Upload _1294.py
Browse files
_1294.py
ADDED
|
@@ -0,0 +1,527 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
""".1294
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/18GMbHEjdUUsZiko73-qVxV-WVgsf5hgs
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
import numpy as np
|
| 13 |
+
import pandas as pd
|
| 14 |
+
import plotly.express as px
|
| 15 |
+
import plotly.graph_objects as go
|
| 16 |
+
from sklearn.cluster import KMeans
|
| 17 |
+
from sklearn.preprocessing import StandardScaler
|
| 18 |
+
import statsmodels.api as sm
|
| 19 |
+
import warnings
|
| 20 |
+
|
| 21 |
+
import warnings # Importing the warnings module
|
| 22 |
+
warnings.filterwarnings('ignore') # Calling the filterwarnings function
|
| 23 |
+
|
| 24 |
+
df = pd.read_csv("/content/shopping_trends (2).csv")
|
| 25 |
+
|
| 26 |
+
df.head()
|
| 27 |
+
|
| 28 |
+
df.sample(10)
|
| 29 |
+
|
| 30 |
+
df.info()
|
| 31 |
+
|
| 32 |
+
fig_age = px.histogram(
|
| 33 |
+
df,
|
| 34 |
+
x='Age',
|
| 35 |
+
nbins= 50,
|
| 36 |
+
title='Age Distribution of Customers',
|
| 37 |
+
color_discrete_sequence=['cyan']
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
fig_age.update_layout(
|
| 41 |
+
template='plotly_dark',
|
| 42 |
+
plot_bgcolor='black',
|
| 43 |
+
paper_bgcolor='black',
|
| 44 |
+
font=dict(color='white')
|
| 45 |
+
)
|
| 46 |
+
fig_age.show()
|
| 47 |
+
|
| 48 |
+
gender_counts = df['Gender'].value_counts().reset_index()
|
| 49 |
+
gender_counts.columns = ['Gender', 'Count']
|
| 50 |
+
|
| 51 |
+
fig_gender = px.pie(
|
| 52 |
+
gender_counts,
|
| 53 |
+
names='Gender',
|
| 54 |
+
values='Count',
|
| 55 |
+
title='Gender Proportions of Customers',
|
| 56 |
+
color_discrete_sequence=px.colors.sequential.RdBu
|
| 57 |
+
)
|
| 58 |
+
fig_gender.update_layout(
|
| 59 |
+
template='plotly_dark',
|
| 60 |
+
plot_bgcolor='black',
|
| 61 |
+
paper_bgcolor='black',
|
| 62 |
+
font=dict(color='white')
|
| 63 |
+
)
|
| 64 |
+
fig_gender.show()
|
| 65 |
+
|
| 66 |
+
location_counts = df['Location'].value_counts().reset_index()
|
| 67 |
+
location_counts.columns = ['Location', 'Count']
|
| 68 |
+
|
| 69 |
+
fig_location = px.bar(
|
| 70 |
+
location_counts,
|
| 71 |
+
x='Location',
|
| 72 |
+
y='Count',
|
| 73 |
+
text='Count',
|
| 74 |
+
title='Customer Count by Location',
|
| 75 |
+
color_discrete_sequence=['lime']
|
| 76 |
+
)
|
| 77 |
+
location_counts = df['Location'].value_counts().reset_index()
|
| 78 |
+
location_counts.columns = ['Location', 'Count']
|
| 79 |
+
|
| 80 |
+
fig_location = px.bar(
|
| 81 |
+
location_counts,
|
| 82 |
+
x='Location',
|
| 83 |
+
y='Count',
|
| 84 |
+
text='Count',
|
| 85 |
+
title='Customer Count by Location',
|
| 86 |
+
color_discrete_sequence=['lime']
|
| 87 |
+
)
|
| 88 |
+
fig_location.update_layout(
|
| 89 |
+
template='plotly_dark',
|
| 90 |
+
plot_bgcolor='black',
|
| 91 |
+
paper_bgcolor='black',
|
| 92 |
+
font=dict(color='white'),
|
| 93 |
+
xaxis_title="Location",
|
| 94 |
+
yaxis_title="Number of Customers"
|
| 95 |
+
)
|
| 96 |
+
fig_location.show()
|
| 97 |
+
fig_location = px.bar(
|
| 98 |
+
location_counts,
|
| 99 |
+
x='Location',
|
| 100 |
+
y='Count',
|
| 101 |
+
text='Count',
|
| 102 |
+
title='Customer Count by Location',
|
| 103 |
+
color_discrete_sequence=['lime']
|
| 104 |
+
)
|
| 105 |
+
fig_location.update_layout(
|
| 106 |
+
template='plotly_dark',
|
| 107 |
+
plot_bgcolor='black',
|
| 108 |
+
paper_bgcolor='black',
|
| 109 |
+
font=dict(color='white'),
|
| 110 |
+
xaxis_title="Location",
|
| 111 |
+
yaxis_title="Number of Customers"
|
| 112 |
+
)
|
| 113 |
+
fig_location.show()
|
| 114 |
+
|
| 115 |
+
item_counts = df['Item Purchased'].value_counts().reset_index()
|
| 116 |
+
item_counts.columns = ['Item Purchased', 'Count']
|
| 117 |
+
|
| 118 |
+
fig_items = px.bar(
|
| 119 |
+
item_counts,
|
| 120 |
+
x='Item Purchased',
|
| 121 |
+
y='Count',
|
| 122 |
+
text='Count',
|
| 123 |
+
title='Most Purchased Items',
|
| 124 |
+
color_discrete_sequence=['orange']
|
| 125 |
+
)
|
| 126 |
+
fig_items.update_layout(
|
| 127 |
+
template='plotly_dark',
|
| 128 |
+
plot_bgcolor='black',
|
| 129 |
+
paper_bgcolor='black',
|
| 130 |
+
font=dict(color='white'),
|
| 131 |
+
xaxis_title='Items',
|
| 132 |
+
yaxis_title='Count of Purchases'
|
| 133 |
+
)
|
| 134 |
+
fig_items.show()
|
| 135 |
+
|
| 136 |
+
fig_amount = px.box(
|
| 137 |
+
df,
|
| 138 |
+
y='Purchase Amount (USD)', # Changed from 'Purchased Amount (USD)'
|
| 139 |
+
title='Purchase Amount Distribution',
|
| 140 |
+
color_discrete_sequence=['magenta']
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
fig_amount.update_layout(
|
| 144 |
+
template='plotly_dark',
|
| 145 |
+
plot_bgcolor='black',
|
| 146 |
+
paper_bgcolor='black',
|
| 147 |
+
font=dict(color='white'),
|
| 148 |
+
yaxis_title='Purchase Amount (USD)'
|
| 149 |
+
)
|
| 150 |
+
fig_amount.show()
|
| 151 |
+
|
| 152 |
+
# Count popular sizes
|
| 153 |
+
size_counts = df['Size'].value_counts().reset_index()
|
| 154 |
+
size_counts.columns = ['Size', 'Count']
|
| 155 |
+
|
| 156 |
+
fig_sizes = px.bar(
|
| 157 |
+
size_counts,
|
| 158 |
+
x='Size',
|
| 159 |
+
y='Count',
|
| 160 |
+
text='Count',
|
| 161 |
+
title='Preferred Sizes',
|
| 162 |
+
color_discrete_sequence=['green']
|
| 163 |
+
)
|
| 164 |
+
fig_sizes.update_layout(
|
| 165 |
+
template='plotly_dark',
|
| 166 |
+
plot_bgcolor='black',
|
| 167 |
+
paper_bgcolor='black',
|
| 168 |
+
font=dict(color='white'),
|
| 169 |
+
xaxis_title='Size',
|
| 170 |
+
yaxis_title='Count of Purchases'
|
| 171 |
+
)
|
| 172 |
+
fig_sizes.show()
|
| 173 |
+
|
| 174 |
+
# Count popular colors
|
| 175 |
+
color_counts = df['Color'].value_counts().reset_index()
|
| 176 |
+
color_counts.columns = ['Color', 'Count']
|
| 177 |
+
|
| 178 |
+
fig_colors = px.bar(
|
| 179 |
+
color_counts,
|
| 180 |
+
x='Color',
|
| 181 |
+
y='Count',
|
| 182 |
+
text='Count',
|
| 183 |
+
title='Preferred Colors',
|
| 184 |
+
color_discrete_sequence=['teal']
|
| 185 |
+
)
|
| 186 |
+
fig_colors.update_layout(
|
| 187 |
+
template='plotly_dark',
|
| 188 |
+
plot_bgcolor='black',
|
| 189 |
+
paper_bgcolor='black',
|
| 190 |
+
font=dict(color='white'),
|
| 191 |
+
xaxis_title='Color',
|
| 192 |
+
yaxis_title='Count of Purchases'
|
| 193 |
+
)
|
| 194 |
+
fig_colors.show()
|
| 195 |
+
|
| 196 |
+
# Seasonal Trends
|
| 197 |
+
season_counts = df['Season'].value_counts().reset_index()
|
| 198 |
+
season_counts.columns = ['Season', 'Count']
|
| 199 |
+
|
| 200 |
+
fig_season = px.bar(
|
| 201 |
+
season_counts,
|
| 202 |
+
x='Season',
|
| 203 |
+
y='Count',
|
| 204 |
+
text='Count',
|
| 205 |
+
title='Seasonal Trends in Purchases',
|
| 206 |
+
color_discrete_sequence=['blue']
|
| 207 |
+
)
|
| 208 |
+
fig_season.update_layout(
|
| 209 |
+
template='plotly_dark',
|
| 210 |
+
plot_bgcolor='black',
|
| 211 |
+
paper_bgcolor='black',
|
| 212 |
+
font=dict(color='white'),
|
| 213 |
+
xaxis_title='Season',
|
| 214 |
+
yaxis_title='Count of Purchases'
|
| 215 |
+
)
|
| 216 |
+
fig_season.show()
|
| 217 |
+
|
| 218 |
+
# Frequency of Purchases
|
| 219 |
+
frequency_counts = df['Frequency of Purchases'].value_counts().reset_index()
|
| 220 |
+
frequency_counts.columns = ['Frequency', 'Count']
|
| 221 |
+
|
| 222 |
+
fig_frequency = px.bar(
|
| 223 |
+
frequency_counts,
|
| 224 |
+
x='Frequency',
|
| 225 |
+
y='Count',
|
| 226 |
+
text='Count',
|
| 227 |
+
title='Frequency of Purchases',
|
| 228 |
+
color_discrete_sequence=['red']
|
| 229 |
+
)
|
| 230 |
+
fig_frequency.update_layout(
|
| 231 |
+
template='plotly_dark',
|
| 232 |
+
plot_bgcolor='black',
|
| 233 |
+
paper_bgcolor='black',
|
| 234 |
+
font=dict(color='white'),
|
| 235 |
+
xaxis_title='Frequency',
|
| 236 |
+
yaxis_title='Count of Purchases'
|
| 237 |
+
)
|
| 238 |
+
fig_frequency.show()
|
| 239 |
+
|
| 240 |
+
payment_counts = df['Payment Method'].value_counts().reset_index()
|
| 241 |
+
payment_counts.columns = ['Payment Method', 'Count']
|
| 242 |
+
|
| 243 |
+
fig_payment = px.pie(
|
| 244 |
+
payment_counts,
|
| 245 |
+
names='Payment Method',
|
| 246 |
+
values='Count',
|
| 247 |
+
title='Popular Payment Methods',
|
| 248 |
+
color_discrete_sequence=px.colors.sequential.Plasma
|
| 249 |
+
)
|
| 250 |
+
fig_payment.update_layout(
|
| 251 |
+
template='plotly_dark',
|
| 252 |
+
plot_bgcolor='black',
|
| 253 |
+
paper_bgcolor='black',
|
| 254 |
+
font=dict(color='white')
|
| 255 |
+
)
|
| 256 |
+
fig_payment.show()
|
| 257 |
+
|
| 258 |
+
subscription_data = df.groupby('Subscription Status')['Purchase Amount (USD)'].sum().reset_index()
|
| 259 |
+
|
| 260 |
+
fig_subscription = px.bar(
|
| 261 |
+
subscription_data,
|
| 262 |
+
x='Subscription Status',
|
| 263 |
+
y='Purchase Amount (USD)',
|
| 264 |
+
text='Purchase Amount (USD)',
|
| 265 |
+
title='Impact of Subscription on Purchases',
|
| 266 |
+
color='Subscription Status',
|
| 267 |
+
color_discrete_sequence=px.colors.sequential.Viridis
|
| 268 |
+
)
|
| 269 |
+
fig_subscription.update_layout(
|
| 270 |
+
template='plotly_dark',
|
| 271 |
+
plot_bgcolor='black',
|
| 272 |
+
paper_bgcolor='black',
|
| 273 |
+
font=dict(color='white'),
|
| 274 |
+
xaxis_title='Subscription Status',
|
| 275 |
+
yaxis_title='Total Purchase Amount (USD)'
|
| 276 |
+
)
|
| 277 |
+
fig_subscription.show()
|
| 278 |
+
|
| 279 |
+
discount_data = df['Discount Applied'].value_counts().reset_index()
|
| 280 |
+
discount_data.columns = ['Discount Applied', 'Count']
|
| 281 |
+
|
| 282 |
+
fig_discount = px.bar(
|
| 283 |
+
discount_data,
|
| 284 |
+
x='Discount Applied',
|
| 285 |
+
y='Count',
|
| 286 |
+
text='Count',
|
| 287 |
+
title='Discount Usage Analysis',
|
| 288 |
+
color='Discount Applied',
|
| 289 |
+
color_discrete_sequence=px.colors.sequential.Cividis
|
| 290 |
+
)
|
| 291 |
+
fig_discount.update_layout(
|
| 292 |
+
template='plotly_dark',
|
| 293 |
+
plot_bgcolor='black',
|
| 294 |
+
paper_bgcolor='black',
|
| 295 |
+
font=dict(color='white'),
|
| 296 |
+
xaxis_title='Discount Applied',
|
| 297 |
+
yaxis_title='Number of Purchases'
|
| 298 |
+
)
|
| 299 |
+
fig_discount.show()
|
| 300 |
+
|
| 301 |
+
category_revenue = df.groupby('Category')['Purchase Amount (USD)'].sum().reset_index()
|
| 302 |
+
|
| 303 |
+
fig_category_revenue = px.treemap(
|
| 304 |
+
category_revenue,
|
| 305 |
+
path=['Category'],
|
| 306 |
+
values='Purchase Amount (USD)',
|
| 307 |
+
title='Category-Wise Revenue',
|
| 308 |
+
color='Purchase Amount (USD)',
|
| 309 |
+
color_continuous_scale=px.colors.sequential.Sunset
|
| 310 |
+
)
|
| 311 |
+
fig_category_revenue.update_layout(
|
| 312 |
+
template='plotly_dark',
|
| 313 |
+
plot_bgcolor='black',
|
| 314 |
+
paper_bgcolor='black',
|
| 315 |
+
font=dict(color='white')
|
| 316 |
+
)
|
| 317 |
+
fig_category_revenue.show()
|
| 318 |
+
|
| 319 |
+
fig_ratings = px.histogram(
|
| 320 |
+
df,
|
| 321 |
+
x='Review Rating',
|
| 322 |
+
nbins=10,
|
| 323 |
+
title='Distribution of Review Ratings',
|
| 324 |
+
color_discrete_sequence=['#FFA07A']
|
| 325 |
+
)
|
| 326 |
+
fig_ratings.update_layout(
|
| 327 |
+
template='plotly_dark',
|
| 328 |
+
plot_bgcolor='black',
|
| 329 |
+
paper_bgcolor='black',
|
| 330 |
+
font=dict(color='white'),
|
| 331 |
+
xaxis_title='Review Rating',
|
| 332 |
+
yaxis_title='Count'
|
| 333 |
+
)
|
| 334 |
+
fig_ratings.show()
|
| 335 |
+
|
| 336 |
+
shipping_data = df.groupby('Shipping Type')['Purchase Amount (USD)'].sum().reset_index()
|
| 337 |
+
|
| 338 |
+
fig_shipping = px.bar(
|
| 339 |
+
shipping_data,
|
| 340 |
+
x='Shipping Type',
|
| 341 |
+
y='Purchase Amount (USD)',
|
| 342 |
+
text='Purchase Amount (USD)',
|
| 343 |
+
title='Shipping Types and Revenue Impact',
|
| 344 |
+
color='Shipping Type',
|
| 345 |
+
color_discrete_sequence=px.colors.sequential.Teal
|
| 346 |
+
)
|
| 347 |
+
fig_shipping.update_layout(
|
| 348 |
+
template='plotly_dark',
|
| 349 |
+
plot_bgcolor='black',
|
| 350 |
+
paper_bgcolor='black',
|
| 351 |
+
font=dict(color='white'),
|
| 352 |
+
xaxis_title='Shipping Type',
|
| 353 |
+
yaxis_title='Total Revenue (USD)'
|
| 354 |
+
)
|
| 355 |
+
fig_shipping.show()
|
| 356 |
+
|
| 357 |
+
customer_revenue = df.groupby('Customer ID')['Purchase Amount (USD)'].sum().reset_index()
|
| 358 |
+
customer_revenue = customer_revenue.sort_values(by='Purchase Amount (USD)', ascending=False)
|
| 359 |
+
customer_revenue['Cumulative Percentage'] = customer_revenue['Purchase Amount (USD)'].cumsum() / customer_revenue['Purchase Amount (USD)'].sum() * 100
|
| 360 |
+
|
| 361 |
+
fig_pareto = px.bar(
|
| 362 |
+
customer_revenue,
|
| 363 |
+
x='Customer ID',
|
| 364 |
+
y='Purchase Amount (USD)',
|
| 365 |
+
text='Purchase Amount (USD)',
|
| 366 |
+
title='High-Spending Customers - Pareto Chart',
|
| 367 |
+
color_discrete_sequence=['#FF7F50']
|
| 368 |
+
)
|
| 369 |
+
fig_pareto.add_scatter(
|
| 370 |
+
x=customer_revenue['Customer ID'],
|
| 371 |
+
y=customer_revenue['Cumulative Percentage'],
|
| 372 |
+
mode='lines+markers',
|
| 373 |
+
name='Cumulative Percentage',
|
| 374 |
+
line=dict(color='cyan')
|
| 375 |
+
)
|
| 376 |
+
fig_pareto.update_layout(
|
| 377 |
+
template='plotly_dark',
|
| 378 |
+
plot_bgcolor='black',
|
| 379 |
+
paper_bgcolor='black',
|
| 380 |
+
font=dict(color='white'),
|
| 381 |
+
xaxis_title='Customer ID',
|
| 382 |
+
yaxis_title='Purchase Amount (USD)',
|
| 383 |
+
yaxis2=dict(title='Cumulative Percentage', overlaying='y', side='right')
|
| 384 |
+
)
|
| 385 |
+
fig_pareto.show()
|
| 386 |
+
|
| 387 |
+
clustering_data = df.groupby('Customer ID').agg({
|
| 388 |
+
'Purchase Amount (USD)': 'sum',
|
| 389 |
+
'Frequency of Purchases': 'count',
|
| 390 |
+
'Category': 'nunique'
|
| 391 |
+
}).reset_index()
|
| 392 |
+
clustering_data.columns = ['Customer ID', 'Total Purchase Amount', 'Purchase Frequency', 'Unique Categories']
|
| 393 |
+
|
| 394 |
+
# Standardize the data
|
| 395 |
+
scaler = StandardScaler()
|
| 396 |
+
clustering_data_scaled = scaler.fit_transform(clustering_data[['Total Purchase Amount', 'Purchase Frequency', 'Unique Categories']])
|
| 397 |
+
|
| 398 |
+
# Apply K-means clustering
|
| 399 |
+
kmeans = KMeans(n_clusters=3, random_state=42)
|
| 400 |
+
clustering_data['Cluster'] = kmeans.fit_predict(clustering_data_scaled)
|
| 401 |
+
|
| 402 |
+
# Scatter plot
|
| 403 |
+
fig_clusters = px.scatter_3d(
|
| 404 |
+
clustering_data,
|
| 405 |
+
x='Total Purchase Amount',
|
| 406 |
+
y='Purchase Frequency',
|
| 407 |
+
z='Unique Categories',
|
| 408 |
+
color='Cluster',
|
| 409 |
+
title='Behavioral Clusters of Customers',
|
| 410 |
+
symbol='Cluster',
|
| 411 |
+
color_continuous_scale=px.colors.sequential.Viridis
|
| 412 |
+
)
|
| 413 |
+
fig_clusters.update_layout(
|
| 414 |
+
template='plotly_dark',
|
| 415 |
+
plot_bgcolor='black',
|
| 416 |
+
paper_bgcolor='black',
|
| 417 |
+
font=dict(color='white'),
|
| 418 |
+
scene=dict(
|
| 419 |
+
xaxis_title='Total Purchase Amount',
|
| 420 |
+
yaxis_title='Purchase Frequency',
|
| 421 |
+
zaxis_title='Unique Categories'
|
| 422 |
+
)
|
| 423 |
+
)
|
| 424 |
+
fig_clusters.show()
|
| 425 |
+
|
| 426 |
+
fig_purchase_vs_rating = px.scatter(
|
| 427 |
+
df,
|
| 428 |
+
x='Purchase Amount (USD)',
|
| 429 |
+
y='Review Rating',
|
| 430 |
+
title='Purchase Amount vs. Review Rating',
|
| 431 |
+
color='Review Rating',
|
| 432 |
+
color_continuous_scale='Viridis'
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
# Add regression line
|
| 436 |
+
X = sm.add_constant(df['Purchase Amount (USD)']) # Add constant for intercept
|
| 437 |
+
y = df['Review Rating']
|
| 438 |
+
model = sm.OLS(y, X).fit()
|
| 439 |
+
df['Regression Line'] = model.predict(X)
|
| 440 |
+
|
| 441 |
+
fig_purchase_vs_rating.add_scatter(
|
| 442 |
+
x=df['Purchase Amount (USD)'],
|
| 443 |
+
y=df['Regression Line'],
|
| 444 |
+
mode='lines',
|
| 445 |
+
name='Regression Line',
|
| 446 |
+
line=dict(color='cyan')
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
fig_purchase_vs_rating.update_layout(
|
| 450 |
+
template='plotly_dark',
|
| 451 |
+
plot_bgcolor='black',
|
| 452 |
+
paper_bgcolor='black',
|
| 453 |
+
font=dict(color='white'),
|
| 454 |
+
xaxis_title='Purchase Amount (USD)',
|
| 455 |
+
yaxis_title='Review Rating'
|
| 456 |
+
)
|
| 457 |
+
|
| 458 |
+
fig_purchase_vs_rating.show()
|
| 459 |
+
|
| 460 |
+
fig_age_vs_spending = px.scatter(
|
| 461 |
+
df,
|
| 462 |
+
x='Age',
|
| 463 |
+
y='Purchase Amount (USD)',
|
| 464 |
+
title='Age vs. Spending Habits',
|
| 465 |
+
color='Age',
|
| 466 |
+
color_continuous_scale='Viridis'
|
| 467 |
+
)
|
| 468 |
+
|
| 469 |
+
fig_age_vs_spending.update_layout(
|
| 470 |
+
template='plotly_dark',
|
| 471 |
+
plot_bgcolor='black',
|
| 472 |
+
paper_bgcolor='black',
|
| 473 |
+
font=dict(color='white'),
|
| 474 |
+
xaxis_title='Age',
|
| 475 |
+
yaxis_title='Purchase Amount (USD)'
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
+
fig_age_vs_spending.show()
|
| 479 |
+
|
| 480 |
+
fig_category_vs_gender.update_layout(
|
| 481 |
+
template='plotly_dark', # Corrected the template name to 'plotly_dark'
|
| 482 |
+
plot_bgcolor='black',
|
| 483 |
+
paper_bgcolor='black',
|
| 484 |
+
font=dict(color='white'),
|
| 485 |
+
xaxis_title='Product Category',
|
| 486 |
+
yaxis_title='Count'
|
| 487 |
+
)
|
| 488 |
+
fig_category_vs_gender.show()
|
| 489 |
+
|
| 490 |
+
fig_discounts_vs_spending = px.box(
|
| 491 |
+
df,
|
| 492 |
+
x='Discount Applied',
|
| 493 |
+
y='Purchase Amount (USD)',
|
| 494 |
+
title='Effect of Discounts on Spending',
|
| 495 |
+
color='Discount Applied',
|
| 496 |
+
color_discrete_sequence=['#FF6347', '#20B2AA']
|
| 497 |
+
)
|
| 498 |
+
|
| 499 |
+
fig_discounts_vs_spending.update_layout(
|
| 500 |
+
template='plotly_dark',
|
| 501 |
+
plot_bgcolor='black',
|
| 502 |
+
paper_bgcolor='black',
|
| 503 |
+
font=dict(color='white'),
|
| 504 |
+
xaxis_title='Discount Applied',
|
| 505 |
+
yaxis_title='Purchase Amount (USD)'
|
| 506 |
+
)
|
| 507 |
+
|
| 508 |
+
fig_discounts_vs_spending.show()
|
| 509 |
+
|
| 510 |
+
fig_profitability_analysis = px.treemap(
|
| 511 |
+
df,
|
| 512 |
+
path=['Category', 'Size', 'Color'], # Hierarchy: Category -> Size -> Color
|
| 513 |
+
values='Purchase Amount (USD)',
|
| 514 |
+
title='Profitability Analysis by Category, Size, and Color',
|
| 515 |
+
color='Purchase Amount (USD)', # Color by total purchase amount
|
| 516 |
+
color_continuous_scale='Viridis'
|
| 517 |
+
)
|
| 518 |
+
|
| 519 |
+
fig_profitability_analysis.update_layout(
|
| 520 |
+
template='plotly_dark',
|
| 521 |
+
plot_bgcolor='black',
|
| 522 |
+
paper_bgcolor='black',
|
| 523 |
+
font=dict(color='white')
|
| 524 |
+
)
|
| 525 |
+
|
| 526 |
+
fig_profitability_analysis.show()
|
| 527 |
+
|