate decryption using Inverse Fourier Transform
|
| 189 |
+
decrypted_data = ifft(data)
|
| 190 |
+
return decrypted_data.real
|
| 191 |
+
|
| 192 |
+
def detect_anomalies(data):
|
| 193 |
+
# Simple anomaly detection: Check for irregular spikes in the data
|
| 194 |
+
anomalies = np.abs(np.diff(data)) > np.mean(np.abs(np.diff(data))) + 2 * np.std(np.abs(np.diff(data)))
|
| 195 |
+
return anomalies
|
| 196 |
+
|
| 197 |
+
def update(frame, lines, t, duration, sampling_rate):
|
| 198 |
+
t_shifted1 = t + frame / (sampling_rate * 1.0)
|
| 199 |
+
t_shifted2 = t + frame / (sampling_rate * 1.25)
|
| 200 |
+
t_shifted3 = t + frame / (sampling_rate * 1.75)
|
| 201 |
+
t_shifted4 = t + frame / (sampling_rate * 2.25)
|
| 202 |
+
t_shifted5 = t + frame / (sampling_rate * 3.0)
|
| 203 |
+
t_shifted6 = t + frame / (sampling_rate * 4.0)
|
| 204 |
+
|
| 205 |
+
alpha_wave = generate_brainwave(10, t_shifted1)
|
| 206 |
+
beta_wave = generate_brainwave(20, t_shifted1)
|
| 207 |
+
financial_wave = generate_brainwave(15, t_shifted1, phase_shift=0.5)
|
| 208 |
+
combined_wave1 = (alpha_wave + beta_wave) / 2
|
| 209 |
+
|
| 210 |
+
influence_factor = (financial_wave - np.mean(financial_wave)) / np.std(financial_wave)
|
| 211 |
+
theta_frequency = 6 + influence_factor
|
| 212 |
+
gamma_frequency = 40 + influence_factor
|
| 213 |
+
|
| 214 |
+
theta_wave = generate_brainwave(theta_frequency, t_shifted2, phase_shift=0.3)
|
| 215 |
+
gamma_wave = generate_brainwave(gamma_frequency, t_shifted2, phase_shift=0.7)
|
| 216 |
+
combined_wave2 = (theta_wave + gamma_wave) / 2
|
| 217 |
+
|
| 218 |
+
transfer_factor = np.mean(theta_wave)
|
| 219 |
+
delta_frequency = 2 + transfer_factor
|
| 220 |
+
high_beta_frequency = 30 + transfer_factor
|
| 221 |
+
|
| 222 |
+
delta_wave = generate_brainwave(delta_frequency, t_shifted3, phase_shift=1.0)
|
| 223 |
+
high_beta_wave = generate_brainwave(high_beta_frequency, t_shifted3, phase_shift=1.5)
|
| 224 |
+
combined_wave3 = (delta_wave + high_beta_wave) / 2
|
| 225 |
+
|
| 226 |
+
transfer_factor_3_to_4 = np.mean(delta_wave)
|
| 227 |
+
mu_frequency = 12 + transfer_factor_3_to_4
|
| 228 |
+
low_gamma_frequency = 50 + transfer_factor_3_to_4
|
| 229 |
+
|
| 230 |
+
mu_wave = generate_brainwave(mu_frequency, t_shifted4, phase_shift=2.0)
|
| 231 |
+
low_gamma_wave = generate_brainwave(low_gamma_frequency, t_shifted4, phase_shift=2.5)
|
| 232 |
+
combined_wave4 = (mu_wave + low_gamma_wave) / 2
|
| 233 |
+
|
| 234 |
+
mirrored_wave4 = -combined_wave4
|
| 235 |
+
combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2
|
| 236 |
+
|
| 237 |
+
transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4
|
| 238 |
+
retained_frequency = generate_brainwave(60, t_shifted5, phase_shift=3.0) + transaction_data
|
| 239 |
+
beta_high_wave = generate_brainwave(70, t_shifted5, phase_shift=3.5)
|
| 240 |
+
combined_wave5 = (retained_frequency + beta_high_wave) / 2
|
| 241 |
+
|
| 242 |
+
delay = 100
|
| 243 |
+
scrambled_wave6 = scramble_data(combined_wave5, delay)
|
| 244 |
+
|
| 245 |
+
# Encrypt the scrambled wave data
|
| 246 |
+
encrypted_wave6 = encrypt_data(scrambled_wave6)
|
| 247 |
+
|
| 248 |
+
# Detect any anomalies (simulating security breach detection)
|
| 249 |
+
anomalies = detect_anomalies(scrambled_wave6)
|
| 250 |
+
|
| 251 |
+
if np.any(anomalies):
|
| 252 |
+
print("Security Alert: Anomalies detected in the data!")
|
| 253 |
+
|
| 254 |
+
portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave]))
|
| 255 |
+
|
| 256 |
+
lines[0].set_ydata(combined_wave1)
|
| 257 |
+
lines[1].set_ydata(combined_wave2)
|
| 258 |
+
lines[2].set_ydata(combined_wave3)
|
| 259 |
+
lines[3].set_ydata(combined_mirrored_wave4)
|
| 260 |
+
lines[4].set_ydata(combined_wave5)
|
| 261 |
+
lines[5].set_ydata(scrambled_wave6)
|
| 262 |
+
lines[6].set_ydata(portal_data)
|
| 263 |
+
|
| 264 |
+
return lines
|
| 265 |
+
|
| 266 |
+
duration = 5
|
| 267 |
+
sampling_rate = 1000
|
| 268 |
+
t = np.linspace(0, duration, int(sampling_rate * duration), endpoint=False)
|
| 269 |
+
|
| 270 |
+
fig, ax = plt.subplots()
|
| 271 |
+
alpha_wave = generate_brainwave(10, t)
|
| 272 |
+
beta_wave = generate_brainwave(20, t)
|
| 273 |
+
financial_wave = generate_brainwave(15, t, phase_shift=0.5)
|
| 274 |
+
combined_wave1 = (alpha_wave + beta_wave) / 2
|
| 275 |
+
|
| 276 |
+
theta_wave = generate_brainwave(6, t, phase_shift=0.3)
|
| 277 |
+
gamma_wave = generate_brainwave(40, t, phase_shift=0.7)
|
| 278 |
+
combined_wave2 = (theta_wave + gamma_wave) / 2
|
| 279 |
+
|
| 280 |
+
delta_wave = generate_brainwave(2, t, phase_shift=1.0)
|
| 281 |
+
high_beta_wave = generate_brainwave(30, t, phase_shift=1.5)
|
| 282 |
+
combined_wave3 = (delta_wave + high_beta_wave) / 2
|
| 283 |
+
|
| 284 |
+
mu_wave = generate_brainwave(12, t, phase_shift=2.0)
|
| 285 |
+
low_gamma_wave = generate_brainwave(50, t, phase_shift=2.5)
|
| 286 |
+
combined_wave4 = (mu_wave + low_gamma_wave) / 2
|
| 287 |
+
|
| 288 |
+
mirrored_wave4 = -combined_wave4
|
| 289 |
+
combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2
|
| 290 |
+
|
| 291 |
+
transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4
|
| 292 |
+
retained_frequency = generate_brainwave(60, t, phase_shift=3.0) + transaction_data
|
| 293 |
+
beta_high_wave = generate_brainwave(70, t, phase_shift=3.5)
|
| 294 |
+
combined_wave5 = (retained_frequency + beta_high_wave) / 2
|
| 295 |
+
|
| 296 |
+
delay = 100
|
| 297 |
+
scrambled_wave6 = scramble_data(combined_wave5, delay)
|
| 298 |
+
|
| 299 |
+
encrypted_wave6 = encrypt_data(scrambled_wave6)
|
| 300 |
+
anomalies = detect_anomalies(scrambled_wave6)
|
| 301 |
+
|
| 302 |
+
if np.any(anomalies):
|
| 303 |
+
print("Security Alert: Anomalies detected in the data!")
|
| 304 |
+
|
| 305 |
+
portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave]))
|
| 306 |
+
|
| 307 |
+
line1, = ax.plot(t, combined_wave1, label="Alpha & Beta Layer with Financial Frequencies", color='blue')
|
| 308 |
+
line2, = ax.plot(t, combined_wave2, label="Theta & Gamma Layer (Influenced)", linestyle='--')
|
| 309 |
+
line3, = ax.plot(t, combined_wave3, label="Delta & High Beta Layer (Transferred)", linestyle=':')
|
| 310 |
+
line4, = ax.plot(t, combined_mirrored_wave4, label="Mu & Low Gamma Layer (Mirrored)", linestyle='-.')
|
| 311 |
+
line5, = ax.plot(t, combined_wave5, label="Retained Frequency in Fifth Layer", linestyle='-')
|
| 312 |
+
line6, = ax.plot(t, scrambled_wave6, label="Delayed and Scrambled Sixth Layer", linestyle='--', color='red')
|
| 313 |
+
line7, = ax.plot(t, portal_data, label="Portal Output", linestyle=':', color='purple')
|
| 314 |
+
|
| 315 |
+
ax.set_xlim(0, duration)
|
| 316 |
+
ax.set_ylim(-2, 2)
|
| 317 |
+
ax.set_title("Complex Backend Security with Encrypted Waves and Anomaly Detection")
|
| 318 |
+
ax.set_xlabel("Time (s)")
|
| 319 |
+
ax.set_ylabel("Amplitude")
|
| 320 |
+
ax.legend()
|
| 321 |
+
|
| 322 |
+
ani = FuncAnimation(fig, update, frames=range(200), fargs=([line1, line2, line3, line4, line5, line6, line7], t, duration, sampling_rate), blit=True)
|
| 323 |
+
|
| 324 |
+
plt.show()
|
| 325 |
+
|
| 326 |
+
import numpy as np
|
| 327 |
+
import matplotlib.pyplot as plt
|
| 328 |
+
from matplotlib.animation import FuncAnimation
|
| 329 |
+
from scipy.fftpack import fft, ifft
|
| 330 |
+
|
| 331 |
+
def generate_brainwave(frequency, t, phase_shift=0):
|
| 332 |
+
return np.sin(2 * np.pi * frequency * t + phase_shift)
|
| 333 |
+
|
| 334 |
+
def portal_organize(frequencies):
|
| 335 |
+
organized_data = np.mean(frequencies, axis=0)
|
| 336 |
+
normalized_data = (organized_data - np.min(organized_data)) / (np.max(organized_data) - np.min(organized_data))
|
| 337 |
+
return normalized_data
|
| 338 |
+
|
| 339 |
+
def scramble_data(data, delay):
|
| 340 |
+
scrambled_data = np.roll(data, delay)
|
| 341 |
+
scrambled_data += np.random.normal(0, 0.1, size=data.shape)
|
| 342 |
+
return scrambled_data
|
| 343 |
+
|
| 344 |
+
def encrypt_data(data):
|
| 345 |
+
encrypted_data = fft(data)
|
| 346 |
+
return encrypted_data
|
| 347 |
+
|
| 348 |
+
def decrypt_data(data):
|
| 349 |
+
decrypted_data = ifft(data)
|
| 350 |
+
return decrypted_data.real
|
| 351 |
+
|
| 352 |
+
def detect_anomalies(data):
|
| 353 |
+
anomalies = np.abs(np.diff(data)) > np.mean(np.abs(np.diff(data))) + 2 * np.std(np.abs(np.diff(data)))
|
| 354 |
+
return anomalies
|
| 355 |
+
|
| 356 |
+
def detect_anomalies(data):
|
| 357 |
+
# Simple anomaly detection: Check for irregular spikes in the data
|
| 358 |
+
anomalies = np.abs(np.diff(data)) > np.mean(np.abs(np.diff(data))) + 2 * np.std(np.abs(np.diff(data)))
|
| 359 |
+
# Pad the anomalies array with False to match the size of the data array
|
| 360 |
+
anomalies = np.concatenate((anomalies, [False]))
|
| 361 |
+
return anomalies
|
| 362 |
+
|
| 363 |
+
def update(frame, lines, t, duration, sampling_rate):
|
| 364 |
+
t_shifted1 = t + frame / (sampling_rate * 1.0)
|
| 365 |
+
t_shifted2 = t + frame / (sampling_rate * 1.25)
|
| 366 |
+
t_shifted3 = t + frame / (sampling_rate * 1.75)
|
| 367 |
+
t_shifted4 = t + frame / (sampling_rate * 2.25)
|
| 368 |
+
t_shifted5 = t + frame / (sampling_rate * 3.0)
|
| 369 |
+
t_shifted6 = t + frame / (sampling_rate * 4.0)
|
| 370 |
+
|
| 371 |
+
alpha_wave = generate_brainwave(10, t_shifted1)
|
| 372 |
+
beta_wave = generate_brainwave(20, t_shifted1)
|
| 373 |
+
financial_wave = generate_brainwave(15, t_shifted1, phase_shift=0.5)
|
| 374 |
+
combined_wave1 = (alpha_wave + beta_wave) / 2
|
| 375 |
+
|
| 376 |
+
influence_factor = (financial_wave - np.mean(financial_wave)) / np.std(financial_wave)
|
| 377 |
+
theta_frequency = 6 + influence_factor
|
| 378 |
+
gamma_frequency = 40 + influence_factor
|
| 379 |
+
|
| 380 |
+
theta_wave = generate_brainwave(theta_frequency, t_shifted2, phase_shift=0.3)
|
| 381 |
+
gamma_wave = generate_brainwave(gamma_frequency, t_shifted2, phase_shift=0.7)
|
| 382 |
+
combined_wave2 = (theta_wave + gamma_wave) / 2
|
| 383 |
+
|
| 384 |
+
transfer_factor = np.mean(theta_wave)
|
| 385 |
+
delta_frequency = 2 + transfer_factor
|
| 386 |
+
high_beta_frequency = 30 + transfer_factor
|
| 387 |
+
|
| 388 |
+
delta_wave = generate_brainwave(delta_frequency, t_shifted3, phase_shift=1.0)
|
| 389 |
+
high_beta_wave = generate_brainwave(high_beta_frequency, t_shifted3, phase_shift=1.5)
|
| 390 |
+
combined_wave3 = (delta_wave + high_beta_wave) / 2
|
| 391 |
+
|
| 392 |
+
transfer_factor_3_to_4 = np.mean(delta_wave)
|
| 393 |
+
mu_frequency = 12 + transfer_factor_3_to_4
|
| 394 |
+
low_gamma_frequency = 50 + transfer_factor_3_to_4
|
| 395 |
+
|
| 396 |
+
mu_wave = generate_brainwave(mu_frequency, t_shifted4, phase_shift=2.0)
|
| 397 |
+
low_gamma_wave = generate_brainwave(low_gamma_frequency, t_shifted4, phase_shift=2.5)
|
| 398 |
+
combined_wave4 = (mu_wave + low_gamma_wave) / 2
|
| 399 |
+
|
| 400 |
+
mirrored_wave4 = -combined_wave4
|
| 401 |
+
combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2
|
| 402 |
+
|
| 403 |
+
transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4
|
| 404 |
+
retained_frequency = generate_brainwave(60, t_shifted5, phase_shift=3.0) + transaction_data
|
| 405 |
+
beta_high_wave = generate_brainwave(70, t_shifted5, phase_shift=3.5)
|
| 406 |
+
combined_wave5 = (retained_frequency + beta_high_wave) / 2
|
| 407 |
+
|
| 408 |
+
delay = 100
|
| 409 |
+
scrambled_wave6 = scramble_data(combined_wave5, delay)
|
| 410 |
+
|
| 411 |
+
encrypted_wave6 = encrypt_data(scrambled_wave6)
|
| 412 |
+
|
| 413 |
+
anomalies = detect_anomalies(scrambled_wave6)
|
| 414 |
+
|
| 415 |
+
if np.any(anomalies):
|
| 416 |
+
print("Security Alert: Anomalies detected in the data!")
|
| 417 |
+
scrambled_wave6 = clear_anomalies(scrambled_wave6, anomalies)
|
| 418 |
+
|
| 419 |
+
portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave]))
|
| 420 |
+
|
| 421 |
+
lines[0].set_ydata(combined_wave1)
|
| 422 |
+
lines[1].set_ydata(combined_wave2)
|
| 423 |
+
lines[2].set_ydata(combined_wave3)
|
| 424 |
+
lines[3].set_ydata(combined_mirrored_wave4)
|
| 425 |
+
lines[4].set_ydata(combined_wave5)
|
| 426 |
+
lines[5].set_ydata(scrambled_wave6)
|
| 427 |
+
lines[6].set_ydata(portal_data)
|
| 428 |
+
|
| 429 |
+
return lines
|
| 430 |
+
|
| 431 |
+
duration = 5
|
| 432 |
+
sampling_rate = 1000
|
| 433 |
+
t = np.linspace(0, duration, int(sampling_rate * duration), endpoint=False)
|
| 434 |
+
|
| 435 |
+
fig, ax = plt.subplots()
|
| 436 |
+
alpha_wave = generate_brainwave(10, t)
|
| 437 |
+
beta_wave = generate_brainwave(20, t)
|
| 438 |
+
financial_wave = generate_brainwave(15, t, phase_shift=0.5)
|
| 439 |
+
combined_wave1 = (alpha_wave + beta_wave) / 2
|
| 440 |
+
|
| 441 |
+
theta_wave = generate_brainwave(6, t, phase_shift=0.3)
|
| 442 |
+
gamma_wave = generate_brainwave(40, t, phase_shift=0.7)
|
| 443 |
+
combined_wave2 = (theta_wave + gamma_wave) / 2
|
| 444 |
+
|
| 445 |
+
delta_wave = generate_brainwave(2, t, phase_shift=1.0)
|
| 446 |
+
high_beta_wave = generate_brainwave(30, t, phase_shift=1.5)
|
| 447 |
+
combined_wave3 = (delta_wave + high_beta_wave) / 2
|
| 448 |
+
|
| 449 |
+
mu_wave = generate_brainwave(12, t, phase_shift=2.0)
|
| 450 |
+
low_gamma_wave = generate_brainwave(50, t, phase_shift=2.5)
|
| 451 |
+
combined_wave4 = (mu_wave + low_gamma_wave) / 2
|
| 452 |
+
|
| 453 |
+
mirrored_wave4 = -combined_wave4
|
| 454 |
+
combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2
|
| 455 |
+
|
| 456 |
+
transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4
|
| 457 |
+
retained_frequency = generate_brainwave(60, t, phase_shift=3.0) + transaction_data
|
| 458 |
+
beta_high_wave = generate_brainwave(70, t, phase_shift=3.5)
|
| 459 |
+
combined_wave5 = (retained_frequency + beta_high_wave) / 2
|
| 460 |
+
|
| 461 |
+
delay = 100
|
| 462 |
+
scrambled_wave6 = scramble_data(combined_wave5, delay)
|
| 463 |
+
|
| 464 |
+
encrypted_wave6 = encrypt_data(scrambled_wave6)
|
| 465 |
+
anomalies = detect_anomalies(scrambled_wave6)
|
| 466 |
+
|
| 467 |
+
if np.any(anomalies):
|
| 468 |
+
print("Security Alert: Anomalies detected in the data!")
|
| 469 |
+
scrambled_wave6 = clear_anomalies(scrambled_wave6, anomalies)
|
| 470 |
+
|
| 471 |
+
portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave]))
|
| 472 |
+
|
| 473 |
+
line1, = ax.plot(t, combined_wave1, label="Alpha & Beta Layer with Financial Frequencies", color='blue')
|
| 474 |
+
line2, = ax.plot(t, combined_wave2, label="Theta & Gamma Layer (Influenced)", linestyle='--')
|
| 475 |
+
line3, = ax.plot(t, combined_wave3, label="Delta & High Beta Layer (Transferred)", linestyle=':')
|
| 476 |
+
line4, = ax.plot(t, combined_mirrored_wave4, label="Mu & Low Gamma Layer (Mirrored)", linestyle='-.')
|
| 477 |
+
line5, = ax.plot(t, combined_wave5, label="Retained Frequency in Fifth Layer", linestyle='-')
|
| 478 |
+
line6, = ax.plot(t, scrambled_wave6, label="Delayed and Scrambled Sixth Layer", linestyle='--', color='red')
|
| 479 |
+
line7, = ax.plot(t, portal_data, label="Portal Output", linestyle=':', color='purple')
|
| 480 |
+
|
| 481 |
+
ax.set_xlim(0, duration)
|
| 482 |
+
ax.set_ylim(-2, 2)
|
| 483 |
+
ax.set_title("TRCSIngenuity")
|
| 484 |
+
ax.set_xlabel("Time (s)")
|
| 485 |
+
ax.set_ylabel("Amplitude")
|
| 486 |
+
ax.legend()
|
| 487 |
+
|
| 488 |
+
ani = FuncAnimation(fig, update, frames=range(200), fargs=([line1, line2, line3, line4, line5, line6, line7], t, duration, sampling_rate), blit=True)
|
| 489 |
+
|
| 490 |
+
plt.show()
|
| 491 |
+
|
| 492 |
+
import numpy as np
|
| 493 |
+
import matplotlib.pyplot as plt
|
| 494 |
+
from matplotlib.animation import FuncAnimation
|
| 495 |
+
from scipy.fftpack import fft, ifft
|
| 496 |
+
|
| 497 |
+
def generate_brainwave(frequency, t, phase_shift=0):
|
| 498 |
+
return np.sin(2 * np.pi * frequency * t + phase_shift)
|
| 499 |
+
|
| 500 |
+
def portal_organize(frequencies):
|
| 501 |
+
organized_data = np.mean(frequencies, axis=0)
|
| 502 |
+
normalized_data = (organized_data - np.min(organized_data)) / (np.max(organized_data) - np.min(organized_data))
|
| 503 |
+
return normalized_data
|
| 504 |
+
|
| 505 |
+
def scramble_data(data, delay):
|
| 506 |
+
scrambled_data = np.roll(data, delay)
|
| 507 |
+
scrambled_data += np.random.normal(0, 0.1, size=data.shape)
|
| 508 |
+
return scrambled_data
|
| 509 |
+
|
| 510 |
+
def encrypt_data(data):
|
| 511 |
+
encrypted_data = fft(data)
|
| 512 |
+
return encrypted_data
|
| 513 |
+
|
| 514 |
+
def decrypt_data(data):
|
| 515 |
+
decrypted_data = ifft(data)
|
| 516 |
+
return decrypted_data.real
|
| 517 |
+
|
| 518 |
+
def detect_anomalies(data):
|
| 519 |
+
# Simple anomaly detection: Check for irregular spikes in the data
|
| 520 |
+
anomalies = np.abs(np.diff(data)) > np.mean(np.abs(np.diff(data))) + 2 * np.std(np.abs(np.diff(data)))
|
| 521 |
+
# Pad the anomalies array with False to match the size of the data array
|
| 522 |
+
anomalies = np.concatenate(([False], anomalies)) # prepend False instead of appending
|
| 523 |
+
return anomalies
|
| 524 |
+
|
| 525 |
+
def clear_anomalies(data, anomalies):
|
| 526 |
+
correction_frequency = np.cos(2 * np.pi * 2 * np.arange(len(data)) / len(data)) # A low-frequency cosine wave
|
| 527 |
+
data[anomalies] -= correction_frequency[:len(data[anomalies])]
|
| 528 |
+
return data
|
| 529 |
+
|
| 530 |
+
def update(frame, lines, t, duration, sampling_rate):
|
| 531 |
+
t_shifted1 = t + frame / (sampling_rate * 1.0)
|
| 532 |
+
t_shifted2 = t + frame / (sampling_rate * 1.25)
|
| 533 |
+
t_shifted3 = t + frame / (sampling_rate * 1.75)
|
| 534 |
+
t_shifted4 = t + frame / (sampling_rate * 2.25)
|
| 535 |
+
t_shifted5 = t + frame / (sampling_rate * 3.0)
|
| 536 |
+
t_shifted6 = t + frame / (sampling_rate * 4.0)
|
| 537 |
+
|
| 538 |
+
alpha_wave = generate_brainwave(10, t_shifted1)
|
| 539 |
+
beta_wave = generate_brainwave(20, t_shifted1)
|
| 540 |
+
financial_wave = generate_brainwave(15, t_shifted1, phase_shift=0.5)
|
| 541 |
+
combined_wave1 = (alpha_wave + beta_wave) / 2
|
| 542 |
+
|
| 543 |
+
influence_factor = (financial_wave - np.mean(financial_wave)) / np.std(financial_wave)
|
| 544 |
+
theta_frequency = 6 + influence_factor
|
| 545 |
+
gamma_frequency = 40 + influence_factor
|
| 546 |
+
|
| 547 |
+
theta_wave = generate_brainwave(theta_frequency, t_shifted2, phase_shift=0.3)
|
| 548 |
+
gamma_wave = generate_brainwave(gamma_frequency, t_shifted2, phase_shift=0.7)
|
| 549 |
+
combined_wave2 = (theta_wave + gamma_wave) / 2
|
| 550 |
+
|
| 551 |
+
transfer_factor = np.mean(theta_wave)
|
| 552 |
+
delta_frequency = 2 + transfer_factor
|
| 553 |
+
high_beta_frequency = 30 + transfer_factor
|
| 554 |
+
|
| 555 |
+
delta_wave = generate_brainwave(delta_frequency, t_shifted3, phase_shift=1.0)
|
| 556 |
+
high_beta_wave = generate_brainwave(high_beta_frequency, t_shifted3, phase_shift=1.5)
|
| 557 |
+
combined_wave3 = (delta_wave + high_beta_wave) / 2
|
| 558 |
+
|
| 559 |
+
transfer_factor_3_to_4 = np.mean(delta_wave)
|
| 560 |
+
mu_frequency = 12 + transfer_factor_3_to_4
|
| 561 |
+
low_gamma_frequency = 50 + transfer_factor_3_to_4
|
| 562 |
+
|
| 563 |
+
mu_wave = generate_brainwave(mu_frequency, t_shifted4, phase_shift=2.0)
|
| 564 |
+
low_gamma_wave = generate_brainwave(low_gamma_frequency, t_shifted4, phase_shift=2.5)
|
| 565 |
+
combined_wave4 = (mu_wave + low_gamma_wave) / 2
|
| 566 |
+
|
| 567 |
+
mirrored_wave4 = -combined_wave4
|
| 568 |
+
combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2
|
| 569 |
+
|
| 570 |
+
transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4
|
| 571 |
+
retained_frequency = generate_brainwave(60, t_shifted5, phase_shift=3.0) + transaction_data
|
| 572 |
+
beta_high_wave = generate_brainwave(70, t_shifted5, phase_shift=3.5)
|
| 573 |
+
combined_wave5 = (retained_frequency + beta_high_wave) / 2
|
| 574 |
+
|
| 575 |
+
delay = 100
|
| 576 |
+
scrambled_wave6 = scramble_data(combined_wave5, delay)
|
| 577 |
+
|
| 578 |
+
encrypted_wave6 = encrypt_data(scrambled_wave6)
|
| 579 |
+
|
| 580 |
+
anomalies = detect_anomalies(scrambled_wave6)
|
| 581 |
+
|
| 582 |
+
if np.any(anomalies):
|
| 583 |
+
scrambled_wave6 = clear_anomalies(scrambled_wave6, anomalies)
|
| 584 |
+
|
| 585 |
+
portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave]))
|
| 586 |
+
|
| 587 |
+
for i, line in enumerate(lines):
|
| 588 |
+
if i == 0:
|
| 589 |
+
line.set_ydata(combined_wave1)
|
| 590 |
+
elif i == 1:
|
| 591 |
+
line.set_ydata(combined_wave2)
|
| 592 |
+
elif i == 2:
|
| 593 |
+
line.set_ydata(combined_wave3)
|
| 594 |
+
elif i == 3:
|
| 595 |
+
line.set_ydata(combined_mirrored_wave4)
|
| 596 |
+
elif i == 4:
|
| 597 |
+
line.set_ydata(combined_wave5)
|
| 598 |
+
elif i == 5:
|
| 599 |
+
line.set_ydata(scrambled_wave6)
|
| 600 |
+
elif i == 6:
|
| 601 |
+
line.set_ydata(portal_data)
|
| 602 |
+
|
| 603 |
+
return lines
|
| 604 |
+
|
| 605 |
+
duration = 5
|
| 606 |
+
sampling_rate = 1000
|
| 607 |
+
t = np.linspace(0, duration, int(sampling_rate * duration), endpoint=False)
|
| 608 |
+
|
| 609 |
+
fig, axs = plt.subplots(7, 1, figsize=(10, 14), sharex=True)
|
| 610 |
+
fig.tight_layout(pad=3.0)
|
| 611 |
+
|
| 612 |
+
alpha_wave = generate_brainwave(10, t)
|
| 613 |
+
beta_wave = generate_brainwave(20, t)
|
| 614 |
+
financial_wave = generate_brainwave(15, t, phase_shift=0.5)
|
| 615 |
+
combined_wave1 = (alpha_wave + beta_wave) / 2
|
| 616 |
+
|
| 617 |
+
theta_wave = generate_brainwave(6, t, phase_shift=0.3)
|
| 618 |
+
gamma_wave = generate_brainwave(40, t, phase_shift=0.7)
|
| 619 |
+
combined_wave2 = (theta_wave + gamma_wave) / 2
|
| 620 |
+
|
| 621 |
+
delta_wave = generate_brainwave(2, t, phase_shift=1.0)
|
| 622 |
+
high_beta_wave = generate_brainwave(30, t, phase_shift=1.5)
|
| 623 |
+
combined_wave3 = (delta_wave + high_beta_wave) / 2
|
| 624 |
+
|
| 625 |
+
mu_wave = generate_brainwave(12, t, phase_shift=2.0)
|
| 626 |
+
low_gamma_wave = generate_brainwave(50, t, phase_shift=2.5)
|
| 627 |
+
combined_wave4 = (mu_wave + low_gamma_wave) / 2
|
| 628 |
+
|
| 629 |
+
mirrored_wave4 = -combined_wave4
|
| 630 |
+
combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2
|
| 631 |
+
|
| 632 |
+
transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4
|
| 633 |
+
retained_frequency = generate_brainwave(60, t, phase_shift=3.0) + transaction_data
|
| 634 |
+
beta_high_wave = generate_brainwave(70, t, phase_shift=3.5)
|
| 635 |
+
combined_wave5 = (retained_frequency + beta_high_wave) / 2
|
| 636 |
+
|
| 637 |
+
delay = 100
|
| 638 |
+
scrambled_wave6 = scramble_data(combined_wave5, delay)
|
| 639 |
+
|
| 640 |
+
encrypted_wave6 = encrypt_data(scrambled_wave6)
|
| 641 |
+
anomalies = detect_anomalies(scrambled_wave6)
|
| 642 |
+
|
| 643 |
+
if np.any(anomalies):
|
| 644 |
+
scrambled_wave6 = clear_anomalies(scrambled_wave6, anomalies)
|
| 645 |
+
|
| 646 |
+
portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave]))
|
| 647 |
+
|
| 648 |
+
lines = []
|
| 649 |
+
for i, (wave, label, color) in enumerate([
|
| 650 |
+
(combined_wave1, "Alpha & Beta Layer with Financial Frequencies", 'blue'),
|
| 651 |
+
(combined_wave2, "Theta & Gamma Layer (Influenced)", 'green'),
|
| 652 |
+
(combined_wave3, "Delta & High Beta Layer (Transferred)", 'orange'),
|
| 653 |
+
(combined_mirrored_wave4, "Mu & Low Gamma Layer (Mirrored)", 'purple'),
|
| 654 |
+
(combined_wave5, "Retained Frequency in Fifth Layer", 'cyan'),
|
| 655 |
+
(scrambled_wave6, "Delayed and Scrambled Sixth Layer", 'red'),
|
| 656 |
+
(portal_data, "Portal Output", 'magenta')
|
| 657 |
+
]):
|
| 658 |
+
line, = axs[i].plot(t, wave, color=color)
|
| 659 |
+
axs[i].set_title(label)
|
| 660 |
+
axs[i].set_ylim(-2, 2)
|
| 661 |
+
lines.append(line)
|
| 662 |
+
|
| 663 |
+
axs[-1].set_xlabel("Time (s)")
|
| 664 |
+
|
| 665 |
+
ani = FuncAnimation(fig, update, frames=range(200), fargs=(lines, t, duration, sampling_rate), blit=True)
|
| 666 |
+
|
| 667 |
+
plt.show()
|