Delete loading script
Browse files- superb_dummy.py +0 -273
superb_dummy.py
DELETED
|
@@ -1,273 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
# Lint as: python3
|
| 17 |
-
"""SUPERB: Speech processing Universal PERformance Benchmark."""
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
import base64
|
| 21 |
-
import json
|
| 22 |
-
import textwrap
|
| 23 |
-
|
| 24 |
-
import datasets
|
| 25 |
-
import numpy as np
|
| 26 |
-
|
| 27 |
-
_CITATION = """\
|
| 28 |
-
@article{DBLP:journals/corr/abs-2105-01051,
|
| 29 |
-
author = {Shu{-}Wen Yang and
|
| 30 |
-
Po{-}Han Chi and
|
| 31 |
-
Yung{-}Sung Chuang and
|
| 32 |
-
Cheng{-}I Jeff Lai and
|
| 33 |
-
Kushal Lakhotia and
|
| 34 |
-
Yist Y. Lin and
|
| 35 |
-
Andy T. Liu and
|
| 36 |
-
Jiatong Shi and
|
| 37 |
-
Xuankai Chang and
|
| 38 |
-
Guan{-}Ting Lin and
|
| 39 |
-
Tzu{-}Hsien Huang and
|
| 40 |
-
Wei{-}Cheng Tseng and
|
| 41 |
-
Ko{-}tik Lee and
|
| 42 |
-
Da{-}Rong Liu and
|
| 43 |
-
Zili Huang and
|
| 44 |
-
Shuyan Dong and
|
| 45 |
-
Shang{-}Wen Li and
|
| 46 |
-
Shinji Watanabe and
|
| 47 |
-
Abdelrahman Mohamed and
|
| 48 |
-
Hung{-}yi Lee},
|
| 49 |
-
title = {{SUPERB:} Speech processing Universal PERformance Benchmark},
|
| 50 |
-
journal = {CoRR},
|
| 51 |
-
volume = {abs/2105.01051},
|
| 52 |
-
year = {2021},
|
| 53 |
-
url = {https://arxiv.org/abs/2105.01051},
|
| 54 |
-
archivePrefix = {arXiv},
|
| 55 |
-
eprint = {2105.01051},
|
| 56 |
-
timestamp = {Thu, 01 Jul 2021 13:30:22 +0200},
|
| 57 |
-
biburl = {https://dblp.org/rec/journals/corr/abs-2105-01051.bib},
|
| 58 |
-
bibsource = {dblp computer science bibliography, https://dblp.org}
|
| 59 |
-
}
|
| 60 |
-
"""
|
| 61 |
-
|
| 62 |
-
_DESCRIPTION = """\
|
| 63 |
-
Self-supervised learning (SSL) has proven vital for advancing research in
|
| 64 |
-
natural language processing (NLP) and computer vision (CV). The paradigm
|
| 65 |
-
pretrains a shared model on large volumes of unlabeled data and achieves
|
| 66 |
-
state-of-the-art (SOTA) for various tasks with minimal adaptation. However, the
|
| 67 |
-
speech processing community lacks a similar setup to systematically explore the
|
| 68 |
-
paradigm. To bridge this gap, we introduce Speech processing Universal
|
| 69 |
-
PERformance Benchmark (SUPERB). SUPERB is a leaderboard to benchmark the
|
| 70 |
-
performance of a shared model across a wide range of speech processing tasks
|
| 71 |
-
with minimal architecture changes and labeled data. Among multiple usages of the
|
| 72 |
-
shared model, we especially focus on extracting the representation learned from
|
| 73 |
-
SSL due to its preferable re-usability. We present a simple framework to solve
|
| 74 |
-
SUPERB tasks by learning task-specialized lightweight prediction heads on top of
|
| 75 |
-
the frozen shared model. Our results demonstrate that the framework is promising
|
| 76 |
-
as SSL representations show competitive generalizability and accessibility
|
| 77 |
-
across SUPERB tasks. We release SUPERB as a challenge with a leaderboard and a
|
| 78 |
-
benchmark toolkit to fuel the research in representation learning and general
|
| 79 |
-
speech processing.
|
| 80 |
-
"""
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
class SuperbConfig(datasets.BuilderConfig):
|
| 84 |
-
"""BuilderConfig for Superb."""
|
| 85 |
-
|
| 86 |
-
def __init__(
|
| 87 |
-
self,
|
| 88 |
-
features,
|
| 89 |
-
url,
|
| 90 |
-
data_url=None,
|
| 91 |
-
supervised_keys=None,
|
| 92 |
-
**kwargs,
|
| 93 |
-
):
|
| 94 |
-
super().__init__(version=datasets.Version("1.9.0", ""), **kwargs)
|
| 95 |
-
self.features = features
|
| 96 |
-
self.data_url = data_url
|
| 97 |
-
self.url = url
|
| 98 |
-
self.supervised_keys = supervised_keys
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
class Superb(datasets.GeneratorBasedBuilder):
|
| 102 |
-
"""Superb dataset."""
|
| 103 |
-
|
| 104 |
-
BUILDER_CONFIGS = [
|
| 105 |
-
SuperbConfig(
|
| 106 |
-
name="ks",
|
| 107 |
-
description=textwrap.dedent(
|
| 108 |
-
"""\
|
| 109 |
-
Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of
|
| 110 |
-
words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and
|
| 111 |
-
inference time are all crucial. SUPERB uses the widely used [Speech Commands dataset v1.0] for the task.
|
| 112 |
-
The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the
|
| 113 |
-
false positive. The evaluation metric is accuracy (ACC)"""
|
| 114 |
-
),
|
| 115 |
-
features=datasets.Features(
|
| 116 |
-
{
|
| 117 |
-
"file": datasets.Value("string"),
|
| 118 |
-
"label": datasets.ClassLabel(
|
| 119 |
-
names=[
|
| 120 |
-
"yes",
|
| 121 |
-
"no",
|
| 122 |
-
"up",
|
| 123 |
-
"down",
|
| 124 |
-
"left",
|
| 125 |
-
"right",
|
| 126 |
-
"on",
|
| 127 |
-
"off",
|
| 128 |
-
"stop",
|
| 129 |
-
"go",
|
| 130 |
-
"_silence_",
|
| 131 |
-
"_unknown_",
|
| 132 |
-
]
|
| 133 |
-
),
|
| 134 |
-
"speech": datasets.Sequence(datasets.Value("float32")),
|
| 135 |
-
}
|
| 136 |
-
),
|
| 137 |
-
url="https://www.tensorflow.org/datasets/catalog/speech_commands",
|
| 138 |
-
data_url="ks.json",
|
| 139 |
-
),
|
| 140 |
-
SuperbConfig(
|
| 141 |
-
name="ic",
|
| 142 |
-
description=textwrap.dedent(
|
| 143 |
-
"""\
|
| 144 |
-
Intent Classification (IC) classifies utterances into predefined classes to determine the intent of
|
| 145 |
-
speakers. SUPERB uses the Fluent Speech Commands dataset, where each utterance is tagged with three intent
|
| 146 |
-
labels: action, object, and location. The evaluation metric is accuracy (ACC)."""
|
| 147 |
-
),
|
| 148 |
-
features=datasets.Features(
|
| 149 |
-
{
|
| 150 |
-
"file": datasets.Value("string"),
|
| 151 |
-
"speaker_id": datasets.Value("string"),
|
| 152 |
-
"text": datasets.Value("string"),
|
| 153 |
-
"action": datasets.ClassLabel(
|
| 154 |
-
names=["activate", "bring", "change language", "deactivate", "decrease", "increase"]
|
| 155 |
-
),
|
| 156 |
-
"object": datasets.ClassLabel(
|
| 157 |
-
names=[
|
| 158 |
-
"Chinese",
|
| 159 |
-
"English",
|
| 160 |
-
"German",
|
| 161 |
-
"Korean",
|
| 162 |
-
"heat",
|
| 163 |
-
"juice",
|
| 164 |
-
"lamp",
|
| 165 |
-
"lights",
|
| 166 |
-
"music",
|
| 167 |
-
"newspaper",
|
| 168 |
-
"none",
|
| 169 |
-
"shoes",
|
| 170 |
-
"socks",
|
| 171 |
-
"volume",
|
| 172 |
-
]
|
| 173 |
-
),
|
| 174 |
-
"location": datasets.ClassLabel(names=["bedroom", "kitchen", "none", "washroom"]),
|
| 175 |
-
"speech": datasets.Sequence(datasets.Value("float32")),
|
| 176 |
-
}
|
| 177 |
-
),
|
| 178 |
-
url="https://fluent.ai/fluent-speech-commands-a-dataset-for-spoken-language-understanding-research/",
|
| 179 |
-
data_url="ic.json",
|
| 180 |
-
),
|
| 181 |
-
SuperbConfig(
|
| 182 |
-
name="si",
|
| 183 |
-
description=textwrap.dedent(
|
| 184 |
-
"""\
|
| 185 |
-
Speaker Identification (SI) classifies each utterance for its speaker identity as a multi-class
|
| 186 |
-
classification, where speakers are in the same predefined set for both training and testing. The widely
|
| 187 |
-
used VoxCeleb1 dataset is adopted, and the evaluation metric is accuracy (ACC)."""
|
| 188 |
-
),
|
| 189 |
-
features=datasets.Features(
|
| 190 |
-
{
|
| 191 |
-
"file": datasets.Value("string"),
|
| 192 |
-
"label": datasets.ClassLabel(names=[f"id{i+10001}" for i in range(1251)]),
|
| 193 |
-
"speech": datasets.Sequence(datasets.Value("float32")),
|
| 194 |
-
}
|
| 195 |
-
),
|
| 196 |
-
url="https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html",
|
| 197 |
-
data_url="si.json",
|
| 198 |
-
),
|
| 199 |
-
SuperbConfig(
|
| 200 |
-
name="er",
|
| 201 |
-
description=textwrap.dedent(
|
| 202 |
-
"""\
|
| 203 |
-
Emotion Recognition (ER) predicts an emotion class for each utterance. The most widely used ER dataset
|
| 204 |
-
IEMOCAP is adopted, and we follow the conventional evaluation protocol: we drop the unbalance emotion
|
| 205 |
-
classes to leave the final four classes with a similar amount of data points and cross-validates on five
|
| 206 |
-
folds of the standard splits. The evaluation metric is accuracy (ACC)."""
|
| 207 |
-
),
|
| 208 |
-
features=datasets.Features(
|
| 209 |
-
{
|
| 210 |
-
"file": datasets.Value("string"),
|
| 211 |
-
"label": datasets.ClassLabel(names=["neu", "hap", "ang", "sad"]),
|
| 212 |
-
"speech": datasets.Sequence(datasets.Value("float32")),
|
| 213 |
-
}
|
| 214 |
-
),
|
| 215 |
-
url="https://sail.usc.edu/iemocap/",
|
| 216 |
-
data_url="er.json",
|
| 217 |
-
),
|
| 218 |
-
SuperbConfig(
|
| 219 |
-
name="sd",
|
| 220 |
-
description=textwrap.dedent(
|
| 221 |
-
"""\
|
| 222 |
-
Speaker Diarization (SD) predicts `who is speaking when` for each timestamp, and multiple speakers can
|
| 223 |
-
speak simultaneously. The model has to encode rich speaker characteristics for each frame and should be
|
| 224 |
-
able to represent mixtures of signals. [LibriMix] is adopted where LibriSpeech
|
| 225 |
-
train-clean-100/dev-clean/test-clean are used to generate mixtures for training/validation/testing.
|
| 226 |
-
We focus on the two-speaker scenario as the first step. The time-coded speaker labels were generated using
|
| 227 |
-
alignments from Kaldi LibriSpeech ASR model. The evaluation metric is diarization error rate (DER)."""
|
| 228 |
-
),
|
| 229 |
-
features=datasets.Features(
|
| 230 |
-
{
|
| 231 |
-
"file": datasets.Value("string"),
|
| 232 |
-
"speech": datasets.Sequence(datasets.Value("float32")),
|
| 233 |
-
"speakers": [
|
| 234 |
-
{
|
| 235 |
-
"speaker_id": datasets.Value("string"),
|
| 236 |
-
"start": datasets.Value("int64"),
|
| 237 |
-
"end": datasets.Value("int64"),
|
| 238 |
-
}
|
| 239 |
-
],
|
| 240 |
-
}
|
| 241 |
-
),
|
| 242 |
-
url="https://github.com/ftshijt/LibriMix",
|
| 243 |
-
data_url="sd.json",
|
| 244 |
-
),
|
| 245 |
-
]
|
| 246 |
-
|
| 247 |
-
def _info(self):
|
| 248 |
-
return datasets.DatasetInfo(
|
| 249 |
-
description=_DESCRIPTION,
|
| 250 |
-
features=self.config.features,
|
| 251 |
-
supervised_keys=self.config.supervised_keys,
|
| 252 |
-
homepage=self.config.url,
|
| 253 |
-
citation=_CITATION,
|
| 254 |
-
)
|
| 255 |
-
|
| 256 |
-
def _split_generators(self, dl_manager):
|
| 257 |
-
data_path = dl_manager.download_and_extract(self.config.data_url)
|
| 258 |
-
|
| 259 |
-
return [
|
| 260 |
-
datasets.SplitGenerator(
|
| 261 |
-
name=datasets.Split.TEST,
|
| 262 |
-
gen_kwargs={"data_path": data_path},
|
| 263 |
-
)
|
| 264 |
-
]
|
| 265 |
-
|
| 266 |
-
def _generate_examples(self, data_path):
|
| 267 |
-
"""Generate examples."""
|
| 268 |
-
with open(data_path, "r", encoding="utf-8") as f:
|
| 269 |
-
for key, line in enumerate(f):
|
| 270 |
-
example = json.loads(line)
|
| 271 |
-
example["speech"] = np.frombuffer(base64.b64decode(example["speech"]), dtype=np.float32)
|
| 272 |
-
|
| 273 |
-
yield key, example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|