--- task_categories: - image-classification - point-cloud-classification - point-cloud-recognition --- The datasets in this repository are used in the paper [Point-Cache: Test-time Dynamic and Hierarchical Cache for Robust and Generalizable Point Cloud Analysis](http://arxiv.org/abs/2503.12150). ### Datasets 1. The folder structure of used datasets should be organized as follows. ```sh /path/to/Point-Cache |----data # placed in the same level as `runners`, `scripts`, etc. |----modelnet_c |----sonn_c |----obj_bg |----obj_only |----hardest |----modelnet40 |----scanobjnn |----omniobject3d |----1024 |----4096 |----16384 |----objaverse_lvis |----runners |----scripts ... ``` 2. You can find the download links of the above datasets from our **huggingface dataset repositories** as follows. - [Link](https://huggingface.co/datasets/auniquesun/Point-PRC/tree/main/new-3ddg-benchmarks/xset/corruption) for `modelnet_c` and `sonn_c` - [Link](https://huggingface.co/datasets/auniquesun/Point-PRC/tree/main/new-3ddg-benchmarks/xset/dg) for `omniobject3d` - [Link](https://huggingface.co/datasets/auniquesun/Point-Cache/tree/main) for `modelnet40`, `scanobjnn`, and `objaverse_lvis` 3. If you find our paper and datasets are helpful for your project or research, please cite our work as follows. ```bibtex @InProceedings{Sun_2025_CVPR, author = {Sun, Hongyu and Ke, Qiuhong and Cheng, Ming and Wang, Yongcai and Li, Deying and Gou, Chenhui and Cai, Jianfei}, title = {Point-Cache: Test-time Dynamic and Hierarchical Cache for Robust and Generalizable Point Cloud Analysis}, booktitle = {Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR)}, month = {June}, year = {2025}, pages = {1263-1275} } ```