Upload cybersecurity_attacks.py
Browse files- cybersecurity_attacks.py +245 -0
cybersecurity_attacks.py
ADDED
|
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""Cybersecurity Attacks
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1IaRXrO_gtRMKaHU7_IPzZJ705GonLuMV
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import numpy as np
|
| 11 |
+
import pandas as pd
|
| 12 |
+
import plotly.express as px
|
| 13 |
+
import seaborn as sns
|
| 14 |
+
import matplotlib.pyplot as plt
|
| 15 |
+
import re
|
| 16 |
+
|
| 17 |
+
pd.options.display.float_format = '{:,.2f}'.format
|
| 18 |
+
|
| 19 |
+
df = pd.read_csv("/content/cybersecurity_attacks.csv")
|
| 20 |
+
|
| 21 |
+
print(f"There are {df.shape[0]}, row and {df.shape[1]} columns in the dataset")
|
| 22 |
+
|
| 23 |
+
df.columns
|
| 24 |
+
|
| 25 |
+
df.isna().sum()
|
| 26 |
+
|
| 27 |
+
df.duplicated().sum()
|
| 28 |
+
|
| 29 |
+
df['Malware Indicators'] = df['Malware Indicators'].apply(lambda x: 'No Detection' if pd.isna(x) else x)
|
| 30 |
+
|
| 31 |
+
df['Alerts/Warnings'] = df['Alerts/Warnings'].apply(lambda x: 'yes' if x == 'Alert Triggered' else 'no')
|
| 32 |
+
|
| 33 |
+
df['Prowx Information'] = df['Proxy Information'].apply(lambda x: 'No proxy' if pd.isna(x) else x)
|
| 34 |
+
|
| 35 |
+
df['Firewall Logs'] = df['Firewall Logs'].apply(lambda x: 'No Data' if pd.isna(x) else x)
|
| 36 |
+
|
| 37 |
+
df['IDS/IPS Alerts'] = df['IDS/IPS Alerts'].apply(lambda x: 'No Data' if pd.isna(x) else x)
|
| 38 |
+
|
| 39 |
+
df['Source Port'] = df['Source Port'].apply(lambda x: x if 0 <= x <= 65535 else 'Invalid Port')
|
| 40 |
+
df['Destination Port'] = df['Destination Port'].apply(lambda x: x if 0 <= x <= 65535 else 'Invalid Port')
|
| 41 |
+
|
| 42 |
+
df.isna().sum()
|
| 43 |
+
|
| 44 |
+
df['Device Information'].value_counts()
|
| 45 |
+
|
| 46 |
+
df['Browser'] = df['Device Information'].str.split('/').str[0]
|
| 47 |
+
|
| 48 |
+
df['Browser'].unique()
|
| 49 |
+
|
| 50 |
+
patterns = [
|
| 51 |
+
r'Windows',
|
| 52 |
+
r'Linux',
|
| 53 |
+
r'Android',
|
| 54 |
+
r'iPad',
|
| 55 |
+
r'iPhone',
|
| 56 |
+
r'Macintosh',
|
| 57 |
+
]
|
| 58 |
+
|
| 59 |
+
def extract_device_or_os(user_agent):
|
| 60 |
+
for pattern in patterns:
|
| 61 |
+
match = re.search(pattern, user_agent, re.I)
|
| 62 |
+
if match:
|
| 63 |
+
return match.group()
|
| 64 |
+
|
| 65 |
+
return 'Unknown'
|
| 66 |
+
|
| 67 |
+
df['Device/OS'] = df['Device Information'].apply(extract_device_or_os)
|
| 68 |
+
|
| 69 |
+
df = df.drop('Device Information', axis = 1)
|
| 70 |
+
|
| 71 |
+
device_counts = df['Device/OS'].value_counts()
|
| 72 |
+
|
| 73 |
+
device_counts_df = pd.DataFrame(device_counts).reset_index()
|
| 74 |
+
device_counts_df.columns = ['Device/OS', 'Count of Attacks']
|
| 75 |
+
|
| 76 |
+
top_devices = device_counts_df.head(10)
|
| 77 |
+
print(top_devices)
|
| 78 |
+
|
| 79 |
+
plt.figure(figsize=(10, 6))
|
| 80 |
+
sns.barplot(x='Count of Attacks', y='Device/OS', hue='Device/OS', data=top_devices, palette='viridis', dodge=False)
|
| 81 |
+
plt.xlabel('Count of Attacks')
|
| 82 |
+
plt.ylabel('Device/OS')
|
| 83 |
+
plt.title('Top 10 Devices/OS Targeted by Attacks')
|
| 84 |
+
plt.tight_layout()
|
| 85 |
+
plt.show()
|
| 86 |
+
|
| 87 |
+
attack_type_counts = df['Attack Type'].value_counts()
|
| 88 |
+
attack_type_counts_df = pd.DataFrame(attack_type_counts).reset_index()
|
| 89 |
+
attack_type_counts_df.columns = ['Attack Type', 'Count of Attacks']
|
| 90 |
+
top_attack_types = attack_type_counts_df.head(10)
|
| 91 |
+
print(top_attack_types)
|
| 92 |
+
|
| 93 |
+
plt.figure(figsize=(10, 6))
|
| 94 |
+
sns.barplot(x='Count of Attacks', y='Attack Type', hue='Attack Type', data=top_attack_types, palette='viridis', dodge=False)
|
| 95 |
+
plt.xlabel('Count of Attacks')
|
| 96 |
+
plt.ylabel('Attack Type')
|
| 97 |
+
plt.title('Top 10 Most Common Attack Types')
|
| 98 |
+
plt.tight_layout()
|
| 99 |
+
plt.show()
|
| 100 |
+
|
| 101 |
+
geo_location_counts = df['Geo-location Data'].value_counts()
|
| 102 |
+
|
| 103 |
+
geo_location_counts_df = pd.DataFrame(geo_location_counts).reset_index()
|
| 104 |
+
geo_location_counts_df.columns = ['Geo-location Data', 'Count of Attacks']
|
| 105 |
+
top_geo_locations = geo_location_counts_df.head(10)
|
| 106 |
+
print(top_geo_locations)
|
| 107 |
+
|
| 108 |
+
plt.figure(figsize=(10, 6))
|
| 109 |
+
sns.barplot(x='Count of Attacks', y='Geo-location Data', hue='Geo-location Data', data=top_geo_locations, palette='viridis', dodge=False)
|
| 110 |
+
plt.xlabel('Count of Attacks')
|
| 111 |
+
plt.ylabel('Geo-location Data')
|
| 112 |
+
plt.title('Top 10 Geographic Locations Source of Malicious Traffic')
|
| 113 |
+
plt.tight_layout()
|
| 114 |
+
plt.show()
|
| 115 |
+
|
| 116 |
+
destination_port_counts = df['Destination Port'].value_counts()
|
| 117 |
+
destination_port_counts_df = pd.DataFrame(destination_port_counts).reset_index()
|
| 118 |
+
destination_port_counts_df.columns = ['Destination Port', 'Count of Attacks']
|
| 119 |
+
|
| 120 |
+
top_destination_ports = destination_port_counts_df.head(10)
|
| 121 |
+
print(top_destination_ports)
|
| 122 |
+
|
| 123 |
+
plt.figure(figsize=(10, 6))
|
| 124 |
+
sns.barplot(x='Destination Port', y='Count of Attacks', hue='Count of Attacks', data=top_destination_ports, palette='viridis', dodge=False)
|
| 125 |
+
plt.xlabel('Destination Port')
|
| 126 |
+
plt.ylabel('Count of Attacks')
|
| 127 |
+
plt.title('Top 10 Most Targeted Destination Ports')
|
| 128 |
+
plt.tight_layout()
|
| 129 |
+
plt.show()
|
| 130 |
+
|
| 131 |
+
severity_mapping = {'Low': 1, 'Medium': 2, 'High': 3}
|
| 132 |
+
df['Severity Level Numeric'] = df['Severity Level'].map(severity_mapping)
|
| 133 |
+
|
| 134 |
+
protocol_severity = df.groupby('Protocol')['Severity Level Numeric'].mean().reset_index()
|
| 135 |
+
|
| 136 |
+
protocol_severity = protocol_severity.sort_values(by='Severity Level Numeric', ascending=False)
|
| 137 |
+
|
| 138 |
+
top_protocol_severity = protocol_severity.head(10)
|
| 139 |
+
print(top_protocol_severity)
|
| 140 |
+
|
| 141 |
+
plt.figure(figsize=(10, 6))
|
| 142 |
+
sns.barplot(x='Severity Level Numeric', y='Protocol', hue='Severity Level Numeric', data=top_protocol_severity, palette='viridis', dodge=False)
|
| 143 |
+
plt.xlabel('Mean Severity Level')
|
| 144 |
+
plt.ylabel('Protocol')
|
| 145 |
+
plt.title('Top 10 Protocols by Mean Severity Level')
|
| 146 |
+
plt.tight_layout()
|
| 147 |
+
plt.show()
|
| 148 |
+
|
| 149 |
+
df['Timestamp'] = pd.to_datetime(df['Timestamp'], errors='coerce')
|
| 150 |
+
df['Month'] = df['Timestamp'].dt.month
|
| 151 |
+
month_counts = df['Month'].value_counts()
|
| 152 |
+
month_counts_df = pd.DataFrame(month_counts).reset_index()
|
| 153 |
+
month_counts_df.columns = ['Month', 'Count of Attacks']
|
| 154 |
+
sorted_month_counts = month_counts_df.sort_values(by='Month')
|
| 155 |
+
print(sorted_month_counts)
|
| 156 |
+
|
| 157 |
+
df['Timestamp'] = pd.to_datetime(df['Timestamp'])
|
| 158 |
+
df['Month'] = df['Timestamp'].dt.month
|
| 159 |
+
|
| 160 |
+
attacks_by_month = df.groupby('Month').size().reset_index(name='Attack Count')
|
| 161 |
+
|
| 162 |
+
heatmap_data = attacks_by_month.pivot_table(index='Month', columns='Month', values='Attack Count', aggfunc='sum', fill_value=0)
|
| 163 |
+
plt.figure(figsize=(10, 6))
|
| 164 |
+
sns.heatmap(heatmap_data, annot=True, fmt='d', cmap='YlOrRd', cbar=True)
|
| 165 |
+
plt.title('Cybersecurity Attacks Frequency by Month')
|
| 166 |
+
plt.xlabel('Month')
|
| 167 |
+
plt.ylabel('Month')
|
| 168 |
+
plt.tight_layout()
|
| 169 |
+
plt.show()
|
| 170 |
+
|
| 171 |
+
malicious_traffic = df[df['Malware Indicators'] == 'IoCDetected']
|
| 172 |
+
|
| 173 |
+
traffic_type_counts = malicious_traffic['Traffic Type'].value_counts()
|
| 174 |
+
traffic_type_counts_df = pd.DataFrame(traffic_type_counts).reset_index()
|
| 175 |
+
traffic_type_counts_df.columns = ['Traffic Type', 'Count of Malicious Incidents']
|
| 176 |
+
|
| 177 |
+
top_traffic_types = traffic_type_counts_df.head(10)
|
| 178 |
+
print(top_traffic_types)
|
| 179 |
+
|
| 180 |
+
plt.figure(figsize=(10, 6))
|
| 181 |
+
sns.barplot(x='Count of Malicious Incidents', y='Traffic Type', hue='Count of Malicious Incidents', data=top_traffic_types, palette='viridis', dodge=False)
|
| 182 |
+
plt.xlabel('Count of Malicious Incidents')
|
| 183 |
+
plt.ylabel('Traffic Type')
|
| 184 |
+
plt.title('Top Traffic Types Flagged with "IoC Detected"')
|
| 185 |
+
plt.tight_layout()
|
| 186 |
+
plt.show()
|
| 187 |
+
|
| 188 |
+
threshold = 75.0
|
| 189 |
+
|
| 190 |
+
infiltration_data = df[df['Anomaly Scores'] > threshold]
|
| 191 |
+
|
| 192 |
+
vulnerable_traffic_counts = infiltration_data['Traffic Type'].value_counts()
|
| 193 |
+
|
| 194 |
+
vulnerable_traffic_df = pd.DataFrame(vulnerable_traffic_counts).reset_index()
|
| 195 |
+
vulnerable_traffic_df.columns = ['Traffic Type', 'Count of Infiltrations']
|
| 196 |
+
|
| 197 |
+
top_vulnerable_traffic = vulnerable_traffic_df.head(10)
|
| 198 |
+
print(top_vulnerable_traffic)
|
| 199 |
+
|
| 200 |
+
plt.figure(figsize=(10, 6))
|
| 201 |
+
sns.barplot(x='Count of Infiltrations', y='Traffic Type', hue='Count of Infiltrations', data=top_vulnerable_traffic, dodge=False)
|
| 202 |
+
plt.xlabel('Count of Infiltrations')
|
| 203 |
+
plt.ylabel('Traffic Type')
|
| 204 |
+
plt.title('Top Traffic Types Vulnerable to Infiltration (Anomaly Scores)')
|
| 205 |
+
plt.tight_layout()
|
| 206 |
+
plt.show()
|
| 207 |
+
|
| 208 |
+
threshold = df['Anomaly Scores'].quantile(0.95)
|
| 209 |
+
print(f"Threshold for Anomaly Scores: {threshold}\n")
|
| 210 |
+
|
| 211 |
+
infiltration_data = df[df['Anomaly Scores'] > threshold]
|
| 212 |
+
|
| 213 |
+
print(infiltration_data.head())
|
| 214 |
+
|
| 215 |
+
vulnerable_traffic_counts = infiltration_data['Traffic Type'].value_counts()
|
| 216 |
+
vulnerable_traffic_df = pd.DataFrame(vulnerable_traffic_counts).reset_index()
|
| 217 |
+
vulnerable_traffic_df.columns = ['Traffic Type', 'Count of Infiltrations']
|
| 218 |
+
|
| 219 |
+
top_vulnerable_traffic = vulnerable_traffic_df.head(10)
|
| 220 |
+
print(top_vulnerable_traffic)
|
| 221 |
+
|
| 222 |
+
plt.figure(figsize=(10, 6))
|
| 223 |
+
sns.barplot(x='Count of Infiltrations', y='Traffic Type', hue='Count of Infiltrations', data=top_vulnerable_traffic, palette='viridis', dodge=False)
|
| 224 |
+
plt.xlabel('Count of Infiltrations')
|
| 225 |
+
plt.ylabel('Traffic Type')
|
| 226 |
+
plt.title('Top Traffic Types Vulnerable to Infiltration (High Anomaly Scores)')
|
| 227 |
+
plt.tight_layout()
|
| 228 |
+
plt.show()
|
| 229 |
+
|
| 230 |
+
cyber_attacks_data = df[df['Action Taken'].str.contains('Blocked', case=False, na=False)]
|
| 231 |
+
|
| 232 |
+
vulnerable_devices_os_counts = cyber_attacks_data['Device/OS'].value_counts()
|
| 233 |
+
vulnerable_devices_os_df = pd.DataFrame(vulnerable_devices_os_counts).reset_index()
|
| 234 |
+
vulnerable_devices_os_df.columns = ['Device/OS', 'Count of Cyber Attacks']
|
| 235 |
+
|
| 236 |
+
top_vulnerable_devices_os = vulnerable_devices_os_df.head(10)
|
| 237 |
+
print(top_vulnerable_devices_os)
|
| 238 |
+
|
| 239 |
+
plt.figure(figsize=(10, 6))
|
| 240 |
+
sns.barplot(x='Count of Cyber Attacks', y='Device/OS', hue='Count of Cyber Attacks', data=top_vulnerable_devices_os, palette='viridis', dodge=False)
|
| 241 |
+
plt.xlabel('Count of Cyber Attacks')
|
| 242 |
+
plt.ylabel('Device/OS')
|
| 243 |
+
plt.title('Top Devices/OS Vulnerable to Cyber Attacks')
|
| 244 |
+
plt.tight_layout()
|
| 245 |
+
plt.show
|