Create stockcomparison.py
Browse files- stockcomparison.py +37 -0
stockcomparison.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import yfinance
|
| 2 |
+
|
| 3 |
+
stocks = ['ARM', 'META', 'SPY', 'TSLA']
|
| 4 |
+
|
| 5 |
+
data = yfinance.download(stocks,
|
| 6 |
+
'2024-04-01',
|
| 7 |
+
'2024-05-09')['Close']
|
| 8 |
+
|
| 9 |
+
returns = data.pct_change()
|
| 10 |
+
returns.head()
|
| 11 |
+
|
| 12 |
+
returns = returns.dropna()
|
| 13 |
+
returns.head()
|
| 14 |
+
|
| 15 |
+
average_daily_returns = returns.mean()
|
| 16 |
+
print(average_daily_returns)
|
| 17 |
+
|
| 18 |
+
standard_deviation_daily_returns = returns.std()
|
| 19 |
+
print(standard_deviation_daily_returns)
|
| 20 |
+
|
| 21 |
+
import numpy
|
| 22 |
+
weights = numpy.array([0.25, 0.25, 0.25, 0.25])
|
| 23 |
+
|
| 24 |
+
covariance_matrix = (returns.cov())*250
|
| 25 |
+
|
| 26 |
+
expected_portfolio_performace = numpy.sum(average_daily_returns * weights)
|
| 27 |
+
print(expected_portfolio_performance)
|
| 28 |
+
|
| 29 |
+
returns['Portfolio Returns'] = returns.dot(weights)
|
| 30 |
+
returns.head()
|
| 31 |
+
|
| 32 |
+
daily_cumulative_returns = (1+returns).cumprod()
|
| 33 |
+
print(daily_cumulative_returns)
|
| 34 |
+
|
| 35 |
+
daily_cumulative_returns.tail()
|
| 36 |
+
|
| 37 |
+
|