|
|
""" |
|
|
Simple script to load the Misery Index Dataset using pandas or datasets library. |
|
|
""" |
|
|
|
|
|
import pandas as pd |
|
|
from typing import Dict, List, Optional |
|
|
|
|
|
def load_misery_dataset(file_path: str = "Misery_Data.csv") -> pd.DataFrame: |
|
|
""" |
|
|
Load the Misery Index Dataset from CSV file. |
|
|
|
|
|
Args: |
|
|
file_path: Path to the CSV file (default: "Misery_Data.csv") |
|
|
|
|
|
Returns: |
|
|
pandas.DataFrame with cleaned column names and proper data types |
|
|
""" |
|
|
df = pd.read_csv(file_path) |
|
|
|
|
|
|
|
|
column_mapping = { |
|
|
"Ep #": "episode", |
|
|
"Misery": "scenario", |
|
|
"Score": "misery_score", |
|
|
"VNTO": "vnto", |
|
|
"Reward": "reward", |
|
|
"Win": "win", |
|
|
"Comments": "comments", |
|
|
"question_tag": "question_tag", |
|
|
"level": "level" |
|
|
} |
|
|
|
|
|
df = df.rename(columns=column_mapping) |
|
|
|
|
|
|
|
|
df["misery_score"] = pd.to_numeric(df["misery_score"], errors="coerce") |
|
|
|
|
|
|
|
|
df["reward"] = pd.to_numeric(df["reward"], errors="coerce").fillna(0).astype(int) |
|
|
|
|
|
|
|
|
string_columns = ["episode", "scenario", "vnto", "win", "comments", "question_tag", "level"] |
|
|
for col in string_columns: |
|
|
if col in df.columns: |
|
|
df[col] = df[col].astype(str).str.strip() |
|
|
df[col] = df[col].replace("nan", "") |
|
|
|
|
|
return df |
|
|
|
|
|
def get_dataset_statistics(df: pd.DataFrame) -> Dict: |
|
|
""" |
|
|
Get basic statistics about the dataset. |
|
|
|
|
|
Args: |
|
|
df: DataFrame containing the dataset |
|
|
|
|
|
Returns: |
|
|
Dictionary with dataset statistics |
|
|
""" |
|
|
stats = { |
|
|
"total_samples": len(df), |
|
|
"mean_misery": df["misery_score"].mean(), |
|
|
"std_misery": df["misery_score"].std(), |
|
|
"min_misery": df["misery_score"].min(), |
|
|
"max_misery": df["misery_score"].max(), |
|
|
"percentiles": { |
|
|
"25th": df["misery_score"].quantile(0.25), |
|
|
"50th": df["misery_score"].quantile(0.50), |
|
|
"75th": df["misery_score"].quantile(0.75), |
|
|
}, |
|
|
"vnto_types": df["vnto"].value_counts().to_dict() if "vnto" in df.columns else {}, |
|
|
"episodes": df["episode"].nunique(), |
|
|
"question_tags": df["question_tag"].value_counts().to_dict() if "question_tag" in df.columns else {}, |
|
|
} |
|
|
return stats |
|
|
|
|
|
def filter_by_vnto(df: pd.DataFrame, vnto_type: str) -> pd.DataFrame: |
|
|
""" |
|
|
Filter dataset by VNTO type. |
|
|
|
|
|
Args: |
|
|
df: DataFrame containing the dataset |
|
|
vnto_type: VNTO type to filter by (T, V, N, O, P) |
|
|
|
|
|
Returns: |
|
|
Filtered DataFrame |
|
|
""" |
|
|
return df[df["vnto"] == vnto_type].copy() |
|
|
|
|
|
def filter_by_misery_range(df: pd.DataFrame, min_score: float = 0, max_score: float = 100) -> pd.DataFrame: |
|
|
""" |
|
|
Filter dataset by misery score range. |
|
|
|
|
|
Args: |
|
|
df: DataFrame containing the dataset |
|
|
min_score: Minimum misery score (inclusive) |
|
|
max_score: Maximum misery score (inclusive) |
|
|
|
|
|
Returns: |
|
|
Filtered DataFrame |
|
|
""" |
|
|
return df[(df["misery_score"] >= min_score) & (df["misery_score"] <= max_score)].copy() |
|
|
|
|
|
def get_sample_scenarios(df: pd.DataFrame, vnto_type: Optional[str] = None, n: int = 5) -> List[Dict]: |
|
|
""" |
|
|
Get sample scenarios from the dataset. |
|
|
|
|
|
Args: |
|
|
df: DataFrame containing the dataset |
|
|
vnto_type: Optional VNTO type to filter by |
|
|
n: Number of samples to return |
|
|
|
|
|
Returns: |
|
|
List of dictionaries with scenario information |
|
|
""" |
|
|
if vnto_type: |
|
|
df_filtered = filter_by_vnto(df, vnto_type) |
|
|
else: |
|
|
df_filtered = df |
|
|
|
|
|
samples = df_filtered.sample(n=min(n, len(df_filtered))) |
|
|
|
|
|
return [ |
|
|
{ |
|
|
"scenario": row["scenario"], |
|
|
"misery_score": row["misery_score"], |
|
|
"vnto": row["vnto"], |
|
|
"episode": row["episode"] |
|
|
} |
|
|
for _, row in samples.iterrows() |
|
|
] |
|
|
|
|
|
def main(): |
|
|
"""Example usage of the dataset loading functions.""" |
|
|
|
|
|
|
|
|
print("Loading Misery Index Dataset...") |
|
|
df = load_misery_dataset() |
|
|
|
|
|
|
|
|
stats = get_dataset_statistics(df) |
|
|
print(f"\nDataset Statistics:") |
|
|
print(f"Total samples: {stats['total_samples']}") |
|
|
print(f"Mean misery score: {stats['mean_misery']:.2f}") |
|
|
print(f"Standard deviation: {stats['std_misery']:.2f}") |
|
|
print(f"Score range: {stats['min_misery']}-{stats['max_misery']}") |
|
|
print(f"Number of episodes: {stats['episodes']}") |
|
|
|
|
|
print(f"\nPercentiles:") |
|
|
for p, value in stats['percentiles'].items(): |
|
|
print(f" {p}: {value:.2f}") |
|
|
|
|
|
print(f"\nVNTO Types distribution:") |
|
|
for vnto_type, count in stats['vnto_types'].items(): |
|
|
percentage = (count / stats['total_samples']) * 100 |
|
|
print(f" {vnto_type}: {count} ({percentage:.1f}%)") |
|
|
|
|
|
print(f"\nTop Question Tags:") |
|
|
for tag, count in list(stats['question_tags'].items())[:5]: |
|
|
percentage = (count / stats['total_samples']) * 100 |
|
|
print(f" {tag}: {count} ({percentage:.1f}%)") |
|
|
|
|
|
|
|
|
print(f"\nSample low misery scenarios (< 30):") |
|
|
low_misery = filter_by_misery_range(df, 0, 30) |
|
|
samples = get_sample_scenarios(low_misery, n=3) |
|
|
for sample in samples: |
|
|
print(f" Score {sample['misery_score']}: {sample['scenario']}") |
|
|
|
|
|
print(f"\nSample high misery scenarios (> 80):") |
|
|
high_misery = filter_by_misery_range(df, 80, 100) |
|
|
samples = get_sample_scenarios(high_misery, n=3) |
|
|
for sample in samples: |
|
|
print(f" Score {sample['misery_score']}: {sample['scenario']}") |
|
|
|
|
|
print(f"\nSample Video scenarios (VNTO=V):") |
|
|
video_scenarios = filter_by_vnto(df, "V") |
|
|
samples = get_sample_scenarios(video_scenarios, n=3) |
|
|
for sample in samples: |
|
|
print(f" Score {sample['misery_score']}: {sample['scenario']}") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|