Delete master_card_stock_data_159_(2008_2024).py
Browse files
master_card_stock_data_159_(2008_2024).py
DELETED
|
@@ -1,376 +0,0 @@
|
|
| 1 |
-
# -*- coding: utf-8 -*-
|
| 2 |
-
"""Master Card Stock Data.159 (2008-2024)
|
| 3 |
-
|
| 4 |
-
Automatically generated by Colab.
|
| 5 |
-
|
| 6 |
-
Original file is located at
|
| 7 |
-
https://colab.research.google.com/drive/127-oS8O1T914B2Fx1z0r0JAfHc3RJ8NB
|
| 8 |
-
"""
|
| 9 |
-
|
| 10 |
-
import pandas as pd
|
| 11 |
-
|
| 12 |
-
data = pd.read_csv('MVR.csv')
|
| 13 |
-
|
| 14 |
-
print(data.head())
|
| 15 |
-
|
| 16 |
-
print(data.isnull().sum())
|
| 17 |
-
|
| 18 |
-
data['Date'] = pd.to_datetime(data['Date'])
|
| 19 |
-
|
| 20 |
-
data.set_index('Date', inplace=True)
|
| 21 |
-
|
| 22 |
-
print(data.dtypes)
|
| 23 |
-
|
| 24 |
-
print(data.info())
|
| 25 |
-
|
| 26 |
-
print(data.describe())
|
| 27 |
-
|
| 28 |
-
import matplotlib.pyplot as plt
|
| 29 |
-
|
| 30 |
-
plt.figure(figsize=(14, 7))
|
| 31 |
-
plt.plot(data.index, data['Close_M'], label='MasterCard Close')
|
| 32 |
-
plt.plot(data.index, data['Close_V'], label='Visa Close')
|
| 33 |
-
plt.title('Stock Prices of MasterCard and Visa')
|
| 34 |
-
plt.xlabel('Date')
|
| 35 |
-
plt.ylabel('Stock Price')
|
| 36 |
-
plt.legend()
|
| 37 |
-
plt.show()
|
| 38 |
-
|
| 39 |
-
data['MA_Close_M'] = data['Close_M'].rolling(window=30).mean()
|
| 40 |
-
data['MA_Close_V'] = data['Close_V'].rolling(window=30).mean()
|
| 41 |
-
|
| 42 |
-
plt.figure(figsize=(14, 7))
|
| 43 |
-
plt.plot(data['Close_M'], label='MasterCard Close Price')
|
| 44 |
-
plt.plot(data['MA_Close_M'], label='MasterCard 30-Day MA')
|
| 45 |
-
plt.title('Moving Averages of Stock Prices')
|
| 46 |
-
plt.xlabel('Date')
|
| 47 |
-
plt.ylabel('Price')
|
| 48 |
-
plt.legend()
|
| 49 |
-
plt.show()
|
| 50 |
-
|
| 51 |
-
plt.figure(figsize=(14, 7))
|
| 52 |
-
plt.plot(data['Volume_M'], label='MasterCard Volume')
|
| 53 |
-
plt.plot(data['Volume_V'], label='Visa Volume')
|
| 54 |
-
plt.title('Volume of Stocks Traded')
|
| 55 |
-
plt.xlabel('Date')
|
| 56 |
-
plt.ylabel('Volume')
|
| 57 |
-
plt.legend()
|
| 58 |
-
plt.show()
|
| 59 |
-
|
| 60 |
-
data['SMA50_M'] = data['Close_M'].rolling(window=50).mean()
|
| 61 |
-
data['SMA200_M'] = data['Close_M'].rolling(window=200).mean()
|
| 62 |
-
|
| 63 |
-
data['SMA50_V'] = data['Close_V'].rolling(window=50).mean()
|
| 64 |
-
data['SMA200_V'] = data['Close_V'].rolling(window=200).mean()
|
| 65 |
-
|
| 66 |
-
plt.figure(figsize=(14, 7))
|
| 67 |
-
plt.plot(data.index, data['Close_M'], label='MasterCard Close')
|
| 68 |
-
plt.plot(data.index, data['SMA50_M'], label='MasterCard SMA50')
|
| 69 |
-
plt.plot(data.index, data['SMA200_M'], label='MasterCard SMA200')
|
| 70 |
-
plt.title('MasterCard Stock Price and Moving Averages')
|
| 71 |
-
plt.xlabel('Date')
|
| 72 |
-
plt.ylabel('Stock Price')
|
| 73 |
-
plt.legend()
|
| 74 |
-
plt.show()
|
| 75 |
-
|
| 76 |
-
plt.figure(figsize=(14, 7))
|
| 77 |
-
plt.plot(data.index, data['Close_V'], label='Visa Close')
|
| 78 |
-
plt.plot(data.index, data['SMA50_V'], label='Visa SMA50')
|
| 79 |
-
plt.plot(data.index, data['SMA200_V'], label='Visa SMA200')
|
| 80 |
-
plt.title('Visa Stock Price and Moving Averages')
|
| 81 |
-
plt.xlabel('Date')
|
| 82 |
-
plt.ylabel('Stock Price')
|
| 83 |
-
plt.legend()
|
| 84 |
-
plt.show
|
| 85 |
-
|
| 86 |
-
data['Volatility_M'] = data['Close_M'].rolling(window=30).std()
|
| 87 |
-
data['Volatility_V'] = data['Close_V'].rolling(window=30).std()
|
| 88 |
-
|
| 89 |
-
plt.figure(figsize=(14, 7))
|
| 90 |
-
plt.plot(data.index, data['Volatility_M'], label='MasterCard Volatility')
|
| 91 |
-
plt.plot(data.index, data['Volatility_V'], label='Visa Volatility')
|
| 92 |
-
plt.title('Stock Price Volatility of MasterCard and Visa')
|
| 93 |
-
plt.xlabel('Date')
|
| 94 |
-
plt.ylabel('Volatility')
|
| 95 |
-
plt.legend()
|
| 96 |
-
plt.show()
|
| 97 |
-
|
| 98 |
-
data['Return_M'] = data['Close_M'].pct_change()
|
| 99 |
-
data['Return_V'] = data['Close_V'].pct_change()
|
| 100 |
-
|
| 101 |
-
data['Cumulative_Return_M'] = (1 + data['Return_M']).cumprod()
|
| 102 |
-
data['Cumulative_Return_V'] = (1 + data['Return_V']).cumprod()
|
| 103 |
-
|
| 104 |
-
plt.figure(figsize=(14, 7))
|
| 105 |
-
plt.plot(data.index, data['Cumulative_Return_M'], label='MasterCard Cumulative Return')
|
| 106 |
-
plt.plot(data.index, data['Cumulative_Return_V'], label='Visa Cumulative Return')
|
| 107 |
-
plt.title('Cumulative Returns of MasterCard and Visa')
|
| 108 |
-
plt.xlabel('Date')
|
| 109 |
-
plt.ylabel('Cumulative Return')
|
| 110 |
-
plt.legend()
|
| 111 |
-
plt.show()
|
| 112 |
-
|
| 113 |
-
correlation = data[['Close_M', 'Close_V']].corr()
|
| 114 |
-
print(correlation)
|
| 115 |
-
|
| 116 |
-
from statsmodels.tsa.seasonal import seasonal_decompose
|
| 117 |
-
|
| 118 |
-
decomposition_M = seasonal_decompose(data['Close_M'], model='multiplicative', period=365)
|
| 119 |
-
fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(15, 12))
|
| 120 |
-
|
| 121 |
-
ax1.plot(decomposition_M.observed)
|
| 122 |
-
ax1.set_title('Observed - MasterCard')
|
| 123 |
-
ax2.plot(decomposition_M.trend)
|
| 124 |
-
ax2.set_title('Tren - MasterCard')
|
| 125 |
-
ax3.plot(decomposition_M.seasonal)
|
| 126 |
-
ax3.set_title('Seasonal - MasterCard')
|
| 127 |
-
ax4.plot(decomposition_M.resid)
|
| 128 |
-
ax4.set_title('Residual - MasterCard')
|
| 129 |
-
|
| 130 |
-
plt.tight_layout()
|
| 131 |
-
plt.show
|
| 132 |
-
|
| 133 |
-
decomposition_V = seasonal_decompose(data['Close_V'], model='multiplicative', period=365)
|
| 134 |
-
fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(15, 12))
|
| 135 |
-
|
| 136 |
-
ax1.plot(decomposition_V.observed)
|
| 137 |
-
ax1.set_title('Observed - Visa')
|
| 138 |
-
ax2.plot(decomposition_V.trend)
|
| 139 |
-
ax2.set_title('Trend - Visa')
|
| 140 |
-
ax3.plot(decomposition_V.seasonal)
|
| 141 |
-
ax3.set_title('Seasonal - Visa')
|
| 142 |
-
ax4.plot(decomposition_V.resid)
|
| 143 |
-
ax4.set_title('Residual - Visa')
|
| 144 |
-
|
| 145 |
-
plt.tight_layout()
|
| 146 |
-
plt.show()
|
| 147 |
-
|
| 148 |
-
from statsmodels.tsa.stattools import adfuller
|
| 149 |
-
|
| 150 |
-
def adf_test(series):
|
| 151 |
-
result = adfuller(series.dropna())
|
| 152 |
-
print('ADF Statistic:', result[0])
|
| 153 |
-
print('p-value:', result[1])
|
| 154 |
-
for key, value in result[4].items():
|
| 155 |
-
print('Critial Values:')
|
| 156 |
-
print(f' {key}, {value}')
|
| 157 |
-
|
| 158 |
-
print("ADF Test for MasterCard Close Price:")
|
| 159 |
-
adf_test(data['Close_M'])
|
| 160 |
-
|
| 161 |
-
print("\ADF Test for Visa Close Price:")
|
| 162 |
-
adf_test(data['Close_V'])
|
| 163 |
-
|
| 164 |
-
import numpy as np
|
| 165 |
-
from sklearn.preprocessing import MinMaxScaler
|
| 166 |
-
from keras.models import Sequential
|
| 167 |
-
from keras.layers import LSTM, Dense, Input
|
| 168 |
-
from sklearn.metrics import mean_squared_error
|
| 169 |
-
|
| 170 |
-
scaler = MinMaxScaler(feature_range=(0, 1))
|
| 171 |
-
scaled_data_M = scaler.fit_transform(data[['Close_M']])
|
| 172 |
-
scaled_data_V = scaler.fit_transform(data[['Close_V']])
|
| 173 |
-
|
| 174 |
-
train_len_M = int(len(scaled_data_M) * 0.8)
|
| 175 |
-
train_len_V = int(len(scaled_data_V) * 0.8)
|
| 176 |
-
|
| 177 |
-
train_data_M = scaled_data_M[:train_len_M]
|
| 178 |
-
test_data_M = scaled_data_M[train_len_M:]
|
| 179 |
-
|
| 180 |
-
train_data_V = scaled_data_V[:train_len_V]
|
| 181 |
-
test_data_V = scaled_data_V[train_len_V:]
|
| 182 |
-
|
| 183 |
-
def create_sequences(data, seq_length):
|
| 184 |
-
x = []
|
| 185 |
-
y = []
|
| 186 |
-
for i in range(seq_length, len(data)):
|
| 187 |
-
x.append(data[i-seq_length:i, 0])
|
| 188 |
-
y.append(data[i, 0])
|
| 189 |
-
return np.array(x), np.array(y)
|
| 190 |
-
|
| 191 |
-
seq_length = 60
|
| 192 |
-
x_train_M, y_train_M = create_sequences(train_data_M, seq_length)
|
| 193 |
-
x_test_M, y_test_M = create_sequences(test_data_M, seq_length)
|
| 194 |
-
|
| 195 |
-
x_train_V, y_train_V = create_sequences(train_data_V, seq_length)
|
| 196 |
-
x_test_V, y_test_V = create_sequences(test_data_V, seq_length)
|
| 197 |
-
|
| 198 |
-
x_train_M = np.reshape(x_train_M, (x_train_M.shape[0], x_train_M.shape[1], 1))
|
| 199 |
-
x_test_M = np.reshape(x_test_M, (x_test_M.shape[0], x_test_M.shape[1], 1))
|
| 200 |
-
|
| 201 |
-
x_train_V = np.reshape(x_train_V, (x_train_V.shape[0], x_train_V.shape[1], 1))
|
| 202 |
-
x_test_V = np.reshape(x_test_V, (x_test_V.shape[0], x_test_V.shape[1], 1))
|
| 203 |
-
|
| 204 |
-
model_M = Sequential()
|
| 205 |
-
model_M.add(Input(shape=(x_train_M.shape[1], 1)))
|
| 206 |
-
model_M.add(LSTM(units=50, return_sequences=True))
|
| 207 |
-
model_M.add(LSTM(units=50, return_sequences=False))
|
| 208 |
-
model_M.add(Dense(units=25))
|
| 209 |
-
model_M.add(Dense(units=1))
|
| 210 |
-
|
| 211 |
-
model_M.compile(optimizer='adam', loss='mean_squared_error')
|
| 212 |
-
|
| 213 |
-
model_V = Sequential()
|
| 214 |
-
model_V.add(Input(shape=(x_train_V.shape[1], 1)))
|
| 215 |
-
model_V.add(LSTM(units=50, return_sequences=True))
|
| 216 |
-
model_V.add(LSTM(units=50, return_sequences=False))
|
| 217 |
-
model_V.add(Dense(units=25))
|
| 218 |
-
model_V.add(Dense(units=1))
|
| 219 |
-
|
| 220 |
-
model_V.compile(optimizer ='adam', loss='mean_squared_error')
|
| 221 |
-
|
| 222 |
-
model_M.fit(x_train_M, y_train_M, batch_size=32, epochs=100)
|
| 223 |
-
model_V.fit(x_train_V, y_train_V, batch_size=32, epochs=100)
|
| 224 |
-
|
| 225 |
-
predictions_M = model_M.predict(x_test_M)
|
| 226 |
-
predictions_M = scaler.inverse_transform(predictions_M)
|
| 227 |
-
|
| 228 |
-
predictions_V = model_V.predict(x_test_V)
|
| 229 |
-
predictions_V = scaler.inverse_transform(predictions_V)
|
| 230 |
-
|
| 231 |
-
rmse_M = np.sqrt(mean_squared_error(y_test_M, predictions_M))
|
| 232 |
-
rmse_V = np.sqrt(mean_squared_error(y_test_V, predictions_V))
|
| 233 |
-
|
| 234 |
-
print(f'RMSE for MasterCard: {rmse_M}')
|
| 235 |
-
print(f'RMSE for Visa: {rmse_V}')
|
| 236 |
-
|
| 237 |
-
train_M = data[:train_len_M]['Close_M']
|
| 238 |
-
valid_M = data[train_len_M:train_len_M + len(predictions_M)]['Close_M']
|
| 239 |
-
valid_M = valid_M.to_frame()
|
| 240 |
-
valid_M['Predictions'] = predictions_M
|
| 241 |
-
|
| 242 |
-
train_V = data[:train_len_V]['Close_V']
|
| 243 |
-
valid_V = data[train_len_V:train_len_V + len(predictions_V)]['Close_V']
|
| 244 |
-
valid_V = valid_V.to_frame()
|
| 245 |
-
valid_V['Predictions'] = predictions_V
|
| 246 |
-
|
| 247 |
-
plt.figure(figsize=(14, 7))
|
| 248 |
-
plt.plot(train_M, label='Train - MasterCard')
|
| 249 |
-
plt.plot(valid_M['Close_M'], label='Valid - MasterCard')
|
| 250 |
-
plt.plot(valid_M['Predictions'], label='Predictions - MasterCard')
|
| 251 |
-
plt.legend()
|
| 252 |
-
plt.show()
|
| 253 |
-
|
| 254 |
-
plt.figure(figsize=(14, 7))
|
| 255 |
-
plt.plot(train_V, label ='Train -Visa')
|
| 256 |
-
plt.plot(valid_V['Close_V'], label='Valid -Visa')
|
| 257 |
-
plt.plot(valid_V['Predictions'], label='Predictions - Visa')
|
| 258 |
-
plt.legend()
|
| 259 |
-
plt.show()
|
| 260 |
-
|
| 261 |
-
from statsmodels.tsa.arima.model import ARIMA
|
| 262 |
-
|
| 263 |
-
data = data.asfreq('B')
|
| 264 |
-
|
| 265 |
-
train_size = int(len(data) * 0.8)
|
| 266 |
-
train, test = data['Close_M'][:train_size], data['Close_M'][train_size:]
|
| 267 |
-
|
| 268 |
-
model = ARIMA(train, order=(5, 1, 0))
|
| 269 |
-
model_fit = model.fit()
|
| 270 |
-
print(model_fit.summary())
|
| 271 |
-
|
| 272 |
-
predictions = model_fit.forecast(steps=len(test))
|
| 273 |
-
predictions = pd.Series(predictions, index=test.index)
|
| 274 |
-
|
| 275 |
-
plt.figure(figsize=(14, 7))
|
| 276 |
-
plt.plot(train, label='Training Data')
|
| 277 |
-
plt.plot(test, label='Test Data')
|
| 278 |
-
plt.plot(predictions, label='Predicted Data')
|
| 279 |
-
plt.title('ARIMA Model Predictions for MasterCard')
|
| 280 |
-
plt.xlabel('Date')
|
| 281 |
-
plt.ylabel('Price')
|
| 282 |
-
plt.legend()
|
| 283 |
-
plt.show()
|
| 284 |
-
|
| 285 |
-
data = data.asfreq('B')
|
| 286 |
-
|
| 287 |
-
train_size = int(len(data) * 0.8)
|
| 288 |
-
train_V, test_V = data['Close_V'][:train_size], data['Close_V'][train_size:]
|
| 289 |
-
|
| 290 |
-
model_V = ARIMA(train_V, order=(5, 1, 0))
|
| 291 |
-
model_fit_V = model_V.fit()
|
| 292 |
-
print(model_fit_V.summary())
|
| 293 |
-
|
| 294 |
-
predictions_V = model_fit_V.forecast(steps=len(test_V))
|
| 295 |
-
predictions_V = pd.Series(predictions_V, index=test_V.index)
|
| 296 |
-
|
| 297 |
-
plt.figure(figsize=(14, 7))
|
| 298 |
-
plt.plot(train_V, label='Training Data')
|
| 299 |
-
plt.plot(test_V, label='Test Data')
|
| 300 |
-
plt.plot(predictions_V, label='Predicted Data'),
|
| 301 |
-
plt.title('ARIMA Model Predictions for Visa')
|
| 302 |
-
plt.xlabel('Date')
|
| 303 |
-
plt.ylabel('Price')
|
| 304 |
-
plt.legend()
|
| 305 |
-
plt.show()
|
| 306 |
-
|
| 307 |
-
import warnings
|
| 308 |
-
warnings.filterwarnings('ignore')
|
| 309 |
-
import plotly.graph_objects as go
|
| 310 |
-
|
| 311 |
-
def predict_stock_price(data, column_name, forecast_periods):
|
| 312 |
-
train_size = int(len(data) * 0.8)
|
| 313 |
-
train, test = data[column_name][:train_size], data[column_name][train_size:]
|
| 314 |
-
|
| 315 |
-
model = ARIMA(train, order=(5, 1, 0))
|
| 316 |
-
model_fit = model.fit()
|
| 317 |
-
|
| 318 |
-
future_dates = pd.date_range(start=data.index[-1], periods=forecast_periods, freq='B')
|
| 319 |
-
forecast = model_fit.forecast(steps=forecast_periods)
|
| 320 |
-
forecast_series = pd.Series(forecast, index=future_dates)
|
| 321 |
-
|
| 322 |
-
return forecast_series
|
| 323 |
-
|
| 324 |
-
forecast_periods = 3 * 252
|
| 325 |
-
forecast_M = predict_stock_price(data, 'Close_M', forecast_periods)
|
| 326 |
-
forecast_V = predict_stock_price(data, 'Close_V', forecast_periods)
|
| 327 |
-
|
| 328 |
-
extended_data_M = pd.concat([data['Close_M'], forecast_M])
|
| 329 |
-
extended_data_V = pd.concat([data['Close_V'], forecast_V])
|
| 330 |
-
|
| 331 |
-
candlestick_data_M = pd.DataFrame({
|
| 332 |
-
'Date': extended_data_M.index,
|
| 333 |
-
'Open': extended_data_M.shift(1).fillna(method='bfill'),
|
| 334 |
-
'High': extended_data_M.rolling(2).max(),
|
| 335 |
-
'Low': extended_data_M.rolling(2).min(),
|
| 336 |
-
'Close': extended_data_M
|
| 337 |
-
}).reset_index(drop=True)
|
| 338 |
-
|
| 339 |
-
candlestick_data_V = pd.DataFrame({
|
| 340 |
-
'Date': extended_data_V.index,
|
| 341 |
-
'Open': extended_data_V.shift(1).fillna(method='bfill'),
|
| 342 |
-
'High': extended_data_V.rolling(2).max(),
|
| 343 |
-
'Low': extended_data_V.rolling(2).min(),
|
| 344 |
-
'Close': extended_data_V
|
| 345 |
-
}).reset_index(drop=True)
|
| 346 |
-
|
| 347 |
-
fig = go.Figure()
|
| 348 |
-
|
| 349 |
-
fig.add_trace(go.Candlestick(
|
| 350 |
-
x=candlestick_data_M['Date'],
|
| 351 |
-
open=candlestick_data_M['Open'],
|
| 352 |
-
high=candlestick_data_M['High'],
|
| 353 |
-
low=candlestick_data_M['Low'],
|
| 354 |
-
close=candlestick_data_M['Close'],
|
| 355 |
-
name='MasterCard',
|
| 356 |
-
increasing_line_color='blue', decreasing_line_color='red'
|
| 357 |
-
))
|
| 358 |
-
|
| 359 |
-
fig.add_trace(go.Candlestick(
|
| 360 |
-
x=candlestick_data_V['Date'],
|
| 361 |
-
open=candlestick_data_V['Open'],
|
| 362 |
-
high=candlestick_data_V['High'],
|
| 363 |
-
low=candlestick_data_V['Low'],
|
| 364 |
-
close=candlestick_data_V['Close'],
|
| 365 |
-
name='Visa',
|
| 366 |
-
increasing_line_color='green', decreasing_line_color='orange'
|
| 367 |
-
))
|
| 368 |
-
|
| 369 |
-
fig.update_layout(
|
| 370 |
-
title='MasterCard and Visa Stock Prices (Historical and Predicted)',
|
| 371 |
-
xaxis_title='Date',
|
| 372 |
-
yaxis_title='Price',
|
| 373 |
-
xaxis_rangeslider_visible=False
|
| 374 |
-
)
|
| 375 |
-
|
| 376 |
-
fig.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|