Upload epurethim_159.py
Browse files- epurethim_159.py +40 -0
epurethim_159.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""epurethim.159
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1UmqJMfDY_e89v6dh4maq9aobuj5vz79k
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import pandas as pd
|
| 11 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
| 12 |
+
from sklearn.model_selection import train_test_split
|
| 13 |
+
from sklearn.naive_bayes import MultinomialNB
|
| 14 |
+
from sklearn.metrics import accuracy_score
|
| 15 |
+
|
| 16 |
+
dataset = pd.read_csv('/content/emails.csv')
|
| 17 |
+
|
| 18 |
+
dataset.head()
|
| 19 |
+
|
| 20 |
+
vectorizer = CountVectorizer()
|
| 21 |
+
X = vectorizer.fit_transform(dataset['text'])
|
| 22 |
+
|
| 23 |
+
X_train, X_test, y_train, y_test = train_test_split(X, dataset['spam'], test_size=0.2)
|
| 24 |
+
|
| 25 |
+
model = MultinomialNB()
|
| 26 |
+
model.fit(X_train, y_train)
|
| 27 |
+
|
| 28 |
+
yPred = model.predict(X_test)
|
| 29 |
+
|
| 30 |
+
accuracy = accuracy_score(y_test, yPred)
|
| 31 |
+
print(accuracy)
|
| 32 |
+
|
| 33 |
+
def predictMessage(message):
|
| 34 |
+
messageVector = vectorizer.transform([message])
|
| 35 |
+
prediction = model.predict(messageVector)
|
| 36 |
+
return 'Spam' if prediction[0] == 1 else 'Ham'
|
| 37 |
+
|
| 38 |
+
userMessage = input('Enter text to predict:')
|
| 39 |
+
prediction = predictMessage(userMessage)
|
| 40 |
+
print(f'The message is {prediction}')
|