#!/usr/bin/env python3 """ Script to downsample SurgiSR4K images from 3840x2160 to 960x540 and 480x270 while preserving folder structure and filenames. """ import os import sys from pathlib import Path from PIL import Image from tqdm import tqdm import argparse def downsample_image(input_path, output_path, target_size): """ Downsample a single image to target size. Args: input_path (Path): Path to input image output_path (Path): Path to save downsampled image target_size (tuple): Target size as (width, height) """ try: # Create output directory if it doesn't exist output_path.parent.mkdir(parents=True, exist_ok=True) # Open and resize image with Image.open(input_path) as img: # Use LANCZOS for high-quality downsampling resized_img = img.resize(target_size, Image.Resampling.LANCZOS) resized_img.save(output_path, 'PNG', optimize=True) except Exception as e: print(f"Error processing {input_path}: {e}") return False return True def process_dataset(source_dir, output_dirs, target_sizes): """ Process entire dataset, downsampling all images. Args: source_dir (Path): Source directory containing 3840x2160 images output_dirs (list): List of output directories for each target size target_sizes (list): List of target sizes as (width, height) tuples """ source_path = Path(source_dir) if not source_path.exists(): print(f"Error: Source directory {source_dir} does not exist!") return # Find all PNG files in subdirectories image_files = list(source_path.rglob("*.png")) if not image_files: print(f"No PNG files found in {source_dir}") return print(f"Found {len(image_files)} images to process") # Process each target size for output_dir, target_size in zip(output_dirs, target_sizes): print(f"\nProcessing images for size {target_size[0]}x{target_size[1]}...") output_path = Path(output_dir) successful = 0 # Process each image with progress bar for img_file in tqdm(image_files, desc=f"Downsampling to {target_size[0]}x{target_size[1]}"): # Calculate relative path from source directory rel_path = img_file.relative_to(source_path) # Modify filename to reflect new resolution filename = rel_path.name # Replace 3840x2160p with target resolution in filename new_filename = filename.replace('3840x2160p', f'{target_size[0]}x{target_size[1]}p') # Create corresponding output path with modified filename output_file = output_path / rel_path.parent / new_filename # Skip if output file already exists if output_file.exists(): continue # Downsample the image if downsample_image(img_file, output_file, target_size): successful += 1 print(f"Successfully processed {successful} images for {target_size[0]}x{target_size[1]}") def main(): parser = argparse.ArgumentParser(description='Downsample SurgiSR4K images') parser.add_argument('--source', default='./data/images/3840x2160p', help='Source directory containing 3840x2160 images') parser.add_argument('--dry-run', action='store_true', help='Show what would be processed without actually doing it') args = parser.parse_args() # Define paths and target sizes source_dir = args.source base_dir = Path(source_dir).parent output_dirs = [ base_dir / "960x540p", base_dir / "480x270p" ] target_sizes = [ (960, 540), # Quarter resolution (480, 270) # Sixteenth resolution ] print("SurgiSR4K Image Downsampling Script") print("=" * 40) print(f"Source directory: {source_dir}") print(f"Output directories:") for out_dir, size in zip(output_dirs, target_sizes): print(f" - {out_dir} (size: {size[0]}x{size[1]})") if args.dry_run: print("\nDRY RUN MODE - No files will be processed") source_path = Path(source_dir) if source_path.exists(): image_files = list(source_path.rglob("*.png")) print(f"Would process {len(image_files)} images") return # Confirm before proceeding response = input("\nProceed with downsampling? (y/N): ") if response.lower() != 'y': print("Operation cancelled.") return # Process the dataset process_dataset(source_dir, output_dirs, target_sizes) print("\nDownsampling complete!") if __name__ == "__main__": main()