bansalaman18 commited on
Commit
6c8d2b7
·
verified ·
1 Parent(s): 577ea62

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -33
README.md CHANGED
@@ -14,37 +14,6 @@ tags:
14
  - regression
15
  size_categories:
16
  - 100<n<1K
17
- configs:
18
- - config_name: default
19
- data_files:
20
- - split: train
21
- path: data/train-*
22
- dataset_info:
23
- features:
24
- - name: 'Ep #'
25
- dtype: string
26
- - name: Misery
27
- dtype: string
28
- - name: Score
29
- dtype: int64
30
- - name: VNTO
31
- dtype: string
32
- - name: Reward
33
- dtype: int64
34
- - name: Win
35
- dtype: string
36
- - name: Comments
37
- dtype: string
38
- - name: question_tag
39
- dtype: string
40
- - name: level
41
- dtype: string
42
- splits:
43
- - name: train
44
- num_bytes: 53815
45
- num_examples: 516
46
- download_size: 24234
47
- dataset_size: 53815
48
  ---
49
 
50
  # Misery Index Dataset
@@ -53,6 +22,8 @@ dataset_info:
53
 
54
  The Misery Index Dataset comprises 516 textual descriptions of real-world or imagined scenarios, each annotated with a corresponding misery score on a continuous scale from 0 (no misery) to 100 (extreme misery). These misery ratings represent subjective estimates of emotional distress associated with each event.
55
 
 
 
56
  > **Note**: If the Hugging Face dataset viewer is not available, you can still access the full dataset by downloading the CSV file directly or using the methods shown in the usage examples below.
57
 
58
  ## Dataset Summary
@@ -136,6 +107,12 @@ print(df.head())
136
  9. **Professional/Work-related**: <5%
137
  10. **Gross/Disgusting Events**: <5%
138
 
 
 
 
 
 
 
139
  ## Data Sources
140
 
141
  The data was aggregated from three primary sources:
@@ -249,6 +226,17 @@ This dataset is valuable for:
249
  5. **Game Design**: Creating balanced difficulty curves in narrative games
250
  6. **Educational Tools**: Teaching empathy and emotional intelligence
251
 
 
 
 
 
 
 
 
 
 
 
 
252
  ## Ethical Considerations
253
 
254
  - **Content Warning**: Dataset contains descriptions of distressing scenarios including accidents, medical emergencies, and personal tragedies
@@ -268,13 +256,25 @@ This dataset is valuable for:
268
 
269
  If you use this dataset in your research, please cite:
270
 
 
 
 
 
 
 
 
 
 
 
 
271
  ```bibtex
272
  @dataset{misery_index_2024,
273
  title={Misery Index Dataset: Textual Scenarios with Emotional Distress Ratings},
274
- author={[Author Names]},
275
  year={2024},
276
  url={https://huggingface.co/datasets/path/to/misery-index},
277
- note={Dataset of 516 scenarios with misery ratings from 0-100}
 
278
  }
279
  ```
280
 
 
14
  - regression
15
  size_categories:
16
  - 100<n<1K
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  ---
18
 
19
  # Misery Index Dataset
 
22
 
23
  The Misery Index Dataset comprises 516 textual descriptions of real-world or imagined scenarios, each annotated with a corresponding misery score on a continuous scale from 0 (no misery) to 100 (extreme misery). These misery ratings represent subjective estimates of emotional distress associated with each event.
24
 
25
+ This dataset was created and analyzed in the research paper ["Leveraging Large Language Models for Predictive Analysis of Human Misery"](https://arxiv.org/pdf/2508.12669) by Bishanka Seal, Rahul Seetharaman, Aman Bansal, and Abhilash Nandy.
26
+
27
  > **Note**: If the Hugging Face dataset viewer is not available, you can still access the full dataset by downloading the CSV file directly or using the methods shown in the usage examples below.
28
 
29
  ## Dataset Summary
 
107
  9. **Professional/Work-related**: <5%
108
  10. **Gross/Disgusting Events**: <5%
109
 
110
+ ## Research Paper & Code
111
+
112
+ 📄 **Paper**: ["Leveraging Large Language Models for Predictive Analysis of Human Misery"](https://arxiv.org/pdf/2508.12669)
113
+
114
+ 💻 **Code Repository**: [GitHub - Misery_Data_Exps_GitHub](https://github.com/abhi1nandy2/Misery_Data_Exps_GitHub)
115
+
116
  ## Data Sources
117
 
118
  The data was aggregated from three primary sources:
 
226
  5. **Game Design**: Creating balanced difficulty curves in narrative games
227
  6. **Educational Tools**: Teaching empathy and emotional intelligence
228
 
229
+ ### Research Findings
230
+
231
+ The associated research paper demonstrates several key findings:
232
+ - **Few-shot prompting** significantly outperforms zero-shot approaches for misery prediction
233
+ - **GPT-4o achieved the highest performance** with 61.79% accuracy in structured evaluation
234
+ - **Binary comparisons** are easier for LLMs than precise scalar predictions (74.9% vs 43.1% accuracy)
235
+ - **Retrieval-augmented prompting** using BERT embeddings improves prediction quality
236
+ - **Feedback-driven adaptation** enables models to refine predictions iteratively
237
+
238
+ The "Misery Game Show" evaluation framework introduced in the paper provides a novel approach to testing LLM capabilities in emotional reasoning tasks.
239
+
240
  ## Ethical Considerations
241
 
242
  - **Content Warning**: Dataset contains descriptions of distressing scenarios including accidents, medical emergencies, and personal tragedies
 
256
 
257
  If you use this dataset in your research, please cite:
258
 
259
+ ```bibtex
260
+ @article{seal2024leveraging,
261
+ title={Leveraging Large Language Models for Predictive Analysis of Human Misery},
262
+ author={Seal, Bishanka and Seetharaman, Rahul and Bansal, Aman and Nandy, Abhilash},
263
+ journal={arXiv preprint arXiv:2508.12669},
264
+ year={2024},
265
+ url={https://arxiv.org/pdf/2508.12669}
266
+ }
267
+ ```
268
+
269
+ For the dataset specifically:
270
  ```bibtex
271
  @dataset{misery_index_2024,
272
  title={Misery Index Dataset: Textual Scenarios with Emotional Distress Ratings},
273
+ author={Seal, Bishanka and Seetharaman, Rahul and Bansal, Aman and Nandy, Abhilash},
274
  year={2024},
275
  url={https://huggingface.co/datasets/path/to/misery-index},
276
+ note={Dataset of 516 scenarios with misery ratings from 0-100},
277
+ howpublished={Hugging Face Datasets}
278
  }
279
  ```
280