{"seq_id":"3153601065","text":"import setuptools\n\nwith open(\"README.md\", \"r\", encoding=\"utf-8\") as fh:\n long_description = fh.read()\n\nsetuptools.setup(\n name=\"pymyastuce\",\n version=\"0.0.3\",\n author=\"Paul Rohja LESELLIER\",\n author_email=\"rohja@rohja.com\",\n description=\"A small package to fetch next bus/metro/tram at a station of the MyAstuce network in Rouen, France.\",\n long_description=long_description,\n long_description_content_type=\"text/markdown\",\n url=\"https://github.com/Rohja/pymyastuce\",\n project_urls={\n \"Bug Tracker\": \"https://github.com/Rohja/pymyastuce/issues\",\n },\n classifiers=[\n \"Programming Language :: Python :: 3\",\n \"License :: OSI Approved :: GNU General Public License v3 (GPLv3)\",\n \"Operating System :: OS Independent\",\n ],\n package_dir={\"\": \"src\"},\n packages=setuptools.find_packages(where=\"src\"),\n python_requires=\">=3.6\",\n)","repo_name":"Rohja/pymyastuce","sub_path":"setup.py","file_name":"setup.py","file_ext":"py","file_size_in_byte":895,"program_lang":"python","lang":"en","doc_type":"code","stars":0,"dataset":"github-code","pt":"47"} {"seq_id":"13160640627","text":"import torch\nfrom torch.utils.data import Dataset, DataLoader\nfrom typing import List\n\nclass MyDataset(Dataset):\n def __init__(self, data):\n self.data = data\n\n def __len__(self):\n return len(self.data)\n\n def __getitem__(self, idx):\n sample = self.data[idx]\n return sample\n\n\n# def normalize(adj):\n# \"\"\"Normalization by D^{-1/2} (A+I) D^{-1/2}.\"\"\"\n# rowsum = adj.sum(dim=1) + 1e-20\n# d_inv_sqrt = torch.pow(rowsum, -0.5).flatten()\n# d_inv_sqrt[d_inv_sqrt == float('inf')] = 0.\n# d_mat_inv_sqrt = torch.diag(d_inv_sqrt).to(adj.dtype)\n# adj = adj.mm(d_mat_inv_sqrt).t().mm(d_mat_inv_sqrt)\n# return adj\n\n\n# def row_normalize(adj):\n# \"\"\"Row-normalize sparse matrix\"\"\"\n# rowsum = np.array(adj.sum(1)).flatten()\n# d_inv = 1.0 / (np.maximum(1.0, rowsum))\n# d_mat_inv = sp.diags(d_inv, 0)\n# adj = d_mat_inv.dot(adj)\n# return adj\n\n# def sparse_mx_to_torch_sparse_tensor(sparse_mx):\n# \"\"\"Convert a scipy sparse matrix to a torch sparse tensor.\"\"\"\n# sparse_mx = sparse_mx.tocoo().astype(np.float32)\n# if len(sparse_mx.row) == 0 and len(sparse_mx.col) == 0:\n# indices = torch.LongTensor([[], []])\n# else:\n# indices = torch.from_numpy(\n# np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))\n# values = torch.from_numpy(sparse_mx.data)\n# shape = torch.Size(sparse_mx.shape)\n# return indices, values, shape\n\ndef row_normalize(tensor):\n if tensor.layout is torch.sparse_coo:\n tensor = tensor.coalesce()\n row_sum = torch.sparse.sum(tensor, dim=1).to_dense() + 1e-20\n normalized_tensor = torch.sparse.FloatTensor(tensor.indices(), tensor.values() / row_sum[tensor.indices()[0]], tensor.size())\n else:\n row_sum = tensor.sum(dim=1, keepdim=True) + 1e-20\n normalized_tensor = tensor / row_sum\n return normalized_tensor\n\ndef normalize(adj):\n if adj.layout is torch.sparse_coo:\n adj = adj.coalesce()\n rowsum = torch.sparse.sum(adj, dim=1).to_dense() + 1e-20\n d_inv_sqrt = torch.pow(rowsum, -0.5)\n d_inv_sqrt[torch.isinf(d_inv_sqrt)] = 0.\n adj_normalized = torch.sparse.FloatTensor(adj.indices(), adj.values() * d_inv_sqrt[adj.indices()[0]] * d_inv_sqrt[adj.indices()[1]],\n adj.size())\n else:\n rowsum = adj.sum(dim=1) + 1e-20\n d_inv_sqrt = torch.pow(rowsum, -0.5)\n d_inv_sqrt[torch.isinf(d_inv_sqrt)] = 0.\n d_mat_inv_sqrt = torch.diag(d_inv_sqrt)\n adj = adj.to(d_mat_inv_sqrt.dtype)\n adj_normalized = adj.matmul(d_mat_inv_sqrt).transpose(0, 1).matmul(d_mat_inv_sqrt)\n return adj_normalized\n\n# 节点采样\ndef node_wise_sampling(A:torch.Tensor, previous_nodes:torch.Tensor, sample_num:int):\n \"\"\"\n A:torch.Tesor, 所有待选邻居节点(一个节点的所有邻居节点是包括它自己本身的)的邻接矩阵,\n 行列数一样,对角线上都是1,即自己和自己连接\n previous_nodes: 上一层的节点在矩阵A中的index,而不是global id, 要求以在A中的ID从小到大的顺序排列\n sample_num:每个节点采样的节点数\n\n 返回的adj用于前向传播中\n sampled_nodes用于下一层采样,对应A中的index,不是global id\n previous_index是previous_nodes在after_nodes中的索引,后面训练时要用,从第一层到最后一层组成一个list,传给Graphsage_first中的参数previous_indices\n \"\"\"\n U = A[previous_nodes,:]\n sampled_nodes = []\n for U_row in U:\n indices = U_row.nonzero().flatten()\n sampled_indices = indices[torch.randperm(indices.shape[0])[:sample_num]]\n sampled_nodes.append(sampled_indices)\n sampled_nodes = torch.unique(torch.cat(sampled_nodes))\n sampled_nodes = torch.unique(torch.cat([torch.tensor(previous_nodes), sampled_nodes]), sorted=True)\n adj = U[:, sampled_nodes]\n adj = row_normalize(adj)\n\n previous_index = torch.where(torch.isin(sampled_nodes, torch.tensor(previous_nodes)))[0]\n\n\n return adj, sampled_nodes, previous_index\n\n# 层采样\ndef layer_wise_sampling(A:torch.Tensor,previous_nodes:torch.Tensor,sample_num:int):\n '''\n A:torch.Tesor, 所有待选邻居节点(一个节点的所有邻居节点是包括它自己本身的)的邻接矩阵,\n 行列数一样,对角线上都是1,即自己和自己连接\n previous_nodes: 上一层的节点在矩阵A中的index,而不是global id, 要求以在A中的ID从小到大的顺序排列\n sample_num:每层节点采样的最大值\n\n adj:adj用于前向传播中\n adj.dtype torch.float32\n sampled_nodes(torch.Tensor): 用于下一层采样,对应A中的index,不是global id\n '''\n s_num = min(A.shape[0], sample_num)\n sampled_nodes = torch.randperm(A.shape[0])[:s_num].sort().values\n if A.layout is torch.sparse_coo:\n adj = A.index_select(0, previous_nodes).index_select(1, sampled_nodes)\n else:\n adj = A[previous_nodes, :][:, sampled_nodes]\n adj = row_normalize(adj)\n\n # previous_index = torch.where(torch.isin(sampled_nodes, torch.tensor(previous_nodes)))[0]\n\n return adj, sampled_nodes\n\n# 层重要性采样\ndef layer_importance_sampling(A:torch.Tensor, previous_nodes:torch.Tensor, sample_num:int):\n '''\n A:torch.Tesor, 所有待选邻居节点(一个节点的所有邻居节点是包括它自己本身的)的邻接矩阵,\n 行列数一样,对角线上都是1,即自己和自己连接\n previous_nodes: 上一层的节点在矩阵A中的index,而不是global id, 要求以在A中的ID从小到大的顺序排列\n sample_num:每层节点采样的最大值\n\n adj:adj用于前向传播中\n adj.dtype torch.float32\n sampled_nodes(torch.Tensor): 用于下一层采样,对应A中的index,不是global id\n '''\n lap = normalize(A)\n lap_sq = torch.mul(lap, lap)\n if A.layout is torch.sparse_coo:\n lap_sq = lap_sq.index_select(0, previous_nodes)\n pi = torch.sparse.sum(lap_sq, dim=0).to_dense()\n p = pi / torch.sum(pi)\n s_num = min(A.shape[0], sample_num)\n sampled_nodes = torch.multinomial(p, s_num, replacement=False)\n sampled_nodes = torch.sort(sampled_nodes)[0]\n adj = lap.index_select(0, previous_nodes).index_select(1, sampled_nodes)\n adj = adj.coalesce()\n adj = torch.sparse.FloatTensor(adj.indices(), adj.values() / p[sampled_nodes[adj.indices()[1]]], adj.size())\n else:\n pi = torch.sum(lap_sq[previous_nodes, :], dim=0)\n p = pi / torch.sum(pi)\n s_num = min(A.shape[0], sample_num)\n sampled_nodes = torch.multinomial(p, s_num, replacement=False)\n sampled_nodes = torch.sort(sampled_nodes)[0]\n adj = lap[previous_nodes, :][:, sampled_nodes]\n adj = torch.mul(adj, 1/p[sampled_nodes])\n adj = row_normalize(adj)\n\n return adj, sampled_nodes\n\nif __name__ == \"__main__\":\n data = None\n dataset = MyDataset(data) #data是worker i上的训练集节点id\n\n batch_size = 128\n #生成批处理数据batch\n dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)","repo_name":"whr819987540/fs_gnn","sub_path":"helper/sampler.py","file_name":"sampler.py","file_ext":"py","file_size_in_byte":7129,"program_lang":"python","lang":"en","doc_type":"code","stars":0,"dataset":"github-code","pt":"47"} {"seq_id":"32173773052","text":"import numpy as np\nfrom artiq.experiment import *\n\nfrom LAX_exp.extensions import *\nfrom LAX_exp.base import LAXExperiment\nfrom LAX_exp.system.subsequences import InitializeQubit, Ramsey, Readout, RescueIon\n\n\nclass RamseySpectroscopy(LAXExperiment, Experiment):\n \"\"\"\n Experiment: Ramsey Spectroscopy\n\n Measures ion fluorescence after conducting a Ramsey Spectroscopy sequence.\n \"\"\"\n name = 'Ramsey Spectroscopy'\n\n\n def build_experiment(self):\n # core arguments\n self.setattr_argument(\"repetitions\", NumberValue(default=5, ndecimals=0, step=1, min=1, max=10000))\n\n # ramsey parameters\n self.setattr_argument(\"freq_ramsey_mhz_list\", Scannable(\n default=CenterScan(104.335, 0.5, 0.001),\n global_min=30, global_max=200, global_step=1,\n unit=\"MHz\", scale=1, ndecimals=5\n ))\n # get devices\n self.setattr_device('qubit')\n\n # prepare sequences\n self.initialize_subsequence = InitializeQubit(self)\n self.readout_subsequence = Readout(self)\n self.ramsey_subsequence = Ramsey(self)\n self.rescue_subsequence = RescueIon(self)\n\n def prepare_experiment(self):\n # convert ramsey detunings to ftw\n self.freq_ramsey_ftw_list = np.array([hz_to_ftw(freq_mhz * MHz)\n for freq_mhz in list(self.freq_ramsey_mhz_list)])\n\n @property\n def results_shape(self):\n return (self.repetitions * len(self.freq_ramsey_ftw_list),\n 2)\n\n\n # MAIN SEQUENCE\n @kernel(flags={\"fast-math\"})\n def initialize_experiment(self):\n self.core.break_realtime()\n\n # record subsequences onto DMA\n self.initialize_subsequence.record_dma()\n self.ramsey_subsequence.record_dma()\n self.readout_subsequence.record_dma()\n\n @kernel(flags={\"fast-math\"})\n def run_main(self):\n self.core.reset()\n\n for trial_num in range(self.repetitions):\n\n # sweep ramsey detunings\n for freq_ftw in self.freq_ramsey_ftw_list:\n\n # set ramsey detuning\n self.qubit.set_mu(freq_ftw, asf=self.qubit.ampl_qubit_asf)\n self.core.break_realtime()\n\n # initialize ion in S-1/2 state\n self.initialize_subsequence.run_dma()\n\n # do ramsey sequence\n self.ramsey_subsequence.run_dma()\n\n # do readout\n self.readout_subsequence.run_dma()\n\n # update dataset\n with parallel:\n self.update_results(freq_ftw, self.readout_subsequence.fetch_count())\n self.core.break_realtime()\n\n # rescue ion as needed\n self.rescue_subsequence.run(trial_num)\n\n # support graceful termination\n with parallel:\n self.check_termination()\n self.core.break_realtime()\n","repo_name":"EGGS-Experiment/LAX_exp","sub_path":"experiments/diagnostics/RamseySpectroscopy.py","file_name":"RamseySpectroscopy.py","file_ext":"py","file_size_in_byte":3404,"program_lang":"python","lang":"en","doc_type":"code","stars":0,"dataset":"github-code","pt":"47"} {"seq_id":"4417809755","text":"import numpy as np\nfrom io import StringIO\n\ninput_string = '''\n25 2 50 1 500 127900\n39 3 10 1 1000 222100\n13 2 13 1 1000 143750\n82 5 20 2 120 268000\n130 6 10 2 600 460700\n115 6 10 1 550 407000\n'''\n\nnp.set_printoptions(precision=1) # this just changes the output settings for easier reading\n \ndef fit_model(input_file):\n # Please write your code inside this function\n data= np.genfromtxt(input_file, skip_header=1)\n # read the data in and fit it. the values below are placeholder values\n c = np.asarray([]) # coefficients of the linear regression\n x = np.asarray([]) # input data to the linear regression\n y = np.asarray([])\n\n i=len(data)-1\n while i>=0:\n last =data[i][-1]\n y = np.insert(y,0,last,axis=0)\n i-=1\n\n x=data[:,:-1]\n c=np.linalg.lstsq(x,y)[0]\n print(c)\n print(x @ c)\n\n# simulate reading a file\ninput_file = StringIO(input_string)\nfit_model(input_file)\n","repo_name":"piilolav/Building-AI---Uni-Helsinki","sub_path":"Exercises/Chapter 3 - Machine Learning/ex13-Predictions With More Data.py","file_name":"ex13-Predictions With More Data.py","file_ext":"py","file_size_in_byte":924,"program_lang":"python","lang":"en","doc_type":"code","stars":0,"dataset":"github-code","pt":"47"} {"seq_id":"32418162182","text":"from matplotlib.figure import Figure\nfrom typing import List, Union, Dict, Callable, Tuple, Optional\nfrom matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas\nfrom PyQt5.QtWidgets import *\nfrom matplotlib.lines import Line2D\nfrom matplotlib.backend_bases import PickEvent, MouseEvent\nfrom hyperclass.util.config import tostr\nfrom PyQt5.QtCore import *\nfrom matplotlib.axes import Axes\nfrom collections import OrderedDict\nfrom hyperclass.data.events import dataEventHandler, DataType\nfrom hyperclass.gui.events import EventClient, EventMode\nfrom hyperclass.gui.labels import labelsManager\nimport xarray as xa\n\nclass Spectrum:\n def __init__(self, band_values: List[float], color: List[float], cid: int ):\n self.bands = band_values\n self.color = color\n self.cid = cid\n\n def isTransient(self):\n return self.cid == 0\n\nclass SpectralCanvas( FigureCanvas ):\n\n def __init__(self, figure: Figure ):\n FigureCanvas.__init__( self, figure )\n self.figure = figure\n self.figure.patch.set_facecolor('#e2e2e2')\n\nclass SpectralPlot(QObject,EventClient):\n update_signal = pyqtSignal()\n\n def __init__( self, active: bool = True, **kwargs ):\n QObject.__init__(self)\n self.figure: Optional[Figure] = None\n self._active = active\n self.overlay = kwargs.get('overlay', False )\n self.axes: Optional[Axes] = None\n self.lines: OrderedDict[ int, Line2D ] = OrderedDict()\n self.current_line: Optional[Line2D] = None\n self.current_pid = -1\n self.current_cid = -1\n self.norm = None\n\n self.plotx: xa.DataArray = None\n self.nploty: xa.DataArray = None\n self.ploty: xa.DataArray = None\n\n self.rplotx: xa.DataArray = None\n self.rploty: xa.DataArray = None\n\n self._use_reduced_data = False\n self.marker: Line2D = None\n self._gui = None\n self._titles = None\n self.parms = kwargs\n self.update_signal.connect( self.update )\n\n def useReducedData(self, useReducedData: bool ):\n if self._use_reduced_data != useReducedData:\n self._use_reduced_data = useReducedData\n self.plot_spectrum()\n self.update()\n\n def toggleUseReducedData( self ):\n self._use_reduced_data = not self._use_reduced_data\n self.plot_spectrum()\n self.update()\n\n def activate( self, active: bool ):\n self._active = active\n if self._active and (self.current_pid >= 0):\n event = dict( event=\"pick\", type=\"graph\", pids=[self.current_pid], cid=0 )\n self.submitEvent(event, EventMode.Gui)\n\n def init( self ):\n self.figure = Figure(constrained_layout=True)\n self.axes = self.figure.add_subplot(111)\n self.axes.title.set_fontsize(14)\n self.activate_event_listening()\n\n def configure(self, event: Dict ):\n type = self.ploty.attrs.get('type')\n self.axes.set_facecolor((0.0, 0.0, 0.0))\n if type == 'spectra':\n plot_metadata = dataEventHandler.getMetadata( event )\n self._titles = {}\n for index in range( plot_metadata[0].shape[0] ):\n self._titles[index] = \"[\" + \",\".join( [ tostr(pm.values[index]) for pm in plot_metadata ] ) + \"]\"\n else:\n self.figure.patch.set_facecolor( (0.0, 0.0, 0.0) )\n self.axes.axis('off')\n self.axes.get_yaxis().set_visible(False)\n self.figure.set_constrained_layout_pads( w_pad=0., h_pad=0. )\n\n def gui(self, parent) :\n if self._gui is None:\n self.init( )\n self._gui = SpectralCanvas( self.figure )\n self._gui.setParent(parent)\n self._gui.setSizePolicy( QSizePolicy.Expanding, QSizePolicy.Expanding)\n self._gui.setContentsMargins( 0, 0, 0, 0 )\n self._gui.updateGeometry()\n self._gui.mpl_connect('button_press_event', self.mouseClick)\n\n return self._gui\n\n def mouseClick(self, event: MouseEvent):\n if (self.axes is not None) and ( self.current_pid >= 0 ) and ( self.ploty is not None ) and self._active:\n print(f\"SpectralPlot.mousePressEvent: [{event.x}, {event.y}] -> [{event.xdata}, {event.ydata}]\" )\n title = f\" {event.xdata:.2f}: {event.ydata:.3f} \"\n self.axes.set_title( title, {'fontsize': 10 }, 'right' )\n self.update_marker( event.xdata )\n self.update()\n\n def normalize(self):\n self.norm = self.ploty.attrs.get(\"norm\", None)\n if self.norm == \"median\":\n self.nploty = self.ploty / self.ploty.median( axis = 1 )\n elif self.norm == \"mean\":\n self.nploty = self.ploty / self.ploty.mean( axis=1 )\n else:\n self.nploty = self.ploty\n\n def processEvent(self, event: Dict ):\n super().processEvent(event)\n if dataEventHandler.isDataLoadEvent(event):\n plot_data = dataEventHandler.getPointData( event, DataType.Plot )\n# reduced_data = dataEventHandler.getPointData( event, DataType.Embedding )\n if isinstance(plot_data, dict): self.plotx, self.ploty = plot_data[\"plotx\"], plot_data[\"ploty\"]\n else: self.plotx, self.ploty = plot_data.band, plot_data\n# self.rplotx, self.rploty = reduced_data['model'], reduced_data\n if self.ploty.size > 0:\n self.normalize()\n self.configure( event )\n if event.get('event') == 'pick':\n if (event.get('type') in [ 'vtkpoint', 'directory', 'reference', 'plot' ]) and self._active:\n if self.ploty is not None:\n pids = [ row.pid for row in event.get('rows',[]) ]\n pids = pids + event.get('pids',[])\n for pid in pids:\n if pid >= 0:\n self.current_pid = pid\n current_line = self.lines.get( self.current_pid, None )\n if (current_line is not None) and (current_line.cid > 0):\n self.current_cid = current_line.cid\n else:\n classification = event.get('classification',-1)\n self.current_cid = classification if (classification > 0) else labelsManager.selectedClass\n self.clear_transients()\n print( f\"SpectralPlot: pick event, pid = {self.current_pid}, cid = {self.current_cid}\")\n self.plot_spectrum()\n if self._titles is not None:\n self.axes.set_title( self._titles.get(self.current_pid,\"*SPECTRA*\" ), {'fontsize': 10 }, 'center' )\n self.update_marker()\n self.axes.set_title( \"\", {}, 'right' )\n self.update_signal.emit()\n break\n elif event.get('event') == 'gui':\n if event.get('type') =='reset':\n self.clear()\n\n def update_marker(self, new_xval = None ):\n if self.marker is not None:\n self.axes.lines.remove(self.marker)\n self.marker = None\n if new_xval is not None:\n self.marker = self.axes.axvline( new_xval, color=\"yellow\", linewidth=1, alpha=0.75 )\n\n def plot_spectrum(self):\n if (self.current_pid >= 0) and (self.nploty is not None):\n color = labelsManager.colors[self.current_cid]\n\n # if self._use_reduced_data:\n # spectrum = self.rploty[self.current_pid].values\n # x = self.rplotx[ self.current_pid ].values if self.rplotx.ndim == 2 else self.rplotx.values\n # else:\n # spectrum = self.nploty[self.current_pid].values\n # x = self.plotx[ self.current_pid ].values if self.plotx.ndim == 2 else self.plotx.values\n\n spectrum = self.nploty[self.current_pid].values\n x = self.plotx[self.current_pid].values if self.plotx.ndim == 2 else self.plotx.values\n self.ymax, self.ymin = spectrum.max(), spectrum.min()\n self.xmax, self.xmin = x.max(), x.min()\n self.axes.set_ylim(self.ymin, self.ymax)\n self.axes.set_xlim(self.xmin, self.xmax)\n linewidth = 2 if self.overlay else 1\n if len(color) == 4: color[3] = 1.0\n if self.current_line is not None:\n self.current_line.set_visible(False)\n self.current_line, = self.axes.plot( x, spectrum, linewidth=linewidth, color=color )\n print( f\"SPECTRA BOUNDS: [ {self.xmin:.2f}, {self.xmax:.2f} ] -> [ {self.ymin:.2f}, {self.ymax:.2f} ]\")\n self.current_line.color = color\n# self.current_line.mark( self.current_cid )\n self.current_line.cid = self.current_cid\n self.lines[ self.current_pid ] = self.current_line\n\n def clear(self):\n self.lines = OrderedDict()\n self.current_line = None\n self.axes.clear()\n\n def clear_transients(self):\n if (self.current_line is not None):\n if (self.current_line.cid == 0) or not self.overlay:\n index, line = self.lines.popitem()\n line.remove()\n self.current_line = None\n else:\n self.current_line.set_linewidth(1)\n\n def remove_spectrum(self, index: int ):\n line: Line2D = self.lines[ index ]\n line.remove()\n del self.lines[ index ]\n\n def has_spectrum(self, index: int ):\n return index in self.lines\n\n @pyqtSlot()\n def update(self):\n if self._gui is not None:\n self.figure.canvas.draw_idle()\n self._gui.update()\n\n\n\nclass SpectralManager:\n\n def __init__(self):\n self.spectral_plots = []\n self._gui = None\n\n def gui(self, nSpectra: int, parent: QWidget ):\n if self._gui is None:\n self._gui = QTabWidget()\n for iS in range(nSpectra):\n spectral_plot = SpectralPlot(iS == 0)\n self.spectral_plots.append(spectral_plot)\n tabId = \"Spectra\" if iS == 0 else str(iS)\n self._gui.addTab( spectral_plot.gui(parent), tabId )\n self._gui.currentChanged.connect(self.activate_spectral_plot)\n self._gui.setTabEnabled(0, True)\n return self._gui\n\n def activate_spectral_plot( self, index: int ):\n for iS, plot in enumerate(self.spectral_plots):\n plot.activate( iS == index )\n\n def setSpectralUseReduced(self, useReducedData: bool ):\n for spectral_plot in self.spectral_plots:\n spectral_plot.useReducedData( useReducedData )\n\n def toggleSpectralUseReduced(self ):\n for spectral_plot in self.spectral_plots:\n spectral_plot.toggleUseReducedData()\n\n def addActions(self, menu: QMenu ):\n menuButton = QAction( \"Toggle Spectral Reduced/Raw\", self._gui )\n menuButton.setStatusTip( \"Toggle Spectral Use Reduced/Raw Data\" )\n menuButton.triggered.connect(self.toggleSpectralUseReduced)\n menu.addAction( menuButton )\n\nspectralManager = SpectralManager()","repo_name":"nasa-nccs-cds/hyperclass","sub_path":"hyperclass/plot/spectra.py","file_name":"spectra.py","file_ext":"py","file_size_in_byte":11245,"program_lang":"python","lang":"en","doc_type":"code","stars":3,"dataset":"github-code","pt":"47"} {"seq_id":"33544589066","text":"#Print given array in clockwise spiral\r\n\r\ndef spiralArray(endRow,endColumn,a) :\r\n startRow = 0; startColumn = 0\r\n\r\n while (startRow < endRow and startColumn < endColumn) :\r\n \r\n for i in range (startColumn, endColumn) : \r\n print(a[startRow][i], end = \" \")\r\n \r\n startRow += 1\r\n\r\n for i in range (startRow, endRow) :\r\n print(a[i][endColumn - 1], end = \" \")\r\n\r\n endColumn -= 1\r\n\r\n if (startRow < endRow) : \r\n for i in range(endColumn - 1, (startColumn - 1), -1) :\r\n print(a[endRow - 1][i], end = \" \")\r\n\r\n endRow -= 1\r\n\r\n if (startColumn < endColumn) :\r\n for i in range(endRow - 1, startRow - 1, -1) : \r\n print(a[i][startColumn], end = \" \")\r\n\r\n startColumn += 1\r\n\r\na = [[1, 2, 3, 4, 5, 6],\r\n [7, 8, 9, 10, 11, 12],\r\n [13, 14, 15, 16, 17, 18]]\r\n\r\nR = 3; C = 6\r\nspiralArray(R, C, a)\r\n ","repo_name":"Masheenist/Sylvia-Python-Projects","sub_path":"Spiral Python.py","file_name":"Spiral Python.py","file_ext":"py","file_size_in_byte":943,"program_lang":"python","lang":"en","doc_type":"code","stars":0,"dataset":"github-code","pt":"47"} {"seq_id":"20896442946","text":"#It will remove some common inflected words and will give them their root form\n\ndef morphology(x):\n\ti = 0\n\twhile i