\\s*.*?
(.*?)
')\n\n\tupc_pat = re.compile(r'
UPC \\s*
(.*?) ')\n\n\tprice_pat = re.compile(r'
Price \\(incl. tax\\) \\s*
(.*?) ')\n\n\tprice_pat = re.compile(r'
Price \\(incl. tax\\) \\s*
\\D+([\\d.]+?) ')\n\n\tavail_pat = re.compile(r'
Availability \\s*
(.*?) ')\n\n\tlogging.basicConfig(format=\"%(asctime)s %(message)s\", datefmt=\"%d/%m/%y %I:%M:%S %p\", filename=\"bookstore_crawler.log\", level=logging.DEBUG)\n\n\tfield_names = [\"Name\", \"Category\", \"UPC\", \"URL\", \"ImageURL\", \"Price\", \"Availability\", \"Description\"]\n\n\twith open(\"book_list.csv\", \"w\",encoding=\"ISO-8859-1\") as csvf:\n\t\tcsv_writer = csv.DictWriter(csvf, fieldnames=field_names)\n\t\tcsv_writer.writeheader()\n\t\tcrawl_website()", "sub_path": "Web Crawling/Full Web Crawling Code.py", "file_name": "Full Web Crawling Code.py", "file_ext": "py", "file_size_in_byte": 5148, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "sys.stdout", "line_number": 7, "usage_type": "attribute"}, {"api_name": "logging.warning", "line_number": 29, "usage_type": "call"}, {"api_name": "logging.warning", "line_number": 37, "usage_type": "call"}, {"api_name": "logging.warning", "line_number": 44, "usage_type": "call"}, {"api_name": "logging.warning", "line_number": 51, "usage_type": "call"}, {"api_name": "logging.warning", "line_number": 58, "usage_type": "call"}, {"api_name": "requests.get", "line_number": 70, "usage_type": "call"}, {"api_name": "requests.exceptions", "line_number": 72, "usage_type": "attribute"}, {"api_name": "logging.error", "line_number": 73, "usage_type": "call"}, {"api_name": "logging.error", "line_number": 79, "usage_type": "call"}, {"api_name": "html.unescape", "line_number": 99, "usage_type": "call"}, {"api_name": "logging.info", "line_number": 106, "usage_type": "call"}, {"api_name": "html.unescape", "line_number": 117, "usage_type": "call"}, {"api_name": "logging.critical", "line_number": 147, "usage_type": "call"}, {"api_name": "sys.exit", "line_number": 148, "usage_type": "call"}, {"api_name": "re.compile", "line_number": 162, "usage_type": "call"}, {"api_name": "re.M", "line_number": 162, "usage_type": "attribute"}, {"api_name": "re.DOTALL", "line_number": 162, "usage_type": "attribute"}, {"api_name": "re.compile", "line_number": 164, "usage_type": "call"}, {"api_name": "re.compile", "line_number": 166, "usage_type": "call"}, {"api_name": "re.compile", "line_number": 168, "usage_type": "call"}, {"api_name": "re.compile", "line_number": 170, "usage_type": "call"}, {"api_name": "re.compile", "line_number": 172, "usage_type": "call"}, {"api_name": "re.compile", "line_number": 174, "usage_type": "call"}, {"api_name": "re.compile", "line_number": 176, "usage_type": "call"}, {"api_name": "re.compile", "line_number": 178, "usage_type": "call"}, {"api_name": "logging.basicConfig", "line_number": 180, "usage_type": "call"}, {"api_name": "logging.DEBUG", "line_number": 180, "usage_type": "attribute"}, {"api_name": "csv.DictWriter", "line_number": 185, "usage_type": "call"}]}
{"seq_id": "142773184", "text": "# -*- coding: utf-8 -*-\nimport logging\nimport urllib\nimport webapp2 as webapp\n\nfrom google.appengine.api import memcache\nfrom google.appengine.ext import db\nfrom google.appengine.runtime import apiproxy_errors\n\nimport ditto.config as c\nimport ditto.util\nfrom ditto.content import MirroredContent\n\n\nclass BaseHandler(webapp.RequestHandler):\n def get_relative_url(self):\n slash = self.request.url.find(\"/\", len(self.request.scheme + \"://\"))\n if slash == -1:\n return \"/\"\n return self.request.url[slash:]\n\n\nclass MirrorHandler(BaseHandler):\n def get(self, base_url):\n assert base_url\n\n # Log the user-agent and referrer, to see who is linking to us.\n logging.debug('User-Agent = \"%s\", Referrer = \"%s\"',\n self.request.user_agent, self.request.referer)\n logging.debug('Base_url = \"%s\", url = \"%s\"',\n base_url, self.request.url)\n\n translated_address = self.get_relative_url()[1:] # remove leading /\n mirrored_url = c.HTTP_PREFIX + translated_address\n\n # Use sha256 hash instead of mirrored url for the key name; key\n # names can only be 500 bytes in length; URLs may be up to 2KB.\n key_name = ditto.util.get_url_key_name(mirrored_url)\n logging.info(\"Handling request for '%s' = '%s'\", mirrored_url, key_name)\n\n content = MirroredContent.get_by_key_name(key_name)\n cache_miss = False\n if content is None:\n logging.debug(\"Cache miss\")\n cache_miss = True\n content = MirroredContent.fetch_and_store(\n key_name, base_url, translated_address, mirrored_url)\n\n if content is None:\n return self.error(404)\n\n for key, value in content.headers.iteritems():\n self.response.headers[key] = value\n\n if not c.DEBUG:\n self.response.headers['cache-control'] = \\\n 'max-age=%d' % c.EXPIRATION_DELTA_SECONDS\n\n self.response.out.write(content.data)\n\n def post(self):\n # Handle the input form to redirect the user to a relative url\n form_url = self.request.get(\"url\")\n\n if form_url:\n inputted_url = urllib.unquote(form_url)\n\n # Accept URLs that still have a leading 'http://'\n if inputted_url.startswith(c.HTTP_PREFIX):\n inputted_url = inputted_url[len(c.HTTP_PREFIX):]\n\n return self.redirect(\"/\" + inputted_url)\n", "sub_path": "ditto/handlers.py", "file_name": "handlers.py", "file_ext": "py", "file_size_in_byte": 2470, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "webapp2.RequestHandler", "line_number": 15, "usage_type": "attribute"}, {"api_name": "logging.debug", "line_number": 28, "usage_type": "call"}, {"api_name": "logging.debug", "line_number": 30, "usage_type": "call"}, {"api_name": "ditto.config.HTTP_PREFIX", "line_number": 34, "usage_type": "attribute"}, {"api_name": "ditto.config", "line_number": 34, "usage_type": "name"}, {"api_name": "ditto.config.util.get_url_key_name", "line_number": 38, "usage_type": "call"}, {"api_name": "ditto.config.util", "line_number": 38, "usage_type": "attribute"}, {"api_name": "ditto.config", "line_number": 38, "usage_type": "name"}, {"api_name": "logging.info", "line_number": 39, "usage_type": "call"}, {"api_name": "ditto.content.MirroredContent.get_by_key_name", "line_number": 41, "usage_type": "call"}, {"api_name": "ditto.content.MirroredContent", "line_number": 41, "usage_type": "name"}, {"api_name": "logging.debug", "line_number": 44, "usage_type": "call"}, {"api_name": "ditto.content.MirroredContent.fetch_and_store", "line_number": 46, "usage_type": "call"}, {"api_name": "ditto.content.MirroredContent", "line_number": 46, "usage_type": "name"}, {"api_name": "ditto.config.DEBUG", "line_number": 55, "usage_type": "attribute"}, {"api_name": "ditto.config", "line_number": 55, "usage_type": "name"}, {"api_name": "ditto.config.EXPIRATION_DELTA_SECONDS", "line_number": 57, "usage_type": "attribute"}, {"api_name": "ditto.config", "line_number": 57, "usage_type": "name"}, {"api_name": "urllib.unquote", "line_number": 66, "usage_type": "call"}, {"api_name": "ditto.config.HTTP_PREFIX", "line_number": 69, "usage_type": "attribute"}, {"api_name": "ditto.config", "line_number": 69, "usage_type": "name"}, {"api_name": "ditto.config.HTTP_PREFIX", "line_number": 70, "usage_type": "attribute"}, {"api_name": "ditto.config", "line_number": 70, "usage_type": "name"}]}
{"seq_id": "95220644", "text": "from django.contrib import auth\nfrom django.core import exceptions, management\nfrom django.db import connection\nfrom django.test import TestCase\n\nimport models\n\nfrom django_postgres.function import (create_function, create_functions,\n _function_exists)\n\n\nclass FunctionModelTestCase(TestCase):\n \"\"\"Test the Function API.\n \"\"\"\n def setUp(self):\n management.call_command('sync_pgfunctions', *[], **{})\n\n def test_get_counter(self):\n \"\"\"Must run call on the manager before querying the result.\n \"\"\"\n foo_user = auth.models.User.objects.create(\n username='foo', is_superuser=True)\n foo_user.set_password('blah')\n foo_user.save()\n\n foo_superuser = models.UserTypeCounter.objects.call(\n (True, ))\n\n self.assertEqual(foo_superuser.get().my_count, 1)\n\n def test_uncalled(self):\n \"\"\"Cannot execute the statement unless you explicitly call it first\n \"\"\"\n foo_user = auth.models.User.objects.create(\n username='foo', is_superuser=True)\n foo_user.set_password('blah')\n foo_user.save()\n\n self.assertRaises(\n exceptions.ObjectDoesNotExist,\n models.UserTypeCounter.objects.filter,\n pk=1)\n\n\nclass LowLeveFunctionTestCase(TestCase):\n \"\"\"Low level tests for function creation.\n \"\"\"\n def test_create_function(self):\n \"\"\"Create a function with the low-level create_function API.\n \"\"\"\n field = ('a_field integer', )\n definition = 'SELECT 1 from auth_user WHERE id = $1'\n name = 'my_function (integer)'\n created = create_function(connection, name, field, definition)\n\n self.assertEqual(created, 'CREATED')\n\n def test_update_function(self):\n \"\"\"Update a function with create_function. Functions can only be\n updated if their signature matches the existing function.\n \"\"\"\n field = ('a_field integer', )\n definition = 'SELECT 1 from auth_user WHERE id = $1'\n name = 'my_function (integer)'\n create_function(connection, name, field, definition)\n\n definition = 'SELECT 2 from auth_user WHERE id = $1'\n\n updated = create_function(connection, name, field, definition)\n\n self.assertEqual(updated, 'UPDATED')\n\n def test_error_function(self):\n \"\"\"Error out if the user tried to update a function with an\n incompatible signature.\n \"\"\"\n field = ('a_field integer', )\n definition = 'SELECT 1 from auth_user WHERE id = $1'\n name = 'my_function (integer)'\n create_function(connection, name, field, definition)\n\n name = 'my_function (integer, integer)'\n definition = 'SELECT 1 from auth_user WHERE id > $1 and id < $2'\n\n updated = create_function(connection, name, field, definition)\n\n self.assertEqual(updated, 'ERROR: Manually Drop This Function')\n\n def test_create_functions_from_models(self):\n \"\"\"Create functions using the create_functions and passing the models\n module.\n \"\"\"\n create_result = create_functions(models)\n\n for status, _, _ in create_result:\n self.assertEqual(status, 'CREATED')\n\n # Now check it was created\n cursor_wrapper = connection.cursor()\n cursor = cursor_wrapper.cursor\n self.assertEqual(_function_exists(cursor, 'user_type'), True)\n\n def test_create_command(self):\n \"\"\"Test the sync_pgfunctions command.\n \"\"\"\n management.call_command('sync_pgfunctions', *[], **{})\n\n # Check it was created\n cursor_wrapper = connection.cursor()\n cursor = cursor_wrapper.cursor\n self.assertEqual(_function_exists(cursor, 'user_type'), True)\n", "sub_path": "tests/test_project/functiontest/tests.py", "file_name": "tests.py", "file_ext": "py", "file_size_in_byte": 3735, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "django.test.TestCase", "line_number": 12, "usage_type": "name"}, {"api_name": "django.core.management.call_command", "line_number": 16, "usage_type": "call"}, {"api_name": "django.core.management", "line_number": 16, "usage_type": "name"}, {"api_name": "django.contrib.auth.models.User.objects.create", "line_number": 21, "usage_type": "call"}, {"api_name": "django.contrib.auth.models", "line_number": 21, "usage_type": "attribute"}, {"api_name": "django.contrib.auth", "line_number": 21, "usage_type": "name"}, {"api_name": "models.UserTypeCounter.objects.call", "line_number": 26, "usage_type": "call"}, {"api_name": "models.UserTypeCounter", "line_number": 26, "usage_type": "attribute"}, {"api_name": "django.contrib.auth.models.User.objects.create", "line_number": 34, "usage_type": "call"}, {"api_name": "django.contrib.auth.models", "line_number": 34, "usage_type": "attribute"}, {"api_name": "django.contrib.auth", "line_number": 34, "usage_type": "name"}, {"api_name": "django.core.exceptions.ObjectDoesNotExist", "line_number": 40, "usage_type": "attribute"}, {"api_name": "django.core.exceptions", "line_number": 40, "usage_type": "name"}, {"api_name": "models.UserTypeCounter", "line_number": 41, "usage_type": "attribute"}, {"api_name": "django.test.TestCase", "line_number": 45, "usage_type": "name"}, {"api_name": "django_postgres.function.create_function", "line_number": 54, "usage_type": "call"}, {"api_name": "django.db.connection", "line_number": 54, "usage_type": "argument"}, {"api_name": "django_postgres.function.create_function", "line_number": 65, "usage_type": "call"}, {"api_name": "django.db.connection", "line_number": 65, "usage_type": "argument"}, {"api_name": "django_postgres.function.create_function", "line_number": 69, "usage_type": "call"}, {"api_name": "django.db.connection", "line_number": 69, "usage_type": "argument"}, {"api_name": "django_postgres.function.create_function", "line_number": 80, "usage_type": "call"}, {"api_name": "django.db.connection", "line_number": 80, "usage_type": "argument"}, {"api_name": "django_postgres.function.create_function", "line_number": 85, "usage_type": "call"}, {"api_name": "django.db.connection", "line_number": 85, "usage_type": "argument"}, {"api_name": "django_postgres.function.create_functions", "line_number": 93, "usage_type": "call"}, {"api_name": "django.db.connection.cursor", "line_number": 99, "usage_type": "call"}, {"api_name": "django.db.connection", "line_number": 99, "usage_type": "name"}, {"api_name": "django_postgres.function._function_exists", "line_number": 101, "usage_type": "call"}, {"api_name": "django.core.management.call_command", "line_number": 106, "usage_type": "call"}, {"api_name": "django.core.management", "line_number": 106, "usage_type": "name"}, {"api_name": "django.db.connection.cursor", "line_number": 109, "usage_type": "call"}, {"api_name": "django.db.connection", "line_number": 109, "usage_type": "name"}, {"api_name": "django_postgres.function._function_exists", "line_number": 111, "usage_type": "call"}]}
{"seq_id": "251166112", "text": "# -*- coding:utf-8 -*-\nfrom django.shortcuts import render\nfrom django.views.generic import ListView\nfrom django.core.cache import caches\nfrom .models import Article, Nav, Carousel\nfrom dnglin_comments.models import Comment\nfrom dnglin_system.models import Link\nfrom django.conf import settings\nimport logging\n# Create your views here.\n\n# 缓存\ntry:\n cache=caches['memcache']\nexcept ImportError as e:\n cache = caches['default']\n\n# logger\nlogger = logging.getLogger(__name__)\n\n\nclass BaseMixin(object):\n def get_context_data(self, *args, **kwargs):\n context = super(BaseMixin, self).get_context_data(*args, **kwargs)\n try:\n # 网站标题等内容\n context['website_title'] = settings.WEBSITE_TITLE\n context['website_welcome'] = settings.WEBSITE_WELCOME\n # 热门文章\n context['hot_article_list']=Article.objects.order_by('-view_times')[0:10]\n # 导航条\n context['nav_list']=Nav.objects.filter(status=0)\n # 最新评论\n context['latest_comment_list']=Comment.objects.order_by('-create_time')[0:10]\n # 友情链接\n context['links']=Link.objects.order_by('create_time').all()\n colors=['primary','success', 'info', 'warning', 'danger']\n for index,link in enumerate(context['links']):\n link.color=colors[index % len(colors)]\n # 用户未读信息数\n user=self.request.user\n if user.is_authenticated():\n context['notification_count']=user.to_user_notification_set.filter(is_read=0).count()\n except Exception as e:\n logger.error(u'[BaseMixin]加载基本信息出错')\n return context\n\n\nclass IndexView(BaseMixin,ListView):\n template_name = 'blog/index.html'\n context_object_name = 'article_list'\n paginate_by = settings.PAGE_NUM # 分页--每页的数目\n\n def get_context_data(self, *args, **kwargs):\n # 轮播\n kwargs['carousel_page_list']=Carousel.objects.all()\n return super(IndexView,self).get_context_data(*args,**kwargs)\n\n def get_queryset(self):\n article_list=Article.objects.filter(status=0)\n return article_list\n\n", "sub_path": "blog/views.py", "file_name": "views.py", "file_ext": "py", "file_size_in_byte": 2229, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "django.core.cache.caches", "line_number": 14, "usage_type": "name"}, {"api_name": "django.core.cache.caches", "line_number": 16, "usage_type": "name"}, {"api_name": "logging.getLogger", "line_number": 19, "usage_type": "call"}, {"api_name": "django.conf.settings.WEBSITE_TITLE", "line_number": 27, "usage_type": "attribute"}, {"api_name": "django.conf.settings", "line_number": 27, "usage_type": "name"}, {"api_name": "django.conf.settings.WEBSITE_WELCOME", "line_number": 28, "usage_type": "attribute"}, {"api_name": "django.conf.settings", "line_number": 28, "usage_type": "name"}, {"api_name": "models.Article.objects.order_by", "line_number": 30, "usage_type": "call"}, {"api_name": "models.Article.objects", "line_number": 30, "usage_type": "attribute"}, {"api_name": "models.Article", "line_number": 30, "usage_type": "name"}, {"api_name": "models.Nav.objects.filter", "line_number": 32, "usage_type": "call"}, {"api_name": "models.Nav.objects", "line_number": 32, "usage_type": "attribute"}, {"api_name": "models.Nav", "line_number": 32, "usage_type": "name"}, {"api_name": "dnglin_comments.models.Comment.objects.order_by", "line_number": 34, "usage_type": "call"}, {"api_name": "dnglin_comments.models.Comment.objects", "line_number": 34, "usage_type": "attribute"}, {"api_name": "dnglin_comments.models.Comment", "line_number": 34, "usage_type": "name"}, {"api_name": "dnglin_system.models.Link.objects.order_by", "line_number": 36, "usage_type": "call"}, {"api_name": "dnglin_system.models.Link.objects", "line_number": 36, "usage_type": "attribute"}, {"api_name": "dnglin_system.models.Link", "line_number": 36, "usage_type": "name"}, {"api_name": "django.views.generic.ListView", "line_number": 49, "usage_type": "name"}, {"api_name": "django.conf.settings.PAGE_NUM", "line_number": 52, "usage_type": "attribute"}, {"api_name": "django.conf.settings", "line_number": 52, "usage_type": "name"}, {"api_name": "models.Carousel.objects.all", "line_number": 56, "usage_type": "call"}, {"api_name": "models.Carousel.objects", "line_number": 56, "usage_type": "attribute"}, {"api_name": "models.Carousel", "line_number": 56, "usage_type": "name"}, {"api_name": "models.Article.objects.filter", "line_number": 60, "usage_type": "call"}, {"api_name": "models.Article.objects", "line_number": 60, "usage_type": "attribute"}, {"api_name": "models.Article", "line_number": 60, "usage_type": "name"}]}
{"seq_id": "445101629", "text": "#!/usr/bin/env python\n#-*- coding:utf-8 -*-\n\nimport xlrd\nclass Read_File:\n def read_xlsx(self,path):\n excel = xlrd.open_workbook(path)\n # count = len(excel.sheets())\n excel = excel.sheets()[0]\n # print(sheet.nrows)\n # print(sheet.row_values(0))\n # print(sheet)\n # print(count)\n # for sheet in excel.sheets():\n # print(sheet.text())\n # return sheet\n # table = read_excel('3.xlsx',0)\n list1 = []\n for rownum in range(1, excel.nrows): # 从第2行读取\n list = excel.row_values(rownum) # 获取行数据,为列表形式\n # for i in list:\n # print(i)", "sub_path": "BOSS/method/public/read_file.py", "file_name": "read_file.py", "file_ext": "py", "file_size_in_byte": 686, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "xlrd.open_workbook", "line_number": 7, "usage_type": "call"}]}
{"seq_id": "82086117", "text": "import argparse\nimport numpy as np\nfrom glob import glob\nfrom os import makedirs\nfrom scipy.misc import imread, imresize\nfrom os.path import exists, join, split, realpath, dirname\n\nimport torch\nimport torch.nn.functional as F\n\nfrom utils.swap import Swap\nfrom model.vgg import VGG19\nfrom model.srntt import SRNTT\n\n\nparser = argparse.ArgumentParser('offline_patchMatch_textureSwap')\nparser.add_argument('--data_folder', type=str, default='/home/zwj/Data/RefSR/DIV2K_small', help='The dir of dataset: CUFED or DIV2K')\nargs = parser.parse_args()\n\ndata_folder = args.data_folder\nif 'CUFED' in data_folder:\n input_size = 40\nelif 'DIV2K' in data_folder:\n input_size = 80\nelse:\n raise Exception('Unrecognized dataset!')\n\ninput_path = join(data_folder, 'input')\nref_path = join(data_folder, 'ref')\nmatching_layer = ['relu3_1', 'relu2_1', 'relu1_1']\nsave_path = join(data_folder, 'map_321')\nif not exists(save_path):\n makedirs(save_path)\n\ninput_files = sorted(glob(join(input_path, '*.png')))\nref_files = sorted(glob(join(ref_path, '*.png')))\nn_files = len(input_files)\nassert n_files == len(ref_files)\n\nsrntt = SRNTT(16).cuda()\nprint('Loading SRNTT ...')\nckpt = torch.load('/home/zwj/Projects/Python/SRNTT_Pytorch/log/srntt_vgg19_div2k/2019-09-20-10:06:34/' +\n 'checkpoint/best.pth')\nsrntt.load_state_dict(ckpt['srntt'])\nprint('Done.')\nprint('Loading VGG19 ...')\nnet_vgg19 = VGG19('relu_5-1', ['relu_1-1', 'relu_2-1', 'relu_3-1'], True).cuda()\nprint('Done.')\nswaper = Swap(3, 1)\n\nprint_format = '%%0%dd/%%0%dd' % (len(str(n_files)), len(str(n_files)))\nfor i in range(n_files):\n file_name = join(save_path, split(input_files[i])[-1].replace('.png', '.npz'))\n if exists(file_name):\n continue\n print(print_format % (i + 1, n_files))\n img_in_lr = imresize(imread(input_files[i], mode='RGB'), (input_size, input_size), interp='bicubic')\n img_in_lr = img_in_lr.astype(np.float32) / 127.5 - 1\n img_ref = imresize(imread(ref_files[i], mode='RGB'), (input_size * 4, input_size * 4), interp='bicubic')\n img_ref = img_ref.astype(np.float32) / 127.5 - 1\n img_ref_lr = imresize(img_ref, (input_size, input_size), interp='bicubic')\n img_ref_lr = img_ref_lr.astype(np.float32) / 127.5 - 1\n\n img_in_lr = torch.from_numpy(img_in_lr.transpose((2, 0, 1))).unsqueeze(0).cuda()\n img_ref = torch.from_numpy(img_ref.transpose((2, 0, 1))).unsqueeze(0).cuda()\n img_ref_lr = torch.from_numpy(img_ref_lr.transpose((2, 0, 1))).unsqueeze(0).cuda()\n\n with torch.no_grad():\n img_in_sr = (srntt(img_in_lr, None, None)[0] + 1) * 127.5\n img_ref_sr = (srntt(img_ref_lr, None, None)[0] + 1) * 127.5\n\n # get feature maps via VGG19\n map_in_sr = net_vgg19(img_in_sr)[0][-1]\n map_ref = net_vgg19(img_ref)[0]\n map_ref_sr = net_vgg19(img_ref_sr)[0][-1]\n\n # patch matching and swapping\n other_style = []\n for idx in range(len(map_ref)):\n map_ref[idx] = map_ref[idx].cpu().squeeze().numpy().transpose((1, 2, 0))\n other_style.append([map_ref[idx]])\n other_style = other_style[:-1]\n\n map_in_sr = map_in_sr.cpu().squeeze().numpy().transpose((1, 2, 0))\n map_ref_sr = map_ref_sr.cpu().squeeze().numpy().transpose((1, 2, 0))\n\n maps, weights, correspondence = swaper.conditional_swap_multi_layer(\n content=map_in_sr,\n style=[map_ref[-1]],\n condition=[map_ref_sr],\n other_styles=other_style,\n is_weight=True\n )\n\n # save maps\n np.savez(file_name, target_map=maps, weights=weights, correspondence=correspondence)\n", "sub_path": "offline_patchMatch_textureSwap.py", "file_name": "offline_patchMatch_textureSwap.py", "file_ext": "py", "file_size_in_byte": 3547, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "argparse.ArgumentParser", "line_number": 16, "usage_type": "call"}, {"api_name": "os.path.join", "line_number": 28, "usage_type": "call"}, {"api_name": "os.path.join", "line_number": 29, "usage_type": "call"}, {"api_name": "os.path.join", "line_number": 31, "usage_type": "call"}, {"api_name": "os.path.exists", "line_number": 32, "usage_type": "call"}, {"api_name": "os.makedirs", "line_number": 33, "usage_type": "call"}, {"api_name": "glob.glob", "line_number": 35, "usage_type": "call"}, {"api_name": "os.path.join", "line_number": 35, "usage_type": "call"}, {"api_name": "glob.glob", "line_number": 36, "usage_type": "call"}, {"api_name": "os.path.join", "line_number": 36, "usage_type": "call"}, {"api_name": "model.srntt.SRNTT", "line_number": 40, "usage_type": "call"}, {"api_name": "torch.load", "line_number": 42, "usage_type": "call"}, {"api_name": "model.vgg.VGG19", "line_number": 47, "usage_type": "call"}, {"api_name": "utils.swap.Swap", "line_number": 49, "usage_type": "call"}, {"api_name": "os.path.join", "line_number": 53, "usage_type": "call"}, {"api_name": "os.path.split", "line_number": 53, "usage_type": "call"}, {"api_name": "os.path.exists", "line_number": 54, "usage_type": "call"}, {"api_name": "scipy.misc.imresize", "line_number": 57, "usage_type": "call"}, {"api_name": "scipy.misc.imread", "line_number": 57, "usage_type": "call"}, {"api_name": "numpy.float32", "line_number": 58, "usage_type": "attribute"}, {"api_name": "scipy.misc.imresize", "line_number": 59, "usage_type": "call"}, {"api_name": "scipy.misc.imread", "line_number": 59, "usage_type": "call"}, {"api_name": "numpy.float32", "line_number": 60, "usage_type": "attribute"}, {"api_name": "scipy.misc.imresize", "line_number": 61, "usage_type": "call"}, {"api_name": "numpy.float32", "line_number": 62, "usage_type": "attribute"}, {"api_name": "torch.from_numpy", "line_number": 64, "usage_type": "call"}, {"api_name": "torch.from_numpy", "line_number": 65, "usage_type": "call"}, {"api_name": "torch.from_numpy", "line_number": 66, "usage_type": "call"}, {"api_name": "torch.no_grad", "line_number": 68, "usage_type": "call"}, {"api_name": "numpy.savez", "line_number": 96, "usage_type": "call"}]}
{"seq_id": "605009169", "text": "#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Mon Apr 15 21:12:14 2019\n\n@author: karthikchowdary\n\"\"\"\nimport pandas\nfrom keras.models import Sequential\nfrom keras.layers.core import Dense, Activation\n\n# load dataset\nfrom sklearn.model_selection import train_test_split\n\nimport pandas as pd\n\ndata = pd.read_csv(\"winequalityN.csv\", sep = \",\") \ndata.wine[data.wine == 'white'] = 1\ndata.wine[data.wine == 'red'] = 2\nwith open(\"winequalityN.csv\",'r') as f:\n with open(\"updated_test.csv\",'w') as f1:\n next(f) # skip header line\n for line in f:\n f1.write(line)\n\ndataset = pd.read_csv(\"updated_test.csv\", sep = \",\").values\n\nprint(dataset)\n\nimport numpy as np\nX_train, X_test, Y_train, Y_test = train_test_split(dataset[:,1:12], dataset[:,0],\n test_size=0.25, random_state=87)\n\n\n\nnp.random.seed(155)\n\nfrom tensorflow.python.framework import ops\nops.reset_default_graph()\n\nmy_first_nn = Sequential()\nmy_first_nn.add(Dense(105, input_dim=12, activation='relu'))\n\n\nmy_first_nn.add(Dense(125, input_dim=105, activation='relu'))\nmy_first_nn.add(Dense(1, activation='sigmoid')) \nmy_first_nn.compile(loss='binary_crossentropy', optimizer='adam')\nmy_first_nn_fitted = my_first_nn.fit(X_train, Y_train, epochs=100)\nprint(my_first_nn.summary())", "sub_path": "course/Deep Learning/project/wine.py", "file_name": "wine.py", "file_ext": "py", "file_size_in_byte": 1319, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "pandas.read_csv", "line_number": 17, "usage_type": "call"}, {"api_name": "pandas.read_csv", "line_number": 26, "usage_type": "call"}, {"api_name": "sklearn.model_selection.train_test_split", "line_number": 31, "usage_type": "call"}, {"api_name": "numpy.random.seed", "line_number": 36, "usage_type": "call"}, {"api_name": "numpy.random", "line_number": 36, "usage_type": "attribute"}, {"api_name": "tensorflow.python.framework.ops.reset_default_graph", "line_number": 39, "usage_type": "call"}, {"api_name": "tensorflow.python.framework.ops", "line_number": 39, "usage_type": "name"}, {"api_name": "keras.models.Sequential", "line_number": 41, "usage_type": "call"}, {"api_name": "keras.layers.core.Dense", "line_number": 42, "usage_type": "call"}, {"api_name": "keras.layers.core.Dense", "line_number": 45, "usage_type": "call"}, {"api_name": "keras.layers.core.Dense", "line_number": 46, "usage_type": "call"}]}
{"seq_id": "212543419", "text": "# -*- coding: utf-8 -*-\r\n\"\"\"\r\nCreated on Wed Mar 08 09:26:21 2017\r\n\r\n@author: Harrison Ball\r\n\r\n2017-09-18, RW\r\n - ISEG EHQ102M serial number 480996 back from repair, implement again, seems to work\r\n\"\"\"\r\nfrom collections import OrderedDict\r\n\r\n#=================================================================================================\r\n\r\n# ------------------------ DICTIONARY OF ISEG IDENTIFIERS ------------------------\r\n# maps USB IDs assigned by computer to serial numbers of iseg modules. \r\n# user to ensure dictionary is current, with each re-installation any hardware interface\r\n\r\n#=================================================================================================\r\n\r\n# ------------------------# ------------------------# ------------------------\r\n# This self-contained code queries all ISEG modules an lists the USB IDs of all\r\n# modules currently connected, then gener*ates a list of corresponding serial\r\n# numbers\r\n# ------------------------# ------------------------# ------------------------ \r\n''' \r\nimport visa\r\nimport numpy as np \r\n\r\nrm = visa.ResourceManager()\r\nVISA_IDs= rm.list_resources() \r\nprint VISA_IDs\r\nDEVICES = [rm.open_resource(VISA_IDs[i]) for i in range(len(VISA_IDs))] \r\n\r\ndef DEVICES_ID(device):\r\n ID=device.query('*IDN?')\r\n return ID\r\n \r\nDEVICE_ID_INFO = np.zeros((1, 2)) \r\nfor i in range(len(VISA_IDs)): \r\n DEVICE_ID_INFO = np.concatenate((DEVICE_ID_INFO, np.array([[VISA_IDs[i], \r\n DEVICES_ID(DEVICES[i])]]))) \r\n#print DEVICE_ID_INFO\r\n\r\nfor i in range(len(DEVICE_ID_INFO)):\r\n print DEVICE_ID_INFO[i]\r\n\r\n \r\nCURRENT CONEXTIONS\r\n\r\n[u'ASRL4::INSTR' u'iseg Spezialelektronik GmbH,EHQ 102,480996,3.14\\r\\n']\r\n[u'ASRL5::INSTR' u'iseg Spezialelektronik GmbH,EHQ 102,480997,3.14\\r\\n']\r\n[u'ASRL17::INSTR' u'iseg Spezialelektronik GmbH,EHQ 102,480936,3.14\\r\\n']\r\n[u'ASRL18::INSTR' u'iseg Spezialelektronik GmbH,EHQ 102,480935,3.14\\r\\n']\r\n[u'ASRL19::INSTR' u'THURLBY THANDAR, MX100TP, 436129, 1.03-1.00-1.02\\r\\n']\r\n[u'ASRL20::INSTR' u'iseg Spezialelektronik GmbH,EHQ 102,480931,3.14\\r\\n']\r\n[u'ASRL21::INSTR' u'iseg Spezialelektronik GmbH,EHQ 102,480934,3.14\\r\\n']\r\n[u'ASRL22::INSTR' u'iseg Spezialelektronik GmbH,EHQ 102,480932,3.14\\r\\n']\r\n[u'ASRL23::INSTR' u'iseg Spezialelektronik GmbH,EHQ 102,480933,3.14\\r\\n']\r\n \r\n''' \r\n \r\n#____________ BIJECTIVE DICTIONARY: return ID/USB given USB/ID ______________\r\n\r\nInstID_2_VisaID={}\r\n\r\nInstID_2_VisaID[u'ASRL4::INSTR'] = 'iseg:480996'\r\nInstID_2_VisaID[u'ASRL5::INSTR'] = 'iseg:480997'\r\n#InstID_2_VisaID[u'ASRL6::INSTR'] = 'TEMP:iseg:480499'#TEMPORARY UNIT ON LOAN WHILE UNIT 480996 IS BEING REPAIRED\r\nInstID_2_VisaID[u'ASRL17::INSTR'] = 'iseg:480936'\r\nInstID_2_VisaID[u'ASRL18::INSTR'] = 'iseg:480935'\r\nInstID_2_VisaID[u'ASRL19::INSTR'] = 'MX100TP:436129'\r\nInstID_2_VisaID[u'ASRL20::INSTR'] = 'iseg:480931'\r\nInstID_2_VisaID[u'ASRL21::INSTR'] = 'iseg:480934'\r\nInstID_2_VisaID[u'ASRL22::INSTR'] = 'iseg:480932'\r\nInstID_2_VisaID[u'ASRL23::INSTR'] = 'iseg:480933' \r\n\r\nInstID_2_VisaID['iseg:480996'] = u'ASRL4::INSTR' \r\nInstID_2_VisaID['iseg:480997'] = u'ASRL5::INSTR'\r\n#InstID_2_VisaID['TEMP:iseg:480499'] = u'ASRL6::INSTR' \r\nInstID_2_VisaID['iseg:480936'] = u'ASRL17::INSTR'\r\nInstID_2_VisaID['iseg:480935'] = u'ASRL18::INSTR'\r\nInstID_2_VisaID['MX100TP:436129'] = u'ASRL19::INSTR' \r\nInstID_2_VisaID['iseg:480931'] = u'ASRL20::INSTR' \r\nInstID_2_VisaID['iseg:480934'] = u'ASRL21::INSTR' \r\nInstID_2_VisaID['iseg:480932'] = u'ASRL22::INSTR' \r\nInstID_2_VisaID['iseg:480933'] = u'ASRL23::INSTR' #TEMPORARY UNIT ON LOAN WHILE UNIT 480996 IS BEING REPAIRED\r\n\r\nInstID_2_VisaID['ISEG GND'] = 'N/A: ISEG GND'\r\n\r\n#=================================================================================================\r\n\r\n# -------- CREATE LIST OF COLOURS FOR ASSOCIATING PERMENANTLY TO TRAP SURFACES -------\r\n\r\n#=================================================================================================\r\n\r\n\r\ncolours = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f']\r\n\r\n\r\n\r\n#=================================================================================================\r\n\r\n# -------- DEFINE DICTIONARIES FOR CNX ATTRIBUTES FOR ALL UHV SYSTEM COMPONENTS --------\r\n\r\n#=================================================================================================\r\n#\r\n#\r\n#\r\n# ________________________________________________________________________________________________\r\n\r\n# ----------------------# FT#1 (D-SUB) # ------------------------\r\n# ________________________________________________________________________________________________\r\n\r\n\r\n# ----------------------# ----------------------# ----------------------# ------------------------\r\n# ----------------------# ELECTRON GUN #1 # ------------------------\r\n# ----------------------# ----------------------# ----------------------# ------------------------\r\n#\r\n#____________________ 'Electron Gun #1: emission-bias' _____________________\r\n\r\negun1_emission_bias = {}\r\negun1_emission_bias['TRAP_SURF_NAME_LONG'] = 'Electron Gun #1: emission-bias'\r\negun1_emission_bias['TRAP_SURF_NAME_SHORT'] = 'egun1:emission-bias'\r\negun1_emission_bias['ID_TAG'] = '1.1 & 1.2'\r\negun1_emission_bias['FT_PIN'] = '1.1 & 1.2'\r\negun1_emission_bias['INST_ID'] = 'iseg:480935' #previously UNIT 480996, but exchanged with STring (now controlled by TEMP:480449 during repair of faulty 480996 unit)\r\negun1_emission_bias['INST_CHANNEL'] = 'N/A'\r\negun1_emission_bias['VISA_ID'] = InstID_2_VisaID[egun1_emission_bias['INST_ID']]\r\negun1_emission_bias['NIDAQ_AI'] = 'to be filled'\r\negun1_emission_bias['NIDAQ_2_HV_CONVERSION'] = 'N/A'\r\n\r\n#____________________ 'Electron Gun #1: emission-source' _____________________\r\n\r\negun1_emission_source = {}\r\negun1_emission_source['TRAP_SURF_NAME_LONG'] = 'Electron Gun #1: emission-source'\r\negun1_emission_source['TRAP_SURF_NAME_SHORT'] = 'egun1:emission-source'\r\negun1_emission_source['ID_TAG'] = '1.1/1.2'\r\negun1_emission_source['FT_PIN'] = '1.1/1.2'\r\negun1_emission_source['INST_ID'] = 'MX100TP:436129'\r\negun1_emission_source['INST_CHANNEL'] = 1\r\negun1_emission_source['VISA_ID'] = InstID_2_VisaID[egun1_emission_bias['INST_ID']]\r\negun1_emission_source['NIDAQ_AI'] = 'to be filled'\r\negun1_emission_source['COLOUR'] = colours[0]\r\n\r\n#____________________ 'Electron Gun #1: cathode plate' _____________________\r\n\r\negun1_cathode = {}\r\negun1_cathode['TRAP_SURF_NAME_LONG'] = 'Electron Gun #1: cathode plate'\r\negun1_cathode['TRAP_SURF_NAME_SHORT'] = 'egun1:cathode'\r\negun1_cathode['ID_TAG'] = '1.5'\r\negun1_cathode['FT_PIN'] = '1.5'\r\negun1_cathode['INST_ID'] = 'MX100TP:436129'\r\negun1_cathode['INST_CHANNEL'] = 3\r\negun1_cathode['VISA_ID'] = InstID_2_VisaID[egun1_cathode['INST_ID']]\r\negun1_cathode['NIDAQ_AI'] = 'to be filled'\r\negun1_cathode['COLOUR'] = colours[0]\r\n\r\n#____________________ 'Electron Gun #1: annode plate' _____________________\r\n\r\negun1_anode = {}\r\negun1_anode['TRAP_SURF_NAME_LONG'] = 'Electron Gun #1: anode plate'\r\negun1_anode['TRAP_SURF_NAME_SHORT'] = 'egun1:anode'\r\negun1_anode['ID_TAG'] = '1.6'\r\negun1_anode['FT_PIN'] = '1.6'\r\negun1_anode['INST_ID'] = 'MX100TP:436129'\r\negun1_anode['INST_CHANNEL'] = 2\r\negun1_anode['VISA_ID'] = InstID_2_VisaID[egun1_anode['INST_ID']]\r\negun1_anode['NIDAQ_AI'] = 'to be filled'\r\negun1_anode['COLOUR'] = colours[0]\r\n\r\n\r\n# ----------------------# ----------------------# ----------------------# ------------------------\r\n# ----------------------# ELECTRON GUN #2 # ------------------------\r\n# ----------------------# ----------------------# ----------------------# ------------------------\r\n\r\n\r\n#____________________ 'Electron Gun #2: emission-bias' _____________________\r\n\r\negun2_emission_bias = {}\r\negun2_emission_bias['TRAP_SURF_NAME_LONG'] = 'Electron Gun #2: emission-bias'\r\negun2_emission_bias['TRAP_SURF_NAME_SHORT'] = 'egun2:emission-bias'\r\negun2_emission_bias['ID_TAG'] = '1.7/1.8 OR 1.9/1.10'\r\negun2_emission_bias['FT_PIN'] = '1.7/1.8 OR 1.9/1.10'\r\negun2_emission_bias['INST_ID'] = 'MX100TP:436129'\r\negun2_emission_bias['INST_CHANNEL'] = 1\r\negun2_emission_bias['VISA_ID'] = InstID_2_VisaID[egun2_emission_bias['INST_ID']]\r\negun2_emission_bias['NIDAQ_AI'] = 'to be filled'\r\negun2_emission_bias['COLOUR'] = colours[0]\r\n\r\n#____________________ 'Electron Gun #2: cathode plate' _____________________\r\n\r\negun2_cathode = {}\r\negun2_cathode['TRAP_SURF_NAME_LONG'] = 'Electron Gun #2: cathode plate'\r\negun2_cathode['TRAP_SURF_NAME_SHORT'] = 'egun2:cathode'\r\negun2_cathode['ID_TAG'] = '1.11'\r\negun2_cathode['FT_PIN'] = '1.11'\r\negun2_cathode['INST_ID'] = 'MX100TP:436129'\r\negun2_cathode['INST_CHANNEL'] = 2\r\negun2_cathode['VISA_ID'] = InstID_2_VisaID[egun2_cathode['INST_ID']]\r\negun2_cathode['NIDAQ_AI'] = 'to be filled'\r\negun2_cathode['COLOUR'] = colours[0]\r\n\r\n#____________________ 'Electron Gun #2: annode plate' _____________________\r\n\r\negun2_anode = {}\r\negun2_anode['TRAP_SURF_NAME_LONG'] = 'Electron Gun #2: anode plate'\r\negun2_anode['TRAP_SURF_NAME_SHORT'] = 'egun2:anode'\r\negun2_anode['ID_TAG'] = '1.12'\r\negun2_anode['FT_PIN'] = '1.12'\r\negun2_anode['INST_ID'] = 'MX100TP:436129'\r\negun2_anode['INST_CHANNEL'] = 3\r\negun2_anode['VISA_ID'] = InstID_2_VisaID[egun2_anode['INST_ID']]\r\negun2_anode['NIDAQ_AI'] = 'to be filled'\r\negun2_anode['COLOUR'] = colours[0]\r\n\r\n\r\n# ________________________________________________________________________________________________\r\n\r\n# ----------------------# FT#2 # ------------------------\r\n# ________________________________________________________________________________________________\r\n##\r\n#\r\n#____________________ 'Electron Gun #1: ExB plate (LHS)' _____________________\r\n\r\negun1ExB_LHS = {}\r\negun1ExB_LHS['TRAP_SURF_NAME_LONG'] = 'Electron Gun #1: ExB plate (LHS)'\r\negun1ExB_LHS['TRAP_SURF_NAME_SHORT'] = 'egun1:ExB:LHS'\r\negun1ExB_LHS['ID_TAG'] = '2.1'\r\negun1ExB_LHS['FT_PIN'] = '2.1'\r\negun1ExB_LHS['INST_ID'] = 'iseg:480936'#(previously: 'iseg:480996', exchanged with STE2)\r\negun1ExB_LHS['INST_CHANNEL'] = 'N/A'\r\negun1ExB_LHS['VISA_ID'] = InstID_2_VisaID[egun1ExB_LHS['INST_ID']]\r\negun1ExB_LHS['NIDAQ_AI'] = '6'\r\negun1ExB_LHS['NIDAQ_2_HV_CONVERSION'] = 'N/A'\r\n\r\n#____________________ 'Electron Gun #1: ExB plate (RHS)' _____________________\r\n\r\negun1ExB_RHS = {}\r\negun1ExB_RHS['TRAP_SURF_NAME_LONG'] = 'Electron Gun #1: ExB plate (RHS)'\r\negun1ExB_RHS['TRAP_SURF_NAME_SHORT'] = 'egun1:ExB:RHS'\r\negun1ExB_RHS['ID_TAG'] = '2.2'\r\negun1ExB_RHS['FT_PIN'] = '2.2'\r\negun1ExB_RHS['INST_ID'] = 'iseg:480997'\r\negun1ExB_RHS['INST_CHANNEL'] = 'N/A'\r\negun1ExB_RHS['VISA_ID'] = InstID_2_VisaID[egun1ExB_RHS['INST_ID']]\r\negun1ExB_RHS['NIDAQ_AI'] = '7'\r\negun1ExB_RHS['NIDAQ_2_HV_CONVERSION'] = 'N/A'\r\n\r\n#____________________ 'Electron Gun #2: ExB plate (LHS)' _____________________\r\n\r\negun2ExB_LHS = {}\r\negun2ExB_LHS['TRAP_SURF_NAME_LONG'] = 'Electron Gun #2: ExB plate (LHS)'\r\negun2ExB_LHS['TRAP_SURF_NAME_SHORT'] = 'egun2:ExB:LHS'\r\negun2ExB_LHS['ID_TAG'] = '2.3'\r\negun2ExB_LHS['FT_PIN'] = '2.3'\r\negun2ExB_LHS['INST_ID'] = 'iseg:480996'\r\negun2ExB_LHS['INST_CHANNEL'] = 'N/A'\r\n#egun2ExB_LHS['VISA_ID'] = InstID_2_VisaID[egun2ExB_LHS['INST_ID']]\r\negun2ExB_LHS['NIDAQ_AI'] = '8'\r\negun2ExB_LHS['NIDAQ_2_HV_CONVERSION'] = 'N/A'\r\n\r\n#____________________ 'Electron Gun #2: ExB plate (RHS)' _____________________\r\n\r\negun2ExB_RHS = {}\r\negun2ExB_RHS['TRAP_SURF_NAME_LONG'] = 'Electron Gun #2: ExB plate (RHS)'\r\negun2ExB_RHS['TRAP_SURF_NAME_SHORT'] = 'egun2:ExB:RHS'\r\negun2ExB_RHS['ID_TAG'] = '2.4'\r\negun2ExB_RHS['FT_PIN'] = '2.4'\r\negun2ExB_RHS['INST_ID'] = 'iseg:480997'\r\negun2ExB_RHS['INST_CHANNEL'] = 'N/A'\r\n#egun2ExB_RHS['VISA_ID'] = InstID_2_VisaID[egun2ExB_RHS['INST_ID']]\r\negun2ExB_RHS['NIDAQ_AI'] = '9'\r\negun2ExB_RHS['NIDAQ_2_HV_CONVERSION'] = 'N/A'\r\n\r\n\r\n#____________________ 'Loading Trap: end-cap #1' _____________________\r\n\r\nLoading_EndCap1 = {}\r\nLoading_EndCap1['TRAP_SURF_NAME_LONG'] = 'Loading Trap: end-cap #1'\r\nLoading_EndCap1['TRAP_SURF_NAME_SHORT'] = 'LoadTrp:EC1'\r\nLoading_EndCap1['ID_TAG'] = '2.5'\r\nLoading_EndCap1['FT_PIN'] = '2.5'\r\nLoading_EndCap1['INST_ID'] = 'ISEG GND'\r\nLoading_EndCap1['VISA_ID'] = 'ISEG GND'\r\nLoading_EndCap1['NIDAQ_AI'] = 'to be filled'\r\n\r\n#____________________ 'Loading Trap: centre ring' _____________________\r\n\r\nLoading_CentreRing = {}\r\nLoading_CentreRing['TRAP_SURF_NAME_LONG'] = 'Loading Trap: centre ring'\r\nLoading_CentreRing['TRAP_SURF_NAME_SHORT'] = 'LoadTrp:CR'\r\nLoading_CentreRing['ID_TAG'] = '2.6'\r\nLoading_CentreRing['FT_PIN'] = '2.6'\r\nLoading_CentreRing['INST_ID'] = 'iseg:480931'\r\nLoading_CentreRing['VISA_ID'] = InstID_2_VisaID[Loading_CentreRing['INST_ID']]\r\nLoading_CentreRing['NIDAQ_AI'] = '0'\r\n#Loading_CentreRing['NIDAQ_2_HV_CONVERSION'] = 1000/4.250\r\nLoading_CentreRing['NIDAQ_2_HV_CONVERSION'] = 220.1218463\r\nLoading_CentreRing['COLOUR'] = colours[0]\r\n\r\n#____________________ 'Loading Trap: end-cap #2' _____________________\r\n\r\nLoading_EndCap2 = {}\r\nLoading_EndCap2['TRAP_SURF_NAME_LONG'] = 'Loading Trap: end-cap #2'\r\nLoading_EndCap2['TRAP_SURF_NAME_SHORT'] = 'LoadTrp:EC2'\r\nLoading_EndCap2['ID_TAG'] = '2.7'\r\nLoading_EndCap2['FT_PIN'] = '2.7'\r\nLoading_EndCap2['INST_ID'] = 'iseg:480932'\r\nLoading_EndCap2['VISA_ID'] = InstID_2_VisaID[Loading_EndCap2['INST_ID']]\r\nLoading_EndCap2['NIDAQ_AI'] = '1'\r\n#Loading_EndCap2['NIDAQ_2_HV_CONVERSION'] = 1000/4.160\r\nLoading_EndCap2['NIDAQ_2_HV_CONVERSION'] = 220.7230592\r\nLoading_EndCap2['COLOUR'] = colours[1]\r\n\r\n#\r\n#\r\n# ________________________________________________________________________________________________\r\n\r\n# ----------------------# FT#3 # ------------------------\r\n# ________________________________________________________________________________________________\r\n\r\n#____________________ 'Rotating Wall: Quadruplet #1' _____________________\r\n\r\nRW1 = {}\r\nRW1['TRAP_SURF_NAME_LONG'] = 'Rotating Wall: Quadruplet #1'\r\nRW1['TRAP_SURF_NAME_SHORT'] = 'RW1'\r\nRW1['ID_TAG'] = '3.4'\r\nRW1['FT_PIN'] = '3.1'\r\nRW1['INST_ID'] = 'iseg:480933'\r\nRW1['VISA_ID'] = InstID_2_VisaID[RW1['INST_ID']]\r\nRW1['NIDAQ_AI'] = '2'\r\n#RW1['NIDAQ_2_HV_CONVERSION'] = 1000/4.260\r\nRW1['NIDAQ_2_HV_CONVERSION'] = 220.6153391\r\nRW1['COLOUR'] = colours[2]\r\n\r\n#____________________ 'Rotating Wall: Quadruplet #2' _____________________\r\n\r\nRW2 = {}\r\nRW2['TRAP_SURF_NAME_LONG'] = 'Rotating Wall: Quadruplet #2'\r\nRW2['TRAP_SURF_NAME_SHORT'] = 'RW2'\r\nRW2['ID_TAG'] = '3.5'\r\nRW2['FT_PIN'] = '3.2'\r\nRW2['INST_ID'] = 'iseg:480933'\r\nRW2['VISA_ID'] = InstID_2_VisaID[RW2['INST_ID']]\r\nRW2['NIDAQ_AI'] = '2'\r\n#RW2['NIDAQ_2_HV_CONVERSION'] = 1000/4.260\r\nRW2['NIDAQ_2_HV_CONVERSION'] = RW1['NIDAQ_2_HV_CONVERSION']\r\nRW2['COLOUR'] = colours[2]\r\n\r\n#____________________ 'Rotating Wall: Quadruplet #3' _____________________\r\n\r\nRW3 = {}\r\nRW3['TRAP_SURF_NAME_LONG'] = 'Rotating Wall: Quadruplet #3'\r\nRW3['TRAP_SURF_NAME_SHORT'] = 'RW3'\r\nRW3['ID_TAG'] = '3.6'\r\nRW3['FT_PIN'] = '3.3'\r\nRW3['INST_ID'] = 'iseg:480933'\r\nRW3['VISA_ID'] = InstID_2_VisaID[RW3['INST_ID']]\r\nRW3['NIDAQ_AI'] = '2'\r\n#RW3['NIDAQ_2_HV_CONVERSION'] = 1000/4.260\r\nRW3['NIDAQ_2_HV_CONVERSION'] = RW1['NIDAQ_2_HV_CONVERSION']\r\nRW3['COLOUR'] = colours[2]\r\n\r\n#____________________ 'Rotating Wall: Quadruplet #4' _____________________\r\n\r\nRW4 = {}\r\nRW4['TRAP_SURF_NAME_LONG'] = 'Rotating Wall: Quadruplet #4'\r\nRW4['TRAP_SURF_NAME_SHORT'] = 'RW4'\r\nRW4['ID_TAG'] = '3.7'\r\nRW4['FT_PIN'] = '3.4'\r\nRW4['INST_ID'] = 'iseg:480933'\r\nRW4['VISA_ID'] = InstID_2_VisaID[RW4['INST_ID']]\r\nRW4['NIDAQ_AI'] = '2'\r\n#RW4['NIDAQ_2_HV_CONVERSION'] = 1000/4.260\r\nRW4['NIDAQ_2_HV_CONVERSION'] = RW1['NIDAQ_2_HV_CONVERSION']\r\nRW4['COLOUR'] = colours[2]\r\n#\r\n#\r\n# ________________________________________________________________________________________________\r\n\r\n# ----------------------# FT#4 # ------------------------\r\n# ________________________________________________________________________________________________\r\n\r\n#\r\n#____________________ 'Science Trap: end-cap #1' _____________________\r\n\r\nScience_EndCap1 = {}\r\nScience_EndCap1['TRAP_SURF_NAME_LONG'] = 'Science Trap: end-cap #1'\r\nScience_EndCap1['TRAP_SURF_NAME_SHORT'] = 'SciTrp:EC1'\r\nScience_EndCap1['ID_TAG'] = '3.1'\r\nScience_EndCap1['FT_PIN'] = '4.1'\r\nScience_EndCap1['INST_ID'] = 'iseg:480934'\r\nScience_EndCap1['VISA_ID'] = InstID_2_VisaID[Science_EndCap1['INST_ID']]\r\nScience_EndCap1['NIDAQ_AI'] = '3'\r\n#Science_EndCap1['NIDAQ_2_HV_CONVERSION'] = 1000/4.260\r\nScience_EndCap1['NIDAQ_2_HV_CONVERSION'] = 221.1746219\r\nScience_EndCap1['COLOUR'] = colours[3]\r\n\r\n#____________________ 'Science Trap: centre ring' _____________________\r\n\r\nScience_CentreRing = {}\r\nScience_CentreRing['TRAP_SURF_NAME_LONG'] = 'Science Trap: centre ring'\r\nScience_CentreRing['TRAP_SURF_NAME_SHORT'] = 'SciTrp:CR'\r\nScience_CentreRing['ID_TAG'] = '3.2'\r\nScience_CentreRing['FT_PIN'] = '4.2'\r\nScience_CentreRing['INST_ID'] = 'iseg:480996'# previously 'iseg:480935', before switching this unit to egun bias\r\nScience_CentreRing['VISA_ID'] = InstID_2_VisaID[Science_CentreRing['INST_ID']]\r\nScience_CentreRing['NIDAQ_AI'] = '4'\r\n#Science_CentreRing['NIDAQ_2_HV_CONVERSION'] = 1000/4.185\r\nScience_CentreRing['NIDAQ_2_HV_CONVERSION'] = 221.1201484\r\nScience_CentreRing['COLOUR'] = colours[4]\r\n\r\n#____________________ 'Science Trap: end-cap #2' _____________________\r\n\r\nScience_EndCap2 = {}\r\nScience_EndCap2['TRAP_SURF_NAME_LONG'] = 'Science Trap: end-cap #2'\r\nScience_EndCap2['TRAP_SURF_NAME_SHORT'] = 'SciTrp:EC2'\r\nScience_EndCap2['ID_TAG'] = '3.3'\r\nScience_EndCap2['FT_PIN'] = '4.3'\r\nScience_EndCap2['INST_ID'] = 'ISEG GND' #previously: iseg:480996' #previously: 'iseg:480936', exchanged with egun1 ExB LHS\r\nScience_EndCap2['VISA_ID'] = InstID_2_VisaID[Science_EndCap2['INST_ID']]\r\nScience_EndCap2['NIDAQ_AI'] = '5'\r\n#Science_EndCap2['NIDAQ_2_HV_CONVERSION'] = 1000/4.195\r\nScience_EndCap2['NIDAQ_2_HV_CONVERSION'] = 219.4036463\r\nScience_EndCap2['COLOUR'] = colours[5]\r\n\r\n#____________________ 'Wire Mesh' _____________________\r\n\r\nWireMesh = {}\r\nWireMesh['TRAP_SURF_NAME_LONG'] = 'Wire Mesh'\r\nWireMesh['TRAP_SURF_NAME_SHORT'] = 'Wire Mesh'\r\nWireMesh['ID_TAG'] = '3.4'\r\nWireMesh['FT_PIN'] = '4.4'\r\nWireMesh['INST_ID'] = 'ISEG GND'\r\nWireMesh['VISA_ID'] = 'ISEG GND'\r\nWireMesh['NIDAQ_AI'] = 'to be filled'\r\n\r\n#=================================================================================================\r\n\r\n# TOP-LEVEL DICTIONARY CALLING E-GUN SURFACES\r\n\r\n#=================================================================================================\r\n\r\negun1_surf_dict = OrderedDict()\r\n\r\n\r\negun1_surf_dict['Electron Gun #1: emission-bias']= egun1_emission_bias \r\negun1_surf_dict['Electron Gun #1: emission-source']= egun1_emission_source \r\n\r\negun1_surf_dict['Electron Gun #1: cathode plate']= egun1_cathode \r\negun1_surf_dict['Electron Gun #1: anode plate']= egun1_anode \r\n \r\negun1_surf_dict['Electron Gun #1: ExB plate (LHS)']= egun1ExB_LHS \r\negun1_surf_dict['Electron Gun #1: ExB plate (RHS)']= egun1ExB_RHS\r\n\r\n \r\negun2_surf_dict = OrderedDict() \r\n \r\negun2_surf_dict['Electron Gun #2: emission-bias']= egun2_emission_bias \r\negun2_surf_dict['Electron Gun #2: cathode plate']= egun2_cathode \r\negun2_surf_dict['Electron Gun #2: anode plate']= egun2_anode \r\n \r\negun2_surf_dict['Electron Gun #2: ExB plate (LHS)']= egun2ExB_LHS \r\negun2_surf_dict['Electron Gun #2: ExB plate (RHS)']= egun2ExB_RHS\r\n\r\n \r\n#=================================================================================================\r\n\r\n# TOP-LEVEL DICTIONARY CALLING TRAP-SUFRACES \r\n\r\n#=================================================================================================\r\n\r\n\r\ntrap_surf_dict = OrderedDict()\r\n\r\ntrap_surf_dict['Loading Trap: end-cap #1']= Loading_EndCap1\r\ntrap_surf_dict['Loading Trap: centre ring']= Loading_CentreRing\r\ntrap_surf_dict['Loading Trap: end-cap #2']= Loading_EndCap2\r\n\r\ntrap_surf_dict['Rotating Wall: Quadruplet #1']= RW1\r\ntrap_surf_dict['Rotating Wall: Quadruplet #2']= RW2\r\ntrap_surf_dict['Rotating Wall: Quadruplet #3']= RW3\r\ntrap_surf_dict['Rotating Wall: Quadruplet #4']= RW4\r\n\r\ntrap_surf_dict['Science Trap: end-cap #1']= Science_EndCap1\r\ntrap_surf_dict['Science Trap: centre ring']= Science_CentreRing\r\ntrap_surf_dict['Science Trap: end-cap #2']= Science_EndCap2\r\n\r\ntrap_surf_dict['Wire Mesh']= WireMesh\r\n\r\n#=================================================================================================\r\n\r\n# TOP-LEVEL DICTIONARY CALLING TRAP-SUFRACES TO BE CONTROLLED BY ISEG HV POWER SUPPLY \r\n\r\n#=================================================================================================\r\n\r\n\r\niseg_controlled_trap_surfaces = OrderedDict()\r\n\r\n #iseg_controlled_trap_surfaces['Loading Trap: end-cap #1']= Loading_EndCap1\r\n\r\niseg_controlled_trap_surfaces['Loading Trap: centre ring']= Loading_CentreRing\r\niseg_controlled_trap_surfaces['Loading Trap: end-cap #2']= Loading_EndCap2\r\niseg_controlled_trap_surfaces['Science Trap: end-cap #1']= Science_EndCap1\r\niseg_controlled_trap_surfaces['Rotating Wall: Quadruplet #1']= RW1\r\niseg_controlled_trap_surfaces['Science Trap: centre ring']= Science_CentreRing\r\n#iseg_controlled_trap_surfaces['Science Trap: end-cap #2']= Science_EndCap2\r\n\r\n #iseg_controlled_trap_surfaces['Wire Mesh']= WireMesh\r\n\r\n#=================================================================================================\r\n\r\n# TOP-LEVEL DICTIONARY CALLING EGUN-SUFRACES TO BE CONTROLLED BY ISEG HV POWER SUPPLY \r\n\r\n#=================================================================================================\r\n\r\nMX100TP_controlled_egun_surfaces = OrderedDict() \r\niseg_controlled_egun_surfaces = OrderedDict() \r\n\r\nMX100TP_controlled_egun_surfaces['Electron Gun #1: cathode plate']= egun1_cathode \r\nMX100TP_controlled_egun_surfaces['Electron Gun #1: anode plate']= egun1_anode \r\n\r\nMX100TP_controlled_egun_surfaces['Electron Gun #1: emission-source']= egun1_emission_source \r\niseg_controlled_egun_surfaces['Electron Gun #1: emission-bias']= egun1_emission_bias \r\n\r\niseg_controlled_egun_surfaces['Electron Gun #1: ExB plate (LHS)']= egun1ExB_LHS \r\niseg_controlled_egun_surfaces['Electron Gun #1: ExB plate (RHS)']= egun1ExB_RHS \r\n \r\n \r\n \r\n \r\n\r\n\r\n", "sub_path": "Penning_trap_cxn_dictionaries_v1.py", "file_name": "Penning_trap_cxn_dictionaries_v1.py", "file_ext": "py", "file_size_in_byte": 22605, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "collections.OrderedDict", "line_number": 444, "usage_type": "call"}, {"api_name": "collections.OrderedDict", "line_number": 457, "usage_type": "call"}, {"api_name": "collections.OrderedDict", "line_number": 474, "usage_type": "call"}, {"api_name": "collections.OrderedDict", "line_number": 498, "usage_type": "call"}, {"api_name": "collections.OrderedDict", "line_number": 517, "usage_type": "call"}, {"api_name": "collections.OrderedDict", "line_number": 518, "usage_type": "call"}]}
{"seq_id": "69390624", "text": "# This file is part of Tryton. The COPYRIGHT file at the top level of\n# this repository contains the full copyright notices and license terms.\nimport warnings\n\nfrom sql import Cast, Literal, Query, Expression\nfrom sql.functions import Substring, Position\n\nfrom .field import (Field, search_order_validate, context_validate,\n with_inactive_records)\nfrom .selection import SelectionMixin\nfrom ...transaction import Transaction\nfrom ...pool import Pool\nfrom ...rpc import RPC\n\n\nclass Reference(Field, SelectionMixin):\n '''\n Define a reference field (``str``).\n '''\n _type = 'reference'\n _sql_type = 'VARCHAR'\n\n def __init__(self, string='', selection=None, selection_change_with=None,\n search_order=None, search_context=None, help='', required=False,\n readonly=False, domain=None, states=None, select=False,\n on_change=None, on_change_with=None, depends=None, context=None,\n loading='lazy', datetime_field=None):\n '''\n :param selection: A list or a function name that returns a list.\n The list must be a list of tuples. First member is an internal name\n of model and the second is the user name of model.\n :param datetime_field: The name of the field that contains the datetime\n value to read the target records.\n :param search_order: The order to use when searching for a record\n :param search_context: The context to use when searching for a record\n '''\n if datetime_field:\n if depends:\n depends.append(datetime_field)\n else:\n depends = [datetime_field]\n super(Reference, self).__init__(string=string, help=help,\n required=required, readonly=readonly, domain=domain, states=states,\n select=select, on_change=on_change, on_change_with=on_change_with,\n depends=depends, context=context, loading=loading)\n self.datetime_field = datetime_field\n self.selection = selection or None\n self.selection_change_with = set()\n if selection_change_with:\n warnings.warn('selection_change_with argument is deprecated, '\n 'use the depends decorator',\n DeprecationWarning, stacklevel=2)\n self.selection_change_with |= set(selection_change_with)\n self.__search_order = None\n self.search_order = search_order\n self.__search_context = None\n self.search_context = search_context or {}\n\n __init__.__doc__ += Field.__init__.__doc__\n\n @property\n def search_order(self):\n return self.__search_order\n\n @search_order.setter\n def search_order(self, value):\n search_order_validate(value)\n self.__search_order = value\n\n @property\n def search_context(self):\n return self.__search_context\n\n @search_context.setter\n def search_context(self, value):\n context_validate(value)\n self.__search_context = value\n\n def set_rpc(self, model):\n super(Reference, self).set_rpc(model)\n if not isinstance(self.selection, (list, tuple)):\n assert hasattr(model, self.selection), \\\n 'Missing %s on model %s' % (self.selection, model.__name__)\n instantiate = 0 if self.selection_change_with else None\n model.__rpc__.setdefault(\n self.selection, RPC(instantiate=instantiate))\n\n def get(self, ids, model, name, values=None):\n '''\n Replace removed reference id by None.\n '''\n pool = Pool()\n if values is None:\n values = {}\n res = {}\n for i in values:\n res[i['id']] = i[name]\n ref_to_check = {}\n for i in ids:\n if not (i in res):\n res[i] = None\n continue\n if not res[i]:\n continue\n ref_model, ref_id = res[i].split(',', 1)\n if not ref_model:\n continue\n try:\n ref_id = int(ref_id)\n except Exception:\n continue\n if ref_id < 0:\n continue\n res[i] = ref_model + ',' + str(ref_id)\n ref_to_check.setdefault(ref_model, (set(), []))\n ref_to_check[ref_model][0].add(ref_id)\n ref_to_check[ref_model][1].append(i)\n\n # Check if reference ids still exist\n with Transaction().set_context(active_test=False), \\\n Transaction().set_context(_check_access=False):\n for ref_model, (ref_ids, ids) in ref_to_check.items():\n try:\n pool.get(ref_model)\n except KeyError:\n res.update(dict((i, None) for i in ids))\n continue\n Ref = pool.get(ref_model)\n refs = Ref.search([\n ('id', 'in', list(ref_ids)),\n ], order=[])\n refs = list(map(str, refs))\n for i in ids:\n if res[i] not in refs:\n res[i] = None\n return res\n\n def __set__(self, inst, value):\n from ..model import Model\n if not isinstance(value, (Model, type(None))):\n if isinstance(value, str):\n target, value = value.split(',')\n else:\n target, value = value\n Target = Pool().get(target)\n if isinstance(value, dict):\n value = Target(**value)\n else:\n value = Target(value)\n super(Reference, self).__set__(inst, value)\n\n def sql_format(self, value):\n if not isinstance(value, (str, Query, Expression)):\n try:\n value = '%s,%s' % tuple(value)\n except TypeError:\n pass\n return super(Reference, self).sql_format(value)\n\n @with_inactive_records\n def convert_domain(self, domain, tables, Model):\n if '.' not in domain[0]:\n return super(Reference, self).convert_domain(domain, tables, Model)\n pool = Pool()\n name, operator, value, target = domain[:4]\n Target = pool.get(target)\n table, _ = tables[None]\n name, target_name = name.split('.', 1)\n assert name == self.name\n column = self.sql_column(table)\n target_domain = [(target_name,) + tuple(domain[1:3])\n + tuple(domain[4:])]\n if 'active' in Target._fields:\n target_domain.append(('active', 'in', [True, False]))\n query = Target.search(target_domain, order=[], query=True)\n return (Cast(Substring(column,\n Position(',', column) + Literal(1)),\n Model.id.sql_type().base).in_(query)\n & column.ilike(target + ',%'))\n", "sub_path": "lib/python3.8/site-packages/trytond/model/fields/reference.py", "file_name": "reference.py", "file_ext": "py", "file_size_in_byte": 6785, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "field.Field", "line_number": 16, "usage_type": "name"}, {"api_name": "selection.SelectionMixin", "line_number": 16, "usage_type": "name"}, {"api_name": "warnings.warn", "line_number": 50, "usage_type": "call"}, {"api_name": "field.Field.__init__", "line_number": 59, "usage_type": "attribute"}, {"api_name": "field.Field", "line_number": 59, "usage_type": "name"}, {"api_name": "field.search_order_validate", "line_number": 67, "usage_type": "call"}, {"api_name": "field.context_validate", "line_number": 76, "usage_type": "call"}, {"api_name": "rpc.RPC", "line_number": 86, "usage_type": "call"}, {"api_name": "pool.Pool", "line_number": 92, "usage_type": "call"}, {"api_name": "transaction.Transaction", "line_number": 120, "usage_type": "call"}, {"api_name": "transaction.Transaction", "line_number": 121, "usage_type": "call"}, {"api_name": "pool.get", "line_number": 124, "usage_type": "call"}, {"api_name": "pool.get", "line_number": 128, "usage_type": "call"}, {"api_name": "model.Model", "line_number": 140, "usage_type": "name"}, {"api_name": "pool.Pool", "line_number": 145, "usage_type": "call"}, {"api_name": "sql.Query", "line_number": 153, "usage_type": "name"}, {"api_name": "sql.Expression", "line_number": 153, "usage_type": "name"}, {"api_name": "model.Model", "line_number": 163, "usage_type": "name"}, {"api_name": "pool.Pool", "line_number": 164, "usage_type": "call"}, {"api_name": "pool.get", "line_number": 166, "usage_type": "call"}, {"api_name": "sql.Cast", "line_number": 176, "usage_type": "call"}, {"api_name": "sql.functions.Substring", "line_number": 176, "usage_type": "call"}, {"api_name": "sql.functions.Position", "line_number": 177, "usage_type": "call"}, {"api_name": "sql.Literal", "line_number": 177, "usage_type": "call"}, {"api_name": "model.Model.id.sql_type", "line_number": 178, "usage_type": "call"}, {"api_name": "model.Model.id", "line_number": 178, "usage_type": "attribute"}, {"api_name": "model.Model", "line_number": 178, "usage_type": "name"}, {"api_name": "field.with_inactive_records", "line_number": 160, "usage_type": "name"}]}
{"seq_id": "426584858", "text": "#!/usr/bin/env python3\nimport time\nimport numpy as np\nimport pandas as pd\nimport tensorflow as tf\nfrom tensorflow import keras\nimport matplotlib.pyplot as plt\n\nclass_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',\n 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']\n\ndef importMNIST(numout):\n digit_mnist = keras.datasets.mnist\n (train_images, train_labels), (test_images, test_labels) = digit_mnist.load_data()\n image_size = train_images[0].shape[1] * train_images[0].shape[1]\n \n numin = image_size\n \n a = np.array([np.zeros(numin) for i in range(numout)])\n i = 0\n j = 0\n while(i < numout and j < numin):\n for x in range(numin // numout):\n a[i][j+x] = 1\n i = i + 1\n j = j + numin // numout\n a = np.matrix(a)\n image_size = train_images[0].shape[1] * train_images[0].shape[1]\n train_images = np.array([np.reshape(x, (image_size, 1)) for x in train_images])\n test_images = np.array([np.reshape(x, (image_size, 1)) for x in test_images])\n \n train_images = np.array([a * i for i in train_images]) #/ 255.0\n \n print(train_images) \n test_images = np.array([a * i for i in test_images]) #/ 255.0\n print(train_images.shape)\n print(test_images.shape)\n return train_images, train_labels, test_images, test_labels\n\n\ndef importMNIST():\n fashion_mnist = keras.datasets.fashion_mnist\n (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()\n plt.figure(figsize = (10, 10))\n for i in range(25):\n plt.subplot(5, 5, i+ 1)\n plt.xticks([])\n plt.yticks([])\n plt.grid(False)\n plt.imshow(train_images[i], cmap=plt.cm.binary)\n plt.xlabel(class_names[train_labels[i]])\n plt.show() \n image_size = train_images[0].shape[1] * train_images[0].shape[1]\n train_images = np.array([np.reshape(x, (image_size, 1)) for x in train_images])\n test_images = np.array([np.reshape(x, (image_size, 1)) for x in test_images])\n train_images = train_images / 1000.0 #PRODUCES SAME OUTPUT NO MATTER WHAT NUMBER\n test_images = test_images / 1000.0\n return train_images, train_labels, test_images, test_labels\n\ndef createAB(train_images, train_labels):\n image_size = train_images.shape[1]\n samples = train_images.shape[0]\n maxLab = max(train_labels)\n minLab = min(train_labels)\n outputSize = maxLab - minLab\n \n labels = np.array([np.zeros(outputSize + 1) for i in range(samples)])\n\n for i in range(samples):\n labels[i][train_labels[i] - minLab] = 1\n \n B = np.matrix(np.stack([x for x in labels]))\n A = np.hstack((np.matrix(np.array([1 for i in range(samples)])).T, np.matrix(train_images)))\n print(A[0])\n print(B[0])\n return A, B\n\ndef solveAB(A, B, startIndex):\n start = time.time()\n print(A.shape)\n A = A[:startIndex]\n B = B[:startIndex]\n print(A.shape)\n aTransp = A.T * A\n bTransp = A.T * B\n print(aTransp[0])\n print(bTransp[0])\n omega = np.linalg.solve(aTransp, bTransp)\n alpha = np.matrix(omega[0]).T\n beta = np.matrix(omega[1:]).T\n end = time.time()\n print(\"Time Taken to train model: %f seconds\" % (end - start))\n print(alpha, beta)\n return alpha, beta\n\ndef testAccuracy(test_images, test_labels, alpha, beta):\n image_size = test_images.shape[1]\n dif = 0\n errorsa = np.array([], np.int32)\n errorsV = np.array([], np.int32)\n print(test_images.shape)\n for i in range(test_images.shape[0]):\n value = test_labels[i]\n a = np.reshape(test_images[i], (1, image_size))\n a = np.matrix(a[0]).T\n result = np.array(((beta * a) + alpha).T)[0]\n a = result.argmax()\n if(a != value ):\n errorsa = np.append(errorsa, int(a))\n errorsV = np.append(errorsV, int(value))\n dif = dif+1\n \n n, bins, patches = plt.hist(errorsa, bins = 10)\n plt.show()\n\n\n\n print(\"Accuracy: out of %d samples, %d where incorrect -- %f%% accuracy\" % (test_images.shape[0], dif, (test_images.shape[0] - dif) / test_images.shape[0]))\n return (test_images.shape[0] - dif) / test_images.shape[0]\n \n\nif __name__ == \"__main__\": \n train_images, train_labels, test_images, test_labels = importMNIST()\n A, B = createAB(train_images, train_labels)\n alpha, beta = solveAB(A, B, 20000)\n testAccuracy(test_images, test_labels, alpha, beta)\n", "sub_path": "Leastsquares.py", "file_name": "Leastsquares.py", "file_ext": "py", "file_size_in_byte": 4399, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "tensorflow.keras.datasets", "line_number": 13, "usage_type": "attribute"}, {"api_name": "tensorflow.keras", "line_number": 13, "usage_type": "name"}, {"api_name": "numpy.array", "line_number": 19, "usage_type": "call"}, {"api_name": "numpy.zeros", "line_number": 19, "usage_type": "call"}, {"api_name": "numpy.matrix", "line_number": 27, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 29, "usage_type": "call"}, {"api_name": "numpy.reshape", "line_number": 29, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 30, "usage_type": "call"}, {"api_name": "numpy.reshape", "line_number": 30, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 32, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 35, "usage_type": "call"}, {"api_name": "tensorflow.keras.datasets", "line_number": 42, "usage_type": "attribute"}, {"api_name": "tensorflow.keras", "line_number": 42, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.figure", "line_number": 44, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 44, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.subplot", "line_number": 46, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 46, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.xticks", "line_number": 47, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 47, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.yticks", "line_number": 48, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 48, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.grid", "line_number": 49, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 49, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.imshow", "line_number": 50, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 50, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.cm", "line_number": 50, "usage_type": "attribute"}, {"api_name": "matplotlib.pyplot.xlabel", "line_number": 51, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 51, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.show", "line_number": 52, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 52, "usage_type": "name"}, {"api_name": "numpy.array", "line_number": 54, "usage_type": "call"}, {"api_name": "numpy.reshape", "line_number": 54, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 55, "usage_type": "call"}, {"api_name": "numpy.reshape", "line_number": 55, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 67, "usage_type": "call"}, {"api_name": "numpy.zeros", "line_number": 67, "usage_type": "call"}, {"api_name": "numpy.matrix", "line_number": 72, "usage_type": "call"}, {"api_name": "numpy.stack", "line_number": 72, "usage_type": "call"}, {"api_name": "numpy.hstack", "line_number": 73, "usage_type": "call"}, {"api_name": "numpy.matrix", "line_number": 73, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 73, "usage_type": "call"}, {"api_name": "time.time", "line_number": 79, "usage_type": "call"}, {"api_name": "numpy.linalg.solve", "line_number": 88, "usage_type": "call"}, {"api_name": "numpy.linalg", "line_number": 88, "usage_type": "attribute"}, {"api_name": "numpy.matrix", "line_number": 89, "usage_type": "call"}, {"api_name": "numpy.matrix", "line_number": 90, "usage_type": "call"}, {"api_name": "time.time", "line_number": 91, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 99, "usage_type": "call"}, {"api_name": "numpy.int32", "line_number": 99, "usage_type": "attribute"}, {"api_name": "numpy.array", "line_number": 100, "usage_type": "call"}, {"api_name": "numpy.int32", "line_number": 100, "usage_type": "attribute"}, {"api_name": "numpy.reshape", "line_number": 104, "usage_type": "call"}, {"api_name": "numpy.matrix", "line_number": 105, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 106, "usage_type": "call"}, {"api_name": "numpy.append", "line_number": 109, "usage_type": "call"}, {"api_name": "numpy.append", "line_number": 110, "usage_type": "call"}, {"api_name": "matplotlib.pyplot.hist", "line_number": 113, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 113, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.show", "line_number": 114, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 114, "usage_type": "name"}]}
{"seq_id": "106951276", "text": "import pygame\r\nfrom sys import exit\r\nimport random\r\n\r\n\r\nclass Bullet:\r\n def __init__(self):\r\n self.x=0\r\n self.y=-1\r\n self.image= pygame.image.load('bullet.png').convert_alpha()\r\n self.active=False\r\n\r\n def move(self):\r\n if self.active:\r\n self.y-=3\r\n if self.y<0:\r\n self.active=False\r\n \r\n def restart(self):\r\n mousex,mousey=pygame.mouse.get_pos()\r\n self.x=mousex-self.image.get_width()/2\r\n self.y=mousey-self.image.get_height()/2\r\n self.active=True\r\n \r\n \r\nclass Air:\r\n def __init__(self):\r\n self.x=225\r\n self.y=400\r\n self.image=pygame.image.load('air.png').convert_alpha()\r\n\r\n def Move(self):\r\n mousex,mousey=pygame.mouse.get_pos()\r\n self.x=mousex-self.image.get_width()/2\r\n self.y=mousey-self.image.get_height()/2\r\n\r\n def restart(self):\r\n self.x=225\r\n self.y=400\r\n self.image=pygame.image.load('air.png').convert_alpha()\r\n \r\n\r\n\r\nclass Enemy:\r\n def restart(self):\r\n self.x=random.uniform(30,420)\r\n self.y=random.uniform(-200,-50)\r\n \r\n def __init__(self):\r\n self.restart()\r\n self.image=pygame.image.load('enemy.png')\r\n self.speed=0.08\r\n\r\n def move(self):\r\n if self.y>608:\r\n self.speed+=0.01\r\n self.restart()\r\n \r\n else:\r\n self.y=self.y+self.speed\r\n \r\n \r\n\r\npygame.init()\r\nscreen=pygame.display.set_mode((450,608))\r\npygame.display.set_caption('Star War')\r\nbackground=pygame.image.load('background.png').convert()\r\ninterval_b=0\r\nindex_b=0\r\nbullets=[]\r\n\r\n\r\nfor i in range(100):\r\n bullets.append(Bullet())\r\n\r\nair=Air()\r\nenemies=[]\r\nfor i in range(6):\r\n enemies.append(Enemy())\r\n\r\ndef checkHit(enemy, bullet):\r\n if (bullet.x > enemy.x and bullet.x < enemy.x + enemy.image.get_width())\\\r\n and (bullet.y > enemy.y and bullet.y < enemy.y + enemy.image.get_height()):\r\n enemy.restart()\r\n bullet.active = False\r\n return True\r\n return False\r\n\r\ndef checkCrash(enemy, air):\r\n if (enemy.x + enemy.image.get_width() > 1.2*air.x and\\\r\n enemy.x < air.x + 0.6*air.image.get_width())and\\\r\n (enemy.y
air.y):\r\n return True\r\n return False\r\n\r\n\r\n\r\n\r\n\r\nscore=0\r\nfont=pygame.font.Font(None,32)\r\ngameover=False\r\nstart=False\r\n\r\nwhile True:\r\n for event in pygame.event.get():\r\n if event.type == pygame.QUIT:\r\n pygame.quit()\r\n exit()\r\n if gameover and event.type==pygame.MOUSEBUTTONUP:\r\n air.restart()\r\n for e in enemies:\r\n e.restart()\r\n for b in bullets:\r\n b.restart()\r\n score=0\r\n gameover=False\r\n \r\n if event.type==pygame.MOUSEBUTTONDOWN:\r\n start=True\r\n screen.blit(background,(0,0))\r\n interval_b-=10\r\n if interval_b<0:\r\n bullets[index_b].restart()\r\n interval_b=100\r\n index_b=(1+index_b)%100\r\n\r\n if not gameover and start:\r\n for b in bullets:\r\n if b.active:\r\n for e in enemies:\r\n if checkHit(e,b):\r\n score+=100\r\n b.move()\r\n screen.blit(b.image,(b.x,b.y))\r\n\r\n for e in enemies:\r\n if checkCrash(e,air):\r\n \r\n gameover=True\r\n start=False\r\n e.move()\r\n screen.blit(e.image,(e.x,e.y)) \r\n air.Move()\r\n screen.blit(air.image,(air.x,air.y))\r\n text=font.render('Score:%d' % score,1,(0,0,0))\r\n screen.blit(text,(0,0))\r\n \r\n\r\n if gameover:\r\n text=font.render('Score:%d' % score,1,(0,0,0))\r\n screen.blit(text,(160,150))\r\n if gameover==False and start==False:\r\n text=font.render('Click to Start Game!',1,(0,0,0))\r\n screen.blit(text,(100,150))\r\n \r\n pygame.display.update()\r\n \r\n \r\n \r\n \r\n \r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n \r\n \r\n", "sub_path": "star.py", "file_name": "star.py", "file_ext": "py", "file_size_in_byte": 4149, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "pygame.image.load", "line_number": 10, "usage_type": "call"}, {"api_name": "pygame.image", "line_number": 10, "usage_type": "attribute"}, {"api_name": "pygame.mouse.get_pos", "line_number": 20, "usage_type": "call"}, {"api_name": "pygame.mouse", "line_number": 20, "usage_type": "attribute"}, {"api_name": "pygame.image.load", "line_number": 30, "usage_type": "call"}, {"api_name": "pygame.image", "line_number": 30, "usage_type": "attribute"}, {"api_name": "pygame.mouse.get_pos", "line_number": 33, "usage_type": "call"}, {"api_name": "pygame.mouse", "line_number": 33, "usage_type": "attribute"}, {"api_name": "pygame.image.load", "line_number": 40, "usage_type": "call"}, {"api_name": "pygame.image", "line_number": 40, "usage_type": "attribute"}, {"api_name": "random.uniform", "line_number": 46, "usage_type": "call"}, {"api_name": "random.uniform", "line_number": 47, "usage_type": "call"}, {"api_name": "pygame.image.load", "line_number": 51, "usage_type": "call"}, {"api_name": "pygame.image", "line_number": 51, "usage_type": "attribute"}, {"api_name": "pygame.init", "line_number": 64, "usage_type": "call"}, {"api_name": "pygame.display.set_mode", "line_number": 65, "usage_type": "call"}, {"api_name": "pygame.display", "line_number": 65, "usage_type": "attribute"}, {"api_name": "pygame.display.set_caption", "line_number": 66, "usage_type": "call"}, {"api_name": "pygame.display", "line_number": 66, "usage_type": "attribute"}, {"api_name": "pygame.image.load", "line_number": 67, "usage_type": "call"}, {"api_name": "pygame.image", "line_number": 67, "usage_type": "attribute"}, {"api_name": "pygame.font.Font", "line_number": 102, "usage_type": "call"}, {"api_name": "pygame.font", "line_number": 102, "usage_type": "attribute"}, {"api_name": "pygame.event.get", "line_number": 107, "usage_type": "call"}, {"api_name": "pygame.event", "line_number": 107, "usage_type": "attribute"}, {"api_name": "pygame.QUIT", "line_number": 108, "usage_type": "attribute"}, {"api_name": "pygame.quit", "line_number": 109, "usage_type": "call"}, {"api_name": "sys.exit", "line_number": 110, "usage_type": "call"}, {"api_name": "pygame.MOUSEBUTTONUP", "line_number": 111, "usage_type": "attribute"}, {"api_name": "pygame.MOUSEBUTTONDOWN", "line_number": 120, "usage_type": "attribute"}, {"api_name": "pygame.display.update", "line_number": 158, "usage_type": "call"}, {"api_name": "pygame.display", "line_number": 158, "usage_type": "attribute"}]}
{"seq_id": "374638137", "text": "\"\"\"The main warehose pipeline definition.\n\"\"\"\n\nimport hashlib\nimport json\nimport logging\nimport os\nimport re\nimport struct\nfrom io import BytesIO\nfrom pathlib import Path, posixpath\n\nimport bonobo\nimport boto3\nimport mondrian\nimport pydicom\nfrom bonobo.config import use\nfrom botocore.exceptions import ClientError\n\nfrom warehouse.components import constants, services\n\n# set up logging\nmondrian.setup(excepthook=True)\nlogger = logging.getLogger()\n\ns3_resource = boto3.resource(\"s3\")\ns3_client = boto3.client(\"s3\")\n\nBUCKET_NAME = os.getenv(\"WAREHOUSE_BUCKET\", default=\"chest-data-warehouse\")\nbucket = s3_resource.Bucket(BUCKET_NAME)\n\nDRY_RUN = bool(os.getenv(\"DRY_RUN\", default=False))\n\nKB = 1024\n\n###\n# Helpers\n###\ndef object_exists(key):\n \"\"\" Checking whether a given object exists in our work bucket\n\n :param key: the object key in question\n :type key: string\n :raises botocore.exceptions.ClientError: if there's any transfer error\n :return: True if object exists in the work bucket\n :rtype: boolean\n \"\"\"\n try:\n bucket.Object(key).load()\n except ClientError as e:\n if e.response[\"Error\"][\"Code\"] == \"404\":\n return False\n else:\n raise ClientError\n else:\n return True\n\n\ndef get_date_from_key(key):\n \"\"\" Extract date from an object key from the bucket's directory pattern,\n for a given prefix\n\n :param key: the object key in question\n :type key: string\n :return: the extracted date if found\n :rtype: string or None\n \"\"\"\n date_match = re.match(r\"^.+/(?P\\d{4}-\\d{2}-\\d{2})/.+\", key)\n if date_match:\n return date_match.group(\"date\")\n\n\ndef get_submitting_centre_from_object(obj):\n \"\"\"Extract the SubmittingCentre value from an S3 object that is\n a JSON file in the expected format.\n\n :param obj: the S3 object of the JSON file to process\n :type obj: boto3.resource('s3').ObjectSummary\n :return: the value defined for SubmittingCentre in the file\n :rtype: string or None\n \"\"\"\n file_content = obj.Object().get()[\"Body\"].read().decode(\"utf-8\")\n try:\n json_content = json.loads(file_content)\n except json.decoder.JSONDecodeError:\n logger.error(\"Couldn't decode contents of {obj.key} as JSON.\")\n raise\n return json_content.get(\"SubmittingCentre\")\n\n\ndef patient_in_training_set(\n patient_id, training_percent=constants.TRAINING_PERCENTAGE\n):\n \"\"\" Separating patient ID's into training and validation sets, check\n which one this ID should fall into.\n\n It uses a hashing (sha512) to get pseudo-randomisation based on ID,\n and do the cut-off with a set percentage.\n\n :param patient_id: the candidate patient ID\n :type patient_id: string\n :param training_percent: the percentage of patience to assign to the training set (defaults to the global TRAINING_PERCENTAGE)\n :type training_percent: int\n :return: True if the patient ID should fall into the training set\n :rtype: boolean\n \"\"\"\n return (\n int(\n hashlib.sha512(\n patient_id.strip().upper().encode(\"utf-8\")\n ).hexdigest(),\n 16,\n )\n % 100\n < training_percent\n )\n\n\ndef inplace_nullify(d, key):\n \"\"\"\n Recurse through a dictionary and set the value `key` to `None`\n\n Extracted from https://bitbucket.org/scicomcore/dcm2slimjson/src/master/dcm2slimjson/main.py\n\n :param d: dict to modify\n :type d: dict\n :param key: specific key to modify\n :type key: anything that can be a dict key\n \"\"\"\n if isinstance(d, list):\n [inplace_nullify(_, key) for _ in d]\n\n if isinstance(d, dict):\n for k, v in d.items():\n\n if k == key:\n d[k] = None\n\n if isinstance(v, (dict, list)):\n inplace_nullify(v, key)\n\n\ndef scrub_dicom(fd):\n \"\"\"Remove binary data and other unusuaed sections from a DICOM image.\n\n Extracted from https://bitbucket.org/scicomcore/dcm2slimjson/src/master/dcm2slimjson/main.py\n\n :param fd: image data to scrub\n :type fd: pydicom.FileDataset\n :return: the scrubbed image data\n :rtype: dict\n \"\"\"\n\n # Use a large value to bypass binary data handler\n out = fd.to_json_dict(bulk_data_threshold=1e20)\n\n # Drop binary data\n inplace_nullify(out, \"InlineBinary\")\n\n # Remove Value of Interest (VOI) transform data\n inplace_nullify(out, \"00283010\")\n\n return out\n\n\nclass PartialDicom:\n \"\"\"Download partial DICOM files iteratively, to save\n on traffic.\n \"\"\"\n\n def __init__(self, obj, initial_range_kb=20):\n # Default value of 20Kb initial range is based on\n # tests run on representative data\n self._found_image_tag = False\n self.obj = obj\n self.range_kb = initial_range_kb\n\n def _stop_when(self, tag, VR, length):\n \"\"\"Custom stopper for the DICOM reader, to stop\n at the pixel data, but also note whether that\n tag was actually reached.\n \"\"\"\n self._found_image_tag = tag == (0x7FE0, 0x0010)\n return self._found_image_tag\n\n def download(self):\n \"\"\"Download file iteratively, and return the image data\n \"\"\"\n with BytesIO() as tmp:\n while True:\n tmp.seek(0)\n toprange = (self.range_kb * KB) - 1\n stream = self.obj.get(Range=f\"bytes=0-{toprange}\")[\"Body\"]\n tmp.write(stream.read())\n tmp.seek(0)\n try:\n image_data = pydicom.filereader.read_partial(\n tmp, stop_when=self._stop_when\n )\n if self._found_image_tag or tmp.tell() < toprange:\n # We've found the image tag, or there was not image tag\n # to be found in this image\n break\n except (OSError, struct.error):\n # Can happen when file got truncated in the middle of a data field\n pass\n except Exception:\n raise\n self.range_kb *= 2\n return image_data\n\n\n###\n# Transformation steps\n###\n@use(\"config\")\ndef load_config(config):\n \"\"\"Load configuration from the bucket\n \"\"\"\n try:\n obj = bucket.Object(constants.CONFIG_KEY).get()\n contents = json.loads(obj[\"Body\"].read().decode(\"utf-8\"))\n config.set_config(contents)\n yield\n except ClientError as ex:\n if ex.response[\"Error\"][\"Code\"] == \"NoSuchKey\":\n logger.warning(\n \"No configuration found in the bucket! (not going to do any loading)\"\n )\n else:\n raise\n\n\n@use(\"keycache\")\n@use(\"patientcache\")\n@use(\"inventory\")\ndef load_existing_files(keycache, patientcache, inventory):\n \"\"\" Loading existing files from the training and\n validation sets into the keycache.\n\n :param keycache: the key cache service (provided by bonobo)\n :type keycache: Keycache\n \"\"\"\n # Set up our listing function.\n if inventory.enabled:\n listing = inventory.filter_keys\n else:\n # When using the original listing without inventory, we need to\n # transform the objects returned by the filter\n def listing(Prefix):\n return map(\n lambda obj: obj.key, bucket.objects.filter(Prefix=Prefix)\n )\n\n patient_file_name = re.compile(\n r\"^.+/data/(?P.*)/(?:data|status)_\\d{4}-\\d{2}-\\d{2}.json$\"\n )\n for group, prefix in [\n (\"validation\", constants.VALIDATION_PREFIX),\n (\"training\", constants.TRAINING_PREFIX),\n ]:\n for key in listing(Prefix=prefix):\n m = patient_file_name.match(key)\n if m:\n # It is a patient file\n patient_id = m.group(\"patient_id\")\n patientcache.add(patient_id, group)\n else:\n # It is an image file\n try:\n keycache.add(key)\n except services.DuplicateKeyError:\n logger.exception(f\"{key} is duplicate in cache.\")\n continue\n return bonobo.constants.NOT_MODIFIED\n\n\n@use(\"config\")\n@use(\"inventory\")\n@use(\"rawsubfolderlist\")\ndef extract_raw_folders(config, inventory, rawsubfolderlist):\n \"\"\" Extractor: get all date folders within the `raw/` data drop\n\n :return: subfolders within the `raw/` prefix (yield)\n :rtype: string\n \"\"\"\n for site_raw_prefix in config.get_raw_prefixes():\n if not site_raw_prefix.endswith(\"/\"):\n site_raw_prefix += \"/\"\n\n if inventory.enabled:\n prefixes = inventory.list_folders(site_raw_prefix)\n else:\n result = s3_client.list_objects(\n Bucket=BUCKET_NAME, Prefix=site_raw_prefix, Delimiter=\"/\"\n )\n prefixes = [p.get(\"Prefix\") for p in result.get(\"CommonPrefixes\")]\n # list folders in date order\n for folder in sorted(prefixes, reverse=False):\n for subfolder in rawsubfolderlist.get():\n yield folder + subfolder\n\n\n@use(\"inventory\")\ndef extract_raw_files_from_folder(folder, inventory):\n \"\"\" Extract files from a given date folder in the data dump\n\n :param folder: the folder to process\n :type key: string\n :return: each object (yield)\n :rtype: boto3.resource('s3').ObjectSummary\n \"\"\"\n listing = inventory.filter if inventory.enabled else bucket.objects.filter\n for obj in listing(Prefix=folder):\n yield \"process\", obj, None\n\n\n@use(\"keycache\")\n@use(\"config\")\n@use(\"patientcache\")\ndef process_image(*args, keycache, config, patientcache):\n \"\"\" Processing images from the raw dump\n\n Takes a single image, downloads it into temporary storage\n and extracts its metadata.\n\n The metadata is then uploaded here, except if the file already exists.\n\n If the image file already exists at the correct location, it's not passed\n on to the next step.\n\n :param obj: the object in question\n :type obj: boto3.resource('s3').ObjectSummary\n :param keycache: the key cache service (provided by bonobo)\n :type keycache: Keycache\n :return: a task name, the original object, and a new key where it should be copied within the bucket\n :rtype: (string, boto3.resource('s3').ObjectSummary, string)\n \"\"\"\n # check file type\n task, obj, _ = args\n if task != \"process\" or Path(obj.key).suffix.lower() != \".dcm\":\n # not an image, don't do anything with it\n return bonobo.constants.NOT_MODIFIED\n\n # check if work is already done\n image_in_cache = keycache.exists(obj.key)\n image_uuid = Path(obj.key).stem\n metadata_in_cache = keycache.exists(f\"{image_uuid}.json\")\n if metadata_in_cache and image_in_cache:\n # files exist, nothing to do here\n return\n\n # download the image\n image_data = PartialDicom(obj.Object()).download()\n if image_data is None:\n # we couldn't read the image data correctly\n logger.warning(\n f\"Object '{obj.key}' couldn't be loaded as a DICOM file, skipping!\"\n )\n return\n\n # extract the required data from the image\n patient_id = image_data.PatientID\n study_id = image_data.StudyInstanceUID\n series_id = image_data.SeriesInstanceUID\n group = patientcache.get_group(patient_id)\n if group is not None:\n training_set = group == \"training\"\n else:\n logger.error(\n f\"Image without patient data: {obj.key}; \"\n + f\"included patient ID: {patient_id}; \"\n + \"skipping!\"\n )\n return\n prefix = (\n constants.TRAINING_PREFIX\n if training_set\n else constants.VALIDATION_PREFIX\n )\n image_type = constants.MODALITY.get(\n image_data[\"Modality\"].value, \"unknown\"\n )\n\n date = get_date_from_key(obj.key)\n if date:\n # the location of the new files\n new_key = posixpath.join(\n prefix,\n image_type,\n patient_id,\n study_id,\n series_id,\n Path(obj.key).name,\n )\n metadata_key = posixpath.join(\n prefix,\n f\"{image_type}-metadata\",\n patient_id,\n study_id,\n series_id,\n f\"{image_uuid}.json\",\n )\n # send off to copy or upload steps\n if not object_exists(new_key):\n yield \"copy\", obj, new_key\n if not object_exists(metadata_key):\n yield \"metadata\", metadata_key, image_data\n\n\ndef process_dicom_data(*args):\n \"\"\"Process DICOM images, by scrubbing the image data\n\n :param task: task informatiomn, needs to be equal to \"metadata\" to be processed here\n :type task: string\n :param metadata_key: location to upload the extracted metadata later\n :type metadata_key: string\n :param image_data: DICOM image data\n :type image_data: pydicom.FileDataset\n :return: metadata key and scrubbed image data, if processed\n :rtype: tuple\n \"\"\"\n task, metadata_key, image_data, = args\n if task == \"metadata\":\n scrubbed_image_data = scrub_dicom(image_data)\n yield \"upload\", metadata_key, json.dumps(scrubbed_image_data)\n\n\ndef upload_text_data(*args):\n \"\"\"Upload the text data to the correct bucket location.\n\n :param task: selector to run this task or not, needs to be \"upload\" to process a file\n :type task: string\n :param outgoing_key: location to upload the data\n :type outgoing_key: string\n :param outgoing_data: text to file content to upload\n :type outgoing_data: string\n \"\"\"\n task, outgoing_key, outgoing_data, = args\n if (\n task == \"upload\"\n and outgoing_key is not None\n and outgoing_data is not None\n ):\n if DRY_RUN:\n logger.info(f\"Would upload to key: {outgoing_key}\")\n else:\n bucket.put_object(Body=outgoing_data, Key=outgoing_key)\n\n return bonobo.constants.NOT_MODIFIED\n\n\n@use(\"config\")\n@use(\"patientcache\")\ndef process_patient_data(*args, config, patientcache):\n \"\"\"Processing patient data from the raw dump\n\n Get the patient ID from the filename, do a training/validation\n test split, and create the key for the new location for the\n next processing step to copy things to.\n\n :param obj: the object in question\n :type obj: boto3.resource('s3').ObjectSummary\n :return: a task name, the original object, and a new key where it should be copied within the bucket\n :rtype: (string, boto3.resource('s3').ObjectSummary, string)\n \"\"\"\n task, obj, _ = args\n if task != \"process\" or Path(obj.key).suffix.lower() != \".json\":\n # Not a data file, don't do anything with it\n yield bonobo.constants.NOT_MODIFIED\n\n m = re.match(\n r\"^(?P.*)_(?Pdata|status)$\", Path(obj.key).stem\n )\n if m is None:\n # Can't interpret this file based on name, skip\n return\n\n patient_id = m.group(\"patient_id\")\n outcome = m.group(\"outcome\")\n\n group = patientcache.get_group(patient_id)\n if group is not None:\n training_set = group == \"training\"\n else:\n # patient group is not cached\n submitting_centre = get_submitting_centre_from_object(obj)\n if submitting_centre is None:\n logger.error(\n f\"{obj.key} does not have 'SubmittingCentre' entry, skipping!\"\n )\n return\n\n config_group = config.get_site_group(submitting_centre)\n if config_group is None:\n logger.warning(\n f\"Site '{submitting_centre}' is not in configuration, skipping!\"\n )\n return\n if config_group == \"split\":\n training_set = patient_in_training_set(\n patient_id, config.get_training_percentage()\n )\n else:\n # deciding between \"training\" and \"validation\" groups.\n training_set = config_group == \"training\"\n patientcache.add(\n patient_id, \"training\" if training_set else \"validation\"\n )\n\n prefix = (\n constants.TRAINING_PREFIX\n if training_set\n else constants.VALIDATION_PREFIX\n )\n date = get_date_from_key(obj.key)\n if date is not None:\n new_key = f\"{prefix}data/{patient_id}/{outcome}_{date}.json\"\n if not object_exists(new_key):\n yield \"copy\", obj, new_key\n\n\ndef data_copy(*args):\n \"\"\"Copy objects within the bucket\n\n Only if both original object and new key is provided.\n\n :param task: selector to run this task or not, needs to be \"copy\" to process a file\n :type task: string\n :param obj: the object key in question\n :type obj: boto3.resource('s3').ObjectSummary\n :param obj: the new key to copy data to\n :type obj: string\n :return: standard constant for bonobo \"load\" steps, so they can be chained\n :rtype: bonobo.constants.NOT_MODIFIED\n \"\"\"\n task, obj, new_key, = args\n if task == \"copy\" and obj is not None and new_key is not None:\n if DRY_RUN:\n logger.info(f\"Would copy: {obj.key} -> {new_key}\")\n else:\n bucket.copy({\"Bucket\": obj.bucket_name, \"Key\": obj.key}, new_key)\n\n return bonobo.constants.NOT_MODIFIED\n\n\n###\n# Graph setup\n###\ndef get_graph(**options):\n \"\"\"\n This function builds the graph that needs to be executed.\n\n :return: bonobo.Graph\n \"\"\"\n graph = bonobo.Graph()\n\n graph.add_chain(\n load_config,\n load_existing_files,\n extract_raw_folders,\n extract_raw_files_from_folder,\n )\n\n graph.add_chain(data_copy, _input=None, _name=\"copy\")\n\n graph.add_chain(\n # bonobo.Limit(30),\n process_patient_data,\n _input=extract_raw_files_from_folder,\n _output=\"copy\",\n )\n\n graph.add_chain(\n # bonobo.Limit(30),\n process_image,\n _input=process_patient_data,\n _output=\"copy\",\n )\n\n graph.add_chain(process_dicom_data, upload_text_data, _input=process_image)\n\n return graph\n\n\ndef get_services(**options):\n \"\"\"\n This function builds the services dictionary, which is a simple dict of names-to-implementation used by bonobo\n for runtime injection.\n\n It will be used on top of the defaults provided by bonobo (fs, http, ...). You can override those defaults, or just\n let the framework define them. You can also define your own services and naming is up to you.\n\n :return: dict\n \"\"\"\n config = services.PipelineConfig()\n keycache = services.KeyCache()\n patientcache = services.PatientCache()\n rawsubfolderlist = services.SubFolderList()\n\n if bool(os.getenv(\"SKIP_INVENTORY\", default=False)):\n inventory = services.Inventory()\n else:\n inventory = services.Inventory(main_bucket=BUCKET_NAME)\n\n return {\n \"config\": config,\n \"keycache\": keycache,\n \"patientcache\": patientcache,\n \"rawsubfolderlist\": rawsubfolderlist,\n \"inventory\": inventory,\n }\n\n\ndef main():\n \"\"\"Execute the pipeline graph\n \"\"\"\n parser = bonobo.get_argument_parser()\n with bonobo.parse_args(parser) as options:\n bonobo.run(get_graph(**options), services=get_services(**options))\n\n\nif __name__ == \"__main__\":\n main()\n", "sub_path": "warehouse-loader/warehouse/warehouseloader.py", "file_name": "warehouseloader.py", "file_ext": "py", "file_size_in_byte": 19210, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "mondrian.setup", "line_number": 23, "usage_type": "call"}, {"api_name": "logging.getLogger", "line_number": 24, "usage_type": "call"}, {"api_name": "boto3.resource", "line_number": 26, "usage_type": "call"}, {"api_name": "boto3.client", "line_number": 27, "usage_type": "call"}, {"api_name": "os.getenv", "line_number": 29, "usage_type": "call"}, {"api_name": "os.getenv", "line_number": 32, "usage_type": "call"}, {"api_name": "botocore.exceptions.ClientError", "line_number": 50, "usage_type": "name"}, {"api_name": "botocore.exceptions.ClientError", "line_number": 54, "usage_type": "name"}, {"api_name": "re.match", "line_number": 68, "usage_type": "call"}, {"api_name": "json.loads", "line_number": 84, "usage_type": "call"}, {"api_name": "json.decoder", "line_number": 85, "usage_type": "attribute"}, {"api_name": "warehouse.components.constants.TRAINING_PERCENTAGE", "line_number": 92, "usage_type": "attribute"}, {"api_name": "warehouse.components.constants", "line_number": 92, "usage_type": "name"}, {"api_name": "hashlib.sha512", "line_number": 109, "usage_type": "call"}, {"api_name": "io.BytesIO", "line_number": 189, "usage_type": "call"}, {"api_name": "pydicom.filereader.read_partial", "line_number": 197, "usage_type": "call"}, {"api_name": "pydicom.filereader", "line_number": 197, "usage_type": "attribute"}, {"api_name": "struct.error", "line_number": 204, "usage_type": "attribute"}, {"api_name": "warehouse.components.constants.CONFIG_KEY", "line_number": 221, "usage_type": "attribute"}, {"api_name": "warehouse.components.constants", "line_number": 221, "usage_type": "name"}, {"api_name": "json.loads", "line_number": 222, "usage_type": "call"}, {"api_name": "botocore.exceptions.ClientError", "line_number": 225, "usage_type": "name"}, {"api_name": "bonobo.config.use", "line_number": 216, "usage_type": "call"}, {"api_name": "re.compile", "line_number": 255, "usage_type": "call"}, {"api_name": "warehouse.components.constants.VALIDATION_PREFIX", "line_number": 259, "usage_type": "attribute"}, {"api_name": "warehouse.components.constants", "line_number": 259, "usage_type": "name"}, {"api_name": "warehouse.components.constants.TRAINING_PREFIX", "line_number": 260, "usage_type": "attribute"}, {"api_name": "warehouse.components.constants", "line_number": 260, "usage_type": "name"}, {"api_name": "warehouse.components.services.DuplicateKeyError", "line_number": 272, "usage_type": "attribute"}, {"api_name": "warehouse.components.services", "line_number": 272, "usage_type": "name"}, {"api_name": "bonobo.constants", "line_number": 275, "usage_type": "attribute"}, {"api_name": "bonobo.config.use", "line_number": 234, "usage_type": "call"}, {"api_name": "bonobo.config.use", "line_number": 235, "usage_type": "call"}, {"api_name": "bonobo.config.use", "line_number": 236, "usage_type": "call"}, {"api_name": "bonobo.config.use", "line_number": 278, "usage_type": "call"}, {"api_name": "bonobo.config.use", "line_number": 279, "usage_type": "call"}, {"api_name": "bonobo.config.use", "line_number": 280, "usage_type": "call"}, {"api_name": "bonobo.config.use", "line_number": 304, "usage_type": "call"}, {"api_name": "pathlib.Path", "line_number": 341, "usage_type": "call"}, {"api_name": "bonobo.constants", "line_number": 343, "usage_type": "attribute"}, {"api_name": "pathlib.Path", "line_number": 347, "usage_type": "call"}, {"api_name": "warehouse.components.constants.TRAINING_PREFIX", "line_number": 377, "usage_type": "attribute"}, {"api_name": "warehouse.components.constants", "line_number": 377, "usage_type": "name"}, {"api_name": "warehouse.components.constants.VALIDATION_PREFIX", "line_number": 379, "usage_type": "attribute"}, {"api_name": "warehouse.components.constants", "line_number": 379, "usage_type": "name"}, {"api_name": "warehouse.components.constants.MODALITY.get", "line_number": 381, "usage_type": "call"}, {"api_name": "warehouse.components.constants.MODALITY", "line_number": 381, "usage_type": "attribute"}, {"api_name": "warehouse.components.constants", "line_number": 381, "usage_type": "name"}, {"api_name": "pathlib.posixpath.join", "line_number": 388, "usage_type": "call"}, {"api_name": "pathlib.posixpath", "line_number": 388, "usage_type": "name"}, {"api_name": "pathlib.Path", "line_number": 394, "usage_type": "call"}, {"api_name": "pathlib.posixpath.join", "line_number": 396, "usage_type": "call"}, {"api_name": "pathlib.posixpath", "line_number": 396, "usage_type": "name"}, {"api_name": "bonobo.config.use", "line_number": 318, "usage_type": "call"}, {"api_name": "bonobo.config.use", "line_number": 319, "usage_type": "call"}, {"api_name": "bonobo.config.use", "line_number": 320, "usage_type": "call"}, {"api_name": "json.dumps", "line_number": 426, "usage_type": "call"}, {"api_name": "bonobo.constants", "line_number": 450, "usage_type": "attribute"}, {"api_name": "pathlib.Path", "line_number": 468, "usage_type": "call"}, {"api_name": "bonobo.constants", "line_number": 470, "usage_type": "attribute"}, {"api_name": "re.match", "line_number": 472, "usage_type": "call"}, {"api_name": "pathlib.Path", "line_number": 473, "usage_type": "call"}, {"api_name": "warehouse.components.constants.TRAINING_PREFIX", "line_number": 512, "usage_type": "attribute"}, {"api_name": "warehouse.components.constants", "line_number": 512, "usage_type": "name"}, {"api_name": "warehouse.components.constants.VALIDATION_PREFIX", "line_number": 514, "usage_type": "attribute"}, {"api_name": "warehouse.components.constants", "line_number": 514, "usage_type": "name"}, {"api_name": "bonobo.config.use", "line_number": 453, "usage_type": "call"}, {"api_name": "bonobo.config.use", "line_number": 454, "usage_type": "call"}, {"api_name": "bonobo.constants", "line_number": 544, "usage_type": "attribute"}, {"api_name": "bonobo.Graph", "line_number": 556, "usage_type": "call"}, {"api_name": "warehouse.components.services.PipelineConfig", "line_number": 596, "usage_type": "call"}, {"api_name": "warehouse.components.services", "line_number": 596, "usage_type": "name"}, {"api_name": "warehouse.components.services.KeyCache", "line_number": 597, "usage_type": "call"}, {"api_name": "warehouse.components.services", "line_number": 597, "usage_type": "name"}, {"api_name": "warehouse.components.services.PatientCache", "line_number": 598, "usage_type": "call"}, {"api_name": "warehouse.components.services", "line_number": 598, "usage_type": "name"}, {"api_name": "warehouse.components.services.SubFolderList", "line_number": 599, "usage_type": "call"}, {"api_name": "warehouse.components.services", "line_number": 599, "usage_type": "name"}, {"api_name": "os.getenv", "line_number": 601, "usage_type": "call"}, {"api_name": "warehouse.components.services.Inventory", "line_number": 602, "usage_type": "call"}, {"api_name": "warehouse.components.services", "line_number": 602, "usage_type": "name"}, {"api_name": "warehouse.components.services.Inventory", "line_number": 604, "usage_type": "call"}, {"api_name": "warehouse.components.services", "line_number": 604, "usage_type": "name"}, {"api_name": "bonobo.get_argument_parser", "line_number": 618, "usage_type": "call"}, {"api_name": "bonobo.parse_args", "line_number": 619, "usage_type": "call"}, {"api_name": "bonobo.run", "line_number": 620, "usage_type": "call"}]}
{"seq_id": "553616106", "text": "# Copyright (c) 2019 The Boule Developers.\n# Distributed under the terms of the BSD 3-Clause License.\n# SPDX-License-Identifier: BSD-3-Clause\n#\n# This code is part of the Fatiando a Terra project (https://www.fatiando.org)\n#\n\"\"\"\nModule for defining and setting the reference ellipsoid.\n\"\"\"\nfrom warnings import warn\nimport attr\nimport numpy as np\n\n\n# Don't let ellipsoid parameters be changed to avoid messing up calculations\n# accidentally.\n@attr.s(frozen=True)\nclass Ellipsoid:\n \"\"\"\n Reference oblate ellipsoid.\n\n The ellipsoid is oblate and spins around it's minor axis. It is defined by\n four parameters (semi-major axis, flattening, geocentric gravitational\n constant, and angular velocity) and offers other derived quantities.\n\n **All attributes of this class are read-only and cannot be changed after\n instantiation.**\n\n All parameters are in SI units.\n\n .. note::\n\n Use :class:`boule.Sphere` if you desire zero flattening because there\n are singularities for this particular case in the normal gravity\n calculations.\n\n Parameters\n ----------\n name : str\n A short name for the ellipsoid, for example ``'WGS84'``.\n semimajor_axis : float\n The semi-major axis of the ellipsoid (equatorial radius), usually\n represented by \"a\" [meters].\n flattening : float\n The flattening of the ellipsoid (f) [adimensional].\n geocentric_grav_const : float\n The geocentric gravitational constant (GM) [m^3 s^-2].\n angular_velocity : float\n The angular velocity of the rotating ellipsoid (omega) [rad s^-1].\n long_name : str or None\n A long name for the ellipsoid, for example ``\"World Geodetic System\n 1984\"`` (optional).\n reference : str or None\n Citation for the ellipsoid parameter values (optional).\n\n Examples\n --------\n\n We can define an ellipsoid by setting the 4 key numerical parameters:\n\n >>> ellipsoid = Ellipsoid(\n ... name=\"oblate-ellipsoid\",\n ... long_name=\"Oblate Ellipsoid\",\n ... semimajor_axis=1,\n ... flattening=0.5,\n ... geocentric_grav_const=1,\n ... angular_velocity=0,\n ... )\n >>> print(ellipsoid) # doctest: +ELLIPSIS\n Ellipsoid(name='oblate-ellipsoid', ...)\n >>> print(ellipsoid.long_name)\n Oblate Ellipsoid\n\n The class defines several derived attributes based on the input parameters:\n\n >>> print(\"{:.2f}\".format(ellipsoid.semiminor_axis))\n 0.50\n >>> print(\"{:.2f}\".format(ellipsoid.mean_radius))\n 0.83\n >>> print(\"{:.2f}\".format(ellipsoid.linear_eccentricity))\n 0.87\n >>> print(\"{:.2f}\".format(ellipsoid.first_eccentricity))\n 0.87\n >>> print(\"{:.2f}\".format(ellipsoid.second_eccentricity))\n 1.73\n\n \"\"\"\n\n name = attr.ib()\n semimajor_axis = attr.ib()\n flattening = attr.ib()\n geocentric_grav_const = attr.ib()\n angular_velocity = attr.ib()\n long_name = attr.ib(default=None)\n reference = attr.ib(default=None)\n\n @flattening.validator\n def _check_flattening(\n self, flattening, value\n ): # pylint: disable=no-self-use,unused-argument\n \"\"\"\n Check if flattening is valid\n \"\"\"\n if value < 0 or value >= 1:\n raise ValueError(\n f\"Invalid flattening '{value}'. \"\n \"Should be greater than zero and lower than 1.\"\n )\n if value == 0:\n raise ValueError(\n \"Flattening equal to zero will lead to errors in normal gravity. \"\n \"Use boule.Sphere for representing ellipsoids with zero flattening.\"\n )\n if value < 1e-7:\n warn(\n f\"Flattening is too close to zero ('{value}'). \"\n \"This may lead to inaccurate results and division by zero errors. \"\n \"Use boule.Sphere for representing ellipsoids with zero flattening.\"\n )\n\n @semimajor_axis.validator\n def _check_semimajor_axis(\n self, semimajor_axis, value\n ): # pylint: disable=no-self-use,unused-argument\n \"\"\"\n Check if semimajor_axis is positive\n \"\"\"\n if not value > 0:\n raise ValueError(\n f\"Invalid semi-major axis '{value}'. Should be greater than zero.\"\n )\n\n @geocentric_grav_const.validator\n def _check_geocentric_grav_const(\n self, geocentric_grav_const, value\n ): # pylint: disable=no-self-use,unused-argument\n \"\"\"\n Warn if geocentric_grav_const is negative\n \"\"\"\n if value < 0:\n warn(f\"The geocentric gravitational constant is negative: '{value}'\")\n\n @property\n def semiminor_axis(self):\n \"The small (polar) axis of the ellipsoid [meters]\"\n return self.semimajor_axis * (1 - self.flattening)\n\n @property\n def linear_eccentricity(self):\n \"The linear eccentricity [meters]\"\n return np.sqrt(self.semimajor_axis ** 2 - self.semiminor_axis ** 2)\n\n @property\n def first_eccentricity(self):\n \"The first eccentricity [adimensional]\"\n return self.linear_eccentricity / self.semimajor_axis\n\n @property\n def second_eccentricity(self):\n \"The second eccentricity [adimensional]\"\n return self.linear_eccentricity / self.semiminor_axis\n\n @property\n def mean_radius(self):\n \"\"\"\n The arithmetic mean radius :math:`R_1=(2a+b)/3` [Moritz1988]_ [meters]\n \"\"\"\n return 1 / 3 * (2 * self.semimajor_axis + self.semiminor_axis)\n\n @property\n def emm(self):\n r\"Auxiliary quantity :math:`m = \\omega^2 a^2 b / (GM)`\"\n return (\n self.angular_velocity ** 2\n * self.semimajor_axis ** 2\n * self.semiminor_axis\n / self.geocentric_grav_const\n )\n\n @property\n def gravity_equator(self):\n \"\"\"\n The norm of the gravity vector on the ellipsoid at the equator [m/s²]\n \"\"\"\n ratio = self.semiminor_axis / self.linear_eccentricity\n arctan = np.arctan2(self.linear_eccentricity, self.semiminor_axis)\n aux = (\n self.second_eccentricity\n * (3 * (1 + ratio ** 2) * (1 - ratio * arctan) - 1)\n / (3 * ((1 + 3 * ratio ** 2) * arctan - 3 * ratio))\n )\n axis_mul = self.semimajor_axis * self.semiminor_axis\n result = self.geocentric_grav_const * (1 - self.emm - self.emm * aux) / axis_mul\n return result\n\n @property\n def gravity_pole(self):\n \"The norm of the gravity vector on the ellipsoid at the poles [m/s²]\"\n ratio = self.semiminor_axis / self.linear_eccentricity\n arctan = np.arctan2(self.linear_eccentricity, self.semiminor_axis)\n aux = (\n self.second_eccentricity\n * (3 * (1 + ratio ** 2) * (1 - ratio * arctan) - 1)\n / (1.5 * ((1 + 3 * ratio ** 2) * arctan - 3 * ratio))\n )\n result = (\n self.geocentric_grav_const * (1 + self.emm * aux) / self.semimajor_axis ** 2\n )\n return result\n\n def geocentric_radius(self, latitude, geodetic=True):\n r\"\"\"\n Distance from the center of the ellipsoid to its surface.\n\n The geocentric radius and is a function of the geodetic latitude\n :math:`\\phi` and the semi-major and semi-minor axis, a and b:\n\n .. math::\n\n R(\\phi) = \\sqrt{\\dfrac{\n (a^2\\cos\\phi)^2 + (b^2\\sin\\phi)^2}{\n (a\\cos\\phi)^2 + (b\\sin\\phi)^2 }\n }\n\n See https://en.wikipedia.org/wiki/Earth_radius#Geocentric_radius\n\n The same could be achieved with\n :meth:`boule.Ellipsoid.geodetic_to_spherical` by passing any value for\n the longitudes and heights equal to zero. This method provides a\n simpler and possibly faster alternative.\n\n Alternatively, the geocentric radius can also be expressed in terms of\n the geocentric (spherical) latitude :math:`\\theta`:\n\n .. math::\n\n R(\\theta) = \\sqrt{\\dfrac{1}{\n (\\frac{\\cos\\theta}{a})^2 + (\\frac{\\sin\\theta}{b})^2 }\n }\n\n This can be useful if you already have the geocentric latitudes and\n need the geocentric radius of the ellipsoid (for example, in spherical\n harmonic analysis). In these cases, the coordinate conversion route is\n not possible since we need the radial coordinates to do that in the\n first place.\n\n .. note::\n\n No elevation is taken into account (the height is zero). If you\n need the geocentric radius at a height other than zero, use\n :meth:`boule.Ellipsoid.geodetic_to_spherical` instead.\n\n Parameters\n ----------\n latitude : float or array\n Latitude coordinates on geodetic coordinate system in degrees.\n geodetic : bool\n If True (default), will assume that latitudes are geodetic\n latitudes. Otherwise, will that they are geocentric spherical\n latitudes.\n\n Returns\n -------\n geocentric_radius : float or array\n The geocentric radius for the given latitude(s) in the same units\n as the ellipsoid axis.\n\n \"\"\"\n latitude_rad = np.radians(latitude)\n coslat, sinlat = np.cos(latitude_rad), np.sin(latitude_rad)\n # Avoid doing this in favour of having the user do the conversions when\n # possible. It's not the case here, so we made an exception.\n if geodetic:\n radius = np.sqrt(\n (\n (self.semimajor_axis ** 2 * coslat) ** 2\n + (self.semiminor_axis ** 2 * sinlat) ** 2\n )\n / (\n (self.semimajor_axis * coslat) ** 2\n + (self.semiminor_axis * sinlat) ** 2\n )\n )\n else:\n radius = np.sqrt(\n 1\n / (\n (coslat / self.semimajor_axis) ** 2\n + (sinlat / self.semiminor_axis) ** 2\n )\n )\n return radius\n\n def prime_vertical_radius(self, sinlat):\n r\"\"\"\n Calculate the prime vertical radius for a given geodetic latitude\n\n The prime vertical radius is defined as:\n\n .. math::\n\n N(\\phi) = \\frac{a}{\\sqrt{1 - e^2 \\sin^2(\\phi)}}\n\n Where :math:`a` is the semi-major axis and :math:`e` is the first\n eccentricity.\n\n This function receives the sine of the latitude as input to avoid\n repeated computations of trigonometric functions.\n\n Parameters\n ----------\n sinlat : float or array-like\n Sine of the latitude angle.\n\n Returns\n -------\n prime_vertical_radius : float or array-like\n Prime vertical radius given in the same units as the semi-major\n axis\n\n \"\"\"\n return self.semimajor_axis / np.sqrt(\n 1 - self.first_eccentricity ** 2 * sinlat ** 2\n )\n\n def geodetic_to_spherical(self, longitude, latitude, height):\n \"\"\"\n Convert from geodetic to geocentric spherical coordinates.\n\n The geodetic datum is defined by this ellipsoid. The coordinates are\n converted following [Vermeille2002]_.\n\n Parameters\n ----------\n longitude : array\n Longitude coordinates on geodetic coordinate system in degrees.\n latitude : array\n Latitude coordinates on geodetic coordinate system in degrees.\n height : array\n Ellipsoidal heights in meters.\n\n Returns\n -------\n longitude : array\n Longitude coordinates on geocentric spherical coordinate system in\n degrees.\n The longitude coordinates are not modified during this conversion.\n spherical_latitude : array\n Converted latitude coordinates on geocentric spherical coordinate\n system in degrees.\n radius : array\n Converted spherical radius coordinates in meters.\n\n \"\"\"\n latitude_rad = np.radians(latitude)\n coslat, sinlat = np.cos(latitude_rad), np.sin(latitude_rad)\n prime_vertical_radius = self.prime_vertical_radius(sinlat)\n # Instead of computing X and Y, we only compute the projection on the\n # XY plane: xy_projection = sqrt( X**2 + Y**2 )\n xy_projection = (height + prime_vertical_radius) * coslat\n z_cartesian = (\n height + (1 - self.first_eccentricity ** 2) * prime_vertical_radius\n ) * sinlat\n radius = np.sqrt(xy_projection ** 2 + z_cartesian ** 2)\n spherical_latitude = np.degrees(np.arcsin(z_cartesian / radius))\n return longitude, spherical_latitude, radius\n\n def spherical_to_geodetic(self, longitude, spherical_latitude, radius):\n \"\"\"\n Convert from geocentric spherical to geodetic coordinates.\n\n The geodetic datum is defined by this ellipsoid. The coordinates are\n converted following [Vermeille2002]_.\n\n Parameters\n ----------\n longitude : array\n Longitude coordinates on geocentric spherical coordinate system in\n degrees.\n spherical_latitude : array\n Latitude coordinates on geocentric spherical coordinate system in\n degrees.\n radius : array\n Spherical radius coordinates in meters.\n\n Returns\n -------\n longitude : array\n Longitude coordinates on geodetic coordinate system in degrees.\n The longitude coordinates are not modified during this conversion.\n latitude : array\n Converted latitude coordinates on geodetic coordinate system in\n degrees.\n height : array\n Converted ellipsoidal height coordinates in meters.\n\n \"\"\"\n spherical_latitude = np.radians(spherical_latitude)\n k, big_z, big_d = self._spherical_to_geodetic_terms(spherical_latitude, radius)\n latitude = np.degrees(\n 2 * np.arctan(big_z / (big_d + np.sqrt(big_d ** 2 + big_z ** 2)))\n )\n height = (\n (k + self.first_eccentricity ** 2 - 1)\n / k\n * np.sqrt(big_d ** 2 + big_z ** 2)\n )\n return longitude, latitude, height\n\n def _spherical_to_geodetic_terms(self, spherical_latitude, radius):\n \"Calculate intermediate terms needed for the conversion.\"\n # Offload computation of these intermediate variables here to clean up\n # the main function body\n cos_latitude = np.cos(spherical_latitude)\n big_z = radius * np.sin(spherical_latitude)\n p_0 = radius ** 2 * cos_latitude ** 2 / self.semimajor_axis ** 2\n q_0 = (1 - self.first_eccentricity ** 2) / self.semimajor_axis ** 2 * big_z ** 2\n r_0 = (p_0 + q_0 - self.first_eccentricity ** 4) / 6\n s_0 = self.first_eccentricity ** 4 * p_0 * q_0 / 4 / r_0 ** 3\n t_0 = np.cbrt(1 + s_0 + np.sqrt(2 * s_0 + s_0 ** 2))\n u_0 = r_0 * (1 + t_0 + 1 / t_0)\n v_0 = np.sqrt(u_0 ** 2 + q_0 * self.first_eccentricity ** 4)\n w_0 = self.first_eccentricity ** 2 * (u_0 + v_0 - q_0) / 2 / v_0\n k = np.sqrt(u_0 + v_0 + w_0 ** 2) - w_0\n big_d = k * radius * cos_latitude / (k + self.first_eccentricity ** 2)\n return k, big_z, big_d\n\n def normal_gravity(\n self, latitude, height, si_units=False\n ): # pylint: disable=too-many-locals\n \"\"\"\n Calculate normal gravity at any latitude and height.\n\n Computes the magnitude of the gradient of the gravity potential\n (gravitational + centrifugal) generated by the ellipsoid at the given\n latitude and (geometric) height. Uses of a closed form expression of\n [LiGotze2001]_.\n\n Parameters\n ----------\n latitude : float or array\n The (geodetic) latitude where the normal gravity will be computed\n (in degrees).\n height : float or array\n The ellipsoidal (geometric) height of computation the point (in\n meters).\n si_units : bool\n Return the value in mGal (False, default) or SI units (True)\n\n Returns\n -------\n gamma : float or array\n The normal gravity in mGal.\n\n \"\"\"\n # Warn if height is negative\n if np.any(height < 0):\n warn(\n \"Formulas used are valid for points outside the ellipsoid.\"\n \"Height must be greater than or equal to zero.\"\n )\n\n sinlat = np.sin(np.deg2rad(latitude))\n coslat = np.sqrt(1 - sinlat ** 2)\n # The terms below follow the variable names from Li and Goetze (2001)\n cosbeta_l2, sinbeta_l2, b_l, q_0, q_l, big_w = self._normal_gravity_terms(\n sinlat, coslat, height\n )\n # Put together gamma using 3 terms\n term1 = self.geocentric_grav_const / (b_l ** 2 + self.linear_eccentricity ** 2)\n term2 = (0.5 * sinbeta_l2 - 1 / 6) * (\n self.semimajor_axis ** 2\n * self.linear_eccentricity\n * q_l\n * self.angular_velocity ** 2\n / ((b_l ** 2 + self.linear_eccentricity ** 2) * q_0)\n )\n term3 = -cosbeta_l2 * b_l * self.angular_velocity ** 2\n gamma = (term1 + term2 + term3) / big_w\n if si_units:\n return gamma\n # Convert gamma from SI to mGal\n return gamma * 1e5\n\n def _normal_gravity_terms(self, sinlat, coslat, height):\n \"Calculate intermediate terms needed for the calculations.\"\n # Offload computation of these intermediate variables here to clean up\n # the main function body\n beta = np.arctan2(self.semiminor_axis * sinlat, self.semimajor_axis * coslat)\n zl2 = (self.semiminor_axis * np.sin(beta) + height * sinlat) ** 2\n rl2 = (self.semimajor_axis * np.cos(beta) + height * coslat) ** 2\n big_d = (rl2 - zl2) / self.linear_eccentricity ** 2\n big_r = (rl2 + zl2) / self.linear_eccentricity ** 2\n cosbeta_l2 = 0.5 * (1 + big_r) - np.sqrt(0.25 * (1 + big_r ** 2) - 0.5 * big_d)\n sinbeta_l2 = 1 - cosbeta_l2\n b_l = np.sqrt(rl2 + zl2 - self.linear_eccentricity ** 2 * cosbeta_l2)\n q_0 = 0.5 * (\n (1 + 3 * (self.semiminor_axis / self.linear_eccentricity) ** 2)\n * np.arctan2(self.linear_eccentricity, self.semiminor_axis)\n - 3 * self.semiminor_axis / self.linear_eccentricity\n )\n q_l = (\n 3\n * (1 + (b_l / self.linear_eccentricity) ** 2)\n * (\n 1\n - b_l\n / self.linear_eccentricity\n * np.arctan2(self.linear_eccentricity, b_l)\n )\n - 1\n )\n big_w = np.sqrt(\n (b_l ** 2 + self.linear_eccentricity ** 2 * sinbeta_l2)\n / (b_l ** 2 + self.linear_eccentricity ** 2)\n )\n return cosbeta_l2, sinbeta_l2, b_l, q_0, q_l, big_w\n", "sub_path": "boule/ellipsoid.py", "file_name": "ellipsoid.py", "file_ext": "py", "file_size_in_byte": 18979, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "attr.ib", "line_number": 89, "usage_type": "call"}, {"api_name": "attr.ib", "line_number": 90, "usage_type": "call"}, {"api_name": "attr.ib", "line_number": 91, "usage_type": "call"}, {"api_name": "attr.ib", "line_number": 92, "usage_type": "call"}, {"api_name": "attr.ib", "line_number": 93, "usage_type": "call"}, {"api_name": "attr.ib", "line_number": 94, "usage_type": "call"}, {"api_name": "attr.ib", "line_number": 95, "usage_type": "call"}, {"api_name": "warnings.warn", "line_number": 115, "usage_type": "call"}, {"api_name": "warnings.warn", "line_number": 141, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 151, "usage_type": "call"}, {"api_name": "numpy.arctan2", "line_number": 186, "usage_type": "call"}, {"api_name": "numpy.arctan2", "line_number": 200, "usage_type": "call"}, {"api_name": "numpy.radians", "line_number": 269, "usage_type": "call"}, {"api_name": "numpy.cos", "line_number": 270, "usage_type": "call"}, {"api_name": "numpy.sin", "line_number": 270, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 274, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 285, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 322, "usage_type": "call"}, {"api_name": "numpy.radians", "line_number": 355, "usage_type": "call"}, {"api_name": "numpy.cos", "line_number": 356, "usage_type": "call"}, {"api_name": "numpy.sin", "line_number": 356, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 364, "usage_type": "call"}, {"api_name": "numpy.degrees", "line_number": 365, "usage_type": "call"}, {"api_name": "numpy.arcsin", "line_number": 365, "usage_type": "call"}, {"api_name": "numpy.radians", "line_number": 398, "usage_type": "call"}, {"api_name": "numpy.degrees", "line_number": 400, "usage_type": "call"}, {"api_name": "numpy.arctan", "line_number": 401, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 401, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 406, "usage_type": "call"}, {"api_name": "numpy.cos", "line_number": 414, "usage_type": "call"}, {"api_name": "numpy.sin", "line_number": 415, "usage_type": "call"}, {"api_name": "numpy.cbrt", "line_number": 420, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 420, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 422, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 424, "usage_type": "call"}, {"api_name": "numpy.any", "line_number": 457, "usage_type": "call"}, {"api_name": "warnings.warn", "line_number": 458, "usage_type": "call"}, {"api_name": "numpy.sin", "line_number": 463, "usage_type": "call"}, {"api_name": "numpy.deg2rad", "line_number": 463, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 464, "usage_type": "call"}, {"api_name": "numpy.arctan2", "line_number": 489, "usage_type": "call"}, {"api_name": "numpy.sin", "line_number": 490, "usage_type": "call"}, {"api_name": "numpy.cos", "line_number": 491, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 494, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 496, "usage_type": "call"}, {"api_name": "numpy.arctan2", "line_number": 499, "usage_type": "call"}, {"api_name": "numpy.arctan2", "line_number": 509, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 513, "usage_type": "call"}, {"api_name": "attr.s", "line_number": 17, "usage_type": "call"}]}
{"seq_id": "594216970", "text": "\n# Default configuration for Cherry Py REST server\n\nimport cherrypy\n\nconfig = {\n 'global': {\n 'server.thread_pool' : 30, # Thread pool size (sys def = 10)\n 'server.socket_host' : '0.0.0.0', # Current host\n 'server.socket_port' : 8000,\n 'server.max_request_body_size' : 400 * (1024 ** 2), # N megabytes\n 'engine.autoreload_on' : False, # Restart when source files changed?\n 'tools.gzip.on' : True, # Support gzip compression\n 'log.screen' : True,\n },\n '/': {\n 'request.dispatch' : cherrypy.dispatch.MethodDispatcher(),\n # Let user see tracebacks. Very useful for debugging, but \n # not typically considered good form as it exposes information\n # to users that could be exploited \n 'request.show_tracebacks' : True,\n #change timeout duration\n 'response.timeout' : 1080 #18 minutes\n }\n }\n", "sub_path": "src/REST/__init__.py", "file_name": "__init__.py", "file_ext": "py", "file_size_in_byte": 914, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "cherrypy.dispatch.MethodDispatcher", "line_number": 17, "usage_type": "call"}, {"api_name": "cherrypy.dispatch", "line_number": 17, "usage_type": "attribute"}]}
{"seq_id": "407871105", "text": "import gym\nimport numpy as np\nimport matplotlib.pyplot as plt\n\nnum_images = 100\nenv = gym.make('Pong-v0')\nenv.reset()\ndone = False\npath = 'env_images_test/'\nfor i in range(1000):\n # env.render()\n state, reward, done, _ = env.step(env.action_space.sample())\n state = state[35:195:2, ::2, 0]\n state[np.logical_or(state == 144, state == 109)] = 0\n state[state != 0] = 1\n state = state.astype(np.float)\n # state = np.expand_dims(state, axis=-1)\n if i>=500 and i<=500+num_images:\n plt.imsave(path+'{}.png'.format(i), state, cmap='gray')\n # print(state.shape)", "sub_path": "generate_frames_test.py", "file_name": "generate_frames_test.py", "file_ext": "py", "file_size_in_byte": 587, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "gym.make", "line_number": 6, "usage_type": "call"}, {"api_name": "numpy.logical_or", "line_number": 14, "usage_type": "call"}, {"api_name": "numpy.float", "line_number": 16, "usage_type": "attribute"}, {"api_name": "matplotlib.pyplot.imsave", "line_number": 19, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 19, "usage_type": "name"}]}
{"seq_id": "605890090", "text": "# -*- coding: utf-8 -*-\n'''Run a prediction for a comment through the reddit May 2015 hate speech model'''\n\nfrom sklearn.feature_extraction.text import TfidfVectorizer\nfrom string import punctuation\nfrom nltk import word_tokenize\nfrom nltk.stem import snowball\nimport xgboost as xgb\nimport cPickle as pickle\nimport numpy as np\nimport pandas as pd\n\n\nstemmer = snowball.SnowballStemmer(\"english\")\n\n\ndef stem_tokens(tokens, stemmer):\n '''Stem the tokens.'''\n stemmed = []\n for item in tokens:\n stemmed.append(stemmer.stem(item))\n return stemmed\n\n\ndef tokenize(text):\n '''Tokenize & stem. Stems automatically for now.\n Leaving \"stemmer\" out of function call, so it works with TfidfVectorizer'''\n tokens = word_tokenize(text)\n stems = stem_tokens(tokens, stemmer)\n return stems\n\ndef predict_comment(comment, classes, bst, vect):\n '''\n Where \"comment\" is the comment by the user, to be passed in.\n classes =\n '''\n comment_tfidf = vect.transform([comment])\n comment_xgb = xgb.DMatrix(comment_tfidf)\n yprob = bst.predict(comment_xgb).reshape(1, 5) # hard coding -- only one comment at a time in this case.\n ylabel = classes[np.argmax(yprob, axis=1)]\n\n # print('The class is: {0} with probability {1}%'.format(ylabel, round(100 * np.max(yprob), 1)))\n\n return ylabel, round(100*np.max(yprob), 1), comment\n\n\ndef main():\n classes = ['Not Hate', 'Size Hate', 'Gender Hate', 'Race Hate', 'Religion Hate']\n\n # load saved xgboost model\n bst = xgb.Booster()\n bst.load_model('../FinalModel/modelv1/BuildModel/hatespeech.model')\n # load tf-idf matrix\n # tfidf_X = pickle.load(open('../FinalModel/BuildModel/tfidf_X.p', 'rb'))\n vect = pickle.load(open('../FinalModel/modelv1/BuildModel/vect.p', 'rb'))\n\n # get comment from user\n comment = raw_input('Enter comment: ')\n # predict class of comment\n predict_comment(comment, classes, bst, vect)\n\n predict = raw_input(\"Enter 'y' to get another prediction.\")\n\n while predict == 'y':\n # get comment from user\n comment = raw_input('Enter comment: ')\n # predict class of comment\n predict_comment(comment, classes, bst, vect)\n predict = raw_input(\"Enter 'y' to get another prediction.\")\n\n\nif __name__ == \"__main__\":\n main()\n", "sub_path": "WebApp/webapp_v1/runfinalmodelpreds_v1.py", "file_name": "runfinalmodelpreds_v1.py", "file_ext": "py", "file_size_in_byte": 2287, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "nltk.stem.snowball.SnowballStemmer", "line_number": 14, "usage_type": "call"}, {"api_name": "nltk.stem.snowball", "line_number": 14, "usage_type": "name"}, {"api_name": "nltk.word_tokenize", "line_number": 28, "usage_type": "call"}, {"api_name": "xgboost.DMatrix", "line_number": 38, "usage_type": "call"}, {"api_name": "numpy.argmax", "line_number": 40, "usage_type": "call"}, {"api_name": "numpy.max", "line_number": 44, "usage_type": "call"}, {"api_name": "xgboost.Booster", "line_number": 51, "usage_type": "call"}, {"api_name": "cPickle.load", "line_number": 55, "usage_type": "call"}]}
{"seq_id": "488112766", "text": "'''\nCreated on Sep 18, 2016\n\n@author: Julia Yu\n'''\n\nimport os\nimport json\n\nclass compareAPIResult():\n def compareAPIResult(self, dellID, apiName, actualResult):\n baselineFilePath = os.path.join(os.path.dirname(os.path.realpath('__file__')),'testdata/ptagentTestResult_%s_baseline.json'%dellID)\n with open(baselineFilePath) as f:\n baseResults=json.load(f)\n for baseline in baseResults:\n if baseline['api'] == apiName:\n expectedResult = baseline['result']\n break\n if cmp(actualResult, expectedResult) == 0:\n return True\n else:\n return False", "sub_path": "VxRailManager/tasks/ptagent/compareAPIResult.py", "file_name": "compareAPIResult.py", "file_ext": "py", "file_size_in_byte": 650, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "os.path.join", "line_number": 12, "usage_type": "call"}, {"api_name": "os.path", "line_number": 12, "usage_type": "attribute"}, {"api_name": "os.path.dirname", "line_number": 12, "usage_type": "call"}, {"api_name": "os.path.realpath", "line_number": 12, "usage_type": "call"}, {"api_name": "json.load", "line_number": 14, "usage_type": "call"}]}
{"seq_id": "527334055", "text": "# -*- coding: utf-8 -*-\nfrom gtts import gTTS\nfrom playsound import playsound\nfrom threading import Thread\nfrom datetime import date\nfrom fuzzywuzzy import process\nimport sys\nimport os\nimport time\nimport sched\nimport requests\nimport random\nimport json\nimport threading\n\n# this is a full text version of omega, for debugging\nval = 1\n\n\ndef omegaSpeak(text):\n print(text)\n\n\ndef omegaTaskCompleted(user):\n # possible responses\n val = ''\n # priant 1 random number in the range of 1 and 2\n for x in range(1):\n val = random.randint(1, 2)\n if val == 1:\n omegaSpeak('ok, done')\n if val == 2:\n omegaSpeak('That has finished %s' % user)\n\n\ndef takingCommands(request):\n if request == False:\n try:\n # command = r.recognize_google(audio)\n print(' 🧑 You said: {}'.format(command))\n omegaCommands(command.lower())\n except SystemExit:\n sys.exit()\n except:\n print('')\n else:\n omegaCommands(request)\n\n\ndef omegaCommands(command):\n # get the current user before every command\n name = readFromData()\n if command == 'omega':\n omegaSpeak('Yes %s' % name)\n if 'shutdown' in command:\n omegaSpeak(\"ok, closing\")\n\n if 'what is the date' in command:\n omegaSpeak('One second %s ' % name)\n today = str(date.today())\n omegaSpeak(today)\n if 'new user' in command:\n print('new user')\n if 'hello' in command:\n omegaSpeak('Hello %s' % name)\n omegaTaskCompleted(name)\n if 'what is my name' in command:\n if name == '':\n omegaSpeak('I cannot see you')\n elif name == 'no user':\n omegaSpeak('I cannot see you')\n else:\n omegaSpeak('You are %s' % name)\n if 'turn off' in command:\n lights(command, 'off', user)\n if 'turn on' in command:\n lights(command, 'on', user)\n\n# need an alwasys listening function and then it calls the commands function\n\n# hue light control\n# command is the command given\n# state is off or on\n# user is omega tries to get the user that it sees\n\n\ndef lights(command, state, user):\n hueLights = []\n # get lights\n resp = requests.get('https://discovery.meethue.com/')\n ipAddress = ''\n for ip in resp.json():\n ipAddress = ip['internalipaddress']\n lights = requests.get(\n 'http://%s/api/pf3enyrZJz4uvwgYf90t9E2FzLM4tW2GeGSnO-ut/lights' % ipAddress)\n # split the command at the '\n if 'turn off the' in command:\n command = command.split('turn off the')\n else:\n command = command.split('turn on the')\n lightName = command[1]\n # put all the light name from hue in array\n for i in lights.json():\n hueLights.append(\n {'index': i, 'name': '{}' .format(lights.json()[i]['name'])})\n # fuzzy search for best matching light name\n finalLight = process.extractOne(lightName, hueLights)\n print(finalLight[0]['index'])\n # set state of light\n if state == 'on':\n payload = \" {\\\"on\\\":true}\"\n else:\n payload = \" {\\\"on\\\":false}\"\n requests.put(\n 'http://%s/api/pf3enyrZJz4uvwgYf90t9E2FzLM4tW2GeGSnO-ut/lights/%s/state' % (ipAddress, finalLight[0]['index']), data=payload)\n # else:\n omegaTaskCompleted(user)\n\n\ndef typeToAssist():\n command = input('What is the command?')\n omegaCommands(command)\n\ndef readFromData():\n with open('../person.txt') as json_file:\n data = json.load(json_file)\n return data[\"person\"]\n\n\nwhile val == 1:\n typeToAssist()\n", "sub_path": "omega/textAssistant.py", "file_name": "textAssistant.py", "file_ext": "py", "file_size_in_byte": 3546, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "random.randint", "line_number": 29, "usage_type": "call"}, {"api_name": "sys.exit", "line_number": 43, "usage_type": "call"}, {"api_name": "datetime.date.today", "line_number": 60, "usage_type": "call"}, {"api_name": "datetime.date", "line_number": 60, "usage_type": "name"}, {"api_name": "requests.get", "line_number": 90, "usage_type": "call"}, {"api_name": "requests.get", "line_number": 94, "usage_type": "call"}, {"api_name": "fuzzywuzzy.process.extractOne", "line_number": 107, "usage_type": "call"}, {"api_name": "fuzzywuzzy.process", "line_number": 107, "usage_type": "name"}, {"api_name": "requests.put", "line_number": 114, "usage_type": "call"}, {"api_name": "json.load", "line_number": 126, "usage_type": "call"}]}
{"seq_id": "222183887", "text": "from graphviz import Digraph\n\n#We arrange the graph using Networkx and then paint it using Cytoscape.\nG = Digraph(comment=\"Lung Cancer Experiment\")\nG.node('1', \"Tobacco Use\")\nG.node('2', \"Lung Cancer\")\nG.node('3', \"Secondhand Smoke\")\nG.node('4', \"Heavy Smoking\")\nG.node('5', \"Complications\")\nG.node('6', \"Death\")\nG.node('7', \"Symptoms\")\nG.node('8', \"Bone Pain\")\nG.node('9', \"Treatable\")\nG.node('10',\"Radiation Therapy\")\nG.node('11',\"Bleeding\")\nG.node('12',\"Chemical Imbalances\")\nG.node('13',\"Pain\")\nG.node('14',\"Speech Difficulties\")\nG.node('15',\"Breathing Difficulties\")\nG.node('16',\"Metastasize\")\nG.node('17',\"Collect Fluid\")\nG.node('19',\"Fatigue\")\nG.node('20',\"Loss of appetite\")\nG.node('21',\"Workplace\")\nG.node('22',\"Radon Gas\")\nG.edge('1','2')\nG.edge('3','2')\nG.edge('4','2')\nG.edge('2','5')\nG.edge('2','5')\nG.edge('2','6')\nG.edge('2','7')\nG.edge('2','8')\nG.edge('2','9')\nG.edge('2','10')\nG.edge('2','11')\nG.edge('2','12')\nG.edge('2','13')\nG.edge('2','14')\nG.edge('2','15')\nG.edge('2','16')\nG.edge('2','17')\nG.edge('9','19')\nG.edge('9','20')\nG.edge('21','2')\nG.edge('22','2')\nG.render(\"causal_graph\")\n", "sub_path": "graphviz_drawer.py", "file_name": "graphviz_drawer.py", "file_ext": "py", "file_size_in_byte": 1106, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "graphviz.Digraph", "line_number": 4, "usage_type": "call"}]}
{"seq_id": "14677515", "text": "\nfrom sklearn.neighbors import KNeighborsClassifier, NearestNeighbors\nimport numpy as np\nfrom lmnn import LargeMarginNearestNeighbor as LMNN\n\n\nclass imls():\n def __init__(self, k=3, mu=0.5, coef=5, randomState=np.random):\n self.coef = coef\n self.k = k\n self.mu = mu\n self.randomState = randomState\n\n def fitPredict(self, Xtrain, ytrain, Xtest):\n while self.coef*self.k > Xtrain.shape[0]:\n self.coef -= 1\n nn = NearestNeighbors(n_neighbors=self.coef*self.k)\n nn.fit(Xtrain)\n nearestNeighbors = nn.kneighbors(Xtest, return_distance=False)\n lmnn = LMNN(k=self.k,randomState=self.randomState, mu=self.mu)\n lmnn.fit(Xtrain, ytrain)\n Xtrain = lmnn.transform(Xtrain)\n Xtest = lmnn.transform(Xtest)\n nn = NearestNeighbors(n_neighbors=self.coef*self.k)\n nn.fit(Xtrain)\n newNearestNeighbors = nn.kneighbors(Xtest, return_distance=False)\n matching = np.array([len(np.intersect1d(\n nearestNeighbors[i],newNearestNeighbors[i]))>=int(self.coef*0.8)\n for i in range(len(nearestNeighbors))])\n while matching.all() == False:\n nearestNeighbors = newNearestNeighbors.copy()\n lmnn = LMNN(k=self.k,randomState=self.randomState, mu=self.mu)\n lmnn.fit(Xtrain, ytrain)\n Xtrain = lmnn.transform(Xtrain)\n Xtest = lmnn.transform(Xtest)\n nn = NearestNeighbors(n_neighbors=self.coef*self.k)\n nn.fit(Xtrain)\n newNearestNeighbors = nn.kneighbors(Xtest, return_distance=False)\n matching = np.array([len(np.intersect1d(\n nearestNeighbors[i], newNearestNeighbors[i]))>=int(self.coef*0.8)\n for i in range(len(nearestNeighbors))])\n knc = KNeighborsClassifier(n_neighbors=self.k)\n knc.fit(Xtrain, ytrain)\n return knc.predict(Xtest)\n", "sub_path": "experiments_a_b-PRL/imls.py", "file_name": "imls.py", "file_ext": "py", "file_size_in_byte": 1938, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "numpy.random", "line_number": 8, "usage_type": "attribute"}, {"api_name": "sklearn.neighbors.NearestNeighbors", "line_number": 17, "usage_type": "call"}, {"api_name": "lmnn.LargeMarginNearestNeighbor", "line_number": 20, "usage_type": "call"}, {"api_name": "lmnn.fit", "line_number": 21, "usage_type": "call"}, {"api_name": "lmnn.transform", "line_number": 22, "usage_type": "call"}, {"api_name": "lmnn.transform", "line_number": 23, "usage_type": "call"}, {"api_name": "sklearn.neighbors.NearestNeighbors", "line_number": 24, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 27, "usage_type": "call"}, {"api_name": "numpy.intersect1d", "line_number": 27, "usage_type": "call"}, {"api_name": "lmnn.LargeMarginNearestNeighbor", "line_number": 32, "usage_type": "call"}, {"api_name": "lmnn.fit", "line_number": 33, "usage_type": "call"}, {"api_name": "lmnn.transform", "line_number": 34, "usage_type": "call"}, {"api_name": "lmnn.transform", "line_number": 35, "usage_type": "call"}, {"api_name": "sklearn.neighbors.NearestNeighbors", "line_number": 36, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 39, "usage_type": "call"}, {"api_name": "numpy.intersect1d", "line_number": 39, "usage_type": "call"}, {"api_name": "sklearn.neighbors.KNeighborsClassifier", "line_number": 42, "usage_type": "call"}]}
{"seq_id": "595003893", "text": "\"\"\"\nGive the Host and Gene name to print the express gene names\n\"\"\"\nimport argparse\nimport re\nimport sys\nfrom assignment5 import my_io\nfrom assignment5 import config\n\n\ndef main():\n \"\"\"\n Main function\n :return: Prints out Expressed genes in Mammal in STD.OUT format\n \"\"\"\n args = get_cli_args()\n # function to check for passed arguments\n temp_host, gene = check_passed_args(args)\n # getting scientific name\n host = modify_host_name(temp_host)\n # file name and absolute path\n file = \"/\".join((config.get_unigene_directory(),\n host, gene + \".\" + config.get_unigene_extension()))\n # checking if file exist in directory or not\n _check_file_exist(file, host, gene)\n # List of expressed genes sorted alphabetically\n tissue_strig = get_gene_data(file)\n # Print output on STD.OUT\n print_ouput(temp_host, gene, tissue_strig)\n\n\ndef print_ouput(host, gene, tissue_string):\n \"\"\"\n Print Expressed gene name on STD OUT\n :param host: Name of the host\n :param gene: Name of the gene passed\n :param tissue_string: sorted list of expressed genes\n :return: None\n \"\"\"\n print(f\"In {host}, There are {len(tissue_string)} \"\n f\"tissues that {gene} is expressed in:\\n\")\n\n for i, value in enumerate(tissue_string, start=1):\n print(f\"{i}. {value.title()}\")\n\n\ndef get_gene_data(gene_file):\n \"\"\"\n Get Epressed gene names from host file.\n :param gene_file: Absolute path to gene file of host\n :return: Sorted list of expresssed genes in host\n \"\"\"\n fh_in = my_io.get_fh(gene_file, \"r\")\n\n tissue_strig = []\n\n for line in fh_in:\n if re.search(\"EXPRESS\", line):\n line = line.replace(\"\\n\", \"\")\n line = re.sub('[A-Z]', \"\", line)\n tissue_strig = line.split(\"|\")\n tissue_strig = [x.strip(' ') for x in tissue_strig]\n\n my_io.get_fh(fh_in, \"close\")\n\n return sorted(tissue_strig)\n\n\ndef _check_file_exist(file, temp_host, gene):\n # check for the existence of file\n if my_io.is_valid_gene_file_name(file):\n # using f-strings\n print(f\"\\nFound Gene {gene} for {temp_host}\")\n else:\n print(\"Not found\")\n print(f\"Gene {gene} does not exist for {temp_host}. \"\n f\"exiting now...\", file=sys.stderr)\n sys.exit()\n\n\ndef modify_host_name(host_name):\n \"\"\"\n Get Scientific name from dictionary exist in config file\n if name with \"_\" is passed it can be treated as scientifc name\n :param host_name: Argument passed in CLI otions\n :return: Scientific name for Host\n \"\"\"\n scientific_name = \"\"\n\n if \"_\" in host_name:\n scientific_name = host_name\n else:\n if host_name.lower() in list(config.get_host_keywords().keys()):\n scientific_name = config.get_host_keywords()[host_name.lower()]\n else:\n _print_host_directories()\n scientific_name = host_name\n\n return scientific_name\n\n\ndef _print_host_directories():\n \"\"\"\n Internal function to print the name of valid Hosts data available\n in directory scientific and non-scientific both (case-insensitive)\n :return: NONE exits the program\n \"\"\"\n\n print(\"\\nEither the Host Name you are searching for is not in the database\"\n \"\\nor If you are trying to use the scientific name please \"\n \"put the name in double quotes:\\n\"\n \"\\n\\\"Scientific name\\\"\\n\"\n \"\\nHere is a (non-case sensitive) list of available Hosts by scientific name\\n\")\n\n for i, value in enumerate(set(list(config.get_host_keywords().values())), start=1):\n print(f\"{i}. {value}\")\n\n print(\"\\nHere is a (non-case sensitive) list of available Hosts by common name\\n\")\n\n for i, key in enumerate(list(config.get_host_keywords().keys()), start=1):\n print(f\"{i}. {key.title()}\")\n\n\ndef check_passed_args(args):\n \"\"\"\n Check how many arguments passed, if NONE: return\n default file options\n :param args: Argparse file arguments, passed in CLI\n :return: Names of the files to open\n \"\"\"\n\n host = \"Homo_sapiens\"\n gene = \"TGM1\"\n args_to_return1 = \"\"\n args_to_return2 = \"\"\n\n if len(sys.argv) > 2:\n args_to_return1 = args.HOST\n args_to_return2 = args.GENE\n else:\n args_to_return1 = host\n args_to_return2 = gene\n\n return args_to_return1, args_to_return2\n\n\ndef get_cli_args():\n \"\"\"\n Get Command Line Argument function to read arguments from command\n line using argparse\n :return: Argument Parser object with all the required options\n \"\"\"\n parser = argparse.ArgumentParser(description=\"Give the Host and Gene name\")\n\n parser.add_argument(\"-host\",\n dest=\"HOST\",\n type=str,\n help=\"Name of Host\",\n required=False)\n\n parser.add_argument(\"-gene\",\n dest=\"GENE\",\n type=str,\n help=\"Name of Gene\",\n required=False)\n\n return parser.parse_args()\n\n\nif __name__ == \"__main__\":\n main()\n", "sub_path": "gene_information_query.py", "file_name": "gene_information_query.py", "file_ext": "py", "file_size_in_byte": 5081, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "assignment5.config.get_unigene_directory", "line_number": 22, "usage_type": "call"}, {"api_name": "assignment5.config", "line_number": 22, "usage_type": "name"}, {"api_name": "assignment5.config.get_unigene_extension", "line_number": 23, "usage_type": "call"}, {"api_name": "assignment5.config", "line_number": 23, "usage_type": "name"}, {"api_name": "assignment5.my_io.get_fh", "line_number": 53, "usage_type": "call"}, {"api_name": "assignment5.my_io", "line_number": 53, "usage_type": "name"}, {"api_name": "re.search", "line_number": 58, "usage_type": "call"}, {"api_name": "re.sub", "line_number": 60, "usage_type": "call"}, {"api_name": "assignment5.my_io.get_fh", "line_number": 64, "usage_type": "call"}, {"api_name": "assignment5.my_io", "line_number": 64, "usage_type": "name"}, {"api_name": "assignment5.my_io.is_valid_gene_file_name", "line_number": 71, "usage_type": "call"}, {"api_name": "assignment5.my_io", "line_number": 71, "usage_type": "name"}, {"api_name": "sys.stderr", "line_number": 77, "usage_type": "attribute"}, {"api_name": "sys.exit", "line_number": 78, "usage_type": "call"}, {"api_name": "assignment5.config.get_host_keywords", "line_number": 93, "usage_type": "call"}, {"api_name": "assignment5.config", "line_number": 93, "usage_type": "name"}, {"api_name": "assignment5.config.get_host_keywords", "line_number": 94, "usage_type": "call"}, {"api_name": "assignment5.config", "line_number": 94, "usage_type": "name"}, {"api_name": "assignment5.config.get_host_keywords", "line_number": 115, "usage_type": "call"}, {"api_name": "assignment5.config", "line_number": 115, "usage_type": "name"}, {"api_name": "assignment5.config.get_host_keywords", "line_number": 120, "usage_type": "call"}, {"api_name": "assignment5.config", "line_number": 120, "usage_type": "name"}, {"api_name": "sys.argv", "line_number": 137, "usage_type": "attribute"}, {"api_name": "argparse.ArgumentParser", "line_number": 153, "usage_type": "call"}]}
{"seq_id": "467937732", "text": "# -*- coding: utf-8 -*-\n\n\"\"\"Utilities for building paths.\"\"\"\n\nimport logging\nimport os\nimport tarfile\nfrom typing import Optional\nfrom urllib.parse import urlparse\nfrom urllib.request import urlretrieve\n\nimport pandas as pd\n\nfrom .constants import PYOBO_HOME\n\n__all__ = [\n 'get_prefix_directory',\n 'prefix_directory_join',\n 'get_prefix_obo_path',\n 'get_url_filename',\n 'ensure_path',\n 'ensure_df',\n 'ensure_excel',\n 'ensure_tar_df',\n]\n\nlogger = logging.getLogger(__name__)\n\n\ndef get_prefix_directory(prefix: str, *, version: Optional[str] = None) -> str:\n \"\"\"Get the directory.\"\"\"\n if version:\n directory = os.path.abspath(os.path.join(PYOBO_HOME, prefix, version))\n else:\n directory = os.path.abspath(os.path.join(PYOBO_HOME, prefix))\n os.makedirs(directory, exist_ok=True)\n return directory\n\n\ndef prefix_directory_join(prefix: str, *parts: str, version: Optional[str] = None) -> str:\n \"\"\"Join the parts onto the prefix directory.\"\"\"\n rv = os.path.join(get_prefix_directory(prefix, version=version), *parts)\n os.makedirs(os.path.dirname(rv), exist_ok=True)\n return rv\n\n\ndef get_prefix_obo_path(prefix: str) -> str:\n \"\"\"Get the canonical path to the OBO file.\"\"\"\n return prefix_directory_join(prefix, f\"{prefix}.obo\")\n\n\ndef get_url_filename(url: str) -> str:\n \"\"\"Get the filename from the end of the URL.\"\"\"\n parse_result = urlparse(url)\n return os.path.basename(parse_result.path)\n\n\ndef ensure_path(\n prefix: str,\n url: str,\n *,\n version: Optional[str] = None,\n path: Optional[str] = None,\n) -> str:\n \"\"\"Download a file if it doesn't exist.\"\"\"\n if path is None:\n path = get_url_filename(url)\n\n if version:\n path = prefix_directory_join(prefix, path, version=version)\n else:\n path = prefix_directory_join(prefix, path)\n\n if not os.path.exists(path):\n logger.info('[%s] downloading OBO from %s', prefix, url)\n urlretrieve(url, path)\n\n return path\n\n\ndef ensure_df(\n prefix: str,\n url: str,\n *,\n version: Optional[str] = None,\n path: Optional[str] = None,\n sep: str = '\\t',\n **kwargs,\n) -> pd.DataFrame:\n \"\"\"Download a file and open as a dataframe.\"\"\"\n path = ensure_path(prefix, url, version=version, path=path)\n return pd.read_csv(path, sep=sep, **kwargs)\n\n\ndef ensure_excel(\n prefix: str,\n url: str,\n *,\n version: Optional[str] = None,\n path: Optional[str] = None,\n **kwargs,\n) -> pd.DataFrame:\n \"\"\"Download an excel file and open as a dataframe.\"\"\"\n path = ensure_path(prefix, url, version=version, path=path)\n return pd.read_excel(path, **kwargs)\n\n\ndef ensure_tar_df(\n prefix: str,\n url: str,\n inner_path: str,\n *,\n version: Optional[str] = None,\n path: Optional[str] = None,\n **kwargs,\n) -> pd.DataFrame:\n \"\"\"Download a tar file and open as a dataframe.\"\"\"\n path = ensure_path(prefix, url, version=version, path=path)\n with tarfile.open(path) as tar_file:\n with tar_file.extractfile(inner_path) as file:\n return pd.read_csv(file, **kwargs)\n", "sub_path": "src/pyobo/path_utils.py", "file_name": "path_utils.py", "file_ext": "py", "file_size_in_byte": 3096, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "logging.getLogger", "line_number": 27, "usage_type": "call"}, {"api_name": "typing.Optional", "line_number": 30, "usage_type": "name"}, {"api_name": "os.path.abspath", "line_number": 33, "usage_type": "call"}, {"api_name": "os.path", "line_number": 33, "usage_type": "attribute"}, {"api_name": "os.path.join", "line_number": 33, "usage_type": "call"}, {"api_name": "constants.PYOBO_HOME", "line_number": 33, "usage_type": "argument"}, {"api_name": "os.path.abspath", "line_number": 35, "usage_type": "call"}, {"api_name": "os.path", "line_number": 35, "usage_type": "attribute"}, {"api_name": "os.path.join", "line_number": 35, "usage_type": "call"}, {"api_name": "constants.PYOBO_HOME", "line_number": 35, "usage_type": "argument"}, {"api_name": "os.makedirs", "line_number": 36, "usage_type": "call"}, {"api_name": "typing.Optional", "line_number": 40, "usage_type": "name"}, {"api_name": "os.path.join", "line_number": 42, "usage_type": "call"}, {"api_name": "os.path", "line_number": 42, "usage_type": "attribute"}, {"api_name": "os.makedirs", "line_number": 43, "usage_type": "call"}, {"api_name": "os.path.dirname", "line_number": 43, "usage_type": "call"}, {"api_name": "os.path", "line_number": 43, "usage_type": "attribute"}, {"api_name": "urllib.parse.urlparse", "line_number": 54, "usage_type": "call"}, {"api_name": "os.path.basename", "line_number": 55, "usage_type": "call"}, {"api_name": "os.path", "line_number": 55, "usage_type": "attribute"}, {"api_name": "typing.Optional", "line_number": 62, "usage_type": "name"}, {"api_name": "typing.Optional", "line_number": 63, "usage_type": "name"}, {"api_name": "os.path.exists", "line_number": 74, "usage_type": "call"}, {"api_name": "os.path", "line_number": 74, "usage_type": "attribute"}, {"api_name": "urllib.request.urlretrieve", "line_number": 76, "usage_type": "call"}, {"api_name": "typing.Optional", "line_number": 85, "usage_type": "name"}, {"api_name": "typing.Optional", "line_number": 86, "usage_type": "name"}, {"api_name": "pandas.read_csv", "line_number": 92, "usage_type": "call"}, {"api_name": "pandas.DataFrame", "line_number": 89, "usage_type": "attribute"}, {"api_name": "typing.Optional", "line_number": 99, "usage_type": "name"}, {"api_name": "typing.Optional", "line_number": 100, "usage_type": "name"}, {"api_name": "pandas.read_excel", "line_number": 105, "usage_type": "call"}, {"api_name": "pandas.DataFrame", "line_number": 102, "usage_type": "attribute"}, {"api_name": "typing.Optional", "line_number": 113, "usage_type": "name"}, {"api_name": "typing.Optional", "line_number": 114, "usage_type": "name"}, {"api_name": "tarfile.open", "line_number": 119, "usage_type": "call"}, {"api_name": "pandas.read_csv", "line_number": 121, "usage_type": "call"}, {"api_name": "pandas.DataFrame", "line_number": 116, "usage_type": "attribute"}]}
{"seq_id": "50551269", "text": "#!/usr/bin/python3\n\"\"\" states.py objects that handle all default API actions\n using GET, POST, DELETE\"\"\"\nfrom models import storage\nfrom models.state import State\nfrom flask import jsonify, abort, request\nfrom api.v1.views import app_views\n\n\n@app_views.route('/states', methods=['GET'], strict_slashes=False)\n@app_views.route('/states/', methods=['GET'], strict_slashes=False)\ndef get_state_id(state_id=None):\n \"\"\" returns the state dictionary \"\"\"\n if state_id is None:\n obj_list = []\n objs = storage.all(\"State\")\n for obj in objs.values():\n obj_list.append(obj.to_dict())\n return jsonify(obj_list)\n obj = storage.get(\"State\", state_id)\n if obj is None:\n abort(404)\n return jsonify(obj.to_dict())\n\n\n@app_views.route('/states/', methods=['DELETE'],\n strict_slashes=False)\ndef delete_state(state_id=None):\n \"\"\" returns the state id \"\"\"\n obj = storage.get(\"State\", state_id)\n if obj is None:\n abort(404)\n storage.delete(obj)\n storage.save()\n return jsonify({}), 200\n\n\n@app_views.route('/states', methods=['POST'], strict_slashes=False)\ndef new_state():\n \"\"\" creates a new state \"\"\"\n if request.get_json() is None:\n abort(400, \"Not a JSON\")\n dic = request.get_json()\n if 'name' not in dic:\n abort(400, \"Missing name\")\n obj = State(**dic)\n storage.new(obj)\n storage.save()\n return jsonify(obj.to_dict()), 201\n\n\n@app_views.route('/states/', methods=['PUT'], strict_slashes=False)\ndef update_state(state_id=None):\n \"\"\" Updates the states \"\"\"\n if request.get_json() is None:\n abort(400, \"Not a JSON\")\n obj = storage.get(\"State\", state_id)\n if obj is None:\n abort(404)\n dic = request.get_json()\n dic.pop('created_at', None)\n dic.pop('updated_at', None)\n dic.pop('id', None)\n for key, value in dic.items():\n setattr(obj, key, value)\n obj.save()\n return jsonify(obj.to_dict()), 200\n", "sub_path": "api/v1/views/states.py", "file_name": "states.py", "file_ext": "py", "file_size_in_byte": 1998, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "models.storage.all", "line_number": 16, "usage_type": "call"}, {"api_name": "models.storage", "line_number": 16, "usage_type": "name"}, {"api_name": "flask.jsonify", "line_number": 19, "usage_type": "call"}, {"api_name": "models.storage.get", "line_number": 20, "usage_type": "call"}, {"api_name": "models.storage", "line_number": 20, "usage_type": "name"}, {"api_name": "flask.abort", "line_number": 22, "usage_type": "call"}, {"api_name": "flask.jsonify", "line_number": 23, "usage_type": "call"}, {"api_name": "api.v1.views.app_views.route", "line_number": 10, "usage_type": "call"}, {"api_name": "api.v1.views.app_views", "line_number": 10, "usage_type": "name"}, {"api_name": "api.v1.views.app_views.route", "line_number": 11, "usage_type": "call"}, {"api_name": "api.v1.views.app_views", "line_number": 11, "usage_type": "name"}, {"api_name": "models.storage.get", "line_number": 30, "usage_type": "call"}, {"api_name": "models.storage", "line_number": 30, "usage_type": "name"}, {"api_name": "flask.abort", "line_number": 32, "usage_type": "call"}, {"api_name": "models.storage.delete", "line_number": 33, "usage_type": "call"}, {"api_name": "models.storage", "line_number": 33, "usage_type": "name"}, {"api_name": "models.storage.save", "line_number": 34, "usage_type": "call"}, {"api_name": "models.storage", "line_number": 34, "usage_type": "name"}, {"api_name": "flask.jsonify", "line_number": 35, "usage_type": "call"}, {"api_name": "api.v1.views.app_views.route", "line_number": 26, "usage_type": "call"}, {"api_name": "api.v1.views.app_views", "line_number": 26, "usage_type": "name"}, {"api_name": "flask.request.get_json", "line_number": 41, "usage_type": "call"}, {"api_name": "flask.request", "line_number": 41, "usage_type": "name"}, {"api_name": "flask.abort", "line_number": 42, "usage_type": "call"}, {"api_name": "flask.request.get_json", "line_number": 43, "usage_type": "call"}, {"api_name": "flask.request", "line_number": 43, "usage_type": "name"}, {"api_name": "flask.abort", "line_number": 45, "usage_type": "call"}, {"api_name": "models.state.State", "line_number": 46, "usage_type": "call"}, {"api_name": "models.storage.new", "line_number": 47, "usage_type": "call"}, {"api_name": "models.storage", "line_number": 47, "usage_type": "name"}, {"api_name": "models.storage.save", "line_number": 48, "usage_type": "call"}, {"api_name": "models.storage", "line_number": 48, "usage_type": "name"}, {"api_name": "flask.jsonify", "line_number": 49, "usage_type": "call"}, {"api_name": "api.v1.views.app_views.route", "line_number": 38, "usage_type": "call"}, {"api_name": "api.v1.views.app_views", "line_number": 38, "usage_type": "name"}, {"api_name": "flask.request.get_json", "line_number": 55, "usage_type": "call"}, {"api_name": "flask.request", "line_number": 55, "usage_type": "name"}, {"api_name": "flask.abort", "line_number": 56, "usage_type": "call"}, {"api_name": "models.storage.get", "line_number": 57, "usage_type": "call"}, {"api_name": "models.storage", "line_number": 57, "usage_type": "name"}, {"api_name": "flask.abort", "line_number": 59, "usage_type": "call"}, {"api_name": "flask.request.get_json", "line_number": 60, "usage_type": "call"}, {"api_name": "flask.request", "line_number": 60, "usage_type": "name"}, {"api_name": "flask.jsonify", "line_number": 67, "usage_type": "call"}, {"api_name": "api.v1.views.app_views.route", "line_number": 52, "usage_type": "call"}, {"api_name": "api.v1.views.app_views", "line_number": 52, "usage_type": "name"}]}
{"seq_id": "480606221", "text": "#!/usr/bin/python3\n\nfrom random import random, choice, randint\nfrom locale import getlocale\nfrom os.path import exists, join\nfrom datetime import datetime, timedelta\nfrom math import floor\n\nimport sqlite3\n\nMALE_FIRST_NAMES = 'maleFirstNames'\n\nclass DataSource:\n \n MALE_NAMES = 'maleNames'\n FEMALE_NAMES = 'femaleNames'\n LAST_NAMES = 'lastNames'\n \n def __init__(self, dataSource):\n self.dataSource = dataSource\n\n \n def loadDataItems(self, localesDir, dataItems=None, locales=None):\n pass\n # if localesDir == None or len(localesDir.strip()) == 0:\n # raise Exception('localesDir not specified')\n # \n # if not exists(localesDir):\n # raise Exception(\"%s not found\" % localesDir)\n # \n # self.localesDir = localesDir\n # \n # if dataItems == None or len(dataItems) == 0:\n # dataItems = DataSource.ALL_DATA_ITEMS\n # \n # if locales == None or len(locales) == 0:\n # locales = [getlocale()[0]]\n # \n # for dataItem in dataItems:\n # if dataItem not in DataSource.ALL_DATA_ITEMS:\n # raise Exception('unrecognized data item %s' % dataItem)\n # for locale in locales:\n # self.loadDataItem(dataItem, locale)\n \n def loadDataItem(self, dataItem, locale, *posArgs, **keywords):\n raise Exception('implement this method in subclass')\n \n def randomMaleName(self):\n return self.randomChoice(DataSource.MALE_NAMES)\n \n def randomFemaleName(self):\n return self.randomChoice(DataSource.FEMALE_NAMES)\n \n def randomLastName(self):\n return self.randomChoice(DataSource.LAST_NAMES)\n \nclass InMemoryDataSource(DataSource):\n \n def __init__(self):\n self.dataItems = {}\n \n def loadDataItem(self, dataItem, locale, *posArgs, **keywords):\n if 'values' not in keywords.keys():\n raise Exception('values not specified')\n \n self.dataItems[dataItem] = keywords['values']\n \n def randomChoice(self, dataItemName):\n if dataItemName not in self.dataItems.keys():\n raise Exception(dataItemName + \" not present in data items\")\n return choice(self.dataItems[dataItemName])\n \n \nclass SqliteDataSource(DataSource):\n \n def __init__(self):\n self.conn = None\n \n \n def open(self, dbFile):\n '''Opens an existing sqllite file if file exists. Will create one if \n it does not exist'''\n \n self.conn = sqlite3.connect(dbFile)\n \n def loadDataItem(self, dataItem, locale):\n # Call base class method to validate that files exist\n DataSource.loadDataItem(self, dataItem, locale)\n print('loadDataItem')\n \n cursor = self.conn.cursor()\n \n if not self.hasTable('nameControlTable'):\n cursor.execute(\n \"\"\"create table if not exists maleFirstNames (\n tableName text)\"\"\")\n \n if self.hasTable(dataItem):\n if self.hasRecords(dataItem):\n cursor.execute('delete maleFirstNames')\n else:\n cursor.execute(\n \"\"\"create table if not exists maleFirstNames (\n name text, \n randSort integer)\"\"\")\n \n sourceFile = open(self.sourceFilePath, 'r')\n \n for line in sourceFile:\n line = line.strip()\n print(line)\n cursor.execute(\n \"insert into maleFirstNames (name) values (?)\", \n (line,))\n \n \n sourceFile.close()\n \n \n def hasTable(self, tableName):\n cursor = self.conn.cursor()\n cursor.execute(\n \"select * from sqlite_master where tbl_name = ?\", \n (tableName,))\n for row in cursor:\n return True\n return False\n \n \n def hasRecords(self, tableName):\n cursor = self.conn.cursor()\n cursor.execute(\n \"select count(*) from %s\" % tableName)\n for row in cursor:\n if row[0] == 0:\n return False\n return True\n \n \n def randomMaleName(self):\n pass\n \n def randomFemaleName(self):\n pass\n \n def close(self):\n if self.conn != None:\n self.conn.close()\n \n \n # def __init__(self):\n # self.conn = None\n # \n # def reLoad(self):\n # \"\"\"opens an existing sqlite database\"\"\"\n # pass\n # \n # def load(self, localesDir, databaseFile, locales=None, dataItems=None):\n # \"\"\"clears database and loads data into sqlite database from file.\"\"\"\n # # check if localesDirectory exists\n # \n # \n # \n # if locales == None or len(locales) == 0:\n # locales = [getlocale()[0]]\n # \n # for locale in locales:\n # # do this in a cross platform way\n # localeDir = localesDir + '/' + locale\n # print(localeDir)\n # \n # def close(self):\n # self.conn.close()\n \nclass DataGenerationRule:\n def __init__(self):\n pass\n \nclass PersonAgeRule(DataGenerationRule):\n def getAge(self):\n return 90 * random()\n \nclass PersonSexRule(DataGenerationRule):\n def getSex(self):\n x = random()\n if x <= 0.495:\n return 'male'\n if x > 0.495 and x < 0.99:\n return 'female'\n return 'unknown'\n\n\nclass PersonContext:\n\n def __init__(self):\n self.currentDateTime = datetime.now()\n \n self.ageRule = PersonAgeRule()\n self.sexRule = PersonSexRule()\n\nclass Person:\n \n SEXES = ['male', 'female', 'unknown']\n \n def __init__(self, dataSource, context=None, **keywords):\n \n if context == None:\n context = PersonContext()\n \n if 'sex' in keywords.keys():\n self.sex = keywords['sex']\n if self.sex not in Person.SEXES:\n raise(ValueError())\n else:\n self.sex = context.sexRule.getSex()\n \n self.age = context.ageRule.getAge()\n \n self.dateOfBirth = datetime.today() - timedelta(self.age * 365.25)\n self.age = floor(self.age)\n \n self.firstName, tempSex = self.firstOrMiddleName(\n dataSource,\n self.sex, \n 'firstName', \n **keywords)\n \n self.middleName, tempSex = self.firstOrMiddleName(\n dataSource,\n tempSex,\n 'middleName',\n **keywords)\n \n self.lastName = dataSource.randomLastName()\n \n def firstOrMiddleName(self, dataSource, sex, nameType, **keywords):\n if nameType in keywords.keys():\n return keywords[nameType]\n if sex == 'male' or (sex == 'unknown' and random() < 0.5):\n return dataSource.randomMaleName(), 'male'\n return dataSource.randomFemaleName(), 'female'\n \n def __str__(self):\n array = {\n 'sex': self.sex,\n 'firstName': self.firstName,\n 'middleName': self.middleName,\n 'lastName': self.lastName,\n 'dateOfBirth':self.dateOfBirth,\n 'age':self.age}\n return str(array)\n \n \nclass Household:\n \n def __init__(self, dataSource, context=None, **keywords):\n numberOfAdults = randint(1,5)\n print(\"there are %d adults in the household\")\n \n self.members = []\n \n if numberOfAdults > 1:\n if self.hasMarriedCouple():\n self.generateMarriedCouple(dataSource)\n \n def __str__(self):\n return str([str(x) for x in self.members])\n \n def hasMarriedCouple(self):\n return choice([True, False])\n \n def generateMarriedCouple(self, dataSource):\n spouse1 = Person(dataSource)\n self.members.append(spouse1)\n if self.isHomosexualCouple():\n pass\n \n def isHomosexualCouple(self):\n return randint(1,50) == 1\n # if 'middleName' in keywords.keys():\n # self.middleName = keywords['middleName']\n # else:\n # self.middleName = randomMiddleName(self.sex)\n # \n # if 'lastName' in keywords.keys():\n # self.lastName = keywords['lastName']\n # self.lastName = randomLastName(self.sex)\n # \n # if 'minAge' in keywords.keys():\n # minAge = keywords['minAge']\n # # add check to ensure minAge is numeric\n # else:\n # minAge = 0\n # \n # if 'maxAge' in keywords.keys():\n # maxAge = keywords['maxAge']\n # # add check to ensure maxAge is numeric\n # else:\n # maxAge = 110\n # \n # self.age = randint(minAge*100, maxAge*100)/100.0\n \n\n\n# def randomCouple(**keywords):\n # \"\"\"Will generate two random people who may or may not have the last name.\n # This function will override values for the sex and lastName keywords\"\"\"\n # if random() < 0.05:\n # # same - sex couple\n # keywords['sex'] = randomSex()\n # if random() < 0.33:\n # # share last_name\n # keywords['lastName'] = randomLastName()\n # return RandomPerson(**keywords), RandomPerson(**keywords)\n # return RandomPerson(**keywords), RandomPerson(**keywords)\n# \n # if random() < 0.70 and 'lastName' not in keywords.keys():\n # keywords['lastName'] = randomLastName()\n # \n # keywords['sex'] = 'M'\n # person1 = RandomPerson(**keywords)\n # \n # keywords['sex'] = 'F'\n # person2 = RandomPerson(**keywords)\n # return person1, person2\n \n\n \n\nif __name__ == '__main__':\n pass\n\n", "sub_path": "DataGenerator.py", "file_name": "DataGenerator.py", "file_ext": "py", "file_size_in_byte": 9932, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "random.choice", "line_number": 71, "usage_type": "call"}, {"api_name": "sqlite3.connect", "line_number": 84, "usage_type": "call"}, {"api_name": "random.random", "line_number": 181, "usage_type": "call"}, {"api_name": "random.random", "line_number": 185, "usage_type": "call"}, {"api_name": "datetime.datetime.now", "line_number": 196, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 196, "usage_type": "name"}, {"api_name": "datetime.datetime.today", "line_number": 219, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 219, "usage_type": "name"}, {"api_name": "datetime.timedelta", "line_number": 219, "usage_type": "call"}, {"api_name": "math.floor", "line_number": 220, "usage_type": "call"}, {"api_name": "random.random", "line_number": 239, "usage_type": "call"}, {"api_name": "random.randint", "line_number": 257, "usage_type": "call"}, {"api_name": "random.choice", "line_number": 270, "usage_type": "call"}, {"api_name": "random.randint", "line_number": 279, "usage_type": "call"}]}
{"seq_id": "506804920", "text": "import sys, os\n\nsys.path.insert(0, os.path.abspath('./'))\n\nfrom tools.deep_learning.cnn_utils import evaluate_prediction\n\npossible_selection_metrics = [\"best_loss\", \"best_balanced_accuracy\", \"last_checkpoint\"]\n\ndef get_test_prediction(test_diagnosis_df, merged_df):\n import pandas as pd\n\n test_diagnosis_df=merged_df.merge(test_diagnosis_df, on=[\"participant_id\"], how=\"right\")\n test_diagnosis_df=dict(list(test_diagnosis_df.groupby(\"T1w_mri_field\")))\n res_dict={}\n for key in [1.5, 3]:\n res_dict[\"test_%sT\"%str(key)]=test_diagnosis_df[key]\n return res_dict\n\ndef load_test_and_separate(results_dict, args, cnn_classification_dir, selection_metric, mode, fold, merged_df=None, stat_dict=None):\n import pandas as pd\n\n if args.bayesian:\n for test_mode, values_df in stat_dict[fold][selection_metric].groupby(\"mode\"):\n if \"test\" in test_mode:\n prediction_column = \"predicted_label_from_%s\" % args.ba_inference_mode\n test_diagnosis_eval = evaluate_prediction(values_df[[\"true_label\"]].values.astype(int),\n values_df[[prediction_column]].values.astype(int))\n test_diagnosis_df = pd.DataFrame(test_diagnosis_eval, index=[0])\n test_diagnosis_df = test_diagnosis_df.assign(fold=fold,\n mode=test_mode)\n\n results_dict[selection_metric] = pd.concat(\n [results_dict[selection_metric], test_diagnosis_df],\n axis=0)\n else:\n test_diagnosis_path = os.path.join(cnn_classification_dir, selection_metric,\n '%s_image_level_prediction.tsv' % (mode))\n test_diagnosis_df = pd.read_csv(test_diagnosis_path, sep='\\t')\n prediction_column = \"predicted_label\"\n\n test_diagnosis_dict = get_test_prediction(test_diagnosis_df, merged_df)\n for test_mode in test_diagnosis_dict:\n test_diagnosis_eval = evaluate_prediction(test_diagnosis_dict[test_mode][[\"true_label\"]].values.astype(int),\n test_diagnosis_dict[test_mode][[prediction_column]].values.astype(int))\n test_diagnosis_df = pd.DataFrame(test_diagnosis_eval, index=[0])\n test_diagnosis_df = test_diagnosis_df.assign(fold=fold,\n mode=test_mode)\n results_dict[selection_metric] = pd.concat(\n [results_dict[selection_metric], test_diagnosis_df],\n axis=0)\n return results_dict\n\ndef load_mode_results(results_dict, args, cnn_classification_dir, selection_metric, mode, fold, load_from_ba_predictions=False,stat_dict=None):\n import pandas as pd\n if args.bayesian and load_from_ba_predictions:\n values_df = stat_dict[fold][selection_metric].groupby(\"mode\").get_group(mode)\n prediction_column = \"predicted_label_from_%s\" % args.ba_inference_mode\n test_diagnosis_eval = evaluate_prediction(values_df[[\"true_label\"]].values.astype(int),\n values_df[[prediction_column]].values.astype(int))\n test_diagnosis_df = pd.DataFrame(test_diagnosis_eval, index=[0])\n test_diagnosis_df = test_diagnosis_df.assign(fold=fold,\n mode=mode)\n\n results_dict[selection_metric] = pd.concat(\n [results_dict[selection_metric], test_diagnosis_df],\n axis=0)\n else:\n test_diagnosis_path = os.path.join(cnn_classification_dir, selection_metric,\n '%s_image_level_metrics.tsv' % (mode))\n if os.path.exists(test_diagnosis_path):\n test_diagnosis_df = pd.read_csv(test_diagnosis_path, sep='\\t')\n test_diagnosis_df = test_diagnosis_df.assign(fold=fold,\n mode=mode)\n test_diagnosis_df = test_diagnosis_df.drop([\"total_loss\", \"image_id\", ], axis=1)\n\n results_dict[selection_metric] = pd.concat([results_dict[selection_metric], test_diagnosis_df],\n axis=0)\n return results_dict\n\n\ndef get_results(args, aggregation_type=\"average\"):\n # aggregation_type=[average, separate, together]\n import pandas as pd\n import os\n import pathlib\n import numpy as np\n\n merged_df = None\n stat_dict = None\n if args.bayesian:\n stat_dict = get_uncertainty_distribution(args, aggregation_type=\"separate\")\n else:\n if args.separate_by_MS:\n merged_df = pd.read_csv(args.merged_file, sep=\"\\t\")\n merged_df=merged_df[[\"participant_id\", \"T1w_mri_field\"]]\n\n\n\n\n results_dict = {}\n currentDirectory = pathlib.Path(args.model_path)\n currentPattern = \"fold-*\"\n\n for fold_dir in currentDirectory.glob(currentPattern):\n fold = int(str(fold_dir).split(\"-\")[-1])\n cnn_classification_dir = os.path.join(args.model_path, 'fold-%i' % fold, 'cnn_classification')\n if args.selection_metrics is None:\n selection_metrics = []\n for f in os.scandir(cnn_classification_dir):\n metric=os.path.basename(os.path.normpath(f.path))\n if metric in possible_selection_metrics:\n selection_metrics.append(metric)\n else:\n selection_metrics=args.selection_metrics\n\n for selection_metric in selection_metrics:\n if not selection_metric in results_dict.keys():\n results_dict[selection_metric] = pd.DataFrame()\n modes = ['train', 'validation']\n for ms_el in args.MS_list:\n modes.append('test_' + ms_el)\n\n for mode in modes:\n if \"test\" in mode:\n if args.separate_by_MS:\n results_dict=load_test_and_separate(results_dict, args, cnn_classification_dir, selection_metric, mode,\n fold, merged_df, stat_dict=stat_dict)\n else:\n results_dict=load_mode_results(results_dict, args, cnn_classification_dir, selection_metric, mode, fold, load_from_ba_predictions=True, stat_dict=stat_dict)\n\n else:\n results_dict=load_mode_results(results_dict, args, cnn_classification_dir, selection_metric, mode, fold,\n load_from_ba_predictions=False, stat_dict=None)\n\n resulting_metrics_dict = {}\n if aggregation_type==\"average\":\n for key in results_dict.keys():\n res_df = results_dict[key].drop([\"fold\"], axis=1)\n resulting_metrics_dict[key] = res_df.groupby([\"mode\"], as_index=False, sort=False).agg(np.mean)\n resulting_metrics_dict = {aggregation_type: resulting_metrics_dict}\n\n elif aggregation_type==\"separate\":\n for key in results_dict.keys():\n metric_dict = dict(list(results_dict[key].groupby(\"fold\")))\n for fold in metric_dict.keys():\n if fold not in resulting_metrics_dict.keys():\n resulting_metrics_dict[fold] = {}\n resulting_metrics_dict[fold][key] = metric_dict[fold]\n else:\n resulting_metrics_dict={\"all\":results_dict}\n return resulting_metrics_dict\n\n\ndef get_uncertainty_distribution(args, aggregation_type=\"average\"):\n import pandas as pd\n import os\n import pathlib\n import numpy as np\n\n if args.separate_by_MS:\n merged_df = pd.read_csv(args.merged_file, sep=\"\\t\")\n merged_df=merged_df[[\"participant_id\", \"T1w_mri_field\"]]\n currentDirectory = pathlib.Path(args.model_path)\n currentPattern = \"fold-*\"\n stat_dict = {}\n for fold_dir in currentDirectory.glob(currentPattern):\n fold = int(str(fold_dir).split(\"-\")[-1])\n cnn_classification_dir = os.path.join(args.model_path, 'fold-%i' % fold, 'cnn_classification')\n\n if args.selection_metrics is None:\n selection_metrics = []\n for f in os.scandir(cnn_classification_dir):\n metric=os.path.basename(os.path.normpath(f.path))\n if metric in possible_selection_metrics:\n selection_metrics.append(metric)\n else:\n selection_metrics = args.selection_metrics\n\n for selection_metric in selection_metrics:\n if not selection_metric in stat_dict.keys():\n stat_dict[selection_metric] = pd.DataFrame()\n modes = ['test_' + ms_el for ms_el in args.MS_list]\n\n for mode in modes:\n test_diagnosis_path = os.path.join(cnn_classification_dir, selection_metric,\n \"bayesian_statistics\", '%s_image_level_stats.tsv' % (mode))\n test_diagnosis_df = pd.read_csv(test_diagnosis_path, sep='\\t')\n test_diagnosis_df[\"class_variance\"] = test_diagnosis_df[\"class_variance\"].apply(\n lambda x: x[1:-1].split()).apply(lambda x: [float(i) for i in x])\n\n if \"test\" in mode and args.separate_by_MS:\n test_diagnosis_dict = get_test_prediction(test_diagnosis_df, merged_df)\n for key in test_diagnosis_dict:\n test_diagnosis_dict[key] = test_diagnosis_dict[key].assign(fold=fold, mode=key)\n stat_dict[selection_metric] = pd.concat([stat_dict[selection_metric], test_diagnosis_dict[key]],\n axis=0)\n else:\n test_diagnosis_df = test_diagnosis_df.assign(fold=fold, mode=mode)\n stat_dict[selection_metric] = pd.concat([stat_dict[selection_metric], test_diagnosis_df], axis=0)\n # stat_dict[selection_metric].reset_index(inplace=True, drop=True)\n\n resulting_stat_dict = {}\n if aggregation_type==\"average\" or aggregation_type==\"all\":\n for key in stat_dict.keys():\n stat_df = stat_dict[key]\n additional_colums_df = stat_df[\n [\"true_label\", \"predicted_label_from_mean\", \"predicted_label_from_mode\", \"mode\", \"participant_id\"]]\n additional_colums_df = additional_colums_df.groupby([\"mode\", \"participant_id\"], as_index=False,\n sort=False).agg(pd.Series.mode)\n stat_df = stat_df.drop(\n [\"true_label\", \"predicted_label_from_mean\", \"predicted_label_from_mode\", \"fold\"], axis=1)\n resulting_stat_dict[key] = stat_df.groupby([\"mode\", \"participant_id\"], as_index=False, sort=False).agg(np.mean)\n resulting_stat_dict[key]=resulting_stat_dict[key].merge(additional_colums_df, on=[\"mode\", \"participant_id\"], how=\"right\")\n resulting_stat_dict = {aggregation_type: resulting_stat_dict}\n\n elif aggregation_type == \"separate\":\n for key in stat_dict.keys():\n metric_dict = dict(list(stat_dict[key].groupby(\"fold\")))\n for fold in metric_dict.keys():\n if fold not in resulting_stat_dict.keys():\n resulting_stat_dict[fold] = {}\n resulting_stat_dict[fold][key] = metric_dict[fold]\n\n return resulting_stat_dict\n\n\ndef get_history(args, aggregation_type=\"average\"):\n import pandas as pd\n import os\n import pathlib\n import numpy as np\n\n currentDirectory = pathlib.Path(args.model_path)\n currentPattern = \"fold-*\"\n history_df = pd.DataFrame()\n for fold_dir in currentDirectory.glob(currentPattern):\n fold = int(str(fold_dir).split(\"-\")[-1])\n history = pd.read_csv(os.path.join(args.model_path, 'fold-%i' % fold, 'training.tsv'), sep='\\t')\n history = history.assign(fold=fold)\n history_df = pd.concat([history_df, history], axis=0)\n if aggregation_type == \"average\":\n history_df = history_df[\n [\"epoch\", \"balanced_accuracy_train\", \"loss_train\", \"balanced_accuracy_valid\", \"loss_valid\"]]\n history_df = {aggregation_type: history_df.groupby(\"epoch\", as_index=False).agg(np.mean)}\n\n elif aggregation_type == \"all\":\n history_df={aggregation_type:history_df}\n else:\n history_df = dict(list(history_df.groupby(\"fold\")))\n return history_df\n\ndef reshape_dictionary(dict_sample):\n res = dict()\n for key, val in dict_sample.items():\n for key_in, val_in in val.items():\n if key_in not in res:\n temp = dict()\n else:\n temp = res[key_in]\n temp[key] = val_in\n res[key_in] = temp\n return res\n\n\n\ndef get_data_generic(args, reshape_dict=True):\n data = {}\n for data_type in args.data_types:\n data[data_type] = eval(\"get_%s\" % data_type)(args, args.aggregation_type)\n #data is now in format {data_type: {fold_0:, ...fold_n etc}}\n\n #toDo: turn off this function?\n if reshape_dict:\n # reshape data to format {fold_0: {data_type_1:, ...data_type_i etc}}\n data = reshape_dictionary(data)\n return data\n", "sub_path": "clinicaaddl/clinicaaddl/visualize/data_utils.py", "file_name": "data_utils.py", "file_ext": "py", "file_size_in_byte": 13140, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "sys.path.insert", "line_number": 3, "usage_type": "call"}, {"api_name": "sys.path", "line_number": 3, "usage_type": "attribute"}, {"api_name": "os.path.abspath", "line_number": 3, "usage_type": "call"}, {"api_name": "os.path", "line_number": 3, "usage_type": "attribute"}, {"api_name": "tools.deep_learning.cnn_utils.evaluate_prediction", "line_number": 26, "usage_type": "call"}, {"api_name": "pandas.DataFrame", "line_number": 28, "usage_type": "call"}, {"api_name": "pandas.concat", "line_number": 32, "usage_type": "call"}, {"api_name": "os.path.join", "line_number": 36, "usage_type": "call"}, {"api_name": "os.path", "line_number": 36, "usage_type": "attribute"}, {"api_name": "pandas.read_csv", "line_number": 38, "usage_type": "call"}, {"api_name": "tools.deep_learning.cnn_utils.evaluate_prediction", "line_number": 43, "usage_type": "call"}, {"api_name": "pandas.DataFrame", "line_number": 45, "usage_type": "call"}, {"api_name": "pandas.concat", "line_number": 48, "usage_type": "call"}, {"api_name": "tools.deep_learning.cnn_utils.evaluate_prediction", "line_number": 58, "usage_type": "call"}, {"api_name": "pandas.DataFrame", "line_number": 60, "usage_type": "call"}, {"api_name": "pandas.concat", "line_number": 64, "usage_type": "call"}, {"api_name": "os.path.join", "line_number": 68, "usage_type": "call"}, {"api_name": "os.path", "line_number": 68, "usage_type": "attribute"}, {"api_name": "os.path.exists", "line_number": 70, "usage_type": "call"}, {"api_name": "os.path", "line_number": 70, "usage_type": "attribute"}, {"api_name": "pandas.read_csv", "line_number": 71, "usage_type": "call"}, {"api_name": "pandas.concat", "line_number": 76, "usage_type": "call"}, {"api_name": "pandas.read_csv", "line_number": 94, "usage_type": "call"}, {"api_name": "pathlib.Path", "line_number": 101, "usage_type": "call"}, {"api_name": "os.path.join", "line_number": 106, "usage_type": "call"}, {"api_name": "os.path", "line_number": 106, "usage_type": "attribute"}, {"api_name": "os.scandir", "line_number": 109, "usage_type": "call"}, {"api_name": "os.path.basename", "line_number": 110, "usage_type": "call"}, {"api_name": "os.path", "line_number": 110, "usage_type": "attribute"}, {"api_name": "os.path.normpath", "line_number": 110, "usage_type": "call"}, {"api_name": "pandas.DataFrame", "line_number": 118, "usage_type": "call"}, {"api_name": "numpy.mean", "line_number": 139, "usage_type": "attribute"}, {"api_name": "pandas.read_csv", "line_number": 161, "usage_type": "call"}, {"api_name": "pathlib.Path", "line_number": 163, "usage_type": "call"}, {"api_name": "os.path.join", "line_number": 168, "usage_type": "call"}, {"api_name": "os.path", "line_number": 168, "usage_type": "attribute"}, {"api_name": "os.scandir", "line_number": 172, "usage_type": "call"}, {"api_name": "os.path.basename", "line_number": 173, "usage_type": "call"}, {"api_name": "os.path", "line_number": 173, "usage_type": "attribute"}, {"api_name": "os.path.normpath", "line_number": 173, "usage_type": "call"}, {"api_name": "pandas.DataFrame", "line_number": 181, "usage_type": "call"}, {"api_name": "os.path.join", "line_number": 185, "usage_type": "call"}, {"api_name": "os.path", "line_number": 185, "usage_type": "attribute"}, {"api_name": "pandas.read_csv", "line_number": 187, "usage_type": "call"}, {"api_name": "pandas.concat", "line_number": 195, "usage_type": "call"}, {"api_name": "pandas.concat", "line_number": 199, "usage_type": "call"}, {"api_name": "pandas.Series", "line_number": 209, "usage_type": "attribute"}, {"api_name": "numpy.mean", "line_number": 212, "usage_type": "attribute"}, {"api_name": "pathlib.Path", "line_number": 233, "usage_type": "call"}, {"api_name": "pandas.DataFrame", "line_number": 235, "usage_type": "call"}, {"api_name": "pandas.read_csv", "line_number": 238, "usage_type": "call"}, {"api_name": "os.path.join", "line_number": 238, "usage_type": "call"}, {"api_name": "os.path", "line_number": 238, "usage_type": "attribute"}, {"api_name": "pandas.concat", "line_number": 240, "usage_type": "call"}, {"api_name": "numpy.mean", "line_number": 244, "usage_type": "attribute"}]}
{"seq_id": "37441195", "text": "\nimport sys\n\nimport cv2 as cv\n\n\ndef inside(r, q):\n rx, ry, rw, rh = r\n qx, qy, qw, qh = q\n return rx > qx and ry > qy and rx + rw < qx + qw and ry + rh < qy + qh\n\n\ndef draw_detections(img, rects, thickness=1):\n for x, y, w, h in rects:\n # the HOG detector returns slightly larger rectangles than the real objects.\n # so we slightly shrink the rectangles to get a nicer output.\n pad_w, pad_h = int(0.15*w), int(0.05*h)\n cv.rectangle(img, (x+pad_w, y+pad_h), (x+w-pad_w, y+h-pad_h), (0, 255, 0), thickness)\n\n\ndef find_faces_haar(frame, face_cascade):\n gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)\n\n faces = face_cascade.detectMultiScale(\n gray,\n scaleFactor=1.1,\n minNeighbors=5,\n minSize=(30, 30),\n flags=cv.CASCADE_SCALE_IMAGE\n )\n\n # Draw a rectangle around the faces\n for (x, y, w, h) in faces:\n cv.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)\n\n return frame\n\n\ndef find_faces_hog(img, hog):\n found, w = hog.detectMultiScale(img, winStride=(8,8), padding=(32,32), scale=1.05)\n found_filtered = []\n for ri, r in enumerate(found):\n for qi, q in enumerate(found):\n if ri != qi and inside(r, q):\n break\n else:\n found_filtered.append(r)\n draw_detections(img, found)\n draw_detections(img, found_filtered, 3)\n return img\n\n\nif __name__ == '__main__':\n hog = cv.HOGDescriptor()\n hog.setSVMDetector(cv.HOGDescriptor_getDefaultPeopleDetector())\n\n face_cascade = cv.CascadeClassifier(sys.argv[1])\n\n cap = cv.VideoCapture(1)\n while True:\n ret, img = cap.read()\n\n # face detection using HOG\n # img = find_faces_hog(img, hog=hog)\n\n # HAAR\n img = find_faces_haar(img, face_cascade)\n\n # show the result.\n cv.imshow('capture', img)\n ch = cv.waitKey(1)\n if ch == 27:\n break\n cv.destroyAllWindows()\n", "sub_path": "projects/democv/test_video.py", "file_name": "test_video.py", "file_ext": "py", "file_size_in_byte": 1948, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "cv2.rectangle", "line_number": 18, "usage_type": "call"}, {"api_name": "cv2.cvtColor", "line_number": 22, "usage_type": "call"}, {"api_name": "cv2.COLOR_BGR2GRAY", "line_number": 22, "usage_type": "attribute"}, {"api_name": "cv2.CASCADE_SCALE_IMAGE", "line_number": 29, "usage_type": "attribute"}, {"api_name": "cv2.rectangle", "line_number": 34, "usage_type": "call"}, {"api_name": "cv2.HOGDescriptor", "line_number": 54, "usage_type": "call"}, {"api_name": "cv2.HOGDescriptor_getDefaultPeopleDetector", "line_number": 55, "usage_type": "call"}, {"api_name": "cv2.CascadeClassifier", "line_number": 57, "usage_type": "call"}, {"api_name": "sys.argv", "line_number": 57, "usage_type": "attribute"}, {"api_name": "cv2.VideoCapture", "line_number": 59, "usage_type": "call"}, {"api_name": "cv2.imshow", "line_number": 70, "usage_type": "call"}, {"api_name": "cv2.waitKey", "line_number": 71, "usage_type": "call"}, {"api_name": "cv2.destroyAllWindows", "line_number": 74, "usage_type": "call"}]}
{"seq_id": "492884313", "text": "import logging\nfrom unittest.mock import patch\n\nfrom django.test import override_settings\n\nimport pytest\n\nfrom thenewboston_node.business_logic.blockchain.base import BlockchainBase\nfrom thenewboston_node.business_logic.blockchain.memory_blockchain import MemoryBlockchain\nfrom thenewboston_node.business_logic.blockchain.mock_blockchain import MockBlockchain\nfrom thenewboston_node.business_logic.tests.factories import add_blocks_to_blockchain\nfrom thenewboston_node.business_logic.tests.mocks.storage_mock import StorageMock\nfrom thenewboston_node.business_logic.utils.iter import get_generator\n\nlogger = logging.getLogger(__name__)\n\nLARGE_MEMORY_BLOCKCHAIN_SIZE = 100\n\nMEMORY_BLOCKCHAIN_CLASS = 'thenewboston_node.business_logic.blockchain.memory_blockchain.MemoryBlockchain'\nFILE_BLOCKCHAIN_CLASS = 'thenewboston_node.business_logic.blockchain.file_blockchain.FileBlockchain'\nMOCK_BLOCKCHAIN_CLASS = 'thenewboston_node.business_logic.blockchain.mock_blockchain.MockBlockchain'\n\n\n@pytest.fixture\ndef get_head_block_mock():\n with patch.object(MockBlockchain, 'get_head_block', return_value=None) as mock:\n yield mock\n\n\n@pytest.fixture\ndef get_next_block_number_mock():\n with patch.object(MockBlockchain, 'get_next_block_number', return_value=0) as mock:\n yield mock\n\n\n@pytest.fixture\ndef get_next_block_identifier_mock():\n with patch.object(MockBlockchain, 'get_next_block_identifier', return_value='next-block-identifier') as mock:\n yield mock\n\n\n@pytest.fixture\ndef get_account_state_mock():\n with patch.object(MockBlockchain, 'get_account_balance', return_value=430) as mock:\n yield mock\n\n\n@pytest.fixture\ndef get_account_lock_mock():\n with patch.object(MockBlockchain, 'get_account_balance_lock', return_value='fake-balance-lock') as mock:\n yield mock\n\n\ndef yield_forced_blockchain(class_, class_kwargs=None):\n blockchain_settings = {'class': class_, 'kwargs': class_kwargs or {}}\n\n BlockchainBase.clear_instance_cache()\n with override_settings(BLOCKCHAIN=blockchain_settings):\n blockchain = BlockchainBase.get_instance()\n yield blockchain\n BlockchainBase.clear_instance_cache()\n\n\ndef yield_and_init_forced_blockchain(class_, blockchain_genesis_state, class_kwargs=None):\n blockchain = next(yield_forced_blockchain(class_, class_kwargs))\n blockchain.add_blockchain_state(blockchain_genesis_state)\n blockchain.validate()\n yield blockchain\n\n\n@pytest.fixture\ndef memory_blockchain(blockchain_genesis_state):\n blockchain = MemoryBlockchain()\n blockchain.add_blockchain_state(blockchain_genesis_state)\n blockchain.validate()\n yield blockchain\n\n\n@pytest.fixture\ndef forced_memory_blockchain(blockchain_genesis_state):\n yield from yield_and_init_forced_blockchain(MEMORY_BLOCKCHAIN_CLASS, blockchain_genesis_state)\n\n\n@pytest.fixture\ndef forced_file_blockchain(blockchain_genesis_state, blockchain_directory):\n yield from yield_and_init_forced_blockchain(\n FILE_BLOCKCHAIN_CLASS, blockchain_genesis_state, class_kwargs={'base_directory': blockchain_directory}\n )\n\n\n@pytest.fixture(autouse=True) # Autouse for safety reasons\ndef forced_mock_blockchain(blockchain_genesis_state):\n yield from yield_and_init_forced_blockchain(MOCK_BLOCKCHAIN_CLASS, blockchain_genesis_state)\n\n\n@pytest.fixture\ndef large_blockchain(treasury_account_key_pair):\n blockchain = BlockchainBase.get_instance()\n\n accounts = blockchain.get_first_blockchain_state().account_states\n assert len(accounts) == 1\n treasury_account, account_state = list(accounts.items())[0]\n assert treasury_account_key_pair.public == treasury_account\n assert account_state.balance > 10000000000 # tons of money present\n\n add_blocks_to_blockchain(blockchain, 100, treasury_account_key_pair.private)\n yield blockchain\n\n\n@pytest.fixture\ndef file_blockchain_w_memory_storage(\n forced_file_blockchain, blockchain_genesis_state, forced_mock_network, get_primary_validator_mock,\n get_preferred_node_mock\n):\n block_storage_mock = patch.object(forced_file_blockchain, 'block_storage', StorageMock())\n arf_storage_mock = patch.object(forced_file_blockchain, 'account_root_files_storage', StorageMock())\n\n with block_storage_mock, arf_storage_mock:\n forced_file_blockchain.add_blockchain_state(blockchain_genesis_state)\n forced_file_blockchain.validate()\n yield forced_file_blockchain\n\n\n@pytest.fixture\ndef blockchain_base(blockchain_genesis_state):\n blockchain = BlockchainBase()\n with patch.object(blockchain, 'yield_blockchain_states', get_generator([blockchain_genesis_state])):\n yield blockchain\n", "sub_path": "thenewboston_node/business_logic/tests/fixtures/blockchain.py", "file_name": "blockchain.py", "file_ext": "py", "file_size_in_byte": 4631, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "logging.getLogger", "line_number": 15, "usage_type": "call"}, {"api_name": "unittest.mock.patch.object", "line_number": 26, "usage_type": "call"}, {"api_name": "thenewboston_node.business_logic.blockchain.mock_blockchain.MockBlockchain", "line_number": 26, "usage_type": "argument"}, {"api_name": "unittest.mock.patch", "line_number": 26, "usage_type": "name"}, {"api_name": "pytest.fixture", "line_number": 24, "usage_type": "attribute"}, {"api_name": "unittest.mock.patch.object", "line_number": 32, "usage_type": "call"}, {"api_name": "thenewboston_node.business_logic.blockchain.mock_blockchain.MockBlockchain", "line_number": 32, "usage_type": "argument"}, {"api_name": "unittest.mock.patch", "line_number": 32, "usage_type": "name"}, {"api_name": "pytest.fixture", "line_number": 30, "usage_type": "attribute"}, {"api_name": "unittest.mock.patch.object", "line_number": 38, "usage_type": "call"}, {"api_name": "thenewboston_node.business_logic.blockchain.mock_blockchain.MockBlockchain", "line_number": 38, "usage_type": "argument"}, {"api_name": "unittest.mock.patch", "line_number": 38, "usage_type": "name"}, {"api_name": "pytest.fixture", "line_number": 36, "usage_type": "attribute"}, {"api_name": "unittest.mock.patch.object", "line_number": 44, "usage_type": "call"}, {"api_name": "thenewboston_node.business_logic.blockchain.mock_blockchain.MockBlockchain", "line_number": 44, "usage_type": "argument"}, {"api_name": "unittest.mock.patch", "line_number": 44, "usage_type": "name"}, {"api_name": "pytest.fixture", "line_number": 42, "usage_type": "attribute"}, {"api_name": "unittest.mock.patch.object", "line_number": 50, "usage_type": "call"}, {"api_name": "thenewboston_node.business_logic.blockchain.mock_blockchain.MockBlockchain", "line_number": 50, "usage_type": "argument"}, {"api_name": "unittest.mock.patch", "line_number": 50, "usage_type": "name"}, {"api_name": "pytest.fixture", "line_number": 48, "usage_type": "attribute"}, {"api_name": "thenewboston_node.business_logic.blockchain.base.BlockchainBase.clear_instance_cache", "line_number": 57, "usage_type": "call"}, {"api_name": "thenewboston_node.business_logic.blockchain.base.BlockchainBase", "line_number": 57, "usage_type": "name"}, {"api_name": "django.test.override_settings", "line_number": 58, "usage_type": "call"}, {"api_name": "thenewboston_node.business_logic.blockchain.base.BlockchainBase.get_instance", "line_number": 59, "usage_type": "call"}, {"api_name": "thenewboston_node.business_logic.blockchain.base.BlockchainBase", "line_number": 59, "usage_type": "name"}, {"api_name": "thenewboston_node.business_logic.blockchain.base.BlockchainBase.clear_instance_cache", "line_number": 61, "usage_type": "call"}, {"api_name": "thenewboston_node.business_logic.blockchain.base.BlockchainBase", "line_number": 61, "usage_type": "name"}, {"api_name": "thenewboston_node.business_logic.blockchain.memory_blockchain.MemoryBlockchain", "line_number": 73, "usage_type": "call"}, {"api_name": "pytest.fixture", "line_number": 71, "usage_type": "attribute"}, {"api_name": "pytest.fixture", "line_number": 79, "usage_type": "attribute"}, {"api_name": "pytest.fixture", "line_number": 84, "usage_type": "attribute"}, {"api_name": "pytest.fixture", "line_number": 91, "usage_type": "call"}, {"api_name": "thenewboston_node.business_logic.blockchain.base.BlockchainBase.get_instance", "line_number": 98, "usage_type": "call"}, {"api_name": "thenewboston_node.business_logic.blockchain.base.BlockchainBase", "line_number": 98, "usage_type": "name"}, {"api_name": "thenewboston_node.business_logic.tests.factories.add_blocks_to_blockchain", "line_number": 106, "usage_type": "call"}, {"api_name": "pytest.fixture", "line_number": 96, "usage_type": "attribute"}, {"api_name": "unittest.mock.patch.object", "line_number": 115, "usage_type": "call"}, {"api_name": "unittest.mock.patch", "line_number": 115, "usage_type": "name"}, {"api_name": "thenewboston_node.business_logic.tests.mocks.storage_mock.StorageMock", "line_number": 115, "usage_type": "call"}, {"api_name": "unittest.mock.patch.object", "line_number": 116, "usage_type": "call"}, {"api_name": "unittest.mock.patch", "line_number": 116, "usage_type": "name"}, {"api_name": "thenewboston_node.business_logic.tests.mocks.storage_mock.StorageMock", "line_number": 116, "usage_type": "call"}, {"api_name": "pytest.fixture", "line_number": 110, "usage_type": "attribute"}, {"api_name": "thenewboston_node.business_logic.blockchain.base.BlockchainBase", "line_number": 126, "usage_type": "call"}, {"api_name": "unittest.mock.patch.object", "line_number": 127, "usage_type": "call"}, {"api_name": "unittest.mock.patch", "line_number": 127, "usage_type": "name"}, {"api_name": "thenewboston_node.business_logic.utils.iter.get_generator", "line_number": 127, "usage_type": "call"}, {"api_name": "pytest.fixture", "line_number": 124, "usage_type": "attribute"}]}
{"seq_id": "471080374", "text": "import asyncio\nimport random\n\nimport discord\n\n\n#Token that connects with the bot\nTOKEN = 'SECRET KEY'\n\nclient = discord.Client()\n\nalive = True\nchannels = []\n\nreply = ['Mijn gemeente heeft rond de 41.000 inwoners',\n 'Je kan campussen van de UA vinden in de gemeente waar ik woon',\n 'Ik woon niet ver van een Fort',\n 'Als ge zat zijt, kunt ge op minder dan een half uur van de vizit tot bij mij thuis wandelen']\n\n\n@client.event\nasync def on_message(message):\n if message.author == client.user:\n return\n print(message)\n command = message.content.split(' ')\n if command[0] == 'bot':\n channel = client.get_channel(int(command[1]))\n if command[2] == 'conv_biokot':\n await asyncio.sleep(12)\n await channel.send(\n 'Awel das goe, dan babbel ik rechts van u wel met toffere mensen.')\n if command[2] == 'conv_hagar':\n await asyncio.sleep(16)\n await channel.send(\n 'Ik hoor het al Thomas, gij vindt mij genen toffe. Ik zal me wel aan de rechterkant van de tafel '\n 'zetten, zet gij u maar bij die middelste drie aan tafel. ‘T is al goe.')\n if command[2] == 'conv_all':\n await asyncio.sleep(2)\n await channel.send(\n 'Awel das goe, dan babbel ik rechts van u wel met toffere mensen.')\n await channel.send(\n 'Ik hoor het al Thomas, gij vindt mij genen toffe. Ik zal me wel aan de rechterkant van de tafel '\n 'zetten, zet gij u maar bij die middelste drie aan tafel. ‘T is al goe.')\n print(message.channel.type)\n if not message.guild:\n if 'waar' in message.content or 'Waar' in message.content:\n await message.channel.send(reply[random.randint(0, len(reply)-1)])\n\n\n\n\n\n@client.event\nasync def on_ready():\n print('Logged in as')\n print(client.user.name)\n print(client.user.id)\n print('------')\n\n\nif __name__ == '__main__':\n client.run(TOKEN)\n", "sub_path": "main.py", "file_name": "main.py", "file_ext": "py", "file_size_in_byte": 2005, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "discord.Client", "line_number": 10, "usage_type": "call"}, {"api_name": "asyncio.sleep", "line_number": 30, "usage_type": "call"}, {"api_name": "asyncio.sleep", "line_number": 34, "usage_type": "call"}, {"api_name": "asyncio.sleep", "line_number": 39, "usage_type": "call"}, {"api_name": "random.randint", "line_number": 48, "usage_type": "call"}]}
{"seq_id": "98097305", "text": "import requests\nimport re\n\ntolurl = 'https://www.ximalaya.com/revision/album/v1/getTracksList?albumId=18943952&pageNum=3'\nmyHeader = {\n 'User-Agent':\n\t'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:81.0) Gecko/20100101 Firefox/81.0'\n}\ncontent = requests.get(tolurl,headers = myHeader)\njsonContent = content.json()\nmyDatab = jsonContent['data']['tracks']\n#print(myDatab)\nurlList = []\nfor i in myDatab:\n urlList.append('https://www.ximalaya.com'+i['url'])\n\nprint(urlList)\n\n\n\n\n\n", "sub_path": "seleniumWebdriver/unittest01.py", "file_name": "unittest01.py", "file_ext": "py", "file_size_in_byte": 480, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "requests.get", "line_number": 9, "usage_type": "call"}]}
{"seq_id": "591597673", "text": "#encoding:utf-8\r\n#By:Eastmount CSDN 2021-08-20\r\nimport cv2 \r\nimport numpy as np \r\nimport matplotlib.pyplot as plt\r\n \r\n#读取图片\r\nimg = cv2.imread('lena-hd.png')\r\n\r\n#灰度转换\r\ngray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\r\n \r\n#直方图均衡化处理\r\nresult = cv2.equalizeHist(gray)\r\n\r\n#显示图像\r\nplt.subplot(221)\r\nplt.imshow(gray, cmap=plt.cm.gray), plt.axis(\"off\"), plt.title('(a)') \r\nplt.subplot(222)\r\nplt.imshow(result, cmap=plt.cm.gray), plt.axis(\"off\"), plt.title('(b)') \r\nplt.subplot(223)\r\nplt.hist(img.ravel(), 256), plt.title('(c)') \r\nplt.subplot(224)\r\nplt.hist(result.ravel(), 256), plt.title('(d)') \r\nplt.show()\r\n", "sub_path": "blog44-ImageProcessingSummary/ImageProcessing_17_enhancement.py", "file_name": "ImageProcessing_17_enhancement.py", "file_ext": "py", "file_size_in_byte": 638, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "cv2.imread", "line_number": 8, "usage_type": "call"}, {"api_name": "cv2.cvtColor", "line_number": 11, "usage_type": "call"}, {"api_name": "cv2.COLOR_BGR2GRAY", "line_number": 11, "usage_type": "attribute"}, {"api_name": "cv2.equalizeHist", "line_number": 14, "usage_type": "call"}, {"api_name": "matplotlib.pyplot.subplot", "line_number": 17, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 17, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.imshow", "line_number": 18, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 18, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.cm", "line_number": 18, "usage_type": "attribute"}, {"api_name": "matplotlib.pyplot.axis", "line_number": 18, "usage_type": "call"}, {"api_name": "matplotlib.pyplot.title", "line_number": 18, "usage_type": "call"}, {"api_name": "matplotlib.pyplot.subplot", "line_number": 19, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 19, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.imshow", "line_number": 20, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 20, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.cm", "line_number": 20, "usage_type": "attribute"}, {"api_name": "matplotlib.pyplot.axis", "line_number": 20, "usage_type": "call"}, {"api_name": "matplotlib.pyplot.title", "line_number": 20, "usage_type": "call"}, {"api_name": "matplotlib.pyplot.subplot", "line_number": 21, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 21, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.hist", "line_number": 22, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 22, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.title", "line_number": 22, "usage_type": "call"}, {"api_name": "matplotlib.pyplot.subplot", "line_number": 23, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 23, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.hist", "line_number": 24, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 24, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.title", "line_number": 24, "usage_type": "call"}, {"api_name": "matplotlib.pyplot.show", "line_number": 25, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 25, "usage_type": "name"}]}
{"seq_id": "620280327", "text": "import json\nimport logging\n\nfrom django.contrib.auth.decorators import login_required\nfrom django.http import (\n Http404,\n HttpResponse,\n HttpResponseForbidden\n)\nfrom papermerge.core.models import (\n BaseTreeNode,\n Page,\n Access\n)\nfrom papermerge.core.models.kvstore import (get_currency_formats,\n get_date_formats, get_kv_types,\n get_numeric_formats)\n\nlogger = logging.getLogger(__name__)\n\n\n@login_required\ndef metadata(request, model, id):\n \"\"\"\n model can be either node or page. Respectively\n id will be the 'id' of either node or page.\n E.g.\n POST /metadata/page/55 # will update metadata for page id=55\n POST /metadata/node/40 # will update metadata for node id=40\n \"\"\"\n if model == 'node':\n _Klass = BaseTreeNode\n else:\n _Klass = Page\n try:\n item = _Klass.objects.get(id=id)\n except _Klass.DoesNotExist:\n raise Http404(\"Node does not exists\")\n\n kvstore = []\n\n if request.method == 'GET':\n for kv in item.kv.all():\n kvstore.append(kv.to_dict())\n else:\n if isinstance(item, BaseTreeNode):\n node = item\n else:\n node = item.document\n\n if request.user.has_perm(Access.PERM_WRITE, node):\n kv_data = json.loads(request.body)\n if 'kvstore' in kv_data:\n if isinstance(kv_data['kvstore'], list):\n item.kv.update(\n _sanitize_kvstore_list(kv_data['kvstore'])\n )\n else:\n return HttpResponseForbidden()\n\n return HttpResponse(\n json.dumps(\n {\n 'kvstore': kvstore,\n 'currency_formats': get_currency_formats(),\n 'date_formats': get_date_formats(),\n 'numeric_formats': get_numeric_formats(),\n 'kv_types': get_kv_types()\n\n }\n ),\n content_type=\"application/json\"\n )\n\n\ndef _sanitize_kvstore_list(kvstore_list):\n \"\"\"\n Creates a new dictionay only with allowed keys.\n \"\"\"\n new_kvstore_list = []\n allowed_keys = [\n 'id',\n 'key',\n 'value',\n 'kv_type',\n 'kv_format',\n 'kv_inherited',\n ]\n\n for item in kvstore_list:\n sanitized_kvstore_item = {\n allowed_key: item.get(allowed_key, None)\n for allowed_key in allowed_keys\n }\n new_kvstore_list.append(sanitized_kvstore_item)\n\n return new_kvstore_list\n", "sub_path": "papermerge/core/views/metadata.py", "file_name": "metadata.py", "file_ext": "py", "file_size_in_byte": 2560, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "logging.getLogger", "line_number": 19, "usage_type": "call"}, {"api_name": "papermerge.core.models.BaseTreeNode", "line_number": 32, "usage_type": "name"}, {"api_name": "papermerge.core.models.Page", "line_number": 34, "usage_type": "name"}, {"api_name": "django.http.Http404", "line_number": 38, "usage_type": "call"}, {"api_name": "papermerge.core.models.BaseTreeNode", "line_number": 46, "usage_type": "argument"}, {"api_name": "papermerge.core.models.Access.PERM_WRITE", "line_number": 51, "usage_type": "attribute"}, {"api_name": "papermerge.core.models.Access", "line_number": 51, "usage_type": "name"}, {"api_name": "json.loads", "line_number": 52, "usage_type": "call"}, {"api_name": "django.http.HttpResponseForbidden", "line_number": 59, "usage_type": "call"}, {"api_name": "django.http.HttpResponse", "line_number": 61, "usage_type": "call"}, {"api_name": "json.dumps", "line_number": 62, "usage_type": "call"}, {"api_name": "papermerge.core.models.kvstore.get_currency_formats", "line_number": 65, "usage_type": "call"}, {"api_name": "papermerge.core.models.kvstore.get_date_formats", "line_number": 66, "usage_type": "call"}, {"api_name": "papermerge.core.models.kvstore.get_numeric_formats", "line_number": 67, "usage_type": "call"}, {"api_name": "papermerge.core.models.kvstore.get_kv_types", "line_number": 68, "usage_type": "call"}, {"api_name": "django.contrib.auth.decorators.login_required", "line_number": 22, "usage_type": "name"}]}
{"seq_id": "164646459", "text": "import numpy, scipy, sklearn.feature_selection, sys, pandas, scipy.stats\nsys.path.append(\"/Users/pwangel/Gene_Analysis\")\nfrom ga_utils import *\nfrom scipy import optimize\n\ndef transform_distribution(dataframe, scale_parameter):\n\n for i_col in dataframe.columns:\n\n col_range = dataframe[i_col].max()-dataframe[i_col].min()\n n_bins = int(col_range/dataframe[i_col].std()/scale_parameter)+2\n starting_point = dataframe[i_col].mean() + 0.5*dataframe[i_col].std()*scale_parameter\n minimum = dataframe[i_col].min()\n maximum = dataframe[i_col].max()\n\n\n upper_bins = numpy.array([dataframe[i_col].std()*scale_parameter*pos+starting_point for pos in range(n_bins//2+1)])\n lower_bins = numpy.array([-dataframe[i_col].std()*scale_parameter*pos+starting_point for pos in range(n_bins//2+1)])\n all_bins = numpy.concatenate((lower_bins[::-1], upper_bins[1:]))\n sel = (all_bins >= minimum) & (all_bins <= maximum)\n all_bins = all_bins[sel]\n labels = numpy.concatenate((numpy.arange(start =-len(lower_bins[lower_bins>=minimum])+2, stop=0), numpy.arange(start=0, stop=len(upper_bins[upper_bins <= maximum]))))\n dataframe[i_col] = pandas.cut(dataframe[i_col], bins=all_bins, labels=labels)\n\n return dataframe\n\n'''Finds common genes between a group of RNASeq and Microarray datasets.'''\n'''Then plots 2d Histogram comparing measure correlation coefficients between Microarray and RNASeq'''\n\nsample_threshold = 20\n\nfrom plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot\nfrom plotly.graph_objs import *\nimport plotly.figure_factory as ff\n\n# Read in data \n\nRNASeq_data, labels = read_file_lists.smash_into_matrix('/Users/pwangel/Data/ensembl_hg19_v69_mm9_v67/', 'RNASeq', sample_threshold, 'TMM RPKM (Log2)', 'ENSG', False)\nMicroarray_data, labels = read_file_lists.smash_into_matrix('/Users/pwangel/Data/ensembl_hg19_v69_mm9_v67/', 'Microarray', sample_threshold, None, 'ENSG', False)\n\nprint(\"Comparing RNASeq and Microarray gene content\")\n\nRNASeq_data = RNASeq_data.loc[(RNASeq_data.count(axis=1).values > len(RNASeq_data.columns)/2)]\nMicroarray_data = Microarray_data.loc[(Microarray_data.count(axis=1).values > len(Microarray_data.columns)/2)]\n\ncommon_genes = numpy.intersect1d(RNASeq_data.index.values, Microarray_data.index.values) \n\nprint(\"Kept %d common genes\" %len(common_genes))\niu = numpy.triu_indices(len(common_genes),1)\n\ndf_gene_list = pandas.DataFrame(index=common_genes)\n\nRNASeq_data = df_gene_list.merge(RNASeq_data, how='left', left_index=True, right_index=True, validate='1:1')\nMicroarray_data = df_gene_list.merge(Microarray_data, how='left', left_index=True, right_index=True, validate='1:1').sample(frac=0.5, replace=False, axis=1) \n\nprint(\"Have dataframes of size:\")\n\nprint(RNASeq_data.shape)\nprint(Microarray_data.shape)\n\n# Let's do an experimental transform\n#bins = 100\n#labels = numpy.linspace(start=0.0, stop=1.0, num=bins+1)\n#labels = labels[:-1]+0.5*(labels[1]-labels[0])\n#labels = scipy.stats.lognorm.ppf(labels, s=0.75)\n\n#for i_col in RNASeq_data.columns:\n#\tRNASeq_data[i_col] = pandas.qcut(RNASeq_data[i_col], q=bins, labels =labels , retbins=False).astype(float)\n\n#for i_col in Microarray_data.columns:\n#\tMicroarray_data[i_col] = pandas.qcut(Microarray_data[i_col], q=bins, labels =labels , retbins=False).astype(float)\n\n#RNASeq_correlation_array = run_parallel.parallelized_correlation(RNASeq_data.sort_index()).as_matrix()[iu].astype(float)\n#non_parRNASeq_correlation_array = RNASeq_data.sort_index().transpose().corr(method='pearson', min_periods=10).as_matrix()[iu]\n#print(len(RNASeq_correlation_array[RNASeq_correlation_array!= non_parRNASeq_correlation_array]))\n\nprint(\"Completed RNASeq correlations\")\n\n#Microarray_correlation_array = Microarray_data.sample(n=1000, axis=1, replace =False).sort_index().transpose().corr(method='pearson', min_periods=10).as_matrix()[iu]\n#Microarray_correlation_array = run_parallel.parallelized_correlation(Microarray_data.sort_index()).as_matrix()[iu].astype(float)\nprint(\"Completed Microarray correlations\")\n\nsel = (~numpy.isnan(Microarray_correlation_array)) & (~numpy.isnan(RNASeq_correlation_array))\nheat, x_bins, y_bins = numpy.histogram2d(x=Microarray_correlation_array[sel], y=RNASeq_correlation_array[sel], bins=200)\nheat = numpy.power(heat, 1.0) #shows the trend more clearly, i hope\n\nfitfunc = lambda p, x: p[0]+ p[1]*x # target function\nerrfunc = lambda p, x, y, weight: (fitfunc(p, x) - y)/weight # distance to the target function\np0 = [0.1, 0.5] # initial guess for the parameters\n\nweights = []\ny_plot = []\nfor i_col in range(len(x_bins)-1):\n weights.append(1.0/scipy.stats.norm.fit(heat[:,i_col])[1]) \n y_plot.append(y_bins[numpy.argmax(heat[:,i_col])]) \n\np1, success = optimize.leastsq(errfunc, p0[:], args=(x_bins[:-1], y_plot, weights))\n\ndata_to_plot = [Heatmap(z=heat, x=x_bins, y=y_bins)]\ndata_to_plot.append(Scatter(x=[-0.9, 0.9], y=[-0.9, 0.9], mode='lines', name='1:1', \\\n line=dict(color = 'black', width=2, dash='dash')))\ndata_to_plot.append(Scatter(x=x_bins, y=fitfunc(p1, x_bins[:-1]), mode='lines', name='y=%.2f x +%.2f' %(p1[1], p1[0]), \\\n line=dict(color = 'k', width=2, dash='dash')))\ndata_to_plot.append(Scatter(x=x_bins, y=y_plot, mode='lines', name='Max density', \\\n line=dict(color = 'white', width=2, dash='dash')))\n\nfig = Figure(data=data_to_plot, \n layout=Layout(title='p(pearson)', xaxis=dict(title='micorarray correlation coefficient'), yaxis=dict(title='rnaseq correlation coefficient')) )\nplot(fig, auto_open=False, filename='/users/pwangel/plotlyworkspace/transformed_Microarray_vs_RNASeq_pearson.html')", "sub_path": "find_global_trends/transform_dist_Microarray_vs_RNASeq_correlation.py", "file_name": "transform_dist_Microarray_vs_RNASeq_correlation.py", "file_ext": "py", "file_size_in_byte": 5796, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "sys.path.append", "line_number": 2, "usage_type": "call"}, {"api_name": "sys.path", "line_number": 2, "usage_type": "attribute"}, {"api_name": "numpy.array", "line_number": 17, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 18, "usage_type": "call"}, {"api_name": "numpy.concatenate", "line_number": 19, "usage_type": "call"}, {"api_name": "numpy.concatenate", "line_number": 22, "usage_type": "call"}, {"api_name": "numpy.arange", "line_number": 22, "usage_type": "call"}, {"api_name": "pandas.cut", "line_number": 23, "usage_type": "call"}, {"api_name": "numpy.intersect1d", "line_number": 46, "usage_type": "call"}, {"api_name": "numpy.triu_indices", "line_number": 49, "usage_type": "call"}, {"api_name": "pandas.DataFrame", "line_number": 51, "usage_type": "call"}, {"api_name": "numpy.isnan", "line_number": 83, "usage_type": "call"}, {"api_name": "numpy.histogram2d", "line_number": 84, "usage_type": "call"}, {"api_name": "numpy.power", "line_number": 85, "usage_type": "call"}, {"api_name": "scipy.stats.norm.fit", "line_number": 94, "usage_type": "call"}, {"api_name": "scipy.stats", "line_number": 94, "usage_type": "attribute"}, {"api_name": "numpy.argmax", "line_number": 95, "usage_type": "call"}, {"api_name": "scipy.optimize.leastsq", "line_number": 97, "usage_type": "call"}, {"api_name": "scipy.optimize", "line_number": 97, "usage_type": "name"}, {"api_name": "plotly.offline.plot", "line_number": 109, "usage_type": "call"}]}
{"seq_id": "534290940", "text": "import numpy as np\nimport sympy\nimport matplotlib.pyplot as plt\nfrom scipy.optimize import curve_fit\nfrom pylab import figure, axes, pie, title, show\n\n\nprint('Graphik1')\nprint('Steigung','Y-Achsenabschnitt')\nx, y = np.loadtxt('reichweite20.txt', unpack=True,delimiter=',')\nT=np.sqrt(y)\n\nplt.plot(x, y, \"kx\", label=\"Messwerte\")\nplt.errorbar(x, y, yerr=T, fmt=\"none\", capsize=3, capthick=1, ms=9, markerfacecolor=\"red\")\n\ny=42750+0*x\nplt.plot(y,label=r'$\\frac{N_{0}}{2}$')\n\n\nprint('Erste Grade')\nc, v = np.loadtxt('fit20.txt', unpack=True,delimiter=',')\ndef f(c,a,b):\n return a*c+b\npopt, pcov = curve_fit(f, c, v)\nprint(popt)\nprint(np.diag(pcov))\nc_new = np.linspace(x[10], x[-1], 500)\n#\n#\n#\n#print('Zweite Grade')\n#q, w = np.loadtxt('beta3.txt', unpack=True,delimiter=',')\n#def g(q,r,s):\n# return r*q+s\n#pqpt, pcqv = curve_fit(g, q, w)\n#print(pqpt)\n#print(np.diag(pcqv))\n#q_new = np.linspace(x[4], x[-1], 500)\n\nplt.figure(1)\n#plt.plot(x,y,'x')\nplt.plot(c_new,f(c_new,*popt),'-', label='Lineare Regression')\n#plt.plot(q_new,g(q_new,*pqpt),'-', label='Lineare Regression Hintergrundstrahlung')\nplt.xlabel('Effektive Länge $x/ 10^{-3}m$')\nplt.ylabel('Zählrate $N$')\nplt.grid()\nplt.legend()\n\n\n\nplt.savefig('reichweite20.pdf')\nprint ('Fertig')\n", "sub_path": "AP2/V701/reichweite20.py", "file_name": "reichweite20.py", "file_ext": "py", "file_size_in_byte": 1245, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "numpy.loadtxt", "line_number": 10, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 11, "usage_type": "call"}, {"api_name": "matplotlib.pyplot.plot", "line_number": 13, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 13, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.errorbar", "line_number": 14, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 14, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.plot", "line_number": 17, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 17, "usage_type": "name"}, {"api_name": "numpy.loadtxt", "line_number": 21, "usage_type": "call"}, {"api_name": "scipy.optimize.curve_fit", "line_number": 24, "usage_type": "call"}, {"api_name": "numpy.diag", "line_number": 26, "usage_type": "call"}, {"api_name": "numpy.linspace", "line_number": 27, "usage_type": "call"}, {"api_name": "matplotlib.pyplot.figure", "line_number": 40, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 40, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.plot", "line_number": 42, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 42, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.xlabel", "line_number": 44, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 44, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.ylabel", "line_number": 45, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 45, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.grid", "line_number": 46, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 46, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.legend", "line_number": 47, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 47, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.savefig", "line_number": 51, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 51, "usage_type": "name"}]}
{"seq_id": "4138806", "text": "\"\"\"\nToluwanimi Akindele\nCMPUT 366 FALL 18\n1440804\n\nstate s: gambler's capital {1,2,...,99}\naction a: stakes {0,1,...,min(s, 100-s)}\nph: probability of the coin coming up heads\n\"\"\"\nimport numpy as np\nimport matplotlib.pyplot as plt\n\n\ndef value_iteration(ph, goal_reward, states, theta, dph):\n value_func = np.zeros(states + 1)\n policy_func = np.zeros(states + 1)\n\n sweep = 0\n delta = 1.0\n while delta > theta:\n sweep += 1\n delta = 0.0\n\n # for each state s: gambler's capital {1,2,...,99} - s will range from 0 to 98\n for s in range(states):\n prev_value = value_func[s]\n max_val = 0.0\n pol = 0.0\n actions = list(range(min(s, 100-s) + 1))\n\n # each action leads to 2 possible states, win OR loss\n for a in actions:\n heads_state = s+a # heads\n tails_state = s-a\n # if it reaches 100, reward = 1, otherwise 0\n if s+a >= 100:\n heads_val = ph * (goal_reward + value_func[heads_state])\n else:\n heads_val = ph * value_func[heads_state]\n tails_val = (1-ph) * value_func[tails_state]\n\n temp_val = heads_val + tails_val\n if temp_val >= max_val:\n max_val = temp_val\n pol = a\n\n value_func[s] = max_val\n policy_func[s] = pol\n\n # update delta to show how much error\n delta = max(delta, abs(prev_value - value_func[s]))\n\n if sweep in [1,2,3,32]:\n plt.plot(value_func[:99])\n plt.ylim(top=1)\n plt.ylim(bottom=0)\n plt.xlabel(\"Capital\")\n plt.ylabel(\"Value Estimates\")\n plt.suptitle(\"Value Function. Ph =\" + str(dph))\n plt.show()\n plt.xlabel(\"Capital\")\n plt.ylabel(\"Final Policy (Stake)\")\n plt.plot(policy_func[:99])\n plt.suptitle(\"Final Policy. Ph =\" + str(dph))\n plt.show()\n print(\"This is sweep:\\t\"+str(sweep))\n\n\ndef main():\n theta = 1e-5\n states = 100\n goal_reward = 1\n ph_list = [0.25, 0.55]\n\n for ph in ph_list:\n value_iteration(ph, goal_reward, states, theta,ph)\n\n\nmain()\n", "sub_path": "main.py", "file_name": "main.py", "file_ext": "py", "file_size_in_byte": 2189, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "numpy.zeros", "line_number": 15, "usage_type": "call"}, {"api_name": "numpy.zeros", "line_number": 16, "usage_type": "call"}, {"api_name": "matplotlib.pyplot.plot", "line_number": 54, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 54, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.ylim", "line_number": 55, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 55, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.ylim", "line_number": 56, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 56, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.xlabel", "line_number": 57, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 57, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.ylabel", "line_number": 58, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 58, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.suptitle", "line_number": 59, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 59, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.show", "line_number": 60, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 60, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.xlabel", "line_number": 61, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 61, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.ylabel", "line_number": 62, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 62, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.plot", "line_number": 63, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 63, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.suptitle", "line_number": 64, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 64, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.show", "line_number": 65, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 65, "usage_type": "name"}]}
{"seq_id": "554025797", "text": "from sikuli import *\nimport logging\nimport myTools\n\n#---------------------------------------------------#\ndef fCreate_OneDiscount(pClient,pMonth,pAmount):\n#---------------------------------------------------#\n\n logging.debug('- Create_OneDiscount: ' + str(pMonth) + \"-\" + pClient + \" = \" + str(pAmount))\n\n # new transaction\n type(\"n\",KeyModifier.CTRL)\n myTools.waitForTransEntry()\n\n # switch to Discount\n\n type(Key.UP) # this is to get by a UI defect\n time.sleep(1)\n \n type(\"d\")\n time.sleep(1) \n type(Key.TAB)\n \n # client\n myTools.enterClient(pClient)\n \n # date\n tranDate = str(pMonth) + \"/28/\" + Settings.dataYear\n type(tranDate)\n time.sleep(1)\n type(Key.TAB) \n \n # Amount\n type(str(pAmount))\n type(Key.TAB)\n \n # Description\n type(\"a\",KeyModifier.CTRL)\n type(\"Discount: \" + pClient + \" - \" + tranDate)\n type(Key.ENTER)\n time.sleep(1)\n\n # move to invoice list\n if (int(Settings.tsVersion) > 2016) and (Settings.tsDB == \"PREM\"):\n myTools.pressTAB(2)\n else:\n myTools.pressTAB(1)\n\n # move to last entry\n myTools.moveToLastTrans()\n myTools.clickApplyOne()\n\n # save\n type(\"s\",KeyModifier.CTRL)\n myTools.waitForTransSave() \n\n#---------------------------------------------------#\ndef fCreate_Discounts(pMonth):\n#---------------------------------------------------#\n\n myTools.sectionStartTimeStamp(\"discounts\" + str(pMonth))\n logging.debug('fCreate_Discounts: ' + str(pMonth))\n\n # list the client that will get a refund each month\n discountClients = [\"Natick\",\"Orange\",\"Oakham\",\"Oak Bluffs\",\"Southampton\",\"Otis\",\"Oxford\",\"Leyden\",\"Monroe\",\"Monson\",\"Methuen\",\"Uxbridge\"]\n oneClient = discountClients[(pMonth - 1)]\n\n myTools.getFocus()\n\n # open a/r tran list\n type(\"t\",KeyModifier.CTRL)\n myTools.waitForTransList()\n\n discountAmount = 49 + pMonth/float(100)\n fCreate_OneDiscount(oneClient,pMonth,discountAmount)\n\n type(Key.F4,KeyModifier.CTRL)\n time.sleep(1) \n type(Key.F4,KeyModifier.CTRL)\n \n myTools.sectionEndTimeStamp()\n myTools.checkProcesses()", "sub_path": "trans_Discounts.sikuli/trans_Discounts.py", "file_name": "trans_Discounts.py", "file_ext": "py", "file_size_in_byte": 2153, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "logging.debug", "line_number": 9, "usage_type": "call"}, {"api_name": "myTools.waitForTransEntry", "line_number": 13, "usage_type": "call"}, {"api_name": "myTools.enterClient", "line_number": 25, "usage_type": "call"}, {"api_name": "myTools.pressTAB", "line_number": 45, "usage_type": "call"}, {"api_name": "myTools.pressTAB", "line_number": 47, "usage_type": "call"}, {"api_name": "myTools.moveToLastTrans", "line_number": 50, "usage_type": "call"}, {"api_name": "myTools.clickApplyOne", "line_number": 51, "usage_type": "call"}, {"api_name": "myTools.waitForTransSave", "line_number": 55, "usage_type": "call"}, {"api_name": "myTools.sectionStartTimeStamp", "line_number": 61, "usage_type": "call"}, {"api_name": "logging.debug", "line_number": 62, "usage_type": "call"}, {"api_name": "myTools.getFocus", "line_number": 68, "usage_type": "call"}, {"api_name": "myTools.waitForTransList", "line_number": 72, "usage_type": "call"}, {"api_name": "myTools.sectionEndTimeStamp", "line_number": 81, "usage_type": "call"}, {"api_name": "myTools.checkProcesses", "line_number": 82, "usage_type": "call"}]}
{"seq_id": "99817269", "text": "# coding: utf-8\n\nfrom urllib.parse import urlencode\n\nimport qiniu\nimport aiohttp\n\nfrom aioqiniu.services import StorageServiceMixin\nfrom aioqiniu.exceptions import HTTPError # noqa: F401\n\n__version__ = \"1.2.0\"\n\n\nclass QiniuClient(StorageServiceMixin):\n \"\"\"七牛云存储异步客户端\"\"\"\n\n def __init__(self, access_key: str, secret_key: str, httpclient=None):\n \"\"\"初始化七牛云异步客户端\n\n :param access_key: 七牛云的AccessKey\n :param secret_key: 七牛云的SecretKey\n :param httpclient: 自定义`aiohttp.ClientSession`对象,默认为空,自动创建\n \"\"\"\n self.__access_key = access_key\n self.__secret_key = secret_key\n self._auth = qiniu.Auth(access_key, secret_key)\n self._auto_close_httpclient = False\n if httpclient is None:\n httpclient = aiohttp.ClientSession()\n self._auto_close_httpclient = True\n self._httpclient = httpclient\n\n def get_token(self, data: str):\n \"\"\"从原始数据中生成的token\n\n 该方法等同于`qiniu.Auth.token`\n\n :param data: 待签名数据\n\n :return: 数据签名\n \"\"\"\n return self._auth.token(data)\n\n def get_token_with_data(self, data: str):\n \"\"\"生成带原始数据的token\n\n 该方法等同于`qiniu.Auth.token_with_data`\n\n :param data: 待签名数据\n\n :return: 数据签名,含已编码的原数据\n \"\"\"\n return self._auth.token_with_data(data)\n\n def get_access_token(self, path: str, query=\"\", body=\"\") -> str:\n \"\"\"生成七牛云的管理凭证(access token)\n\n :param path: URL路径\n :param query: URL查询字符串,可以是str或dict类型,默认为空\n :param body: 请求body,默认为空\n\n :return: 七牛云的管理凭证(access token)\n\n 详见:https://developer.qiniu.com/kodo/manual/1201/access-token\n \"\"\"\n if not query:\n return self._auth.token(\"{}\\n{}\".format(path, body))\n if isinstance(query, dict):\n query = urlencode(query)\n return self._auth.token(\"{}?{}\\n{}\".format(path, query, body))\n\n def get_upload_token(self, bucket: str, key=None, expires=3600,\n policy=None, strict_policy=True) -> str:\n \"\"\"生成七牛云的上传凭证(upload token)\n\n :param bucket: 空间名\n :param key: 上传的文件命名,默认为空\n :param expires: 上传凭证过期时间,单位为秒,默认为3600\n :param policy: 上传策略,默认为空\n\n :return: 七牛云的上传凭证(upload token)\n\n 详见:https://developer.qiniu.com/kodo/manual/1208/upload-token\n \"\"\"\n return self._auth.upload_token(bucket, key, expires, policy,\n strict_policy)\n\n def get_private_download_url(self, url, expires=3600) -> str:\n \"\"\"生成私有资源的下载url\n\n :param url: 私有资源的url\n :param expires: 下载url的过期时间,单位为秒,默认为3600\n\n :return: 私有资源的下载url\n\n 详见:https://developer.qiniu.com/kodo/manual/1202/download-token\n \"\"\"\n return self._auth.private_download_url(url, expires)\n\n def __del__(self):\n if self._auto_close_httpclient:\n self._httpclient.close()\n\n pass\n", "sub_path": "aioqiniu/__init__.py", "file_name": "__init__.py", "file_ext": "py", "file_size_in_byte": 3396, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "aioqiniu.services.StorageServiceMixin", "line_number": 14, "usage_type": "name"}, {"api_name": "qiniu.Auth", "line_number": 26, "usage_type": "call"}, {"api_name": "aiohttp.ClientSession", "line_number": 29, "usage_type": "call"}, {"api_name": "urllib.parse.urlencode", "line_number": 69, "usage_type": "call"}]}
{"seq_id": "428265518", "text": "from __future__ import absolute_import\nfrom __future__ import division\nfrom __future__ import print_function\n\nimport argparse #命令行参数选项解析模块\nimport tensorflow as tf\n\n\nimport lalala\n\nparser= argparse.ArgumentParser() #这是模块获取命令行的方法。得到一整个命令行\nparser.add_argument('--batch_size',default=100,type=int,help='batch size') #在获得的命令行上加 这一段参数\nparser.add_argument('--train_steps',default=1000,type=int,help='number of training steps') #在获得的命令行上加这一段参数\n\n\ndef main(argv):\n args=parser.parse_args(argv[1:]) #因为启动时输入python do.py,然后又在命令行上加了两个参数,然后启动main函数时\n #一整个命令行都是argv。从argv拿到第二个参数到结尾,也就是batch_size和train_steps\n #此时 args就有属性了。args.batch_size是一个batch大小。args.train_steps是训练的步数。\n \n (train_x,train_y),(test_x,text_y)=lalala.load_data()\n \n #从train_x中获取特征列以供dnn分类器参数使用\n my_feature_columns=[]\n for key in train_x.keys():\n my_feature_columns.append(tf.feature_column.numeric_column(key=key))\n \n classifier=tf.estimator.DNNClassifier(\n feature_columns=my_feature_columns,\n hidden_units=[10,10],\n n_classes=3) #定义分类器,输入特征列,隐藏层数,结果数\n \n classifier.train(input_fn=lambda:lalala.train_input_fn(train_x,train_y,args.batch_size),\n steps=args.train_steps)\n \n eval_result=classifier.evaluate(input_fn=lambda:lalala.eval_input_fn(test_x,test_y,args.batch_size))\n \n print('\\nTest set accuracy: {accuracy:0.3f}\\n'.format(**eval_result))\n \n expected = ['Setosa', 'Versicolor', 'Virginica']\n predict_x = {\n 'SepalLength': [5.1, 5.9, 6.9],\n 'SepalWidth': [3.3, 3.0, 3.1],\n 'PetalLength': [1.7, 4.2, 5.4],\n 'PetalWidth': [0.5, 1.5, 2.1],\n }\n\n predictions = classifier.predict(\n input_fn=lambda:iris_data.eval_input_fn(predict_x,\n labels=None,\n batch_size=args.batch_size))\n\n template = ('\\nPrediction is \"{}\" ({:.1f}%), expected \"{}\"')\n\n for pred_dict, expec in zip(predictions, expected):\n class_id = pred_dict['class_ids'][0]\n probability = pred_dict['probabilities'][class_id]\n\n print(template.format(iris_data.SPECIES[class_id],\n 100 * probability, expec))\n\n\nif __name__ == '__main__':\n tf.logging.set_verbosity(tf.logging.INFO)\n tf.app.run(main)\n \n", "sub_path": "do.py", "file_name": "do.py", "file_ext": "py", "file_size_in_byte": 2711, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "argparse.ArgumentParser", "line_number": 11, "usage_type": "call"}, {"api_name": "lalala.load_data", "line_number": 21, "usage_type": "call"}, {"api_name": "tensorflow.feature_column.numeric_column", "line_number": 26, "usage_type": "call"}, {"api_name": "tensorflow.feature_column", "line_number": 26, "usage_type": "attribute"}, {"api_name": "tensorflow.estimator.DNNClassifier", "line_number": 28, "usage_type": "call"}, {"api_name": "tensorflow.estimator", "line_number": 28, "usage_type": "attribute"}, {"api_name": "lalala.train_input_fn", "line_number": 33, "usage_type": "call"}, {"api_name": "lalala.eval_input_fn", "line_number": 36, "usage_type": "call"}, {"api_name": "tensorflow.logging.set_verbosity", "line_number": 64, "usage_type": "call"}, {"api_name": "tensorflow.logging", "line_number": 64, "usage_type": "attribute"}, {"api_name": "tensorflow.app.run", "line_number": 65, "usage_type": "call"}, {"api_name": "tensorflow.app", "line_number": 65, "usage_type": "attribute"}]}
{"seq_id": "42744240", "text": "#!/usr/bin/env python3\nfrom itertools import islice, tee\nfrom operator import add\n\n\ndef fib_recursive(num):\n\t\"\"\"\n\tRecursive function for finding a Fibonnaci sequence given a \n\tpositive integer.\n\t\n\tF(n) = F(n-2) + F(n-1)\n\t\"\"\"\t\n\tif num < 2:\n\t\treturn num\t\n\telse:\n\t\treturn fib_recursive(num - 1) + fib_recursive(num - 2)\n\n\ndef fib_rec_memo(num, fib_memo={0: 0, 1: 1}):\n\t\"\"\"\n\tRecursive function for finding a Fibonnaci sequence given a \n\tpositive integer and store the key/value pair in a dictionary. \n\tIf the value is is present, simply return the value \n\t\n\tF(n) = F(n-2) + F(n-1)\n\t\"\"\"\n\tif num not in fib_memo:\n\t\tfib_memo[num] = fib_rec_memo(num - 1, fib_memo=fib_memo) + \\\n\t\t\t\t\t\tfib_rec_memo(num - 2, fib_memo=fib_memo)\n\n\treturn fib_memo[num]\n\n\ndef fib_iterative(num):\n\t\"\"\"\n\tIterative function for finding a Fibonnaci sequence given a \n\tpositive integer.\n\n\tF(n) = F(n-2) + F(n-1)\n\t\"\"\"\n\ta, b = 0, 1\n\tfor x in range(0, num):\n\t\ta, b = b, a + b\n\n\treturn a\n\n\ndef fib_iter_memo(num, fib_memo={0: 0, 1: 1}):\n\t\"\"\"\n\tIterative function for finding a Fibonnaci sequence given a \n\tpositive integer and store the key/value pair in a dictionary. \n\tIf the value is is present, simply return the value \n\t\n\tF(n) = F(n-2) + F(n-1)\n\t\"\"\"\n\tif num not in fib_memo:\n\t\tfor x in range(2, num + 1):\n\t\t\tif x not in fib_memo:\n\t\t\t\tfib_memo[x] = fib_memo[x - 1] + fib_memo[x - 2]\n\n\treturn fib_memo\n\n\n\ndef take(n, iterable):\n\t\t\"\"\"Return elements from 0 to n in a list.\"\"\"\n\t\treturn list(islice(iterable, 0, n))\n\n\ndef fib_lazy_haskell_python_3():\n\t\"\"\"A Haskell-style recursive function for finding the N-th \n\tfibonacci number as laid out by Joel Grus' blog post: \n\thttp://joelgrus.com/2015/07/07/haskell-style-fibonacci-in-python/\n\n\tThe function is 'lazy' in respect that it only calculates values\n\twhen needed.\n\n\tIn Haskell, this function would look like:\n\n\tfibs :: [Int]\n\tfibs = 1 : 1 : zipWith (+) fibs (tail fibs)\n\n\tPrelude> take 10 fibs\n\t[1,1,2,3,5,8,13,21,34,55]\n\n\tNote: the 'take' function must be written to create/access\n\tthe values created by this function. In python 3, it's pretty\n\tsimple; create a function that passes in 'n' and returns \n\t'list(islice(iterable, 0, n)'.\n\t\"\"\"\n\n\tdef tail(iterable):\n\t\t\"\"\"Return elements from 1 to forever.\"\"\"\n\t\treturn islice(iterable, 1, None)\n\n\tyield 1\n\tyield 1\n\t# essentially adds memoization to function, much more efficient\n\tfibs1, fibs2 = tee(fib_lazy_haskell_python_3())\n\t\n\ttry:\n\t\t# 'yield from' was added in Python 3.3 (PEP 308)\n\t\teval('yield from map(add, fibs1, tail(fibs2))')\n\texcept SyntaxError:\n\t\t# To make this work in Python versions < 3.3\n\t\t# Note: 'map' evaluates lazily in Python 3, in Python 2 use 'imap'\t\n\t\tfor value in map(add, fibs1, tail(fibs2)):\n\t\t\tyield value\n\t\n\t# Uncomment below if you want a much slower non-tee version \n\t#yield from map(add, fib_lazy_haskell_python_3(), tail(fib_lazy_haskell_python_3()))\n\n\t", "sub_path": "algorithms_math/fibonacci.py", "file_name": "fibonacci.py", "file_ext": "py", "file_size_in_byte": 2845, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "itertools.islice", "line_number": 67, "usage_type": "call"}, {"api_name": "itertools.islice", "line_number": 94, "usage_type": "call"}, {"api_name": "itertools.tee", "line_number": 99, "usage_type": "call"}, {"api_name": "operator.add", "line_number": 107, "usage_type": "argument"}]}
{"seq_id": "435372383", "text": "from uuid import uuid4\n\nimport factory\nfrom django.db.models.signals import post_save\nfrom django.utils import timezone\n\nfrom questions.models import FileUpload, ImageUpload, Submission\n\nfrom .utils import get_dummy_file\n\n\nclass TimestampedModelFactory(factory.django.DjangoModelFactory):\n\n modified_at = factory.Faker(\n \"date_time_between\", tzinfo=timezone.utc, start_date=\"-1m\", end_date=\"now\"\n )\n created_at = factory.Faker(\n \"date_time_between\", tzinfo=timezone.utc, start_date=\"-2m\", end_date=\"-1m\"\n )\n\n\n@factory.django.mute_signals(post_save)\nclass SubmissionFactory(TimestampedModelFactory):\n class Meta:\n model = Submission\n\n id = factory.LazyAttribute(lambda x: uuid4())\n questions = {}\n answers = {}\n\n\n@factory.django.mute_signals(post_save)\nclass ImageUploadFactory(TimestampedModelFactory):\n class Meta:\n model = ImageUpload\n\n id = factory.LazyAttribute(lambda x: uuid4())\n\n @factory.post_generation\n def image(self, create, extracted, **kwargs):\n if extracted:\n file_name, file = extracted\n else:\n file_name = \"image.png\"\n file = get_dummy_file(file_name)\n\n self.image.save(file_name, file)\n\n\n@factory.django.mute_signals(post_save)\nclass FileUploadFactory(TimestampedModelFactory):\n class Meta:\n model = FileUpload\n\n id = factory.LazyAttribute(lambda x: uuid4())\n\n @factory.post_generation\n def file(self, create, extracted, **kwargs):\n if extracted:\n file_name, file = extracted\n else:\n file_name = \"doc.pdf\"\n file = get_dummy_file(file_name)\n\n self.file.save(file_name, file)\n", "sub_path": "app/questions/tests/factories.py", "file_name": "factories.py", "file_ext": "py", "file_size_in_byte": 1683, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "factory.django", "line_number": 12, "usage_type": "attribute"}, {"api_name": "factory.Faker", "line_number": 14, "usage_type": "call"}, {"api_name": "django.utils.timezone.utc", "line_number": 15, "usage_type": "attribute"}, {"api_name": "django.utils.timezone", "line_number": 15, "usage_type": "name"}, {"api_name": "factory.Faker", "line_number": 17, "usage_type": "call"}, {"api_name": "django.utils.timezone.utc", "line_number": 18, "usage_type": "attribute"}, {"api_name": "django.utils.timezone", "line_number": 18, "usage_type": "name"}, {"api_name": "questions.models.Submission", "line_number": 25, "usage_type": "name"}, {"api_name": "factory.LazyAttribute", "line_number": 27, "usage_type": "call"}, {"api_name": "uuid.uuid4", "line_number": 27, "usage_type": "call"}, {"api_name": "questions.models", "line_number": 28, "usage_type": "name"}, {"api_name": "factory.django.mute_signals", "line_number": 22, "usage_type": "call"}, {"api_name": "django.db.models.signals.post_save", "line_number": 22, "usage_type": "argument"}, {"api_name": "factory.django", "line_number": 22, "usage_type": "attribute"}, {"api_name": "questions.models.ImageUpload", "line_number": 35, "usage_type": "name"}, {"api_name": "factory.LazyAttribute", "line_number": 37, "usage_type": "call"}, {"api_name": "uuid.uuid4", "line_number": 37, "usage_type": "call"}, {"api_name": "utils.get_dummy_file", "line_number": 45, "usage_type": "call"}, {"api_name": "factory.post_generation", "line_number": 39, "usage_type": "attribute"}, {"api_name": "factory.django.mute_signals", "line_number": 32, "usage_type": "call"}, {"api_name": "django.db.models.signals.post_save", "line_number": 32, "usage_type": "argument"}, {"api_name": "factory.django", "line_number": 32, "usage_type": "attribute"}, {"api_name": "questions.models.FileUpload", "line_number": 53, "usage_type": "name"}, {"api_name": "factory.LazyAttribute", "line_number": 55, "usage_type": "call"}, {"api_name": "uuid.uuid4", "line_number": 55, "usage_type": "call"}, {"api_name": "utils.get_dummy_file", "line_number": 63, "usage_type": "call"}, {"api_name": "factory.post_generation", "line_number": 57, "usage_type": "attribute"}, {"api_name": "factory.django.mute_signals", "line_number": 50, "usage_type": "call"}, {"api_name": "django.db.models.signals.post_save", "line_number": 50, "usage_type": "argument"}, {"api_name": "factory.django", "line_number": 50, "usage_type": "attribute"}]}
{"seq_id": "195927800", "text": "from JumpScale9 import j\n\nimport logging\nfrom .Handlers import *\n\nfrom .JSLogger import JSLogger\nfrom .JSLoggerDefault import JSLoggerDefault\nimport sys\n\n\nclass LoggerFactory():\n\n def __init__(self):\n self.__jslocation__ = \"j.core.logger\"\n self.logger_name = 'j'\n self.handlers = Handlers()\n self.loggers = {}\n self.exclude = []\n\n self._default = JSLoggerDefault(\"default\")\n\n self.logger = JSLogger(\"logger\")\n self.logger.addHandler(self.handlers.consoleHandler)\n\n self.enabled = True\n self.filter = [\"*\"] # default filter to see which loggers will be attached needs to have * or j.sal... inside\n\n # self.logger.debug(\"started logger factory\")\n\n def _getName(self, name):\n\n name = name.strip().lower()\n\n if name == \"\":\n path, ln, name, info = logging.root.findCaller()\n if path.startswith(j.dirs.LIBDIR):\n path = path.lstrip(j.dirs.LIBDIR)\n name = path.replace(os.sep, '.')\n\n if not name.startswith(self.logger_name):\n name = \"%s.%s\" % (self.logger_name, name)\n\n if len(name) > 22:\n name = name[-22:]\n\n return name\n\n def get(self, name=\"\", force=False): # -> JSLogger:\n \"\"\"\n Return a logger with the given name. Name will be prepend with 'j.' so\n every logger return by this function is a child of the jumpscale root logger 'j'\n\n \"\"\"\n name = self._getName(name)\n\n def check_(name):\n # print(\"check %s\"%name)\n for item in self.exclude:\n # print(\"check exclude:%s\"%item)\n if item == \"*\":\n # print(\"exclude %s:%s\" % (item, name))\n return False\n if name.find(item) != -1:\n # print(\"exclude %s:%s\" % (item, name))\n return False\n for item in self.filter:\n # print(\"check include:%s\"%item)\n if item == \"*\":\n # print(\"include: %s:%s\" % (item, name))\n return True\n if name.find(item) != -1:\n # print(\"include: %s:%s\" % (item, name))\n return True\n return False\n\n if force == False and self.enabled is False:\n self.loggers[name] = self._default\n # print(\"DEFAULT LOGGER (disabledlogger):%s\" % name)\n else:\n if force or check_(name):\n # print(\"JSLOGGER:%s\" % name)\n # logger = logging.getLogger(name)\n logger = JSLogger(name)\n logger.level = j.core.state.configGetFromDict(\"logging\", \"level\", 'DEBUG')\n\n for handler in self.handlers._all:\n logger.handlers = []\n logger.addHandler(handler)\n\n self.loggers[name] = logger\n else:\n # print(\"DEFAULT LOGGER:%s\" % name)\n self.loggers[name] = self._default\n\n return self.loggers[name]\n\n def disable(self):\n \"\"\"\n will transform all loggers to empty loggers which only act on errors, but ignore logs\n \"\"\"\n if self.enabled:\n self.enabled = False\n self.filter = []\n\n # for key, logger in self.loggers.items():\n # # print(\"disable logger: %s\"%key)\n # logger.setLevel(20)\n j.application.debug = False\n\n self.logger_filters_add()\n\n def enable(self):\n \"\"\"\n \"\"\"\n if self.enabled is False:\n self.enabled = True\n self.filter = []\n self.init()\n\n # def set_quiet(self, quiet):\n # self._quiet = quiet\n\n # def set_mode(self, mode):\n # if isinstance(mode, str):\n # if mode in _name_to_mode:\n # mode = _name_to_mode[mode]\n # else:\n # raise j.exceptions.Input(\"mode %s doesn't exist\" % mode)\n\n # if mode == self.PRODUCTION:\n # self._enable_production_mode()\n # elif mode == self.DEV:\n # self._enable_dev_mode()\n\n # def set_level(self, level=10):\n # \"\"\"\n # Set logging levels on all loggers and handlers\n # Added to support backward compatability\n # \"\"\"\n # self.loggers_level_set(level=level)\n\n def handlers_level_set(self, level=10):\n \"\"\"\n\n sets level in all handlers\n\n 10=debug\n 20=info\n\n info see:\n https://docs.python.org/3/library/logging.html#levels\n\n \"\"\"\n for handler in self.handlers._all:\n handler.setLevel(level)\n\n def loggers_level_set(self, level='DEBUG'):\n \"\"\"\n\n sets level in all handlers & loggers\n\n 10=debug\n 20=info\n\n info see:\n https://docs.python.org/3/library/logging.html#levels\n\n \"\"\"\n for key, logger in self.loggers.items():\n logger.setLevel(level)\n self.handlers_level_set(level)\n\n def handlers_attach(self):\n \"\"\"\n walk over all loggers, attach the handlers\n \"\"\"\n for key, logger in self.loggers.items():\n for handler in self.handlers._all:\n logger.handlers = []\n logger.addHandler(handler)\n\n def memhandler_enable(self):\n # self.logger.propagate = True\n self.logger.addHandler(self.handlers.memoryHandler)\n\n def consolehandler_enable(self):\n # self.logger.propagate = True\n self.logger.addHandler(self.handlers.consoleHandler)\n\n def telegramhandler_enable(self, client, chat_id):\n \"\"\"\n Enable a telegram handler to forward logs to a telegram group.\n @param client: A jumpscale telegram_bot client \n @param chat_id: Telegram chat id to which logs need to be forwarded\n \"\"\"\n self.logger.addHandler(self.handlers.telegramHandler(client, chat_id))\n\n def handlers_reset(self):\n self.logger.handlers = []\n\n def logger_filters_get(self):\n return j.core.state.config_js[\"logging\"][\"filter\"]\n\n def logger_filters_add(self, items=[], exclude=[], level=10, save=False):\n \"\"\"\n items is list or string e.g. prefab, exec\n will add the filters to the logger and save it in the config file\n\n \"\"\"\n items = j.data.types.list.fromString(items)\n exclude = j.data.types.list.fromString(exclude)\n if save:\n new = False\n for item in items:\n if item not in j.core.state.config_js[\"logging\"][\"filter\"]:\n j.core.state.config_js[\"logging\"][\"filter\"].append(item)\n new = True\n for item in exclude:\n if item not in j.core.state.config_js[\"logging\"][\"exclude\"]:\n j.core.state.config_js[\"logging\"][\"exclude\"].append(item)\n new = True\n if new:\n j.core.state.configSave()\n self.init()\n\n for item in items:\n item = item.strip().lower()\n if item not in self.filter:\n self.filter.append(item)\n\n for item in exclude:\n item = item.strip().lower()\n if item not in self.exclude:\n self.exclude.append(item)\n\n self.logger.debug(\"start re-init for logging\")\n\n self.handlers_level_set(level)\n\n # make sure all loggers are empty again\n j.dirs._logger = None\n j.core.platformtype._logger = None\n j.core.state._logger = None\n j.core.dirs._logger = None\n j.core.application._logger = None\n for cat in [j.data, j.clients, j.tools, j.sal]:\n for key, item in cat.__dict__.items():\n if item is not None:\n # if hasattr(item, '__jslocation__'):\n # print (item.__jslocation__)\n if 'logger' in item.__dict__:\n item.__dict__[\"logger\"] = self.get(item.__jslocation__)\n item._logger = None\n self.loggers = {}\n\n # print(j.tools.jsloader._logger)\n # print(j.tools.jsloader.logger)\n\n def init(self):\n \"\"\"\n get info from config file & make sure all logging is done properly\n \"\"\"\n self.enabled = j.core.state.configGetFromDict(\"logging\", \"enabled\", True)\n level = j.core.state.configGetFromDict(\"logging\", \"level\", 'DEBUG')\n self.loggers_level_set(level)\n self.handlers_level_set(level)\n self.filter = []\n self.loggers = {}\n items = j.core.state.configGetFromDict(\"logging\", \"filter\", [])\n exclude = j.core.state.configGetFromDict(\"logging\", \"exclude\", [])\n self.logger_filters_add(items=items, exclude=exclude, save=False)\n\n # def enableConsoleMemHandler(self):\n # self.logger.handlers = []\n # # self.logger.propagate = True\n # self.logger.addHandler(self.handlers.memoryHandler)\n # self.logger.addHandler(self.handlers.consoleHandler)\n\n # def _enable_production_mode(self):\n # self.logger.handlers = []\n # self.logger.addHandler(logging.NullHandler())\n # # self.logger.propagate = True\n\n # def _enable_dev_mode(self):\n # logging.setLoggerClass(JSLogger)\n # self.logger.setLevel(logging.DEBUG)\n # self.logger.propagate = False\n # logging.lastResort = None\n # self.enableConsoleHandler()\n # self.logger.addHandler(self.handlers.fileRotateHandler)\n\n def test(self):\n\n logger = self.get(\"loggerTest\")\n\n self.enableConsoleMemHandler()\n\n logger.info(\"a test\")\n\n self.enableMemHandler()\n\n def perftest(logger):\n print(\"start perftest logger\")\n start = time.time()\n nr = 30000\n for i in range(nr):\n logger.info(\"this is an info message\")\n # self.getActionObjFromMethod(test)\n stop = time.time()\n print(\"nr of logs per sec:%s\" % int(nr / (stop - start)))\n\n perftest(logger)\n\n # FOLLOWING PROVES THAT THE LOOKING FOR FILE & PATH INFO IS THE SLOWING DOWN FACTOR\n # j.tools.performancetrace.profile(\"perftest(logger)\", globals=locals()) # {\"perftest\": perftest}\n", "sub_path": "JumpScale9/logging/LoggerFactory.py", "file_name": "LoggerFactory.py", "file_ext": "py", "file_size_in_byte": 10285, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "JSLoggerDefault.JSLoggerDefault", "line_number": 20, "usage_type": "call"}, {"api_name": "JSLogger.JSLogger", "line_number": 22, "usage_type": "call"}, {"api_name": "logging.root.findCaller", "line_number": 35, "usage_type": "call"}, {"api_name": "logging.root", "line_number": 35, "usage_type": "attribute"}, {"api_name": "JumpScale9.j.dirs", "line_number": 36, "usage_type": "attribute"}, {"api_name": "JumpScale9.j", "line_number": 36, "usage_type": "name"}, {"api_name": "JumpScale9.j.dirs", "line_number": 37, "usage_type": "attribute"}, {"api_name": "JumpScale9.j", "line_number": 37, "usage_type": "name"}, {"api_name": "JSLogger.JSLogger", "line_number": 83, "usage_type": "call"}, {"api_name": "JumpScale9.j.core.state.configGetFromDict", "line_number": 84, "usage_type": "call"}, {"api_name": "JumpScale9.j.core", "line_number": 84, "usage_type": "attribute"}, {"api_name": "JumpScale9.j", "line_number": 84, "usage_type": "name"}, {"api_name": "JumpScale9.j.application", "line_number": 108, "usage_type": "attribute"}, {"api_name": "JumpScale9.j", "line_number": 108, "usage_type": "name"}, {"api_name": "JumpScale9.j.core", "line_number": 202, "usage_type": "attribute"}, {"api_name": "JumpScale9.j", "line_number": 202, "usage_type": "name"}, {"api_name": "JumpScale9.j.data.types.list.fromString", "line_number": 210, "usage_type": "call"}, {"api_name": "JumpScale9.j.data", "line_number": 210, "usage_type": "attribute"}, {"api_name": "JumpScale9.j", "line_number": 210, "usage_type": "name"}, {"api_name": "JumpScale9.j.data.types.list.fromString", "line_number": 211, "usage_type": "call"}, {"api_name": "JumpScale9.j.data", "line_number": 211, "usage_type": "attribute"}, {"api_name": "JumpScale9.j", "line_number": 211, "usage_type": "name"}, {"api_name": "JumpScale9.j.core", "line_number": 215, "usage_type": "attribute"}, {"api_name": "JumpScale9.j", "line_number": 215, "usage_type": "name"}, {"api_name": "JumpScale9.j.core", "line_number": 216, "usage_type": "attribute"}, {"api_name": "JumpScale9.j", "line_number": 216, "usage_type": "name"}, {"api_name": "JumpScale9.j.core", "line_number": 219, "usage_type": "attribute"}, {"api_name": "JumpScale9.j", "line_number": 219, "usage_type": "name"}, {"api_name": "JumpScale9.j.core", "line_number": 220, "usage_type": "attribute"}, {"api_name": "JumpScale9.j", "line_number": 220, "usage_type": "name"}, {"api_name": "JumpScale9.j.core.state.configSave", "line_number": 223, "usage_type": "call"}, {"api_name": "JumpScale9.j.core", "line_number": 223, "usage_type": "attribute"}, {"api_name": "JumpScale9.j", "line_number": 223, "usage_type": "name"}, {"api_name": "JumpScale9.j.dirs", "line_number": 241, "usage_type": "attribute"}, {"api_name": "JumpScale9.j", "line_number": 241, "usage_type": "name"}, {"api_name": "JumpScale9.j.core", "line_number": 242, "usage_type": "attribute"}, {"api_name": "JumpScale9.j", "line_number": 242, "usage_type": "name"}, {"api_name": "JumpScale9.j.core", "line_number": 243, "usage_type": "attribute"}, {"api_name": "JumpScale9.j", "line_number": 243, "usage_type": "name"}, {"api_name": "JumpScale9.j.core", "line_number": 244, "usage_type": "attribute"}, {"api_name": "JumpScale9.j", "line_number": 244, "usage_type": "name"}, {"api_name": "JumpScale9.j.core", "line_number": 245, "usage_type": "attribute"}, {"api_name": "JumpScale9.j", "line_number": 245, "usage_type": "name"}, {"api_name": "JumpScale9.j.data", "line_number": 246, "usage_type": "attribute"}, {"api_name": "JumpScale9.j", "line_number": 246, "usage_type": "name"}, {"api_name": "JumpScale9.j.clients", "line_number": 246, "usage_type": "attribute"}, {"api_name": "JumpScale9.j.tools", "line_number": 246, "usage_type": "attribute"}, {"api_name": "JumpScale9.j.sal", "line_number": 246, "usage_type": "attribute"}, {"api_name": "JumpScale9.j.core.state.configGetFromDict", "line_number": 263, "usage_type": "call"}, {"api_name": "JumpScale9.j.core", "line_number": 263, "usage_type": "attribute"}, {"api_name": "JumpScale9.j", "line_number": 263, "usage_type": "name"}, {"api_name": "JumpScale9.j.core.state.configGetFromDict", "line_number": 264, "usage_type": "call"}, {"api_name": "JumpScale9.j.core", "line_number": 264, "usage_type": "attribute"}, {"api_name": "JumpScale9.j", "line_number": 264, "usage_type": "name"}, {"api_name": "JumpScale9.j.core.state.configGetFromDict", "line_number": 269, "usage_type": "call"}, {"api_name": "JumpScale9.j.core", "line_number": 269, "usage_type": "attribute"}, {"api_name": "JumpScale9.j", "line_number": 269, "usage_type": "name"}, {"api_name": "JumpScale9.j.core.state.configGetFromDict", "line_number": 270, "usage_type": "call"}, {"api_name": "JumpScale9.j.core", "line_number": 270, "usage_type": "attribute"}, {"api_name": "JumpScale9.j", "line_number": 270, "usage_type": "name"}]}
{"seq_id": "87534272", "text": "from django.core.mail import EmailMessage\nfrom django.shortcuts import render\n\nfrom cloud.forms import ContactForm\n\n\ndef contacts(request):\n if request.method == \"POST\":\n form = ContactForm(request.POST)\n if form.is_valid():\n name = form.cleaned_data['contact_name']\n email = form.cleaned_data['contact_email']\n subject = form.cleaned_data['subject']\n content = form.cleaned_data['content']\n mail_msg = content + \" <<< \" + email + \" >>>\" + \"(((\" + name + \")))\"\n email = EmailMessage(subject, mail_msg, email, to=[\"itmo.cloud@gmail.com\"])\n email.send()\n msg = \"Спасибо! Письмо отправлено. Ваше обращение будет рассмотрено в ближайшее время.\"\n return render(request, 'message.html', {'message': msg})\n else:\n msg = \"Форма заполнена неправильно. Письмо не было отправлено.\"\n return render(request, 'message.html', {'message': msg})\n else:\n form = ContactForm()\n return render(request, 'contacts.html', {'form': form})\n", "sub_path": "cloud/views/contacts.py", "file_name": "contacts.py", "file_ext": "py", "file_size_in_byte": 1191, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "cloud.forms.ContactForm", "line_number": 9, "usage_type": "call"}, {"api_name": "django.core.mail.EmailMessage", "line_number": 16, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 19, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 22, "usage_type": "call"}, {"api_name": "cloud.forms.ContactForm", "line_number": 24, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 25, "usage_type": "call"}]}
{"seq_id": "608321967", "text": "# -*- coding: utf-8 -*-\n# ganben: this class defines the scheduler\n\nimport binascii\nimport os\nimport itertools\nimport copy\nimport random\n\n# use serializable \nimport rlp\n\n# use local\nimport classalloc\n\n# auxillary funcs\n\n# serializable data structs\n\nclass SchecStud(rlp.Serializable):\n #\n fields = [\n ('id', rlp.sedes.big_endian_int),\n # ('cmplan', rlp.sedes.big_endian_int),\n ('cmclass', rlp.sedes.big_endian_int),\n ('subjcomb', rlp.sedes.big_endian_int),\n ]\n\nclass ClassStud(rlp.Serializable):\n # in class with single sub stud\n fields = [\n ('id', rlp.sedes.big_endian_int),\n ('cmclass', rlp.sedes.big_endian_int),\n ('sub', rlp.sedes.big_endian_int),\n ]\n\nclass Teachers(rlp.Serializable):\n #\n fields = [\n ('tid', rlp.sedes.big_endian_int),\n ('subj', rlp.sedes.big_endian_int),\n ('cmclass', rlp.sedes.big_endian_int),\n ]\n# mapping class between sub and subcomb\n# \nclass MapCombSub:\n # use itertools to generate dict and inversed dict data structre\n\n def __init__(self, n_subs, m_picked):\n # n: a list of subs to pick\n # m: number of choices;\n #assert(m_picked>len(n_subs))\n #\n self.subs = n_subs\n self.comb_list = list(itertools.combinations(n_subs, m_picked))\n \n \n def if_contains(self, combs, sub):\n if self.comb_list[combs]:\n for el in self.comb_list[combs]:\n if el == sub :#they are all int(id, pk of original model)\n return True\n \n return False\n\n def get_subs(self, comb):\n # return a tuples\n # (sub1, sub2, sub3)\n return self.comb_list[comb]\n\n def get_combs(self, sub):\n # input: subs: 1 - 3 or more\n # unordered list of sub in integer\n # return a list of combs in integer\n # if len(subs)>1:# fail to find out a way, skip\n # r = []\n # for e in subs:\n # r.append()\n # else:\n # l = copy.deepcopy(self.comb_list) #useless\n for it in self.comb_list:\n res = []\n for el in it:\n if el == sub:\n res.append(it)\n\n return res\n \n @property\n def values(self):\n return range(len(self.comb_list))\n\n\nclass Croom(rlp.Serializable):\n fields = [\n ('rid', rlp.sedes.big_endian_int),\n ('cap', rlp.sedes.big_endian_int),\n ]\n\nclass TeachingSubs(rlp.Serializable):\n fields = [\n ('sid', rlp.sedes.big_endian_int),\n # ('nums', rlp.sedes.big_endian_int),\n ('is_bounded', rlp.sedes.boolean),\n ]\n\nclass SchecSetups(rlp.Serializable):\n #\n fields = [\n ('sum_weekly', rlp.sedes.big_endian_int),\n ('m_perday', rlp.sedes.big_endian_int),\n ('mx_rooms', rlp.sedes.big_endian_int),\n ('fix_subs', rlp.sedes.List(rlp.sedes.big_endian_int)),\n ('fix_weekly', rlp.sedes.big_endian_int), # simplified\n ('dyn_weekly', rlp.sedes.big_endian_int), # simplified\n ('min_members', rlp.sedes.big_endian_int),\n ('max_members', rlp.sedes.big_endian_int),\n ]\n\nclass BeforeSched(rlp.Serializable):\n #\n fields = [\n ('subs', rlp.sedes.CountableList(TeachingSubs)),\n ('teachers', rlp.sedes.CountableList(Teachers)),\n ('m_pick', rlp.sedes.big_endian_int),\n ('fix_subs', rlp.sedes.CountableList(TeachingSubs)),\n ('n_subs', rlp.sedes.big_endian_int),\n ('cmclasses', rlp.sedes.CountableList(classalloc.Cmclass)),\n ]\n\nclass UnitMember(rlp.Serializable):\n # mini unit\n fields = [\n ('stud', rlp.sedes.big_endian_int),\n # ('room', rlp.sedes.big_endian_int),\n ('sub', rlp.sedes.big_endian_int),\n # ('teacher', rlp.sedes.big_endian_int),\n ]\n\nclass SchedClass(rlp.Serializable):\n # sorted class unit\n fields = [\n ('sub', rlp.sedes.big_endian_int),\n ('room', rlp.sedes.big_endian_int),\n ('teacher', rlp.sedes.big_endian_int),\n ('studs', rlp.sedes.CountableList(UnitMember)),\n ]\n\nclass UnitClass():\n # methods to determine a complete or in-complete\n # mutable, to a immutable serializable sub class\n def __init__(self, pos = (0,0), room = 0):\n # pos1 pos2 is position of table matrix\n self.room = room\n # self.valid = False\n self.pos = pos\n self.cmcls = False # default is not a fix sub class\n self.studs = []\n self.sub = None\n self.teacher = None\n self.unused = [] # a swap stack of studs\n self.settled = 0\n # output a fixed result\n \n def setup(self, m_max, m_min, is_bound):\n # m_max = class member\n # m_min class member\n # is bound = selectable sub or forceable\n self.m_max = m_max\n self.m_min = m_min\n self.is_bound = is_bound\n\n @property\n def binary(self):\n if self.valid:\n uc = SchedClass(\n sub = self.sub,\n room = self.room,\n teacher = self.teacher,\n studs = self.studs\n )\n return rlp.encode(uc)\n else:\n raise Exception\n \n @property\n def valid(self):\n if not self.sub or not self.teacher:\n return False\n elif self.settled > self.m_min and self.settled == len(self.studs):\n return True\n else:\n return False\n \n @property\n def unused(self):\n return self.unused\n\n def add_stud(self, stud):\n self.unused.append(stud)\n \n def fill_fixed_stud(self, class_stud):\n # class_stud: the cmclass together stud list, without sub input\n if self.cmcls:\n #only work for fix cmcls class\n for s in class_stud: #copy these stud to class\n ss = {\n 'id':s.id,\n 'cmclass':self.cmcls,\n 'sub': self.sub\n }\n self.studs.append(ss)\n #TODO: maybe will fill with sub?\n\n def sched_stud(self, total_stud):\n #check if status ok\n # total_stud: un scheduded stud*sub list\n # use: the main thread: unitclass.sched_stud(current stud)\n if len(total_stud) > 0:\n for i in range(len(total_stud)):\n head = total_stud[i]\n if head.sub == self.sub and len(self.studs) < self.m_max:\n self.studs.append(head)\n self.settled += 1\n total_stud.pop(i)\n\n def assign_teacher(self, teacher_id):\n self.teacher = teacher_id\n\n def assign_room(self, room_id):\n self.room = room_id\n \n def assign_fix_cmcls(self, cmcls):\n self.cmcls = cmcls\n\n def assign_sub(self, sub_id):\n self.sub = sub_id\n\nclass ClassTable:\n # this is a multi dimension array\n # can be use to swap between \n def __init__(self, setup):\n self.setup = setup # {.sum_weekly, .m_perday, mx_rooms, fix_sub list, fix_weekly int, dyn_weekly}\n # generate empty slots\n self.slots = [[] for i in range(5)]\n self.units = []\n @classmethod\n def gen_slots(n):\n # 5 day per week, fixed\n lists = [[] for i in range(5)]\n return lists\n \n def gen_fix_unitclass(self, subs, cmclass_list):\n # xx it with unit classes with position x,y, and room id for conflict resolving\n # generate the forceable first\n for i in subs:#range(self.setup['fix_sub']):\n for j in cmclass_list:\n u = UnitClass()\n u.sub = i.sid\n u.assign_fix_cmcls(j.cmid)\n u.studs = j.studs[:]\n li = [u] * self.setup['fix_weekly']\n self.units += li\n # not position/room conflict resolved\n \n def gen_dyn_unitclass(self, subs):\n # generate free picked classes\n # mapCS = MapCombSubs objects\n for i in subs:\n # should times n for each subs ?\n u = UnitClass()\n u.sub = i.sid\n li = [u] * self.setup['dyn_weekly']\n self.units += li\n \n def slot_fill_fix(self):\n # each slot, fill with a list or enum kv store:?\n pass\n\n\n def class_fill(self, total_studs):\n for it in self.slots:\n for item in it:\n item.sched_stud(total_studs)\n\ndef gen_default_subs(n_fix=3, n_dyn=6):\n # generate default subs list1 fixed subs\n # subs list2: dyn subs list\n fix_list = []\n for i in range(n_fix):\n t = TeachingSubs(\n sid = i,\n is_bounded = True\n )\n fix_list.append(t)\n \n dyn_list = []\n k = random.randrange(10, 20)\n for i in range(n_dyn):\n t = TeachingSubs(\n sid = i + k,\n is_bounded = False\n )\n dyn_list.append(t)\n return fix_list, dyn_list\n\nDEFAULT_SETUP = SchecSetups(\n sum_weekly = 5*8,\n m_perday = 8,\n mx_rooms = 10,\n fix_subs = 3,\n fix_weekly = 5,\n dyn_weekly = 5,\n min_members = 30,\n max_members = 45\n)\n# main class for perform multi level iterator\nclass Scheduler:\n # in mem , serializable input/output class\n def __init__(self, fn):\n # deserialize BeforeSched\n with open(fn, 'rb') as f:\n b = f.read()\n self.substuds = []\n self.before = rlp.decode(b, BeforeSched)\n self.setup = DEFAULT_SETUP\n # generate mapcombs\n self.mapsub = MapCombSub(self.before.subs, self.before.m_picked)\n # generate stud with subs from mapcombs\n for ic in self.before.cmclasses:\n # loop each class\n # cid = ic.id\n for it in ic:\n # iter three tuples\n sublist = list(self.mapsub.get_subs(it.subjcomb))\n st = []\n for sub in sublist:\n cs = ClassStud(\n id = it.id,\n cmclass = ic.cmid,\n sub = sub\n )\n st.append(cs)\n self.substuds += st * self.setup.dyn_weekly\n self.table = ClassTable(self.setup)\n # self.fix_list, self.dyn_list = gen_default_subs()\n self.fix_list = self.before.fix_subs\n self.dyn_list = self.before.subs\n\n def start_schec(self):\n #\n\n for item in self.before.cmclasses:\n \n self.table.gen_fix_unitclass(self.fix_list, item) # the sub should be named;\n # need rewrite a lot...\n # for sub in self.mapsub.values:\n self.table.gen_dyn_unitclass(self.dyn_list) #\n # need rewrite a lot...\n\n \n def print_table(self, l = 1):\n # print 1st element or each slot;\n pass", "sub_path": "schecsite/scheduler/scheduler.py", "file_name": "scheduler.py", "file_ext": "py", "file_size_in_byte": 10744, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "rlp.Serializable", "line_number": 20, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 23, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 25, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 26, "usage_type": "attribute"}, {"api_name": "rlp.Serializable", "line_number": 29, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 32, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 33, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 34, "usage_type": "attribute"}, {"api_name": "rlp.Serializable", "line_number": 37, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 40, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 41, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 42, "usage_type": "attribute"}, {"api_name": "itertools.combinations", "line_number": 55, "usage_type": "call"}, {"api_name": "rlp.Serializable", "line_number": 94, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 96, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 97, "usage_type": "attribute"}, {"api_name": "rlp.Serializable", "line_number": 100, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 102, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 104, "usage_type": "attribute"}, {"api_name": "rlp.Serializable", "line_number": 107, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 110, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 111, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 112, "usage_type": "attribute"}, {"api_name": "rlp.sedes.List", "line_number": 113, "usage_type": "call"}, {"api_name": "rlp.sedes", "line_number": 113, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 114, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 115, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 116, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 117, "usage_type": "attribute"}, {"api_name": "rlp.Serializable", "line_number": 120, "usage_type": "attribute"}, {"api_name": "rlp.sedes.CountableList", "line_number": 123, "usage_type": "call"}, {"api_name": "rlp.sedes", "line_number": 123, "usage_type": "attribute"}, {"api_name": "rlp.sedes.CountableList", "line_number": 124, "usage_type": "call"}, {"api_name": "rlp.sedes", "line_number": 124, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 125, "usage_type": "attribute"}, {"api_name": "rlp.sedes.CountableList", "line_number": 126, "usage_type": "call"}, {"api_name": "rlp.sedes", "line_number": 126, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 127, "usage_type": "attribute"}, {"api_name": "rlp.sedes.CountableList", "line_number": 128, "usage_type": "call"}, {"api_name": "rlp.sedes", "line_number": 128, "usage_type": "attribute"}, {"api_name": "classalloc.Cmclass", "line_number": 128, "usage_type": "attribute"}, {"api_name": "rlp.Serializable", "line_number": 131, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 134, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 136, "usage_type": "attribute"}, {"api_name": "rlp.Serializable", "line_number": 140, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 143, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 144, "usage_type": "attribute"}, {"api_name": "rlp.sedes", "line_number": 145, "usage_type": "attribute"}, {"api_name": "rlp.sedes.CountableList", "line_number": 146, "usage_type": "call"}, {"api_name": "rlp.sedes", "line_number": 146, "usage_type": "attribute"}, {"api_name": "rlp.encode", "line_number": 182, "usage_type": "call"}, {"api_name": "random.randrange", "line_number": 298, "usage_type": "call"}, {"api_name": "rlp.decode", "line_number": 325, "usage_type": "call"}]}
{"seq_id": "644705953", "text": "\n# Logging\nimport importlib\nfrom homeassistant.components.notify import (\n ATTR_DATA,\n ATTR_TARGET,\n # PLATFORM_SCHEMA,\n BaseNotificationService,\n)\n\nimport logging\n_LOGGER = logging.getLogger(__name__)\n\n# import voluptuous as vol\n# import homeassistant.helpers.config_validation as cv\n# PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend(\n# {\n# # vol.Required(CONF_HOST): cv.string,\n# # vol.Optional(CONF_FILENAME, default=WEBOSTV_CONFIG_FILE): cv.string,\n# # vol.Optional(CONF_ICON): cv.string,\n# }\n# )\n\n\ndef get_service(hass, config, discovery_info=None):\n \"\"\"Return the notify service.\"\"\"\n return ZhiPlusNotificationService(config['targets'])\n\n\nclass ZhiPlusNotificationService(BaseNotificationService):\n \"\"\"Implement the notification service.\"\"\"\n\n def __init__(self, targets):\n \"\"\"Initialize the service.\"\"\"\n self._targets = targets\n\n @property\n def targets(self):\n return self._targets\n\n async def async_send_message(self, message=\"\", **kwargs):\n \"\"\"Send a message.\"\"\"\n try:\n conf = kwargs.get(ATTR_TARGET)[0]\n data = kwargs.get(ATTR_DATA)\n target = conf['target']\n mod = importlib.import_module('.' + target + 'tify', __package__)\n async_send = getattr(mod, 'async_send')\n await async_send(conf, message, data)\n except:\n import traceback\n _LOGGER.error(traceback.format_exc())\n", "sub_path": "extra/custom_components/zhiplus/notify.py", "file_name": "notify.py", "file_ext": "py", "file_size_in_byte": 1468, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "logging.getLogger", "line_number": 12, "usage_type": "call"}, {"api_name": "homeassistant.components.notify.BaseNotificationService", "line_number": 30, "usage_type": "name"}, {"api_name": "homeassistant.components.notify.ATTR_TARGET", "line_number": 44, "usage_type": "argument"}, {"api_name": "homeassistant.components.notify.ATTR_DATA", "line_number": 45, "usage_type": "argument"}, {"api_name": "importlib.import_module", "line_number": 47, "usage_type": "call"}, {"api_name": "traceback.format_exc", "line_number": 52, "usage_type": "call"}]}
{"seq_id": "361394904", "text": "#!/usr/bin/python\n'''\n Send openshift and docker versions with miq_metric tag to metric_sender\n\n Example:\n ./cron-send-docker-oc-versions.py -u oc_username -p oc_password\n'''\n# Disabling invalid-name because pylint doesn't like the naming conention we have.\n# pylint: disable=invalid-name,import-error\n\nfrom docker import AutoVersionClient\nimport subprocess\nimport argparse\nfrom openshift_tools.monitoring.metric_sender import MetricSender\n\n\ndef parse_args():\n '''Parse the arguments for this script'''\n parser = argparse.ArgumentParser(description=\"Tool to send docker and openshift versions\")\n parser.add_argument('-d', '--debug', default=False, action=\"store_true\", help=\"debug mode\")\n parser.add_argument('-v', '--verbose', default=False, action=\"store_true\", help=\"Verbose?\")\n\n args = parser.parse_args()\n return args\n\n\ndef main():\n '''get docker and openshift versions and send to metric sender\n '''\n\n args = parse_args()\n mts = MetricSender(verbose=args.verbose, debug=args.debug)\n\n # Get docker version\n cli = AutoVersionClient(base_url='unix://var/run/docker.sock', timeout=120)\n docker_version = cli.version()[\"Version\"]\n mts.add_metric({\"docker.version\": docker_version}, key_tags={'miq_metric': 'true'})\n\n # Get openshift version\n try:\n return_value = subprocess.check_output(\"oc version\", stderr=subprocess.STDOUT, shell=True)\n oc_version = return_value.split('\\n')[0].split(' ')[1]\n mts.add_metric({\"oc.version\": oc_version}, key_tags={'miq_metric': 'true'})\n\n except subprocess.CalledProcessError as error:\n print (\"Failed to get openshift version: \", error.output)\n\nif __name__ == '__main__':\n main()\n", "sub_path": "scripts/monitoring/cron-send-docker-oc-versions.py", "file_name": "cron-send-docker-oc-versions.py", "file_ext": "py", "file_size_in_byte": 1702, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "argparse.ArgumentParser", "line_number": 19, "usage_type": "call"}, {"api_name": "openshift_tools.monitoring.metric_sender.MetricSender", "line_number": 32, "usage_type": "call"}, {"api_name": "docker.AutoVersionClient", "line_number": 35, "usage_type": "call"}, {"api_name": "subprocess.check_output", "line_number": 41, "usage_type": "call"}, {"api_name": "subprocess.STDOUT", "line_number": 41, "usage_type": "attribute"}, {"api_name": "subprocess.CalledProcessError", "line_number": 45, "usage_type": "attribute"}]}
{"seq_id": "433496602", "text": "\"\"\"\nCreated on Aug 24, 2016\n\nMongoDB connector for water level receiver\n\n@author: Levan Tsinadze\n\"\"\"\nfrom __future__ import absolute_import\nfrom __future__ import division\nfrom __future__ import print_function\n\nimport datetime\n\nfrom org.maxin.mongo.abstract_mongo_connector import CONTAINER_KEY, INERT_ERROR, INERT_OK, LEVEL_KEY, RECORD_TIME, INERT_NONEED\nfrom org.maxin.mongo.abstract_mongo_connector import abstract_mongo_receiver\n\n\nclass mongo_receiver(abstract_mongo_receiver):\n \"\"\"MongoDB client for water level database\"\"\"\n \n def __init__(self, host='localhost', port=27017):\n super(mongo_receiver, self).__init__(host, port)\n \n def init_collection(self):\n \"\"\"Initializes water level collection \n from database\n Return:\n level_collection - water level collection\n \"\"\"\n \n db = self.init_database()\n level_collection = db.level_collection\n \n return level_collection\n \n def create_record(self, level_info, container_id):\n \"\"\"Creates water level record for database\n Args:\n level_info - water level\n container_id - identifier of water container\n Return:\n mongo_record - water level record\n \"\"\"\n return {\n CONTAINER_KEY: container_id,\n LEVEL_KEY: level_info,\n RECORD_TIME: datetime.datetime.utcnow()\n }\n \n def init_last_record_query(self, container_id):\n \"\"\"Initializes last record query\n Args:\n container_id - container identifier\n Return:\n last record query\n \"\"\"\n return {'$query': {CONTAINER_KEY:container_id},\n '$orderby': {RECORD_TIME:-1}}\n # Inserts record to database\n def insert_data(self, level_info, container_id):\n \"\"\"Inserts water level info\n Args:\n level_info - water level\n container_id - identifier of water container\n Return:\n level_id - assigned unique identifier of record\n \"\"\"\n \n mongo_record = self.create_record(level_info, container_id)\n level_collection = self.init_collection()\n level_id = level_collection.insert_one(mongo_record).inserted_id\n print(level_id)\n \n if level_id is not None:\n result_value = INERT_OK\n else:\n result_value = INERT_ERROR\n \n return result_value\n\n def read_last_record(self, container_id):\n \"\"\"Reads last record from database by container identifier\n Args:\n container_id - container identifier\n Return:\n level_record - water level info\n \"\"\"\n \n level_collection = self.init_collection()\n lr_query = self.init_last_record_query(container_id)\n level_record = level_collection.find_one(lr_query)\n \n return level_record\n \n def validate_level(self, ext_info, level_info):\n \"\"\"Validates where level info should be inserted\n Args:\n ext_info - existed level info\n level_info new level info\n \"\"\"\n ext_number = float(ext_info)\n return ext_number - 1 > level_info or ext_number + 1 < level_info\n \n def validate_and_insert(self, level_info, container_id):\n \"\"\"Validates and adds water level info to database\n Args:\n level_info - water level\n container_id - identifier of water container\n Return:\n level_id - assigned unique identifier of record\n \"\"\"\n \n if level_info is None:\n level_number = -1\n else:\n level_number = float(level_info)\n level_record = self.read_last_record(container_id)\n if level_record is None or self.validate_level(level_record[LEVEL_KEY], level_number) :\n result_value = self.insert_data(level_number, container_id)\n else:\n result_value = INERT_NONEED\n \n return result_value\n", "sub_path": "org/maxin/mongo/mongo_connector.py", "file_name": "mongo_connector.py", "file_ext": "py", "file_size_in_byte": 3669, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "org.maxin.mongo.abstract_mongo_connector.abstract_mongo_receiver", "line_number": 18, "usage_type": "name"}, {"api_name": "org.maxin.mongo.abstract_mongo_connector.CONTAINER_KEY", "line_number": 45, "usage_type": "name"}, {"api_name": "org.maxin.mongo.abstract_mongo_connector.LEVEL_KEY", "line_number": 46, "usage_type": "name"}, {"api_name": "org.maxin.mongo.abstract_mongo_connector.RECORD_TIME", "line_number": 47, "usage_type": "name"}, {"api_name": "datetime.datetime.utcnow", "line_number": 47, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 47, "usage_type": "attribute"}, {"api_name": "org.maxin.mongo.abstract_mongo_connector.CONTAINER_KEY", "line_number": 57, "usage_type": "name"}, {"api_name": "org.maxin.mongo.abstract_mongo_connector.RECORD_TIME", "line_number": 58, "usage_type": "name"}, {"api_name": "org.maxin.mongo.abstract_mongo_connector.INERT_OK", "line_number": 75, "usage_type": "name"}, {"api_name": "org.maxin.mongo.abstract_mongo_connector.INERT_ERROR", "line_number": 77, "usage_type": "name"}, {"api_name": "org.maxin.mongo.abstract_mongo_connector.LEVEL_KEY", "line_number": 118, "usage_type": "name"}, {"api_name": "org.maxin.mongo.abstract_mongo_connector.INERT_NONEED", "line_number": 121, "usage_type": "name"}]}
{"seq_id": "79265729", "text": "import numpy as np\nimport pandas as pd\n\nfrom bokeh.plotting import figure, show\nfrom bokeh.models import ColumnDataSource, Panel\n\ndef boxplot_tab(data_frame_nasa):\n cats = [\"duringTime\"]\n df = pd.DataFrame(dict(score=data_frame_nasa['duringTime'], group='duringTime'))\n\n # find the quartiles and IQR for each category\n groups = df.groupby('group')\n q1 = groups.quantile(q=0.25)\n q2 = groups.quantile(q=0.5)\n q3 = groups.quantile(q=0.75)\n iqr = q3 - q1\n upper = q3 + 1.5 * iqr\n lower = q1 - 1.5 * iqr\n\n # find the outliers for each category\n def outliers(group):\n cat = group.name\n return group[(group.score > upper.loc[cat]['score']) | (group.score < lower.loc[cat]['score'])]['score']\n\n out = groups.apply(outliers).dropna()\n\n # prepare outlier data for plotting, we need coordinates for every outlier.\n if not out.empty:\n outx = list(out.index.get_level_values(0))\n outy = list(out.values)\n\n p = figure(tools=\"\", background_fill_color=\"#efefef\", x_range=cats, toolbar_location=None)\n\n # if no outliers, shrink lengths of stems to be no longer than the minimums or maximums\n qmin = groups.quantile(q=0.00)\n qmax = groups.quantile(q=1.00)\n upper.score = [min([x, y]) for (x, y) in zip(list(qmax.loc[:, 'score']), upper.score)]\n lower.score = [max([x, y]) for (x, y) in zip(list(qmin.loc[:, 'score']), lower.score)]\n\n # stems\n p.segment(cats, upper.score, cats, q3.score, line_color=\"black\")\n p.segment(cats, lower.score, cats, q1.score, line_color=\"black\")\n\n # boxes\n p.vbar(cats, 0.7, q2.score, q3.score, fill_color=\"#E08E79\", line_color=\"black\")\n p.vbar(cats, 0.7, q1.score, q2.score, fill_color=\"#3B8686\", line_color=\"black\")\n\n # whiskers (almost-0 height rects simpler than segments)\n p.rect(cats, lower.score, 0.2, 0.01, line_color=\"black\")\n p.rect(cats, upper.score, 0.2, 0.01, line_color=\"black\")\n\n # outliers\n if not out.empty:\n p.circle(outx, outy, size=6, color=\"#F38630\", fill_alpha=0.6)\n\n p.xgrid.grid_line_color = None\n p.ygrid.grid_line_color = \"white\"\n p.grid.grid_line_width = 2\n p.xaxis.major_label_text_font_size = \"16px\"\n\n tab = Panel(child=p, title='Boxplot')\n\n return tab\n", "sub_path": "scripts/boxplot.py", "file_name": "boxplot.py", "file_ext": "py", "file_size_in_byte": 2242, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "pandas.DataFrame", "line_number": 9, "usage_type": "call"}, {"api_name": "bokeh.plotting.figure", "line_number": 32, "usage_type": "call"}, {"api_name": "bokeh.models.Panel", "line_number": 61, "usage_type": "call"}]}
{"seq_id": "230660741", "text": "# -*- coding: utf-8 -*-\n\nfrom cleo.commands.command import Command, CommandError\nfrom cleo.application import Application\nfrom cleo.inputs.input_definition import InputDefinition\nfrom cleo.inputs.input_argument import InputArgument\nfrom cleo.inputs.input_option import InputOption\nfrom cleo.inputs import ListInput\nfrom cleo.outputs import NullOutput\nfrom cleo.helpers import FormatterHelper\nfrom cleo.testers import CommandTester\nfrom cleo.validators import Integer, Boolean\nfrom .. import CleoTestCase\nfrom ..fixtures.some_command import SomeCommand\nfrom ..fixtures.no_configure_command import NoConfigureCommand\nfrom ..fixtures.signature_command import SignatureCommand\nfrom ..fixtures.inherited_command import ChildCommand\n\n\nclass CommandTest(CleoTestCase):\n\n NON_CALLABLE = None\n\n def test_init(self):\n \"\"\"\n Command.__init__() behaves properly\n \"\"\"\n self.assertRaises(Exception, Command)\n\n command = Command('foo:bar')\n self.assertEqual(\n 'foo:bar',\n command.get_name(),\n msg='__init__() takes the command name as its first argument'\n )\n\n def test_command_name_cannot_be_empty(self):\n \"\"\"\n A command name cannot be empty.\n \"\"\"\n self.assertRaises(\n Exception,\n Command\n )\n\n def test_set_application(self):\n \"\"\"\n Command.set_application() sets the current application\n \"\"\"\n application = Application()\n command = SomeCommand()\n command.set_application(application)\n self.assertEqual(application, command.get_application(), msg='.set_application() sets the current application')\n\n def test_set_get_definition(self):\n \"\"\"\n Command.get/set_definition properly sets and gets definition\n \"\"\"\n command = SomeCommand()\n definition = InputDefinition()\n ret = command.set_definition(definition)\n self.assertEqual(command, ret, msg='.set_definition() implements a fluent interface')\n self.assertEqual(definition, command.get_definition(),\n msg='.set_definition() sets the current InputDefinition instance')\n command.set_definition([InputArgument('foo'), InputOption('bar')])\n self.assertTrue(command.get_definition().has_argument('foo'),\n msg='.set_definition() also takes an array of InputArguments and InputOptions as an argument')\n self.assertTrue(command.get_definition().has_option('bar'),\n msg='.set_definition() also takes an array of InputArguments and InputOptions as an argument')\n command.set_definition(InputDefinition())\n\n def test_add_argument(self):\n \"\"\"\n Command.add_argument() adds an argument to command.\n \"\"\"\n command = SomeCommand()\n ret = command.add_argument('foo')\n\n self.assertEqual(ret, command)\n self.assertTrue(command.get_definition().has_argument('foo'))\n\n def test_add_option(self):\n \"\"\"\n Command.add_option() adds an option to command.\n \"\"\"\n command = SomeCommand()\n ret = command.add_option('foo')\n\n self.assertEqual(ret, command)\n self.assertTrue(command.get_definition().has_option('foo'))\n\n def test_get_namespace_get_name_set_name(self):\n command = SomeCommand()\n self.assertEqual('namespace:name', command.get_name())\n\n command.set_name('foo')\n self.assertEqual('foo', command.get_name())\n\n ret = command.set_name('foobar:bar')\n self.assertEqual(ret, command)\n self.assertEqual('foobar:bar', command.get_name())\n\n def test_invalid_command_names(self):\n data = ['', 'foo:']\n\n command = SomeCommand()\n\n for d in data:\n self.assertRaisesRegexp(\n CommandError,\n 'Command name \"%s\" is invalid.' % d,\n command.set_name,\n d\n )\n\n def test_set_get_description(self):\n command = SomeCommand()\n\n self.assertEqual('description', command.get_description())\n\n ret = command.set_description('description1')\n self.assertEqual(ret, command)\n self.assertEqual('description1', command.get_description())\n\n def test_set_get_help(self):\n command = SomeCommand()\n\n self.assertEqual('help', command.get_help())\n\n ret = command.set_description('help1')\n self.assertEqual(ret, command)\n self.assertEqual('help1', command.get_description())\n\n def test_get_processed_help(self):\n command = SomeCommand()\n\n command.set_help('The %command.name% command does... Example: python %command.full_name%.')\n self.assertRegex(\n command.get_processed_help(),\n 'The namespace:name command does...'\n )\n self.assertNotRegex(\n command.get_processed_help(),\n '%command.full_name%'\n )\n\n def test_set_get_aliases(self):\n command = SomeCommand()\n\n self.assertEqual(['name'], command.get_aliases())\n\n ret = command.set_aliases(['name1'])\n self.assertEqual(ret, command)\n self.assertEqual(['name1'], command.get_aliases())\n\n def test_get_synposis(self):\n command = SomeCommand()\n command.add_argument('bar')\n command.add_option('foo')\n\n self.assertEqual(\n 'namespace:name [--foo] [--] []',\n command.get_synopsis()\n )\n\n def test_get_helper(self):\n application = Application()\n command = SomeCommand()\n command.set_application(application)\n formatter_helper = FormatterHelper()\n\n self.assertEqual(\n formatter_helper.get_name(),\n command.get_helper('formatter').get_name()\n )\n\n def test_merge_application_definition(self):\n \"\"\"\n Command.merge_application_definition() merges command and application.\n \"\"\"\n application1 = Application()\n application1.get_definition().add_arguments([InputArgument('foo')])\n application1.get_definition().add_options([InputOption('bar')])\n command = SomeCommand()\n command.set_application(application1)\n command.set_definition(\n InputDefinition([\n InputArgument('bar'),\n InputOption('foo')\n ])\n )\n\n command.merge_application_definition()\n self.assertTrue(command.get_definition().has_argument('foo'))\n self.assertTrue(command.get_definition().has_option('foo'))\n self.assertTrue(command.get_definition().has_argument('bar'))\n self.assertTrue(command.get_definition().has_option('bar'))\n\n # It should not merge the definitions twice\n command.merge_application_definition()\n self.assertEqual(3, command.get_definition().get_argument_count())\n\n def test_merge_application_definition_without_args_then_with_args_adds_args(self):\n application1 = Application()\n application1.get_definition().add_arguments([InputArgument('foo')])\n application1.get_definition().add_options([InputOption('bar')])\n command = SomeCommand()\n command.set_application(application1)\n command.set_definition(InputDefinition())\n\n command.merge_application_definition(False)\n self.assertFalse(command.get_definition().has_argument('foo'))\n self.assertTrue(command.get_definition().has_option('bar'))\n\n command.merge_application_definition(True)\n self.assertTrue(command.get_definition().has_argument('foo'))\n\n # It should not merge the definitions twice\n command.merge_application_definition()\n self.assertEqual(2, command.get_definition().get_argument_count())\n\n def test_run_interactive(self):\n tester = CommandTester(SomeCommand())\n\n tester.execute([], {'interactive': True})\n\n self.assertEqual(\n 'interact called\\nexecute called\\n',\n tester.get_display()\n )\n\n def test_run_non_interactive(self):\n tester = CommandTester(SomeCommand())\n\n tester.execute([], {'interactive': False})\n\n self.assertEqual(\n 'execute called\\n',\n tester.get_display()\n )\n\n def test_execute_method_needs_to_be_overwridden(self):\n command = Command('foo')\n self.assertRaises(\n NotImplementedError,\n command.run,\n ListInput([]),\n NullOutput()\n )\n\n def test_run_with_invalid_option(self):\n command = SomeCommand()\n tester = CommandTester(command)\n\n self.assertRaises(\n Exception,\n 'The \"--bar\" option does not exist.',\n tester.execute,\n [('--bar', True)]\n )\n\n def test_run_returns_integer_exit_code(self):\n command = SomeCommand()\n exit_code = command.run(ListInput([]), NullOutput())\n self.assertEqual(0, exit_code)\n\n command = SomeCommand()\n command.execute = self.mock().MagicMock(return_value=2.3)\n exit_code = command.run(ListInput([]), NullOutput())\n self.assertEqual(2, exit_code)\n\n def test_set_code(self):\n command = SomeCommand()\n ret = command.set_code(lambda c: c.line('from the code...'))\n self.assertEqual(ret, command)\n\n tester = CommandTester(command)\n tester.execute([])\n self.assertEqual(\n 'interact called\\nfrom the code...\\n',\n tester.get_display()\n )\n\n command = SomeCommand()\n command.set_code(self.callable_method)\n tester = CommandTester(command)\n tester.execute([])\n self.assertEqual(\n 'interact called\\nfrom the code...\\n',\n tester.get_display()\n )\n\n def test_set_code_with_non_callable(self):\n command = SomeCommand()\n\n self.assertRaisesRegexp(\n Exception,\n 'Invalid callable provided to Command.setCode().',\n command.set_code,\n self.NON_CALLABLE\n )\n\n def test_without_configure(self):\n command = NoConfigureCommand()\n\n self.assertEqual('no:configure', command.get_name())\n self.assertEqual('description', command.get_description())\n self.assertEqual('help', command.get_help())\n self.assertEqual(2, command.get_definition().get_argument_count())\n self.assertEqual(2, len(command.get_definition().get_options()))\n\n def test_with_signature(self):\n command = SignatureCommand()\n\n self.assertEqual('signature:command', command.name)\n self.assertEqual('description', command.description)\n self.assertEqual('help', command.help)\n self.assertEqual(2, command.get_definition().get_argument_count())\n self.assertEqual(2, len(command.get_definition().get_options()))\n self.assertIsInstance(command.get_definition().get_argument('foo').get_validator(), Integer)\n self.assertIsInstance(command.get_definition().get_option('baz').get_validator(), Boolean)\n\n def callable_method(self, c):\n c.line('from the code...')\n\n def test_signature_inheritance(self):\n command = ChildCommand()\n\n assert 'parent' == command.name\n assert 'Parent Command.' == command.description\n", "sub_path": "tests/commands/test_command.py", "file_name": "test_command.py", "file_ext": "py", "file_size_in_byte": 11312, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "cleo.commands.command.Command", "line_number": 28, "usage_type": "argument"}, {"api_name": "cleo.commands.command.Command", "line_number": 30, "usage_type": "call"}, {"api_name": "cleo.commands.command.Command", "line_number": 43, "usage_type": "argument"}, {"api_name": "cleo.application.Application", "line_number": 50, "usage_type": "call"}, {"api_name": "fixtures.some_command.SomeCommand", "line_number": 51, "usage_type": "call"}, {"api_name": "fixtures.some_command.SomeCommand", "line_number": 59, "usage_type": "call"}, {"api_name": "cleo.inputs.input_definition.InputDefinition", "line_number": 60, "usage_type": "call"}, {"api_name": "cleo.inputs.input_argument.InputArgument", "line_number": 65, "usage_type": "call"}, {"api_name": "cleo.inputs.input_option.InputOption", "line_number": 65, "usage_type": "call"}, {"api_name": "cleo.inputs.input_definition.InputDefinition", "line_number": 70, "usage_type": "call"}, {"api_name": "fixtures.some_command.SomeCommand", "line_number": 76, "usage_type": "call"}, {"api_name": "fixtures.some_command.SomeCommand", "line_number": 86, "usage_type": "call"}, {"api_name": "fixtures.some_command.SomeCommand", "line_number": 93, "usage_type": "call"}, {"api_name": "fixtures.some_command.SomeCommand", "line_number": 106, "usage_type": "call"}, {"api_name": "cleo.commands.command.CommandError", "line_number": 110, "usage_type": "argument"}, {"api_name": "fixtures.some_command.SomeCommand", "line_number": 117, "usage_type": "call"}, {"api_name": "fixtures.some_command.SomeCommand", "line_number": 126, "usage_type": "call"}, {"api_name": "fixtures.some_command.SomeCommand", "line_number": 135, "usage_type": "call"}, {"api_name": "fixtures.some_command.SomeCommand", "line_number": 148, "usage_type": "call"}, {"api_name": "fixtures.some_command.SomeCommand", "line_number": 157, "usage_type": "call"}, {"api_name": "cleo.application.Application", "line_number": 167, "usage_type": "call"}, {"api_name": "fixtures.some_command.SomeCommand", "line_number": 168, "usage_type": "call"}, {"api_name": "cleo.helpers.FormatterHelper", "line_number": 170, "usage_type": "call"}, {"api_name": "cleo.application.Application", "line_number": 181, "usage_type": "call"}, {"api_name": "cleo.inputs.input_argument.InputArgument", "line_number": 182, "usage_type": "call"}, {"api_name": "cleo.inputs.input_option.InputOption", "line_number": 183, "usage_type": "call"}, {"api_name": "fixtures.some_command.SomeCommand", "line_number": 184, "usage_type": "call"}, {"api_name": "cleo.inputs.input_definition.InputDefinition", "line_number": 187, "usage_type": "call"}, {"api_name": "cleo.inputs.input_argument.InputArgument", "line_number": 188, "usage_type": "call"}, {"api_name": "cleo.inputs.input_option.InputOption", "line_number": 189, "usage_type": "call"}, {"api_name": "cleo.application.Application", "line_number": 204, "usage_type": "call"}, {"api_name": "cleo.inputs.input_argument.InputArgument", "line_number": 205, "usage_type": "call"}, {"api_name": "cleo.inputs.input_option.InputOption", "line_number": 206, "usage_type": "call"}, {"api_name": "fixtures.some_command.SomeCommand", "line_number": 207, "usage_type": "call"}, {"api_name": "cleo.inputs.input_definition.InputDefinition", "line_number": 209, "usage_type": "call"}, {"api_name": "cleo.testers.CommandTester", "line_number": 223, "usage_type": "call"}, {"api_name": "fixtures.some_command.SomeCommand", "line_number": 223, "usage_type": "call"}, {"api_name": "cleo.testers.CommandTester", "line_number": 233, "usage_type": "call"}, {"api_name": "fixtures.some_command.SomeCommand", "line_number": 233, "usage_type": "call"}, {"api_name": "cleo.commands.command.Command", "line_number": 243, "usage_type": "call"}, {"api_name": "cleo.inputs.ListInput", "line_number": 247, "usage_type": "call"}, {"api_name": "cleo.outputs.NullOutput", "line_number": 248, "usage_type": "call"}, {"api_name": "fixtures.some_command.SomeCommand", "line_number": 252, "usage_type": "call"}, {"api_name": "cleo.testers.CommandTester", "line_number": 253, "usage_type": "call"}, {"api_name": "fixtures.some_command.SomeCommand", "line_number": 263, "usage_type": "call"}, {"api_name": "cleo.inputs.ListInput", "line_number": 264, "usage_type": "call"}, {"api_name": "cleo.outputs.NullOutput", "line_number": 264, "usage_type": "call"}, {"api_name": "fixtures.some_command.SomeCommand", "line_number": 267, "usage_type": "call"}, {"api_name": "cleo.inputs.ListInput", "line_number": 269, "usage_type": "call"}, {"api_name": "cleo.outputs.NullOutput", "line_number": 269, "usage_type": "call"}, {"api_name": "fixtures.some_command.SomeCommand", "line_number": 273, "usage_type": "call"}, {"api_name": "cleo.testers.CommandTester", "line_number": 277, "usage_type": "call"}, {"api_name": "fixtures.some_command.SomeCommand", "line_number": 284, "usage_type": "call"}, {"api_name": "cleo.testers.CommandTester", "line_number": 286, "usage_type": "call"}, {"api_name": "fixtures.some_command.SomeCommand", "line_number": 294, "usage_type": "call"}, {"api_name": "fixtures.no_configure_command.NoConfigureCommand", "line_number": 304, "usage_type": "call"}, {"api_name": "fixtures.signature_command.SignatureCommand", "line_number": 313, "usage_type": "call"}, {"api_name": "cleo.validators.Integer", "line_number": 320, "usage_type": "argument"}, {"api_name": "cleo.validators.Boolean", "line_number": 321, "usage_type": "argument"}, {"api_name": "fixtures.inherited_command.ChildCommand", "line_number": 327, "usage_type": "call"}]}
{"seq_id": "587993002", "text": "from collections import defaultdict\n\ndef read_file(name):\n with open(f\"input.txt\") as f:\n content = f.readlines()\n return [x.strip() for x in content]\n\n\nclass Painter:\n def __init__(self, prog):\n self.prog = prog\n self.ip = 0\n self.output = 0\n self.rel_base = 0\n self.halt = False\n\n\ndef split_instruction(instruction):\n instruction = f\"{instruction:05}\"\n return instruction[3:], instruction[0:3]\n\n\ndef get_values(input, pos, op, modes, painter):\n mode_a, mode_b, mode_c = modes\n values = []\n offset = 0\n\n if op in [\"01\", \"02\", \"04\", \"05\", \"06\", \"07\", \"08\", \"09\"]:\n if mode_c == \"0\":\n values.append(input[input[pos + 1]])\n elif mode_c == \"1\":\n values.append(input[pos + 1])\n elif mode_c == \"2\":\n values.append(input[input[pos + 1] + painter.rel_base])\n\n if op in [\"01\", \"02\", \"05\", \"06\", \"07\", \"08\"]:\n if mode_b == \"0\":\n values.append(input[input[pos + 2]])\n elif mode_b == \"1\":\n values.append(input[pos + 2])\n elif mode_b == \"2\":\n values.append(input[input[pos + 2] + painter.rel_base])\n\n if op in []:\n if mode_a == \"0\":\n values.append(input[input[pos + 3]])\n elif mode_a == \"1\":\n values.append(input[pos + 3])\n elif mode_a == \"2\":\n values.append(input[input[pos + 3] + painter.rel_base])\n\n if op in [\"01\", \"02\", \"07\", \"08\"]:\n if mode_a == \"2\":\n offset = painter.rel_base\n\n if op in [\"03\"]:\n if mode_c == \"2\":\n offset = painter.rel_base\n\n return values, offset\n\n\ndef run_booster(input, painter):\n while painter.prog[painter.ip] != 99:\n op, modes = split_instruction(painter.prog[painter.ip])\n values, offset = get_values(painter.prog, painter.ip, op, modes, painter)\n\n if op == \"01\": # Addition\n painter.prog[painter.prog[painter.ip + 3] + offset] = values[0] + values[1]\n painter.ip += 4\n\n if op == \"02\": # Multiplication\n painter.prog[painter.prog[painter.ip + 3] + offset] = values[0] * values[1]\n painter.ip += 4\n\n if op == \"03\": # Read and Store input\n painter.prog[painter.prog[painter.ip + 1] + offset] = input\n painter.ip += 2\n\n if op == \"04\": # Print Output\n painter.output = values[0]\n # print(painter.output)\n painter.ip += 2\n return painter\n\n if op == \"05\": # Jump-if-True\n if values[0]:\n painter.ip = values[1]\n else:\n painter.ip += 3\n\n if op == \"06\": # Jump-if-False\n if not values[0]:\n painter.ip = values[1]\n else:\n painter.ip += 3\n\n if op == \"07\": # Less than\n if values[0] < values[1]:\n painter.prog[painter.prog[painter.ip + 3] + offset] = 1\n else:\n painter.prog[painter.prog[painter.ip + 3] + offset] = 0\n painter.ip += 4\n\n if op == \"08\": # Equals\n if values[0] == values[1]:\n painter.prog[painter.prog[painter.ip + 3] + offset] = 1\n else:\n painter.prog[painter.prog[painter.ip + 3] + offset] = 0\n painter.ip += 4\n\n if op == \"09\": # Adjust Relative Base\n painter.rel_base += values[0]\n painter.ip += 2\n\n painter.halt = True\n return painter\n\n\ndef create_program(input):\n prog = defaultdict(int)\n\n for i in range(len(input)):\n prog[i] = int(input[i])\n\n return prog\n\n\ndef turn_and_move(pos, dir, turn):\n if turn == 0:\n dir = (dir - 1) % 4\n else:\n dir = (dir + 1) % 4\n\n if dir == 0: # up\n pos = (pos[0], pos[1] + 1)\n elif dir == 1: # right\n pos = (pos[0] + 1, pos[1])\n elif dir == 2: # down\n pos = (pos[0], pos[1] - 1)\n elif dir == 3: # left\n pos = (pos[0] - 1, pos[1])\n\n return pos, dir\n\n\ndef solve():\n input = read_file(\"11\")[0].split(\",\")\n prog = create_program(input)\n\n panel = defaultdict(int)\n painted = defaultdict(int)\n painter = Painter(prog)\n\n dir = 0\n pos = (0, 0)\n\n while not painter.halt:\n painter = run_booster(panel[pos], painter)\n color = painter.output\n painter = run_booster(panel[pos], painter)\n turn = painter.output\n\n painted[pos] = 1\n panel[pos] = color\n\n pos, dir = turn_and_move(pos, dir, turn)\n\n return len(painted)\n\n\nprint(solve())", "sub_path": "Day11/question1.py", "file_name": "question1.py", "file_ext": "py", "file_size_in_byte": 4655, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "collections.defaultdict", "line_number": 121, "usage_type": "call"}, {"api_name": "collections.defaultdict", "line_number": 151, "usage_type": "call"}, {"api_name": "collections.defaultdict", "line_number": 152, "usage_type": "call"}]}
{"seq_id": "416678121", "text": "import cherrypy\nfrom splunk.appserver.mrsparkle.controllers import BaseController\nfrom splunk.appserver.mrsparkle.lib.decorators import expose_page\n\nimport formencode\nfrom formencode import validators\nimport logging\n\n\nlogger = logging.getLogger('splunk.appserver.controllers.prototype')\n\nclass YearBornValidator(validators.FancyValidator):\n \"\"\"\n An example of a custom form validator\n you can use this as\n userage = YearBornValidator()\n or\n yearborn = YearBornValidator(min_age=21, max_age=110)\n \"\"\"\n min_age = 12\n max_age = 100\n messages = {\n 'invalid': 'Please enter a valid year between %(minYear)i and %(maxYear)i',\n }\n def _to_python(self, value, state):\n import time\n thisyear = time.localtime()[0] \n minyear = thisyear - self.max_age\n maxyear = thisyear - self.min_age\n try:\n year = int(value)\n except (ValueError, TypeError):\n raise formencode.api.Invalid(self.message('invalid', state, minYear=minyear, maxYear=maxyear), value, state)\n if year < minyear or year > maxyear: \n raise formencode.api.Invalid(self.message('invalid', state, minYear=minyear, maxYear=maxyear), value, state)\n return year\n\n _from_python = _to_python\n\n\nclass TestForm(formencode.Schema):\n \"\"\"\n Example form used with PrototypeController.form1\n Have a look at validators.py to see all the other available validators\n \"\"\"\n allow_extra_fields = False\n email = validators.Email() # match an email address, could also add resolve_domain=True for additional checks\n name = formencode.All( # require all enclosed validators to pass, could also use formencode.Any\n validators.String(not_empty=True, min=2, max=50),\n validators.PlainText()\n )\n yearborn = YearBornValidator()\n\n\n\nclass PrototypeController(BaseController):\n \"\"\"\n Handle experimental ideas and code\n \"\"\"\n\n @expose_page(False, methods=['GET', 'POST'])\n def form1(self, **kw):\n \"\"\"A simple example of using form validation\"\"\"\n form = TestForm()\n form_errors = {}\n form_defaults = {}\n error = None\n if cherrypy.request.method == 'POST':\n try:\n form_data = form.to_python(kw)\n return \"\"\"Form Parsed OK\"\"\"\n except formencode.api.Invalid as e:\n form_defaults = kw\n if e.error_dict:\n form_errors = e.error_dict\n else:\n error = e.msg\n\n return self.render_template('prototype/form1.html', { \n 'error' : error,\n 'form_defaults' : form_defaults,\n 'form_errors' : form_errors\n })\n\n @expose_page(False)\n def sparklines(self):\n \"\"\"Example jquery.sparkline.js usage\"\"\"\n return self.render_template('prototype/sparklines.html')\n\n @expose_page(False)\n def scroll_performance(self):\n \"\"\"Test page for scroll bar performance testing\"\"\"\n return self.render_template('prototype/scroll_performance.html')\n\n @expose_page(False)\n def new_layout(self):\n return self.render_template('prototype/new_layout.html')\n", "sub_path": "appserver/mrsparkle/controllers/prototype.py", "file_name": "prototype.py", "file_ext": "py", "file_size_in_byte": 3207, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "logging.getLogger", "line_number": 10, "usage_type": "call"}, {"api_name": "formencode.validators.FancyValidator", "line_number": 12, "usage_type": "attribute"}, {"api_name": "formencode.validators", "line_number": 12, "usage_type": "name"}, {"api_name": "time.localtime", "line_number": 27, "usage_type": "call"}, {"api_name": "formencode.api.Invalid", "line_number": 33, "usage_type": "call"}, {"api_name": "formencode.api", "line_number": 33, "usage_type": "attribute"}, {"api_name": "formencode.api.Invalid", "line_number": 35, "usage_type": "call"}, {"api_name": "formencode.api", "line_number": 35, "usage_type": "attribute"}, {"api_name": "formencode.Schema", "line_number": 41, "usage_type": "attribute"}, {"api_name": "formencode.validators.Email", "line_number": 47, "usage_type": "call"}, {"api_name": "formencode.validators", "line_number": 47, "usage_type": "name"}, {"api_name": "formencode.All", "line_number": 48, "usage_type": "call"}, {"api_name": "formencode.validators.String", "line_number": 49, "usage_type": "call"}, {"api_name": "formencode.validators", "line_number": 49, "usage_type": "name"}, {"api_name": "formencode.validators.PlainText", "line_number": 50, "usage_type": "call"}, {"api_name": "formencode.validators", "line_number": 50, "usage_type": "name"}, {"api_name": "splunk.appserver.mrsparkle.controllers.BaseController", "line_number": 56, "usage_type": "name"}, {"api_name": "cherrypy.request", "line_number": 68, "usage_type": "attribute"}, {"api_name": "formencode.api", "line_number": 72, "usage_type": "attribute"}, {"api_name": "splunk.appserver.mrsparkle.lib.decorators.expose_page", "line_number": 61, "usage_type": "call"}, {"api_name": "splunk.appserver.mrsparkle.lib.decorators.expose_page", "line_number": 85, "usage_type": "call"}, {"api_name": "splunk.appserver.mrsparkle.lib.decorators.expose_page", "line_number": 90, "usage_type": "call"}, {"api_name": "splunk.appserver.mrsparkle.lib.decorators.expose_page", "line_number": 95, "usage_type": "call"}]}
{"seq_id": "295772445", "text": "#引用模块\r\nimport pymysql\r\nimport xlrd\r\n\r\ncon = pymysql.connect(host=\"localhost\",user=\"root\",password=\"123456\",database=\"a\")\r\n\r\n#创建控制台\r\ncursor = con.cursor()\r\n\r\n\r\n#excel文件提取\r\nwb = xlrd.open_workbook(filename=r\"E:\\python自动化测试\\专属项目\\python\\day07\\2020年每个月的销售情况.xlsx\",encoding_override=True)\r\nfor i in ('1月','2月','3月','4月','5月','6月','7月','8月','9月','10月','11月','12月'):#循环创建12个表\r\n sql = \"\"\"\r\n CREATE TABLE `%s` (\r\n `日期` varchar(20) DEFAULT NULL,\r\n `服装名称` varchar(20) DEFAULT NULL,\r\n `价格/件` decimal(20,2) DEFAULT NULL,\r\n `本月库存数量` int(11) DEFAULT NULL,\r\n `销售量/每日` int(11) DEFAULT NULL\r\n ) ENGINE=InnoDB DEFAULT CHARSET=utf8;\r\n \"\"\" %i\r\n#%s占位符,%i:把i赋给%s\r\n\r\n\r\n#用控制台执行sql语句,提交到缓冲区\r\ncursor.execute(sql)\r\n\r\n#提交到数据库\r\ncon.commit()\r\n\r\n#关闭资源,先开的后关,后开的前关。\r\ncursor.close()\r\ncon.close()\r\n\r\nfor k in range(0,12):\r\n # 打开excel表选项卡\r\n table = wb.sheet_by_index(k)#循环12个选项卡\r\n #获取列\r\n lie = table.nrows\r\n for i in range(1,lie):\r\n #table.cell(i,0) 获取当前Excel表中第i行,第0列,并赋值给。。。\r\n riqi = table.cell(i,0).value\r\n mingcheng = table.cell(i,1).value\r\n jiage = table.cell(i,2).value\r\n kucun = table.cell(i,3).value\r\n shouliang = table.cell(i,4).value\r\n for j in ('1月','2月','3月','4月','5月','6月','7月','8月','9月','10月','11月','12月'):#循环写入到数据库12个表中\r\n sql = \"insert into \"+j+\" values (%s,%s,%s,%s,%s)\"#写入数据,+j+:在sql语句中,只有这样写才能把j表名循环\r\n param = [riqi,mingcheng,jiage,kucun,shouliang]\r\n cursor.execute(sql,param) # 执行sql语句\r\n con.commit() # 提交数据\r\n cursor.close() # 关闭资源\r\n con.close()\r\n\r\n", "sub_path": "about Excel.py", "file_name": "about Excel.py", "file_ext": "py", "file_size_in_byte": 2015, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "pymysql.connect", "line_number": 5, "usage_type": "call"}, {"api_name": "xlrd.open_workbook", "line_number": 12, "usage_type": "call"}]}
{"seq_id": "383388503", "text": "from apps.roles.models import Rol\nfrom django.contrib.auth.models import User, Permission\nfrom django.contrib.auth.forms import UserCreationForm\nfrom django import forms\nclass Registrorol(forms.ModelForm):\n class Meta:\n model= Rol\n fields = [\n 'Nombre',\n 'privilegios',\n\n ]\n widgets = {\n 'Nombre': forms.TextInput(attrs={'class': 'form-control', 'required':'true'}),\n 'privilegios': forms.CheckboxSelectMultiple(),\n\n }\n", "sub_path": "apps/roles/form.py", "file_name": "form.py", "file_ext": "py", "file_size_in_byte": 501, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "django.forms.ModelForm", "line_number": 5, "usage_type": "attribute"}, {"api_name": "django.forms", "line_number": 5, "usage_type": "name"}, {"api_name": "apps.roles.models.Rol", "line_number": 7, "usage_type": "name"}, {"api_name": "django.forms.TextInput", "line_number": 14, "usage_type": "call"}, {"api_name": "django.forms", "line_number": 14, "usage_type": "name"}, {"api_name": "django.forms.CheckboxSelectMultiple", "line_number": 15, "usage_type": "call"}, {"api_name": "django.forms", "line_number": 15, "usage_type": "name"}]}
{"seq_id": "177657155", "text": "import requests, re, zipfile, shutil, os\n\nserver_dir = './journey\\'s-end'\n\n# Get current version from file.\ncurrent_version = int(open('./bin/current_version.txt', 'r').read())\n\n# Download wiki page that contains the downloads, then use regex to get all download links for the server files.\nopen('./bin/html_page','wb').write(requests.get(\"https://terraria.gamepedia.com/Server\", allow_redirects=True).content)\nterraria_links = re.findall('https:\\/\\/www.terraria.org\\/system\\/dedicated_servers.+.zip\\?\\d+', open('./bin/html_page','r').read())\n\n#print(terraria_links)\n\n# Get available versions from list of links gathered above\navailable_versions = []\nfor link in terraria_links:\n available_versions.append(int(re.search('-\\d+', link).group(0).strip('-')))\n\n# Determine if server is out of date by comparing the version number of the file link to the current version\n# stored in the 'current_version.txt' file.\nif max(available_versions) <= current_version : print(\"Server is up to date.\")\nelse :\n print(\"Updating server to Terraria \"+str(max(available_versions))+'.\\nDownloading server files from '+terraria_links[len(terraria_links)-1]+'...')\n open('./bin/terraria-server-'+str(max(available_versions))+'.zip', 'wb').write(requests.get(terraria_links[len(terraria_links)-1]).content)\n\n # Remove old server files.\n print('Removing old server files from '+server_dir+'...')\n folder = './journey\\'s-end'\n for filename in os.listdir(folder):\n file_path = os.path.join(folder, filename)\n try:\n if os.path.isfile(file_path) or os.path.islink(file_path):\n os.unlink(file_path)\n elif os.path.isdir(file_path):\n shutil.rmtree(file_path)\n except Exception as e:\n print('Failed to delete %s. Reason: %s' % (file_path, e))\n\n # Unzip file for copying.\n print('Unziping server files...')\n with zipfile.ZipFile('./bin/terraria-server-'+str(max(available_versions))+'.zip','r') as zip_ref:\n zip_ref.extractall('./bin')\n\n # Copy files into server dir.\n print('Copying Linux server files to '+server_dir+'...')\n files = os.listdir('./bin/1404/Linux')\n for file in files :\n name = os.path.join('./bin/1404/Linux', file)\n if os.path.isfile(name) :\n print('\\tcopying '+name)\n shutil.copy(name, './journey\\'s-end')\n elif os.path.isdir(name) :\n print('\\tcopying '+name+'/*')\n shutil.copytree(name, './journey\\'s-end/'+name.split('/')[len(name.split('/'))-1])\n\n print('Cleaning up:')\n print('\\tremoving ./bin/'+str(max(available_versions)))\n shutil.rmtree('./bin/'+str(max(available_versions)))\n print('\\tremoving ./bin/terraria-server-'+str(max(available_versions)))\n os.unlink('./bin/terraria-server-'+str(max(available_versions))+'.zip')\n print('\\tremoving ./bin/html_page')\n os.unlink('./bin/html_page')\n\n # Update the 'current_version.txt' listed version to the newly installed version.\n open('current_version.txt', 'w').write(str(max(available_versions)))\n\n print('Update Completed. Please remember to update the server file permissions.')\n ", "sub_path": "random-projects/python/terraria-server-update/tsu.py", "file_name": "tsu.py", "file_ext": "py", "file_size_in_byte": 3155, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "requests.get", "line_number": 9, "usage_type": "call"}, {"api_name": "re.findall", "line_number": 10, "usage_type": "call"}, {"api_name": "re.search", "line_number": 17, "usage_type": "call"}, {"api_name": "requests.get", "line_number": 24, "usage_type": "call"}, {"api_name": "os.listdir", "line_number": 29, "usage_type": "call"}, {"api_name": "os.path.join", "line_number": 30, "usage_type": "call"}, {"api_name": "os.path", "line_number": 30, "usage_type": "attribute"}, {"api_name": "os.path.isfile", "line_number": 32, "usage_type": "call"}, {"api_name": "os.path", "line_number": 32, "usage_type": "attribute"}, {"api_name": "os.path.islink", "line_number": 32, "usage_type": "call"}, {"api_name": "os.unlink", "line_number": 33, "usage_type": "call"}, {"api_name": "os.path.isdir", "line_number": 34, "usage_type": "call"}, {"api_name": "os.path", "line_number": 34, "usage_type": "attribute"}, {"api_name": "shutil.rmtree", "line_number": 35, "usage_type": "call"}, {"api_name": "zipfile.ZipFile", "line_number": 41, "usage_type": "call"}, {"api_name": "os.listdir", "line_number": 46, "usage_type": "call"}, {"api_name": "os.path.join", "line_number": 48, "usage_type": "call"}, {"api_name": "os.path", "line_number": 48, "usage_type": "attribute"}, {"api_name": "os.path.isfile", "line_number": 49, "usage_type": "call"}, {"api_name": "os.path", "line_number": 49, "usage_type": "attribute"}, {"api_name": "shutil.copy", "line_number": 51, "usage_type": "call"}, {"api_name": "os.path.isdir", "line_number": 52, "usage_type": "call"}, {"api_name": "os.path", "line_number": 52, "usage_type": "attribute"}, {"api_name": "shutil.copytree", "line_number": 54, "usage_type": "call"}, {"api_name": "shutil.rmtree", "line_number": 58, "usage_type": "call"}, {"api_name": "os.unlink", "line_number": 60, "usage_type": "call"}, {"api_name": "os.unlink", "line_number": 62, "usage_type": "call"}]}
{"seq_id": "115401935", "text": "from prefect import Flow, task\nfrom prefect.tasks.cloud import FlowRunTask\n\nflow_run_task = FlowRunTask(flow_name=\"ETL-s3\", project_name=\"Demo\")\n\nwith Flow(\n \"FlowRunTask\",\n) as flow:\n flow_run_task()\n\nflow.register(project_name=\"Demo\")\n", "sub_path": "flowruntask.py", "file_name": "flowruntask.py", "file_ext": "py", "file_size_in_byte": 243, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "prefect.tasks.cloud.FlowRunTask", "line_number": 4, "usage_type": "call"}, {"api_name": "prefect.Flow", "line_number": 6, "usage_type": "call"}]}
{"seq_id": "530418793", "text": "import cv2\nimport numpy as np\nimport os\n\ndef resize_padding_oneline(image):\n h, w, _ = image.shape\n ratio = 64.0/h\n new_w = int(w*ratio)\n \n if new_w < 256:\n image = cv2.resize(image, (new_w, 64), interpolation=cv2.INTER_CUBIC)\n pad_img = np.ones((64, 256-new_w, 3), dtype=np.uint8)*127\n image = np.concatenate((image, pad_img), axis=1)\n else:\n image = cv2.resize(image, (256, 64), interpolation=cv2.INTER_CUBIC)\n return image\n \ndef resize_padding_twoline(image):\n h, w, _ = image.shape\n ratio = 128.0/h\n new_w = int(w*ratio)\n \n if new_w < 256:\n image = cv2.resize(image, (new_w, 128), interpolation=cv2.INTER_CUBIC)\n else:\n image = cv2.resize(image, (256, 128), interpolation=cv2.INTER_CUBIC)\n return image\n\ndef preprocess(img, plate_shape):\n if plate_shape == 1:\n img = resize_padding_oneline(img)\n pad_img = np.ones((64, 256, 3), dtype=np.uint8)*127\n img = np.concatenate((img, pad_img), axis=0)\n # pad = (128-64)//2\n # img = np.pad(img, [(pad,), (0,)], mode='constant', constant_values=127)\n else:\n img = resize_padding_twoline(img)\n h, w, _ = img.shape\n pad = (256-w)//2\n img = np.pad(img, [(0,), (pad,), (0,)], mode='constant', constant_values=127)\n if (256 - w) % 2 == 1:\n pad_img = np.ones((h, 1, 3), dtype=np.uint8)*127\n img = np.concatenate((img, pad_img), axis=1)\n #img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)\n return img\n\n\n ", "sub_path": "ocr_plate_model/attention_ocr/preprocess.py", "file_name": "preprocess.py", "file_ext": "py", "file_size_in_byte": 1527, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "cv2.resize", "line_number": 11, "usage_type": "call"}, {"api_name": "cv2.INTER_CUBIC", "line_number": 11, "usage_type": "attribute"}, {"api_name": "numpy.ones", "line_number": 12, "usage_type": "call"}, {"api_name": "numpy.uint8", "line_number": 12, "usage_type": "attribute"}, {"api_name": "numpy.concatenate", "line_number": 13, "usage_type": "call"}, {"api_name": "cv2.resize", "line_number": 15, "usage_type": "call"}, {"api_name": "cv2.INTER_CUBIC", "line_number": 15, "usage_type": "attribute"}, {"api_name": "cv2.resize", "line_number": 24, "usage_type": "call"}, {"api_name": "cv2.INTER_CUBIC", "line_number": 24, "usage_type": "attribute"}, {"api_name": "cv2.resize", "line_number": 26, "usage_type": "call"}, {"api_name": "cv2.INTER_CUBIC", "line_number": 26, "usage_type": "attribute"}, {"api_name": "numpy.ones", "line_number": 32, "usage_type": "call"}, {"api_name": "numpy.uint8", "line_number": 32, "usage_type": "attribute"}, {"api_name": "numpy.concatenate", "line_number": 33, "usage_type": "call"}, {"api_name": "numpy.pad", "line_number": 40, "usage_type": "call"}, {"api_name": "numpy.ones", "line_number": 42, "usage_type": "call"}, {"api_name": "numpy.uint8", "line_number": 42, "usage_type": "attribute"}, {"api_name": "numpy.concatenate", "line_number": 43, "usage_type": "call"}]}
{"seq_id": "514657121", "text": "import os\nimport sys\nimport fnmatch\nimport shlex\nimport difflib\nimport time\nimport shutil\nfrom optparse import OptionParser\n\n\ndef cmdsplit(args):\n if os.sep == '\\\\':\n args = args.replace('\\\\', '\\\\\\\\')\n return shlex.split(args)\n \ndef cleanDirs(path):\n if not os.path.isdir(path):\n return\n \n files = os.listdir(path)\n if len(files):\n for f in files:\n fullpath = os.path.join(path, f)\n if os.path.isdir(fullpath):\n cleanDirs(fullpath)\n \n files = os.listdir(path)\n if len(files) == 0:\n os.rmdir(path)\n \ndef main():\n print(\"applying patches\")\n parser = OptionParser()\n parser.add_option('-m', '--mcp-dir', action='store', dest='mcp_dir', help='Path to MCP', default=None)\n options, _ = parser.parse_args()\n \n forge_dir = os.path.dirname(os.path.abspath(__file__))\n fml_dir = os.path.join(forge_dir, \"fml\")\n sys.path.append(os.path.join(fml_dir, \"install\"))\n from forge import apply_forge_patches\n from fml import apply_fml_patches\n\n\n mcp = os.path.join(forge_dir, 'mcp')\n if not options.mcp_dir is None:\n mcp = os.path.abspath(options.mcp_dir)\n elif os.path.isfile(os.path.join('..', 'runtime', 'commands.py')):\n mcp = os.path.abspath('..')\n \n patchd = os.path.normpath(os.path.join(forge_dir, 'patches'))\n base = os.path.normpath(os.path.join(mcp, 'src_base'))\n work = os.path.normpath(os.path.join(mcp, 'src_work'))\n shutil.rmtree(work)\n shutil.copytree(base, work)\n\t#apply patches\n print(\"applying fml patches\")\n #apply_fml_patches(fml_dir, mcp, work)\n print(\"applying forge patches\")\n apply_forge_patches(fml_dir, mcp, forge_dir, work, False)\n\t\n \n cleanDirs(patchd)\n \nif __name__ == '__main__':\n main()", "sub_path": "rebuild_src_wrk_from_patches.py", "file_name": "rebuild_src_wrk_from_patches.py", "file_ext": "py", "file_size_in_byte": 1808, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "os.sep", "line_number": 12, "usage_type": "attribute"}, {"api_name": "shlex.split", "line_number": 14, "usage_type": "call"}, {"api_name": "os.path.isdir", "line_number": 17, "usage_type": "call"}, {"api_name": "os.path", "line_number": 17, "usage_type": "attribute"}, {"api_name": "os.listdir", "line_number": 20, "usage_type": "call"}, {"api_name": "os.path.join", "line_number": 23, "usage_type": "call"}, {"api_name": "os.path", "line_number": 23, "usage_type": "attribute"}, {"api_name": "os.path.isdir", "line_number": 24, "usage_type": "call"}, {"api_name": "os.path", "line_number": 24, "usage_type": "attribute"}, {"api_name": "os.listdir", "line_number": 27, "usage_type": "call"}, {"api_name": "os.rmdir", "line_number": 29, "usage_type": "call"}, {"api_name": "optparse.OptionParser", "line_number": 33, "usage_type": "call"}, {"api_name": "os.path.dirname", "line_number": 37, "usage_type": "call"}, {"api_name": "os.path", "line_number": 37, "usage_type": "attribute"}, {"api_name": "os.path.abspath", "line_number": 37, "usage_type": "call"}, {"api_name": "os.path.join", "line_number": 38, "usage_type": "call"}, {"api_name": "os.path", "line_number": 38, "usage_type": "attribute"}, {"api_name": "sys.path.append", "line_number": 39, "usage_type": "call"}, {"api_name": "sys.path", "line_number": 39, "usage_type": "attribute"}, {"api_name": "os.path.join", "line_number": 39, "usage_type": "call"}, {"api_name": "os.path", "line_number": 39, "usage_type": "attribute"}, {"api_name": "os.path.join", "line_number": 44, "usage_type": "call"}, {"api_name": "os.path", "line_number": 44, "usage_type": "attribute"}, {"api_name": "os.path.abspath", "line_number": 46, "usage_type": "call"}, {"api_name": "os.path", "line_number": 46, "usage_type": "attribute"}, {"api_name": "os.path.isfile", "line_number": 47, "usage_type": "call"}, {"api_name": "os.path", "line_number": 47, "usage_type": "attribute"}, {"api_name": "os.path.join", "line_number": 47, "usage_type": "call"}, {"api_name": "os.path.abspath", "line_number": 48, "usage_type": "call"}, {"api_name": "os.path", "line_number": 48, "usage_type": "attribute"}, {"api_name": "os.path.normpath", "line_number": 50, "usage_type": "call"}, {"api_name": "os.path", "line_number": 50, "usage_type": "attribute"}, {"api_name": "os.path.join", "line_number": 50, "usage_type": "call"}, {"api_name": "os.path.normpath", "line_number": 51, "usage_type": "call"}, {"api_name": "os.path", "line_number": 51, "usage_type": "attribute"}, {"api_name": "os.path.join", "line_number": 51, "usage_type": "call"}, {"api_name": "os.path.normpath", "line_number": 52, "usage_type": "call"}, {"api_name": "os.path", "line_number": 52, "usage_type": "attribute"}, {"api_name": "os.path.join", "line_number": 52, "usage_type": "call"}, {"api_name": "shutil.rmtree", "line_number": 53, "usage_type": "call"}, {"api_name": "shutil.copytree", "line_number": 54, "usage_type": "call"}, {"api_name": "forge.apply_forge_patches", "line_number": 59, "usage_type": "call"}]}
{"seq_id": "420730662", "text": "cont = 0\nimport json\nimport oauth2\nfrom time import sleep\nimport urllib.parse\n\nconsumer_Key = 'Your_Consumer_Key'\nconsumer_Secret = 'Your_Secret_Consumer_Key'\naccess_Token = 'Your_Acess_Token'\naccess_Token_Secret = 'Your_Secret_Acess_Token'\n\nconsumer = oauth2.Consumer(consumer_Key, consumer_Secret)\ntoken = oauth2.Token(access_Token, access_Token_Secret)\ncliente = oauth2.Client(consumer, token)\nprint()\n\nwhile True:\n try:\n alfabeto = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u',\n 'w', 'v', 'x', 'y', 'z']\n for letra in alfabeto:\n pesquisa = letra\n pesquisa_code = urllib.parse.quote(pesquisa)\n print()\n requisicao1 = cliente.request(\n 'https://api.twitter.com/1.1/search/tweets.json?q=' + pesquisa_code + '&lang=pt')\n decode = requisicao1[1].decode()\n resultado = json.loads(decode)\n tweets = resultado['statuses']\n for tweet in tweets:\n id = str(tweet['id'])\n requisicao2 = cliente.request('https://api.twitter.com/1.1/favorites/create.json?id=' + id,\n method='POST')\n cont += 1\n print()\n print(cont)\n print('-' * 43)\n sleep(15)\n print()\n except:\n quit()\n print('An error has ocurred, trying again in 30 seconds!')\n print()\n sleep(30)\n", "sub_path": "fav_bot.py", "file_name": "fav_bot.py", "file_ext": "py", "file_size_in_byte": 1530, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "oauth2.Consumer", "line_number": 12, "usage_type": "call"}, {"api_name": "oauth2.Token", "line_number": 13, "usage_type": "call"}, {"api_name": "oauth2.Client", "line_number": 14, "usage_type": "call"}, {"api_name": "urllib.parse.parse.quote", "line_number": 23, "usage_type": "call"}, {"api_name": "urllib.parse.parse", "line_number": 23, "usage_type": "attribute"}, {"api_name": "urllib.parse", "line_number": 23, "usage_type": "name"}, {"api_name": "json.loads", "line_number": 28, "usage_type": "call"}, {"api_name": "time.sleep", "line_number": 38, "usage_type": "call"}, {"api_name": "time.sleep", "line_number": 44, "usage_type": "call"}]}
{"seq_id": "33031428", "text": "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n\nimport io\nfrom github import Github\nfrom datetime import datetime, timedelta\n\ng = Github()\n\none_month_ago = datetime.now() - timedelta(days=32)\n\ndef filter_date(issue):\n return issue.closed_at > one_month_ago\n\ndef format_number(number):\n if number > 1000:\n return u\"{:.1f}k\".format(float(number) / 1000)\n else:\n return u\"{}\".format(number)\n\nwith io.open(\"templates/auto/recent-updates.html\", 'w', encoding='utf8') as recent_updates:\n recent_updates.truncate()\n\n relnotes_issues = g.search_issues(\"is:merged\", repo=\"phil-opp/blog_os\", type=\"pr\", label=\"relnotes\")[:100]\n recent_relnotes_issues = filter(filter_date, relnotes_issues)\n\n if len(recent_relnotes_issues) == 0:\n recent_updates.write(u\"No notable updates recently.\")\n else:\n recent_updates.write(u\"\\n\")\n\n for pr in sorted(recent_relnotes_issues, key=lambda issue: issue.closed_at, reverse=True):\n link = '' + pr.title + \" \"\n iso_date = pr.closed_at.isoformat()\n readable_date = pr.closed_at.strftime(\"%b %d\")\n datetime = '' + readable_date + ' '\n recent_updates.write(u\" \" + link + datetime + \" \\n\")\n\n recent_updates.write(u\" \")\n\nrepo = g.get_repo(\"phil-opp/blog_os\")\n\nwith io.open(\"templates/auto/stars.html\", 'w', encoding='utf8') as stars:\n stars.truncate()\n stars.write(format_number(repo.stargazers_count))\n\nwith io.open(\"templates/auto/forks.html\", 'w', encoding='utf8') as forks:\n forks.truncate()\n forks.write(format_number(repo.forks_count))\n", "sub_path": "blog/before_build.py", "file_name": "before_build.py", "file_ext": "py", "file_size_in_byte": 1686, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "github.Github", "line_number": 8, "usage_type": "call"}, {"api_name": "datetime.datetime.now", "line_number": 10, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 10, "usage_type": "name"}, {"api_name": "datetime.timedelta", "line_number": 10, "usage_type": "call"}, {"api_name": "io.open", "line_number": 21, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 36, "usage_type": "name"}, {"api_name": "datetime.datetime", "line_number": 37, "usage_type": "name"}, {"api_name": "io.open", "line_number": 43, "usage_type": "call"}, {"api_name": "io.open", "line_number": 47, "usage_type": "call"}]}
{"seq_id": "328314880", "text": "#!/usr/bin/env python\n\n# IMPORTS\n\nimport numpy as np\nimport matplotlib.pyplot as plt\nimport nibabel as nib\nimport sys\nfrom scipy.ndimage.filters import gaussian_filter\nfrom scipy.ndimage.filters import sobel\nfrom itertools import product\nfrom scipy.interpolate import RegularGridInterpolator\n#from scipy.ndimage.filters import convolve\nfrom scipy.signal import fftconvolve\nfrom time import time\nimport os\nfrom math import ceil\nfrom copy import deepcopy\nfrom pathos.pools import ProcessPool\n\n\n# DESCRIPTION\n\nusermanual = \\\n \"\"\"This utility tries to segment a 3D TOF (time-of-flight) MR image to \ncreate a binary MR Angiogram (MRA).\"\"\"\n\n# This module implements the algorithm originally described in:\n# Jiaxin Wang, Shifeng Zhao, Zifeng Liu, Yun Tian, Fuqing Duan, and Yutong Pan,\n# \"An Active Contour Model Based on Adaptive Threshold for Extraction of\n# Cerebral Vascular Structures\", Computational and Mathematical Methods in\n# Medicine, vol. 2016, Article ID 6472397, 9 pages, 2016.\n# doi:10.1155/2016/6472397\n\n\n# DEFINITIONS AND CODE\n\n# Width of the regularised Dirac-delta function\nEPSILON = 0.8\n# Vesselness shape descriptor coefficients\nV_ALPHA = None\nV_BETA = None\nV_GAMMA = None\n# Intensity weighting for the vesselness function\nTOFTRANS_MEAN = 90.0 # Mean of the TOF transition intensity range\nTOFTRANS_WIDTH = 10.0 # Width of the TOF transition intensity range\n# Vesselness lower threshold for Canny edge detector\nV_THRESHOLD = 0.5\n# Coefficient in [0.5, 1] for locally-specified dynamic threshold computation\nK = 0.9\n# Gaussian convolution kernel parameters\nKERNEL_SIGMA = 0.5\nKERNEL_RADIUS = int(ceil(3 * KERNEL_SIGMA))\n# Energy function coefficients\nALPHA1 = 0.002\nALPHA2 = 0.004\nBETA = 0.008\nGAMMA = 0.04\nMU_0 = 80\n# Time increment\nDT = 5\n# Convergence threshold\nPERCENT_CONVERGENCE = 1.0\n# Regularisation constant\nETA = 1e-8\n# Padding width along all axes to bypass boundary error\nPAD_WIDTH = 5\n# Maximum number of CPU cores allowed for use\nMAX_CPU = 2\n\n\ndef _h(x, epsilon=EPSILON):\n \"\"\"Quasi-smooth Heaviside function.\"\"\"\n res = 0.5 + np.arctan(x / epsilon) / np.pi\n #res[x < -EPSILON] = 0.0\n #res[x > EPSILON] = 1.0\n return res\n #return 0.5 + np.arctan(x / epsilon) / np.pi\n\n\ndef _delta(x, epsilon=EPSILON):\n \"\"\"Quasi-smooth Dirac delta function\"\"\"\n #return np.where(np.abs(x) > EPSILON, 0,\n # epsilon / (epsilon ** 2 + x ** 2) / np.pi)\n return (epsilon / (epsilon ** 2 + x ** 2)) / np.pi\n\n\ndef _div(vfield):\n \"\"\"Calculates the divergence of a vector field.\"\"\"\n return np.sum(np.stack([np.gradient(vfield[..., i], axis=i)\n for i in range(vfield.shape[-1])],\n axis=vfield.ndim-1), axis=-1)\n\n\n# Modified from source: https://stackoverflow.com/questions/31206443/\n# numpy-second-derivative-of-a-ndimensional-array\ndef _hessian(x):\n \"\"\"\n Calculate the hessian matrix with finite differences\n Parameters:\n - x : ndarray\n Returns:\n an array of shape x.shape + (x.ndim, x.ndim)\n where the array[... i, j] corresponds to the second derivative x_ij\n \"\"\"\n x_grad = np.gradient(x)\n hessian = np.empty(x.shape + (x.ndim, x.ndim), dtype=x.dtype)\n for k, grad_k in enumerate(x_grad):\n # iterate over dimensions\n # apply gradient again to every component of the first derivative.\n tmp_grad = np.gradient(grad_k)\n for l, grad_kl in enumerate(tmp_grad):\n hessian[..., k, l] = grad_kl\n return hessian\n\n\ndef _laplacian(sfield):\n \"\"\"Calculates the Laplacian of an n-dimensional scalar field.\"\"\"\n return _div(_grad(sfield))\n\n\ndef _vesselness(Ra, Rb, S, eigvals, alpha=None, beta=None, gamma=None,\n img=None):\n \"\"\"Calculates the vesselness score based on indicators of structuredness\n derived from the eigenanalysis of the local Hessians.\"\"\"\n\n # These parameter settings looked intuitive to me, albeit they have not been\n # mentioned in the literature\n if alpha is None:\n alpha = np.std(Ra[np.nonzero(Ra)])\n if beta is None:\n beta = np.std(Rb[np.nonzero(Rb)])\n if gamma is None:\n gamma = np.std(S[np.nonzero(S)])\n\n res = np.zeros_like(Rb)\n roi = np.where(np.logical_and(eigvals[..., 1] <= 0,\n eigvals[..., 2] <= 0))\n if img is None:\n # Frangi's definition\n res[roi] = (1.0 - np.exp(-(Ra[roi] ** 2) / (2 * alpha ** 2))) * \\\n np.exp(-(Rb[roi] ** 2) / (2 * beta ** 2)) \\\n * (1.0 - np.exp(-(S[roi] ** 2) / (2 * gamma ** 2)))\n else:\n # With intensity weighting (only if the TOF is homogeneous)\n res[roi] = (1.0 - np.exp(-(Ra[roi] ** 2) / (2 * alpha ** 2))) * \\\n np.exp(-(Rb[roi] ** 2) / (2 * beta ** 2)) \\\n * (1.0 - np.exp(-(S[roi] ** 2) / (2 * gamma ** 2))) \\\n * (0.5 + 1.0/np.pi * np.arctan((img[roi] - TOFTRANS_MEAN) /\n TOFTRANS_WIDTH))\n return res\n\n\ndef _shift(img, dirs, fill_value=0):\n \"\"\"Shifts an N-D image with the specified extent along each dimension.\n Linear interpolation is used to translate the image. The output has the same\n size and shape as the input. Pixels outside the original image domain are\n filled with a constant value.\"\"\"\n\n _dirs = np.asarray(dirs)\n assert img.ndim == _dirs.size, \\\n \"The inputs must have identical dimensionality.\"\n\n # Set up interpolator\n axes = tuple(np.arange(0, i) for i in img.shape)\n ipol = RegularGridInterpolator(axes, img, bounds_error=False,\n fill_value=fill_value, method='linear')\n\n # Calculate new coordinates\n new_axes = []\n for k in range(_dirs.size):\n new_axes.append(np.asarray(axes[k]) - dirs[k])\n\n # Return shifted image\n return ipol(np.stack(np.meshgrid(*tuple(new_axes), indexing='ij'))\n .reshape(_dirs.size, -1).T).reshape(img.shape)\n\n\n# The implementation of the N-D Canny edge detector was based on the following\n# description:\n# http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/\n# py_imgproc/py_canny/py_canny.html\n\ndef cannyND(img, sigma=1, minval=None, maxval=None, eta=1e-8):\n \"\"\"Canny edge detection for N dimensional images.\"\"\"\n\n dim = img.ndim\n\n # Gaussian filtering\n _img = gaussian_filter(img, sigma=sigma)\n\n # Sobel filtering in all N directions\n sfimg = np.stack([sobel(_img, axis=i) for i in range(dim)], axis=dim)\n magnitudes = np.linalg.norm(sfimg, axis=-1)\n\n # Find local maxima of the gradient magnitude\n # pdirs: principal directions (neighbourhood in N dimensions)\n pdirs = np.stack(product(*((-1, 0, 1),) * dim))\n pdirs = pdirs[np.any(pdirs != 0, axis=-1)]\n pdirs = pdirs[:pdirs.shape[0]/2, :]\n nbix = np.argmax(np.abs(np.sum(sfimg[..., np.newaxis, :] * pdirs, axis=-1)\n / np.linalg.norm(pdirs + eta, axis=-1)\n / np.repeat(magnitudes[..., np.newaxis] + eta,\n pdirs.shape[0], axis=-1)), axis=dim)\n edges = np.zeros_like(magnitudes)\n for k, direction in enumerate(pdirs):\n current_voxels = magnitudes[np.where(nbix == k)]\n ref1 = _shift(magnitudes, direction)[np.where(nbix == k)]\n ref2 = _shift(magnitudes, -direction)[np.where(nbix == k)]\n edges[np.where(nbix == k)] = \\\n np.logical_and(current_voxels > ref1, current_voxels > ref2)\\\n .astype(np.int8)\n # Release memory\n del current_voxels\n del ref1\n del ref2\n magnitudes *= edges\n\n # Set default values of minval and maxval\n if minval is None:\n minval = np.percentile(magnitudes[np.nonzero(magnitudes)], 50)\n print (\"Canny lower threshold value (minval): {0:0.03f}\".format(minval))\n if maxval is None:\n maxval = np.percentile(magnitudes[np.nonzero(magnitudes)], 95)\n print (\"Canny upper threshold value (maxval): {0:0.03f}\".format(maxval))\n\n # Handle user error\n if maxval < minval:\n print (\"WARNING: minval < maxval. Automatic correction: \"\n \"minval = maxval.\")\n minval = maxval\n\n # Histeresis thresholding\n edges = np.where(magnitudes > minval, 1, 0)\n edges_certain = np.where(magnitudes > maxval, 1, 0)\n nb_exploration = np.zeros(edges.shape + (pdirs.shape[0],))\n for k, direction in enumerate(pdirs):\n nb_exploration[..., k] = _shift(edges_certain, direction)\n edges *= np.any(nb_exploration, axis=-1)\n\n return edges\n\n\ndef _kernel(img, sigma=KERNEL_SIGMA, radius=KERNEL_RADIUS):\n \"\"\"Localised Gaussian convolution kernel.\"\"\"\n\n dim = img.ndim\n if radius is not None:\n kernel = np.stack(np.meshgrid(\n *(np.linspace(-radius, radius, 2 * radius + 1),) * dim,\n indexing='ij'), axis=dim).astype(np.float64)\n else:\n kernel = np.stack(\n np.meshgrid(*tuple(np.linspace(-i/2, i/2, i) for i in img.shape),\n indexing='ij'), axis=dim).astype(np.float64)\n kernel = np.linalg.norm(kernel, axis=-1)\n kernel = np.exp(-(kernel ** 2) / (2 * sigma ** 2)) \\\n / (np.sqrt(2 * np.pi * sigma ** 2) ** dim)\n\n return kernel\n\n\ndef _g(x):\n \"\"\"Regularised gradient map for geodesic active contour and nonlinear\n diffusion.\"\"\"\n return np.divide(1.0, 1.0 + x ** 2)\n\n\ndef _grad(sfield):\n \"\"\"Gradient of a scalar field\"\"\"\n return np.stack(np.gradient(sfield), axis=sfield.ndim)\n\n\ndef acm(tofimg, eta=1e-8):\n \"\"\"\n :param ndarray tofimg: 3D bias-corrected TOF (time-of-flight) image.\n \"\"\"\n\n # 1. Initialise vessel locations and their approximate boundaries\n # (Frangi's multi-scale vessel enhancement algorithm)\n\n R_multiscale = []\n scales = np.linspace(0, 1, 2, endpoint=True)\n for i, scale in enumerate(scales):\n\n # Update status\n print (\"Scale {0:0.02f} px ({1:d}/{2:d}):\"\n .format(scale, i+1, scales.size))\n\n # 1.1 Obtain the Hessian matrix for all voxels, perform eigenvalue\n # decomposition and order the eigenpairs by the magnitude of the\n # eigenvalues (the order is ascending)\n print (\"Calculating Hessians...\")\n smimg = gaussian_filter(tofimg, scale)\n eigvals, eigvects = np.linalg.eig(_hessian(smimg))\n eigval_order = np.argsort(np.abs(eigvals), axis=-1)\n grids = np.ogrid[[slice(0, i) for i in eigvals.shape]]\n eigvals = eigvals[tuple(grids)[:-1] + (eigval_order,)]\n grids = np.ogrid[[slice(0, i) for i in eigvects.shape]]\n eigvects = eigvects[tuple(grids)[:-1]\n + (np.expand_dims(eigval_order,\n axis=smimg.ndim),)]\n\n # 1.2 Define shape descriptors\n Ra = np.abs(eigvals[..., 1].astype(np.float64)) \\\n / np.abs(eigvals[..., 2].astype(np.float64) + eta)\n Ra[~np.isfinite(Ra)] = 0\n Rb = np.abs(eigvals[..., 0].astype(np.float64)) \\\n / np.sqrt(np.abs(eigvals[..., 1].astype(np.float64))\n * np.abs(eigvals[..., 2].astype(np.float64)) + eta)\n Rb[~np.isfinite(Rb)] = 0\n S = np.linalg.norm(eigvals.astype(np.float64), axis=-1)\n\n # 1.3 Calculate vesselness score\n print (\"Calculating vesselness...\")\n R_multiscale.append(\n _vesselness(Ra, Rb, S, eigvals, alpha=V_ALPHA, beta=V_BETA,\n gamma=V_GAMMA, img=smimg))\n\n # Select maximum vesselness value from all scales\n R = np.max(np.stack(R_multiscale, axis=smimg.ndim), axis=smimg.ndim)\n\n # 1.4 Run Canny edge detection to initialise the contour\n #print (\"Running N-dimensional Canny algorithm...\")\n #R_th = np.copy(R)\n #R_th[R < V_THRESHOLD] = 0\n #contour = cannyND(R_th, sigma=0.5, eta=ETA)\n\n # 1.5 Initialise the level-set function using both vesselness and contour\n print (\"Initialising level-set function...\")\n phi = np.where(R < V_THRESHOLD, -3 * EPSILON, 3 * EPSILON)\n #phi[contour != 0] = 0\n\n # 2. Run active contour segmentation\n # 2.1 Calculate kernel function\n kernel = _kernel(tofimg, sigma=KERNEL_SIGMA, radius=KERNEL_RADIUS)\n\n # 2.2 Calculate edge function\n smimg = gaussian_filter(tofimg, sigma=3)\n edge = _g(np.linalg.norm(_grad(smimg), axis=-1))\n\n iteration = 0\n e_change = -1\n while e_change < 0:\n\n # Update status\n start_t = time()\n iteration += 1\n print (\"Starting iteration No. {}...\".format(iteration))\n\n # 2.2 Calculate locally-specified dynamic threshold\n phi_h = _h(phi, epsilon=EPSILON)\n placement = (-KERNEL_RADIUS,) * kernel.ndim\n mu = K * fftconvolve(phi_h * R, kernel, mode='same') \\\n / (fftconvolve(phi_h, kernel, mode='same') + eta)\n\n # 2.3 Update phi to phi_k\n grad_phi = _grad(phi)\n delta_phi = _delta(phi, EPSILON)\n M1 = tofimg - MU_0\n M2 = R - mu\n M3 = _laplacian(phi) - \\\n _div(np.divide(grad_phi,\n np.repeat(\n np.linalg.norm(grad_phi + ETA, axis=-1)\n [..., np.newaxis],\n axis=-1, repeats=grad_phi.shape[-1])))\n\n phi_k = phi + DT * (ALPHA1 * M1 * delta_phi + ALPHA2 * M2 * delta_phi\n + GAMMA * M3)\n\n # 2.4 Update phi using phi_k\n grad_phi = _grad(phi_k)\n phi = phi_k + DT * delta_phi * BETA * _div(\n np.repeat(edge[..., np.newaxis],\n repeats=grad_phi.shape[-1], axis=-1)\n * np.divide(grad_phi,\n np.repeat(np.linalg.norm(ETA + grad_phi, axis=-1)\n [..., np.newaxis], axis=-1,\n repeats=grad_phi.shape[-1])))\n\n # 2.5 Calculate system total energy\n integral_1 = np.sum(M1 * phi_h)\n integral_2 = np.sum(M2 * phi_h)\n integral_3 = np.sum(edge * np.linalg.norm(_grad(phi_h), axis=-1))\n P = np.sum(0.5 * (np.linalg.norm(_grad(phi), axis=-1) - 1) ** 2)\n if iteration > 1:\n energy_old = energy\n energy = - ALPHA1 * integral_1 - ALPHA2 * integral_2 \\\n + BETA * integral_3 + GAMMA * P\n e_change = (energy - energy_old) / energy_old * 100.0\n print (\"Total energy: {0:0.04f}, change: {1:0.03f} %. \"\n \"Elapsed time: {2:0.01f} s.\".format(energy, e_change,\n time()-start_t))\n if np.abs(e_change) <= PERCENT_CONVERGENCE:\n break\n else:\n energy = -ALPHA1 * integral_1 - ALPHA2 * integral_2 \\\n + BETA * integral_3 + GAMMA * P\n print (\"Total energy: {0:0.04f}. Elapsed time: {1:0.01f} s.\"\n .format(energy, time()-start_t))\n return phi\n\n\ndef _filter_solitary(segmentation):\n \"\"\"Removes solitary points from the segmentation. The input should be a\n boolean mask (with values 1 for vessel, 0 for non-vessel) derived from the\n level-set function.\"\"\"\n\n dim = segmentation.ndim\n pdirs = np.stack(product(*((-1, 0, 1),) * dim))\n pdirs = pdirs[np.any(pdirs != 0, axis=-1)]\n pdirs = pdirs[:pdirs.shape[0] / 2, :]\n filter = np.where(segmentation > 0, 1, 0)\n nb_exploration = np.zeros(filter.shape + (pdirs.shape[0],))\n for k, direction in enumerate(pdirs):\n nb_exploration[..., k] = _shift(segmentation > 0, direction)\n filter *= np.any(nb_exploration, axis=-1).astype(np.int8)\n\n return filter\n\n\ndef parallel_job(imfile):\n \"\"\"A sub-routine that is called by each parallel workers.\"\"\"\n\n # Update status\n print (\"Processing {}...\".format(imfile))\n\n try:\n # Load image\n mri = nib.load(imfile)\n hdr = mri.header\n img = mri.get_data()\n # Pad image temporarily with emtpy slices\n print (\"Addig temporary padding to the image...\")\n img = np.pad(img, pad_width=PAD_WIDTH, mode='constant',\n constant_values=0)\n # Run segmentation\n print (\"Running the segmentation...\")\n phi = acm(img, eta=ETA)\n # Remove padding\n phi = phi[tuple(slice(PAD_WIDTH, phi.shape[i]-PAD_WIDTH)\n for i in range(phi.ndim))]\n # Filter out any individual points from the segmentation\n print (\"Filtering segmentation...\")\n segm = _filter_solitary(np.where(phi > 0, 1, 0))\n\n # Save output\n outputdir, outputname = os.path.split(os.path.abspath(imfile))\n if outputdir == \"\":\n outputdir = os.getcwd()\n try:\n fname = os.path.join(outputdir,\n outputname.replace(\".nii.gz\", \"_phi.nii.gz\"))\n nib.save(nib.Nifti1Image(phi, hdr.get_best_affine(), hdr), fname)\n print (\"SAVED: {}\".format(fname))\n except:\n print(\"ERROR while saving {}.\".format(fname))\n\n try:\n fname = os.path.join(outputdir,\n outputname.replace(\".nii.gz\", \"_segm.nii.gz\"))\n nib.save(nib.Nifti1Image(segm, hdr.get_best_affine(), hdr), fname)\n print (\"SAVED: {}\".format(fname))\n except:\n print(\"ERROR while saving {}.\".format(fname))\n return 0\n\n except:\n return 1\n\n\ndef main(args):\n \"\"\"Main program code.\"\"\"\n\n # Validate file paths in image list\n imfiles = []\n for imfile in args:\n try:\n _ = nib.load(imfile).header # low-cost load operation\n imfiles.append(imfile)\n except:\n print (\"SKIPPED: {} could not be opened.\".format(imfile))\n continue\n\n # Process the images\n n_cpu = min([len(imfiles), MAX_CPU])\n if n_cpu > 1:\n parpool = ProcessPool(nodes=n_cpu)\n err = parpool.map(parallel_job, imfiles)\n else:\n err = parallel_job(imfiles[0])\n\n if err == 0:\n print (\"All tasks were successfully completed.\")\n else:\n print (\"There were {} error(s).\".format(err))\n\n\nif __name__ == \"__main__\":\n if len(sys.argv) > 1:\n main(sys.argv[1:])\n else:\n print (usermanual)\n print (\"\\nPlease specify an image in the command-line arguments.\")\n exit(0)\n", "sub_path": "nhls.py", "file_name": "nhls.py", "file_ext": "py", "file_size_in_byte": 18314, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "math.ceil", "line_number": 53, "usage_type": "call"}, {"api_name": "numpy.arctan", "line_number": 74, "usage_type": "call"}, {"api_name": "numpy.pi", "line_number": 74, "usage_type": "attribute"}, {"api_name": "numpy.pi", "line_number": 85, "usage_type": "attribute"}, {"api_name": "numpy.sum", "line_number": 90, "usage_type": "call"}, {"api_name": "numpy.stack", "line_number": 90, "usage_type": "call"}, {"api_name": "numpy.gradient", "line_number": 90, "usage_type": "call"}, {"api_name": "numpy.gradient", "line_number": 106, "usage_type": "call"}, {"api_name": "numpy.empty", "line_number": 107, "usage_type": "call"}, {"api_name": "numpy.gradient", "line_number": 111, "usage_type": "call"}, {"api_name": "numpy.std", "line_number": 130, "usage_type": "call"}, {"api_name": "numpy.nonzero", "line_number": 130, "usage_type": "call"}, {"api_name": "numpy.std", "line_number": 132, "usage_type": "call"}, {"api_name": "numpy.nonzero", "line_number": 132, "usage_type": "call"}, {"api_name": "numpy.std", "line_number": 134, "usage_type": "call"}, {"api_name": "numpy.nonzero", "line_number": 134, "usage_type": "call"}, {"api_name": "numpy.zeros_like", "line_number": 136, "usage_type": "call"}, {"api_name": "numpy.where", "line_number": 137, "usage_type": "call"}, {"api_name": "numpy.logical_and", "line_number": 137, "usage_type": "call"}, {"api_name": "numpy.exp", "line_number": 141, "usage_type": "call"}, {"api_name": "numpy.exp", "line_number": 142, "usage_type": "call"}, {"api_name": "numpy.exp", "line_number": 143, "usage_type": "call"}, {"api_name": "numpy.exp", "line_number": 146, "usage_type": "call"}, {"api_name": "numpy.exp", "line_number": 147, "usage_type": "call"}, {"api_name": "numpy.exp", "line_number": 148, "usage_type": "call"}, {"api_name": "numpy.pi", "line_number": 149, "usage_type": "attribute"}, {"api_name": "numpy.arctan", "line_number": 149, "usage_type": "call"}, {"api_name": "numpy.asarray", "line_number": 160, "usage_type": "call"}, {"api_name": "numpy.arange", "line_number": 165, "usage_type": "call"}, {"api_name": "scipy.interpolate.RegularGridInterpolator", "line_number": 166, "usage_type": "call"}, {"api_name": "numpy.asarray", "line_number": 172, "usage_type": "call"}, {"api_name": "numpy.stack", "line_number": 175, "usage_type": "call"}, {"api_name": "numpy.meshgrid", "line_number": 175, "usage_type": "call"}, {"api_name": "scipy.ndimage.filters.gaussian_filter", "line_number": 190, "usage_type": "call"}, {"api_name": "numpy.stack", "line_number": 193, "usage_type": "call"}, {"api_name": "scipy.ndimage.filters.sobel", "line_number": 193, "usage_type": "call"}, {"api_name": "numpy.linalg.norm", "line_number": 194, "usage_type": "call"}, {"api_name": "numpy.linalg", "line_number": 194, "usage_type": "attribute"}, {"api_name": "numpy.stack", "line_number": 198, "usage_type": "call"}, {"api_name": "itertools.product", "line_number": 198, "usage_type": "call"}, {"api_name": "numpy.any", "line_number": 199, "usage_type": "call"}, {"api_name": "numpy.argmax", "line_number": 201, "usage_type": "call"}, {"api_name": "numpy.abs", "line_number": 201, "usage_type": "call"}, {"api_name": "numpy.sum", "line_number": 201, "usage_type": "call"}, {"api_name": "numpy.newaxis", "line_number": 201, "usage_type": "attribute"}, {"api_name": "numpy.linalg.norm", "line_number": 202, "usage_type": "call"}, {"api_name": "numpy.linalg", "line_number": 202, "usage_type": "attribute"}, {"api_name": "numpy.repeat", "line_number": 203, "usage_type": "call"}, {"api_name": "numpy.newaxis", "line_number": 203, "usage_type": "attribute"}, {"api_name": "numpy.zeros_like", "line_number": 205, "usage_type": "call"}, {"api_name": "numpy.where", "line_number": 207, "usage_type": "call"}, {"api_name": "numpy.where", "line_number": 208, "usage_type": "call"}, {"api_name": "numpy.where", "line_number": 209, "usage_type": "call"}, {"api_name": "numpy.where", "line_number": 210, "usage_type": "call"}, {"api_name": "numpy.logical_and", "line_number": 211, "usage_type": "call"}, {"api_name": "numpy.int8", "line_number": 212, "usage_type": "attribute"}, {"api_name": "numpy.percentile", "line_number": 221, "usage_type": "call"}, {"api_name": "numpy.nonzero", "line_number": 221, "usage_type": "call"}, {"api_name": "numpy.percentile", "line_number": 224, "usage_type": "call"}, {"api_name": "numpy.nonzero", "line_number": 224, "usage_type": "call"}, {"api_name": "numpy.where", "line_number": 234, "usage_type": "call"}, {"api_name": "numpy.where", "line_number": 235, "usage_type": "call"}, {"api_name": "numpy.zeros", "line_number": 236, "usage_type": "call"}, {"api_name": "numpy.any", "line_number": 239, "usage_type": "call"}, {"api_name": "numpy.stack", "line_number": 249, "usage_type": "call"}, {"api_name": "numpy.meshgrid", "line_number": 249, "usage_type": "call"}, {"api_name": "numpy.linspace", "line_number": 250, "usage_type": "call"}, {"api_name": "numpy.float64", "line_number": 251, "usage_type": "attribute"}, {"api_name": "numpy.stack", "line_number": 253, "usage_type": "call"}, {"api_name": "numpy.meshgrid", "line_number": 254, "usage_type": "call"}, {"api_name": "numpy.linspace", "line_number": 254, "usage_type": "call"}, {"api_name": "numpy.float64", "line_number": 255, "usage_type": "attribute"}, {"api_name": "numpy.linalg.norm", "line_number": 256, "usage_type": "call"}, {"api_name": "numpy.linalg", "line_number": 256, "usage_type": "attribute"}, {"api_name": "numpy.exp", "line_number": 257, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 258, "usage_type": "call"}, {"api_name": "numpy.pi", "line_number": 258, "usage_type": "attribute"}, {"api_name": "numpy.divide", "line_number": 266, "usage_type": "call"}, {"api_name": "numpy.stack", "line_number": 271, "usage_type": "call"}, {"api_name": "numpy.gradient", "line_number": 271, "usage_type": "call"}, {"api_name": "numpy.linspace", "line_number": 283, "usage_type": "call"}, {"api_name": "scipy.ndimage.filters.gaussian_filter", "line_number": 294, "usage_type": "call"}, {"api_name": "numpy.linalg.eig", "line_number": 295, "usage_type": "call"}, {"api_name": "numpy.linalg", "line_number": 295, "usage_type": "attribute"}, {"api_name": "numpy.argsort", "line_number": 296, "usage_type": "call"}, {"api_name": "numpy.abs", "line_number": 296, "usage_type": "call"}, {"api_name": "numpy.ogrid", "line_number": 297, "usage_type": "attribute"}, {"api_name": "numpy.ogrid", "line_number": 299, "usage_type": "attribute"}, {"api_name": "numpy.expand_dims", "line_number": 301, "usage_type": "call"}, {"api_name": "numpy.abs", "line_number": 305, "usage_type": "call"}, {"api_name": "numpy.float64", "line_number": 305, "usage_type": "attribute"}, {"api_name": "numpy.abs", "line_number": 306, "usage_type": "call"}, {"api_name": "numpy.float64", "line_number": 306, "usage_type": "attribute"}, {"api_name": "numpy.isfinite", "line_number": 307, "usage_type": "call"}, {"api_name": "numpy.abs", "line_number": 308, "usage_type": "call"}, {"api_name": "numpy.float64", "line_number": 308, "usage_type": "attribute"}, {"api_name": "numpy.sqrt", "line_number": 309, "usage_type": "call"}, {"api_name": "numpy.abs", "line_number": 309, "usage_type": "call"}, {"api_name": "numpy.float64", "line_number": 309, "usage_type": "attribute"}, {"api_name": "numpy.abs", "line_number": 310, "usage_type": "call"}, {"api_name": "numpy.float64", "line_number": 310, "usage_type": "attribute"}, {"api_name": "numpy.isfinite", "line_number": 311, "usage_type": "call"}, {"api_name": "numpy.linalg.norm", "line_number": 312, "usage_type": "call"}, {"api_name": "numpy.linalg", "line_number": 312, "usage_type": "attribute"}, {"api_name": "numpy.float64", "line_number": 312, "usage_type": "attribute"}, {"api_name": "numpy.max", "line_number": 321, "usage_type": "call"}, {"api_name": "numpy.stack", "line_number": 321, "usage_type": "call"}, {"api_name": "numpy.where", "line_number": 331, "usage_type": "call"}, {"api_name": "scipy.ndimage.filters.gaussian_filter", "line_number": 339, "usage_type": "call"}, {"api_name": "numpy.linalg.norm", "line_number": 340, "usage_type": "call"}, {"api_name": "numpy.linalg", "line_number": 340, "usage_type": "attribute"}, {"api_name": "time.time", "line_number": 347, "usage_type": "call"}, {"api_name": "scipy.signal.fftconvolve", "line_number": 354, "usage_type": "call"}, {"api_name": "scipy.signal.fftconvolve", "line_number": 355, "usage_type": "call"}, {"api_name": "numpy.divide", "line_number": 363, "usage_type": "call"}, {"api_name": "numpy.repeat", "line_number": 364, "usage_type": "call"}, {"api_name": "numpy.linalg.norm", "line_number": 365, "usage_type": "call"}, {"api_name": "numpy.linalg", "line_number": 365, "usage_type": "attribute"}, {"api_name": "numpy.newaxis", "line_number": 366, "usage_type": "attribute"}, {"api_name": "numpy.repeat", "line_number": 375, "usage_type": "call"}, {"api_name": "numpy.newaxis", "line_number": 375, "usage_type": "attribute"}, {"api_name": "numpy.divide", "line_number": 377, "usage_type": "call"}, {"api_name": "numpy.repeat", "line_number": 378, "usage_type": "call"}, {"api_name": "numpy.linalg.norm", "line_number": 378, "usage_type": "call"}, {"api_name": "numpy.linalg", "line_number": 378, "usage_type": "attribute"}, {"api_name": "numpy.newaxis", "line_number": 379, "usage_type": "attribute"}, {"api_name": "numpy.sum", "line_number": 383, "usage_type": "call"}, {"api_name": "numpy.sum", "line_number": 384, "usage_type": "call"}, {"api_name": "numpy.sum", "line_number": 385, "usage_type": "call"}, {"api_name": "numpy.linalg.norm", "line_number": 385, "usage_type": "call"}, {"api_name": "numpy.linalg", "line_number": 385, "usage_type": "attribute"}, {"api_name": "numpy.sum", "line_number": 386, "usage_type": "call"}, {"api_name": "numpy.linalg.norm", "line_number": 386, "usage_type": "call"}, {"api_name": "numpy.linalg", "line_number": 386, "usage_type": "attribute"}, {"api_name": "time.time", "line_number": 394, "usage_type": "call"}, {"api_name": "numpy.abs", "line_number": 395, "usage_type": "call"}, {"api_name": "time.time", "line_number": 401, "usage_type": "call"}, {"api_name": "numpy.stack", "line_number": 411, "usage_type": "call"}, {"api_name": "itertools.product", "line_number": 411, "usage_type": "call"}, {"api_name": "numpy.any", "line_number": 412, "usage_type": "call"}, {"api_name": "numpy.where", "line_number": 414, "usage_type": "call"}, {"api_name": "numpy.zeros", "line_number": 415, "usage_type": "call"}, {"api_name": "numpy.any", "line_number": 418, "usage_type": "call"}, {"api_name": "numpy.int8", "line_number": 418, "usage_type": "attribute"}, {"api_name": "nibabel.load", "line_number": 431, "usage_type": "call"}, {"api_name": "numpy.pad", "line_number": 436, "usage_type": "call"}, {"api_name": "numpy.where", "line_number": 446, "usage_type": "call"}, {"api_name": "os.path.split", "line_number": 449, "usage_type": "call"}, {"api_name": "os.path", "line_number": 449, "usage_type": "attribute"}, {"api_name": "os.path.abspath", "line_number": 449, "usage_type": "call"}, {"api_name": "os.getcwd", "line_number": 451, "usage_type": "call"}, {"api_name": "os.path.join", "line_number": 453, "usage_type": "call"}, {"api_name": "os.path", "line_number": 453, "usage_type": "attribute"}, {"api_name": "nibabel.save", "line_number": 455, "usage_type": "call"}, {"api_name": "nibabel.Nifti1Image", "line_number": 455, "usage_type": "call"}, {"api_name": "os.path.join", "line_number": 461, "usage_type": "call"}, {"api_name": "os.path", "line_number": 461, "usage_type": "attribute"}, {"api_name": "nibabel.save", "line_number": 463, "usage_type": "call"}, {"api_name": "nibabel.Nifti1Image", "line_number": 463, "usage_type": "call"}, {"api_name": "nibabel.load", "line_number": 480, "usage_type": "call"}, {"api_name": "pathos.pools.ProcessPool", "line_number": 489, "usage_type": "call"}, {"api_name": "sys.argv", "line_number": 501, "usage_type": "attribute"}, {"api_name": "sys.argv", "line_number": 502, "usage_type": "attribute"}]}
{"seq_id": "30866479", "text": "import socket\nimport re\nimport multiprocessing\n\n\ndef service_client(new_socket):\n request = new_socket.recv(1024)\n request_lines = request.decode('utf-8').splitlines()\n print(request_lines)\n file_name = re.match(r\"[^/]+(/[^ ]*)\", request_lines[0]).group(1)\n\n if file_name == \"/\":\n file_name = \"./html\" + \"/index.html\"\n else:\n file_name = \"./html\" + file_name\n\n try:\n file = open(file_name, \"rb\")\n except Exception as ret:\n response = \"HTTP/1.1 404 NOT FOUND\\r\\n\"\n response += \"\\r\\n\"\n response += \"can not find the page\"\n new_socket.send(response.encode('utf-8'))\n else:\n response = \"HTTP/1.1 200 OK\\r\\n\"\n response += \"\\r\\n\"\n new_socket.send(response.encode('utf-8'))\n new_socket.send(file.read())\n finally:\n new_socket.close()\n\n\ndef main():\n \"\"\"用来完成整体的控制\"\"\"\n tcp_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n # 设置当服务器先close 即服务器端4次挥手之后资源能够立即释放,这样就保证了,下次运行程序时 可以立即绑定7788端口\n tcp_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)\n tcp_socket.bind((\"\", 7890))\n tcp_socket.listen(128)\n while True:\n new_socket, client_addr = tcp_socket.accept()\n process = multiprocessing.Process(target=service_client, args=(new_socket,))\n process.start()\n new_socket.close() # 关闭父进程的文件资源描述符\n tcp_socket.close()\n\n\nif __name__ == '__main__':\n main()\n ", "sub_path": "07web/multiprocess_webserver.py", "file_name": "multiprocess_webserver.py", "file_ext": "py", "file_size_in_byte": 1564, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "re.match", "line_number": 10, "usage_type": "call"}, {"api_name": "socket.socket", "line_number": 35, "usage_type": "call"}, {"api_name": "socket.AF_INET", "line_number": 35, "usage_type": "attribute"}, {"api_name": "socket.SOCK_STREAM", "line_number": 35, "usage_type": "attribute"}, {"api_name": "socket.SOL_SOCKET", "line_number": 37, "usage_type": "attribute"}, {"api_name": "socket.SO_REUSEADDR", "line_number": 37, "usage_type": "attribute"}, {"api_name": "multiprocessing.Process", "line_number": 42, "usage_type": "call"}]}
{"seq_id": "593617237", "text": "import pandas as pd\r\nimport numpy as np\r\nimport math\r\nfrom operator import itemgetter\r\nfrom collections import defaultdict,deque,namedtuple\r\n\r\n\r\nCustomer = pd.read_excel (r'C:\\Users\\ASUS\\Downloads\\Dataaa.xlsx' , sheet_name='Customer')\r\nHub = pd.read_excel (r'C:\\Users\\ASUS\\Downloads\\Dataaa.xlsx' , sheet_name='Hubs')\r\nWarehouse = pd.read_excel (r'C:\\Users\\ASUS\\Downloads\\Dataaa.xlsx' , sheet_name='Warehouse')\r\n\r\ncustomerID = np.array(Customer.id.values)\r\ncustomerLatitude = np.array(Customer.Latitude.values)\r\ncustomerLongitude = np.array(Customer.Longitude.values)\r\nhubID = np.array(Hub.Hub.values)\r\nhubLatitude = np.array(Hub.Latitude.values)\r\nhubLongitude = np.array(Hub.Longitude.values)\r\nwarehouseID = np.array(Warehouse.Warehouse.values)\r\nwarehouseLatitude = np.array(Warehouse.Latitude.values)\r\nwarehouseLongitude = np.array(Warehouse.Longitude.values)\r\n\r\ndef computeDist(x1,y1,x2,y2):\r\n return math.sqrt( ((float(x2)-float(x1))**2)+((float(y2)-float(y1))**2) )\r\n\r\ninf = float('inf')\r\nEdge = namedtuple('Edge', 'start, end, cost')\r\n\r\n\r\ndef make_edge(start, end, cost=1):\r\n return Edge(start, end, cost)\r\n\r\nclass Graph:\r\n def __init__(self, edges):\r\n wrong_edges = [i for i in edges if len(i) not in [2, 3]]\r\n if wrong_edges:\r\n raise ValueError('Wrong edges data: {}'.format(wrong_edges))\r\n\r\n self.edges = [make_edge(*edge) for edge in edges]\r\n\r\n @property\r\n def vertices(self):\r\n return set(\r\n sum(\r\n ([edge.start, edge.end] for edge in self.edges), []\r\n )\r\n )\r\n\r\n def get_node_pairs(self, n1, n2, both_ends=True):\r\n if both_ends:\r\n node_pairs = [[n1, n2], [n2, n1]]\r\n else:\r\n node_pairs = [[n1, n2]]\r\n return node_pairs\r\n\r\n def remove_edge(self, n1, n2, both_ends=True):\r\n node_pairs = self.get_node_pairs(n1, n2, both_ends)\r\n edges = self.edges[:]\r\n for edge in edges:\r\n if [edge.start, edge.end] in node_pairs:\r\n self.edges.remove(edge)\r\n\r\n def add_edge(self, n1, n2, cost=1, both_ends=True):\r\n node_pairs = self.get_node_pairs(n1, n2, both_ends)\r\n for edge in self.edges:\r\n if [edge.start, edge.end] in node_pairs:\r\n return ValueError('Edge {} {} already exists'.format(n1, n2))\r\n\r\n self.edges.append(Edge(start=n1, end=n2, cost=cost))\r\n if both_ends:\r\n self.edges.append(Edge(start=n2, end=n1, cost=cost))\r\n\r\n @property\r\n def neighbours(self):\r\n neighbours = {vertex: set() for vertex in self.vertices}\r\n for edge in self.edges:\r\n neighbours[edge.start].add((edge.end, edge.cost))\r\n\r\n return neighbours\r\n\r\n def dijkstra(self, source, dest):\r\n assert source in self.vertices, 'Such source node doesn\\'t exist'\r\n distances = {vertex: inf for vertex in self.vertices}\r\n previous_vertices = {\r\n vertex: None for vertex in self.vertices\r\n }\r\n distances[source] = 0\r\n vertices = self.vertices.copy()\r\n \r\n\r\n while vertices:\r\n current_vertex = min(\r\n vertices, key=lambda vertex: distances[vertex])\r\n vertices.remove(current_vertex)\r\n if distances[current_vertex] == inf:\r\n break\r\n for neighbour, cost in self.neighbours[current_vertex]:\r\n alternative_route = distances[current_vertex] + cost\r\n if alternative_route < distances[neighbour]:\r\n distances[neighbour] = alternative_route\r\n previous_vertices[neighbour] = current_vertex\r\n\r\n path, current_vertex = deque(), dest\r\n while previous_vertices[current_vertex] is not None:\r\n path.appendleft(current_vertex)\r\n current_vertex = previous_vertices[current_vertex]\r\n if path:\r\n path.appendleft(current_vertex)\r\n \r\n distance_between_nodes = 0\r\n for index in range(1, len(path)):\r\n for thing in self.edges:\r\n if thing.start == path[index - 1] and thing.end == path[index]:\r\n distance_between_nodes += thing.cost\r\n path2 = list(path)\r\n return path2, distance_between_nodes\r\n\r\nclass customer:\r\n def __init__(self, id, custLong, custLat, number):\r\n self.id = id\r\n self.custLong = custLong\r\n self.custLat = custLat\r\n self.nearestHub = self.nearestHub\r\n self.number = number\r\n def nearestHub(self):\r\n self.custToHub = list([computeDist(self.custLong, self.custLat, hubLongitude[i], hubLatitude[i]), hubID[i]] for i in range(0,len(hubID)))\r\n self.cTHSorted = sorted(self.custToHub, key = itemgetter(0))\r\n return self.cTHSorted[0]\r\n \r\ncustomersList = [customer(customerID[i], customerLongitude[i], customerLatitude[i], i) for i in range(0,len(customerID))]\r\n\r\nclass hub:\r\n def __init__(self, id, hubLong, hubLat, number):\r\n self.id = id\r\n self.hubLong = hubLong\r\n self.hubLat = hubLat\r\n self.nearestHub = self.nearestHub\r\n self.nearestWarehouse = self.nearestWarehouse\r\n self.number = number\r\n def nearestHub(self):\r\n self.hubToHub = list([computeDist(self.hubLong, self.hubLat, hubLongitude[i], hubLatitude[i]), hubID[i]] for i in range(0,len(hubID)))\r\n self.hTHSorted = sorted(self.hubToHub, key = itemgetter(0))\r\n return self.hTHSorted[1]\r\n def nearestWarehouse(self):\r\n self.hubToWarehouse = list([computeDist(self.hubLong, self.hubLat, warehouseLongitude[i], warehouseLatitude[i]), warehouseID[i]] for i in range(0,len(warehouseID)))\r\n self.hTWSorted = sorted(self.hubToWarehouse, key = itemgetter(0))\r\n return self.hTWSorted[0]\r\nhubsList = [hub(hubID[i], hubLongitude[i], hubLatitude[i], (i+len(customerID))) for i in range(0, len(hubID))]\r\n\r\nclass warehouse:\r\n def __init__(self, id, wareLong, wareLat,number):\r\n self.id = id\r\n self.wareLong = wareLong\r\n self.wareLat = wareLat\r\n self.number = number\r\nwarehouseList = [warehouse(warehouseID[i], warehouseLongitude[i], warehouseLatitude[i], (i+len(customerID) +len(hubID))) for i in range(0, len(warehouseID))]\r\n\r\ngrapharray = [] \r\n\r\nfor i in range(0,len(hubID)):\r\n for j in range(0,len(hubID)):\r\n if(hubsList[i].id != hubsList[j].id):\r\n grapharray.append((hubsList[i].id, hubsList[j].id, computeDist(hubsList[i].hubLong,hubsList[i].hubLat,hubsList[j].hubLong,hubsList[j].hubLat)))\r\n else:\r\n pass\r\n \r\n \r\nfor j in range(0,len(hubID)):\r\n for k in range(0,len(warehouseID)):\r\n grapharray.append((hubsList[j].id, warehouseList[k].id, computeDist(hubsList[j].hubLong,hubsList[j].hubLat,warehouseList[k].wareLong,warehouseList[k].wareLat)))\r\n\r\ngraph = Graph(grapharray)\r\ngrapharr = []\r\nfor i in range(0,len(hubID)):\r\n for j in range(0,len(warehouseID)):\r\n defGraph = graph.dijkstra(hubsList[i].id,warehouseList[j].id)\r\n grapharr.append(defGraph)\r\n \r\ngraphArrSorted = sorted(grapharr, key = itemgetter(1))\r\ndist = []\r\nthisprint = ()\r\ntotDist = 0\r\n#print(graphArrSorted)\r\nfor i in range (0, len(customerID)):\r\n print(customersList[i].id, \" -> \", customersList[i].nearestHub()[1], \" -> \", end = ' ')\r\n dist.append(customersList[i].nearestHub()[0])\r\n totDist += customersList[i].nearestHub()[0]\r\n for j in range (0, len(graphArrSorted)):\r\n if(customersList[i].nearestHub()[1].lower == graphArrSorted[j][0][0].lower):\r\n dist[i] += graphArrSorted[j][1]\r\n totDist += graphArrSorted[j][1]\r\n print(graphArrSorted[j][0][1], \" with distance \", dist[i])\r\n break\r\n else:\r\n pass\r\n \r\nprint (totDist, \" or \" , totDist*111.699, \" km.\")\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n # for j in range (0,len(hubID)):\r\n # kappa = False\r\n # if(str.strip(customersList[i].nearestHub()[1]) == str.strip(hubsList[j].nearestWarehouse()[1])):\r\n # dist[i] += hubsList[j].nearestWarehouse()[0]\r\n # kappa = True\r\n # thisprint1 = (hubsList[j].nearestWarehouse()[1], \" with distance = \", dist[i])\r\n # elif(customersList[i].nearestHub != hubsList[j].nearestWarehouse()[1]):\r\n # for k in range(1, len(warehouseID)):\r\n # if(hubsList[j].nearestHub()[1][0] < hubsList[j].nearestWarehouse()[0]):\r\n # if(hubsList[j].nearestHub()[k][1] == hubsList[j].nearestWarehouse()[1]):\r\n # thisprint = hubsList[j].nearestHub()[k][1]\r\n # elif(hubsList[j].nearestHub()[1][0] >= hubsList[j].nearestWarehouse()[0]):\r\n # thisprint = hubsList[k].nearestWarehouse()[1]\r\n # if(kappa):\r\n # print(thisprint1)\r\n # elif(kappa == False):\r\n # print(thisprint)\r\n \r\n \r\n", "sub_path": "Team 5 - Andreas Kevin Ghinaya Zahra/Final Project Science Management.py", "file_name": "Final Project Science Management.py", "file_ext": "py", "file_size_in_byte": 9045, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "pandas.read_excel", "line_number": 8, "usage_type": "call"}, {"api_name": "pandas.read_excel", "line_number": 9, "usage_type": "call"}, {"api_name": "pandas.read_excel", "line_number": 10, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 12, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 13, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 14, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 15, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 16, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 17, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 18, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 19, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 20, "usage_type": "call"}, {"api_name": "math.sqrt", "line_number": 23, "usage_type": "call"}, {"api_name": "collections.namedtuple", "line_number": 26, "usage_type": "call"}, {"api_name": "collections.deque", "line_number": 102, "usage_type": "call"}, {"api_name": "operator.itemgetter", "line_number": 126, "usage_type": "call"}, {"api_name": "operator.itemgetter", "line_number": 141, "usage_type": "call"}, {"api_name": "operator.itemgetter", "line_number": 145, "usage_type": "call"}, {"api_name": "operator.itemgetter", "line_number": 178, "usage_type": "call"}]}
{"seq_id": "126287618", "text": "from __future__ import absolute_import, print_function\n\nimport cv2\nimport numpy as np\nfrom torch.multiprocessing import Pool\n\nimport Detection.cfgs.config as cfg\nimport Detection.utils.network as net_utils\nfrom Detection.darknet import Darknet19\n# import .utils.yolo as yolo_utils\nfrom .utils import yolo as yolo_utils\n\n\ndef preprocess(fname):\n # return fname\n image = cv2.imread(fname)\n\n # print(\"fname:{}| size:{} \".format(fname, image.shape))\n\n im_data = np.expand_dims(yolo_utils.preprocess_test((image, None, cfg.inp_size))[0], 0)\n return image, im_data\n\ndef print_and_exit(str):\n print(str)\n exit()\n\nclass Singleton(object):\n _instance = None\n def __new__(cls, *args, **kwargs):\n if not cls._instance:\n cls._instance = super(Singleton, cls).__new__(cls)\n return cls._instance\n\n# hyper-parameters\n# npz_fname = 'models/yolo-voc.weights.npz'\n# h5_fname = 'models/yolo-voc.weights.h5'\ntrained_model = cfg.trained_model\n# trained_model = os.path.join(cfg.train_output_dir, 'darknet19_voc07trainval_exp3_158.h5')\nthresh = 0.5\n# im_path = 'demo'\n# im_path = '/share/shared/Dataset/CatDog/LinYi'\n# ---\nacceptable_format = set(['.jpg', '.JPG'])\n# im_fnames = sorted((fname for fname in os.listdir(im_path) if os.path.splitext(fname)[-1] in acceptable_format))\n# im_fnames_cp = im_fnames\n# im_fnames = (os.path.join(im_path, fname) for fname in im_fnames)\n\n# net.load_from_npz(npz_fname)\n# net_utils.save_net(h5_fname, net)\n\nclass Detector(Singleton):\n _net = Darknet19()\n # net_utils.load_net(trained_model, _net)\n _net.eval()\n _pool = Pool(processes=1)\n _status = 'ready'\n\n _label_names = ('aeroplane', 'bicycle', 'bird', 'boat',\n 'bottle', 'bus', 'car', 'cat', 'chair',\n 'cow', 'diningtable', 'dog', 'horse',\n 'motorbike', 'person', 'pottedplant',\n 'sheep', 'sofa', 'train', 'tvmonitor')\n\n def __init__(self, fname):\n super(Singleton, self).__init__()\n net_utils.load_net(fname, Detector._net)\n\n def from_names(self, im_fnames, **kwargs):\n if not isinstance(im_fnames, list) and not isinstance(im_fnames, tuple):\n im_fnames = [im_fnames]\n Detector._status = \"running\"\n result = []\n misc_result = []\n for i, (image, im_data) in enumerate(Detector._pool.imap(preprocess, im_fnames, chunksize=1)):\n misc = {\"scores\":None, \"classes\":None}\n im_data = net_utils.np_to_variable(im_data, is_cuda=False, volatile=True).permute(0, 3, 1, 2)\n\n bbox_pred, iou_pred, prob_pred = Detector._net(im_data)\n # to numpy\n bbox_pred = bbox_pred.data.cpu().numpy()\n iou_pred = iou_pred.data.cpu().numpy()\n prob_pred = prob_pred.data.cpu().numpy()\n\n # print bbox_pred.shape, iou_pred.shape, prob_pred.shape\n\n bboxes, scores, cls_inds = yolo_utils.postprocess(bbox_pred, iou_pred, prob_pred, image.shape, cfg, thresh)\n result.append(bboxes)\n\n misc['scores'] = scores\n misc['classes'] = [ Detector._label_names[cls_i] for cls_i in cls_inds]\n misc_result.append(misc)\n # print(bboxes)\n Detector._status = \"ready\"\n return result, misc_result\n\n def from_nparry(self, image_np, **kwargs):\n if len(image_np.shape) == 3:\n image_np = np.resize(image_np, (1, *image_np.shape))\n\n assert image_np.shape[3] == 3 # rgb image\n assert len(image_np.shape) == 4\n assert 0 <= np.min(image_np) <= np.max(image_np) <= 255\n\n # image_np = image_np.astype(np.float32)\n # for i in range(image_np.shape[0]):\n # image_np[i,:,:,:] = (image_np[i]/255 - self.mean) / self.std\n # image_np = image_np.transpose((0, 3, 1, 2))\n image_list, img_data_list = [], []\n for i in range(image_np.shape[0]):\n image_list.append(image_np[i])\n img_data_list.append(np.expand_dims(yolo_utils.preprocess_test((image_np[i], None, cfg.inp_size))[0], 0))\n\n Detector._status = \"running\"\n result = []\n misc_result = []\n for i, (image, im_data) in enumerate(zip(image_list, img_data_list)):\n misc = {\"scores\": None, \"classes\": None}\n im_data = net_utils.np_to_variable(im_data, is_cuda=False, volatile=True).permute(0, 3, 1, 2)\n\n bbox_pred, iou_pred, prob_pred = Detector._net(im_data)\n # to numpy\n bbox_pred = bbox_pred.data.cpu().numpy()\n iou_pred = iou_pred.data.cpu().numpy()\n prob_pred = prob_pred.data.cpu().numpy()\n\n # print bbox_pred.shape, iou_pred.shape, prob_pred.shape\n\n bboxes, scores, cls_inds = yolo_utils.postprocess(bbox_pred, iou_pred, prob_pred, image.shape, cfg, thresh)\n result.append(bboxes)\n\n misc['scores'] = scores\n misc['classes'] = [Detector._label_names[cls_i] for cls_i in cls_inds]\n misc_result.append(misc)\n # print(bboxes)\n Detector._status = \"ready\"\n return result, misc_result\n\n def __call__(self, im_fnames, **kwargs):\n if not isinstance(im_fnames, list) and not isinstance(im_fnames, tuple):\n im_fnames = [im_fnames]\n Detector._status = \"running\"\n result = []\n for i, (image, im_data) in enumerate(Detector._pool.imap(preprocess, im_fnames, chunksize=1)):\n im_data = net_utils.np_to_variable(im_data, volatile=True).permute(0, 3, 1, 2)\n if Detector._net.is_cuda:\n im_data = im_data.cuda()\n bbox_pred, iou_pred, prob_pred = Detector._net(im_data)\n # to numpy\n bbox_pred = bbox_pred.data.cpu().numpy()\n iou_pred = iou_pred.data.cpu().numpy()\n prob_pred = prob_pred.data.cpu().numpy()\n\n # print bbox_pred.shape, iou_pred.shape, prob_pred.shape\n\n bboxes, scores, cls_inds = yolo_utils.postprocess(bbox_pred, iou_pred, prob_pred, image.shape, cfg, thresh)\n result.append(bboxes)\n print(bboxes)\n Detector._status = \"ready\"\n return result\n\n def cuda(self):\n Detector._net.cuda()\n Detector._net.is_cuda = True\n\n# test_img_root = \"/share/shared/Dataset/CatDog/LinYi\"\n# test_img_name = [\"IMG_2778.JPG\", \"IMG_2779.JPG\"]\n# image_to_test = [ os.path.join(test_img_root, img_name) for img_name in test_img_name]\n# net_test = Detector()\n# net_test(image_to_test)\n\n# print_and_exit(\"so far done!\")\n\n#\n# t_det = Timer()\n# t_total = Timer()\n# # im_fnames = ['person.jpg']\n# pool = Pool(processes=1)\n# for i, (image, im_data) in enumerate(pool.imap(preprocess, im_fnames, chunksize=1)):\n# t_total.tic()\n# im_data = net_utils.np_to_variable(im_data, is_cuda=True, volatile=True).permute(0, 3, 1, 2)\n# t_det.tic()\n#\n# bbox_pred, iou_pred, prob_pred = net(im_data)\n# det_time = t_det.toc()\n# # to numpy\n# bbox_pred = bbox_pred.data.cpu().numpy()\n# iou_pred = iou_pred.data.cpu().numpy()\n# prob_pred = prob_pred.data.cpu().numpy()\n#\n# # print bbox_pred.shape, iou_pred.shape, prob_pred.shape\n#\n# bboxes, scores, cls_inds = yolo_utils.postprocess(bbox_pred, iou_pred, prob_pred, image.shape, cfg, thresh)\n#\n# im2show = yolo_utils.draw_detection(image, bboxes, scores, cls_inds, cfg)\n#\n# if im2show.shape[0] > 1100:\n# im2show = cv2.resize(im2show, (int(1000. * float(im2show.shape[1]) / im2show.shape[0]), 1000))\n# cv2.imshow('test', im2show)\n# cv2.imwrite('./output/{0}.jpg'.format(str(i)), im2show)\n# total_time = t_total.toc()\n# # wait_time = max(int(60 - total_time * 1000), 1)\n# cv2.waitKey(0)\n#\n# if i % 1 == 0:\n# format_str = 'frame: %d, (detection: %.1f Hz, %.1f ms) (total: %.1f Hz, %.1f ms)'\n# print(format_str % (\n# i, 1. / det_time, det_time * 1000, 1. / total_time, total_time * 1000))\n#\n# t_total.clear()\n# t_det.clear()\n#\n", "sub_path": "Detection/detection.py", "file_name": "detection.py", "file_ext": "py", "file_size_in_byte": 7993, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "cv2.imread", "line_number": 16, "usage_type": "call"}, {"api_name": "numpy.expand_dims", "line_number": 20, "usage_type": "call"}, {"api_name": "utils.yolo.preprocess_test", "line_number": 20, "usage_type": "call"}, {"api_name": "utils.yolo", "line_number": 20, "usage_type": "name"}, {"api_name": "Detection.cfgs.config.inp_size", "line_number": 20, "usage_type": "attribute"}, {"api_name": "Detection.cfgs.config", "line_number": 20, "usage_type": "name"}, {"api_name": "Detection.cfgs.config.trained_model", "line_number": 37, "usage_type": "attribute"}, {"api_name": "Detection.cfgs.config", "line_number": 37, "usage_type": "name"}, {"api_name": "Detection.darknet.Darknet19", "line_number": 52, "usage_type": "call"}, {"api_name": "torch.multiprocessing.Pool", "line_number": 55, "usage_type": "call"}, {"api_name": "Detection.utils.network.load_net", "line_number": 66, "usage_type": "call"}, {"api_name": "Detection.utils.network", "line_number": 66, "usage_type": "name"}, {"api_name": "Detection.utils.network.np_to_variable", "line_number": 76, "usage_type": "call"}, {"api_name": "Detection.utils.network", "line_number": 76, "usage_type": "name"}, {"api_name": "utils.yolo.postprocess", "line_number": 86, "usage_type": "call"}, {"api_name": "Detection.cfgs.config", "line_number": 86, "usage_type": "argument"}, {"api_name": "utils.yolo", "line_number": 86, "usage_type": "name"}, {"api_name": "numpy.resize", "line_number": 98, "usage_type": "call"}, {"api_name": "numpy.min", "line_number": 102, "usage_type": "call"}, {"api_name": "numpy.max", "line_number": 102, "usage_type": "call"}, {"api_name": "numpy.expand_dims", "line_number": 111, "usage_type": "call"}, {"api_name": "utils.yolo.preprocess_test", "line_number": 111, "usage_type": "call"}, {"api_name": "utils.yolo", "line_number": 111, "usage_type": "name"}, {"api_name": "Detection.cfgs.config.inp_size", "line_number": 111, "usage_type": "attribute"}, {"api_name": "Detection.cfgs.config", "line_number": 111, "usage_type": "name"}, {"api_name": "Detection.utils.network.np_to_variable", "line_number": 118, "usage_type": "call"}, {"api_name": "Detection.utils.network", "line_number": 118, "usage_type": "name"}, {"api_name": "utils.yolo.postprocess", "line_number": 128, "usage_type": "call"}, {"api_name": "Detection.cfgs.config", "line_number": 128, "usage_type": "argument"}, {"api_name": "utils.yolo", "line_number": 128, "usage_type": "name"}, {"api_name": "Detection.utils.network.np_to_variable", "line_number": 144, "usage_type": "call"}, {"api_name": "Detection.utils.network", "line_number": 144, "usage_type": "name"}, {"api_name": "utils.yolo.postprocess", "line_number": 155, "usage_type": "call"}, {"api_name": "Detection.cfgs.config", "line_number": 155, "usage_type": "argument"}, {"api_name": "utils.yolo", "line_number": 155, "usage_type": "name"}]}
{"seq_id": "555010185", "text": "from django.urls import path\nfrom posts.views import post_list, post_create, post_detail, post_edit, post_delete, post_list_category\n\napp_name='posts'\nurlpatterns = [\n path('', post_list, name='post_list'),\n path('create/', post_create, name='post_create'),\n path('/', post_detail, name='post_detail'),\n path('/edit/', post_edit, name='post_edit'),\n path('/delete/', post_delete, name='post_delete'),\n path('categories//', post_list_category, name='post_list_category')\n]\n", "sub_path": "src/posts/urls.py", "file_name": "urls.py", "file_ext": "py", "file_size_in_byte": 523, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "django.urls.path", "line_number": 6, "usage_type": "call"}, {"api_name": "posts.views.post_list", "line_number": 6, "usage_type": "argument"}, {"api_name": "django.urls.path", "line_number": 7, "usage_type": "call"}, {"api_name": "posts.views.post_create", "line_number": 7, "usage_type": "argument"}, {"api_name": "django.urls.path", "line_number": 8, "usage_type": "call"}, {"api_name": "posts.views.post_detail", "line_number": 8, "usage_type": "argument"}, {"api_name": "django.urls.path", "line_number": 9, "usage_type": "call"}, {"api_name": "posts.views.post_edit", "line_number": 9, "usage_type": "argument"}, {"api_name": "django.urls.path", "line_number": 10, "usage_type": "call"}, {"api_name": "posts.views.post_delete", "line_number": 10, "usage_type": "argument"}, {"api_name": "django.urls.path", "line_number": 11, "usage_type": "call"}, {"api_name": "posts.views.post_list_category", "line_number": 11, "usage_type": "argument"}]}
{"seq_id": "62123806", "text": "import pandas as pd\r\n\r\ndf = pd.read_csv(\"iris.csv\") #csv dosyamiza girmek icin kullanilir. bunu df ye atadik.\r\n\r\n#print(df.Species.unique()) # kac tur Species var onu verir. Unique, Kisacasi: o sutunda hangi cesit urunler var\r\n\r\n#df.info() # df dosyasinda kac kolon urun ortalama max min gibi degerler hakkinda bilgiler verir.\r\n\r\n#setosa = df[df.Species == \"Iris-setosa\"] #Species sutunundaki tum \"Iris-setosa\" olanlari suz ve setosa adli degiskene atadik\r\n\r\n#versicolor = df[df.Species == \"Iris-versicolor\"] #usttekinin aynisi :)\r\n\r\nimport matplotlib.pyplot as plt\r\n\r\n\r\ndf1 = df.drop([\"Id\"], axis=1)\r\n\r\nsetosa = df[df.Species == \"Iris-setosa\"]\r\nversicolor = df[df.Species == \"Iris-versicolor\"]\r\nvirginica = df[df.Species == \"Iris-virginica\"]\r\n\r\nplt.plot(setosa.Id, setosa.PetalLengthCm, color=\"red\", label= \"setosa\")\r\nplt.plot(versicolor.Id, versicolor.PetalLengthCm, color=\"green\", label= \"versicolor\")\r\nplt.plot(virginica.Id, virginica.PetalLengthCm, color=\"blue\", label= \"virginica\")\r\nplt.legend()# x y cizgisi olusturur\r\nplt.xlabel(\"Id\")\r\nplt.ylabel(\"PetalLengthCm\")\r\nplt.show()", "sub_path": "pandas-w2.py", "file_name": "pandas-w2.py", "file_ext": "py", "file_size_in_byte": 1085, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "pandas.read_csv", "line_number": 3, "usage_type": "call"}, {"api_name": "matplotlib.pyplot.plot", "line_number": 22, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 22, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.plot", "line_number": 23, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 23, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.plot", "line_number": 24, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 24, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.legend", "line_number": 25, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 25, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.xlabel", "line_number": 26, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 26, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.ylabel", "line_number": 27, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 27, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.show", "line_number": 28, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 28, "usage_type": "name"}]}
{"seq_id": "96977582", "text": "import json\nimport math\n\n\nclass CodeClassifier:\n with open('code_freq.json', 'r') as f:\n code_freq = json.load(f)\n with open('text_freq.json', 'r') as f:\n text_freq = json.load(f)\n\n def classify(self, str):\n text_sum = 0\n code_sum = 0\n for c in str:\n text_sum += math.log(CodeClassifier.text_freq[c])\n code_sum += math.log(CodeClassifier.code_freq[c])\n return 1 / (1 + math.exp(text_sum - code_sum))\n\n\ndef gen_next_split(src, n):\n m = len(src)\n tag = False\n for i in reversed(range(m)):\n if src[i] != n - (m - i - 1):\n tag = True\n break\n if not tag:\n return None\n new = src[i] + 1\n return src[:i] + list(range(new, new + m - i))\n\n\ndef otsu_n(arr, m):\n n = len(arr)\n splits = list(range(m))\n max_splits = splits.copy()\n max_val = 0\n mean = sum(arr) / n\n while splits is not None:\n val = 0\n extend = [0] + splits + [n]\n for i in list(range(m + 1)):\n start = extend[i]\n end = extend[i + 1]\n if start == end:\n continue\n miu = sum(arr[start:end]) / (end - start)\n val += (end - start) / n * (miu - mean) ** 2\n # print(\"splits=\" + str(splits))\n # print(\"\\tval=\" + str(val))\n if val > max_val:\n max_val = val\n max_splits = splits.copy()\n splits = gen_next_split(splits, n)\n\n return max_splits\n\n\ndef test_otsu():\n classifier = CodeClassifier()\n with open('test.txt', 'r') as f:\n lines = f.read().splitlines()\n probs = []\n for line in lines:\n probs.append(classifier.classify(line))\n\n print(\"splits:\")\n splits = otsu_n(probs, 5)\n j = 0\n for (i, prob) in enumerate(probs):\n if j < len(splits) and splits[j] == i:\n print('-------------------------------------------------------------------')\n j += 1\n print(\"%d: %.3f %s\" % (i, prob, lines[i]))\n\n\ndef test_next_split():\n splits = list(range(3))\n while splits is not None:\n print(splits)\n splits = gen_next_split(splits, 5)\n\n\ndef test_prob():\n classifier = CodeClassifier()\n with open('test.txt', 'r') as f:\n lines = f.read().splitlines()\n for line in lines:\n prob = classifier.classify(line)\n print('%.5f %s' % (prob, line))\n\n\nif __name__ == '__main__':\n # test_next_split()\n # test_otsu()\n test_prob()\n", "sub_path": "test.py", "file_name": "test.py", "file_ext": "py", "file_size_in_byte": 2487, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "json.load", "line_number": 7, "usage_type": "call"}, {"api_name": "json.load", "line_number": 9, "usage_type": "call"}, {"api_name": "math.log", "line_number": 15, "usage_type": "call"}, {"api_name": "math.log", "line_number": 16, "usage_type": "call"}, {"api_name": "math.exp", "line_number": 17, "usage_type": "call"}]}
{"seq_id": "53879326", "text": "import json\nimport bot_data\nimport dataset\nfrom os.path import isfile\nimport time\n\n# Checks if user statistics file exists\ndef check(user_id):\n if not isfile(\"rpg-data/social/\"+str(user_id)+\".json\"):\n with open(\"rpg-data/social/\"+str(user_id)+\".json\", \"w\") as social_file:\n social_file.write(json.dumps(bot_data.social_dict))\n\n# increments a stat\ndef increment(user_id, key, count=1):\n db = dataset.connect(\"sqlite:///pb.db\")\n user = db[\"users\"].find_one(user_id=user_id)\n nvalue = count\n if user:\n if key in user and user[key] != None:\n nvalue = user[key] + count\n db[\"users\"].update({\"user_id\": user_id, key: nvalue}, [\"user_id\"])\n\ndef genuser(user_id, username, first_name, last_name):\n db = dataset.connect(\"sqlite:///pb.db\")\n if db[\"users\"].find_one(user_id=user_id):\n db[\"users\"].update(dict(user_id=user_id,\n username=username,\n first_name=first_name,\n last_name=last_name), [\"user_id\"])\n else:\n db[\"users\"].insert(dict(user_id=user_id,\n username=username,\n first_name=first_name,\n last_name=last_name))\n# Check command timeout\ndef check_next_use(user_id, key, timeout=60):\n db = dataset.connect(\"sqlite:///pb.db\")\n data = db[\"users\"].find_one(user_id=user_id)\n\n if \"last_used_\"+key not in data or data[\"last_used_\"+key] == None:\n db[\"users\"].update({\"user_id\": user_id, \"last_used_\"+key: time.time()}, [\"user_id\"])\n return 0\n else:\n last_used = data[\"last_used_\"+key]\n if last_used < time.time()-timeout:\n db[\"users\"].update({\"user_id\": user_id, \"last_used_\"+key: time.time()}, [\"user_id\"])\n return 0\n else:\n return abs(int(last_used-time.time()+timeout))", "sub_path": "stats.py", "file_name": "stats.py", "file_ext": "py", "file_size_in_byte": 1906, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "os.path.isfile", "line_number": 9, "usage_type": "call"}, {"api_name": "json.dumps", "line_number": 11, "usage_type": "call"}, {"api_name": "bot_data.social_dict", "line_number": 11, "usage_type": "attribute"}, {"api_name": "dataset.connect", "line_number": 15, "usage_type": "call"}, {"api_name": "dataset.connect", "line_number": 24, "usage_type": "call"}, {"api_name": "dataset.connect", "line_number": 37, "usage_type": "call"}, {"api_name": "time.time", "line_number": 41, "usage_type": "call"}, {"api_name": "time.time", "line_number": 45, "usage_type": "call"}, {"api_name": "time.time", "line_number": 46, "usage_type": "call"}, {"api_name": "time.time", "line_number": 49, "usage_type": "call"}]}
{"seq_id": "548533225", "text": "import logging\nimport urllib.parse\n\nimport environ\n\n\n_logger = logging.getLogger(__name__)\n\n\ndef _odbc_connect_params(s):\n return tuple(f'ODBC_{ss}' for ss in s.split(','))\n\n\n@environ.config(prefix='BIGRAYS')\nclass Config:\n\n # default all supported values to None\n AWS_REQUIRE_SECRETS = environ.bool_var(\n True,\n help=('Are AWS credentials required?'\n ' Set to False if using AWS roles or ~/.aws/credentials.'))\n AWS_ACCESS_KEY_ID = environ.var(None)\n AWS_SECRET_ACCESS_KEY = environ.var(None)\n AWS_REGION = environ.var(None)\n\n # we could do\n # @environ.config\n # class DB\n # here, but from the user perspective it doesn't matter\n # and not having a nested class makes requirement checking\n # simpler in resources.py\n ODBC_UID = environ.var(None, help='UID value for odbc_connect query parameter.')\n ODBC_PWD = environ.var(None, help='PWD value for odbc_connect query parameter.')\n ODBC_DSN = environ.var(None, help='DSN value for odbc_connect query parameter.')\n ODBC_SERVER = environ.var(None, help='Server value for odbc_connect query parameter.')\n ODBC_PORT = environ.var(None, help='Port value for odbc_connect query parameter.')\n ODBC_DRIVER = environ.var(None, help='The ODBC connection driver, e.g. \"{ODBC Driver 17 for SQL Server}\"')\n ODBC_FLAVOR = environ.var('mssql', help='The SQL flavor, or dialect.')\n\n ODBC_CONNECT_PARAMS = environ.var('SERVER,PORT,DRIVER,UID,PWD', converter=_odbc_connect_params)\n _connect_string = '{flavor}+pyodbc:///?odbc_connect={odbc_connect}'\n\n @property\n def ODBC_CONNECT_URL(self):\n odbc_connect = ';'.join(\n '%s=%s' % (k.replace('ODBC_', ''), getattr(self, k))\n for k in self.ODBC_CONNECT_PARAMS)\n connect_url = self._connect_string.format(\n flavor=self.ODBC_FLAVOR,\n odbc_connect=urllib.parse.quote_plus(odbc_connect)\n )\n return connect_url\n\nBigRaysConfig = Config.from_environ()\n\n\nif __name__ == '__main__':\n print('bigrays configurations. Set the following environment variables or '\n 'assign to bigrays.config.BigRaysConfig directly.')\n print(BigRaysConfig.generate_help())\n", "sub_path": "bigrays/config.py", "file_name": "config.py", "file_ext": "py", "file_size_in_byte": 2207, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "logging.getLogger", "line_number": 7, "usage_type": "call"}, {"api_name": "environ.bool_var", "line_number": 18, "usage_type": "call"}, {"api_name": "environ.var", "line_number": 22, "usage_type": "call"}, {"api_name": "environ.var", "line_number": 23, "usage_type": "call"}, {"api_name": "environ.var", "line_number": 24, "usage_type": "call"}, {"api_name": "environ.var", "line_number": 32, "usage_type": "call"}, {"api_name": "environ.var", "line_number": 33, "usage_type": "call"}, {"api_name": "environ.var", "line_number": 34, "usage_type": "call"}, {"api_name": "environ.var", "line_number": 35, "usage_type": "call"}, {"api_name": "environ.var", "line_number": 36, "usage_type": "call"}, {"api_name": "environ.var", "line_number": 37, "usage_type": "call"}, {"api_name": "environ.var", "line_number": 38, "usage_type": "call"}, {"api_name": "environ.var", "line_number": 40, "usage_type": "call"}, {"api_name": "urllib.parse.parse.quote_plus", "line_number": 50, "usage_type": "call"}, {"api_name": "urllib.parse.parse", "line_number": 50, "usage_type": "attribute"}, {"api_name": "urllib.parse", "line_number": 50, "usage_type": "name"}, {"api_name": "environ.config", "line_number": 14, "usage_type": "call"}]}
{"seq_id": "258026565", "text": "# Kamil Pastwa\n# kpastew@gmail.com\n\nimport matplotlib.pyplot as plt\n\n# Problem fizyczny\nk = 1.5\nm = 2.1\n\n# Warunki rozwiazania numerycznego\ndelta_t_list = [0.001, 0.1, 0.5]\nx_0 = 1.75\nv_0 = 0.0\n\nt_0 = 0.0\nt_end = 15.0\n\n# tablica przechowujaca kolejne kroki czasowe - potrzebna do narysowania wykresu\ntime_lists = {}\n\n# slowniki z tablicami polozen i predkosci wyliczonymi zmodyfikowanym algorytmem Eulera dla kolejnych krokow czasowych\nmod_euler_x_lists = {}\nmod_euler_v_lists = {}\n\n# ... oraz algorytmem Verlet\nverlet_x_lists = {}\nverlet_v_lists = {}\n\nfor delta_t in delta_t_list:\n t = t_0\n x_mod_euler = x_0\n v_mod_euler = v_0\n x_verlet = x_0\n v_verlet = v_0\n\n time_list = [t_0]\n # tablice z polozeniami i predkosciami\n mod_euler_x_list = [x_0]\n mod_euler_v_list = [v_0]\n\n verlet_x_list = [x_0]\n verlet_v_list = [v_0]\n\n while t < t_end:\n\n # Zmodyfikowana metoda Eulera\n v_mod_euler += -k / m * mod_euler_x_list[-1] ** 3 * delta_t\n x_mod_euler += v_mod_euler * delta_t\n\n mod_euler_x_list.append(x_mod_euler)\n mod_euler_v_list.append(v_mod_euler)\n\n # Algorytm Verlet\n if t == t_0:\n x_verlet = x_mod_euler\n else:\n x_verlet = -verlet_x_list[-2] + 2 * verlet_x_list[-1] - (k / m * verlet_x_list[-1] ** 3) * delta_t ** 2\n\n v_verlet = (x_verlet - verlet_x_list[-1]) / delta_t\n\n verlet_x_list.append(x_verlet)\n verlet_v_list.append(v_verlet)\n\n t += delta_t\n time_list.append(t)\n\n\n time_lists[str(delta_t)] = time_list\n mod_euler_x_lists[str(delta_t)] = mod_euler_x_list\n mod_euler_v_lists[str(delta_t)] = mod_euler_v_list\n verlet_x_lists[str(delta_t)] = verlet_x_list\n verlet_v_lists[str(delta_t)] = verlet_v_list\n\n\ndef draw_chart(result_lists, title, ylabel):\n for delta_t in delta_t_list:\n plt.plot(time_lists[str(delta_t)], result_lists[str(delta_t)], label='dt = ' + str(delta_t))\n\n plt.title(title)\n plt.xlabel('czas [s]')\n plt.ylabel(ylabel)\n plt.legend()\n plt.show()\n\n\ndraw_chart(mod_euler_x_lists, title=\"Zmodyfikowany algorytm Eulera - wykres polozenia\", ylabel=\"polozenie[m]\")\ndraw_chart(mod_euler_v_lists, title=\"Zmodyfikowany algorytm Eulera - wykres predkosci\", ylabel=\"predosc[m/s]\")\ndraw_chart(verlet_x_lists, title=\"Algorytm Verlet - wykres polozenia\", ylabel=\"polozenie[m]\")\ndraw_chart(verlet_v_lists, title=\"Algorytm Verlet - wykres predkosci\", ylabel=\"predosc[m/s]\")\n", "sub_path": "zestaw3/Kamil_Pastwa_3_1.py", "file_name": "Kamil_Pastwa_3_1.py", "file_ext": "py", "file_size_in_byte": 2469, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "matplotlib.pyplot.plot", "line_number": 77, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 77, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.title", "line_number": 79, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 79, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.xlabel", "line_number": 80, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 80, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.ylabel", "line_number": 81, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 81, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.legend", "line_number": 82, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 82, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.show", "line_number": 83, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 83, "usage_type": "name"}]}
{"seq_id": "199178293", "text": "# coding=utf-8\nfrom django.http import HttpResponseRedirect\nfrom django.shortcuts import render, redirect, resolve_url\nfrom complaints.forms import ComplainsForm\nfrom complaints.models import Complaint\n\n\ndef index(request):\n if request.method == \"POST\":\n form = ComplainsForm(request.POST, request.FILES)\n if form.is_valid():\n form.save()\n return redirect('complaints_index')\n\n else:\n form = ComplainsForm()\n\n complaints = Complaint.objects.published()\n return render(request, 'complaints/index.html',\n {\n 'complaints': complaints,\n 'form': form,\n })", "sub_path": "_step_08/complaints/views.py", "file_name": "views.py", "file_ext": "py", "file_size_in_byte": 681, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "complaints.forms.ComplainsForm", "line_number": 10, "usage_type": "call"}, {"api_name": "django.shortcuts.redirect", "line_number": 13, "usage_type": "call"}, {"api_name": "complaints.forms.ComplainsForm", "line_number": 16, "usage_type": "call"}, {"api_name": "complaints.forms", "line_number": 18, "usage_type": "name"}, {"api_name": "complaints.models.Complaint.objects.published", "line_number": 18, "usage_type": "call"}, {"api_name": "complaints.models.Complaint.objects", "line_number": 18, "usage_type": "attribute"}, {"api_name": "complaints.models.Complaint", "line_number": 18, "usage_type": "name"}, {"api_name": "django.shortcuts.render", "line_number": 19, "usage_type": "call"}, {"api_name": "complaints.forms", "line_number": 21, "usage_type": "name"}]}
{"seq_id": "139243144", "text": "import time\nimport cv2\nimport sys\nimport numpy\nfrom commandesPython import Arduino\nfrom datetime import datetime\nfrom time import strftime\n\nport = 'COM3'\nard = Arduino(port)\n\nprint('access port available')\n\nxValue = 90\nyValue = 70\nard.servoAttach(1, 6)\nard.servoAttach(2, 7)\nard.servoWrite(1, xValue)\nard.servoWrite(2, yValue)\n\nvideo = cv2.VideoCapture(0)\n\nfourcc = cv2.VideoWriter_fourcc(*'XVID')\n\ndateNow = datetime.now()\ndate = str(dateNow.day) + \"-\" + str(dateNow.hour) + \"-\" + str(dateNow.minute)\nnumber = dateNow.hour\nwriter = cv2.VideoWriter(\"videos/projet-\"+str(date)+\".avi\", fourcc, 25.0, (640, 480))\n\nface_cascade = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_alt2.xml')\n\n# Define an initial bounding box\nbbox = (287, 23, 86, 320)\n\nwhile True:\n\n ok, frame = video.read()\n if not ok:\n print('Cannot read video file')\n sys.exit()\n \n frame = cv2.flip(frame, 1)\n gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)\n\n faces = face_cascade.detectMultiScale(gray, 1.3, 5)\n\n height, width = frame.shape[:2]\n yScrCen = int(height/2)\n xScrCen = int(width/2)\n yScrLim = int(yScrCen/2)\n xScrLim = int(xScrCen/2)\n yScrSaf = int(height/15)\n xScrSaf = int(width/10)\n ec = 20\n\n for (x,y,w,h) in faces:\n cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2)\n \n cv2.imshow('Detection',frame)\n\n #if cv2.waitKey(1) & 0xFF == ord('t'):\n if(faces != ()):\n\n bbox = tuple(faces[0])\n continuer = True\n\n while continuer:\n\n if(continuer):\n\n continuer = False\n \n # Initialize tracker with first frame and bounding box\n # change size : MedianFow, TDL\n # not : KCF, MIL\n\n # ATTENTION !\n \"\"\"\n SI TRACKER CHANGE :\n - MODIFIER CONDITION \"facesDet !=\" ? \n - ? par \"()\" si TLD\n - ? par \"0\" et \"facesDet\" par \"facesDet[0][0]\" si KCF\n\n \"\"\"\n tracker = cv2.TrackerKCF_create()\n ok = tracker.init(frame, bbox)\n\n end = False\n\n nbImages = 0\n\n while True:\n nbImages += 1\n \n # Read a new frame\n ok, frame = video.read()\n frame = cv2.flip(frame, 1)\n\n if not ok:\n print('we can not read the video')\n break\n \n # Update tracker\n ok, bbox = tracker.update(frame)\n \n if(not ok):\n if(not end):\n print(\"end of tracking\")\n end = True\n facesDet = face_cascade.detectMultiScale(frame, 1.2, 5)\n print(facesDet)\n if(facesDet != ()):\n if(facesDet[0][0] != 0):\n bbox = tuple(facesDet[0])\n print(\"new detection : \" + str(bbox))\n continuer = True\n break\n\n if(nbImages % 10 == 0 and ok):\n print(\"images = 10\")\n print(frame.shape)\n print(bbox)\n print(ok)\n print(int(bbox[0]+bbox[2])-int(bbox[0]))\n print(int(bbox[1]+bbox[3])-int(bbox[1]))\n frameROI = frame[int(bbox[1]-ec):int(bbox[1]+bbox[3]+ec), int(bbox[0]-ec):int(bbox[0]+bbox[2]+ec)]\n print(frameROI.shape)\n facesDet = face_cascade.detectMultiScale(frameROI, 1.2, 5)\n print(facesDet)\n if(facesDet == ()):\n facesDet = [[0,0,0,0]]\n print(\"test faces Det : '\" + str(facesDet[0][0]) + \"'\")\n if(facesDet[0][0] == 0):\n facesDet = face_cascade.detectMultiScale(frame, 1.2, 5)\n if(facesDet != ()):\n if(facesDet[0][0] != 0):\n new = bbox\n bbox = tuple(facesDet[0])\n continuer = True\n print(\"10 secondes worked : \" + str(new))\n print(\"10 secondes is now : \" + str(bbox))\n break\n \n\n # Draw bounding box\n if ok:\n x, y, w, h = (int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3]))\n\n cv2.rectangle(frame,(x,y),(x+w,y+h),(0,0,255),2)\n \n xFaceCen = x + int(w/2)\n yFaceCen = y + int(h/2)\n\n xEcart = abs(xScrCen - xFaceCen) - xScrSaf\n yEcart = abs(yScrCen - yFaceCen) - yScrSaf\n\n xDep = int(xEcart / 100) + 1\n yDep = int(yEcart /100) + 1 \n\n\n if(xScrCen - xScrSaf > xFaceCen):\n xValue -= xDep\n if(xValue < 0):\n xValue = 0\n if(xScrSaf + xScrCen < xFaceCen):\n xValue += xDep\n if(xValue > 180):\n xValue = 180\n if(yScrCen - yScrSaf > yFaceCen):\n yValue -= yDep\n if(yValue < 0):\n yValue = 0\n if(yScrSaf + yScrCen < yFaceCen):\n yValue += yDep\n if(yValue > 180):\n yValue = 180\n\n ard.servoWrite(1, xValue)\n ard.servoWrite(2, yValue)\n\n # Display result\n cv2.imshow(\"Detection\", frame)\n writer.write(frame)\n print(x)\n print(y)\n \n # Exit if ESC pressed\n k = cv2.waitKey(1) & 0xff\n if k == ord('a') :\n break\n\n if cv2.waitKey(1) & 0xFF == ord('q'):\n break\n\n\nvideo.release()\ncv2.destroyAllWindows()\n", "sub_path": "anciennes versions programmes/trackingComandesCameraSansTraitsAmelioré.py", "file_name": "trackingComandesCameraSansTraitsAmelioré.py", "file_ext": "py", "file_size_in_byte": 6623, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "commandesPython.Arduino", "line_number": 10, "usage_type": "call"}, {"api_name": "cv2.VideoCapture", "line_number": 21, "usage_type": "call"}, {"api_name": "cv2.VideoWriter_fourcc", "line_number": 23, "usage_type": "call"}, {"api_name": "datetime.datetime.now", "line_number": 25, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 25, "usage_type": "name"}, {"api_name": "cv2.VideoWriter", "line_number": 28, "usage_type": "call"}, {"api_name": "cv2.CascadeClassifier", "line_number": 30, "usage_type": "call"}, {"api_name": "sys.exit", "line_number": 40, "usage_type": "call"}, {"api_name": "cv2.flip", "line_number": 42, "usage_type": "call"}, {"api_name": "cv2.cvtColor", "line_number": 43, "usage_type": "call"}, {"api_name": "cv2.COLOR_BGR2GRAY", "line_number": 43, "usage_type": "attribute"}, {"api_name": "cv2.rectangle", "line_number": 57, "usage_type": "call"}, {"api_name": "cv2.imshow", "line_number": 59, "usage_type": "call"}, {"api_name": "cv2.TrackerKCF_create", "line_number": 85, "usage_type": "call"}, {"api_name": "cv2.flip", "line_number": 97, "usage_type": "call"}, {"api_name": "cv2.rectangle", "line_number": 149, "usage_type": "call"}, {"api_name": "cv2.imshow", "line_number": 182, "usage_type": "call"}, {"api_name": "cv2.waitKey", "line_number": 188, "usage_type": "call"}, {"api_name": "cv2.waitKey", "line_number": 192, "usage_type": "call"}, {"api_name": "cv2.destroyAllWindows", "line_number": 197, "usage_type": "call"}]}
{"seq_id": "211872807", "text": "import requests, time, json\nimport pandas as pd\nimport numpy as np\nfrom collections import *\nimport matplotlib.pyplot as pl\nfrom hmmlearn import hmm\n# from SimpleHOHMM import HiddenMarkovModelBuilder as Builder\nimport random\nimport multiprocessing\nfrom multiprocessing import Pool\nimport multiprocessing.pool\nfrom sklearn.preprocessing import MinMaxScaler\nfrom sklearn.utils import check_random_state\nfrom sklearn.model_selection import train_test_split\nimport joblib\nimport time\nfrom tqdm import tqdm\n#import cupy as np\n#import numba as nb\n\n\n\"\"\"\n * This program will be a little different from the last.\n * Instead of sticking with normal timeseries data, I will\n * use volume based data. What I mean by this is instead of\n * having periods be completed after certain periods of time,\n * periods will end after a certian amount of volume has been\n * accumulated.\n * \n * The idealistic benefit of making this change is that\n * the data will better represent 'true' price movements.\n * Price movement isn't driven by time, price movement is\n * driven by volume. To see this, time can move forward with\n * no volume and the price will never change because of\n * the lack of voulme.\n *\n * Using volume will add challenges from a programming standpoints.\n * Where in timeseries data, periods end regularly and are determined\n * external from the market, with volume based data, trades aren't\n * and depending on the market being conscious of these periods sizes \n * will be of much greater importance. \n * Along with this, visualizing will be very important for me to make\n * sense of the data I'm seeing. I've been finding it difficult to\n * locate anything on this form of analysis.\n Number of bullish/bearish periods and their ratio\n Body size of bullish/bearish periods\n Number of consecutive periods\n TODO:\n See what actual returns will be if you open a potistion at the beginning of a period (when theres positive movement) then close at the end\n compare this method to closing after with certain \"high\" percentages are reaches.\n then compare this to adding a stop loss\n GPU computations \n\"\"\"\n\n\n\n#Load credentials from json\n#cred = json.load(open(\"credentials.json\"))\nfiles = json.load(open(\"files.json\"))\n\ndef readFiles():\n #da = pd.read_csv(''+files['BTC']+'/2013/merged.csv')\n #da.columns = ['time', 'open', 'close', 'high', 'min', 'volume']\n #dat = pd.read_csv(''+files['BTC']+'/2014/merged.csv')\n #dat.columns = ['time', 'open', 'close', 'high', 'min', 'volume']\n #data = pd.read_csv(''+files['BTC']+'/2015/merged.csv')\n #data.columns = ['time', 'open', 'close', 'high', 'min', 'volume']\n\n #sticking to more recent data\n data0 = pd.read_csv(''+files['BTC']+'/2016/merged.csv')\n data0.columns = ['time', 'open', 'close', 'high', 'min', 'volume']\n data1 = pd.read_csv(''+files['BTC']+'/2017/merged.csv')\n data1.columns = ['time', 'open', 'close', 'high', 'min', 'volume']\n data2 = pd.read_csv(''+files['BTC']+'/2018/merged.csv')\n data2.columns = ['time', 'open', 'close', 'high', 'min', 'volume']\n #print(sum(pd.concat([da, dat, data, data0, data1, data2], ignore_index=True)['close']))\n return pd.concat([data0, data1, data2], ignore_index=True)\n\ndef readTestFiles():\n data = pd.read_csv(''+files['BTC']+'/2019/merged.csv')\n data.columns = ['time', 'open', 'close', 'high', 'min', 'volume']\n return pd.concat([data], ignore_index=True)\n\ndef readTestFiles():\n data = pd.read_csv(''+files['BTC']+'/2019/merged.csv')\n data.columns = ['time', 'open', 'close', 'high', 'min', 'volume']\n return pd.concat([data], ignore_index=True)\n\ndef readTestModelFiles():\n dat = pd.read_csv(''+files['AMD']+'/AMD_2000_2009.csv')\n dat.columns = ['time', 'open', 'high', 'min', 'close', 'volume']\n #dat['time'] = pd.to_datetime(dat['time'], infer_datetime_format=True)\n #dat = dat.set_index('time')\n \n \n \n \n data = pd.read_csv(''+files['AMD']+'/AMD_2010_2019.csv')\n data.columns = ['time', 'open', 'high', 'min', 'close', 'volume']\n #data['time'] = pd.to_datetime(data['time'], infer_datetime_format=True)\n #data = data.set_index('time')\n\n #print(data)\n return pd.concat([dat, data])\n\n\ndef readRecentTestModelFiles():\n data = pd.read_csv(''+files['AMD']+'/AMD_2010_2019.csv')\n data.columns = ['time', 'open', 'high', 'min', 'close', 'volume']\n #data['time'] = pd.to_datetime(data['time'], infer_datetime_format=True)\n #data = data.set_index('time')\n\n #print(data)\n return pd.concat([data])\n\ndef readSecondData(startY, startM, startD):\n dataPoints = []\n for i in range(startY, 2021):\n for j in range(startM, 13):\n for k in range(startD, 32):\n #print(''+files['AMD-S'] + str(i) + str(j).zfill(2) + str(k).zfill(2)+'/amd.csv')\n #dataPoints.append(pd.read_csv(''+files['AMD-S'] + str(i) + str(j).zfill(2) + str(k).zfill(2)+'/amd.csv'))\n #print(i)\n try:\n dataPoints.append(pd.read_csv(''+files['AMD-S'] + str(i) + str(j).zfill(2) + str(k).zfill(2)+'/amd.csv'))\n dataPoints[-1].columns = ['time', 'open', 'high', 'min', 'close', 'volume', 'susp']\n dataPoints[-1]['time'] = dataPoints[-1]['time'].apply(lambda x: pd.to_datetime(''+str(i)+\"-\"+ str(j).zfill(2) + \"-\" + str(k).zfill(2)) + np.timedelta64(x, 'ms'))\n dataPoints[-1] = dataPoints[-1].set_index('time')\n dataPoints[-1] = dataPoints[-1].between_time('8:29:59', '15:00:00')\n dataPoints[-1]['volume'] = np.log(dataPoints[-1]['volume'])\n #print(dataPoints[-1])\n except Exception:\n continue\n \n return dataPoints\ndef readModel():\n data0 = pd.read_csv(''+ files['local']+'/Model-V1.csv')\n data0.columns = ['index', 'fracC', 'fracH', 'fracL']\n return np.column_stack((data0['fracC'], data0['fracH'], data0['fracL']))\n\n\n# FLAW: If there is a minute tiemframe with enough volume to fill multiple periods, it will carry over into other periods.\n# Test fix 1: s = period % dif. This will accept the large volitility, but not have it carry over into other periods\n# True fix: get smaller timeframes... second based data maybe?\ndef getHistorical(period, data):\n hist = []\n conv = []\n o = -1\n vals = [o, -1, float('inf'), -1]\n s = 0\n dupeCount = 0\n for ind, p in data.iterrows():\n # get the open, close, min, and max for each volume period given the minute based data.\n if(vals[0] == -1 or vals[0] == 0):\n vals[0] = p['open']\n vals = [vals[0], -1, min(vals[2], p['min']), max(vals[3], p['high'])]\n s += p['volume']\n if(s > 2*period):\n dupeCount += 1\n if (s >= period):\n \n dif = s - period \n vals[1] = p['close']\n hist.append(vals)\n if(dif!=0):\n o = p['close']\n s = period % dif\n else:\n o = -1\n s = 0\n vals = [o, -1, float('inf'), -1]\n \n \n # Make sure to catch the last data point, even if it isn't full.\n if(not (vals[1] == -1)):\n hist.append(vals)\n\n #print(str(dupeCount) + \" condensed pointes for period \" + str(period))\n #print(str(len(hist)) + \" number of points for period \" + str(period))\n hist = pd.DataFrame(hist, columns = ['open', 'close', 'min', 'max'])\n return (hist, period)\n\n\n\"\"\"\nCalcuate the EMA of a given dataset\n\"\"\"\ndef ema(length, data):\n return data.ewm(span=length, adjust=False, min_periods=length-1).mean()\n \n #return (hist, period)\n\n\"\"\"\nTag data as either bullish or bearish\nLength - Length of EMA to lag\nData - Dataframe\n\"\"\"\ndef tagData(length, data):\n EMA = ema(length, data['close'])\n slope = EMA.diff().copy() # rough estimate\n #tagged = data.copy()\n data = data.copy()\n data['tag'] = pd.Series([0 for x in range(data['close'].__len__())], index=data.index)\n\n condition = slope.loc[slope > 0].index\n data.loc[condition, ['tag']] = 1\n \n return data\n\n\n\"\"\"\nTag data as either bullish or bearish\nminSize - Min size of success for dataframe to accept\nData - Dataframe\nVers - String to identify in parallelism.\n\"\"\"\ndef splitData(minSize, data, vers):\n split = []\n indP = data.index.tolist()[0]\n s = False\n for ind, row in tqdm(data.iterrows(), desc = vers + \" Splitting\"):\n d = (ind - indP)/np.timedelta64(1, 'm')\n if(d < .03):\n if(not s):\n split.append(pd.DataFrame())\n split[-1] = split[-1].append(row)\n s = True\n else:\n split[-1] = split[-1].append(row)\n \n else:\n s = False\n if(len(split)>0 and split[-1].__len__() < minSize):\n del split[-1]\n indP = ind\n return split\n\n\"\"\"\n converts from open, close, min, max\n to period change, max/min, fractional high, and fractional low\n TODO: DEBUGGGGGGGGG (DATA PRESENTATION IS THE MOST IMPORTANT PART OF THIS PROCESS)\n\"\"\"\ndef convert(hist):\n #print(\"Converting data\")\n conv = []\n\n o = np.array(hist['open'])\n c = np.array(hist['close'])\n h = np.array(hist['max'])\n l = np.array(hist['min'])\n \n fracC = []\n fracH = []\n fracL = []\n\n\n for i in range(len(o.tolist())):\n if(c[i]-o[i] < 0):\n if((o[i]-c[i])/o[i] >= 1 and (o[i]-c[i])/o[i] <=1.5):\n fracC.append(-.75)\n elif((o[i]-c[i])/o[i] > 1.5):\n fracC.append(-1)\n else:\n fracC.append(1/np.log((o[i]-c[i])/o[i]))\n elif(c[i]-o[i] > 0):\n if((c[i]-o[i])/o[i] >= 1 and (c[i]-o[i])/o[i] <= 1.5):\n fracC.append(.75)\n elif((c[i]-o[i])/o[i] > 1.5):\n fracC.append(1)\n else:\n fracC.append(-1/np.log((c[i]-o[i])/o[i]))\n else:\n fracC.append(0)\n\n #upward movements are unbound. should consider a way to account for this.\n if((h[i]-o[i]) <= 0):\n fracH.append(0)\n elif(np.log((h[i]-o[i])/o[i]) >= 0):\n fracH.append(10)\n else:\n fracH.append(-1/np.log((h[i]-o[i])/o[i]))\n \n #l is bound by zero\n if((o[i]-l[i]) <= 0):\n fracL.append(0)\n elif(np.log((o[i]-l[i])/o[i]) == 0):\n fracL.append(10)\n else:\n fracL.append(-1/np.log((o[i]-l[i])/o[i]))\n\n \n \n scalar = MinMaxScaler()\n scalar.fit(np.array(fracC).reshape(-1, 1))\n \n\n # Standardize data to a normal distribution centered around 0\n # Make price movements more priminent AND more consistent\n # Hopefully will increase the effectiveness of the model and its training.\n\n # works better with smaller non-volumetric periods (theory. will test tonight) \n #fracC = (scalar.transform(np.array(fracC).reshape(-1, 1)).flatten()-.5)\n #fracH = (scalar.transform(np.array(fracH).reshape(-1, 1)).flatten()-.5)\n #fracL = (scalar.transform(np.array(fracL).reshape(-1, 1)).flatten()-.5)\n \n #print(fracC)\n\n return np.column_stack((fracC, fracH, fracL))\n \ndef scale(array):\n scalarH = MinMaxScaler()\n scalarH.fit(np.array(array[:,1]).reshape(-1, 1))\n fracH = (scalarH.transform(np.array(array[:,1]).reshape(-1, 1)).flatten()-.5)\n scalarL = MinMaxScaler()\n scalarL.fit(np.array(array[:,2]).reshape(-1, 1))\n fracL = (scalarL.transform(np.array(array[:,2]).reshape(-1, 1)).flatten()-.5)\n scalarC = MinMaxScaler()\n scalarC.fit(np.array(array[:,0]).reshape(-1, 1))\n fracC = (scalarC.transform(np.array(array[:,0]).reshape(-1, 1)).flatten()-.5)\n return (np.column_stack((fracC, fracH, fracL)), (scalarC, scalarH, scalarL))\n\ndef run(period):\n #print('getting historical')\n #hist = getHistorical(period, readFiles())[0]\n #print('getting historical test')\n \n\n testFiles = readTestModelFiles()\n testFiles['time'] = pd.to_datetime(testFiles['time'], infer_datetime_format=True)\n testFiles = testFiles.set_index('time').loc['1/1/2018':'1/1/2019']\n print(testFiles)\n\n vol = int(testFiles['volume'].sum())\n\n print(vol)\n\n histT = getHistorical(period, testFiles)[0]\n\n #conv = convert(hist)\n\n #hist.to_csv('models/Hist-V1.csv')\n #histT.to_csv('models/Test-V1.csv')\n #pd.DataFrame(conv).to_csv('models/Model-V1.csv')\n \n\n #for i in conv:\n # print(i)\n \n #-------------------------------------------------------------------------------------------------------------------\n\n print('make hmm')\n \n HMM = hmm.GaussianHMM(n_components = 11 , covariance_type=\"full\", random_state=7, n_iter = 1000)\n\n HMM.fit(readModel())\n print(HMM.sample(10))\n print(HMM.transmat_)\n print('complete')\n \n #-------------------------------------------------------------------------------------------------------------------\n scores = defaultdict(list)\n pSize = random.randint(10, 75)\n strt = random.randint(8, histT.__len__()-pSize)\n for j in range(15):\n pSize = random.randint(10, 75)\n \n \n for i in range(75):\n #if(i == 0 and not scores[pSize] == None):\n # break\n strt = random.randint(6, histT.__len__()-pSize)\n pred, sc, ret = predict(HMM, histT, strt, strt+pSize, 5, 25000, False)\n scores[pSize].append((pred, sc, ret))\n \n\n #-------------------------------------------------------------------------------------------------------------------\n\n predictedCloseForTest, _, _ = predict(HMM, histT, strt, strt+pSize, 3, 25000, True)\n trueOpenForTest = histT.iloc[strt:strt+pSize]['open'].values\n trueCloseForTest = histT.iloc[strt:strt+pSize]['close'].values\n\n print(\"50 random periods w/50 different random tests resuts::\")\n\n for i in scores.keys():\n s = str(sum(n for _, n, _ in scores[i])/len(scores[i]))[0:5]\n ret = str(sum(n for _, _, n in scores[i])/len(scores[i]))[0:5]\n print(\"For the 75 random tests over \" + str(i) + \" periods, the HMM determined the direction correctly: \" + s + \"% of the time. Ret: \" + ret)\n #plotter(trueCloseForTest, predictedCloseForTest, trueOpenForTest, )\n\n\nclass NoDaemonProcess(multiprocessing.Process):\n # make 'daemon' attribute always return False\n def _get_daemon(self):\n return False\n def _set_daemon(self, value):\n pass\n daemon = property(_get_daemon, _set_daemon)\n\n# We sub-class multiprocessing.pool.Pool instead of multiprocessing.Pool\n# because the latter is only a wrapper function, not a proper class.\nclass MyPool(multiprocessing.pool.Pool):\n Process = NoDaemonProcess\n\n\ndef optimizeGen():\n # Optimse the volumetric period for a given stock on the given model.\n # This will be a test to see if we can use 'generic' models as I theorize we can.\n\n scores = []\n testFiles = readTestModelFiles()\n testFiles['time'] = pd.to_datetime(testFiles['time'], infer_datetime_format=True)\n testFiles = testFiles.set_index('time').last('1Y')\n print(testFiles)\n vol = int(testFiles['volume'].sum())\n model = readModel()\n HMM = hmm.GaussianHMM(n_components = 11, covariance_type=\"full\", random_state=7, n_iter = 1000)\n HMM.fit(model)\n for i in tqdm(range(vol//365//6, vol//92, vol//365//4)):\n his = []\n res = []\n\n with Pool() as p:\n his = p.starmap(getHistorical, [(x, testFiles) for x in range(i, i + vol//365//4 - 10, ( vol//365//4)//4)])\n\n with Pool() as p:\n res = p.starmap(runTests, [(HMM, j[0], 15, 75, 5, j[1], -1) for j in his])\n\n\n for j in res:\n s = 0\n for k in j[0].keys():\n s+=sum(j[0][k])/len(j[0][k])\n t = k\n\n s = s/len(j[0].keys())\n scores.append((j[1], s))\n \n scores.sort(key = lambda x: x[1], reverse = True)\n print(scores[0:5])\n return scores\n\n\n\"\"\"\nData - Trainging Dataframe\nDataT - Testing Datafram \nMult - Multiplier from smallest accepted timeframe (will change if smaller data sizes can be acquired) (SECOND DATA ON THE COMEUP??)\nvers - String to identify in parallelism\n\"\"\"\ndef optimize(data, dataT, mult, vers):\n # Dictionary from Period to dict from HMM components to dict from HMM lookBack size to list of tuples of test length and score\n optimizer = defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(list))))\n \n v = sum([x['volume'].sum() for x in data])//sum([len(x.index) for x in data]) # Average vol/min across all training periods.\n #v = data[0]['volume'].sum() // data[0].index.normalize().unique().__len__() # Average vol/min on most recent (and representative) dataset\n vtr = [x['volume'].sum()//len(x.index) for x in data] # Average Vol/Min in each given train period\n vT = [x['volume'].sum()//len(x.index) for x in dataT] # Average Vol/min in each given test period\n \n volAdjust = [x/v for x in vtr] # Attempt to standardize the avg vol per min throughout training data.\n volAdjustT = [x/v for x in vT] # same thing for test data.\n \n vol = sum([x['volume'].sum() for x in data]) # Total Volume across all periods\n\n dataPoints = sum([len(x.index) for x in data]) # Total number of datapoints in training\n dataPointsT = sum([len(x.index) for x in dataT]) # Total number of datapoints in testing\n\n # Document all acquired info above for potential debugging purposes\n with open(vers+'.txt', 'w') as f:\n f.write(vers+'\\n')\n f.write('Volume: ' + str(vol)+ '\\nTrain Data points: ' + str(dataPoints) + '\\nTest Data Points: '+str(dataPointsT) + '\\n')\n f.write('Vol/Min: ' + str(vol/dataPoints) + '\\n')\n #f.write(\"Train AdjVol: \" + str(volAdjust) + '\\n')\n #f.write(\"Test AdjVol: \" + str(volAdjustT) + '\\n')\n \n averageBest50 = []\n for i in tqdm(range(int(vol/(dataPoints/mult)), int(vol/(dataPoints/8)), int(vol/(dataPoints/mult*2))), desc=vers+\" volume Progress\"):\n print() #add some spacing and stuff...\n hist = [convert(getHistorical(i*volAdjust[x], data[x])[0]) for x in range(len(data))]\n \n # keep things spicy ;)\n random.shuffle(hist)\n \n # Keep all datapoints seperate@@@@@@@\n histT = [getHistorical(i*volAdjustT[j], dataT[j])[0] for j in range(len(dataT))]\n converted, scalar = scale(np.concatenate(hist))\n joblib.dump(scalar, \"scales/\"+vers+'-'+str(i)+\".pkl\")\n for j in tqdm(range(2), desc=vers+\" Components Progress\"):\n\n \n \n res = []\n with Pool() as p:\n res = p.starmap(makeModel, [(j*3 + x, converted, scalar, hist, histT, vol, i, dataPoints, vers) for x in range(3, 6)])\n\n optimizer[i][j*3][1] = res[0]\n optimizer[i][j*3+1][1] = res[1]\n optimizer[i][j*3+2][1] = res[2]\n \n for j in optimizer[i].keys():\n for k in optimizer[i][j].keys():\n s = 0\n for l in optimizer[i][j][k][0].keys():\n s += sum(optimizer[i][j][k][0][l])/len(optimizer[i][j][k][0][l])\n\n sc = s/len(optimizer[i][j][k][0].keys())\n\n if len(averageBest50) == 0 or averageBest50[-1][3] < sc:\n averageBest50.append((i, j+3, k, sc))\n averageBest50.sort(key = lambda x: x[3], reverse=True)\n if len(averageBest50) > 50:\n averageBest50.pop()\n with open(vers+'.txt', 'a') as f:\n f.write(vers + \" ::: \" + str(averageBest50[0:5])+\"\\n\")\n\n # Log all results\n for i in optimizer.keys():\n for j in optimizer[i].keys():\n for k in optimizer[i][j].keys():\n s = 0\n for l in optimizer[i][j][k][0].keys():\n s += sum(optimizer[i][j][k][0][l])/len(optimizer[i][j][k][0][l])\n sc = s/len(optimizer[i][j][k][0].keys())\n\n with open(vers+'.txt', 'a') as f:\n f.write(vers+\" : \" + str(i) + \" : \" + str(j+3) + \" : \" + str(k) + \" : \" + str(sc) + \" : \" + str(optimizer[i][j][k][3]) + \" : \" + str(optimizer[i][j][k][2])+\"\\n\")\n\n return averageBest50\ndef makeModel(components, converted, scalar, hist, histT, vol, i, dataPoints, vers):\n HMM = hmm.GaussianHMM(n_components = components, covariance_type=\"full\", n_iter = 750, verbose = False)\n HMM.fit(converted, lengths = [x.__len__() for x in hist])\n joblib.dump(HMM, \"models/\"+vers+str(i) + \"-\" + str(components) + \"-\" + str(1)+\".pkl\")\n return runTests(HMM, histT, 250, 1, vol, i, dataPoints, vers + str(i) + \"-\" + str(components) + \"-\" + str(1), scalar)\n\ndef runTests(HMM, histT, iter1, lookBack, v, p, days, vers, scalar):\n scores = defaultdict(list)\n strt = 0\n f = 0\n avgRet = 0\n for j in range(iter1):\n # Pick random histT period\n randInd = random.randint(0, len(histT)-1)\n \n if(len(histT[randInd]) > lookBack):\n pred, sc, ret = predict(HMM, histT[randInd], lookBack, 25000, False, vers, scalar)\n scores[randInd].append(sc)\n avgRet += ret\n else:\n f += 1\n return (scores, p, f, avgRet/(iter1-f))\n\n\n# Need to smooth data out before hand so i can get all datapoints in a given period. But if this is accurate, might just need to have the model make\n# less decisions that are more accurate.\ndef predict(hmm, histT, lookBack, ret, plot, vers, scalar):\n pred = []\n\n for i in range(lookBack, len(histT.index)):\n oPrice = histT.iloc[i]['open']\n cPrice = histT.iloc[i]['close']\n\n prevD = histT.iloc[i-lookBack:i]\n \n conv = convert(prevD)\n conv = np.column_stack(((scalar[0].transform(np.array(conv[:,0]).reshape(-1, 1)).flatten()-.5), (scalar[1].transform(np.array(conv[:,1]).reshape(-1, 1)).flatten()-.5), (scalar[2].transform(np.array(conv[:,2]).reshape(-1, 1)).flatten()-.5)))\n stateSeq = hmm.predict(conv)\n # print(vers + \" - \" + str(stateSeq))\n\n randstate = check_random_state(hmm.random_state)\n #print(vers + \" - \" + str(randstate.get_state()))\n nextState = (np.cumsum(hmm.transmat_, axis=1)[stateSeq[-1]] > randstate.rand())\n # print(np.cumsum(hmm.transmat_, axis=1)[stateSeq[-1]])\n # #print(vers + \" - \" + str(randstate.rand()))\n # print(vers + \" - \" + str(nextState))\n # print(vers + \" - \" + str(nextState.argmax()))\n nextObs = hmm._generate_sample_from_state(nextState.argmax(),randstate)\n # print(vers + \"----------------------------------\")\n #print(str(nextObs[0]) + \" - \" + vers)\n # if(nextObs[0] > 0):\n # pred.append(oPrice / (np.exp(1.0/nextObs[0])) + oPrice)\n # elif(nextObs[0] < 0):\n # pred.append(-oPrice / (np.exp(-1.0/nextObs[0])) + oPrice)\n # else:\n # pred.append(oPrice)\n pred.append(oPrice * (1+nextObs[0]*.005))\n\n # Score model/results (Compare predictions to actual results)\n c = 0\n s = 0\n v = 0\n for i in histT.iloc[lookBack:]['open'].values:\n if not ret == -1:\n if (vers[:4]==\"BULL\"):\n if(pred[s]-i > 0):\n temp = ret*.1\n ret -= temp\n ret += (temp) * histT.iloc[s+lookBack]['close']/i\n else:\n if(pred[s]-i < 0):\n temp = ret*.1\n ret -= temp\n ret += (temp) * i/histT.iloc[s+lookBack]['close']\n if (vers[:4]==\"BULL\"):\n if((pred[s]-i)>0 and (histT.iloc[s+lookBack]['close']-i) > 0):\n c+=1\n if(pred[s]-i > 0):\n v+=1\n else:\n if((pred[s]-i)<0 and (histT.iloc[s+lookBack]['close']-i) < 0):\n c+=1\n if(pred[s]-i < 0):\n v+=1\n s+=1\n\n \n #print(\"for this sample, the HMM predicted the correct direction \" + str(100*(c/s)) + \"% of the time. P = \" + str(endInd-startInd) + \".\")\n \n if(plot):\n # only log 10% of plots to save time and memory\n rand = random.random()\n if(rand < .1):\n plotter(histT.iloc[lookBack:]['close'].values, pred,histT.iloc[lookBack:]['open'].values, vers+\"-\"+str(ret)[0: 5])\n if(v == 0):\n c = 1\n v = 2\n return pred, (100*(c/v)), ret\n\n\ndef plotter(data, dataP, dataPO, name):\n #print(data)\n #print(dataP)\n pl.style.use('ggplot')\n plot = pl.figure()\n axis = plot.add_subplot(111)\n axis.plot([x for x in range(data.__len__())], data, 'bo-', label='real close')\n axis.plot([x for x in range(data.__len__())], dataP, 'r+-', label='predicted close (based on realO)')\n axis.plot([x for x in range(data.__len__())], dataPO, 'b+-', label='real open')\n pl.legend()\n pl.savefig(\"D:/plots/\"+name+\".png\")\n pl.close(plot)\n\ndef start():\n #t = api.get_clock()\n\n # PERIODS::: (average 12 ticks a day)\n # XRP: 1934152\n # XRP: 23209824 (average of a day)\n # ETH: 248185 (works really well.) 11 - 3 - 60%\n # BTC: 27040 (should mirror ETH) 11 - 5 - 65% - Basis for general model\n # AMD 129376990 11 - 5 - 59.64% - First result from general model\n \n # Stuff for minute based data\n #-------------------------------------------------------------------------------\n #data = readTestModelFiles()\n #data['time'] = pd.to_datetime(data['time'], infer_datetime_format=True)\n #data = data.set_index('time')\n #volcond = data.loc[data['volume'] == 0].index\n #data.loc[volcond, 'volume'] = 1\n #data['volume'] = np.log(data['volume'])\n \n #print(data['volume'])\n #print(np.log(0))\n \n # data = data.iloc[len(data['volume'].index)//2:]\n #data = data.iloc[5000:10000]\n # testtag = tagData(50, data.iloc[5000:10000])\n # testcond = testtag.loc[testtag['tag'] == 0] .index\n # testtag = testtag.loc[testcond]\n # testd = splitData(45, testtag, 'test')\n # test = getHistorical(80000, testd[0])[0]\n # convert(test)\n # print(test.iloc[0:50])\n # tagged = tagData(50, data)\n #-------------------------------------------------------------------------------\n\n # Automatically tag data as bearish or bullish with a simple EMA\n # (keeping the tagging simple will provide proof of concept.\n # more technical indicators can be used in the future)\n # This will maintain consistency in training data.\n\n # data = readSecondData(2018, 1, 1)\n # print(data)\n # tagged = [tagData(40, x) for x in data]\n # BearTag = []\n # BullTag = []\n\n # # get each conditional for each dataset\n # conditionBear = [tag.loc[tag['tag'] == 0].index for tag in tagged]\n # conditionBull = [tag.loc[tag['tag'] == 1].index for tag in tagged]\n \n # BearTag = pd.concat([data[i].loc[conditionBear[i]] for i in range(len(data))])\n # BullTag = pd.concat([data[i].loc[conditionBull[i]] for i in range(len(data))])\n \n # ############################################################################\n # # conditionBear = tagged.loc[tagged['tag'] == 0].index\n # # conditionBull = tagged.loc[tagged['tag'] == 1].index\n # # BearTag = pd.concat([d.loc[conditionBear] for d in data], copy = False)\n # # BullTag = pd.concat([d.loc[conditionBear] for d in data], copy = False)\n # ############################################################################\n \n # print(BearTag)\n # joblib.dump(BearTag, \"data/BearTag40.pkl\")\n # joblib.dump(BullTag, \"data/BullTag40.pkl\")\n res = []\n # Split data into continous sections\n # with MyPool(2) as p:\n # res = p.starmap(splitData, [(40, BullTag, 'Bull'), (40, BearTag, 'Bear')])\n \n # joblib.dump(res, \"data/split40.pkl\")\n res = joblib.load('data/split20.pkl')\n # Log lost datapoints\n #print(\"Split:: \" + str(sum([len(x.index) for x in res[0]])))\n #print(\"Original:: \" + str(len(BearTag.index)))\n\n random.shuffle(res[0])\n random.shuffle(res[1])\n Bull, BullT = train_test_split(res[0], train_size = .75, shuffle = False)\n Bear, BearT = train_test_split(res[1], train_size = .75, shuffle = False)\n \n # TRY LOG SHIFTING THE VOLUME BECAUSE IT IS SO RIGHTLY SKEWED...\n\n with MyPool(2) as p:\n res = p.starmap(optimize, [(Bull, BullT, 2, \"BULL\"),\n (Bear, BearT, 2, \"BEAR\")])\n\n # with MyPool(2) as p:\n # res = p.starmap(optimize, [([data.loc['10/8/2019':'12/31/2019'], data.loc['5/1/2018':'9/17/2018'], data.loc['1/1/2019':'8/1/2019'], data.loc['1/1/2009':'1/1/2010'], data.loc['5/5/2005':'2/8/2006']],\n # [data.loc['2/2/2016':'5/1/2017'], data.loc['3/1/2009':'1/1/2010']], .005, \"BULL\"),\n # ([data.loc['8/12/19':'10/4/19'], data.loc['9/2/18':'12/26/18'], data.loc['2/2/18':'4/20/18'], data.loc['4/11/12':'12/13/12'], data.loc['3/3/06':'8/16/06'], data.loc['10/4/06':'5/24/07'], data.loc['11/1/07':'5/2/08']],\n # [data.loc['2/27/18':'4/17/18'], data.loc['5/19/11':'12/21/11'], data.loc['5/4/10':'9/1/10'], data.loc['9/10/08':'3/4/09'], data.loc['9/4/14':'10/5/15']], .005, \"BEAR\")])\n \n\"\"\"\n ToDo: Run tests again and choose random periods to plot for the highest scoring tests. Make sure the program isnt just a fancy EMA trader (or one that doesnt use Machine learning to its true potential)...\n If it does just continously buy until the ema flips, try re-weighing what the program consideres success. (For example, Extra points for correctly determining when the next period wont be positive)\n\"\"\"\n\n\nif __name__ == \"__main__\":\n\n #print(optimize())\n #print(optimizeGen())\n start()\n \n\n\n\n\"\"\"\nMoved to seperate file\n\"\"\"", "sub_path": "PAT.py", "file_name": "PAT.py", "file_ext": "py", "file_size_in_byte": 29958, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "json.load", "line_number": 59, "usage_type": "call"}, {"api_name": "pandas.read_csv", "line_number": 70, "usage_type": "call"}, {"api_name": "pandas.read_csv", "line_number": 72, "usage_type": "call"}, {"api_name": "pandas.read_csv", "line_number": 74, "usage_type": "call"}, {"api_name": "pandas.concat", "line_number": 77, "usage_type": "call"}, {"api_name": "pandas.read_csv", "line_number": 80, "usage_type": "call"}, {"api_name": "pandas.concat", "line_number": 82, "usage_type": "call"}, {"api_name": "pandas.read_csv", "line_number": 85, "usage_type": "call"}, {"api_name": "pandas.concat", "line_number": 87, "usage_type": "call"}, {"api_name": "pandas.read_csv", "line_number": 90, "usage_type": "call"}, {"api_name": "pandas.read_csv", "line_number": 98, "usage_type": "call"}, {"api_name": "pandas.concat", "line_number": 104, "usage_type": "call"}, {"api_name": "pandas.read_csv", "line_number": 108, "usage_type": "call"}, {"api_name": "pandas.concat", "line_number": 114, "usage_type": "call"}, {"api_name": "pandas.read_csv", "line_number": 125, "usage_type": "call"}, {"api_name": "pandas.to_datetime", "line_number": 127, "usage_type": "call"}, {"api_name": "numpy.timedelta64", "line_number": 127, "usage_type": "call"}, {"api_name": "numpy.log", "line_number": 130, "usage_type": "call"}, {"api_name": "pandas.read_csv", "line_number": 137, "usage_type": "call"}, {"api_name": "numpy.column_stack", "line_number": 139, "usage_type": "call"}, {"api_name": "pandas.DataFrame", "line_number": 180, "usage_type": "call"}, {"api_name": "pandas.Series", "line_number": 202, "usage_type": "call"}, {"api_name": "tqdm.tqdm", "line_number": 220, "usage_type": "call"}, {"api_name": "numpy.timedelta64", "line_number": 221, "usage_type": "call"}, {"api_name": "pandas.DataFrame", "line_number": 224, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 246, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 247, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 248, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 249, "usage_type": "call"}, {"api_name": "numpy.log", "line_number": 263, "usage_type": "call"}, {"api_name": "numpy.log", "line_number": 270, "usage_type": "call"}, {"api_name": "numpy.log", "line_number": 277, "usage_type": "call"}, {"api_name": "numpy.log", "line_number": 280, "usage_type": "call"}, {"api_name": "numpy.log", "line_number": 285, "usage_type": "call"}, {"api_name": "numpy.log", "line_number": 288, "usage_type": "call"}, {"api_name": "sklearn.preprocessing.MinMaxScaler", "line_number": 292, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 293, "usage_type": "call"}, {"api_name": "numpy.column_stack", "line_number": 307, "usage_type": "call"}, {"api_name": "sklearn.preprocessing.MinMaxScaler", "line_number": 310, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 311, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 312, "usage_type": "call"}, {"api_name": "sklearn.preprocessing.MinMaxScaler", "line_number": 313, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 314, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 315, "usage_type": "call"}, {"api_name": "sklearn.preprocessing.MinMaxScaler", "line_number": 316, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 317, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 318, "usage_type": "call"}, {"api_name": "numpy.column_stack", "line_number": 319, "usage_type": "call"}, {"api_name": "pandas.to_datetime", "line_number": 328, "usage_type": "call"}, {"api_name": "hmmlearn.hmm.GaussianHMM", "line_number": 352, "usage_type": "call"}, {"api_name": "hmmlearn.hmm", "line_number": 352, "usage_type": "name"}, {"api_name": "random.randint", "line_number": 361, "usage_type": "call"}, {"api_name": "random.randint", "line_number": 362, "usage_type": "call"}, {"api_name": "random.randint", "line_number": 364, "usage_type": "call"}, {"api_name": "random.randint", "line_number": 370, "usage_type": "call"}, {"api_name": "multiprocessing.Process", "line_number": 390, "usage_type": "attribute"}, {"api_name": "multiprocessing.pool", "line_number": 400, "usage_type": "attribute"}, {"api_name": "pandas.to_datetime", "line_number": 410, "usage_type": "call"}, {"api_name": "hmmlearn.hmm.GaussianHMM", "line_number": 415, "usage_type": "call"}, {"api_name": "hmmlearn.hmm", "line_number": 415, "usage_type": "name"}, {"api_name": "tqdm.tqdm", "line_number": 417, "usage_type": "call"}, {"api_name": "multiprocessing.Pool", "line_number": 421, "usage_type": "call"}, {"api_name": "multiprocessing.Pool", "line_number": 424, "usage_type": "call"}, {"api_name": "tqdm.tqdm", "line_number": 474, "usage_type": "call"}, {"api_name": "random.shuffle", "line_number": 479, "usage_type": "call"}, {"api_name": "numpy.concatenate", "line_number": 483, "usage_type": "call"}, {"api_name": "joblib.dump", "line_number": 484, "usage_type": "call"}, {"api_name": "tqdm.tqdm", "line_number": 485, "usage_type": "call"}, {"api_name": "multiprocessing.Pool", "line_number": 490, "usage_type": "call"}, {"api_name": "hmmlearn.hmm.GaussianHMM", "line_number": 527, "usage_type": "call"}, {"api_name": "hmmlearn.hmm", "line_number": 527, "usage_type": "name"}, {"api_name": "joblib.dump", "line_number": 529, "usage_type": "call"}, {"api_name": "random.randint", "line_number": 539, "usage_type": "call"}, {"api_name": "numpy.column_stack", "line_number": 562, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 562, "usage_type": "call"}, {"api_name": "hmmlearn.hmm.predict", "line_number": 563, "usage_type": "call"}, {"api_name": "hmmlearn.hmm", "line_number": 563, "usage_type": "name"}, {"api_name": "sklearn.utils.check_random_state", "line_number": 566, "usage_type": "call"}, {"api_name": "hmmlearn.hmm.random_state", "line_number": 566, "usage_type": "attribute"}, {"api_name": "hmmlearn.hmm", "line_number": 566, "usage_type": "name"}, {"api_name": "numpy.cumsum", "line_number": 568, "usage_type": "call"}, {"api_name": "hmmlearn.hmm.transmat_", "line_number": 568, "usage_type": "attribute"}, {"api_name": "hmmlearn.hmm", "line_number": 568, "usage_type": "name"}, {"api_name": "hmmlearn.hmm._generate_sample_from_state", "line_number": 573, "usage_type": "call"}, {"api_name": "hmmlearn.hmm", "line_number": 573, "usage_type": "name"}, {"api_name": "random.random", "line_number": 617, "usage_type": "call"}, {"api_name": "matplotlib.pyplot.style.use", "line_number": 629, "usage_type": "call"}, {"api_name": "matplotlib.pyplot.style", "line_number": 629, "usage_type": "attribute"}, {"api_name": "matplotlib.pyplot", "line_number": 629, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.figure", "line_number": 630, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 630, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.legend", "line_number": 635, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 635, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.savefig", "line_number": 636, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 636, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.close", "line_number": 637, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 637, "usage_type": "name"}, {"api_name": "joblib.load", "line_number": 707, "usage_type": "call"}, {"api_name": "random.shuffle", "line_number": 712, "usage_type": "call"}, {"api_name": "random.shuffle", "line_number": 713, "usage_type": "call"}, {"api_name": "sklearn.model_selection.train_test_split", "line_number": 714, "usage_type": "call"}, {"api_name": "sklearn.model_selection.train_test_split", "line_number": 715, "usage_type": "call"}]}
{"seq_id": "388829334", "text": "from django.shortcuts import render, get_object_or_404, redirect\r\nfrom django.contrib import messages\r\nfrom bs4 import BeautifulSoup\r\nfrom django.contrib.auth.decorators import login_required\r\nfrom django.views.decorators.csrf import csrf_exempt\r\n\r\nimport razorpay\r\nimport os\r\nfrom django.conf import settings\r\nfrom lxml import etree\r\nfrom englisttohindi.englisttohindi import EngtoHindi\r\n\r\nimport code128\r\nfrom datetime import date\r\nfrom main.models import Voter, Payment, PANCard\r\nfrom .const import PAY_AMOUNTS, POINTS_AMOUNTS\r\n\r\ndef protect_access(request):\r\n return request.user.points <= 0\r\n\r\ndef home(request):\r\n return render(request, 'home.html')\r\n\r\ndef contact(request):\r\n return render(request, 'contact.html')\r\n\r\n@login_required\r\ndef dashboard(request):\r\n context = {\r\n \"points\": request.user.points,\r\n \"voters\": Voter.objects.filter(user=request.user).count(),\r\n \"pans\": PANCard.objects.filter(user=request.user).count()\r\n }\r\n if request.method == 'POST':\r\n points = request.POST.get('points')\r\n amount = PAY_AMOUNTS[points] * 100\r\n key = settings.RAZORPAY_KEY_ID\r\n secret = settings.RAZORPAY_KEY_SECRET\r\n\r\n client = razorpay.Client(auth=(key, secret))\r\n order_currency = 'INR'\r\n\r\n payment = client.order.create(data={\"amount\": amount, \"currency\": order_currency})\r\n\r\n new_payment = Payment(\r\n razorpay_order_id=payment['id'],\r\n amount=float(PAY_AMOUNTS[points]),\r\n user=request.user\r\n )\r\n new_payment.save()\r\n context['payment'] = payment\r\n context['key'] = key\r\n return render(request, 'main/dashboard.html', context)\r\n return render(request, 'main/dashboard.html', context)\r\n\r\n@login_required\r\n@csrf_exempt\r\ndef success(request):\r\n if request.method == 'GET':\r\n messages.warning(request, 'You can not access.')\r\n return redirect('dashboard')\r\n razorpay_order_id = request.POST.get(\"razorpay_order_id\")\r\n payment = Payment.objects.filter(razorpay_order_id=razorpay_order_id).first()\r\n if payment.paid:\r\n messages.success(request, \"Payment completed\")\r\n return redirect(\"dashboard\")\r\n payment.paid = True\r\n payment.save()\r\n user = payment.user\r\n user.points = user.points + POINTS_AMOUNTS[str(int(payment.amount))]\r\n user.save()\r\n context = {\r\n \"oreder_id\": payment.razorpay_order_id,\r\n \"user\": payment.user,\r\n \"amount\": payment.amount,\r\n \"status\": 'success',\r\n \"timestamp\": payment.created\r\n }\r\n return render(request, 'main/success.html', context)\r\n\r\n@login_required\r\ndef upload_voter(request):\r\n if protect_access(request):\r\n messages.warning(request, \"You have no points to take any print.\")\r\n return redirect(\"dashboard\")\r\n\r\n if request.method == 'POST':\r\n data = request.FILES.get('voter', None)\r\n if not data:\r\n return render(request, 'main/upload-voter.html')\r\n soup = BeautifulSoup(data, 'lxml')\r\n voter = etree.HTML(str(soup))\r\n state = voter.xpath(\r\n '//*[@id=\"ng-app\"]/body/div[4]/div/div[1]/form/table/tbody/tr[2]/td[2]')[0].text\r\n block = voter.xpath(\r\n '//*[@id=\"ng-app\"]/body/div[4]/div/div[1]/form/table/tbody/tr[3]/td[2]')[0].text\r\n subblock = voter.xpath(\r\n '//*[@id=\"ng-app\"]/body/div[4]/div/div[1]/form/table/tbody/tr[4]/td[2]')[0].text\r\n name1 = voter.xpath(\r\n '//*[@id=\"ng-app\"]/body/div[4]/div/div[1]/form/table/tbody/tr[6]/td')[0].text\r\n name2 = voter.xpath(\r\n '//*[@id=\"ng-app\"]/body/div[4]/div/div[1]/form/table/tbody/tr[5]/td[2]')[0].text\r\n gender = voter.xpath(\r\n '//*[@id=\"ng-app\"]/body/div[4]/div/div[1]/form/table/tbody/tr[7]/td[2]')[0].text\r\n epic = voter.xpath(\r\n '//*[@id=\"ng-app\"]/body/div[4]/div/div[1]/form/table/tbody/tr[8]/td[2]')[0].text\r\n gname1 = voter.xpath(\r\n '//*[@id=\"ng-app\"]/body/div[4]/div/div[1]/form/table/tbody/tr[10]/td')[0].text\r\n gname2 = voter.xpath(\r\n '//*[@id=\"ng-app\"]/body/div[4]/div/div[1]/form/table/tbody/tr[9]/td[2]')[0].text\r\n partno = voter.xpath(\r\n '//*[@id=\"ng-app\"]/body/div[4]/div/div[1]/form/table/tbody/tr[11]/td[2]')[0].text\r\n partname = voter.xpath(\r\n '//*[@id=\"ng-app\"]/body/div[4]/div/div[1]/form/table/tbody/tr[12]/td[2]')[0].text\r\n serialno = voter.xpath(\r\n '//*[@id=\"ng-app\"]/body/div[4]/div/div[1]/form/table/tbody/tr[13]/td[2]')[0].text\r\n polling_station = voter.xpath(\r\n '//*[@id=\"ng-app\"]/body/div[4]/div/div[1]/form/table/tbody/tr[14]/td[2]')[0].text\r\n guardian_title = voter.xpath(\r\n '//*[@id=\"ng-app\"]/body/div[4]/div/div[1]/form/table/tbody/tr[9]/td[1]')[0].text\r\n \r\n if Voter.objects.filter(epic=epic).exists():\r\n messages.warning(request, \"This voter card is already downloaded.\")\r\n return redirect('voters-list')\r\n\r\n path = settings.BASE_DIR / \"media/barcodes/\"\r\n code128.image(epic).save(os.path.join(path, f\"{name1+gname1}.png\"))\r\n sp = block.split(\" \")\r\n spblock = f'{sp[2]} {sp[1]} {sp[0]}'\r\n blck2 = f\"{sp[2]} {sp[1]} {EngtoHindi(sp[0]).convert}\"\r\n partname2 = EngtoHindi(partname).convert\r\n voter_data = Voter(\r\n epic=epic,\r\n name1=name1,\r\n name2=name2,\r\n state=state,\r\n blck1=spblock,\r\n blck2=blck2,\r\n subblock=subblock,\r\n gender=gender,\r\n gname1=gname1,\r\n gname2=gname2,\r\n partname1=partname,\r\n partname2=partname2,\r\n partno=partno,\r\n serialno=serialno,\r\n barcode=f\"barcodes/{name1+gname1}.png\",\r\n guardian_title=guardian_title.split('/')[1].strip(),\r\n user=request.user,\r\n )\r\n voter_data.save()\r\n user = request.user\r\n user.points = user.points - 1\r\n user.save()\r\n messages.success(\r\n request, \"Voter card added successfully. Please update it before print.\")\r\n return redirect(\"voters-list\")\r\n return render(request, 'main/upload-voter.html')\r\n\r\n@login_required\r\ndef fill_voter(request, id):\r\n if protect_access(request):\r\n messages.warning(request, \"You have no points to take any print.\")\r\n return redirect(\"dashboard\")\r\n voter = get_object_or_404(Voter, id=id)\r\n if request.method == \"POST\":\r\n add1 = request.POST.get(\"add1\", voter.address1)\r\n add2 = request.POST.get(\"add2\", voter.address2)\r\n birth = request.POST.get(\"birth\", voter.birth)\r\n blck2 = request.POST.get(\"blck2\", voter.blck2)\r\n partname2 = request.POST.get(\"partname2\", voter.partname2)\r\n photo = request.FILES.get(\"photo\", voter.photo)\r\n \r\n if add1 == 'None' or add1 == '' or photo == '' or birth == '':\r\n messages.warning(\r\n request, \"Please update address1, address2, date of birth and photo\")\r\n else:\r\n voter.address1 = add1\r\n voter.address2 = add2\r\n voter.photo = photo\r\n voter.birth = birth\r\n voter.blck2 = blck2\r\n voter.partname2 = partname2\r\n voter.partname2 = partname2\r\n voter.save()\r\n messages.success(request, \"Voter updated. Please check and return to voters list\")\r\n context = {\r\n \"voter\": voter\r\n }\r\n if voter.address2 == \"None\" or voter.address2 == \"\":\r\n res = EngtoHindi(voter.address1).convert\r\n context['address2'] = res\r\n return render(request, 'main/fill-voter.html', context)\r\n\r\n@login_required\r\ndef delete_voter(request, id):\r\n if protect_access(request):\r\n messages.warning(request, \"You have no points to take any print.\")\r\n return redirect(\"dashboard\")\r\n\r\n voter = get_object_or_404(Voter, id=id)\r\n voter.delete()\r\n messages.success(request, \"Voter deleted successfully.\")\r\n return redirect(\"voters-list\")\r\n\r\n@login_required\r\ndef voters_list(request):\r\n voters = Voter.objects.filter(user=request.user)\r\n return render(request, 'main/voters.html', {'voters': voters})\r\n\r\n@login_required\r\ndef generate_pdf(request, id):\r\n voter = get_object_or_404(Voter, id=id)\r\n if voter.address1 == '' or voter.address2 == '' or voter.birth == '' or voter.photo == '':\r\n messages.warning(request, \"Please update Address, Birth and Image.\")\r\n return redirect(f\"/fill-voter/{voter.id}\")\r\n context = {\r\n \"voter\": voter,\r\n \"date\": date.today().strftime(\"%d/%m/%Y\")\r\n }\r\n return render(request, \"voter.html\", context)\r\n\r\n\r\n@login_required\r\ndef pan_list(request):\r\n pans = PANCard.objects.filter(user=request.user)\r\n return render(request, \"main/pan-list.html\", {'pans': pans})\r\n\r\n@login_required\r\ndef new_pan(request):\r\n if protect_access(request):\r\n messages.warning(request, \"You have no points to take any print.\")\r\n return redirect(\"dashboard\")\r\n if request.method == 'POST':\r\n name = request.POST.get('name')\r\n fname = request.POST.get('fname')\r\n birth = request.POST.get('birth')\r\n pan = request.POST.get('pan')\r\n photo = request.FILES.get('photo')\r\n sign = request.FILES.get('sign')\r\n new_pan = PANCard(\r\n pan=pan,\r\n name=name,\r\n fname=fname,\r\n birth=birth,\r\n photo=photo,\r\n sign=sign,\r\n user=request.user\r\n )\r\n new_pan.save()\r\n user = request.user\r\n user.points = user.points - 1\r\n user.save()\r\n messages.success(request, \"PAN card created successfully.\")\r\n return redirect('pan-list')\r\n return render(request, \"main/new-pan.html\")\r\n\r\n@login_required\r\ndef pan_pdf(request, pk):\r\n pan = get_object_or_404(PANCard, pk=pk)\r\n return render(request, \"pan.html\", {'pan': pan})", "sub_path": "main/views.py", "file_name": "views.py", "file_ext": "py", "file_size_in_byte": 10008, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "django.shortcuts.render", "line_number": 22, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 25, "usage_type": "call"}, {"api_name": "main.models.Voter.objects.filter", "line_number": 31, "usage_type": "call"}, {"api_name": "main.models.Voter.objects", "line_number": 31, "usage_type": "attribute"}, {"api_name": "main.models.Voter", "line_number": 31, "usage_type": "name"}, {"api_name": "main.models.PANCard.objects.filter", "line_number": 32, "usage_type": "call"}, {"api_name": "main.models.PANCard.objects", "line_number": 32, "usage_type": "attribute"}, {"api_name": "main.models.PANCard", "line_number": 32, "usage_type": "name"}, {"api_name": "const.PAY_AMOUNTS", "line_number": 36, "usage_type": "name"}, {"api_name": "django.conf.settings.RAZORPAY_KEY_ID", "line_number": 37, "usage_type": "attribute"}, {"api_name": "django.conf.settings", "line_number": 37, "usage_type": "name"}, {"api_name": "django.conf.settings.RAZORPAY_KEY_SECRET", "line_number": 38, "usage_type": "attribute"}, {"api_name": "django.conf.settings", "line_number": 38, "usage_type": "name"}, {"api_name": "razorpay.Client", "line_number": 40, "usage_type": "call"}, {"api_name": "main.models.Payment", "line_number": 45, "usage_type": "call"}, {"api_name": "const.PAY_AMOUNTS", "line_number": 47, "usage_type": "name"}, {"api_name": "django.shortcuts.render", "line_number": 53, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 54, "usage_type": "call"}, {"api_name": "django.contrib.auth.decorators.login_required", "line_number": 27, "usage_type": "name"}, {"api_name": "django.contrib.messages.warning", "line_number": 60, "usage_type": "call"}, {"api_name": "django.contrib.messages", "line_number": 60, "usage_type": "name"}, {"api_name": "django.shortcuts.redirect", "line_number": 61, "usage_type": "call"}, {"api_name": "main.models.Payment.objects.filter", "line_number": 63, "usage_type": "call"}, {"api_name": "main.models.Payment.objects", "line_number": 63, "usage_type": "attribute"}, {"api_name": "main.models.Payment", "line_number": 63, "usage_type": "name"}, {"api_name": "django.contrib.messages.success", "line_number": 65, "usage_type": "call"}, {"api_name": "django.contrib.messages", "line_number": 65, "usage_type": "name"}, {"api_name": "django.shortcuts.redirect", "line_number": 66, "usage_type": "call"}, {"api_name": "const.POINTS_AMOUNTS", "line_number": 70, "usage_type": "name"}, {"api_name": "django.shortcuts.render", "line_number": 79, "usage_type": "call"}, {"api_name": "django.contrib.auth.decorators.login_required", "line_number": 56, "usage_type": "name"}, {"api_name": "django.views.decorators.csrf.csrf_exempt", "line_number": 57, "usage_type": "name"}, {"api_name": "django.contrib.messages.warning", "line_number": 84, "usage_type": "call"}, {"api_name": "django.contrib.messages", "line_number": 84, "usage_type": "name"}, {"api_name": "django.shortcuts.redirect", "line_number": 85, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 90, "usage_type": "call"}, {"api_name": "bs4.BeautifulSoup", "line_number": 91, "usage_type": "call"}, {"api_name": "lxml.etree.HTML", "line_number": 92, "usage_type": "call"}, {"api_name": "lxml.etree", "line_number": 92, "usage_type": "name"}, {"api_name": "main.models.Voter.objects.filter", "line_number": 122, "usage_type": "call"}, {"api_name": "main.models.Voter.objects", "line_number": 122, "usage_type": "attribute"}, {"api_name": "main.models.Voter", "line_number": 122, "usage_type": "name"}, {"api_name": "django.contrib.messages.warning", "line_number": 123, "usage_type": "call"}, {"api_name": "django.contrib.messages", "line_number": 123, "usage_type": "name"}, {"api_name": "django.shortcuts.redirect", "line_number": 124, "usage_type": "call"}, {"api_name": "django.conf.settings.BASE_DIR", "line_number": 126, "usage_type": "attribute"}, {"api_name": "django.conf.settings", "line_number": 126, "usage_type": "name"}, {"api_name": "code128.image", "line_number": 127, "usage_type": "call"}, {"api_name": "os.path.join", "line_number": 127, "usage_type": "call"}, {"api_name": "os.path", "line_number": 127, "usage_type": "attribute"}, {"api_name": "englisttohindi.englisttohindi.EngtoHindi", "line_number": 130, "usage_type": "call"}, {"api_name": "englisttohindi.englisttohindi.EngtoHindi", "line_number": 131, "usage_type": "call"}, {"api_name": "main.models.Voter", "line_number": 132, "usage_type": "call"}, {"api_name": "django.contrib.messages.success", "line_number": 155, "usage_type": "call"}, {"api_name": "django.contrib.messages", "line_number": 155, "usage_type": "name"}, {"api_name": "django.shortcuts.redirect", "line_number": 157, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 158, "usage_type": "call"}, {"api_name": "django.contrib.auth.decorators.login_required", "line_number": 81, "usage_type": "name"}, {"api_name": "django.contrib.messages.warning", "line_number": 163, "usage_type": "call"}, {"api_name": "django.contrib.messages", "line_number": 163, "usage_type": "name"}, {"api_name": "django.shortcuts.redirect", "line_number": 164, "usage_type": "call"}, {"api_name": "django.shortcuts.get_object_or_404", "line_number": 165, "usage_type": "call"}, {"api_name": "main.models.Voter", "line_number": 165, "usage_type": "argument"}, {"api_name": "django.contrib.messages.warning", "line_number": 175, "usage_type": "call"}, {"api_name": "django.contrib.messages", "line_number": 175, "usage_type": "name"}, {"api_name": "django.contrib.messages.success", "line_number": 186, "usage_type": "call"}, {"api_name": "django.contrib.messages", "line_number": 186, "usage_type": "name"}, {"api_name": "englisttohindi.englisttohindi.EngtoHindi", "line_number": 191, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 193, "usage_type": "call"}, {"api_name": "django.contrib.auth.decorators.login_required", "line_number": 160, "usage_type": "name"}, {"api_name": "django.contrib.messages.warning", "line_number": 198, "usage_type": "call"}, {"api_name": "django.contrib.messages", "line_number": 198, "usage_type": "name"}, {"api_name": "django.shortcuts.redirect", "line_number": 199, "usage_type": "call"}, {"api_name": "django.shortcuts.get_object_or_404", "line_number": 201, "usage_type": "call"}, {"api_name": "main.models.Voter", "line_number": 201, "usage_type": "argument"}, {"api_name": "django.contrib.messages.success", "line_number": 203, "usage_type": "call"}, {"api_name": "django.contrib.messages", "line_number": 203, "usage_type": "name"}, {"api_name": "django.shortcuts.redirect", "line_number": 204, "usage_type": "call"}, {"api_name": "django.contrib.auth.decorators.login_required", "line_number": 195, "usage_type": "name"}, {"api_name": "main.models.Voter.objects.filter", "line_number": 208, "usage_type": "call"}, {"api_name": "main.models.Voter.objects", "line_number": 208, "usage_type": "attribute"}, {"api_name": "main.models.Voter", "line_number": 208, "usage_type": "name"}, {"api_name": "django.shortcuts.render", "line_number": 209, "usage_type": "call"}, {"api_name": "django.contrib.auth.decorators.login_required", "line_number": 206, "usage_type": "name"}, {"api_name": "django.shortcuts.get_object_or_404", "line_number": 213, "usage_type": "call"}, {"api_name": "main.models.Voter", "line_number": 213, "usage_type": "argument"}, {"api_name": "django.contrib.messages.warning", "line_number": 215, "usage_type": "call"}, {"api_name": "django.contrib.messages", "line_number": 215, "usage_type": "name"}, {"api_name": "django.shortcuts.redirect", "line_number": 216, "usage_type": "call"}, {"api_name": "datetime.date.today", "line_number": 219, "usage_type": "call"}, {"api_name": "datetime.date", "line_number": 219, "usage_type": "name"}, {"api_name": "django.shortcuts.render", "line_number": 221, "usage_type": "call"}, {"api_name": "django.contrib.auth.decorators.login_required", "line_number": 211, "usage_type": "name"}, {"api_name": "main.models.PANCard.objects.filter", "line_number": 226, "usage_type": "call"}, {"api_name": "main.models.PANCard.objects", "line_number": 226, "usage_type": "attribute"}, {"api_name": "main.models.PANCard", "line_number": 226, "usage_type": "name"}, {"api_name": "django.shortcuts.render", "line_number": 227, "usage_type": "call"}, {"api_name": "django.contrib.auth.decorators.login_required", "line_number": 224, "usage_type": "name"}, {"api_name": "django.contrib.messages.warning", "line_number": 232, "usage_type": "call"}, {"api_name": "django.contrib.messages", "line_number": 232, "usage_type": "name"}, {"api_name": "django.shortcuts.redirect", "line_number": 233, "usage_type": "call"}, {"api_name": "main.models.PANCard", "line_number": 241, "usage_type": "call"}, {"api_name": "django.contrib.messages.success", "line_number": 254, "usage_type": "call"}, {"api_name": "django.contrib.messages", "line_number": 254, "usage_type": "name"}, {"api_name": "django.shortcuts.redirect", "line_number": 255, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 256, "usage_type": "call"}, {"api_name": "django.contrib.auth.decorators.login_required", "line_number": 229, "usage_type": "name"}, {"api_name": "django.shortcuts.get_object_or_404", "line_number": 260, "usage_type": "call"}, {"api_name": "main.models.PANCard", "line_number": 260, "usage_type": "argument"}, {"api_name": "django.shortcuts.render", "line_number": 261, "usage_type": "call"}, {"api_name": "django.contrib.auth.decorators.login_required", "line_number": 258, "usage_type": "name"}]}
{"seq_id": "297598567", "text": "from maddpg.MADDPG import MADDPG\nimport numpy as np\nimport torch as th\nfrom maddpg.params import scale_reward\nimport gym\nimport ma_gym\n\n# do not render the scene\n\nenv_name = 'PredatorPrey5x5-v0'\n#random_seed = 543\n#torch.manual_seed(random_seed)\nenv = gym.make(env_name)\n\nreward_record = []\n\nnp.random.seed(1234)\nth.manual_seed(1234)\n\nn_agents = env.n_agents\nn_actions = env.action_space[0].n\nn_states = env.observation_space[0].shape[0]\n\ncapacity = 1000000\nbatch_size = 1000\n\nn_episode = 2000\nmax_steps = 100\nepisodes_before_train = 100\n\nwin = None\nparam = None\n\nmaddpg = MADDPG(n_agents, n_states, n_actions, batch_size, capacity,\n episodes_before_train)\n\nFloatTensor = th.cuda.FloatTensor if maddpg.use_cuda else th.FloatTensor\nfor i_episode in range(n_episode):\n obs = env.reset()\n obs = np.stack(obs)\n if isinstance(obs, np.ndarray):\n obs = th.from_numpy(obs).float()\n total_reward = 0.0\n rr = np.zeros((n_agents,))\n for t in range(max_steps):\n # render every 100 episodes to speed up training\n obs = obs.type(FloatTensor)\n action = maddpg.select_action(obs).data.cpu()\n obs_, reward, done, _ = env.step(action.numpy())\n\n reward = th.FloatTensor(reward).type(FloatTensor)\n obs_ = np.stack(obs_)\n obs_ = th.from_numpy(obs_).float()\n if t != max_steps - 1:\n next_obs = obs_\n else:\n next_obs = None\n\n total_reward += reward.sum()\n rr += reward.cpu().numpy()\n maddpg.memory.push(obs.data, action, next_obs, reward)\n obs = next_obs\n c_loss, a_loss = maddpg.update_policy()\n maddpg.episode_done += 1\n print('Episode: %d, reward = %f' % (i_episode, total_reward))\n reward_record.append(total_reward)\n\nnp.save('rewards_predator', reward_record)", "sub_path": "maddpg/main.py", "file_name": "main.py", "file_ext": "py", "file_size_in_byte": 1810, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "gym.make", "line_number": 13, "usage_type": "call"}, {"api_name": "numpy.random.seed", "line_number": 17, "usage_type": "call"}, {"api_name": "numpy.random", "line_number": 17, "usage_type": "attribute"}, {"api_name": "torch.manual_seed", "line_number": 18, "usage_type": "call"}, {"api_name": "maddpg.MADDPG", "line_number": 34, "usage_type": "name"}, {"api_name": "maddpg.MADDPG.MADDPG", "line_number": 34, "usage_type": "call"}, {"api_name": "maddpg.MADDPG.use_cuda", "line_number": 37, "usage_type": "attribute"}, {"api_name": "maddpg.MADDPG", "line_number": 37, "usage_type": "name"}, {"api_name": "torch.cuda", "line_number": 37, "usage_type": "attribute"}, {"api_name": "torch.FloatTensor", "line_number": 37, "usage_type": "attribute"}, {"api_name": "numpy.stack", "line_number": 40, "usage_type": "call"}, {"api_name": "numpy.ndarray", "line_number": 41, "usage_type": "attribute"}, {"api_name": "torch.from_numpy", "line_number": 42, "usage_type": "call"}, {"api_name": "numpy.zeros", "line_number": 44, "usage_type": "call"}, {"api_name": "maddpg.MADDPG.select_action", "line_number": 48, "usage_type": "call"}, {"api_name": "maddpg.MADDPG", "line_number": 48, "usage_type": "name"}, {"api_name": "torch.FloatTensor", "line_number": 51, "usage_type": "call"}, {"api_name": "numpy.stack", "line_number": 52, "usage_type": "call"}, {"api_name": "torch.from_numpy", "line_number": 53, "usage_type": "call"}, {"api_name": "maddpg.MADDPG.memory.push", "line_number": 61, "usage_type": "call"}, {"api_name": "maddpg.MADDPG.memory", "line_number": 61, "usage_type": "attribute"}, {"api_name": "maddpg.MADDPG", "line_number": 61, "usage_type": "name"}, {"api_name": "maddpg.MADDPG.update_policy", "line_number": 63, "usage_type": "call"}, {"api_name": "maddpg.MADDPG", "line_number": 63, "usage_type": "name"}, {"api_name": "maddpg.MADDPG.episode_done", "line_number": 64, "usage_type": "attribute"}, {"api_name": "maddpg.MADDPG", "line_number": 64, "usage_type": "name"}, {"api_name": "numpy.save", "line_number": 68, "usage_type": "call"}]}
{"seq_id": "468417625", "text": "# -*- coding: utf-8 -*-\r\n\"\"\"\r\nCreated on Wed May 18 15:19:00 2016\r\n\r\n@author: Ge\r\n\"\"\"\r\nimport numpy as np\r\nimport pandas as pd\r\nimport matplotlib.pyplot as plt\r\nimport scipy.optimize as sco\r\n\r\ndata = pd.read_excel(\"C:\\\\Users\\\\Administrator.PC-20150227RCLX\\\\Desktop\\\\fund database\\\\trading funds.xlsx\")\r\ndataC = data[['HKJF12','HKJUP003','HKPREEF','HKS035','HKUL00005']]\r\ndataC = dataC.tail(8 * 365)\r\ndataC = dataC.fillna(method = 'backfill')\r\nrets = np.log(dataC / dataC.shift(1))\r\nCov = rets.cov() * 250\r\nMean = rets.mean() * 250\r\nprets = []\r\npvols = []\r\nfor p in range(2500):\r\n weights = np.random.random(5)\r\n weights /= np.sum(weights)\r\n prets.append(np.sum(Mean * weights))\r\n pvols.append(np.sqrt(np.dot(weights.T,np.dot(Cov,weights)))) \r\nprets = np.array(prets)\r\npvols = np.array(pvols)\r\nplt.figure(figsize=(8,4))\r\nplt.scatter(pvols,prets, c=prets/pvols, marker='o')\r\nplt.grid(True)\r\nplt.xlabel('expected volatility')\r\nplt.ylabel('expected return')\r\nplt.colorbar(label='Sharpe ratio')\r\ndef statf(weights):\r\n weights = np.array(weights)\r\n pret = np.sum(Mean * weights)\r\n pvol = np.sqrt(np.dot(weights.T,np.dot(Cov,weights)))\r\n return np.array([pret,pvol,pret/pvol])\r\ndef min_sharpef(weights):\r\n return -statf(weights)[-1]\r\ncons = ({'type':'eq','fun':lambda x: np.sum(x) - 1})\r\nbnds = tuple((0,1) for x in range(5))\r\np = [0.2,0.2,0.2,0.2,0.2]\r\nopts = sco.minimize(min_sharpef,p,method='SLSQP',bounds=bnds,constraints=cons)\r\nopts['x'].round(3)\r\nstatf(opts['x'].round(3)) \r\n ", "sub_path": "MPT.py", "file_name": "MPT.py", "file_ext": "py", "file_size_in_byte": 1510, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "pandas.read_excel", "line_number": 12, "usage_type": "call"}, {"api_name": "numpy.log", "line_number": 16, "usage_type": "call"}, {"api_name": "numpy.random.random", "line_number": 22, "usage_type": "call"}, {"api_name": "numpy.random", "line_number": 22, "usage_type": "attribute"}, {"api_name": "numpy.sum", "line_number": 23, "usage_type": "call"}, {"api_name": "numpy.sum", "line_number": 24, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 25, "usage_type": "call"}, {"api_name": "numpy.dot", "line_number": 25, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 26, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 27, "usage_type": "call"}, {"api_name": "matplotlib.pyplot.figure", "line_number": 28, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 28, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.scatter", "line_number": 29, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 29, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.grid", "line_number": 30, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 30, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.xlabel", "line_number": 31, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 31, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.ylabel", "line_number": 32, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 32, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.colorbar", "line_number": 33, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 33, "usage_type": "name"}, {"api_name": "numpy.array", "line_number": 35, "usage_type": "call"}, {"api_name": "numpy.sum", "line_number": 36, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 37, "usage_type": "call"}, {"api_name": "numpy.dot", "line_number": 37, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 38, "usage_type": "call"}, {"api_name": "numpy.sum", "line_number": 41, "usage_type": "call"}, {"api_name": "scipy.optimize.minimize", "line_number": 44, "usage_type": "call"}, {"api_name": "scipy.optimize", "line_number": 44, "usage_type": "name"}]}
{"seq_id": "576171018", "text": "from conftest import QL_URL, crate_translator as translator\nfrom datetime import datetime\nfrom reporter.tests.utils import insert_test_data\nfrom utils.common import assert_equal_time_index_arrays\nimport pytest\nimport requests\nimport pdb\n\nentity_type = 'Room'\nattr_name_1 = 'temperature'\nattr_name_2 = 'pressure'\nn_days = 6\n\n\ndef query_url(values=False):\n url = \"{qlUrl}/types/{entityType}\"\n if values:\n url += '/value'\n return url.format(\n qlUrl=QL_URL,\n entityType=entity_type\n )\n\n@pytest.fixture()\ndef reporter_dataset(translator):\n insert_test_data(translator, [entity_type], n_entities=3, index_size=n_days)\n yield\n\n\ndef assert_1TNENA_response(obtained, expected, values_only=False):\n \"\"\"\n Check API responses for 1TNENA\n \"\"\"\n assert isinstance(obtained, dict)\n if not values_only:\n assert obtained['entityType'] == entity_type\n obt_entities_index = obtained['entities'][0]['index']\n exp_entities_index = expected['entities'][0]['index']\n else:\n obt_entities_index = obtained['values'][0]['index']\n exp_entities_index = expected['values'][0]['index']\n\n assert_equal_time_index_arrays(obt_entities_index, exp_entities_index)\n\n assert obtained == expected\n\ndef test_1TNENA_defaults(reporter_dataset):\n r = requests.get(query_url())\n assert r.status_code == 200, r.text\n\n # Assert Results\n expected_temperatures = list(range(n_days))\n expected_pressures = [t*10 for t in expected_temperatures]\n expected_index = [\n '1970-01-{:02}T00:00:00.000'.format(i+1) for i in expected_temperatures\n ]\n expected_attributes = [\n {\n 'attrName': attr_name_2,\n 'values' : expected_pressures\n },\n {\n 'attrName': attr_name_1,\n 'values' : expected_temperatures\n }\n ]\n expected_entities = [\n {\n 'attributes': expected_attributes,\n 'entityId': 'Room0',\n 'index': expected_index\n },\n {\n 'attributes': expected_attributes,\n 'entityId': 'Room1',\n 'index': expected_index\n },\n {\n 'attributes': expected_attributes,\n 'entityId': 'Room2',\n 'index': expected_index\n }\n ]\n expected = {\n 'entities': expected_entities,\n 'entityType': entity_type\n }\n\n obtained = r.json()\n assert_1TNENA_response(obtained, expected)\n\ndef test_1TNENA_one_entity(reporter_dataset):\n # Query\n entity_id = 'Room1'\n query_params = {\n 'id': entity_id\n }\n r = requests.get(query_url(), params=query_params)\n assert r.status_code == 200, r.text\n\n obtained_data = r.json()\n assert isinstance(obtained_data, dict)\n\n expected_temperatures = list(range(n_days))\n expected_pressures = [t*10 for t in expected_temperatures]\n expected_index = [\n '1970-01-{:02}T00:00:00.000'.format(i+1) for i in expected_temperatures\n ]\n\n expected_attributes = [\n {\n 'attrName': attr_name_2,\n 'values' : expected_pressures\n },\n {\n 'attrName': attr_name_1,\n 'values' : expected_temperatures\n }\n ]\n\n expected_entities = [\n {\n 'attributes': expected_attributes,\n 'entityId': 'Room1',\n 'index': expected_index\n }\n ]\n expected = {\n 'entities': expected_entities,\n 'entityType': entity_type\n }\n obtained = r.json()\n assert_1TNENA_response(obtained, expected)\n\ndef test_1TNENA_some_entities(reporter_dataset):\n # Query\n entity_id = 'Room0,Room2'\n query_params = {\n 'id': entity_id\n }\n r = requests.get(query_url(), params=query_params)\n assert r.status_code == 200, r.text\n\n # Assert Results\n expected_temperatures = list(range(n_days))\n expected_pressures = [t*10 for t in expected_temperatures]\n expected_index = [\n '1970-01-{:02}T00:00:00.000'.format(i+1) for i in expected_temperatures\n ]\n\n expected_attributes = [\n {\n 'attrName': attr_name_2,\n 'values' : expected_pressures\n },\n {\n 'attrName': attr_name_1,\n 'values' : expected_temperatures\n }\n ]\n\n expected_entities = [\n {\n 'attributes': expected_attributes,\n 'entityId': 'Room0',\n 'index': expected_index\n },\n {\n 'attributes': expected_attributes,\n 'entityId': 'Room2',\n 'index': expected_index\n },\n ]\n\n expected = {\n 'entities': expected_entities,\n 'entityType': entity_type\n }\n\n obtained = r.json()\n assert_1TNENA_response(obtained, expected)\n\ndef test_1TNENA_values_defaults(reporter_dataset):\n # Query\n query_params = {\n 'id': 'Room0,,Room1,RoomNotValid', # -> validates to Room0,Room1.\n }\n r = requests.get(query_url(values=True), params=query_params)\n assert r.status_code == 200, r.text\n\n # Assert Results\n expected_temperatures = list(range(n_days))\n expected_pressures = [t*10 for t in expected_temperatures]\n expected_index = [\n '1970-01-{:02}T00:00:00.000'.format(i+1) for i in expected_temperatures\n ]\n\n expected_attributes = [\n {\n 'attrName': attr_name_2,\n 'values' : expected_pressures\n },\n {\n 'attrName': attr_name_1,\n 'values' : expected_temperatures\n }\n ]\n\n expected_entities = [\n {\n 'attributes': expected_attributes,\n 'entityId': 'Room0',\n 'index': expected_index\n },\n {\n 'attributes': expected_attributes,\n 'entityId': 'Room1',\n 'index': expected_index\n },\n ]\n\n expected = {\n 'values': expected_entities\n }\n\n obtained = r.json()\n assert_1TNENA_response(obtained, expected, values_only=True)\n\ndef test_not_found():\n query_params = {\n 'id': 'RoomNotValid'\n }\n r = requests.get(query_url(), params=query_params)\n assert r.status_code == 404, r.text\n assert r.json() == {\n \"error\": \"Not Found\",\n \"description\": \"No records were found for such query.\"\n }\n\ndef test_weird_ids(reporter_dataset):\n \"\"\"\n Invalid ids are ignored (provided at least one is valid to avoid 404).\n Empty values are ignored.\n Order of ids is preserved in response (e.g., Room1 first, Room0 later)\n \"\"\"\n query_params = {\n 'id': 'Room1,RoomNotValid,,Room0,', # -> validates to Room0,Room1.\n }\n r = requests.get(query_url(), params=query_params)\n assert r.status_code == 200, r.text\n\n # Assert Results\n expected_temperatures = list(range(n_days))\n expected_pressures = [t*10 for t in expected_temperatures]\n expected_index = [\n '1970-01-{:02}T00:00:00.000'.format(i+1) for i in expected_temperatures\n ]\n\n expected_attributes = [\n {\n 'attrName': attr_name_2,\n 'values' : expected_pressures\n },\n {\n 'attrName': attr_name_1,\n 'values' : expected_temperatures\n }\n ]\n\n expected_entities = [\n {\n 'attributes': expected_attributes,\n 'entityId': 'Room0',\n 'index': expected_index\n },\n {\n 'attributes': expected_attributes,\n 'entityId': 'Room1',\n 'index': expected_index\n },\n ]\n\n expected = {\n 'entities': expected_entities,\n 'entityType': entity_type\n }\n\n obtained = r.json()\n assert_1TNENA_response(obtained, expected)\n\ndef test_aggregation_is_per_instance(translator):\n \"\"\"\n Attribute Aggregation works by default on a per-instance basis.\n Cross-instance aggregation not yet supported.\n It would change the shape of the response.\n \"\"\"\n t = 'Room'\n insert_test_data(translator, [t], entity_id='Room0', index_size=3)\n insert_test_data(translator, [t], entity_id='Room1', index_size=3)\n\n query_params = {\n 'attrs': 'temperature',\n 'id': 'Room0,Room1',\n 'aggrMethod': 'sum'\n }\n r = requests.get(query_url(), params=query_params)\n assert r.status_code == 200, r.text\n\n # Assert Results\n expected_attributes = [\n {\n 'attrName': attr_name_1,\n 'values' : [sum(range(3))]\n }\n ]\n\n expected_entities = [\n {\n 'attributes': expected_attributes,\n 'entityId': 'Room0',\n 'index': ['', '']\n },\n {\n 'attributes': expected_attributes,\n 'entityId': 'Room1',\n 'index': ['', '']\n }\n ]\n\n expected = {\n 'entities': expected_entities,\n 'entityType': entity_type\n }\n\n obtained = r.json()\n assert isinstance(obtained, dict)\n assert obtained == expected\n\n\n # Index array in the response is the used fromDate and toDate\n query_params = {\n 'attrs': 'temperature',\n 'id': 'Room0,Room1',\n 'aggrMethod': 'max',\n 'fromDate': datetime(1970, 1, 1).isoformat(),\n 'toDate': datetime(1970, 1, 6).isoformat(),\n }\n r = requests.get(query_url(), params=query_params)\n assert r.status_code == 200, r.text\n\n # Assert Results\n expected_attributes = [\n {\n 'attrName': attr_name_1,\n 'values' : [2]\n }\n ]\n\n expected_entities = [\n {\n 'attributes': expected_attributes,\n 'entityId': 'Room0',\n 'index': ['1970-01-01T00:00:00', '1970-01-06T00:00:00']\n },\n {\n 'attributes': expected_attributes,\n 'entityId': 'Room1',\n 'index': ['1970-01-01T00:00:00', '1970-01-06T00:00:00']\n }\n ]\n\n expected = {\n 'entities': expected_entities,\n 'entityType': entity_type\n }\n\n obtained = r.json()\n assert isinstance(obtained, dict)\n assert obtained == expected\n\n@pytest.mark.parametrize(\"aggr_period, exp_index, ins_period\", [\n (\"day\", ['1970-01-01T00:00:00.000',\n '1970-01-02T00:00:00.000',\n '1970-01-03T00:00:00.000'], \"hour\"),\n (\"hour\", ['1970-01-01T00:00:00.000',\n '1970-01-01T01:00:00.000',\n '1970-01-01T02:00:00.000'], \"minute\"),\n (\"minute\", ['1970-01-01T00:00:00.000',\n '1970-01-01T00:01:00.000',\n '1970-01-01T00:02:00.000'], \"second\"),\n])\ndef test_1TNENA_aggrPeriod(translator, aggr_period, exp_index, ins_period):\n # Custom index to test aggrPeriod\n for i in exp_index:\n base = datetime.strptime(i, \"%Y-%m-%dT%H:%M:%S.%f\")\n insert_test_data(translator,\n [entity_type],\n index_size=5,\n index_base=base,\n index_period=ins_period)\n\n # aggrPeriod needs aggrMethod\n query_params = {\n 'aggrPeriod': aggr_period,\n }\n r = requests.get(query_url(), params=query_params)\n assert r.status_code == 400, r.text\n\n # Check aggregation with aggrPeriod\n query_params = {\n 'attrs': 'temperature',\n 'aggrMethod': 'sum',\n 'aggrPeriod': aggr_period,\n }\n r = requests.get(query_url(), params=query_params)\n assert r.status_code == 200, r.text\n\n # Assert Results\n exp_sum = 0 + 1 + 2 + 3 + 4\n\n expected_attributes = [\n {\n 'attrName': attr_name_1,\n 'values' : [exp_sum, exp_sum, exp_sum]\n }\n ]\n\n expected_entities = [\n {\n 'attributes': expected_attributes,\n 'entityId': 'Room0',\n 'index': exp_index\n }\n ]\n\n expected = {\n 'entities': expected_entities,\n 'entityType': entity_type\n }\n\n obtained = r.json()\n assert isinstance(obtained, dict)\n assert_1TNENA_response(obtained, expected)\n\ndef test_1TNENA_aggrScope(reporter_dataset):\n # Notify users when not yet implemented\n query_params = {\n 'aggrMethod': 'avg',\n 'aggrScope': 'global',\n }\n r = requests.get(query_url(), params=query_params)\n assert r.status_code == 501, r.text\n\n", "sub_path": "src/reporter/tests/test_1TNENA.py", "file_name": "test_1TNENA.py", "file_ext": "py", "file_size_in_byte": 12161, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "conftest.QL_URL", "line_number": 20, "usage_type": "name"}, {"api_name": "reporter.tests.utils.insert_test_data", "line_number": 26, "usage_type": "call"}, {"api_name": "conftest.crate_translator", "line_number": 26, "usage_type": "argument"}, {"api_name": "pytest.fixture", "line_number": 24, "usage_type": "call"}, {"api_name": "utils.common.assert_equal_time_index_arrays", "line_number": 43, "usage_type": "call"}, {"api_name": "requests.get", "line_number": 48, "usage_type": "call"}, {"api_name": "requests.get", "line_number": 98, "usage_type": "call"}, {"api_name": "requests.get", "line_number": 141, "usage_type": "call"}, {"api_name": "requests.get", "line_number": 188, "usage_type": "call"}, {"api_name": "requests.get", "line_number": 233, "usage_type": "call"}, {"api_name": "requests.get", "line_number": 249, "usage_type": "call"}, {"api_name": "reporter.tests.utils.insert_test_data", "line_number": 298, "usage_type": "call"}, {"api_name": "conftest.crate_translator", "line_number": 298, "usage_type": "argument"}, {"api_name": "reporter.tests.utils.insert_test_data", "line_number": 299, "usage_type": "call"}, {"api_name": "conftest.crate_translator", "line_number": 299, "usage_type": "argument"}, {"api_name": "requests.get", "line_number": 306, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 345, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 346, "usage_type": "call"}, {"api_name": "requests.get", "line_number": 348, "usage_type": "call"}, {"api_name": "datetime.datetime.strptime", "line_number": 395, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 395, "usage_type": "name"}, {"api_name": "reporter.tests.utils.insert_test_data", "line_number": 396, "usage_type": "call"}, {"api_name": "conftest.crate_translator", "line_number": 396, "usage_type": "argument"}, {"api_name": "requests.get", "line_number": 406, "usage_type": "call"}, {"api_name": "requests.get", "line_number": 415, "usage_type": "call"}, {"api_name": "pytest.mark.parametrize", "line_number": 381, "usage_type": "call"}, {"api_name": "pytest.mark", "line_number": 381, "usage_type": "attribute"}, {"api_name": "requests.get", "line_number": 451, "usage_type": "call"}]}
{"seq_id": "539576883", "text": "# uncompyle6 version 3.7.4\n# Python bytecode 3.7 (3394)\n# Decompiled from: Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 18:58:18) [MSC v.1900 64 bit (AMD64)]\n# Embedded file name: T:\\InGame\\Gameplay\\Scripts\\Server\\situations\\complex\\mother_plant_battle.py\n# Compiled at: 2020-09-17 02:52:35\n# Size of source mod 2**32: 26813 bytes\nimport itertools, random\nfrom buffs.tunable import TunableBuffReference\nfrom date_and_time import create_time_span\nfrom distributor.rollback import ProtocolBufferRollback\nfrom distributor.shared_messages import build_icon_info_msg, IconInfoData\nfrom event_testing.test_events import TestEvent\nfrom interactions.aop import AffordanceObjectPair\nfrom interactions.context import InteractionContext, QueueInsertStrategy, InteractionSource\nfrom interactions.priority import Priority\nfrom objects.components.state import TunableStateValueReference\nfrom sims4.localization import TunableLocalizedString\nfrom sims4.tuning.instances import lock_instance_tunables\nfrom sims4.tuning.tunable import TunableReference, TunableSimMinute, TunableResourceKey, TunableList\nfrom sims4.tuning.tunable_base import GroupNames\nfrom situations.base_situation import SituationDisplayPriority, _RequestUserData\nfrom situations.bouncer.bouncer_request import SelectableSimRequestFactory\nfrom situations.bouncer.bouncer_types import BouncerRequestPriority\nfrom situations.complex.mother_plant_battle_ops import MotherplantBattleStates\nfrom situations.situation_complex import SituationComplexCommon, SituationState, CommonSituationState, SituationStateData, TunableInteractionOfInterest\nfrom situations.situation_meter import StatBasedSituationMeterData\nfrom situations.situation_types import SituationDisplayType, SituationUserFacingType\nimport alarms, interactions, services, sims4.resources\nlogger = sims4.log.Logger('Situations', default_owner='jjacobson')\n\nclass PrepareForBattleSituationState(SituationState):\n\n def _on_set_sim_role_state(self, sim, *args, **kwargs):\n (super()._on_set_sim_role_state)(sim, *args, **kwargs)\n if self.owner.num_of_sims >= len(self.owner._guest_list):\n self.owner._change_state(self.owner.base_battle_situation_state())\n\n @property\n def zombie_attack_valid(self):\n return False\n\n def _get_role_state_overrides(self, sim, job_type, role_state_type, role_affordance_target):\n motherplant = self.owner._get_motherplant()\n return (role_state_type, motherplant)\n\n\nclass BattleThePlantSituationState(CommonSituationState):\n\n @property\n def zombie_attack_valid(self):\n return True\n\n\nclass AttackBattleThePlantSituationState(CommonSituationState):\n\n @property\n def zombie_attack_valid(self):\n return True\n\n def timer_expired(self):\n self.owner._change_state(self.owner.base_battle_situation_state())\n\n\nclass InspireBattleThePlantSituationState(CommonSituationState):\n\n @property\n def zombie_attack_valid(self):\n return True\n\n def timer_expired(self):\n self.owner._change_state(self.owner.base_battle_situation_state())\n\n\nclass RallyBattleThePlantSituationState(CommonSituationState):\n\n @property\n def zombie_attack_valid(self):\n return True\n\n def timer_expired(self):\n self.owner._change_state(self.owner.base_battle_situation_state())\n\n\nclass WarblingWarcryBattleThePlantSituationState(CommonSituationState):\n\n @property\n def zombie_attack_valid(self):\n return False\n\n def timer_expired(self):\n self.owner._change_state(self.owner.base_battle_situation_state())\n\n\nclass MotherPlantBattleSituation(SituationComplexCommon):\n MOTHER_PLANT_METER_ID = 1\n PLAYER_HEALTH_METER_ID = 2\n INSTANCE_TUNABLES = {'player_job':TunableReference(description='\\n Job for the main player sim that fights the plant.\\n ',\n manager=services.get_instance_manager(sims4.resources.Types.SITUATION_JOB)), \n 'player_sim_role_state':TunableReference(description='\\n Role state for the main player sim Role.\\n ',\n manager=services.get_instance_manager(sims4.resources.Types.ROLE_STATE)), \n 'other_player_jobs':TunableReference(description='\\n Job for the other player Sims that are not the main Sim and are not\\n participating as helpers.\\n ',\n manager=services.get_instance_manager(sims4.resources.Types.SITUATION_JOB)), \n 'other_player_sims_role_state':TunableReference(description='\\n Role state for the other player Sims.\\n ',\n manager=services.get_instance_manager(sims4.resources.Types.ROLE_STATE)), \n 'helper_1_job':TunableReference(description='\\n Job for one of the helper Sims for the fight.\\n ',\n manager=services.get_instance_manager(sims4.resources.Types.SITUATION_JOB)), \n 'helper_2_job':TunableReference(description='\\n Job for one of the helper Sims for the fight.\\n ',\n manager=services.get_instance_manager(sims4.resources.Types.SITUATION_JOB)), \n 'helper_3_job':TunableReference(description='\\n Job for one of the helper Sims for the fight.\\n ',\n manager=services.get_instance_manager(sims4.resources.Types.SITUATION_JOB)), \n 'helper_sim_prepare_role_state_1':TunableReference(description='\\n Role state for helper Sim 1 when preparing for battle.\\n ',\n manager=services.get_instance_manager(sims4.resources.Types.ROLE_STATE)), \n 'helper_sim_prepare_role_state_2':TunableReference(description='\\n Role state for helper Sim 2 when preparing for battle.\\n ',\n manager=services.get_instance_manager(sims4.resources.Types.ROLE_STATE)), \n 'helper_sim_prepare_role_state_3':TunableReference(description='\\n Role state for helper Sim 3 when preparing for battle.\\n ',\n manager=services.get_instance_manager(sims4.resources.Types.ROLE_STATE)), \n 'zombie_job':TunableReference(description='\\n Job for the Zombies for the fight.\\n ',\n manager=services.get_instance_manager(sims4.resources.Types.SITUATION_JOB)), \n 'zombie_prepare_role_state':TunableReference(description='\\n Role state for the zombie Sims when preparing for battle.\\n ',\n manager=services.get_instance_manager(sims4.resources.Types.ROLE_STATE)), \n 'zombie_fight_interaction':TunableReference(description='\\n Interaction pushed on zombies to get them to fight a Sim.\\n ',\n manager=services.get_instance_manager(sims4.resources.Types.INTERACTION)), \n 'zombie_fight_interaction_timer':TunableSimMinute(description='\\n Timer for the amount of time between zombie attacks.\\n ',\n minimum=1,\n default=30), \n 'player_health_statistic':TunableReference(description=\"\\n The statistic that we will use in order to determine the Sim's\\n health for the motherplant.\\n \",\n manager=services.get_instance_manager(sims4.resources.Types.STATISTIC)), \n 'motherplant_health_statisic':TunableReference(description=\"\\n The statistic that we will use in order to determine the Sim's\\n health for the motherplant.\\n \",\n manager=services.get_instance_manager(sims4.resources.Types.STATISTIC)), \n 'victory_interaction_of_interest':TunableInteractionOfInterest(description='\\n The interaction of interest that we are looking for to determine\\n victory.\\n '), \n 'retreat_interaction_of_interest':TunableInteractionOfInterest(description='\\n The interaction of interest that we are looking for to determine\\n retreat.\\n '), \n 'loss_interaction_mixer':TunableReference(description='\\n The affordance that will be pushed on the primary Sims if they\\n lose.\\n ',\n manager=services.get_instance_manager(sims4.resources.Types.INTERACTION)), \n 'fight_affordance':TunableReference(description='\\n The primary fight interaction that we will use to run the defeat\\n mixer the player Sim.\\n ',\n manager=services.get_instance_manager(sims4.resources.Types.INTERACTION)), \n 'helper_victory_affordance':TunableReference(description='\\n The affordance that will be pushed on the helper Sims if they\\n achieve victory.\\n ',\n manager=services.get_instance_manager(sims4.resources.Types.INTERACTION)), \n 'helper_lose_affordance':TunableReference(description='\\n The affordance that will be pushed on the helper Sims if they\\n lose.\\n ',\n manager=services.get_instance_manager(sims4.resources.Types.INTERACTION)), \n 'mother_plant_definition':TunableReference(description='\\n The actual mother plant itself.\\n ',\n manager=services.definition_manager()), \n 'base_battle_situation_state':BattleThePlantSituationState.TunableFactory(locked_args={'allow_join_situation':True, \n 'time_out':None},\n tuning_group=GroupNames.STATE), \n 'attack_battle_situation_state':AttackBattleThePlantSituationState.TunableFactory(locked_args={'allow_join_situation': True},\n tuning_group=GroupNames.STATE), \n 'inspire_battle_situation_state':InspireBattleThePlantSituationState.TunableFactory(locked_args={'allow_join_situation': True},\n tuning_group=GroupNames.STATE), \n 'rally_battle_sitaution_state':RallyBattleThePlantSituationState.TunableFactory(locked_args={'allow_join_situation': True},\n tuning_group=GroupNames.STATE), \n 'warbling_warcry_battle_situation_state':WarblingWarcryBattleThePlantSituationState.TunableFactory(locked_args={'allow_join_situation': True},\n tuning_group=GroupNames.STATE), \n 'save_lock_tooltip':TunableLocalizedString(description='\\n The tooltip/message to show when the player tries to save the game\\n while this situation is running. Save is locked when situation starts.\\n ',\n tuning_group=GroupNames.UI), \n 'mother_plant_meter_settings':StatBasedSituationMeterData.TunableFactory(description='\\n The meter used to track the health of the mother plant.\\n ',\n tuning_group=GroupNames.SITUATION,\n locked_args={'_meter_id': MOTHER_PLANT_METER_ID}), \n 'player_health_meter_settings':StatBasedSituationMeterData.TunableFactory(description='\\n The meter used to track the health of the player team.\\n ',\n tuning_group=GroupNames.SITUATION,\n locked_args={'_meter_id': PLAYER_HEALTH_METER_ID}), \n 'mother_plant_icon':TunableResourceKey(description='\\n Icon to be displayed in the situation UI beside the mother plant\\n health bar.\\n ',\n resource_types=sims4.resources.CompoundTypes.IMAGE,\n default=None,\n allow_none=True,\n tuning_group=GroupNames.SITUATION), \n 'states_to_set_on_start':TunableList(description='\\n A list of states to set on the motherplant on start.\\n ',\n tunable=TunableStateValueReference(description='\\n The state to set.\\n ')), \n 'states_to_set_on_end':TunableList(description='\\n A list of states to set on the motherplant on end.\\n ',\n tunable=TunableStateValueReference(description='\\n The state to set.\\n ')), \n 'victory_reward':TunableReference(description='\\n The Reward received when the Sim wins the situation.\\n ',\n manager=services.get_instance_manager(sims4.resources.Types.REWARD)), \n 'victory_audio_sting':TunableResourceKey(description='\\n The sound to play when the Sim wins the battle.\\n ',\n resource_types=(\n sims4.resources.Types.PROPX,),\n default=None,\n tuning_group=GroupNames.AUDIO), \n 'defeat_audio_sting':TunableResourceKey(description='\\n The sound to play when the Sim loses the battle.\\n ',\n resource_types=(\n sims4.resources.Types.PROPX,),\n default=None,\n tuning_group=GroupNames.AUDIO), \n 'possessed_buff':TunableBuffReference(description='\\n Possessed Buff for zombie Sims. \\n ')}\n\n @property\n def user_facing_type(self):\n return SituationUserFacingType.MOTHER_PLANT_EVENT\n\n @property\n def situation_display_type(self):\n return SituationDisplayType.VET\n\n @property\n def situation_display_priority(self):\n return SituationDisplayPriority.HIGH\n\n @classmethod\n def _states(cls):\n return (SituationStateData(1, PrepareForBattleSituationState),\n SituationStateData.from_auto_factory(2, cls.base_battle_situation_state),\n SituationStateData.from_auto_factory(3, cls.attack_battle_situation_state),\n SituationStateData.from_auto_factory(4, cls.inspire_battle_situation_state),\n SituationStateData.from_auto_factory(5, cls.rally_battle_sitaution_state),\n SituationStateData.from_auto_factory(6, cls.warbling_warcry_battle_situation_state))\n\n @classmethod\n def default_job(cls):\n pass\n\n @classmethod\n def _get_tuned_job_and_default_role_state_tuples(cls):\n return ((cls.player_job, cls.player_sim_role_state),\n (\n cls.other_player_jobs, cls.other_player_sims_role_state),\n (\n cls.helper_1_job, cls.helper_sim_prepare_role_state_1),\n (\n cls.helper_2_job, cls.helper_sim_prepare_role_state_2),\n (\n cls.helper_3_job, cls.helper_sim_prepare_role_state_3),\n (\n cls.zombie_job, cls.zombie_prepare_role_state))\n\n def __init__(self, *args, **kwargs):\n (super().__init__)(*args, **kwargs)\n self._zombie_attack_alarm_handle = None\n self._registered_test_events = set()\n self._player_health_tracking_situation_goal = None\n self._statistic_watcher_handle = None\n self._victory = False\n\n @property\n def end_audio_sting(self):\n if self._victory:\n return self.victory_audio_sting\n return self.defeat_audio_sting\n\n def _get_reward(self):\n if self._victory:\n return self.victory_reward\n\n def _get_motherplant(self):\n return next(iter(services.object_manager().get_objects_of_type_gen(self.mother_plant_definition)))\n\n def _push_loss_on_player(self):\n motherplant = self._get_motherplant()\n for sim, situation_sim in self._situation_sims.items():\n if situation_sim.current_job_type is self.player_job:\n parent_si = sim.si_state.get_si_by_affordance(self.fight_affordance)\n if parent_si is not None:\n interaction_context = InteractionContext(sim, InteractionSource.PIE_MENU, Priority.Critical)\n aop = AffordanceObjectPair(self.loss_interaction_mixer, motherplant, self.fight_affordance, parent_si)\n aop.test_and_execute(interaction_context) or logger.error('Attempting to push Motherplant Battle Ending Interaction, but failed.')\n\n self._push_interaction_on_all_helpers(self.helper_lose_affordance)\n\n def on_goal_completed(self, goal):\n super().on_goal_completed(goal)\n self._push_loss_on_player()\n self._self_destruct()\n\n def _on_set_sim_job(self, sim, job_type):\n super()._on_set_sim_job(sim, job_type)\n if job_type is self.zombie_job:\n sim.add_buff_from_op((self.possessed_buff.buff_type), buff_reason=(self.possessed_buff.buff_reason))\n\n def _on_statistic_updated(self, stat_type, old_value, new_value):\n if stat_type is self.player_health_statistic:\n self._player_health_tracking_situation_goal.set_count(new_value)\n self._player_health_meter.send_update_if_dirty()\n else:\n if stat_type is self.motherplant_health_statisic:\n self._mother_plant_meter.send_update_if_dirty()\n\n def _zombie_attack(self, _):\n if not self._cur_state.zombie_attack_valid:\n return\n zombies = []\n for sim, situation_sim in self._situation_sims.items():\n if situation_sim.current_job_type is self.zombie_job:\n zombies.append(sim)\n\n zombie_to_attack = random.choice(zombies)\n context = InteractionContext(sim, (InteractionContext.SOURCE_SCRIPT),\n (interactions.priority.Priority.High),\n insert_strategy=(QueueInsertStrategy.NEXT),\n bucket=(interactions.context.InteractionBucketType.DEFAULT))\n zombie_to_attack.push_super_affordance(self.zombie_fight_interaction, None, context)\n\n def _push_interaction_on_all_helpers(self, interaction_to_push):\n for sim, situation_sim in self._situation_sims.items():\n if situation_sim.current_job_type is self.helper_1_job or situation_sim.current_job_type is self.helper_2_job or situation_sim.current_job_type is self.helper_3_job:\n context = InteractionContext(sim, (InteractionContext.SOURCE_SCRIPT),\n (interactions.priority.Priority.High),\n insert_strategy=(QueueInsertStrategy.NEXT),\n bucket=(interactions.context.InteractionBucketType.DEFAULT))\n sim.push_super_affordance(interaction_to_push, None, context)\n\n def handle_event(self, sim_info, event, resolver):\n super().handle_event(sim_info, event, resolver)\n if event != TestEvent.InteractionComplete:\n return\n elif resolver(self.victory_interaction_of_interest):\n self._push_interaction_on_all_helpers(self.helper_victory_affordance)\n self._victory = True\n self._self_destruct()\n else:\n if resolver(self.retreat_interaction_of_interest):\n self._push_loss_on_player()\n self._self_destruct()\n\n def start_situation(self):\n services.get_persistence_service().lock_save(self)\n super().start_situation()\n self._change_state(PrepareForBattleSituationState())\n motherplant = self._get_motherplant()\n motherplant.set_stat_value((self.player_health_statistic), 0, add=True)\n motherplant.set_stat_value((self.motherplant_health_statisic), (self.motherplant_health_statisic.max_value), add=True)\n for state_value in self.states_to_set_on_start:\n motherplant.set_state(state_value.state, state_value)\n\n statistic_tracker = motherplant.statistic_tracker\n self._statistic_watcher_handle = statistic_tracker.add_watcher(self._on_statistic_updated)\n self._setup_situation_meters()\n self._zombie_attack_alarm_handle = alarms.add_alarm(self, create_time_span(minutes=(self.zombie_fight_interaction_timer)),\n (self._zombie_attack),\n repeating=True)\n for custom_key in itertools.chain(self.victory_interaction_of_interest.custom_keys_gen(), self.retreat_interaction_of_interest.custom_keys_gen()):\n custom_key_tuple = (\n TestEvent.InteractionComplete, custom_key)\n self._registered_test_events.add(custom_key_tuple)\n services.get_event_manager().register_with_custom_key(self, TestEvent.InteractionComplete, custom_key)\n\n def _setup_situation_meters(self):\n motherplant = self._get_motherplant()\n self._mother_plant_meter = self.mother_plant_meter_settings.create_meter_with_sim_info(self, motherplant)\n self._player_health_meter = self.player_health_meter_settings.create_meter_with_sim_info(self, motherplant)\n\n def build_situation_start_message(self):\n msg = super().build_situation_start_message()\n with ProtocolBufferRollback(msg.meter_data) as (meter_data_msg):\n self.mother_plant_meter_settings.build_data_message(meter_data_msg)\n with ProtocolBufferRollback(msg.meter_data) as (meter_data_msg):\n self.player_health_meter_settings.build_data_message(meter_data_msg)\n build_icon_info_msg(IconInfoData(icon_resource=(self.mother_plant_icon)), None, msg.icon_info)\n return msg\n\n def _destroy(self):\n super()._destroy()\n services.get_persistence_service().unlock_save(self)\n for event_type, custom_key in self._registered_test_events:\n services.get_event_manager().unregister_with_custom_key(self, event_type, custom_key)\n\n motherplant = self._get_motherplant()\n statistic_tracker = motherplant.statistic_tracker\n statistic_tracker.remove_watcher(self._statistic_watcher_handle)\n for state_value in self.states_to_set_on_end:\n motherplant.set_state(state_value.state, state_value)\n\n self._registered_test_events.clear()\n if self._mother_plant_meter is not None:\n self._mother_plant_meter.destroy()\n if self._player_health_meter is not None:\n self._player_health_meter.destroy()\n\n def get_lock_save_reason(self):\n return self.save_lock_tooltip\n\n def set_motherplant_situation_state(self, motherplant_battle_state):\n if motherplant_battle_state == MotherplantBattleStates.ATTACK:\n self._change_state(self.attack_battle_situation_state())\n else:\n if motherplant_battle_state == MotherplantBattleStates.INSPIRE:\n self._change_state(self.inspire_battle_situation_state())\n else:\n if motherplant_battle_state == MotherplantBattleStates.RALLY:\n self._change_state(self.rally_battle_sitaution_state())\n else:\n if motherplant_battle_state == MotherplantBattleStates.WARBLING_WARCRY:\n self._change_state(self.warbling_warcry_battle_situation_state())\n\n def _on_proxy_situation_goal_setup(self, goal):\n self._player_health_tracking_situation_goal = goal\n\n def _issue_requests(self):\n super()._issue_requests()\n request = SelectableSimRequestFactory(self, (_RequestUserData()),\n (self.other_player_jobs),\n (self.exclusivity),\n request_priority=(BouncerRequestPriority.EVENT_DEFAULT_JOB))\n self.manager.bouncer.submit_request(request)\n\n\nlock_instance_tunables(MotherPlantBattleSituation, audio_sting_on_start=None,\n main_goal_audio_sting=None)", "sub_path": "Scripts/simulation/situations/complex/mother_plant_battle.py", "file_name": "mother_plant_battle.py", "file_ext": "py", "file_size_in_byte": 22432, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "sims4.localization.log.Logger", "line_number": 29, "usage_type": "call"}, {"api_name": "sims4.localization.log", "line_number": 29, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 29, "usage_type": "name"}, {"api_name": "situations.situation_complex.SituationState", "line_number": 31, "usage_type": "name"}, {"api_name": "situations.situation_complex.CommonSituationState", "line_number": 47, "usage_type": "name"}, {"api_name": "situations.situation_complex.CommonSituationState", "line_number": 54, "usage_type": "name"}, {"api_name": "situations.situation_complex.CommonSituationState", "line_number": 64, "usage_type": "name"}, {"api_name": "situations.situation_complex.CommonSituationState", "line_number": 74, "usage_type": "name"}, {"api_name": "situations.situation_complex.CommonSituationState", "line_number": 84, "usage_type": "name"}, {"api_name": "situations.situation_complex.SituationComplexCommon", "line_number": 94, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable.TunableReference", "line_number": 97, "usage_type": "call"}, {"api_name": "services.get_instance_manager", "line_number": 98, "usage_type": "call"}, {"api_name": "sims4.localization.resources", "line_number": 98, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 98, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable.TunableReference", "line_number": 99, "usage_type": "call"}, {"api_name": "services.get_instance_manager", "line_number": 100, "usage_type": "call"}, {"api_name": "sims4.localization.resources", "line_number": 100, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 100, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable.TunableReference", "line_number": 101, "usage_type": "call"}, {"api_name": "services.get_instance_manager", "line_number": 102, "usage_type": "call"}, {"api_name": "sims4.localization.resources", "line_number": 102, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 102, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable.TunableReference", "line_number": 103, "usage_type": "call"}, {"api_name": "services.get_instance_manager", "line_number": 104, "usage_type": "call"}, {"api_name": "sims4.localization.resources", "line_number": 104, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 104, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable.TunableReference", "line_number": 105, "usage_type": "call"}, {"api_name": "services.get_instance_manager", "line_number": 106, "usage_type": "call"}, {"api_name": "sims4.localization.resources", "line_number": 106, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 106, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable.TunableReference", "line_number": 107, "usage_type": "call"}, {"api_name": "services.get_instance_manager", "line_number": 108, "usage_type": "call"}, {"api_name": "sims4.localization.resources", "line_number": 108, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 108, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable.TunableReference", "line_number": 109, "usage_type": "call"}, {"api_name": "services.get_instance_manager", "line_number": 110, "usage_type": "call"}, {"api_name": "sims4.localization.resources", "line_number": 110, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 110, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable.TunableReference", "line_number": 111, "usage_type": "call"}, {"api_name": "services.get_instance_manager", "line_number": 112, "usage_type": "call"}, {"api_name": "sims4.localization.resources", "line_number": 112, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 112, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable.TunableReference", "line_number": 113, "usage_type": "call"}, {"api_name": "services.get_instance_manager", "line_number": 114, "usage_type": "call"}, {"api_name": "sims4.localization.resources", "line_number": 114, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 114, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable.TunableReference", "line_number": 115, "usage_type": "call"}, {"api_name": "services.get_instance_manager", "line_number": 116, "usage_type": "call"}, {"api_name": "sims4.localization.resources", "line_number": 116, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 116, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable.TunableReference", "line_number": 117, "usage_type": "call"}, {"api_name": "services.get_instance_manager", "line_number": 118, "usage_type": "call"}, {"api_name": "sims4.localization.resources", "line_number": 118, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 118, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable.TunableReference", "line_number": 119, "usage_type": "call"}, {"api_name": "services.get_instance_manager", "line_number": 120, "usage_type": "call"}, {"api_name": "sims4.localization.resources", "line_number": 120, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 120, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable.TunableReference", "line_number": 121, "usage_type": "call"}, {"api_name": "services.get_instance_manager", "line_number": 122, "usage_type": "call"}, {"api_name": "sims4.localization.resources", "line_number": 122, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 122, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable.TunableSimMinute", "line_number": 123, "usage_type": "call"}, {"api_name": "sims4.tuning.tunable.TunableReference", "line_number": 126, "usage_type": "call"}, {"api_name": "services.get_instance_manager", "line_number": 127, "usage_type": "call"}, {"api_name": "sims4.localization.resources", "line_number": 127, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 127, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable.TunableReference", "line_number": 128, "usage_type": "call"}, {"api_name": "services.get_instance_manager", "line_number": 129, "usage_type": "call"}, {"api_name": "sims4.localization.resources", "line_number": 129, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 129, "usage_type": "name"}, {"api_name": "situations.situation_complex.TunableInteractionOfInterest", "line_number": 130, "usage_type": "call"}, {"api_name": "situations.situation_complex.TunableInteractionOfInterest", "line_number": 131, "usage_type": "call"}, {"api_name": "sims4.tuning.tunable.TunableReference", "line_number": 132, "usage_type": "call"}, {"api_name": "services.get_instance_manager", "line_number": 133, "usage_type": "call"}, {"api_name": "sims4.localization.resources", "line_number": 133, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 133, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable.TunableReference", "line_number": 134, "usage_type": "call"}, {"api_name": "services.get_instance_manager", "line_number": 135, "usage_type": "call"}, {"api_name": "sims4.localization.resources", "line_number": 135, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 135, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable.TunableReference", "line_number": 136, "usage_type": "call"}, {"api_name": "services.get_instance_manager", "line_number": 137, "usage_type": "call"}, {"api_name": "sims4.localization.resources", "line_number": 137, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 137, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable.TunableReference", "line_number": 138, "usage_type": "call"}, {"api_name": "services.get_instance_manager", "line_number": 139, "usage_type": "call"}, {"api_name": "sims4.localization.resources", "line_number": 139, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 139, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable.TunableReference", "line_number": 140, "usage_type": "call"}, {"api_name": "services.definition_manager", "line_number": 141, "usage_type": "call"}, {"api_name": "sims4.tuning.tunable_base.GroupNames.STATE", "line_number": 144, "usage_type": "attribute"}, {"api_name": "sims4.tuning.tunable_base.GroupNames", "line_number": 144, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable_base.GroupNames.STATE", "line_number": 146, "usage_type": "attribute"}, {"api_name": "sims4.tuning.tunable_base.GroupNames", "line_number": 146, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable_base.GroupNames.STATE", "line_number": 148, "usage_type": "attribute"}, {"api_name": "sims4.tuning.tunable_base.GroupNames", "line_number": 148, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable_base.GroupNames.STATE", "line_number": 150, "usage_type": "attribute"}, {"api_name": "sims4.tuning.tunable_base.GroupNames", "line_number": 150, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable_base.GroupNames.STATE", "line_number": 152, "usage_type": "attribute"}, {"api_name": "sims4.tuning.tunable_base.GroupNames", "line_number": 152, "usage_type": "name"}, {"api_name": "sims4.localization.TunableLocalizedString", "line_number": 153, "usage_type": "call"}, {"api_name": "sims4.tuning.tunable_base.GroupNames.UI", "line_number": 154, "usage_type": "attribute"}, {"api_name": "sims4.tuning.tunable_base.GroupNames", "line_number": 154, "usage_type": "name"}, {"api_name": "situations.situation_meter.StatBasedSituationMeterData.TunableFactory", "line_number": 155, "usage_type": "call"}, {"api_name": "situations.situation_meter.StatBasedSituationMeterData", "line_number": 155, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable_base.GroupNames.SITUATION", "line_number": 156, "usage_type": "attribute"}, {"api_name": "sims4.tuning.tunable_base.GroupNames", "line_number": 156, "usage_type": "name"}, {"api_name": "situations.situation_meter.StatBasedSituationMeterData.TunableFactory", "line_number": 158, "usage_type": "call"}, {"api_name": "situations.situation_meter.StatBasedSituationMeterData", "line_number": 158, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable_base.GroupNames.SITUATION", "line_number": 159, "usage_type": "attribute"}, {"api_name": "sims4.tuning.tunable_base.GroupNames", "line_number": 159, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable.TunableResourceKey", "line_number": 161, "usage_type": "call"}, {"api_name": "sims4.localization.resources", "line_number": 162, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 162, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable_base.GroupNames.SITUATION", "line_number": 165, "usage_type": "attribute"}, {"api_name": "sims4.tuning.tunable_base.GroupNames", "line_number": 165, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable.TunableList", "line_number": 166, "usage_type": "call"}, {"api_name": "objects.components.state.TunableStateValueReference", "line_number": 167, "usage_type": "call"}, {"api_name": "sims4.tuning.tunable.TunableList", "line_number": 168, "usage_type": "call"}, {"api_name": "objects.components.state.TunableStateValueReference", "line_number": 169, "usage_type": "call"}, {"api_name": "sims4.tuning.tunable.TunableReference", "line_number": 170, "usage_type": "call"}, {"api_name": "services.get_instance_manager", "line_number": 171, "usage_type": "call"}, {"api_name": "sims4.localization.resources", "line_number": 171, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 171, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable.TunableResourceKey", "line_number": 172, "usage_type": "call"}, {"api_name": "sims4.localization.resources", "line_number": 174, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 174, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable_base.GroupNames.AUDIO", "line_number": 176, "usage_type": "attribute"}, {"api_name": "sims4.tuning.tunable_base.GroupNames", "line_number": 176, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable.TunableResourceKey", "line_number": 177, "usage_type": "call"}, {"api_name": "sims4.localization.resources", "line_number": 179, "usage_type": "attribute"}, {"api_name": "sims4.localization", "line_number": 179, "usage_type": "name"}, {"api_name": "sims4.tuning.tunable_base.GroupNames.AUDIO", "line_number": 181, "usage_type": "attribute"}, {"api_name": "sims4.tuning.tunable_base.GroupNames", "line_number": 181, "usage_type": "name"}, {"api_name": "buffs.tunable.TunableBuffReference", "line_number": 182, "usage_type": "call"}, {"api_name": "situations.situation_types.SituationUserFacingType.MOTHER_PLANT_EVENT", "line_number": 186, "usage_type": "attribute"}, {"api_name": "situations.situation_types.SituationUserFacingType", "line_number": 186, "usage_type": "name"}, {"api_name": "situations.situation_types.SituationDisplayType.VET", "line_number": 190, "usage_type": "attribute"}, {"api_name": "situations.situation_types.SituationDisplayType", "line_number": 190, "usage_type": "name"}, {"api_name": "situations.base_situation.SituationDisplayPriority.HIGH", "line_number": 194, "usage_type": "attribute"}, {"api_name": "situations.base_situation.SituationDisplayPriority", "line_number": 194, "usage_type": "name"}, {"api_name": "situations.situation_complex.SituationStateData", "line_number": 198, "usage_type": "call"}, {"api_name": "situations.situation_complex.SituationStateData.from_auto_factory", "line_number": 199, "usage_type": "call"}, {"api_name": "situations.situation_complex.SituationStateData", "line_number": 199, "usage_type": "name"}, {"api_name": "situations.situation_complex.SituationStateData.from_auto_factory", "line_number": 200, "usage_type": "call"}, {"api_name": "situations.situation_complex.SituationStateData", "line_number": 200, "usage_type": "name"}, {"api_name": "situations.situation_complex.SituationStateData.from_auto_factory", "line_number": 201, "usage_type": "call"}, {"api_name": "situations.situation_complex.SituationStateData", "line_number": 201, "usage_type": "name"}, {"api_name": "situations.situation_complex.SituationStateData.from_auto_factory", "line_number": 202, "usage_type": "call"}, {"api_name": "situations.situation_complex.SituationStateData", "line_number": 202, "usage_type": "name"}, {"api_name": "situations.situation_complex.SituationStateData.from_auto_factory", "line_number": 203, "usage_type": "call"}, {"api_name": "situations.situation_complex.SituationStateData", "line_number": 203, "usage_type": "name"}, {"api_name": "services.object_manager", "line_number": 242, "usage_type": "call"}, {"api_name": "interactions.context.InteractionContext", "line_number": 250, "usage_type": "call"}, {"api_name": "interactions.context.InteractionSource.PIE_MENU", "line_number": 250, "usage_type": "attribute"}, {"api_name": "interactions.context.InteractionSource", "line_number": 250, "usage_type": "name"}, {"api_name": "interactions.priority.Priority.Critical", "line_number": 250, "usage_type": "attribute"}, {"api_name": "interactions.priority.Priority", "line_number": 250, "usage_type": "name"}, {"api_name": "interactions.aop.AffordanceObjectPair", "line_number": 251, "usage_type": "call"}, {"api_name": "random.choice", "line_number": 282, "usage_type": "call"}, {"api_name": "interactions.context.InteractionContext", "line_number": 283, "usage_type": "call"}, {"api_name": "interactions.context.InteractionContext.SOURCE_SCRIPT", "line_number": 283, "usage_type": "attribute"}, {"api_name": "interactions.priority", "line_number": 284, "usage_type": "attribute"}, {"api_name": "interactions.context.QueueInsertStrategy.NEXT", "line_number": 285, "usage_type": "attribute"}, {"api_name": "interactions.context.QueueInsertStrategy", "line_number": 285, "usage_type": "name"}, {"api_name": "interactions.context", "line_number": 286, "usage_type": "attribute"}, {"api_name": "interactions.context.InteractionContext", "line_number": 292, "usage_type": "call"}, {"api_name": "interactions.context.InteractionContext.SOURCE_SCRIPT", "line_number": 292, "usage_type": "attribute"}, {"api_name": "interactions.priority", "line_number": 293, "usage_type": "attribute"}, {"api_name": "interactions.context.QueueInsertStrategy.NEXT", "line_number": 294, "usage_type": "attribute"}, {"api_name": "interactions.context.QueueInsertStrategy", "line_number": 294, "usage_type": "name"}, {"api_name": "interactions.context", "line_number": 295, "usage_type": "attribute"}, {"api_name": "event_testing.test_events.TestEvent.InteractionComplete", "line_number": 300, "usage_type": "attribute"}, {"api_name": "event_testing.test_events.TestEvent", "line_number": 300, "usage_type": "name"}, {"api_name": "services.get_persistence_service", "line_number": 312, "usage_type": "call"}, {"api_name": "alarms.add_alarm", "line_number": 324, "usage_type": "call"}, {"api_name": "date_and_time.create_time_span", "line_number": 324, "usage_type": "call"}, {"api_name": "itertools.chain", "line_number": 327, "usage_type": "call"}, {"api_name": "event_testing.test_events.TestEvent.InteractionComplete", "line_number": 329, "usage_type": "attribute"}, {"api_name": "event_testing.test_events.TestEvent", "line_number": 329, "usage_type": "name"}, {"api_name": "services.get_event_manager", "line_number": 331, "usage_type": "call"}, {"api_name": "event_testing.test_events.TestEvent.InteractionComplete", "line_number": 331, "usage_type": "attribute"}, {"api_name": "event_testing.test_events.TestEvent", "line_number": 331, "usage_type": "name"}, {"api_name": "distributor.rollback.ProtocolBufferRollback", "line_number": 340, "usage_type": "call"}, {"api_name": "distributor.rollback.ProtocolBufferRollback", "line_number": 342, "usage_type": "call"}, {"api_name": "distributor.shared_messages.build_icon_info_msg", "line_number": 344, "usage_type": "call"}, {"api_name": "distributor.shared_messages.IconInfoData", "line_number": 344, "usage_type": "call"}, {"api_name": "services.get_persistence_service", "line_number": 349, "usage_type": "call"}, {"api_name": "services.get_event_manager", "line_number": 351, "usage_type": "call"}, {"api_name": "situations.complex.mother_plant_battle_ops.MotherplantBattleStates.ATTACK", "line_number": 369, "usage_type": "attribute"}, {"api_name": "situations.complex.mother_plant_battle_ops.MotherplantBattleStates", "line_number": 369, "usage_type": "name"}, {"api_name": "situations.complex.mother_plant_battle_ops.MotherplantBattleStates.INSPIRE", "line_number": 372, "usage_type": "attribute"}, {"api_name": "situations.complex.mother_plant_battle_ops.MotherplantBattleStates", "line_number": 372, "usage_type": "name"}, {"api_name": "situations.complex.mother_plant_battle_ops.MotherplantBattleStates.RALLY", "line_number": 375, "usage_type": "attribute"}, {"api_name": "situations.complex.mother_plant_battle_ops.MotherplantBattleStates", "line_number": 375, "usage_type": "name"}, {"api_name": "situations.complex.mother_plant_battle_ops.MotherplantBattleStates.WARBLING_WARCRY", "line_number": 378, "usage_type": "attribute"}, {"api_name": "situations.complex.mother_plant_battle_ops.MotherplantBattleStates", "line_number": 378, "usage_type": "name"}, {"api_name": "situations.bouncer.bouncer_request.SelectableSimRequestFactory", "line_number": 386, "usage_type": "call"}, {"api_name": "situations.base_situation._RequestUserData", "line_number": 386, "usage_type": "call"}, {"api_name": "situations.bouncer.bouncer_types.BouncerRequestPriority.EVENT_DEFAULT_JOB", "line_number": 389, "usage_type": "attribute"}, {"api_name": "situations.bouncer.bouncer_types.BouncerRequestPriority", "line_number": 389, "usage_type": "name"}, {"api_name": "sims4.tuning.instances.lock_instance_tunables", "line_number": 393, "usage_type": "call"}]}
{"seq_id": "422445790", "text": "from dataclasses import dataclass, field\nfrom typing import List, Optional\nfrom ..core.datatypes_base import (\n AdExplicit,\n Ce,\n Cs,\n Ii,\n PnExplicit,\n TelExplicit,\n)\nfrom ..core.voc import (\n EntityClass,\n EntityDeterminer,\n NullFlavor,\n RoleClassAssignedEntity,\n)\nfrom .coct_mt150007_uv import CoctMt150007UvOrganization\n\n__NAMESPACE__ = \"urn:hl7-org:v3\"\n\n\n@dataclass\nclass CoctMt090108UvPerson:\n class Meta:\n name = \"COCT_MT090108UV.Person\"\n\n realm_code: List[Cs] = field(\n default_factory=list,\n metadata={\n \"name\": \"realmCode\",\n \"type\": \"Element\",\n \"namespace\": \"urn:hl7-org:v3\",\n }\n )\n type_id: Optional[Ii] = field(\n default=None,\n metadata={\n \"name\": \"typeId\",\n \"type\": \"Element\",\n \"namespace\": \"urn:hl7-org:v3\",\n }\n )\n template_id: List[Ii] = field(\n default_factory=list,\n metadata={\n \"name\": \"templateId\",\n \"type\": \"Element\",\n \"namespace\": \"urn:hl7-org:v3\",\n }\n )\n name: List[PnExplicit] = field(\n default_factory=list,\n metadata={\n \"type\": \"Element\",\n \"namespace\": \"urn:hl7-org:v3\",\n \"min_occurs\": 1,\n }\n )\n null_flavor: Optional[NullFlavor] = field(\n default=None,\n metadata={\n \"name\": \"nullFlavor\",\n \"type\": \"Attribute\",\n }\n )\n class_code: EntityClass = field(\n init=False,\n default=EntityClass.PSN,\n metadata={\n \"name\": \"classCode\",\n \"type\": \"Attribute\",\n \"required\": True,\n }\n )\n determiner_code: EntityDeterminer = field(\n init=False,\n default=EntityDeterminer.INSTANCE,\n metadata={\n \"name\": \"determinerCode\",\n \"type\": \"Attribute\",\n \"required\": True,\n }\n )\n\n\n@dataclass\nclass CoctMt090108UvAssignedPerson:\n class Meta:\n name = \"COCT_MT090108UV.AssignedPerson\"\n\n realm_code: List[Cs] = field(\n default_factory=list,\n metadata={\n \"name\": \"realmCode\",\n \"type\": \"Element\",\n \"namespace\": \"urn:hl7-org:v3\",\n }\n )\n type_id: Optional[Ii] = field(\n default=None,\n metadata={\n \"name\": \"typeId\",\n \"type\": \"Element\",\n \"namespace\": \"urn:hl7-org:v3\",\n }\n )\n template_id: List[Ii] = field(\n default_factory=list,\n metadata={\n \"name\": \"templateId\",\n \"type\": \"Element\",\n \"namespace\": \"urn:hl7-org:v3\",\n }\n )\n id: List[Ii] = field(\n default_factory=list,\n metadata={\n \"type\": \"Element\",\n \"namespace\": \"urn:hl7-org:v3\",\n \"min_occurs\": 1,\n }\n )\n code: Optional[Ce] = field(\n default=None,\n metadata={\n \"type\": \"Element\",\n \"namespace\": \"urn:hl7-org:v3\",\n }\n )\n addr: List[AdExplicit] = field(\n default_factory=list,\n metadata={\n \"type\": \"Element\",\n \"namespace\": \"urn:hl7-org:v3\",\n }\n )\n telecom: List[TelExplicit] = field(\n default_factory=list,\n metadata={\n \"type\": \"Element\",\n \"namespace\": \"urn:hl7-org:v3\",\n }\n )\n assigned_person: Optional[CoctMt090108UvPerson] = field(\n default=None,\n metadata={\n \"name\": \"assignedPerson\",\n \"type\": \"Element\",\n \"namespace\": \"urn:hl7-org:v3\",\n \"nillable\": True,\n }\n )\n represented_organization: Optional[CoctMt150007UvOrganization] = field(\n default=None,\n metadata={\n \"name\": \"representedOrganization\",\n \"type\": \"Element\",\n \"namespace\": \"urn:hl7-org:v3\",\n \"nillable\": True,\n }\n )\n null_flavor: Optional[NullFlavor] = field(\n default=None,\n metadata={\n \"name\": \"nullFlavor\",\n \"type\": \"Attribute\",\n }\n )\n class_code: RoleClassAssignedEntity = field(\n default=RoleClassAssignedEntity.ASSIGNED,\n metadata={\n \"name\": \"classCode\",\n \"type\": \"Attribute\",\n }\n )\n", "sub_path": "common_types/models/hl7_v3/ne2008/multi_cache/coct_mt090108_uv.py", "file_name": "coct_mt090108_uv.py", "file_ext": "py", "file_size_in_byte": 4288, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "typing.List", "line_number": 27, "usage_type": "name"}, {"api_name": "core.datatypes_base.Cs", "line_number": 27, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 27, "usage_type": "call"}, {"api_name": "typing.Optional", "line_number": 35, "usage_type": "name"}, {"api_name": "core.datatypes_base.Ii", "line_number": 35, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 35, "usage_type": "call"}, {"api_name": "typing.List", "line_number": 43, "usage_type": "name"}, {"api_name": "core.datatypes_base.Ii", "line_number": 43, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 43, "usage_type": "call"}, {"api_name": "typing.List", "line_number": 51, "usage_type": "name"}, {"api_name": "core.datatypes_base.PnExplicit", "line_number": 51, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 51, "usage_type": "call"}, {"api_name": "typing.Optional", "line_number": 59, "usage_type": "name"}, {"api_name": "core.voc.NullFlavor", "line_number": 59, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 59, "usage_type": "call"}, {"api_name": "core.voc.EntityClass", "line_number": 66, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 66, "usage_type": "call"}, {"api_name": "core.voc.EntityClass.PSN", "line_number": 68, "usage_type": "attribute"}, {"api_name": "core.voc.EntityClass", "line_number": 68, "usage_type": "name"}, {"api_name": "core.voc.EntityDeterminer", "line_number": 75, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 75, "usage_type": "call"}, {"api_name": "core.voc.EntityDeterminer.INSTANCE", "line_number": 77, "usage_type": "attribute"}, {"api_name": "core.voc.EntityDeterminer", "line_number": 77, "usage_type": "name"}, {"api_name": "dataclasses.dataclass", "line_number": 22, "usage_type": "name"}, {"api_name": "typing.List", "line_number": 91, "usage_type": "name"}, {"api_name": "core.datatypes_base.Cs", "line_number": 91, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 91, "usage_type": "call"}, {"api_name": "typing.Optional", "line_number": 99, "usage_type": "name"}, {"api_name": "core.datatypes_base.Ii", "line_number": 99, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 99, "usage_type": "call"}, {"api_name": "typing.List", "line_number": 107, "usage_type": "name"}, {"api_name": "core.datatypes_base.Ii", "line_number": 107, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 107, "usage_type": "call"}, {"api_name": "typing.List", "line_number": 115, "usage_type": "name"}, {"api_name": "core.datatypes_base.Ii", "line_number": 115, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 115, "usage_type": "call"}, {"api_name": "typing.Optional", "line_number": 123, "usage_type": "name"}, {"api_name": "core.datatypes_base.Ce", "line_number": 123, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 123, "usage_type": "call"}, {"api_name": "typing.List", "line_number": 130, "usage_type": "name"}, {"api_name": "core.datatypes_base.AdExplicit", "line_number": 130, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 130, "usage_type": "call"}, {"api_name": "typing.List", "line_number": 137, "usage_type": "name"}, {"api_name": "core.datatypes_base.TelExplicit", "line_number": 137, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 137, "usage_type": "call"}, {"api_name": "typing.Optional", "line_number": 144, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 144, "usage_type": "call"}, {"api_name": "typing.Optional", "line_number": 153, "usage_type": "name"}, {"api_name": "coct_mt150007_uv.CoctMt150007UvOrganization", "line_number": 153, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 153, "usage_type": "call"}, {"api_name": "typing.Optional", "line_number": 162, "usage_type": "name"}, {"api_name": "core.voc.NullFlavor", "line_number": 162, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 162, "usage_type": "call"}, {"api_name": "core.voc.RoleClassAssignedEntity", "line_number": 169, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 169, "usage_type": "call"}, {"api_name": "core.voc.RoleClassAssignedEntity.ASSIGNED", "line_number": 170, "usage_type": "attribute"}, {"api_name": "core.voc.RoleClassAssignedEntity", "line_number": 170, "usage_type": "name"}, {"api_name": "dataclasses.dataclass", "line_number": 86, "usage_type": "name"}]}
{"seq_id": "140994811", "text": "from django.shortcuts import render\nfrom django.urls import reverse\nfrom django.http import HttpResponseRedirect\n\nfrom .forms import FrmSetting\nfrom .models import Setting, Usr, setting_upload_to\nfrom routines.utils import move_uploaded_file, hipernormalize\nfrom routines.mkitsafe import valida_acceso\n\n\n@valida_acceso()\ndef index(request):\n usuario = Usr.objects.filter(id=request.user.pk)[0]\n search_value = \"\"\n data = Setting.objects.filter(es_multiple=False)\n if \"POST\" == request.method:\n if \"singles\" == request.POST.get('action'):\n parametros = Setting.objects.filter(es_multiple=False)\n for parametro in parametros:\n if(\"INTEGER\" == parametro.tipo\n or \"STRING\" == parametro.tipo\n or \"TEXT\" == parametro.tipo):\n valor = request.POST.get(parametro.nombre)\n if valor is not None:\n parametro.valor = valor\n parametro.save()\n elif (\"PICTURE\" == parametro.tipo\n or \"FILE\" == parametro.tipo):\n file = request.FILES.get(parametro.nombre)\n if file is not None:\n parametro.valor = move_uploaded_file(\n file, setting_upload_to)\n parametro.save()\n data = Setting.objects.filter(es_multiple=False)\n elif \"search\" == request.POST.get('action'):\n search_value = hipernormalize(request.POST.get('valor'))\n data = [reg\n for reg in data if (\n search_value in hipernormalize(reg.seccion)\n or search_value in hipernormalize(reg.nombre)\n or search_value in hipernormalize(\n reg.nombre_para_mostrar)\n or search_value in hipernormalize(reg.tipo))\n ]\n toolbar = []\n toolbar.append({'type': 'search'})\n return render(\n request,\n 'initsys/setting/values.html', {\n 'menu_main': usuario.main_menu_struct(),\n 'titulo': 'Parámetros del Sistema',\n 'singles': data,\n 'multiples': Setting.objects.filter(es_multiple=True),\n 'toolbar': toolbar,\n 'search_value': search_value,\n })\n\n\n@valida_acceso(['setting.administrar_settings_setting'])\ndef index_adm(request):\n usuario = Usr.objects.filter(id=request.user.pk)[0]\n search_value = \"\"\n data = Setting.objects.all()\n if \"POST\" == request.method:\n if \"search\" == request.POST.get('action'):\n search_value = hipernormalize(request.POST.get('valor'))\n data = [reg\n for reg in data if (\n search_value in hipernormalize(reg.seccion)\n or search_value in hipernormalize(reg.nombre)\n or search_value in hipernormalize(\n reg.nombre_para_mostrar)\n or search_value in hipernormalize(reg.tipo))\n ]\n toolbar = []\n if usuario.has_perm_or_has_perm_child(\n 'setting.agregar_settings_setting'):\n toolbar.append({\n 'type': 'link',\n 'view': 'setting_new',\n 'label': ' Nuevo'})\n toolbar.append({'type': 'search'})\n return render(\n request,\n 'initsys/setting/index.html', {\n 'menu_main': usuario.main_menu_struct(),\n 'titulo': 'Administración de Parámetros',\n 'data': data,\n 'toolbar': toolbar,\n 'search_value': search_value,\n })\n\n\n@valida_acceso(['setting.agregar_settings_setting'])\ndef new_adm(request):\n usuario = Usr.objects.filter(id=request.user.pk)[0]\n frm = FrmSetting(request.POST or None)\n if 'POST' == request.method:\n if frm.is_valid():\n obj = frm.save()\n return HttpResponseRedirect(reverse(\n 'setting_see', kwargs={'pk': obj.pk}))\n return render(request, 'global/form.html', {\n 'menu_main': usuario.main_menu_struct(),\n 'titulo': 'Parámetro',\n 'titulo_descripcion': 'Nuevo',\n 'frm': frm\n })\n\n\n@valida_acceso(['setting.agregar_settings_setting'])\ndef see_adm(request, pk):\n if not Setting.objects.filter(pk=pk).exists():\n return HttpResponseRedirect(reverse(\n 'item_no_encontrado'))\n usuario = Usr.objects.filter(id=request.user.pk)[0]\n obj = Setting.objects.get(pk=pk)\n frm = FrmSetting(instance=obj)\n toolbar = []\n if usuario.has_perm_or_has_perm_child(\n 'setting.administrar_settings_setting'):\n toolbar.append({\n 'type': 'link',\n 'view': 'setting_index',\n 'label': ' Ver todos'})\n if usuario.has_perm_or_has_perm_child(\n 'setting.actualizar_settings_setting'):\n toolbar.append({\n 'type': 'link_pk',\n 'view': 'setting_update',\n 'label': ' Actualizar', 'pk': pk})\n if usuario.has_perm_or_has_perm_child(\n 'setting.eliminar_settings_setting'):\n toolbar.append({\n 'type': 'link_pk_del',\n 'view': 'setting_delete',\n 'label': ' Eliminar',\n 'pk': pk})\n return render(request, 'global/form.html', {\n 'menu_main': usuario.main_menu_struct(),\n 'titulo': 'Parámetro',\n 'titulo_descripcion': obj,\n 'read_only': True,\n 'frm': frm,\n 'toolbar': toolbar\n })\n\n\n@valida_acceso(['setting.actualizar_settings_setting'])\ndef update_adm(request, pk):\n if not Setting.objects.filter(pk=pk).exists():\n return HttpResponseRedirect(reverse(\n 'item_no_encontrado'))\n usuario = Usr.objects.filter(id=request.user.pk)[0]\n obj = Setting.objects.get(pk=pk)\n frm = FrmSetting(instance=obj, data=request.POST or None)\n if 'POST' == request.method:\n if frm.is_valid():\n obj = frm.save()\n return HttpResponseRedirect(reverse(\n 'setting_see', kwargs={'pk': obj.pk}))\n return render(request, 'global/form.html', {\n 'menu_main': usuario.main_menu_struct(),\n 'titulo': 'Parámetro',\n 'titulo_descripcion': obj,\n 'frm': frm\n })\n\n\n@valida_acceso(['setting.eliminar_settings_setting'])\ndef delete_adm(request, pk):\n if not Setting.objects.filter(pk=pk).exists():\n return HttpResponseRedirect(reverse(\n 'item_no_encontrado'))\n Setting.objects.get(pk=pk).delete()\n return HttpResponseRedirect(reverse('setting_index'))\n", "sub_path": "initsys/vw_settings.py", "file_name": "vw_settings.py", "file_ext": "py", "file_size_in_byte": 6760, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "models.Usr.objects.filter", "line_number": 13, "usage_type": "call"}, {"api_name": "models.Usr.objects", "line_number": 13, "usage_type": "attribute"}, {"api_name": "models.Usr", "line_number": 13, "usage_type": "name"}, {"api_name": "models.Setting.objects.filter", "line_number": 15, "usage_type": "call"}, {"api_name": "models.Setting.objects", "line_number": 15, "usage_type": "attribute"}, {"api_name": "models.Setting", "line_number": 15, "usage_type": "name"}, {"api_name": "models.Setting.objects.filter", "line_number": 18, "usage_type": "call"}, {"api_name": "models.Setting.objects", "line_number": 18, "usage_type": "attribute"}, {"api_name": "models.Setting", "line_number": 18, "usage_type": "name"}, {"api_name": "routines.utils.move_uploaded_file", "line_number": 31, "usage_type": "call"}, {"api_name": "models.setting_upload_to", "line_number": 32, "usage_type": "argument"}, {"api_name": "models.Setting.objects.filter", "line_number": 34, "usage_type": "call"}, {"api_name": "models.Setting.objects", "line_number": 34, "usage_type": "attribute"}, {"api_name": "models.Setting", "line_number": 34, "usage_type": "name"}, {"api_name": "routines.utils.hipernormalize", "line_number": 36, "usage_type": "call"}, {"api_name": "routines.utils.hipernormalize", "line_number": 39, "usage_type": "call"}, {"api_name": "routines.utils.hipernormalize", "line_number": 40, "usage_type": "call"}, {"api_name": "routines.utils.hipernormalize", "line_number": 41, "usage_type": "call"}, {"api_name": "routines.utils.hipernormalize", "line_number": 43, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 47, "usage_type": "call"}, {"api_name": "models.Setting.objects.filter", "line_number": 53, "usage_type": "call"}, {"api_name": "models.Setting.objects", "line_number": 53, "usage_type": "attribute"}, {"api_name": "models.Setting", "line_number": 53, "usage_type": "name"}, {"api_name": "routines.mkitsafe.valida_acceso", "line_number": 11, "usage_type": "call"}, {"api_name": "models.Usr.objects.filter", "line_number": 61, "usage_type": "call"}, {"api_name": "models.Usr.objects", "line_number": 61, "usage_type": "attribute"}, {"api_name": "models.Usr", "line_number": 61, "usage_type": "name"}, {"api_name": "models.Setting.objects.all", "line_number": 63, "usage_type": "call"}, {"api_name": "models.Setting.objects", "line_number": 63, "usage_type": "attribute"}, {"api_name": "models.Setting", "line_number": 63, "usage_type": "name"}, {"api_name": "routines.utils.hipernormalize", "line_number": 66, "usage_type": "call"}, {"api_name": "routines.utils.hipernormalize", "line_number": 69, "usage_type": "call"}, {"api_name": "routines.utils.hipernormalize", "line_number": 70, "usage_type": "call"}, {"api_name": "routines.utils.hipernormalize", "line_number": 71, "usage_type": "call"}, {"api_name": "routines.utils.hipernormalize", "line_number": 73, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 83, "usage_type": "call"}, {"api_name": "routines.mkitsafe.valida_acceso", "line_number": 59, "usage_type": "call"}, {"api_name": "models.Usr.objects.filter", "line_number": 96, "usage_type": "call"}, {"api_name": "models.Usr.objects", "line_number": 96, "usage_type": "attribute"}, {"api_name": "models.Usr", "line_number": 96, "usage_type": "name"}, {"api_name": "forms.FrmSetting", "line_number": 97, "usage_type": "call"}, {"api_name": "django.http.HttpResponseRedirect", "line_number": 101, "usage_type": "call"}, {"api_name": "django.urls.reverse", "line_number": 101, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 103, "usage_type": "call"}, {"api_name": "routines.mkitsafe.valida_acceso", "line_number": 94, "usage_type": "call"}, {"api_name": "models.Setting.objects.filter", "line_number": 113, "usage_type": "call"}, {"api_name": "models.Setting.objects", "line_number": 113, "usage_type": "attribute"}, {"api_name": "models.Setting", "line_number": 113, "usage_type": "name"}, {"api_name": "django.http.HttpResponseRedirect", "line_number": 114, "usage_type": "call"}, {"api_name": "django.urls.reverse", "line_number": 114, "usage_type": "call"}, {"api_name": "models.Usr.objects.filter", "line_number": 116, "usage_type": "call"}, {"api_name": "models.Usr.objects", "line_number": 116, "usage_type": "attribute"}, {"api_name": "models.Usr", "line_number": 116, "usage_type": "name"}, {"api_name": "models.Setting.objects.get", "line_number": 117, "usage_type": "call"}, {"api_name": "models.Setting.objects", "line_number": 117, "usage_type": "attribute"}, {"api_name": "models.Setting", "line_number": 117, "usage_type": "name"}, {"api_name": "forms.FrmSetting", "line_number": 118, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 139, "usage_type": "call"}, {"api_name": "routines.mkitsafe.valida_acceso", "line_number": 111, "usage_type": "call"}, {"api_name": "models.Setting.objects.filter", "line_number": 151, "usage_type": "call"}, {"api_name": "models.Setting.objects", "line_number": 151, "usage_type": "attribute"}, {"api_name": "models.Setting", "line_number": 151, "usage_type": "name"}, {"api_name": "django.http.HttpResponseRedirect", "line_number": 152, "usage_type": "call"}, {"api_name": "django.urls.reverse", "line_number": 152, "usage_type": "call"}, {"api_name": "models.Usr.objects.filter", "line_number": 154, "usage_type": "call"}, {"api_name": "models.Usr.objects", "line_number": 154, "usage_type": "attribute"}, {"api_name": "models.Usr", "line_number": 154, "usage_type": "name"}, {"api_name": "models.Setting.objects.get", "line_number": 155, "usage_type": "call"}, {"api_name": "models.Setting.objects", "line_number": 155, "usage_type": "attribute"}, {"api_name": "models.Setting", "line_number": 155, "usage_type": "name"}, {"api_name": "forms.FrmSetting", "line_number": 156, "usage_type": "call"}, {"api_name": "django.http.HttpResponseRedirect", "line_number": 160, "usage_type": "call"}, {"api_name": "django.urls.reverse", "line_number": 160, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 162, "usage_type": "call"}, {"api_name": "routines.mkitsafe.valida_acceso", "line_number": 149, "usage_type": "call"}, {"api_name": "models.Setting.objects.filter", "line_number": 172, "usage_type": "call"}, {"api_name": "models.Setting.objects", "line_number": 172, "usage_type": "attribute"}, {"api_name": "models.Setting", "line_number": 172, "usage_type": "name"}, {"api_name": "django.http.HttpResponseRedirect", "line_number": 173, "usage_type": "call"}, {"api_name": "django.urls.reverse", "line_number": 173, "usage_type": "call"}, {"api_name": "models.Setting.objects.get", "line_number": 175, "usage_type": "call"}, {"api_name": "models.Setting.objects", "line_number": 175, "usage_type": "attribute"}, {"api_name": "models.Setting", "line_number": 175, "usage_type": "name"}, {"api_name": "django.http.HttpResponseRedirect", "line_number": 176, "usage_type": "call"}, {"api_name": "django.urls.reverse", "line_number": 176, "usage_type": "call"}, {"api_name": "routines.mkitsafe.valida_acceso", "line_number": 170, "usage_type": "call"}]}
{"seq_id": "371247319", "text": "def corrector_test():\n import nltk\n import nltk.tokenize as tok\n from corrector.corrector import find_error\n\n def process(sent, target):\n tokens = tok.word_tokenize(sent)\n print(tokens)\n result = tok.word_tokenize(target)\n alt, err = find_error(tokens, result)\n print(' Input:', sent)\n print('Output:', target)\n print(alt)\n for r, e in zip(alt, err):\n x = r[0][0] if r[0] else None\n y = r[1][0] if r[1] else None\n if not x:\n print('{:>13} ERROR, Add: {} '.format(e, y))\n elif not y:\n print('{:>13} ERROR, Remove: {} '.format(e, x))\n else:\n print('{:>13} ERROR, Replace: {} -> {}'.format(e, x, y))\n print('')\n\n sent = \"what you fuck the doing\"\n target = \"what are you fucking doing?\"\n\n sent = 'too young too simple'\n target = 'too young, too simple.'\n\n sent = 'what fuck'\n target = 'what the fuck!'\n\n sent = \"i'm teacher\"\n target = \"i am a teacher\"\n\n# process(sent, target)\n\ndef insert(a, i, ws):\n for w in reversed(ws):\n a.insert(i, w)\n\n\na = [1,2,3,4,5,6,67]\na[2:2] = [0]\nprint(a)", "sub_path": "t.py", "file_name": "t.py", "file_ext": "py", "file_size_in_byte": 1195, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "nltk.tokenize.word_tokenize", "line_number": 7, "usage_type": "call"}, {"api_name": "nltk.tokenize", "line_number": 7, "usage_type": "name"}, {"api_name": "nltk.tokenize.word_tokenize", "line_number": 9, "usage_type": "call"}, {"api_name": "nltk.tokenize", "line_number": 9, "usage_type": "name"}, {"api_name": "corrector.corrector.find_error", "line_number": 10, "usage_type": "call"}]}
{"seq_id": "162423789", "text": "from PyQt5.QtWidgets import QLabel, QPushButton\nfrom PyQt5.QtWidgets import QGridLayout\nfrom PyQt5.QtGui import QPixmap, QPalette, QColor, QFont\nfrom PyQt5.QtWidgets import QWidget\n\nclass HowToPlay(QWidget):\n\n def __init__(self):\n super().__init__()\n\n pal = QPalette()\n pal.setColor(QPalette.Background, QColor(0, 0, 0))\n self.setPalette(pal)\n\n self.initUI()\n\n def initUI(self):\n self.grid = QGridLayout()\n\n self.playLabel = QLabel()\n self.setMinimumHeight(404)\n self.setMinimumWidth(650)\n pixmap = QPixmap('gamerule.png')\n pixmap = pixmap.scaledToHeight(404)\n self.playLabel.setPixmap(pixmap)\n\n self.close_Btn = QPushButton(\"CLOSE\")\n\n self.close_Btn.clicked.connect(self.end_window)\n\n self.grid.addWidget(self.playLabel, 0, 0, 8, 2)\n self.grid.addWidget(self.close_Btn, 8, 0, 1, 2)\n\n self.setLayout(self.grid)\n self.setWindowTitle('how To play Game?')\n self.setGeometry(620, 170, 680, 650)\n self.show()\n\n def end_window(self):\n self.deleteLater()", "sub_path": "Last/howtoplay.py", "file_name": "howtoplay.py", "file_ext": "py", "file_size_in_byte": 1103, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "PyQt5.QtWidgets.QWidget", "line_number": 6, "usage_type": "name"}, {"api_name": "PyQt5.QtGui.QPalette", "line_number": 11, "usage_type": "call"}, {"api_name": "PyQt5.QtGui.QPalette.Background", "line_number": 12, "usage_type": "attribute"}, {"api_name": "PyQt5.QtGui.QPalette", "line_number": 12, "usage_type": "name"}, {"api_name": "PyQt5.QtGui.QColor", "line_number": 12, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QGridLayout", "line_number": 18, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 20, "usage_type": "call"}, {"api_name": "PyQt5.QtGui.QPixmap", "line_number": 23, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QPushButton", "line_number": 27, "usage_type": "call"}]}
{"seq_id": "108828914", "text": "# -*- coding: utf-8 -*-\n\nimport autoroutes\nfrom collections import namedtuple, defaultdict\nfrom functools import lru_cache\n\n\n\nROUTER_CACHE_SIZE = 1024\nHTTP_METHODS = frozenset((\n 'GET', 'POST', 'PUT', 'HEAD', 'OPTIONS', 'PATCH', 'DELETE', 'ANY'))\n\nFound = namedtuple('Found', ['method', 'handler', 'params', 'consumed'])\nNotSupported = object()\nNotFound = object()\n\n\nclass RouteHandlerUndefined(autoroutes.InvalidRoute):\n pass\n\n\nclass RouteMethodAlreadyImplemented(autoroutes.InvalidRoute):\n pass\n\n\nclass Router:\n\n def __init__(self, prefix=\"\"):\n self.prefix = prefix\n self.routes = autoroutes.Routes()\n self._seen = defaultdict(set)\n\n def add(self, path, prefix=\"\", **methods):\n if not methods:\n raise RouteHandlerUndefined(\n \"No handlers specified for {}\".format(path))\n adding = frozenset(methods.keys())\n unknown = adding - HTTP_METHODS\n if unknown:\n raise KeyError(\n 'Route defines an unknown HTTP method(s): {}.'.format(unknown))\n\n pattern = (prefix or self.prefix) + path\n seen = self._seen[pattern]\n\n if not seen:\n seen.update(adding)\n else:\n existing = seen & adding\n if existing:\n raise RouteMethodAlreadyImplemented(\n 'Route {} already has a handler for {}.'.format(\n path, existing))\n seen.update(adding)\n self.routes.add(pattern, **methods)\n\n\n def lookup(self, path, method):\n payload, params = self.routes.match(path)\n if payload:\n if method in payload:\n return Found(method, payload[method], params, path)\n if 'ANY' in payload:\n return Found(method, payload['ANY'], params, path)\n return NotSupported\n return NotFound\n\n\nif __name__ == '__main__':\n router = Router()\n router.add('/path/to/view', POST='post_handler')\n router.add('/path/to/view', ANY='other_handler')\n router.add('/path/to/view', POST='faulty_handler')\n print(router.lookup('/path/to/view', 'POST'))\n", "sub_path": "src/shunting/shuntbox.py", "file_name": "shuntbox.py", "file_ext": "py", "file_size_in_byte": 2134, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "collections.namedtuple", "line_number": 13, "usage_type": "call"}, {"api_name": "autoroutes.InvalidRoute", "line_number": 18, "usage_type": "attribute"}, {"api_name": "autoroutes.InvalidRoute", "line_number": 22, "usage_type": "attribute"}, {"api_name": "autoroutes.Routes", "line_number": 30, "usage_type": "call"}, {"api_name": "collections.defaultdict", "line_number": 31, "usage_type": "call"}]}
{"seq_id": "23207817", "text": "'''\nCreated on Feb 26, 2015\n\n@author: grimel\n'''\n#!/usr/bin/env python\n# -*- coding: utf-8 -*-\nfrom bs4 import BeautifulSoup\nimport urllib.request\nimport re\n#url = \"http://www.sports.ru/liga-europa/calendar/?s=4395&m=2\"\nurl = \"http://terrikon.com/europa-league\"\nCNT = 16\ndef main():\n s = urllib.request.urlopen(url)\n soup = BeautifulSoup(s)\n pattern = \"(\\d{2}\\.\\d{2}\\.\\d{2}) (\\d{2}:\\d{2})\"\n regex = re.compile(pattern)\n time_a = []\n date_a = []\n try:\n for i in soup.findAll('td', {'class': \"date\"}):\n date = regex.match(i.text).group(1)\n time = regex.match(i.text).group(2)\n time_a.append(time)\n date_a.append(date)\n except:\n print(\"Done\")\n a = []\n for i in soup.findAll('td', {'class' : 'team'}):\n a.append(i.text)\n a = a[:CNT]\n home = [x for x in a if a.index(x)%2 == 0]\n away = [x for x in a if a.index(x)%2 != 0]\n prev_t = 0\n for t, c in zip(time_a, zip(home, away)):\n if prev_t != t:\n prev_t = t\n print(t)\n print(c[0], \"-\", c[1])\n \nif __name__ == \"__main__\":\n main()", "sub_path": "fast_LE.py", "file_name": "fast_LE.py", "file_ext": "py", "file_size_in_byte": 1123, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "urllib.request.request.urlopen", "line_number": 15, "usage_type": "call"}, {"api_name": "urllib.request.request", "line_number": 15, "usage_type": "attribute"}, {"api_name": "urllib.request", "line_number": 15, "usage_type": "name"}, {"api_name": "bs4.BeautifulSoup", "line_number": 16, "usage_type": "call"}, {"api_name": "re.compile", "line_number": 18, "usage_type": "call"}]}
{"seq_id": "156894603", "text": "from flask import Blueprint, render_template, abort\nfrom flask import jsonify\n\nfrom lwpcms.mongo import db\nfrom bson.objectid import ObjectId\nimport pymongo\n\nfrom lwpcms.api.files import file_thumbnail\n\nimport os\n\n\nbp = Blueprint(\n __name__, __name__,\n template_folder='templates',\n url_prefix='/api'\n)\n\n@bp.route('/delete_file/', methods=['POST', 'GET'])\ndef delete_file(id):\n file = db.collections.find_one({\"_id\": ObjectId(id)})\n print(file['content'])\n os.remove(\n os.path.dirname(os.path.realpath(__file__))\\\n +'/../../static/upload/{}'.format(file[\"content\"])\n )\n\n for size in [64, 32, 128]:\n os.remove(\n os.path.dirname(os.path.realpath(__file__))\\\n +'/../../static/upload/{}'.format(\n file_thumbnail(file[\"content\"], size)\n )\n )\n\n db.collections.delete_many({\"_id\": ObjectId(id)})\n return 'ok', 200\n\n\n@bp.route('/delete_post/', methods=['POST', 'GET'])\ndef delete_post(id):\n db.collections.delete_many({\"_id\": ObjectId(id)})\n return 'ok', 200\n\n\n@bp.route('/query_files/', defaults={'page': 0, 'limit': 100})\n@bp.route('/query_files///', methods=['POST', 'GET'])\ndef query_files(query, page, limit):\n\n page = int(page)\n limit = int(limit)\n\n if query != '*':\n obj = db.collections.find(\n {\n \"classes\": [\"post\", \"file\"],\n \"title\": {\"$regex\": u\"[a-zA-Z]*{}[a-zA-Z]*\".format(query)}\n }\n ).sort('created', pymongo.DESCENDING)\n if page != -1 and limit != -1:\n obj.skip(page * limit).limit(limit)\n\n files = list(\n obj\n )\n else:\n obj = db.collections.find(\n {\n \"classes\": [\"post\", \"file\"]\n }\n ).sort('created', pymongo.DESCENDING)\n if page != -1 and limit != -1:\n obj.skip(page * limit).limit(limit)\n\n files = list(\n obj\n )\n\n return jsonify(\n {\n 'meta':{\n 'length': len(files)\n },\n 'files':[\n {\n 'id': str(file[\"_id\"]),\n 'title': file[\"title\"],\n 'content': file[\"content\"],\n 'original': file['meta']['original_filename']\n }\n for file in files]\n } \n )\n\n\n@bp.route('/remove_attachment//', methods=['POST', 'GET'])\ndef remove_attachment(post_id, attach_id):\n db.collections.update_one(\n {\n '_id': ObjectId(post_id)\n },\n {\n '$pull': {\n 'attachments': {\n '_id': ObjectId(attach_id)\n }\n }\n }\n )\n return jsonify({\n 'status': 200\n }), 200\n", "sub_path": "lwpcms/views/api/api.py", "file_name": "api.py", "file_ext": "py", "file_size_in_byte": 3203, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "flask.Blueprint", "line_number": 13, "usage_type": "call"}, {"api_name": "lwpcms.mongo.db.collections.find_one", "line_number": 21, "usage_type": "call"}, {"api_name": "lwpcms.mongo.db.collections", "line_number": 21, "usage_type": "attribute"}, {"api_name": "lwpcms.mongo.db", "line_number": 21, "usage_type": "name"}, {"api_name": "bson.objectid.ObjectId", "line_number": 21, "usage_type": "call"}, {"api_name": "os.remove", "line_number": 23, "usage_type": "call"}, {"api_name": "os.path.dirname", "line_number": 24, "usage_type": "call"}, {"api_name": "os.path", "line_number": 24, "usage_type": "attribute"}, {"api_name": "os.path.realpath", "line_number": 24, "usage_type": "call"}, {"api_name": "os.remove", "line_number": 29, "usage_type": "call"}, {"api_name": "os.path.dirname", "line_number": 30, "usage_type": "call"}, {"api_name": "os.path", "line_number": 30, "usage_type": "attribute"}, {"api_name": "os.path.realpath", "line_number": 30, "usage_type": "call"}, {"api_name": "lwpcms.api.files.file_thumbnail", "line_number": 32, "usage_type": "call"}, {"api_name": "lwpcms.mongo.db.collections.delete_many", "line_number": 36, "usage_type": "call"}, {"api_name": "lwpcms.mongo.db.collections", "line_number": 36, "usage_type": "attribute"}, {"api_name": "lwpcms.mongo.db", "line_number": 36, "usage_type": "name"}, {"api_name": "bson.objectid.ObjectId", "line_number": 36, "usage_type": "call"}, {"api_name": "lwpcms.mongo.db.collections.delete_many", "line_number": 42, "usage_type": "call"}, {"api_name": "lwpcms.mongo.db.collections", "line_number": 42, "usage_type": "attribute"}, {"api_name": "lwpcms.mongo.db", "line_number": 42, "usage_type": "name"}, {"api_name": "bson.objectid.ObjectId", "line_number": 42, "usage_type": "call"}, {"api_name": "lwpcms.mongo.db.collections.find", "line_number": 54, "usage_type": "call"}, {"api_name": "lwpcms.mongo.db.collections", "line_number": 54, "usage_type": "attribute"}, {"api_name": "lwpcms.mongo.db", "line_number": 54, "usage_type": "name"}, {"api_name": "pymongo.DESCENDING", "line_number": 59, "usage_type": "attribute"}, {"api_name": "lwpcms.mongo.db.collections.find", "line_number": 67, "usage_type": "call"}, {"api_name": "lwpcms.mongo.db.collections", "line_number": 67, "usage_type": "attribute"}, {"api_name": "lwpcms.mongo.db", "line_number": 67, "usage_type": "name"}, {"api_name": "pymongo.DESCENDING", "line_number": 71, "usage_type": "attribute"}, {"api_name": "flask.jsonify", "line_number": 79, "usage_type": "call"}, {"api_name": "lwpcms.mongo.db.collections.update_one", "line_number": 98, "usage_type": "call"}, {"api_name": "lwpcms.mongo.db.collections", "line_number": 98, "usage_type": "attribute"}, {"api_name": "lwpcms.mongo.db", "line_number": 98, "usage_type": "name"}, {"api_name": "bson.objectid.ObjectId", "line_number": 100, "usage_type": "call"}, {"api_name": "bson.objectid.ObjectId", "line_number": 105, "usage_type": "call"}, {"api_name": "flask.jsonify", "line_number": 110, "usage_type": "call"}]}
{"seq_id": "575661004", "text": "import requests\nimport sys\n\nfrom PyQt5 import QtCore, QtGui, QtWidgets\nfrom PyQt5.QtWidgets import QApplication, QMainWindow, QFileDialog\nfrom PyQt5.QtGui import QPixmap\n\n#from ui_file import Ui_MainWindow\n\nfrom os import access, F_OK, mkdir\nfrom shutil import move, rmtree\n\nCLIENT_ID = \"ZcGFMBG6uwJuWvAbdadqQxjy3Md2RhV1\"\n\n\nclass Ui_MainWindow(object):\n def setupUi(self, MainWindow):\n MainWindow.setObjectName(\"MainWindow\")\n MainWindow.resize(1080, 540)\n self.centralwidget = QtWidgets.QWidget(MainWindow)\n self.centralwidget.setObjectName(\"centralwidget\")\n self.enter = QtWidgets.QPushButton(self.centralwidget)\n self.enter.setGeometry(QtCore.QRect(150, 100, 180, 40))\n self.enter.setObjectName(\"enter\")\n self.link = QtWidgets.QLineEdit(self.centralwidget)\n self.link.setGeometry(QtCore.QRect(20, 40, 440, 25))\n self.link.setText(\"\")\n self.link.setObjectName(\"link\")\n self.name = QtWidgets.QLabel(self.centralwidget)\n self.name.setGeometry(QtCore.QRect(20, 320, 500, 40))\n font = QtGui.QFont()\n font.setFamily(\"Noto Sans Mono CJK JP\")\n font.setPointSize(15)\n self.name.setFont(font)\n self.name.setObjectName(\"name\")\n self.music = QtWidgets.QLabel(self.centralwidget)\n self.music.setGeometry(QtCore.QRect(20, 360, 500, 40))\n font = QtGui.QFont()\n font.setFamily(\"Noto Sans Mono CJK JP\")\n font.setPointSize(15)\n self.music.setFont(font)\n self.music.setObjectName(\"music\")\n self.plays = QtWidgets.QLabel(self.centralwidget)\n self.plays.setGeometry(QtCore.QRect(20, 400, 500, 40))\n font = QtGui.QFont()\n font.setFamily(\"Noto Sans Mono CJK JP\")\n font.setPointSize(15)\n self.plays.setFont(font)\n self.plays.setObjectName(\"plays\")\n self.likes = QtWidgets.QLabel(self.centralwidget)\n self.likes.setGeometry(QtCore.QRect(20, 440, 500, 40))\n font = QtGui.QFont()\n font.setFamily(\"Noto Sans Mono CJK JP\")\n font.setPointSize(15)\n self.likes.setFont(font)\n self.likes.setObjectName(\"likes\")\n self.followers = QtWidgets.QLabel(self.centralwidget)\n self.followers.setGeometry(QtCore.QRect(20, 480, 500, 40))\n font = QtGui.QFont()\n font.setFamily(\"Noto Sans Mono CJK JP\")\n font.setPointSize(15)\n self.followers.setFont(font)\n self.followers.setObjectName(\"followers\")\n self.save = QtWidgets.QToolButton(self.centralwidget)\n self.save.setGeometry(QtCore.QRect(150, 180, 180, 25))\n self.save.setObjectName(\"save\")\n self.avatar = QtWidgets.QLabel(self.centralwidget)\n self.avatar.setGeometry(QtCore.QRect(560, 20, 500, 500))\n self.avatar.setObjectName(\"avatar\")\n MainWindow.setCentralWidget(self.centralwidget)\n\n self.retranslateUi(MainWindow)\n QtCore.QMetaObject.connectSlotsByName(MainWindow)\n\n def retranslateUi(self, MainWindow):\n _translate = QtCore.QCoreApplication.translate\n MainWindow.setWindowTitle(_translate(\"MainWindow\", \"Soundcloud downloader\"))\n self.enter.setText(_translate(\"MainWindow\", \"Download\"))\n self.link.setWhatsThis(_translate(\"MainWindow\", \"
\"))\n self.name.setText(_translate(\"MainWindow\", \"Avtor: \"))\n self.music.setText(_translate(\"MainWindow\", \"Music name: \"))\n self.plays.setText(_translate(\"MainWindow\", \"Plays count: \"))\n self.likes.setText(_translate(\"MainWindow\", \"Likes count: \"))\n self.followers.setText(_translate(\"MainWindow\", \"Followers count: \"))\n self.save.setText(_translate(\"MainWindow\", \"Save as\"))\n self.avatar.setText(_translate(\"MainWindow\", \"TextLabel\"))\n\n\nclass MyWidget(QMainWindow, Ui_MainWindow):\n def __init__(self):\n super().__init__()\n self.setupUi(self)\n self.setFixedSize(500, 180)\n self.enter.clicked.connect(self.press_enter)\n self.save.clicked.connect(self.save_music)\n\n def press_enter(self):\n check = check_link(self.link.text())\n\n if not check:\n try:\n get = requests.get(self.link.text()).text\n\n name = get[get.find('\"username\"'):].split('\"')[3]\n self.name.setText(\"Author: \" + name)\n # print(name)\n\n music = get[get.find('alt='):].split('\"')[1]\n self.music.setText(\"Music name: \" + music)\n # print(music)\n\n plays = get[get.find('play_count\"'):].split('\"')[2]\n self.plays.setText(\"Plays count: \" + plays)\n # print(plays)\n\n likes = get[get.find('like_count\"'):].split('\"')[2]\n self.likes.setText(\"Likes count: \" + likes)\n # print(likes)\n\n followers = get[get.find('\"followers_count\"'):].split('\"')[2][1:-1]\n self.followers.setText(\"Followers count: \" + followers)\n # print(followers)\n\n download = get[get.find('\"download_url\"'):].split('\"')[3][:-8]\n\n img = get[get.find(' 23 and link[:23] == \"https://soundcloud.com/\" and not \"/sets/\" in link):\n answer = \"It's not SoundCloud's song, check pls\"\n\n except requests.exceptions.ConnectionError:\n answer = \"Your network is very poor. Try again later\"\n\n except requests.exceptions.RequestException:\n answer = \"This place for url, check pls\"\n\n return answer\n\n\ndef download_img(img):\n with open('.data/avatar.jpg', 'wb') as handle:\n response = requests.get(img, stream=True)\n\n if not response.ok:\n print(response)\n\n for block in response.iter_content(1024):\n if not block:\n break\n\n handle.write(block)\n\n\ndef download_music(link):\n with open(\".data/song.mp3\", \"wb\") as handle, open(\"standart.mp3\", \"rb\") as standart:\n #response = requests.get(\"https://cf-media.sndcdn.com/s966iKYqfdff.128.mp3?Policy=eyJTdGF0ZW1lbnQiOlt7IlJlc291cmNlIjoiKjovL2NmLW1lZGlhLnNuZGNkbi5jb20vczk2NmlLWXFmZGZmLjEyOC5tcDMiLCJDb25kaXRpb24iOnsiRGF0ZUxlc3NUaGFuIjp7IkFXUzpFcG9jaFRpbWUiOjE1NTAxMzYwNzV9fX1dfQ__&Signature=hoX70pR4zZEia7nMPm9AjIIoA3EpziGH6oJNZe8zRQkN9ul4zVnwwHvmP8oQAzt9DnFPoVsTyyO9E7zYciuJSN2nJeHYIeRC2N5s~RGMOGAXWyLlgGVZDc~Vn~YrHzNgihr9Nk4jKjKl75Xmed88bK4exQ~i-b4efz6eteu3RdyrfuSGARpWiknsAZ5NThXSkNY7M-ezajTRQ0s46YspQcnrwMG~CVkPOwGqOmLcEI65XHkR6asPR9H4pei-4BbkBimHun~ZArQQckX36YUUpu38EFcFoYT4nXI5AGtthZTGZoA-Nk9fFkVhSgLiAeDmQG~AF0ixF8eSLDY19RCFAg__&Key-Pair-Id=APKAJAGZ7VMH2PFPW6UQ\")\n #\n # standart.write(response.content)\n #if not response.ok:\n # print(response)\n#\n #for block in response.iter_content(1024):\n # if not block:\n # break\n#\n # handle.write(block)\n\n # handle.write(response.content)\n\n handle.write(standart.read())\n\n\nif __name__ == '__main__':\n app = QApplication(sys.argv)\n ex = MyWidget()\n ex.show()\n sys.exit(app.exec_())\n", "sub_path": "soundcloud.py", "file_name": "soundcloud.py", "file_ext": "py", "file_size_in_byte": 8313, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "PyQt5.QtWidgets.QWidget", "line_number": 20, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets", "line_number": 20, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QPushButton", "line_number": 22, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets", "line_number": 22, "usage_type": "name"}, {"api_name": "PyQt5.QtCore.QRect", "line_number": 23, "usage_type": "call"}, {"api_name": "PyQt5.QtCore", "line_number": 23, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QLineEdit", "line_number": 25, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets", "line_number": 25, "usage_type": "name"}, {"api_name": "PyQt5.QtCore.QRect", "line_number": 26, "usage_type": "call"}, {"api_name": "PyQt5.QtCore", "line_number": 26, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 29, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets", "line_number": 29, "usage_type": "name"}, {"api_name": "PyQt5.QtCore.QRect", "line_number": 30, "usage_type": "call"}, {"api_name": "PyQt5.QtCore", "line_number": 30, "usage_type": "name"}, {"api_name": "PyQt5.QtGui.QFont", "line_number": 31, "usage_type": "call"}, {"api_name": "PyQt5.QtGui", "line_number": 31, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 36, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets", "line_number": 36, "usage_type": "name"}, {"api_name": "PyQt5.QtCore.QRect", "line_number": 37, "usage_type": "call"}, {"api_name": "PyQt5.QtCore", "line_number": 37, "usage_type": "name"}, {"api_name": "PyQt5.QtGui.QFont", "line_number": 38, "usage_type": "call"}, {"api_name": "PyQt5.QtGui", "line_number": 38, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 43, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets", "line_number": 43, "usage_type": "name"}, {"api_name": "PyQt5.QtCore.QRect", "line_number": 44, "usage_type": "call"}, {"api_name": "PyQt5.QtCore", "line_number": 44, "usage_type": "name"}, {"api_name": "PyQt5.QtGui.QFont", "line_number": 45, "usage_type": "call"}, {"api_name": "PyQt5.QtGui", "line_number": 45, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 50, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets", "line_number": 50, "usage_type": "name"}, {"api_name": "PyQt5.QtCore.QRect", "line_number": 51, "usage_type": "call"}, {"api_name": "PyQt5.QtCore", "line_number": 51, "usage_type": "name"}, {"api_name": "PyQt5.QtGui.QFont", "line_number": 52, "usage_type": "call"}, {"api_name": "PyQt5.QtGui", "line_number": 52, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 57, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets", "line_number": 57, "usage_type": "name"}, {"api_name": "PyQt5.QtCore.QRect", "line_number": 58, "usage_type": "call"}, {"api_name": "PyQt5.QtCore", "line_number": 58, "usage_type": "name"}, {"api_name": "PyQt5.QtGui.QFont", "line_number": 59, "usage_type": "call"}, {"api_name": "PyQt5.QtGui", "line_number": 59, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QToolButton", "line_number": 64, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets", "line_number": 64, "usage_type": "name"}, {"api_name": "PyQt5.QtCore.QRect", "line_number": 65, "usage_type": "call"}, {"api_name": "PyQt5.QtCore", "line_number": 65, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 67, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets", "line_number": 67, "usage_type": "name"}, {"api_name": "PyQt5.QtCore.QRect", "line_number": 68, "usage_type": "call"}, {"api_name": "PyQt5.QtCore", "line_number": 68, "usage_type": "name"}, {"api_name": "PyQt5.QtCore.QMetaObject.connectSlotsByName", "line_number": 73, "usage_type": "call"}, {"api_name": "PyQt5.QtCore.QMetaObject", "line_number": 73, "usage_type": "attribute"}, {"api_name": "PyQt5.QtCore", "line_number": 73, "usage_type": "name"}, {"api_name": "PyQt5.QtCore.QCoreApplication", "line_number": 76, "usage_type": "attribute"}, {"api_name": "PyQt5.QtCore", "line_number": 76, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QMainWindow", "line_number": 89, "usage_type": "name"}, {"api_name": "requests.get", "line_number": 102, "usage_type": "call"}, {"api_name": "os.access", "line_number": 129, "usage_type": "call"}, {"api_name": "os.F_OK", "line_number": 129, "usage_type": "argument"}, {"api_name": "shutil.rmtree", "line_number": 130, "usage_type": "call"}, {"api_name": "os.mkdir", "line_number": 131, "usage_type": "call"}, {"api_name": "PyQt5.QtGui.QPixmap", "line_number": 139, "usage_type": "call"}, {"api_name": "requests.exceptions", "line_number": 144, "usage_type": "attribute"}, {"api_name": "PyQt5.QtWidgets.QFileDialog.getExistingDirectory", "line_number": 150, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QFileDialog", "line_number": 150, "usage_type": "name"}, {"api_name": "shutil.move", "line_number": 151, "usage_type": "call"}, {"api_name": "os.access", "line_number": 154, "usage_type": "call"}, {"api_name": "os.F_OK", "line_number": 154, "usage_type": "argument"}, {"api_name": "shutil.rmtree", "line_number": 155, "usage_type": "call"}, {"api_name": "requests.get", "line_number": 167, "usage_type": "call"}, {"api_name": "requests.get", "line_number": 168, "usage_type": "call"}, {"api_name": "requests.exceptions", "line_number": 173, "usage_type": "attribute"}, {"api_name": "requests.exceptions", "line_number": 176, "usage_type": "attribute"}, {"api_name": "requests.get", "line_number": 184, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QApplication", "line_number": 216, "usage_type": "call"}, {"api_name": "sys.argv", "line_number": 216, "usage_type": "attribute"}, {"api_name": "sys.exit", "line_number": 219, "usage_type": "call"}]}
{"seq_id": "631398350", "text": "from selenium import webdriver\n\ndriver = webdriver.Chrome(r'D:\\chromedriver.exe')\ndriver.implicitly_wait(5)\n\ndriver.get('http://www.baidu.com')\n\n# 获取窗口大小\nsize = driver.get_window_size()\nprint(size)\n\n# 改变窗口大小\ndriver.set_window_size(1000, 600)\n\n# 获取title\ntitle = driver.title\nprint(title)\n\n# 获取当前网页url\nurl = driver.current_url\nprint(url)", "sub_path": "6ActionChains/6.其他技巧.py", "file_name": "6.其他技巧.py", "file_ext": "py", "file_size_in_byte": 375, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "selenium.webdriver.Chrome", "line_number": 3, "usage_type": "call"}, {"api_name": "selenium.webdriver", "line_number": 3, "usage_type": "name"}]}
{"seq_id": "640452825", "text": "import logging\nfrom functools import partial\n\nfrom django.db import connections\n\nfrom couchforms.models import XFormInstance\nfrom dimagi.utils.couch.database import iter_docs\n\nfrom corehq.apps.domain.dbaccessors import get_doc_count_in_domain_by_type\nfrom corehq.form_processor.models import XFormInstanceSQL\nfrom corehq.sql_db.util import split_list_by_db_partition\nfrom corehq.util.couch_helpers import NoSkipArgsProvider\nfrom corehq.util.log import with_progress_bar\nfrom corehq.util.pagination import ResumableFunctionIterator\n\nlog = logging.getLogger(__name__)\n\n\ndef iter_unmigrated_docs(domain, doc_types, migration_id, counter):\n if doc_types != [\"XFormInstance\"]:\n raise NotImplementedError(doc_types)\n [doc_type] = doc_types\n couch_db = XFormInstance.get_db()\n doc_count = counter.pop(doc_type)\n if doc_count:\n log.info(\"saved count of %s was %s\", doc_type, doc_count)\n doc_count = get_doc_count_in_domain_by_type(domain, doc_type, couch_db)\n add_docs = partial(counter.add, None, doc_type)\n batches = doc_count // iter_id_chunks.chunk_size\n iterable = iter_id_chunks(domain, doc_type, migration_id, couch_db)\n doc_ids = []\n for doc_ids in with_progress_bar(iterable, batches, prefix=doc_type, oneline=False):\n yield from iter_docs_not_in_sql(doc_ids, couch_db)\n add_docs(len(doc_ids))\n\n\ndef iter_id_chunks(domain, doc_type, migration_id, couch_db):\n def data_function(**view_kwargs):\n return couch_db.view('by_domain_doc_type_date/view', **view_kwargs)\n endkey, docid = get_endkey_docid(domain, doc_type, migration_id)\n args_provider = NoSkipArgsProvider({\n 'startkey': [domain, doc_type],\n 'endkey': endkey,\n 'endkey_docid': docid,\n 'inclusive_end': False,\n 'limit': iter_id_chunks.chunk_size,\n 'include_docs': False,\n 'reduce': False,\n })\n args, kwargs = args_provider.get_initial_args()\n while True:\n results = list(data_function(*args, **kwargs))\n results = args_provider.adjust_results(results, args, kwargs)\n if not results:\n break\n yield [r[\"id\"] for r in results]\n try:\n args, kwargs = args_provider.get_next_args(results[-1], *args, **kwargs)\n except StopIteration:\n break\n\n\niter_id_chunks.chunk_size = 5000\n\n\ndef get_endkey_docid(domain, doc_type, migration_id):\n resume_key = \"%s.%s.%s\" % (domain, doc_type, migration_id)\n state = ResumableFunctionIterator(resume_key, None, None, None).state\n assert getattr(state, '_rev', None), \"rebuild not necessary (no resume state)\"\n assert not state.complete, \"iteration is complete\"\n state_json = state.to_json()\n assert not state_json['args']\n kwargs = state_json['kwargs']\n return kwargs['startkey'], kwargs['startkey_docid']\n\n\ndef iter_docs_not_in_sql(form_ids, couch_db):\n def get_missing_form_ids(db, db_form_ids):\n with XFormInstanceSQL.get_cursor_for_partition_db(db, readonly=True) as cursor:\n cursor.execute(sql, [db_form_ids])\n return [r[0] for r in cursor.fetchall()]\n\n sql = f\"\"\"\n SELECT maybe_missing.id\n FROM (SELECT UNNEST(%s) AS id) maybe_missing\n LEFT JOIN {XFormInstanceSQL._meta.db_table} migrated_form\n ON migrated_form.form_id = maybe_missing.id\n WHERE migrated_form.id IS NULL\n \"\"\"\n\n for db_name, db_form_ids in split_list_by_db_partition(form_ids):\n missing_ids = get_missing_form_ids(db_name, db_form_ids)\n if missing_ids:\n log.debug(\"missing ids: %s\", missing_ids)\n yield from iter_docs(couch_db, missing_ids)\n", "sub_path": "corehq/apps/couch_sql_migration/staterebuilder.py", "file_name": "staterebuilder.py", "file_ext": "py", "file_size_in_byte": 3648, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "logging.getLogger", "line_number": 16, "usage_type": "call"}, {"api_name": "couchforms.models.XFormInstance.get_db", "line_number": 23, "usage_type": "call"}, {"api_name": "couchforms.models.XFormInstance", "line_number": 23, "usage_type": "name"}, {"api_name": "corehq.apps.domain.dbaccessors.get_doc_count_in_domain_by_type", "line_number": 27, "usage_type": "call"}, {"api_name": "functools.partial", "line_number": 28, "usage_type": "call"}, {"api_name": "corehq.util.log.with_progress_bar", "line_number": 32, "usage_type": "call"}, {"api_name": "corehq.util.couch_helpers.NoSkipArgsProvider", "line_number": 41, "usage_type": "call"}, {"api_name": "corehq.util.pagination.ResumableFunctionIterator", "line_number": 68, "usage_type": "call"}, {"api_name": "corehq.form_processor.models.XFormInstanceSQL.get_cursor_for_partition_db", "line_number": 79, "usage_type": "call"}, {"api_name": "corehq.form_processor.models.XFormInstanceSQL", "line_number": 79, "usage_type": "name"}, {"api_name": "corehq.form_processor.models.XFormInstanceSQL._meta", "line_number": 86, "usage_type": "attribute"}, {"api_name": "corehq.form_processor.models.XFormInstanceSQL", "line_number": 86, "usage_type": "name"}, {"api_name": "corehq.sql_db.util.split_list_by_db_partition", "line_number": 91, "usage_type": "call"}, {"api_name": "dimagi.utils.couch.database.iter_docs", "line_number": 95, "usage_type": "call"}]}
{"seq_id": "211773719", "text": "\"\"\"\r\n\r\n\"\"\"\r\nimport time\r\n\r\nfrom selenium.webdriver.common.by import By\r\nfrom common.base_page import BasePage\r\nfrom data import landName\r\n\r\n\r\nclass LandPage(BasePage):\r\n # url = '/login'\r\n #项目主数据\r\n xm_locator = (By.XPATH,\"//span[@title='项目主数据']\")\r\n #项目管理\r\n xmgl_locator = (By.XPATH, \"//span[@title='项目管理']\")\r\n #地块列表\r\n dk_locator = (By.XPATH,\"//span[@title='地块列表']\")\r\n #新增列表\r\n create_land_locator = (By.XPATH, \"//span[contains(text(),'新增列表')]\")\r\n #变更列表\r\n change_land_locator = (By.XPATH, \"//span[contains(text(),'变更列表')]\")\r\n #已审核列表\r\n land_locator = (By.XPATH, \"//span[contains(text(),'已审核列表')]\")\r\n #城市公司\r\n city_locator = (By.XPATH,\"//span[contains(text(),'苏州城市公司')]\")\r\n #新增按钮\r\n btn_create_locator = (By.XPATH,\"//button[@type='button']/span[contains(text(),'新增')]\")\r\n #保存按钮\r\n btn_save_locator = (By.XPATH,\"//span[contains(text(),'保存')]\")\r\n\r\n #选择项\r\n project_gain_value = (By.XPATH, \"//span[contains(text(),'勾地')]\")\r\n land_usage_value = (By.XPATH, \"//span[contains(text(),'产业用地')]\")\r\n province_value = (By.XPATH, \"//span[contains(text(),'江苏省')]\")\r\n city_value = (By.XPATH, \"//span[contains(text(),'苏州市')]\")\r\n region_value = (By.XPATH, \"//span[contains(text(),'苏州市本级')]\")\r\n\r\n #基本信息\r\n land_name = (By.XPATH,\"//input[@placeholder='地块名称']\")\r\n land_certificate_no = (By.XPATH,\"//input[@placeholder='土地证编号']\")\r\n project_gain_type = (By.XPATH,\"//span[@title='土地获取方式']/..//following-sibling::div//input\")\r\n land_gain_date = (By.XPATH,\"//span[@title='获取时间']/..//following-sibling::div//input\")\r\n land_usage_type = (By.XPATH,\"//span[@title='用地性质']/..//following-sibling::div//input\")\r\n land_use_period_type = (By.XPATH,\"//input[@placeholder='土地法定使用年限(年)']\")\r\n land_remainder_period = (By.XPATH,\"//input[@placeholder='土地剩余使用年限(年)']\")\r\n address = (By.XPATH,\"//textarea[@placeholder='地块所在四至范围']\")\r\n province_code = (By.XPATH,\"//span[@title='地块所在省']/..//following-sibling::div//input\")\r\n city_code = (By.XPATH,\"//span[@title='地块所在市']/..//following-sibling::div//input\")\r\n region_code = (By.XPATH,\"//span[@title='地块所在区县']/..//following-sibling::div//input\")\r\n land_address = (By.XPATH,\"//textarea[@placeholder='地块地址']\")\r\n delisting_unit = (By.XPATH,\"//input[@placeholder='摘牌单位']\")\r\n percent = (By.XPATH,\"//input[@placeholder='我方权益比例(%)']\")\r\n parcel_summary = (By.XPATH,\"//input[@placeholder='地块汇总测试字段']\")\r\n\r\n # 规划指标信息\r\n total_use_area = (By.XPATH,\"//input[@placeholder='总用地面积(㎡)']\")\r\n building_area = (By.XPATH,\"//input[@placeholder='净用地面积(㎡)']\")\r\n collection_of_land_area = (By.XPATH,\"//input[@placeholder='代征用地面积(㎡)']\")\r\n plot_ratio = (By.XPATH,\"//input[@placeholder='容积率']\")\r\n building_density = (By.XPATH,\"//input[@placeholder='建筑密度(%)']\")\r\n green_ratio = (By.XPATH,\"//input[@placeholder='绿地率(%)']\")\r\n limit_height = (By.XPATH,\"//input[@placeholder='限高(m)']\")\r\n\r\n #弹窗\r\n save_success = (By.XPATH,\"//p[contains(text(),'保存成功')]\")\r\n update_success = (By.XPATH,\"//p[contains(text(),'更新成功')]\")\r\n\r\n #获取发起审核按钮\r\n launch_btn = (By.XPATH,\"//span[text()='{}']/../../parent::tr//button[@title='详情']//following-sibling::span//button[@title='发起审核']\".format(landName))\r\n #获取发起审核的内容\r\n launch_locator =(By.XPATH,\"//div[@class='el-message-box']//span[contains(text(),'发起审核')]\")\r\n #点击确定\r\n determine_locator = (By.XPATH,\"//div[@class='el-message-box']//span[contains(text(),'确定')]\")\r\n\r\n wait_time = 20\r\n # def get(self):\r\n # \"\"\"访问登录页面\"\"\"\r\n # login_url = Setting.host + self.url\r\n # self.driver.get(login_url)\r\n\r\n def create_land(self, land_name, land_certificate_name, land_gain_date,\r\n land_use_period_name, land_remainder_name, address_name,\r\n land_address_name, delisting_unit_name, percent_name, parcel_summary_name,\r\n total_use_area_name, building_area_name, collection_of_land_area_name, plot_ratio_name,\r\n building_density_name, green_ratio_name, limit_height_name):\r\n\r\n #点击项目主数据\r\n self.js_to_bottom(self.xm_locator)\r\n\r\n #点击项目管理\r\n self.js_to_bottom(self.xmgl_locator)\r\n\r\n #点击地块\r\n self.js_to_bottom(self.dk_locator)\r\n\r\n #定位城市公司\r\n self.js_to_bottom(self.city_locator)\r\n\r\n #定位新增列表\r\n self.js_to_bottom(self.create_land_locator)\r\n\r\n #定位新增按钮\r\n self.js_to_bottom(self.btn_create_locator)\r\n\r\n #输入基本信息\r\n #1、用户输入地块名称\r\n self.user_input(self.land_name,land_name)\r\n\r\n # 2、用户输入土地证编号\r\n self.user_input(self.land_certificate_no, land_certificate_name)\r\n\r\n # 3、用户选择土地获取方式\r\n time.sleep(1)\r\n self.js_to_content(self.project_gain_type)\r\n self.js_to_bottom(self.project_gain_value)\r\n\r\n # 4、用户选择获取时间\r\n self.js_to_send_content(self.land_gain_date, land_gain_date)\r\n\r\n # 5、用户选择用地性质\r\n time.sleep(1)\r\n self.js_to_content(self.land_usage_type)\r\n self.js_to_bottom(self.land_usage_value)\r\n\r\n # 6、土地法定使用年限(年)\r\n self.user_input(self.land_use_period_type, land_use_period_name)\r\n\r\n # 7、土地剩余使用年限(年)\r\n self.user_input(self.land_remainder_period, land_remainder_name)\r\n\r\n # 8、地块所在四至范围\r\n self.user_input(self.address, address_name)\r\n\r\n # 9、地块所在省\r\n time.sleep(1)\r\n self.js_to_content(self.province_code)\r\n self.js_to_bottom(self.province_value)\r\n\r\n # 10、地块所在市\r\n time.sleep(1)\r\n self.js_to_content(self.city_code)\r\n self.js_to_bottom(self.city_value)\r\n\r\n # 11、地块所在区县\r\n time.sleep(1)\r\n self.js_to_content(self.region_code)\r\n self.js_to_bottom(self.region_value)\r\n\r\n # 12、地块地址\r\n self.user_input(self.land_address, land_address_name)\r\n\r\n # 13、摘牌单位\r\n self.user_input(self.delisting_unit, delisting_unit_name)\r\n\r\n # 13、我方权益比例(%)\r\n self.user_input(self.percent, percent_name)\r\n\r\n # 14、地块汇总测试字段\r\n self.user_input(self.parcel_summary, parcel_summary_name)\r\n\r\n # 规划指标信息\r\n # 1、总用地面积(㎡)\r\n self.user_input(self.total_use_area, total_use_area_name)\r\n\r\n # 2、净用地面积\r\n self.user_input(self.building_area, building_area_name)\r\n\r\n # 3、代征用地面积\r\n self.user_input(self.collection_of_land_area, collection_of_land_area_name)\r\n\r\n # 4、容积率\r\n self.user_input(self.plot_ratio, plot_ratio_name)\r\n\r\n # 5、建筑密度(%)\r\n self.user_input(self.building_density, building_density_name)\r\n\r\n # 6、绿地率(%)\r\n self.user_input(self.green_ratio, green_ratio_name)\r\n\r\n # 7、限高(m)\r\n self.user_input(self.limit_height, limit_height_name)\r\n\r\n\r\n #点击保存按钮\r\n self.js_to_bottom(self.btn_save_locator)\r\n time.sleep(3)\r\n\r\n\r\n\r\n\r\n\r\n def get_launch_btn(self):\r\n \"\"\"发起审核\"\"\"\r\n time.sleep(3)\r\n self.js_to_bottom(self.launch_btn)\r\n\r\n def determine_btn(self):\r\n \"\"\"点击确定\"\"\"\r\n time.sleep(3)\r\n self.js_to_bottom(self.determine_locator)\r\n time.sleep(3)\r\n\r\n\r\n def get_save_success_msg(self):\r\n \"\"\"获取正确信息\"\"\"\r\n save_success_elem = self.wait_presence_element(self.save_success)\r\n return save_success_elem.text\r\n\r\n def get_launch_msg(self):\r\n \"\"\"获取发起审核信息\"\"\"\r\n launch_elem = self.wait_presence_element(self.launch_locator)\r\n return launch_elem.text\r\n\r\n def get_update_success_msg(self):\r\n \"\"\"获取更新成功信息\"\"\"\r\n update_success_elem = self.wait_presence_element(self.update_success)\r\n return update_success_elem.text\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n", "sub_path": "pages/land_page.py", "file_name": "land_page.py", "file_ext": "py", "file_size_in_byte": 8610, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "common.base_page.BasePage", "line_number": 11, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 14, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 14, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 16, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 16, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 18, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 18, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 20, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 20, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 22, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 22, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 24, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 24, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 26, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 26, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 28, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 28, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 30, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 30, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 33, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 33, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 34, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 34, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 35, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 35, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 36, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 36, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 37, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 37, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 40, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 40, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 41, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 41, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 42, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 42, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 43, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 43, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 44, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 44, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 45, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 45, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 46, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 46, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 47, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 47, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 48, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 48, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 49, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 49, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 50, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 50, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 51, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 51, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 52, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 52, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 53, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 53, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 54, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 54, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 57, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 57, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 58, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 58, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 59, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 59, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 60, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 60, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 61, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 61, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 62, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 62, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 63, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 63, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 66, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 66, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 67, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 67, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 70, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 70, "usage_type": "name"}, {"api_name": "data.landName", "line_number": 70, "usage_type": "argument"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 72, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 72, "usage_type": "name"}, {"api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 74, "usage_type": "attribute"}, {"api_name": "selenium.webdriver.common.by.By", "line_number": 74, "usage_type": "name"}, {"api_name": "time.sleep", "line_number": 114, "usage_type": "call"}, {"api_name": "time.sleep", "line_number": 122, "usage_type": "call"}, {"api_name": "time.sleep", "line_number": 136, "usage_type": "call"}, {"api_name": "time.sleep", "line_number": 141, "usage_type": "call"}, {"api_name": "time.sleep", "line_number": 146, "usage_type": "call"}, {"api_name": "time.sleep", "line_number": 187, "usage_type": "call"}, {"api_name": "time.sleep", "line_number": 195, "usage_type": "call"}, {"api_name": "time.sleep", "line_number": 200, "usage_type": "call"}, {"api_name": "time.sleep", "line_number": 202, "usage_type": "call"}]}
{"seq_id": "482991947", "text": "# -*- coding: utf-8 -*-\n\nimport urllib\nfrom bs4 import BeautifulSoup\n\nimport sys\n\nif sys.version_info[0] < 3:\n reload(sys)\n sys.setdefaultencoding('utf8')\n\nkw = u'印度'\nkys = (u'台湾',)\n\nurl = 'http://tieba.baidu.com/f'\nvals = {'ie':'utf-8', 'kw':kw, 'pn':'0'}\n\noutf = open(kw + u'吧分析结果.txt', 'w')\nprint(u'开始分析...')\n\npages = 10\npn = 0\n\nfor i in range(pages):\n print(u'第' + str(i) +u'页')\n\n vals['pn'] = str(pn)\n param = urllib.urlencode(vals)\n full_url = url +'?'+ param\n\n response = urllib.urlopen(full_url)\n html = response.read()\n soup =BeautifulSoup(html)\n\n tiezi_ul = soup.find(id='thread_list')\n if tiezi_ul is None: break\n\n tiezi_li = tiezi_ul.find_all('li', class_='j_thread_list', recursive=False)\n for tiezi in tiezi_li:\n caption = tiezi.find('a', class_='j_th_tit')\n author = tiezi.find('a', class_='j_user_card')\n if caption is None or author is None: continue\n\n pn += 1\n\n for ky in kys:\n if ky in caption.string:\n print(caption.string + '- - - - - - - -' + author.string)\n\n tiezi_url = 'http://tieba.baidu.com' + caption['href']\n print(tiezi_url)\n\n outf.write(caption.string + '- - - - - - - -' + author.string)\n outf.write('\\n')\n outf.write(tiezi_url)\n outf.write('\\n')\n outf.write('\\n')\n\n break\n\noutf.close()\n", "sub_path": "tieba2.py", "file_name": "tieba2.py", "file_ext": "py", "file_size_in_byte": 1469, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "sys.version_info", "line_number": 8, "usage_type": "attribute"}, {"api_name": "sys.setdefaultencoding", "line_number": 10, "usage_type": "call"}, {"api_name": "urllib.urlencode", "line_number": 28, "usage_type": "call"}, {"api_name": "urllib.urlopen", "line_number": 31, "usage_type": "call"}, {"api_name": "bs4.BeautifulSoup", "line_number": 33, "usage_type": "call"}]}
{"seq_id": "95966031", "text": "# 特征工程:\n\n# 第三步:特征降维 (提取重要特征,减少特征个数,得到一组不相关的特征,去除冗余特征),有两种方法\n# 1. 特征选择\n # Filter过滤式\n # 1. 方差选择法:将低方差的特征过滤掉\n # 2. 相关系数法:将相关系数较大的特征过滤掉\n # Embedded式\n\n# 2. 主成分分析(PCA)(可以理解为一种特征提取的方式)\n\n# sklearn.feature_selection\n\nimport pandas as pd\nfrom sklearn.feature_selection import VarianceThreshold\nfrom scipy.stats import pearsonr\n\n\ndef variance_demo():\n '''\n 1. 特征选择\n 过滤低方差特征\n '''\n # 1、获取数据\n data = pd.read_csv(\"factor_returns.csv\")\n data = data.iloc[:, 1:-2]\n print(\"data:\\n\", data, data.shape)\n\n # 2、实例化一个转换器类\n transfer = VarianceThreshold(threshold=10)\n\n # 3、调用fit_transform\n data_new = transfer.fit_transform(data)\n print(\"data_new:\\n\", data_new, data_new.shape)\n\n # 计算某两个变量之间的相关系数\n r1 = pearsonr(data[\"pe_ratio\"], data[\"pb_ratio\"])\n print(\"相关系数:\\n\", r1)\n r2 = pearsonr(data['revenue'], data['total_expense'])\n print(\"revenue与total_expense之间的相关性:\\n\", r2)\n\n\nvariance_demo()\n\n\nfrom sklearn.decomposition import PCA\n\ndef pca_demo():\n '''\n PCA 降维 (PCA 主成分分析)\n '''\n data = [[2,8,4,5], [6,3,0,8], [5,4,9,1]]\n\n # 1、实例化一个转换器类\n transfer = PCA(n_components=0.95)\n\n # 2、调用fit_transform\n data_new = transfer.fit_transform(data)\n print(\"data_new:\\n\", data_new)\n\n\npca_demo()\n\n\n", "sub_path": "ml-basic/day1/day1-4.py", "file_name": "day1-4.py", "file_ext": "py", "file_size_in_byte": 1639, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "pandas.read_csv", "line_number": 25, "usage_type": "call"}, {"api_name": "sklearn.feature_selection.VarianceThreshold", "line_number": 30, "usage_type": "call"}, {"api_name": "scipy.stats.pearsonr", "line_number": 37, "usage_type": "call"}, {"api_name": "scipy.stats.pearsonr", "line_number": 39, "usage_type": "call"}, {"api_name": "sklearn.decomposition.PCA", "line_number": 55, "usage_type": "call"}]}
{"seq_id": "583130455", "text": "import matplotlib.pyplot as plt\nimport numpy as np\nimport pandas as pd\nfrom scipy.stats import norm\nimport math\n\ndef calc_arr_f(s0 = 50, r = 0.1, q = 0.00, vol = 0.3, k = 45, step = 0.01, maxtime = 5):\n\ttspace = np.arange(step, maxtime+step, step)\n\tcall = []\n\n\tfor t in tspace:\n\t\td1 = (math.log(s0/k) + (r-q+(vol**2)/2)*t)/(vol*math.sqrt(t))\n\t\td2 = d1 - vol*math.sqrt(t)\n\t\tcall1 = s0*math.exp(-1*q*t)*norm.cdf(d1) - k*math.exp(-1*r*t)*norm.cdf(d2)\n\t\tcall2 = min(call1, call1 - (s0 - k))\n\n\t\tcall.append(call2)\n\n\tdf = pd.DataFrame(index = tspace)\n\tdf['Call_'+str(k)] = call\n\n\treturn df\n\n\ndef plotgreek(k1, k2, k3, df, ylimit = None, type1 = \"Delta\"):\n\tstyles = ['dashdot', 'solid', 'dotted']\n\tlinewidths = [3, 3, 3]\n\tfig, ax = plt.subplots()\n\tfor col, style, lw in zip(df.columns, styles, linewidths):\n\t\tax.set_ylim(ylimit)\n\t\tdf[col].plot(linestyle=style, lw=lw, ax=ax, color = \"black\")\n\n\n\tplt.legend([\"In-the-money\", \"At-the-money\", \"Out-of-the-money\"], prop={'size':15})\n\ttitle = \"Variation of Extrinsic Value with Time to Maturity\"\n\tfig.suptitle(title, fontsize=16)\n\tplt.xlabel('Time to Maturity (Years)', fontsize=13)\n\tplt.ylabel('Extrinsic Value ($)', fontsize=13)\n\tfig.savefig('./Q1_extrinsic' + '.jpg')\n\nk1 = 40\nk2 = 50\nk3 = 60\ndf_out = calc_arr_f(k = k1)\ndf_at = calc_arr_f(k = k2)\ndf_in = calc_arr_f(k = k3)\ndf_c = pd.concat([df_out, df_at, df_in], axis=1)\n\n\n\ndf_call = df_c.filter(like='Call', axis=1)\nprint(df_call)\n\nplotgreek(k1, k2, k3, ylimit = [0,23.1], df = df_call, type1 = \"Delta\")\n# plotgreek(k1, k2, k3, ylimit = [0,0.06], df = df_gamma, type1 = \"Gamma\")\n# plotgreek(k1, k2, k3, ylimit = [-9,0], df = df_theta, type1 = \"Theta\")\n", "sub_path": "q1_extrinsic.py", "file_name": "q1_extrinsic.py", "file_ext": "py", "file_size_in_byte": 1646, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "numpy.arange", "line_number": 8, "usage_type": "call"}, {"api_name": "math.log", "line_number": 12, "usage_type": "call"}, {"api_name": "math.sqrt", "line_number": 12, "usage_type": "call"}, {"api_name": "math.sqrt", "line_number": 13, "usage_type": "call"}, {"api_name": "math.exp", "line_number": 14, "usage_type": "call"}, {"api_name": "scipy.stats.norm.cdf", "line_number": 14, "usage_type": "call"}, {"api_name": "scipy.stats.norm", "line_number": 14, "usage_type": "name"}, {"api_name": "pandas.DataFrame", "line_number": 19, "usage_type": "call"}, {"api_name": "matplotlib.pyplot.subplots", "line_number": 28, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 28, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.legend", "line_number": 34, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 34, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.xlabel", "line_number": 37, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 37, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.ylabel", "line_number": 38, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 38, "usage_type": "name"}, {"api_name": "pandas.concat", "line_number": 47, "usage_type": "call"}]}
{"seq_id": "509913346", "text": "from enum import Enum\nfrom Coordinates import Coordinates\nfrom Gui.Logger import Logger\nfrom Species.Animal import Animal\n\nSPECIAL_COUNTDOWN = 5\nSPECIAL_STRENGTH = 10\n\n\nclass HumanTasks(Enum):\n\tDO_NOTHING = 0\n\tGO_UP = 1\n\tGO_DOWN = 2\n\tGO_LEFT = 3\n\tGO_RIGHT = 4\n\tDO_SPECIAL = 5\n\n\nclass Human(Animal):\n\n\tdef __init__(self, fromworld, x=None, y=None, age=0, strength=0, initiative=0, name=\"\", specialcountdown=0):\n\t\tsuper().__init__(fromworld, x, y)\n\t\tself._age = age\n\t\tself._strength = strength if strength != 0 else 5\n\t\tself._initiative = initiative if initiative != 0 else 4\n\t\tif name != \"\":\n\t\t\tself._name = name\n\t\tself._type = 'H'\n\t\tself.__specialcountdown = specialcountdown\n\t\tself.__nexttask = HumanTasks.DO_NOTHING\n\t\tself._fromworld.humanalive = True\n\n\tdef clone(self, fromworld, position):\n\t\treturn Human(fromworld, position.x, position.y)\n\n\tdef action(self):\n\t\tif self.__specialcountdown > 0:\n\t\t\tself.__specialcountdown -= 1\n\t\t\tself._strength -= 1\n\t\t\tLogger.log(\"%s's strength is dropping! %i turns till normal\" % (self.introduce(), self.__specialcountdown))\n\t\tif self.__nexttask == HumanTasks.GO_UP:\n\t\t\tself.move(Coordinates(self._position.x, self._position.y - 1))\n\t\telif self.__nexttask == HumanTasks.GO_DOWN:\n\t\t\tself.move(Coordinates(self._position.x, self._position.y + 1))\n\t\telif self.__nexttask == HumanTasks.GO_LEFT:\n\t\t\tself.move(Coordinates(self._position.x - 1, self._position.y))\n\t\telif self.__nexttask == HumanTasks.GO_RIGHT:\n\t\t\tself.move(Coordinates(self._position.x + 1, self._position.y))\n\t\telif self.__nexttask == HumanTasks.DO_SPECIAL:\n\t\t\tself.__specialcountdown = SPECIAL_COUNTDOWN\n\t\t\tself._strength = SPECIAL_STRENGTH\n\t\t\tLogger.log(\"%s used their special ability!\" % (self.introduce()))\n\t\telse:\n\t\t\tLogger.log(\"%s had nothing to do this turn\" % (self.introduce()))\n\t\tself.__nexttask = HumanTasks.DO_NOTHING\n\n\tdef istasklegal(self, task):\n\t\tif task == HumanTasks.GO_UP:\n\t\t\treturn self._position.y - 1 >= 0\n\t\telif task == HumanTasks.GO_DOWN:\n\t\t\treturn self._position.y + 1 < self._fromworld.getmaxxy().y\n\t\telif task == HumanTasks.GO_LEFT:\n\t\t\treturn self._position.x - 1 >= 0\n\t\telif task == HumanTasks.GO_RIGHT:\n\t\t\treturn self._position.x + 1 < self._fromworld.getmaxxy().x\n\t\telif task == HumanTasks.DO_SPECIAL:\n\t\t\treturn self.__specialcountdown <= 0\n\t\telse:\n\t\t\treturn False\n\n\tdef setnexttask(self, task):\n\t\tself.__nexttask = task\n\n\tdef die(self):\n\t\tsuper().die()\n\t\tself._fromworld.humanalive = False\n\n\tdef tostring(self):\n\t\treturn \"%s%d\" % (super().tostring(), self.__specialcountdown)\n", "sub_path": "Species/Animals/Human.py", "file_name": "Human.py", "file_ext": "py", "file_size_in_byte": 2507, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "enum.Enum", "line_number": 10, "usage_type": "name"}, {"api_name": "Species.Animal.Animal", "line_number": 19, "usage_type": "name"}, {"api_name": "Gui.Logger.Logger.log", "line_number": 40, "usage_type": "call"}, {"api_name": "Gui.Logger.Logger", "line_number": 40, "usage_type": "name"}, {"api_name": "Coordinates.Coordinates", "line_number": 42, "usage_type": "call"}, {"api_name": "Coordinates.Coordinates", "line_number": 44, "usage_type": "call"}, {"api_name": "Coordinates.Coordinates", "line_number": 46, "usage_type": "call"}, {"api_name": "Coordinates.Coordinates", "line_number": 48, "usage_type": "call"}, {"api_name": "Gui.Logger.Logger.log", "line_number": 52, "usage_type": "call"}, {"api_name": "Gui.Logger.Logger", "line_number": 52, "usage_type": "name"}, {"api_name": "Gui.Logger.Logger.log", "line_number": 54, "usage_type": "call"}, {"api_name": "Gui.Logger.Logger", "line_number": 54, "usage_type": "name"}]}
{"seq_id": "42255834", "text": "#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Mon Apr 20 19:32:05 2020\n\n@author: davideferri\n\"\"\"\n\nimport logging \nimport numpy as np \nimport pandas as pd\nimport scipy.stats as ss \nimport pymc3 as pm \nimport arviz as az\n\n# initialize the logger\nlog = logging.getLogger(__name__)\nlogging.basicConfig(level=logging.INFO,format='%(name)s - %(levelname)s - %(message)s')\n\n# --------------------- generate synthetic data -------------------------- # \n\n# get the number of observations by group\nN = 20 \n# get the number of groups \nM = 8\n# define the index array; all group have N observations but the last (only 1)\nidx = np.repeat(range(M-1),N)\nidx = np.append(idx,7)\nlog.info(\"The index list is: %s\",idx)\n# set a random seed \nnp.random.seed(314)\n\n# define the real coefficients\nalpha_real = ss.norm.rvs(loc=2.5,scale=0.5,size=M)\nlog.info(\"The alpha real is: %s\", alpha_real)\nbeta_real = np.random.beta(6,1,size=M)\nlog.info(\"The beta real is: %s\", beta_real)\neps_real = np.random.normal(0,0.5,size=len(idx))\n\n# set the independent variable\nx_m = np.random.normal(10,1,len(idx))\n# set the dependent variable\ny_m = alpha_real[idx] + beta_real[idx] * x_m + eps_real\n# plot the true data\nfig,ax = plt.subplots(2,4, figsize = (10,5), sharex = True, sharey = True)\nax = np.ravel(ax)\n# initialize j and k\nj, k = 0, N\nfor i in range(M):\n # scatter the data\n ax[i].scatter(x_m[j:k],y_m[j:k])\n # set the x label\n ax[i].set_xlabel(f\"x_{i}\")\n # set the y label\n ax[i].set_ylabel(f\"y_{i}\",rotation = 0, labelpad = 15)\n # set the x axis limit\n ax[i].set_xlim(6,15)\n # set the y axis limit\n ax[i].set_ylim(7,17)\n # update j,k \n j += N\n k += N\nplt.tight_layout()\nplt.show()\n# let us center the x data \nx_centered = x_m - x_m.mean()\n \n# --------------- specify a non-hierarchical (unpooled) probabilistic model -------------------------- #\n\nwith pm.Model() as unpooled_model:\n # set the priors on parameters\n alpha_temp = pm.Normal(\"alpha_temp\", mu = 0, sd = 10, shape = M)\n beta = pm.Normal(\"beta\",mu = 0, sd = 10, shape = M)\n # get the alpha for the uncentered data\n alpha = pm.Deterministic(\"alpha\", alpha_temp - beta * x_m.mean())\n # set the priors on scale and df\n sigma = pm.HalfCauchy(\"sigma\",5)\n df = pm.Exponential(\"df\",1/30)\n # specify the likelihood of the data\n y_obs = pm.StudentT(\"y_obs\", mu = alpha_temp[idx] + beta[idx] * x_centered, sd = sigma, nu = df, observed = y_m)\n # inference step \n trace_unp = pm.sample(2000)\n\n# -------------- analyse the posterior -------------------------------------- # \n \nwith unpooled_model:\n az.plot_forest(trace_unp, var_names = [\"alpha\",\"beta\"], combined = True)\n \n# ---------------- specify a hierarchical probabilistic model ----------------------------- #\n \nwith pm.Model() as hierarchical_model:\n # specify a set of hyper-priors\n alpha_m_temp = pm.Normal(\"alpha_m_temp\", mu = 0, sd = 10)\n alpha_s_temp = pm.HalfNormal(\"alpha_s_temp\",sd = 10)\n beta_m = pm.Normal(\"beta_m\", mu = 0, sd = 10)\n beta_s = pm.HalfNormal(\"beta_s\",sd = 10)\n # set the priors on parameters\n alpha_temp = pm.Normal(\"alpha_temp\", mu = alpha_m_temp, sd = alpha_s_temp, shape = M)\n beta = pm.Normal(\"beta\",mu = beta_m, sd = beta_s, shape = M)\n # get the alpha for the uncentered data\n alpha = pm.Deterministic(\"alpha\", alpha_temp - beta * x_m.mean())\n alpha_m = pm.Deterministic(\"alpha_m\", alpha_m_temp - beta_m * x_m.mean())\n # set the priors on scale and df\n sigma = pm.HalfCauchy(\"sigma\",5)\n df = pm.Exponential(\"df\",1/30)\n # set the likelihood \n y_obs = pm.StudentT(\"y_obs\", mu = alpha_temp[idx] + beta[idx] * x_centered, sd = sigma, nu = df, observed = y_m)\n # inference step \n trace_hm = pm.sample(2000,tune = 2000)\n \n# -------------- analyse the posterior ------------------------------ #\n \nwith hierarchical_model:\n az.plot_forest(trace_hm, var_names = [\"alpha\",\"beta\"], combined = True)\n az.plot_trace(trace_hm, var_names = [\"beta_m\",\"alpha_m\"])\n \n# # ----------------- plot the regression results for each one of the models ------------------------ #\n \nfig,ax = plt.subplots(2,4, figsize = (10,5), sharex = True, sharey = True)\nax = np.ravel(ax)\n# initialize j and k\nj, k = 0, N\nfor i in range(M):\n # scatter the data\n ax[i].scatter(x_m[j:k],y_m[j:k])\n # set the x label\n ax[i].set_xlabel(f\"x_{i}\")\n # set the y label\n ax[i].set_ylabel(f\"y_{i}\",rotation = 0, labelpad = 15)\n # set the x axis limit\n ax[i].set_xlim(6,15)\n # set the y axis limit\n ax[i].set_ylim(7,17)\n # get the alpha of the group (mean of the posterior)\n alpha = trace_hm[\"alpha\"][:,i].mean()\n # get the beta of the group (mean of the posterior)\n beta = trace_hm[\"beta\"][:,i].mean()\n # get the xrange for which to plot the line\n x_range = np.linspace(x_m.min(), x_m.max(), 10)\n # plot the regression line\n ax[i].plot(x_range, alpha + beta * x_range, c='k',label=f'y = {alpha:.2f} + {beta:.2f} * x')\n # update j,k \n j += N\n k += N\nplt.tight_layout()\nplt.show()\n \n \n \n ", "sub_path": "HierLinReg.py", "file_name": "HierLinReg.py", "file_ext": "py", "file_size_in_byte": 5115, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "logging.getLogger", "line_number": 17, "usage_type": "call"}, {"api_name": "logging.basicConfig", "line_number": 18, "usage_type": "call"}, {"api_name": "logging.INFO", "line_number": 18, "usage_type": "attribute"}, {"api_name": "numpy.repeat", "line_number": 27, "usage_type": "call"}, {"api_name": "numpy.append", "line_number": 28, "usage_type": "call"}, {"api_name": "numpy.random.seed", "line_number": 31, "usage_type": "call"}, {"api_name": "numpy.random", "line_number": 31, "usage_type": "attribute"}, {"api_name": "scipy.stats.norm.rvs", "line_number": 34, "usage_type": "call"}, {"api_name": "scipy.stats.norm", "line_number": 34, "usage_type": "attribute"}, {"api_name": "scipy.stats", "line_number": 34, "usage_type": "name"}, {"api_name": "numpy.random.beta", "line_number": 36, "usage_type": "call"}, {"api_name": "numpy.random", "line_number": 36, "usage_type": "attribute"}, {"api_name": "numpy.random.normal", "line_number": 38, "usage_type": "call"}, {"api_name": "numpy.random", "line_number": 38, "usage_type": "attribute"}, {"api_name": "numpy.random.normal", "line_number": 41, "usage_type": "call"}, {"api_name": "numpy.random", "line_number": 41, "usage_type": "attribute"}, {"api_name": "numpy.ravel", "line_number": 46, "usage_type": "call"}, {"api_name": "pymc3.Model", "line_number": 70, "usage_type": "call"}, {"api_name": "pymc3.Normal", "line_number": 72, "usage_type": "call"}, {"api_name": "pymc3.Normal", "line_number": 73, "usage_type": "call"}, {"api_name": "pymc3.Deterministic", "line_number": 75, "usage_type": "call"}, {"api_name": "pymc3.HalfCauchy", "line_number": 77, "usage_type": "call"}, {"api_name": "pymc3.Exponential", "line_number": 78, "usage_type": "call"}, {"api_name": "pymc3.StudentT", "line_number": 80, "usage_type": "call"}, {"api_name": "pymc3.sample", "line_number": 82, "usage_type": "call"}, {"api_name": "arviz.plot_forest", "line_number": 87, "usage_type": "call"}, {"api_name": "pymc3.Model", "line_number": 91, "usage_type": "call"}, {"api_name": "pymc3.Normal", "line_number": 93, "usage_type": "call"}, {"api_name": "pymc3.HalfNormal", "line_number": 94, "usage_type": "call"}, {"api_name": "pymc3.Normal", "line_number": 95, "usage_type": "call"}, {"api_name": "pymc3.HalfNormal", "line_number": 96, "usage_type": "call"}, {"api_name": "pymc3.Normal", "line_number": 98, "usage_type": "call"}, {"api_name": "pymc3.Normal", "line_number": 99, "usage_type": "call"}, {"api_name": "pymc3.Deterministic", "line_number": 101, "usage_type": "call"}, {"api_name": "pymc3.Deterministic", "line_number": 102, "usage_type": "call"}, {"api_name": "pymc3.HalfCauchy", "line_number": 104, "usage_type": "call"}, {"api_name": "pymc3.Exponential", "line_number": 105, "usage_type": "call"}, {"api_name": "pymc3.StudentT", "line_number": 107, "usage_type": "call"}, {"api_name": "pymc3.sample", "line_number": 109, "usage_type": "call"}, {"api_name": "arviz.plot_forest", "line_number": 114, "usage_type": "call"}, {"api_name": "arviz.plot_trace", "line_number": 115, "usage_type": "call"}, {"api_name": "numpy.ravel", "line_number": 120, "usage_type": "call"}, {"api_name": "numpy.linspace", "line_number": 139, "usage_type": "call"}]}
{"seq_id": "446851507", "text": "#\n# avg_pooling\n#\n\nimport tensorflow as tf\nfrom tensorflow.contrib import rnn\nimport numpy as np\nfrom datetime import datetime\nimport os\n\nos.environ[\"CUDA_VISIBLE_DEVICES\"] = '1'\n\nnow = datetime.utcnow().strftime(\"%Y%m%d%H%M%S\")\n# Training Parameters\nlearning_rate = 0.005\n# momentum = 0.1\nn_epochs = 10\nbatch_size = 1024\ndisplay_step = 200\npatience = 3\nmin_delta_acc = 0.001\n# Network Parameters\nnum_input = 3\ntimes_steps = 200\nnum_hidden = 512\n# num_hidden_2 = 128\nnum_classes = 107\nroot_logdir = './submit_model/logs/'\nlogdir = \"{}/run-{}/\".format(root_logdir, now)\nmodeldir = './submit_model/model/biLSTM_'\n\nTrain = np.load(\"../WriterID/Update_RHS_Data/Train107_200_3.npy\", allow_pickle=True)\n# np.random.shuffle(Train)\nTrain_X = Train[:, 0:-1].reshape((-1, times_steps, num_input))\nTrain_y = np.eye(num_classes)[Train[:, -1].astype(int)]\nTest = np.load(\"../WriterID/Update_RHS_Data/Test107_200_3.npy\", allow_pickle=True)\n# np.random.shuffle(Test)\nTest_X = Test[:, 0:-1].reshape((-1, times_steps, num_input))\nTest_y = np.eye(num_classes)[Test[:, -1].astype(int)]\n\nn_batches = int(np.ceil(Train.shape[0] / batch_size))\n\ntf_config = tf.ConfigProto()\n# tf_config.log_device_placement = True\ntf_config.gpu_options.allow_growth = True\n\n# tf Graph input\nX = tf.placeholder(\"float\", [None, times_steps, num_input], name='X')\nY = tf.placeholder(\"float\", [None, num_classes], name='Y')\n\n# X_input = tf.placeholder(dtype=tf.float32, shape=(None, times_steps, num_input))\n# Y_input = tf.placeholder(dtype=tf.float32, shape=(None, num_classes))\n#\n# X_assign = tf.assign(X, X_input)\n# Y_assign = tf.assign(Y, Y_input)\n\n# Define weights\nweights = {\n # Hidden layer weights => 2*n_hidden because of forward + backward cells\n 'out': tf.Variable(tf.random_normal([num_hidden, num_classes]), name='w_out')\n}\nbiases = {\n 'out': tf.Variable(tf.random_normal([num_classes]), name='b_out')\n}\n\ndef BiLstm(x, weights, biases):\n # Prepare data shape to match `rnn` function requirements\n # Current data input shape: (batch_size, timesteps, n_input)\n # Required shape: 'timesteps' tensors list of shape (batch_size, num_input)\n\n # Unstack to get a list of 'timesteps' tensors of shape (batch_size, num_input)\n x = tf.unstack(x, times_steps, 1)\n\n # Define lstm cells with tensorflow\n # Forward direction cell\n lstm_fw_cell_1 = tf.nn.rnn_cell.LSTMCell(num_hidden, forget_bias=1.0, name=\"fw_1\")\n # Backward direction cell\n lstm_bw_cell_1 = tf.nn.rnn_cell.LSTMCell(num_hidden, forget_bias=1.0, name=\"bw_1\")\n\n # lstm_fw_cell_2 = tf.nn.rnn_cell.LSTMCell(num_hidden_2, forget_bias=1.0, name=\"fw_2\")\n # # Backward direction cell\n # lstm_bw_cell_2 = tf.nn.rnn_cell.LSTMCell(num_hidden_2, forget_bias=1.0, name=\"bw_2\")\n\n # Get lstm cell output\n try:\n outputs, _, _ = rnn.static_bidirectional_rnn(lstm_fw_cell_1, lstm_bw_cell_1, x,\n dtype=tf.float32)\n # o, _, _ = rnn.static_bidirectional_rnn(lstm_fw_cell_2, lstm_bw_cell_2, outputs,\n # dtype=tf.float32)\n except Exception: # Old TensorFlow version only returns outputs not states\n outputs = rnn.static_bidirectional_rnn(lstm_fw_cell_1, lstm_bw_cell_1, x,\n dtype=tf.float32)\n # o = rnn.static_bidirectional_rnn(lstm_fw_cell_2, lstm_bw_cell_2, outputs,\n # dtype=tf.float32)\n o1 = tf.expand_dims(outputs[-1], 1)\n o2 = tf.expand_dims(o1, 3)\n v = tf.reshape(tf.nn.avg_pool(o2, ksize=[1, 1, 2, 1], strides=[1, 1, 2, 1], padding='VALID'), [-1, num_hidden])\n return tf.matmul(v, weights['out']) + biases['out']\n\n\nlogits = BiLstm(X, weights, biases)\n\nprediction = tf.nn.softmax(logits, name=\"prediction\")\n\n# Define loss and optimizer\nloss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(\n logits=logits, labels=Y), name=\"loss_op\")\n# loss_l1 = tf.contrib.layers.l1_regularizer(scale)(tf.get_default_graph().get_tensor_by_name(\"w_out:0\"))\n# loss_op = tf.add(loss_base, loss_l1, name=\"loss\")\n# optimizer = tf.train.RMSPropOptimizer(learning_rate=learning_rate,momentum=momentum)\noptimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, name=\"Adam_Op\")\ntrain_op = optimizer.minimize(loss_op, name='train_op')\n\n# Evaluate model (with test logits, for dropout to be disabled)\ncorrect_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))\naccuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name=\"accuracy\")\n\ninit = tf.global_variables_initializer()\nloss = tf.summary.scalar(\"loss\",loss_op)\nacc = tf.summary.scalar(\"acc\", accuracy)\nmerged_summary_op = tf.summary.merge([loss, acc])\n\n\n# Run the initializer\n\ndef fetch_batch(epoch, batch_index, batch_size, train=True):\n np.random.seed(epoch * n_batches + batch_index) # not shown in the book\n if train:\n indices = np.random.randint(Train.shape[0], size=batch_size) # not shown\n X_batch = Train_X[indices] # not shown\n y_batch = Train_y[indices] # not shown\n else:\n indices = np.random.randint(Test.shape[0], size=batch_size) # not shown\n X_batch = Test_X[indices] # not shown\n y_batch = Test_y[indices] # not shown\n return X_batch, y_batch\n\n\nwith tf.Session(config=tf_config) as sess:\n saver = tf.train.Saver()\n sess.run(init)\n train_summary_writer = tf.summary.FileWriter(logdir+'train/', graph=tf.get_default_graph())\n test_summary_writer = tf.summary.FileWriter(logdir+'test/')\n acc_l =[]\n stop = False\n for epoch in range(n_epochs):\n if stop:\n break\n for batch_index in range(n_batches):\n batch_x, batch_y = fetch_batch(epoch, batch_index, batch_size)\n sess.run(train_op, feed_dict={X: batch_x, Y: batch_y})\n step = epoch * n_batches + batch_index\n\n if step % display_step == 0:\n # Calculate batch loss and accuracy\n loss, acc, summary = sess.run([loss_op, accuracy, merged_summary_op], \\\n feed_dict={X: batch_x, Y: batch_y})\n train_summary_writer.add_summary(summary, int(step))\n\n batch_x_test, batch_y_test = fetch_batch(epoch, batch_index, 5120, False)\n loss_test, acc_test, summary_test = sess.run([loss_op, accuracy, merged_summary_op], \\\n feed_dict={X: batch_x_test, Y: batch_y_test})\n test_summary_writer.add_summary(summary_test, int(step))\n acc_l.append(acc_test)\n print(\"Step \" + str(step) + \", Minibatch Loss= \" + \\\n \"{:.4f}\".format(loss) + \", Training Accuracy= \" + \\\n \"{:.3f}\".format(acc) + \", Testing Accuracy= \" + \\\n \"{:.3f}\".format(acc_test))\n if step == 0 or acc_l[-1] - acc_l[-2] >= min_delta_acc:\n p_n = 0\n else:\n p_n += 1\n if p_n == patience:\n stop = True\n break\n print(\"Optimization Finished!\")\n print(\"Run the command line:\\n\"\n \"--> tensorboard --logdir=./logs/\"\n \"\\nThen open http://0.0.0.0:6006/ into your web browser\")\n\n saver.save(sess, modeldir + now + '/biLSTM')\nprint(now)\nprint(\"Finished!\")\n", "sub_path": "Code/biLSTM.py", "file_name": "biLSTM.py", "file_ext": "py", "file_size_in_byte": 7389, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "os.environ", "line_number": 11, "usage_type": "attribute"}, {"api_name": "datetime.datetime.utcnow", "line_number": 13, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 13, "usage_type": "name"}, {"api_name": "numpy.load", "line_number": 32, "usage_type": "call"}, {"api_name": "numpy.eye", "line_number": 35, "usage_type": "call"}, {"api_name": "numpy.load", "line_number": 36, "usage_type": "call"}, {"api_name": "numpy.eye", "line_number": 39, "usage_type": "call"}, {"api_name": "numpy.ceil", "line_number": 41, "usage_type": "call"}, {"api_name": "tensorflow.ConfigProto", "line_number": 43, "usage_type": "call"}, {"api_name": "tensorflow.placeholder", "line_number": 48, "usage_type": "call"}, {"api_name": "tensorflow.placeholder", "line_number": 49, "usage_type": "call"}, {"api_name": "tensorflow.Variable", "line_number": 60, "usage_type": "call"}, {"api_name": "tensorflow.random_normal", "line_number": 60, "usage_type": "call"}, {"api_name": "tensorflow.Variable", "line_number": 63, "usage_type": "call"}, {"api_name": "tensorflow.random_normal", "line_number": 63, "usage_type": "call"}, {"api_name": "tensorflow.unstack", "line_number": 72, "usage_type": "call"}, {"api_name": "tensorflow.nn.rnn_cell.LSTMCell", "line_number": 76, "usage_type": "call"}, {"api_name": "tensorflow.nn", "line_number": 76, "usage_type": "attribute"}, {"api_name": "tensorflow.nn.rnn_cell.LSTMCell", "line_number": 78, "usage_type": "call"}, {"api_name": "tensorflow.nn", "line_number": 78, "usage_type": "attribute"}, {"api_name": "tensorflow.contrib.rnn.static_bidirectional_rnn", "line_number": 86, "usage_type": "call"}, {"api_name": "tensorflow.contrib.rnn", "line_number": 86, "usage_type": "name"}, {"api_name": "tensorflow.float32", "line_number": 87, "usage_type": "attribute"}, {"api_name": "tensorflow.contrib.rnn.static_bidirectional_rnn", "line_number": 91, "usage_type": "call"}, {"api_name": "tensorflow.contrib.rnn", "line_number": 91, "usage_type": "name"}, {"api_name": "tensorflow.float32", "line_number": 92, "usage_type": "attribute"}, {"api_name": "tensorflow.expand_dims", "line_number": 95, "usage_type": "call"}, {"api_name": "tensorflow.expand_dims", "line_number": 96, "usage_type": "call"}, {"api_name": "tensorflow.reshape", "line_number": 97, "usage_type": "call"}, {"api_name": "tensorflow.nn.avg_pool", "line_number": 97, "usage_type": "call"}, {"api_name": "tensorflow.nn", "line_number": 97, "usage_type": "attribute"}, {"api_name": "tensorflow.matmul", "line_number": 98, "usage_type": "call"}, {"api_name": "tensorflow.nn.softmax", "line_number": 103, "usage_type": "call"}, {"api_name": "tensorflow.nn", "line_number": 103, "usage_type": "attribute"}, {"api_name": "tensorflow.reduce_mean", "line_number": 106, "usage_type": "call"}, {"api_name": "tensorflow.nn.softmax_cross_entropy_with_logits", "line_number": 106, "usage_type": "call"}, {"api_name": "tensorflow.nn", "line_number": 106, "usage_type": "attribute"}, {"api_name": "tensorflow.train.AdamOptimizer", "line_number": 111, "usage_type": "call"}, {"api_name": "tensorflow.train", "line_number": 111, "usage_type": "attribute"}, {"api_name": "tensorflow.equal", "line_number": 115, "usage_type": "call"}, {"api_name": "tensorflow.argmax", "line_number": 115, "usage_type": "call"}, {"api_name": "tensorflow.reduce_mean", "line_number": 116, "usage_type": "call"}, {"api_name": "tensorflow.cast", "line_number": 116, "usage_type": "call"}, {"api_name": "tensorflow.float32", "line_number": 116, "usage_type": "attribute"}, {"api_name": "tensorflow.global_variables_initializer", "line_number": 118, "usage_type": "call"}, {"api_name": "tensorflow.summary.scalar", "line_number": 119, "usage_type": "call"}, {"api_name": "tensorflow.summary", "line_number": 119, "usage_type": "attribute"}, {"api_name": "tensorflow.summary.scalar", "line_number": 120, "usage_type": "call"}, {"api_name": "tensorflow.summary", "line_number": 120, "usage_type": "attribute"}, {"api_name": "tensorflow.summary.merge", "line_number": 121, "usage_type": "call"}, {"api_name": "tensorflow.summary", "line_number": 121, "usage_type": "attribute"}, {"api_name": "numpy.random.seed", "line_number": 127, "usage_type": "call"}, {"api_name": "numpy.random", "line_number": 127, "usage_type": "attribute"}, {"api_name": "numpy.random.randint", "line_number": 129, "usage_type": "call"}, {"api_name": "numpy.random", "line_number": 129, "usage_type": "attribute"}, {"api_name": "numpy.random.randint", "line_number": 133, "usage_type": "call"}, {"api_name": "numpy.random", "line_number": 133, "usage_type": "attribute"}, {"api_name": "tensorflow.Session", "line_number": 139, "usage_type": "call"}, {"api_name": "tensorflow.train.Saver", "line_number": 140, "usage_type": "call"}, {"api_name": "tensorflow.train", "line_number": 140, "usage_type": "attribute"}, {"api_name": "tensorflow.summary.FileWriter", "line_number": 142, "usage_type": "call"}, {"api_name": "tensorflow.summary", "line_number": 142, "usage_type": "attribute"}, {"api_name": "tensorflow.get_default_graph", "line_number": 142, "usage_type": "call"}, {"api_name": "tensorflow.summary.FileWriter", "line_number": 143, "usage_type": "call"}, {"api_name": "tensorflow.summary", "line_number": 143, "usage_type": "attribute"}]}
{"seq_id": "318141773", "text": "# -*- coding: UTF-8 -*-\n\"\"\"\nAll examples runner\n\"\"\"\n\nfrom importlib import import_module\nimport logging\nimport os\nimport sys\n\n# services dict: key is a name of CAPTCHA solving service, value is an env variable containing\n# the API key\nSERVICES = {\n '2captcha.com': '2CAPTCHA_API_KEY',\n 'anti-captcha.com': 'ANTICAPTCHA_API_KEY',\n 'azcaptcha.com': 'AZCAPTCHA_API_KEY',\n 'cptch.net': 'CPTCH_NET_API_KEY'\n}\n\n# list of modules containing CAPTCHA solving examples\nEXAMPLES = [\n 'image',\n 'recaptcha_v2',\n 'recaptcha_v2_invisible',\n 'recaptcha_v2_proxy',\n 'recaptcha_v3',\n 'hcaptcha'\n]\n\nlogging.basicConfig(level=logging.DEBUG)\n\n\nif __name__ == '__main__':\n for service_name in SERVICES:\n api_key = os.getenv(SERVICES[service_name])\n print(f'######### Service: {service_name} #########')\n\n for example in EXAMPLES:\n module = import_module(example)\n module.solve(service_name, api_key)\n", "sub_path": "examples/run_all.py", "file_name": "run_all.py", "file_ext": "py", "file_size_in_byte": 955, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "logging.basicConfig", "line_number": 30, "usage_type": "call"}, {"api_name": "logging.DEBUG", "line_number": 30, "usage_type": "attribute"}, {"api_name": "os.getenv", "line_number": 35, "usage_type": "call"}, {"api_name": "importlib.import_module", "line_number": 39, "usage_type": "call"}]}
{"seq_id": "424292967", "text": "from boto.s3.connection import S3Connection\n\n# Import keys into a dict from txt document\namazon_keys = {}\nwith open('../keys.txt', 'r') as f:\n for line in f:\n line = line.strip()\n splitLine = line.split(',')\n amazon_keys[splitLine[0]] = splitLine[-1]\n\n\n# Create a connection to S3 using the keys from above\nconn = S3Connection(\n aws_access_key_id = amazon_keys['access_key'],\n aws_secret_access_key = amazon_keys['secret_key'],\n is_secure=False\n )\n\n# Access bucket called colin-greene\nbucket = conn.get_bucket('colin-greene') \n\n# Store path to the desired file\nunigram_summary = 'ngramcounts/all_unigrams.csv' \n\n# Generate a key for the file \nkey = bucket.get_key(unigram_summary) \n\n# URL that makes link available for 3 weeks\nurl = key.generate_url(86400*21) \n\nf = open('protected_url.txt', 'w')\n\nf.write(url)\nf.close()", "sub_path": "ps2/query_string_authentication.py", "file_name": "query_string_authentication.py", "file_ext": "py", "file_size_in_byte": 888, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "boto.s3.connection.S3Connection", "line_number": 13, "usage_type": "call"}]}
{"seq_id": "435716984", "text": "#!/usr/bin/env python\n\nimport os\nfrom setuptools import setup\n\n\ndef read(readme_file):\n return open(os.path.join(os.path.dirname(__file__), readme_file)).read()\n\n\nsetup(\n name=\"dragoman\",\n version=\"0.0.0\",\n author='Ross Fenning',\n author_email='ross.fenning@gmail.com',\n description='Translates RDF data between vocabularies.',\n url='http://github.com/AvengerPenguin/dragoman',\n install_requires=['docopt', 'FuXi', 'rdflib'],\n packages=['dragoman'],\n entry_points={\n 'console_scripts': [\n 'dragoman = dragoman:main',\n ],\n },\n)\n", "sub_path": "setup.py", "file_name": "setup.py", "file_ext": "py", "file_size_in_byte": 585, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "os.path.join", "line_number": 8, "usage_type": "call"}, {"api_name": "os.path", "line_number": 8, "usage_type": "attribute"}, {"api_name": "os.path.dirname", "line_number": 8, "usage_type": "call"}, {"api_name": "setuptools.setup", "line_number": 11, "usage_type": "call"}]}
{"seq_id": "126397904", "text": "from collections import OrderedDict\n\nimport torch\n\n\ndef main():\n objs = torch.load('./models/mask_rcnn_X_101_32x8d_FPN_deform_mixup_0060000_without_box_pred.pth', map_location='cpu')\n model = objs['model']\n print(sum((v.numel() for _, v in model.items()), ))\n\n new_model = OrderedDict()\n for key in model.keys():\n if not key.startswith('roi_heads.box.feature_extractor.pooler'):\n new_model[key] = model[key]\n\n torch.save({\n 'model': new_model,\n }, './models/mask_rcnn_X_101_32x8d_FPN_deform_mixup_0060000_without_box_pred_and_pooler.pth')\n\n\nif __name__ == '__main__':\n main()\n", "sub_path": "tools/tianchi_xray/convert.py", "file_name": "convert.py", "file_ext": "py", "file_size_in_byte": 625, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "torch.load", "line_number": 7, "usage_type": "call"}, {"api_name": "collections.OrderedDict", "line_number": 11, "usage_type": "call"}, {"api_name": "torch.save", "line_number": 16, "usage_type": "call"}]}
{"seq_id": "566986500", "text": "import collections\n\n\nclass Solution:\n def intersection(self, nums1, nums2):\n counts = collections.Counter(nums1)\n ans = []\n for x in nums2:\n if counts[x] > 0: # 很巧, 这种以另一个数组中的元素为另一个数组中的索引的方法很巧\n ans.append(x)\n counts[x] -= 1\n return ans\n\nif __name__ == '__main__':\n temp = Solution()\n List1 = [1, 2, 3, 4, 5, 6]\n List2 = [2, 4, 6, 8, 10]\n print((\"输入:\" + str(List1) + \" \" + str(List2)))\n print((\"输出:\" + str(temp.intersection(List1, List2))))\n\n# import collections\n# class Solution:\n# def intersection(self, nums1, nums2):\n# counts = collections.Counter(nums1)\n# result = []\n# for num in nums2:\n# if counts[num] > 0:\n# result.append(num)\n# counts[num] -= 1\n# return result\n", "sub_path": "Python算法指南/65_两数组的交集II_Collection.Couter的巧妙应用.py", "file_name": "65_两数组的交集II_Collection.Couter的巧妙应用.py", "file_ext": "py", "file_size_in_byte": 909, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "collections.Counter", "line_number": 6, "usage_type": "call"}]}
{"seq_id": "54702528", "text": "from analyzer.recordset.recordset_factory import recordset_factory\nfrom django.urls import reverse\n\nfrom ..models import Dataset, DatasetMetadataConstraint, PostgresConnection\n\nfrom django.forms.models import inlineformset_factory, modelform_factory\nfrom django.shortcuts import get_object_or_404, redirect, render\nfrom django.contrib import messages\nfrom django.contrib.auth.decorators import login_required\n\n\n\n@login_required()\ndef manage_constraint(request, dataset_id):\n ConstraintForm = modelform_factory(DatasetMetadataConstraint, fields=(\n 'dataset', 'constraint_name', 'columns', 'constraint_type', 'constraint_definition'))\n ConstraintFormSet = inlineformset_factory(Dataset, DatasetMetadataConstraint,\n form=ConstraintForm, extra=0, can_delete=True)\n ConstraintFormSetAdd = inlineformset_factory(Dataset, DatasetMetadataConstraint,\n form=ConstraintForm, extra=1, can_delete=False)\n dataset = get_object_or_404(Dataset, id=dataset_id)\n if request.method == \"POST\":\n if request.POST[\"Operation\"] == \"Save\":\n if request.POST.get('Extraction') == 'true':\n formset = ConstraintFormSet(instance=dataset)\n for form in formset:\n obj = form.save(commit=False)\n obj.delete()\n\n formset = ConstraintFormSet(request.POST, instance=dataset)\n\n if formset.is_valid():\n formset.save()\n messages.success(request, 'Data was saved successfully.')\n return render(request, \"manage_constraint/manage_constraint.html\", {\"formset\": formset, \"dataset\": dataset})\n\n if request.POST[\"Operation\"] == 'Add':\n formset = ConstraintFormSetAdd(instance=dataset)\n return render(request, 'manage_constraint/manage_constraint.html', {'formset': formset, 'dataset': dataset})\n\n if request.POST[\"Operation\"] == 'Return':\n return redirect(\"dataset_detail\", dataset_id=dataset_id)\n\n if request.POST[\"Operation\"] == \"Undo\":\n return redirect(reverse(\"manage_constraint\", kwargs={\"dataset_id\": dataset_id}))\n\n if request.POST[\"Operation\"] == \"Extract\":\n recordset = recordset_factory(dataset)\n access_method = dataset.dataset_access_method\n\n if access_method == 'TABLE':\n table = dataset.dataset_extraction_table.split(\".\")[1]\n\n pk_and_unique_constraints = recordset.get_pk_and_unique_constraints(table)\n check_constraints = recordset.get_check_constraints(table)\n is_nullable_constraints = recordset.get_is_nullable_constraints(table)\n\n form = []\n form = fill_constraint_form(pk_and_unique_constraints, form, dataset, kind=\"PRIMARY KEY\")\n form = fill_constraint_form(check_constraints, form, dataset, kind=\"CHECK\")\n form = fill_constraint_form(is_nullable_constraints, form, dataset, kind=\"IS_NULLABLE\")\n\n ConstraintFormSetExtract = inlineformset_factory(Dataset, DatasetMetadataConstraint,\n form=ConstraintForm, extra=len(form),\n can_delete=False)\n\n formset = ConstraintFormSetExtract(queryset=DatasetMetadataConstraint.objects.none(), initial=form)\n return render(request, 'manage_constraint/manage_constraint.html', {'formset': formset, 'dataset': dataset, \"extraction\": True})\n\n formset = ConstraintFormSet(instance=dataset)\n return render(request, 'manage_constraint/manage_constraint.html', {'formset': formset, 'dataset': dataset})\n\n\ndef fill_constraint_form(constraint, form, dataset, **kwargs):\n if kwargs[\"kind\"] == \"PRIMARY KEY\":\n for i in range(len(constraint)):\n form.append({\n \"dataset\": dataset.pk,\n \"constraint_name\": constraint[i][0],\n \"columns\": constraint[i][1],\n \"constraint_type\": constraint[i][2],\n \"constraint_definition\": \"{0} is primary key\".format(constraint[i][1])\n })\n return form\n elif kwargs[\"kind\"] == \"CHECK\":\n for i in range(len(constraint)):\n form.append({\n \"dataset\": dataset.pk,\n \"constraint_name\": constraint[i][0],\n \"columns\": constraint[i][1],\n \"constraint_type\": \"CHECK\",\n \"constraint_definition\": constraint[i][2]\n })\n return form\n elif kwargs[\"kind\"] == \"IS_NULLABLE\":\n for i in range(len(constraint)):\n if constraint[i][1] == \"NO\":\n form.append({\n \"dataset\": dataset.pk,\n \"constraint_name\": \"{0}_not_null\".format(constraint[i][0]),\n \"columns\": constraint[i][0],\n \"constraint_type\": \"IS_NULLABLE\",\n \"constraint_definition\": \"{0} is not null\".format(constraint[i][0])\n })\n return form\n", "sub_path": "saefportal/saef/views/manage_constraint_view.py", "file_name": "manage_constraint_view.py", "file_ext": "py", "file_size_in_byte": 5146, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "django.forms.models.modelform_factory", "line_number": 15, "usage_type": "call"}, {"api_name": "models.DatasetMetadataConstraint", "line_number": 15, "usage_type": "argument"}, {"api_name": "django.forms.models.inlineformset_factory", "line_number": 17, "usage_type": "call"}, {"api_name": "models.Dataset", "line_number": 17, "usage_type": "argument"}, {"api_name": "models.DatasetMetadataConstraint", "line_number": 17, "usage_type": "argument"}, {"api_name": "django.forms.models.inlineformset_factory", "line_number": 19, "usage_type": "call"}, {"api_name": "models.Dataset", "line_number": 19, "usage_type": "argument"}, {"api_name": "models.DatasetMetadataConstraint", "line_number": 19, "usage_type": "argument"}, {"api_name": "django.shortcuts.get_object_or_404", "line_number": 21, "usage_type": "call"}, {"api_name": "models.Dataset", "line_number": 21, "usage_type": "argument"}, {"api_name": "django.contrib.messages.success", "line_number": 34, "usage_type": "call"}, {"api_name": "django.contrib.messages", "line_number": 34, "usage_type": "name"}, {"api_name": "django.shortcuts.render", "line_number": 35, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 39, "usage_type": "call"}, {"api_name": "django.shortcuts.redirect", "line_number": 42, "usage_type": "call"}, {"api_name": "django.shortcuts.redirect", "line_number": 45, "usage_type": "call"}, {"api_name": "django.urls.reverse", "line_number": 45, "usage_type": "call"}, {"api_name": "analyzer.recordset.recordset_factory.recordset_factory", "line_number": 48, "usage_type": "call"}, {"api_name": "django.forms.models.inlineformset_factory", "line_number": 63, "usage_type": "call"}, {"api_name": "models.Dataset", "line_number": 63, "usage_type": "argument"}, {"api_name": "models.DatasetMetadataConstraint", "line_number": 63, "usage_type": "argument"}, {"api_name": "models.DatasetMetadataConstraint.objects.none", "line_number": 67, "usage_type": "call"}, {"api_name": "models.DatasetMetadataConstraint.objects", "line_number": 67, "usage_type": "attribute"}, {"api_name": "models.DatasetMetadataConstraint", "line_number": 67, "usage_type": "name"}, {"api_name": "django.shortcuts.render", "line_number": 68, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 71, "usage_type": "call"}, {"api_name": "django.contrib.auth.decorators.login_required", "line_number": 13, "usage_type": "call"}]}
{"seq_id": "212763883", "text": "# ===========================================================================\n#\n# file : glyph.py\n# part of : godafoss micropython library\n# url : https://www.github.com/wovo/godafoss\n# author : Wouter van Ooijen (wouter@voti.nl) 2022\n# license : MIT license, see license variable in the code\n#\n# This file is part of the Godafoss perhiperal interface library.\n#\n# ===========================================================================\n\nimport sys\nfrom PIL import Image\n\n\n# ===========================================================================\n\ndef make_glyph( input_file, output_name, x_size, y_size ):\n\n im = Image.open( input_file )\n \n if x_size != 0:\n if y_size == 0:\n y_size = im.size[ 1 ] * x_size // im.size[ 0 ]\n \n if y_size != 0:\n if x_size == 0:\n x_size = im.size[ 0 ] * y_size // im.size[ 1 ]\n \n if x_size == 0:\n x_size, y_size = im.size\n\n im = im.resize( ( x_size, y_size ) ) \n if not isinstance( im.getpixel( ( 0, 0 ) ), int ):\n print( \"The input must be a b/w file.\" )\n \n b = 0\n n = 0\n data = []\n for y in range( y_size ):\n s = \"\"\n for x in range( x_size ):\n n += 1\n c = im.getpixel( ( x, y ) )\n b = b >> 1\n if c:\n b |= 0x80\n s += \" \"\n else:\n s += \"O\" \n if ( n % 8 == 7 ) or ( n + 1 == x * y ):\n data.append( b )\n b = 0\n if 1: print( \"%2d|\" % y + s + \"|\" )\n \n f = open( output_name + \".py\", \"w\" )\n \n f.write( \"from godafoss import xy, glyph\\n\" )\n f.write( \"\\n\" )\n f.write( \"class %s( glyph ):\\n\" % output_name )\n f.write( \" \\\"\\\"\\\"\\n\" );\n f.write( \" image generated from %s\\n\" % input_file )\n f.write( \" size %d * %d\\n\" % ( x_size, y_size ) ) \n f.write( \" \\\"\\\"\\\"\\n\" );\n f.write( \"\\n\" )\n f.write( \" def __init__( self ) -> None:\\n\" )\n f.write( \" glyph.__init__( self, xy( %d, %d ) )\\n\" \n % ( x_size, y_size ) )\n f.write( \" self.data = bytes( [\\n\" )\n s = \"\"\n for i in range( len( data ) ):\n s += \"%d,\" % data[ i ]\n if ( len( s ) > 50 ) or ( i + 1 == len( data )):\n f.write( \" %s\\n\" % s )\n s = \"\"\n f.write( \" ] )\\n\" ) \n f.write( \"\\n\" ) \n f.write( \" def read( self, location: xy ) -> color:\\n\" ) \n f.write( \" n = location.x + location.y * self.size.x\\n\" )\n f.write( \" b = self.data[ n // 8 ] & ( 0x1 << ( n % 8 ))\\n\" )\n f.write( \" return b != 0\\n\" ) \n \n f.close()\n im.close()\n\n \n# ===========================================================================\n\ndef run( args ):\n if len( args ) < 3:\n print( \"usage:\" )\n print( \" glyph input_file output [x_size] [y_size]\" )\n print( \"\" )\n print( \"input_file: image file, must be a b/w acceptable to PIL.Image.open()\" )\n print( \"output: output file name (.py will be appended) and python image class name\" )\n print( \"x_size: x_size of the written image. default: taken from input.\" )\n print( \"y_size: y_size of the written image. default: taken from input.\" )\n print( \" \" )\n print( \"When either the x_size is specified but the y_size is not or is 0,\" )\n print( \"or the y_size is omitted, the aspect ratio is maintained.\" )\n return\n \n make_glyph( \n args[ 1 ], \n args[ 2 ], \n int( args[ 4 ] ) if len( args ) > 4 else 0,\n int( args[ 5 ] ) if len( args ) > 5 else 0\n ) \n\n \n# ===========================================================================\n\nif __name__ == \"__main__\":\n run( sys.argv )\n\n \n# ===========================================================================\n ", "sub_path": "make/glyph.py", "file_name": "glyph.py", "file_ext": "py", "file_size_in_byte": 3930, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "PIL.Image.open", "line_number": 21, "usage_type": "call"}, {"api_name": "PIL.Image", "line_number": 21, "usage_type": "name"}, {"api_name": "sys.argv", "line_number": 115, "usage_type": "attribute"}]}
{"seq_id": "584061483", "text": "import logging\nimport time\nimport json\nimport unittest\nfrom secrets import token_bytes\nfrom typing import Any, Callable, Dict, List, Optional, Set, Tuple\n\nimport asyncio\nimport aiosqlite\nimport sqlite3\n\nfrom blspy import AugSchemeMPL, G1Element, G2Element\nfrom hashlib import sha256\n\nfrom chives.consensus.constants import ConsensusConstants\nfrom chives.consensus.coinbase import create_puzzlehash_for_pk\nfrom chives.util.bech32m import decode_puzzle_hash, encode_puzzle_hash\nfrom chives.util.config import load_config\nfrom chives.util.default_root import DEFAULT_ROOT_PATH\nfrom chives.util.ints import uint32, uint64\nfrom chives.util.hash import std_hash\nfrom chives.util.db_wrapper import DBWrapper\nfrom chives.util.keychain import Keychain, bytes_from_mnemonic, bytes_to_mnemonic, generate_mnemonic, mnemonic_to_seed\nfrom chives.wallet.derive_keys import master_sk_to_farmer_sk, master_sk_to_pool_sk, master_sk_to_wallet_sk\nfrom chives.wallet.wallet_coin_store import WalletCoinStore\nfrom chives.types.blockchain_format.coin import Coin\nfrom chives.types.blockchain_format.program import Program, SerializedProgram\nfrom chives.types.blockchain_format.sized_bytes import bytes32\n\nfrom chives.wallet.util.wallet_types import WalletType\nfrom chives.wallet.wallet_coin_record import WalletCoinRecord\n\nfrom chives.wallet.puzzles.p2_delegated_puzzle_or_hidden_puzzle import (\n DEFAULT_HIDDEN_PUZZLE_HASH,\n calculate_synthetic_secret_key,\n puzzle_for_pk,\n solution_for_conditions,\n)\nfrom chives.wallet.puzzles.puzzle_utils import (\n make_assert_coin_announcement,\n make_assert_puzzle_announcement,\n make_assert_my_coin_id_condition,\n make_assert_absolute_seconds_exceeds_condition,\n make_create_coin_announcement,\n make_create_puzzle_announcement,\n make_create_coin_condition,\n make_reserve_fee_condition,\n)\n\nimport redis\nr = redis.Redis(host='localhost', port=6379, decode_responses=True)\n\nclass TesKeychain():\n \n async def puzzle_for_puzzle_hash(puzzle_hash: bytes32) -> Program:\n public_key = await TesKeychain.hack_populate_secret_key_for_puzzle_hash(puzzle_hash)\n return puzzle_for_pk(bytes(public_key))\n \n def make_solution(\n primaries: Optional[List[Dict[str, Any]]] = None,\n min_time=0,\n me=None,\n coin_announcements: Optional[List[bytes32]] = None,\n coin_announcements_to_assert: Optional[List[bytes32]] = None,\n puzzle_announcements=None,\n puzzle_announcements_to_assert=None,\n fee=0,\n ) -> Program:\n assert fee >= 0\n condition_list = []\n if primaries:\n for primary in primaries:\n condition_list.append(make_create_coin_condition(primary[\"puzzlehash\"], primary[\"amount\"]))\n if min_time > 0:\n condition_list.append(make_assert_absolute_seconds_exceeds_condition(min_time))\n if me:\n condition_list.append(make_assert_my_coin_id_condition(me[\"id\"]))\n if fee:\n condition_list.append(make_reserve_fee_condition(fee))\n if coin_announcements:\n for announcement in coin_announcements:\n condition_list.append(make_create_coin_announcement(announcement))\n if coin_announcements_to_assert:\n for announcement_hash in coin_announcements_to_assert:\n condition_list.append(make_assert_coin_announcement(announcement_hash))\n if puzzle_announcements:\n for announcement in puzzle_announcements:\n condition_list.append(make_create_puzzle_announcement(announcement))\n if puzzle_announcements_to_assert:\n for announcement_hash in puzzle_announcements_to_assert:\n condition_list.append(make_assert_puzzle_announcement(announcement_hash))\n return solution_for_conditions(condition_list)\n \n async def TestTransaction():\n root_path = DEFAULT_ROOT_PATH\n config = load_config(root_path, \"config.yaml\")\n selected = config[\"selected_network\"]\n prefix = config[\"network_overrides\"][\"config\"][selected][\"address_prefix\"]\n log = logging.Logger\n db_connection = await aiosqlite.connect(\"/home/wang/.chives/mainnet/db/blockchain_v1_mainnet.sqlite\")\n mnemonic = generate_mnemonic()\n mnemonic = \"hen battle gauge crouch dose weasel blind noble ugly pull cruel mutual slight tragic bean rule once garage valley ritual still couple charge rich\"\n entropy = bytes_from_mnemonic(mnemonic)\n seed = mnemonic_to_seed(mnemonic, \"\")\n seed_key = AugSchemeMPL.key_gen(seed)\n masterPublicKey = seed_key.get_g1()\n fingerprint = masterPublicKey.get_fingerprint()\n \n MapKeys = {}\n for i in range(10):\n primary_key = master_sk_to_wallet_sk(seed_key, uint32(i))\n public_key = primary_key.get_g1()\n puzzle_hash = create_puzzlehash_for_pk(public_key)\n address = encode_puzzle_hash(puzzle_hash, prefix)\n MapKeys[puzzle_hash] = public_key\n MapKeys[i] = puzzle_hash\n print(puzzle_hash)\n print(MapKeys) \n \n # Get coin infor\n coin_name = \"9d1cbc9cf8a5ad3883933fd05367562bb771ab5ef4cb6200b6b9acdb4b2c8117\";\n newpuzzlehash = MapKeys[2]\n SendAmount = 0.01*100000000\n fee = 0\n cursor = await db_connection.execute(\"SELECT * from coin_record WHERE coin_name=?\", (coin_name,))\n row = await cursor.fetchone()\n await cursor.close()\n if row is None:\n return None\n # parent_coin_info puzzle_hash amount\n coin = Coin(bytes32(bytes.fromhex(row[6])), bytes32(bytes.fromhex(row[5])), uint64.from_bytes(row[7]))\n # print(coin)\n WallTypeValue = 0\n WallTypeId = 1\n WalletCoinRecord(\n coin, uint32(row[1]), uint32(row[2]), bool(row[3]), bool(row[4]), WalletType(WallTypeValue), WallTypeId\n )\n # select_coins\n select_coins: Set = set()\n select_coins.add(coin)\n \n spends: List[CoinSolution] = []\n primary_announcement_hash: Optional[bytes32] = None\n \n origin_id = None\n primaries: Optional[List[Dict]] = None\n for coin in select_coins:\n # log.info(f\"coin from coins {coin}\")\n # print(coin)\n print(coin)\n #puzzle: Program = await TesKeychain.puzzle_for_puzzle_hash(coin.puzzle_hash)\n public_key = MapKeys[puzzle_hash]\n assert public_key is not None\n puzzle: Program = puzzle_for_pk(bytes(public_key))\n #print(public_key)\n #print(puzzle)\n \n change = coin.amount - SendAmount\n # Only one coin creates outputs\n if primary_announcement_hash is None and origin_id in (None, coin.name()):\n if primaries is None:\n primaries = [{\"puzzlehash\": newpuzzlehash, \"amount\": SendAmount}]\n else:\n primaries.append({\"puzzlehash\": newpuzzlehash, \"amount\": SendAmount})\n if change > 0:\n # CHANGE 地址为第二个地址\n change_puzzle_hash: bytes32 = MapKeys[1]\n primaries.append({\"puzzlehash\": change_puzzle_hash, \"amount\": change})\n message_list: List[bytes32] = [c.name() for c in select_coins]\n print(message_list)\n print('#############################')\n for primary in primaries:\n print(coin.name())\n coinNew = Coin(coin.name(), primary[\"puzzlehash\"], uint32(primary[\"amount\"])).name()\n message_list.append(coinNew)\n print('#############################')\n \n message: bytes32 = std_hash(b\"\".join(message_list))\n solution: Program = TesKeychain.make_solution(primaries=primaries, fee=fee, coin_announcements=[message])\n primary_announcement_hash = Announcement(coin.name(), message).name()\n else:\n solution = TesKeychain.make_solution(coin_announcements_to_assert=[primary_announcement_hash])\n\n spends.append(\n CoinSolution(\n coin, SerializedProgram.from_bytes(bytes(puzzle)), SerializedProgram.from_bytes(bytes(solution))\n )\n )\n \n #coin_record: WalletCoinRecord = WalletCoinRecord(\n # coin, height, uint32(0), False, farm_reward, wallet_type, wallet_id\n #)\n \n \n \n# xcc1dr0leqc48k0k3ul7386ulxppf8ru5rmqx6gjffdsdff0tgxj4wqssewhcj\n# 68dffc83153d9f68f3fe89f5cf982149c7ca0f60369124a5b06a52f5a0d2ab81\n# COIN_NAME 7541233a21d81a443c5809680aca026029547108c091869ee8fb1ad3b09850e5\n# COIN_NAME 6a5d959896271bbf01cb29c255cc9dfd33125a940676ec97b2da7decd56f5374\n# COIN_NAME 7badb9975ec2b4634093a4e74ecd840c527b0fdc81a42d5758b48c770f428cd9\nif __name__ == \"__main__\": \n loop = asyncio.get_event_loop()\n loop.run_until_complete(TesKeychain.TestTransaction())\n", "sub_path": "tests/wallet/wallet.py", "file_name": "wallet.py", "file_ext": "py", "file_size_in_byte": 9078, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "redis.Redis", "line_number": 51, "usage_type": "call"}, {"api_name": "chives.types.blockchain_format.sized_bytes.bytes32", "line_number": 55, "usage_type": "name"}, {"api_name": "chives.wallet.puzzles.p2_delegated_puzzle_or_hidden_puzzle.puzzle_for_pk", "line_number": 57, "usage_type": "call"}, {"api_name": "chives.types.blockchain_format.program.Program", "line_number": 55, "usage_type": "name"}, {"api_name": "typing.Optional", "line_number": 60, "usage_type": "name"}, {"api_name": "typing.List", "line_number": 60, "usage_type": "name"}, {"api_name": "typing.Dict", "line_number": 60, "usage_type": "name"}, {"api_name": "typing.Any", "line_number": 60, "usage_type": "name"}, {"api_name": "typing.Optional", "line_number": 63, "usage_type": "name"}, {"api_name": "typing.List", "line_number": 63, "usage_type": "name"}, {"api_name": "chives.types.blockchain_format.sized_bytes.bytes32", "line_number": 63, "usage_type": "name"}, {"api_name": "typing.Optional", "line_number": 64, "usage_type": "name"}, {"api_name": "typing.List", "line_number": 64, "usage_type": "name"}, {"api_name": "chives.types.blockchain_format.sized_bytes.bytes32", "line_number": 64, "usage_type": "name"}, {"api_name": "chives.wallet.puzzles.puzzle_utils.make_create_coin_condition", "line_number": 73, "usage_type": "call"}, {"api_name": "chives.wallet.puzzles.puzzle_utils.make_assert_absolute_seconds_exceeds_condition", "line_number": 75, "usage_type": "call"}, {"api_name": "chives.wallet.puzzles.puzzle_utils.make_assert_my_coin_id_condition", "line_number": 77, "usage_type": "call"}, {"api_name": "chives.wallet.puzzles.puzzle_utils.make_reserve_fee_condition", "line_number": 79, "usage_type": "call"}, {"api_name": "chives.wallet.puzzles.puzzle_utils.make_create_coin_announcement", "line_number": 82, "usage_type": "call"}, {"api_name": "chives.wallet.puzzles.puzzle_utils.make_assert_coin_announcement", "line_number": 85, "usage_type": "call"}, {"api_name": "chives.wallet.puzzles.puzzle_utils.make_create_puzzle_announcement", "line_number": 88, "usage_type": "call"}, {"api_name": "chives.wallet.puzzles.puzzle_utils.make_assert_puzzle_announcement", "line_number": 91, "usage_type": "call"}, {"api_name": "chives.wallet.puzzles.p2_delegated_puzzle_or_hidden_puzzle.solution_for_conditions", "line_number": 92, "usage_type": "call"}, {"api_name": "chives.types.blockchain_format.program.Program", "line_number": 68, "usage_type": "name"}, {"api_name": "chives.util.default_root.DEFAULT_ROOT_PATH", "line_number": 95, "usage_type": "name"}, {"api_name": "chives.util.config.load_config", "line_number": 96, "usage_type": "call"}, {"api_name": "logging.Logger", "line_number": 99, "usage_type": "attribute"}, {"api_name": "aiosqlite.connect", "line_number": 100, "usage_type": "call"}, {"api_name": "chives.util.keychain.generate_mnemonic", "line_number": 101, "usage_type": "call"}, {"api_name": "chives.util.keychain.bytes_from_mnemonic", "line_number": 103, "usage_type": "call"}, {"api_name": "chives.util.keychain.mnemonic_to_seed", "line_number": 104, "usage_type": "call"}, {"api_name": "blspy.AugSchemeMPL.key_gen", "line_number": 105, "usage_type": "call"}, {"api_name": "blspy.AugSchemeMPL", "line_number": 105, "usage_type": "name"}, {"api_name": "chives.wallet.derive_keys.master_sk_to_wallet_sk", "line_number": 111, "usage_type": "call"}, {"api_name": "chives.util.ints.uint32", "line_number": 111, "usage_type": "call"}, {"api_name": "chives.consensus.coinbase.create_puzzlehash_for_pk", "line_number": 113, "usage_type": "call"}, {"api_name": "chives.util.bech32m.encode_puzzle_hash", "line_number": 114, "usage_type": "call"}, {"api_name": "chives.types.blockchain_format.coin.Coin", "line_number": 131, "usage_type": "call"}, {"api_name": "chives.types.blockchain_format.sized_bytes.bytes32", "line_number": 131, "usage_type": "call"}, {"api_name": "chives.util.ints.uint64.from_bytes", "line_number": 131, "usage_type": "call"}, {"api_name": "chives.util.ints.uint64", "line_number": 131, "usage_type": "name"}, {"api_name": "chives.wallet.wallet_coin_record.WalletCoinRecord", "line_number": 135, "usage_type": "call"}, {"api_name": "chives.util.ints.uint32", "line_number": 136, "usage_type": "call"}, {"api_name": "chives.wallet.util.wallet_types.WalletType", "line_number": 136, "usage_type": "call"}, {"api_name": "typing.Set", "line_number": 139, "usage_type": "name"}, {"api_name": "typing.List", "line_number": 142, "usage_type": "name"}, {"api_name": "typing.Optional", "line_number": 143, "usage_type": "name"}, {"api_name": "chives.types.blockchain_format.sized_bytes.bytes32", "line_number": 143, "usage_type": "name"}, {"api_name": "typing.Optional", "line_number": 146, "usage_type": "name"}, {"api_name": "typing.List", "line_number": 146, "usage_type": "name"}, {"api_name": "typing.Dict", "line_number": 146, "usage_type": "name"}, {"api_name": "chives.types.blockchain_format.program.Program", "line_number": 154, "usage_type": "name"}, {"api_name": "chives.wallet.puzzles.p2_delegated_puzzle_or_hidden_puzzle.puzzle_for_pk", "line_number": 154, "usage_type": "call"}, {"api_name": "chives.types.blockchain_format.sized_bytes.bytes32", "line_number": 167, "usage_type": "name"}, {"api_name": "typing.List", "line_number": 169, "usage_type": "name"}, {"api_name": "chives.types.blockchain_format.sized_bytes.bytes32", "line_number": 169, "usage_type": "name"}, {"api_name": "chives.types.blockchain_format.coin.Coin", "line_number": 174, "usage_type": "call"}, {"api_name": "chives.util.ints.uint32", "line_number": 174, "usage_type": "call"}, {"api_name": "chives.types.blockchain_format.sized_bytes.bytes32", "line_number": 178, "usage_type": "name"}, {"api_name": "chives.util.hash.std_hash", "line_number": 178, "usage_type": "call"}, {"api_name": "chives.types.blockchain_format.program.Program", "line_number": 179, "usage_type": "name"}, {"api_name": "chives.types.blockchain_format.program.SerializedProgram.from_bytes", "line_number": 186, "usage_type": "call"}, {"api_name": "chives.types.blockchain_format.program.SerializedProgram", "line_number": 186, "usage_type": "name"}, {"api_name": "asyncio.get_event_loop", "line_number": 202, "usage_type": "call"}]}
{"seq_id": "155851035", "text": "import numpy as np\nfrom sklearn import preprocessing\nfrom sklearn.feature_extraction.text import TfidfVectorizer\nfrom pandas import read_hdf, concat\nfrom sklearn.metrics import f1_score, accuracy_score\nfrom time import time\n\nfrom sklearn.ensemble import RandomForestClassifier\nfrom Utils.utils import type2idx\n\n# Load data\nTrainServices = read_hdf('D:\\python_projects\\ServeNet_others\\data\\\\ramdom_categorg_percent\\RandomSplittedByCatagories9.h5', key='Train')\nTestServices = read_hdf('D:\\python_projects\\ServeNet_others\\data\\\\ramdom_categorg_percent\\RandomSplittedByCatagories9.h5', key='Test')\nAllData = concat([TrainServices, TestServices])\n\ndata_train=list(TrainServices['Service Desciption'])\ntarget_train=list(TrainServices['Service Classification'])\ndata_test=list(TestServices['Service Desciption'])\ntarget_test=list(TestServices['Service Classification'])\n\nX_train=data_train\nY_train=target_train\nX_test=data_test\nY_test=target_test\n\nType_c = (list(np.unique(target_train)))\n\nencoder = preprocessing.LabelEncoder()\nY_train = encoder.fit_transform(Y_train)\nY_test = encoder.fit_transform(Y_test)\n\nmax_features = 2000\n\ntfidf_vectorizer=TfidfVectorizer(sublinear_tf=True, stop_words='english', max_features=max_features)\ntfidf_vectorizer.fit(list(AllData['Service Desciption']))\n\nX_train = tfidf_vectorizer.transform(X_train)\nX_test = tfidf_vectorizer.transform(X_test)\n\n# Train processing\nclf = RandomForestClassifier(n_estimators=2000, max_depth=40)\n\nt0 = time()\nclf.fit(X_train, Y_train)\nt1 = time()\nprint(\"Train time: \", t1 - t0)\n\ntrain_top5 = clf.predict_proba(X_train)\ntrain_top1 = clf.predict(X_train)\n\ntest_pre_top5 = clf.predict_proba(X_test)\ntest_pre_top1 = clf.predict(X_test)\n\ntest_ret = np.empty((len(Y_test),), dtype=np.int)\ntrain_ret = np.empty((len(Y_train),), dtype=np.int)\nfor i in range(len(Y_test)):\n Top5_test = sorted(zip(clf.classes_, test_pre_top5[i]), key=lambda x: x[1])[-5:]\n Top5_test=list(map(lambda x: x[0], Top5_test))\n\n if Y_test[i] in Top5_test:\n test_ret[i] = Y_test[i]\n else:\n test_ret[i] = Top5_test[-1]\n\nfor i in range(len(Y_train)):\n Top5_train = sorted(zip(clf.classes_, train_top5[i]), key=lambda x: x[1])[-5:]\n Top5_train = list(map(lambda x: x[0], Top5_train))\n\n if Y_train[i] in Top5_train:\n train_ret[i] = Y_train[i]\n else:\n train_ret[i] = Top5_train[-1]\n\nf1_s = f1_score(Y_test, test_ret, average='micro')\n\nprint(\"=\" * 60)\nprint(\"Test top5 acc:%.4f,train top5 acc:%.4f\" % (accuracy_score(Y_test, test_ret), accuracy_score(Y_train, train_ret)))\nprint(\"Test top1 acc:%.4f,train top1 acc:%.4f\" % (\naccuracy_score(Y_test, test_pre_top1), accuracy_score(Y_train, train_top1)))\nprint(\"F1_score:%.4f\" % float(f1_s))\nprint(\"=\" * 60)\n####################################################################\n# calculate accuracy of each category.\n# type_c_index = type2idx(Type_c, Type_c)\n#\n# result_dict = {}\n# total_dict = {}\n# for idx in type_c_index:\n# category = Type_c[idx]\n# total_count = 0\n# account = 0\n# for i in range(len(Y_test)):\n# if Y_test[i] == idx:\n# total_count += 1\n# if Y_test[i] == test_ret[i]:\n# account += 1\n#\n# result_dict[category] = account / total_count * 1.\n# total_dict[category] = total_count\n#\n# for cate in result_dict.keys():\n# total_account = total_dict[cate]\n# acc = result_dict[cate]\n# print(\"%s (%d): %.4f\" % (cate, total_account, acc))\n\n\n############################################\n# top-1 categories\nprint(\"=\" * 60)\ntype_c_index = type2idx(Type_c, Type_c)\n\nresult_dict = {}\ntotal_dict = {}\navg = 0.0\ncorrect_num = 0\nprint(Y_test.shape)\nprint(test_pre_top1.shape)\nfor idx in type_c_index:\n category = Type_c[idx]\n total_count = 0\n account = 0\n for i in range(len(Y_test)):\n if Y_test[i] == idx:\n total_count += 1\n if Y_test[i] == test_pre_top1[i]:\n account += 1\n correct_num += 1\n\n result_dict[category] = format(account / total_count * 100., '.2f')\n total_dict[category] = total_count\n\nlabels = [\"Tools\",\"Financial\",\"Messaging\",\"eCommerce\",\"Payments\",\"Social\",\"Enterprise\",\"Mapping\",\"Telephony\",\"Science\",\n \"Government\",\"Email\",\"Security\",\"Reference\",\"Video\",\"Travel\",\"Sports\",\"Search\",\"Advertising\",\"Transportation\",\n \"Education\",\"Games\",\"Music\",\"Photos\",\"Cloud\",\"Bitcoin\",\"Project Management\",\"Data\",\"Backend\",\"Database\",\n \"Shipping\",\"Weather\",\"Application Development\",\"Analytics\",\"Internet of Things\",\"Medical\",\"Real Estate\",\n \"Events\",\"Banking\",\"Stocks\",\"Entertainment\",\"Storage\",\"Marketing\",\"File Sharing\",\"News Services\",\"Domains\",\n \"Chat\",\"Media\",\"Images\",\"Other\"]\n\nfor label in labels:\n acc = result_dict[label]\n print(acc)", "sub_path": "Random_Forest_Net/random_forest_net.py", "file_name": "random_forest_net.py", "file_ext": "py", "file_size_in_byte": 4773, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "pandas.read_hdf", "line_number": 12, "usage_type": "call"}, {"api_name": "pandas.read_hdf", "line_number": 13, "usage_type": "call"}, {"api_name": "pandas.concat", "line_number": 14, "usage_type": "call"}, {"api_name": "numpy.unique", "line_number": 26, "usage_type": "call"}, {"api_name": "sklearn.preprocessing.LabelEncoder", "line_number": 28, "usage_type": "call"}, {"api_name": "sklearn.preprocessing", "line_number": 28, "usage_type": "name"}, {"api_name": "sklearn.feature_extraction.text.TfidfVectorizer", "line_number": 34, "usage_type": "call"}, {"api_name": "sklearn.ensemble.RandomForestClassifier", "line_number": 41, "usage_type": "call"}, {"api_name": "time.time", "line_number": 43, "usage_type": "call"}, {"api_name": "time.time", "line_number": 45, "usage_type": "call"}, {"api_name": "numpy.empty", "line_number": 54, "usage_type": "call"}, {"api_name": "numpy.int", "line_number": 54, "usage_type": "attribute"}, {"api_name": "numpy.empty", "line_number": 55, "usage_type": "call"}, {"api_name": "numpy.int", "line_number": 55, "usage_type": "attribute"}, {"api_name": "sklearn.metrics.f1_score", "line_number": 74, "usage_type": "call"}, {"api_name": "sklearn.metrics.accuracy_score", "line_number": 77, "usage_type": "call"}, {"api_name": "sklearn.metrics.accuracy_score", "line_number": 79, "usage_type": "call"}, {"api_name": "Utils.utils.type2idx", "line_number": 110, "usage_type": "call"}]}
{"seq_id": "212609100", "text": "import itertools\nimport numpy as np\nfrom lib_naloga1 import sample_distance\nfrom lib_naloga1 import nesttools\n\n########################\n# Author: Jernej Vivod #\n########################\n\n# average_linkage: return average distance between samples in group c1 and samples in group c2.\ndef average_linkage(c1, c2, data):\n\tc1_elements = list(nesttools.un_nest(c1)) # Get elements in groups c1 and c2.\n\tc2_elements = list(nesttools.un_nest(c2))\n\tprod = itertools.product(c1_elements, c2_elements) \t# Get cartesian product of elements from the groups.\n\n\t# Create accumulator for measuring the sum of distances of pairs in cartesian product.\n\ttotal_dist = 0\n\tfor pair in prod:\n\t\tpair_fst_data = data[pair[0]] # Get data for countries in pair.\n\t\tpair_snd_data = data[pair[1]]\n\t\tdist = sample_distance.euclidean_dist(pair_fst_data, pair_snd_data) # Compute distance and add to total.\n\t\ttotal_dist += dist\n\n\t# Return average distance between elements of groups.\n\treturn total_dist / (len(c1_elements) * len(c2_elements))\n\t\t\n# complete_linkage: return maximal distance between two samples where first sample is in group c1 and second sample in group c2.\ndef complete_linkage(c1, c2, data):\n\tc1_elements = list(nesttools.un_nest(c1))\t# Get elements in groups c1 and c2.\n\tc2_elements = list(nesttools.un_nest(c2))\n\n\t# Get list of of data for each country in each group.\n\tc1_data = list(map(lambda x: data[x], c1_elements))\n\tc2_data = list(map(lambda x: data[x], c2_elements))\n\n\t# Initialize max distance to 0.\n\tmax_dist = 0\n\n\t# Find max distance between samples in different groups.\n\tfor c1_sample in c1_data:\n\t\tfor c2_sample in c2_data:\n\t\t\tdist = sample_distance.euclidean_dist(c1_sample, c2_sample)\n\t\t\tif dist > max_dist: \t\t\t# If distance is new maximal distance...\n\t\t\t\tmax_dist = dist\n\n\t# Return found maximal distance\n\treturn max_dist\n\n# single_linkage: return minimal distance between two samples where first sample is in group c1 and second sample in group c2.\ndef single_linkage(c1, c2, data):\n\tc1_elements = list(nesttools.un_nest(c1)) # Get elements in groups c1 and c2.\n\tc2_elements = list(nesttools.un_nest(c2))\n\n\t# Get list of of data for each country in each group.\n\tc1_data = list(map(lambda x: data[x], c1_elements))\n\tc2_data = list(map(lambda x: data[x], c2_elements))\n\n\t# Initialize min distance to a very large value.\n\tmin_dist = int(1e20)\n\n\t# Find max distance between samples in different groups.\n\tfor c1_sample in c1_data:\n\t\tfor c2_sample in c2_data:\n\t\t\tdist = sample_distance.euclidean_dist(c1_sample, c2_sample)\n\t\t\tif dist < min_dist: \t# If distance is new minimal distance...\n\t\t\t\tmin_dist = dist\n\n\t# Return found maximal distance\n\treturn min_dist\n\n# ward_distance: compute ward distance between clusters c1 and c2.\ndef ward_distance(c1, c2, data):\n\tc1_elements = list(nesttools.un_nest(c1))\t# Get elements in groups c1 and c2.\n\tc2_elements = list(nesttools.un_nest(c2))\n\n\t# Get list of of data for each country in each group.\n\tc1_data = list(map(lambda x: data[x], c1_elements))\n\tc2_data = list(map(lambda x: data[x], c2_elements))\n\n\t# Find centroids of c1 and c2 (average of samples in groups).\n\tRc1 = np.zeros(47, dtype = int)\n\tfor el in c1_data:\n\t\tRc1 = np.add(Rc1, el)\n\tRc1 = np.true_divide(Rc1, len(c1_data))\n\n\tRc2 = np.zeros(47, dtype = int)\n\tfor el in c2_data:\n\t\tRc2 = np.add(Rc2, el)\n\tRc2 = np.true_divide(Rc2, len(c2_data))\n\n\t# Find centroid of union(c1 c2) (average of samples in union).\n\tRc1c2 = np.zeros(47, dtype = int)\n\tfor el in np.concatenate([c1_data, c2_data]):\n\t\tRc1c2 = np.add(Rc1c2, el)\n\tRc1c2 = np.true_divide(Rc1c2, len(np.concatenate([c1_data, c2_data])))\n\n\n\t# Compute and return ward distance using formula. \n\tsum_1 = 0\n\tfor el in np.concatenate([c1_data, c2_data]):\n\t\tsum_1 += sample_distance.manhattan_dist(el, Rc1c2)**2\n\n\tsum_2 = 0\n\tfor el in c1_data:\n\t\tsum_2 += sample_distance.manhattan_dist(el, Rc1)**2\n\t\n\tsum_3 = 0\n\tfor el in c2_data:\n\t\tsum_3 += sample_distance.manhattan_dist(el, Rc2)**2\n\n\treturn sum_1 - (sum_2 + sum_3)", "sub_path": "lib_naloga1/group_distance.py", "file_name": "group_distance.py", "file_ext": "py", "file_size_in_byte": 3964, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "lib_naloga1.nesttools.un_nest", "line_number": 12, "usage_type": "call"}, {"api_name": "lib_naloga1.nesttools", "line_number": 12, "usage_type": "name"}, {"api_name": "lib_naloga1.nesttools.un_nest", "line_number": 13, "usage_type": "call"}, {"api_name": "lib_naloga1.nesttools", "line_number": 13, "usage_type": "name"}, {"api_name": "itertools.product", "line_number": 14, "usage_type": "call"}, {"api_name": "lib_naloga1.sample_distance.euclidean_dist", "line_number": 21, "usage_type": "call"}, {"api_name": "lib_naloga1.sample_distance", "line_number": 21, "usage_type": "name"}, {"api_name": "lib_naloga1.nesttools.un_nest", "line_number": 29, "usage_type": "call"}, {"api_name": "lib_naloga1.nesttools", "line_number": 29, "usage_type": "name"}, {"api_name": "lib_naloga1.nesttools.un_nest", "line_number": 30, "usage_type": "call"}, {"api_name": "lib_naloga1.nesttools", "line_number": 30, "usage_type": "name"}, {"api_name": "lib_naloga1.sample_distance.euclidean_dist", "line_number": 42, "usage_type": "call"}, {"api_name": "lib_naloga1.sample_distance", "line_number": 42, "usage_type": "name"}, {"api_name": "lib_naloga1.nesttools.un_nest", "line_number": 51, "usage_type": "call"}, {"api_name": "lib_naloga1.nesttools", "line_number": 51, "usage_type": "name"}, {"api_name": "lib_naloga1.nesttools.un_nest", "line_number": 52, "usage_type": "call"}, {"api_name": "lib_naloga1.nesttools", "line_number": 52, "usage_type": "name"}, {"api_name": "lib_naloga1.sample_distance.euclidean_dist", "line_number": 64, "usage_type": "call"}, {"api_name": "lib_naloga1.sample_distance", "line_number": 64, "usage_type": "name"}, {"api_name": "lib_naloga1.nesttools.un_nest", "line_number": 73, "usage_type": "call"}, {"api_name": "lib_naloga1.nesttools", "line_number": 73, "usage_type": "name"}, {"api_name": "lib_naloga1.nesttools.un_nest", "line_number": 74, "usage_type": "call"}, {"api_name": "lib_naloga1.nesttools", "line_number": 74, "usage_type": "name"}, {"api_name": "numpy.zeros", "line_number": 81, "usage_type": "call"}, {"api_name": "numpy.add", "line_number": 83, "usage_type": "call"}, {"api_name": "numpy.true_divide", "line_number": 84, "usage_type": "call"}, {"api_name": "numpy.zeros", "line_number": 86, "usage_type": "call"}, {"api_name": "numpy.add", "line_number": 88, "usage_type": "call"}, {"api_name": "numpy.true_divide", "line_number": 89, "usage_type": "call"}, {"api_name": "numpy.zeros", "line_number": 92, "usage_type": "call"}, {"api_name": "numpy.concatenate", "line_number": 93, "usage_type": "call"}, {"api_name": "numpy.add", "line_number": 94, "usage_type": "call"}, {"api_name": "numpy.true_divide", "line_number": 95, "usage_type": "call"}, {"api_name": "numpy.concatenate", "line_number": 95, "usage_type": "call"}, {"api_name": "numpy.concatenate", "line_number": 100, "usage_type": "call"}, {"api_name": "lib_naloga1.sample_distance.manhattan_dist", "line_number": 101, "usage_type": "call"}, {"api_name": "lib_naloga1.sample_distance", "line_number": 101, "usage_type": "name"}, {"api_name": "lib_naloga1.sample_distance.manhattan_dist", "line_number": 105, "usage_type": "call"}, {"api_name": "lib_naloga1.sample_distance", "line_number": 105, "usage_type": "name"}, {"api_name": "lib_naloga1.sample_distance.manhattan_dist", "line_number": 109, "usage_type": "call"}, {"api_name": "lib_naloga1.sample_distance", "line_number": 109, "usage_type": "name"}]}
{"seq_id": "411879139", "text": "import os\n\nfrom kivy.lang import Builder\nfrom kivy.metrics import dp\nfrom kivymd.uix.bottomnavigation import MDBottomNavigationItem\nfrom kivymd.uix.imagelist import SmartTile\nfrom kivy.uix.scrollview import ScrollView\nfrom kivymd.uix.gridlayout import MDGridLayout\nfrom kivymd.uix.button import MDFloatingActionButton\nfrom kivymd.uix.filemanager import MDFileManager\nfrom config import Config\n\n\nBuilder.load_file(f\"{Config.TEMPLATES_DIR}/imagecollectiontab.kv\")\n\n\nclass ImageCell(SmartTile):\n\n def __init__(self, **kwargs):\n super().__init__(**kwargs)\n self.box_color = (0, 0, 0, 0)\n\n\nclass ImageGrid(MDGridLayout):\n def __init__(self, **kwargs):\n super().__init__(**kwargs)\n self.padding = (dp(0), dp(0))\n self.spacing = dp(4)\n\n def get_free_cell(self):\n for image in self.images:\n if not image.source:\n return image\n return\n\n def add_image_cells(self):\n for image in self.images:\n self.add_widget(image)\n\n\nclass ThreeVerticalImagesGrid(ImageGrid):\n def __init__(self, **kwargs):\n super().__init__(**kwargs)\n self.cols = 1\n self.rows = 3\n self.size_hint = (0.2, 0.67)\n self.images = (ImageCell(), ImageCell(), ImageCell())\n self.add_image_cells()\n\n\nclass BigImageGrid(ImageGrid):\n def __init__(self, **kwargs):\n super().__init__(**kwargs)\n self.cols = 1\n self.rows = 1\n self.size_hint = (0.6, 0.67)\n self.images = (ImageCell(),)\n self.add_image_cells()\n\n\nclass BlockOfImages(ImageGrid):\n def __init__(self, **kwargs):\n super().__init__(**kwargs)\n self._current_grid = None\n\n self._first_col_grid = None\n self._middle_block_grid = None\n self._last_col_grid = None\n\n self.rows = 1\n self.size_hint = (1, 0.5)\n\n self.images = []\n self.padding = (dp(2), dp(2))\n self._make_new_grid()\n\n def _to_next_grid(self):\n if self._current_grid == self._first_col_grid:\n self._current_grid = self._middle_block_grid\n elif self._current_grid == self._middle_block_grid:\n self._current_grid = self._last_col_grid\n elif self._current_grid == self._last_col_grid:\n self._make_new_grid()\n\n def get_free_cell(self):\n if self._last_col_grid.children[0].source:\n return\n image = self._current_grid.get_free_cell()\n if not image:\n self._to_next_grid()\n image = self._current_grid.get_free_cell()\n return image\n\n def _make_new_grid(self):\n self._first_col_grid = ThreeVerticalImagesGrid()\n self._middle_block_grid = BigImageGrid()\n self._last_col_grid = ThreeVerticalImagesGrid()\n\n self.add_widget(self._first_col_grid)\n self.add_widget(self._middle_block_grid)\n self.add_widget(self._last_col_grid)\n\n self._current_grid = self._first_col_grid\n\n\nclass ImageGridBuilder(MDGridLayout):\n def __init__(self, **kwargs):\n super().__init__(**kwargs)\n self.blocks = [BlockOfImages(), BlockOfImages(), BlockOfImages()]\n self._idx = 0\n self._current_block = self.blocks[self._idx]\n self.cols = 1\n self.size_hint = (1, 1.5)\n\n for block in self.blocks:\n self.add_widget(block)\n\n def _to_next_block(self):\n self._idx += 1\n self._current_block = self.blocks[self._idx]\n\n def add_image(self, source):\n image = self._current_block.get_free_cell()\n if not image:\n self._to_next_block()\n image = self._current_block.get_free_cell()\n image.source = source\n\n\nclass ImageChooser(MDFileManager):\n def __init__(self, **kwargs):\n super().__init__(**kwargs)\n\n self.exit_manager = self.exit\n self.preview = False\n self.external_storage = os.getenv('EXTERNAL_STORAGE')\n self.images_folder = f\"{self.external_storage}/Pictures\"\n\n def select_path(self, path):\n ImageCollectionTab.image_collection.builder.add_image(path)\n self.exit()\n\n def exit(self, *args):\n self.close()\n\n def open(self):\n self.show(self.images_folder)\n\n\nclass ImageCollection(MDGridLayout):\n def __init__(self, **kwargs):\n super().__init__(cols=1, **kwargs)\n\n self.__next_image_index = 0\n\n self.add_image_button = MDFloatingActionButton(\n icon=\"plus\",\n on_release=self.open_image_chooser\n )\n\n self.scroll_view = ScrollView(size_hint=(1, 1))\n\n self.builder = ImageGridBuilder()\n\n self.scroll_view.add_widget(self.builder)\n self.add_widget(self.scroll_view)\n self.add_widget(self.add_image_button)\n\n def open_image_chooser(self, touch):\n ImageCollectionTab.image_chooser.open()\n\n\nclass ImageCollectionTab(MDBottomNavigationItem):\n \"\"\"Tab that contains personal information.\"\"\"\n\n image_chooser = None\n image_collection = None\n x_size = None\n\n def __init__(self, **kwargs):\n super().__init__(name=\"img_collection\", text=\"Images\",\n icon=\"image-frame\", **kwargs)\n\n ImageCollectionTab.x_size = self.size[0]\n ImageCollectionTab.image_collection = ImageCollection()\n ImageCollectionTab.image_chooser = ImageChooser()\n\n self.add_widget(ImageCollectionTab.image_collection)\n", "sub_path": "lab5/src/ui/imagecollectiontab.py", "file_name": "imagecollectiontab.py", "file_ext": "py", "file_size_in_byte": 5393, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "kivy.lang.Builder.load_file", "line_number": 14, "usage_type": "call"}, {"api_name": "kivy.lang.Builder", "line_number": 14, "usage_type": "name"}, {"api_name": "config.Config.TEMPLATES_DIR", "line_number": 14, "usage_type": "attribute"}, {"api_name": "config.Config", "line_number": 14, "usage_type": "name"}, {"api_name": "kivymd.uix.imagelist.SmartTile", "line_number": 17, "usage_type": "name"}, {"api_name": "kivymd.uix.gridlayout.MDGridLayout", "line_number": 24, "usage_type": "name"}, {"api_name": "kivy.metrics.dp", "line_number": 27, "usage_type": "call"}, {"api_name": "kivy.metrics.dp", "line_number": 28, "usage_type": "call"}, {"api_name": "kivy.metrics.dp", "line_number": 74, "usage_type": "call"}, {"api_name": "kivymd.uix.gridlayout.MDGridLayout", "line_number": 106, "usage_type": "name"}, {"api_name": "kivymd.uix.filemanager.MDFileManager", "line_number": 130, "usage_type": "name"}, {"api_name": "os.getenv", "line_number": 136, "usage_type": "call"}, {"api_name": "kivymd.uix.gridlayout.MDGridLayout", "line_number": 150, "usage_type": "name"}, {"api_name": "kivymd.uix.button.MDFloatingActionButton", "line_number": 156, "usage_type": "call"}, {"api_name": "kivy.uix.scrollview.ScrollView", "line_number": 161, "usage_type": "call"}, {"api_name": "kivymd.uix.bottomnavigation.MDBottomNavigationItem", "line_number": 173, "usage_type": "name"}]}
{"seq_id": "419916864", "text": "import json\nimport os\nimport pickle as pkl\nimport sys\nfrom time import time, strftime, gmtime\nimport numpy as np\nimport torch\nimport torch.nn as nn\nimport xarray as xr\nfrom torch.utils.data import DataLoader\n\nimport model.Baseline as Baseline\nfrom utils import ModelUtils\nfrom utils.Logger import Logger\nfrom utils.data import DataUtils, DataLoaders\n\n# main method for training a neural network to directly predict the 2m-temperature prediction\ndef runModel(config, data_dictionary, data_statistics, train_test_folds):\n program_start_time = time()\n\n # assign all program arguments to local variables\n with open(config['model']['path']) as handle:\n ModelDict = json.loads(handle.read())\n\n # check if station and grid time invariant features should be used and set the list of desired parameters\n if not ('grid_time_invariant' in ModelDict and ModelDict['grid_time_invariant']): config['grid_time_invariant_parameters'] =[]\n if not ('station_time_invariant' in ModelDict and ModelDict['station_time_invariant']): config['station_parameters'] = []\n\n # update general static model information\n experiment_info = config\n experiment_info['model'] = ModelDict\n experiment_info['code_commit'] = ModelUtils.get_git_revision_short_hash()\n\n\n # if needed, load time invariant features\n with open(\"%s/%s/grid_size_%s/time_invariant_data_per_station.pkl\" % (config['input_source'], config['preprocessing'], config['original_grid_size']), \"rb\") as input_file:\n time_invarian_data = pkl.load(input_file)\n\n\n # initialize feature scaling function for each feature\n featureScaleFunctions = DataUtils.getFeatureScaleFunctions(ModelUtils.ParamNormalizationDict, data_statistics)\n\n # get optimizer config\n optimizer_config = config['optimizer']\n\n # generate output path for experiment information\n setting_string = '%s_grid_%s_bs_%s_tf_%s_optim_%s_lr_%s_sl_%s' % (\n config['model']['name'], config['grid_size'], config['batch_size'], config['test_fraction'], optimizer_config['algorithm'], optimizer_config['learning_rate'], config['slice_size'])\n output_path = '%s/%s' % (config['experiment_path'], setting_string)\n if not os.path.exists(output_path):\n os.makedirs(output_path)\n\n # time for the set up until first run\n experiment_info['set_up_time'] = time() - program_start_time\n print('[Time]: Set-up %s' % strftime(\"%H:%M:%S\", gmtime(experiment_info['set_up_time'])))\n sys.stdout.flush()\n\n # initialize statistics\n error_statistics = None\n run_times = None\n skip_statistics = None\n if 'per_station_rmse' in config:\n error_per_station_statistics = None\n\n # keep used learning rates\n experiment_info['scheduled_learning_rates'] = []\n\n # cross validation\n for run in range(config['runs']):\n # logger for tensorboardX\n train_logger = Logger(output_path + '/logs/run_%s/train' % run)\n test_logger = Logger(output_path + '/logs/run_%s/test' % run)\n\n print('[Run %s] Cross-validation test fold %s' % (str(run + 1), str(run + 1)))\n\n # take the right preprocessed train/test data set for the current run\n train_fold, test_fold = train_test_folds[run]\n\n # initialize best epoch test error\n best_epoch_test_rmse = float(\"inf\")\n\n # use different data loader if we want to train a 3nn model approach\n if \"knn\" in ModelDict:\n # initialize train and test dataloaders\n trainset = DataLoaders.CosmoData3NNData(\n config=config,\n station_data_dict=data_dictionary,\n files=train_fold,\n featureScaling=featureScaleFunctions,\n time_invariant_data=time_invarian_data)\n trainloader = DataLoader(trainset, batch_size=config['batch_size'], shuffle=True,\n num_workers=config['n_loaders'], collate_fn=DataLoaders.collate_fn)\n\n testset = DataLoaders.CosmoData3NNData(\n config=config,\n station_data_dict=data_dictionary,\n files=test_fold,\n featureScaling=featureScaleFunctions,\n time_invariant_data=time_invarian_data)\n testloader = DataLoader(testset, batch_size=config['batch_size'], shuffle=True,\n num_workers=config['n_loaders'], collate_fn=DataLoaders.collate_fn)\n else:\n # initialize train and test dataloaders\n trainset = DataLoaders.CosmoDataGridData(\n config=config,\n station_data_dict=data_dictionary,\n files=train_fold,\n featureScaling=featureScaleFunctions,\n time_invariant_data=time_invarian_data)\n trainloader = DataLoader(trainset, batch_size=config['batch_size'], shuffle=True,\n num_workers=config['n_loaders'], collate_fn=DataLoaders.collate_fn)\n\n testset = DataLoaders.CosmoDataGridData(\n config=config,\n station_data_dict=data_dictionary,\n files=test_fold,\n featureScaling=featureScaleFunctions,\n time_invariant_data=time_invarian_data)\n testloader = DataLoader(testset, batch_size=config['batch_size'], shuffle=True,\n num_workers=config['n_loaders'], collate_fn=DataLoaders.collate_fn)\n\n # initialize network, optimizer and loss function\n net = Baseline.model_factory(ModelDict, trainset.n_parameters, trainset.n_grid_time_invariant_parameters,\n config['grid_size'], config['prediction_times'])\n # store class name\n experiment_info['model_class'] = net.__class__.__name__\n\n if torch.cuda.device_count() > 1:\n net = nn.DataParallel(net)\n\n if torch.cuda.is_available():\n net.cuda()\n\n # load number of train and test samples\n n_train_samples, n_test_samples = len(train_fold), len(test_fold)\n\n optimizer, scheduler = ModelUtils.initializeOptimizer(optimizer_config, net)\n criterion = nn.MSELoss()\n\n # keep number of processed smaples over all epochs for tensorboard\n processed_train_samples_global = 0\n processed_test_samples_global = 0\n\n # start learning\n for epoch in range(config['epochs']):\n epoch_train_time = np.zeros((5,))\n epoch_start_time = time()\n print('Epoch: ' + str(epoch + 1) + '\\n------------------------------------------------------------')\n\n # adapt learning rate and store information in experiment attributes\n if scheduler is not None:\n scheduler.step()\n if run == 0: experiment_info['scheduled_learning_rates'] += scheduler.get_lr()\n print('Using learning rate %s' % str(scheduler.get_lr()))\n\n # TRAINING\n # initialize variables for epoch statistics\n LABELS, MODELoutputs, COSMOoutputs = None, None, None\n processed_train_samples = 0\n net.train(True)\n\n train_start_time = time()\n # loop over complete train set\n for i, data in enumerate(trainloader, 0):\n time_start = time()\n try:\n # get training batch, e.g. label, cosmo-1 output and time inv. features for station\n DATA = data\n # DATA has only length 4 if we do not use the station time invariant features\n if len(DATA) == 4:\n Blabel, Bip2d, BTimeData, init_station_temp = DATA\n station_time_inv_input = None\n elif len(DATA) == 5:\n Blabel, Bip2d, BTimeData, StationTimeInv, init_station_temp = DATA\n station_time_inv_input = ModelUtils.getVariable(StationTimeInv).float()\n else:\n raise Exception('Unknown data format for training...')\n input = ModelUtils.getVariable(Bip2d).float()\n time_data = ModelUtils.getVariable(BTimeData).float()\n target = ModelUtils.getVariable(Blabel).float()\n\n except TypeError:\n # when the batch size is small, it could happen, that all labels have been corrupted and therefore\n # collate_fn would return an empty list\n print('Value error...')\n continue\n time_after_data_preparation = time()\n\n processed_train_samples += len(Blabel)\n\n optimizer.zero_grad()\n out = net(input, time_data, station_time_inv_input)\n time_after_forward_pass = time()\n loss = criterion(out, target)\n loss.backward()\n optimizer.step()\n time_after_backward_pass = time()\n\n if LABELS is None:\n LABELS = Blabel.data\n MODELoutputs = out.data\n COSMOoutputs = init_station_temp[2].data\n else:\n LABELS = np.vstack((LABELS, Blabel.data))\n MODELoutputs = np.vstack((MODELoutputs, out.data))\n COSMOoutputs = np.vstack((COSMOoutputs, init_station_temp[2].data))\n\n time_after_label_stack = time()\n\n if (i + 1) % 64 == 0:\n\n print('Sample: %s \\t Loss: %s' % (processed_train_samples, float(np.sqrt(loss.data))))\n\n # ============ TensorBoard logging ============#\n # (1) Log the scalar values\n info = {\n setting_string: np.sqrt(loss.item()),\n }\n\n for tag, value in info.items():\n train_logger.scalar_summary(tag, value, processed_train_samples_global + processed_train_samples)\n\n # (2) Log values and gradients of the parameters (histogram)\n for tag, value in net.named_parameters():\n tag = tag.replace('.', '/')\n train_logger.histo_summary(tag, ModelUtils.to_np(value), i + 1)\n train_logger.histo_summary(tag + '/grad', ModelUtils.to_np(value.grad), i + 1)\n\n epoch_train_time += np.array((time_start - time_end,\n time_after_data_preparation - time_start,\n time_after_forward_pass - time_after_data_preparation,\n time_after_backward_pass - time_after_forward_pass,\n time_after_label_stack - time_after_backward_pass))\n\n time_end = time()\n\n # calculate error statistic of current epoch\n diff_model = MODELoutputs - LABELS\n diff_cosmo = COSMOoutputs - LABELS\n epoch_train_rmse_model = np.apply_along_axis(func1d=ModelUtils.rmse, arr=diff_model, axis=0)\n epoch_train_rmse_cosmo = np.apply_along_axis(func1d=ModelUtils.rmse, arr=diff_cosmo, axis=0)\n\n\n # update global processed samples\n processed_train_samples_global += processed_train_samples\n\n if np.isnan(epoch_train_rmse_model).any():\n print(\"Learning rate too large resulted in NaN-error while training. Stopped training...\")\n return\n # print epoch training times\n print('Timing: Waiting on data=%s, Data Preparation=%s,'\n 'Forward Pass=%s, Backward Pass=%s, Data Stacking=%s' % tuple(list(epoch_train_time / len(epoch_train_time))))\n\n # RMSE of epoch\n print('Train/test statistic for epoch: %s' % str(epoch + 1))\n print('Train RMSE COSMO: ' , \", \".join([\"T=%s: %s\" % (idx, epoch_train_rmse_cosmo[idx]) for idx in range(len(epoch_train_rmse_cosmo))]))\n print('Train RMSE Model: ' , \", \".join([\"T=%s: %s\" % (idx, epoch_train_rmse_model[idx]) for idx in range(len(epoch_train_rmse_model))]))\n sys.stdout.flush()\n\n train_time = time() - train_start_time\n\n # TESTING\n test_start_time = time()\n\n LABELS, MODELoutputs, COSMOoutputs, STATION = None, None, None, None\n processed_test_samples = 0\n net.eval()\n for i, data in enumerate(testloader, 0):\n try:\n # get training batch, e.g. label, cosmo-1 output and time inv. features for station\n DATA = data\n # DATA has only length 4 if we do not use the station time invariant features\n if len(DATA) == 4:\n Blabel, Bip2d, BTimeData, init_station_temp = DATA\n station_time_inv_input = None\n elif len(DATA) == 5:\n Blabel, Bip2d, BTimeData, StationTimeInv, init_station_temp = DATA\n station_time_inv_input = ModelUtils.getVariable(StationTimeInv).float()\n else:\n raise Exception('Unknown data format for training...')\n input = ModelUtils.getVariable(Bip2d).float()\n time_data = ModelUtils.getVariable(BTimeData).float()\n target = ModelUtils.getVariable(Blabel).float()\n\n except TypeError:\n # when the batch size is small, it could happen, that all labels have been corrupted and therefore\n # collate_fn would return an empty list\n print('Value error...')\n continue\n\n processed_test_samples += len(Blabel)\n\n out = net(input, time_data, station_time_inv_input)\n loss = criterion(out, target)\n\n if LABELS is None:\n LABELS = Blabel.data\n MODELoutputs = out.data\n COSMOoutputs = init_station_temp[2].data\n STATION = init_station_temp[1].data\n else:\n LABELS = np.vstack((LABELS, Blabel.data))\n MODELoutputs = np.vstack((MODELoutputs, out.data))\n COSMOoutputs = np.vstack((COSMOoutputs, init_station_temp[2].data))\n STATION = np.hstack((STATION, init_station_temp[1].data))\n\n if i % 16:\n # ============ TensorBoard logging ============#\n # (1) Log the scalar values\n info = {\n setting_string: np.sqrt(loss.item()),\n }\n\n for tag, value in info.items():\n test_logger.scalar_summary(tag, value, processed_test_samples_global + processed_test_samples)\n\n # calculate error statistic of current epoch\n diff_model = MODELoutputs - LABELS\n diff_cosmo = COSMOoutputs - LABELS\n\n # rmse\n epoch_test_rmse_model = np.apply_along_axis(func1d=ModelUtils.rmse, arr=diff_model, axis=0)\n epoch_test_rmse_cosmo = np.apply_along_axis(func1d=ModelUtils.rmse, arr=diff_cosmo, axis=0)\n overall_test_rmse_model = ModelUtils.rmse(diff_model)\n overall_test_rmse_cosmo = ModelUtils.rmse(diff_cosmo)\n\n # mae\n epoch_test_mae_model = np.apply_along_axis(func1d=ModelUtils.mae, arr=diff_model, axis=0)\n epoch_test_mae_cosmo = np.apply_along_axis(func1d=ModelUtils.mae, arr=diff_cosmo, axis=0)\n overall_test_mae_model = ModelUtils.mae(diff_model)\n overall_test_mae_cosmo = ModelUtils.mae(diff_cosmo)\n\n # calculate per station rmse if desired (especially for K-fold station generalization experiment\n if \"per_station_rmse\" in config:\n max_station_id = 1435\n\n squared_errors_per_epoch = np.array((np.square(diff_model), np.square(diff_cosmo))).squeeze()\n\n # the highest index of data is 1435, thus we expect at least 1435 entries, which we can access by\n # station id\n test_samples_per_station = np.bincount(STATION, minlength=max_station_id+1)\n model_squared_error_per_station = np.bincount(STATION, weights=squared_errors_per_epoch[0], minlength=max_station_id+1)\n cosmo_squared_error_per_station = np.bincount(STATION, weights=squared_errors_per_epoch[1], minlength=max_station_id+1)\n\n # set division by zero/NaN warning to 'ignore'\n np.seterr(divide='ignore', invalid='ignore')\n\n # calculate rmse per station\n rmse_per_station = np.vstack((np.sqrt(np.divide(model_squared_error_per_station, test_samples_per_station)),\n np.sqrt(np.divide(cosmo_squared_error_per_station, test_samples_per_station)))).T\n\n # set division by zero/NaN warning to 'warn'\n np.seterr(divide='warn', invalid='warn')\n\n\n\n\n\n\n # update global processed samples\n processed_test_samples_global += processed_test_samples\n\n # RMSE of epoch\n print('Test RMSE COSMO: ', \", \".join(\n [\"T=%s: %s\" % (idx, epoch_test_rmse_cosmo[idx]) for idx in range(len(epoch_test_rmse_cosmo))]),\n \" (Overall: %s\" % overall_test_rmse_cosmo)\n print('Test RMSE Model: ' , \", \".join([\"T=%s: %s\" % (idx, epoch_test_rmse_model[idx]) for idx in range(len(epoch_test_rmse_model))]),\n \" (Overall: %s\" % overall_test_rmse_model)\n # mae of epoch\n print('Test MAE COSMO: ', \", \".join(\n [\"T=%s: %s\" % (idx, epoch_test_mae_cosmo[idx]) for idx in range(len(epoch_test_mae_cosmo))]),\n \" (Overall: %s\" % overall_test_mae_cosmo)\n print('Test MAE Model: ' , \", \".join([\"T=%s: %s\" % (idx, epoch_test_mae_model[idx]) for idx in range(len(epoch_test_mae_model))]),\n \" (Overall: %s\" % overall_test_mae_model)\n\n sys.stdout.flush()\n\n test_time = time() - test_start_time\n\n # time for epoch\n epoch_time = time() - epoch_start_time\n\n # update error statistics\n error_statistics = ModelUtils.updateErrorStatistic(error_statistics,\n np.array([epoch_train_rmse_model, epoch_test_rmse_model])[None, None, ...],\n run, epoch, config['prediction_times'])\n # update run times statistic\n run_times = ModelUtils.updateRuntimeStatistic(run_times, np.array([epoch_time, train_time, test_time])[None, None, ...],\n run, epoch)\n # update skip statistic\n skip_statistics = ModelUtils.updateSkipStatistic(skip_statistics,\n np.array([n_train_samples, processed_train_samples,\n n_test_samples, processed_test_samples])[None, None, ...],\n run, epoch)\n\n # update per station rmse data array over runs if desired (especially for K-fold station generalization experiment\n if \"per_station_rmse\" in config:\n error_per_station_statistics = ModelUtils.updatePerStationErrorStatistic(error_per_station_statistics, rmse_per_station, run, epoch, np.arange(max_station_id+1))\n\n # store model if it was the best yes\n is_best = overall_test_rmse_model <= best_epoch_test_rmse\n best_epoch_test_rmse = min(overall_test_rmse_model, best_epoch_test_rmse)\n ModelUtils.save_checkpoint({\n 'epoch': epoch,\n 'run': run,\n 'arch': net.__class__.__name__,\n 'state_dict': net.state_dict(),\n 'overall_test_rmse': overall_test_rmse_model,\n 'lead_test_rmse' : overall_test_rmse_model,\n 'best_epoch_test_rmse': best_epoch_test_rmse,\n 'optimizer': optimizer.state_dict(),\n }, is_best, output_path + '/stored_models/run_%s' % run)\n\n # flush output to see progress\n sys.stdout.flush()\n\n # update statistics dict\n ModelUtils.get_model_details(experiment_info, net, optimizer, criterion)\n\n # complete program runtime\n experiment_info['program_runtime'] = time() - program_start_time\n\n # generate data set of all experiment statistics and additional information\n experiment_statistic = xr.Dataset({\n 'error_statistic' : error_statistics,\n 'run_time_statistic': run_times,\n 'samples_statistic' : skip_statistics}).assign_attrs(experiment_info)\n\n # dump experiment statistic\n with open(output_path + '/experiment_statistic.pkl', 'wb') as handle:\n pkl.dump(experiment_statistic, handle, protocol=pkl.HIGHEST_PROTOCOL)\n\n if 'per_station_rmse' in config:\n # dump experiment statistic\n with open(output_path + '/rmse_per_station.pkl', 'wb') as handle:\n pkl.dump(error_per_station_statistics, handle, protocol=pkl.HIGHEST_PROTOCOL)\n\n # print program execution time\n m, s = divmod(experiment_info['program_runtime'], 60)\n h, m = divmod(m, 60)\n print('Experiment has successfully finished in %dh %02dmin %02ds' % (h, m, s))", "sub_path": "ModelRun.py", "file_name": "ModelRun.py", "file_ext": "py", "file_size_in_byte": 21650, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "time.time", "line_number": 19, "usage_type": "call"}, {"api_name": "json.loads", "line_number": 23, "usage_type": "call"}, {"api_name": "utils.ModelUtils.get_git_revision_short_hash", "line_number": 32, "usage_type": "call"}, {"api_name": "utils.ModelUtils", "line_number": 32, "usage_type": "name"}, {"api_name": "pickle.load", "line_number": 37, "usage_type": "call"}, {"api_name": "utils.data.DataUtils.getFeatureScaleFunctions", "line_number": 41, "usage_type": "call"}, {"api_name": "utils.data.DataUtils", "line_number": 41, "usage_type": "name"}, {"api_name": "utils.ModelUtils.ParamNormalizationDict", "line_number": 41, "usage_type": "attribute"}, {"api_name": "utils.ModelUtils", "line_number": 41, "usage_type": "name"}, {"api_name": "os.path.exists", "line_number": 50, "usage_type": "call"}, {"api_name": "os.path", "line_number": 50, "usage_type": "attribute"}, {"api_name": "os.makedirs", "line_number": 51, "usage_type": "call"}, {"api_name": "time.time", "line_number": 54, "usage_type": "call"}, {"api_name": "time.strftime", "line_number": 55, "usage_type": "call"}, {"api_name": "time.gmtime", "line_number": 55, "usage_type": "call"}, {"api_name": "sys.stdout.flush", "line_number": 56, "usage_type": "call"}, {"api_name": "sys.stdout", "line_number": 56, "usage_type": "attribute"}, {"api_name": "utils.Logger.Logger", "line_number": 71, "usage_type": "call"}, {"api_name": "utils.Logger.Logger", "line_number": 72, "usage_type": "call"}, {"api_name": "utils.data.DataLoaders.CosmoData3NNData", "line_number": 85, "usage_type": "call"}, {"api_name": "utils.data.DataLoaders", "line_number": 85, "usage_type": "name"}, {"api_name": "torch.utils.data.DataLoader", "line_number": 91, "usage_type": "call"}, {"api_name": "utils.data.DataLoaders.collate_fn", "line_number": 92, "usage_type": "attribute"}, {"api_name": "utils.data.DataLoaders", "line_number": 92, "usage_type": "name"}, {"api_name": "utils.data.DataLoaders.CosmoData3NNData", "line_number": 94, "usage_type": "call"}, {"api_name": "utils.data.DataLoaders", "line_number": 94, "usage_type": "name"}, {"api_name": "torch.utils.data.DataLoader", "line_number": 100, "usage_type": "call"}, {"api_name": "utils.data.DataLoaders.collate_fn", "line_number": 101, "usage_type": "attribute"}, {"api_name": "utils.data.DataLoaders", "line_number": 101, "usage_type": "name"}, {"api_name": "utils.data.DataLoaders.CosmoDataGridData", "line_number": 104, "usage_type": "call"}, {"api_name": "utils.data.DataLoaders", "line_number": 104, "usage_type": "name"}, {"api_name": "torch.utils.data.DataLoader", "line_number": 110, "usage_type": "call"}, {"api_name": "utils.data.DataLoaders.collate_fn", "line_number": 111, "usage_type": "attribute"}, {"api_name": "utils.data.DataLoaders", "line_number": 111, "usage_type": "name"}, {"api_name": "utils.data.DataLoaders.CosmoDataGridData", "line_number": 113, "usage_type": "call"}, {"api_name": "utils.data.DataLoaders", "line_number": 113, "usage_type": "name"}, {"api_name": "torch.utils.data.DataLoader", "line_number": 119, "usage_type": "call"}, {"api_name": "utils.data.DataLoaders.collate_fn", "line_number": 120, "usage_type": "attribute"}, {"api_name": "utils.data.DataLoaders", "line_number": 120, "usage_type": "name"}, {"api_name": "model.Baseline.model_factory", "line_number": 123, "usage_type": "call"}, {"api_name": "model.Baseline", "line_number": 123, "usage_type": "name"}, {"api_name": "torch.cuda.device_count", "line_number": 128, "usage_type": "call"}, {"api_name": "torch.cuda", "line_number": 128, "usage_type": "attribute"}, {"api_name": "torch.nn.DataParallel", "line_number": 129, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 129, "usage_type": "name"}, {"api_name": "torch.cuda.is_available", "line_number": 131, "usage_type": "call"}, {"api_name": "torch.cuda", "line_number": 131, "usage_type": "attribute"}, {"api_name": "utils.ModelUtils.initializeOptimizer", "line_number": 137, "usage_type": "call"}, {"api_name": "utils.ModelUtils", "line_number": 137, "usage_type": "name"}, {"api_name": "torch.nn.MSELoss", "line_number": 138, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 138, "usage_type": "name"}, {"api_name": "numpy.zeros", "line_number": 146, "usage_type": "call"}, {"api_name": "time.time", "line_number": 147, "usage_type": "call"}, {"api_name": "time.time", "line_number": 162, "usage_type": "call"}, {"api_name": "time.time", "line_number": 165, "usage_type": "call"}, {"api_name": "utils.ModelUtils.getVariable", "line_number": 175, "usage_type": "call"}, {"api_name": "utils.ModelUtils", "line_number": 175, "usage_type": "name"}, {"api_name": "utils.ModelUtils.getVariable", "line_number": 178, "usage_type": "call"}, {"api_name": "utils.ModelUtils", "line_number": 178, "usage_type": "name"}, {"api_name": "utils.ModelUtils.getVariable", "line_number": 179, "usage_type": "call"}, {"api_name": "utils.ModelUtils", "line_number": 179, "usage_type": "name"}, {"api_name": "utils.ModelUtils.getVariable", "line_number": 180, "usage_type": "call"}, {"api_name": "utils.ModelUtils", "line_number": 180, "usage_type": "name"}, {"api_name": "time.time", "line_number": 187, "usage_type": "call"}, {"api_name": "time.time", "line_number": 193, "usage_type": "call"}, {"api_name": "time.time", "line_number": 197, "usage_type": "call"}, {"api_name": "numpy.vstack", "line_number": 204, "usage_type": "call"}, {"api_name": "numpy.vstack", "line_number": 205, "usage_type": "call"}, {"api_name": "numpy.vstack", "line_number": 206, "usage_type": "call"}, {"api_name": "time.time", "line_number": 208, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 212, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 217, "usage_type": "call"}, {"api_name": "utils.ModelUtils.to_np", "line_number": 226, "usage_type": "call"}, {"api_name": "utils.ModelUtils", "line_number": 226, "usage_type": "name"}, {"api_name": "utils.ModelUtils.to_np", "line_number": 227, "usage_type": "call"}, {"api_name": "utils.ModelUtils", "line_number": 227, "usage_type": "name"}, {"api_name": "numpy.array", "line_number": 229, "usage_type": "call"}, {"api_name": "time.time", "line_number": 235, "usage_type": "call"}, {"api_name": "numpy.apply_along_axis", "line_number": 240, "usage_type": "call"}, {"api_name": "utils.ModelUtils.rmse", "line_number": 240, "usage_type": "attribute"}, {"api_name": "utils.ModelUtils", "line_number": 240, "usage_type": "name"}, {"api_name": "numpy.apply_along_axis", "line_number": 241, "usage_type": "call"}, {"api_name": "utils.ModelUtils.rmse", "line_number": 241, "usage_type": "attribute"}, {"api_name": "utils.ModelUtils", "line_number": 241, "usage_type": "name"}, {"api_name": "numpy.isnan", "line_number": 247, "usage_type": "call"}, {"api_name": "sys.stdout.flush", "line_number": 258, "usage_type": "call"}, {"api_name": "sys.stdout", "line_number": 258, "usage_type": "attribute"}, {"api_name": "time.time", "line_number": 260, "usage_type": "call"}, {"api_name": "time.time", "line_number": 263, "usage_type": "call"}, {"api_name": "utils.ModelUtils.getVariable", "line_number": 278, "usage_type": "call"}, {"api_name": "utils.ModelUtils", "line_number": 278, "usage_type": "name"}, {"api_name": "utils.ModelUtils.getVariable", "line_number": 281, "usage_type": "call"}, {"api_name": "utils.ModelUtils", "line_number": 281, "usage_type": "name"}, {"api_name": "utils.ModelUtils.getVariable", "line_number": 282, "usage_type": "call"}, {"api_name": "utils.ModelUtils", "line_number": 282, "usage_type": "name"}, {"api_name": "utils.ModelUtils.getVariable", "line_number": 283, "usage_type": "call"}, {"api_name": "utils.ModelUtils", "line_number": 283, "usage_type": "name"}, {"api_name": "numpy.vstack", "line_number": 302, "usage_type": "call"}, {"api_name": "numpy.vstack", "line_number": 303, "usage_type": "call"}, {"api_name": "numpy.vstack", "line_number": 304, "usage_type": "call"}, {"api_name": "numpy.hstack", "line_number": 305, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 311, "usage_type": "call"}, {"api_name": "numpy.apply_along_axis", "line_number": 322, "usage_type": "call"}, {"api_name": "utils.ModelUtils.rmse", "line_number": 322, "usage_type": "attribute"}, {"api_name": "utils.ModelUtils", "line_number": 322, "usage_type": "name"}, {"api_name": "numpy.apply_along_axis", "line_number": 323, "usage_type": "call"}, {"api_name": "utils.ModelUtils.rmse", "line_number": 323, "usage_type": "attribute"}, {"api_name": "utils.ModelUtils", "line_number": 323, "usage_type": "name"}, {"api_name": "utils.ModelUtils.rmse", "line_number": 324, "usage_type": "call"}, {"api_name": "utils.ModelUtils", "line_number": 324, "usage_type": "name"}, {"api_name": "utils.ModelUtils.rmse", "line_number": 325, "usage_type": "call"}, {"api_name": "utils.ModelUtils", "line_number": 325, "usage_type": "name"}, {"api_name": "numpy.apply_along_axis", "line_number": 328, "usage_type": "call"}, {"api_name": "utils.ModelUtils.mae", "line_number": 328, "usage_type": "attribute"}, {"api_name": "utils.ModelUtils", "line_number": 328, "usage_type": "name"}, {"api_name": "numpy.apply_along_axis", "line_number": 329, "usage_type": "call"}, {"api_name": "utils.ModelUtils.mae", "line_number": 329, "usage_type": "attribute"}, {"api_name": "utils.ModelUtils", "line_number": 329, "usage_type": "name"}, {"api_name": "utils.ModelUtils.mae", "line_number": 330, "usage_type": "call"}, {"api_name": "utils.ModelUtils", "line_number": 330, "usage_type": "name"}, {"api_name": "utils.ModelUtils.mae", "line_number": 331, "usage_type": "call"}, {"api_name": "utils.ModelUtils", "line_number": 331, "usage_type": "name"}, {"api_name": "numpy.array", "line_number": 337, "usage_type": "call"}, {"api_name": "numpy.square", "line_number": 337, "usage_type": "call"}, {"api_name": "numpy.bincount", "line_number": 341, "usage_type": "call"}, {"api_name": "numpy.bincount", "line_number": 342, "usage_type": "call"}, {"api_name": "numpy.bincount", "line_number": 343, "usage_type": "call"}, {"api_name": "numpy.seterr", "line_number": 346, "usage_type": "call"}, {"api_name": "numpy.vstack", "line_number": 349, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 349, "usage_type": "call"}, {"api_name": "numpy.divide", "line_number": 349, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 350, "usage_type": "call"}, {"api_name": "numpy.divide", "line_number": 350, "usage_type": "call"}, {"api_name": "numpy.seterr", "line_number": 353, "usage_type": "call"}, {"api_name": "sys.stdout.flush", "line_number": 376, "usage_type": "call"}, {"api_name": "sys.stdout", "line_number": 376, "usage_type": "attribute"}, {"api_name": "time.time", "line_number": 378, "usage_type": "call"}, {"api_name": "time.time", "line_number": 381, "usage_type": "call"}, {"api_name": "utils.ModelUtils.updateErrorStatistic", "line_number": 384, "usage_type": "call"}, {"api_name": "utils.ModelUtils", "line_number": 384, "usage_type": "name"}, {"api_name": "numpy.array", "line_number": 385, "usage_type": "call"}, {"api_name": "utils.ModelUtils.updateRuntimeStatistic", "line_number": 388, "usage_type": "call"}, {"api_name": "utils.ModelUtils", "line_number": 388, "usage_type": "name"}, {"api_name": "numpy.array", "line_number": 388, "usage_type": "call"}, {"api_name": "utils.ModelUtils.updateSkipStatistic", "line_number": 391, "usage_type": "call"}, {"api_name": "utils.ModelUtils", "line_number": 391, "usage_type": "name"}, {"api_name": "numpy.array", "line_number": 392, "usage_type": "call"}, {"api_name": "utils.ModelUtils.updatePerStationErrorStatistic", "line_number": 398, "usage_type": "call"}, {"api_name": "utils.ModelUtils", "line_number": 398, "usage_type": "name"}, {"api_name": "numpy.arange", "line_number": 398, "usage_type": "call"}, {"api_name": "utils.ModelUtils.save_checkpoint", "line_number": 403, "usage_type": "call"}, {"api_name": "utils.ModelUtils", "line_number": 403, "usage_type": "name"}, {"api_name": "sys.stdout.flush", "line_number": 415, "usage_type": "call"}, {"api_name": "sys.stdout", "line_number": 415, "usage_type": "attribute"}, {"api_name": "utils.ModelUtils.get_model_details", "line_number": 418, "usage_type": "call"}, {"api_name": "utils.ModelUtils", "line_number": 418, "usage_type": "name"}, {"api_name": "time.time", "line_number": 421, "usage_type": "call"}, {"api_name": "xarray.Dataset", "line_number": 424, "usage_type": "call"}, {"api_name": "pickle.dump", "line_number": 431, "usage_type": "call"}, {"api_name": "pickle.HIGHEST_PROTOCOL", "line_number": 431, "usage_type": "attribute"}, {"api_name": "pickle.dump", "line_number": 436, "usage_type": "call"}, {"api_name": "pickle.HIGHEST_PROTOCOL", "line_number": 436, "usage_type": "attribute"}]}
{"seq_id": "326555262", "text": "from datetime import datetime\nimport os.path\nimport time\nimport sys\nimport tensorflow as tf\nimport numpy as np\nimport importlib\nimport argparse\nimport facenet\nimport random\nimport itertools\nfrom sklearn.metrics.pairwise import euclidean_distances\nfrom sklearn.metrics.pairwise import pairwise_distances\nimport recordRetriever as rr\nfrom copy import deepcopy\nfrom collections import Counter\n\ndef main(args):\n tf.reset_default_graph()\n network = importlib.import_module(args.model_def)\n\n# subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')\n# log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir)\n# if not os.path.isdir(log_dir): # Create the log directory if it doesn't exist\n# os.makedirs(log_dir)\n# model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir)\n# if not os.path.isdir(model_dir): # Create the model directory if it doesn't exist\n# os.makedirs(model_dir)\n\n # Write arguments to a text file\n# facenet.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt'))\n\n # Store some git revision info in a text file in the log directory\n# src_path = ''\n# facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv))\n\n np.random.seed(int(time.time()))\n\n DB_TF_RECORD_PATH_LIST = rr.selectedDiseasePath(args.select_disease, args.select_anatomy,\n args.with_biopsy, args.with_mask, args.root)\n \"\"\"Get shuffled train and validation tf record path\"\"\"\n# TRAIN_TF_RECORD_PATH_LIST, VALID_TF_RECORD_PATH_LIST, overall_dict, training_dict, test_dict = \\\n# rr.split_training_validation_sets(TF_RECORD_PATH_LIST, args.valid_fraction)\n\n \"\"\"ensure that the dataset split is correct\"\"\"\n# for key, value in overall_dict.items():\n# assert overall_dict[key] == training_dict[key] + test_dict[key], 'Train data + Test data != Overall data'\n\n\n \"\"\" CHECKING VALIDITY OF FILE PATH \"\"\"\n# rr.check_files(TRAIN_TF_RECORD_PATH_LIST, VALID_TF_RECORD_PATH_LIST)\n\n \"\"\"print out the stats of my dataset\"\"\"\n# TOTAL_TRAIN_DATA = len(TRAIN_TF_RECORD_PATH_LIST)\n# TOTAL_VALID_DATA = len(VALID_TF_RECORD_PATH_LIST)\n# TOTAL_DATA = len(TF_RECORD_PATH_LIST)\n\n# print ('total train data: ', TOTAL_TRAIN_DATA)\n# print ('total valid data: ', TOTAL_VALID_DATA)\n# print ('total data available: ', TOTAL_DATA)\n\n \"\"\"organize into list of disease classes for sample_disease\"\"\"\n# train_set_dict = {}\n# for path in TRAIN_TF_RECORD_PATH_LIST:\n# disease_name = path.split('/')[-1].split('_')[0]\n# if disease_name not in train_set_dict:\n# train_set_dict[disease_name] = [path]\n# else:\n# train_set_dict[disease_name].append(path)\n# train_set = facenet.get_dataset(train_set_dict)\n\n \"\"\"to get the number of brains in the most common disease for augmentation\"\"\"\n# max_brains_in_single_disease = max([value for key, value in training_dict.items()])\n# print('max brains in single disease :', max_brains_in_single_disease)\n\n \"\"\"to multiply more cases for the rare cases\"\"\"\n# for imageclass in train_set:\n# nbr_brains_in_imageclass = len(imageclass.image_paths)\n# multiplier = int(min(4, max_brains_in_single_disease/nbr_brains_in_imageclass))\n# imageclass.image_paths *= multiplier\n#\n\n# curr_brain_records = imageclass.image_paths.copy()\n# for augmentation_step in range(multiplier-1):\n# imageclass.image_paths += list(map(lambda x: x+'aug'+str(augmentation_step+1), curr_brain_records))\n# print('mutliplier: ', multiplier)\n# print('number of brains in {} changed from {} to {}'.format(imageclass.name, nbr_brains_in_imageclass,\n# nbr_brains_in_imageclass * multiplier))\n# print('disease in train set after augmenting, if there is')\n# for disease in train_set:\n# print(disease.name,': ',len(disease.image_paths))\n\n if args.pretrained_model:\n print('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model))\n\n with tf.Graph().as_default():\n\n# last_run_step = 0\n\n# if args.pretrained_model:\n# last_run_step += int(args.pretrained_model.split(\"-\")[-1])\n\n# global_step = tf.Variable(max(0, last_run_step), trainable=False)\n\n# Placeholder for TL_scalar\n# TL_scalar = tf.constant(args.TL_scalar, tf.float32, name = 'TL_scalar')\n\n # Placeholder for the learning rate\n# with tf.name_scope('learning_rate'):\n# learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate')\n\n# with tf.name_scope('labels'):\n# labels_placeholder = tf.placeholder(tf.int32, shape=[None], name = 'labels')\n\n with tf.name_scope('to_train_BN'):\n phase_train_BN_placeholder = tf.placeholder(tf.bool, name='to_train_BN')\n\n with tf.name_scope('to_train_DO'):\n phase_train_DO_placeholder = tf.placeholder(tf.bool, name='to_train_DO')\n\n with tf.name_scope('to_train'):\n phase_train_placeholder = tf.placeholder(tf.bool, name='to_train')\n\n with tf.name_scope('filenames'):\n filenames_placeholder = tf.placeholder(tf.string, shape=[None], name = 'filenames')\n\n\n iterator, next_batch = rr.dataPreparation(filenames_placeholder, batch_size = args.batch_size,\n image_shape=[args.slices, args.image_size, args.image_size, 1],\n new_image_shape = [args.slices, args.new_image_size, args.new_image_size, 1],\n training = phase_train_placeholder)\n\n\n t1_op, t2_op, _, _, _, _, _, mask_op, _, _, _, \\\n _, label_op, _, filename_op, _, _, _, _, _ = next_batch\n\n t1t2mask_images = tf.concat([t1_op, t2_op, mask_op], axis = 4)\n\n\n # Build the inference graph\n prelogits, end_points = network.inference(t1t2mask_images, args.keep_probability, args,\n phase_train_BN = phase_train_BN_placeholder,\n phase_train_DO = phase_train_DO_placeholder,\n bottleneck_layer_size=args.embedding_size, weight_decay=args.weight_decay)\n\n tensor_lst = []\n for key, value in end_points.items():\n tensor_lst.append(value)\n\n print('1')\n\n embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')\n\n# triplet_loss, fraction_positive_triplets = facenet.batch_all_triplet_loss(labels_placeholder, embeddings, args, squared=True)\n\n# if args.lossless == True:\n# TL_scalar = 1.0\n\n# triplet_loss = tf.scalar_mul(TL_scalar, triplet_loss)\n\n# learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step,\n# args.learning_rate_decay_epochs*args.epoch_size, args.learning_rate_decay_factor, staircase=True)\n\n # Calculate the total losses\n# regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)\n# total_loss = tf.add_n([triplet_loss] + regularization_losses, name='total_loss')\n\n print('2')\n\n\n# if args.optimizer =='ADAM':\n# opt = tf.train.AdamOptimizer(learning_rate, beta1=0.9, beta2=0.999, epsilon=0.1).minimize(total_loss, global_step = global_step)\n# else:\n# raise ValueError('Invalid optimization algorithm')\n\n # Create a saver\n saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=1)\n\n # Build the summary operation based on the TF collection of Summaries.\n summary_op = tf.summary.merge_all()\n\n print('3')\n\n # Start running operations on the Graph.\n gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction)\n sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))\n\n print('4')\n\n # Initialize variables\n sess.run(tf.global_variables_initializer())\n\n sess.run(tf.local_variables_initializer())\n\n print('5')\n\n# summary_writer = tf.summary.FileWriter(log_dir, sess.graph)\n print('6')\n\n best_top1_accu = 0\n\n\n\n with sess.as_default():\n\n if args.pretrained_model:\n print('Restoring pretrained model: %s' % args.pretrained_model)\n saver = tf.train.import_meta_graph(os.path.expanduser(args.metadata))\n saver.restore(sess, os.path.expanduser(args.pretrained_model))\n\n print('7')\n\n # Training and validation loop\n epoch = 0\n# while epoch < args.max_nrof_epochs:\n# step = sess.run(global_step, feed_dict=None)\n# epoch = step // args.epoch_size\n # Train for one epoch\n generate_emb(args, DB_TF_RECORD_PATH_LIST, sess, phase_train_BN_placeholder, phase_train_DO_placeholder, embeddings, summary_op,\n iterator, t1_op, t2_op, mask_op, label_op, filename_op, filenames_placeholder, t1t2mask_images, prelogits, tensor_lst, phase_train_placeholder)\n\n# #select data from train set to compute training accuracy\n# selected_set = train_data_for_accuracy(train_set, len(VALID_TF_RECORD_PATH_LIST))\n# print('selected train eval set...')\n# print(Counter(list(map(lambda x: get_disease_from_path(x), selected_set))))\n#\n# # Evaluate on test set\n# top1_accu = evaluate(args, sess, selected_set, VALID_TF_RECORD_PATH_LIST, embeddings, learning_rate_placeholder,\n# phase_train_BN_placeholder, phase_train_DO_placeholder, log_dir, step, summary_writer, iterator,\n# t1_op, t2_op, mask_op, label_op, filename_op, filenames_placeholder, t1t2mask_images, prelogits, tensor_lst, phase_train_placeholder)\n#\n# # if accuracy is best so far, save variables and the metagraph if it doesn't exist already\n# if top1_accu > best_top1_accu:\n# best_top1_accu = top1_accu\n# save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step)\n#\n# print('best top1 accuracy: {}'.format(best_top1_accu))\n\n return None\n\n\ndef generate_emb(args, DB_TF_RECORD_PATH_LIST, sess, phase_train_BN_placeholder, phase_train_DO_placeholder,\n embeddings, summary_op,\n iterator, t1_op, t2_op, mask_op, label_op, filename_op, filenames_placeholder, t1t2mask_images, prelogits, tensor_lst, phase_train_placeholder):\n\n batch_size = args.batch_size\n sess.run(iterator.initializer, feed_dict={filenames_placeholder: DB_TF_RECORD_PATH_LIST,\n phase_train_placeholder: False})\n nrof_images = len(DB_TF_RECORD_PATH_LIST)\n emb_array = np.zeros((nrof_images, args.embedding_size))\n nrof_batches = int(np.ceil(nrof_images / batch_size))\n label_check_array = np.zeros((nrof_images,))\n\n for i in range(nrof_batches):\n batch_size = min(nrof_images-i*batch_size, batch_size)\n labels = list(range(i * args.batch_size, i * args.batch_size + batch_size))\n print('labels: ', labels)\n emb = sess.run([embeddings], feed_dict={phase_train_BN_placeholder: False,\n phase_train_DO_placeholder: False})\n emb_array[labels,:] = emb\n label_check_array[labels] = 1\n\n print('asserting')\n assert(np.all(label_check_array==1))\n print('preparing data')\n database_disease = list(map(lambda x: get_disease_from_path(x), DB_TF_RECORD_PATH_LIST))\n database_disease_labels = list(map(lambda x: rr.ACRONYM_LABEL_MAPPER[x], database_disease))\n database_disease_labels_np = np.asarray(database_disease_labels)\n print('saving...')\n np.savez('20180817-231301-'+'5400-'+'database.npz', disease_emb=emb_array, disease_labels=database_disease_labels_np)\n print('saved')\n\n return None\n\ndef get_disease_from_path(path):\n \"\"\"pass in tfrecord path to get the disease\n args: tfrecord path\n Returns: disease name\"\"\"\n disease_name = path.split('/')[-1].split('_')[0]\n\n return disease_name\n\ndef parse_arguments(argv):\n parser = argparse.ArgumentParser()\n parser.add_argument('--logs_base_dir', type=str,\n help='Directory where to write event logs.', default='logs/facenet')\n parser.add_argument('--models_base_dir', type=str,\n help='Directory where to write trained models and checkpoints.', default='models/facenet')\n parser.add_argument('--gpu_memory_fraction', type=float,\n help='Upper bound on the amount of GPU memory that will be used by the process.', default=1.0)\n parser.add_argument('--pretrained_model', type=str,\n# help='Load a pretrained model before training starts.')\n help='Load a pretrained model before training starts.', default = 'models/facenet/20180817-231301/model-20180817-231301.ckpt-5400')\n parser.add_argument('--metadata', type=str,\n# help ='Load pretrained model metadata before training starts.')\n help ='Load pretrained model metadata before training starts.', default = 'models/facenet/20180817-231301/model-20180817-231301.meta')\n parser.add_argument('--model_def', type=str,\n help='Model definition. Points to a module containing the definition of the inference graph.', default='nn3')\n parser.add_argument('--max_nrof_epochs', type=int,\n help='Number of epochs to run.', default=2000)\n parser.add_argument('--batch_size', type=int,\n help='Number of images to process in a batch.', default=9)\n parser.add_argument('--image_size', type=int,\n help='Image size (height, width) in pixels.', default=320)\n parser.add_argument('--slices', type=int,\n help='number of slices in patients brain.', default=24)\n parser.add_argument('--brains_per_disease', type=int,\n help='max number of brains per disease.', default=3)\n parser.add_argument('--epoch_size', type=int,\n help='Number of batches per epoch.', default=200)\n parser.add_argument('--alpha', type=float,\n help='Positive to negative triplet distance margin.', default=0.3)\n parser.add_argument('--embedding_size', type=int,\n help='Dimensionality of the embedding.', default=1024)\n parser.add_argument('--keep_probability', type=float,\n help='Keep probability of dropout for the fully connected layer(s).', default=1.0)\n parser.add_argument('--weight_decay', type=float,\n help='L2 weight regularization.', default=1e-4)\n parser.add_argument('--optimizer', type=str, choices=['ADAGRAD', 'ADADELTA', 'ADAM', 'RMSPROP', 'MOM'],\n help='The optimization algorithm to use', default='ADAM')\n parser.add_argument('--learning_rate', type=float,\n help='Initial learning rate.', default=0.01)\n parser.add_argument('--learning_rate_decay_epochs', type=int,\n help='Number of epochs between learning rate decay.', default=100)\n parser.add_argument('--learning_rate_decay_factor', type=float,\n help='Learning rate decay factor.', default= 0.8)\n parser.add_argument('--evaluation_metric', type=str,\n help ='The type of evaluation metric (cosine, euclidean or etc)', default = 'euclidean')\n parser.add_argument('--TL_scalar', type=float,\n help ='The amount to scale the triplet loss to match regularization loss', default = 10.0)\n parser.add_argument('--select_disease', type=None,\n help ='Which disease to select? Empty list will select all disease', default = [])\n parser.add_argument('--select_anatomy', type=None,\n help ='Which anatomy to select? Empty list will select all anatomies', default = [])\n parser.add_argument('--with_biopsy', type=bool,\n help ='select only patients with biopsy?', default = False)\n parser.add_argument('--with_mask', type=bool,\n help ='select only patients with mask?', default = True)\n parser.add_argument('--valid_fraction', type=float,\n help ='percentage of validation data', default = 0.05)\n parser.add_argument('--root', type=str,\n help ='The root directory where all TFrecords are stored',\n default = '/data/tumor/dicoms/TFRECORD_GRAND_5')\n parser.add_argument('--new_image_size', type=int,\n help ='resize t1, t2, mask to this size', default = 160)\n parser.add_argument('--lossless', type=bool,\n help ='use lossless triplet loss?', default = False)\n return parser.parse_args(argv)\n\n\n\nif __name__ == '__main__':\n main(parse_arguments(sys.argv[1:]))\n# print(emb_array)\n# assert(np.all(label_check_array==1))\n# database_disease = list(map(lambda x: get_disease_from_path(x), DB_TF_RECORD_PATH_LIST))\n# database_disease_labels = list(map(lambda x: rr.ACRONYM_LABEL_MAPPER[x], database_disease))\n# database_disease_labels_np = np.asarray(database_disease_labels)\n# np.savez('database.npz', disease_emb=emb_array, disease_labels=database_disease_labels_np)\n", "sub_path": "generate_DB_emb.py", "file_name": "generate_DB_emb.py", "file_ext": "py", "file_size_in_byte": 17084, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "tensorflow.reset_default_graph", "line_number": 19, "usage_type": "call"}, {"api_name": "importlib.import_module", "line_number": 20, "usage_type": "call"}, {"api_name": "numpy.random.seed", "line_number": 37, "usage_type": "call"}, {"api_name": "numpy.random", "line_number": 37, "usage_type": "attribute"}, {"api_name": "time.time", "line_number": 37, "usage_type": "call"}, {"api_name": "recordRetriever.selectedDiseasePath", "line_number": 39, "usage_type": "call"}, {"api_name": "os.path.path.expanduser", "line_number": 94, "usage_type": "call"}, {"api_name": "os.path.path", "line_number": 94, "usage_type": "attribute"}, {"api_name": "os.path", "line_number": 94, "usage_type": "name"}, {"api_name": "tensorflow.Graph", "line_number": 96, "usage_type": "call"}, {"api_name": "tensorflow.name_scope", "line_number": 115, "usage_type": "call"}, {"api_name": "tensorflow.placeholder", "line_number": 116, "usage_type": "call"}, {"api_name": "tensorflow.bool", "line_number": 116, "usage_type": "attribute"}, {"api_name": "tensorflow.name_scope", "line_number": 118, "usage_type": "call"}, {"api_name": "tensorflow.placeholder", "line_number": 119, "usage_type": "call"}, {"api_name": "tensorflow.bool", "line_number": 119, "usage_type": "attribute"}, {"api_name": "tensorflow.name_scope", "line_number": 121, "usage_type": "call"}, {"api_name": "tensorflow.placeholder", "line_number": 122, "usage_type": "call"}, {"api_name": "tensorflow.bool", "line_number": 122, "usage_type": "attribute"}, {"api_name": "tensorflow.name_scope", "line_number": 124, "usage_type": "call"}, {"api_name": "tensorflow.placeholder", "line_number": 125, "usage_type": "call"}, {"api_name": "tensorflow.string", "line_number": 125, "usage_type": "attribute"}, {"api_name": "recordRetriever.dataPreparation", "line_number": 128, "usage_type": "call"}, {"api_name": "tensorflow.concat", "line_number": 137, "usage_type": "call"}, {"api_name": "tensorflow.nn.l2_normalize", "line_number": 152, "usage_type": "call"}, {"api_name": "tensorflow.nn", "line_number": 152, "usage_type": "attribute"}, {"api_name": "tensorflow.train.Saver", "line_number": 177, "usage_type": "call"}, {"api_name": "tensorflow.train", "line_number": 177, "usage_type": "attribute"}, {"api_name": "tensorflow.trainable_variables", "line_number": 177, "usage_type": "call"}, {"api_name": "tensorflow.summary.merge_all", "line_number": 180, "usage_type": "call"}, {"api_name": "tensorflow.summary", "line_number": 180, "usage_type": "attribute"}, {"api_name": "tensorflow.GPUOptions", "line_number": 185, "usage_type": "call"}, {"api_name": "tensorflow.Session", "line_number": 186, "usage_type": "call"}, {"api_name": "tensorflow.ConfigProto", "line_number": 186, "usage_type": "call"}, {"api_name": "tensorflow.global_variables_initializer", "line_number": 191, "usage_type": "call"}, {"api_name": "tensorflow.local_variables_initializer", "line_number": 193, "usage_type": "call"}, {"api_name": "tensorflow.train.import_meta_graph", "line_number": 208, "usage_type": "call"}, {"api_name": "tensorflow.train", "line_number": 208, "usage_type": "attribute"}, {"api_name": "os.path.path.expanduser", "line_number": 208, "usage_type": "call"}, {"api_name": "os.path.path", "line_number": 208, "usage_type": "attribute"}, {"api_name": "os.path", "line_number": 208, "usage_type": "name"}, {"api_name": "os.path.path.expanduser", "line_number": 209, "usage_type": "call"}, {"api_name": "os.path.path", "line_number": 209, "usage_type": "attribute"}, {"api_name": "os.path", "line_number": 209, "usage_type": "name"}, {"api_name": "numpy.zeros", "line_number": 250, "usage_type": "call"}, {"api_name": "numpy.ceil", "line_number": 251, "usage_type": "call"}, {"api_name": "numpy.zeros", "line_number": 252, "usage_type": "call"}, {"api_name": "numpy.all", "line_number": 264, "usage_type": "call"}, {"api_name": "recordRetriever.ACRONYM_LABEL_MAPPER", "line_number": 267, "usage_type": "attribute"}, {"api_name": "numpy.asarray", "line_number": 268, "usage_type": "call"}, {"api_name": "numpy.savez", "line_number": 270, "usage_type": "call"}, {"api_name": "argparse.ArgumentParser", "line_number": 284, "usage_type": "call"}, {"api_name": "sys.argv", "line_number": 353, "usage_type": "attribute"}]}
{"seq_id": "216508405", "text": "from models import *\nfrom database import db_session\nfrom pathlib import Path\n\nclass GroupInfo:\n def __init__(self, read_source):\n self.read_source = read_source\n\n def run(self):\n print(\"Agrupando objetos\")\n devices = db_session.query(Device).all()\n for device in devices:\n path = Path(device.folder)\n device.group = path.parent\n db_session.add(device)\n db_session.commit()", "sub_path": "processors/group_info.py", "file_name": "group_info.py", "file_ext": "py", "file_size_in_byte": 447, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "database.db_session.query", "line_number": 11, "usage_type": "call"}, {"api_name": "database.db_session", "line_number": 11, "usage_type": "name"}, {"api_name": "pathlib.Path", "line_number": 13, "usage_type": "call"}, {"api_name": "database.db_session.add", "line_number": 15, "usage_type": "call"}, {"api_name": "database.db_session", "line_number": 15, "usage_type": "name"}, {"api_name": "database.db_session.commit", "line_number": 16, "usage_type": "call"}, {"api_name": "database.db_session", "line_number": 16, "usage_type": "name"}]}
{"seq_id": "448274640", "text": "# -*- coding: utf-8 -*-\nimport logging\nimport sys\n\nfrom PyQt5.QtCore import (Qt, QModelIndex)\nfrom PyQt5.QtGui import QKeySequence\nfrom PyQt5.QtWidgets import (QMainWindow, QAction, QApplication,\n QSplitter, QGroupBox, QFormLayout,\n QLabel, QBoxLayout, QWidget, QGridLayout,\n QStyle, QTreeView, QFileDialog,\n QMessageBox, QTabWidget)\n\nfrom mhw_armor_edit import AmDat\nfrom mhw_armor_edit.assets import Definitions\nfrom mhw_armor_edit.tree import ArmorSetTreeModel, ArmorSetNode, ArmorListModel\nfrom mhw_armor_edit.view_ctrl import (ComboBoxWidgetCtrl, SpinBoxWidgetCtrl,\n LabelWidgetCtrl,\n PieceViewCtrl)\n\nlog = logging.getLogger()\nlogging.basicConfig(level=logging.DEBUG)\n\n\ndef groupbox(layout, title=None):\n box = QGroupBox()\n box.setStyleSheet(\"QGroupBox {font-weight:bold}\")\n if title:\n box.setTitle(title)\n box.setFlat(True)\n box.setLayout(layout)\n return box, layout\n\n\ndef tree_index_is_root(index: QModelIndex):\n return not index.isValid()\n\n\ndef create_action(icon, title, handler, shortcut=None):\n action = QAction(icon, title)\n if shortcut is not None:\n action.setShortcut(shortcut)\n action.triggered.connect(handler)\n return action\n\n\nclass FileModel:\n def __init__(self, path, data):\n self.path = path\n self.data = data\n\n def save(self):\n with open(self.path, \"wb\") as fp:\n fp.write(self.data.data)\n\n @classmethod\n def load(cls, path):\n with open(path, \"rb\") as fp:\n data = AmDat.make(fp)\n return cls(path, data)\n\n\nclass ArmorPieceWidget(QWidget):\n def __init__(self, view, *args, **kwargs):\n super().__init__(*args, *kwargs)\n self._init(view)\n\n def _init(self, view):\n layout = QBoxLayout(QBoxLayout.TopToBottom)\n self.setLayout(layout)\n self._init_basic(layout, view)\n self._init_resistance(layout, view)\n self._init_gem_slots(layout, view)\n self._init_set_skills(layout, view)\n self._init_piece_skills(layout, view)\n\n def _init_piece_skills(self, layout, view):\n box, box_layout = groupbox(QFormLayout(), \"Piece Skills\")\n layout.addWidget(box, 0)\n view.skill1.ctrl = ComboBoxWidgetCtrl(Definitions.skill, completer=True)\n view.skill1_lvl.ctrl = SpinBoxWidgetCtrl(0, 10)\n view.skill2.ctrl = ComboBoxWidgetCtrl(Definitions.skill, completer=True)\n view.skill2_lvl.ctrl = SpinBoxWidgetCtrl(0, 10)\n view.skill3.ctrl = ComboBoxWidgetCtrl(Definitions.skill, completer=True)\n view.skill3_lvl.ctrl = SpinBoxWidgetCtrl(0, 10)\n box_layout.addRow(QLabel(\"Skill 1\"), view.skill1.ctrl.widget)\n box_layout.addRow(QLabel(\"Level\"), view.skill1_lvl.ctrl.widget)\n box_layout.addRow(QLabel(\"Skill 2\"), view.skill2.ctrl.widget)\n box_layout.addRow(QLabel(\"Level\"), view.skill2_lvl.ctrl.widget)\n box_layout.addRow(QLabel(\"Skill 3\"), view.skill3.ctrl.widget)\n box_layout.addRow(QLabel(\"Level\"), view.skill3_lvl.ctrl.widget)\n\n def _init_set_skills(self, layout, view):\n box, box_layout = groupbox(QFormLayout(), \"Set Skills\")\n layout.addWidget(box, 0)\n view.set_skill1.ctrl = ComboBoxWidgetCtrl(Definitions.skill, completer=True)\n view.set_skill1_lvl.ctrl = SpinBoxWidgetCtrl(0, 10)\n view.set_skill2.ctrl = ComboBoxWidgetCtrl(Definitions.skill, completer=True)\n view.set_skill2_lvl.ctrl = SpinBoxWidgetCtrl(0, 10)\n box_layout.addRow(QLabel(\"Skill 1\"), view.set_skill1.ctrl.widget)\n box_layout.addRow(QLabel(\"Level\"), view.set_skill1_lvl.ctrl.widget)\n box_layout.addRow(QLabel(\"Skill 2\"), view.set_skill2.ctrl.widget)\n box_layout.addRow(QLabel(\"Level\"), view.set_skill2_lvl.ctrl.widget)\n\n def _init_gem_slots(self, layout, view):\n box, box_layout = groupbox(QFormLayout(), \"Gem Slots\")\n layout.addWidget(box, 0)\n view.num_gem_slots.ctrl = ComboBoxWidgetCtrl(Definitions.gem_slot)\n view.gem_slot1_lvl.ctrl = ComboBoxWidgetCtrl(Definitions.gem_slot)\n view.gem_slot2_lvl.ctrl = ComboBoxWidgetCtrl(Definitions.gem_slot)\n view.gem_slot3_lvl.ctrl = ComboBoxWidgetCtrl(Definitions.gem_slot)\n box_layout.addRow(QLabel(\"Active slots\"), view.num_gem_slots.ctrl.widget)\n box_layout.addRow(QLabel(\"Slot 1 Level\"), view.gem_slot1_lvl.ctrl.widget)\n box_layout.addRow(QLabel(\"Slot 2 Level\"), view.gem_slot2_lvl.ctrl.widget)\n box_layout.addRow(QLabel(\"Slot 3 Level\"), view.gem_slot3_lvl.ctrl.widget)\n\n def _init_resistance(self, layout, view):\n box, box_layout = groupbox(QFormLayout(), \"Resistance\")\n layout.addWidget(box, 0)\n view.fire_res.ctrl = SpinBoxWidgetCtrl(-127, 127)\n view.water_res.ctrl = SpinBoxWidgetCtrl(-127, 127)\n view.thunder_res.ctrl = SpinBoxWidgetCtrl(-127, 127)\n view.ice_res.ctrl = SpinBoxWidgetCtrl(-127, 127)\n view.dragon_res.ctrl = SpinBoxWidgetCtrl(-127, 127)\n box_layout.addRow(QLabel(\"Fire\"), view.fire_res.ctrl.widget)\n box_layout.addRow(QLabel(\"Water\"), view.water_res.ctrl.widget)\n box_layout.addRow(QLabel(\"Thunder\"), view.thunder_res.ctrl.widget)\n box_layout.addRow(QLabel(\"Ice\"), view.ice_res.ctrl.widget)\n box_layout.addRow(QLabel(\"Dragon\"), view.dragon_res.ctrl.widget)\n\n def _init_basic(self, layout, view):\n section_box, section_layout = groupbox(QGridLayout())\n layout.addWidget(section_box)\n section_layout.setColumnStretch(0, 0)\n section_layout.setColumnStretch(1, 1)\n section_layout.setColumnStretch(2, 0)\n section_layout.setColumnStretch(3, 1)\n\n view.set_name.ctrl = LabelWidgetCtrl(Definitions.set)\n section_layout.addWidget(QLabel(\"Set:\"), 0, 0, Qt.AlignLeft)\n section_layout.addWidget(view.set_name.ctrl.widget, 0, 1, Qt.AlignLeft)\n\n section_layout.addWidget(QLabel(\"Index:\"), 0, 2, Qt.AlignLeft)\n view.index.ctrl = LabelWidgetCtrl([])\n section_layout.addWidget(view.index.ctrl.widget, 0, 3, Qt.AlignLeft)\n\n section_layout.addWidget(QLabel(\"Variant:\"), 2, 0, Qt.AlignLeft)\n view.variant.ctrl = LabelWidgetCtrl(Definitions.variant)\n section_layout.addWidget(view.variant.ctrl.widget, 2, 1, Qt.AlignLeft)\n section_layout.addWidget(QLabel(\"Equip Slot:\"), 2, 2, Qt.AlignLeft)\n view.equip_slot.ctrl = LabelWidgetCtrl(Definitions.equip_slot)\n section_layout.addWidget(view.equip_slot.ctrl.widget, 2, 3, Qt.AlignLeft)\n\n section_box, section_layout = groupbox(QFormLayout(), \"Basic\")\n layout.addWidget(section_box, 0)\n view.defense.ctrl = SpinBoxWidgetCtrl(0, 0xffff)\n section_layout.addRow(QLabel(\"Defense\"), view.defense.ctrl.widget)\n view.rarity.ctrl = ComboBoxWidgetCtrl(Definitions.rarity)\n section_layout.addRow(QLabel(\"Rarity\"), view.rarity.ctrl.widget)\n view.cost.ctrl = SpinBoxWidgetCtrl(0, 0xffff)\n section_layout.addRow(QLabel(\"Cost\"), view.cost.ctrl.widget)\n\n\nclass StructuredEditorWindow(QMainWindow):\n def __init__(self):\n super().__init__()\n self.file_model = None\n self.current_piece_view_ctrl = PieceViewCtrl()\n self.init_actions()\n self.init_toolbar()\n self.init_menubar()\n self.init_ui()\n self.current_piece_view_ctrl.update(None)\n\n def get_icon(self, name):\n return self.style().standardIcon(name)\n\n def init_actions(self):\n self.open_file_action = create_action(\n self.get_icon(QStyle.SP_DialogOpenButton),\n \"Open file ...\",\n self.handle_open_file_action,\n QKeySequence.Open)\n self.save_file_action = create_action(\n self.get_icon(QStyle.SP_DialogSaveButton),\n \"Save ...\",\n self.handle_save_file_action,\n QKeySequence.Save)\n self.save_file_as_action = create_action(\n self.get_icon(QStyle.SP_DialogSaveButton),\n \"Save as ...\",\n self.handle_save_file_as_action,\n QKeySequence.SaveAs)\n self.close_file_action = create_action(\n self.get_icon(QStyle.SP_DialogCloseButton),\n \"Close file\",\n self.handle_close_file_action,\n QKeySequence(Qt.CTRL + Qt.Key_W))\n\n def init_menubar(self):\n menubar = self.menuBar()\n file_menu = menubar.addMenu(\"File\")\n file_menu.insertAction(None, self.open_file_action)\n file_menu.insertAction(None, self.save_file_action)\n file_menu.insertAction(None, self.save_file_as_action)\n file_menu.insertAction(None, self.close_file_action)\n\n def init_ui(self):\n split = QSplitter(Qt.Horizontal, self)\n split.setChildrenCollapsible(False)\n tab_widget = QTabWidget(split)\n tab_widget.addTab(self.init_parts_tree(), \"Sets\")\n tab_widget.addTab(self.init_parts_list(), \"List\")\n split.addWidget(tab_widget)\n split.addWidget(ArmorPieceWidget(self.current_piece_view_ctrl))\n self.setCentralWidget(split)\n self.setGeometry(300, 300, 600, 400)\n self.setWindowTitle('Armor Editor')\n self.show()\n\n def init_toolbar(self):\n toolbar = self.addToolBar(\"Main\")\n toolbar.insertAction(None, self.open_file_action)\n toolbar.insertAction(None, self.save_file_action)\n toolbar.insertAction(None, self.close_file_action)\n\n def init_parts_list(self):\n self.parts_list_view = QTreeView()\n self.parts_list_view.activated.connect(self.handle_parts_list_activated)\n return self.parts_list_view\n\n def init_parts_tree(self):\n self.parts_tree_view = QTreeView()\n self.parts_tree_view.activated.connect(self.handle_parts_tree_activated)\n return self.parts_tree_view\n\n def handle_open_file_action(self):\n file_path, _ = QFileDialog.getOpenFileName(parent=self)\n if file_path:\n self.handle_file_selected(file_path)\n\n def handle_save_file_action(self):\n if self.file_model is None:\n return\n try:\n self.file_model.save()\n except Exception as e:\n QMessageBox.warning(self,\n \"Error writing file\", str(e),\n QMessageBox.Ok, QMessageBox.Ok)\n\n def handle_save_file_as_action(self):\n if self.file_model is None:\n return\n file_path, _ = QFileDialog.getSaveFileName(self)\n if file_path:\n self.file_model.path = file_path\n self.handle_save_file_action()\n\n def handle_close_file_action(self):\n self.file_model = None\n self.parts_tree_view.setModel(None)\n self.parts_list_view.setModel(None)\n self.current_piece_view_ctrl.update(None)\n\n def handle_file_selected(self, file_path):\n try:\n self.file_model = FileModel.load(file_path)\n except Exception as e:\n self.file_model = None\n QMessageBox.warning(self,\n \"Error opening file\", str(e),\n QMessageBox.Ok, QMessageBox.Ok)\n return\n self.parts_tree_view.setModel(\n ArmorSetTreeModel(self.file_model.data.entries))\n self.parts_list_view.setModel(\n ArmorListModel(self.file_model.data.entries))\n\n def handle_parts_tree_activated(self, qindex):\n if isinstance(qindex.internalPointer(), ArmorSetNode):\n return\n index = qindex.internalPointer().ref.index\n model = self.file_model.data.find_first(index=index)\n self.current_piece_view_ctrl.update(model)\n\n def handle_parts_list_activated(self, qindex):\n index = qindex.row()\n model = self.file_model.data.find_first(index=index)\n self.current_piece_view_ctrl.update(model)\n\n\nif __name__ == '__main__':\n Definitions.load()\n app = QApplication(sys.argv)\n ex = StructuredEditorWindow()\n sys.exit(app.exec_())\n", "sub_path": "src/mhw_armor_edit/armor_editor.py", "file_name": "armor_editor.py", "file_ext": "py", "file_size_in_byte": 12142, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "logging.getLogger", "line_number": 20, "usage_type": "call"}, {"api_name": "logging.basicConfig", "line_number": 21, "usage_type": "call"}, {"api_name": "logging.DEBUG", "line_number": 21, "usage_type": "attribute"}, {"api_name": "PyQt5.QtWidgets.QGroupBox", "line_number": 25, "usage_type": "call"}, {"api_name": "PyQt5.QtCore.QModelIndex", "line_number": 34, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QAction", "line_number": 39, "usage_type": "call"}, {"api_name": "mhw_armor_edit.AmDat.make", "line_number": 58, "usage_type": "call"}, {"api_name": "mhw_armor_edit.AmDat", "line_number": 58, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QWidget", "line_number": 62, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QBoxLayout", "line_number": 68, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QBoxLayout.TopToBottom", "line_number": 68, "usage_type": "attribute"}, {"api_name": "PyQt5.QtWidgets.QFormLayout", "line_number": 77, "usage_type": "call"}, {"api_name": "mhw_armor_edit.view_ctrl.ComboBoxWidgetCtrl", "line_number": 79, "usage_type": "call"}, {"api_name": "mhw_armor_edit.assets.Definitions.skill", "line_number": 79, "usage_type": "attribute"}, {"api_name": "mhw_armor_edit.assets.Definitions", "line_number": 79, "usage_type": "name"}, {"api_name": "mhw_armor_edit.view_ctrl.SpinBoxWidgetCtrl", "line_number": 80, "usage_type": "call"}, {"api_name": "mhw_armor_edit.view_ctrl.ComboBoxWidgetCtrl", "line_number": 81, "usage_type": "call"}, {"api_name": "mhw_armor_edit.assets.Definitions.skill", "line_number": 81, "usage_type": "attribute"}, {"api_name": "mhw_armor_edit.assets.Definitions", "line_number": 81, "usage_type": "name"}, {"api_name": "mhw_armor_edit.view_ctrl.SpinBoxWidgetCtrl", "line_number": 82, "usage_type": "call"}, {"api_name": "mhw_armor_edit.view_ctrl.ComboBoxWidgetCtrl", "line_number": 83, "usage_type": "call"}, {"api_name": "mhw_armor_edit.assets.Definitions.skill", "line_number": 83, "usage_type": "attribute"}, {"api_name": "mhw_armor_edit.assets.Definitions", "line_number": 83, "usage_type": "name"}, {"api_name": "mhw_armor_edit.view_ctrl.SpinBoxWidgetCtrl", "line_number": 84, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 85, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 86, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 87, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 88, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 89, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 90, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QFormLayout", "line_number": 93, "usage_type": "call"}, {"api_name": "mhw_armor_edit.view_ctrl.ComboBoxWidgetCtrl", "line_number": 95, "usage_type": "call"}, {"api_name": "mhw_armor_edit.assets.Definitions.skill", "line_number": 95, "usage_type": "attribute"}, {"api_name": "mhw_armor_edit.assets.Definitions", "line_number": 95, "usage_type": "name"}, {"api_name": "mhw_armor_edit.view_ctrl.SpinBoxWidgetCtrl", "line_number": 96, "usage_type": "call"}, {"api_name": "mhw_armor_edit.view_ctrl.ComboBoxWidgetCtrl", "line_number": 97, "usage_type": "call"}, {"api_name": "mhw_armor_edit.assets.Definitions.skill", "line_number": 97, "usage_type": "attribute"}, {"api_name": "mhw_armor_edit.assets.Definitions", "line_number": 97, "usage_type": "name"}, {"api_name": "mhw_armor_edit.view_ctrl.SpinBoxWidgetCtrl", "line_number": 98, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 99, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 100, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 101, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 102, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QFormLayout", "line_number": 105, "usage_type": "call"}, {"api_name": "mhw_armor_edit.view_ctrl.ComboBoxWidgetCtrl", "line_number": 107, "usage_type": "call"}, {"api_name": "mhw_armor_edit.assets.Definitions.gem_slot", "line_number": 107, "usage_type": "attribute"}, {"api_name": "mhw_armor_edit.assets.Definitions", "line_number": 107, "usage_type": "name"}, {"api_name": "mhw_armor_edit.view_ctrl.ComboBoxWidgetCtrl", "line_number": 108, "usage_type": "call"}, {"api_name": "mhw_armor_edit.assets.Definitions.gem_slot", "line_number": 108, "usage_type": "attribute"}, {"api_name": "mhw_armor_edit.assets.Definitions", "line_number": 108, "usage_type": "name"}, {"api_name": "mhw_armor_edit.view_ctrl.ComboBoxWidgetCtrl", "line_number": 109, "usage_type": "call"}, {"api_name": "mhw_armor_edit.assets.Definitions.gem_slot", "line_number": 109, "usage_type": "attribute"}, {"api_name": "mhw_armor_edit.assets.Definitions", "line_number": 109, "usage_type": "name"}, {"api_name": "mhw_armor_edit.view_ctrl.ComboBoxWidgetCtrl", "line_number": 110, "usage_type": "call"}, {"api_name": "mhw_armor_edit.assets.Definitions.gem_slot", "line_number": 110, "usage_type": "attribute"}, {"api_name": "mhw_armor_edit.assets.Definitions", "line_number": 110, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 111, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 112, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 113, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 114, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QFormLayout", "line_number": 117, "usage_type": "call"}, {"api_name": "mhw_armor_edit.view_ctrl.SpinBoxWidgetCtrl", "line_number": 119, "usage_type": "call"}, {"api_name": "mhw_armor_edit.view_ctrl.SpinBoxWidgetCtrl", "line_number": 120, "usage_type": "call"}, {"api_name": "mhw_armor_edit.view_ctrl.SpinBoxWidgetCtrl", "line_number": 121, "usage_type": "call"}, {"api_name": "mhw_armor_edit.view_ctrl.SpinBoxWidgetCtrl", "line_number": 122, "usage_type": "call"}, {"api_name": "mhw_armor_edit.view_ctrl.SpinBoxWidgetCtrl", "line_number": 123, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 124, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 125, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 126, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 127, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 128, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QGridLayout", "line_number": 131, "usage_type": "call"}, {"api_name": "mhw_armor_edit.view_ctrl.LabelWidgetCtrl", "line_number": 138, "usage_type": "call"}, {"api_name": "mhw_armor_edit.assets.Definitions.set", "line_number": 138, "usage_type": "attribute"}, {"api_name": "mhw_armor_edit.assets.Definitions", "line_number": 138, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 139, "usage_type": "call"}, {"api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 139, "usage_type": "attribute"}, {"api_name": "PyQt5.QtCore.Qt", "line_number": 139, "usage_type": "name"}, {"api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 140, "usage_type": "attribute"}, {"api_name": "PyQt5.QtCore.Qt", "line_number": 140, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 142, "usage_type": "call"}, {"api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 142, "usage_type": "attribute"}, {"api_name": "PyQt5.QtCore.Qt", "line_number": 142, "usage_type": "name"}, {"api_name": "mhw_armor_edit.view_ctrl.LabelWidgetCtrl", "line_number": 143, "usage_type": "call"}, {"api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 144, "usage_type": "attribute"}, {"api_name": "PyQt5.QtCore.Qt", "line_number": 144, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 146, "usage_type": "call"}, {"api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 146, "usage_type": "attribute"}, {"api_name": "PyQt5.QtCore.Qt", "line_number": 146, "usage_type": "name"}, {"api_name": "mhw_armor_edit.view_ctrl.LabelWidgetCtrl", "line_number": 147, "usage_type": "call"}, {"api_name": "mhw_armor_edit.assets.Definitions.variant", "line_number": 147, "usage_type": "attribute"}, {"api_name": "mhw_armor_edit.assets.Definitions", "line_number": 147, "usage_type": "name"}, {"api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 148, "usage_type": "attribute"}, {"api_name": "PyQt5.QtCore.Qt", "line_number": 148, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 149, "usage_type": "call"}, {"api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 149, "usage_type": "attribute"}, {"api_name": "PyQt5.QtCore.Qt", "line_number": 149, "usage_type": "name"}, {"api_name": "mhw_armor_edit.view_ctrl.LabelWidgetCtrl", "line_number": 150, "usage_type": "call"}, {"api_name": "mhw_armor_edit.assets.Definitions.equip_slot", "line_number": 150, "usage_type": "attribute"}, {"api_name": "mhw_armor_edit.assets.Definitions", "line_number": 150, "usage_type": "name"}, {"api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 151, "usage_type": "attribute"}, {"api_name": "PyQt5.QtCore.Qt", "line_number": 151, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QFormLayout", "line_number": 153, "usage_type": "call"}, {"api_name": "mhw_armor_edit.view_ctrl.SpinBoxWidgetCtrl", "line_number": 155, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 156, "usage_type": "call"}, {"api_name": "mhw_armor_edit.view_ctrl.ComboBoxWidgetCtrl", "line_number": 157, "usage_type": "call"}, {"api_name": "mhw_armor_edit.assets.Definitions.rarity", "line_number": 157, "usage_type": "attribute"}, {"api_name": "mhw_armor_edit.assets.Definitions", "line_number": 157, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 158, "usage_type": "call"}, {"api_name": "mhw_armor_edit.view_ctrl.SpinBoxWidgetCtrl", "line_number": 159, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QLabel", "line_number": 160, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QMainWindow", "line_number": 163, "usage_type": "name"}, {"api_name": "mhw_armor_edit.view_ctrl.PieceViewCtrl", "line_number": 167, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QStyle.SP_DialogOpenButton", "line_number": 179, "usage_type": "attribute"}, {"api_name": "PyQt5.QtWidgets.QStyle", "line_number": 179, "usage_type": "name"}, {"api_name": "PyQt5.QtGui.QKeySequence.Open", "line_number": 182, "usage_type": "attribute"}, {"api_name": "PyQt5.QtGui.QKeySequence", "line_number": 182, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QStyle.SP_DialogSaveButton", "line_number": 184, "usage_type": "attribute"}, {"api_name": "PyQt5.QtWidgets.QStyle", "line_number": 184, "usage_type": "name"}, {"api_name": "PyQt5.QtGui.QKeySequence.Save", "line_number": 187, "usage_type": "attribute"}, {"api_name": "PyQt5.QtGui.QKeySequence", "line_number": 187, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QStyle.SP_DialogSaveButton", "line_number": 189, "usage_type": "attribute"}, {"api_name": "PyQt5.QtWidgets.QStyle", "line_number": 189, "usage_type": "name"}, {"api_name": "PyQt5.QtGui.QKeySequence.SaveAs", "line_number": 192, "usage_type": "attribute"}, {"api_name": "PyQt5.QtGui.QKeySequence", "line_number": 192, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QStyle.SP_DialogCloseButton", "line_number": 194, "usage_type": "attribute"}, {"api_name": "PyQt5.QtWidgets.QStyle", "line_number": 194, "usage_type": "name"}, {"api_name": "PyQt5.QtGui.QKeySequence", "line_number": 197, "usage_type": "call"}, {"api_name": "PyQt5.QtCore.Qt.CTRL", "line_number": 197, "usage_type": "attribute"}, {"api_name": "PyQt5.QtCore.Qt", "line_number": 197, "usage_type": "name"}, {"api_name": "PyQt5.QtCore.Qt.Key_W", "line_number": 197, "usage_type": "attribute"}, {"api_name": "PyQt5.QtWidgets.QSplitter", "line_number": 208, "usage_type": "call"}, {"api_name": "PyQt5.QtCore.Qt.Horizontal", "line_number": 208, "usage_type": "attribute"}, {"api_name": "PyQt5.QtCore.Qt", "line_number": 208, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QTabWidget", "line_number": 210, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QTreeView", "line_number": 227, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QTreeView", "line_number": 232, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QFileDialog.getOpenFileName", "line_number": 237, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QFileDialog", "line_number": 237, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QMessageBox.warning", "line_number": 247, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QMessageBox", "line_number": 247, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QMessageBox.Ok", "line_number": 249, "usage_type": "attribute"}, {"api_name": "PyQt5.QtWidgets.QMessageBox", "line_number": 249, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QFileDialog.getSaveFileName", "line_number": 254, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QFileDialog", "line_number": 254, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QMessageBox.warning", "line_number": 270, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QMessageBox", "line_number": 270, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QMessageBox.Ok", "line_number": 272, "usage_type": "attribute"}, {"api_name": "PyQt5.QtWidgets.QMessageBox", "line_number": 272, "usage_type": "name"}, {"api_name": "mhw_armor_edit.tree.ArmorSetTreeModel", "line_number": 275, "usage_type": "call"}, {"api_name": "mhw_armor_edit.tree.ArmorListModel", "line_number": 277, "usage_type": "call"}, {"api_name": "mhw_armor_edit.tree.ArmorSetNode", "line_number": 280, "usage_type": "argument"}, {"api_name": "mhw_armor_edit.assets.Definitions.load", "line_number": 293, "usage_type": "call"}, {"api_name": "mhw_armor_edit.assets.Definitions", "line_number": 293, "usage_type": "name"}, {"api_name": "PyQt5.QtWidgets.QApplication", "line_number": 294, "usage_type": "call"}, {"api_name": "sys.argv", "line_number": 294, "usage_type": "attribute"}, {"api_name": "sys.exit", "line_number": 296, "usage_type": "call"}]}
{"seq_id": "139951850", "text": "import json\nimport logging\nimport os\nimport re\nfrom dataclasses import dataclass, field\nfrom datetime import datetime\nfrom functools import lru_cache\nfrom pathlib import Path\nfrom typing import Any, Dict, List, Optional, Union\n\nfrom azure.core.exceptions import HttpResponseError\nfrom azure.identity import DefaultAzureCredential # type: ignore\nfrom azure.mgmt.compute import ComputeManagementClient # type: ignore\nfrom azure.mgmt.compute.models import ResourceSku, VirtualMachine # type: ignore\nfrom azure.mgmt.network import NetworkManagementClient # type: ignore\nfrom azure.mgmt.network.models import InboundNatRule, NetworkInterface # type: ignore\nfrom azure.mgmt.resource import ( # type: ignore\n ResourceManagementClient,\n SubscriptionClient,\n)\nfrom azure.mgmt.resource.resources.models import ( # type: ignore\n Deployment,\n DeploymentMode,\n DeploymentProperties,\n)\nfrom dataclasses_json import LetterCase, dataclass_json # type: ignore\nfrom marshmallow import fields, validate\nfrom retry import retry # type: ignore\n\nfrom lisa import schema, search_space\nfrom lisa.environment import Environment\nfrom lisa.node import Node\nfrom lisa.platform_ import Platform\nfrom lisa.secret import PATTERN_GUID, PATTERN_HEADTAIL, add_secret\nfrom lisa.util import LisaException, constants, get_public_key_data\nfrom lisa.util.logger import Logger\n\nAZURE = \"azure\"\n\n# used by azure\nAZURE_DEPLOYMENT_NAME = \"lisa_default_deployment_script\"\nAZURE_RG_NAME_KEY = \"resource_group_name\"\n\nVM_SIZE_FALLBACK_LEVELS = [\n re.compile(r\"Standard_DS(\\d)+_v2\"),\n re.compile(r\"Standard_A(\\d)+\"),\n]\nLOCATIONS = [\"westus2\", \"eastus2\"]\nRESOURCE_GROUP_LOCATION = \"westus2\"\n\n# names in arm template, they should be changed with template together.\nRESOURCE_ID_LB = \"lisa-loadBalancer\"\nRESOURCE_ID_PUBLIC_IP = \"lisa-publicIPv4Address\"\nRESOURCE_ID_PORT_POSTFIX = \"-ssh\"\nRESOURCE_ID_NIC_PATTERN = re.compile(r\"([\\w]+-[\\d]+)-nic-0\")\n\n\n@dataclass_json(letter_case=LetterCase.CAMEL)\n@dataclass\nclass AzureCapability:\n location: str\n vm_size: str\n capability: schema.NodeSpace\n estimated_cost: int\n resource_sku: Dict[str, Any]\n\n\n@dataclass_json(letter_case=LetterCase.CAMEL)\n@dataclass\nclass AzureLocation:\n updated_time: datetime = field(\n default_factory=datetime.now,\n metadata=schema.metadata(\n fields.DateTime,\n encoder=datetime.isoformat,\n decoder=datetime.fromisoformat,\n data_key=\"updatedTime\",\n format=\"iso\",\n ),\n )\n location: str = \"\"\n capabilities: List[AzureCapability] = field(default_factory=list)\n\n\n@dataclass_json(letter_case=LetterCase.CAMEL)\n@dataclass\nclass AzureVmGallerySchema:\n publisher: str = \"Canonical\"\n offer: str = \"UbuntuServer\"\n sku: str = \"18.04-LTS\"\n version: str = \"Latest\"\n\n\n@dataclass_json(letter_case=LetterCase.CAMEL)\n@dataclass\nclass AzureNodeSchema:\n name: str = \"\"\n vm_size: str = \"\"\n location: str = \"\"\n gallery: Optional[AzureVmGallerySchema] = None\n vhd: str = \"\"\n nic_count: int = 1\n\n def __post_init__(self, *args: Any, **kwargs: Any) -> None:\n add_secret(self.vhd)\n\n\n@dataclass_json(letter_case=LetterCase.CAMEL)\n@dataclass\nclass AzureArmParameter:\n location: str = \"westus2\"\n admin_username: str = \"\"\n admin_password: str = \"\"\n admin_key_data: str = \"\"\n nodes: List[AzureNodeSchema] = field(default_factory=list)\n\n def __post_init__(self, *args: Any, **kwargs: Any) -> None:\n add_secret(self.admin_username, PATTERN_HEADTAIL)\n add_secret(self.admin_password)\n add_secret(self.admin_key_data)\n\n\n@dataclass_json(letter_case=LetterCase.CAMEL)\n@dataclass\nclass AzurePlatformSchema:\n service_principal_tenant_id: str = field(\n default=\"\",\n metadata=schema.metadata(\n data_key=\"servicePrincipalTenantId\",\n validate=validate.Regexp(constants.GUID_REGEXP),\n ),\n )\n service_principal_client_id: str = field(\n default=\"\",\n metadata=schema.metadata(\n data_key=\"servicePrincipalClientId\",\n validate=validate.Regexp(constants.GUID_REGEXP),\n ),\n )\n service_principal_key: str = field(default=\"\")\n subscription_id: str = field(\n default=\"\",\n metadata=schema.metadata(\n data_key=\"subscriptionId\",\n validate=validate.Regexp(constants.GUID_REGEXP),\n ),\n )\n\n resource_group_name: str = field(default=\"\")\n locations: Optional[Union[str, List[str]]] = field(default=None)\n\n log_level: str = field(\n default=logging.getLevelName(logging.WARN),\n metadata=schema.metadata(\n data_key=\"logLevel\",\n validate=validate.OneOf(\n [\n logging.getLevelName(logging.ERROR),\n logging.getLevelName(logging.WARN),\n logging.getLevelName(logging.INFO),\n logging.getLevelName(logging.DEBUG),\n ]\n ),\n ),\n )\n\n # do actual deployment, or pass through for troubleshooting\n dry_run: bool = False\n # do actual deployment, or try to retrieve existing vms\n deploy: bool = True\n # wait resource deleted or not\n wait_delete: bool = False\n\n def __post_init__(self, *args: Any, **kwargs: Any) -> None:\n add_secret(self.service_principal_tenant_id, mask=PATTERN_GUID)\n add_secret(self.service_principal_client_id, mask=PATTERN_GUID)\n add_secret(self.service_principal_key)\n add_secret(self.subscription_id, mask=PATTERN_GUID)\n\n if not self.locations:\n self.locations = LOCATIONS\n\n\n@dataclass\nclass EnvironmentContext:\n resource_group_name: str = \"\"\n resource_group_is_created: bool = False\n\n\n@dataclass\nclass NodeContext:\n vm_name: str = \"\"\n username: str = \"\"\n password: str = \"\"\n private_key_file: str = \"\"\n\n\nclass AzurePlatform(Platform):\n def __init__(self) -> None:\n super().__init__()\n self._credential: DefaultAzureCredential = None\n self._enviornment_counter = 0\n self._eligible_capabilities: Optional[Dict[str, List[AzureCapability]]] = None\n self._locations_data_cache: Optional[Dict[str, AzureLocation]] = None\n\n @classmethod\n def platform_type(cls) -> str:\n return AZURE\n\n def _prepare_environment( # noqa: C901\n self, environment: Environment, log: Logger\n ) -> bool:\n # TODO: Reduce this function's complexity and remove the disabled warning.\n \"\"\"\n Main flow\n\n _initialize_eligible_vm_sizes for all environments.\n 1. load location, vm size patterns firstly.\n 2. load avaiablbe vm sizes for each location.\n 3. match vm sizes by pattern.\n\n for each environment\n 1. If predefined location exists on node level, check conflict and use it.\n 2. If predefined vm size exists on node level, check exists and use it.\n 3. check capability for each node by order of pattern.\n 4. get min capability for each match\n \"\"\"\n\n is_success: bool = True\n\n if environment.runbook.nodes_requirement:\n is_success = False\n nodes_requirement = environment.runbook.nodes_requirement\n node_count = len(nodes_requirement)\n # fills predefined locations here.\n predefined_caps: List[Any] = [None] * node_count\n # make sure all vms are in same location.\n existing_location: str = \"\"\n predefined_cost: int = 0\n\n assert self._eligible_capabilities\n\n # check locations\n for req in nodes_requirement:\n # apply azure specified values\n # they will pass into arm template\n node_runbook: AzureNodeSchema = req.get_extended_runbook(\n AzureNodeSchema, AZURE\n )\n if node_runbook.location:\n if existing_location:\n # if any one has different location, calculate again\n if existing_location != node_runbook.location:\n raise LisaException(\n f\"predefined node must be in same location, \"\n f\"previous: {existing_location}, \"\n f\"found: {node_runbook.location}\"\n )\n else:\n existing_location = node_runbook.location\n\n if existing_location:\n locations = [existing_location]\n else:\n locations = LOCATIONS\n\n # check eligible locations\n found_or_skipped = False\n for location_name in locations:\n predefined_cost = 0\n predefined_caps = [None] * node_count\n for req_index, req in enumerate(nodes_requirement):\n found_or_skipped = False\n node_runbook = req.get_extended_runbook(AzureNodeSchema, AZURE)\n if not node_runbook.vm_size:\n # not to check, if no vm_size set\n found_or_skipped = True\n continue\n\n # find predefined vm size on all avaiable's.\n location_info: AzureLocation = self._get_location_info(\n location_name, log\n )\n for azure_cap in location_info.capabilities:\n if azure_cap.vm_size == node_runbook.vm_size:\n predefined_cost += azure_cap.estimated_cost\n\n min_cap: schema.NodeSpace = req.generate_min_capability(\n azure_cap.capability\n )\n # apply azure specified values\n # they will pass into arm template\n min_runbook = min_cap.get_extended_runbook(\n AzureNodeSchema, AZURE\n )\n # the location may not be set\n min_runbook.location = location_name\n min_runbook.vm_size = azure_cap.vm_size\n assert isinstance(min_cap.nic_count, int)\n min_runbook.nic_count = min_cap.nic_count\n if not existing_location:\n existing_location = location_name\n predefined_caps[req_index] = min_cap\n found_or_skipped = True\n break\n if not found_or_skipped:\n # if not found any, skip and try next location\n break\n if found_or_skipped:\n # if found all, skip other locations\n break\n if not found_or_skipped:\n # no location meet requirement\n raise LisaException(\n f\"cannot find predefined vm size [{node_runbook.vm_size}] \"\n f\"in location [{locations}]\"\n )\n for location_name, location_caps in self._eligible_capabilities.items():\n # in each location, all node must be found\n # fill them as None and check after meeted capability\n found_capabilities: List[Any] = list(predefined_caps)\n\n # skip unmatched location\n if existing_location and existing_location != location_name:\n continue\n\n estimated_cost: int = 0\n for req_index, req in enumerate(nodes_requirement):\n for azure_cap in location_caps:\n if found_capabilities[req_index]:\n # found, so skipped\n continue\n\n check_result = req.check(azure_cap.capability)\n if check_result.result:\n min_cap = req.generate_min_capability(azure_cap.capability)\n\n # apply azure specified values\n # they will pass into arm template\n node_runbook = min_cap.get_extended_runbook(\n AzureNodeSchema, AZURE\n )\n if node_runbook.location:\n assert node_runbook.location == azure_cap.location, (\n f\"predefined location [{node_runbook.location}] \"\n f\"must be same as \"\n f\"cap location [{azure_cap.location}]\"\n )\n\n # will pass into arm template\n node_runbook.location = azure_cap.location\n if not node_runbook.vm_size:\n node_runbook.vm_size = azure_cap.vm_size\n assert isinstance(\n min_cap.nic_count, int\n ), f\"actual: {min_cap.nic_count}\"\n node_runbook.nic_count = min_cap.nic_count\n\n estimated_cost += azure_cap.estimated_cost\n\n found_capabilities[req_index] = min_cap\n if all(x for x in found_capabilities):\n break\n\n if all(x for x in found_capabilities):\n # all found and replace current requirement\n environment.runbook.nodes_requirement = found_capabilities\n environment.cost = estimated_cost + predefined_cost\n is_success = True\n log.debug(\n f\"requirement meet, \"\n f\"cost: {environment.cost}, \"\n f\"cap: {environment.runbook.nodes_requirement}\"\n )\n break\n return is_success\n\n def _deploy_environment(self, environment: Environment, log: Logger) -> None:\n assert self._rm_client\n assert self._azure_runbook\n\n environment_context = environment.get_context(EnvironmentContext)\n if self._azure_runbook.resource_group_name:\n resource_group_name = self._azure_runbook.resource_group_name\n else:\n normalized_run_name = constants.NORMALIZE_PATTERN.sub(\n \"_\", constants.RUN_NAME\n )\n resource_group_name = f\"{normalized_run_name}_e{self._enviornment_counter}\"\n self._enviornment_counter += 1\n environment_context.resource_group_is_created = True\n\n environment_context.resource_group_name = resource_group_name\n if self._azure_runbook.dry_run:\n log.info(f\"dry_run: {self._azure_runbook.dry_run}\")\n else:\n try:\n if self._azure_runbook.deploy:\n log.info(\n f\"creating or updating resource group: {resource_group_name}\"\n )\n self._rm_client.resource_groups.create_or_update(\n resource_group_name, {\"location\": RESOURCE_GROUP_LOCATION}\n )\n else:\n log.info(f\"reusing resource group: {resource_group_name}\")\n\n deployment_parameters = self._create_deployment_parameters(\n resource_group_name, environment, log\n )\n\n if self._azure_runbook.deploy:\n self._validate_template(deployment_parameters, log)\n self._deploy(deployment_parameters, log)\n\n # Even skipped deploy, try best to initialize nodes\n self._initialize_nodes(environment)\n\n except Exception as identifier:\n self._delete_environment(environment, log)\n raise identifier\n environment.is_ready = True\n\n def _delete_environment(self, environment: Environment, log: Logger) -> None:\n environment_context = environment.get_context(EnvironmentContext)\n resource_group_name = environment_context.resource_group_name\n assert resource_group_name\n assert self._azure_runbook\n\n if not environment_context.resource_group_is_created:\n log.info(\n f\"skipped to delete resource group: {resource_group_name}, \"\n f\"as it's not created by this run.\"\n )\n elif self._runbook.reserve_environment:\n log.info(\n f\"skipped to delete resource group: {resource_group_name}, \"\n f\"as runbook set to reserve environment.\"\n )\n elif self._azure_runbook.dry_run:\n log.info(\n f\"skipped to delete resource group: {resource_group_name}, \"\n f\"as it's a dry run.\"\n )\n else:\n assert self._rm_client\n log.info(\n f\"deleting resource group: {resource_group_name}, \"\n f\"wait: {self._azure_runbook.wait_delete}\"\n )\n delete_operation = self._rm_client.resource_groups.begin_delete(\n resource_group_name\n )\n if self._azure_runbook.wait_delete:\n result = delete_operation.wait()\n if result:\n raise LisaException(f\"error on deleting resource group: {result}\")\n else:\n log.debug(\"not wait deleting\")\n\n def _initialize(self) -> None:\n # set needed environment variables for authentication\n azure_runbook = self._runbook.get_extended_runbook(AzurePlatformSchema)\n assert azure_runbook, \"platform runbook cannot be empty\"\n self._azure_runbook = azure_runbook\n\n # set azure log to warn level only\n logging.getLogger(\"azure\").setLevel(azure_runbook.log_level)\n\n os.environ[\"AZURE_TENANT_ID\"] = azure_runbook.service_principal_tenant_id\n os.environ[\"AZURE_CLIENT_ID\"] = azure_runbook.service_principal_client_id\n os.environ[\"AZURE_CLIENT_SECRET\"] = azure_runbook.service_principal_key\n\n self._credential = DefaultAzureCredential()\n\n self._sub_client = SubscriptionClient(self._credential)\n\n self._subscription_id = azure_runbook.subscription_id\n subscription = self._sub_client.subscriptions.get(self._subscription_id)\n if not subscription:\n raise LisaException(\n f\"cannot find subscription id: '{self._subscription_id}'\"\n )\n self._log.info(f\"connected to subscription: '{subscription.display_name}'\")\n\n self._rm_client = ResourceManagementClient(\n credential=self._credential, subscription_id=self._subscription_id\n )\n self._initialize_eligible_vm_sizes(self._log)\n\n @lru_cache\n def _load_template(self) -> Any:\n template_file_path = Path(__file__).parent / \"arm_template.json\"\n with open(template_file_path, \"r\") as f:\n template = json.load(f)\n return template\n\n @retry(tries=2) # type: ignore\n def _load_location_info_from_file(\n self, cached_file_name: Path, log: Logger\n ) -> Dict[str, AzureLocation]:\n if cached_file_name.exists():\n try:\n with open(cached_file_name, \"r\") as f:\n loaded_data: Dict[str, Any] = json.load(f)\n locations_data: Dict[str, AzureLocation] = dict()\n for loc_name, loc_data in loaded_data.items():\n loc_obj: AzureLocation = AzureLocation.schema().load( # type:ignore\n loc_data\n )\n locations_data[loc_name] = loc_obj\n except Exception as identifier:\n # if schema changed, There may be exception, remove cache and retry\n # Note: retry on this method depends on decorator\n log.debug(\"error on loading cache, delete cache and retry.\")\n cached_file_name.unlink()\n raise identifier\n else:\n locations_data = dict()\n return locations_data\n\n def _get_location_info(self, location: str, log: Logger) -> AzureLocation:\n cached_file_name = constants.CACHE_PATH.joinpath(\"azure_locations.json\")\n should_refresh: bool = True\n if not self._locations_data_cache:\n self._locations_data_cache = self._load_location_info_from_file(\n cached_file_name=cached_file_name, log=log\n )\n assert self._locations_data_cache\n location_data: Optional[AzureLocation] = self._locations_data_cache.get(\n location\n )\n\n if location_data:\n delta = datetime.now() - location_data.updated_time\n # refresh cached locations every 5 days.\n if delta.days < 5:\n should_refresh = False\n log.debug(\n f\"{location}: cache used: {location_data.updated_time}, \"\n f\"sku count: {len(location_data.capabilities)}\"\n )\n else:\n log.debug(\n f\"{location}: cache timeout: {location_data.updated_time},\"\n f\"sku count: {len(location_data.capabilities)}\"\n )\n else:\n log.debug(f\"{location}: no cache found\")\n if should_refresh:\n compute_client = ComputeManagementClient(\n credential=self._credential, subscription_id=self._subscription_id\n )\n\n log.debug(f\"{location}: querying\")\n all_skus: List[AzureCapability] = []\n paged_skus = compute_client.resource_skus.list(\n f\"location eq '{location}'\"\n ).by_page()\n for skus in paged_skus:\n for sku_obj in skus:\n try:\n if sku_obj.resource_type == \"virtualMachines\":\n if sku_obj.restrictions and any(\n restriction.type == \"Location\"\n for restriction in sku_obj.restrictions\n ):\n # restricted on this location\n continue\n resource_sku = sku_obj.as_dict()\n capability = self._resource_sku_to_capability(\n location, sku_obj\n )\n\n # estimate vm cost for priority\n assert isinstance(capability.core_count, int)\n assert isinstance(capability.gpu_count, int)\n estimated_cost = (\n capability.core_count + capability.gpu_count * 100\n )\n azure_capability = AzureCapability(\n location=location,\n vm_size=sku_obj.name,\n capability=capability,\n resource_sku=resource_sku,\n estimated_cost=estimated_cost,\n )\n all_skus.append(azure_capability)\n except Exception as identifier:\n log.error(f\"unknown sku: {sku_obj}\")\n raise identifier\n location_data = AzureLocation(location=location, capabilities=all_skus)\n self._locations_data_cache[location_data.location] = location_data\n log.debug(f\"{location}: saving to disk\")\n with open(cached_file_name, \"w\") as f:\n saved_data: Dict[str, Any] = dict()\n for name, value in self._locations_data_cache.items():\n saved_data[name] = value.to_dict() # type: ignore\n json.dump(saved_data, f)\n log.debug(\n f\"{location_data.location}: new data, \"\n f\"sku: {len(location_data.capabilities)}\"\n )\n\n assert location_data\n return location_data\n\n def _create_deployment_parameters(\n self, resource_group_name: str, environment: Environment, log: Logger\n ) -> Dict[str, Any]:\n assert environment.runbook, \"env data cannot be None\"\n assert environment.runbook.nodes_requirement, \"node requirement cannot be None\"\n\n log.debug(\"creating deployment\")\n # construct parameters\n arm_parameters = AzureArmParameter()\n arm_parameters.admin_username = self._runbook.admin_username\n if self._runbook.admin_private_key_file:\n arm_parameters.admin_key_data = get_public_key_data(\n self._runbook.admin_private_key_file\n )\n else:\n arm_parameters.admin_password = self._runbook.admin_password\n assert self._azure_runbook\n\n nodes_parameters: List[AzureNodeSchema] = []\n for node_space in environment.runbook.nodes_requirement:\n assert isinstance(\n node_space, schema.NodeSpace\n ), f\"actual: {type(node_space)}\"\n azure_node_runbook: AzureNodeSchema = node_space.get_extended_runbook(\n AzureNodeSchema, field_name=AZURE\n )\n\n # init node\n node = environment.nodes.from_requirement(node_space)\n if not azure_node_runbook.name:\n azure_node_runbook.name = f\"node-{len(nodes_parameters)}\"\n if not azure_node_runbook.vm_size:\n raise LisaException(\"vm_size is not detected before deploy\")\n if not azure_node_runbook.location:\n raise LisaException(\"location is not detected before deploy\")\n if azure_node_runbook.nic_count <= 0:\n raise LisaException(\n f\"nic_count need at least 1, but {azure_node_runbook.nic_count}\"\n )\n if azure_node_runbook.vhd:\n # vhd is higher priority\n azure_node_runbook.gallery = None\n elif not azure_node_runbook.gallery:\n # set to default gallery, if nothing secified\n azure_node_runbook.gallery = AzureVmGallerySchema()\n nodes_parameters.append(azure_node_runbook)\n\n # save vm's information into node\n node_context = node.get_context(NodeContext)\n # vm's name, use to find it from azure\n node_context.vm_name = azure_node_runbook.name\n # ssh related information will be filled back once vm is created\n node_context.username = arm_parameters.admin_username\n node_context.password = arm_parameters.admin_password\n node_context.private_key_file = self._runbook.admin_private_key_file\n\n arm_parameters.nodes = nodes_parameters\n\n # load template\n template = self._load_template()\n parameters = arm_parameters.to_dict() # type:ignore\n parameters = {k: {\"value\": v} for k, v in parameters.items()}\n log.debug(f\"parameters: {parameters}\")\n deployment_properties = DeploymentProperties(\n mode=DeploymentMode.incremental,\n template=template,\n parameters=parameters,\n )\n\n return {\n AZURE_RG_NAME_KEY: resource_group_name,\n \"deployment_name\": AZURE_DEPLOYMENT_NAME,\n \"parameters\": Deployment(properties=deployment_properties),\n }\n\n def _validate_template(\n self, deployment_parameters: Dict[str, Any], log: Logger\n ) -> None:\n resource_group_name = deployment_parameters[AZURE_RG_NAME_KEY]\n log.debug(\"validating deployment\")\n\n validate_operation: Any = None\n deployments = self._rm_client.deployments\n try:\n validate_operation = self._rm_client.deployments.begin_validate(\n **deployment_parameters\n )\n result = validate_operation.wait()\n if result:\n raise LisaException(f\"deploy failed: {result}\")\n except Exception as identifier:\n error_messages: List[str] = [str(identifier)]\n\n # default error message is too general in most case,\n # so check for more details.\n if validate_operation:\n # validate_operation returned, it means deployments created\n # successfuly. so check errors from deployments by name.\n deployment = deployments.get(resource_group_name, AZURE_DEPLOYMENT_NAME)\n # log more details for troubleshooting\n if deployment.properties.provisioning_state == \"Failed\":\n if deployment.properties.error.details:\n error_messages = [\n f\"{x.code}, {x.message}\"\n for x in deployment.properties.error.details\n ]\n elif isinstance(identifier, HttpResponseError) and identifier.error:\n # no validate_operation returned, the message may include\n # some errors, so check details\n if identifier.error.details:\n error_messages = [\n f\"{x.code}, {x.message}\" for x in identifier.error.details\n ]\n\n raise LisaException(\"\\n\".join(error_messages))\n\n assert result is None, f\"validate error: {result}\"\n\n def _deploy(self, deployment_parameters: Dict[str, Any], log: Logger) -> None:\n resource_group_name = deployment_parameters[AZURE_RG_NAME_KEY]\n log.info(f\"deploying {resource_group_name}\")\n\n deployment_operation: Any = None\n deployments = self._rm_client.deployments\n try:\n deployment_operation = deployments.begin_create_or_update(\n **deployment_parameters\n )\n result = deployment_operation.wait()\n if result:\n raise LisaException(f\"deploy failed: {result}\")\n except HttpResponseError as identifier:\n assert identifier.error\n error_messages = [\n f\"{x.code}, {x.message}\" for x in identifier.error.details\n ]\n # original message may not be friendly, refine it.\n raise LisaException(\"\\n\".join(error_messages))\n\n def _initialize_nodes(self, environment: Environment) -> None:\n\n node_context_map: Dict[str, Node] = dict()\n for node in environment.nodes.list():\n node_context = node.get_context(NodeContext)\n node_context_map[node_context.vm_name] = node\n\n compute_client = ComputeManagementClient(\n credential=self._credential, subscription_id=self._subscription_id\n )\n environment_context = environment.get_context(EnvironmentContext)\n vms_map: Dict[str, VirtualMachine] = dict()\n vms = compute_client.virtual_machines.list(\n environment_context.resource_group_name\n )\n for vm in vms:\n vms_map[vm.name] = vm\n\n network_client = NetworkManagementClient(\n credential=self._credential, subscription_id=self._subscription_id\n )\n\n # load port mappings\n nat_rules_map: Dict[str, InboundNatRule] = dict()\n load_balancing = network_client.load_balancers.get(\n environment_context.resource_group_name, RESOURCE_ID_LB\n )\n for rule in load_balancing.inbound_nat_rules:\n name = rule.name[: -len(RESOURCE_ID_PORT_POSTFIX)]\n nat_rules_map[name] = rule\n\n # load nics\n nic_map: Dict[str, NetworkInterface] = dict()\n network_interfaces = network_client.network_interfaces.list(\n environment_context.resource_group_name\n )\n for nic in network_interfaces:\n # nic name is like node-0-nic-2, get vm name part for later pick\n # only find primary nic, which is ended by -nic-0\n node_name_from_nic = RESOURCE_ID_NIC_PATTERN.findall(nic.name)\n if node_name_from_nic:\n name = node_name_from_nic[0]\n nic_map[name] = nic\n\n # get public IP\n public_ip_address = network_client.public_ip_addresses.get(\n environment_context.resource_group_name, RESOURCE_ID_PUBLIC_IP\n ).ip_address\n\n for vm_name, node in node_context_map.items():\n node_context = node.get_context(NodeContext)\n vm = vms_map.get(vm_name, None)\n if not vm:\n raise LisaException(\n f\"cannot find vm: '{vm_name}', make sure deployment is correct.\"\n )\n nic = nic_map[vm_name]\n nat_rule = nat_rules_map[vm_name]\n\n address = nic.ip_configurations[0].private_ip_address\n port = nat_rule.backend_port\n public_port = nat_rule.frontend_port\n node.set_connection_info(\n address=address,\n port=port,\n public_address=public_ip_address,\n public_port=public_port,\n username=node_context.username,\n password=node_context.password,\n private_key_file=node_context.private_key_file,\n )\n\n def _resource_sku_to_capability(\n self, location: str, resource_sku: ResourceSku\n ) -> schema.NodeSpace:\n # fill in default values, in case no capability meet.\n node_space = schema.NodeSpace(\n node_count=1,\n core_count=0,\n disk_count=0,\n memory_mb=0,\n nic_count=0,\n gpu_count=0,\n features=search_space.SetSpace[schema.Feature](is_allow_set=True),\n excluded_features=search_space.SetSpace[schema.Feature](is_allow_set=False),\n )\n node_space.name = f\"{location}_{resource_sku.name}\"\n for sku_capability in resource_sku.capabilities:\n name = sku_capability.name\n if name == \"vCPUs\":\n node_space.core_count = int(sku_capability.value)\n elif name == \"MaxDataDiskCount\":\n node_space.disk_count = search_space.IntRange(\n max=int(sku_capability.value)\n )\n elif name == \"MemoryGB\":\n node_space.memory_mb = int(float(sku_capability.value) * 1024)\n elif name == \"MaxNetworkInterfaces\":\n node_space.nic_count = search_space.IntRange(\n max=int(sku_capability.value)\n )\n elif name == \"GPUs\":\n node_space.gpu_count = int(sku_capability.value)\n\n return node_space\n\n def _initialize_eligible_vm_sizes(self, log: Logger) -> None:\n # load eligible vm sizes\n # 1. location is selected\n # 2. vm size supported in current location\n # 3. vm size match predefined pattern\n if self._eligible_capabilities is None:\n assert self._azure_runbook\n if isinstance(self._azure_runbook.locations, str):\n location_names = [self._azure_runbook.locations]\n else:\n assert isinstance(\n self._azure_runbook.locations, list\n ), f\"actual: {type(self._azure_runbook.locations)}\"\n location_names = self._azure_runbook.locations\n\n available_capabilities: Dict[str, List[AzureCapability]] = dict()\n\n # loop all locations\n for location_name in location_names:\n location_capabilities: List[AzureCapability] = []\n location_info: AzureLocation = self._get_location_info(\n location_name, log\n )\n\n # loop all fall back levels\n for fallback_pattern in VM_SIZE_FALLBACK_LEVELS:\n level_capabilities: List[AzureCapability] = []\n\n # loop all capabilities\n for capability in location_info.capabilities:\n if fallback_pattern.match(capability.vm_size):\n level_capabilities.append(capability)\n\n # sort by rough cost\n level_capabilities.sort(key=lambda x: (x.estimated_cost))\n log.debug(\n f\"{location_name}, pattern '{fallback_pattern.pattern}'\"\n f\" {len(level_capabilities)} candidates: \"\n f\"{[x.vm_size for x in level_capabilities]}\"\n )\n location_capabilities.extend(level_capabilities)\n available_capabilities[location_name] = location_capabilities\n self._eligible_capabilities = available_capabilities\n", "sub_path": "lisa/sut_orchestrator/azure/azure.py", "file_name": "azure.py", "file_ext": "py", "file_size_in_byte": 36978, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "re.compile", "line_number": 45, "usage_type": "call"}, {"api_name": "re.compile", "line_number": 46, "usage_type": "call"}, {"api_name": "re.compile", "line_number": 55, "usage_type": "call"}, {"api_name": "lisa.schema.NodeSpace", "line_number": 63, "usage_type": "attribute"}, {"api_name": "lisa.schema", "line_number": 63, "usage_type": "name"}, {"api_name": "typing.Dict", "line_number": 65, "usage_type": "name"}, {"api_name": "typing.Any", "line_number": 65, "usage_type": "name"}, {"api_name": "dataclasses_json.dataclass_json", "line_number": 58, "usage_type": "call"}, {"api_name": "dataclasses_json.LetterCase.CAMEL", "line_number": 58, "usage_type": "attribute"}, {"api_name": "dataclasses_json.LetterCase", "line_number": 58, "usage_type": "name"}, {"api_name": "dataclasses.dataclass", "line_number": 59, "usage_type": "name"}, {"api_name": "datetime.datetime", "line_number": 71, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 71, "usage_type": "call"}, {"api_name": "datetime.datetime.now", "line_number": 72, "usage_type": "attribute"}, {"api_name": "datetime.datetime", "line_number": 72, "usage_type": "name"}, {"api_name": "lisa.schema.metadata", "line_number": 73, "usage_type": "call"}, {"api_name": "lisa.schema", "line_number": 73, "usage_type": "name"}, {"api_name": "marshmallow.fields.DateTime", "line_number": 74, "usage_type": "attribute"}, {"api_name": "marshmallow.fields", "line_number": 74, "usage_type": "name"}, {"api_name": "datetime.datetime.isoformat", "line_number": 75, "usage_type": "attribute"}, {"api_name": "datetime.datetime", "line_number": 75, "usage_type": "name"}, {"api_name": "datetime.datetime.fromisoformat", "line_number": 76, "usage_type": "attribute"}, {"api_name": "datetime.datetime", "line_number": 76, "usage_type": "name"}, {"api_name": "typing.List", "line_number": 82, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 82, "usage_type": "call"}, {"api_name": "dataclasses_json.dataclass_json", "line_number": 68, "usage_type": "call"}, {"api_name": "dataclasses_json.LetterCase.CAMEL", "line_number": 68, "usage_type": "attribute"}, {"api_name": "dataclasses_json.LetterCase", "line_number": 68, "usage_type": "name"}, {"api_name": "dataclasses.dataclass", "line_number": 69, "usage_type": "name"}, {"api_name": "dataclasses_json.dataclass_json", "line_number": 85, "usage_type": "call"}, {"api_name": "dataclasses_json.LetterCase.CAMEL", "line_number": 85, "usage_type": "attribute"}, {"api_name": "dataclasses_json.LetterCase", "line_number": 85, "usage_type": "name"}, {"api_name": "dataclasses.dataclass", "line_number": 86, "usage_type": "name"}, {"api_name": "typing.Optional", "line_number": 100, "usage_type": "name"}, {"api_name": "typing.Any", "line_number": 104, "usage_type": "name"}, {"api_name": "lisa.secret.add_secret", "line_number": 105, "usage_type": "call"}, {"api_name": "dataclasses_json.dataclass_json", "line_number": 94, "usage_type": "call"}, {"api_name": "dataclasses_json.LetterCase.CAMEL", "line_number": 94, "usage_type": "attribute"}, {"api_name": "dataclasses_json.LetterCase", "line_number": 94, "usage_type": "name"}, {"api_name": "dataclasses.dataclass", "line_number": 95, "usage_type": "name"}, {"api_name": "typing.List", "line_number": 115, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 115, "usage_type": "call"}, {"api_name": "typing.Any", "line_number": 117, "usage_type": "name"}, {"api_name": "lisa.secret.add_secret", "line_number": 118, "usage_type": "call"}, {"api_name": "lisa.secret.PATTERN_HEADTAIL", "line_number": 118, "usage_type": "argument"}, {"api_name": "lisa.secret.add_secret", "line_number": 119, "usage_type": "call"}, {"api_name": "lisa.secret.add_secret", "line_number": 120, "usage_type": "call"}, {"api_name": "dataclasses_json.dataclass_json", "line_number": 108, "usage_type": "call"}, {"api_name": "dataclasses_json.LetterCase.CAMEL", "line_number": 108, "usage_type": "attribute"}, {"api_name": "dataclasses_json.LetterCase", "line_number": 108, "usage_type": "name"}, {"api_name": "dataclasses.dataclass", "line_number": 109, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 126, "usage_type": "call"}, {"api_name": "lisa.schema.metadata", "line_number": 128, "usage_type": "call"}, {"api_name": "lisa.schema", "line_number": 128, "usage_type": "name"}, {"api_name": "marshmallow.validate.Regexp", "line_number": 130, "usage_type": "call"}, {"api_name": "marshmallow.validate", "line_number": 130, "usage_type": "name"}, {"api_name": "lisa.util.constants.GUID_REGEXP", "line_number": 130, "usage_type": "attribute"}, {"api_name": "lisa.util.constants", "line_number": 130, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 133, "usage_type": "call"}, {"api_name": "lisa.schema.metadata", "line_number": 135, "usage_type": "call"}, {"api_name": "lisa.schema", "line_number": 135, "usage_type": "name"}, {"api_name": "marshmallow.validate.Regexp", "line_number": 137, "usage_type": "call"}, {"api_name": "marshmallow.validate", "line_number": 137, "usage_type": "name"}, {"api_name": "lisa.util.constants.GUID_REGEXP", "line_number": 137, "usage_type": "attribute"}, {"api_name": "lisa.util.constants", "line_number": 137, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 140, "usage_type": "call"}, {"api_name": "dataclasses.field", "line_number": 141, "usage_type": "call"}, {"api_name": "lisa.schema.metadata", "line_number": 143, "usage_type": "call"}, {"api_name": "lisa.schema", "line_number": 143, "usage_type": "name"}, {"api_name": "marshmallow.validate.Regexp", "line_number": 145, "usage_type": "call"}, {"api_name": "marshmallow.validate", "line_number": 145, "usage_type": "name"}, {"api_name": "lisa.util.constants.GUID_REGEXP", "line_number": 145, "usage_type": "attribute"}, {"api_name": "lisa.util.constants", "line_number": 145, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 149, "usage_type": "call"}, {"api_name": "typing.Optional", "line_number": 150, "usage_type": "name"}, {"api_name": "typing.Union", "line_number": 150, "usage_type": "name"}, {"api_name": "typing.List", "line_number": 150, "usage_type": "name"}, {"api_name": "dataclasses.field", "line_number": 150, "usage_type": "call"}, {"api_name": "dataclasses.field", "line_number": 152, "usage_type": "call"}, {"api_name": "logging.getLevelName", "line_number": 153, "usage_type": "call"}, {"api_name": "logging.WARN", "line_number": 153, "usage_type": "attribute"}, {"api_name": "lisa.schema.metadata", "line_number": 154, "usage_type": "call"}, {"api_name": "lisa.schema", "line_number": 154, "usage_type": "name"}, {"api_name": "marshmallow.validate.OneOf", "line_number": 156, "usage_type": "call"}, {"api_name": "marshmallow.validate", "line_number": 156, "usage_type": "name"}, {"api_name": "logging.getLevelName", "line_number": 158, "usage_type": "call"}, {"api_name": "logging.ERROR", "line_number": 158, "usage_type": "attribute"}, {"api_name": "logging.getLevelName", "line_number": 159, "usage_type": "call"}, {"api_name": "logging.WARN", "line_number": 159, "usage_type": "attribute"}, {"api_name": "logging.getLevelName", "line_number": 160, "usage_type": "call"}, {"api_name": "logging.INFO", "line_number": 160, "usage_type": "attribute"}, {"api_name": "logging.getLevelName", "line_number": 161, "usage_type": "call"}, {"api_name": "logging.DEBUG", "line_number": 161, "usage_type": "attribute"}, {"api_name": "typing.Any", "line_number": 174, "usage_type": "name"}, {"api_name": "lisa.secret.add_secret", "line_number": 175, "usage_type": "call"}, {"api_name": "lisa.secret.PATTERN_GUID", "line_number": 175, "usage_type": "name"}, {"api_name": "lisa.secret.add_secret", "line_number": 176, "usage_type": "call"}, {"api_name": "lisa.secret.PATTERN_GUID", "line_number": 176, "usage_type": "name"}, {"api_name": "lisa.secret.add_secret", "line_number": 177, "usage_type": "call"}, {"api_name": "lisa.secret.add_secret", "line_number": 178, "usage_type": "call"}, {"api_name": "lisa.secret.PATTERN_GUID", "line_number": 178, "usage_type": "name"}, {"api_name": "dataclasses_json.dataclass_json", "line_number": 123, "usage_type": "call"}, {"api_name": "dataclasses_json.LetterCase.CAMEL", "line_number": 123, "usage_type": "attribute"}, {"api_name": "dataclasses_json.LetterCase", "line_number": 123, "usage_type": "name"}, {"api_name": "dataclasses.dataclass", "line_number": 124, "usage_type": "name"}, {"api_name": "dataclasses.dataclass", "line_number": 184, "usage_type": "name"}, {"api_name": "dataclasses.dataclass", "line_number": 190, "usage_type": "name"}, {"api_name": "lisa.platform_.Platform", "line_number": 198, "usage_type": "name"}, {"api_name": "azure.identity.DefaultAzureCredential", "line_number": 201, "usage_type": "name"}, {"api_name": "typing.Optional", "line_number": 203, "usage_type": "name"}, {"api_name": "typing.Dict", "line_number": 203, "usage_type": "name"}, {"api_name": "typing.List", "line_number": 203, "usage_type": "name"}, {"api_name": "typing.Optional", "line_number": 204, "usage_type": "name"}, {"api_name": "typing.Dict", "line_number": 204, "usage_type": "name"}, {"api_name": "lisa.environment.Environment", "line_number": 211, "usage_type": "name"}, {"api_name": "lisa.util.logger.Logger", "line_number": 211, "usage_type": "name"}, {"api_name": "typing.List", "line_number": 236, "usage_type": "name"}, {"api_name": "typing.Any", "line_number": 236, "usage_type": "name"}, {"api_name": "lisa.util.LisaException", "line_number": 254, "usage_type": "call"}, {"api_name": "lisa.schema.NodeSpace", "line_number": 288, "usage_type": "attribute"}, {"api_name": "lisa.schema", "line_number": 288, "usage_type": "name"}, {"api_name": "lisa.util.LisaException", "line_number": 314, "usage_type": "call"}, {"api_name": "typing.List", "line_number": 321, "usage_type": "name"}, {"api_name": "typing.Any", "line_number": 321, "usage_type": "name"}, {"api_name": "lisa.environment.Environment", "line_number": 378, "usage_type": "name"}, {"api_name": "lisa.util.logger.Logger", "line_number": 378, "usage_type": "name"}, {"api_name": "lisa.util.constants.NORMALIZE_PATTERN.sub", "line_number": 386, "usage_type": "call"}, {"api_name": "lisa.util.constants.NORMALIZE_PATTERN", "line_number": 386, "usage_type": "attribute"}, {"api_name": "lisa.util.constants", "line_number": 386, "usage_type": "name"}, {"api_name": "lisa.util.constants.RUN_NAME", "line_number": 387, "usage_type": "attribute"}, {"api_name": "lisa.util.constants", "line_number": 387, "usage_type": "name"}, {"api_name": "lisa.environment.Environment", "line_number": 424, "usage_type": "name"}, {"api_name": "lisa.util.logger.Logger", "line_number": 424, "usage_type": "name"}, {"api_name": "lisa.util.LisaException", "line_number": 457, "usage_type": "call"}, {"api_name": "logging.getLogger", "line_number": 468, "usage_type": "call"}, {"api_name": "os.environ", "line_number": 470, "usage_type": "attribute"}, {"api_name": "os.environ", "line_number": 471, "usage_type": "attribute"}, {"api_name": "os.environ", "line_number": 472, "usage_type": "attribute"}, {"api_name": "azure.identity.DefaultAzureCredential", "line_number": 474, "usage_type": "call"}, {"api_name": "azure.mgmt.resource.SubscriptionClient", "line_number": 476, "usage_type": "call"}, {"api_name": "lisa.util.LisaException", "line_number": 481, "usage_type": "call"}, {"api_name": "azure.mgmt.resource.ResourceManagementClient", "line_number": 486, "usage_type": "call"}, {"api_name": "pathlib.Path", "line_number": 493, "usage_type": "call"}, {"api_name": "json.load", "line_number": 495, "usage_type": "call"}, {"api_name": "functools.lru_cache", "line_number": 491, "usage_type": "name"}, {"api_name": "typing.Any", "line_number": 492, "usage_type": "name"}, {"api_name": "pathlib.Path", "line_number": 500, "usage_type": "name"}, {"api_name": "lisa.util.logger.Logger", "line_number": 500, "usage_type": "name"}, {"api_name": "typing.Dict", "line_number": 505, "usage_type": "name"}, {"api_name": "typing.Any", "line_number": 505, "usage_type": "name"}, {"api_name": "json.load", "line_number": 505, "usage_type": "call"}, {"api_name": "typing.Dict", "line_number": 506, "usage_type": "name"}, {"api_name": "retry.retry", "line_number": 498, "usage_type": "call"}, {"api_name": "typing.Dict", "line_number": 501, "usage_type": "name"}, {"api_name": "lisa.util.logger.Logger", "line_number": 522, "usage_type": "name"}, {"api_name": "lisa.util.constants.CACHE_PATH.joinpath", "line_number": 523, "usage_type": "call"}, {"api_name": "lisa.util.constants.CACHE_PATH", "line_number": 523, "usage_type": "attribute"}, {"api_name": "lisa.util.constants", "line_number": 523, "usage_type": "name"}, {"api_name": "typing.Optional", "line_number": 530, "usage_type": "name"}, {"api_name": "datetime.datetime.now", "line_number": 535, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 535, "usage_type": "name"}, {"api_name": "azure.mgmt.compute.ComputeManagementClient", "line_number": 551, "usage_type": "call"}, {"api_name": "typing.List", "line_number": 556, "usage_type": "name"}, {"api_name": "typing.Dict", "line_number": 596, "usage_type": "name"}, {"api_name": "typing.Any", "line_number": 596, "usage_type": "name"}, {"api_name": "json.dump", "line_number": 599, "usage_type": "call"}, {"api_name": "lisa.environment.Environment", "line_number": 609, "usage_type": "name"}, {"api_name": "lisa.util.logger.Logger", "line_number": 609, "usage_type": "name"}, {"api_name": "lisa.util.get_public_key_data", "line_number": 619, "usage_type": "call"}, {"api_name": "typing.List", "line_number": 626, "usage_type": "name"}, {"api_name": "lisa.schema.NodeSpace", "line_number": 629, "usage_type": "attribute"}, {"api_name": "lisa.schema", "line_number": 629, "usage_type": "name"}, {"api_name": "lisa.util.LisaException", "line_number": 640, "usage_type": "call"}, {"api_name": "lisa.util.LisaException", "line_number": 642, "usage_type": "call"}, {"api_name": "lisa.util.LisaException", "line_number": 644, "usage_type": "call"}, {"api_name": "azure.mgmt.resource.resources.models.DeploymentProperties", "line_number": 671, "usage_type": "call"}, {"api_name": "azure.mgmt.resource.resources.models.DeploymentMode.incremental", "line_number": 672, "usage_type": "attribute"}, {"api_name": "azure.mgmt.resource.resources.models.DeploymentMode", "line_number": 672, "usage_type": "name"}, {"api_name": "azure.mgmt.resource.resources.models.Deployment", "line_number": 680, "usage_type": "call"}, {"api_name": "typing.Dict", "line_number": 610, "usage_type": "name"}, {"api_name": "typing.Any", "line_number": 610, "usage_type": "name"}, {"api_name": "typing.Dict", "line_number": 684, "usage_type": "name"}, {"api_name": "typing.Any", "line_number": 684, "usage_type": "name"}, {"api_name": "lisa.util.logger.Logger", "line_number": 684, "usage_type": "name"}, {"api_name": "typing.Any", "line_number": 689, "usage_type": "name"}, {"api_name": "lisa.util.LisaException", "line_number": 697, "usage_type": "call"}, {"api_name": "typing.List", "line_number": 699, "usage_type": "name"}, {"api_name": "azure.core.exceptions.HttpResponseError", "line_number": 714, "usage_type": "argument"}, {"api_name": "lisa.util.LisaException", "line_number": 722, "usage_type": "call"}, {"api_name": "typing.Dict", "line_number": 726, "usage_type": "name"}, {"api_name": "typing.Any", "line_number": 726, "usage_type": "name"}, {"api_name": "lisa.util.logger.Logger", "line_number": 726, "usage_type": "name"}, {"api_name": "typing.Any", "line_number": 730, "usage_type": "name"}, {"api_name": "lisa.util.LisaException", "line_number": 738, "usage_type": "call"}, {"api_name": "azure.core.exceptions.HttpResponseError", "line_number": 739, "usage_type": "name"}, {"api_name": "lisa.util.LisaException", "line_number": 745, "usage_type": "call"}, {"api_name": "lisa.environment.Environment", "line_number": 747, "usage_type": "name"}, {"api_name": "typing.Dict", "line_number": 749, "usage_type": "name"}, {"api_name": "lisa.node.Node", "line_number": 749, "usage_type": "name"}, {"api_name": "azure.mgmt.compute.ComputeManagementClient", "line_number": 754, "usage_type": "call"}, {"api_name": "typing.Dict", "line_number": 758, "usage_type": "name"}, {"api_name": "azure.mgmt.compute.models.VirtualMachine", "line_number": 758, "usage_type": "name"}, {"api_name": "azure.mgmt.network.NetworkManagementClient", "line_number": 765, "usage_type": "call"}, {"api_name": "typing.Dict", "line_number": 770, "usage_type": "name"}, {"api_name": "azure.mgmt.network.models.InboundNatRule", "line_number": 770, "usage_type": "name"}, {"api_name": "typing.Dict", "line_number": 779, "usage_type": "name"}, {"api_name": "azure.mgmt.network.models.NetworkInterface", "line_number": 779, "usage_type": "name"}, {"api_name": "lisa.util.LisaException", "line_number": 800, "usage_type": "call"}, {"api_name": "azure.mgmt.compute.models.ResourceSku", "line_number": 820, "usage_type": "name"}, {"api_name": "lisa.schema.NodeSpace", "line_number": 823, "usage_type": "call"}, {"api_name": "lisa.schema", "line_number": 823, "usage_type": "name"}, {"api_name": "lisa.search_space.SetSpace", "line_number": 830, "usage_type": "attribute"}, {"api_name": "lisa.search_space", "line_number": 830, "usage_type": "name"}, {"api_name": "lisa.schema.Feature", "line_number": 830, "usage_type": "attribute"}, {"api_name": "lisa.schema", "line_number": 830, "usage_type": "name"}, {"api_name": "lisa.search_space.SetSpace", "line_number": 831, "usage_type": "attribute"}, {"api_name": "lisa.search_space", "line_number": 831, "usage_type": "name"}, {"api_name": "lisa.schema.Feature", "line_number": 831, "usage_type": "attribute"}, {"api_name": "lisa.schema", "line_number": 831, "usage_type": "name"}, {"api_name": "lisa.search_space.IntRange", "line_number": 839, "usage_type": "call"}, {"api_name": "lisa.search_space", "line_number": 839, "usage_type": "name"}, {"api_name": "lisa.search_space.IntRange", "line_number": 845, "usage_type": "call"}, {"api_name": "lisa.search_space", "line_number": 845, "usage_type": "name"}, {"api_name": "lisa.schema.NodeSpace", "line_number": 821, "usage_type": "attribute"}, {"api_name": "lisa.schema", "line_number": 821, "usage_type": "name"}, {"api_name": "lisa.util.logger.Logger", "line_number": 853, "usage_type": "name"}, {"api_name": "typing.Dict", "line_number": 868, "usage_type": "name"}, {"api_name": "typing.List", "line_number": 868, "usage_type": "name"}, {"api_name": "typing.List", "line_number": 872, "usage_type": "name"}, {"api_name": "typing.List", "line_number": 879, "usage_type": "name"}]}
{"seq_id": "80614777", "text": "import getpass\nimport exchangelib \nfrom exchangelib.account import Account\nimport email, email.policy, email.header, email.utils\nimport re\nimport os\nimport datetime\nimport logging\nimport configparser \n\nimport event\n\nwith open(os.path.join('texts', 'error_header.txt')) as fh:\n ERROR_HEADER = fh.readlines()\nwith open(os.path.join('texts', 'help_text.txt')) as fh:\n HELP_TEXT = fh.readlines()\n\nclass Email():\n def __init__(self,\n smtp_host,\n mailbox,\n username,\n password=None,\n poll_time=60):\n '''Class to handle connections with a Exchange Server'''\n self.username = username\n self.set_password(password)\n self.mailbox = mailbox\n self.ews_url = None\n self.ews_auth_type = None\n self.smtp_host = smtp_host\n self.poll_time = poll_time\n self.last_update_time = None\n logging.getLogger(__name__).debug('Email initiated')\n\n def is_time_to_update(self):\n '''Check if its time to update'''\n if not self.last_update_time:\n return True\n logging.getLogger(__name__).debug('Time to update')\n return self.last_update_time + datetime.timedelta(seconds=self.poll_time) < datetime.datetime.now() \n \n\n def set_password(self, password=None):\n '''If password is not set, use getpass to get it in a protected way\n\n WARNING, IDLE does not hide password.'''\n self._password = password if password else getpass.getpass()\n\n def fetch(self, server, nr_of_mails, what='', max_amount=50):\n '''Fetch the last max_amount(50) mails from server\n\n server is a folder instance, nr_of_mails is the number of mails in mailbox\n what is not used'''\n amount = min(nr_of_mails, max_amount)\n logging.getLogger(__name__).debug('Fetching: {} of mails'.format(amount))\n mails = server.all().order_by('-datetime_received')[:amount]\n return mails\n\n def select_mailbox(self, server, mailbox='Inbox'):\n '''Returns folder instance'''\n account = self.login(server)\n #folder = account.root.get_folder_by_name(mailbox)\n folder = account.inbox\n return folder, folder.total_count\n\n def get_events(self, max_amount=50):\n '''Gets the last 50 events'''\n new_messages = False\n try:\n l = logging.getLogger(__name__)\n l.debug('Get events')\n mailbox, nr_of_mails = self.select_mailbox(self.smtp_host, self.mailbox)\n if not nr_of_mails:\n l.debug('No mails to get')\n return []\n events = []\n commands = []\n \n if mailbox:\n for message in self.fetch(mailbox, nr_of_mails, '', max_amount):\n #Only certain mail addresses is OK\n if not self.valid_email_address(message) or self.erica(message):\n try:\n l.info('Invalid mail address: {}'.format(message.sender.email_address))\n except Exception:\n pass\n #Adding a event that only contains the mail message\n #will trigger removal of it.\n \n e = event.Event()\n e.email = message\n events.append(e)\n continue\n #Check if its a command and if its valid\n result = self.parse_command(message)\n if result:\n #Its a command, process it\n l.debug('Proccessing: {}'.format(result))\n if result[0]:\n commands.append(result)\n\n else:\n print(result[1], result[2])\n else:\n #parse message\n e = event.Event(message)\n events.append(e)\n \n if e.valid() and not (message.is_read or self.isreply(message)):\n new_messages = True\n l.debug('Sending confirmation email')\n to = message.sender.email_address\n subject = 'Message added to notice board'\n msg = ['Message with subject: ', message.subject,\n ' has been added to NoticeBoard', '\\n\\n',\n 'Send a delete-mail to remove the message from notice board. ',\n 'Press the following link to generate the correct subject format for the delete-mail: mailto:SE-LIN-TAVLAN@semcon.com?subject=%3Cdelete%3E{}'.format(message.item_id[:-1]),\n '%3D' ,'\\n']\n message.is_read = True\n message.save()\n self.send(to, subject, ''.join(msg))\n self.send_subscriptions(events, new_messages)\n except exchangelib.errors.ErrorInternalServerTransientError:\n l.warning('Get events failed', exc_info=True)\n return None,None\n\n self.last_update_time = datetime.datetime.now()\n #self.send_subscriptions(events, new_messages)\n return events, commands\n\n def parse_command(self, message):\n '''Parse a email message to see if it is a valid command'''\n valid_commands = {'list':self.list,\n 'help':self.help,\n 'delete':self.delete,\n 'subscribe':self.subscribe}\n command_string = '.?<(.+)>'\n l = logging.getLogger(__name__)\n if not isinstance(message, exchangelib.items.Message):\n l.warning('Message not a correct message {}'.format(message))\n return \n\n if not message.subject:\n l.warning('Message does not contain a subject')\n return\n match = re.match(command_string, message.subject)\n if not match:\n return\n command = match.group(1)\n command = command.lower().split(',')\n command[0] = command[0].strip()\n if command[0] in valid_commands:\n result = valid_commands[command[0]](message, *command[1:])\n return result\n else:\n return self.help(message)\n\n def valid_email_address(self, message):\n '''Check if message has a valid address'''\n try:\n return message.sender.email_address.lower().endswith('@semcon.com')\n except Exception:\n logging.getLogger(__name__).error('Error in checking for valid mail address', exc_info=True)\n\n def isreply(self, message):\n return (('SE-GOT-EX02.semcon.se' in message.message_id) or ('Message added to notice board' in message.subject))\n\n def create_mailbox(self, server, name):\n '''Create a new folder on server\n\n Not implemented in module yet'''\n pass\n \n def remove_events(self, events, send_error=True):\n '''Removes event from mailbox\n Call with events that are to be removed'''\n try:\n account = self.login(self.smtp_host)\n except exchangelib.errors.ErrorInternalServerTransientError:\n return\n items = []\n for event in events:\n items.append(event.email)\n if send_error and event.fail_reasons:\n subject = 'Något gick tyvärr fel'\n text = ['FEL: ']\n text.extend(event.fail_reasons)\n text.extend(['\\n','Ditt meddelande: ', str(event.email.subject), ' '])\n text.extend(ERROR_HEADER)\n text.extend(HELP_TEXT)\n text = ''.join(text)\n self.send(event.user_address, subject, text)\n account.bulk_move(items, account.trash)\n \n def send(self, to, subject, msg):\n '''send function\n\n Sends an email '''\n account = self.login(self.smtp_host)\n email = exchangelib.Message(account=account,\n subject=subject,\n body=msg,\n to_recipients=[to])\n email.send()\n print('Email sent to:', to)\n\n def send_subscriptions(self, events, new_events):\n subscriptions = configparser.ConfigParser()\n result = subscriptions.read('subscriptions/user_subscriptions.ini')\n if not result:\n logging.getLogger(__name__).warn('No subscription file found')\n to_send = []\n #Order maters\n for section in ('each', 'daily', 'weekley'):\n if subscriptions.has_section(section):\n for option in subscriptions.options(section):\n #Special handling of each section so not to send if there are no new\n if section == 'each' and not new_events:\n break\n if option in to_send:\n #If we already have decided to send because of another section, just update last send time\n subscriptions.set(section, option, datetime.datetime.now().strftime('%Y%m%d%H%M'))\n else:\n date = subscriptions.get(section, option)\n if date == 'None':\n diff = None\n else:\n date = datetime.datetime(date, '%Y%m%d%H%M')\n now = datetime.datetime.now()\n diff = now - date\n if section == 'daily':\n if not diff or diff > datetime.datetime.timedelta(hours=24):\n to_send.append(option)\n subscription.set(section, option, date)\n elif section == 'weekley':\n if not diff or diff > datetime.datetime.timedelta(days=7):\n to_send.append(option)\n subscription.set(section, option, date)\n else:\n to_send.append(option)\n subscriptions.set(section, option, date)\n\n subject = 'Current Events on NoticeBoard'\n msg = []\n for event in events:\n msg.append(str(event))\n msg = '\\n'.join(msg) \n for address in to_send:\n self.send(address, subject, msg)\n \n def login(self, server):\n '''Login to server, return account instance'''\n \n credentials = exchangelib.ServiceAccount(username=self.username,\n password=self._password)\n if self.ews_url and self.ews_auth_type and self.smtp_host:\n config = exchangelib.Configuration(service_endpoint=self.ews_url,\n credentials=credentials,\n auth_type=self.ews_auth_type)\n\n account = exchangelib.Account(primary_smtp_address = server,\n config=config, autodiscover=False,\n access_type=exchangelib.DELEGATE)\n else:\n account = exchangelib.Account(primary_smtp_address=server,\n credentials=credentials,\n autodiscover=True,\n access_type=exchangelib.DELEGATE)\n \n self.ews_url = account.protocol.service_endpoint\n self.ews_auth_type = account.protocol.auth_type\n self.smtp_host = account.primary_smtp_address\n\n return account\n\n #Usercommands\n def delete(self, message, *args):\n '''Removes a message from mailbox'''\n try:\n account = self.login(self.smtp_host)\n account.bulk_move([message], account.trash)\n except Exception as err:\n return (False, 'delete', [err, message])\n else:\n return (True, 'delete', [message])\n \n \n def help(self, message, *args):\n '''Sends help text'''\n try:\n self.send(message.sender.email_address, 'Instruktion till Tavlan i Linköping', ''.join(HELP_TEXT))\n account = self.login(self.smtp_host)\n account.bulk_move([message], account.trash)\n except Exception as err:\n return (False, 'help', [err, message])\n else:\n return (True, 'help', [])\n\n def list(self, message, *args):\n '''Sends current messages to user'''\n try:\n account = self.login(self.smtp_host)\n account.bulk_move([message], account.trash)\n except Exception as err:\n return (False, 'list', [err, message])\n else:\n return (True, 'list', [message.sender.email_address])\n\n def subscribe(self, message, *args):\n def handle_subscription(address, subscription, subscription_type):\n if subscription_type == 'unsubscribe':\n for section in subscription.sections():\n subscription.remove_option(section, address)\n \n else:\n try:\n subscription.add_section(subscription_type)\n except configparser.DuplicateSectionError:\n pass\n subscription.set(subscription_type, address, 'None')\n self.delete(message)\n os.makedirs('subscriptions', exist_ok=True) \n subscriptions = configparser.ConfigParser()\n subscriptions.read('subscriptions/user_subscriptions.ini')\n if not args:\n handle_subscription(message.sender.email_address, subscriptions, 'each')\n else:\n args = [x.strip().lower() for x in args if x.strip() in ('daily', 'weekley', 'each', 'unsubscribe')]\n for arg in args:\n handle_subscription(message.sender.email_address, subscriptions, arg)\n \n with open('subscriptions/user_subscriptions.ini', 'w') as fh:\n subscriptions.write(fh)\n\n return (True, 'subscribe', [])\n \n #Taking care of childish behavior\n def erica(self, message):\n try:\n subject = message.subject.strip()\n match = re.match('(\\[.*\\])', subject)\n if match and 'bajskorv' in match.group(1).lower():\n self.send('erica.nilsbacken@semcon.com', 'Erica step away from the computer', 'Sluta larva dig och använd istället')\n return True\n except Exception:\n pass\n", "sub_path": "exchange_email.py", "file_name": "exchange_email.py", "file_ext": "py", "file_size_in_byte": 14897, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "os.path.join", "line_number": 13, "usage_type": "call"}, {"api_name": "os.path", "line_number": 13, "usage_type": "attribute"}, {"api_name": "os.path.join", "line_number": 15, "usage_type": "call"}, {"api_name": "os.path", "line_number": 15, "usage_type": "attribute"}, {"api_name": "logging.getLogger", "line_number": 34, "usage_type": "call"}, {"api_name": "logging.getLogger", "line_number": 40, "usage_type": "call"}, {"api_name": "datetime.timedelta", "line_number": 41, "usage_type": "call"}, {"api_name": "datetime.datetime.now", "line_number": 41, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 41, "usage_type": "attribute"}, {"api_name": "getpass.getpass", "line_number": 48, "usage_type": "call"}, {"api_name": "logging.getLogger", "line_number": 56, "usage_type": "call"}, {"api_name": "logging.getLogger", "line_number": 71, "usage_type": "call"}, {"api_name": "event.Event", "line_number": 91, "usage_type": "call"}, {"api_name": "event.Event", "line_number": 107, "usage_type": "call"}, {"api_name": "exchangelib.errors", "line_number": 124, "usage_type": "attribute"}, {"api_name": "datetime.datetime.now", "line_number": 128, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 128, "usage_type": "attribute"}, {"api_name": "logging.getLogger", "line_number": 139, "usage_type": "call"}, {"api_name": "exchangelib.items", "line_number": 140, "usage_type": "attribute"}, {"api_name": "re.match", "line_number": 147, "usage_type": "call"}, {"api_name": "logging.getLogger", "line_number": 164, "usage_type": "call"}, {"api_name": "exchangelib.errors", "line_number": 180, "usage_type": "attribute"}, {"api_name": "event.email", "line_number": 184, "usage_type": "attribute"}, {"api_name": "event.fail_reasons", "line_number": 185, "usage_type": "attribute"}, {"api_name": "event.fail_reasons", "line_number": 188, "usage_type": "attribute"}, {"api_name": "event.email", "line_number": 189, "usage_type": "attribute"}, {"api_name": "event.user_address", "line_number": 193, "usage_type": "attribute"}, {"api_name": "exchangelib.Message", "line_number": 201, "usage_type": "call"}, {"api_name": "email.send", "line_number": 205, "usage_type": "call"}, {"api_name": "configparser.ConfigParser", "line_number": 209, "usage_type": "call"}, {"api_name": "logging.getLogger", "line_number": 212, "usage_type": "call"}, {"api_name": "datetime.datetime.now", "line_number": 223, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 223, "usage_type": "attribute"}, {"api_name": "datetime.datetime", "line_number": 229, "usage_type": "call"}, {"api_name": "datetime.datetime.now", "line_number": 230, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 230, "usage_type": "attribute"}, {"api_name": "datetime.datetime.timedelta", "line_number": 233, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 233, "usage_type": "attribute"}, {"api_name": "datetime.datetime.timedelta", "line_number": 237, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 237, "usage_type": "attribute"}, {"api_name": "exchangelib.ServiceAccount", "line_number": 255, "usage_type": "call"}, {"api_name": "exchangelib.Configuration", "line_number": 258, "usage_type": "call"}, {"api_name": "exchangelib.Account", "line_number": 262, "usage_type": "call"}, {"api_name": "exchangelib.DELEGATE", "line_number": 264, "usage_type": "attribute"}, {"api_name": "exchangelib.Account", "line_number": 266, "usage_type": "call"}, {"api_name": "exchangelib.DELEGATE", "line_number": 269, "usage_type": "attribute"}, {"api_name": "configparser.DuplicateSectionError", "line_number": 319, "usage_type": "attribute"}, {"api_name": "os.makedirs", "line_number": 323, "usage_type": "call"}, {"api_name": "configparser.ConfigParser", "line_number": 324, "usage_type": "call"}, {"api_name": "re.match", "line_number": 342, "usage_type": "call"}]}
{"seq_id": "283076187", "text": "# Copyright 2012 Yelp\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nfrom __future__ import with_statement\n\nfrom sys import argv\nfrom sys import stderr\n\n\ncommands = {}\n\ndescriptions = {}\n\nusage = \"\"\"usage: mrjob {subcommand|--help}\"\n\nsubcommands:\"\"\"\n\n\ndef error(msg=None):\n if msg:\n print >> stderr, msg\n\n longest_command = max(len(name) for name in commands)\n\n def subcommand_line(name):\n spaces = ' ' * (longest_command - len(name))\n return ' %s: %s%s' % (\n name, spaces, descriptions[name])\n print >> stderr, usage\n print >> stderr, '\\n'.join(\n subcommand_line(name) for name in sorted(commands))\n\n\ndef command(name, description):\n def decorator(f):\n commands[name] = f\n descriptions[name] = description\n return f\n return decorator\n\n\ndef main(args=None):\n args = args or argv\n if not args[1:] or args[1] in ('-h', '--help'):\n error()\n elif args[1] not in commands:\n error('\"%s\" is not a command' % args[1])\n else:\n commands[args[1]](args[2:])\n\n\n@command('run', 'Run a job')\ndef run(args):\n from mrjob.launch import MRJobLauncher\n MRJobLauncher(args=args, from_cl=True).run_job()\n\n\n@command('audit-emr-usage', 'Audit EMR usage')\ndef audit_usage(args):\n from mrjob.tools.emr.audit_usage import main\n main(args)\n\n\n@command('collect-emr-active-stats', 'Collect EMR stats from active jobflows')\ndef collect_emr_stats(args):\n from mrjob.tools.emr.collect_emr_stats import main\n main(args)\n\n\n@command('create-job-flow', 'Create an EMR job flow')\ndef create_jf(args):\n from mrjob.tools.emr.create_job_flow import main\n main(args)\n\n\n@command('fetch-logs', 'Fetch and parse EMR logs for errors and counters')\ndef fetch_logs(args):\n from mrjob.tools.emr.fetch_logs import main\n main(args)\n\n\n@command('report-long-jobs', 'Report EMR jobs which have been running for a'\n ' long time')\ndef report_long_jobs(args):\n from mrjob.tools.emr.report_long_jobs import main\n main(args)\n\n\n@command('s3-tmpwatch', 'Delete S3 keys older than a specified time')\ndef s3_tmpwatch(args):\n from mrjob.tools.emr.s3_tmpwatch import main\n main(args)\n\n\n@command('terminate-idle-job-flows', 'Terminate idle EMR job flows')\ndef terminate_idle_jfs(args):\n from mrjob.tools.emr.terminate_idle_job_flows import main\n main(args)\n\n\n@command('terminate-job-flow', 'Terminate a single EMR job flow')\ndef terminate_jf(args):\n from mrjob.tools.emr.terminate_job_flow import main\n main(args)\n\n\nif __name__ == '__main__':\n main()\n", "sub_path": "mrjob/cmd.py", "file_name": "cmd.py", "file_ext": "py", "file_size_in_byte": 3061, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "sys.stderr", "line_number": 32, "usage_type": "name"}, {"api_name": "sys.stderr", "line_number": 40, "usage_type": "name"}, {"api_name": "sys.stderr", "line_number": 41, "usage_type": "name"}, {"api_name": "sys.argv", "line_number": 54, "usage_type": "name"}, {"api_name": "mrjob.launch.MRJobLauncher", "line_number": 66, "usage_type": "call"}, {"api_name": "mrjob.tools.emr.audit_usage.main", "line_number": 72, "usage_type": "call"}, {"api_name": "mrjob.tools.emr.collect_emr_stats.main", "line_number": 78, "usage_type": "call"}, {"api_name": "mrjob.tools.emr.create_job_flow.main", "line_number": 84, "usage_type": "call"}, {"api_name": "mrjob.tools.emr.fetch_logs.main", "line_number": 90, "usage_type": "call"}, {"api_name": "mrjob.tools.emr.report_long_jobs.main", "line_number": 97, "usage_type": "call"}, {"api_name": "mrjob.tools.emr.s3_tmpwatch.main", "line_number": 103, "usage_type": "call"}, {"api_name": "mrjob.tools.emr.terminate_idle_job_flows.main", "line_number": 109, "usage_type": "call"}, {"api_name": "mrjob.tools.emr.terminate_job_flow.main", "line_number": 115, "usage_type": "call"}, {"api_name": "mrjob.tools.emr.terminate_job_flow.main", "line_number": 119, "usage_type": "call"}]}
{"seq_id": "253835423", "text": "import os\nfrom app.models import User\nfrom app import create_app, db\nfrom flask_script import Manager, Shell\nfrom werkzeug.exceptions import InternalServerError\n\n\napp = create_app()\nmanager = Manager(app)\n\n# 处理 500 内部错误,用于调试\n@app.errorhandler(InternalServerError)\ndef internal_server_error(e):\n print(e.code)\n print(e.name)\n print(e.description)\n return \"Internal Server Error\"\n\n\ndef make_shell_context():\n return dict(app=app, db=db, User=User)\n\n\n@manager.command\ndef run():\n app.run(port=80)\n\n\nmanager.add_command(\"shell\", Shell(make_context=make_shell_context))\n\n\nif __name__ == '__main__':\n manager.run()", "sub_path": "manage.py", "file_name": "manage.py", "file_ext": "py", "file_size_in_byte": 651, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "app.models", "line_number": 8, "usage_type": "name"}, {"api_name": "app.create_app", "line_number": 8, "usage_type": "call"}, {"api_name": "flask_script.Manager", "line_number": 9, "usage_type": "call"}, {"api_name": "app.models", "line_number": 9, "usage_type": "argument"}, {"api_name": "app.models.errorhandler", "line_number": 12, "usage_type": "call"}, {"api_name": "werkzeug.exceptions.InternalServerError", "line_number": 12, "usage_type": "argument"}, {"api_name": "app.models", "line_number": 12, "usage_type": "name"}, {"api_name": "app.models", "line_number": 21, "usage_type": "name"}, {"api_name": "app.db", "line_number": 21, "usage_type": "name"}, {"api_name": "app.models.User", "line_number": 21, "usage_type": "name"}, {"api_name": "app.models.run", "line_number": 26, "usage_type": "call"}, {"api_name": "app.models", "line_number": 26, "usage_type": "name"}, {"api_name": "flask_script.Shell", "line_number": 29, "usage_type": "call"}]}
{"seq_id": "231092459", "text": "# -*- coding: utf-8 -*-\nfrom __future__ import unicode_literals\n\nfrom django.db import models, migrations\nimport django_iban.fields\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('motius_payment', '0004_auto_20141123_2358'),\n ]\n\n operations = [\n migrations.AlterField(\n model_name='ibanbankaccount',\n name='bic',\n field=django_iban.fields.SWIFTBICField(null=True, max_length=11, verbose_name='BIC', blank=True),\n preserve_default=True,\n ),\n migrations.AlterField(\n model_name='ibanbankaccount',\n name='iban',\n field=django_iban.fields.IBANField(max_length=34, verbose_name='IBAN Number'),\n preserve_default=True,\n ),\n migrations.AlterField(\n model_name='ibanbankaccount',\n name='tax_id',\n field=models.CharField('Tax ID', null=True, max_length=50, blank=True),\n preserve_default=True,\n ),\n ]\n", "sub_path": "motius_payment/migrations/0005_auto_20141124_0009.py", "file_name": "0005_auto_20141124_0009.py", "file_ext": "py", "file_size_in_byte": 1000, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "django.db.migrations.Migration", "line_number": 8, "usage_type": "attribute"}, {"api_name": "django.db.migrations", "line_number": 8, "usage_type": "name"}, {"api_name": "django.db.migrations.AlterField", "line_number": 15, "usage_type": "call"}, {"api_name": "django.db.migrations", "line_number": 15, "usage_type": "name"}, {"api_name": "django_iban.fields.fields.SWIFTBICField", "line_number": 18, "usage_type": "call"}, {"api_name": "django_iban.fields.fields", "line_number": 18, "usage_type": "attribute"}, {"api_name": "django_iban.fields", "line_number": 18, "usage_type": "name"}, {"api_name": "django.db.migrations.AlterField", "line_number": 21, "usage_type": "call"}, {"api_name": "django.db.migrations", "line_number": 21, "usage_type": "name"}, {"api_name": "django_iban.fields.fields.IBANField", "line_number": 24, "usage_type": "call"}, {"api_name": "django_iban.fields.fields", "line_number": 24, "usage_type": "attribute"}, {"api_name": "django_iban.fields", "line_number": 24, "usage_type": "name"}, {"api_name": "django.db.migrations.AlterField", "line_number": 27, "usage_type": "call"}, {"api_name": "django.db.migrations", "line_number": 27, "usage_type": "name"}, {"api_name": "django.db.models.CharField", "line_number": 30, "usage_type": "call"}, {"api_name": "django.db.models", "line_number": 30, "usage_type": "name"}]}
{"seq_id": "163678117", "text": "from write import write\n\nimport os\nimport sys\n\nsys.setrecursionlimit(26194)\n\nimport numpy as np\nimport random\nimport math\n\nimport time\n\nimport pygame\npyg = pygame\ndisp = pygame.display\n\npyg.init()\ndisp.init()\n\n\"\"\"Colors\"\"\"\nWHITE = pyg.Color('white')\nBLACK = pyg.Color('black')\nGREEN = pyg.Color('green')\nRED = pyg.Color('red')\nBLUE = pyg.Color('blue')\nYELLOW = pyg.Color('yellow')\nLIGHTBLUE = pyg.Color('lightblue')\nDARKGRAY = pyg.Color('gray10')\nGRAY = pyg.Color('gray')\nLIGHTGRAY = pyg.Color('gray40')\n\nbg_col = WHITE\nline_col = BLACK\ntext_col = BLACK\n\n\"\"\"Settings\"\"\"\n\n\n\"\"\"Screen\"\"\"\n# Resolutions: 960x720, 1080x720, 1540x840\nscreen = disp.set_mode((960, 720))\nscreen_w, screen_h = screen.get_size()\nscreen.fill(bg_col)\ndisp.flip()\n\ndisp.set_caption(\"Geometry Dash\")\n\n\"\"\"Functions\"\"\"\ndef update():\n disp.flip()\n\ndef clear():\n screen.fill(bg_col)\n\ndef load_img(name):\n \"\"\"Loads image\"\"\"\n image_name = os.path.join('img', 'Geometry Dash', name)\n image = pyg.image.load(image_name)\n image = image.convert()\n image_rect = image.get_rect()\n return image, image_rect\n\ndef resize(img, img_rect, scale):\n img_w, img_h = img.get_size()\n img_scaled = pyg.transform.scale(img, (img_w*scale, img_h*scale))\n img_rect_scaled = img_scaled.get_rect()\n return img_scaled, img_rect_scaled\n\n\"\"\"Classes\"\"\"\nclass Player():\n def __init__(self, x, y):\n # Load image\n self.img, self.rect = load_img('Player.bmp')\n # Set scale\n scale = screen_w//960\n # Resize image\n self.img, self.rect = resize(self.img, self.rect, scale)\n\n # (x, y) = top-left corner\n self.x = x\n self.y = y\n\n self.vel = 0\n\n def update(self):\n self.vel \n \n def draw(self):\n screen.blit(self.img, (self.x, self.y))\n\n def jump(self):\n self.vel = 5\n\nclass Spike():\n def __init__(self, x, y):\n # Load image\n self.img, self.rect = load_img('Spike.bmp')\n # Set scale\n scale = screen_w//960\n # Resize image\n self.img, self.rect = resize(self.img, self.rect, scale)\n\n # (x, y) = top-left corner\n self.x = x\n self.y = y\n\n def draw(self):\n screen.blit(self.img, (self.x, self.y))\n\nclass Platform():\n def __init__(self, x, y):\n # Load image\n self.img, self.rect = load_img('Platform.bmp')\n # Set scale\n scale = screen_w//960\n # Resize image\n self.img, self.rect = resize(self.img, self.rect, scale)\n\n # (x, y) = top-left corner\n self.x = x\n self.y = y\n\n def draw(self):\n screen.blit(self.img, (round(self.x), round(self.y)))\n\n\"\"\"Main\"\"\"\ndef main():\n global ground_floor, img_w\n ground_floor = []\n img, img_rect = load_img('Platform.bmp')\n img_w = (screen_w//960)*img.get_width()\n img_h = img_w\n img2, img_rect2 = load_img('Spike.bmp')\n img_h2 = (screen_w//960)*img2.get_height()\n x = 0\n y = screen_h-4*img_h\n while x <= screen_w+2*img_w:\n ground_floor.append(Platform(x, y))\n x += img_w\n del x, y\n player = Player(50, screen_h-5*img_h)\n next_spike = 25\n cur_spikes = []\n running = True\n while running:\n event = pyg.event.get()\n if event:\n event = event[0]\n else:\n event = pyg.event.Event(-1)\n\n if event.type == pyg.QUIT:\n running = False\n\n clear()\n for p in ground_floor:\n if p.x <= -2*img_w:\n ground_floor.remove(p)\n p.x = ground_floor[-1].x+img_w\n ground_floor.append(p)\n if next_spike > 0:\n next_spike -= 1\n p.draw()\n p.x -= 1\n\n if next_spike <= 0:\n cur_spikes.append(Spike(ground_floor[-1].x, screen_h-4*img_h-img_h2))\n k = random.random()\n if 0 < k < 0.1:\n next_spike = random.randint(5, 10)\n elif 0.1 < k < 0.3:\n next_spike = random.randint(3, 15)\n elif 0.3 < k < 1:\n next_spike = random.randint(10, 20)\n\n for s in cur_spikes:\n if s.x <= -2*img_w:\n cur_spikes.remove(s)\n s.draw()\n s.x -= 1\n\n player.draw()\n update()\n\n pyg.quit()\n\nif __name__ == '__main__':\n main()\n", "sub_path": "Geometry Dash.py", "file_name": "Geometry Dash.py", "file_ext": "py", "file_size_in_byte": 4331, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "sys.setrecursionlimit", "line_number": 6, "usage_type": "call"}, {"api_name": "pygame.display", "line_number": 16, "usage_type": "attribute"}, {"api_name": "os.path.join", "line_number": 58, "usage_type": "call"}, {"api_name": "os.path", "line_number": 58, "usage_type": "attribute"}, {"api_name": "random.random", "line_number": 169, "usage_type": "call"}, {"api_name": "random.randint", "line_number": 171, "usage_type": "call"}, {"api_name": "random.randint", "line_number": 173, "usage_type": "call"}, {"api_name": "random.randint", "line_number": 175, "usage_type": "call"}]}
{"seq_id": "645876288", "text": "\nfrom __future__ import absolute_import\nimport os\nfrom celery import Celery\n\n# 把置默认的django settings模块配置给celery\nos.environ.setdefault('DJANGO_SETTINGS_MODULE', 'movieAnalysis.settings')\n\napp = Celery('movieAnalysis')\n\n# 这里使用字符串以使celery的worker不用为子进程序列化配置对象。\n# 命名空间 namespace='CELERY'定义所有与celery相关的配置的键名要以'CELERY_'为前缀。\napp.config_from_object('django.conf:settings', namespace='CELERY')\n\n# 从所有django app configs中加载task模块,\n# 如果你把所有的task都定义在单独的tasks.py模块中,\n# 加上这句话celery会自动发现这些模块中的task,实际上这句话可以省略。\napp.autodiscover_tasks()\n@app.task(bind=True)\ndef debug_task(self):\n print('Request: {0!r}'.format(self.request))", "sub_path": "movieAnalysis/movieAnalysis/celery.py", "file_name": "celery.py", "file_ext": "py", "file_size_in_byte": 832, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "os.environ.setdefault", "line_number": 7, "usage_type": "call"}, {"api_name": "os.environ", "line_number": 7, "usage_type": "attribute"}, {"api_name": "celery.Celery", "line_number": 9, "usage_type": "call"}]}
{"seq_id": "289871925", "text": "# Copyright (c) 2017-2020 Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved.\n# SPDX-License-Identifier: Apache-2.0\n\n\"\"\"\nAll of the snippets for the Postman tutorial. Executing this file as a module will test as many of\nthe snippets as possible in the way that they are intended to be used.\n\nThis file should not be modified without also carefully looking at ``tutorials_post_office.rst``\nin the documentation folder.\n\"\"\"\n\n\nimport unittest\nfrom dazl import setup_default_logger\nfrom dazl.client import ExitCode # noqa\nfrom dazl.client.config import LedgerNodeConfiguration\n\n# These imports are included in the documentation EXACTLY AS IS.\n# Only add imports here if they are used as part of the tutorial's documentation.\n# DOC_BEGIN: IMPORTS_CONSTANTS\nfrom os import path\n\nfrom dazl import create, sandbox\nfrom dazl.client import create_client\n\nDAML_FILE = path.realpath(path.join(path.dirname(__file__), './Main.daml'))\n\nPOSTMAN_PARTY = 'Postman'\nMEMBER_PARTY_COUNT = 10\n# DOC_END: IMPORTS_CONSTANTS\n\n\nsetup_default_logger()\nLedgerNodeConfiguration._defaults['poll_interval'] = 1.0\n\n\ndef create_postman():\n # DOC_BEGIN: CREATE_POSTMAN\n def run_test(url):\n all_parties = [POSTMAN_PARTY]\n\n with create_client(parties=all_parties, participant_url=url) as client_mgr:\n postman_client = client_mgr.new_client(POSTMAN_PARTY)\n postman_client.on_ready(\n lambda _, __: create('Main:PostmanRole', dict(postman=POSTMAN_PARTY)))\n\n ledger_run = client_mgr.run_until_complete()\n return ledger_run.exit_code\n # DOC_END: CREATE_POSTMAN\n return run_test\n\n\ndef inspect_ledger():\n # DOC_BEGIN: INSPECT_LEDGER\n from dazl.plugins import LedgerCapturePlugin\n\n def run_test(url):\n all_parties = [POSTMAN_PARTY]\n\n with create_client(parties=all_parties, participant_url=url) as client_mgr:\n inspector = LedgerCapturePlugin.stdout()\n try:\n postman_client = client_mgr.new_client(POSTMAN_PARTY)\n postman_client.on_ready(\n lambda _, __: create('Main:PostmanRole', dict(postman=POSTMAN_PARTY)))\n\n client_mgr.register(inspector)\n\n ledger_run = client_mgr.run_until_complete()\n return ledger_run.exit_code\n finally:\n inspector.dump_all()\n # DOC_END: INSPECT_LEDGER\n return run_test\n\n\ndef invite_participants():\n from dazl.plugins import LedgerCapturePlugin\n\n # DOC_BEGIN: INVITE_PARTICIPANTS\n def run_test(url):\n members = [dict(party=f'Member {i}', address=address(i)) for i in\n range(0, MEMBER_PARTY_COUNT)]\n all_parties = [POSTMAN_PARTY] + [member['party'] for member in members]\n\n with create_client(parties=all_parties, participant_url=url) as client_mgr:\n inspector = LedgerCapturePlugin.stdout()\n try:\n set_up(client_mgr, members)\n client_mgr.register(inspector)\n\n ledger_run = client_mgr.run_until_complete()\n return ledger_run.exit_code\n finally:\n inspector.dump_all()\n\n def set_up(client_mgr, members):\n postman_client = client_mgr.new_client(POSTMAN_PARTY)\n postman_client.on_ready(\n lambda _, __: create('Main:PostmanRole', dict(postman=POSTMAN_PARTY)))\n postman_client.on_created(\n 'Main:PostmanRole',\n lambda cid, cdata: [cid.exercise('InviteParticipant', m) for m in members])\n\n def address(index):\n return '{} Member Lane'.format(index)\n # DOC_END: INVITE_PARTICIPANTS\n return run_test\n\n\ndef final_run_test(set_up):\n from dazl.plugins import LedgerCapturePlugin\n\n def address(index):\n return f'{index} Member Lane'\n\n def run_test(url):\n members = [dict(party=f'Member {i}', address=address(i))\n for i in range(0, MEMBER_PARTY_COUNT)]\n all_parties = [POSTMAN_PARTY] + [member['party'] for member in members]\n\n with create_client(parties=all_parties, participant_url=url) as client_mgr:\n inspector = LedgerCapturePlugin.stdout()\n try:\n set_up(client_mgr, members)\n client_mgr.register(inspector)\n\n ledger_run = client_mgr.run_until_complete()\n return ledger_run.exit_code\n finally:\n inspector.dump_all()\n\n return run_test\n\n\ndef accept_invites():\n # DOC_BEGIN: ACCEPT_INVITES\n def set_up(client_mgr, members):\n postman_client = client_mgr.new_client(POSTMAN_PARTY)\n postman_client.on_ready(\n lambda _, __: create('Main:PostmanRole', dict(postman=POSTMAN_PARTY)))\n postman_client.on_created(\n 'Main:PostmanRole',\n lambda cid, cdata: [cid.exercise('InviteParticipant', m) for m in members])\n\n member_clients = [client_mgr.new_client(m['party']) for m in members]\n for member_client in member_clients:\n # every member automatically accepts\n member_client.on_created(\n 'Main:InviteAuthorRole', lambda cid, cdata: cid.exercise('AcceptInviteAuthorRole'))\n member_client.on_created(\n 'Main:InviteReceiverRole', lambda cid, cdata: cid.exercise('AcceptInviteReceiverRole'))\n # DOC_END: ACCEPT_INVITES\n return final_run_test(set_up)\n\n\ndef send_letters():\n def address(index):\n return f'{index} Member Lane'\n\n # DOC_BEGIN: SEND_LETTERS\n from functools import partial\n\n def set_up(client_mgr, members):\n postman_client = client_mgr.new_client(POSTMAN_PARTY)\n postman_client.on_ready(\n lambda _, __: create('Main:PostmanRole', dict(postman=POSTMAN_PARTY)))\n postman_client.on_created(\n 'Main:PostmanRole',\n lambda cid, cdata: [cid.exercise('InviteParticipant', m) for m in members])\n\n member_clients = [client_mgr.new_client(m['party']) for m in members]\n for member_client in member_clients:\n # every member automatically accepts\n member_client.on_created(\n 'Main:InviteAuthorRole', lambda cid, cdata: cid.exercise('AcceptInviteAuthorRole'))\n member_client.on_created(\n 'Main:InviteReceiverRole', lambda cid, cdata: cid.exercise('AcceptInviteReceiverRole'))\n member_client.on_created(\n 'Main:AuthorRole', partial(send_five_letters, member_client.party_name))\n\n def send_five_letters(party_name, cid, cdata):\n if party_name == cdata['author']:\n party_index = int(party_name.split(' ')[1])\n addresses = map(lambda i: address(i % MEMBER_PARTY_COUNT), range(party_index + 1, party_index + 6))\n\n # exercise the same non-consuming choice repeatedly\n return [cid.exercise(\n 'CreateLetter',\n dict(address=address, content=f'I am a letter from {party_name} to {address}'))\n for address in addresses]\n\n # DOC_END: SEND_LETTERS\n return final_run_test(set_up)\n\n\ndef main_boilerplate(globals_, run_test):\n __name__ = globals_['__name__']\n\n # DOC_BEGIN: MAIN-BOILERPLATE\n if __name__ == '__main__':\n import sys\n\n with sandbox(DAML_FILE) as server:\n exit_code = run_test(server.url)\n sys.exit(int(exit_code))\n # DOC_END: MAIN-BOILERPLATE\n\n\nclass TutorialTest(unittest.TestCase):\n def test_create_postman(self):\n run_test = create_postman()\n with sandbox(DAML_FILE) as server:\n self.assertEqual(run_test(server.url), ExitCode.SUCCESS)\n\n def test_inspect_ledger(self):\n run_test = inspect_ledger()\n with sandbox(DAML_FILE) as server:\n self.assertEqual(run_test(server.url), ExitCode.SUCCESS)\n\n def test_invite_participants(self):\n run_test = invite_participants()\n with sandbox(DAML_FILE) as server:\n self.assertEqual(run_test(server.url), ExitCode.SUCCESS)\n\n def test_accept_invites(self):\n run_test = accept_invites()\n with sandbox(DAML_FILE) as server:\n self.assertEqual(run_test(server.url), ExitCode.SUCCESS)\n\n def test_send_letters(self):\n run_test = send_letters()\n with sandbox(DAML_FILE) as server:\n self.assertEqual(run_test(server.url), ExitCode.SUCCESS)\n", "sub_path": "python/tests/tutorials/post_office/tutorial.py", "file_name": "tutorial.py", "file_ext": "py", "file_size_in_byte": 8410, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "os.path.realpath", "line_number": 26, "usage_type": "call"}, {"api_name": "os.path", "line_number": 26, "usage_type": "name"}, {"api_name": "os.path.join", "line_number": 26, "usage_type": "call"}, {"api_name": "os.path.dirname", "line_number": 26, "usage_type": "call"}, {"api_name": "dazl.setup_default_logger", "line_number": 33, "usage_type": "call"}, {"api_name": "dazl.client.config.LedgerNodeConfiguration._defaults", "line_number": 34, "usage_type": "attribute"}, {"api_name": "dazl.client.config.LedgerNodeConfiguration", "line_number": 34, "usage_type": "name"}, {"api_name": "dazl.client.create_client", "line_number": 42, "usage_type": "call"}, {"api_name": "dazl.create", "line_number": 45, "usage_type": "call"}, {"api_name": "dazl.client.create_client", "line_number": 60, "usage_type": "call"}, {"api_name": "dazl.plugins.LedgerCapturePlugin.stdout", "line_number": 61, "usage_type": "call"}, {"api_name": "dazl.plugins.LedgerCapturePlugin", "line_number": 61, "usage_type": "name"}, {"api_name": "dazl.create", "line_number": 65, "usage_type": "call"}, {"api_name": "dazl.client.create_client", "line_number": 86, "usage_type": "call"}, {"api_name": "dazl.plugins.LedgerCapturePlugin.stdout", "line_number": 87, "usage_type": "call"}, {"api_name": "dazl.plugins.LedgerCapturePlugin", "line_number": 87, "usage_type": "name"}, {"api_name": "dazl.create", "line_number": 100, "usage_type": "call"}, {"api_name": "dazl.client.create_client", "line_number": 122, "usage_type": "call"}, {"api_name": "dazl.plugins.LedgerCapturePlugin.stdout", "line_number": 123, "usage_type": "call"}, {"api_name": "dazl.plugins.LedgerCapturePlugin", "line_number": 123, "usage_type": "name"}, {"api_name": "dazl.create", "line_number": 141, "usage_type": "call"}, {"api_name": "dazl.create", "line_number": 167, "usage_type": "call"}, {"api_name": "functools.partial", "line_number": 180, "usage_type": "call"}, {"api_name": "dazl.sandbox", "line_number": 204, "usage_type": "call"}, {"api_name": "sys.exit", "line_number": 206, "usage_type": "call"}, {"api_name": "unittest.TestCase", "line_number": 210, "usage_type": "attribute"}, {"api_name": "dazl.sandbox", "line_number": 213, "usage_type": "call"}, {"api_name": "dazl.client.ExitCode.SUCCESS", "line_number": 214, "usage_type": "attribute"}, {"api_name": "dazl.client.ExitCode", "line_number": 214, "usage_type": "name"}, {"api_name": "dazl.sandbox", "line_number": 218, "usage_type": "call"}, {"api_name": "dazl.client.ExitCode.SUCCESS", "line_number": 219, "usage_type": "attribute"}, {"api_name": "dazl.client.ExitCode", "line_number": 219, "usage_type": "name"}, {"api_name": "dazl.sandbox", "line_number": 223, "usage_type": "call"}, {"api_name": "dazl.client.ExitCode.SUCCESS", "line_number": 224, "usage_type": "attribute"}, {"api_name": "dazl.client.ExitCode", "line_number": 224, "usage_type": "name"}, {"api_name": "dazl.sandbox", "line_number": 228, "usage_type": "call"}, {"api_name": "dazl.client.ExitCode.SUCCESS", "line_number": 229, "usage_type": "attribute"}, {"api_name": "dazl.client.ExitCode", "line_number": 229, "usage_type": "name"}, {"api_name": "dazl.sandbox", "line_number": 233, "usage_type": "call"}, {"api_name": "dazl.client.ExitCode.SUCCESS", "line_number": 234, "usage_type": "attribute"}, {"api_name": "dazl.client.ExitCode", "line_number": 234, "usage_type": "name"}]}
{"seq_id": "43256422", "text": "from django.conf.urls import url\nfrom . import views\nfrom django.views.generic.base import RedirectView\n\napp_name = 'Book'\nurlpatterns = [\n url(r'^book/$', views.book, name='book'),\n url(r'^borrow/(\\d+)/$', views.borrow, name='borrow'),\n url(r'^user_info/$', views.user_info, name='user_info'),\n url(r'^borrow_record/$', views.borrow_record, name='borrow_record'),\n url(r'^search/$', views.search, name='search'),\n url(r'^upload/$', views.upload, name='upload'),\n url(r'^ajax/$', views.ajax, name='ajax'),\n url(r'^test/$', views.test, name='test'),\n url(r'^favicon\\.ico$', RedirectView.as_view(url=r'static/img/favicon.ico')),\n]\n", "sub_path": "Book/urls.py", "file_name": "urls.py", "file_ext": "py", "file_size_in_byte": 656, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "django.conf.urls.url", "line_number": 7, "usage_type": "call"}, {"api_name": "django.conf.urls.url", "line_number": 8, "usage_type": "call"}, {"api_name": "django.conf.urls.url", "line_number": 9, "usage_type": "call"}, {"api_name": "django.conf.urls.url", "line_number": 10, "usage_type": "call"}, {"api_name": "django.conf.urls.url", "line_number": 11, "usage_type": "call"}, {"api_name": "django.conf.urls.url", "line_number": 12, "usage_type": "call"}, {"api_name": "django.conf.urls.url", "line_number": 13, "usage_type": "call"}, {"api_name": "django.conf.urls.url", "line_number": 14, "usage_type": "call"}, {"api_name": "django.conf.urls.url", "line_number": 15, "usage_type": "call"}, {"api_name": "django.views.generic.base.RedirectView.as_view", "line_number": 15, "usage_type": "call"}, {"api_name": "django.views.generic.base.RedirectView", "line_number": 15, "usage_type": "name"}]}
{"seq_id": "219452996", "text": "from rest_framework import serializers\n\nfrom api.models import Company, Vacancy\n\n\nclass CompanySerilizer(serializers.Serializer):\n id = serializers.IntegerField(read_only=True);\n name = serializers.CharField(max_length=300)\n description = serializers.CharField(max_length=300)\n\n def create(self, validated_data):\n company = Company()\n company.name = validated_data.get('name', 'default name');\n company.description = validated_data.get('description', 'default description')\n company.save()\n return company\n\n\nclass VacancySerializer(serializers.ModelSerializer):\n class Meta:\n model = Vacancy\n fields = ('id', 'name', 'description', 'salary', 'company_id')\n", "sub_path": "Week13/hh_back/api/serializers.py", "file_name": "serializers.py", "file_ext": "py", "file_size_in_byte": 720, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "rest_framework.serializers.Serializer", "line_number": 6, "usage_type": "attribute"}, {"api_name": "rest_framework.serializers", "line_number": 6, "usage_type": "name"}, {"api_name": "rest_framework.serializers.IntegerField", "line_number": 7, "usage_type": "call"}, {"api_name": "rest_framework.serializers", "line_number": 7, "usage_type": "name"}, {"api_name": "rest_framework.serializers.CharField", "line_number": 8, "usage_type": "call"}, {"api_name": "rest_framework.serializers", "line_number": 8, "usage_type": "name"}, {"api_name": "rest_framework.serializers.CharField", "line_number": 9, "usage_type": "call"}, {"api_name": "rest_framework.serializers", "line_number": 9, "usage_type": "name"}, {"api_name": "api.models.Company", "line_number": 12, "usage_type": "call"}, {"api_name": "rest_framework.serializers.ModelSerializer", "line_number": 19, "usage_type": "attribute"}, {"api_name": "rest_framework.serializers", "line_number": 19, "usage_type": "name"}, {"api_name": "api.models.Vacancy", "line_number": 21, "usage_type": "name"}]}
{"seq_id": "505920786", "text": "# @Time : 2019/5/13 16:24\n# @Author : Xu Huipeng\n# @Blog : https://brycexxx.github.io/\n\nfrom typing import List\n\n\n# 参考题解:https://leetcode-cn.com/problems/trapping-rain-water/solution/zuo-you-liang-bian-de-zui-da-zhi-by-powcai/\n\nclass Solution:\n def trap(self, height: List[int]) -> int:\n if not height: return 0\n n = len(height)\n max_left = [0] * n\n max_right = [0] * n\n max_left[0], max_right[-1] = height[0], height[-1]\n for i in range(1, n):\n max_left[i] = max(height[i], max_left[i - 1])\n for j in range(n - 2, -1, -1):\n max_right[j] = max(height[j], max_right[j + 1])\n ret = 0\n for m in range(n):\n ret += min(max_left[m], max_right[m]) - height[m]\n return ret\n\n def trap1(self, height: List[int]) -> int:\n if not height: return 0\n n = len(height)\n max_left = height[0]\n max_right = height[n - 1]\n left, right = 0, n - 1\n ret = 0\n while left < right:\n if height[left] < height[right]:\n if max_left > height[left]:\n ret += max_left - height[left]\n else:\n max_left = height[left]\n left += 1\n else:\n if max_right > height[right]:\n ret += max_right - height[right]\n else:\n max_right = height[right]\n right -= 1\n return ret\n\n # 最不好想\n def trap2(self, height: List[int]) -> int:\n if not height: return 0\n n = len(height)\n stack = []\n res = 0\n for i in range(n):\n while stack and height[stack[-1]] < height[i]:\n tmp = stack.pop()\n if not stack: break\n res += (min(height[i], height[stack[-1]]) - height[tmp]) * (i - stack[-1] - 1)\n stack.append(i)\n return res\n\n\nif __name__ == '__main__':\n s = Solution()\n height = [0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1]\n print(s.trap(height))\n print(s.trap1(height))\n print(s.trap2(height))\n", "sub_path": "trap.py", "file_name": "trap.py", "file_ext": "py", "file_size_in_byte": 2127, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "typing.List", "line_number": 11, "usage_type": "name"}, {"api_name": "typing.List", "line_number": 26, "usage_type": "name"}, {"api_name": "typing.List", "line_number": 49, "usage_type": "name"}]}
{"seq_id": "362445511", "text": "\"\"\"\nBase class for all Xena package tests.\n\n@author yoram@ignissoft.com\n\"\"\"\n\nfrom os import path\nimport pytest\n\nfrom trafficgenerator.tgn_utils import ApiType\nfrom trafficgenerator.test.test_tgn import TestTgnBase\nfrom xenavalkyrie.xena_app import init_xena\nfrom xenavalkyrie.xena_stream import XenaStream\n\n\nclass TestXenaBase(TestTgnBase):\n\n TestTgnBase.config_file = path.join(path.dirname(__file__), 'XenaValkyrie.ini')\n\n def setup(self):\n super(TestXenaBase, self).setup()\n\n self._get_config()\n\n self.xm = init_xena(self.api, self.logger, self.config.get('Xena', 'owner'), self.server_ip, self.server_port)\n self.temp_dir = self.config.get('General', 'temp_dir')\n self.xm.session.add_chassis(self.chassis)\n if self.chassis2:\n self.xm.session.add_chassis(self.chassis2)\n XenaStream.next_tpld_id = 0\n\n def teardown(self):\n self.xm.session.disconnect()\n\n def test_hello_world(self):\n pass\n\n def _get_config(self):\n\n self.api = ApiType[pytest.config.getoption('--api')] # @UndefinedVariable\n self.server_ip = pytest.config.getoption('--server') # @UndefinedVariable\n self.chassis = pytest.config.getoption('--chassis') # @UndefinedVariable\n self.port1 = '{}/{}'.format(self.chassis, pytest.config.getoption('--port1')) # @UndefinedVariable\n self.port2 = '{}/{}'.format(self.chassis, pytest.config.getoption('--port2')) # @UndefinedVariable\n self.port3 = pytest.config.getoption('--port3') # @UndefinedVariable\n self.chassis2 = self.port3.split('/')[0] if self.port3 else ''\n if self.server_ip:\n self.server_port = int(self.server_ip.split(':')[1]) if len(self.server_ip.split(':')) == 2 else 57911\n self.server_ip = self.server_ip.split(':')[0]\n else:\n self.server_ip = self.chassis\n self.server_port = 57911\n", "sub_path": "xenavalkyrie/tests/test_base.py", "file_name": "test_base.py", "file_ext": "py", "file_size_in_byte": 1911, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "trafficgenerator.test.test_tgn.TestTgnBase", "line_number": 16, "usage_type": "name"}, {"api_name": "trafficgenerator.test.test_tgn.TestTgnBase.config_file", "line_number": 18, "usage_type": "attribute"}, {"api_name": "trafficgenerator.test.test_tgn.TestTgnBase", "line_number": 18, "usage_type": "name"}, {"api_name": "os.path.join", "line_number": 18, "usage_type": "call"}, {"api_name": "os.path", "line_number": 18, "usage_type": "name"}, {"api_name": "os.path.dirname", "line_number": 18, "usage_type": "call"}, {"api_name": "xenavalkyrie.xena_app.init_xena", "line_number": 25, "usage_type": "call"}, {"api_name": "xenavalkyrie.xena_stream.XenaStream.next_tpld_id", "line_number": 30, "usage_type": "attribute"}, {"api_name": "xenavalkyrie.xena_stream.XenaStream", "line_number": 30, "usage_type": "name"}, {"api_name": "trafficgenerator.tgn_utils.ApiType", "line_number": 40, "usage_type": "name"}, {"api_name": "pytest.config.getoption", "line_number": 40, "usage_type": "call"}, {"api_name": "pytest.config", "line_number": 40, "usage_type": "attribute"}, {"api_name": "pytest.config.getoption", "line_number": 41, "usage_type": "call"}, {"api_name": "pytest.config", "line_number": 41, "usage_type": "attribute"}, {"api_name": "pytest.config.getoption", "line_number": 42, "usage_type": "call"}, {"api_name": "pytest.config", "line_number": 42, "usage_type": "attribute"}, {"api_name": "pytest.config.getoption", "line_number": 43, "usage_type": "call"}, {"api_name": "pytest.config", "line_number": 43, "usage_type": "attribute"}, {"api_name": "pytest.config.getoption", "line_number": 44, "usage_type": "call"}, {"api_name": "pytest.config", "line_number": 44, "usage_type": "attribute"}, {"api_name": "pytest.config.getoption", "line_number": 45, "usage_type": "call"}, {"api_name": "pytest.config", "line_number": 45, "usage_type": "attribute"}]}
{"seq_id": "132168806", "text": "from adorym.ptychography import reconstruct_ptychography\nimport numpy as np\nimport dxchange\nimport datetime\nimport argparse\nimport os\n\ntimestr = str(datetime.datetime.today())\ntimestr = timestr[:timestr.find('.')]\nfor i in [':', '-', ' ']:\n if i == ' ':\n timestr = timestr.replace(i, '_')\n else:\n timestr = timestr.replace(i, '')\n\n\nparams_cameraman = {'fname': 'data_cameraman_err_10.h5',\n 'theta_st': 0,\n 'theta_end': 0,\n 'theta_downsample': 1,\n 'n_epochs': 1000,\n 'obj_size': (256, 256, 1),\n 'alpha_d': 0,\n 'alpha_b': 0,\n 'gamma': 0,\n 'probe_size': (72, 72),\n 'learning_rate': 4e-3,\n 'center': 512,\n 'energy_ev': 5000,\n 'psize_cm': 1.e-7,\n 'minibatch_size': 2704,\n 'n_batch_per_update': 1,\n 'output_folder': 'recon',\n 'cpu_only': False,\n 'save_path': 'cameraman_pos_error',\n 'multiscale_level': 1,\n 'n_epoch_final_pass': None,\n 'save_intermediate': True,\n 'full_intermediate': True,\n 'initial_guess': None,\n 'n_dp_batch': 20,\n 'probe_type': 'ifft',\n 'probe_initial': None,\n 'optimize_probe': True,\n 'forward_algorithm': 'fresnel',\n 'object_type': 'phase_only',\n 'probe_pos': np.array([(y, x) for y in np.arange(-10, 246, 5) for x in np.arange(-10, 246, 5)]),\n 'finite_support_mask': None,\n 'free_prop_cm': 'inf',\n 'optimizer': 'adam',\n 'two_d_mode': True,\n 'distribution_mode': None,\n 'use_checkpoint': False,\n 'optimize_all_probe_pos': True,\n 'save_history': True,\n 'backend': 'pytorch'\n }\n\nparams = params_cameraman\n\nreconstruct_ptychography(**params)\n", "sub_path": "demos/2d_ptychography_w_probe_optimization.py", "file_name": "2d_ptychography_w_probe_optimization.py", "file_ext": "py", "file_size_in_byte": 2236, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "datetime.datetime.today", "line_number": 8, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 8, "usage_type": "attribute"}, {"api_name": "numpy.array", "line_number": 47, "usage_type": "call"}, {"api_name": "numpy.arange", "line_number": 47, "usage_type": "call"}, {"api_name": "adorym.ptychography.reconstruct_ptychography", "line_number": 61, "usage_type": "call"}]}
{"seq_id": "162440031", "text": "\nfrom contextlib import contextmanager\nfrom pyspark import SparkContext, SparkConf\nimport random\n\nSPARK_APP_NAME='pi'\n\ndef random_point(x):\n return (random.random(), random.random())\n\ndef inside(p):\n x, y = p\n return x*x + y*y < 1\n\ndef pi_approximation(spark_context, num_samples):\n \"\"\" Approximate pi via Monte Carlo method\"\"\"\n count = spark_context.range(num_samples).map(random_point).filter(inside).count()\n pi = 4 * count / num_samples\n return pi\n\n@contextmanager\ndef use_spark_context(sparkAppName):\n conf = SparkConf().setAppName(sparkAppName) \n spark_context = SparkContext(conf=conf)\n\n try:\n yield spark_context\n finally:\n spark_context.stop()\n\nwith use_spark_context(SPARK_APP_NAME) as spark_context:\n num_samples = 1000000000\n pi = pi_approximation(spark_context, num_samples)\n print()\n print(\"RESULT: pi is approximately \", pi)\n print()", "sub_path": "spark/scripts/.ipynb_checkpoints/pi_approximation_job_solution-checkpoint.py", "file_name": "pi_approximation_job_solution-checkpoint.py", "file_ext": "py", "file_size_in_byte": 910, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "random.random", "line_number": 9, "usage_type": "call"}, {"api_name": "pyspark.SparkConf", "line_number": 23, "usage_type": "call"}, {"api_name": "pyspark.SparkContext", "line_number": 24, "usage_type": "call"}, {"api_name": "contextlib.contextmanager", "line_number": 21, "usage_type": "name"}]}
{"seq_id": "629948951", "text": "from django import forms\nfrom captcha.fields import ReCaptchaField\n#from captcha.widgets import ReCaptchaV2Checkbox\n\nclass CustomSignupForm(forms.Form):\n \"\"\"Defines 'extra' fields to extend the allauth signup form\"\"\"\n first_name = forms.CharField(max_length=30)\n last_name = forms.CharField(max_length=30)\n\n def signup(self, request, user):\n user.first_name = self.cleaned_data['first_name']\n user.last_name = self.cleaned_data['last_name']\n user.save()\n\nclass AllAuthSignupForm(forms.Form):\n\n captcha = ReCaptchaField()\n\n def signup(self, request, user):\n user.save()\n return user", "sub_path": "source/users/forms.py", "file_name": "forms.py", "file_ext": "py", "file_size_in_byte": 634, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "django.forms.Form", "line_number": 5, "usage_type": "attribute"}, {"api_name": "django.forms", "line_number": 5, "usage_type": "name"}, {"api_name": "django.forms.CharField", "line_number": 7, "usage_type": "call"}, {"api_name": "django.forms", "line_number": 7, "usage_type": "name"}, {"api_name": "django.forms.CharField", "line_number": 8, "usage_type": "call"}, {"api_name": "django.forms", "line_number": 8, "usage_type": "name"}, {"api_name": "django.forms.Form", "line_number": 15, "usage_type": "attribute"}, {"api_name": "django.forms", "line_number": 15, "usage_type": "name"}, {"api_name": "captcha.fields", "line_number": 17, "usage_type": "name"}, {"api_name": "captcha.fields.ReCaptchaField", "line_number": 17, "usage_type": "call"}]}
{"seq_id": "61286984", "text": "import datetime\nimport operator\nimport os\nfrom functools import reduce\n\nfrom django.contrib import messages\nfrom django.contrib.auth import authenticate\nfrom django.contrib.auth import login as auth_login\nfrom django.contrib.auth.decorators import login_required, permission_required\nfrom django.contrib.auth.models import User\nfrom django.db.models import Q\nfrom django.http import HttpResponse, HttpResponseRedirect\nfrom django.shortcuts import render, redirect\n\n# Create your views here.\nfrom django.views.decorators.csrf import csrf_protect\n\nfrom DatShiroShop import services\nfrom DatShiroShop.forms import UploadFileForm, SignUpForm, GetSignatureForm\nfrom DatShiroShop.models import Song, Profile\nfrom api import drive_api\nfrom api.drive_api import list_files, get_file, load_files_to_sqlite, downloadFile, uploadFile, createFolder, deleteFile\n\n\ndef home(request):\n user_id = request.session.get('user_id', None)\n user = User.objects.get(pk=user_id) if user_id else None\n user_name_songs = [song['name'] for song in user.profile.songs.values()] if user else []\n\n list_songs = list_files()\n songs = []\n for song in list_songs:\n s = Song.objects.get(pk=song['id'])\n if s.name in user_name_songs: # Update song id if that song user archived\n s = user.profile.songs.values().get(name=s.name)\n songs.append(s)\n\n return render(request, 'index.html', {'songs': songs, 'user': user, 'user_name_songs': user_name_songs})\n\n\ndef download(request, song_id):\n song = Song.objects.get(pk=song_id)\n print(\"Start download file name: \" + song.name)\n downloadFile(song_id, song.name + \" - \" + song.author + \".\" + song.extension)\n print(\"Downloaded\")\n return HttpResponseRedirect(request.GET.get('return_url'))\n\n\n@login_required()\ndef upload(request):\n # if this is a POST request we need to process the form data\n if request.method == 'POST':\n # create a form instance and populate it with data from the request:\n form = UploadFileForm(request.POST, request.FILES)\n\n if form.is_valid(): # check whether it's valid\n name = form.cleaned_data['name']\n author = form.cleaned_data['author']\n price = form.cleaned_data['price']\n my_file = request.FILES['myFile']\n print(my_file.content_type)\n extension = my_file.name.rsplit('.', 1)[1]\n user = User.objects.get(pk=request.session['user_id'])\n if not user.is_superuser: # if normal user, upload to their own directory\n if user.profile.drive_folder_id:\n folder_id = user.profile.drive_folder_id\n else:\n folder_id = createFolder(user.username)\n user.profile.drive_folder_id = folder_id\n user.profile.save()\n else: # if superuser upload to shiro store directory\n folder_id = drive_api.shiro_store_folder_id\n file_id = uploadFile(name + \" - \" + author + \".\" + extension, my_file.temporary_file_path(), my_file.content_type, folder_id=folder_id)\n\n new_song = Song(id=file_id, name=name, author=author, extension=extension, price=price)\n if not user.is_superuser:\n new_song.owner = user\n user.profile.songs.add(new_song)\n user.profile.save()\n new_song.save()\n\n return redirect('homepage')\n\n # if a GET (or any other method) we'll create a blank form\n else:\n form = UploadFileForm()\n return render(request, 'upload.html', {'form': form})\n\n\ndef signup(request):\n if request.method == 'POST':\n form = SignUpForm(request.POST)\n if form.is_valid():\n form.save()\n username = form.cleaned_data.get('username')\n raw_password = form.cleaned_data.get('password1')\n user = authenticate(username=username, password=raw_password)\n auth_login(request, user)\n messages.success(request, 'Register new account succeeded!')\n return redirect('homepage')\n else:\n form = SignUpForm()\n return render(request, 'sites/signup.html', {'form':form})\n\n\n@login_required()\ndef buy_song(request, song_id):\n print(\"-------------Buy Song---------------\")\n # Get user info\n user = User.objects.get(pk=request.session['user_id'])\n origin_song = Song.objects.get(pk=song_id)\n\n #Get Song From Drive\n print(\"Start buy music\")\n file_path = os.path.expanduser(os.sep.join([\"~\", \"Downloads\"]))\n downloaded_file_name = \"{0} - {1}.{2}\".format(song_id, str(user.id), origin_song.extension)\n downloaded_file_path = downloadFile(file_id=song_id, file_name=downloaded_file_name, file_path=services.downloads_path)\n\n #Sign Signature To Song\n signature_message = \"|Song [{2}] - Signed by user: \\\"{0}\\\" - {1}\".format(request.session['username'], str(datetime.datetime.now()), origin_song.name)\n encoder = services.EncodeWAV()\n encoded_file_path = encoder.encode_file(file_path=downloaded_file_path, msg=signature_message, file_name=downloaded_file_name)\n\n\n #Upload Song to User Folder\n # decoder = services.DecodeWAV()\n # msg = decoder.decode_file(encoded_file_path)\n new_song_id = services.upload_new_song(user=user, song_id=song_id, file_path=encoded_file_path, signature=signature_message)\n\n #Delete on local\n os.remove(downloaded_file_path)\n print(\"Removed file: \", downloaded_file_path)\n # return signed_song\n # Save message to database\n messages.success(request, \"Succeeded buy song {0}\".format(origin_song.name))\n return redirect('info', username=user.username)\n\n\n@login_required()\ndef info(request, username):\n if username != request.session['username']:\n return redirect('info', username=request.session['username'])\n print(\"User info: \")\n user = User.objects.get(username=username)\n print(user.profile)\n list_songs_id = [song['id'] for song in user.profile.songs.values()]\n print(list_songs_id)\n # songs = Song.objects.get(id__contains=[list_songs_id])\n # query = reduce(operator.and_, (Q(id__contains=item) for item in list_songs_id))\n # songs = Song.objects.filter(query)\n songs = user.profile.songs.all\n\n return render(request, 'sites/info.html', {'user': user, 'songs': songs})\n\n\ndef ajax_signature(request, song_id):\n song = Song.objects.get(pk=song_id)\n if song.signature: # in case query from info page\n return HttpResponse(song.signature)\n else: # in case query from index\n current_user = User.objects.get(pk=request.session['user_id'])\n song = current_user.profile.songs.get(name=song.name)\n return HttpResponse(song.signature)\n\n\n@csrf_protect\ndef signature(request):\n \"\"\"\n Get Signature from uploaded file\n :param request:\n :return:\n \"\"\"\n if request.POST:\n form = GetSignatureForm(request.POST, request.FILES)\n if form.is_valid():\n f = form.cleaned_data['myFile']\n decoder = services.DecodeWAV()\n msg = decoder.decode_file(file_path=f.temporary_file_path())\n file_name = f.name\n print(\"file: \", f, \"| Temporary path: \", f.temporary_file_path(), \"| Msg: \", msg)\n return render(request, 'signature.html', {'form': form, 'msg': msg, 'file_name': file_name})\n else:\n form = GetSignatureForm()\n return render(request, 'signature.html', {'form': form})", "sub_path": "DatShiroShop/views.py", "file_name": "views.py", "file_ext": "py", "file_size_in_byte": 7532, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "django.contrib.auth.models.User.objects.get", "line_number": 27, "usage_type": "call"}, {"api_name": "django.contrib.auth.models.User.objects", "line_number": 27, "usage_type": "attribute"}, {"api_name": "django.contrib.auth.models.User", "line_number": 27, "usage_type": "name"}, {"api_name": "api.drive_api.list_files", "line_number": 30, "usage_type": "call"}, {"api_name": "DatShiroShop.models.Song.objects.get", "line_number": 33, "usage_type": "call"}, {"api_name": "DatShiroShop.models.Song.objects", "line_number": 33, "usage_type": "attribute"}, {"api_name": "DatShiroShop.models.Song", "line_number": 33, "usage_type": "name"}, {"api_name": "django.shortcuts.render", "line_number": 38, "usage_type": "call"}, {"api_name": "DatShiroShop.models.Song.objects.get", "line_number": 42, "usage_type": "call"}, {"api_name": "DatShiroShop.models.Song.objects", "line_number": 42, "usage_type": "attribute"}, {"api_name": "DatShiroShop.models.Song", "line_number": 42, "usage_type": "name"}, {"api_name": "api.drive_api.downloadFile", "line_number": 44, "usage_type": "call"}, {"api_name": "django.http.HttpResponseRedirect", "line_number": 46, "usage_type": "call"}, {"api_name": "DatShiroShop.forms.UploadFileForm", "line_number": 54, "usage_type": "call"}, {"api_name": "django.contrib.auth.models.User.objects.get", "line_number": 63, "usage_type": "call"}, {"api_name": "django.contrib.auth.models.User.objects", "line_number": 63, "usage_type": "attribute"}, {"api_name": "django.contrib.auth.models.User", "line_number": 63, "usage_type": "name"}, {"api_name": "api.drive_api.createFolder", "line_number": 68, "usage_type": "call"}, {"api_name": "api.drive_api.shiro_store_folder_id", "line_number": 72, "usage_type": "attribute"}, {"api_name": "api.drive_api", "line_number": 72, "usage_type": "name"}, {"api_name": "api.drive_api.uploadFile", "line_number": 73, "usage_type": "call"}, {"api_name": "DatShiroShop.models.Song", "line_number": 75, "usage_type": "call"}, {"api_name": "django.shortcuts.redirect", "line_number": 82, "usage_type": "call"}, {"api_name": "DatShiroShop.forms.UploadFileForm", "line_number": 86, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 87, "usage_type": "call"}, {"api_name": "django.contrib.auth.decorators.login_required", "line_number": 49, "usage_type": "call"}, {"api_name": "DatShiroShop.forms.SignUpForm", "line_number": 92, "usage_type": "call"}, {"api_name": "django.contrib.auth.authenticate", "line_number": 97, "usage_type": "call"}, {"api_name": "django.contrib.auth.login", "line_number": 98, "usage_type": "call"}, {"api_name": "django.contrib.messages.success", "line_number": 99, "usage_type": "call"}, {"api_name": "django.contrib.messages", "line_number": 99, "usage_type": "name"}, {"api_name": "django.shortcuts.redirect", "line_number": 100, "usage_type": "call"}, {"api_name": "DatShiroShop.forms.SignUpForm", "line_number": 102, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 103, "usage_type": "call"}, {"api_name": "django.contrib.auth.models.User.objects.get", "line_number": 110, "usage_type": "call"}, {"api_name": "django.contrib.auth.models.User.objects", "line_number": 110, "usage_type": "attribute"}, {"api_name": "django.contrib.auth.models.User", "line_number": 110, "usage_type": "name"}, {"api_name": "DatShiroShop.models.Song.objects.get", "line_number": 111, "usage_type": "call"}, {"api_name": "DatShiroShop.models.Song.objects", "line_number": 111, "usage_type": "attribute"}, {"api_name": "DatShiroShop.models.Song", "line_number": 111, "usage_type": "name"}, {"api_name": "os.path.expanduser", "line_number": 115, "usage_type": "call"}, {"api_name": "os.path", "line_number": 115, "usage_type": "attribute"}, {"api_name": "os.sep.join", "line_number": 115, "usage_type": "call"}, {"api_name": "os.sep", "line_number": 115, "usage_type": "attribute"}, {"api_name": "api.drive_api.downloadFile", "line_number": 117, "usage_type": "call"}, {"api_name": "DatShiroShop.services.downloads_path", "line_number": 117, "usage_type": "attribute"}, {"api_name": "DatShiroShop.services", "line_number": 117, "usage_type": "name"}, {"api_name": "datetime.datetime.now", "line_number": 120, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 120, "usage_type": "attribute"}, {"api_name": "DatShiroShop.services.EncodeWAV", "line_number": 121, "usage_type": "call"}, {"api_name": "DatShiroShop.services", "line_number": 121, "usage_type": "name"}, {"api_name": "DatShiroShop.services.upload_new_song", "line_number": 128, "usage_type": "call"}, {"api_name": "DatShiroShop.services", "line_number": 128, "usage_type": "name"}, {"api_name": "os.remove", "line_number": 131, "usage_type": "call"}, {"api_name": "django.contrib.messages.success", "line_number": 135, "usage_type": "call"}, {"api_name": "django.contrib.messages", "line_number": 135, "usage_type": "name"}, {"api_name": "django.shortcuts.redirect", "line_number": 136, "usage_type": "call"}, {"api_name": "django.contrib.auth.decorators.login_required", "line_number": 106, "usage_type": "call"}, {"api_name": "django.shortcuts.redirect", "line_number": 142, "usage_type": "call"}, {"api_name": "django.contrib.auth.models.User.objects.get", "line_number": 144, "usage_type": "call"}, {"api_name": "django.contrib.auth.models.User.objects", "line_number": 144, "usage_type": "attribute"}, {"api_name": "django.contrib.auth.models.User", "line_number": 144, "usage_type": "name"}, {"api_name": "django.shortcuts.render", "line_number": 153, "usage_type": "call"}, {"api_name": "django.contrib.auth.decorators.login_required", "line_number": 139, "usage_type": "call"}, {"api_name": "DatShiroShop.models.Song.objects.get", "line_number": 157, "usage_type": "call"}, {"api_name": "DatShiroShop.models.Song.objects", "line_number": 157, "usage_type": "attribute"}, {"api_name": "DatShiroShop.models.Song", "line_number": 157, "usage_type": "name"}, {"api_name": "django.http.HttpResponse", "line_number": 159, "usage_type": "call"}, {"api_name": "django.contrib.auth.models.User.objects.get", "line_number": 161, "usage_type": "call"}, {"api_name": "django.contrib.auth.models.User.objects", "line_number": 161, "usage_type": "attribute"}, {"api_name": "django.contrib.auth.models.User", "line_number": 161, "usage_type": "name"}, {"api_name": "django.http.HttpResponse", "line_number": 163, "usage_type": "call"}, {"api_name": "DatShiroShop.forms.GetSignatureForm", "line_number": 174, "usage_type": "call"}, {"api_name": "DatShiroShop.services.DecodeWAV", "line_number": 177, "usage_type": "call"}, {"api_name": "DatShiroShop.services", "line_number": 177, "usage_type": "name"}, {"api_name": "django.shortcuts.render", "line_number": 181, "usage_type": "call"}, {"api_name": "DatShiroShop.forms.GetSignatureForm", "line_number": 183, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 184, "usage_type": "call"}, {"api_name": "django.views.decorators.csrf.csrf_protect", "line_number": 166, "usage_type": "name"}]}
{"seq_id": "635951380", "text": "from django.shortcuts import render, redirect\r\nfrom .models import Disciplina\r\nfrom .forms import disciplinaform\r\n\r\n# Create your views here.\r\ndef list_disciplinas(request):\r\n\tdisciplina = Disciplina.objects.all()\r\n\treturn render(request, 'Disciplina.html', {'curriculo': disciplina})\r\n\t\r\ndef create_disciplina(request):\r\n\tform = disciplinaform(request.POST or None)\r\n\t\r\n\tif form.is_valid():\r\n\t\tform.save()\r\n\t\treturn redirect('list_disciplinas')\r\n\treturn render(request, 'Disciplina-Form.html', {'form': form})\r\n\t\r\ndef update_disciplina(request, id):\r\n\tdisciplina = Disciplina.objects.get(id=id)\r\n\tform = disciplinaform(request.POST or None, instance=disciplina)\r\n\t\r\n\tif form.is_valid():\r\n\t\tform.save()\r\n\t\treturn redirect('list_disciplinas')\r\n\t\r\n\treturn render(request, 'Disciplina-Form.html', {'form':form,'disciplina':disciplina})\r\ndef delete_disciplina(request, id):\r\n\tdisciplina = Disciplina.objects.get(id=id)\r\n\t\r\n\tif request.method == 'POST':\r\n\t\tdisciplina.delete()\r\n\t\treturn redirect('list_disciplinas')\r\n\treturn render(request, 'Disciplina-Delete-Confirma.html', {'disciplina': disciplina})\r\n", "sub_path": "Atividade de Compensação de falta/atividade24042018/curriculo/views.py", "file_name": "views.py", "file_ext": "py", "file_size_in_byte": 1100, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "models.Disciplina.objects.all", "line_number": 7, "usage_type": "call"}, {"api_name": "models.Disciplina.objects", "line_number": 7, "usage_type": "attribute"}, {"api_name": "models.Disciplina", "line_number": 7, "usage_type": "name"}, {"api_name": "django.shortcuts.render", "line_number": 8, "usage_type": "call"}, {"api_name": "forms.disciplinaform", "line_number": 11, "usage_type": "call"}, {"api_name": "django.shortcuts.redirect", "line_number": 15, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 16, "usage_type": "call"}, {"api_name": "models.Disciplina.objects.get", "line_number": 19, "usage_type": "call"}, {"api_name": "models.Disciplina.objects", "line_number": 19, "usage_type": "attribute"}, {"api_name": "models.Disciplina", "line_number": 19, "usage_type": "name"}, {"api_name": "forms.disciplinaform", "line_number": 20, "usage_type": "call"}, {"api_name": "django.shortcuts.redirect", "line_number": 24, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 26, "usage_type": "call"}, {"api_name": "models.Disciplina.objects.get", "line_number": 28, "usage_type": "call"}, {"api_name": "models.Disciplina.objects", "line_number": 28, "usage_type": "attribute"}, {"api_name": "models.Disciplina", "line_number": 28, "usage_type": "name"}, {"api_name": "django.shortcuts.redirect", "line_number": 32, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 33, "usage_type": "call"}]}
{"seq_id": "220446596", "text": "import os\nimport sys\nimport django\nimport datetime\nimport json\n\n\nsys.path.append(os.path.abspath(__file__))\nos.environ['DJANGO_SETTINGS_MODULE'] = 'PrdDeployer.settings'\ndjango.setup()\n\nfrom awscredentialmgr.models import AWSProfile, AWSRegion\nfrom updateplanmgr.models import Module\nfrom ec2mgr.models import EC2Instance\n#from checktask import EC2CheckTask\nfrom schtasks.ec2stopper import EC2Stopper, StopperRunner\nfrom django.conf import settings\n#from django.db.models import Q\n\nKEY_FILEPATH = settings.PEM_DIR\n\n\"\"\"\nmodule = Module.objects.get(pk=7)\ninstance = EC2Instance.objects.get(pk=8)\n\"\"\"\n\ndef main():\n \"\"\"Multi-thread (parallel) stopping.\"\"\"\n for module in Module.objects.all():\n ec2instances = module.instances.filter(service_status__in=('to_stop', 'stopped'))\n #ec2instances = module.instances.all()\n runners = []\n for ec2instance in ec2instances:\n print(ec2instance.name)\n stopper = EC2Stopper(module,\n ec2instance,\n settings.PEM_DIR,\n settings.SERVICE_TYPES,\n settings.TIME_ZONE,\n settings.STOP_TIMEOUT)\n runners.append(StopperRunner(stopper))\n for runner in runners:\n runner.start()\n for runner in runners:\n runner.join()\n\n\ndef main1():\n \"\"\"Serial stopping.\"\"\"\n for module in Module.objects.all():\n ec2instances = module.instances.filter(service_status__in=('to_stop', 'stopped'))\n stoppers = []\n for ec2instance in ec2instances:\n stopper = EC2Stopper(module,\n ec2instance,\n settings.PEM_DIR,\n settings.SERVICE_TYPES,\n settings.TIME_ZONE,\n settings.STOP_TIMEOUT)\n stoppers.append(stopper)\n\n for stopper in stoppers:\n #actions, cmds = stopper.assemble_stop_cmd()\n #print(cmds)\n results = stopper.run_stop_commands()\n print(results)\n\nif __name__ == \"__main__\":\n main1()\n", "sub_path": "PrdDeployer/runstops.py", "file_name": "runstops.py", "file_ext": "py", "file_size_in_byte": 2209, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "sys.path.append", "line_number": 8, "usage_type": "call"}, {"api_name": "sys.path", "line_number": 8, "usage_type": "attribute"}, {"api_name": "os.path.abspath", "line_number": 8, "usage_type": "call"}, {"api_name": "os.path", "line_number": 8, "usage_type": "attribute"}, {"api_name": "os.environ", "line_number": 9, "usage_type": "attribute"}, {"api_name": "django.setup", "line_number": 10, "usage_type": "call"}, {"api_name": "django.conf.settings.PEM_DIR", "line_number": 20, "usage_type": "attribute"}, {"api_name": "django.conf.settings", "line_number": 20, "usage_type": "name"}, {"api_name": "updateplanmgr.models.Module.objects.all", "line_number": 29, "usage_type": "call"}, {"api_name": "updateplanmgr.models.Module.objects", "line_number": 29, "usage_type": "attribute"}, {"api_name": "updateplanmgr.models.Module", "line_number": 29, "usage_type": "name"}, {"api_name": "schtasks.ec2stopper.EC2Stopper", "line_number": 35, "usage_type": "call"}, {"api_name": "django.conf.settings.PEM_DIR", "line_number": 37, "usage_type": "attribute"}, {"api_name": "django.conf.settings", "line_number": 37, "usage_type": "name"}, {"api_name": "django.conf.settings.SERVICE_TYPES", "line_number": 38, "usage_type": "attribute"}, {"api_name": "django.conf.settings", "line_number": 38, "usage_type": "name"}, {"api_name": "django.conf.settings.TIME_ZONE", "line_number": 39, "usage_type": "attribute"}, {"api_name": "django.conf.settings", "line_number": 39, "usage_type": "name"}, {"api_name": "django.conf.settings.STOP_TIMEOUT", "line_number": 40, "usage_type": "attribute"}, {"api_name": "django.conf.settings", "line_number": 40, "usage_type": "name"}, {"api_name": "schtasks.ec2stopper.StopperRunner", "line_number": 41, "usage_type": "call"}, {"api_name": "updateplanmgr.models.Module.objects.all", "line_number": 50, "usage_type": "call"}, {"api_name": "updateplanmgr.models.Module.objects", "line_number": 50, "usage_type": "attribute"}, {"api_name": "updateplanmgr.models.Module", "line_number": 50, "usage_type": "name"}, {"api_name": "schtasks.ec2stopper.EC2Stopper", "line_number": 54, "usage_type": "call"}, {"api_name": "django.conf.settings.PEM_DIR", "line_number": 56, "usage_type": "attribute"}, {"api_name": "django.conf.settings", "line_number": 56, "usage_type": "name"}, {"api_name": "django.conf.settings.SERVICE_TYPES", "line_number": 57, "usage_type": "attribute"}, {"api_name": "django.conf.settings", "line_number": 57, "usage_type": "name"}, {"api_name": "django.conf.settings.TIME_ZONE", "line_number": 58, "usage_type": "attribute"}, {"api_name": "django.conf.settings", "line_number": 58, "usage_type": "name"}, {"api_name": "django.conf.settings.STOP_TIMEOUT", "line_number": 59, "usage_type": "attribute"}, {"api_name": "django.conf.settings", "line_number": 59, "usage_type": "name"}]}
{"seq_id": "493722433", "text": "#--coding:utf-8\n\n__author__ = 'peic'\n\n#------------enum class demo-----------------\n\nfrom enum import Enum\n\n#继承定义枚举类\nclass Week(Enum):\n Sunday = 0\n Monday = 1\n Tuesday = 2\n Wednesday = 3\n Thursday = 4\n Friday = 5\n Saturday = 6\n\n#定义枚举类的另一种形式\nMonth = Enum('Month', ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'))\n\nif __name__ == '__main__':\n # Week操作\n day1 = Week.Monday\n print(day1) #Week.Monday\n\n print(Week.Tuesday)\n print(Week['Tuesday']) #Week.Tuesday\n\n print(Week(1)) #Week.Monday\n\n for name, member in Week.__members__.items():\n print('name:%s --> member:%s' %(name, member))\n\n # Month操作\n print(Month(1)) #Month.Jan\n\n for name, member in Month.__members__.items():\n print('name:%s --> member:%s' %(name, member))\n\n", "sub_path": "python-toys/learn-python/EnumDemo.py", "file_name": "EnumDemo.py", "file_ext": "py", "file_size_in_byte": 912, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "enum.Enum", "line_number": 10, "usage_type": "name"}, {"api_name": "enum.Enum", "line_number": 20, "usage_type": "call"}]}
{"seq_id": "117966579", "text": "#%%\nimport torch\nimport torch.nn.functional as F\nimport numpy as np\nimport random\nimport json\nimport os; \nimport copy\nimport sys; sys.path.append('/workspace/once-for-all')\nfrom ofa.model_zoo import ofa_net\nfrom ofa.imagenet_codebase.run_manager import ImagenetRunConfig\nfrom ofa.imagenet_codebase.run_manager import RunManager\n# from ofa.utils import download_url\n\nfrom ofa.tutorial import AccuracyPredictor\nfrom ofa.tutorial.evolution_finder import ArchManager\n\nSTAGE = 0\n\n\n# set random seed\nrandom_seed = 1028\nrandom.seed(random_seed)\nnp.random.seed(random_seed)\ntorch.manual_seed(random_seed)\nprint('Successfully imported all packages and configured random seed to %d!'%random_seed)\n\nofa_network = ofa_net('ofa_mbv3_d234_e346_k357_w1.2', pretrained=True)\nCONF_DIR = './assets/accuracy_data/ofa_mbv3_d234_e346_k357_w1.2/'\n\n#%%\n# accuracy_predictor = AccuracyPredictor(pretrained=True\n# ,device='cpu'\n# ,fname='./assets/accuracy_data/ofa_mbv3_d234_e346_k357_w1.2.pth'\n# ,dropout=0.0)\n# with open('./assets/accuracy_data/ofa_mbv3_d234_e346_k357_w1.2/9.json', 'r') as rf:\n# netconf = json.load(rf)\n# # with open('./assets/searched.json', 'r') as rf:\n# # netconf = json.load(rf)\n# ks_list = copy.deepcopy(netconf['ks'])\n# ex_list = copy.deepcopy(netconf['e'])\n# d_list = copy.deepcopy(netconf['d'])\n# r = copy.deepcopy(netconf['r'])[0]\n# print(r,d_list,ks_list,ex_list)\n# print(netconf['acc'])\n# feats = AccuracyPredictor.spec2feats(ks_list, ex_list, d_list, r).reshape(1, -1).to('cpu')\n# all_feats = [feats]\n# all_feats = torch.cat(all_feats, 0)\n# preds = accuracy_predictor.model(all_feats).to('cpu')\n# print(preds)\n#%%\nif STAGE == 1:\n os.environ[\"CUDA_VISIBLE_DEVICES\"] = '0'\n # Stage1: collect data\n arch_manager = ArchManager()\n csum = 2700\n while True:\n net_config = arch_manager.random_sample()\n ofa_network.set_active_subnet(ks=net_config['ks']\n , d=net_config['d']\n , e=net_config['e']\n )\n subnet = ofa_network.get_active_subnet(preserve_weight=True)\n run_config = ImagenetRunConfig(test_batch_size=128, n_worker=4)\n run_manager = RunManager('.tmp/eval_subnet', subnet, run_config, init=False)\n run_config.data_provider.assign_active_img_size(net_config['r'][0])\n run_manager.reset_running_statistics(net=subnet)\n\n # print('=========> net_config is:', net_config)\n # print('=========> Random subnet is:', subnet.module_str)\n\n _, top1, _ = run_manager.validate(net=subnet)\n # print('==========> Results: top1=%.1f' % (top1))\n net_config['acc'] = top1\n with open('{}/{}.json'.format(CONF_DIR, csum), 'w') as wf:\n json.dump(net_config, wf)\n csum+=1\nelse:\n os.environ[\"CUDA_VISIBLE_DEVICES\"] = ''\n # Stage2: training\n accuracy_predictor = AccuracyPredictor(pretrained=False,device='cpu',dropout=0.0)\n # accuracy_predictor = AccuracyPredictor(pretrained=True,device='cpu',fname='./assets/accuracy_data/ofa_mbv3_d234_e346_k357_w1.2.pth')\n batch_size = 64\n net_confs = [os.path.join(CONF_DIR, each) for each in os.listdir(CONF_DIR)]\n optimizer = torch.optim.SGD(accuracy_predictor.model.parameters(), 1e-6, momentum=0.1, nesterov=True)\n # optimizer = torch.optim.Adam(accuracy_predictor.model.parameters(), 1e-6)\n try:\n while True:\n all_feats = []\n gts = []\n for i in range(batch_size):\n with open(random.choice(net_confs), 'r') as rf:\n netconf = json.load(rf)\n ks_list = copy.deepcopy(netconf['ks'])\n ex_list = copy.deepcopy(netconf['e'])\n d_list = copy.deepcopy(netconf['d'])\n r = copy.deepcopy(netconf['r'])[0]\n gts.append(netconf['acc'])\n feats = AccuracyPredictor.spec2feats(ks_list, ex_list, d_list, r).reshape(1, -1).to('cpu')\n all_feats.append(feats)\n all_feats = torch.cat(all_feats, 0)\n preds = accuracy_predictor.model(all_feats).to('cpu')\n gts = torch.Tensor(gts).to('cpu')\n gts = gts / 100.0\n loss = F.mse_loss(preds, gts, reduction='sum')\n # loss = loss * 100.0\n optimizer.zero_grad()\n loss.backward()\n optimizer.step()\n print(loss, gts.mean(), preds.mean(), gts[0], preds[0])\n except (KeyboardInterrupt, SystemExit):\n print('saving trained model')\n torch.save(accuracy_predictor.model.state_dict(), './assets/accuracy_data/ofa_mbv3_d234_e346_k357_w1.2.pth')\n exit()\n", "sub_path": "jiangrong/train-accuracy-predictor.py", "file_name": "train-accuracy-predictor.py", "file_ext": "py", "file_size_in_byte": 4768, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "sys.path.append", "line_number": 9, "usage_type": "call"}, {"api_name": "sys.path", "line_number": 9, "usage_type": "attribute"}, {"api_name": "random.seed", "line_number": 23, "usage_type": "call"}, {"api_name": "numpy.random.seed", "line_number": 24, "usage_type": "call"}, {"api_name": "numpy.random", "line_number": 24, "usage_type": "attribute"}, {"api_name": "torch.manual_seed", "line_number": 25, "usage_type": "call"}, {"api_name": "ofa.model_zoo.ofa_net", "line_number": 28, "usage_type": "call"}, {"api_name": "os.environ", "line_number": 53, "usage_type": "attribute"}, {"api_name": "ofa.tutorial.evolution_finder.ArchManager", "line_number": 55, "usage_type": "call"}, {"api_name": "ofa.imagenet_codebase.run_manager.ImagenetRunConfig", "line_number": 64, "usage_type": "call"}, {"api_name": "ofa.imagenet_codebase.run_manager.RunManager", "line_number": 65, "usage_type": "call"}, {"api_name": "json.dump", "line_number": 76, "usage_type": "call"}, {"api_name": "os.environ", "line_number": 79, "usage_type": "attribute"}, {"api_name": "ofa.tutorial.AccuracyPredictor", "line_number": 81, "usage_type": "call"}, {"api_name": "os.path.join", "line_number": 84, "usage_type": "call"}, {"api_name": "os.path", "line_number": 84, "usage_type": "attribute"}, {"api_name": "os.listdir", "line_number": 84, "usage_type": "call"}, {"api_name": "torch.optim.SGD", "line_number": 85, "usage_type": "call"}, {"api_name": "torch.optim", "line_number": 85, "usage_type": "attribute"}, {"api_name": "random.choice", "line_number": 92, "usage_type": "call"}, {"api_name": "json.load", "line_number": 93, "usage_type": "call"}, {"api_name": "copy.deepcopy", "line_number": 94, "usage_type": "call"}, {"api_name": "copy.deepcopy", "line_number": 95, "usage_type": "call"}, {"api_name": "copy.deepcopy", "line_number": 96, "usage_type": "call"}, {"api_name": "copy.deepcopy", "line_number": 97, "usage_type": "call"}, {"api_name": "ofa.tutorial.AccuracyPredictor.spec2feats", "line_number": 99, "usage_type": "call"}, {"api_name": "ofa.tutorial.AccuracyPredictor", "line_number": 99, "usage_type": "name"}, {"api_name": "torch.cat", "line_number": 101, "usage_type": "call"}, {"api_name": "torch.Tensor", "line_number": 103, "usage_type": "call"}, {"api_name": "torch.nn.functional.mse_loss", "line_number": 105, "usage_type": "call"}, {"api_name": "torch.nn.functional", "line_number": 105, "usage_type": "name"}, {"api_name": "torch.save", "line_number": 113, "usage_type": "call"}]}
{"seq_id": "487704516", "text": "\"\"\"\nDistributed Learning using Pytorch's torch.distributed.launcher and\ntorch.nn.parallel.distributed_c10d on FfDL.\n\"\"\"\n\nimport time\nimport argparse\nimport sys\nimport os\nimport threading\nimport torch\nimport torch.distributed as dist\nimport torch.nn as nn\nimport torch.nn.functional as F\nimport torch.optim as optim\nimport torch.utils.data\nimport torch.distributed.c10d\n\nfrom math import ceil\nfrom random import Random\nfrom torch.multiprocessing import Process\nfrom torch.autograd import Variable\nfrom torchvision import datasets, transforms\n\nclass Net(nn.Module):\n \"\"\" Network architecture. \"\"\"\n\n def __init__(self):\n super(Net, self).__init__()\n self.conv1 = nn.Conv2d(1, 10, kernel_size=5)\n self.conv2 = nn.Conv2d(10, 20, kernel_size=5)\n self.conv2_drop = nn.Dropout2d()\n self.fc1 = nn.Linear(320, 50)\n self.fc2 = nn.Linear(50, 10)\n\n def forward(self, x):\n x = F.relu(F.max_pool2d(self.conv1(x), 2))\n x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))\n x = x.view(-1, 320)\n x = F.relu(self.fc1(x))\n x = F.dropout(x, training=self.training)\n x = self.fc2(x)\n return F.log_softmax(x, dim=1)\n\n\ndef partition_dataset(batch_size, world_size):\n \"\"\" Partitioning MNIST \"\"\"\n vision_data = os.environ.get(\"DATA_DIR\") + \"/data\"\n dataset = datasets.MNIST(\n vision_data,\n train=True,\n download=True,\n transform=transforms.Compose([\n transforms.ToTensor(),\n transforms.Normalize((0.1307, ), (0.3081, ))\n ]))\n\n bsz = int(batch_size / float(world_size))\n dataloader = torch.utils.data.DataLoader(dataset, batch_size=bsz, shuffle=True)\n\n return dataloader, bsz\n\ndef average_gradients(model, world_size, pg):\n \"\"\" Gradient averaging. \"\"\"\n for param in model.parameters():\n torch.distributed.c10d.all_reduce(param.grad.data, pg)\n param.grad.data /= world_size\n\n\ndef run(rank, world_rank, world_size, group, batch_size, is_gpu):\n \"\"\" Distributed Synchronous SGD Example \"\"\"\n torch.manual_seed(1234)\n size = os.environ.get(\"WORLD_SIZE\")\n result_dir = os.environ.get(\"RESULT_DIR\") + \"/saved_model\"\n train_set, bsz = partition_dataset(batch_size, world_size)\n # For GPU use\n if is_gpu:\n # device = torch.device(\"cuda:{}\".format(0))\n # model = Net().to(device)\n model = Net().cuda()\n else:\n model = Net()\n model = model\n model = torch.nn.parallel._DistributedDataParallelC10d(model, group)\n# model = model.cuda(rank)\n optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)\n\n num_batches = ceil(len(train_set.dataset) / float(bsz))\n for epoch in range(10):\n epoch_loss = 0.0\n for data, target in train_set:\n # For GPU use\n if is_gpu:\n data, target = data.cuda(), target.cuda()\n else:\n data, target = Variable(data), Variable(target)\n# data, target = Variable(data.cuda(rank)), Variable(target.cuda(rank))\n optimizer.zero_grad()\n output = model(data)\n loss = F.nll_loss(output, target)\n epoch_loss += loss.item()\n loss.backward()\n if not (size == 1):\n average_gradients(model, world_size, group)\n optimizer.step()\n print('Process ', world_rank,\n ', epoch ', epoch, ': ',\n epoch_loss / num_batches)\n torch.save(model.state_dict(), result_dir)\n\n# Change 'backend' to appropriate backend identifier\ndef init_processes(local_rank, world_rank, world_size, fn, batch_size, shared_file, is_gpu, backend):\n \"\"\" Initialize the distributed environment. \"\"\"\n print(\"World Rank: \" + str(world_rank) + \" Local Rank: \" + str(local_rank) + \" connected\")\n pg = torch.distributed.c10d.ProcessGroupGloo(shared_file, world_rank, world_size)\n pg.Options.timeout = 300.0 * world_size\n print(\"GROUP CREATED\")\n fn(local_rank, world_rank, world_size, pg, batch_size, is_gpu)\n\ndef local_process(target, args):\n return Process(target=target, args=args)\n\nif __name__ == \"__main__\":\n\n parser = argparse.ArgumentParser()\n parser.add_argument('--batch_size', help='Specify the batch size to be used in training')\n args = parser.parse_args()\n\n batch_size = args.batch_size\n # Default batch size is set to 1024. When using a large numbers of learners, a larger batch\n # size is sometimes necessary to see speed improvements.\n if batch_size is None:\n batch_size = 1024\n else:\n batch_size = int(batch_size)\n\n start_time = time.time()\n num_gpus = int(float(os.environ.get(\"GPU_COUNT\")))\n if num_gpus == 0:\n world_size = int(os.environ.get(\"NUM_LEARNERS\"))\n else:\n world_size = num_gpus * int(os.environ.get(\"NUM_LEARNERS\"))\n data_dir = \"/job/\" + os.environ.get(\"TRAINING_ID\")\n processes = []\n\n start_time = time.time()\n shared_file = torch.distributed.c10d.FileStore(data_dir)\n processes = []\n\n print(\"SHARED FILE PATH: \" + data_dir, \" WORLD_SIZE: \" + str(world_size))\n world_rank = int(os.environ.get(\"LEARNER_ID\")) - 1\n\n if num_gpus == 0:\n args = (0, world_rank, world_size, run, batch_size, shared_file, True, 'gloo')\n p = local_process(init_processes, args)\n p.start()\n processes.append(p)\n else:\n print(\"Opening processes\")\n for local_rank in range(0, num_gpus):\n args = (local_rank, world_rank, world_size, run, batch_size, shared_file, True, 'gloo')\n p = local_process(init_processes, args)\n print(\"Process Created\")\n p.start()\n processes.append(p)\n print(\"Process Added\")\n\n for p in processes:\n print(\"Waiting on Process\")\n p.join()\n\n print(\"COMPLETION TIME: \" + str(time.time() - start_time))\n\n if int(os.environ.get(\"LEARNER_ID\")) != 1:\n while True:\n time.sleep(1000000)\n", "sub_path": "train_dist_c10d.py", "file_name": "train_dist_c10d.py", "file_ext": "py", "file_size_in_byte": 5990, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "torch.nn.Module", "line_number": 25, "usage_type": "attribute"}, {"api_name": "torch.nn", "line_number": 25, "usage_type": "name"}, {"api_name": "torch.nn.Conv2d", "line_number": 30, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 30, "usage_type": "name"}, {"api_name": "torch.nn.Conv2d", "line_number": 31, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 31, "usage_type": "name"}, {"api_name": "torch.nn.Dropout2d", "line_number": 32, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 32, "usage_type": "name"}, {"api_name": "torch.nn.Linear", "line_number": 33, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 33, "usage_type": "name"}, {"api_name": "torch.nn.Linear", "line_number": 34, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 34, "usage_type": "name"}, {"api_name": "torch.nn.functional.relu", "line_number": 37, "usage_type": "call"}, {"api_name": "torch.nn.functional", "line_number": 37, "usage_type": "name"}, {"api_name": "torch.nn.functional.max_pool2d", "line_number": 37, "usage_type": "call"}, {"api_name": "torch.nn.functional.relu", "line_number": 38, "usage_type": "call"}, {"api_name": "torch.nn.functional", "line_number": 38, "usage_type": "name"}, {"api_name": "torch.nn.functional.max_pool2d", "line_number": 38, "usage_type": "call"}, {"api_name": "torch.nn.functional.relu", "line_number": 40, "usage_type": "call"}, {"api_name": "torch.nn.functional", "line_number": 40, "usage_type": "name"}, {"api_name": "torch.nn.functional.dropout", "line_number": 41, "usage_type": "call"}, {"api_name": "torch.nn.functional", "line_number": 41, "usage_type": "name"}, {"api_name": "torch.nn.functional.log_softmax", "line_number": 43, "usage_type": "call"}, {"api_name": "torch.nn.functional", "line_number": 43, "usage_type": "name"}, {"api_name": "os.environ.get", "line_number": 48, "usage_type": "call"}, {"api_name": "os.environ", "line_number": 48, "usage_type": "attribute"}, {"api_name": "torchvision.datasets.MNIST", "line_number": 49, "usage_type": "call"}, {"api_name": "torchvision.datasets", "line_number": 49, "usage_type": "name"}, {"api_name": "torchvision.transforms.Compose", "line_number": 53, "usage_type": "call"}, {"api_name": "torchvision.transforms", "line_number": 53, "usage_type": "name"}, {"api_name": "torchvision.transforms.ToTensor", "line_number": 54, "usage_type": "call"}, {"api_name": "torchvision.transforms", "line_number": 54, "usage_type": "name"}, {"api_name": "torchvision.transforms.Normalize", "line_number": 55, "usage_type": "call"}, {"api_name": "torchvision.transforms", "line_number": 55, "usage_type": "name"}, {"api_name": "torch.utils.data.DataLoader", "line_number": 59, "usage_type": "call"}, {"api_name": "torch.utils", "line_number": 59, "usage_type": "attribute"}, {"api_name": "torch.distributed.c10d.all_reduce", "line_number": 66, "usage_type": "call"}, {"api_name": "torch.distributed", "line_number": 66, "usage_type": "attribute"}, {"api_name": "torch.manual_seed", "line_number": 72, "usage_type": "call"}, {"api_name": "os.environ.get", "line_number": 73, "usage_type": "call"}, {"api_name": "os.environ", "line_number": 73, "usage_type": "attribute"}, {"api_name": "os.environ.get", "line_number": 74, "usage_type": "call"}, {"api_name": "os.environ", "line_number": 74, "usage_type": "attribute"}, {"api_name": "torch.nn.parallel._DistributedDataParallelC10d", "line_number": 84, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 84, "usage_type": "attribute"}, {"api_name": "torch.optim.SGD", "line_number": 86, "usage_type": "call"}, {"api_name": "torch.optim", "line_number": 86, "usage_type": "name"}, {"api_name": "math.ceil", "line_number": 88, "usage_type": "call"}, {"api_name": "torch.autograd.Variable", "line_number": 96, "usage_type": "call"}, {"api_name": "torch.nn.functional.nll_loss", "line_number": 100, "usage_type": "call"}, {"api_name": "torch.nn.functional", "line_number": 100, "usage_type": "name"}, {"api_name": "torch.save", "line_number": 109, "usage_type": "call"}, {"api_name": "torch.distributed.c10d.ProcessGroupGloo", "line_number": 115, "usage_type": "call"}, {"api_name": "torch.distributed", "line_number": 115, "usage_type": "attribute"}, {"api_name": "torch.multiprocessing.Process", "line_number": 121, "usage_type": "call"}, {"api_name": "argparse.ArgumentParser", "line_number": 125, "usage_type": "call"}, {"api_name": "time.time", "line_number": 137, "usage_type": "call"}, {"api_name": "os.environ.get", "line_number": 138, "usage_type": "call"}, {"api_name": "os.environ", "line_number": 138, "usage_type": "attribute"}, {"api_name": "os.environ.get", "line_number": 140, "usage_type": "call"}, {"api_name": "os.environ", "line_number": 140, "usage_type": "attribute"}, {"api_name": "os.environ.get", "line_number": 142, "usage_type": "call"}, {"api_name": "os.environ", "line_number": 142, "usage_type": "attribute"}, {"api_name": "os.environ.get", "line_number": 143, "usage_type": "call"}, {"api_name": "os.environ", "line_number": 143, "usage_type": "attribute"}, {"api_name": "time.time", "line_number": 146, "usage_type": "call"}, {"api_name": "torch.distributed.c10d.FileStore", "line_number": 147, "usage_type": "call"}, {"api_name": "torch.distributed", "line_number": 147, "usage_type": "attribute"}, {"api_name": "os.environ.get", "line_number": 151, "usage_type": "call"}, {"api_name": "os.environ", "line_number": 151, "usage_type": "attribute"}, {"api_name": "time.time", "line_number": 172, "usage_type": "call"}, {"api_name": "os.environ.get", "line_number": 174, "usage_type": "call"}, {"api_name": "os.environ", "line_number": 174, "usage_type": "attribute"}, {"api_name": "time.sleep", "line_number": 176, "usage_type": "call"}]}
{"seq_id": "640619682", "text": "# coding:utf-8\n__author__ = 'Albert'\n\nfrom django.conf.urls import patterns, url\n\nfrom materials import views\n\nmaterials_views = patterns(\n '',\n url(r'^mis/update/student/materials$', views.update_student_material),\n url(r'^mis/material/packages$', views.list_material_packages),\n url(r'^mis/set/student/material$', views.set_student_material),\n url(r'^mis/material/upload$', views.material_upload),\n url(r'^mis/material/preview$', views.material_preview),\n url(r'^mis/unfinished/classes$', views.unfinished_classes),\n)\n", "sub_path": "mis/materials/urls.py", "file_name": "urls.py", "file_ext": "py", "file_size_in_byte": 542, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "django.conf.urls.patterns", "line_number": 8, "usage_type": "call"}, {"api_name": "django.conf.urls.url", "line_number": 10, "usage_type": "call"}, {"api_name": "materials.views.update_student_material", "line_number": 10, "usage_type": "attribute"}, {"api_name": "materials.views", "line_number": 10, "usage_type": "name"}, {"api_name": "django.conf.urls.url", "line_number": 11, "usage_type": "call"}, {"api_name": "materials.views.list_material_packages", "line_number": 11, "usage_type": "attribute"}, {"api_name": "materials.views", "line_number": 11, "usage_type": "name"}, {"api_name": "django.conf.urls.url", "line_number": 12, "usage_type": "call"}, {"api_name": "materials.views.set_student_material", "line_number": 12, "usage_type": "attribute"}, {"api_name": "materials.views", "line_number": 12, "usage_type": "name"}, {"api_name": "django.conf.urls.url", "line_number": 13, "usage_type": "call"}, {"api_name": "materials.views.material_upload", "line_number": 13, "usage_type": "attribute"}, {"api_name": "materials.views", "line_number": 13, "usage_type": "name"}, {"api_name": "django.conf.urls.url", "line_number": 14, "usage_type": "call"}, {"api_name": "materials.views.material_preview", "line_number": 14, "usage_type": "attribute"}, {"api_name": "materials.views", "line_number": 14, "usage_type": "name"}, {"api_name": "django.conf.urls.url", "line_number": 15, "usage_type": "call"}, {"api_name": "materials.views.unfinished_classes", "line_number": 15, "usage_type": "attribute"}, {"api_name": "materials.views", "line_number": 15, "usage_type": "name"}]}
{"seq_id": "163161391", "text": "# This code is modified from https://github.com/jakesnell/prototypical-networks \n\nimport backbone\nimport torch\nimport torch.nn as nn\nfrom torch.autograd import Variable\nimport numpy as np\nimport torch.nn.functional as F\nfrom methods.meta_template import MetaTemplate\n\nimport utils\n\n\n####\nimport torch\nimport torchvision\n\nfrom torch import optim, nn\nfrom torch.nn import *\nfrom torchvision import transforms\nimport torch.utils.data as data\nimport torch.nn.functional as F\nfrom torch.autograd import Variable\n\n# from PIL import Image\n# from pathlib import Path\n\n# for ROC curve\n# from sklearn import metrics\n# from scipy import interp\n\nimport pandas as pd\nimport numpy as np\n\n# import matplotlib.pyplot as plt #, mpld3\n# import matplotlib\n\nimport math\nfrom typing import *\nimport time\nimport datetime\n\n# from IPython.display import display, clear_output\n# from IPython.display import HTML\n\n\n###\nimport warnings\n\n# from torch.nn.module import Module\nfrom torch.nn import functional as F\nfrom torch.nn import _reduction as _Reduction\n\nfrom torch import Tensor\nfrom typing import Optional\n\n\nclass _Loss(nn.Module):\n reduction: str\n\n def __init__(self, size_average=None, reduce=None, reduction: str = 'mean') -> None:\n super(_Loss, self).__init__()\n if size_average is not None or reduce is not None:\n self.reduction = _Reduction.legacy_get_string(size_average, reduce)\n else:\n self.reduction = reduction\n \n\nclass _WeightedLoss(_Loss):\n def __init__(self, weight: Optional[Tensor] = None, size_average=None, reduce=None, reduction: str = 'mean') -> None:\n super(_WeightedLoss, self).__init__(size_average, reduce, reduction)\n self.register_buffer('weight', weight)\n\nclass CrossEntropyLoss(_WeightedLoss):\n __constants__ = ['ignore_index', 'reduction']\n ignore_index: int\n\n def __init__(self, weight: Optional[Tensor] = None, size_average=None, ignore_index: int = -100,\n reduce=None, reduction: str = 'mean') -> None:\n super(CrossEntropyLoss, self).__init__(weight, size_average, reduce, reduction)\n self.ignore_index = ignore_index\n\n def forward(self, input: Tensor, target: Tensor) -> Tensor:\n# print('input',input)\n# print('target',target)\n return F.cross_entropy(input, target, weight=self.weight,\n ignore_index=self.ignore_index, reduction=self.reduction)\n\n\n\n\nclass LargeMarginCosineLoss(nn.Module):\n \"\"\"\n Reference: \n H. Wang et al. CosFace: Large Margin Cosine Loss for Deep Face Recognition\n https://arxiv.org/pdf/1801.09414.pdf\n \n Also referenced cvqluu's implementation of Angular Penalty Loss:\n https://paperswithcode.com/paper/cosface-large-margin-cosine-loss-for-deep\n \"\"\"\n \n def __init__(self, in_features=5, out_features=2, s=64.0, m=0.35):\n super(LargeMarginCosineLoss, self).__init__()\n self.in_features = in_features\n self.out_features = out_features\n self.s = s\n self.m = m\n \n # cos(θ_j,i) = W_j^T * x_i\n self.linear = Linear(in_features, out_features, bias=False)\n \n def forward(self, x, targets):\n \n # normalize\n x = F.normalize(x, p=2, dim=1)\n for W in self.linear.parameters():\n W = F.normalize(W, p=2, dim=1)\n \n cos_θ = self.linear(x)\n s_cos_θ = self.s*torch.diagonal(cos_θ.transpose(0,1)[targets]-self.m)\n# print(s_cos_θ)\n try:\n cos_θj = [torch.cat((cos_θ[j,:y], cos_θ[j,(y+1):])).unsqueeze(0) for j, y in zip(len(targets), targets)] # <<<-- issue\n sum_j = torch.sum(torch.exp(self.s*torch.cat(cos_θj, dim=0)), dim=1)\n except:\n raise ValueError(cos_θ)\n \n result = torch.mean(torch.log(torch.exp(s_cos_θ) + sum_j) - torch.log(torch.exp(s_cos_θ)))\n \n return result\n\n\n\nclass ProtoNet(MetaTemplate):\n def __init__(self, model_func, n_way, n_support):\n super(ProtoNet, self).__init__( model_func, n_way, n_support)\n# self.loss_fn = nn.CrossEntropyLoss()\n# self.loss_fn = LargeMarginCosineLoss()\n self.loss_fn = CrossEntropyLoss()\n\n\n def set_forward(self,x,is_feature = False):\n z_support, z_query = self.parse_feature(x,is_feature)\n\n z_support = z_support.contiguous()\n z_proto = z_support.view(self.n_way, self.n_support, -1 ).mean(1) #the shape of z is [n_data, n_dim]\n z_query = z_query.contiguous().view(self.n_way* self.n_query, -1 )\n\n\n dists = euclidean_dist(z_query, z_proto)\n scores = -dists\n\n return scores\n\n\n def set_forward_loss(self, x):\n y_query = torch.from_numpy(np.repeat(range( self.n_way ), self.n_query ))\n y_query = Variable(y_query.cuda())\n\n scores = self.set_forward(x)\n# print('scores', scores.size())\n loss = self.loss_fn(scores, y_query)\n if isinstance(loss, float):\n pass\n# print('loss',loss)\n else:\n pass\n# print('> loss', loss)\n return loss\n\ndef euclidean_dist( x, y):\n # x: N x D\n # y: M x D\n n = x.size(0)\n m = y.size(0)\n d = x.size(1)\n assert d == y.size(1)\n\n x = x.unsqueeze(1).expand(n, m, d)\n y = y.unsqueeze(0).expand(n, m, d)\n\n return torch.pow(x - y, 2).sum(2)\n", "sub_path": "methods/protonet.py", "file_name": "protonet.py", "file_ext": "py", "file_size_in_byte": 5372, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "torch.nn.Module", "line_number": 58, "usage_type": "attribute"}, {"api_name": "torch.nn", "line_number": 58, "usage_type": "name"}, {"api_name": "torch.nn._reduction.legacy_get_string", "line_number": 64, "usage_type": "call"}, {"api_name": "torch.nn._reduction", "line_number": 64, "usage_type": "name"}, {"api_name": "typing.Optional", "line_number": 70, "usage_type": "name"}, {"api_name": "torch.Tensor", "line_number": 70, "usage_type": "name"}, {"api_name": "typing.Optional", "line_number": 78, "usage_type": "name"}, {"api_name": "torch.Tensor", "line_number": 78, "usage_type": "name"}, {"api_name": "torch.Tensor", "line_number": 83, "usage_type": "name"}, {"api_name": "torch.nn.functional.cross_entropy", "line_number": 86, "usage_type": "call"}, {"api_name": "torch.nn.functional", "line_number": 86, "usage_type": "name"}, {"api_name": "torch.nn.Module", "line_number": 92, "usage_type": "attribute"}, {"api_name": "torch.nn", "line_number": 92, "usage_type": "name"}, {"api_name": "torch.nn.functional.normalize", "line_number": 115, "usage_type": "call"}, {"api_name": "torch.nn.functional", "line_number": 115, "usage_type": "name"}, {"api_name": "torch.nn.functional.normalize", "line_number": 117, "usage_type": "call"}, {"api_name": "torch.nn.functional", "line_number": 117, "usage_type": "name"}, {"api_name": "torch.diagonal", "line_number": 120, "usage_type": "call"}, {"api_name": "torch.cat", "line_number": 123, "usage_type": "call"}, {"api_name": "torch.sum", "line_number": 124, "usage_type": "call"}, {"api_name": "torch.exp", "line_number": 124, "usage_type": "call"}, {"api_name": "torch.cat", "line_number": 124, "usage_type": "call"}, {"api_name": "torch.mean", "line_number": 128, "usage_type": "call"}, {"api_name": "torch.log", "line_number": 128, "usage_type": "call"}, {"api_name": "torch.exp", "line_number": 128, "usage_type": "call"}, {"api_name": "methods.meta_template.MetaTemplate", "line_number": 134, "usage_type": "name"}, {"api_name": "torch.from_numpy", "line_number": 157, "usage_type": "call"}, {"api_name": "numpy.repeat", "line_number": 157, "usage_type": "call"}, {"api_name": "torch.autograd.Variable", "line_number": 158, "usage_type": "call"}, {"api_name": "torch.pow", "line_number": 182, "usage_type": "call"}]}
{"seq_id": "254667756", "text": "#!/usr/bin/env python\nimport bz2\nfrom contextlib import contextmanager\nimport datetime\nfrom deepdiff import DeepDiff\nfrom distutils.version import LooseVersion as Version\nimport fire\nimport pathlib\nfrom pprint import pprint\nimport questionary\nimport re\nimport secrets\nimport string\nimport subprocess\nimport sys\nimport time\nfrom typing import Optional, Sequence\nimport yaml\n\n\ndependencies = {\n \"python\": (\n # Command to get version\n [\"python\", \"--version\"],\n # Extract *only* the version number\n lambda v: v.split()[1],\n # It must be >= 3.7\n \"3.7\",\n ),\n \"docker\": (\n # Command to get version\n [\"docker\", \"--version\"],\n # Extract *only* the version number\n lambda v: v.split()[2][:-1],\n # It must be >= 18.06\n \"18.06\",\n ),\n \"docker-compose\": (\n # Command to get version\n [\"docker-compose\", \"--version\"],\n # Extract *only* the version number\n lambda v: re.search(r\"\\s*([\\d.]+)\", v).group(0).strip(),\n # It must be >= 1.22.0\n \"1.22.0\",\n ),\n}\n\n\n@contextmanager\ndef status(message):\n \"\"\"\n Borrowed from https://github.com/cesium-ml/baselayer/\n\n :param message: message to print\n :return:\n \"\"\"\n print(f\"[·] {message}\", end=\"\")\n sys.stdout.flush()\n try:\n yield\n except Exception:\n print(f\"\\r[✗] {message}\")\n raise\n else:\n print(f\"\\r[✓] {message}\")\n\n\ndef deps_ok() -> bool:\n \"\"\"\n Check system dependencies\n\n Borrowed from https://github.com/cesium-ml/baselayer/\n :return:\n \"\"\"\n print(\"Checking system dependencies:\")\n\n fail = []\n\n for dep, (cmd, get_version, min_version) in dependencies.items():\n try:\n query = f\"{dep} >= {min_version}\"\n with status(query):\n p = subprocess.Popen(\n cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT\n )\n out, err = p.communicate()\n try:\n version = get_version(out.decode(\"utf-8\").strip())\n print(f\"[{version.rjust(8)}]\".rjust(40 - len(query)), end=\"\")\n except Exception:\n raise ValueError(\"Could not parse version\")\n\n if not (Version(version) >= Version(min_version)):\n raise RuntimeError(f\"Required {min_version}, found {version}\")\n except Exception as e:\n fail.append((dep, e))\n\n if fail:\n print()\n print(\"[!] Some system dependencies seem to be unsatisfied\")\n print()\n print(\" The failed checks were:\")\n print()\n for (pkg, exc) in fail:\n cmd, get_version, min_version = dependencies[pkg]\n print(f' - {pkg}: `{\" \".join(cmd)}`')\n print(\" \", exc)\n print()\n print(\n \" Please refer to https://github.com/dmitryduev/tails \"\n \"for installation instructions.\"\n )\n print()\n return False\n\n print(\"-\" * 20)\n return True\n\n\ndef check_configs(\n config_wildcards: Sequence = (\"config.*yaml\", \"docker-compose.*yaml\")\n):\n \"\"\"\n - Check if config files exist\n - Offer to use the config files that match the wildcards\n - For config.yaml, check its contents against the defaults to make sure nothing is missing/wrong\n\n :param config_wildcards:\n :return:\n \"\"\"\n path = pathlib.Path(__file__).parent.absolute()\n\n for config_wildcard in config_wildcards:\n config = config_wildcard.replace(\"*\", \"\")\n # use config defaults if configs do not exist?\n if not (path / config).exists():\n answer = questionary.select(\n f\"{config} does not exist, do you want to use one of the following\"\n \" (not recommended without inspection)?\",\n choices=[p.name for p in path.glob(config_wildcard)],\n ).ask()\n subprocess.run([\"cp\", f\"{path / answer}\", f\"{path / config}\"])\n\n # check contents of config.yaml WRT config.defaults.yaml\n if config == \"config.yaml\":\n with open(path / config.replace(\".yaml\", \".defaults.yaml\")) as config_yaml:\n config_defaults = yaml.load(config_yaml, Loader=yaml.FullLoader)\n with open(path / config) as config_yaml:\n config_wildcard = yaml.load(config_yaml, Loader=yaml.FullLoader)\n deep_diff = DeepDiff(config_wildcard, config_defaults, ignore_order=True)\n difference = {\n k: v\n for k, v in deep_diff.items()\n if k in (\"dictionary_item_added\", \"dictionary_item_removed\")\n }\n if len(difference) > 0:\n print(\"config.yaml structure differs from config.defaults.yaml\")\n pprint(difference)\n raise KeyError(\"Fix config.yaml before proceeding\")\n\n\ndef get_git_hash_date():\n \"\"\"Get git date and hash\n\n Borrowed from SkyPortal https://skyportal.io\n\n :return:\n \"\"\"\n hash_date = dict()\n try:\n p = subprocess.Popen(\n [\"git\", \"log\", \"-1\", '--format=\"%h %aI\"'],\n stdout=subprocess.PIPE,\n stderr=subprocess.PIPE,\n cwd=pathlib.Path(__file__).parent.absolute(),\n )\n except FileNotFoundError:\n pass\n else:\n out, err = p.communicate()\n if p.returncode == 0:\n git_hash, git_date = (\n out.decode(\"utf-8\")\n .strip()\n .replace('\"', \"\")\n .split(\"T\")[0]\n .replace(\"-\", \"\")\n .split()\n )\n hash_date[\"hash\"] = git_hash\n hash_date[\"date\"] = git_date\n\n return hash_date\n\n\nclass Kowalski:\n def __init__(self, yes=False):\n \"\"\"\n\n :param yes: answer yes to all possible requests?\n \"\"\"\n self.yes = yes\n\n @staticmethod\n def check_containers_up(\n containers: Sequence,\n num_retries: int = 10,\n sleep_for_seconds: int = 10,\n ):\n \"\"\"Check if containers in question are up and running\n\n :param containers: container name sequence, e.g. (\"kowalski_api_1\", \"kowalski_mongo_1\")\n :param num_retries:\n :param sleep_for_seconds: number of seconds to sleep for before retrying\n :return:\n \"\"\"\n for i in range(num_retries):\n if i == num_retries - 1:\n raise RuntimeError(f\"{containers} containers failed to spin up\")\n\n command = [\"docker\", \"ps\", \"-a\"]\n container_list = (\n subprocess.check_output(command, universal_newlines=True)\n .strip()\n .split(\"\\n\")\n )\n print(container_list)\n if len(container_list) == 1:\n print(\"No containers are running, waiting...\")\n time.sleep(sleep_for_seconds)\n continue\n\n containers_up = (\n len(\n [\n container\n for container in container_list\n if (\n (container_name in container)\n and (\" Up \" in container)\n and (\"unhealthy\" not in container)\n and (\"health: starting\" not in container)\n )\n ]\n )\n > 0\n for container_name in containers\n )\n\n if not all(containers_up):\n print(f\"{containers} containers are not up, waiting...\")\n time.sleep(sleep_for_seconds)\n continue\n\n break\n\n @staticmethod\n def check_keyfile():\n \"\"\"Check if MongoDB keyfile for replica set authorization exists; generate one if not\"\"\"\n mongodb_keyfile = pathlib.Path(__file__).parent.absolute() / \"mongo_key.yaml\"\n if not mongodb_keyfile.exists():\n print(\"Generating MongoDB keyfile\")\n # generate a random key that is required to be able to use authorization with replica set\n key = \"\".join(\n secrets.choice(string.ascii_lowercase + string.digits)\n for _ in range(32)\n )\n with open(mongodb_keyfile, \"w\") as f:\n f.write(key)\n command = [\"chmod\", \"400\", \"mongo_key.yaml\"]\n subprocess.run(command)\n\n @classmethod\n def up(cls, build: bool = False):\n \"\"\"\n 🐧🚀 Launch Kowalski\n\n :param build: build the containers first?\n :return:\n \"\"\"\n print(\"Spinning up Kowalski 🐧🚀\")\n\n config_wildcards = [\"config.*yaml\", \"docker-compose.*yaml\"]\n\n # check configuration\n with status(\"Checking configuration\"):\n check_configs(config_wildcards=config_wildcards)\n\n cls.check_keyfile()\n\n if build:\n cls.build()\n\n command = [\"docker-compose\", \"-f\", \"docker-compose.yaml\", \"up\", \"-d\"]\n\n # start up Kowalski\n print(\"Starting up\")\n subprocess.run(command)\n\n @staticmethod\n def down():\n \"\"\"\n ✋ Shut down Kowalski\n\n :return:\n \"\"\"\n print(\"Shutting down Kowalski\")\n command = [\"docker-compose\", \"-f\", \"docker-compose.yaml\", \"down\"]\n\n subprocess.run(command)\n\n @classmethod\n def build(cls):\n \"\"\"\n Build Kowalski's containers\n\n :return:\n \"\"\"\n print(\"Building Kowalski\")\n\n config_wildcards = [\"config.*yaml\", \"docker-compose.*yaml\"]\n\n # always use docker-compose.yaml\n command = [\"docker-compose\", \"-f\", \"docker-compose.yaml\", \"build\"]\n\n # check configuration\n with status(\"Checking configuration\"):\n check_configs(config_wildcards=config_wildcards)\n\n # load config\n with open(\n pathlib.Path(__file__).parent.absolute() / \"config.yaml\"\n ) as config_yaml:\n config = yaml.load(config_yaml, Loader=yaml.FullLoader)[\"kowalski\"]\n\n # get git version:\n git_hash_date = get_git_hash_date()\n version = (\n f\"v{config['server']['version']}\"\n f\"+git{git_hash_date.get('date', datetime.datetime.utcnow().strftime('%Y%m%d'))}\"\n f\".{git_hash_date.get('hash', 'unknown')}\"\n )\n with open(\n pathlib.Path(__file__).parent.absolute() / \"version.txt\", \"w\"\n ) as version_file:\n version_file.write(f\"{version}\\n\")\n\n # check MongoDB keyfile\n cls.check_keyfile()\n\n subprocess.run(command)\n\n @staticmethod\n def seed(source: str = \"./\", drop: Optional[bool] = False):\n \"\"\"\n Ingest catalog dumps into Kowalski\n\n :param source: where to look for the dumps;\n can be a local path or a Google Cloud Storage bucket address, e.g. gs://kowalski-catalogs\n :param drop: drop existing collections with same names before ingesting?\n :return:\n \"\"\"\n print(\"Ingesting catalog dumps into a running Kowalski instance\")\n\n # check configuration\n with status(\"Checking configuration\"):\n check_configs(config_wildcards=[\"config.*yaml\"])\n\n with open(\n pathlib.Path(__file__).parent.absolute() / \"config.yaml\"\n ) as config_yaml:\n config = yaml.load(config_yaml, Loader=yaml.FullLoader)[\"kowalski\"]\n\n command = [\n \"docker\",\n \"exec\",\n \"-i\",\n \"kowalski_mongo_1\",\n \"mongorestore\",\n f\"-u={config['database']['admin_username']}\",\n f\"-p={config['database']['admin_password']}\",\n \"--authenticationDatabase=admin\",\n \"--archive\",\n ]\n\n if drop:\n command.append(\"--drop\")\n\n if \"gs://\" not in source:\n # ingesting from a local path\n path = pathlib.Path(source).absolute()\n\n dumps = [p.name for p in path.glob(\"*.dump\")]\n\n if len(dumps) == 0:\n print(f\"No catalog dumps found under {path}\")\n return False\n\n answer = questionary.checkbox(\n \"Found the following collection dumps. Which ones would you like to ingest?\",\n choices=dumps,\n ).ask()\n\n for dump in answer:\n with open(f\"{path / dump}\") as f:\n subprocess.call(command, stdin=f)\n\n else:\n # ingesting from Google Cloud\n path_tmp = pathlib.Path(__file__).parent / \".catalog_dumps\"\n if not path_tmp.exists():\n path_tmp.mkdir(parents=True, exist_ok=True)\n\n ls_command = [\"gsutil\", \"ls\", source]\n catalog_list = (\n subprocess.check_output(ls_command, universal_newlines=True)\n .strip()\n .split(\"\\n\")\n )\n dumps = [dump for dump in catalog_list if \"dump\" in dump]\n\n answer = questionary.checkbox(\n \"Found the following collection dumps. Which ones would you like to ingest?\",\n choices=dumps,\n ).ask()\n\n for dump in answer:\n cp_command = [\n \"gsutil\",\n \"-m\",\n \"cp\",\n \"-n\",\n dump,\n str(path_tmp),\n ]\n p = subprocess.run(cp_command, check=True)\n if p.returncode != 0:\n raise RuntimeError(f\"Failed to fetch {dump}\")\n\n path_dump = f\"{path_tmp / pathlib.Path(dump).name}\"\n if dump.endswith(\".bz2\"):\n with bz2.BZ2File(path_dump) as f:\n subprocess.call(command, stdin=f)\n elif dump.endswith(\".gz\"):\n with open(path_dump) as f:\n subprocess.call(command + [\"--gzip\"], stdin=f)\n else:\n with open(path_dump) as f:\n subprocess.call(command, stdin=f)\n\n rm_fetched = questionary.confirm(f\"Remove {path_dump}?\").ask()\n if rm_fetched:\n pathlib.Path(path_dump).unlink()\n\n @classmethod\n def test(cls):\n \"\"\"\n Run the test suite\n\n :return:\n \"\"\"\n print(\"Running the test suite\")\n\n # make sure the containers are up and running\n cls.check_containers_up(\n containers=(\"kowalski_ingester_1\", \"kowalski_api_1\", \"kowalski_mongo_1\"),\n sleep_for_seconds=10,\n )\n\n test_setups = [\n {\n \"part\": \"PGIR alert broker components\",\n \"container\": \"kowalski_ingester_1\",\n \"test_script\": \"test_alert_broker_pgir.py\",\n \"flaky\": False,\n },\n {\n \"part\": \"ZTF alert broker components\",\n \"container\": \"kowalski_ingester_1\",\n \"test_script\": \"test_alert_broker_ztf.py\",\n \"flaky\": False,\n },\n {\n \"part\": \"PGIR alert ingestion\",\n \"container\": \"kowalski_ingester_1\",\n \"test_script\": \"test_ingester_pgir.py\",\n \"flaky\": False,\n },\n {\n \"part\": \"ZTF alert ingestion\",\n \"container\": \"kowalski_ingester_1\",\n \"test_script\": \"test_ingester.py\",\n \"flaky\": False,\n },\n {\n \"part\": \"API\",\n \"container\": \"kowalski_api_1\",\n \"test_script\": \"test_api.py\",\n \"flaky\": False,\n },\n {\n \"part\": \"TNS monitoring\",\n \"container\": \"kowalski_ingester_1\",\n \"test_script\": \"test_tns_watcher.py\",\n \"flaky\": True,\n },\n {\n \"part\": \"Tools\",\n \"container\": \"kowalski_ingester_1\",\n \"test_script\": \"test_tools.py\",\n \"flaky\": False,\n },\n ]\n\n failed_tests = []\n\n for setup in test_setups:\n print(f\"Testing {setup['part']}\")\n command = [\n \"docker\",\n \"exec\",\n \"-i\",\n setup[\"container\"],\n \"python\",\n \"-m\",\n \"pytest\",\n \"-s\",\n setup[\"test_script\"],\n ]\n try:\n subprocess.run(command, check=True)\n except subprocess.CalledProcessError:\n if not setup.get(\"flaky\", False):\n failed_tests.append(setup[\"part\"])\n else:\n print(f\"{setup['part']} test, marked as flaky, failed.\")\n continue\n\n if failed_tests:\n print(f\"Failed tests: {failed_tests}\")\n sys.exit(1)\n\n @staticmethod\n def develop():\n \"\"\"\n Install developer tools\n \"\"\"\n subprocess.run([\"pip\", \"install\", \"-U\", \"pre-commit\"], check=True)\n subprocess.run([\"pre-commit\", \"install\"], check=True)\n\n @classmethod\n def lint(cls):\n \"\"\"\n Lint the full code base\n\n :return:\n \"\"\"\n try:\n import pre_commit # noqa: F401\n except ImportError:\n cls.develop()\n\n try:\n subprocess.run([\"pre-commit\", \"run\", \"--all-files\"], check=True)\n except subprocess.CalledProcessError:\n sys.exit(1)\n\n\nif __name__ == \"__main__\":\n # check environment\n env_ok = deps_ok()\n if not env_ok:\n raise RuntimeError(\"Halting because of unsatisfied system dependencies\")\n\n fire.Fire(Kowalski)\n", "sub_path": "kowalski.py", "file_name": "kowalski.py", "file_ext": "py", "file_size_in_byte": 17814, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "re.search", "line_number": 42, "usage_type": "call"}, {"api_name": "sys.stdout.flush", "line_number": 58, "usage_type": "call"}, {"api_name": "sys.stdout", "line_number": 58, "usage_type": "attribute"}, {"api_name": "contextlib.contextmanager", "line_number": 49, "usage_type": "name"}, {"api_name": "subprocess.Popen", "line_number": 83, "usage_type": "call"}, {"api_name": "subprocess.PIPE", "line_number": 84, "usage_type": "attribute"}, {"api_name": "subprocess.STDOUT", "line_number": 84, "usage_type": "attribute"}, {"api_name": "distutils.version.LooseVersion", "line_number": 93, "usage_type": "call"}, {"api_name": "typing.Sequence", "line_number": 121, "usage_type": "name"}, {"api_name": "pathlib.Path", "line_number": 131, "usage_type": "call"}, {"api_name": "questionary.select", "line_number": 137, "usage_type": "call"}, {"api_name": "subprocess.run", "line_number": 142, "usage_type": "call"}, {"api_name": "yaml.load", "line_number": 147, "usage_type": "call"}, {"api_name": "yaml.FullLoader", "line_number": 147, "usage_type": "attribute"}, {"api_name": "yaml.load", "line_number": 149, "usage_type": "call"}, {"api_name": "yaml.FullLoader", "line_number": 149, "usage_type": "attribute"}, {"api_name": "deepdiff.DeepDiff", "line_number": 150, "usage_type": "call"}, {"api_name": "pprint.pprint", "line_number": 158, "usage_type": "call"}, {"api_name": "subprocess.Popen", "line_number": 171, "usage_type": "call"}, {"api_name": "subprocess.PIPE", "line_number": 173, "usage_type": "attribute"}, {"api_name": "subprocess.PIPE", "line_number": 174, "usage_type": "attribute"}, {"api_name": "pathlib.Path", "line_number": 175, "usage_type": "call"}, {"api_name": "typing.Sequence", "line_number": 206, "usage_type": "name"}, {"api_name": "subprocess.check_output", "line_number": 223, "usage_type": "call"}, {"api_name": "time.sleep", "line_number": 230, "usage_type": "call"}, {"api_name": "time.sleep", "line_number": 252, "usage_type": "call"}, {"api_name": "pathlib.Path", "line_number": 260, "usage_type": "call"}, {"api_name": "secrets.choice", "line_number": 265, "usage_type": "call"}, {"api_name": "string.ascii_lowercase", "line_number": 265, "usage_type": "attribute"}, {"api_name": "string.digits", "line_number": 265, "usage_type": "attribute"}, {"api_name": "subprocess.run", "line_number": 271, "usage_type": "call"}, {"api_name": "subprocess.run", "line_number": 298, "usage_type": "call"}, {"api_name": "subprocess.run", "line_number": 310, "usage_type": "call"}, {"api_name": "pathlib.Path", "line_number": 332, "usage_type": "call"}, {"api_name": "yaml.load", "line_number": 334, "usage_type": "call"}, {"api_name": "yaml.FullLoader", "line_number": 334, "usage_type": "attribute"}, {"api_name": "datetime.datetime.utcnow", "line_number": 340, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 340, "usage_type": "attribute"}, {"api_name": "pathlib.Path", "line_number": 344, "usage_type": "call"}, {"api_name": "subprocess.run", "line_number": 351, "usage_type": "call"}, {"api_name": "typing.Optional", "line_number": 354, "usage_type": "name"}, {"api_name": "pathlib.Path", "line_number": 370, "usage_type": "call"}, {"api_name": "yaml.load", "line_number": 372, "usage_type": "call"}, {"api_name": "yaml.FullLoader", "line_number": 372, "usage_type": "attribute"}, {"api_name": "pathlib.Path", "line_number": 391, "usage_type": "call"}, {"api_name": "questionary.checkbox", "line_number": 399, "usage_type": "call"}, {"api_name": "subprocess.call", "line_number": 406, "usage_type": "call"}, {"api_name": "pathlib.Path", "line_number": 410, "usage_type": "call"}, {"api_name": "subprocess.check_output", "line_number": 416, "usage_type": "call"}, {"api_name": "questionary.checkbox", "line_number": 422, "usage_type": "call"}, {"api_name": "subprocess.run", "line_number": 436, "usage_type": "call"}, {"api_name": "pathlib.Path", "line_number": 440, "usage_type": "call"}, {"api_name": "bz2.BZ2File", "line_number": 442, "usage_type": "call"}, {"api_name": "subprocess.call", "line_number": 443, "usage_type": "call"}, {"api_name": "subprocess.call", "line_number": 446, "usage_type": "call"}, {"api_name": "subprocess.call", "line_number": 449, "usage_type": "call"}, {"api_name": "questionary.confirm", "line_number": 451, "usage_type": "call"}, {"api_name": "pathlib.Path", "line_number": 453, "usage_type": "call"}, {"api_name": "subprocess.run", "line_number": 531, "usage_type": "call"}, {"api_name": "subprocess.CalledProcessError", "line_number": 532, "usage_type": "attribute"}, {"api_name": "sys.exit", "line_number": 541, "usage_type": "call"}, {"api_name": "subprocess.run", "line_number": 548, "usage_type": "call"}, {"api_name": "subprocess.run", "line_number": 549, "usage_type": "call"}, {"api_name": "subprocess.run", "line_number": 564, "usage_type": "call"}, {"api_name": "subprocess.CalledProcessError", "line_number": 565, "usage_type": "attribute"}, {"api_name": "sys.exit", "line_number": 566, "usage_type": "call"}, {"api_name": "fire.Fire", "line_number": 575, "usage_type": "call"}]}
{"seq_id": "588183982", "text": "import os\nimport sys\nimport shutil\nimport subprocess\nfrom flask import current_app as app\nfrom threading import Thread\nfrom . import socketio\nfrom src.exceptions import InvalidSongSegmentException, ChordParseException\n\n\n'''\n从完整的歌曲对象分离出歌曲存储目录。\n\n参数:\n d_song: 数据库中的歌曲所映射的字典。\n返回:\n 该歌曲的存储目录。\n'''\ndef generate_song_directory(d_song):\n song_name = d_song['song_name']\n singer = d_song['singer']\n folder_name = song_name + '-' + singer\n return os.path.join(app.config['FILE_UPLOAD_DIR'], folder_name)\n\n\n'''\n由歌曲原唱生成歌曲打分文件。\n\n参数:\n real_app: Flask的app对象,需要手动在调用函数中传入。\n original_file_path: 歌曲原唱文件路径。\n song_info: 格式为“<歌曲名称>-<歌手>”的歌曲信息,用于向客户端发送socket。\n'''\ndef rate_by_original(real_app, original_file_path, song_info):\n\n with real_app.app_context():\n \n vocal_file_path = generate_vocal_file(original_file_path)\n single_track_file_path = generate_single_track_file(vocal_file_path)\n generate_rate_file(single_track_file_path)\n\n if song_info:\n socketio.emit('rate', song_info, namespace='/karaoke')\n\n\n'''\n解释和弦文件。\n\n参数:\n real_app: Flask的app对象,需要手动在调用函数中传入。\n org_chord_path: 原始和弦文件路径。\n song_info: 格式为“<歌曲名称>-<歌手>”的歌曲信息,用于向客户端发送socket。\n'''\ndef trans_chord(real_app, org_chord_path, song_info):\n\n with real_app.app_context():\n\n directory, _ = os.path.split(org_chord_path)\n chord_trans_path = os.path.join(directory, app.config['CHORD_TRANS_FILENAME'])\n\n shell_args = [app.config['CHORD_TRANSLATOR_PATH'], org_chord_path, chord_trans_path]\n process = subprocess.Popen(shell_args, cwd=app.config['CHORD_TRANS_WORKING_DIR'], \n shell=app.config['REQUIRE_SHELL'])\n process.wait()\n\n # 删除原始和弦文件\n try:\n os.remove(org_chord_path)\n except OSError:\n pass\n\n if song_info:\n socketio.emit('chord', song_info, namespace='/karaoke')\n\n\n'''\n生成片段歌词文件、音轨文件等自弹自唱相关文件。\n\n参数:\n real_app: Flask的app对象,需要手动在调用函数中传入。\n chord_path: 解释完毕后的和弦文件路径。\n lyric_path: 完整歌词文件路径。\n original_path: 歌曲原唱文件路径。\n song_info: 格式为“<歌曲名称>-<歌手>”的歌曲信息,用于向客户端发送socket。\n'''\ndef generate_instrument_sing_files(real_app, chord_path, lyric_path, original_path, song_info):\n\n start_time, end_time = read_chord(chord_path)\n\n lrc_thread = Thread(target=trim_lrc, args=(real_app, lyric_path, start_time, end_time,))\n track_thread = Thread(target=separate_audio_track, args=(real_app, original_path, start_time, end_time,))\n\n lrc_thread.start()\n track_thread.start()\n\n lrc_thread.join()\n track_thread.join()\n\n if song_info:\n socketio.emit('instrument', song_info, namespace='/karaoke')\n\n\n'''\n对歌曲特定片段进行音轨分离。\n\n参数:\n real_app: Flask的app对象,需要手动在调用函数中传入。\n original_path: 歌曲原唱文件路径。\n start_time: 歌曲特定片段的开始时间。\n end_time: 歌曲特定片段的结束时间。\n'''\ndef separate_audio_track(real_app, original_path, start_time, end_time):\n\n with real_app.app_context():\n\n start_time = start_time - app.config['BUTTON_ANI_SEC']\n if start_time < 0:\n raise InvalidSongSegmentException\n\n trimmed_wav_path = trim_wav(original_path, start_time, end_time)\n generate_inst_wav(trimmed_wav_path)\n\n # 删除切分出的歌曲特定片段文件\n try:\n os.remove(trimmed_wav_path)\n except OSError:\n pass\n\n\n'''\n从歌曲原唱中分离出人声。\n\n参数:\n original_file_path: 歌曲原唱文件路径。\n\n返回:\n 分离出的无伴奏人声文件路径。\n'''\ndef generate_vocal_file(original_file_path):\n\n directory, original_filename = os.path.split(original_file_path)\n filename_without_suffix = original_filename.rsplit('.', 1)[0]\n\n shell_args = ['spleeter', 'separate', '-p', 'spleeter:2stems', '-o', \n directory, original_file_path]\n if sys.platform == 'win32':\n shell_args.insert(0, 'python')\n shell_args.insert(1, '-m')\n\n process = subprocess.Popen(shell_args, cwd=app.config['WORKING_DIR'],\n shell=app.config['REQUIRE_SHELL'])\n process.wait()\n\n return os.path.join(directory, filename_without_suffix, 'vocals.wav')\n\n\n'''\n将无伴奏人声文件转换为单音轨。\n\n参数:\n vocal_file_path: 人声文件路径。\n\n返回:\n 单音轨无伴奏人声文件路径。\n'''\ndef generate_single_track_file(vocal_file_path):\n\n directory, _ = os.path.split(vocal_file_path)\n single_track_file_path = os.path.join(directory, 'vocal_single.wav')\n\n shell_args = ['ffmpeg', '-y', '-i', vocal_file_path, \n '-ar', '44100', '-ac', '1', single_track_file_path]\n process = subprocess.Popen(shell_args, cwd=app.config['WORKING_DIR'],\n shell=app.config['REQUIRE_SHELL'])\n process.wait()\n\n return single_track_file_path\n\n\n'''\n由单音轨无伴奏人声文件生成歌曲打分文件。\n\n参数:\n single_track_file_path: 单音轨无伴奏人声文件路径。\n'''\ndef generate_rate_file(single_track_file_path):\n\n rm_dir, _ = os.path.split(single_track_file_path)\n\n if sys.platform == 'win32': # Windows\n directory = rm_dir.rsplit('\\\\', 1)[0]\n else: # Linux 或 MacOS\n directory = rm_dir.rsplit('/', 1)[0]\n\n rate_file_path = os.path.join(directory, app.config['RATE_FILENAME'])\n shell_args = [app.config['RATING_PATH'], single_track_file_path, \n '-t', '-s', '50', '-o', rate_file_path]\n process = subprocess.Popen(shell_args, cwd=app.config['WORKING_DIR'],\n shell=app.config['REQUIRE_SHELL'])\n process.wait()\n\n try:\n shutil.rmtree(rm_dir)\n except OSError:\n pass\n\n\n'''\n从完整的歌词文件中提取出歌曲特定片段的歌词。\n\n参数:\n real_app: Flask的app对象,需要手动在调用函数中传入。\n org_lrc_path: 完整歌词文件路径。\n start_time: 歌曲特定片段的开始时间。\n end_time: 歌曲特定片段的结束时间。\n'''\ndef trim_lrc(real_app, org_lrc_path, start_time, end_time):\n\n with real_app.app_context():\n\n directory, _ = os.path.split(org_lrc_path)\n new_lrc_path = os.path.join(directory, app.config['LYRIC_INSTRUMENT_FILENAME'])\n \n shell_args = [app.config['TRIMMER_PATH'], str(start_time), str(end_time), org_lrc_path, new_lrc_path]\n process = subprocess.Popen(shell_args, cwd=app.config['WORKING_DIR'],\n shell=app.config['REQUIRE_SHELL'])\n process.wait()\n\n\n'''\n从解释完毕的和弦文件中获取歌曲片段的开始时间与结束时间。\n\n参数:\n chord_trans_path: 解释完毕的和弦文件路径。\n\n返回:\n 歌曲特定片段的开始时间与结束时间。\n'''\ndef read_chord(chord_trans_path):\n\n with open(chord_trans_path, 'r') as chord:\n line = chord.readline()\n args = line.split()\n\n if len(args) != 5:\n raise ChordParseException\n \n start_time = float(args[3]) / 1000\n end_time = float(args[4]) / 1000\n return start_time, end_time\n\n\n'''\n切分特定片段的歌曲原唱。\n\n参数:\n org_wav_path: 歌曲原唱文件路径。\n start_time: 歌曲特定片段的开始时间。\n end_time: 歌曲特定片段的结束时间。\n\n返回:\n 切分出的歌曲原唱片段文件路径。\n'''\ndef trim_wav(org_wav_path, start_time, end_time):\n\n directory, _ = os.path.split(org_wav_path)\n trimmed_wav_path = os.path.join(directory, app.config['TRIMMED_WAV_FILENAME'])\n\n duration = end_time - start_time\n shell_args = ['ffmpeg', '-ss', str(start_time), '-t', str(duration), \n '-i', org_wav_path, trimmed_wav_path]\n\n process = subprocess.Popen(shell_args, shell=app.config['REQUIRE_SHELL'])\n process.wait()\n\n return trimmed_wav_path\n\n\n'''\n对歌曲原唱片段文件进行音轨分离,产生自弹自唱所需文件。\n\n参数:\n trimmed_wav_path: 歌曲原唱片段文件路径。\n'''\ndef generate_inst_wav(trimmed_wav_path):\n\n directory, _ = os.path.split(trimmed_wav_path)\n\n shell_args = ['spleeter', 'separate', '-p', 'spleeter:5stems', \n '-o', directory, trimmed_wav_path]\n if sys.platform == 'win32':\n shell_args.insert(0, 'python')\n shell_args.insert(1, '-m')\n\n process = subprocess.Popen(shell_args, cwd=app.config['WORKING_DIR'],\n shell=app.config['REQUIRE_SHELL'])\n process.wait()\n", "sub_path": "FinalRelease/code/WebUpload/server/src/utils.py", "file_name": "utils.py", "file_ext": "py", "file_size_in_byte": 9155, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "os.path.join", "line_number": 23, "usage_type": "call"}, {"api_name": "os.path", "line_number": 23, "usage_type": "attribute"}, {"api_name": "flask.current_app.config", "line_number": 23, "usage_type": "attribute"}, {"api_name": "flask.current_app", "line_number": 23, "usage_type": "name"}, {"api_name": "os.path.split", "line_number": 58, "usage_type": "call"}, {"api_name": "os.path", "line_number": 58, "usage_type": "attribute"}, {"api_name": "os.path.join", "line_number": 59, "usage_type": "call"}, {"api_name": "os.path", "line_number": 59, "usage_type": "attribute"}, {"api_name": "flask.current_app.config", "line_number": 59, "usage_type": "attribute"}, {"api_name": "flask.current_app", "line_number": 59, "usage_type": "name"}, {"api_name": "flask.current_app.config", "line_number": 61, "usage_type": "attribute"}, {"api_name": "flask.current_app", "line_number": 61, "usage_type": "name"}, {"api_name": "subprocess.Popen", "line_number": 62, "usage_type": "call"}, {"api_name": "flask.current_app.config", "line_number": 62, "usage_type": "attribute"}, {"api_name": "flask.current_app", "line_number": 62, "usage_type": "name"}, {"api_name": "flask.current_app.config", "line_number": 63, "usage_type": "attribute"}, {"api_name": "flask.current_app", "line_number": 63, "usage_type": "name"}, {"api_name": "os.remove", "line_number": 68, "usage_type": "call"}, {"api_name": "threading.Thread", "line_number": 90, "usage_type": "call"}, {"api_name": "threading.Thread", "line_number": 91, "usage_type": "call"}, {"api_name": "flask.current_app.config", "line_number": 116, "usage_type": "attribute"}, {"api_name": "flask.current_app", "line_number": 116, "usage_type": "name"}, {"api_name": "src.exceptions.InvalidSongSegmentException", "line_number": 118, "usage_type": "name"}, {"api_name": "os.remove", "line_number": 125, "usage_type": "call"}, {"api_name": "os.path.split", "line_number": 141, "usage_type": "call"}, {"api_name": "os.path", "line_number": 141, "usage_type": "attribute"}, {"api_name": "sys.platform", "line_number": 146, "usage_type": "attribute"}, {"api_name": "subprocess.Popen", "line_number": 150, "usage_type": "call"}, {"api_name": "flask.current_app.config", "line_number": 150, "usage_type": "attribute"}, {"api_name": "flask.current_app", "line_number": 150, "usage_type": "name"}, {"api_name": "flask.current_app.config", "line_number": 151, "usage_type": "attribute"}, {"api_name": "flask.current_app", "line_number": 151, "usage_type": "name"}, {"api_name": "os.path.join", "line_number": 154, "usage_type": "call"}, {"api_name": "os.path", "line_number": 154, "usage_type": "attribute"}, {"api_name": "os.path.split", "line_number": 168, "usage_type": "call"}, {"api_name": "os.path", "line_number": 168, "usage_type": "attribute"}, {"api_name": "os.path.join", "line_number": 169, "usage_type": "call"}, {"api_name": "os.path", "line_number": 169, "usage_type": "attribute"}, {"api_name": "subprocess.Popen", "line_number": 173, "usage_type": "call"}, {"api_name": "flask.current_app.config", "line_number": 173, "usage_type": "attribute"}, {"api_name": "flask.current_app", "line_number": 173, "usage_type": "name"}, {"api_name": "flask.current_app.config", "line_number": 174, "usage_type": "attribute"}, {"api_name": "flask.current_app", "line_number": 174, "usage_type": "name"}, {"api_name": "os.path.split", "line_number": 188, "usage_type": "call"}, {"api_name": "os.path", "line_number": 188, "usage_type": "attribute"}, {"api_name": "sys.platform", "line_number": 190, "usage_type": "attribute"}, {"api_name": "os.path.join", "line_number": 195, "usage_type": "call"}, {"api_name": "os.path", "line_number": 195, "usage_type": "attribute"}, {"api_name": "flask.current_app.config", "line_number": 195, "usage_type": "attribute"}, {"api_name": "flask.current_app", "line_number": 195, "usage_type": "name"}, {"api_name": "flask.current_app.config", "line_number": 196, "usage_type": "attribute"}, {"api_name": "flask.current_app", "line_number": 196, "usage_type": "name"}, {"api_name": "subprocess.Popen", "line_number": 198, "usage_type": "call"}, {"api_name": "flask.current_app.config", "line_number": 198, "usage_type": "attribute"}, {"api_name": "flask.current_app", "line_number": 198, "usage_type": "name"}, {"api_name": "flask.current_app.config", "line_number": 199, "usage_type": "attribute"}, {"api_name": "flask.current_app", "line_number": 199, "usage_type": "name"}, {"api_name": "shutil.rmtree", "line_number": 203, "usage_type": "call"}, {"api_name": "os.path.split", "line_number": 221, "usage_type": "call"}, {"api_name": "os.path", "line_number": 221, "usage_type": "attribute"}, {"api_name": "os.path.join", "line_number": 222, "usage_type": "call"}, {"api_name": "os.path", "line_number": 222, "usage_type": "attribute"}, {"api_name": "flask.current_app.config", "line_number": 222, "usage_type": "attribute"}, {"api_name": "flask.current_app", "line_number": 222, "usage_type": "name"}, {"api_name": "flask.current_app.config", "line_number": 224, "usage_type": "attribute"}, {"api_name": "flask.current_app", "line_number": 224, "usage_type": "name"}, {"api_name": "subprocess.Popen", "line_number": 225, "usage_type": "call"}, {"api_name": "flask.current_app.config", "line_number": 225, "usage_type": "attribute"}, {"api_name": "flask.current_app", "line_number": 225, "usage_type": "name"}, {"api_name": "flask.current_app.config", "line_number": 226, "usage_type": "attribute"}, {"api_name": "flask.current_app", "line_number": 226, "usage_type": "name"}, {"api_name": "src.exceptions.ChordParseException", "line_number": 246, "usage_type": "name"}, {"api_name": "os.path.split", "line_number": 266, "usage_type": "call"}, {"api_name": "os.path", "line_number": 266, "usage_type": "attribute"}, {"api_name": "os.path.join", "line_number": 267, "usage_type": "call"}, {"api_name": "os.path", "line_number": 267, "usage_type": "attribute"}, {"api_name": "flask.current_app.config", "line_number": 267, "usage_type": "attribute"}, {"api_name": "flask.current_app", "line_number": 267, "usage_type": "name"}, {"api_name": "subprocess.Popen", "line_number": 273, "usage_type": "call"}, {"api_name": "flask.current_app.config", "line_number": 273, "usage_type": "attribute"}, {"api_name": "flask.current_app", "line_number": 273, "usage_type": "name"}, {"api_name": "os.path.split", "line_number": 287, "usage_type": "call"}, {"api_name": "os.path", "line_number": 287, "usage_type": "attribute"}, {"api_name": "sys.platform", "line_number": 291, "usage_type": "attribute"}, {"api_name": "subprocess.Popen", "line_number": 295, "usage_type": "call"}, {"api_name": "flask.current_app.config", "line_number": 295, "usage_type": "attribute"}, {"api_name": "flask.current_app", "line_number": 295, "usage_type": "name"}, {"api_name": "flask.current_app.config", "line_number": 296, "usage_type": "attribute"}, {"api_name": "flask.current_app", "line_number": 296, "usage_type": "name"}]}
{"seq_id": "137089097", "text": "import json\nfrom django.db import transaction\nfrom django.db.models import F\nfrom django.db.models.signals import pre_save, post_save, post_delete\nfrom django.dispatch import receiver\nfrom django.utils import timezone\nfrom django_celery_beat.models import PeriodicTask, IntervalSchedule\n\nfrom .models import Book, BookChapter\nfrom .tasks import book_scraper_info, book_scraper_chaps\n\n\n@receiver(post_save, sender=Book)\ndef book_scraper_initial_signal(sender, instance, created=False, **kwargs):\n if not instance.visited and instance.visit_id:\n schedule, created = IntervalSchedule.objects.get_or_create(\n every=15,\n period=IntervalSchedule.SECONDS,\n )\n PeriodicTask.objects.create(\n one_off=True,\n interval=schedule,\n name=f'Update book: {instance.title}',\n task='novel2read.apps.books.tasks.book_scraper_info',\n args=json.dumps([instance.pk]),\n )\n\n if not instance.chapters_count:\n schedule, created = IntervalSchedule.objects.get_or_create(\n every=50,\n period=IntervalSchedule.SECONDS,\n )\n PeriodicTask.objects.create(\n one_off=True,\n interval=schedule,\n name=f'Update book chapters init: {instance.title}',\n task='novel2read.apps.books.tasks.book_scraper_chaps',\n args=json.dumps([instance.pk]),\n )\n\n\n@receiver(post_save, sender=BookChapter)\ndef create_update_chapter_cid(sender, instance, created=False, **kwargs):\n if created:\n instance.book.update_chapters_count()\n instance.c_id = instance.book.chapters_count\n instance.save(update_fields=['c_id'])\n\n\n@receiver(post_delete, sender=BookChapter)\ndef delete_update_chapter_cid(sender, instance, **kwargs):\n instance.book.update_chapters_count()\n c_id_del = instance.c_id\n book_chaps = BookChapter.objects.filter(book__slug=instance.book.slug).filter(c_id__gt=c_id_del)\n book_chaps.update(c_id=F('c_id') - 1)\n", "sub_path": "novel2read/apps/books/signals.py", "file_name": "signals.py", "file_ext": "py", "file_size_in_byte": 2062, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "django_celery_beat.models.IntervalSchedule.objects.get_or_create", "line_number": 16, "usage_type": "call"}, {"api_name": "django_celery_beat.models.IntervalSchedule.objects", "line_number": 16, "usage_type": "attribute"}, {"api_name": "django_celery_beat.models.IntervalSchedule", "line_number": 16, "usage_type": "name"}, {"api_name": "django_celery_beat.models.IntervalSchedule.SECONDS", "line_number": 18, "usage_type": "attribute"}, {"api_name": "django_celery_beat.models.IntervalSchedule", "line_number": 18, "usage_type": "name"}, {"api_name": "django_celery_beat.models.PeriodicTask.objects.create", "line_number": 20, "usage_type": "call"}, {"api_name": "django_celery_beat.models.PeriodicTask.objects", "line_number": 20, "usage_type": "attribute"}, {"api_name": "django_celery_beat.models.PeriodicTask", "line_number": 20, "usage_type": "name"}, {"api_name": "json.dumps", "line_number": 25, "usage_type": "call"}, {"api_name": "django_celery_beat.models.IntervalSchedule.objects.get_or_create", "line_number": 29, "usage_type": "call"}, {"api_name": "django_celery_beat.models.IntervalSchedule.objects", "line_number": 29, "usage_type": "attribute"}, {"api_name": "django_celery_beat.models.IntervalSchedule", "line_number": 29, "usage_type": "name"}, {"api_name": "django_celery_beat.models.IntervalSchedule.SECONDS", "line_number": 31, "usage_type": "attribute"}, {"api_name": "django_celery_beat.models.IntervalSchedule", "line_number": 31, "usage_type": "name"}, {"api_name": "django_celery_beat.models.PeriodicTask.objects.create", "line_number": 33, "usage_type": "call"}, {"api_name": "django_celery_beat.models.PeriodicTask.objects", "line_number": 33, "usage_type": "attribute"}, {"api_name": "django_celery_beat.models.PeriodicTask", "line_number": 33, "usage_type": "name"}, {"api_name": "json.dumps", "line_number": 38, "usage_type": "call"}, {"api_name": "django.dispatch.receiver", "line_number": 13, "usage_type": "call"}, {"api_name": "django.db.models.signals.post_save", "line_number": 13, "usage_type": "argument"}, {"api_name": "models.Book", "line_number": 13, "usage_type": "name"}, {"api_name": "django.dispatch.receiver", "line_number": 42, "usage_type": "call"}, {"api_name": "django.db.models.signals.post_save", "line_number": 42, "usage_type": "argument"}, {"api_name": "models.BookChapter", "line_number": 42, "usage_type": "name"}, {"api_name": "models.BookChapter.objects.filter", "line_number": 54, "usage_type": "call"}, {"api_name": "models.BookChapter.objects", "line_number": 54, "usage_type": "attribute"}, {"api_name": "models.BookChapter", "line_number": 54, "usage_type": "name"}, {"api_name": "django.db.models.F", "line_number": 55, "usage_type": "call"}, {"api_name": "django.dispatch.receiver", "line_number": 50, "usage_type": "call"}, {"api_name": "django.db.models.signals.post_delete", "line_number": 50, "usage_type": "argument"}, {"api_name": "models.BookChapter", "line_number": 50, "usage_type": "name"}]}
{"seq_id": "381310125", "text": "from django.contrib import admin\nfrom django.urls import path, include\nfrom pastes import views as paste_views\n\nurlpatterns = [\n path('', include('home.urls', 'home')),\n path('admin/', admin.site.urls),\n path('pastes/', paste_views.ShowQueryResults.as_view(), name=\"query_results\"),\n path('pastes/', paste_views.ShowPaste.as_view(), name=\"show_paste\"),\n path('pastes//confirm_delete', paste_views.ConfirmDelete.as_view(), name=\"confirm_delete\"),\n path('pastes//delete', paste_views.DeletePaste.as_view(), name='delete_paste'),\n]\n", "sub_path": "pastebin/urls.py", "file_name": "urls.py", "file_ext": "py", "file_size_in_byte": 586, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "django.urls.path", "line_number": 6, "usage_type": "call"}, {"api_name": "django.urls.include", "line_number": 6, "usage_type": "call"}, {"api_name": "django.urls.path", "line_number": 7, "usage_type": "call"}, {"api_name": "django.contrib.admin.site", "line_number": 7, "usage_type": "attribute"}, {"api_name": "django.contrib.admin", "line_number": 7, "usage_type": "name"}, {"api_name": "django.urls.path", "line_number": 8, "usage_type": "call"}, {"api_name": "pastes.views.ShowQueryResults.as_view", "line_number": 8, "usage_type": "call"}, {"api_name": "pastes.views.ShowQueryResults", "line_number": 8, "usage_type": "attribute"}, {"api_name": "pastes.views", "line_number": 8, "usage_type": "name"}, {"api_name": "django.urls.path", "line_number": 9, "usage_type": "call"}, {"api_name": "pastes.views.ShowPaste.as_view", "line_number": 9, "usage_type": "call"}, {"api_name": "pastes.views.ShowPaste", "line_number": 9, "usage_type": "attribute"}, {"api_name": "pastes.views", "line_number": 9, "usage_type": "name"}, {"api_name": "django.urls.path", "line_number": 10, "usage_type": "call"}, {"api_name": "pastes.views.ConfirmDelete.as_view", "line_number": 10, "usage_type": "call"}, {"api_name": "pastes.views.ConfirmDelete", "line_number": 10, "usage_type": "attribute"}, {"api_name": "pastes.views", "line_number": 10, "usage_type": "name"}, {"api_name": "django.urls.path", "line_number": 11, "usage_type": "call"}, {"api_name": "pastes.views.DeletePaste.as_view", "line_number": 11, "usage_type": "call"}, {"api_name": "pastes.views.DeletePaste", "line_number": 11, "usage_type": "attribute"}, {"api_name": "pastes.views", "line_number": 11, "usage_type": "name"}]}
{"seq_id": "150186888", "text": "# -*- coding: utf-8 -*- \r\nfrom zabbix_api import ZabbixAPI\r\nfrom datetime import datetime\r\nimport time\r\n\r\n\r\nzapi = ZabbixAPI(\"https://endereco.com.br/zabbix\")\r\n# Disable SSL certificate verification\r\nzapi.session.verify = False\r\n# Specify a timeout (in seconds)\r\nzapi.timeout = 10.1\r\n# informacoes de acesso\r\nzapi.login(\"usuario.zabbix\", \"senhaUsuario\")\r\n# mostra versao do zabbix\r\nprint(\"Connected to Zabbix API Version %s\" % zapi.api_version())\r\n\r\nfor hosts in zapi.host.get({'output': ['host','interface']}):\r\n print(hosts)\r\n\r\n#item_id = 1879051\r\n\r\n# Create a time range\r\n#time_till = time.mktime(datetime.now().timetuple())\r\n#time_from = time_till - 60 * 60 * 4 # 4 hours\r\n\r\n#time_from = time.mktime(datetime.now().timetuple()) - 60 * 5 # 5 min\r\n\r\n\r\n#historico = zapi.history.get({ 'itemids': [ item_id ], \r\n#'history': 0, \r\n#'output': 'extend', \r\n#'time_from': time_from, \r\n#'time_till': “1439250959” \r\n# }) \r\n\r\n# Print out each datapoint\r\n#for point in historico:\r\n# print(\"{0}: {1}\".format(datetime.fromtimestamp(int(point['clock']))\r\n# .strftime(\"%x %X\"), point['value']))\r\n\r\n# 0 pertence a data \r\n# 1 pertence a valor \r\n\r\n\r\n", "sub_path": "Outros scripts/extrair_zab.py", "file_name": "extrair_zab.py", "file_ext": "py", "file_size_in_byte": 1175, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "zabbix_api.ZabbixAPI", "line_number": 7, "usage_type": "call"}]}
{"seq_id": "593562435", "text": "#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n\n__author__ = 'ipetrash'\n\n\nimport time\nfrom PyQt5.QtWidgets import QApplication, QMessageBox\n\nfrom print__hprof_or_big_size_file import find_files_by_dirs, DIRS\n\n\nif __name__ == '__main__':\n app = QApplication([])\n\n while True:\n result = find_files_by_dirs(DIRS)\n if result:\n QMessageBox.warning(None, 'Warn', '\\n'.join(result))\n\n time.sleep(5 * 60 * 60)\n", "sub_path": "print__hprof_or_big_size_file__notify_with_MessageBox.py", "file_name": "print__hprof_or_big_size_file__notify_with_MessageBox.py", "file_ext": "py", "file_size_in_byte": 440, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "PyQt5.QtWidgets.QApplication", "line_number": 14, "usage_type": "call"}, {"api_name": "print__hprof_or_big_size_file.find_files_by_dirs", "line_number": 17, "usage_type": "call"}, {"api_name": "print__hprof_or_big_size_file.DIRS", "line_number": 17, "usage_type": "argument"}, {"api_name": "PyQt5.QtWidgets.QMessageBox.warning", "line_number": 19, "usage_type": "call"}, {"api_name": "PyQt5.QtWidgets.QMessageBox", "line_number": 19, "usage_type": "name"}, {"api_name": "time.sleep", "line_number": 21, "usage_type": "call"}]}
{"seq_id": "267407046", "text": "import argparse\nimport json\nimport os\nimport time\n\nimport requests\n\nimport dataclasses\nimport logging\nfrom typing import *\n\n\nL = logging.getLogger(__name__)\n\n\nclass RequestFailed(RuntimeError):\n def __init__(self, reason: str):\n super(\"request failed: \" + reason)\n\n\nclass Client:\n def __init__(self, token):\n self.baseurl = \"https://slack.com/api\"\n self.default_header = {\"content-type\": \"application/x-www-form-urlencoded\"}\n self.token = token\n\n def _get(self, url, params) -> requests.Response:\n headers = self.default_header\n params[\"token\"] = self.token\n res = requests.get(url, headers=headers, params=params)\n return self._decode_response(res)\n\n def _post(self, url, data) -> Any:\n headers = self.default_header\n data[\"token\"] = self.token\n res = requests.post(url, headers=headers, data=data)\n return self._decode_response(res)\n\n def _decode_response(self, res: requests.Response) -> Any:\n if res.status_code != 200:\n raise RequestFailed(f\"status_code isn't 200 ({res.status_code})\")\n return res.json()\n\n def auth_test(self):\n return self._get(self.baseurl + \"/auth.test\", {})\n\n def conversations_list(self, cursor: str = None):\n params = {\"types\": \"public_channel,private_channel,mpim\"}\n if cursor is not None:\n params[\"cursor\"] = cursor\n return self._get(self.baseurl + \"/conversations.list\", params)\n\n def conversations_members(self, channel: str, cursor: str = None):\n params = {\"channel\": channel}\n if cursor is not None:\n params[\"cursor\"] = cursor\n return self._get(self.baseurl + \"/conversations.members\", params)\n\n def conversations_history(self, channel: str, cursor: str = None):\n params = {\"channel\": channel}\n if cursor is not None:\n params[\"cursor\"] = cursor\n return self._get(self.baseurl + \"/conversations.history\", params)\n\n def conversations_replies(self, channel: str, ts: str, cursor: str = None):\n params = {\"channel\": channel, \"ts\": ts}\n if cursor is not None:\n params[\"cursor\"] = cursor\n return self._get(self.baseurl + \"/conversations.replies\", params)\n\n def conversations_join(self, channel: str):\n params = {\"channel\": channel}\n return self._post(self.baseurl + \"/conversations.join\", params)\n\n def users_list(self, cursor: str = None):\n params = {}\n if cursor is not None:\n params[\"cursor\"] = cursor\n return self._get(self.baseurl + \"/users.list\", params)\n\n def users_profile_set(self, user: str, key: str, value: str):\n params = {\"user\": user, \"name\": key, \"value\": value}\n return self._post(self.baseurl + \"/users.profile.set\", params)\n\n\ndef is_thread_parent(msg: Any) -> bool:\n return \"thread_ts\" in msg and msg[\"ts\"] == msg[\"thread_ts\"]\n\n\ndef get_channels(cli: Client) -> List[Any]:\n L.info(\"fetching channel metadata...\")\n channels: List[Any] = []\n next_cursor = None\n while next_cursor != \"\":\n data = cli.conversations_list(next_cursor)\n if not data[\"ok\"]:\n raise RuntimeError(f\"request failed: (data={data})\")\n channels += data[\"channels\"]\n next_cursor = data[\"response_metadata\"][\"next_cursor\"]\n\n L.info(\"fetching channel members...\")\n for c in channels:\n L.info(f\"fetching channel members for channel {c['name']}...\")\n\n c[\"members\"] = []\n if c[\"is_archived\"]:\n L.info(f\"channel {c['name']} is archived, skipped\")\n continue\n\n next_cursor = None\n try:\n while next_cursor != \"\":\n data = cli.conversations_members(c[\"id\"])\n if not data[\"ok\"]:\n raise RuntimeError(f\"request failed: (channel={c}, data={data})\")\n c[\"members\"] += data[\"members\"]\n next_cursor = data[\"response_metadata\"][\"next_cursor\"]\n except Exception as e:\n pass\n\n return channels\n\n\ndef get_users(cli: Client) -> List[Any]:\n L.info(\"fetching user metadata...\")\n users: List[Any] = []\n next_cursor = None\n while next_cursor != \"\":\n data = cli.users_list(next_cursor)\n if not data[\"ok\"]:\n raise RuntimeError(f\"request failed: (data={data})\")\n users += data[\"members\"]\n next_cursor = data[\"response_metadata\"][\"next_cursor\"]\n\n return users\n\n\ndef get_replies(cli: Client, channel: Any, ts: str) -> List[Any]:\n messages: List[Any] = []\n next_cursor = None\n while next_cursor != \"\":\n data = cli.conversations_replies(channel[\"id\"], ts, next_cursor)\n if not data[\"ok\"]:\n raise RuntimeError(f\"request failed: (data={data})\")\n messages += data[\"messages\"]\n next_cursor = data[\"response_metadata\"][\"next_cursor\"] if data[\"has_more\"] else \"\"\n\n return messages\n\n\ndef get_messages(cli: Client, channel: Any) -> List[Any]:\n L.info(f\"fetching messages for channel {channel['name']}...\")\n messages: List[Any] = []\n next_cursor = None\n while next_cursor != \"\":\n data = cli.conversations_history(channel[\"id\"], next_cursor)\n if not data[\"ok\"]:\n raise RuntimeError(f\"request failed: (data={data})\")\n messages += data[\"messages\"]\n next_cursor = data[\"response_metadata\"][\"next_cursor\"] if data[\"has_more\"] else \"\"\n\n thread_broadcast_set = set()\n for msg in messages:\n if \"subtype\" in msg and msg[\"subtype\"] == \"thread_broadcast\":\n thread_broadcast_set.add(msg[\"ts\"])\n\n for msg in messages:\n if is_thread_parent(msg):\n replies = get_replies(cli, channel, msg[\"thread_ts\"])\n msg[\"replies\"] = []\n for reply in replies:\n if msg[\"ts\"] == reply[\"ts\"]:\n continue\n msg[\"replies\"].append({\"user\": reply[\"user\"], \"ts\": reply[\"ts\"]})\n if not reply[\"ts\"] in thread_broadcast_set:\n messages.append(reply)\n\n return messages\n\n\ndef append_download_token(msg: Any, download_token: str):\n if not \"files\" in msg:\n return\n\n for f in msg[\"files\"]:\n if f[\"mimetype\"].startswith(\"image\"):\n for s in [64, 80, 360, 480, 160, 720, 800, 960, 1024]:\n try:\n f[f\"thumb_{s}\"] += f\"?t={download_token}\"\n except Exception as e:\n L.debug(\"exception occured in append_download_token, ignored...\")\n\n\ndef output(dest: str, channels: List[Any], users: List[Any], messages: Dict[str, List[Any]], download_token: Optional[str] = None):\n os.makedirs(dest, exist_ok=True)\n\n with open(f\"{dest}/channels.json\", \"w\") as f:\n f.write(json.dumps(channels))\n\n with open(f\"{dest}/users.json\", \"w\") as f:\n f.write(json.dumps(users))\n\n for channel in channels:\n channel_dir = f\"{dest}/{channel['name']}\"\n os.makedirs(channel_dir, exist_ok=True)\n\n if not channel[\"name\"] in messages:\n continue\n\n msgs = {}\n for msg in messages[channel[\"name\"]]:\n if download_token is not None:\n append_download_token(msg, download_token)\n\n t = time.gmtime(float(msg[\"ts\"]))\n key = f\"{t.tm_year:04}-{t.tm_mon:02}-{t.tm_mday:02}\"\n if not key in msgs:\n msgs[key] = []\n msgs[key].append(msg)\n\n for key in msgs.keys():\n msgs[key] = sorted(msgs[key], key=lambda m: float(m[\"ts\"]))\n with open(f\"{channel_dir}/{key}.json\", \"w\") as f:\n f.write(json.dumps(msgs[key]))\n\n\ndef main(args: argparse.Namespace):\n logging.basicConfig(level=logging.INFO)\n\n cli = Client(args.bot_token)\n\n L.info(\"checking validity of token...\")\n user = cli.auth_test()\n if not user[\"ok\"]:\n raise RuntimeError(\"token isn't valid\")\n\n L.info(\"fetching channels...\")\n channels = get_channels(cli)\n\n L.info(\"fetching users...\")\n users = get_users(cli)\n\n L.info(\"fetching messages...\")\n messages: Dict[str, List[Any]] = {}\n for channel in channels:\n if user[\"user_id\"] in channel[\"members\"]:\n messages[channel[\"name\"]] = get_messages(cli, channel)\n\n output(args.destination, channels, users, messages, args.download_token)\n\n\nif __name__ == \"__main__\":\n parser = argparse.ArgumentParser()\n\n parser.add_argument(\"--bot-token\", help=\"token for accesssing Slack\")\n parser.add_argument(\"--download-token\", help=\"token for fetching assets from Slack\")\n parser.add_argument(\"--destination\", help=\"the output directory\")\n\n args: argparse.Namespace = parser.parse_args()\n\n main(args)\n\n", "sub_path": "scripts/export-history.py", "file_name": "export-history.py", "file_ext": "py", "file_size_in_byte": 8711, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "logging.getLogger", "line_number": 13, "usage_type": "call"}, {"api_name": "requests.get", "line_number": 30, "usage_type": "call"}, {"api_name": "requests.Response", "line_number": 27, "usage_type": "attribute"}, {"api_name": "requests.post", "line_number": 36, "usage_type": "call"}, {"api_name": "requests.Response", "line_number": 39, "usage_type": "attribute"}, {"api_name": "os.makedirs", "line_number": 195, "usage_type": "call"}, {"api_name": "json.dumps", "line_number": 198, "usage_type": "call"}, {"api_name": "json.dumps", "line_number": 201, "usage_type": "call"}, {"api_name": "os.makedirs", "line_number": 205, "usage_type": "call"}, {"api_name": "time.gmtime", "line_number": 215, "usage_type": "call"}, {"api_name": "json.dumps", "line_number": 224, "usage_type": "call"}, {"api_name": "argparse.Namespace", "line_number": 227, "usage_type": "attribute"}, {"api_name": "logging.basicConfig", "line_number": 228, "usage_type": "call"}, {"api_name": "logging.INFO", "line_number": 228, "usage_type": "attribute"}, {"api_name": "argparse.ArgumentParser", "line_number": 253, "usage_type": "call"}, {"api_name": "argparse.Namespace", "line_number": 259, "usage_type": "attribute"}]}
{"seq_id": "219945413", "text": "import json\nimport logging\nimport os\n\nimport requests\nfrom django.core.management.base import BaseCommand\nfrom django.utils.http import urlencode\n\nfrom public_data_collector.models import Area, Sigungu, SmallArea\n\n\nclass Collector:\n def __init__(self):\n super(Collector, self).__init__()\n self.base_url = 'http://api.visitkorea.or.kr/openapi/service/rest/KorService'\n self.endpoint = self.base_url\n with open('/etc/secrets/culturedata_proto/service_key.txt') as f:\n self.service_key = f.read().strip()\n self.base_query_params = {\n 'pageNo': 1,\n 'MobileOS': 'ETC',\n 'MobileApp': 'culterdata_proto',\n }\n\n def send_request(self):\n return requests.get(self.endpoint)\n\n\nclass Command(Collector, BaseCommand):\n help = 'Collect public data'\n\n def __init__(self):\n super(Command, self).__init__()\n\n def update_setting(self, query_params):\n self.query_params = self.base_query_params.copy()\n self.query_params.update(query_params)\n self.endpoint = self.base_url \\\n + '/areaCode?ServiceKey={}&{}'.format(self.service_key, urlencode(self.query_params))\n\n def handle(self, *args, **options):\n self.update_setting({\n 'numOfRows': 1000,\n '_type': 'json',\n })\n response = self.send_request()\n areas = json.loads(response.text)['response']['body']['items']['item']\n for area in areas:\n area_instance = Area.objects.get_or_create(\n code=int(area['code']),\n name=area['name']\n )[0]\n self.update_setting({\n 'numOfRows': 1000,\n '_type': 'json',\n 'areaCode': area['code'],\n })\n response = self.send_request()\n sigungus = json.loads(response.text)['response']['body']['items']['item']\n if type(sigungus) is not list:\n sigungus = [sigungus]\n for sigungu in sigungus:\n sigungu_instance = Sigungu.objects.get_or_create(\n area=area_instance,\n code=int(sigungu['code']),\n name=sigungu['name']\n )[0]\n self.update_setting({\n 'numOfRows': 1000,\n '_type': 'json',\n 'areaCode': area['code'],\n 'sigunguCode': sigungu['code']\n })\n response = self.send_request()\n if json.loads(response.text)['response']['body']['totalCount'] == 0:\n continue\n small_areas = json.loads(response.text)['response']['body']['items']['item']\n for small_area in small_areas:\n SmallArea.objects.get_or_create(\n sigungu=sigungu_instance,\n code=int(small_area['code']),\n name=small_area['name']\n )\n\n return 'collect data complete.'\n", "sub_path": "public_data_collector/management/commands/collectdata.py", "file_name": "collectdata.py", "file_ext": "py", "file_size_in_byte": 3055, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "requests.get", "line_number": 26, "usage_type": "call"}, {"api_name": "django.core.management.base.BaseCommand", "line_number": 29, "usage_type": "name"}, {"api_name": "django.utils.http.urlencode", "line_number": 39, "usage_type": "call"}, {"api_name": "json.loads", "line_number": 47, "usage_type": "call"}, {"api_name": "public_data_collector.models.Area.objects.get_or_create", "line_number": 49, "usage_type": "call"}, {"api_name": "public_data_collector.models.Area.objects", "line_number": 49, "usage_type": "attribute"}, {"api_name": "public_data_collector.models.Area", "line_number": 49, "usage_type": "name"}, {"api_name": "json.loads", "line_number": 59, "usage_type": "call"}, {"api_name": "public_data_collector.models.Sigungu.objects.get_or_create", "line_number": 63, "usage_type": "call"}, {"api_name": "public_data_collector.models.Sigungu.objects", "line_number": 63, "usage_type": "attribute"}, {"api_name": "public_data_collector.models.Sigungu", "line_number": 63, "usage_type": "name"}, {"api_name": "json.loads", "line_number": 75, "usage_type": "call"}, {"api_name": "json.loads", "line_number": 77, "usage_type": "call"}, {"api_name": "public_data_collector.models.SmallArea.objects.get_or_create", "line_number": 79, "usage_type": "call"}, {"api_name": "public_data_collector.models.SmallArea.objects", "line_number": 79, "usage_type": "attribute"}, {"api_name": "public_data_collector.models.SmallArea", "line_number": 79, "usage_type": "name"}]}
{"seq_id": "652280428", "text": "from django.shortcuts import (\n render, redirect, reverse, HttpResponse, get_object_or_404\n)\nfrom django.contrib.auth.decorators import login_required\nfrom django.contrib import messages\nfrom django.http import JsonResponse\nfrom django.template.loader import render_to_string\nfrom .forms import WishlistForm\nfrom products.models import Product\nfrom profiles.models import UserProfile\nfrom .models import Wishlist\n\n@login_required\ndef view_wishlist(request):\n \"\"\" A view that renders the wishlist contents page \"\"\"\n\n # basic view for displaying User wishlist page\n \n user = UserProfile.objects.get(user=request.user)\n\n # wishlist = get_object_or_404(Wishlist, user=user)\n\n try:\n wishlist = Wishlist.objects.get(user=user)\n except Wishlist.DoesNotExist:\n wishlist = None\n messages.warning(request, \"No items in the Wishlist yet!\")\n if wishlist:\n # user exist\n pass\n else:\n # user does not exist\n pass\n \n context={\n 'wishlist': wishlist,\n }\n\n return render(request, 'wishlist/wishlist.html', context)\n\n\n@login_required\ndef add_to_wishlist(request, product_id):\n\n product_wish = get_object_or_404(Product, pk=product_id) # get product\n \n wishlist, created = Wishlist.objects.get_or_create(\n user=request.user.userprofile,\n name='rick'\n )\n\n if wishlist.products.filter(name=product_wish).exists():\n messages.warning(request, \"Item already added to wishlist\")\n return redirect(reverse('view_wishlist'))\n else:\n wishlist.products.add(product_wish)\n messages.success(request, \"Item added to Wishlist!\")\n return redirect(reverse('view_wishlist'))\n\n\n@login_required\ndef remove_from_wishlist(request, product_id):\n\n product_wish = get_object_or_404(Product, pk=product_id) # get product\n user = UserProfile.objects.get(user=request.user) # get user\n\n wishlist = get_object_or_404(Wishlist, user=user) # filter wishlist item from with user\n\n wishlist.products.remove(product_wish) # remove item\n messages.success(request, 'Product Removed From Wishlist')\n\n return redirect(reverse('view_wishlist'))\n\n", "sub_path": "wishlist/views.py", "file_name": "views.py", "file_ext": "py", "file_size_in_byte": 2163, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "profiles.models.UserProfile.objects.get", "line_number": 19, "usage_type": "call"}, {"api_name": "profiles.models.UserProfile.objects", "line_number": 19, "usage_type": "attribute"}, {"api_name": "profiles.models.UserProfile", "line_number": 19, "usage_type": "name"}, {"api_name": "models.Wishlist.objects.get", "line_number": 24, "usage_type": "call"}, {"api_name": "models.Wishlist.objects", "line_number": 24, "usage_type": "attribute"}, {"api_name": "models.Wishlist", "line_number": 24, "usage_type": "name"}, {"api_name": "models.Wishlist.DoesNotExist", "line_number": 25, "usage_type": "attribute"}, {"api_name": "models.Wishlist", "line_number": 25, "usage_type": "name"}, {"api_name": "django.contrib.messages.warning", "line_number": 27, "usage_type": "call"}, {"api_name": "django.contrib.messages", "line_number": 27, "usage_type": "name"}, {"api_name": "django.shortcuts.render", "line_number": 39, "usage_type": "call"}, {"api_name": "django.contrib.auth.decorators.login_required", "line_number": 13, "usage_type": "name"}, {"api_name": "django.shortcuts.get_object_or_404", "line_number": 45, "usage_type": "call"}, {"api_name": "products.models.Product", "line_number": 45, "usage_type": "argument"}, {"api_name": "models.Wishlist.objects.get_or_create", "line_number": 47, "usage_type": "call"}, {"api_name": "models.Wishlist.objects", "line_number": 47, "usage_type": "attribute"}, {"api_name": "models.Wishlist", "line_number": 47, "usage_type": "name"}, {"api_name": "django.contrib.messages.warning", "line_number": 53, "usage_type": "call"}, {"api_name": "django.contrib.messages", "line_number": 53, "usage_type": "name"}, {"api_name": "django.shortcuts.redirect", "line_number": 54, "usage_type": "call"}, {"api_name": "django.shortcuts.reverse", "line_number": 54, "usage_type": "call"}, {"api_name": "django.contrib.messages.success", "line_number": 57, "usage_type": "call"}, {"api_name": "django.contrib.messages", "line_number": 57, "usage_type": "name"}, {"api_name": "django.shortcuts.redirect", "line_number": 58, "usage_type": "call"}, {"api_name": "django.shortcuts.reverse", "line_number": 58, "usage_type": "call"}, {"api_name": "django.contrib.auth.decorators.login_required", "line_number": 42, "usage_type": "name"}, {"api_name": "django.shortcuts.get_object_or_404", "line_number": 64, "usage_type": "call"}, {"api_name": "products.models.Product", "line_number": 64, "usage_type": "argument"}, {"api_name": "profiles.models.UserProfile.objects.get", "line_number": 65, "usage_type": "call"}, {"api_name": "profiles.models.UserProfile.objects", "line_number": 65, "usage_type": "attribute"}, {"api_name": "profiles.models.UserProfile", "line_number": 65, "usage_type": "name"}, {"api_name": "django.shortcuts.get_object_or_404", "line_number": 67, "usage_type": "call"}, {"api_name": "models.Wishlist", "line_number": 67, "usage_type": "argument"}, {"api_name": "django.contrib.messages.success", "line_number": 70, "usage_type": "call"}, {"api_name": "django.contrib.messages", "line_number": 70, "usage_type": "name"}, {"api_name": "django.shortcuts.redirect", "line_number": 72, "usage_type": "call"}, {"api_name": "django.shortcuts.reverse", "line_number": 72, "usage_type": "call"}, {"api_name": "django.contrib.auth.decorators.login_required", "line_number": 61, "usage_type": "name"}]}
{"seq_id": "337877703", "text": "import os\n\nfrom torch.utils import data\nfrom torchvision import transforms\nfrom PIL import Image\n\n\ndef get_transform():\n \"\"\"Module for image pre-processing definition.\n\n You can customize this module.\n \"\"\"\n normalize = transforms.Normalize(\n mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],\n std=[x / 255.0 for x in [63.0, 62.1, 66.7]])\n transform = [\n transforms.Resize((224, 224)),\n transforms.ToTensor(),\n normalize\n ]\n return transforms.Compose(transform)\n\n\nclass CustomDataset(data.Dataset):\n \"\"\"Dataset class.\n\n This class is used for internal NSML inference system.\n You can modify this module for improving your data loading efficiency.\n \"\"\"\n def __init__(self, root, transform):\n self.data_root = os.path.join(root, 'test_data')\n self.transform = transform\n self.image_ids = [img for img in os.listdir(self.data_root)]\n\n def __getitem__(self, idx):\n image_id = self.image_ids[idx]\n image = Image.open(os.path.join(self.data_root, image_id))\n image = image.convert('RGB')\n image = self.transform(image)\n return image, image_id\n\n def __len__(self):\n return len(self.image_ids)\n\n\ndef data_loader(root, batch_size=64):\n \"\"\"Test data loading module.\n\n Args:\n root: string. dataset path.\n batch_size: int.\n\n Returns:\n DataLoader instance\n \"\"\"\n input_transform = get_transform()\n dataset = CustomDataset(root, input_transform)\n return data.DataLoader(dataset=dataset,\n batch_size=batch_size,\n shuffle=False)\n", "sub_path": "iitp_trash/data_local_loader.py", "file_name": "data_local_loader.py", "file_ext": "py", "file_size_in_byte": 1644, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "torchvision.transforms.Normalize", "line_number": 13, "usage_type": "call"}, {"api_name": "torchvision.transforms", "line_number": 13, "usage_type": "name"}, {"api_name": "torchvision.transforms.Resize", "line_number": 17, "usage_type": "call"}, {"api_name": "torchvision.transforms", "line_number": 17, "usage_type": "name"}, {"api_name": "torchvision.transforms.ToTensor", "line_number": 18, "usage_type": "call"}, {"api_name": "torchvision.transforms", "line_number": 18, "usage_type": "name"}, {"api_name": "torchvision.transforms.Compose", "line_number": 21, "usage_type": "call"}, {"api_name": "torchvision.transforms", "line_number": 21, "usage_type": "name"}, {"api_name": "torch.utils.data.Dataset", "line_number": 24, "usage_type": "attribute"}, {"api_name": "torch.utils.data", "line_number": 24, "usage_type": "name"}, {"api_name": "os.path.join", "line_number": 31, "usage_type": "call"}, {"api_name": "os.path", "line_number": 31, "usage_type": "attribute"}, {"api_name": "os.listdir", "line_number": 33, "usage_type": "call"}, {"api_name": "PIL.Image.open", "line_number": 37, "usage_type": "call"}, {"api_name": "PIL.Image", "line_number": 37, "usage_type": "name"}, {"api_name": "os.path.join", "line_number": 37, "usage_type": "call"}, {"api_name": "os.path", "line_number": 37, "usage_type": "attribute"}, {"api_name": "torch.utils.data.DataLoader", "line_number": 58, "usage_type": "call"}, {"api_name": "torch.utils.data", "line_number": 58, "usage_type": "name"}]}
{"seq_id": "362034994", "text": "# -*- coding: utf-8 -*-\n# pylint: disable=W0621\nimport pytest\nfrom unittestzero import Assert\nfrom fixtures.server_roles import default_roles, server_roles\n\n@pytest.mark.nondestructive\n@pytest.mark.fixtureconf(server_roles=default_roles+('automate',))\n@pytest.mark.usefixtures(\n \"maximized\",\n \"setup_infrastructure_providers\",\n \"setup_pxe_provision\",\n \"mgmt_sys_api_clients\")\nclass TestTemplateProvisioning:\n def test_linux_template_cancel(\n self,\n provisioning_start_page,\n provisioning_data_basic_only):\n '''Test Cancel button'''\n provisioning_start_page.click_on_template_item(\n provisioning_data_basic_only[\"template\"])\n provision_pg = provisioning_start_page.click_on_continue()\n vm_pg = provision_pg.click_on_cancel()\n Assert.true(vm_pg.is_the_current_page,\n \"not returned to the correct page\")\n\n def test_linux_template_workflow(\n self,\n server_roles,\n provisioning_start_page,\n provisioning_data,\n mgmt_sys_api_clients,\n random_name):\n '''Test Basic Provisioning Workflow'''\n assert len(server_roles) == len(default_roles) + 1\n provisioning_start_page.click_on_template_item(\n provisioning_data[\"template\"])\n provision_pg = provisioning_start_page.click_on_continue()\n self.complete_provision_pages_info(provisioning_data, provision_pg, \\\n random_name)\n vm_pg = assert_vm_state(provisioning_data, provision_pg, \"on\", \\\n random_name)\n remove_vm(provisioning_data, vm_pg, mgmt_sys_api_clients, \\\n random_name)\n\n def complete_provision_pages_info(self,\n provisioning_data, provision_pg, random_name):\n ''' Fills in data for Provisioning tabs'''\n tab_buttons = provision_pg.tabbutton_region\n request_pg = tab_buttons.tabbutton_by_name(\"Request\").click()\n request_pg = request_pg.fill_fields(\n \"admin@example.com\",\n \"admin\",\n \"admin\",\n \"Adding a test note\",\n \"Manager Name\")\n purpose_pg = tab_buttons.tabbutton_by_name(\"Purpose\").click()\n # tree = purpose_pg.click_on_nodes(provisioning_data[\"node\"],\n # provisioning_data[\"child_node\")\n catalog_pg = tab_buttons.tabbutton_by_name(\"Catalog\").click()\n catalog_pg.fill_fields(\n provisioning_data[\"provision_type\"],\n provisioning_data[\"pxe_server\"],\n provisioning_data[\"server_image\"],\n str(provisioning_data[\"count\"]),\n '%s%s' % (provisioning_data[\"vm_name\"], random_name),\n provisioning_data[\"vm_description\"])\n environment_pg = tab_buttons.tabbutton_by_name(\"Environment\").click()\n environment_pg.fill_fields(\n unicode(provisioning_data[\"host\"]),\n unicode(provisioning_data[\"datastore\"]))\n hardware_pg = tab_buttons.tabbutton_by_name(\"Hardware\").click()\n network_pg = tab_buttons.tabbutton_by_name(\"Network\").click()\n if (\"PXE\" in provisioning_data[\"provision_type\"]) or \\\n (\"ISO\" in provisioning_data[\"provision_type\"]):\n customize_pg = tab_buttons.tabbutton_by_name(\"Customize\").click()\n customize_pg.fill_fields(\n provisioning_data[\"root_password\"],\n provisioning_data[\"address_node_value\"],\n provisioning_data[\"customization_template\"])\n schedule_pg = tab_buttons.tabbutton_by_name(\"Schedule\").click()\n schedule_pg.fill_fields(\n provisioning_data[\"when_to_provision\"],\n provisioning_data[\"power_on\"],\n str(provisioning_data[\"time_until_retirement\"]))\n\n services_requests_pg = schedule_pg.click_on_submit()\n Assert.true(services_requests_pg.is_the_current_page,\n \"not returned to the correct page\")\n Assert.equal(services_requests_pg.flash_message,\n \"VM Provision Request was Submitted, \"\\\n \"you will be notified when your VMs are ready\")\n services_requests_pg.approve_request(1)\n services_requests_pg.wait_for_request_status(\"Last 24 Hours\", \\\n \"Finished\", 12)\n\ndef assert_vm_state(provisioning_data, current_page, \\\n current_state, random_name):\n ''' Asserts that the VM is created in the expected state '''\n vm_pg = current_page.header.site_navigation_menu(\n 'Infrastructure').sub_navigation_menu('Virtual Machines').click()\n vm_pg.refresh()\n vm_pg.wait_for_vm_state_change( '%s%s' % (provisioning_data[\"vm_name\"],\n random_name), 'on', 12)\n Assert.equal(vm_pg.quadicon_region.get_quadicon_by_title(\n '%s%s' % (provisioning_data[\"vm_name\"], random_name))\\\n .current_state, current_state,\n \"vm not in correct state: \" + current_state)\n return vm_pg\n\ndef remove_vm(provisioning_data,\n current_page, provider_api_clients, random_name):\n '''Powers off and removes the VM'''\n vm_pg = current_page.header.site_navigation_menu(\n 'Infrastructure').sub_navigation_menu('Virtual Machines').click()\n vm_pg.power_off(['%s%s' % (provisioning_data[\"vm_name\"], random_name)])\n Assert.true(vm_pg.flash.message.startswith(\"Stop initiated\"))\n vm_pg.wait_for_vm_state_change(\n '%s%s' % (provisioning_data[\"vm_name\"], random_name), 'off', 12)\n Assert.equal(vm_pg.quadicon_region.get_quadicon_by_title(\n '%s%s' % (provisioning_data[\"vm_name\"], random_name))\\\n .current_state, 'off', \"vm running\")\n for provider in provider_api_clients.values():\n if ('%s%s' % (provisioning_data[\"vm_name\"], random_name) + \"/\" +\n '%s%s' % (provisioning_data[\"vm_name\"], random_name) + \".vmx\"\n ) in provider.list_vm() or \\\n '%s%s' % (provisioning_data[\"vm_name\"], random_name) \\\n in provider.list_vm():\n provider.delete_vm('%s%s' % (provisioning_data[\"vm_name\"], \\\n random_name))\n\n", "sub_path": "tests/ui/provisioning/test_template_provisioning.py", "file_name": "test_template_provisioning.py", "file_ext": "py", "file_size_in_byte": 6155, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "unittestzero.Assert.true", "line_number": 24, "usage_type": "call"}, {"api_name": "unittestzero.Assert", "line_number": 24, "usage_type": "name"}, {"api_name": "fixtures.server_roles.server_roles", "line_number": 35, "usage_type": "argument"}, {"api_name": "fixtures.server_roles.default_roles", "line_number": 35, "usage_type": "argument"}, {"api_name": "unittestzero.Assert.true", "line_number": 88, "usage_type": "call"}, {"api_name": "unittestzero.Assert", "line_number": 88, "usage_type": "name"}, {"api_name": "unittestzero.Assert.equal", "line_number": 90, "usage_type": "call"}, {"api_name": "unittestzero.Assert", "line_number": 90, "usage_type": "name"}, {"api_name": "pytest.mark", "line_number": 7, "usage_type": "attribute"}, {"api_name": "pytest.mark.fixtureconf", "line_number": 8, "usage_type": "call"}, {"api_name": "pytest.mark", "line_number": 8, "usage_type": "attribute"}, {"api_name": "fixtures.server_roles.default_roles", "line_number": 8, "usage_type": "name"}, {"api_name": "pytest.mark.usefixtures", "line_number": 9, "usage_type": "call"}, {"api_name": "pytest.mark", "line_number": 9, "usage_type": "attribute"}, {"api_name": "unittestzero.Assert.equal", "line_number": 105, "usage_type": "call"}, {"api_name": "unittestzero.Assert", "line_number": 105, "usage_type": "name"}, {"api_name": "unittestzero.Assert.true", "line_number": 117, "usage_type": "call"}, {"api_name": "unittestzero.Assert", "line_number": 117, "usage_type": "name"}, {"api_name": "unittestzero.Assert.equal", "line_number": 120, "usage_type": "call"}, {"api_name": "unittestzero.Assert", "line_number": 120, "usage_type": "name"}]}
{"seq_id": "626559559", "text": "import torch.nn as nn\nimport torch\nimport torch.nn.functional as F\nfrom torch.nn.utils import spectral_norm\nimport mit_resnet\nfrom torchvision import models\nfrom non_local_embedded_gaussian import NONLocalBlock2D\n\nMAX_LENGTH = 40\n\nPAD_token = 0\nSOS_token = 1\nEOS_token = 2\n\nclass ResidualBlock(nn.Module):\n def __init__(self, input_channels, output_channels, stride=1):\n super(ResidualBlock, self).__init__()\n self.input_channels = input_channels\n self.output_channels = output_channels\n self.stride = stride\n self.bn1 = nn.BatchNorm2d(input_channels)\n self.relu = nn.ReLU(inplace=True)\n self.conv1 = nn.Conv2d(input_channels, int(output_channels / 4), 1, 1, bias=False)\n self.bn2 = nn.BatchNorm2d(int(output_channels / 4))\n self.relu = nn.ReLU(inplace=True)\n self.conv2 = nn.Conv2d(int(output_channels / 4), int(output_channels / 4), 3, stride, padding=1, bias=False)\n self.bn3 = nn.BatchNorm2d(int(output_channels / 4))\n self.relu = nn.ReLU(inplace=True)\n self.conv3 = nn.Conv2d(int(output_channels / 4), output_channels, 1, 1, bias=False)\n self.conv4 = nn.Conv2d(input_channels, output_channels, 1, stride, bias=False)\n\n def forward(self, x):\n residual = x\n out = self.bn1(x)\n out1 = self.relu(out)\n out = self.conv1(out1)\n out = self.bn2(out)\n out = self.relu(out)\n out = self.conv2(out)\n out = self.bn3(out)\n out = self.relu(out)\n out = self.conv3(out)\n if (self.input_channels != self.output_channels) or (self.stride != 1):\n residual = self.conv4(out1)\n out += residual\n return out\n\nclass cnn_att(nn.Module):\n # input size is 8*8\n def __init__(self, in_channels, out_channels):\n super(cnn_att, self).__init__()\n self.first_residual_blocks = ResidualBlock(in_channels, out_channels)\n\n self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n self.bn = self.bn4 = nn.BatchNorm2d(in_channels, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n\n self.trunk_branches = nn.Sequential(\n ResidualBlock(in_channels, out_channels),\n ResidualBlock(in_channels, out_channels)\n )\n\n self.mpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # 4*4\n\n self.middle_2r_blocks = nn.Sequential(\n ResidualBlock(in_channels, out_channels),\n ResidualBlock(in_channels, out_channels)\n )\n\n # self.interpolation1 = nn.UpsamplingBilinear2d(size=size) # 8*8\n\n self.conv1_1_blocks = nn.Sequential(\n nn.BatchNorm2d(out_channels),\n nn.ReLU(inplace=True),\n nn.Conv2d(out_channels, out_channels, kernel_size=1, stride=1, bias=False),\n # nn.BatchNorm2d(out_channels),\n # nn.ReLU(inplace=True),\n # nn.Conv2d(out_channels, out_channels, kernel_size=1, stride=1, bias = False),\n nn.Sigmoid()\n )\n\n\n self.last_blocks = ResidualBlock(in_channels, out_channels)\n\n def forward(self, x, size):\n x = self.bn(self.conv(x))\n out_trunk = self.bn(self.conv(x))\n out_mpool1 = self.mpool1(x)\n out_middle_2r_blocks = self.bn(self.conv(out_mpool1))\n #\n # out_interp = self.interpolation1(out_middle_2r_blocks) + out_trunk\n out_interp = F.upsample(out_middle_2r_blocks, size=size, mode='bilinear', align_corners=True) + out_trunk\n # print(out_skip2_connection.data)\n # print(out_interp3.data)\n out_conv1_1_blocks = self.conv1_1_blocks(out_interp)\n out = (1 + out_conv1_1_blocks) * out_trunk\n out_last = self.bn(self.conv(out))\n\n return out_last\n\nclass ResnetDilated(nn.Module):\n def __init__(self, orig_resnet, dilate_scale=8):\n super(ResnetDilated, self).__init__()\n from functools import partial\n\n if dilate_scale == 8:\n orig_resnet.layer3.apply(\n partial(self._nostride_dilate, dilate=2))\n orig_resnet.layer4.apply(\n partial(self._nostride_dilate, dilate=4))\n elif dilate_scale == 4:\n orig_resnet.layer2.apply(\n partial(self._nostride_dilate, dilate=2))\n orig_resnet.layer3.apply(\n partial(self._nostride_dilate, dilate=2))\n orig_resnet.layer4.apply(\n partial(self._nostride_dilate, dilate=4))\n\n # take pretrained resnet, except AvgPool and FC\n self.conv1 = orig_resnet.conv1\n self.bn1 = orig_resnet.bn1\n self.relu1 = orig_resnet.relu1\n self.conv2 = orig_resnet.conv2\n self.bn2 = orig_resnet.bn2\n self.relu2 = orig_resnet.relu2\n self.conv3 = orig_resnet.conv3\n self.bn3 = orig_resnet.bn3\n self.relu3 = orig_resnet.relu3\n self.maxpool = orig_resnet.maxpool\n self.layer1 = orig_resnet.layer1\n self.layer2 = orig_resnet.layer2\n self.layer3 = orig_resnet.layer3\n self.layer4 = orig_resnet.layer4\n self.non_local1 = NONLocalBlock2D(64, sub_sample=True, bn_layer=True)\n self.non_local2 = NONLocalBlock2D(128, sub_sample=True, bn_layer=True)\n\n def _nostride_dilate(self, m, dilate):\n classname = m.__class__.__name__\n if classname.find('Conv') != -1:\n # the convolution with stride\n if m.stride == (2, 2):\n m.stride = (1, 1)\n if m.kernel_size == (3, 3):\n m.dilation = (dilate//2, dilate//2)\n m.padding = (dilate//2, dilate//2)\n # other convoluions\n else:\n if m.kernel_size == (3, 3):\n m.dilation = (dilate, dilate)\n m.padding = (dilate, dilate)\n\n def forward(self, x, return_feature_maps=True):\n conv_out = []\n\n x = self.relu1(self.bn1(self.conv1(x)))\n x = self.relu2(self.bn2(self.conv2(x)))\n x = self.relu3(self.bn3(self.conv3(x)))\n x = self.maxpool(x)\n\n x = self.non_local1(self.layer1(x))\n conv_out.append(x)\n x = self.non_local2(self.layer2(x))\n conv_out.append(x)\n x = self.layer3(x)\n conv_out.append(x)\n x = self.layer4(x)\n conv_out.append(x)\n\n if return_feature_maps:\n return conv_out\n return [x]\n\nclass CNN(nn.Module):\n def __init__(self, imgH, nc, leakyRelu=False):\n super(CNN, self).__init__()\n assert imgH % 16 == 0, 'imgH has to be a multiple of 16'\n\n ks = [3, 3, 3, 3, 3, 3, 2]\n ps = [1, 1, 1, 1, 1, 1, 0]\n ss = [1, 1, 1, 1, 1, 1, 1]\n nm = [64, 128, 256, 256, 512, 512, 512]\n\n cnn = nn.Sequential()\n self.orig_resnet = mit_resnet.__dict__['resnet18'](pretrained=False)\n self.net_encoder = ResnetDilated(self.orig_resnet,\n dilate_scale=8)\n\n self.att = cnn_att(512, 512)\n self.conv4 = nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n self.bn4 = nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n self.relu4 = nn.ReLU(512)\n self.conv5 = nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n self.relu5 = nn.ReLU(512)\n self.bn5 = nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n self.pool3 = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 1), padding=(0, 1), dilation=1, ceil_mode=False)\n\n self.conv6 = nn.Conv2d(512, 1024, kernel_size=(2, 2), stride=(2, 1), padding=(0, 0))\n self.pool4 = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 1), padding=(0, 1), dilation=1, ceil_mode=False)\n self.bn6 = nn.BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n self.relu6 = nn.ReLU(1024)\n\n def convRelu(i, batchNormalization=False):\n nIn = nc if i == 0 else nm[i - 1]\n nOut = nm[i]\n cnn.add_module('conv{0}'.format(i),\n nn.Conv2d(nIn, nOut, ks[i], ss[i], ps[i]))\n if batchNormalization:\n cnn.add_module('batchnorm{0}'.format(i), nn.BatchNorm2d(nOut))\n if leakyRelu:\n cnn.add_module('relu{0}'.format(i),\n nn.LeakyReLU(0.2, inplace=True))\n else:\n cnn.add_module('relu{0}'.format(i), nn.ReLU(True))\n\n convRelu(0)\n cnn.add_module('pooling{0}'.format(0), nn.MaxPool2d(2, 2)) # 64x16x64\n convRelu(1)\n cnn.add_module('pooling{0}'.format(1), nn.MaxPool2d(2, 2)) # 128x8x32\n convRelu(2, True)\n convRelu(3)\n cnn.add_module('pooling{0}'.format(2),\n nn.MaxPool2d((2, 2), (2, 1), (0, 1))) # 256x4x16\n convRelu(4, True)\n convRelu(5)\n cnn.add_module('pooling{0}'.format(3),\n nn.MaxPool2d((2, 2), (2, 1), (0, 1))) # 512x2x16\n convRelu(6, True) # 512x1x16\n\n self.cnn = cnn\n self.attention = SelfAttention(1024)\n\n def forward(self, input):\n conv_all = self.net_encoder(input)\n\n conv = self.conv4(conv_all[3])\n conv = self.bn4(conv)\n conv = self.relu4(conv)\n conv = self.att(conv, conv.size()[2:])\n conv = self.conv5(conv)\n conv = self.bn5(conv)\n conv = self.relu5(conv)\n conv = self.pool3(conv)\n conv = self.conv6(conv)\n conv = self.pool4(conv)\n conv = self.bn6(conv)\n conv = self.relu6(conv)\n conv = self.attention(conv)\n\n b, c, h, w = conv.size()\n assert h == 1, \"the height of conv must be 1\"\n conv = conv.squeeze(2) # b *512 * width\n conv = conv.permute(0, 2, 1) # [b, w, c]\n output = conv\n return output\n\nclass SelfAttention(nn.Module):\n\n def __init__(self, d):\n super(SelfAttention, self).__init__()\n\n assert d % 8 == 0\n self.projections = nn.ModuleList([\n spectral_norm(nn.Conv2d(d, d // 8, 1)),\n spectral_norm(nn.Conv2d(d, d // 8, 1)),\n spectral_norm(nn.Conv2d(d, d, 1))\n ])\n self.gamma = nn.Parameter(torch.zeros(1)) # shape [1]\n\n def forward(self, x):\n \"\"\"\n Arguments:\n x: a float tensor with shape [b, d, h, w].\n Returns:\n a float tensor with shape [b, d, h, w].\n \"\"\"\n b, d, h, w = x.size()\n\n q = self.projections[0](x)\n k = self.projections[1](x)\n v = self.projections[2](x)\n\n q = q.view(b, d // 8, h * w).permute(0, 2, 1)\n k = k.view(b, d // 8, h * w)\n v = v.view(b, d, h * w).permute(0, 2, 1)\n\n attention = torch.bmm(q, k) # shape [b, h * w, h * w]\n attention = F.softmax(attention, dim=2)\n\n out = torch.bmm(attention, v) # shape [b, h * w, d]\n out = out.permute(0, 2, 1).view(b, d, h, w)\n return x + self.gamma * out\n\nclass EncoderRNN(nn.Module):\n def __init__(self, input_size, hidden_size, n_layers=1, dropout=0.1):\n super(EncoderRNN, self).__init__()\n self.input_size = input_size\n self.hidden_size = hidden_size\n self.n_layers = n_layers\n self.gru = nn.GRU(self.input_size, self.hidden_size, num_layers=self.n_layers, bidirectional=True, dropout=(0 if n_layers == 1 else dropout))\n\n def forward(self, input, hidden=None):\n self.gru.flatten_parameters()\n outputs, hidden = self.gru(input, hidden)\n\n outputs = outputs[:,:,:self.hidden_size] + outputs[:,:,self.hidden_size:]\n return outputs, hidden\n\n\n\n# Luong attention layer\nclass Attn(torch.nn.Module):\n def __init__(self, method, hidden_size):\n super(Attn, self).__init__()\n self.method = method\n if self.method not in ['dot', 'general', 'concat']:\n raise ValueError(self.method, \"is not an appropriate attention method.\")\n self.hidden_size = hidden_size\n if self.method == 'general':\n self.attn = torch.nn.Linear(self.hidden_size, hidden_size)\n elif self.method == 'concat':\n self.attn = torch.nn.Linear(self.hidden_size * 2, hidden_size)\n self.v = torch.nn.Parameter(torch.FloatTensor(hidden_size))\n\n def dot_score(self, hidden, encoder_output):\n return torch.sum(hidden * encoder_output, dim=2)\n\n def general_score(self, hidden, encoder_output):\n energy = self.attn(encoder_output)\n return torch.sum(hidden * energy, dim=2)\n\n def concat_score(self, hidden, encoder_output):\n energy = self.attn(torch.cat((hidden.expand(encoder_output.size(0), -1, -1), encoder_output), 2)).tanh()\n return torch.sum(self.v * energy, dim=2)\n\n def forward(self, hidden, encoder_outputs):\n # Calculate the attention weights (energies) based on the given method\n if self.method == 'general':\n attn_energies = self.general_score(hidden, encoder_outputs)\n elif self.method == 'concat':\n attn_energies = self.concat_score(hidden, encoder_outputs)\n elif self.method == 'dot':\n attn_energies = self.dot_score(hidden, encoder_outputs)\n\n # Transpose max_length and batch_size dimensions\n attn_energies = attn_energies.t()\n\n # Return the softmax normalized probability scores (with added dimension)\n return F.softmax(attn_energies, dim=1).unsqueeze(1)\n\nclass LuongAttnDecoderRNN(nn.Module):\n def __init__(self, attn_model, embedding, hidden_size, output_size, n_layers=1, dropout=0.1):\n super(LuongAttnDecoderRNN, self).__init__()\n\n # Keep for reference\n self.attn_model = attn_model\n self.hidden_size = hidden_size\n self.output_size = output_size\n self.n_layers = n_layers\n self.dropout = dropout\n\n # Define layers\n self.embedding = embedding\n self.embedding_dropout = nn.Dropout(dropout)\n self.gru = nn.GRU(hidden_size, hidden_size, n_layers, dropout=(0 if n_layers == 1 else dropout))\n self.concat = nn.Linear(hidden_size * 2, hidden_size)\n self.out = nn.Linear(hidden_size, output_size)\n\n self.attn = Attn(attn_model, hidden_size)\n\n def forward(self, input_step, last_hidden, encoder_outputs):\n # Note: we run this one step (word) at a time\n # Get embedding of current input word\n embedded = self.embedding(input_step).view(1,-1,self.hidden_size)\n embedded = self.embedding_dropout(embedded)\n # Forward through unidirectional GRU\n self.gru.flatten_parameters()\n rnn_output, hidden = self.gru(embedded, last_hidden)\n # Calculate attention weights from the current GRU output\n attn_weights = self.attn(rnn_output, encoder_outputs)\n # Multiply attention weights to encoder outputs to get new \"weighted sum\" context vector\n context = attn_weights.bmm(encoder_outputs.transpose(0, 1))\n # Concatenate weighted context vector and GRU output using Luong eq. 5\n rnn_output = rnn_output.squeeze(0)\n context = context.squeeze(1)\n concat_input = torch.cat((rnn_output, context), 1)\n concat_output = torch.tanh(self.concat(concat_input))\n # Predict next word using Luong eq. 6\n output = self.out(concat_output)\n output = F.log_softmax(output, dim=1)\n # Return output and final hidden state\n return output, hidden\n\n\nclass model(nn.Module):\n def __init__(self, cnn, encoder, decoder):\n super(model, self).__init__()\n\n self.cnn = cnn\n self.encoder = encoder\n self.decoder = decoder\n\n def forward(self, image, max_length):\n\n batch_size = image.size()[0]\n\n input_tensor = self.cnn(image)\n input_tensor = input_tensor.permute(1, 0, 2)\n\n encoder_outputs, encoder_hidden = self.encoder(\n input_tensor)\n\n decoder_input = torch.tensor([[SOS_token] * batch_size]).cuda()\n decoder_hidden = encoder_hidden[:self.decoder.n_layers]\n\n decoder_outputs = []\n for di in range(max_length):\n decoder_output, decoder_hidden = self.decoder(decoder_input, decoder_hidden, encoder_outputs)\n decoder_scores, decoder_input = torch.max(decoder_output, dim=1)\n decoder_outputs.append(decoder_output)\n # loss += self.criterion(decoder_output, target_tensor[di].squeeze(1))\n decoder_outputs = torch.stack(decoder_outputs, 0)\n return decoder_outputs.permute(1, 0, 2)\n\n\n\n\n", "sub_path": "model_resnet_3.py", "file_name": "model_resnet_3.py", "file_ext": "py", "file_size_in_byte": 16568, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "torch.nn.Module", "line_number": 15, "usage_type": "attribute"}, {"api_name": "torch.nn", "line_number": 15, "usage_type": "name"}, {"api_name": "torch.nn.BatchNorm2d", "line_number": 21, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 21, "usage_type": "name"}, {"api_name": "torch.nn.ReLU", "line_number": 22, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 22, "usage_type": "name"}, {"api_name": "torch.nn.Conv2d", "line_number": 23, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 23, "usage_type": "name"}, {"api_name": "torch.nn.BatchNorm2d", "line_number": 24, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 24, "usage_type": "name"}, {"api_name": "torch.nn.ReLU", "line_number": 25, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 25, "usage_type": "name"}, {"api_name": "torch.nn.Conv2d", "line_number": 26, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 26, "usage_type": "name"}, {"api_name": "torch.nn.BatchNorm2d", "line_number": 27, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 27, "usage_type": "name"}, {"api_name": "torch.nn.ReLU", "line_number": 28, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 28, "usage_type": "name"}, {"api_name": "torch.nn.Conv2d", "line_number": 29, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 29, "usage_type": "name"}, {"api_name": "torch.nn.Conv2d", "line_number": 30, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 30, "usage_type": "name"}, {"api_name": "torch.nn.Module", "line_number": 48, "usage_type": "attribute"}, {"api_name": "torch.nn", "line_number": 48, "usage_type": "name"}, {"api_name": "torch.nn.Conv2d", "line_number": 54, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 54, "usage_type": "name"}, {"api_name": "torch.nn.BatchNorm2d", "line_number": 55, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 55, "usage_type": "name"}, {"api_name": "torch.nn.Sequential", "line_number": 57, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 57, "usage_type": "name"}, {"api_name": "torch.nn.MaxPool2d", "line_number": 62, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 62, "usage_type": "name"}, {"api_name": "torch.nn.Sequential", "line_number": 64, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 64, "usage_type": "name"}, {"api_name": "torch.nn.Sequential", "line_number": 71, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 71, "usage_type": "name"}, {"api_name": "torch.nn.BatchNorm2d", "line_number": 72, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 72, "usage_type": "name"}, {"api_name": "torch.nn.ReLU", "line_number": 73, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 73, "usage_type": "name"}, {"api_name": "torch.nn.Conv2d", "line_number": 74, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 74, "usage_type": "name"}, {"api_name": "torch.nn.Sigmoid", "line_number": 78, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 78, "usage_type": "name"}, {"api_name": "torch.nn.functional.upsample", "line_number": 91, "usage_type": "call"}, {"api_name": "torch.nn.functional", "line_number": 91, "usage_type": "name"}, {"api_name": "torch.nn.Module", "line_number": 100, "usage_type": "attribute"}, {"api_name": "torch.nn", "line_number": 100, "usage_type": "name"}, {"api_name": "functools.partial", "line_number": 107, "usage_type": "call"}, {"api_name": "functools.partial", "line_number": 109, "usage_type": "call"}, {"api_name": "functools.partial", "line_number": 112, "usage_type": "call"}, {"api_name": "functools.partial", "line_number": 114, "usage_type": "call"}, {"api_name": "functools.partial", "line_number": 116, "usage_type": "call"}, {"api_name": "non_local_embedded_gaussian.NONLocalBlock2D", "line_number": 133, "usage_type": "call"}, {"api_name": "non_local_embedded_gaussian.NONLocalBlock2D", "line_number": 134, "usage_type": "call"}, {"api_name": "torch.nn.Module", "line_number": 172, "usage_type": "attribute"}, {"api_name": "torch.nn", "line_number": 172, "usage_type": "name"}, {"api_name": "torch.nn.Sequential", "line_number": 182, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 182, "usage_type": "name"}, {"api_name": "mit_resnet.__dict__", "line_number": 183, "usage_type": "attribute"}, {"api_name": "{'partial': 'functools.partial'}", "line_number": 184, "usage_type": "call"}, {"api_name": "torch.nn.Conv2d", "line_number": 188, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 188, "usage_type": "name"}, {"api_name": "torch.nn.BatchNorm2d", "line_number": 189, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 189, "usage_type": "name"}, {"api_name": "torch.nn.ReLU", "line_number": 190, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 190, "usage_type": "name"}, {"api_name": "torch.nn.Conv2d", "line_number": 191, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 191, "usage_type": "name"}, {"api_name": "torch.nn.ReLU", "line_number": 192, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 192, "usage_type": "name"}, {"api_name": "torch.nn.BatchNorm2d", "line_number": 193, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 193, "usage_type": "name"}, {"api_name": "torch.nn.MaxPool2d", "line_number": 194, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 194, "usage_type": "name"}, {"api_name": "torch.nn.Conv2d", "line_number": 196, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 196, "usage_type": "name"}, {"api_name": "torch.nn.MaxPool2d", "line_number": 197, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 197, "usage_type": "name"}, {"api_name": "torch.nn.BatchNorm2d", "line_number": 198, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 198, "usage_type": "name"}, {"api_name": "torch.nn.ReLU", "line_number": 199, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 199, "usage_type": "name"}, {"api_name": "torch.nn.Conv2d", "line_number": 205, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 205, "usage_type": "name"}, {"api_name": "torch.nn.BatchNorm2d", "line_number": 207, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 207, "usage_type": "name"}, {"api_name": "torch.nn.LeakyReLU", "line_number": 210, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 210, "usage_type": "name"}, {"api_name": "torch.nn.ReLU", "line_number": 212, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 212, "usage_type": "name"}, {"api_name": "torch.nn.MaxPool2d", "line_number": 215, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 215, "usage_type": "name"}, {"api_name": "torch.nn.MaxPool2d", "line_number": 217, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 217, "usage_type": "name"}, {"api_name": "torch.nn.MaxPool2d", "line_number": 221, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 221, "usage_type": "name"}, {"api_name": "torch.nn.MaxPool2d", "line_number": 225, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 225, "usage_type": "name"}, {"api_name": "torch.nn.Module", "line_number": 255, "usage_type": "attribute"}, {"api_name": "torch.nn", "line_number": 255, "usage_type": "name"}, {"api_name": "torch.nn.ModuleList", "line_number": 261, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 261, "usage_type": "name"}, {"api_name": "torch.nn.utils.spectral_norm", "line_number": 262, "usage_type": "call"}, {"api_name": "torch.nn.Conv2d", "line_number": 262, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 262, "usage_type": "name"}, {"api_name": "torch.nn.utils.spectral_norm", "line_number": 263, "usage_type": "call"}, {"api_name": "torch.nn.Conv2d", "line_number": 263, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 263, "usage_type": "name"}, {"api_name": "torch.nn.utils.spectral_norm", "line_number": 264, "usage_type": "call"}, {"api_name": "torch.nn.Conv2d", "line_number": 264, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 264, "usage_type": "name"}, {"api_name": "torch.nn.Parameter", "line_number": 266, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 266, "usage_type": "name"}, {"api_name": "torch.zeros", "line_number": 266, "usage_type": "call"}, {"api_name": "torch.bmm", "line_number": 285, "usage_type": "call"}, {"api_name": "torch.nn.functional.softmax", "line_number": 286, "usage_type": "call"}, {"api_name": "torch.nn.functional", "line_number": 286, "usage_type": "name"}, {"api_name": "torch.bmm", "line_number": 288, "usage_type": "call"}, {"api_name": "torch.nn.Module", "line_number": 292, "usage_type": "attribute"}, {"api_name": "torch.nn", "line_number": 292, "usage_type": "name"}, {"api_name": "torch.nn.GRU", "line_number": 298, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 298, "usage_type": "name"}, {"api_name": "torch.nn", "line_number": 310, "usage_type": "attribute"}, {"api_name": "torch.nn.Linear", "line_number": 318, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 318, "usage_type": "attribute"}, {"api_name": "torch.nn.Linear", "line_number": 320, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 320, "usage_type": "attribute"}, {"api_name": "torch.nn.Parameter", "line_number": 321, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 321, "usage_type": "attribute"}, {"api_name": "torch.FloatTensor", "line_number": 321, "usage_type": "call"}, {"api_name": "torch.sum", "line_number": 324, "usage_type": "call"}, {"api_name": "torch.sum", "line_number": 328, "usage_type": "call"}, {"api_name": "torch.cat", "line_number": 331, "usage_type": "call"}, {"api_name": "torch.sum", "line_number": 332, "usage_type": "call"}, {"api_name": "torch.nn.functional.softmax", "line_number": 347, "usage_type": "call"}, {"api_name": "torch.nn.functional", "line_number": 347, "usage_type": "name"}, {"api_name": "torch.nn.Module", "line_number": 349, "usage_type": "attribute"}, {"api_name": "torch.nn", "line_number": 349, "usage_type": "name"}, {"api_name": "torch.nn.Dropout", "line_number": 362, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 362, "usage_type": "name"}, {"api_name": "torch.nn.GRU", "line_number": 363, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 363, "usage_type": "name"}, {"api_name": "torch.nn.Linear", "line_number": 364, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 364, "usage_type": "name"}, {"api_name": "torch.nn.Linear", "line_number": 365, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 365, "usage_type": "name"}, {"api_name": "torch.cat", "line_number": 384, "usage_type": "call"}, {"api_name": "torch.tanh", "line_number": 385, "usage_type": "call"}, {"api_name": "torch.nn.functional.log_softmax", "line_number": 388, "usage_type": "call"}, {"api_name": "torch.nn.functional", "line_number": 388, "usage_type": "name"}, {"api_name": "torch.nn.Module", "line_number": 393, "usage_type": "attribute"}, {"api_name": "torch.nn", "line_number": 393, "usage_type": "name"}, {"api_name": "torch.tensor", "line_number": 411, "usage_type": "call"}, {"api_name": "torch.max", "line_number": 417, "usage_type": "call"}, {"api_name": "torch.stack", "line_number": 420, "usage_type": "call"}]}
{"seq_id": "422472836", "text": "#from __future__ import print_function\nimport cv2\nimport argparse\nimport os\nimport random\nimport torch\nimport torch.nn as nn\nimport torch.backends.cudnn as cudnn\nimport torch.optim as optim\nimport torchnet.meter as meter\nimport torchvision.datasets as dset\nimport torchvision.transforms as transforms\nimport torchvision.utils as vutils\nfrom torch.autograd import Variable\nfrom dataset import multiPIE\nfrom siamese_model_2nd import Siamese\nfrom contrastive import ContrastiveLoss\nimport numpy as np\n# import cv2\n#from pycrayon import CrayonClient\n \n#for plotting loss\nimport matplotlib\nmatplotlib.use('agg')\nimport matplotlib.pyplot as plt\nimport matplotlib.ticker as ticker\nimport time,math\nfrom logger import Logger\n# from models_Parsing import ParseNet\nsaveFile = open('/home/shumao/wyw_files/siamese_output_M_3/record.txt', 'w')\nsaveFile.write(\"niter:\" + str(50000) + \"\\n\")\nsaveFile.write(\"---lr:\" + str(0.0001) + \"\\n\")\nsaveFile.write(\"beta1:\" + str(0.7) + \"\\n\")\nsaveFile.write(\"W:-1-x-x-x-x-x-\" + \"\\n\")\nsaveFile.write(\"L1 Loss\" + \"\\n\")\nsaveFile.write(\"after load model from: train-3-28000pth\")\nlogger = Logger('./log_1');\n\nparser = argparse.ArgumentParser()\nparser.add_argument('--batchSize', type=int, default=64, help='input batch size')\nparser.add_argument('--loadSize', type=int, default=100, help='the height / width of the input image to network')\nparser.add_argument('--fineSize', type=int, default=96, help='the height / width of the input image to network')\nparser.add_argument('--id_num', type=int, default=200, help='Total training identity.')\nparser.add_argument('--pose_num', type=int, default=9, help='Total training pose.')\nparser.add_argument('--light_num', type=int, default=20, help='Total training light.')\nparser.add_argument('--niter', type=int, default=50000, help='number of iterations to train for')\nparser.add_argument('--lr', type=float, default=0.0001, help='learning rate, default=0.0002')\nparser.add_argument('--beta1', type=float, default=0.7, help='beta1 for adam. default=0.7')\nparser.add_argument('--cuda', action='store_true', help='enables cuda')\nparser.add_argument('--outf', default='/home/shumao/wyw_files/siamese_output_M_3', help='folder to output images and model checkpoints')\nparser.add_argument('--manualSeed', type=int, help='manual seed')\nparser.add_argument('--dataPath', default='/home/shumao/dr-gan/Data_new_realigned2/setting2/train/', help='which dataset to train on')\nparser.add_argument('--modelPath', default='/home/shumao/wyw_files/siamese_output_3/netS_28000.pth', help='which dataset to train on')\nparser.add_argument('--save_step', type=int, default=400, help='save weights every 400 iterations ')\nparser.add_argument('--labelPath', default='/home/shumao/dr-gan/Data_new_realigned2/setting2/Facedata/', help='which dataset to train on')\n\n\nopt = parser.parse_args()\nprint(opt) # print every parser arguments\n# print(opt.niter)\n\n\ntry:\n os.makedirs(opt.outf)\nexcept OSError:\n pass\n\nw_r = 1\n# w_cL = 0.02\n# w_cP = 0.02\n# w_cI = 0.02\n# w_P = 0.02\n# w_L = 0.02\n\nif opt.manualSeed is None:\n opt.manualSeed = random.randint(1, 10000)\nprint(\"Random Seed: \", opt.manualSeed)\nrandom.seed(opt.manualSeed)\ntorch.manual_seed(opt.manualSeed)\nif opt.cuda:\n torch.cuda.manual_seed_all(opt.manualSeed)\n\ncudnn.benchmark = True\n#---------------------Load Mask-------------------\nmask = np.load('mask_20.npy')\nmask = mask.astype(np.float32)\nM = torch.from_numpy(mask.transpose((2, 0, 1)))\nFinalMask = M.expand(opt.batchSize,3,96,96)\n# print m.size()\n# 3x96x96\n\n\n#---------------------Load DATA-------------------------\ndataset_1 = multiPIE(opt.dataPath,opt.loadSize,opt.fineSize,labelPath = opt.labelPath)\n# dataset_2 = multiPIE(opt.dataPath,opt.loadSize,opt.fineSize,opt.labelPath)\ndataset_test = multiPIE('/home/shumao/dr-gan/comparison/',opt.loadSize,opt.fineSize,labelPath = opt.labelPath)\nloader_train_1 = torch.utils.data.DataLoader(dataset=dataset_1,\n batch_size = opt.batchSize,\n shuffle=True,\n num_workers=4,\n drop_last = True)\n# loader_train_2 = torch.utils.data.Dataloader(dataset=dataset_1,\n# batch_size = opt.batchSize,\n# shuffle=True,\n# num_workers=4)\n\n\nloader_test = torch.utils.data.DataLoader(dataset=dataset_test,\n batch_size = 9,\n shuffle=False,\n num_workers=4)\ndata_train_1 = iter(loader_train_1)\n# data_train_2 = iter(loader_train_2)\ndata_test = iter(loader_test)\n\n\n#----------------------Parameters-----------------------\nnum_pose = opt.pose_num\nnum_light = opt.light_num\nnum_iden = opt.id_num\n\n\ndef weights_init(m):\n classname = m.__class__.__name__\n if classname.find('Conv') !=-1:\n m.weight.data.normal_(0.0, 0.02)\n elif classname.find('BatchNorm') !=-1:\n m.weight.data.normal_(1.0, 0.02)\n m.bias.data.fill_(0)\n\n\n\n\nnetS = Siamese()\nnetS.load_state_dict(torch.load(opt.modelPath))\n\n#-----------------params freeze-----------------\nfor param in netS.conv11.parameters():\n param.requires_grad = False\nfor param in netS.conv1r.parameters():\n param.requires_grad = False\nfor param in netS.conv12.parameters():\n param.requires_grad = False\nfor param in netS.conv21.parameters():\n param.requires_grad = False\nfor param in netS.conv22.parameters():\n param.requires_grad = False\nfor param in netS.conv23.parameters():\n param.requires_grad = False\nfor param in netS.conv31.parameters():\n param.requires_grad = False\nfor param in netS.conv32.parameters():\n param.requires_grad = False\nfor param in netS.conv33.parameters():\n param.requires_grad = False\nfor param in netS.conv41.parameters():\n param.requires_grad = False\nfor param in netS.conv42.parameters():\n param.requires_grad = False\nfor param in netS.conv43.parameters():\n param.requires_grad = False\nfor param in netS.conv51.parameters():\n param.requires_grad = False\nfor param in netS.conv52.parameters():\n param.requires_grad = False\nfor param in netS.conv53.parameters():\n param.requires_grad = False\nfor param in netS.convfc.parameters():\n param.requires_grad = False\n\n\n#-----------------params freeze-----------------\nif(opt.cuda):\n netS.cuda()\n\n#-------------------Loss & Optimization\n\noptimizerS = torch.optim.Adam(filter(lambda p: p.requires_grad, netS.parameters()),lr=opt.lr, betas=(opt.beta1, 0.999))\n\nposs_contrastive_loss = ContrastiveLoss() # load from the begining\nlight_contrastive_loss = ContrastiveLoss()\nidentity_contrastive_loss = ContrastiveLoss()\nreconstructe_loss = nn.L1Loss()\npose_class_loss = nn.CrossEntropyLoss()\nlight_class_loss = nn.CrossEntropyLoss()\n\n#------------------ Global Variables------------------\ninput_pose_1 = torch.LongTensor(opt.batchSize)\ninput_light_1 = torch.LongTensor(opt.batchSize)\n# input_pose_2 = torch.LongTensor(opt.batchSize)\n# input_light_2 = torch.LongTensor(opt.batchSize)\n\ninputImg_1 = torch.FloatTensor(opt.batchSize, 3, opt.fineSize, opt.fineSize)\ninputImg_2 = torch.FloatTensor(opt.batchSize, 3, opt.fineSize, opt.fineSize)\nGT = torch.FloatTensor(opt.batchSize, 3,opt.fineSize, opt.fineSize)\nsame_pose = torch.FloatTensor(opt.batchSize)\nsame_iden = torch.FloatTensor(opt.batchSize)\nsame_light = torch.FloatTensor(opt.batchSize)\n\n# w_1 = torch.FloatTensor(1)\n# w_2 = torch.FloatTensor(20)\n# w_3 = torch.FloatTensor(10)\n# w_4 = torch.FloatTensor(10)\n# w_5 = torch.FloatTensor(10)\n# w_6 = torch.FloatTensor(20)\n# output_pose_1_label = torch.LongTensor(opt.batchSize)\n# output_pose_2_label = torch.LongTensor(opt.batchSize)\n# output_light_1_label = torch.LongTensor(opt.batchSize)\n# output_light_2_label = torch.LongTensor(opt.batchSize)\n\ninput_pose_1 = Variable(input_pose_1)\n# input_pose_2 = Variable(input_pose_2)\ninput_light_1 = Variable(input_light_1)\n# input_light_2 = Variable(input_light_2)\n\ninputImg_1 = Variable(inputImg_1)\ninputImg_2 = Variable(inputImg_2)\nGT = Variable(GT)\nsame_pose = Variable(same_pose)\nsame_iden = Variable(same_iden)\nsame_light = Variable(same_light)\n\nFinalMask = Variable(FinalMask)\n\n# w_1 = Variable(w_1, requires_grad = False)\n# w_2 = Variable(w_2, requires_grad = False)\n# w_3 = Variable(w_3, requires_grad = False)\n# w_4 = Variable(w_4, requires_grad = False)\n# w_5 = Variable(w_5, requires_grad = False)\n# w_6 = Variable(w_6, requires_grad = False)\n\n\npose_mtr = meter.ConfusionMeter(k=opt.pose_num)\nlight_mtr = meter.ConfusionMeter(k=opt.light_num)\n\n\nif(opt.cuda):\n\n input_pose_1 = input_pose_1.cuda()\n # input_pose_2 = input_pose_2.cuda()\n input_light_1 = input_light_1.cuda()\n # input_light_2 = input_light_2.cuda()\n inputImg_1 = inputImg_1.cuda()\n inputImg_2 = inputImg_2.cuda()\n GT = GT.cuda()\n same_pose = same_pose.cuda()\n same_light = same_light.cuda()\n same_iden = same_iden.cuda()\n\n FinalMask = FinalMask.cuda()\n\n # w_1 = w_1.cuda()\n # w_2 = w_1.cuda()\n # w_3 = w_1.cuda()\n # w_4 = w_1.cuda()\n # w_5 = w_1.cuda()\n # w_6 = w_1.cuda()\n # poss_contrastive_loss.cuda()\n # light_contrastive_loss.cuda()\n # identity_contrastive_loss.cuda()\n pose_class_loss.cuda()\n light_class_loss.cuda()\n reconstructe_loss.cuda()\n\n\n#------------------test---------\n\n# k = 0 # for meter\n\nerr_total = 0\nerr_recon = 0\nerr_contraL = 0\nerr_contraP = 0\nerr_contraI = 0\nerr_classP = 0\nerr_classL = 0\n\ndef test(iteration, data_test, loader_test):\n try:\n images_1,po_1,li_1,GT_1,by_image,same_po,same_li,same_id = data_test.next()\n except StopIteration:\n data_test = iter(loader_test)\n images_1,po_1,li_1,GT_1,by_image,same_po,same_li,same_id = data_test.next()\n\n GT.data.resize_(GT_1.size()).copy_(GT_1)\n inputImg_1.data.resize_(images_1.size()).copy_(images_1)\n inputImg_2.data.resize_(by_image.size()).copy_(by_image)\n input_pose_1.data.resize_(po_1.size()).copy_(po_1)\n input_light_1.data.resize_(li_1.size()).copy_(li_1)\n\n\n output_pose_1, output_pose_2, output_light_1, output_light_2, out_f_1, out_f_2, out = netS(inputImg_1, inputImg_2)\n vutils.save_image(out.data,\n '%s/fake_samples_iteration_%03d.png' % (opt.outf, iteration), normalize=True)\n vutils.save_image(inputImg_1.data,\n '%s/input_samples_iteration_%03d.png' % (opt.outf, iteration), normalize=True)\n\n\n\n#-------------------train----------------------\nfor iteration in range(1,opt.niter+1):\n running_corrects = 0\n running_corrects_light = 0\n try:\n images_1,po_1,li_1,GT_1,by_image,same_po,same_li,same_id= data_train_1.next()\n except StopIteration:\n data_train_1 = iter(loader_train_1)\n images_1,po_1,li_1,GT_1,by_image,same_po,same_li,same_id = data_train_1.next()\n\n GT.data.resize_(GT_1.size()).copy_(GT_1)\n\n\n\n inputImg_1.data.resize_(images_1.size()).copy_(images_1)\n inputImg_2.data.resize_(by_image.size()).copy_(by_image)\n\n input_pose_1.data.resize_(po_1.size()).copy_(po_1)\n input_light_1.data.resize_(li_1.size()).copy_(li_1)\n\n same_pose.data.resize_(same_po.size()).copy_(same_po)\n same_light.data.resize_(same_li.size()).copy_(same_li)\n same_iden.data.resize_(same_id.size()).copy_(same_id)\n netS.zero_grad()\n\n output_pose_1, output_pose_2, output_light_1, output_light_2, out_f_1, out_f_2, out = netS(inputImg_1, inputImg_2)\n #-----------------mask test area-----------------------------\n # print out.data.type()\n # print GT.data.type()\n # print FinalMask.data.type() same\n # print FinalMask.data.size() 64x3x96x96\n # print FinalMask.data.size()\n # print out.data.size()\n\n Final_out = FinalMask * out\n\n Final_GT = FinalMask * GT\n\n\n #-----------------mask test area-----------------------------\n # f_1 & f_2 variable\n # same_iden variable\n err_recon = reconstructe_loss(Final_out, Final_GT)\n err_contraI = identity_contrastive_loss(out_f_1, out_f_2, same_iden)\n err_contraP = poss_contrastive_loss(output_pose_1, output_pose_2, same_pose)\n err_contraL = light_contrastive_loss(output_light_1,output_light_2, same_light)\n err_classL = light_class_loss(output_light_1, input_light_1)\n err_classP = pose_class_loss(output_pose_1, input_pose_1)\n # print(err_recon.data.size())\n # print(err_contraL.data.size())\n # print(err_classP.data.size())\n # modify the contrastive loss function to make contrastive loss be 1Lx1L \n # contrastive loss and Softmax and Loss1 are all requires_grad\n # err_total = 1 * err_recon + 10 * err_contraP + 10 * err_contraI + 10 * err_classP + 20 * err_classL\n # err_total = err_recon + err_contraI + err_contraP + err_contraL + err_classL + err_classP\n err_total = w_r * err_recon\n err_total.backward()\n optimizerS.step()\n\n #----------------------Visualize-----------\n if(iteration % 200 == 0):\n\n pose_mtr.add(output_pose_1.data, input_pose_1.data)\n pose_trainacc = pose_mtr.value().diagonal().sum()*1.0/opt.batchSize\n pose_mtr.reset()\n\n light_mtr.add(output_light_1.data, input_light_1.data)\n light_trainacc = light_mtr.value().diagonal().sum()*1.0/opt.batchSize\n light_mtr.reset()\n #-----------------------------------------\n test(iteration, data_test, loader_test)\n # #pose prediction\n\n # preds_pose = torch.max(output_pose_1.data, 1)\n # running_corrects += torch.sum(preds == input_pose_1)\n # print('pose_accuracy: %.2f' \n # % (running_corrects * 1.0/images.size(0)))\n \n # #light prediction\n # preds_light = torch.max(output_light_1.data, 1)\n # running_corrects_light += torch.sum(preds_light == input_light_1)\n # print('light_accuracy: %.2f' \n # % (running_corrects_light * 1.0/images.size(0)))\n\n print('----------------------------------------')\n print('[%d/%d] Loss_S: %.4f ' %(iteration, opt.niter, err_total.data[0]))\n print(' Reco_S: %.4f ' %(err_recon.data[0]))\n print(' conL_S: %.4f ' %(err_contraL.data[0]))\n print(' conP_S: %.4f ' %(err_contraP.data[0]))\n print(' conI_S: %.4f ' %(err_contraI.data[0]))\n print(' Clas_P: %.4f ' %(err_classP.data[0]))\n print(' Clas_L: %.4f ' %(err_classL.data[0]))\n\n\n if(iteration % opt.save_step == 0):\n torch.save(netS.state_dict(), '%s/netS_%d.pth' % (opt.outf,iteration))\n\n\n", "sub_path": "siamese_train_M_3.py", "file_name": "siamese_train_M_3.py", "file_ext": "py", "file_size_in_byte": 14463, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "matplotlib.use", "line_number": 24, "usage_type": "call"}, {"api_name": "logger.Logger", "line_number": 37, "usage_type": "call"}, {"api_name": "argparse.ArgumentParser", "line_number": 39, "usage_type": "call"}, {"api_name": "os.makedirs", "line_number": 64, "usage_type": "call"}, {"api_name": "random.randint", "line_number": 76, "usage_type": "call"}, {"api_name": "random.seed", "line_number": 78, "usage_type": "call"}, {"api_name": "torch.manual_seed", "line_number": 79, "usage_type": "call"}, {"api_name": "torch.cuda.manual_seed_all", "line_number": 81, "usage_type": "call"}, {"api_name": "torch.cuda", "line_number": 81, "usage_type": "attribute"}, {"api_name": "torch.backends.cudnn.benchmark", "line_number": 83, "usage_type": "attribute"}, {"api_name": "torch.backends.cudnn", "line_number": 83, "usage_type": "name"}, {"api_name": "numpy.load", "line_number": 85, "usage_type": "call"}, {"api_name": "numpy.float32", "line_number": 86, "usage_type": "attribute"}, {"api_name": "torch.from_numpy", "line_number": 87, "usage_type": "call"}, {"api_name": "dataset.multiPIE", "line_number": 94, "usage_type": "call"}, {"api_name": "dataset.multiPIE", "line_number": 96, "usage_type": "call"}, {"api_name": "torch.utils.data.DataLoader", "line_number": 97, "usage_type": "call"}, {"api_name": "torch.utils", "line_number": 97, "usage_type": "attribute"}, {"api_name": "torch.utils.data.DataLoader", "line_number": 108, "usage_type": "call"}, {"api_name": "torch.utils", "line_number": 108, "usage_type": "attribute"}, {"api_name": "siamese_model_2nd.Siamese", "line_number": 134, "usage_type": "call"}, {"api_name": "torch.load", "line_number": 135, "usage_type": "call"}, {"api_name": "torch.optim.Adam", "line_number": 178, "usage_type": "call"}, {"api_name": "torch.optim", "line_number": 178, "usage_type": "attribute"}, {"api_name": "contrastive.ContrastiveLoss", "line_number": 180, "usage_type": "call"}, {"api_name": "contrastive.ContrastiveLoss", "line_number": 181, "usage_type": "call"}, {"api_name": "contrastive.ContrastiveLoss", "line_number": 182, "usage_type": "call"}, {"api_name": "torch.nn.L1Loss", "line_number": 183, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 183, "usage_type": "name"}, {"api_name": "torch.nn.CrossEntropyLoss", "line_number": 184, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 184, "usage_type": "name"}, {"api_name": "torch.nn.CrossEntropyLoss", "line_number": 185, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 185, "usage_type": "name"}, {"api_name": "torch.LongTensor", "line_number": 188, "usage_type": "call"}, {"api_name": "torch.LongTensor", "line_number": 189, "usage_type": "call"}, {"api_name": "torch.FloatTensor", "line_number": 193, "usage_type": "call"}, {"api_name": "torch.FloatTensor", "line_number": 194, "usage_type": "call"}, {"api_name": "torch.FloatTensor", "line_number": 195, "usage_type": "call"}, {"api_name": "torch.FloatTensor", "line_number": 196, "usage_type": "call"}, {"api_name": "torch.FloatTensor", "line_number": 197, "usage_type": "call"}, {"api_name": "torch.FloatTensor", "line_number": 198, "usage_type": "call"}, {"api_name": "torch.autograd.Variable", "line_number": 211, "usage_type": "call"}, {"api_name": "torch.autograd.Variable", "line_number": 213, "usage_type": "call"}, {"api_name": "torch.autograd.Variable", "line_number": 216, "usage_type": "call"}, {"api_name": "torch.autograd.Variable", "line_number": 217, "usage_type": "call"}, {"api_name": "torch.autograd.Variable", "line_number": 218, "usage_type": "call"}, {"api_name": "torch.autograd.Variable", "line_number": 219, "usage_type": "call"}, {"api_name": "torch.autograd.Variable", "line_number": 220, "usage_type": "call"}, {"api_name": "torch.autograd.Variable", "line_number": 221, "usage_type": "call"}, {"api_name": "torch.autograd.Variable", "line_number": 223, "usage_type": "call"}, {"api_name": "torchnet.meter.ConfusionMeter", "line_number": 233, "usage_type": "call"}, {"api_name": "torchnet.meter", "line_number": 233, "usage_type": "name"}, {"api_name": "torchnet.meter.ConfusionMeter", "line_number": 234, "usage_type": "call"}, {"api_name": "torchnet.meter", "line_number": 234, "usage_type": "name"}, {"api_name": "torchvision.utils.save_image", "line_number": 293, "usage_type": "call"}, {"api_name": "torchvision.utils", "line_number": 293, "usage_type": "name"}, {"api_name": "torchvision.utils.save_image", "line_number": 295, "usage_type": "call"}, {"api_name": "torchvision.utils", "line_number": 295, "usage_type": "name"}, {"api_name": "torch.save", "line_number": 395, "usage_type": "call"}]}
{"seq_id": "265139169", "text": "from bot.models import User, Schedule, Spec, Group\nfrom .__utils import bot, MAIN_ACTIVITY_FLAG, SCHEDULE_ACTIVITY_FLAG, REGISTRATION_YEAR, REGISTRATION_ACTIVITY_FLAG\nfrom .__utils import MY_SCHEDULE, OTHER_SCHEDULES, CHANGE_MY_GROUP\nfrom .__utils import OTHER_SCHEDULE_SPEC, OTHER_SCHEDULE_GROUP, OTHER_SCHEDULE_SUBGROUP, OTHER_SCHEDULE_DISPLAY\nfrom .__fillers import ScheduleMessageFiller, ScheduleKeyboardFiller\nfrom telegram import Bot, InlineKeyboardMarkup, InlineKeyboardButton\nfrom datetime import datetime\n\n\n\n\nmessage_filler = ScheduleMessageFiller()\nkeyboard_filler = ScheduleKeyboardFiller()\n\n\n\n\ndef start_schedule_activity(update, context):\n print('---------------------------------------------------------------------')\n print('schedule. start shcedule activity\\n')\n\n chat_id = context.chat_data.get('chat_id')\n\n start_schedule_activity_message = message_filler.start_schedule_activity_message\n\n my_schedule_button = InlineKeyboardButton(keyboard_filler.my_schedule_button_text, \n callback_data=MY_SCHEDULE)\n\n other_schedules_button = InlineKeyboardButton(keyboard_filler.other_schedules_button_text, \n callback_data=OTHER_SCHEDULES)\n\n keyboard = [[my_schedule_button],\n [other_schedules_button]]\n\n inline_markup = InlineKeyboardMarkup(keyboard)\n\n context.chat_data['message_id'] = bot.send_message(chat_id=chat_id, text=start_schedule_activity_message, \n reply_markup=inline_markup).message_id\n\n return SCHEDULE_ACTIVITY_FLAG\n\n\n\n\ndef start_my_schedule_activity(update, context):\n print('---------------------------------------------------------------------')\n print('schedule. start my schedule activity\\n')\n\n chat_id = context.chat_data.get('chat_id')\n message_id = context.chat_data.get('message_id')\n\n bot.edit_message_reply_markup(chat_id=chat_id, message_id=message_id)\n\n user_id = context.chat_data.get('user_id')\n\n user = User.objects.get(telegram_id=user_id)\n\n if user.group is None:\n print('---unregistered user---')\n\n unregistered_user_message = message_filler.unregistered_user_message\n\n bot.send_message(chat_id=chat_id, text=unregistered_user_message)\n\n return MAIN_ACTIVITY_FLAG\n\n schedule = Schedule.objects.filter(group=user.group, subgroup=user.subgroup).first()\n\n if schedule == None:\n print('---no schedule by this parameters---')\n\n no_schedule_message = message_filler.schedule_not_found_message\n\n bot.send_message(chat_id=chat_id, text=no_schedule_message)\n else:\n bot_before_schedule_message = message_filler.before_display_schedule_message\n\n bot.send_message(chat_id=chat_id, text=bot_before_schedule_message)\n\n schedule_message = schedule.schedule\n\n bot.send_message(chat_id=chat_id, text=schedule_message)\n\n return MAIN_ACTIVITY_FLAG\n\n\n\n\ndef start_other_schedules_activity(update, context):\n print('---------------------------------------------------------------------')\n print('schedule. start other schedules activity. choise course\\n')\n\n chat_id = context.chat_data.get('chat_id')\n last_message_id = context.chat_data.get('message_id')\n\n bot.edit_message_reply_markup(chat_id=chat_id, message_id=last_message_id, reply_markup=None)\n\n years = keyboard_filler.courses_buttons_texts\n current_date = datetime.today()\n\n SEPTEMBER = 9\n education_year = 0\n\n if current_date.month < SEPTEMBER:\n education_year = current_date.year - 1\n else:\n education_year = current_date.year\n\n keyboard = []\n\n COURSES_AMOUNT = 6\n\n for index in range(0, COURSES_AMOUNT):\n course_button = InlineKeyboardButton(years[index],\n callback_data=OTHER_SCHEDULE_SPEC + ' ' + str(education_year - index))\n keyboard.append([course_button])\n\n inline_markup = InlineKeyboardMarkup(keyboard)\n\n context.chat_data['message_id'] = bot.send_message(chat_id=chat_id, text=message_filler.choise_course_message,\n reply_markup=inline_markup).message_id\n\n print(f'Sent message: {context.chat_data.get(\"message_id\")}')\n\n return SCHEDULE_ACTIVITY_FLAG\n\n\ndef choise_spec(update, context):\n print('---------------------------------------------------------------------')\n print('schedule. other schedules. choise spec\\n')\n\n chat_id = context.chat_data.get('chat_id')\n last_message_id = context.chat_data.get('message_id')\n\n bot.edit_message_reply_markup(chat_id=chat_id, message_id=last_message_id, reply_markup=None)\n\n context.chat_data['year'] = int(update.callback_query.data.split(' ')[1])\n\n specs = Spec.objects.all()\n print(f'specs: {specs}')\n\n keyboard = []\n\n for spec in specs:\n keyboard.append([InlineKeyboardButton(str(spec), \n callback_data=str(OTHER_SCHEDULE_GROUP) + ' ' + str(spec.spec_id))])\n\n inline_markup = InlineKeyboardMarkup(keyboard)\n\n context.chat_data['message_id'] = bot.send_message(chat_id=chat_id, text=message_filler.choise_spec_message,\n reply_markup=inline_markup).message_id\n\n print(f'sent message: {context.chat_data.get(\"message_id\")}')\n\n return SCHEDULE_ACTIVITY_FLAG\n\n\ndef choise_group(update, context):\n print('---------------------------------------------------------------------')\n print('schedule. other schedules. choise group\\n')\n\n chat_id = context.chat_data.get('chat_id')\n last_message_id = context.chat_data.get('message_id')\n\n bot.edit_message_reply_markup(chat_id=chat_id, message_id=last_message_id, reply_markup=None)\n\n year = context.chat_data.get('year')\n spec_id = int(update.callback_query.data.split(' ')[1])\n context.chat_data['spec_id'] = spec_id\n\n groups = Group.objects.all().filter(year=year, spec__spec_id=spec_id)\n\n if len(groups) == 0:\n print('---No groups for this year---')\n\n group_not_found_message = message_filler.group_not_found_message\n\n bot.send_message(chat_id=chat_id, text=group_not_found_message)\n\n return MAIN_ACTIVITY_FLAG\n\n print(groups)\n\n keyboard = []\n\n for group in groups:\n keyboard.append([InlineKeyboardButton(str(group), \n callback_data=str(OTHER_SCHEDULE_SUBGROUP) + ' ' + str(group.pk))])\n\n inline_markup = InlineKeyboardMarkup(keyboard)\n print(inline_markup)\n\n context.chat_data['message_id'] = bot.send_message(chat_id=chat_id, text=message_filler.choise_group_message,\n reply_markup=inline_markup).message_id\n\n print(f'sent message: {context.chat_data.get(\"message_id\")}')\n\n return SCHEDULE_ACTIVITY_FLAG\n\n\ndef choise_subgroup(update, context):\n print('---------------------------------------------------------------------')\n print('schedule. other schedules. choise subgroup\\n')\n\n chat_id = context.chat_data.get('chat_id')\n last_message_id = context.chat_data.get('message_id')\n\n bot.edit_message_reply_markup(chat_id=chat_id, message_id=last_message_id, reply_markup=None)\n\n group_pk = int(update.callback_query.data.split(' ')[1])\n context.chat_data['group_pk'] = group_pk\n\n group = Group.objects.get(pk=group_pk)\n print(f'subgroup: {group.subgroup_amount}')\n\n if group.subgroup_amount == 0:\n context.chat_data['is_subgroups_zero'] = True\n return display_schedule(update, context)\n\n context.chat_data['is_subgroups_zero'] = False\n keyboard = []\n\n for subgroup_number in range(1, group.subgroup_amount + 1):\n print(subgroup_number)\n keyboard.append([InlineKeyboardButton(str(subgroup_number),\n callback_data=str(OTHER_SCHEDULE_DISPLAY) + ' ' + str(subgroup_number))])\n\n inline_markup = InlineKeyboardMarkup(keyboard)\n print(inline_markup)\n\n context.chat_data['message_id'] = bot.send_message(chat_id=chat_id, text=message_filler.choise_subgroup_message,\n reply_markup=inline_markup).message_id\n\n print(f'sent message: {context.chat_data.get(\"message_id\")}')\n\n return SCHEDULE_ACTIVITY_FLAG\n\n\ndef display_schedule(update, context):\n print('---------------------------------------------------------------------')\n print('schedule. other schedules. display schedule\\n')\n\n chat_id = context.chat_data.get('chat_id')\n\n group_pk = context.chat_data.get('group_pk')\n\n group = Group.objects.get(pk=group_pk)\n subgroup = 0\n\n is_subgroups_zero = context.chat_data.get('is_subgroups_zero')\n if not is_subgroups_zero:\n last_message_id = context.chat_data.get('message_id')\n bot.edit_message_reply_markup(chat_id=chat_id, message_id=last_message_id, reply_markup=None)\n\n subgroup = int(update.callback_query.data.split(' ')[1])\n\n schedule = Schedule.objects.filter(group=group, subgroup=subgroup).first()\n\n if schedule == None:\n bot.send_message(chat_id=chat_id, text=message_filler.schedule_not_found_message)\n else:\n bot.send_message(chat_id=chat_id, text=message_filler.before_display_schedule_message)\n bot.send_message(chat_id=chat_id, text=schedule.schedule)\n\n return MAIN_ACTIVITY_FLAG", "sub_path": "bot/management/commands/__schedule.py", "file_name": "__schedule.py", "file_ext": "py", "file_size_in_byte": 9350, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "__fillers.ScheduleMessageFiller", "line_number": 12, "usage_type": "call"}, {"api_name": "__fillers.ScheduleKeyboardFiller", "line_number": 13, "usage_type": "call"}, {"api_name": "telegram.InlineKeyboardButton", "line_number": 26, "usage_type": "call"}, {"api_name": "__utils.MY_SCHEDULE", "line_number": 27, "usage_type": "name"}, {"api_name": "telegram.InlineKeyboardButton", "line_number": 29, "usage_type": "call"}, {"api_name": "__utils.OTHER_SCHEDULES", "line_number": 30, "usage_type": "name"}, {"api_name": "telegram.InlineKeyboardMarkup", "line_number": 35, "usage_type": "call"}, {"api_name": "__utils.bot.send_message", "line_number": 37, "usage_type": "call"}, {"api_name": "__utils.bot", "line_number": 37, "usage_type": "name"}, {"api_name": "__utils.SCHEDULE_ACTIVITY_FLAG", "line_number": 40, "usage_type": "name"}, {"api_name": "__utils.bot.edit_message_reply_markup", "line_number": 52, "usage_type": "call"}, {"api_name": "__utils.bot", "line_number": 52, "usage_type": "name"}, {"api_name": "bot.models.User.objects.get", "line_number": 56, "usage_type": "call"}, {"api_name": "bot.models.User.objects", "line_number": 56, "usage_type": "attribute"}, {"api_name": "bot.models.User", "line_number": 56, "usage_type": "name"}, {"api_name": "__utils.bot.send_message", "line_number": 63, "usage_type": "call"}, {"api_name": "__utils.bot", "line_number": 63, "usage_type": "name"}, {"api_name": "__utils.MAIN_ACTIVITY_FLAG", "line_number": 65, "usage_type": "name"}, {"api_name": "bot.models.Schedule.objects.filter", "line_number": 67, "usage_type": "call"}, {"api_name": "bot.models.Schedule.objects", "line_number": 67, "usage_type": "attribute"}, {"api_name": "bot.models.Schedule", "line_number": 67, "usage_type": "name"}, {"api_name": "__utils.bot.send_message", "line_number": 74, "usage_type": "call"}, {"api_name": "__utils.bot", "line_number": 74, "usage_type": "name"}, {"api_name": "__utils.bot.send_message", "line_number": 78, "usage_type": "call"}, {"api_name": "__utils.bot", "line_number": 78, "usage_type": "name"}, {"api_name": "__utils.bot.send_message", "line_number": 82, "usage_type": "call"}, {"api_name": "__utils.bot", "line_number": 82, "usage_type": "name"}, {"api_name": "__utils.MAIN_ACTIVITY_FLAG", "line_number": 84, "usage_type": "name"}, {"api_name": "__utils.bot.edit_message_reply_markup", "line_number": 96, "usage_type": "call"}, {"api_name": "__utils.bot", "line_number": 96, "usage_type": "name"}, {"api_name": "datetime.datetime.today", "line_number": 99, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 99, "usage_type": "name"}, {"api_name": "telegram.InlineKeyboardButton", "line_number": 114, "usage_type": "call"}, {"api_name": "__utils.OTHER_SCHEDULE_SPEC", "line_number": 115, "usage_type": "name"}, {"api_name": "telegram.InlineKeyboardMarkup", "line_number": 118, "usage_type": "call"}, {"api_name": "__utils.bot.send_message", "line_number": 120, "usage_type": "call"}, {"api_name": "__utils.bot", "line_number": 120, "usage_type": "name"}, {"api_name": "__utils.SCHEDULE_ACTIVITY_FLAG", "line_number": 125, "usage_type": "name"}, {"api_name": "__utils.bot.edit_message_reply_markup", "line_number": 135, "usage_type": "call"}, {"api_name": "__utils.bot", "line_number": 135, "usage_type": "name"}, {"api_name": "bot.models.Spec.objects.all", "line_number": 139, "usage_type": "call"}, {"api_name": "bot.models.Spec.objects", "line_number": 139, "usage_type": "attribute"}, {"api_name": "bot.models.Spec", "line_number": 139, "usage_type": "name"}, {"api_name": "telegram.InlineKeyboardButton", "line_number": 145, "usage_type": "call"}, {"api_name": "__utils.OTHER_SCHEDULE_GROUP", "line_number": 146, "usage_type": "argument"}, {"api_name": "telegram.InlineKeyboardMarkup", "line_number": 148, "usage_type": "call"}, {"api_name": "__utils.bot.send_message", "line_number": 150, "usage_type": "call"}, {"api_name": "__utils.bot", "line_number": 150, "usage_type": "name"}, {"api_name": "__utils.SCHEDULE_ACTIVITY_FLAG", "line_number": 155, "usage_type": "name"}, {"api_name": "__utils.bot.edit_message_reply_markup", "line_number": 165, "usage_type": "call"}, {"api_name": "__utils.bot", "line_number": 165, "usage_type": "name"}, {"api_name": "bot.models.Group.objects.all", "line_number": 171, "usage_type": "call"}, {"api_name": "bot.models.Group.objects", "line_number": 171, "usage_type": "attribute"}, {"api_name": "bot.models.Group", "line_number": 171, "usage_type": "name"}, {"api_name": "__utils.bot.send_message", "line_number": 178, "usage_type": "call"}, {"api_name": "__utils.bot", "line_number": 178, "usage_type": "name"}, {"api_name": "__utils.MAIN_ACTIVITY_FLAG", "line_number": 180, "usage_type": "name"}, {"api_name": "telegram.InlineKeyboardButton", "line_number": 187, "usage_type": "call"}, {"api_name": "__utils.OTHER_SCHEDULE_SUBGROUP", "line_number": 188, "usage_type": "argument"}, {"api_name": "telegram.InlineKeyboardMarkup", "line_number": 190, "usage_type": "call"}, {"api_name": "__utils.bot.send_message", "line_number": 193, "usage_type": "call"}, {"api_name": "__utils.bot", "line_number": 193, "usage_type": "name"}, {"api_name": "__utils.SCHEDULE_ACTIVITY_FLAG", "line_number": 198, "usage_type": "name"}, {"api_name": "__utils.bot.edit_message_reply_markup", "line_number": 208, "usage_type": "call"}, {"api_name": "__utils.bot", "line_number": 208, "usage_type": "name"}, {"api_name": "bot.models.Group.objects.get", "line_number": 213, "usage_type": "call"}, {"api_name": "bot.models.Group.objects", "line_number": 213, "usage_type": "attribute"}, {"api_name": "bot.models.Group", "line_number": 213, "usage_type": "name"}, {"api_name": "telegram.InlineKeyboardButton", "line_number": 225, "usage_type": "call"}, {"api_name": "__utils.OTHER_SCHEDULE_DISPLAY", "line_number": 226, "usage_type": "argument"}, {"api_name": "telegram.InlineKeyboardMarkup", "line_number": 228, "usage_type": "call"}, {"api_name": "__utils.bot.send_message", "line_number": 231, "usage_type": "call"}, {"api_name": "__utils.bot", "line_number": 231, "usage_type": "name"}, {"api_name": "__utils.SCHEDULE_ACTIVITY_FLAG", "line_number": 236, "usage_type": "name"}, {"api_name": "bot.models.Group.objects.get", "line_number": 247, "usage_type": "call"}, {"api_name": "bot.models.Group.objects", "line_number": 247, "usage_type": "attribute"}, {"api_name": "bot.models.Group", "line_number": 247, "usage_type": "name"}, {"api_name": "__utils.bot.edit_message_reply_markup", "line_number": 253, "usage_type": "call"}, {"api_name": "__utils.bot", "line_number": 253, "usage_type": "name"}, {"api_name": "bot.models.Schedule.objects.filter", "line_number": 257, "usage_type": "call"}, {"api_name": "bot.models.Schedule.objects", "line_number": 257, "usage_type": "attribute"}, {"api_name": "bot.models.Schedule", "line_number": 257, "usage_type": "name"}, {"api_name": "__utils.bot.send_message", "line_number": 260, "usage_type": "call"}, {"api_name": "__utils.bot", "line_number": 260, "usage_type": "name"}, {"api_name": "__utils.bot.send_message", "line_number": 262, "usage_type": "call"}, {"api_name": "__utils.bot", "line_number": 262, "usage_type": "name"}, {"api_name": "__utils.bot.send_message", "line_number": 263, "usage_type": "call"}, {"api_name": "__utils.bot", "line_number": 263, "usage_type": "name"}, {"api_name": "__utils.MAIN_ACTIVITY_FLAG", "line_number": 265, "usage_type": "name"}]}
{"seq_id": "59444402", "text": "\nimport numpy as np\n\n\ndef export_obj(vertices, triangles, filename):\n \"\"\"\n Exports a mesh in the (.obj) format.\n \"\"\"\n \n with open(filename, 'w') as fh:\n \n for v in vertices:\n fh.write(\"v {} {} {}\\n\".format(*v))\n \n for f in triangles:\n fh.write(\"f {} {} {}\\n\".format(*(f + 1)))\n\n\ndef export_off(vertices, triangles, filename):\n \"\"\"\n Exports a mesh in the (.off) format.\n \"\"\"\n \n with open(filename, 'w') as fh:\n fh.write('OFF\\n')\n fh.write('{} {} 0\\n'.format(len(vertices), len(triangles)))\n\n for v in vertices:\n fh.write(\"{} {} {}\\n\".format(*v))\n \n for f in triangles:\n fh.write(\"3 {} {} {}\\n\".format(*f))\n\n\ndef export_mesh(vertices, triangles, filename, mesh_name=\"mcubes_mesh\"):\n \"\"\"\n Exports a mesh in the COLLADA (.dae) format.\n \n Needs PyCollada (https://github.com/pycollada/pycollada).\n \"\"\"\n \n import collada\n \n mesh = collada.Collada()\n \n vert_src = collada.source.FloatSource(\"verts-array\", vertices, ('X','Y','Z'))\n geom = collada.geometry.Geometry(mesh, \"geometry0\", mesh_name, [vert_src])\n \n input_list = collada.source.InputList()\n input_list.addInput(0, 'VERTEX', \"#verts-array\")\n \n triset = geom.createTriangleSet(np.copy(triangles), input_list, \"\")\n geom.primitives.append(triset)\n mesh.geometries.append(geom)\n \n geomnode = collada.scene.GeometryNode(geom, [])\n node = collada.scene.Node(mesh_name, children=[geomnode])\n \n myscene = collada.scene.Scene(\"mcubes_scene\", [node])\n mesh.scenes.append(myscene)\n mesh.scene = myscene\n \n mesh.write(filename)\n", "sub_path": "src/utils/libmcubes/exporter.py", "file_name": "exporter.py", "file_ext": "py", "file_size_in_byte": 1697, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "collada.Collada", "line_number": 44, "usage_type": "call"}, {"api_name": "collada.source.FloatSource", "line_number": 46, "usage_type": "call"}, {"api_name": "collada.source", "line_number": 46, "usage_type": "attribute"}, {"api_name": "collada.geometry.Geometry", "line_number": 47, "usage_type": "call"}, {"api_name": "collada.geometry", "line_number": 47, "usage_type": "attribute"}, {"api_name": "collada.source.InputList", "line_number": 49, "usage_type": "call"}, {"api_name": "collada.source", "line_number": 49, "usage_type": "attribute"}, {"api_name": "numpy.copy", "line_number": 52, "usage_type": "call"}, {"api_name": "collada.scene.GeometryNode", "line_number": 56, "usage_type": "call"}, {"api_name": "collada.scene", "line_number": 56, "usage_type": "attribute"}, {"api_name": "collada.scene.Node", "line_number": 57, "usage_type": "call"}, {"api_name": "collada.scene", "line_number": 57, "usage_type": "attribute"}, {"api_name": "collada.scene.Scene", "line_number": 59, "usage_type": "call"}, {"api_name": "collada.scene", "line_number": 59, "usage_type": "attribute"}]}
{"seq_id": "311216766", "text": "# -*- coding: utf-8 -*-\n\nimport rusloModis_mainmenu, os, sys, qgis.utils\nfrom qgis import core, gui, utils\nfrom qgis.core import *\nfrom PyQt4 import QtCore, QtGui, uic\nfrom PyQt4.QtCore import QFile, QFileInfo, QDir\nfrom qgis.core import *\nfrom qgis.utils import iface\nfrom qgis.core import QgsVectorLayer, QgsMapLayerRegistry\nfrom qgis.analysis import QgsRasterCalculator, QgsRasterCalculatorEntry\nfrom subprocess import call\nimport commonLibrary\nimport psycopg2\nimport codecs\nimport re\nimport time\nimport rusloModisLibrary\nimport math\n\n\nclass RusloModis_dlg(QtGui.QWidget):\n\n DBConnectionStatus = False\n\n def __init__(self, parent=None):\n QtGui.QWidget.__init__(self, parent)\n self.ui = rusloModis_mainmenu.Ui_Dialog()\n self.ui.setupUi(self)\n\n self.connect(self.ui.EditDBStructureButton, QtCore.SIGNAL(\"clicked()\"), self.openConfigurationFile)\n self.connect(self.ui.loadTabAddHVButton, QtCore.SIGNAL(\"clicked()\"), self.loadTabAddCurrentHVToList)\n self.connect(self.ui.loadTabDeleteHVButton, QtCore.SIGNAL(\"clicked()\"), self.loadTabDeleteSelectedHVFromList)\n self.connect(self.ui.ConnectToDBButton, QtCore.SIGNAL(\"clicked()\"), self.checkDatabaseConnection)\n self.connect(self.ui.loadTabAquaObjectButton, QtCore.SIGNAL(\"clicked()\"), self.loadTabGetHVFromFeatureExtent)\n self.connect(self.ui.loadTabLoadButton, QtCore.SIGNAL(\"clicked()\"), self.loadTabLoadData)\n self.connect(self.ui.statsTabRefreshButton, QtCore.SIGNAL(\"clicked()\"), self.statsTabRefreshTable)\n self.connect(self.ui.statsTabAddImageryToProjectButton, QtCore.SIGNAL(\"clicked()\"), self.statsTabAddImageryToProject)\n self.connect(self.ui.vodosborTabRefreshButton, QtCore.SIGNAL(\"clicked()\"), self.vodosborTabRefreshData)\n self.connect(self.ui.vodosborTabRunButton, QtCore.SIGNAL(\"clicked()\"), self.vodosborTabRunProcessing)\n self.connect(self.ui.statsTabAddIceLayersToProjectButton, QtCore.SIGNAL(\"clicked()\"), self.statsTabAddIceLayersToProject)\n self.connect(self.ui.monitorTabRefreshDatesButton, QtCore.SIGNAL(\"clicked()\"), self.monitorTabRefreshDates)\n self.connect(self.ui.statsTabWaterObjectCombobox, QtCore.SIGNAL(\"currentIndexChanged(const QString&)\"), self.statsTabWaterObjectComboboxItemChanged)\n self.connect(self.ui.monitorTabAddDateButton, QtCore.SIGNAL(\"clicked()\"), self.monitorTabAddDateToList)\n self.connect(self.ui.monitorTabDeleteDateButton, QtCore.SIGNAL(\"clicked()\"), self.monitorTabDeleteDateFromList)\n self.connect(self.ui.monitorTabRunButton, QtCore.SIGNAL(\"clicked()\"), self.monitorTabRunProcessing)\n\n self.connect(self.ui.vodosborTabVodosborCombobox, QtCore.SIGNAL(\"currentIndexChanged(const QString&)\"), self.vodosborTabVodosborComboboxItemChanged)\n self.connect(self.ui.vodosborTabDataList, QtCore.SIGNAL(\"currentItemChanged (QListWidgetItem*,QListWidgetItem*)\"), self.vodosborTabDataListSelectionChanged)\n self.connect(self.ui.monitorTabVodosborCombobox, QtCore.SIGNAL(\"currentIndexChanged(const QString&)\"), self.monitorTabVodosborComboboxItemChanged)\n\n # Заполнение элементов интерфейса\n self.fillDBConfigFieldsFromFile()\n#\n self.loadTabFillSattelites()\n self.loadTabFillMODIShvList()\n#\n self.ui.loadTabDownloadStatusTable.setColumnWidth(2, 170);\n\n\n # Прячем лишнее\n self.ui.loadTabProgressBar.hide()\n self.ui.loadTabDownloadGroupBox.hide()\n self.setDBStatusIndicatorsOFF()\n\n self.ui.vodosborTabProgressBar.hide()\n\n\n self.setStatsTableColumnWidths()\n\n # Папка temp\n tempPath = os.path.dirname(os.path.abspath(__file__)) + '\\\\temp'\n if not os.path.isdir(tempPath):\n os.mkdir(tempPath)\n\n\n # ------------------------------------------------------------------------ #\n # ------------------- Заполнение элементов интерфейса -------------------- #\n # ------------------------------------------------------------------------ #\n\n def loadTabFillSattelites(self):\n self.ui.loadTabSatelliteCombobox.addItems(['MODIS'])\n self.ui.vodosborTabSatelliteCombobox.addItems(['MODIS'])\n self.ui.monitorTabSatelliteCombobox.addItems(['MODIS'])\n\n def loadTabFillMODIShvList(self):\n i = 0\n while i <= 35:\n j = 0\n while j <= 17:\n if len(str(i)) == 1:\n iString = '0' + str(i)\n else:\n iString = str(i)\n if len(str(j)) == 1:\n jString = '0' + str(j)\n else:\n jString = str(j)\n hvString = 'h' + iString + 'v' + jString\n self.ui.loadTabHVCombobox.addItems([hvString])\n j += 1\n i += 1\n x, y = rusloModisLibrary.getCurrentCanvasCenterInSelectedCRS(4326)\n h, v = rusloModisLibrary.getMODIShvFromPointCoordinates(x,y,4326)\n index = int(h)*18 + int(v)\n self.ui.loadTabHVCombobox.setCurrentIndex(index)\n\n def loadTabAddCurrentHVToList (self):\n\n # Проверяем, нет ли там уже этого снимка, и добавляем в список\n item = self.ui.loadTabHVCombobox.currentText()\n items = []\n for index in xrange(self.ui.loadTabHVList.count()):\n items.append(self.ui.loadTabHVList.item(index))\n labels = [i.text() for i in items]\n if not item in labels:\n self.ui.loadTabHVList.addItems([item])\n\n def loadTabDeleteSelectedHVFromList (self):\n #items = self.ui.loadTabHVList.selectedIndexes()\n #self.ui.loadTabHVList.item\n for item in self.ui.loadTabHVList.selectedItems():\n self.ui.loadTabHVList.takeItem(self.ui.loadTabHVList.row(item))\n\n\n def getWaterObjects (self):\n dict = self.readDBAndProjectConfiguration()\n waterObjectsLayer = commonLibrary.getLayerByName(dict['water_objects_layer'])\n if waterObjectsLayer:\n values = commonLibrary.getAllValuesOfAttribute(waterObjectsLayer,dict['water_objects_name_attr'])\n return values\n else:\n return\n\n def loadTabFillAquaObjectsCombobox (self):\n values = self.getWaterObjects()\n if values:\n self.ui.loadTabAquaObjectCombobox.addItems(values)\n else:\n return\n\n def monitorTabFillWaterObjectsCombobox (self):\n values = self.getWaterObjects()\n if values:\n self.ui.monitorTabVodosborCombobox.addItems(values)\n else:\n return\n\n def loadTabGetHVFromFeatureExtent (self):\n if not self.ui.loadTabAquaObjectCombobox.currentText():\n return\n\n dict = self.readDBAndProjectConfiguration()\n waterObjectsLayer = commonLibrary.getLayerByName(dict['water_objects_layer'])\n waterFeature = commonLibrary.getFirstFeatureByAttributeValue(waterObjectsLayer,dict['water_objects_name_attr'],self.ui.loadTabAquaObjectCombobox.currentText())\n if not waterFeature:\n return\n\n waterCRS = rusloModisLibrary.getEPSGCodeFromLayer(waterObjectsLayer)\n\n hvList = rusloModisLibrary.getMODIShvListFromPolygonFeature(waterFeature, waterCRS)\n for hv in hvList:\n index = int(hv[0])*18 + int(hv[1])\n self.ui.loadTabHVCombobox.setCurrentIndex(index)\n item = self.ui.loadTabHVCombobox.currentText()\n items = []\n for index in xrange(self.ui.loadTabHVList.count()):\n items.append(self.ui.loadTabHVList.item(index))\n labels = [i.text() for i in items]\n if not item in labels:\n self.ui.loadTabHVList.addItems([item])\n\n def fillDBConfigFieldsFromFile (self):\n DBHost, DBPort, DBName, DBUser, DBPassword = self.readDBConfigFromFile()\n self.ui.ServerName.setText(str(DBHost))\n self.ui.PortNumber.setText(str(DBPort))\n self.ui.DBName.setText(str(DBName))\n self.ui.DBUserName.setText(str(DBUser))\n self.ui.DBPassword.setText(str(DBPassword))\n\n #getMODIShvFromLatLong\n\n #print extent.xMaximum()\n\n\n def setStatsTableColumnWidths(self):\n self.ui.statsTabTable.setColumnWidth(0,30)\n self.ui.statsTabTable.setColumnWidth(1,30)\n self.ui.statsTabTable.setColumnWidth(2,80)\n self.ui.statsTabTable.setColumnWidth(3,110)\n self.ui.statsTabTable.setColumnWidth(4,110)\n self.ui.statsTabTable.setColumnWidth(5,55)\n self.ui.statsTabTable.setColumnWidth(6,55)\n self.ui.statsTabTable.setColumnWidth(7,60)\n self.ui.statsTabTable.setColumnWidth(8,60)\n self.ui.statsTabTable.setColumnWidth(9,100)\n\n def statsTabFillWaterObjectsCombobox (self):\n allValues = [u'Исходные снимки']\n waterValues = self.getWaterObjects()\n if waterValues:\n allValues.extend(waterValues)\n self.ui.statsTabWaterObjectCombobox.addItems(allValues)\n else:\n self.ui.statsTabWaterObjectCombobox.addItems(allValues)\n\n def vodosborTabFillWaterObjectsCombobox (self):\n waterValues = self.getWaterObjects()\n if waterValues:\n self.ui.vodosborTabVodosborCombobox.addItems(waterValues)\n\n\n def monitorTabAddDateToList(self):\n if not self.ui.monitorTabDateListCombobox.currentText():\n return\n item = self.ui.monitorTabDateListCombobox.currentText()\n items = []\n for index in xrange(self.ui.monitorTabDateList.count()):\n items.append(self.ui.monitorTabDateList.item(index))\n labels = [i.text() for i in items]\n if not item in labels:\n self.ui.monitorTabDateList.addItems([item])\n\n def monitorTabDeleteDateFromList(self):\n for item in self.ui.monitorTabDateList.selectedItems():\n self.ui.monitorTabDateList.takeItem(self.ui.monitorTabDateList.row(item))\n\n # ------------------------------------------------------------------------ #\n # ------------------- Чтение и запись параметров из файлов---------------- #\n # ------------------------------------------------------------------------ #\n\n def openConfigurationFile(self):\n homePath = os.path.dirname(os.path.abspath(__file__))\n configPath = homePath + '/config.dat'\n os.system('notepad.exe ' + configPath)\n pass\n\n def writeDBConfigToFile (self):\n DBHost = str(self.ui.ServerName.text())\n DBPort = int(self.ui.PortNumber.text())\n DBName = str(self.ui.DBName.text())\n DBUser = str(self.ui.DBUserName.text())\n DBPassword = str(self.ui.DBPassword.text())\n path = os.path.dirname(os.path.abspath(__file__)) + '\\\\database.dat'\n f = codecs.open (path,'w', encoding=\"utf-8\")\n f.write(u'[Сервер (хост)]\\n')\n f.write(str(DBHost) + '\\n')\n f.write(u'[Номер порта]\\n')\n f.write(str(DBPort) + '\\n')\n f.write(u'[Имя базы данных]\\n')\n f.write(str(DBName) + '\\n')\n f.write(u'[Имя пользователя]\\n')\n f.write(str(DBUser) + '\\n')\n f.write(u'[Пароль]\\n')\n f.write(str(DBPassword))\n f.close()\n\n def readDBConfigFromFile (self):\n path = os.path.dirname(os.path.abspath(__file__)) + '\\\\database.dat'\n f = codecs.open (path,'r', encoding=\"utf-8\")\n\n textlines = []\n DBHost = ''\n DBPort = ''\n DBName = ''\n DBUser = ''\n DBPassword = ''\n\n for textline in f:\n textlines.append(textline)\n\n i = 0\n\n while i < len(textlines):\n if textlines[i] == u'[Сервер (хост)]\\n':\n DBHost = re.sub(\"^\\s+|\\n|\\r|\\s+$\", '', textlines[i+1])\n if textlines[i] == u'[Номер порта]\\n':\n DBPort = re.sub(\"^\\s+|\\n|\\r|\\s+$\", '', textlines[i+1])\n if textlines[i] == u'[Имя базы данных]\\n':\n DBName = re.sub(\"^\\s+|\\n|\\r|\\s+$\", '', textlines[i+1])\n if textlines[i] == u'[Имя пользователя]\\n':\n DBUser = re.sub(\"^\\s+|\\n|\\r|\\s+$\", '', textlines[i+1])\n if textlines[i] == u'[Пароль]\\n':\n DBPassword = re.sub(\"^\\s+|\\n|\\r|\\s+$\", '', textlines[i+1])\n\n i += 1\n\n return DBHost, DBPort, DBName, DBUser, DBPassword\n\n def readDBAndProjectConfiguration (self):\n # Возвращает словарь с параметрами проекта и базами данных\n path = os.path.dirname(os.path.abspath(__file__)) + '\\\\config.dat'\n f = codecs.open (path,'r', encoding=\"utf-8\")\n dict = {}\n textlines = []\n\n for textline in f:\n textlines.append(textline)\n\n i = 0\n\n while i < len(textlines):\n if textlines[i] == u'###[Название слоя проекта с водоёмами]\\r\\n':\n dict['water_objects_layer'] = re.sub(\"^\\s+|\\n|\\r|\\s+$\", '', textlines[i+1])\n if textlines[i] == u'###[Название атрибута с названиями водоёмов в соответствующем слое]\\r\\n':\n dict['water_objects_name_attr'] = re.sub(\"^\\s+|\\n|\\r|\\s+$\", '', textlines[i+1])\n if textlines[i] == u'###[Название схемы базы данных для хранения таблиц-растров исходных данных MODIS MOD10A2]\\r\\n':\n dict['db_original_mod10a2_scheme'] = re.sub(\"^\\s+|\\n|\\r|\\s+$\", '', textlines[i+1])\n if textlines[i] == u'###[Название схемы базы данных для хранения таблиц-растров данных MODIS MOD10A2 обрезанных по объекту]\\r\\n':\n dict['db_object_masks_mod10a2_scheme'] = re.sub(\"^\\s+|\\n|\\r|\\s+$\", '', textlines[i+1])\n if textlines[i] == u'###[Название схемы базы данных для хранения статистики по исходным снимкам MODIS MOD10A2]\\r\\n':\n dict['db_mod10a2_statistics_scheme'] = re.sub(\"^\\s+|\\n|\\r|\\s+$\", '', textlines[i+1])\n if textlines[i] == u'###[Название таблицы базы данных для хранения статистики по исходным снимкам MODIS MOD10A2]\\r\\n':\n dict['db_mod10a2_statistics_table'] = re.sub(\"^\\s+|\\n|\\r|\\s+$\", '', textlines[i+1])\n if textlines[i] == u'###[Название схемы базы данных для хранения статистики по данным MODIS MOD10A2 обрезанным по объектам]\\r\\n':\n dict['db_mask_object_mod10a2_statistics_scheme'] = re.sub(\"^\\s+|\\n|\\r|\\s+$\", '', textlines[i+1])\n if textlines[i] == u'###[Название таблицы базы данных для хранения статистики по данным MODIS MOD10A2 обрезанным по объектам]\\r\\n':\n dict['db_mask_object_mod10a2_statistics_table'] = re.sub(\"^\\s+|\\n|\\r|\\s+$\", '', textlines[i+1])\n if textlines[i] == u'###[Название схемы базы данных для хранения таблиц-векторных масок ледового покрытия объектов]\\r\\n':\n dict['db_lake_ice_vectors_scheme'] = re.sub(\"^\\s+|\\n|\\r|\\s+$\", '', textlines[i+1])\n\n\n\n\n\n\n i += 1\n\n f.close()\n return dict\n\n\n def checkConfigConformity(self):\n # Глобальная проверка на то, что в базе данных есть нужные схемы/таблицы с нужными полями и т.д.\n # Без неё вообще не давать подключаться!\n\n dboptions = self.returnDBOptionsList()\n configs = self.readDBAndProjectConfiguration()\n waterObjectsLayer = commonLibrary.getLayerByName(configs['water_objects_layer'])\n if not waterObjectsLayer:\n QtGui.QMessageBox.critical(None, \"Error\", u\"В проекте отсутствует указанный в настройках слой с водоёмами\\nПроверьте настройки и добавьте соответствующий слой\")\n return 2\n\n if commonLibrary.getAllValuesOfAttribute(waterObjectsLayer, configs['water_objects_name_attr']) == 'Error':\n QtGui.QMessageBox.critical(None, \"Error\", u\"В слое с водоёмами отсутствует поле, указанное в настройках как содержащее их названия, либо в нём отсутствуют объекты. \\nПроверьте настройки.\")\n return 2\n\n if not rusloModisLibrary.checkDatabaseSchemeExistance(dboptions,configs['db_original_mod10a2_scheme']):\n QtGui.QMessageBox.critical(None, \"Error\", u\"В базе данных нет схемы с именем, заданным в настройках для хранения таблиц-растров исходных данных MODIS MOD10A2. \\nПроверьте настройки.\")\n return 2\n\n if not rusloModisLibrary.checkDatabaseSchemeExistance(dboptions,configs['db_object_masks_mod10a2_scheme']):\n QtGui.QMessageBox.critical(None, \"Error\", u\"В базе данных нет схемы с именем, заданным в настройках для хранения таблиц-растров данных MODIS MOD10A2 обрезанных по объекту. \\nПроверьте настройки.\")\n return 2\n\n if not rusloModisLibrary.checkDatabaseSchemeExistance(dboptions,configs['db_mod10a2_statistics_scheme']):\n QtGui.QMessageBox.critical(None, \"Error\", u\"В базе данных нет схемы с именем, заданным в настройках для хранения статистики по исходным снимкам MODIS MOD10A2. \\nПроверьте настройки.\")\n return 2\n\n if not rusloModisLibrary.checkDatabaseSchemeExistance(dboptions,configs['db_mask_object_mod10a2_statistics_scheme']):\n QtGui.QMessageBox.critical(None, \"Error\", u\"В базе данных нет схемы с именем, заданным в настройках для хранения статистики по данным MODIS MOD10A2 обрезанным по объектам. \\nПроверьте настройки.\")\n return 2\n\n if not rusloModisLibrary.checkDatabaseSchemeExistance(dboptions,configs['db_lake_ice_vectors_scheme']):\n QtGui.QMessageBox.critical(None, \"Error\", u\"В базе данных нет схемы с именем, заданным в настройках для хранения таблиц-векторных масок ледового покрытия объектов. \\nПроверьте настройки.\")\n return 2\n\n if not rusloModisLibrary.checkDatabaseTableExistance(dboptions,configs['db_mod10a2_statistics_scheme'],configs['db_mod10a2_statistics_table']):\n QtGui.QMessageBox.critical(None, \"Error\", u\"В базе данных нет таблицы для хранения статистики по исходным снимкам MODIS MOD10A2. \\nПроверьте настройки.\")\n return 2\n\n if not rusloModisLibrary.checkDatabaseTableExistance(dboptions,configs['db_mask_object_mod10a2_statistics_scheme'],configs['db_mask_object_mod10a2_statistics_table']):\n QtGui.QMessageBox.critical(None, \"Error\", u\"В базе данных нет таблицы для хранения статистики по данным MODIS MOD10A2 обрезанным по объектам. \\nПроверьте настройки.\")\n return 2\n\n originFieldsControl = rusloModisLibrary.checkFieldsForMODISStatsTables(dboptions,configs,'Origin')\n if originFieldsControl != 1:\n msg = u'В базе данных в таблице для хранения статистики по исходным снимкам MODIS MOD10A2 отстутствует необходимое поле: ' + originFieldsControl + u'. \\nОбратитесь к руководству пользователя и настройте базу данных.'\n QtGui.QMessageBox.critical(None, \"Error\", msg)\n return 2\n\n objectFieldsControl = rusloModisLibrary.checkFieldsForMODISStatsTables(dboptions,configs,'Objects')\n if objectFieldsControl != 1:\n msg = u'В базе данных в таблице для хранения статистики по данным MODIS MOD10A2 обрезанным по объектам отстутствует необходимое поле: ' + objectFieldsControl + u'. \\nОбратитесь к руководству пользователя и настройте базу данных.'\n QtGui.QMessageBox.critical(None, \"Error\", msg)\n return 2\n\n return 1\n pass\n\n # ------------------------------------------------------------------------ #\n # ------------------- Управление внешним видом интерфейса ---------------- #\n # ------------------------------------------------------------------------ #\n\n def setDBStatusIndicatorsOFF (self):\n self.ui.DBStatusLabel.setText(u'Не подключено')\n self.ui.DBStatusLabel.setStyleSheet(\"QLabel { color : red; }\")\n self.ui.loadTabDBStatusText.setText(u'Отсутствует связь с базой данных')\n self.ui.loadTabDBStatusText.setStyleSheet(\"QLabel { color : red; }\")\n self.ui.statsTabDBStatusText.setText(u'Отсутствует связь с базой данных')\n self.ui.statsTabDBStatusText.setStyleSheet(\"QLabel { color : red; }\")\n self.ui.vodosborTabDBStatusText.setText(u'Отсутствует связь с базой данных')\n self.ui.vodosborTabDBStatusText.setStyleSheet(\"QLabel { color : red; }\")\n self.ui.monitorTabDBStatusText.setText(u'Отсутствует связь с базой данных')\n self.ui.monitorTabDBStatusText.setStyleSheet(\"QLabel { color : red; }\")\n\n def setDBStatusIndicatorsON (self):\n self.ui.DBStatusLabel.setText(u'Подключение установлено')\n self.ui.DBStatusLabel.setStyleSheet(\"QLabel { color : green; }\")\n self.ui.loadTabDBStatusText.setText(u'Соединение с БД установлено')\n self.ui.loadTabDBStatusText.setStyleSheet(\"QLabel { color : green; }\")\n self.ui.statsTabDBStatusText.setText(u'Соединение с БД установлено')\n self.ui.statsTabDBStatusText.setStyleSheet(\"QLabel { color : green; }\")\n self.ui.vodosborTabDBStatusText.setText(u'Соединение с БД установлено')\n self.ui.vodosborTabDBStatusText.setStyleSheet(\"QLabel { color : green; }\")\n self.ui.monitorTabDBStatusText.setText(u'Соединение с БД установлено')\n self.ui.monitorTabDBStatusText.setStyleSheet(\"QLabel { color : green; }\")\n\n\n def vodosborTabVodosborComboboxItemChanged (self):\n configs = self.readDBAndProjectConfiguration()\n self.ui.vodosborTabDataList.clear()\n waterObjectsLayer = commonLibrary.getLayerByName(configs['water_objects_layer'])\n waterFeature = commonLibrary.getFirstFeatureByAttributeValue(waterObjectsLayer,configs['water_objects_name_attr'],self.ui.vodosborTabVodosborCombobox.currentText())\n\n if not waterFeature:\n return\n\n waterCRS = rusloModisLibrary.getEPSGCodeFromLayer(waterObjectsLayer)\n currentObjectHVList = rusloModisLibrary.getMODIShvListFromPolygonFeature(waterFeature,waterCRS)\n finalString = ''\n for HV in currentObjectHVList:\n hvString = rusloModisLibrary.HVtoString(int(HV[0]), int(HV[1]))\n finalString += hvString + ', '\n finalString = finalString[0:len(finalString)-2]\n self.ui.vodosborTabImageryNumbersLabel.setText(finalString)\n\n def monitorTabVodosborComboboxItemChanged(self):\n self.ui.monitorTabDateListCombobox.clear()\n self.ui.monitorTabStartDate.clear()\n self.ui.monitorTabEndDate.clear()\n\n def vodosborTabDataListSelectionChanged (self):\n self.ui.vodosborTabDataList.selectedItems()\n self.ui.vodosborTabSelectedNumberLabel.setText (str(len(self.ui.vodosborTabDataList.selectedItems())))\n\n def statsTabWaterObjectComboboxItemChanged (self):\n self.ui.statsTabTable.setRowCount(0)\n if self.ui.statsTabWaterObjectCombobox.currentText() != u'Исходные снимки':\n self.ui.statsTabAddIceLayersToProjectButton.setEnabled(True)\n self.ui.statsTabAddImageryToProjectButton.setDisabled(True)\n else:\n self.ui.statsTabAddIceLayersToProjectButton.setDisabled(True)\n self.ui.statsTabAddImageryToProjectButton.setEnabled(True)\n\n\n def monitorTabRefreshDates(self):\n\n self.ui.monitorTabStartDate.clear()\n self.ui.monitorTabEndDate.clear()\n self.ui.monitorTabDateListCombobox.clear()\n\n\n if self.DBConnectionStatus == False:\n QtGui.QMessageBox.critical(None, \"Error\", u\"Отсутствует связь с базой данных\")\n return\n if not self.ui.monitorTabVodosborCombobox.currentText():\n QtGui.QMessageBox.information(self, self.tr(\"Error\"),\n self.tr('Water object is not selected'))\n return\n\n dbOptions = self.returnDBOptionsList()\n configs = self.readDBAndProjectConfiguration()\n datesList = rusloModisLibrary.getListOfAvailableDatesForObjectMask(dbOptions,configs,self.ui.monitorTabVodosborCombobox.currentText())\n datesList.sort()\n self.ui.monitorTabStartDate.addItems(datesList)\n self.ui.monitorTabEndDate.addItems(datesList)\n self.ui.monitorTabDateListCombobox.addItems(datesList)\n\n\n # ------------------------------------------------------------------------ #\n # ------------------- Работа с базой данных ------------------------------ #\n # ------------------------------------------------------------------------ #\n\n def checkDatabaseConnection(self):\n DBHost = str(self.ui.ServerName.text())\n DBPort = int(self.ui.PortNumber.text())\n DBName = str(self.ui.DBName.text())\n DBUser = str(self.ui.DBUserName.text())\n DBPassword = str(self.ui.DBPassword.text())\n try:\n connection = psycopg2.connect(\n database=DBName,\n user=DBUser,\n password=DBPassword,\n host=DBHost,\n port=DBPort\n )\n except psycopg2.Error as e:\n message = u'Невозможно подключиться к базе данных. Убедитесь в правильности введенных данных'\n self.setDBStatusIndicatorsOFF()\n QtGui.QMessageBox.critical(None, \"Error\", message)\n return\n\n if self.checkConfigConformity() == 2:\n return\n\n self.DBConnectionStatus = True\n self.setDBStatusIndicatorsON()\n\n # Заполняем водоёмы\n self.loadTabFillAquaObjectsCombobox()\n self.statsTabFillWaterObjectsCombobox()\n self.vodosborTabFillWaterObjectsCombobox()\n self.monitorTabFillWaterObjectsCombobox()\n\n try:\n self.writeDBConfigToFile()\n commonLibrary.writeLogMessage(u'Info',u'Записаны данные в database.dat')\n except:\n commonLibrary.writeLogMessage(u'Warning',u'Возникла ошибка при попытке записи данных в database.dat')\n\n\n\n def returnDBOptionsList (self):\n DBHost = str(self.ui.ServerName.text())\n DBPort = str(self.ui.PortNumber.text())\n DBName = str(self.ui.DBName.text())\n DBUser = str(self.ui.DBUserName.text())\n DBPassword = str(self.ui.DBPassword.text())\n return [DBHost,DBPort,DBName,DBUser,DBPassword]\n\n # ------------------------------------------------------------------------ #\n # ------------------- Главные кнопки ------------------------------------- #\n # ------------------------------------------------------------------------ #\n\n def loadTabLoadData (self):\n commonLibrary.clearTempDir()\n self.ui.loadTabDownloadStatusTable.setRowCount(0)\n if self.DBConnectionStatus == False:\n QtGui.QMessageBox.critical(None, \"Error\", u\"Отсутствует связь с базой данных\")\n return\n\n tempPath = os.path.dirname(os.path.abspath(__file__)) + '\\\\temp'\n #tempRasterPath = tempPath + '\\\\t'\n\n items = []\n for index in xrange(self.ui.loadTabHVList.count()):\n items.append(self.ui.loadTabHVList.item(index))\n places = [i.text() for i in items]\n if len(places) == 0:\n QtGui.QMessageBox.critical(None, \"Error\", u\"Не выбраны необходимые данные\")\n return\n\n self.ui.tabWidget.setDisabled(True)\n date1 = self.ui.loadTabStartDate.date().toString(\"yyyy.M.dd\")\n date2 = self.ui.loadTabEndDate.date().toString(\"yyyy.M.dd\")\n listOfDates = rusloModisLibrary.getListOfDatesFromInterval(date1, date2)\n listOfDatesReformated = []\n for date in listOfDates:\n newDateTemp = date.split('-')\n newDate = str(newDateTemp[0])+'.'+str(newDateTemp[1])+'.'+str(newDateTemp[2])\n listOfDatesReformated.append(newDate)\n self.ui.loadTabProgressBar.show()\n self.ui.loadTabDownloadGroupBox.show()\n\n something = False\n dboptions = self.returnDBOptionsList()\n configs = self.readDBAndProjectConfiguration()\n\n for date in listOfDatesReformated:\n for place in places:\n h, v = rusloModisLibrary.getHVFromString(place)\n\n # Разбиваем дату\n dateUnderlinedList = date.split('.')\n dateUnderlined = dateUnderlinedList[0] + '_' + dateUnderlinedList[1] + '_' + dateUnderlinedList[2]\n\n # Проверяем на наличие в БД\n if rusloModisLibrary.checkMOD10A2OrigExistingInDatabase(dboptions,configs,int(h),int(v),dateUnderlined) == 2:\n self.ui.tabWidget.setEnabled(True)\n return\n elif rusloModisLibrary.checkMOD10A2OrigExistingInDatabase(dboptions,configs,int(h),int(v),dateUnderlined) == 3:\n self.ui.tabWidget.setEnabled(True)\n return\n elif rusloModisLibrary.checkMOD10A2OrigExistingInDatabase(dboptions,configs,int(h),int(v),dateUnderlined) == True:\n # Уже есть в БД\n self.ui.loadTabDownloadStatusTable.setRowCount(self.ui.loadTabDownloadStatusTable.rowCount()+1)\n rowPosition = self.ui.loadTabDownloadStatusTable.rowCount()\n self.ui.loadTabDownloadStatusTable.setItem(rowPosition - 1, 0, QtGui.QTableWidgetItem(place))\n self.ui.loadTabDownloadStatusTable.setItem(rowPosition - 1, 1, QtGui.QTableWidgetItem(date))\n self.ui.loadTabDownloadStatusTable.setItem(rowPosition - 1, 2, QtGui.QTableWidgetItem(u'Присутствовал в базе данных'))\n continue\n\n\n tempRasterHDFPath = tempPath + '\\\\' + 'h' + str(h) + 'v' + str(v) + '_' + str(dateUnderlined) + '.hdf'\n res = rusloModisLibrary.downloadMOD10A2ForGivenDateAndPlace(date,h,v,tempRasterHDFPath)\n if res == 2:\n QtGui.QMessageBox.critical(None, \"Error\", u\"Невозможно установить соединение с FTP-сервером. Проверьте интернет-соединение. Не исключено, что на сервере неполадки.\")\n self.ui.tabWidget.setEnabled(True)\n self.ui.loadTabProgressBar.hide()\n return\n if res == 3:\n #print str(date) + ': data is unavailable'\n break\n if res == 4:\n #print 'Connection failed. Check it'\n QtGui.QMessageBox.critical(None, \"Error\", u\"Невозможно получить список файлов с FTP-сервера, но соединение установить удалось. Похоже, на сервере неполадки.\")\n self.ui.tabWidget.setEnabled(True)\n self.ui.loadTabProgressBar.hide()\n return\n if res == 5:\n #print 'Cannot download file'\n break\n\n tempRasterGTiffPath = tempPath + '\\\\' + 'h' + str(h) + 'v' + str(v) + '_' + str(dateUnderlined) + '.tif'\n rusloModisLibrary.convertHDFToGTiff(tempRasterHDFPath,'MOD_Grid_Snow_500m:Maximum_Snow_Extent','HDF4_EOS:EOS_GRID',tempRasterGTiffPath)\n\n # Считаем статистику растра\n # Общая статистика\n statsDict = rusloModisLibrary.getRasterFileBasicStatistics(tempRasterGTiffPath)\n uniqueValuesDict = rusloModisLibrary.rasterUniqueValuesCount(tempRasterGTiffPath)\n #print statsDict\n #print uniqueValuesDict[0]\n # Уникальные значения\n\n\n tableName = rusloModisLibrary.HVtoString(int(h),int(v)) + '_' + str(dateUnderlined)\n rusloModisLibrary.loadRasterToPostGIS(tempRasterGTiffPath,dboptions,configs['db_original_mod10a2_scheme'],tableName)\n self.ui.loadTabDownloadStatusTable.setRowCount(self.ui.loadTabDownloadStatusTable.rowCount()+1)\n rowPosition = self.ui.loadTabDownloadStatusTable.rowCount()\n self.ui.loadTabDownloadStatusTable.setItem(rowPosition - 1, 0, QtGui.QTableWidgetItem(place))\n self.ui.loadTabDownloadStatusTable.setItem(rowPosition - 1, 1, QtGui.QTableWidgetItem(date))\n if rusloModisLibrary.checkMOD10A2OrigExistingInDatabase(dboptions,configs,int(h),int(v),dateUnderlined) == True:\n self.ui.loadTabDownloadStatusTable.setItem(rowPosition - 1, 2, QtGui.QTableWidgetItem(u'Успешно загружен'))\n rusloModisLibrary.loadMOD10A2StatisticsToPostGIS (tempRasterGTiffPath, h, v, date, dboptions, configs)\n else:\n self.ui.loadTabDownloadStatusTable.setItem(rowPosition - 1, 2, QtGui.QTableWidgetItem(u'Возникла ошибка БД'))\n\n self.ui.tabWidget.setEnabled(True)\n self.ui.loadTabProgressBar.hide()\n\n def statsTabRefreshTable(self):\n #self.ui.statsTabTable.clear()\n self.ui.statsTabTable.setRowCount(0)\n if self.DBConnectionStatus == False:\n QtGui.QMessageBox.critical(None, \"Error\", u\"Отсутствует связь с базой данных\")\n return\n\n dbOptions = self.returnDBOptionsList()\n configDict = self.readDBAndProjectConfiguration()\n if self.ui.statsTabWaterObjectCombobox.currentText() == u'Исходные снимки':\n # Статистика по исходным снимкам\n dataList = rusloModisLibrary.getAllMOD10A2OriginImageryFromPostGIS(dbOptions,configDict)\n self.ui.statsTabTable.setSortingEnabled(False)\n for dataEntry in dataList:\n currentImageryDict = rusloModisLibrary.getHVDataFromTableName(dataEntry)\n\n currentH = currentImageryDict['h']\n currentV = currentImageryDict['v']\n currentDate = str(currentImageryDict['year']) + '-' + str(currentImageryDict['month']) + '-' + str(currentImageryDict['day'])\n currentImageryStatsDict = rusloModisLibrary.getMOD10A2OriginImageryStatsByHVDate(dbOptions,configDict,currentH,currentV,currentDate)\n\n currentQuality = float(currentImageryStatsDict['bad_count']) / float(currentImageryStatsDict['overage_count'])\n icePercent = float(currentImageryStatsDict['lake_ice'])/float(currentImageryStatsDict['overage_count'])\n if currentQuality >= 0.20 and self.ui.statsTabBadDataCheckbox.isChecked():\n continue\n\n self.ui.statsTabTable.setRowCount(self.ui.statsTabTable.rowCount()+1)\n rowPosition = self.ui.statsTabTable.rowCount()\n\n self.ui.statsTabTable.setItem(rowPosition - 1, 0, QtGui.QTableWidgetItem(currentH))\n self.ui.statsTabTable.setItem(rowPosition - 1, 1, QtGui.QTableWidgetItem(currentV))\n self.ui.statsTabTable.setItem(rowPosition - 1, 2, QtGui.QTableWidgetItem(currentDate))\n if currentQuality >= 0.20:\n #self.ui.loadTabDownloadStatusTable.item(rowPosition - 1, 3).setBackground(QtGui.QColor(100,0,0))\n self.ui.statsTabTable.setItem(rowPosition - 1, 3, QtGui.QTableWidgetItem(u'!Неудовлетв.'))\n else:\n #self.ui.loadTabDownloadStatusTable.item(rowPosition - 1, 3).setBackground(QtGui.QColor(0,100,0))\n self.ui.statsTabTable.setItem(rowPosition - 1, 3, QtGui.QTableWidgetItem(u'Удовлетв.'))\n\n self.ui.statsTabTable.setItem(rowPosition - 1, 4, QtGui.QTableWidgetItem(str(math.trunc(currentQuality*1000)/10.0)))\n self.ui.statsTabTable.setItem(rowPosition - 1, 5, QtGui.QTableWidgetItem(str(currentImageryStatsDict['minimum'])))\n self.ui.statsTabTable.setItem(rowPosition - 1, 6, QtGui.QTableWidgetItem(str(currentImageryStatsDict['maximum'])))\n self.ui.statsTabTable.setItem(rowPosition - 1, 7, QtGui.QTableWidgetItem(str(currentImageryStatsDict['mean'])))\n self.ui.statsTabTable.setItem(rowPosition - 1, 8, QtGui.QTableWidgetItem(str(currentImageryStatsDict['stdev'])))\n self.ui.statsTabTable.setItem(rowPosition - 1, 9, QtGui.QTableWidgetItem(str(math.trunc(icePercent*1000)/10.0)))\n self.ui.statsTabTable.setItem(rowPosition - 1, 10, QtGui.QTableWidgetItem('-'))\n\n pass\n else:\n # Статистика по маскам водосборов\n objectName = self.ui.statsTabWaterObjectCombobox.currentText()\n translitName = commonLibrary.transliterateString(objectName)\n dataList = rusloModisLibrary.getAllMOD10A2ObjectMasksFromPostGIS(dbOptions,configDict,objectName)\n self.ui.statsTabTable.setSortingEnabled(False)\n #print dataList\n for dataEntry in dataList:\n curDateDict = rusloModisLibrary.getDateFromMOD10A2ObjectMaskTableName(dataEntry)\n curYear = curDateDict['year']\n curMonth = curDateDict['month']\n curDay = curDateDict['day']\n curDate = str(curYear) + '-' + str(curMonth) + '-' + str(curDay)\n currentImageryStatsDict = rusloModisLibrary.getMOD10A2ObjectMaskStatsByObjectNameAndDate(dbOptions,configDict,objectName,curYear,curMonth,curDay)\n\n #print currentImageryStatsDict\n currentQuality = float(currentImageryStatsDict['bad_count']) / float(currentImageryStatsDict['overage_count'])\n icePercent = float(currentImageryStatsDict['lake_ice'])/float(currentImageryStatsDict['overage_count'])\n if currentQuality >= 0.20 and self.ui.statsTabBadDataCheckbox.isChecked():\n continue\n\n self.ui.statsTabTable.setRowCount(self.ui.statsTabTable.rowCount()+1)\n rowPosition = self.ui.statsTabTable.rowCount()\n\n self.ui.statsTabTable.setItem(rowPosition - 1, 0, QtGui.QTableWidgetItem('-'))\n self.ui.statsTabTable.setItem(rowPosition - 1, 1, QtGui.QTableWidgetItem('-'))\n self.ui.statsTabTable.setItem(rowPosition - 1, 2, QtGui.QTableWidgetItem(curDate))\n if currentQuality >= 0.20:\n self.ui.statsTabTable.setItem(rowPosition - 1, 3, QtGui.QTableWidgetItem(u'!Неудовлетв.'))\n else:\n self.ui.statsTabTable.setItem(rowPosition - 1, 3, QtGui.QTableWidgetItem(u'Удовлетв.'))\n\n self.ui.statsTabTable.setItem(rowPosition - 1, 4, QtGui.QTableWidgetItem(str(math.trunc(currentQuality*1000)/10.0)))\n self.ui.statsTabTable.setItem(rowPosition - 1, 5, QtGui.QTableWidgetItem(str(currentImageryStatsDict['minimum'])))\n #QtGui.QMessageBox.critical(None, \"Error\", str(currentImageryStatsDict['maximum']))\n self.ui.statsTabTable.setItem(rowPosition - 1, 6, QtGui.QTableWidgetItem(str(currentImageryStatsDict['maximum'])))\n self.ui.statsTabTable.setItem(rowPosition - 1, 6, QtGui.QTableWidgetItem(str(currentImageryStatsDict['maximum'])))\n self.ui.statsTabTable.setItem(rowPosition - 1, 7, QtGui.QTableWidgetItem(str(currentImageryStatsDict['mean'])))\n self.ui.statsTabTable.setItem(rowPosition - 1, 8, QtGui.QTableWidgetItem(str(currentImageryStatsDict['stdev'])))\n self.ui.statsTabTable.setItem(rowPosition - 1, 9, QtGui.QTableWidgetItem(str(math.trunc(icePercent*1000)/10.0)))\n self.ui.statsTabTable.setItem(rowPosition - 1, 10, QtGui.QTableWidgetItem(objectName))\n self.ui.statsTabTable.setSortingEnabled(True)\n self.ui.statsTabTable.sortByColumn(2,QtCore.Qt.AscendingOrder)\n pass\n\n def statsTabAddImageryToProject(self):\n #Получаем индексы строк, в которых что-нибудь выделено\n rows = sorted(set(index.row() for index in self.ui.statsTabTable.selectedIndexes()))\n if len(rows) == 0:\n QtGui.QMessageBox.critical(None, \"Error\", u\"Не выбраны необходимые данные\")\n return\n\n dboptions = self.returnDBOptionsList()\n configs = self.readDBAndProjectConfiguration()\n for row in rows:\n h = self.ui.statsTabTable.item(row,0).text()\n v = self.ui.statsTabTable.item(row,1).text()\n date = self.ui.statsTabTable.item(row,2).text()\n year = date [0:4]\n month = date [5:7]\n day = date [8:10]\n vodosbor = self.ui.statsTabTable.item(row,10).text()\n if vodosbor == '-':\n rusloModisLibrary.addToProjectOriginMOD10A2ImageryByHVDate(dboptions,configs,h,v,year,month,day)\n 500*500\n else:\n rusloModisLibrary.addToProjectMOD10A2ObjectMaskByObjectNameAndDate(dboptions,configs,self.ui.statsTabWaterObjectCombobox.currentText(),year,month,day)\n 500*500\n pass\n\n def statsTabAddIceLayersToProject(self):\n #Получаем индексы строк, в которых что-нибудь выделено\n rows = sorted(set(index.row() for index in self.ui.statsTabTable.selectedIndexes()))\n if len(rows) == 0:\n QtGui.QMessageBox.critical(None, \"Error\", u\"Не выбраны необходимые данные\")\n return\n\n dboptions = self.returnDBOptionsList()\n configs = self.readDBAndProjectConfiguration()\n for row in rows:\n date = self.ui.statsTabTable.item(row,2).text()\n year = date [0:4]\n month = date [5:7]\n day = date [8:10]\n vodosbor = self.ui.statsTabTable.item(row,10).text()\n if vodosbor == '-':\n #rusloModisLibrary.addToProjectOriginMOD10A2ImageryByHVDate(dboptions,configs,h,v,year,month,day)\n #print 500*500\n pass\n else:\n rusloModisLibrary.addToProjectLakeIceVectorMaskByObjectNameAndDate(dboptions,configs,vodosbor,year,month,day)\n 500*500\n pass\n\n pass\n\n def vodosborTabRefreshData (self):\n\n\n if self.DBConnectionStatus == False:\n QtGui.QMessageBox.critical(None, \"Error\", u\"Отсутствует связь с базой данных\")\n return\n\n if not self.ui.vodosborTabVodosborCombobox.currentText():\n QtGui.QMessageBox.critical(None, \"Error\", u\"Не выбран водоём\")\n return\n\n dboptions = self.returnDBOptionsList()\n configs = self.readDBAndProjectConfiguration()\n\n self.ui.vodosborTabDataList.clear()\n\n waterObjectsLayer = commonLibrary.getLayerByName(configs['water_objects_layer'])\n waterFeature = commonLibrary.getFirstFeatureByAttributeValue(waterObjectsLayer,configs['water_objects_name_attr'],self.ui.vodosborTabVodosborCombobox.currentText())\n if not waterFeature:\n return\n\n waterCRS = rusloModisLibrary.getEPSGCodeFromLayer(waterObjectsLayer)\n currentObjectHVList = rusloModisLibrary.getMODIShvListFromPolygonFeature(waterFeature,waterCRS)\n\n\n imageryList = rusloModisLibrary.getAllMOD10A2OriginImageryFromPostGIS(dboptions,configs)\n HVDatesList = rusloModisLibrary.getHVDateListsFromOriginMOD10A2TableNames(imageryList)\n\n\n # Если отмечен флаг контроля качества\n\n # Собираем все даты нужных нам H и V по отдельности\n i = 0\n allDatesList = []\n while i < len(currentObjectHVList):\n curH = int(currentObjectHVList[i][0])\n curV = int(currentObjectHVList[i][1])\n curDates = []\n j = 0\n while j < len(HVDatesList):\n\n compH = int(HVDatesList[j][0])\n compV = int(HVDatesList[j][1])\n\n if curH == compH and curV == compV:\n if self.ui.vodosborTabUseOnlyGoodCheckbox.isChecked():\n currentDate = str(HVDatesList[j][2]) + '-' + str(HVDatesList[j][3]) + '-' + str(HVDatesList[j][4])\n currentImageryStatsDict = rusloModisLibrary.getMOD10A2OriginImageryStatsByHVDate(dboptions, configs, compH,compV,currentDate)\n currentQuality = float(currentImageryStatsDict['bad_count']) / float(currentImageryStatsDict['overage_count'])\n if currentQuality < 0.20:\n pass\n else:\n j += 1\n continue\n\n curDates.append([HVDatesList[j][2],HVDatesList[j][3],HVDatesList[j][4]])\n\n j += 1\n\n allDatesList.append(curDates)\n i += 1\n\n # Находим даты, которые есть для всех нужных нам H и V\n finalDates = []\n\n originDates = allDatesList[0]\n for Date in originDates:\n flag = 1\n for compDateList in allDatesList:\n flag2 = 0\n for compDate in compDateList:\n if compDate[0] == Date[0] and compDate[1] == Date[1] and compDate[2] == Date[2]:\n flag2 = 1\n if flag2 == 0:\n flag = 0\n\n if flag == 1:\n curString = Date[0] + '.' + Date[1] + '.' + Date[2]\n finalDates.append(curString)\n finalDates.sort()\n\n self.ui.vodosborTabDataList.addItems(finalDates)\n\n pass\n\n def vodosborTabRunProcessing (self):\n commonLibrary.clearTempDir()\n if self.DBConnectionStatus == False:\n QtGui.QMessageBox.critical(None, \"Error\", u\"Отсутствует связь с базой данных\")\n return\n\n if len(self.ui.vodosborTabDataList.selectedItems()) == 0:\n QtGui.QMessageBox.critical(None, \"Error\", u\"Не выбраны необходимые данные\")\n return\n\n dboptions = self.returnDBOptionsList()\n configs = self.readDBAndProjectConfiguration()\n\n self.ui.vodosborTabProgressBar.show()\n\n waterObjectsLayer = commonLibrary.getLayerByName(configs['water_objects_layer'])\n waterFeature = commonLibrary.getFirstFeatureByAttributeValue(waterObjectsLayer,configs['water_objects_name_attr'],self.ui.vodosborTabVodosborCombobox.currentText())\n if not waterFeature:\n return\n\n sinCRS = QgsCoordinateReferenceSystem()\n sinCRS.createFromProj4(\"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs\")\n sourceCRS = waterObjectsLayer.crs()\n #rusloModisLibrary.convertVectorFeatureFromCRSToCRS(waterFeature,'Polygon',sourceCRS,sinCRS)\n\n waterCRS = rusloModisLibrary.getEPSGCodeFromLayer(waterObjectsLayer)\n currentObjectHVList = rusloModisLibrary.getMODIShvListFromPolygonFeature(waterFeature,waterCRS)\n#\n tempPath = os.path.dirname(os.path.abspath(__file__)) + '\\\\temp\\\\'\n#\n for item in self.ui.vodosborTabDataList.selectedItems():\n curYear = item.text()[0:4]\n curMonth = item.text()[5:7]\n curDay = item.text()[8:10]\n translitName = commonLibrary.transliterateString(self.ui.vodosborTabVodosborCombobox.currentText())\n newTableName = translitName + '_' + str(curYear) +'_' + str(curMonth) + '_' + str(curDay)\n schemaObjects = configs['db_object_masks_mod10a2_scheme']\n schemaOrigin = configs['db_original_mod10a2_scheme']\n\n if rusloModisLibrary.checkMOD10A2ObjectMaskExistingInDatabase(dboptions,configs,self.ui.vodosborTabVodosborCombobox.currentText(),curYear,curMonth,curDay) == 2:\n return\n elif rusloModisLibrary.checkMOD10A2ObjectMaskExistingInDatabase(dboptions,configs,self.ui.vodosborTabVodosborCombobox.currentText(),curYear,curMonth,curDay) == 3:\n return\n elif rusloModisLibrary.checkMOD10A2ObjectMaskExistingInDatabase(dboptions,configs,self.ui.vodosborTabVodosborCombobox.currentText(),curYear,curMonth,curDay) == True:\n #print u'Присутствовал в базе данных'\n continue\n\n\n if len(currentObjectHVList) == 1:\n originTableName = rusloModisLibrary.HVtoString(int(currentObjectHVList[0][0]),int(currentObjectHVList[0][1]))+ '_' + str(curYear) +'_' + str(curMonth) + '_' + str(curDay)\n\n rasterLayer = rusloModisLibrary.getRasterLayerFromPostGIS(dboptions,schemaOrigin,originTableName)\n rusloModisLibrary.saveRasterLayerToPathGeoTiff(rasterLayer,tempPath + originTableName + '.tif')\n\n vectorMaskTempPath = tempPath + 'vectorTempMask.shp'\n\n sinWaterFeature = rusloModisLibrary.convertVectorFeatureFromCRSToCRS(waterFeature,'Polygon',sourceCRS,sinCRS)\n\n rusloModisLibrary.createTempVectorLayerByFeature(sinWaterFeature,'Polygon',vectorMaskTempPath)\n\n rusloModisLibrary.cutRasterByVectorMaskGDAL(tempPath + originTableName + '.tif', vectorMaskTempPath,tempPath + newTableName + '.tif')\n\n curDate = str(curYear) + '-' + str(curMonth) + '-' + str(curDay)\n\n rusloModisLibrary.loadRasterToPostGIS(tempPath + newTableName + '.tif',dboptions,configs['db_object_masks_mod10a2_scheme'],newTableName)\n\n rusloModisLibrary.loadMOD10A2ObjectMaskStatisticsToPostGIS (tempPath + newTableName + '.tif',curDate,translitName,dboptions,configs)\n\n newRasterLayer = QgsRasterLayer(tempPath + newTableName + '.tif')\n rusloModisLibrary.generateLakeIceLayerForRasterLayerAndWriteToPostGIS(dboptions,configs,newRasterLayer,self.ui.vodosborTabVodosborCombobox.currentText(),curYear,curMonth,curDay,tempPath + 'vectorTempMask.shp')\n\n else:\n rusloModisLibrary.mergeListOfOriginMOD10A2RastersByHVListAndDate(dboptions,configs,currentObjectHVList,curYear,curMonth,curDay,tempPath + newTableName + '_merged_orig.tif')\n\n vectorMaskTempPath = tempPath + 'vectorTempMask.shp'\n\n sinWaterFeature = rusloModisLibrary.convertVectorFeatureFromCRSToCRS(waterFeature,'Polygon',sourceCRS,sinCRS)\n\n rusloModisLibrary.createTempVectorLayerByFeature(sinWaterFeature,'Polygon',vectorMaskTempPath)\n\n rusloModisLibrary.cutRasterByVectorMaskGDAL(tempPath + newTableName + '_merged_orig.tif', vectorMaskTempPath,tempPath + newTableName + '.tif')\n curDate = str(curYear) + '-' + str(curMonth) + '-' + str(curDay)\n\n rusloModisLibrary.loadRasterToPostGIS(tempPath + newTableName + '.tif',dboptions,configs['db_object_masks_mod10a2_scheme'],newTableName)\n\n rusloModisLibrary.loadMOD10A2ObjectMaskStatisticsToPostGIS (tempPath + newTableName + '.tif',curDate,translitName,dboptions,configs)\n\n newRasterLayer = QgsRasterLayer(tempPath + newTableName + '.tif')\n rusloModisLibrary.generateLakeIceLayerForRasterLayerAndWriteToPostGIS(dboptions,configs,newRasterLayer,self.ui.vodosborTabVodosborCombobox.currentText(),curYear,curMonth,curDay,tempPath + 'vectorTempMask.shp')\n\n pass\n self.ui.vodosborTabProgressBar.hide()\n QtGui.QMessageBox.about(None, \"Success\", u\"Обработка закончена\")\n\n\n def monitorTabRunProcessing(self):\n commonLibrary.clearTempDir()\n if self.DBConnectionStatus == False:\n QtGui.QMessageBox.critical(None, \"Error\", u\"Отсутствует связь с базой данных\")\n return\n if not self.ui.monitorTabVodosborCombobox.currentText():\n QtGui.QMessageBox.critical(None, \"Error\", u\"Не выбран водоём\")\n return\n\n dbOptions = self.returnDBOptionsList()\n configs = self.readDBAndProjectConfiguration()\n objectName = self.ui.monitorTabVodosborCombobox.currentText()\n # График от начальной до конечной даты\n if self.ui.monitorTabStartEndPlotRadioButton.isChecked():\n startDate = self.ui.monitorTabStartDate.currentText()\n endDate = self.ui.monitorTabEndDate.currentText()\n\n if endDate <= startDate:\n QtGui.QMessageBox.critical(None, \"Error\", u\"Конечная дата не может быть меньше или равной начальной\")\n return\n\n datesAllList = rusloModisLibrary.getListOfAvailableDatesForObjectMask(dbOptions,configs,objectName)\n datesAllList.sort()\n startDateIndex = datesAllList.index(startDate)\n endDateIndex = datesAllList.index(endDate)\n # Список всех нужных дат по порядку\n datesIntervalList = datesAllList[startDateIndex:endDateIndex+1]\n\n iceStatsList = []\n\n for date in datesIntervalList:\n curYear = date[0:4]\n curMonth = date[5:7]\n curDay = date[8:10]\n curStats = rusloModisLibrary.getMOD10A2ObjectMaskStatsByObjectNameAndDate(dbOptions,configs,objectName,curYear,curMonth,curDay)\n icePercent = float(curStats['lake_ice'])/float(curStats['overage_count'])*100\n iceArea = rusloModisLibrary.getIceAreaForMOD10A2MaskObjectByObjectNameAndDate(dbOptions,configs,objectName,curYear,curMonth,curDay)\n if self.ui.monitorTabCountSquareInKmRadioButton.isChecked():\n iceStatsList.append(iceArea)\n else:\n iceStatsList.append(icePercent)\n\n rusloModisLibrary.generatePlotByDatesAndNumbers(datesIntervalList,iceStatsList,objectName)\n pass\n\n # График по списку дат\n if self.ui.monitorTabDateListPlotRadioButton.isChecked():\n items = []\n datesIntervalList = []\n iceStatsList = []\n for index in xrange(self.ui.monitorTabDateList.count()):\n items.append(self.ui.monitorTabDateList.item(index))\n dates = [i.text() for i in items]\n if len(dates) == 0:\n QtGui.QMessageBox.critical(None, \"Error\", u\"Не выбраны необходимые данные\")\n return\n if len(dates) == 1:\n QtGui.QMessageBox.critical(None, \"Error\", u\"Требуется выбрать по меньшей мере две даты\")\n return\n\n\n for date in dates:\n curYear = date[0:4]\n curMonth = date[5:7]\n curDay = date[8:10]\n curStats = rusloModisLibrary.getMOD10A2ObjectMaskStatsByObjectNameAndDate(dbOptions,configs,objectName,curYear,curMonth,curDay)\n datesIntervalList.append(str(curYear)+'-'+str(curMonth)+'-'+str(curDay))\n icePercent = float(curStats['lake_ice'])/float(curStats['overage_count'])*100\n iceArea = rusloModisLibrary.getIceAreaForMOD10A2MaskObjectByObjectNameAndDate(dbOptions,configs,objectName,curYear,curMonth,curDay)\n if self.ui.monitorTabCountSquareInKmRadioButton.isChecked():\n iceStatsList.append(iceArea)\n else:\n iceStatsList.append(icePercent)\n datesIntervalList.sort()\n rusloModisLibrary.generatePlotByDatesAndNumbers(datesIntervalList,iceStatsList,objectName)\n pass\n\n # Слой с нарастанием-сходом льда\n if self.ui.monitorTabIceDynamicRadioButton.isChecked():\n startDate = self.ui.monitorTabStartDate.currentText()\n endDate = self.ui.monitorTabEndDate.currentText()\n\n if endDate <= startDate:\n QtGui.QMessageBox.critical(None, \"Error\", u\"Конечная дата не может быть меньше или равной начальной\")\n return\n\n startYear = startDate[0:4]\n startMonth = startDate[5:7]\n startDay = startDate[8:10]\n startDateVectorLayer = rusloModisLibrary.getLakeIceVectorMaskByObjectNameAndDate(dbOptions,configs,objectName,startYear,startMonth,startDay)\n\n endYear = endDate[0:4]\n endMonth = endDate[5:7]\n endDay = endDate[8:10]\n endDateVectorLayer = rusloModisLibrary.getLakeIceVectorMaskByObjectNameAndDate(dbOptions,configs,objectName,endYear,endMonth,endDay)\n\n #QgsMapLayerRegistry.instance().addMapLayer(startDateVectorLayer)\n #QgsMapLayerRegistry.instance().addMapLayer(endDateVectorLayer)\n\n tempPath = os.path.dirname(os.path.abspath(__file__)) + '\\\\temp\\\\'\n #a = rusloModisLibrary.differenceBetweenTwoPolygonLayers(startDateVectorLayer,endDateVectorLayer,tempPath+'diff_vector_start_end.shp')\n #b = rusloModisLibrary.differenceBetweenTwoPolygonLayers(endDateVectorLayer,startDateVectorLayer,tempPath+'diff_vector_end_start.shp')\n sinCRS = QgsCoordinateReferenceSystem()\n sinCRS.createFromProj4(\"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs\")\n memoryLayerString = \"Polygon?crs=\" + sinCRS.authid()\n memoryLayer = QgsVectorLayer(memoryLayerString, u'Освобождение и нарастание льда (' + objectName + u', ' + startDate + u' - ' + endDate + u')', \"memory\")\n a = rusloModisLibrary.twoSidesDifferenceBetweenTwoPolygonLayers(startDateVectorLayer,endDateVectorLayer,memoryLayer)\n memoryLayer.setCrs(sinCRS)\n\n # Задать стиль\n s1 = QgsFillSymbolV2.defaultSymbol(memoryLayer.geometryType())\n s1.setColor(QtGui.QColor.fromRgb(255,228,225))\n\n s2 = QgsFillSymbolV2.defaultSymbol(memoryLayer.geometryType())\n s2.setColor(QtGui.QColor.fromRgb(240,255,240))\n\n increaseStyle = QgsRendererCategoryV2('Decrease',s1,u'Освобождение льда')\n decreaseStyle = QgsRendererCategoryV2('Increase',s2,u'Нарастание льда')\n sr = QgsCategorizedSymbolRendererV2('TYPE',[increaseStyle, decreaseStyle])\n sr.setClassAttribute('TYPE')\n memoryLayer.setRendererV2(sr)\n\n QgsMapLayerRegistry.instance().addMapLayer(memoryLayer)\n memoryLayer.triggerRepaint()\n pass\n\n #Слой для TimeManager\n if self.ui.monitorTabIceTimeManagerLayerRadioButton.isChecked():\n startDate = self.ui.monitorTabStartDate.currentText()\n endDate = self.ui.monitorTabEndDate.currentText()\n if endDate <= startDate:\n QtGui.QMessageBox.critical(None, \"Error\", u\"Конечная дата не может быть меньше или равной начальной\")\n return\n\n datesAllList = rusloModisLibrary.getListOfAvailableDatesForObjectMask(dbOptions,configs,objectName)\n datesAllList.sort()\n startDateIndex = datesAllList.index(startDate)\n endDateIndex = datesAllList.index(endDate)\n\n # Список всех нужных дат по порядку\n datesIntervalList = datesAllList[startDateIndex:endDateIndex+1]\n\n sinCRS = QgsCoordinateReferenceSystem()\n sinCRS.createFromProj4(\"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs\")\n memoryTimeManagerLayerString = \"Polygon?crs=\" + sinCRS.authid()\n memoryTimeManagerLayer = QgsVectorLayer(memoryTimeManagerLayerString, 'name', \"memory\")\n memoryTimeManagerLayer.setLayerName(u'Ледовый покров (' + objectName + u') с ' + str(startDate) + u' по ' + str(endDate))\n memoryTimeManagerLayerDataProvider = memoryTimeManagerLayer.dataProvider()\n memoryTimeManagerLayerDataProvider.addAttributes([QgsField(\"ID\", QtCore.QVariant.Int),\n QgsField(\"AREA\", QtCore.QVariant.Double),\n QgsField(\"DATE\", QtCore.QVariant.Date)])\n memoryTimeManagerLayer.updateFields()\n j = 0\n for date in datesIntervalList:\n curYear = date[0:4]\n curMonth = date[5:7]\n curDay = date[8:10]\n curIceLayer = rusloModisLibrary.getLakeIceVectorMaskByObjectNameAndDate(dbOptions,configs,objectName,curYear,curMonth,curDay)\n curIceLayerFeatures = curIceLayer.getFeatures()\n for curIceFeature in curIceLayerFeatures:\n if curIceFeature:\n newIceFeature = curIceFeature\n newIceFeature.setAttributes ([j, curIceFeature['AREA'], date])\n memoryTimeManagerLayerDataProvider.addFeatures([newIceFeature])\n j += 1\n\n memoryTimeManagerLayer.commitChanges()\n memoryTimeManagerLayer.updateExtents()\n memoryTimeManagerLayer.updateFields()\n memoryTimeManagerLayer.setCrs(sinCRS)\n QgsMapLayerRegistry.instance().addMapLayer(memoryTimeManagerLayer)\n\n\n\n def openConfigurationFile(self):\n homePath = os.path.dirname(os.path.abspath(__file__))\n configPath = homePath + '/config.dat'\n os.system('notepad.exe ' + configPath)\n\n\n def cancel(self):\n self.close()\n", "sub_path": "mainplugin_dialog.py", "file_name": "mainplugin_dialog.py", "file_ext": "py", "file_size_in_byte": 63877, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "PyQt4.QtGui.QWidget", "line_number": 22, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 22, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QWidget.__init__", "line_number": 27, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QWidget", "line_number": 27, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 27, "usage_type": "name"}, {"api_name": "rusloModis_mainmenu.Ui_Dialog", "line_number": 28, "usage_type": "call"}, {"api_name": "PyQt4.QtCore.SIGNAL", "line_number": 31, "usage_type": "call"}, {"api_name": "PyQt4.QtCore", "line_number": 31, "usage_type": "name"}, {"api_name": "PyQt4.QtCore.SIGNAL", "line_number": 32, "usage_type": "call"}, {"api_name": "PyQt4.QtCore", "line_number": 32, "usage_type": "name"}, {"api_name": "PyQt4.QtCore.SIGNAL", "line_number": 33, "usage_type": "call"}, {"api_name": "PyQt4.QtCore", "line_number": 33, "usage_type": "name"}, {"api_name": "PyQt4.QtCore.SIGNAL", "line_number": 34, "usage_type": "call"}, {"api_name": "PyQt4.QtCore", "line_number": 34, "usage_type": "name"}, {"api_name": "PyQt4.QtCore.SIGNAL", "line_number": 35, "usage_type": "call"}, {"api_name": "PyQt4.QtCore", "line_number": 35, "usage_type": "name"}, {"api_name": "PyQt4.QtCore.SIGNAL", "line_number": 36, "usage_type": "call"}, {"api_name": "PyQt4.QtCore", "line_number": 36, "usage_type": "name"}, {"api_name": "PyQt4.QtCore.SIGNAL", "line_number": 37, "usage_type": "call"}, {"api_name": "PyQt4.QtCore", "line_number": 37, "usage_type": "name"}, {"api_name": "PyQt4.QtCore.SIGNAL", "line_number": 38, "usage_type": "call"}, {"api_name": "PyQt4.QtCore", "line_number": 38, "usage_type": "name"}, {"api_name": "PyQt4.QtCore.SIGNAL", "line_number": 39, "usage_type": "call"}, {"api_name": "PyQt4.QtCore", "line_number": 39, "usage_type": "name"}, {"api_name": "PyQt4.QtCore.SIGNAL", "line_number": 40, "usage_type": "call"}, {"api_name": "PyQt4.QtCore", "line_number": 40, "usage_type": "name"}, {"api_name": "PyQt4.QtCore.SIGNAL", "line_number": 41, "usage_type": "call"}, {"api_name": "PyQt4.QtCore", "line_number": 41, "usage_type": "name"}, {"api_name": "PyQt4.QtCore.SIGNAL", "line_number": 42, "usage_type": "call"}, {"api_name": "PyQt4.QtCore", "line_number": 42, "usage_type": "name"}, {"api_name": "PyQt4.QtCore.SIGNAL", "line_number": 43, "usage_type": "call"}, {"api_name": "PyQt4.QtCore", "line_number": 43, "usage_type": "name"}, {"api_name": "PyQt4.QtCore.SIGNAL", "line_number": 44, "usage_type": "call"}, {"api_name": "PyQt4.QtCore", "line_number": 44, "usage_type": "name"}, {"api_name": "PyQt4.QtCore.SIGNAL", "line_number": 45, "usage_type": "call"}, {"api_name": "PyQt4.QtCore", "line_number": 45, "usage_type": "name"}, {"api_name": "PyQt4.QtCore.SIGNAL", "line_number": 46, "usage_type": "call"}, {"api_name": "PyQt4.QtCore", "line_number": 46, "usage_type": "name"}, {"api_name": "PyQt4.QtCore.SIGNAL", "line_number": 48, "usage_type": "call"}, {"api_name": "PyQt4.QtCore", "line_number": 48, "usage_type": "name"}, {"api_name": "PyQt4.QtCore.SIGNAL", "line_number": 49, "usage_type": "call"}, {"api_name": "PyQt4.QtCore", "line_number": 49, "usage_type": "name"}, {"api_name": "PyQt4.QtCore.SIGNAL", "line_number": 50, "usage_type": "call"}, {"api_name": "PyQt4.QtCore", "line_number": 50, "usage_type": "name"}, {"api_name": "os.path.dirname", "line_number": 72, "usage_type": "call"}, {"api_name": "os.path", "line_number": 72, "usage_type": "attribute"}, {"api_name": "os.path.abspath", "line_number": 72, "usage_type": "call"}, {"api_name": "os.path.isdir", "line_number": 73, "usage_type": "call"}, {"api_name": "os.path", "line_number": 73, "usage_type": "attribute"}, {"api_name": "os.mkdir", "line_number": 74, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getCurrentCanvasCenterInSelectedCRS", "line_number": 103, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getMODIShvFromPointCoordinates", "line_number": 104, "usage_type": "call"}, {"api_name": "commonLibrary.getLayerByName", "line_number": 128, "usage_type": "call"}, {"api_name": "commonLibrary.getAllValuesOfAttribute", "line_number": 130, "usage_type": "call"}, {"api_name": "commonLibrary.getLayerByName", "line_number": 154, "usage_type": "call"}, {"api_name": "commonLibrary.getFirstFeatureByAttributeValue", "line_number": 155, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getEPSGCodeFromLayer", "line_number": 159, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getMODIShvListFromPolygonFeature", "line_number": 161, "usage_type": "call"}, {"api_name": "os.path.dirname", "line_number": 233, "usage_type": "call"}, {"api_name": "os.path", "line_number": 233, "usage_type": "attribute"}, {"api_name": "os.path.abspath", "line_number": 233, "usage_type": "call"}, {"api_name": "os.system", "line_number": 235, "usage_type": "call"}, {"api_name": "os.path.dirname", "line_number": 244, "usage_type": "call"}, {"api_name": "os.path", "line_number": 244, "usage_type": "attribute"}, {"api_name": "os.path.abspath", "line_number": 244, "usage_type": "call"}, {"api_name": "codecs.open", "line_number": 245, "usage_type": "call"}, {"api_name": "os.path.dirname", "line_number": 259, "usage_type": "call"}, {"api_name": "os.path", "line_number": 259, "usage_type": "attribute"}, {"api_name": "os.path.abspath", "line_number": 259, "usage_type": "call"}, {"api_name": "codecs.open", "line_number": 260, "usage_type": "call"}, {"api_name": "re.sub", "line_number": 276, "usage_type": "call"}, {"api_name": "re.sub", "line_number": 278, "usage_type": "call"}, {"api_name": "re.sub", "line_number": 280, "usage_type": "call"}, {"api_name": "re.sub", "line_number": 282, "usage_type": "call"}, {"api_name": "re.sub", "line_number": 284, "usage_type": "call"}, {"api_name": "os.path.dirname", "line_number": 292, "usage_type": "call"}, {"api_name": "os.path", "line_number": 292, "usage_type": "attribute"}, {"api_name": "os.path.abspath", "line_number": 292, "usage_type": "call"}, {"api_name": "codecs.open", "line_number": 293, "usage_type": "call"}, {"api_name": "re.sub", "line_number": 304, "usage_type": "call"}, {"api_name": "re.sub", "line_number": 306, "usage_type": "call"}, {"api_name": "re.sub", "line_number": 308, "usage_type": "call"}, {"api_name": "re.sub", "line_number": 310, "usage_type": "call"}, {"api_name": "re.sub", "line_number": 312, "usage_type": "call"}, {"api_name": "re.sub", "line_number": 314, "usage_type": "call"}, {"api_name": "re.sub", "line_number": 316, "usage_type": "call"}, {"api_name": "re.sub", "line_number": 318, "usage_type": "call"}, {"api_name": "re.sub", "line_number": 320, "usage_type": "call"}, {"api_name": "commonLibrary.getLayerByName", "line_number": 339, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 341, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 341, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 341, "usage_type": "name"}, {"api_name": "commonLibrary.getAllValuesOfAttribute", "line_number": 344, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 345, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 345, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 345, "usage_type": "name"}, {"api_name": "rusloModisLibrary.checkDatabaseSchemeExistance", "line_number": 348, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 349, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 349, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 349, "usage_type": "name"}, {"api_name": "rusloModisLibrary.checkDatabaseSchemeExistance", "line_number": 352, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 353, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 353, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 353, "usage_type": "name"}, {"api_name": "rusloModisLibrary.checkDatabaseSchemeExistance", "line_number": 356, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 357, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 357, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 357, "usage_type": "name"}, {"api_name": "rusloModisLibrary.checkDatabaseSchemeExistance", "line_number": 360, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 361, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 361, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 361, "usage_type": "name"}, {"api_name": "rusloModisLibrary.checkDatabaseSchemeExistance", "line_number": 364, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 365, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 365, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 365, "usage_type": "name"}, {"api_name": "rusloModisLibrary.checkDatabaseTableExistance", "line_number": 368, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 369, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 369, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 369, "usage_type": "name"}, {"api_name": "rusloModisLibrary.checkDatabaseTableExistance", "line_number": 372, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 373, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 373, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 373, "usage_type": "name"}, {"api_name": "rusloModisLibrary.checkFieldsForMODISStatsTables", "line_number": 376, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 379, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 379, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 379, "usage_type": "name"}, {"api_name": "rusloModisLibrary.checkFieldsForMODISStatsTables", "line_number": 382, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 385, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 385, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 385, "usage_type": "name"}, {"api_name": "commonLibrary.getLayerByName", "line_number": 423, "usage_type": "call"}, {"api_name": "commonLibrary.getFirstFeatureByAttributeValue", "line_number": 424, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getEPSGCodeFromLayer", "line_number": 429, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getMODIShvListFromPolygonFeature", "line_number": 430, "usage_type": "call"}, {"api_name": "rusloModisLibrary.HVtoString", "line_number": 433, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 465, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 465, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 465, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QMessageBox.information", "line_number": 468, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 468, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 468, "usage_type": "name"}, {"api_name": "rusloModisLibrary.getListOfAvailableDatesForObjectMask", "line_number": 474, "usage_type": "call"}, {"api_name": "psycopg2.connect", "line_number": 492, "usage_type": "call"}, {"api_name": "psycopg2.Error", "line_number": 499, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 502, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 502, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 502, "usage_type": "name"}, {"api_name": "commonLibrary.writeLogMessage", "line_number": 519, "usage_type": "call"}, {"api_name": "commonLibrary.writeLogMessage", "line_number": 521, "usage_type": "call"}, {"api_name": "commonLibrary.clearTempDir", "line_number": 538, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 541, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 541, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 541, "usage_type": "name"}, {"api_name": "os.path.dirname", "line_number": 544, "usage_type": "call"}, {"api_name": "os.path", "line_number": 544, "usage_type": "attribute"}, {"api_name": "os.path.abspath", "line_number": 544, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 552, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 552, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 552, "usage_type": "name"}, {"api_name": "rusloModisLibrary.getListOfDatesFromInterval", "line_number": 558, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getHVFromString", "line_number": 573, "usage_type": "call"}, {"api_name": "rusloModisLibrary.checkMOD10A2OrigExistingInDatabase", "line_number": 580, "usage_type": "call"}, {"api_name": "rusloModisLibrary.checkMOD10A2OrigExistingInDatabase", "line_number": 583, "usage_type": "call"}, {"api_name": "rusloModisLibrary.checkMOD10A2OrigExistingInDatabase", "line_number": 586, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 590, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 590, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 591, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 591, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 592, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 592, "usage_type": "name"}, {"api_name": "rusloModisLibrary.downloadMOD10A2ForGivenDateAndPlace", "line_number": 597, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 599, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 599, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 599, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 608, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 608, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 608, "usage_type": "name"}, {"api_name": "rusloModisLibrary.convertHDFToGTiff", "line_number": 617, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getRasterFileBasicStatistics", "line_number": 621, "usage_type": "call"}, {"api_name": "rusloModisLibrary.rasterUniqueValuesCount", "line_number": 622, "usage_type": "call"}, {"api_name": "rusloModisLibrary.HVtoString", "line_number": 628, "usage_type": "call"}, {"api_name": "rusloModisLibrary.loadRasterToPostGIS", "line_number": 629, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 632, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 632, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 633, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 633, "usage_type": "name"}, {"api_name": "rusloModisLibrary.checkMOD10A2OrigExistingInDatabase", "line_number": 634, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 635, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 635, "usage_type": "name"}, {"api_name": "rusloModisLibrary.loadMOD10A2StatisticsToPostGIS", "line_number": 636, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 638, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 638, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 647, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 647, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 647, "usage_type": "name"}, {"api_name": "rusloModisLibrary.getAllMOD10A2OriginImageryFromPostGIS", "line_number": 654, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getHVDataFromTableName", "line_number": 657, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getMOD10A2OriginImageryStatsByHVDate", "line_number": 662, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 672, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 672, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 673, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 673, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 674, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 674, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 677, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 677, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 680, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 680, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 682, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 682, "usage_type": "name"}, {"api_name": "math.trunc", "line_number": 682, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 683, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 683, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 684, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 684, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 685, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 685, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 686, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 686, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 687, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 687, "usage_type": "name"}, {"api_name": "math.trunc", "line_number": 687, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 688, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 688, "usage_type": "name"}, {"api_name": "commonLibrary.transliterateString", "line_number": 694, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getAllMOD10A2ObjectMasksFromPostGIS", "line_number": 695, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getDateFromMOD10A2ObjectMaskTableName", "line_number": 699, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getMOD10A2ObjectMaskStatsByObjectNameAndDate", "line_number": 704, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 715, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 715, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 716, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 716, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 717, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 717, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 719, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 719, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 721, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 721, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 723, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 723, "usage_type": "name"}, {"api_name": "math.trunc", "line_number": 723, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 724, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 724, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 726, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 726, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 727, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 727, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 728, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 728, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 729, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 729, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 730, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 730, "usage_type": "name"}, {"api_name": "math.trunc", "line_number": 730, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QTableWidgetItem", "line_number": 731, "usage_type": "call"}, {"api_name": "PyQt4.QtGui", "line_number": 731, "usage_type": "name"}, {"api_name": "PyQt4.QtCore.Qt", "line_number": 733, "usage_type": "attribute"}, {"api_name": "PyQt4.QtCore", "line_number": 733, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 740, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 740, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 740, "usage_type": "name"}, {"api_name": "rusloModisLibrary.addToProjectOriginMOD10A2ImageryByHVDate", "line_number": 754, "usage_type": "call"}, {"api_name": "rusloModisLibrary.addToProjectMOD10A2ObjectMaskByObjectNameAndDate", "line_number": 757, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 765, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 765, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 765, "usage_type": "name"}, {"api_name": "rusloModisLibrary.addToProjectLakeIceVectorMaskByObjectNameAndDate", "line_number": 781, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 791, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 791, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 791, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 795, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 795, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 795, "usage_type": "name"}, {"api_name": "commonLibrary.getLayerByName", "line_number": 803, "usage_type": "call"}, {"api_name": "commonLibrary.getFirstFeatureByAttributeValue", "line_number": 804, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getEPSGCodeFromLayer", "line_number": 808, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getMODIShvListFromPolygonFeature", "line_number": 809, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getAllMOD10A2OriginImageryFromPostGIS", "line_number": 812, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getHVDateListsFromOriginMOD10A2TableNames", "line_number": 813, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getMOD10A2OriginImageryStatsByHVDate", "line_number": 834, "usage_type": "call"}, {"api_name": "commonLibrary.clearTempDir", "line_number": 873, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 875, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 875, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 875, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 879, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 879, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 879, "usage_type": "name"}, {"api_name": "commonLibrary.getLayerByName", "line_number": 887, "usage_type": "call"}, {"api_name": "commonLibrary.getFirstFeatureByAttributeValue", "line_number": 888, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getEPSGCodeFromLayer", "line_number": 897, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getMODIShvListFromPolygonFeature", "line_number": 898, "usage_type": "call"}, {"api_name": "os.path.dirname", "line_number": 900, "usage_type": "call"}, {"api_name": "os.path", "line_number": 900, "usage_type": "attribute"}, {"api_name": "os.path.abspath", "line_number": 900, "usage_type": "call"}, {"api_name": "commonLibrary.transliterateString", "line_number": 906, "usage_type": "call"}, {"api_name": "rusloModisLibrary.checkMOD10A2ObjectMaskExistingInDatabase", "line_number": 911, "usage_type": "call"}, {"api_name": "rusloModisLibrary.checkMOD10A2ObjectMaskExistingInDatabase", "line_number": 913, "usage_type": "call"}, {"api_name": "rusloModisLibrary.checkMOD10A2ObjectMaskExistingInDatabase", "line_number": 915, "usage_type": "call"}, {"api_name": "rusloModisLibrary.HVtoString", "line_number": 921, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getRasterLayerFromPostGIS", "line_number": 923, "usage_type": "call"}, {"api_name": "rusloModisLibrary.saveRasterLayerToPathGeoTiff", "line_number": 924, "usage_type": "call"}, {"api_name": "rusloModisLibrary.convertVectorFeatureFromCRSToCRS", "line_number": 928, "usage_type": "call"}, {"api_name": "rusloModisLibrary.createTempVectorLayerByFeature", "line_number": 930, "usage_type": "call"}, {"api_name": "rusloModisLibrary.cutRasterByVectorMaskGDAL", "line_number": 932, "usage_type": "call"}, {"api_name": "rusloModisLibrary.loadRasterToPostGIS", "line_number": 936, "usage_type": "call"}, {"api_name": "rusloModisLibrary.loadMOD10A2ObjectMaskStatisticsToPostGIS", "line_number": 938, "usage_type": "call"}, {"api_name": "rusloModisLibrary.generateLakeIceLayerForRasterLayerAndWriteToPostGIS", "line_number": 941, "usage_type": "call"}, {"api_name": "rusloModisLibrary.mergeListOfOriginMOD10A2RastersByHVListAndDate", "line_number": 944, "usage_type": "call"}, {"api_name": "rusloModisLibrary.convertVectorFeatureFromCRSToCRS", "line_number": 948, "usage_type": "call"}, {"api_name": "rusloModisLibrary.createTempVectorLayerByFeature", "line_number": 950, "usage_type": "call"}, {"api_name": "rusloModisLibrary.cutRasterByVectorMaskGDAL", "line_number": 952, "usage_type": "call"}, {"api_name": "rusloModisLibrary.loadRasterToPostGIS", "line_number": 955, "usage_type": "call"}, {"api_name": "rusloModisLibrary.loadMOD10A2ObjectMaskStatisticsToPostGIS", "line_number": 957, "usage_type": "call"}, {"api_name": "rusloModisLibrary.generateLakeIceLayerForRasterLayerAndWriteToPostGIS", "line_number": 960, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox.about", "line_number": 964, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 964, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 964, "usage_type": "name"}, {"api_name": "commonLibrary.clearTempDir", "line_number": 968, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 970, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 970, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 970, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 973, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 973, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 973, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 985, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 985, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 985, "usage_type": "name"}, {"api_name": "rusloModisLibrary.getListOfAvailableDatesForObjectMask", "line_number": 988, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getMOD10A2ObjectMaskStatsByObjectNameAndDate", "line_number": 1001, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getIceAreaForMOD10A2MaskObjectByObjectNameAndDate", "line_number": 1003, "usage_type": "call"}, {"api_name": "rusloModisLibrary.generatePlotByDatesAndNumbers", "line_number": 1009, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 1021, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 1021, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 1021, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 1024, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 1024, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 1024, "usage_type": "name"}, {"api_name": "rusloModisLibrary.getMOD10A2ObjectMaskStatsByObjectNameAndDate", "line_number": 1032, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getIceAreaForMOD10A2MaskObjectByObjectNameAndDate", "line_number": 1035, "usage_type": "call"}, {"api_name": "rusloModisLibrary.generatePlotByDatesAndNumbers", "line_number": 1041, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 1050, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 1050, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 1050, "usage_type": "name"}, {"api_name": "rusloModisLibrary.getLakeIceVectorMaskByObjectNameAndDate", "line_number": 1056, "usage_type": "call"}, {"api_name": "rusloModisLibrary.getLakeIceVectorMaskByObjectNameAndDate", "line_number": 1061, "usage_type": "call"}, {"api_name": "os.path.dirname", "line_number": 1066, "usage_type": "call"}, {"api_name": "os.path", "line_number": 1066, "usage_type": "attribute"}, {"api_name": "os.path.abspath", "line_number": 1066, "usage_type": "call"}, {"api_name": "qgis.core.QgsVectorLayer", "line_number": 1072, "usage_type": "call"}, {"api_name": "rusloModisLibrary.twoSidesDifferenceBetweenTwoPolygonLayers", "line_number": 1073, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QColor.fromRgb", "line_number": 1078, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QColor", "line_number": 1078, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 1078, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QColor.fromRgb", "line_number": 1081, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QColor", "line_number": 1081, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 1081, "usage_type": "name"}, {"api_name": "qgis.core.QgsMapLayerRegistry.instance", "line_number": 1089, "usage_type": "call"}, {"api_name": "qgis.core.QgsMapLayerRegistry", "line_number": 1089, "usage_type": "name"}, {"api_name": "PyQt4.QtGui.QMessageBox.critical", "line_number": 1098, "usage_type": "call"}, {"api_name": "PyQt4.QtGui.QMessageBox", "line_number": 1098, "usage_type": "attribute"}, {"api_name": "PyQt4.QtGui", "line_number": 1098, "usage_type": "name"}, {"api_name": "rusloModisLibrary.getListOfAvailableDatesForObjectMask", "line_number": 1101, "usage_type": "call"}, {"api_name": "qgis.core.QgsVectorLayer", "line_number": 1112, "usage_type": "call"}, {"api_name": "PyQt4.QtCore.QVariant", "line_number": 1115, "usage_type": "attribute"}, {"api_name": "PyQt4.QtCore", "line_number": 1115, "usage_type": "name"}, {"api_name": "PyQt4.QtCore.QVariant", "line_number": 1116, "usage_type": "attribute"}, {"api_name": "PyQt4.QtCore", "line_number": 1116, "usage_type": "name"}, {"api_name": "PyQt4.QtCore.QVariant", "line_number": 1117, "usage_type": "attribute"}, {"api_name": "PyQt4.QtCore", "line_number": 1117, "usage_type": "name"}, {"api_name": "rusloModisLibrary.getLakeIceVectorMaskByObjectNameAndDate", "line_number": 1124, "usage_type": "call"}, {"api_name": "qgis.core.QgsMapLayerRegistry.instance", "line_number": 1137, "usage_type": "call"}, {"api_name": "qgis.core.QgsMapLayerRegistry", "line_number": 1137, "usage_type": "name"}, {"api_name": "os.path.dirname", "line_number": 1142, "usage_type": "call"}, {"api_name": "os.path", "line_number": 1142, "usage_type": "attribute"}, {"api_name": "os.path.abspath", "line_number": 1142, "usage_type": "call"}, {"api_name": "os.system", "line_number": 1144, "usage_type": "call"}]}
{"seq_id": "543537734", "text": "import json\nimport numpy as np\nimport torch\nimport os\nimport shutil\nfrom torchvision.models import vgg11, resnet18\n\ndef load_config(path):\n with open(path, 'r') as file:\n config = json.load(file)\n\n if config[\"data\"]['place'] == \"department\":\n config[\"data\"][\"min_pos\"] = torch.tensor([-1.4, -5.2, 1.3]).cuda()\n config[\"data\"][\"max_pos\"] = torch.tensor([0.5, -3.3, 1.8]).cuda()\n config[\"data\"][\"number_images\"]\n assert True == False, \"Need to put number of images \"\n config[\"sampler\"][\"no_fly_zone\"] = None\n\n elif config[\"data\"][\"place\"] == \"living_room\":\n config[\"data\"][\"min_pos\"] = torch.tensor([-1.3, -0.5, 0.2,0.]).cuda()\n config[\"data\"][\"max_pos\"] = torch.tensor([1.8, 1.4, 1.7,270.]).cuda()\n if config[\"sampler\"][\"no_fly\"] == \"True\":\n config[\"sampler\"][\"no_fly_zone\"] = torch.tensor([[[0.5,-0.5,0.2],[1.7,1.1,0.9]],[[-1.3,0.5,0.1],[-0.1,1.7,1.1]]]).cuda()\n elif config[\"sampler\"][\"no_fly\"] == \"False\":\n config[\"sampler\"][\"no_fly_zone\"] = None\n \n return config\n\n\ndef write_to_file(path,content):\n log_file = open(path,'a')\n log_file.write(content)\n log_file.flush()\n log_file.close()\n\ndef create_directories(exp_path):\n os.mkdir(exp_path)\n os.mkdir(exp_path + '/visualisations')\n os.mkdir(exp_path + '/visualisations/poses')\n os.mkdir(exp_path + '/visualisations/history')\n os.mkdir(exp_path + '/checkpoints')\n shutil.copy(exp_path +'/../../config.json',exp_path +'/config.json')\n shutil.copytree(exp_path +'/../../code',exp_path +'/code')\n", "sub_path": "pose/code/utilities.py", "file_name": "utilities.py", "file_ext": "py", "file_size_in_byte": 1637, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "json.load", "line_number": 10, "usage_type": "call"}, {"api_name": "torch.tensor", "line_number": 13, "usage_type": "call"}, {"api_name": "torch.tensor", "line_number": 14, "usage_type": "call"}, {"api_name": "torch.tensor", "line_number": 20, "usage_type": "call"}, {"api_name": "torch.tensor", "line_number": 21, "usage_type": "call"}, {"api_name": "torch.tensor", "line_number": 23, "usage_type": "call"}, {"api_name": "os.mkdir", "line_number": 37, "usage_type": "call"}, {"api_name": "os.mkdir", "line_number": 38, "usage_type": "call"}, {"api_name": "os.mkdir", "line_number": 39, "usage_type": "call"}, {"api_name": "os.mkdir", "line_number": 40, "usage_type": "call"}, {"api_name": "os.mkdir", "line_number": 41, "usage_type": "call"}, {"api_name": "shutil.copy", "line_number": 42, "usage_type": "call"}, {"api_name": "shutil.copytree", "line_number": 43, "usage_type": "call"}]}
{"seq_id": "390034351", "text": "from graph import *\nfrom tkinter import *\nfrom tabulate import tabulate\n\nOPTIONS = [\n 'Матрица смежности',\n 'Матрица инцидентности',\n 'Степень вершин',\n 'Изолированные и висячие',\n 'Матрица растояний',\n 'Матрица доступности',\n 'Простые циклы',\n 'BFS',\n 'DFS'\n]\n\n\ndef strong_connections():\n colors = ['yellow', 'orange', 'blue', 'green', 'red']\n for i in graph.get_cycles():\n color = colors.pop()\n image_of_graph.change_vertex_color(i, vertex_color=color)\n\n\ndef full_update(path):\n global gif, image_of_graph, graph\n graph = Graph()\n graph.read_file(path)\n image_of_graph = GraphImage (graph)\n image_of_graph.fill_graph()\n image_of_graph.process_image()\n gif = PhotoImage(file=\"source/image.gif\")\n image_label.configure(image=gif)\n left_label.configure(text='')\n right_label.configure(text=get_text_label_2())\n\n\ndef load_case_1():\n full_update('source/case_1.txt')\n\n\ndef load_case_2():\n full_update('source/case_2.txt')\n\n\ndef load_case_3():\n full_update('source/case_3.txt')\n\n\ndef adjacency_matrix_out():\n image_of_graph.change_vertex_color(range(graph.vertices))\n return graph.wrap(graph.adjacency_matrix, 'v', 'v')\n\n\ndef incidence_matrix_out():\n image_of_graph.change_vertex_color(range(graph.vertices))\n return graph.wrap(graph.incidence_matrix, 'v', 'e')\n\n\ndef vertex_power_out():\n image_of_graph.change_vertex_color(range(graph.vertices))\n matrix_list = []\n for i in range(graph.vertices):\n matrix_list.append(graph.get_vertex_power(i))\n return graph.wrap(matrix_list, custom_horizontal=['d-', 'd+'])\n\n\ndef isolated_vertices_out():\n image_of_graph.change_vertex_color(graph.get_isolated(), vertex_color='red')\n image_of_graph.change_vertex_color(graph.get_pendant(), vertex_color='green')\n pre_string = 'Изолированные:\\n'\n for i in graph.get_isolated():\n pre_string += 'v' + str(i + 1) + '\\t'\n pre_string += '\\nВисячие:\\n'\n for i in graph.get_pendant():\n pre_string += 'v' + str(i + 1) + '\\t'\n return pre_string\n\n\ndef distance_matrix_out():\n image_of_graph.change_vertex_color(range(graph.vertices))\n pre_string = graph.wrap(graph.get_distance_matrix(), 'v', 'v')\n return pre_string\n\n\ndef availability_matrix_out():\n image_of_graph.change_vertex_color(range(graph.vertices))\n pre_string = graph.wrap(graph.get_availability_matrix(), 'v', 'v')\n return pre_string\n\n\ndef bfs_out():\n str_out = tabulate(graph.bfs_protocol(0))\n return str_out\n\n\ndef dfs_out():\n str_out = tabulate(graph.dfs_protocol(0))\n return str_out\n\n\ndef cycles_out():\n pre_string = ''\n image_of_graph.change_vertex_color(range(graph.vertices))\n for cycle in graph.get_cycles():\n pre_string += ' '.join([str(i + 1) for i in cycle])[::-1] + '\\n'\n return pre_string\n\n\ndef storeys_out():\n pre_string = ''\n for storey in graph.get_storeys().keys():\n pre_string += 'Ярус: ' + str(storey) + '\\n'\n for vertex in graph.get_storeys()[storey]:\n pre_string += 'v' + str(vertex + 1) + ' '\n pre_string += '\\n'\n return pre_string\n\n\ndef topological_sort_out():\n return graph.topological_sort()\n\n\ndef graph_type():\n type = int(graph.connectivity_type())\n if type == 1:\n pre_string = 'Сильно связный'\n elif type == 2:\n pre_string = 'Односторенне-связый'\n elif type == 3:\n pre_string = 'Слабо связный'\n else:\n pre_string = 'Несвязный'\n return pre_string\n\n\ndef get_text_label_1():\n global gif\n choiсe = variable.get()\n output_string = ''\n if choiсe == OPTIONS[0]:\n output_string = adjacency_matrix_out()\n elif choiсe == OPTIONS[1]:\n output_string = incidence_matrix_out()\n elif choiсe == OPTIONS[2]:\n output_string = vertex_power_out()\n elif choiсe == OPTIONS[3]:\n output_string = isolated_vertices_out()\n elif choiсe == OPTIONS[4]:\n output_string = distance_matrix_out()\n elif choiсe == OPTIONS[5]:\n output_string = availability_matrix_out()\n elif choiсe == OPTIONS[6]:\n output_string = cycles_out()\n elif choiсe == OPTIONS[7]:\n output_string = bfs_out()\n elif choiсe == OPTIONS[8]:\n output_string = dfs_out()\n\n strong_connections()\n gif = PhotoImage(file=\"source/image.gif\")\n image_label.configure(image=gif)\n left_label.configure(text='\\n' + output_string)\n\n\ndef get_text_label_2():\n pre_string = ''\n pre_string += graph_type()\n pre_string += '\\nРадиус: ' + str(graph.get_radius()) + '\\n'\n pre_string += 'Диаметр: ' + str(graph.get_diameter()) + '\\n'\n pre_string += 'Центр: \\n'\n for i in graph.get_centers():\n pre_string += 'v' + str(i + 1) + ' '\n pre_string += '\\n\\n' + storeys_out()\n\n pre_string += '\\nТопологическая сортировка\\n' + str(topological_sort_out())\n return pre_string\n\n\ngraph = Graph()\ngraph.read_file('source/case_1.txt')\n\nimage_of_graph = GraphImage(graph)\nimage_of_graph.fill_graph()\nimage_of_graph.process_image()\n\n\nroot = Tk()\n\n# Create window frames\nf_1 = Frame(root)\nf_2 = Frame(root)\nf_2_1 = Frame(f_2)\nf_2_1_1 = Frame(f_2_1)\nf_2_1_2 = Frame(f_2_1)\nf_2_2 = Frame(f_2)\nf_3 = Frame(root)\n\n# Case botton\nbutton_case_1 = Button(root, text='case 1', command=load_case_1)\nbutton_case_2 = Button(root, text='case 2', command=load_case_2)\nbutton_case_3 = Button(root, text='case 3', command=load_case_3)\n\n# Label with image of graph\ngif = PhotoImage(file='source/image.gif')\nimage_label = Label(f_1, image=gif, width=400)\n\n# Left button\nbutton = Button(f_2_1_1, text='Вычислить', command=get_text_label_1)\n\n# Dropdown list\nvariable = StringVar(root)\nvariable.set(OPTIONS[0])\noption = OptionMenu(f_2_1_2, variable, *OPTIONS)\n\n# Label with printed matrix\nleft_label = Label(f_2_2, text='\\n', font=('Monaco', 20), justify=LEFT)\n\n# Properties label\nright_label = Label(f_3, text=get_text_label_2(), font=('Monaco', 16), justify=LEFT)\n\n# Pack frames\nf_1.pack(side=LEFT)\nf_2.pack(side=LEFT)\nf_2_1.pack()\nf_2_1_1.pack(side=LEFT)\nf_2_1_2.pack(side=RIGHT)\nf_2_2.pack()\nf_3.pack(side=LEFT)\n\n# Pack widgets\nbutton_case_1.pack()\nbutton_case_2.pack()\nbutton_case_3.pack()\nimage_label.pack()\noption.pack()\nbutton.pack()\nleft_label.pack()\nright_label.pack()\n\nroot.mainloop()", "sub_path": "main.py", "file_name": "main.py", "file_ext": "py", "file_size_in_byte": 6516, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "graph.get_cycles", "line_number": 20, "usage_type": "call"}, {"api_name": "graph.read_file", "line_number": 28, "usage_type": "call"}, {"api_name": "graph.vertices", "line_number": 51, "usage_type": "attribute"}, {"api_name": "graph.wrap", "line_number": 52, "usage_type": "call"}, {"api_name": "graph.adjacency_matrix", "line_number": 52, "usage_type": "attribute"}, {"api_name": "graph.vertices", "line_number": 56, "usage_type": "attribute"}, {"api_name": "graph.wrap", "line_number": 57, "usage_type": "call"}, {"api_name": "graph.incidence_matrix", "line_number": 57, "usage_type": "attribute"}, {"api_name": "graph.vertices", "line_number": 61, "usage_type": "attribute"}, {"api_name": "graph.vertices", "line_number": 63, "usage_type": "attribute"}, {"api_name": "graph.get_vertex_power", "line_number": 64, "usage_type": "call"}, {"api_name": "graph.wrap", "line_number": 65, "usage_type": "call"}, {"api_name": "graph.get_isolated", "line_number": 69, "usage_type": "call"}, {"api_name": "graph.get_pendant", "line_number": 70, "usage_type": "call"}, {"api_name": "graph.get_isolated", "line_number": 72, "usage_type": "call"}, {"api_name": "graph.get_pendant", "line_number": 75, "usage_type": "call"}, {"api_name": "graph.vertices", "line_number": 81, "usage_type": "attribute"}, {"api_name": "graph.wrap", "line_number": 82, "usage_type": "call"}, {"api_name": "graph.get_distance_matrix", "line_number": 82, "usage_type": "call"}, {"api_name": "graph.vertices", "line_number": 87, "usage_type": "attribute"}, {"api_name": "graph.wrap", "line_number": 88, "usage_type": "call"}, {"api_name": "graph.get_availability_matrix", "line_number": 88, "usage_type": "call"}, {"api_name": "tabulate.tabulate", "line_number": 93, "usage_type": "call"}, {"api_name": "graph.bfs_protocol", "line_number": 93, "usage_type": "call"}, {"api_name": "tabulate.tabulate", "line_number": 98, "usage_type": "call"}, {"api_name": "graph.dfs_protocol", "line_number": 98, "usage_type": "call"}, {"api_name": "graph.vertices", "line_number": 104, "usage_type": "attribute"}, {"api_name": "graph.get_cycles", "line_number": 105, "usage_type": "call"}, {"api_name": "graph.get_storeys", "line_number": 112, "usage_type": "call"}, {"api_name": "graph.get_storeys", "line_number": 114, "usage_type": "call"}, {"api_name": "graph.topological_sort", "line_number": 121, "usage_type": "call"}, {"api_name": "graph.connectivity_type", "line_number": 125, "usage_type": "call"}, {"api_name": "graph.get_radius", "line_number": 169, "usage_type": "call"}, {"api_name": "graph.get_diameter", "line_number": 170, "usage_type": "call"}, {"api_name": "graph.get_centers", "line_number": 172, "usage_type": "call"}, {"api_name": "graph.read_file", "line_number": 181, "usage_type": "call"}]}
{"seq_id": "133061557", "text": "from lark import Lark\nimport torch.utils.data\nimport torch\nimport torch.nn as nn\nimport torch.nn.functional as F\nimport torch.optim as optim\nfrom enum import Enum\nimport numpy as np\nfrom sklearn.model_selection import train_test_split\nfrom torch.utils.tensorboard import SummaryWriter\n\n\nclass lalrDataset(torch.utils.data.Dataset):\n \"\"\"LALR dataset.\"\"\"\n\n def __init__(self, lines_s, lines_p):\n self.lines_s=lines_s.copy()\n self.lines_p=lines_p.copy()\n self.length_s=[]\n self.length_p=[]\n for line in self.lines_s:\n self.length_s.append(len(line))\n for line in self.lines_p:\n self.length_p.append(len(line))\n assert self.length_s == self.length_p\n max_lenght = np.max(self.length_s)\n '''sets for chars'''\n self.s_chars = ['_'] + sorted(set(''.join(self.lines_s)))\n self.p_chars = ['_'] + sorted(set(''.join(self.lines_p)))\n ''' padding '''\n for i in range(len(self.lines_s)):\n while len(self.lines_s[i]) < max_lenght+1:\n self.lines_s[i] += '_'\n for i in range(len(self.lines_p)):\n while len(self.lines_p[i]) < max_lenght+1:\n self.lines_p[i] += '_'\n ''' int2chars and chars2int dictionaries '''\n self.int2s_char = enumerate(self.s_chars)\n self.s_char2int = {char: ind for ind, char in self.int2s_char}\n self.s_int2char = {self.s_char2int[char]: char for char in self.s_char2int}\n self.int2p_char = enumerate(self.p_chars)\n self.p_char2int = {char: ind for ind, char in self.int2p_char}\n ''' creating index value arrays'''\n input_seq = []\n target_seq = []\n for i in range(len(self.lines_p)):\n input_seq.append([self.p_char2int[character] for character in self.lines_p[i]])\n target_seq.append([self.s_char2int[character] for character in self.lines_s[i]])\n '''one hot encoding'''\n dict_size = len(self.p_char2int)\n seq_len = max_lenght+1\n batch_size = len(self.lines_p)\n self.input_seq = self.one_hot_encode(input_seq, dict_size, seq_len, batch_size)\n self.input_seq=torch.tensor(self.input_seq).cuda(0)\n dict_size = len(self.s_char2int)\n self.target_seq = self.one_hot_encode(target_seq, dict_size, seq_len, batch_size)\n self.target_seq=torch.tensor(self.target_seq).cuda(0)\n\n def __len__(self):\n return self.input_seq.shape[0]\n\n def __getitem__(self, idx):\n return [self.input_seq[idx],self.target_seq[idx],]\n\n def lastpadindex(self,batch):\n \"I'm sure there's a more clever way to do this..\"\n input = batch[0]\n target = batch[1]\n for i in range(input.shape[1]):\n if (input[:, i].equal(input[:, -1])):\n return input[:, :i + 1], target[:, :i + 1]\n return input, target\n def get_s_chars(self):\n return set(self.s_chars)\n def get_s_char2int(self):\n return self.s_char2int\n def get_tokenmap(self):\n return [self.s_int2char[i] for i in sorted(self.s_int2char.keys())]\n def one_hot_encode(self,sequence, dict_size, seq_len, batch_size):\n ''' Creating a multi-dimensional array of zeros with the desired output shape '''\n features = np.zeros((batch_size, seq_len, dict_size), dtype=np.float32)\n\n ''' Replacing the 0 at the relevant character index with a 1 to represent that character '''\n for i in range(batch_size):\n for u in range(seq_len):\n features[i, u, sequence[i][u]] = 1\n return features\n\n\n\n\nclass EncoderRNN(nn.Module):\n def __init__(self, input_size, hidden_size):\n super(EncoderRNN, self).__init__()\n self.hidden_size = hidden_size\n self.gru = nn.GRU(input_size, hidden_size, batch_first=True,bidirectional=True)\n\n def forward(self, input):\n output, hidden = self.gru(input)\n return output, hidden\n\n def reinit(self):\n '''Reinitialize weights'''\n\n def weights_init(l):\n if hasattr(l, 'weight') and isinstance(l.weight, torch.Tensor):\n nn.init.xavier_uniform_(l.weight.data)\n if hasattr(l, 'bias') and isinstance(l.bias, torch.Tensor):\n nn.init.uniform_(l.bias)\n\n self.apply(weights_init)\n\n\n'''5s_rna_data files'''\nwith open(\"/home/rishal/lalrnn/5s_data/5s_shortlisted/dbn_can.txt\") as f:\n lines_s_5srna = [line.strip() for line in f.readlines()]\nwith open(\"/home/rishal/lalrnn/5s_data/5s_shortlisted/seq_can.txt\") as f:\n lines_p_5srna = [line.strip() for line in f.readlines()]\nf.close()\n\nlines_p_5srna_train1, lines_p_5srna_test, lines_s_5srna_train1, lines_s_5srna_test = train_test_split(lines_p_5srna, lines_s_5srna, test_size=0.1, random_state=42)\nlines_p_5srna_train, lines_p_5srna_val, lines_s_5srna_train, lines_s_5srna_val = train_test_split(lines_p_5srna_train1, lines_s_5srna_train1, test_size=0.22, random_state=42)\n\n'''srp_rna_data files'''\nwith open(\"/home/rishal/lalrnn/srp_data/srp_shortlisted/dbn_can.txt\") as f:\n lines_s_srprna = [line.strip() for line in f.readlines()]\nwith open(\"/home/rishal/lalrnn/srp_data/srp_shortlisted/seq_can.txt\") as f:\n lines_p_srprna = [line.strip() for line in f.readlines()]\nf.close()\n\nlines_p_srprna_train1, lines_p_srprna_test, lines_s_srprna_train1, lines_s_srprna_test = train_test_split(lines_p_srprna, lines_s_srprna, test_size=0.1, random_state=42)\nlines_p_srprna_train, lines_p_srprna_val, lines_s_srprna_train, lines_s_srprna_val = train_test_split(lines_p_srprna_train1, lines_s_srprna_train1, test_size=0.22, random_state=42)\n\n'''trna_data files'''\nwith open(\"/home/rishal/lalrnn/trna_data/trna_shortlisted/dbn_can.txt\") as f:\n lines_s_trna = [line.strip() for line in f.readlines()]\nwith open(\"/home/rishal/lalrnn/trna_data/trna_shortlisted/seq_can.txt\") as f:\n lines_p_trna = [line.strip() for line in f.readlines()]\nf.close()\n\nlines_p_trna_train1, lines_p_trna_test, lines_s_trna_train1, lines_s_trna_test = train_test_split(lines_p_trna, lines_s_trna, test_size=0.1, random_state=42)\nlines_p_trna_train, lines_p_trna_val, lines_s_trna_train, lines_s_trna_val = train_test_split(lines_p_trna_train1, lines_s_trna_train1, test_size=0.22, random_state=42)\n\nfor i in range(len(lines_s_trna_test)):\n if i==36:\n print(lines_s_trna_test[i],lines_p_trna_test[i])\n\ngrammar='''?e: DOT\n | LPARENA RPARENU\n | LPARENC RPARENG\n | LPARENG RPARENC\n | LPARENG RPARENU\n | LPARENU RPARENG\n | LPARENU RPARENA\n | e LPARENA e RPARENU \n | e LPARENC e RPARENG \n | e LPARENG e RPARENC \n | e LPARENG e RPARENU \n | e LPARENU e RPARENG \n | e LPARENU e RPARENA \n | e DOT\n | LPARENA e RPARENU\n | LPARENC e RPARENG\n | LPARENG e RPARENC\n | LPARENG e RPARENU\n | LPARENU e RPARENG\n | LPARENU e RPARENA\n | e LPARENA RPARENU\n | e LPARENC RPARENG\n | e LPARENG RPARENC\n | e LPARENG RPARENU\n | e LPARENU RPARENG\n | e LPARENU RPARENA\nDOT: \".\"\nLPARENA: \"A\"\nLPARENC: \"C\"\nLPARENG: \"G\"\nLPARENU: \"U\"\nRPARENA: \"a\"\nRPARENC: \"c\"\nRPARENG: \"g\"\nRPARENU: \"u\"\n'''\ntest_data=lalrDataset(lines_s_srprna_test,lines_p_srprna_test)\ntestloader = torch.utils.data.DataLoader(test_data, batch_size=1, shuffle=False, num_workers=0)\nparser = Lark(grammar, start='e', parser='lalr')\ntokenmap = [str(t.pattern).replace(r'\\\\', '').strip(\"'\") for t in parser.terminals]\ntokenmap.append(\"_\")\nassert set(tokenmap)==test_data.get_s_chars()\ntokenmap=test_data.get_tokenmap()\n\nfrom lalrnn_all_lets import SimpleGenerativeLALRNN\n#decoder = DecoderRNN(100,4)\ndecoder = SimpleGenerativeLALRNN(grammar, 'e', tokenmap, '_', test_data.get_s_char2int())\nencoder = EncoderRNN(5,300)\nencoder.cuda(0)\ndecoder.cuda(0)\n\ncheckpoint=torch.load('/home/rishal/lalrnn/lets_l300_bi_dropout2_wd1e5_best.pth.tar')\nencoder.load_state_dict(checkpoint['encoder_state_dict'])\ndecoder.load_state_dict(checkpoint['decoder_state_dict'])\n\nppv_list=[]\nsensitivity_list=[]\nvalid_num=0\nlalrnn=True\nfor i, data in enumerate(testloader):\n if lalrnn==True:\n decoder.set_test()\n decoder.eval()\n if i==36:\n print('lol')\n input,target = test_data.lastpadindex(data)\n encoder_outputs, encoder_hidden = encoder(input)\n encoder_hidden = (encoder_hidden[0] +\n encoder_hidden[1])\n decoder_input=target\n #encoder_hidden = encoder_hidden.squeeze(0)\n decoder_hidden = encoder_hidden\n decoder_output, _ = decoder(decoder_input, decoder_hidden,input)\n else:\n input, target = test_data.lastpadindex(data)\n encoder_outputs, encoder_hidden = encoder(input)\n decoder_output=decoder.predict(encoder_hidden,target.size(1))\n string1=torch.argmax(decoder_output[:, :target.size(1), :], dim=2)\n #print(string1)\n string1=string1.squeeze(0)\n string2=torch.argmax(target,dim=2)\n string2=string2.squeeze(0)\n str1=[]\n str2=[]\n for x in range(len(string1)):\n str1.append(tokenmap[string1[x]])\n str1=''.join(str1)\n print('predicted')\n print(str1)\n for x in range(len(string2)):\n str2.append(tokenmap[string2[x]])\n str2=''.join(str2)\n print('true')\n print(str2)\n str2=str2.replace('_','')\n str1=str1.replace('_','')\n stack_s1 = []\n stack_s2 = []\n pairs_s1 = set()\n pairs_s2 = set()\n str1 = list(str1)\n str2 = list(str2)\n assert len(str1) == len(str2)\n for i in range(len(str1)):\n if str1[i] == '(' or str1[i]=='[' or str1[i]=='{' or str1[i].isupper():\n stack_s1.append(i)\n if str2[i] == '(' or str2[i]=='[' or str2[i]=='{' or str2[i].isupper():\n stack_s2.append(i)\n if str1[i] == ')' or str1[i]==']' or str1[i]=='}' or str1[i].islower():\n pairs_s1.add((stack_s1[-1], i))\n stack_s1.pop()\n if str2[i] == ')'or str2[i]==']' or str2[i]=='}' or str2[i].islower():\n pairs_s2.add((stack_s2[-1], i))\n stack_s2.pop()\n TP = len(pairs_s1 & pairs_s2)\n FP = len(pairs_s1 - pairs_s2)\n FN = len(pairs_s2 - pairs_s1)\n #print(TP,FP,FN)\n if TP+FP==0:\n FP=1\n if TP+FN==0:\n FN=1\n ppv_list.append(TP/(TP+FP))\n #print(ppv_list)\n sensitivity_list.append(TP/(TP+FN))\n\nprint('validity ', valid_num/(i+1))\nppv_list=np.array(ppv_list)\nsensitivity_list=np.array(sensitivity_list)\nf1=(2*ppv_list*sensitivity_list)/(ppv_list+sensitivity_list)\nf1=np.nan_to_num(f1)\nprint('ppv',ppv_list.mean())\nprint('sensitivity',sensitivity_list.mean())\nprint('f1',f1.mean())", "sub_path": "prediction_canon.py", "file_name": "prediction_canon.py", "file_ext": "py", "file_size_in_byte": 10472, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "torch.utils", "line_number": 13, "usage_type": "attribute"}, {"api_name": "numpy.max", "line_number": 26, "usage_type": "call"}, {"api_name": "torch.tensor", "line_number": 54, "usage_type": "call"}, {"api_name": "torch.tensor", "line_number": 57, "usage_type": "call"}, {"api_name": "numpy.zeros", "line_number": 81, "usage_type": "call"}, {"api_name": "numpy.float32", "line_number": 81, "usage_type": "attribute"}, {"api_name": "torch.nn.Module", "line_number": 92, "usage_type": "attribute"}, {"api_name": "torch.nn", "line_number": 92, "usage_type": "name"}, {"api_name": "torch.nn.GRU", "line_number": 96, "usage_type": "call"}, {"api_name": "torch.nn", "line_number": 96, "usage_type": "name"}, {"api_name": "torch.Tensor", "line_number": 106, "usage_type": "attribute"}, {"api_name": "torch.nn.init.xavier_uniform_", "line_number": 107, "usage_type": "call"}, {"api_name": "torch.nn.init", "line_number": 107, "usage_type": "attribute"}, {"api_name": "torch.nn", "line_number": 107, "usage_type": "name"}, {"api_name": "torch.Tensor", "line_number": 108, "usage_type": "attribute"}, {"api_name": "torch.nn.init.uniform_", "line_number": 109, "usage_type": "call"}, {"api_name": "torch.nn.init", "line_number": 109, "usage_type": "attribute"}, {"api_name": "torch.nn", "line_number": 109, "usage_type": "name"}, {"api_name": "sklearn.model_selection.train_test_split", "line_number": 121, "usage_type": "call"}, {"api_name": "sklearn.model_selection.train_test_split", "line_number": 122, "usage_type": "call"}, {"api_name": "sklearn.model_selection.train_test_split", "line_number": 131, "usage_type": "call"}, {"api_name": "sklearn.model_selection.train_test_split", "line_number": 132, "usage_type": "call"}, {"api_name": "sklearn.model_selection.train_test_split", "line_number": 141, "usage_type": "call"}, {"api_name": "sklearn.model_selection.train_test_split", "line_number": 142, "usage_type": "call"}, {"api_name": "torch.utils.data.DataLoader", "line_number": 185, "usage_type": "call"}, {"api_name": "torch.utils", "line_number": 185, "usage_type": "attribute"}, {"api_name": "lark.Lark", "line_number": 186, "usage_type": "call"}, {"api_name": "lalrnn_all_lets.SimpleGenerativeLALRNN", "line_number": 194, "usage_type": "call"}, {"api_name": "torch.load", "line_number": 199, "usage_type": "call"}, {"api_name": "torch.argmax", "line_number": 225, "usage_type": "call"}, {"api_name": "torch.argmax", "line_number": 228, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 275, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 276, "usage_type": "call"}, {"api_name": "numpy.nan_to_num", "line_number": 278, "usage_type": "call"}]}
{"seq_id": "302648006", "text": "\"\"\"empty message\n\nRevision ID: b48beb44344\nRevises: 1407298ea779\nCreate Date: 2016-01-05 09:46:11.005519\n\n\"\"\"\n\n# revision identifiers, used by Alembic.\nrevision = 'b48beb44344'\ndown_revision = '1407298ea779'\n\nfrom alembic import op\nimport sqlalchemy as sa\n\n\ndef upgrade():\n ### commands auto generated by Alembic - please adjust! ###\n op.add_column('users', sa.Column('role_id', sa.Integer(), nullable=True))\n op.drop_column('users', 'role')\n ### end Alembic commands ###\n\n\ndef downgrade():\n ### commands auto generated by Alembic - please adjust! ###\n op.add_column('users', sa.Column('role', sa.INTEGER(), nullable=True))\n op.drop_column('users', 'role_id')\n ### end Alembic commands ###\n", "sub_path": "migrations/versions/b48beb44344_.py", "file_name": "b48beb44344_.py", "file_ext": "py", "file_size_in_byte": 714, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "alembic.op.add_column", "line_number": 19, "usage_type": "call"}, {"api_name": "alembic.op", "line_number": 19, "usage_type": "name"}, {"api_name": "sqlalchemy.Column", "line_number": 19, "usage_type": "call"}, {"api_name": "sqlalchemy.Integer", "line_number": 19, "usage_type": "call"}, {"api_name": "alembic.op.drop_column", "line_number": 20, "usage_type": "call"}, {"api_name": "alembic.op", "line_number": 20, "usage_type": "name"}, {"api_name": "alembic.op.add_column", "line_number": 26, "usage_type": "call"}, {"api_name": "alembic.op", "line_number": 26, "usage_type": "name"}, {"api_name": "sqlalchemy.Column", "line_number": 26, "usage_type": "call"}, {"api_name": "sqlalchemy.INTEGER", "line_number": 26, "usage_type": "call"}, {"api_name": "alembic.op.drop_column", "line_number": 27, "usage_type": "call"}, {"api_name": "alembic.op", "line_number": 27, "usage_type": "name"}]}
{"seq_id": "540428991", "text": "from fc.qemu.main import daemonize\nimport datetime\nimport sys\nimport subprocess\nimport time\nimport shlex\n\n\ndef run_supervised(cmd, name, logfile):\n daemonize()\n log = open(logfile, 'a+', buffering=0)\n now = datetime.datetime.now().isoformat()\n log.write('{} - starting command {}\\n'.format(now, cmd))\n s = subprocess.Popen(\n shlex.split(cmd), close_fds=True, stdin=None, stdout=log, stderr=log)\n now = datetime.datetime.now().isoformat()\n log.write('{} - command has PID {}\\n'.format(now, s.pid))\n exit_code = s.wait()\n now = datetime.datetime.now().isoformat()\n log.write('{} - command exited with exit code {}\\n'.format(now, exit_code))\n\n\nif __name__ == '__main__':\n run_supervised(*sys.argv[1:])\n", "sub_path": "src/fc/qemu/hazmat/supervise.py", "file_name": "supervise.py", "file_ext": "py", "file_size_in_byte": 739, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "fc.qemu.main.daemonize", "line_number": 10, "usage_type": "call"}, {"api_name": "datetime.datetime.now", "line_number": 12, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 12, "usage_type": "attribute"}, {"api_name": "subprocess.Popen", "line_number": 14, "usage_type": "call"}, {"api_name": "shlex.split", "line_number": 15, "usage_type": "call"}, {"api_name": "datetime.datetime.now", "line_number": 16, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 16, "usage_type": "attribute"}, {"api_name": "datetime.datetime.now", "line_number": 19, "usage_type": "call"}, {"api_name": "datetime.datetime", "line_number": 19, "usage_type": "attribute"}, {"api_name": "sys.argv", "line_number": 24, "usage_type": "attribute"}]}
{"seq_id": "528607473", "text": "import cv2\nimport numpy as np\n\ndrawing = False\nix, iy = -1, -1\nsel_rect_endpoint = []\ntagged = np.empty((0, 4), dtype='int')\n\n\ndef tag_players(image, dx=0.2, dy=0.3):\n img = cv2.resize(image, (0, 0), fx=dx, fy=dy)\n\n def draw_rectangle(event, x, y, flags, param):\n global ix, iy, drawing, tagged, sel_rect_endpoint\n\n if event == cv2.EVENT_LBUTTONDOWN:\n drawing = True\n ix, iy = x, y\n\n elif event == cv2.EVENT_MOUSEMOVE and drawing:\n sel_rect_endpoint = (x, y)\n\n elif event == cv2.EVENT_LBUTTONUP:\n cv2.rectangle(img, (ix, iy), (x, y), (0, 0, 255), 1)\n tagged = np.vstack((tagged, np.array([ix, iy, x, y])))\n drawing = False\n sel_rect_endpoint = []\n\n win_name = 'Tagging players'\n cv2.namedWindow(win_name)\n cv2.setMouseCallback(win_name, draw_rectangle, None)\n\n while 1:\n if sel_rect_endpoint and drawing:\n clone = img.copy()\n cv2.rectangle(clone, (ix, iy), sel_rect_endpoint, (0, 0, 255), 1)\n cv2.imshow(win_name, clone)\n else:\n cv2.imshow(win_name, img)\n if cv2.waitKey(20) & 0xFF == 27:\n break\n cv2.destroyAllWindows()\n return tagged\n\nsample = cv2.imread('output/images/sample.jpg')\nprint(tag_players(sample))", "sub_path": "tagging.py", "file_name": "tagging.py", "file_ext": "py", "file_size_in_byte": 1316, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "52", "api": [{"api_name": "numpy.empty", "line_number": 7, "usage_type": "call"}, {"api_name": "cv2.resize", "line_number": 11, "usage_type": "call"}, {"api_name": "cv2.EVENT_LBUTTONDOWN", "line_number": 16, "usage_type": "attribute"}, {"api_name": "cv2.EVENT_MOUSEMOVE", "line_number": 20, "usage_type": "attribute"}, {"api_name": "cv2.EVENT_LBUTTONUP", "line_number": 23, "usage_type": "attribute"}, {"api_name": "cv2.rectangle", "line_number": 24, "usage_type": "call"}, {"api_name": "numpy.vstack", "line_number": 25, "usage_type": "call"}, {"api_name": "numpy.array", "line_number": 25, "usage_type": "call"}, {"api_name": "cv2.namedWindow", "line_number": 30, "usage_type": "call"}, {"api_name": "cv2.setMouseCallback", "line_number": 31, "usage_type": "call"}, {"api_name": "cv2.rectangle", "line_number": 36, "usage_type": "call"}, {"api_name": "cv2.imshow", "line_number": 37, "usage_type": "call"}, {"api_name": "cv2.imshow", "line_number": 39, "usage_type": "call"}, {"api_name": "cv2.waitKey", "line_number": 40, "usage_type": "call"}, {"api_name": "cv2.destroyAllWindows", "line_number": 42, "usage_type": "call"}, {"api_name": "cv2.imread", "line_number": 45, "usage_type": "call"}]}
{"seq_id": "410657662", "text": "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n''' writes nodes csv to nodes sql table '''\n\nimport sqlite3\nimport csv\nfrom pprint import pprint\n# modified from code posted to Udacity forums\n\nsqlite_file = 'osm.db' # name of the sqlite database file\n\n# Connect to the database\nconn = sqlite3.connect(sqlite_file)\n# Get a cursor object\ncur = conn.cursor()\ncur.execute('''DROP TABLE IF EXISTS nodes''')\nconn.commit()\n# Create the table, specifying the column names and data types:\ncur.execute('''\n CREATE TABLE nodes (\n id INTEGER PRIMARY KEY NOT NULL,\n lat REAL,\n lon REAL,\n user TEXT,\n uid INTEGER,\n version INTEGER,\n changeset INTEGER,\n timestamp TEXT\n );\n ''')\n# commit the changes\nconn.commit()\n# Read in the csv file as a dictionary, format the\n# data as a list of tuples:\nwith open('nodes.csv','rb') as fin:\n dr = csv.DictReader(fin) # comma is default delimiter\n to_db = [(i['id'].decode(\"utf-8\"), i['lat'].decode(\"utf-8\"),i['lon'].decode(\"utf-8\"), i['user'].decode(\"utf-8\"), i['uid'].decode(\"utf-8\"), i['version'].decode(\"utf-8\"), i['changeset'].decode(\"utf-8\"), i['timestamp'].decode(\"utf-8\")) for i in dr]\n# insert the formatted data\ncur.executemany(\"INSERT INTO nodes(id, lat, lon, user, uid, version, changeset, timestamp) VALUES (?, ?, ?, ?, ?, ?, ?, ?);\", to_db)\n# commit the changes\nconn.commit()\ncur.execute('SELECT * FROM nodes')\nall_rows = cur.fetchall()\nprint('1):')\npprint(all_rows)\nconn.close()\n", "sub_path": "DAND/OpenStreetMap/to_sql_nodes.py", "file_name": "to_sql_nodes.py", "file_ext": "py", "file_size_in_byte": 1491, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "sqlite3.connect", "line_number": 13, "usage_type": "call"}, {"api_name": "csv.DictReader", "line_number": 36, "usage_type": "call"}, {"api_name": "pprint.pprint", "line_number": 45, "usage_type": "call"}]}
{"seq_id": "271867571", "text": "from django.db import models\nfrom django.contrib.auth.models import User\nfrom django.contrib.contenttypes.models import ContentType\nfrom django.contrib.contenttypes.fields import GenericForeignKey\nfrom django.core.validators import MaxValueValidator, MinValueValidator\nfrom utils.models import BaseUtilityModel\n\n\nclass Rating(BaseUtilityModel):\n user = models.ForeignKey(\n 'auth.User',\n related_name='rating_user'\n )\n content_type = models.ForeignKey(\n ContentType,\n db_index=True\n )\n object_id = models.IntegerField(\n db_index=True\n )\n content_object = GenericForeignKey(\n 'content_type',\n 'object_id'\n )\n date_rated = models.DateField(\n blank=True,\n null=True\n )\n rating_text = models.TextField(\n blank=True,\n null=True\n )\n rating = models.IntegerField(\n blank=True,\n validators=[MaxValueValidator(100),\n MinValueValidator(1)]\n )\n\n class Meta:\n verbose_name = 'rating'\n verbose_name_plural = 'ratings'\n unique_together = ('user', 'object_id',)\n\n def __str__(self):\n return 'rating: %s | %s' % (self.rating, self.rating_text[0:20])\n\n", "sub_path": "rating/models.py", "file_name": "models.py", "file_ext": "py", "file_size_in_byte": 1220, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "utils.models.BaseUtilityModel", "line_number": 9, "usage_type": "name"}, {"api_name": "django.db.models.ForeignKey", "line_number": 10, "usage_type": "call"}, {"api_name": "django.db.models", "line_number": 10, "usage_type": "name"}, {"api_name": "django.db.models.ForeignKey", "line_number": 14, "usage_type": "call"}, {"api_name": "django.contrib.contenttypes.models.ContentType", "line_number": 15, "usage_type": "argument"}, {"api_name": "django.db.models", "line_number": 14, "usage_type": "name"}, {"api_name": "django.db.models.IntegerField", "line_number": 18, "usage_type": "call"}, {"api_name": "django.db.models", "line_number": 18, "usage_type": "name"}, {"api_name": "django.contrib.contenttypes.fields.GenericForeignKey", "line_number": 21, "usage_type": "call"}, {"api_name": "django.db.models.DateField", "line_number": 25, "usage_type": "call"}, {"api_name": "django.db.models", "line_number": 25, "usage_type": "name"}, {"api_name": "django.db.models.TextField", "line_number": 29, "usage_type": "call"}, {"api_name": "django.db.models", "line_number": 29, "usage_type": "name"}, {"api_name": "django.db.models.IntegerField", "line_number": 33, "usage_type": "call"}, {"api_name": "django.db.models", "line_number": 33, "usage_type": "name"}, {"api_name": "django.core.validators.MaxValueValidator", "line_number": 35, "usage_type": "call"}, {"api_name": "django.core.validators.MinValueValidator", "line_number": 36, "usage_type": "call"}]}
{"seq_id": "629050376", "text": "# -*- coding: utf-8 -*-\n\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('microdevices', '0003'),\n ]\n\n operations = [\n migrations.AddField(\n model_name='organmodel',\n name='model_image',\n field=models.ImageField(null=True, upload_to=b'models', blank=True),\n ),\n ]\n", "sub_path": "microdevices/migrations/0004.py", "file_name": "0004.py", "file_ext": "py", "file_size_in_byte": 386, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "django.db.migrations.Migration", "line_number": 7, "usage_type": "attribute"}, {"api_name": "django.db.migrations", "line_number": 7, "usage_type": "name"}, {"api_name": "django.db.migrations.AddField", "line_number": 14, "usage_type": "call"}, {"api_name": "django.db.migrations", "line_number": 14, "usage_type": "name"}, {"api_name": "django.db.models.ImageField", "line_number": 17, "usage_type": "call"}, {"api_name": "django.db.models", "line_number": 17, "usage_type": "name"}]}
{"seq_id": "137135912", "text": "# -*- coding: utf-8 -*-\n\"\"\"\nThis script contains functions for loading and analysis of burrito data\n\"\"\"\n\nimport numpy as np\nimport scipy as sp\nimport pandas as pd\n\ndef load_burritos(filename='burrito_current.csv',\n delete_unreliable = True):\n # Load all data\n df = pd.read_csv(filename)\n df.Location = df.Location.str.lower()\n \n # Delete unreliable ratings\n if delete_unreliable:\n \n # Binarize unreliable\n df.Unreliable = df.Unreliable.map({'x':1,'X':1,1:1})\n df.Unreliable = df.Unreliable.fillna(0)\n \n # Select only reliable ratings from dataframe\n import pandasql\n q = \"\"\"\n SELECT\n *\n FROM\n df\n WHERE\n unreliable == 0\n \"\"\"\n df = pandasql.sqldf(q.lower(), locals())\n\n return df", "sub_path": "burrito/util.py", "file_name": "util.py", "file_ext": "py", "file_size_in_byte": 832, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "pandas.read_csv", "line_number": 13, "usage_type": "call"}, {"api_name": "pandasql.sqldf", "line_number": 33, "usage_type": "call"}]}
{"seq_id": "161805337", "text": "import logging\n\nimport requests\n\nfrom pajbot.models.command import Command\nfrom pajbot.modules import BaseModule\nfrom pajbot.modules import ModuleSetting\n\nlog = logging.getLogger(__name__)\n\n\nclass PNSLModule(BaseModule):\n\n ID = __name__.split(\".\")[-1]\n NAME = \"Run P&SL lists\"\n DESCRIPTION = \"Run P&SL lists through the !runpnsl command\"\n CATEGORY = \"Moderation\"\n SETTINGS = [\n ModuleSetting(\n key=\"level\",\n label=\"Level required to use the command\",\n type=\"number\",\n required=True,\n placeholder=\"\",\n default=750,\n constraints={\"min_value\": 500, \"max_value\": 2000},\n ),\n ModuleSetting(\n key=\"per_chunk\",\n label=\"How many lines to process per chunk\",\n type=\"number\",\n required=True,\n placeholder=\"\",\n default=30,\n constraints={\"min_value\": 1, \"max_value\": 500},\n ),\n ModuleSetting(\n key=\"chunk_delay\",\n label=\"Delay between chunks (in seconds)\",\n type=\"number\",\n required=True,\n placeholder=\"\",\n default=30,\n constraints={\"min_value\": 5, \"max_value\": 60},\n ),\n ]\n\n def __init__(self, bot):\n super().__init__(bot)\n\n self.pnsl_token = None\n\n if bot:\n if \"pnsl\" in bot.config:\n self.pnsl_token = bot.config[\"pnsl\"].get(\"token\", None)\n\n def run_pnsl(self, bot, source, message, event, args):\n base_url = \"https://bot.tetyys.com/api/v1/BotLists\"\n\n if not self.pnsl_token:\n bot.whisper(source, f\"Missing P&SL token in config.ini. talk to @{bot.admin} BabyRage\")\n return False\n\n guid = message.replace(\"https://bot.tetyys.com/BotList/\", \"\")\n\n headers = {\"Authorization\": f\"Bearer {self.pnsl_token}\"}\n\n res = requests.get(base_url + \"/\" + guid, headers=headers)\n\n if not res.ok:\n error_data = res.json()\n bot.whisper(source, f\"Something went wrong with the P&SL request: {error_data['errors']['Guid'][0]}\")\n return False\n\n privmsg_list = res.text.splitlines()\n\n log.info(f\"[P&SL] User {source.name} running list {guid} with {len(privmsg_list)} entries\")\n\n bot.privmsg_arr_chunked(\n privmsg_list, per_chunk=self.settings[\"per_chunk\"], chunk_delay=self.settings[\"chunk_delay\"]\n )\n\n def load_commands(self, **options):\n self.commands[\"runpnsl\"] = Command.raw_command(\n self.run_pnsl,\n delay_all=20,\n delay_user=20,\n level=self.settings[\"level\"],\n description=\"Run a P&SL list\",\n command=\"runpnsl\",\n )\n self.commands[\"pnslrun\"] = self.commands[\"runpnsl\"]\n", "sub_path": "pajbot/modules/pnsl.py", "file_name": "pnsl.py", "file_ext": "py", "file_size_in_byte": 2812, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "logging.getLogger", "line_number": 9, "usage_type": "call"}, {"api_name": "pajbot.modules.BaseModule", "line_number": 12, "usage_type": "name"}, {"api_name": "pajbot.modules.ModuleSetting", "line_number": 19, "usage_type": "call"}, {"api_name": "pajbot.modules.ModuleSetting", "line_number": 28, "usage_type": "call"}, {"api_name": "pajbot.modules.ModuleSetting", "line_number": 37, "usage_type": "call"}, {"api_name": "requests.get", "line_number": 68, "usage_type": "call"}, {"api_name": "pajbot.models.command.Command.raw_command", "line_number": 84, "usage_type": "call"}, {"api_name": "pajbot.models.command.Command", "line_number": 84, "usage_type": "name"}]}
{"seq_id": "8190338", "text": "#!BPY\r\n \r\n# Une cyclide de Dupin C3, format fil de fer, avec les quatres droites. En couleur...\r\n# chaque cercle est un seul mesh\r\n# on isole le cas des cercles complets, plutot que de trainer des si alors sinon compliques\r\n# 10/11/2014 : mesh ok, on rajoute les couleurs\r\n# et les quatre droites\r\n__author__ = \"francesco de comite\"\r\n__version__ = \"1.0 2014/11/05\"\r\n__url__=\"Website, www.lifl.fr/decomite\"\r\n \r\n \r\n##############################################################\r\n# load the modules used in the script\r\nimport bpy\r\nimport math\r\nimport mathutils\r\nfrom mathutils import *\r\n\r\nfrom math import *\r\n##############################################################\r\n# une sphere\r\n# R : rayon\r\n# n : nombre de meridiens\r\n# p : nombre de paralleles\r\n\r\ndef sphere(R,n,p):\r\n me=bpy.data.meshes.new('sphere')\r\n coords=[[0,0,0] for i in range(n*p+2)]\r\n faces=[] \r\n \r\n # Les points\r\n for i in range(p): #les points sur un parallele\r\n zc=pi/2-(i+1)*pi/(p+1)\r\n for j in range(n):\r\n coords[j+i*n]=[R*cos(2*j*pi/n)*cos(zc),R*sin(2*j*pi/n)*cos(zc),R*sin(zc)]\r\n coords[n*p]=[0,0,R]\r\n coords[n*p+1]=[0,0,-R]\r\n \r\n #les faces\r\n # Calottes\r\n for i in range(n):\r\n faces.append([i,(i+1)%n,n*p])\r\n faces.append([i+(p-1)*n,n*p+1,(i+1)%n+(p-1)*n])\r\n \r\n # relier un parallele au suivant\r\n for i in range(p-1):\r\n for j in range(n):\r\n faces.append([(j+1)%n+n*i,j+n*i,j+n*(i+1)])\r\n faces.append([(j+1)%n+n*i,j+n*(i+1),(j+1)%n+n*(i+1)])\r\n \r\n me.from_pydata(coords,[],faces) \r\n me.update(calc_edges=True) \r\n return me \r\n \r\n \r\n\r\n\r\n#un tore\r\n# R : grand rayon\r\n# r : petit rayon\r\n# n : nombre de sections\r\n# p : nombre de points sur une section\r\ndef tore(R,r,n,p):\r\n me=bpy.data.meshes.new('tore')\r\n coords=[[0,0,0] for i in range(n*p)]\r\n faces=[]\r\n for i in range(n): \r\n for j in range(p):\r\n coords[i*p+j]=[(R+r*cos(2*j*pi/p))*cos(2*i*pi/n),(R+r*cos(2*j*pi/p))*sin(2*i*pi/n),r*sin(2*j*pi/p)]\r\n for i in range(n):\r\n #relier la couronne numero i a la couronne (i+1)%n\r\n depart=i*p\r\n arrivee=((i+1)*p)%(n*p)\r\n for j in range(p):\r\n faces.append([depart+j,arrivee+j,depart+(j+1)%p])\r\n faces.append([depart+(j+1)%p,arrivee+j,arrivee+(j+1)%p])\r\n \r\n me.from_pydata(coords,[],faces) \r\n me.update(calc_edges=True) \r\n return me \r\n \r\n# un cylindre\r\ndef cylindre(r,nbFaces,l):\r\n \r\n me=bpy.data.meshes.new('cylindre')\r\n coords=[[0,0,0] for i in range(2*nbFaces+2)]\r\n faces=[]\r\n\r\n coords[2*nbFaces]=[0,0,0]\r\n coords[2*nbFaces+1]=[0,l,0]\r\n \r\n for i in range(0,nbFaces):\r\n coords[i]=[r*cos(2*i*pi/nbFaces),0,r*sin(2*i*pi/nbFaces)]\r\n coords[i+nbFaces]=[r*cos(2*i*pi/nbFaces),l,r*sin(2*i*pi/nbFaces)]\r\n \r\n for i in range(0,nbFaces):\r\n faces.append([i,(i+1)%nbFaces,2*nbFaces]) \r\n faces.append([i+nbFaces,2*nbFaces+1,nbFaces+(i+1)%nbFaces])\r\n faces.append([(i+1)%nbFaces,i,i+nbFaces])\r\n faces.append([i+nbFaces,nbFaces+(i+1)%nbFaces,(i+1)%nbFaces])\r\n \r\n me.from_pydata(coords,[],faces) # edges or faces should be [], or you ask for problems\r\n me.update(calc_edges=True) \r\n return me\r\n \r\n# construit un cylindre et l'oriente dans l'espace\r\ndef cylindreOriente(p1,p2,rayon,nbFaces):\r\n \r\n # use the class constructors from Blender to form vectors for p1 and p2\r\n p1 = Vector(p1)\r\n p2 = Vector(p2)\r\n # form a vector that points in the direction from p1 to p2\r\n dir = p2-p1 \r\n # get the length of the line we want that goes from p1 to p2\r\n length = dir.length\r\n me=cylindre(rayon,nbFaces,length)\r\n dir.normalize()\r\n u = dir\r\n uu = Vector([0,1.0,0])\r\n if abs(u.angle(uu))>1e-6:\r\n v=u.cross(uu)\r\n A=Matrix.Rotation(-u.angle(uu),4,v)\r\n else:\r\n A = Matrix((\r\n (1,0,0,0),\r\n (0,1,0,0),\r\n (0,0,1,0),\r\n (0,0,0,1)))\r\n \r\n # apply the transform to the cylinder \r\n \r\n me.transform(A)\r\n trans=mathutils.Matrix.Translation(p1)\r\n me.transform(trans)\r\n return me\r\n\r\n#Construit une couronne de points\r\ndef couronneOrientee(p1,p2,rayon,nbFaces):\r\n # use the class constructors from Blender to form vectors for p1 and p2\r\n p1 = Vector(p1)\r\n p2 = Vector(p2)\r\n # form a vector that points in the direction from p1 to p2\r\n dir = p2-p1 \r\n # get the length of the line we want that goes from p1 to p2\r\n length = dir.length\r\n me=[[0,0,0] for i in range(nbFaces)]\r\n for i in range(nbFaces):\r\n me[i]=[rayon*cos(2*i*pi/nbFaces),0,rayon*sin(2*i*pi/nbFaces)]\r\n dir.normalize()\r\n u = dir\r\n uu = Vector([0,1.0,0])\r\n if abs(u.angle(uu))>1e-6:\r\n v=u.cross(uu)\r\n A=Matrix.Rotation(-u.angle(uu),4,v)\r\n else:\r\n A = Matrix((\r\n (1,0,0,0),\r\n (0,1,0,0),\r\n (0,0,1,0),\r\n (0,0,0,1)))\r\n \r\n # apply the transform to the cylinder \r\n trans=mathutils.Matrix.Translation(p1)\r\n for i in range(nbFaces):\r\n vecti=Vector((me[i][0],me[i][1],me[i][2]))\r\n vecti.rotate(A)\r\n vecti=vecti+p1\r\n me[i]=[vecti.x,vecti.y,vecti.z]\r\n return me \r\n \r\n \r\n \r\nmaxbox=15\r\nrayon=0.135\r\n\r\nnbAlpha=48 # forcement multiple de 4...\r\nnbTheta=400\r\nnbFaces=10\r\nindice=0\r\nmemoire=[[0,0,0] for i in range(2*nbAlpha)]\r\n\r\n# les parametres de la cyclide\r\np=2\r\nq=-9\r\nomega=q-sqrt(q*q-p*q)\r\nk=p*p-p*q\r\nxOmega=(2*q*q-(p+2*q)*sqrt(q*q-p*q))/(2*q)\r\nr=abs((q-p+sqrt(q*q-p*q))/2);\r\nR=abs((q-p)*(q+sqrt(q*q-p*q))/(2*q)); \r\nRr=sqrt(R*R-r*r); \r\nk=p*p-p*q; \r\n\r\n# les sous programmes auxiliaires (cf L. Garnier)\r\n\r\ndef den1(ct,theta,epsilon):\r\n global xOmega,r,R,omega\r\n valeur=xOmega*xOmega+R*R+r*r+omega*omega-2*xOmega*omega+2*R*r*cos(ct)-2*xOmega*epsilon*r*sin(theta)\r\n return valeur\r\n\r\ndef den2(ct,theta,epsilon):\r\n global xOmega,Rr,r,omega\r\n valeur=-2*xOmega*cos(theta)*sin(ct)*Rr+2*epsilon*r*omega*sin(theta)+2*omega*cos(theta)*sin(ct)*Rr\r\n return valeur\r\n \r\ndef den3(ct,theta,epsilon):\r\n global xOmega,R,omega\r\n valeur=-2*xOmega*R*epsilon*cos(ct)*sin(theta)+2*R*epsilon*omega*cos(ct)*sin(theta)\r\n return valeur\r\n \r\ndef denom(ct,theta,epsilon):\r\n global k\r\n valeur=den1(ct,theta,epsilon)+den2(ct,theta,epsilon)+den3(ct,theta,epsilon)\r\n \r\n return k/valeur\r\n\r\ndef valX(ct,theta,epsilon):\r\n global xOmega,omega,Rr,r,R\r\n f1=xOmega\r\n f2=epsilon*r*sin(theta)\r\n f3=omega\r\n f4=Rr*cos(theta)*sin(ct)\r\n f5=epsilon*R*cos(ct)*sin(theta)\r\n total=f1-f2-f3-f4-f5\r\n return omega+total*denom(ct,theta,epsilon)\r\n\r\ndef valY(ct,theta,epsilon):\r\n global R,r\r\n f1=epsilon*R*cos(ct)*cos(theta)\r\n f2=epsilon*r*cos(theta)\r\n f3=Rr*sin(ct)*sin(theta)\r\n total=-f1-f2+f3\r\n return (-total*denom(ct,theta,epsilon))\r\n \r\ndef valZ(ct,theta,epsilon):\r\n global r\r\n total=r*sin(ct);\r\n return total*denom(ct,theta,epsilon)\r\n\r\n\r\n# Pour arreter les cylindres aux frontieres de la sphere englobante\r\ndef modifCoef(v1,v2,rayon):\r\n vA=v1[0]*v1[0]+v1[1]*v1[1]+v1[2]*v1[2]\r\n vB=v2[0]*v2[0]+v2[1]*v2[1]+v2[2]*v2[2]\r\n vC=v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2]\r\n delta=(vC-vB)*(vC-vB)-(vA+vB-2*vC)*(vB-rayon*rayon)\r\n alpha0=(-(vC-vB)-sqrt(delta))/(vA+vB-2*vC)\r\n alpha1=(-(vC-vB)+sqrt(delta))/(vA+vB-2*vC)\r\n if (alpha0>=0)and(alpha0<=1):\r\n return alpha0\r\n else:\r\n return alpha1\r\n \r\n\r\ndef distance(t1,t2):\r\n ax=t1[0]-t2[0]\r\n ax=ax*ax\r\n ay=t1[1]-t2[1]\r\n ay=ay*ay\r\n az=t1[2]-t2[2]\r\n az=az*az\r\n return sqrt(ax+ay+az)\r\n \r\n#quand tous les point du cercle sont dans la sphere, on fait un tore clos. \r\ndef makeSimiliTorus(path,rayon,nbFaces):\r\n coords=[]\r\n faces=[]\r\n me=bpy.data.meshes.new('victor')\r\n for i in range(len(path)):\r\n tably=couronneOrientee(path[i],path[(i+1)%len(path)],rayon,nbFaces)\r\n for j in range(len(tably)):\r\n coords.append(tably[j])\r\n \r\n # Construire les faces\r\n for i in range(len(path)):\r\n # calculer le decalage pour eviter les etranglements\r\n # ca ne marche pas vraiment TODO\r\n temoin=coords[i*nbFaces]\r\n indice_challenger=((i+1)%len(path))*nbFaces\r\n decalageMin=0\r\n \r\n challenger=coords[indice_challenger]\r\n distMin=distance(temoin,challenger)\r\n # TODO : pas tres au point, et pas utile\r\n for decalage in range(nbFaces):\r\n challenger=coords[indice_challenger+decalage]\r\n distCourante=distance(temoin,challenger)\r\n if(distCourantevaljp1):\r\n tmp=tableau[j]\r\n tableau[j]=tableau[j+1]\r\n tableau[j+1]=tmp\r\n return \r\n \r\ndef colorize(myMesh,myColor):\r\n # Create a single Material that respect Vertex Color\r\n mat = bpy.data.materials.new('VertexMat')\r\n mat.use_vertex_color_paint = True\r\n mat.use_vertex_color_light = True\r\n \r\n \r\n \r\n # Create new 'Col' Vertex Color Layer\r\n myMesh.vertex_colors.new()\r\n \r\n # Vertex colour data\r\n vertexColor = myMesh.vertex_colors[0].data\r\n faces = myMesh.polygons\r\n \r\n # Assign colours to verts (loop every faces)\r\n # Script Snippet from Blender Artist\r\n #Fixer la couleur de tous les sommets d'une meme lunule\r\n j = 0\r\n for face in faces:\r\n for idx in face.loop_indices:\r\n vertexColor[j].color = myColor\r\n j += 1\r\n return\r\n# fin de colorize \r\n \r\n \r\n#test\r\nprint(\"debut/n\")\r\n\r\nscn=bpy.context.scene\r\n\r\n\r\ncouleurFamille1=[0,0,1] # bleu\r\ncouleurFamille2=[1,165/255,0] #orange\r\ncouleurDroiteP=[0,1,0] # vert\r\ncouleurDroiteQ=[1,1,0] # jaune\r\ncouleurContour=[0.5,0,0] # marron\r\n\r\nfirst=1\r\nnumero=0\r\n\r\ncatenaName='velo'\r\n\r\n# Memoriser tous les points de coupure, pour les ordonner et les relier a la fin \r\nmemoire=[0 for i in range(800)]\r\nindice=0\r\n\r\n\r\n\r\nfor ind2 in range(nbAlpha):\r\n \r\n alphy=2*ind2*pi/nbAlpha\r\n #le cas des droites\r\n if alphy==pi/2:\r\n alphy=0.9999*alphy\r\n if alphy==3*pi/2:\r\n alphy=0.9999*alphy\r\n # memoriser tous les points d'un cercle de Villarceau, 0 si on sort des bornes \r\n cheminDirect=[Vector((0,0,0)) for i in range(nbTheta)] \r\n cheminInverse=[Vector((0,0,0)) for i in range(nbTheta)] \r\n \r\n for index in range(nbTheta):\r\n theta=2*index*pi/nbTheta\r\n vx=valX(theta,alphy,1)\r\n vy=valY(theta,alphy,1)\r\n vz=valZ(theta,alphy,1)\r\n \r\n \r\n depart=Vector((vx,vy,vz))\r\n \r\n \r\n if depart.length<=maxbox:\r\n cheminDirect[index]=depart\r\n \r\n \r\n \r\n # deuxieme cercle pour le meme alpha \r\n vx=valX(theta,alphy,-1)\r\n vy=valY(theta,alphy,-1)\r\n vz=valZ(theta,alphy,-1)\r\n \r\n thetaS=theta+2*pi/nbTheta\r\n vxS=valX(thetaS,alphy,-1)\r\n vyS=valY(thetaS,alphy,-1)\r\n vzS=valZ(thetaS,alphy,-1)\r\n \r\n depart=Vector((vx,vy,vz))\r\n \r\n if (depart.length<=maxbox):\r\n cheminInverse[index]=depart\r\n \r\n \r\n # On a cree deux chemins, pas forcement complets, on les transforme en tubes fermes aux extremites\r\n \r\n if(ind2!=(nbAlpha//4)):\r\n cercle1=makeMesh(cheminDirect,rayon,nbFaces,alphy,1)\r\n else:\r\n cercle1=makeMesh(cheminDirect,2*rayon,nbFaces,alphy,1)\r\n \r\n colorize(cercle1,couleurFamille1)\r\n \r\n if(first==1):\r\n ob=bpy.data.objects.new(catenaName+str(numero),cercle1)\r\n bpy.context.scene.objects.link(ob) \r\n bpy.context.scene.objects.active = ob\r\n numero+=1\r\n first=0\r\n else:\r\n localOb=bpy.data.objects.new(catenaName+str(numero),cercle1)\r\n numero+=1\r\n scn.objects.link(localOb)\r\n \r\n if(ind2!=(3*nbAlpha//4)):\r\n cercle2=makeMesh(cheminInverse,rayon,nbFaces,alphy,-1)\r\n else:\r\n cercle2=makeMesh(cheminInverse,2*rayon,nbFaces,alphy,-1)\r\n \r\n colorize(cercle2,couleurFamille2)\r\n \r\n if(first==1):\r\n ob=bpy.data.objects.new(catenaName+str(numero),cercle2)\r\n bpy.context.scene.objects.link(ob) \r\n bpy.context.scene.objects.active = ob\r\n numero+=1\r\n first=0\r\n else:\r\n localOb=bpy.data.objects.new(catenaName+str(numero),cercle2)\r\n numero+=1\r\n scn.objects.link(localOb)\r\n \r\n\r\n#for index in range(indice): \r\n #print(index,\" \",memoire[index],\" \",atan2(memoire[index][1],memoire[index][2]))\r\n \r\n \r\nordonner(memoire,indice)\r\n\r\n# On a besoin de ça pour avoir un tableau de la bonne taille : il y a surement une meilleure solution...\r\nnewMemoire=[[0,0,0] for i in range(indice)]\r\n \r\nfor index in range(indice): \r\n #print(index,\" \",memoire[index],\" \",atan2(memoire[index][1],memoire[index][2]))\r\n newMemoire[index]=memoire[index]\r\n \r\ncontour=makeSimiliTorus2(newMemoire,rayon*1.2,nbFaces) \r\ncolorize(contour,couleurContour)\r\nlocalOb=bpy.data.objects.new(catenaName+str(numero),contour)\r\nnumero+=1\r\nscn.objects.link(localOb)\r\n\r\n\r\n# les deux droites p et q\r\n# Droite P\r\nextremiteMoinsP=Vector((p,0,-maxbox+rayon))\r\nextremitePlusP=Vector((p,0,maxbox-rayon))\r\ndroiteP=cylindreOriente(extremiteMoinsP,extremitePlusP,2*rayon,nbFaces)\r\ncolorize(droiteP,couleurDroiteP)\r\nlocalOb=bpy.data.objects.new(catenaName+str(numero),droiteP)\r\nnumero+=1\r\nscn.objects.link(localOb)\r\n\r\n\r\n# Droite Q\r\nextremiteMoinsQ=Vector((q,-24.23/2+rayon,0))\r\nextremitePlusQ=Vector((q,24.23/2-rayon,0))\r\ndroiteQ=cylindreOriente(extremiteMoinsQ,extremitePlusQ,2*rayon,nbFaces)\r\ncolorize(droiteQ,couleurDroiteQ)\r\nlocalOb=bpy.data.objects.new(catenaName+str(numero),droiteQ)\r\nnumero+=1\r\nscn.objects.link(localOb)\r\n\r\n\r\n\r\nbpy.ops.object.select_pattern(extend=False, pattern=catenaName+'*', case_sensitive=False)\r\nbpy.ops.object.join() ", "sub_path": "Voronoi/src/test/cyclideC3V3.py", "file_name": "cyclideC3V3.py", "file_ext": "py", "file_size_in_byte": 24245, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "bpy.data.meshes.new", "line_number": 28, "usage_type": "call"}, {"api_name": "bpy.data", "line_number": 28, "usage_type": "attribute"}, {"api_name": "bpy.data.meshes.new", "line_number": 65, "usage_type": "call"}, {"api_name": "bpy.data", "line_number": 65, "usage_type": "attribute"}, {"api_name": "bpy.data.meshes.new", "line_number": 86, "usage_type": "call"}, {"api_name": "bpy.data", "line_number": 86, "usage_type": "attribute"}, {"api_name": "mathutils.Matrix.Translation", "line_number": 134, "usage_type": "call"}, {"api_name": "mathutils.Matrix", "line_number": 134, "usage_type": "attribute"}, {"api_name": "mathutils.Matrix.Translation", "line_number": 164, "usage_type": "call"}, {"api_name": "mathutils.Matrix", "line_number": 164, "usage_type": "attribute"}, {"api_name": "bpy.data.meshes.new", "line_number": 268, "usage_type": "call"}, {"api_name": "bpy.data", "line_number": 268, "usage_type": "attribute"}, {"api_name": "bpy.data.meshes.new", "line_number": 310, "usage_type": "call"}, {"api_name": "bpy.data", "line_number": 310, "usage_type": "attribute"}, {"api_name": "bpy.data.meshes.new", "line_number": 377, "usage_type": "call"}, {"api_name": "bpy.data", "line_number": 377, "usage_type": "attribute"}, {"api_name": "bpy.data.materials.new", "line_number": 530, "usage_type": "call"}, {"api_name": "bpy.data", "line_number": 530, "usage_type": "attribute"}, {"api_name": "bpy.context", "line_number": 558, "usage_type": "attribute"}, {"api_name": "bpy.data.objects.new", "line_number": 631, "usage_type": "call"}, {"api_name": "bpy.data", "line_number": 631, "usage_type": "attribute"}, {"api_name": "bpy.context.scene.objects.link", "line_number": 632, "usage_type": "call"}, {"api_name": "bpy.context", "line_number": 632, "usage_type": "attribute"}, {"api_name": "bpy.context", "line_number": 633, "usage_type": "attribute"}, {"api_name": "bpy.data.objects.new", "line_number": 637, "usage_type": "call"}, {"api_name": "bpy.data", "line_number": 637, "usage_type": "attribute"}, {"api_name": "bpy.data.objects.new", "line_number": 649, "usage_type": "call"}, {"api_name": "bpy.data", "line_number": 649, "usage_type": "attribute"}, {"api_name": "bpy.context.scene.objects.link", "line_number": 650, "usage_type": "call"}, {"api_name": "bpy.context", "line_number": 650, "usage_type": "attribute"}, {"api_name": "bpy.context", "line_number": 651, "usage_type": "attribute"}, {"api_name": "bpy.data.objects.new", "line_number": 655, "usage_type": "call"}, {"api_name": "bpy.data", "line_number": 655, "usage_type": "attribute"}, {"api_name": "bpy.data.objects.new", "line_number": 675, "usage_type": "call"}, {"api_name": "bpy.data", "line_number": 675, "usage_type": "attribute"}, {"api_name": "bpy.data.objects.new", "line_number": 686, "usage_type": "call"}, {"api_name": "bpy.data", "line_number": 686, "usage_type": "attribute"}, {"api_name": "bpy.data.objects.new", "line_number": 696, "usage_type": "call"}, {"api_name": "bpy.data", "line_number": 696, "usage_type": "attribute"}, {"api_name": "bpy.ops.object.select_pattern", "line_number": 702, "usage_type": "call"}, {"api_name": "bpy.ops", "line_number": 702, "usage_type": "attribute"}, {"api_name": "bpy.ops.object.join", "line_number": 703, "usage_type": "call"}, {"api_name": "bpy.ops", "line_number": 703, "usage_type": "attribute"}]}
{"seq_id": "616346687", "text": "# pip install beautifulsoup4\r\n# pip install lxml\r\n\r\nfrom bs4 import BeautifulSoup\r\n\r\nwith open(\"sample.html\", \"r\") as html_file:\r\n content = html_file.read()\r\n soup = BeautifulSoup(content, 'lxml')\r\n course_cards = soup.findAll(\"div\", class_=\"card\")\r\n for course in course_cards:\r\n course_name = course.h5.text\r\n course_price = course.a.text.split()[-1]\r\n print(f\"{course_name} costs {course_price}\")\r\n\r\n# headers = {\"User-Agent\": \"Mozilla/5.0\"}\r\n# content is bytes, text is text - content is better\r\n# find, find_all\r\n# select_one, select\r\n# # id\r\n# . class\r\n# tag\r\n# find and .get(\"attr\")\r\n\r\n# bs4.element\r\n# bs4.element.ResultSet\r\n\r\n# str.ljust(30)\r\n\r\n# string=\"xx\"\r\n\r\n# find_parents\r\n# find_parent\r\n# .get_text(strip=True)\r\n\r\n# ul\r\n# ol\r\n# li\r\n\r\n# table\r\n# tr\r\n# th/td\r\n\r\n# div section span input a p\r\n\r\n# find_next_sibling/s\r\n# find_previous_sibling/s\r\n\r\n# find_next()\r\n# find_all_next()\r\n\r\n# find_previous()\r\n# find_all_previous()\r\n", "sub_path": "PYTHON/PYTHON_BEAUTIFULSOUP/1_bs4_on_html.py", "file_name": "1_bs4_on_html.py", "file_ext": "py", "file_size_in_byte": 971, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "bs4.BeautifulSoup", "line_number": 8, "usage_type": "call"}]}
{"seq_id": "307472735", "text": "import argparse\nfrom PIL import Image\n\nfrom vietocr.tool.predictor import Predictor\nfrom vietocr.tool.config import Cfg\nimport sys \nsys.path.insert(0, './')\nfrom char import character\ndef main():\n parser = argparse.ArgumentParser()\n parser.add_argument('--img', required=True, help='foo help')\n parser.add_argument('--config', required=True, help='foo help')\n\n args = parser.parse_args()\n config_base = Cfg.load_config_from_file(\"config/base.yml\")\n config = Cfg.load_config_from_file(args.config)\n config_base.update(config)\n config = config_base\n\n config['vocab'] = character\n\n\n detector = Predictor(config)\n\n img = Image.open(args.img)\n s = detector.predict(img)\n\n print(s)\n\nif __name__ == '__main__':\n main()\n", "sub_path": "vietocr/predict.py", "file_name": "predict.py", "file_ext": "py", "file_size_in_byte": 754, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "sys.path.insert", "line_number": 7, "usage_type": "call"}, {"api_name": "sys.path", "line_number": 7, "usage_type": "attribute"}, {"api_name": "argparse.ArgumentParser", "line_number": 10, "usage_type": "call"}, {"api_name": "vietocr.tool.config.Cfg.load_config_from_file", "line_number": 15, "usage_type": "call"}, {"api_name": "vietocr.tool.config.Cfg", "line_number": 15, "usage_type": "name"}, {"api_name": "vietocr.tool.config.Cfg.load_config_from_file", "line_number": 16, "usage_type": "call"}, {"api_name": "vietocr.tool.config.Cfg", "line_number": 16, "usage_type": "name"}, {"api_name": "char.character", "line_number": 20, "usage_type": "name"}, {"api_name": "vietocr.tool.predictor.Predictor", "line_number": 23, "usage_type": "call"}, {"api_name": "PIL.Image.open", "line_number": 25, "usage_type": "call"}, {"api_name": "PIL.Image", "line_number": 25, "usage_type": "name"}]}
{"seq_id": "4012783", "text": "r\"\"\"\nDownload resources used for various purposes.\n\nUsage:\n python download_resources.py \\\n --game_num 5961 \\\n --data_root path/to/folder/containing/all/game/data/ \\\n --purpose calibration\n\"\"\"\n\nimport argparse\nimport os\n\nfrom src.util import s3_util\n\n\ndef download_spotlight_resources(game_num, local_game_folder):\n \"\"\"\n Download resources used for running spotlight.\n\n Args:\n game_num Game number\n local_game_folder Path to folder containing game resources\n \"\"\"\n s3_util.download_calibration_folder(game_num, local_game_folder)\n s3_util.download_color_classification_folder(game_num, local_game_folder)\n s3_util.download_object_detector_folder_no_videos(\n game_num, local_game_folder)\n s3_util.download_object_tracker_folder(game_num, local_game_folder)\n s3_util.download_results_folder(game_num, local_game_folder)\n s3_util.download_spotlight_folder(game_num, local_game_folder)\n s3_util.download_stitch_folder_no_videos(game_num, local_game_folder)\n\n\ndef download_calibration_resources(game_num, local_game_folder):\n \"\"\"\n Download resources used for calibration.\n\n Args:\n game_num Game number\n local_game_folder Path to folder containing game resources\n \"\"\"\n s3_util.download_calibration_folder(game_num, local_game_folder)\n s3_util.download_results_folder(game_num, local_game_folder)\n s3_util.download_stitch_folder_no_videos(game_num, local_game_folder)\n\n\nif __name__ == \"__main__\":\n\n ap = argparse.ArgumentParser()\n ap.add_argument(\n \"--game_num\", required=True, type=int,\n help=\"Game number to use\")\n ap.add_argument(\n \"--data_root\", required=True, type=str,\n help=\"Folder containing game data\")\n ap.add_argument(\n \"--purpose\", required=True, type=str,\n choices=[\"calibration\", \"spotlight\"])\n args = vars(ap.parse_args())\n game_num = args[\"game_num\"]\n data_root = args[\"data_root\"]\n purpose = args[\"purpose\"]\n\n assert os.path.isdir(data_root)\n\n local_game_folder = os.path.join(data_root, \"game_{0}\".format(game_num))\n\n if purpose == \"calibration\":\n download_calibration_resources(game_num, local_game_folder)\n elif purpose == \"spotlight\":\n download_spotlight_resources(game_num, local_game_folder)\n", "sub_path": "download_resources.py", "file_name": "download_resources.py", "file_ext": "py", "file_size_in_byte": 2338, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "src.util.s3_util.download_calibration_folder", "line_number": 25, "usage_type": "call"}, {"api_name": "src.util.s3_util", "line_number": 25, "usage_type": "name"}, {"api_name": "src.util.s3_util.download_color_classification_folder", "line_number": 26, "usage_type": "call"}, {"api_name": "src.util.s3_util", "line_number": 26, "usage_type": "name"}, {"api_name": "src.util.s3_util.download_object_detector_folder_no_videos", "line_number": 27, "usage_type": "call"}, {"api_name": "src.util.s3_util", "line_number": 27, "usage_type": "name"}, {"api_name": "src.util.s3_util.download_object_tracker_folder", "line_number": 29, "usage_type": "call"}, {"api_name": "src.util.s3_util", "line_number": 29, "usage_type": "name"}, {"api_name": "src.util.s3_util.download_results_folder", "line_number": 30, "usage_type": "call"}, {"api_name": "src.util.s3_util", "line_number": 30, "usage_type": "name"}, {"api_name": "src.util.s3_util.download_spotlight_folder", "line_number": 31, "usage_type": "call"}, {"api_name": "src.util.s3_util", "line_number": 31, "usage_type": "name"}, {"api_name": "src.util.s3_util.download_stitch_folder_no_videos", "line_number": 32, "usage_type": "call"}, {"api_name": "src.util.s3_util", "line_number": 32, "usage_type": "name"}, {"api_name": "src.util.s3_util.download_calibration_folder", "line_number": 43, "usage_type": "call"}, {"api_name": "src.util.s3_util", "line_number": 43, "usage_type": "name"}, {"api_name": "src.util.s3_util.download_results_folder", "line_number": 44, "usage_type": "call"}, {"api_name": "src.util.s3_util", "line_number": 44, "usage_type": "name"}, {"api_name": "src.util.s3_util.download_stitch_folder_no_videos", "line_number": 45, "usage_type": "call"}, {"api_name": "src.util.s3_util", "line_number": 45, "usage_type": "name"}, {"api_name": "argparse.ArgumentParser", "line_number": 50, "usage_type": "call"}, {"api_name": "os.path.isdir", "line_number": 65, "usage_type": "call"}, {"api_name": "os.path", "line_number": 65, "usage_type": "attribute"}, {"api_name": "os.path.join", "line_number": 67, "usage_type": "call"}, {"api_name": "os.path", "line_number": 67, "usage_type": "attribute"}]}
{"seq_id": "603905390", "text": "# coding: UTF-8\r\n\r\nimport numpy as np\r\nimport cv2\r\nfrom matplotlib import pyplot as plt\r\n\r\n#img = cv2.imread('simple.jpg',0)\r\nimg = cv2.imread('simple2.jpg',0)\r\n\r\n#まずデフォルト値でFASTオブジェクトを作る\r\nfast = cv2.FastFeatureDetector_create()\r\n\r\n# キーポイントを求めて描画する\r\nkp = fast.detect(img,None)\r\nimg2 = cv2.drawKeypoints(img, kp,None,color=(255,0,0))\r\n\r\n# デフォルトのパラメタをすべて表示\r\nprint(\"Threshold: \", fast.getThreshold()) #閾値の設定\r\nprint(\"nonmaxSuppression: \", fast.getNonmaxSuppression()) #最大値抑制を適用するか\r\nprint(\"neighborhood: \", fast.getType()) #周辺領域の選択\r\nprint(\"Total Keypoints with nonmaxSuppression: \", len(kp))\r\n\r\n#cv2.imwrite('fast_true.png',img2)\r\ncv2.imwrite('fast_true2.png',img2)\r\n\r\n# nonmaxSuppressionを停止\r\nfast.setNonmaxSuppression(0)\r\nkp = fast.detect(img,None)\r\n\r\nprint(\"Total Keypoints without nonmaxSuppression: \", len(kp))\r\n\r\nimg3 = cv2.drawKeypoints(img, kp,None,color=(255,0,0))\r\n\r\n#cv2.imwrite('fast_false.png',img3)\r\ncv2.imwrite('fast_false2.png',img3)", "sub_path": "fast_sample.py", "file_name": "fast_sample.py", "file_ext": "py", "file_size_in_byte": 1096, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "cv2.imread", "line_number": 8, "usage_type": "call"}, {"api_name": "cv2.FastFeatureDetector_create", "line_number": 11, "usage_type": "call"}, {"api_name": "cv2.drawKeypoints", "line_number": 15, "usage_type": "call"}, {"api_name": "cv2.imwrite", "line_number": 24, "usage_type": "call"}, {"api_name": "cv2.drawKeypoints", "line_number": 32, "usage_type": "call"}, {"api_name": "cv2.imwrite", "line_number": 35, "usage_type": "call"}]}
{"seq_id": "271250278", "text": "\"\"\"empty message\n\nRevision ID: 40bc44aaf9dd\nRevises: 201626a58dfd\nCreate Date: 2017-01-02 18:22:33.100981\n\n\"\"\"\nfrom alembic import op\nimport sqlalchemy as sa\n\n\n# revision identifiers, used by Alembic.\nrevision = '40bc44aaf9dd'\ndown_revision = '201626a58dfd'\nbranch_labels = None\ndepends_on = None\n\n\ndef upgrade():\n # ### commands auto generated by Alembic - please adjust! ###\n op.create_table('last_message',\n sa.Column('id', sa.Integer(), nullable=False),\n sa.Column('fb_uid', sa.Integer(), nullable=True),\n sa.Column('last_user_message', sa.Unicode(), nullable=True),\n sa.Column('last_bot_response', sa.Unicode(), nullable=True),\n sa.PrimaryKeyConstraint('id')\n )\n # ### end Alembic commands ###\n\n\ndef downgrade():\n # ### commands auto generated by Alembic - please adjust! ###\n op.drop_table('last_message')\n # ### end Alembic commands ###\n", "sub_path": "migrations/versions/40bc44aaf9dd_.py", "file_name": "40bc44aaf9dd_.py", "file_ext": "py", "file_size_in_byte": 880, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "alembic.op.create_table", "line_number": 21, "usage_type": "call"}, {"api_name": "alembic.op", "line_number": 21, "usage_type": "name"}, {"api_name": "sqlalchemy.Column", "line_number": 22, "usage_type": "call"}, {"api_name": "sqlalchemy.Integer", "line_number": 22, "usage_type": "call"}, {"api_name": "sqlalchemy.Column", "line_number": 23, "usage_type": "call"}, {"api_name": "sqlalchemy.Integer", "line_number": 23, "usage_type": "call"}, {"api_name": "sqlalchemy.Column", "line_number": 24, "usage_type": "call"}, {"api_name": "sqlalchemy.Unicode", "line_number": 24, "usage_type": "call"}, {"api_name": "sqlalchemy.Column", "line_number": 25, "usage_type": "call"}, {"api_name": "sqlalchemy.Unicode", "line_number": 25, "usage_type": "call"}, {"api_name": "sqlalchemy.PrimaryKeyConstraint", "line_number": 26, "usage_type": "call"}, {"api_name": "alembic.op.drop_table", "line_number": 33, "usage_type": "call"}, {"api_name": "alembic.op", "line_number": 33, "usage_type": "name"}]}
{"seq_id": "192398940", "text": "from inspect import stack\nfrom pathlib import Path\n\n\ndef abs_path_str_from_rel_to_this_file( path : str ) :\n caller_frame = stack()[1]\n caller_file_path = caller_frame.filename\n caller_directory = Path( caller_file_path ).parent\n full_path = caller_directory / path\n abs_path = full_path.resolve()\n abs_path_str = abs_path.as_posix()\n return abs_path_str", "sub_path": "path.py", "file_name": "path.py", "file_ext": "py", "file_size_in_byte": 375, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "inspect.stack", "line_number": 6, "usage_type": "call"}, {"api_name": "pathlib.Path", "line_number": 8, "usage_type": "call"}]}
{"seq_id": "221369892", "text": "#!/usr/bin/env python3\n\nimport sys\nimport traceback\nimport time\nimport serial\nimport serial.tools.list_ports\n\n# feature toggles\nusb = False\nuart = True\n\n# if all the following are False then exit right away\nlocal = False\ncompetition = True\n# dynamic not working properly, keep at False\ndynamic = False\n\n# note: since this program is in /usr/bin/ on the OBC\n# it was necessary to also add the connection.py\n# class in /usr/bin and change the following line to\n# from connection import Connection\n# for the startup service to work properly\nfrom robot.comms.connection import Connection\nfrom robot.comms.uart import Uart\n\n# returns current time in milliseconds\ncurrent_millis = lambda: int(round(time.time() * 1000))\n\ndef get_commands_list():\n return \"\"\"'q': quit\\n\n'w': forward\\n\n's': back\\n\n'a': left\\n\n'd': right\\n\n'i': increase throttle speed\\n\n'j': decrease throttle speed\\n\n'o': increase steering speed\\n\n'k': decrease steering speed\\n\n'l': list commands\\n\\n\"\"\"\n\n# returns current time in milliseconds\ncurrent_millis = lambda: int(round(time.time() * 1000))\n\nif len(sys.argv) == 2:\n ROVER_PORT = int(sys.argv[1])\nelif len(sys.argv) >= 3:\n print(\n \"too many arguments, one optional argument is the port number, otherwise default to 5010\"\n )\n print(\"example usage: python ServerListener.py \")\n\n\nif not local and not competition and not dynamic:\n print(\"local, competition and dynamic flags set to false, exiting\")\n sys.exit(0)\n\n\nif usb:\n # set up connection to arduino\n ports = list(serial.tools.list_ports.comports())\n is_rover = False\n\n if len(ports) == 1:\n print(\"1 USB device detected\")\n port = ports[0].name\n ser = serial.Serial('/dev/' + port, 9600)\n\n print(\"clearing buffer\")\n while ser.in_waiting:\n print(ser.readline().decode())\n\n for i in 0, 3:\n who = \"\"\n print(\"identifying MCU\")\n ser.write(str.encode(\"who\\n\"))\n\n # CRITICAL: give time for MCU to respond\n time.sleep(1)\n\n while ser.in_waiting:\n who = ser.readline().decode()\n print(\"who: \" + who)\n\n if who.strip() == \"rover\":\n print(\"Rover MCU identified!\")\n is_rover = True\n elif len(ports) == 2:\n print(\"2 USB devices detected\")\n port = ports[1].name\n ser = serial.Serial('/dev/' + port, 9600)\n\n print(\"clearing buffer\")\n while ser.in_waiting:\n print(ser.readline().decode())\n\n for i in 0, 3:\n who = \"\"\n print(\"identifying MCU\")\n ser.write(str.encode(\"who\\n\"))\n\n # CRITICAL: give time for MCU to respond\n time.sleep(1)\n\n while ser.in_waiting:\n who = ser.readline().decode()\n print(\"who: \" + who)\n\n if who.strip() == \"rover\":\n print(\"Rover MCU identified!\")\n is_rover = True\n\n if not is_rover:\n port = ports[0].name\n ser = serial.Serial('/dev/' + port, 9600)\n\n print(\"clearing buffer\")\n while ser.in_waiting:\n print(ser.readline().decode())\n\n for i in 0, 3:\n who = \"\"\n print(\"identifying MCU\")\n ser.write(str.encode(\"who\\n\"))\n\n # CRITICAL: give time for MCU to respond\n time.sleep(1)\n\n while ser.in_waiting:\n who = ser.readline().decode()\n print(\"who: \" + who)\n\n if who.strip() == \"rover\":\n print(\"Rover MCU identified!\")\n is_rover = True\n\n else:\n print(\"No USB devices recognized, exiting\")\n sys.exit(0)\n\n if is_rover:\n print(\"Connected to port: \" + port)\n else:\n print(\"Incorrect MCU connected, terminating listener\")\n sys.exit(0)\nelif uart:\n u = Uart(\"/dev/ttySAC0\", 9600, timeout=1)\n\n# for local testing\nif local:\n ROVER_IP = \"127.0.0.1\"\n ROVER_PORT = 5020\n BASE_IP = ROVER_IP\n BASE_PORT = 5025\n# for competition\nelif competition:\n ROVER_IP = \"172.16.1.30\"\n ROVER_PORT = 5030\n BASE_IP = \"172.16.1.20\"\n BASE_PORT = ROVER_PORT\n# attempt to get: physicial ip, which should not need connection to internet to work\n#elif dynamic:\n# ROVER_IP = ni.ifaddresses(ni.interfaces()[1])[AF_INET][0]['addr']\n\nprint(\"ROVER_IP: \" + ROVER_IP)\nprint(\"BASE_IP: \" + BASE_IP)\n\n# Create connection object to send/receive data with base-station\nreceiver = Connection(\"rover_drive_receiver\", ROVER_IP, ROVER_PORT)\nsender = Connection(\"rover_feedback_sender\", BASE_IP, BASE_PORT)\n\nprint(\"Rover server listening on port {} \\n\".format(ROVER_PORT))\n\nprint(\"Ready for incoming drive cmds!\\n\")\n\nprint(get_commands_list())\n\nkey_list = ['w', 'a', 's', 'd', 'i', 'j', 'l', 'o', 'k', 'm', 'n', 't', 'b', 'q']\n# Arduino sketch considers this value to be the signal for the motors to not move\nREST = 49.5\n\n# initialize throttle/steering speeds to 0\nthrottle_speed = 0\nsteering_speed = 0\n\n# impose safety limits, theoretical limit at 49.5\nMIN_THROTTLE_SPEED = 0\nMAX_THROTTLE_SPEED = 25\nMIN_STEERING_SPEED = 0\nMAX_STEERING_SPEED = 39\n\n# for controlling command throughput\nlast_cmd_sent = 0 # to keep track of the time of the last command sent\nTHROTTLE_TIME = 25 # time to wait before receiving next command\n\n\nwhile True:\n #while ser.in_waiting:\n # print(ser.readline().decode())\n\n try:\n # only receive commands if last command was sent\n # THROTTLE_TIME ago (in milliseconds)\n if current_millis() - last_cmd_sent > THROTTLE_TIME:\n\n command = receiver.receive()\n\n # for throttle speed, no backwards\n if command in key_list:\n print(\"OPERATOR command: \" + command + \" recognized\\n\")\n\n if command == 'w':\n feedback = \"cmd: w --> Forward\\n\"\n command = str(REST + throttle_speed) + \":\" + str(REST) + \"\\n\"\n feedback += \"\\ncommand: \" + str(command)\n print(feedback)\n sender.send(feedback)\n\n if usb:\n ser.write(str.encode(command))\n elif uart:\n u.tx(command)\n\n last_cmd_sent = current_millis()\n\n elif command == 'a':\n feedback = \"cmd: a --> Left\\n\"\n command = str(REST + throttle_speed) + \":\" + str(REST - steering_speed) + \"\\n\"\n feedback += \"\\ncommand: \" + str(command)\n print(feedback)\n sender.send(feedback)\n\n if usb:\n ser.write(str.encode(command))\n elif uart:\n u.tx(command)\n\n last_cmd_sent = current_millis()\n\n elif command == 's':\n feedback = \"cmd: s --> Back\\n\"\n command = str(REST - throttle_speed) + \":\" + str(REST) + \"\\n\"\n feedback += \"\\ncommand: \" + str(command)\n print(feedback)\n sender.send(feedback)\n\n if usb:\n ser.write(str.encode(command))\n elif uart:\n u.tx(command)\n\n last_cmd_sent = current_millis()\n\n elif command == 'd':\n feedback = \"cmd: d --> Right\"\n command = str(REST + throttle_speed) + \":\" + str(REST + steering_speed) + \"\\n\"\n feedback += \"\\ncommand: \" + str(command)\n print(feedback)\n sender.send(feedback)\n\n if usb:\n ser.write(str.encode(command))\n elif uart:\n u.tx(command)\n\n last_cmd_sent = current_millis()\n\n elif command == 'm':\n feedback = \"cmd: m --> enable motor controls\"\n command = \"activate\\n\"\n feedback += \"\\ncommand: \" + str(command)\n print(feedback)\n sender.send(feedback)\n\n if usb:\n ser.write(str.encode(command))\n elif uart:\n u.tx(command)\n\n elif command == 'n':\n feedback = \"cmd: n --> disable motor controls\"\n command = \"deactivate\\n\"\n feedback += \"\\ncommand: \" + str(command)\n print(feedback)\n sender.send(feedback)\n\n if usb:\n ser.write(str.encode(command))\n elif uart:\n u.tx(command)\n\n # 't' --> reset to 0 on release key, otherwise motor keeps spinning\n # 45.5:45.5\n elif command == 't':\n feedback = \"cmd: t --> stop moving\"\n command = str(REST) + \":\" + str(REST) + \"\\n\"\n feedback += \"\\ncommand: \" + str(command)\n print(feedback)\n sender.send(feedback)\n\n if usb:\n ser.write(str.encode(command))\n elif uart:\n u.tx(command)\n\n last_cmd_sent = current_millis()\n\n elif command == 'i':\n feedback = \"cmd: i --> Increment throttle speed\"\n\n if throttle_speed < MAX_THROTTLE_SPEED:\n throttle_speed += 0.5\n feedback += \"\\nthrottle speed: \" + str(throttle_speed)\n else:\n feedback += \"\\nthrottle speed upper limit reached\"\n\n print(feedback)\n sender.send(feedback)\n\n elif command == 'j':\n feedback = \"cmd: j --> Decrement throttle speed\"\n\n if throttle_speed > MIN_THROTTLE_SPEED:\n throttle_speed -= 0.5\n feedback += \"\\nthrottle speed: \" + str(throttle_speed)\n else:\n feedback += \"\\nthrottle speed lower limit reached\"\n\n print(feedback)\n sender.send(feedback)\n\n elif command == 'o':\n feedback = \"cmd: o --> Increment steering speed\"\n\n if steering_speed < MAX_STEERING_SPEED:\n steering_speed += 0.5\n feedback += \"\\nsteering speed: \" + str(steering_speed)\n else:\n feedback += \"\\nsteering speed upper limit reached\"\n\n print(feedback)\n sender.send(feedback)\n\n elif command == 'k':\n feedback = \"cmd: k --> Decrement steering speed\"\n\n if steering_speed > MIN_STEERING_SPEED:\n steering_speed -= 0.5\n feedback += \"\\nsteering speed: \" + str(steering_speed)\n else:\n feedback += \"\\nsteering speed lower limit reached\"\n\n print(feedback)\n sender.send(feedback)\n\n elif command == 'q':\n feedback = \"\\nTerminating connection.\"\n\n print(feedback)\n sender.send(feedback)\n\n break\n\n elif command == 'l':\n print(get_commands_list())\n sender.send(get_commands_list())\n\n elif command == 'b':\n if usb:\n data = \"\"\n while ser.in_waiting:\n data += ser.readline().decode()\n\n print(data)\n sender.send(data)\n elif uart:\n data = u.rx()\n print(data)\n sender.send(data)\n else:\n print(\"UNKOWN command \" + command + \"\\n\")\n\n if usb:\n # flush buffer to avoid overflowing it\n ser.reset_input_buffer()\n ser.reset_output_buffer()\n\n except Exception:\n if usb:\n ser.close()\n print(\"Exception in user code:\")\n print(\"-\"*60)\n traceback.print_exc(file=sys.stdout)\n print(\"-\"*60)\n break\n", "sub_path": "robot/rospackages/src/task_handler/scripts/RoverCommandListener.py", "file_name": "RoverCommandListener.py", "file_ext": "py", "file_size_in_byte": 12556, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "time.time", "line_number": 28, "usage_type": "call"}, {"api_name": "time.time", "line_number": 43, "usage_type": "call"}, {"api_name": "sys.argv", "line_number": 45, "usage_type": "attribute"}, {"api_name": "sys.argv", "line_number": 46, "usage_type": "attribute"}, {"api_name": "sys.argv", "line_number": 47, "usage_type": "attribute"}, {"api_name": "sys.exit", "line_number": 56, "usage_type": "call"}, {"api_name": "serial.tools.list_ports.comports", "line_number": 61, "usage_type": "call"}, {"api_name": "serial.tools", "line_number": 61, "usage_type": "attribute"}, {"api_name": "serial.Serial", "line_number": 67, "usage_type": "call"}, {"api_name": "time.sleep", "line_number": 79, "usage_type": "call"}, {"api_name": "serial.Serial", "line_number": 91, "usage_type": "call"}, {"api_name": "time.sleep", "line_number": 103, "usage_type": "call"}, {"api_name": "serial.Serial", "line_number": 115, "usage_type": "call"}, {"api_name": "time.sleep", "line_number": 127, "usage_type": "call"}, {"api_name": "sys.exit", "line_number": 139, "usage_type": "call"}, {"api_name": "sys.exit", "line_number": 145, "usage_type": "call"}, {"api_name": "robot.comms.uart.Uart", "line_number": 147, "usage_type": "call"}, {"api_name": "robot.comms.connection.Connection", "line_number": 169, "usage_type": "call"}, {"api_name": "robot.comms.connection.Connection", "line_number": 170, "usage_type": "call"}, {"api_name": "traceback.print_exc", "line_number": 393, "usage_type": "call"}, {"api_name": "sys.stdout", "line_number": 393, "usage_type": "attribute"}]}
{"seq_id": "524538948", "text": "from django.shortcuts import render\nfrom .models import Product, Category\nfrom django.db.models import Q\nfrom django.core.paginator import Paginator, InvalidPage, PageNotAnInteger, EmptyPage\nfrom .forms import walleSearchForm\nfrom haystack import forms\nfrom haystack.query import SearchQuerySet\n\ndef index(request):\n clo_list = Product.objects.all()\n clo_list = get_page(request, clo_list)\n categories = Category.objects.filter(parent=None)\n search_from = walleSearchForm()\n return render(request, 'store/index.html', locals())\n\ndef get_page(request, clo_list):\n pagintor = Paginator(clo_list, 4)\n try:\n page = int(request.GET.get('page',1))\n clo_list = pagintor.page(page)\n except (EmptyPage, InvalidPage,Paginator):\n clo_list = pagintor.page(1)\n return clo_list\n\ndef product_detail(request, id):\n try:\n clo = Product.objects.get(pk=id)\n except Product.DoesNotExist:\n return render(request, 'store/error.html', {'error': '商品不存在'})\n return render(request, 'store/single_product.html', locals())\n\ndef category(request, id):\n try:\n cat = Category.objects.get(pk=id)\n except Category.DoesNotExist:\n return render(request, 'store/error.html', {'error': '分类不存在'})\n\n clo_list = Product.active_objects.filter(category=cat)\n clo_list= get_page(request,clo_list)\n categories = Category.objects.filter(parent=None)\n return render(request, 'store/index.html', locals())\n\ndef search(request):\n categories = Category.objects.filter(parent=None)\n search_from = walleSearchForm(request.GET)\n\n if search_from.is_valid():\n keyword = search_from.cleaned_data['keyword']\n query = SearchQuerySet()\n sqs = query.auto_query(keyword)\n clo_list = []\n for s in sqs:\n clo = Product.objects.get(pk=s.pk)\n if clo:\n clo_list.append(clo)\n clo_list = get_page(request,clo_list)\n\n return render(request, 'store/index.html', locals())", "sub_path": "store/views.py", "file_name": "views.py", "file_ext": "py", "file_size_in_byte": 2015, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "models.Product.objects.all", "line_number": 10, "usage_type": "call"}, {"api_name": "models.Product.objects", "line_number": 10, "usage_type": "attribute"}, {"api_name": "models.Product", "line_number": 10, "usage_type": "name"}, {"api_name": "models.Category.objects.filter", "line_number": 12, "usage_type": "call"}, {"api_name": "models.Category.objects", "line_number": 12, "usage_type": "attribute"}, {"api_name": "models.Category", "line_number": 12, "usage_type": "name"}, {"api_name": "forms.walleSearchForm", "line_number": 13, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 14, "usage_type": "call"}, {"api_name": "django.core.paginator.Paginator", "line_number": 17, "usage_type": "call"}, {"api_name": "django.core.paginator.EmptyPage", "line_number": 21, "usage_type": "name"}, {"api_name": "django.core.paginator.InvalidPage", "line_number": 21, "usage_type": "name"}, {"api_name": "django.core.paginator.Paginator", "line_number": 21, "usage_type": "name"}, {"api_name": "models.Product.objects.get", "line_number": 27, "usage_type": "call"}, {"api_name": "models.Product.objects", "line_number": 27, "usage_type": "attribute"}, {"api_name": "models.Product", "line_number": 27, "usage_type": "name"}, {"api_name": "models.Product.DoesNotExist", "line_number": 28, "usage_type": "attribute"}, {"api_name": "models.Product", "line_number": 28, "usage_type": "name"}, {"api_name": "django.shortcuts.render", "line_number": 29, "usage_type": "call"}, {"api_name": "django.shortcuts.render", "line_number": 30, "usage_type": "call"}, {"api_name": "models.Category.objects.get", "line_number": 34, "usage_type": "call"}, {"api_name": "models.Category.objects", "line_number": 34, "usage_type": "attribute"}, {"api_name": "models.Category", "line_number": 34, "usage_type": "name"}, {"api_name": "models.Category.DoesNotExist", "line_number": 35, "usage_type": "attribute"}, {"api_name": "models.Category", "line_number": 35, "usage_type": "name"}, {"api_name": "django.shortcuts.render", "line_number": 36, "usage_type": "call"}, {"api_name": "models.Product.active_objects.filter", "line_number": 38, "usage_type": "call"}, {"api_name": "models.Product.active_objects", "line_number": 38, "usage_type": "attribute"}, {"api_name": "models.Product", "line_number": 38, "usage_type": "name"}, {"api_name": "models.Category.objects.filter", "line_number": 40, "usage_type": "call"}, {"api_name": "models.Category.objects", "line_number": 40, "usage_type": "attribute"}, {"api_name": "models.Category", "line_number": 40, "usage_type": "name"}, {"api_name": "django.shortcuts.render", "line_number": 41, "usage_type": "call"}, {"api_name": "models.Category.objects.filter", "line_number": 44, "usage_type": "call"}, {"api_name": "models.Category.objects", "line_number": 44, "usage_type": "attribute"}, {"api_name": "models.Category", "line_number": 44, "usage_type": "name"}, {"api_name": "forms.walleSearchForm", "line_number": 45, "usage_type": "call"}, {"api_name": "haystack.query.SearchQuerySet", "line_number": 49, "usage_type": "call"}, {"api_name": "models.Product.objects.get", "line_number": 53, "usage_type": "call"}, {"api_name": "models.Product.objects", "line_number": 53, "usage_type": "attribute"}, {"api_name": "models.Product", "line_number": 53, "usage_type": "name"}, {"api_name": "django.shortcuts.render", "line_number": 58, "usage_type": "call"}]}
{"seq_id": "6825632", "text": "# -*- coding: utf-8 -*-\r\n\"\"\"\r\nCreated on Wed Mar 20 18:08:07 2019\r\n\r\n@author: skgpc\r\n\"\"\"\r\nimport pandas as pd\r\nimport numpy as np\r\nfrom itertools import chain\r\n#%%\r\nfrom features_stats import get_all_tokens\r\nfrom features_stats import get_words\r\nfrom features_stats import get_punct\r\nfrom features_stats import average_word_length\r\nfrom features_stats import average_sent_length\r\nfrom features_stats import check_sarcsymbol\r\nfrom features_stats import count_uppercase\r\nfrom features_stats import get_verb_lemmas\r\nfrom features_stats import get_punct_average\r\nfrom features_stats import get_sentiment\r\nfrom features_stats import get_indiv_punct\r\nfrom features_stats import relative_count_wordtypes\r\nfrom features_stats import get_entities\r\n#%%\r\ndef get_average_features(dictionary):\r\n \"\"\"Take dictionary, extract specific features (see below for full list) and\r\n return summary as a dataframe: \r\n (1) Average Word Count\r\n (2) Average Sentence Count\r\n (3) Punctuation Richness\r\n (4) Sarcasm Symbol\r\n (5) Upper-case Words\r\n (6) Verb Lemmas\r\n (7) Sentiment Classification\"\"\"\r\n \r\n #Get all tokens\r\n tokens = get_all_tokens(dictionary)\r\n \r\n #Get list of ONLY words (no punct)\r\n word_list = get_words(tokens)\r\n\r\n #Get list of ONLY punct (no words)\r\n punct_list = get_punct(tokens)\r\n\r\n #Create df for total, full returns for irony\r\n total_train= pd.DataFrame({'Ironic Comment Parsed':tokens})\r\n total_train[\"Tokens\"] = word_list\r\n total_train[\"Punctuation\"] = punct_list\r\n total_train.head()\r\n \r\n #(1) AVERAGE WORD LENGTH\r\n average_word_leng = []\r\n for comment in word_list:\r\n average_word_leng.append(average_word_length(comment))\r\n \r\n #Create DataFrame for Summary of Irony STATS\r\n summary= pd.DataFrame({\"Average Word Length\": average_word_leng})\r\n\r\n\r\n #(2) AVERAGE SENTENCE LENGTH\r\n average_sent_leng = []\r\n for x in tokens:\r\n average_sent_leng.append(average_sent_length(x))\r\n\r\n #Add to Summary of Irony STATS df\r\n summary[\"Average Sentence Length\"] = average_sent_leng\r\n summary.head()\r\n\r\n #(3) AVERAGE NUMBER OF SARCASM SYMBOL (/s)\r\n sarcfunc = []\r\n for x in tokens:\r\n sarcfunc.append(check_sarcsymbol(x))\r\n\r\n sarcsymb_list = [] \r\n for l in sarcfunc:\r\n if len(l) >= 1:\r\n sarcsymb_list.append(l)\r\n else:\r\n sarcsymb_list.append([0])\r\n\r\n #Remove list layer \r\n sarcsymb_list = list(chain.from_iterable(sarcsymb_list))\r\n\r\n #Add result to Ironic Summary DF\r\n summary[\"Sarcasm Symbol (/s)\"] = sarcsymb_list\r\n\r\n #(4) AVERAGE NUMBER OF UPPER CASE WORDS (total)\r\n uppercase_list = []\r\n for b in tokens:\r\n uppercase_list.append((count_uppercase(b)))\r\n \r\n #Remove list layer \r\n uppercase_list = list(chain.from_iterable(uppercase_list))\r\n\r\n #Add result to Ironic Summary DF\r\n summary[\"Uppercase Average\"] = uppercase_list\r\n summary.head()\r\n\r\n #(5) AVERAGE PUNCTUATION RICHNESS\r\n punct_avg = get_punct_average(punct_list, tokens)\r\n\r\n #Add result to Ironic Summary DF\r\n summary[\"Punctuation Richness\"] = punct_avg\r\n summary.head()\r\n\r\n #(6) AVERAGE NUMBER OF LEMMAS\r\n lemma_list = []\r\n for doc in tokens:\r\n lemma_list.append(get_verb_lemmas(doc))\r\n \r\n summary[\"Verb Lemma Average\"] = lemma_list\r\n summary.head()\r\n\r\n #(7) SENTIMENT CLASSIFICATION\r\n #1 = positive, -1 = negative\r\n\r\n sentiment = get_sentiment(dictionary)\r\n\r\n summary[\"Sentiment Classification\"] = sentiment \r\n\r\n #replace NAN values\r\n summary = summary.replace(np.nan, 0)\r\n return summary\r\n\r\n\r\n#%%\r\ndef get_indivpunct(dictionary):\r\n \"\"\"Take dictionary, extract punctuation marks and return summary as a \r\n dataframe\"\"\"\r\n \r\n #Get all tokens\r\n tokens = get_all_tokens(dictionary)\r\n \r\n average_indivpunc_list = []\r\n for x in tokens:\r\n average_indivpunc_list.append(get_indiv_punct(x))\r\n\r\n #Create Summary DF for each individual Punctuation Mark\r\n summary_indivpunct = pd.DataFrame(average_indivpunc_list)\r\n summary_indivpunct = summary_indivpunct.replace(np.nan, 0)\r\n \r\n return summary_indivpunct\r\n#%%\r\ndef get_pos(dictionary):\r\n \r\n #Get all tokens\r\n tokens = get_all_tokens(dictionary)\r\n\r\n average_pos_list = []\r\n for comment in tokens:\r\n average_pos_list.append(relative_count_wordtypes(comment))\r\n\r\n #Create Summary DF for POS\r\n summary_pos = pd.DataFrame(average_pos_list)\r\n \r\n #replace NAN values\r\n summary_pos = summary_pos.replace(np.nan, 0)\r\n \r\n return summary_pos\r\n#%%\r\ndef get_NER(dictionary):\r\n \r\n #Get all tokens\r\n tokens = get_all_tokens(dictionary)\r\n \r\n #(2.10) AVERAGE FOR ALL NAMED ENTITIES \r\n named_entity_list = []\r\n for comment in tokens:\r\n named_entity_list.append(get_entities(comment))\r\n \r\n\r\n #Create Summary DF for all Named Entities \r\n summary_namedentity = pd.DataFrame(named_entity_list)\r\n \r\n #replace NAN values\r\n summary_namedentity = summary_namedentity.replace(np.nan, 0)\r\n \r\n return summary_namedentity", "sub_path": "extracting_script.py", "file_name": "extracting_script.py", "file_ext": "py", "file_size_in_byte": 5111, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "features_stats.get_all_tokens", "line_number": 37, "usage_type": "call"}, {"api_name": "features_stats.get_words", "line_number": 40, "usage_type": "call"}, {"api_name": "features_stats.get_punct", "line_number": 43, "usage_type": "call"}, {"api_name": "pandas.DataFrame", "line_number": 46, "usage_type": "call"}, {"api_name": "features_stats.average_word_length", "line_number": 54, "usage_type": "call"}, {"api_name": "pandas.DataFrame", "line_number": 57, "usage_type": "call"}, {"api_name": "features_stats.average_sent_length", "line_number": 63, "usage_type": "call"}, {"api_name": "features_stats.check_sarcsymbol", "line_number": 72, "usage_type": "call"}, {"api_name": "itertools.chain.from_iterable", "line_number": 82, "usage_type": "call"}, {"api_name": "itertools.chain", "line_number": 82, "usage_type": "name"}, {"api_name": "features_stats.count_uppercase", "line_number": 90, "usage_type": "call"}, {"api_name": "itertools.chain.from_iterable", "line_number": 93, "usage_type": "call"}, {"api_name": "itertools.chain", "line_number": 93, "usage_type": "name"}, {"api_name": "features_stats.get_punct_average", "line_number": 100, "usage_type": "call"}, {"api_name": "features_stats.get_verb_lemmas", "line_number": 109, "usage_type": "call"}, {"api_name": "features_stats.get_sentiment", "line_number": 117, "usage_type": "call"}, {"api_name": "numpy.nan", "line_number": 122, "usage_type": "attribute"}, {"api_name": "features_stats.get_all_tokens", "line_number": 132, "usage_type": "call"}, {"api_name": "features_stats.get_indiv_punct", "line_number": 136, "usage_type": "call"}, {"api_name": "pandas.DataFrame", "line_number": 139, "usage_type": "call"}, {"api_name": "numpy.nan", "line_number": 140, "usage_type": "attribute"}, {"api_name": "features_stats.get_all_tokens", "line_number": 147, "usage_type": "call"}, {"api_name": "features_stats.relative_count_wordtypes", "line_number": 151, "usage_type": "call"}, {"api_name": "pandas.DataFrame", "line_number": 154, "usage_type": "call"}, {"api_name": "numpy.nan", "line_number": 157, "usage_type": "attribute"}, {"api_name": "features_stats.get_all_tokens", "line_number": 164, "usage_type": "call"}, {"api_name": "features_stats.get_entities", "line_number": 169, "usage_type": "call"}, {"api_name": "pandas.DataFrame", "line_number": 173, "usage_type": "call"}, {"api_name": "numpy.nan", "line_number": 176, "usage_type": "attribute"}]}
{"seq_id": "432460833", "text": "import os, sys, csv\nimport boto3, shutil\nimport pandas as pd\nfrom pprint import pprint as pp\n\n\t\t\ne=sys.exit\t\nlinesep\t= '\\n'\ncolsep\t= ','\t\n\t\t\ns3\t\t\t= boto3.client('s3')\nbucket \t\t= 'crossix-test'\nfile_name \t= 'cust_list2.csv'\ncolname \t= 'customer_name'\nto_dir \t= r'N:\\Analysis\\unique_customers.txt'\n\nsql_stmt = \"\"\"SELECT S.%s FROM s3object S LIMIT 10\"\"\" % colname\n\n\nimport tempfile\n\nfrom_dir =tempfile.gettempdir()\n#e()\n\n\nreq = s3.select_object_content(\n Bucket\t= bucket,\n Key\t\t= file_name,\n ExpressionType\t= 'SQL',\n Expression\t\t= sql_stmt,\n InputSerialization \t= {'CSV': {'FileHeaderInfo': 'USE'}},\n OutputSerialization = {'CSV': {}},\n)\n\nout=set()\t\t\t\t\nif 1:\n\t#get usique customer names\n\tfor event in req['Payload']:\n\t\tif 'Records' in event:\n\t\t\trr=event['Records']['Payload'].decode('utf-8')\n\t\t\t#pp(rr)\n\t\t\tfor rec in rr.split(linesep):\n\t\t\t\tif rec:\n\t\t\t\t\trow=rec.split(colsep)\n\t\t\t\t\tcn = row[0].strip()\n\t\t\t\t\tout.add(cn)\n\t\t\t\t\n\n\tprint('Unique customer names:')\n\tpp(out)\n\ttmpfn = os.path.join(from_dir, 'unique_cn.csv')\n\n\t#write to local tmp file\n\twith open(tmpfn, mode='w') as fh:\n\n\t\t\n\t\tcsvw = csv.writer(fh, delimiter = ',', quotechar = '\"', lineterminator = '\\n', quoting=csv.QUOTE_MINIMAL)\n\t\tfor cn in out:\t\t\t\n\t\t\tcsvw.writerow([cn])\n\n\t\n\tassert tmpfn\n\n\tprint(to_dir)\n\t#copy to network share\n\tst = shutil.copy(tmpfn, to_dir) #r'c:\\tmp') \n\n\te(0)\n", "sub_path": "aload/sel.py", "file_name": "sel.py", "file_ext": "py", "file_size_in_byte": 1358, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "sys.exit", "line_number": 7, "usage_type": "attribute"}, {"api_name": "boto3.client", "line_number": 11, "usage_type": "call"}, {"api_name": "tempfile.gettempdir", "line_number": 22, "usage_type": "call"}, {"api_name": "pprint.pprint", "line_number": 50, "usage_type": "call"}, {"api_name": "os.path.join", "line_number": 51, "usage_type": "call"}, {"api_name": "os.path", "line_number": 51, "usage_type": "attribute"}, {"api_name": "csv.writer", "line_number": 57, "usage_type": "call"}, {"api_name": "csv.QUOTE_MINIMAL", "line_number": 57, "usage_type": "attribute"}, {"api_name": "shutil.copy", "line_number": 66, "usage_type": "call"}]}
{"seq_id": "293592420", "text": "import socket\nimport threading\nimport os\nimport sys\nimport tkinter as tk\nfrom tkinter import simpledialog\n#import PyQt5\n#from PyQt5 import QtCore, QtGui, QtWidgets\n#from PyQt5.QWidgets import QApplication, QMainWindow\n\nimport emoji\n\n#number of users in chatroom\nnumUsers = 0\n\n##############\n# Server\n##############\n\nclass Server(threading.Thread):\n def __init__(self, host, port):\n #holds the connections of server to client\n self.connections = []\n self.host = \"127.0.0.1\"\n self.port = 1060\n super().__init__()\n\n def run(self):\n #attempt to connect socket and port\n serverSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n serverSock.bind((\"127.0.0.1\", 1060))\n serverSock.listen(1)\n #announce in terminal what we are listening on\n print('Connected on:', serverSock.getsockname())\n #attempt to connect user(s) to server\n while True:\n sc, sockname = serverSock.accept()\n print('user connects from {} to {}'.format(\n sc.getpeername(), sc.getsockname()))\n #new thread\n server_socket = ServerSocket(sc, sockname, self)\n server_socket.start()\n # Add thread to connections\n self.connections.append(server_socket)\n print('Server gets messages from user from:', sc.getpeername())\n\n def messageSend(self, message, source):\n #sends all other users usernames message\n for connection in self.connections:\n if connection.sockname != source:\n connection.send(message)\n\n def remove_connection(self, connection):\n #remove connnnection from server socket\n self.connections.remove(connection)\n\n\nclass ServerSocket(threading.Thread):\n #support socket connection\n def __init__(self, sc, sockname, server):\n self.sc = sc\n self.sockname = sockname\n self.server = server\n super().__init__()\n\n def run(self):\n #return user message\n while True:\n message = self.sc.recv(1024).decode('ascii')\n if message:\n #send users message\n self.server.messageSend(message, self.sockname)\n else:\n self.sc.close()\n #server.remove_connection(self)\n return\n\n def send(self, message):\n #Send user message to server.\n self.sc.sendall(message.encode('ascii'))\n\n##############\n# Client\n##############\n\nclass Send(threading.Thread):\n def __init__(self, socket, name):\n self.socket = socket\n self.username = name\n super().__init__()\n\n\nclass ClientRecieve(threading.Thread):\n #get threads from server\n def __init__(self, socket, name):\n super().__init__()\n self.socket = socket\n self.username = name\n self.messages = None\n\n def run(self):\n #gets messages from server and displays on GUI\n message = self.socket.recv(1024).decode('ascii')\n print(\"line 104: \" + message)\n #check message is valid\n if message:\n if self.messages:\n self.messages.insert(tk.END, (message))\n print(\"line 109: \" + message)\n else:\n print(\"ISSUE\")\n\n\n#GUI support for client and server\n\n\nclass ChatroomGUI:\n #get ports/hosts\n def __init__(self, host, port):\n self.host = host\n self.port = port\n self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n self.username = None\n self.messages = None\n\n #Starting up the client server connection\n def start(self):\n #Connect host and port\n print(\"Connecting to \" + str(self.host) + \":\" + str(self.port))\n self.socket.connect((self.host, self.port))\n print(emoji.emojize(\"Success! :thumbs_up:\"))\n\n #Get name from user\n self.username = simpledialog.askstring(\n \"Input\", \"What is your name?\", parent=tk.Tk())\n\n #threads\n send = Send(self.socket, self.username)\n receive = ClientRecieve(self.socket, self.username)\n #start thread connections\n send.start()\n receive.start()\n\n #announce that another user joined chatroom\n self.socket.sendall(\"{} has joined. Say hi!\".format(\n self.username).encode(\"ascii\"))\n print(\"\\rNote: you can leave the chatroom by typing 'q'!\\n\")\n return receive\n\n def send(self, msgTextBox):\n #message from user written in textbox in GUI\n message = msgTextBox.get()\n #remove message from textbox after user hits send\n msgTextBox.delete(0, tk.END)\n #place message (if valid, meaning there is a message) in gui box\n print(\"156 message: \" + message)\n if len(message) > 0:\n self.messages.insert(tk.END, \"{}: {}\".format(\n self.username, (message)))\n\n # quit classroom: user must type \"q\"\n if message == \"q\":\n #send to socket that user is leaving chat\n self.socket.sendall(\"{} has left the chat.\".format(\n self.username).encode(\"ascii\"))\n #close socket\n self.socket.close()\n os._exit(0)\n else:\n self.socket.sendall(\"{}: {}\".format(\n self.username, (message)).encode(\"ascii\"))\n\n\ndef main(host, port):\n #GUI of program\n client = ChatroomGUI(host, port)\n receive = client.start()\n\n #Create window for gui\n window = tk.Tk()\n\n #dimensions of window\n window.geometry(\"300x200\")\n\n #Title\n window.title(\"Socket Server Chatroom\")\n\n #Box of TEXT messages\n MsgBox = tk.Frame(master=window)\n messages = tk.Listbox(master=MsgBox)\n messages.pack(side=tk.RIGHT, fill=tk.BOTH, expand=True)\n client.messages = messages\n receive.messages = messages\n MsgBox.grid(row=0, column=3)\n\n #Textbox for input\n colOne = tk.Frame(master=window)\n #accept single-line text strings from a user.\n msgTextBox = tk.Entry(master=colOne)\n msgTextBox.pack(side=tk.RIGHT, expand=True)\n #input of text message\n msgTextBox.bind(\"\", lambda x: client.send(msgTextBox))\n colOne.grid(row=6, column=3)\n\n #Send button\n sendMsgButton = tk.Button(\n master=window,\n text=\"Send\",\n width=8,\n command=lambda: client.send(msgTextBox)\n )\n sendMsgButton.grid(row=6, column=1)\n\n #deploy\n window.mainloop()\n\n\n#start up program\nif __name__ == '__main__':\n\n #get input from user(s)\n\n hosting = simpledialog.askstring(\n \"Input\", \"Create Host connection? (yes/no)\", parent=tk.Tk())\n #start up server on socket 127.0.0.1 and port 1060\n if (hosting == \"yes\" or hosting == \"Yes\" or hosting == \"y\"):\n (Server(\"127.0.0.1\", int(1060))).start()\n\n socketValue = simpledialog.askstring(\n \"Input\", \"Type socket value:\", parent=tk.Tk())\n portValue = simpledialog.askstring(\n \"Input\", \"Type port value:\", parent=tk.Tk())\n #start main with users given socket and port values\n #main((socketValue), int(portValue))\n main(\"127.0.0.1\", int(1060))\n", "sub_path": "notworking.py", "file_name": "notworking.py", "file_ext": "py", "file_size_in_byte": 7107, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "threading.Thread", "line_number": 20, "usage_type": "attribute"}, {"api_name": "socket.socket", "line_number": 30, "usage_type": "call"}, {"api_name": "socket.AF_INET", "line_number": 30, "usage_type": "attribute"}, {"api_name": "socket.SOCK_STREAM", "line_number": 30, "usage_type": "attribute"}, {"api_name": "threading.Thread", "line_number": 58, "usage_type": "attribute"}, {"api_name": "threading.Thread", "line_number": 86, "usage_type": "attribute"}, {"api_name": "threading.Thread", "line_number": 93, "usage_type": "attribute"}, {"api_name": "tkinter.END", "line_number": 108, "usage_type": "attribute"}, {"api_name": "socket.socket", "line_number": 122, "usage_type": "call"}, {"api_name": "socket.AF_INET", "line_number": 122, "usage_type": "attribute"}, {"api_name": "socket.SOCK_STREAM", "line_number": 122, "usage_type": "attribute"}, {"api_name": "emoji.emojize", "line_number": 131, "usage_type": "call"}, {"api_name": "tkinter.simpledialog.askstring", "line_number": 134, "usage_type": "call"}, {"api_name": "tkinter.simpledialog", "line_number": 134, "usage_type": "name"}, {"api_name": "tkinter.Tk", "line_number": 135, "usage_type": "call"}, {"api_name": "tkinter.END", "line_number": 154, "usage_type": "attribute"}, {"api_name": "tkinter.END", "line_number": 158, "usage_type": "attribute"}, {"api_name": "os._exit", "line_number": 168, "usage_type": "call"}, {"api_name": "tkinter.Tk", "line_number": 180, "usage_type": "call"}, {"api_name": "tkinter.Frame", "line_number": 189, "usage_type": "call"}, {"api_name": "tkinter.Listbox", "line_number": 190, "usage_type": "call"}, {"api_name": "tkinter.RIGHT", "line_number": 191, "usage_type": "attribute"}, {"api_name": "tkinter.BOTH", "line_number": 191, "usage_type": "attribute"}, {"api_name": "tkinter.Frame", "line_number": 197, "usage_type": "call"}, {"api_name": "tkinter.Entry", "line_number": 199, "usage_type": "call"}, {"api_name": "tkinter.RIGHT", "line_number": 200, "usage_type": "attribute"}, {"api_name": "tkinter.Button", "line_number": 206, "usage_type": "call"}, {"api_name": "tkinter.simpledialog.askstring", "line_number": 223, "usage_type": "call"}, {"api_name": "tkinter.simpledialog", "line_number": 223, "usage_type": "name"}, {"api_name": "tkinter.Tk", "line_number": 224, "usage_type": "call"}, {"api_name": "tkinter.simpledialog.askstring", "line_number": 229, "usage_type": "call"}, {"api_name": "tkinter.simpledialog", "line_number": 229, "usage_type": "name"}, {"api_name": "tkinter.Tk", "line_number": 230, "usage_type": "call"}, {"api_name": "tkinter.simpledialog.askstring", "line_number": 231, "usage_type": "call"}, {"api_name": "tkinter.simpledialog", "line_number": 231, "usage_type": "name"}, {"api_name": "tkinter.Tk", "line_number": 232, "usage_type": "call"}]}
{"seq_id": "365946896", "text": "import json\nfrom pprint import pprint\n\nwith open (\"newsafr.json\") as f:\n data = json.load(data_file)\n pprint (data)\n\n\ndef count_length (text):\n text_list = text.split(\" \")\n text_set = set()\n for i in text_list:\n if len(i) > 6:\n text_set.add(i)\n word_value = {}\n for i in text_set:\n count = 0\n for j in text_list:\n if i == j:\n count += 1\n word_value[i] = count\n return word_value\n", "sub_path": "23.py", "file_name": "23.py", "file_ext": "py", "file_size_in_byte": 468, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "json.load", "line_number": 5, "usage_type": "call"}, {"api_name": "pprint.pprint", "line_number": 6, "usage_type": "call"}]}
{"seq_id": "102413419", "text": "from at import physics\nimport matlab\nimport numpy\nimport pytest\n\n\n@pytest.mark.parametrize('dp', (0, 1e-8, 1e-7, 1e-6))\n@pytest.mark.parametrize('refpts', (None, [1], [1, 2, 3]))\ndef test_find_orbit4(engine, ml_lattice, py_lattice, dp, refpts):\n # Matlab call\n ml_refpts = (matlab.double([]) if refpts is None else\n matlab.double(list(r + 1 for r in refpts)))\n ml_orbit4 = engine.findorbit4(ml_lattice, dp, ml_refpts)\n py_ml_orbit4 = numpy.asarray(ml_orbit4)\n\n # Python call\n py_orbit4 = physics.find_orbit4(py_lattice, dp, refpts)\n\n numpy.testing.assert_almost_equal(py_ml_orbit4, py_orbit4.T)\n\n\n@pytest.mark.parametrize('dp', (0.0, 1e-8, 1e-7, 1e-6))\n@pytest.mark.parametrize('refpts', (None, [1], [1, 2, 3], [145]))\ndef test_find_m44(engine, ml_lattice, py_lattice, dp, refpts):\n # Matlab call\n ml_refpts = (matlab.double([]) if refpts is None else\n matlab.double(list(r + 1 for r in refpts)))\n ml_m44, ml_mstack = engine.findm44(ml_lattice, dp, ml_refpts, nargout=2)\n py_ml_m44 = numpy.asarray(ml_m44)\n\n # Python call\n py_m44, py_mstack = physics.find_m44(py_lattice, dp, refpts)\n\n py_mstack = numpy.squeeze(py_mstack)\n # Matches to 5 d.p.\n numpy.testing.assert_almost_equal(py_ml_m44, py_m44.T, decimal=5)\n assert py_mstack.T.shape == tuple(numpy.asarray(ml_mstack).shape)\n # Matches to 5 d.p.\n numpy.testing.assert_almost_equal(py_mstack.T, numpy.asarray(ml_mstack), decimal=5)\n", "sub_path": "pyat/test_matlab/test_cmp_physics.py", "file_name": "test_cmp_physics.py", "file_ext": "py", "file_size_in_byte": 1473, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "matlab.double", "line_number": 11, "usage_type": "call"}, {"api_name": "matlab.double", "line_number": 12, "usage_type": "call"}, {"api_name": "numpy.asarray", "line_number": 14, "usage_type": "call"}, {"api_name": "at.physics.find_orbit4", "line_number": 17, "usage_type": "call"}, {"api_name": "at.physics", "line_number": 17, "usage_type": "name"}, {"api_name": "numpy.testing.assert_almost_equal", "line_number": 19, "usage_type": "call"}, {"api_name": "numpy.testing", "line_number": 19, "usage_type": "attribute"}, {"api_name": "pytest.mark.parametrize", "line_number": 7, "usage_type": "call"}, {"api_name": "pytest.mark", "line_number": 7, "usage_type": "attribute"}, {"api_name": "pytest.mark.parametrize", "line_number": 8, "usage_type": "call"}, {"api_name": "pytest.mark", "line_number": 8, "usage_type": "attribute"}, {"api_name": "matlab.double", "line_number": 26, "usage_type": "call"}, {"api_name": "matlab.double", "line_number": 27, "usage_type": "call"}, {"api_name": "numpy.asarray", "line_number": 29, "usage_type": "call"}, {"api_name": "at.physics.find_m44", "line_number": 32, "usage_type": "call"}, {"api_name": "at.physics", "line_number": 32, "usage_type": "name"}, {"api_name": "numpy.squeeze", "line_number": 34, "usage_type": "call"}, {"api_name": "numpy.testing.assert_almost_equal", "line_number": 36, "usage_type": "call"}, {"api_name": "numpy.testing", "line_number": 36, "usage_type": "attribute"}, {"api_name": "numpy.asarray", "line_number": 37, "usage_type": "call"}, {"api_name": "numpy.testing.assert_almost_equal", "line_number": 39, "usage_type": "call"}, {"api_name": "numpy.testing", "line_number": 39, "usage_type": "attribute"}, {"api_name": "numpy.asarray", "line_number": 39, "usage_type": "call"}, {"api_name": "pytest.mark.parametrize", "line_number": 22, "usage_type": "call"}, {"api_name": "pytest.mark", "line_number": 22, "usage_type": "attribute"}, {"api_name": "pytest.mark.parametrize", "line_number": 23, "usage_type": "call"}, {"api_name": "pytest.mark", "line_number": 23, "usage_type": "attribute"}]}
{"seq_id": "182728307", "text": "# -*- coding: utf-8 -*-\n\nimport sys\nsys.path.append('../../ia/')\nimport logging\nimport os\n\nlogging.basicConfig(filename=os.path.join(os.path.dirname(os.path.abspath(__file__)), \"log.log\"), filemode='w', level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')\nlogger = logging.getLogger(__name__.split('.')[0])\n\nimport communication\nfrom socket import *\nimport time\nimport threading\n\nmyHost = ''\nmyPort = 2001\n\n#init comm\ncom = communication.CommunicationGlobale()\nsock = socket(AF_INET, SOCK_STREAM) # create a TCP socket\nsock.bind((myHost, myPort)) # bind it to the server port\nsock.listen(5) # allow 5 simultaneous\n\ndef update():\n\tif len(sys.argv) == 2:\n\t\taddr = sys.argv[1]\n\telse:\n\t\taddr = 2\n\tprint(\"Position update on adress \" + str(addr))\n\twhile 1:\n\t\tcom.sendOrderAPI(addr, 'A_GET_POS')\n\t\tret = -1\n\t\twhile ret == -1:\n\t\t\tret = com.readOrdersAPI()\n\t\t\ttime.sleep(0.01)\n\t\tdata = \":\".join(str(el) for el in ret[2])\n\t\tprint(data)\n\t\tconnection.send(bytes(data, 'utf-8'))\n\t\ttime.sleep(0.1)\n\n\nwhile 1:\n\t# wait for next client to connect\n\tprint(\"Ready, waiting for socket connection\")\n\tglobal connection\n\tglobal address\n\tconnection, address = sock.accept() # connection is a new socket\n\tprint(\"Connection established\")\n\tthreading.Thread(target=update).start()\n\twhile 1:\n\t\tdata_rec = connection.recv(1024) # receive up to 1K bytes\n\t\tif data_rec:\n\t\t\tdata_rec = [data.split(':') for data in str(data_rec, 'utf-8').split('!')[:-1]] #conversion chaine en liste\n\t\t\tfor data in data_rec:\n\t\t\t\tdata[0] = int(data[0])\n\t\t\t\t#conversion data\n\t\t\t\tif data[1] == 'A_GOTOA': #deux int un float\n\t\t\t\t\tdata[2] = int(data[2])\n\t\t\t\t\tdata[3] = int(data[3])\n\t\t\t\t\tdata[4] = float(data[4])\n\t\t\t\telif data[1] == 'A_PIDA' or data[1] == 'A_PIDD' or data[1] == 'A_ROT' or data[1] == 'A_ACCMAX': #all float\n\t\t\t\t\tfor i in range(2,len(data)):\n\t\t\t\t\t\tdata[i] = float(data[i])\n\t\t\t\telif data[1] == 'A_GOTO': #all int\n\t\t\t\t\tfor i in range(2,len(data)):\n\t\t\t\t\t\tdata[i] = int(data[i])\n\t\t\t\telif data[1] == 'A_PWM': #all int\n\t\t\t\t\tfor i in range(2,len(data)):\n\t\t\t\t\t\tdata[i] = int(data[i])\n\t\t\t\telif data[1] == 'A_SET_POS': #all int\n\t\t\t\t\tdata[2] = int(data[2])\n\t\t\t\t\tdata[3] = int(data[3])\n\t\t\t\t\tdata[4] = float(data[4])\n\n\t\t\t\tif data[1] == 'A_GOTO' or data[1] == 'A_GOTOA' or data[1] == 'A_ROT' or data[1] == 'A_PWM':\n\t\t\t\t\tdata.insert(2, 0) #ajout id\n\t\t\t\t\n\t\t\t\tprint('Data : ' + str(data))\n\t\t\t\tcom.sendOrderAPI(data[0], data[1], *data[2:]) \n\t\telse:\n\t\t\tbreak\n\tconnection.close() # close socket\n", "sub_path": "GUI/controlGUI/server.py", "file_name": "server.py", "file_ext": "py", "file_size_in_byte": 2519, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "sys.path.append", "line_number": 4, "usage_type": "call"}, {"api_name": "sys.path", "line_number": 4, "usage_type": "attribute"}, {"api_name": "logging.basicConfig", "line_number": 8, "usage_type": "call"}, {"api_name": "os.path.join", "line_number": 8, "usage_type": "call"}, {"api_name": "os.path", "line_number": 8, "usage_type": "attribute"}, {"api_name": "os.path.dirname", "line_number": 8, "usage_type": "call"}, {"api_name": "os.path.abspath", "line_number": 8, "usage_type": "call"}, {"api_name": "logging.DEBUG", "line_number": 8, "usage_type": "attribute"}, {"api_name": "logging.getLogger", "line_number": 9, "usage_type": "call"}, {"api_name": "communication.CommunicationGlobale", "line_number": 20, "usage_type": "call"}, {"api_name": "sys.argv", "line_number": 26, "usage_type": "attribute"}, {"api_name": "sys.argv", "line_number": 27, "usage_type": "attribute"}, {"api_name": "time.sleep", "line_number": 36, "usage_type": "call"}, {"api_name": "time.sleep", "line_number": 40, "usage_type": "call"}, {"api_name": "threading.Thread", "line_number": 50, "usage_type": "call"}]}
{"seq_id": "180539421", "text": "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Mon Sep 28 06:57:05 2020\n\n@author: anavr\n\"\"\"\n\nimport matplotlib.pyplot as plt\nimport pyComtrade\nimport numpy as np\nfrom scipy import signal, fftpack\nfrom tkinter import *\nfrom tkinter import filedialog\nfrom inspect import *\n\n# app\n#funcion para cargar\n\nglobal comtradeObj\ncomtradeObj = pyComtrade.ComtradeRecord()\n\n#------------------ FUNCIONES DEL PROGRAMA -------------------------------\n# Para abrir archivo cfg\ndef abrir_cfg():\n \n global ar\n \n ar=filedialog.askopenfilename(title=\"Abrir cfg\")#,filetypes=((\"Archivos COMTRADE .cfg y .dat\",\".\"))) \n \n #fs=\n messagebox.showinfo(\"Se cargó el archivo .cfg de la siguiente dirección:\\n\", ar)\n \n# Para abrir archivo dat\ndef abrir_dat():\n \n global dat\n \n dat=filedialog.askopenfilename(title=\"Abrir cfg\")#,filetypes=((\"Archivos COMTRADE .cfg y .dat\",\".\"))) \n \n #fs=\n messagebox.showinfo(\"Se cargó el archivo .dat de la siguiente dirección:\\n\", dat)\n \n# Carga las entradas del programa\ndef cargar(): \n global e1,e2,e3,e4,e5, ratio_V, ratio_C\n e1=en1.get()\n e2=en2.get()\n e3=en3.get()\n e4=en4.get()\n e5=en5.get()\n \n if e1 == \"Seleccionar\":\n messagebox.showerror(\"Error\",\"Debe seleccionar la frecuencia de muestro del relé\")\n else:\n e1 = int(e1)\n \n if e2==\"\" and e3==\"\":\n messagebox.showerror(\"Error\",\"Debe ingresar la relación de transformación de voltaje\")\n elif e2==\"\":\n messagebox.showerror(\"Error\",\"Debe ingresar la relación de transformación del lado primario de voltaje\")\n elif e3==\"\":\n messagebox.showerror(\"Error\",\"Debe ingresar la relación de transformación del lado secundario de voltaje\")\n else:\n e2 = int(e2)\n e3 = int(e3)\n \n if e4==\"\" and e5==\"\":\n messagebox.showerror(\"Error\",\"Debe ingresar la relación de transformación de corriente\")\n elif e4==\"\":\n messagebox.showerror(\"Error\",\"Debe ingresar la relación de transformación del lado primario de corriente\")\n elif e5==\"\":\n messagebox.showerror(\"Error\",\"Debe ingresar la relación de transformación del lado secundario de corriente\")\n else:\n e4 = int(e4)\n e5 = int(e5)\n \n if side.get() == 0:\n messagebox.showerror(\"Error\",\"Debe seleccionar el lado del transformador que desea visualizar\")\n elif side.get()==1:\n ratio_V = e2/e3\n ratio_C = e4/e5\n elif side.get()==2:\n ratio_V = 1\n ratio_C = 1\n \n DFP()\n \n# Funciones para cada etapa\n# ETAPA DE SUBMUESTREO\ndef subsampling(time,data,fs_comtrade,fk,fs_user_cycle):\n # time is the vector of time\n # data is the vector with the signal\n # fs_comtrade is the sample rate from the comtrade file\n # fk is the frequency of the system\n # fs_user_cycle is the sample rate given by user\n N1 = fs_user_cycle\n fs_cycle = fs_comtrade/fk\n N=np.int(fs_cycle)\n N_tot = np.int(len(data)/fs_cycle)\n new_data = [0]\n new_time = [0]\n for i in np.arange(N_tot):\n xi=data[i*N:i*N+N]\n ti=time[i*N:i*N+N]\n new_data[i*N1:i*N1+N1] = signal.resample(xi, N1)\n new_time[i*N1:i*N1+N1] = np.linspace(ti[0], ti[-1], N1, endpoint=False)\n \n return (new_time,new_data)\n\n# ETAPA DE DIGITALIZACION\ndef quantizer(data, quantizing_bits):\n # data is the vector with the signal\n # quantizing_bits is the number of bits for the converter\n # Quantizer - S&H and ADC\n quantizing_levels = 2 ** quantizing_bits\n quantizing_step = (np.max(data)-np.min(data)) / quantizing_levels\n quantizing_signal = np.round (data / quantizing_step) * quantizing_step;\n \n return quantizing_signal\n\n#ETAPA DE DFT\ndef DFT(time, data, fk, fs_user_cycle):\n # time is the vector of time\n # data is the vector with the signal\n # fk is the frequency of the system\n # fs_user_cycle is the sample rate given by user\n \n N=np.int(fs_user_cycle)\n N_tot = len(data)-N\n Xc = [0]*N_tot\n Xs = [0]*N_tot\n t = [0]*N_tot\n \n for i in np.arange(N_tot):\n xi=data[i:i+N]\n t[i]=time[i]\n Xc_sum = 0\n Xs_sum = 0\n for k in np.arange(N):\n Xc_temp=xi[k]*np.cos(2*np.pi*k/(N))\n Xc_sum=Xc_sum+Xc_temp\n Xs_temp=xi[k]*np.sin(2*np.pi*k/(N))\n Xs_sum=Xs_sum+Xs_temp\n \n Xc[i]= 2/(N*np.sqrt(2))*Xc_sum\n Xs[i]= 2/(N*np.sqrt(2))* Xs_sum\n \n return t, Xc, Xs\n \n# Realiza todo el proceso de DSP\ndef DFP():\n # Definición de variables globales para resultados\n global time, voltages, currents, time_sub, V_sub, C_sub, dig_V_sub, dig_C_sub, t, X_V, X_C, Y_V, Y_C, Xc_V, Xs_V, Xc_C, Xs_C, fs_user_cycle\n \n comtradeObj.read(ar,dat)\n N = comtradeObj['endsamp'][-1]\n #sampling_freq=comtradeObj['samp'][-1]\n fs_comtrade=comtradeObj['samp'][-1]\n fk = comtradeObj['line_freq']\n time = comtradeObj.get_timestamps()\n voltages = np.empty(([len(time),3]))\n currents = np.empty(([len(time),3]))\n # Reading voltaje and currents\n voltages[:,0] = comtradeObj['A'][16]['values']\n voltages[:,1] = comtradeObj['A'][17]['values']\n voltages[:,2] = comtradeObj['A'][18]['values']\n \n currents[:,0] = comtradeObj['A'][0]['values']\n currents[:,1] = comtradeObj['A'][1]['values']\n currents[:,2] = comtradeObj['A'][2]['values']\n for i in np.arange(6):\n if i<3:\n # voltages[:,i] = comtradeObj['A'][i]['values']\n for j in np.arange(len(voltages[:,i])):\n voltages[j,i]= voltages[j,i] * ratio_V\n else:\n # currents[:,i-3] = comtradeObj['A'][i]['values']\n for j in np.arange(len(currents[:,i-3])):\n currents[j,i-3]= currents[j,i-3] * ratio_C\n \n # Submuestreo\n fs_user_cycle = e1 # ESTA DATO VIENE DE LA INTERFAZ\n N_tot = np.int(N*fk/fs_comtrade)*fs_user_cycle\n V_sub = np.empty(([N_tot,3]))\n C_sub = np.empty(([N_tot,3]))\n time_sub = np.empty(([N_tot,6]))\n for i in np.arange(6):\n if i<3:\n time_sub[:,i], V_sub[:,i] = subsampling(time,voltages[:,i],fs_comtrade,fk,fs_user_cycle)\n else:\n time_sub[:,i], C_sub[:,i-3] = subsampling(time,currents[:,i-3],fs_comtrade,fk,fs_user_cycle)\n \n # Digitalización\n quantizing_bits_V = 12 # Valor típico: 12 (Voltaje)\n quantizing_bits_C = 16 # Valor típico: 16 (Corriente)\n dig_V_sub = np.empty(([N_tot,3]))\n dig_C_sub = np.empty(([N_tot,3]))\n for i in np.arange(6):\n if i<3:\n dig_V_sub[:,i] = quantizer(V_sub[:,i], quantizing_bits_V)\n else:\n dig_C_sub[:,i-3] = quantizer(C_sub[:,i-3], quantizing_bits_C)\n \n # DFT\n N_tot_DTF = np.int(N_tot-fs_user_cycle)\n Xc_V = np.empty(([N_tot_DTF,3]))\n Xs_V = np.empty(([N_tot_DTF,3]))\n Xc_C = np.empty(([N_tot_DTF,3]))\n Xs_C = np.empty(([N_tot_DTF,3]))\n X_V = np.empty(([N_tot_DTF,3]))\n Y_V = np.empty(([N_tot_DTF,3]))\n X_C = np.empty(([N_tot_DTF,3]))\n Y_C = np.empty(([N_tot_DTF,3]))\n t = np.empty(([N_tot_DTF,6]))\n for i in np.arange(6):\n if i<3:\n t[:,i], Xc_V[:,i], Xs_V[:,i] = DFT(time_sub[:,i], dig_V_sub[:,i], fk, fs_user_cycle)\n X_V[:,i] = np.sqrt(np.power(Xc_V[:,i],2)+np.power(Xs_V[:,i],2))\n ajus = np.pi\n if Xc_V[-1,i]>0 and Xs_V[-1,i]<0:\n ajus = 2*np.pi\n elif Xc_V[-1,i]>0 and Xs_V[-1,i]>0:\n ajus = 0\n Y_V[:,i] = (np.arctan(Xs_V[:,i]/Xc_V[:,i])+ajus)*180/np.pi\n else:\n t[:,i], Xc_C[:,i-3], Xs_C[:,i-3] = DFT(time_sub[:,i], dig_C_sub[:,i-3], fk, fs_user_cycle)\n X_C[:,i-3] = np.sqrt(np.power(Xc_C[:,i-3],2)+np.power(Xs_C[:,i-3],2))\n ajus = np.pi\n if Xc_C[-1,i-3]>0 and Xs_C[-1,i-3]<0:\n ajus = 2*np.pi\n elif Xc_C[-1,i-3]>0 and Xs_C[-1,i-3]>0:\n ajus = 0\n Y_C[:,i-3] = (np.arctan(Xs_C[:,i-3]/Xc_C[:,i-3])+ajus)*180/np.pi\n \n# ------------------------- Funciones para los Botones --------------------\ndef seniales_COMTRADE(): \n f, axarr = plt.subplots(1, 2, figsize =(16, 4))\n f.suptitle('Lectura del archivo COMTRADE', y=1, fontsize=16)\n \n axarr[0].plot(time, voltages[:,0], 'b-', label='Phase A')\n axarr[0].plot(time, voltages[:,1], 'r-', label='Phase B')\n axarr[0].plot(time, voltages[:,2], 'g-', label='Phase C')\n axarr[0].set_xlabel('Time [sec]')\n axarr[0].set_ylabel('Voltage [V]')\n axarr[0].grid()\n axarr[0].legend()\n\n axarr[1].plot(time, currents[:,0], 'b-', label='Phase A')\n axarr[1].plot(time, currents[:,1], 'r-', label='Phase B')\n axarr[1].plot(time, currents[:,2], 'g-', label='Phase C')\n axarr[1].set_xlabel('Time [sec]')\n axarr[1].set_ylabel('Current [A]')\n axarr[1].grid()\n axarr[1].legend()\n plt.show()\n \ndef submuestreo_boton():\n # PLOTING -----------------------------------------------------------------\n f, axarr = plt.subplots(3, 2, figsize =(16, 10))\n f.suptitle('Submuestreo de las señales', y=0.92, fontsize=16)\n \n # Plot Voltages\n axarr[0,0].plot(time, voltages[:,0], 'b-', label='Phase A')\n axarr[0,0].plot( time_sub[:,0], V_sub[:,0], 'co-', label='Phase A resampled')\n axarr[1,0].plot(time, voltages[:,1], 'r-', label='Phase B')\n axarr[1,0].plot( time_sub[:,1], V_sub[:,1], 'mo-', label='Phase B resampled')\n axarr[2,0].plot(time, voltages[:,1], 'g-', label='Phase C')\n axarr[2,0].plot( time_sub[:,2], V_sub[:,2], 'yo-', label='Phase C resampled')\n \n # Plot Currents\n axarr[0,1].plot(time, currents[:,0], 'b-', label='Phase A')\n axarr[0,1].plot( time_sub[:,3], C_sub[:,0], 'co-', label='Phase A resampled')\n axarr[1,1].plot(time, currents[:,1], 'r-', label='Phase B')\n axarr[1,1].plot( time_sub[:,4], C_sub[:,1], 'mo-', label='Phase B resampled')\n axarr[2,1].plot(time, currents[:,2], 'g-', label='Phase C')\n axarr[2,1].plot( time_sub[:,5], C_sub[:,2], 'yo-', label='Phase C resampled')\n \n for i in np.arange(3):\n axarr[i,0].set_xlabel('Time [sec]')\n axarr[i,0].set_ylabel('Voltage [V]')\n axarr[i,0].grid()\n axarr[i,0].legend()\n axarr[i,1].set_xlabel('Time [sec]')\n axarr[i,1].set_ylabel('Current [A]')\n axarr[i,1].grid()\n axarr[i,1].legend()\n plt.show()\n \ndef digitalizacion_boton():\n # PLOTING -----------------------------------------------------------------\n f, axarr = plt.subplots(3, 2, figsize =(16, 10))\n f.suptitle('Digitalización de la señal', y=0.92, fontsize=16)\n \n # Plot Voltages\n axarr[0,0].plot(time_sub[:,0][0:fs_user_cycle*3], V_sub[:,0][0:fs_user_cycle*3], 'b-', label='Phase A')\n axarr[0,0].plot( time_sub[:,0][0:fs_user_cycle*3], dig_V_sub[:,0][0:fs_user_cycle*3], 'c-', label='Phase A digital')\n axarr[1,0].plot(time_sub[:,1][0:fs_user_cycle*3], V_sub[:,1][0:fs_user_cycle*3], 'r-', label='Phase B')\n axarr[1,0].plot( time_sub[:,1][0:fs_user_cycle*3], dig_V_sub[:,1][0:fs_user_cycle*3], 'm-', label='Phase B digital')\n axarr[2,0].plot(time_sub[:,2][0:fs_user_cycle*3], V_sub[:,2][0:fs_user_cycle*3], 'g-', label='Phase C')\n axarr[2,0].plot( time_sub[:,2][0:fs_user_cycle*3], dig_V_sub[:,2][0:fs_user_cycle*3], 'y-', label='Phase C digital')\n \n # Plot Currents\n axarr[0,1].plot(time_sub[:,3][0:fs_user_cycle*3], C_sub[:,0][0:fs_user_cycle*3], 'b-', label='Phase A')\n axarr[0,1].plot( time_sub[:,3][0:fs_user_cycle*3], dig_C_sub[:,0][0:fs_user_cycle*3], 'c-', label='Phase A digital')\n axarr[1,1].plot(time_sub[:,4][0:fs_user_cycle*3], C_sub[:,1][0:fs_user_cycle*3], 'r-', label='Phase B')\n axarr[1,1].plot( time_sub[:,4][0:fs_user_cycle*3], dig_C_sub[:,1][0:fs_user_cycle*3], 'm-', label='Phase B digital')\n axarr[2,1].plot(time_sub[:,5][0:fs_user_cycle*3], C_sub[:,2][0:fs_user_cycle*3], 'g-', label='Phase C')\n axarr[2,1].plot( time_sub[:,5][0:fs_user_cycle*3], dig_C_sub[:,2][0:fs_user_cycle*3], 'y-', label='Phase C digital')\n \n for i in np.arange(3):\n axarr[i,0].set_xlabel('Time [sec]')\n axarr[i,0].set_ylabel('Voltage [V]')\n axarr[i,0].grid()\n axarr[i,0].legend()\n axarr[i,1].set_xlabel('Time [sec]')\n axarr[i,1].set_ylabel('Current [A]')\n axarr[i,1].grid()\n axarr[i,1].legend()\n \n plt.show()\n \ndef DFT_boton():\n # PLOTING -----------------------------------------------------------------\n f, axarr = plt.subplots(3, 2, figsize =(16, 10))\n f.suptitle('DFT En Magnitud', y=0.92, fontsize=16)\n \n # Plot Voltages\n #axarr[0,0].plot(time_sub[:,0], V_sub[:,0], 'b-', label='Phase A')\n axarr[0,0].plot( t[:,0], X_V[:,0], 'c-', label='Phase A FFT(mag)')\n #axarr[1,0].plot(time_sub[:,1], V_sub[:,1], 'r-', label='Phase B')\n axarr[1,0].plot( t[:,1], X_V[:,1], 'm-', label='Phase B FFT(mag)')\n #axarr[2,0].plot(time_sub[:,2], V_sub[:,2], label='Phase C')\n axarr[2,0].plot( t[:,2], X_V[:,2], 'y-', label='Phase C FFT(mag)')\n \n # Plot Currents\n #axarr[0,1].plot(time_sub[:,3], C_sub[:,0], 'b-', label='Phase A')\n axarr[0,1].plot( t[:,3], X_C[:,0], 'c-', label='Phase A FFT(mag)')\n #axarr[1,1].plot(time_sub[:,4], C_sub[:,1], 'r-', label='Phase B')\n axarr[1,1].plot( t[:,4], X_C[:,1], 'm-', label='Phase B FFT(mag)')\n #axarr[2,1].plot(time_sub[:,5], C_sub[:,2], 'g-', label='Phase C')\n axarr[2,1].plot( t[:,5], X_C[:,2], 'y-', label='Phase C FFT(mag)')\n \n for i in np.arange(3):\n axarr[i,0].set_xlabel('Time [sec]')\n axarr[i,0].set_ylabel('Voltage [V]')\n axarr[i,0].grid()\n axarr[i,0].legend()\n axarr[i,1].set_xlabel('Time [sec]')\n axarr[i,1].set_ylabel('Current [A]')\n axarr[i,1].grid()\n axarr[i,1].legend()\n \n plt.show()\n \n # Ploting angle\n f, axarr = plt.subplots(3, 2, figsize =(16, 10))\n f.suptitle('DFT En Fase', y=0.92, fontsize=16)\n \n # Plot Voltages\n #axarr[0,0].plot(time_sub[:,0], V_sub[:,0], 'b-', label='Phase A')\n axarr[0,0].plot( t[:,0], Y_V[:,0], 'c-', label='Phase A FFT[ang(rad)]')\n #axarr[1,0].plot(time_sub[:,1], V_sub[:,1], 'r-', label='Phase B')\n axarr[1,0].plot( t[:,1], Y_V[:,1], 'm-', label='Phase B FFT[ang(rad)]')\n #axarr[2,0].plot(time_sub[:,2], V_sub[:,2], label='Phase C')\n axarr[2,0].plot( t[:,2], Y_V[:,2], 'y-', label='Phase C FFT[ang(rad)]')\n \n # Plot Currents\n #axarr[0,1].plot(time_sub[:,3], C_sub[:,0], 'b-', label='Phase A')\n axarr[0,1].plot( t[:,3], Y_C[:,0], 'c-', label='Phase A FFT[ang(rad)]')\n #axarr[1,1].plot(time_sub[:,4], C_sub[:,1], 'r-', label='Phase B')\n axarr[1,1].plot( t[:,4], Y_C[:,1], 'm-', label='Phase B FFT[ang(rad)]')\n #axarr[2,1].plot(time_sub[:,5], C_sub[:,2], 'g-', label='Phase C')\n axarr[2,1].plot( t[:,5], Y_C[:,2], 'y-', label='Phase C FFT[ang(rad)]')\n \n for i in np.arange(3):\n axarr[i,0].set_xlabel('Time [sec]')\n axarr[i,0].set_ylabel('Angle (°)')\n axarr[i,0].grid()\n axarr[i,0].legend()\n axarr[i,1].set_xlabel('Time [sec]')\n axarr[i,1].set_ylabel('Angle (°)')\n axarr[i,1].grid()\n axarr[i,1].legend()\n plt.show()\n \ndef fasores_boton():\n # Creando la figura\n fig, ax = plt.subplots(1, 2, figsize =(16, 6))\n fig.suptitle('Diagrama fasorial de Voltaje y Corriente', y=0.95, fontsize=16)\n \n lim_axis_V = np.max([np.float(X_V[-1:,0]), np.float(X_V[-1:,1]),np.float(X_V[-1:,2])])\n lim_axis_C = np.max([np.float(X_C[-1:,0]), np.float(X_C[-1:,1]),np.float(X_C[-1:,2])])\n # Creando el punto de origen para los vectores\n x_pos = [0, 0,0] \n y_pos = [0, 0,0]\n \n ax[0].quiver(x_pos, y_pos, Xc_V[-1,0], Xs_V[-1,0], angles='xy', scale_units = 'xy', scale=1, color=['b'], label='Fase A') \n ax[0].quiver(x_pos, y_pos, Xc_V[-1,1], Xs_V[-1,1], angles='xy', scale_units = 'xy', scale=1, color=['r'], label='Fase B') \n ax[0].quiver(x_pos, y_pos, Xc_V[-1,2], Xs_V[-1,2], angles='xy', scale_units = 'xy', scale=1, color=['g'], label='Fase C') \n ax[0].axis([-1.2*lim_axis_V, 1.2*lim_axis_V, -1.2*lim_axis_V, 1.2*lim_axis_V]) \n ax[0].set_title('Voltaje [V]')\n ax[0].legend() #<-- Se nombran las leyendas\n ax[0].grid(b=True, which='major') #<-- plot grid lines\n \n ax[1].quiver(x_pos, y_pos, Xc_C[-1,0], Xs_C[-1,0], angles='xy', scale_units = 'xy', scale=1, color=['b'], label='Fase A') \n ax[1].quiver(x_pos, y_pos, Xc_C[-1,1], Xs_C[-1,1], angles='xy', scale_units = 'xy', scale=1, color=['r'], label='Fase B') \n ax[1].quiver(x_pos, y_pos, Xc_C[-1,2], Xs_C[-1,2], angles='xy', scale_units = 'xy', scale=1, color=['g'], label='Fase C') \n ax[1].axis([-1.2*lim_axis_C, 1.2*lim_axis_C, -1.2*lim_axis_C, 1.2*lim_axis_C]) \n ax[1].set_title('Corriente [A]')\n ax[1].legend() #<-- Se nombran las leyendas\n ax[1].grid(b=True, which='major') #<-- plot grid lines\n plt.show()\n \n # Mostrando las fases en la interfaz\n label_fas0.grid(row=3,column=0)\n label_fas1.config(text=['Voltaje fase A:', \"{:.2f}\".format(np.double(X_V[-1:,0])), 'V', \"{:.2f}\".format(np.double(Y_V[-1:,0])),'°'])\n label_fas1.grid(row=4,column=0)\n label_fas2.config(text=['Voltaje fase B:', \"{:.2f}\".format(np.double(X_V[-1:,1])), 'V', \"{:.2f}\".format(np.double(Y_V[-1:,1])),'°'])\n label_fas2.grid(row=5,column=0)\n label_fas3.config(text=['Voltaje fase C:', \"{:.2f}\".format(np.double(X_V[-1:,2])), 'V', \"{:.2f}\".format(np.double(Y_V[-1:,1])),'°'])\n label_fas3.grid(row=6,column=0)\n label_fas4.config(text=['Corriente fase A:', \"{:.2f}\".format(np.double(X_C[-1:,0])), 'A', \"{:.2f}\".format(np.double(Y_C[-1:,0])),'°'])\n label_fas4.grid(row=7,column=0)\n label_fas5.config(text=['Corriente fase B:', \"{:.2f}\".format(np.double(X_C[-1:,1])), 'A', \"{:.2f}\".format(np.double(Y_C[-1:,1])),'°'])\n label_fas5.grid(row=8,column=0)\n label_fas6.config(text=['Corriente fase C:', \"{:.2f}\".format(np.double(X_C[-1:,2])), 'A', \"{:.2f}\".format(np.double(Y_C[-1:,2])),'°'])\n label_fas6.grid(row=9,column=0)\n#------------------------------------------------------------------\n# MAIN\nraiz=Tk()\nraiz.title(\"Modulo DSP para relés\")\n #raiz.geometry(\"650x380\")\nx_frame = 720\ny_frame = 500\nraiz.geometry(\"{width}x{height}\".format(width=x_frame, height=y_frame)) \nraiz.resizable(True, True) \n# mifr= Frame()\n# mifr.pack(side=TOP, fill=BOTH, expand=Y)\n# #mifr.config()\n# mifr.config(width=\"650\",height=\"380\")\n# mifr.config(cursor=\"star\")\nbmenu=Menu(raiz)\nraiz.config(menu=bmenu)\n\n#-------------------------------- FRAME 1 -------------------------------\nframe1 = LabelFrame(raiz, text=\"Entradas\",height= y_frame,width =x_frame,padx=5, labelanchor=N)\nframe1.config(cursor=\"star\")\nframe1.pack(expand = 'no', fill = 'both') \n\nx_frame11 = 350\nframe11 = LabelFrame(frame1, text=\"Selección del archivo COMTRADE\",fg=\"red\",height= 100,width =x_frame11,padx=15)\nframe11.grid(column=0, row=0, padx=10, pady=10)\nlabel11 = Label(frame11, text = 'Instrucciones: Se deben seleccionar los archivos .cfg y .dat')\nlabel11.place(x = 0, y = 5) \n\nBotonAbrircfg = Button(frame11,text=\"Abrir .cfg\",command=abrir_cfg)\nBotonAbrircfg.place(x = x_frame11/6, y = 30) \nBotonAbrirdat = Button(frame11,text=\"Abrir .dat\",command=abrir_dat)\nBotonAbrirdat.place(x = 3*x_frame11/6, y = 30) \n\nx_frame12 = 250\nframe12 = LabelFrame(frame1, text=\"Selección de parámetros de entrada\",fg=\"red\",height= 200,width =x_frame12,padx=15)\nframe12.grid(column=1, row=0, columnspan=1, rowspan=2, padx=10, pady=10)\n\nt1=Label(frame12,text=\"Seleccione la frecuencia \\nde muestro del relé\",fg=\"green\")\nt1.grid(row=0,column=0,sticky=\"w\",pady=\"20\")\nen1=StringVar()\nd=OptionMenu(frame12, en1, \"4\",\"8\",\"16\",\"32\",\"64\")\nd.grid(row=0,column=1,sticky=\"w\",padx=\"20\",pady=\"20\")\nen1.set(\"Seleccionar\")\n\n\nframe121 = LabelFrame(frame12, text=\"Relación de transformadores de instrumentación\",fg=\"Blue\",height= 200,width =x_frame12,padx=15)\nframe121.grid(column=0, row=1, columnspan=2, rowspan=1, padx=10, pady=10)\n\n# Relación de transformadores de instrumentación voltaje le falta dividir entre prim y secundario\nt2=Label(frame121,text=\"Relacion de Voltaje\")\nt2.grid(row=0,column=0,sticky=\"w\")\nen2=Entry(frame121, width=7)\nen2.grid(row=0,column=1)\nt3=Label(frame121,text=\":\")\nt3.grid(row=0,column=2)\nen3=Entry(frame121, width=7)\nen3.grid(row=0,column=3)\n\n# Relación de transformadores de instrumentación corriente le falta dividir entre prim y secundario\nt21=Label(frame121,text=\"Relacion de Corriente\")\nt21.grid(row=1,column=0,sticky=\"w\")\nen4=Entry(frame121, width=7)\nen4.grid(row=1,column=1)\nt31=Label(frame121,text=\":\")\nt31.grid(row=1,column=2)\nen5=Entry(frame121, width=7)\nen5.grid(row=1,column=3)\n\nb1=Button(frame12,text=\"cargar valores\",command=cargar)\nb1.grid(row=2,column=0,columnspan=2, rowspan=1)\n\nx_frame13 = 350\nframe13 = LabelFrame(frame1, text=\"Visualización en el transformador\",fg=\"red\",height= 100,width =x_frame13,padx=15)\nframe13.grid(column=0, row=1, padx=10, pady=0)\nlabel13 = Label(frame13, text = 'Seleccione el lado que desea ver la señal del transformador')\nlabel13.place(x = 0, y = 5) \n\nside = IntVar()\nrad_trafo1 = Radiobutton(frame13,text=\"Primario\", variable = side, value=1)\nrad_trafo1.place(x = x_frame13/6, y = 30) \nrad_trafo2 = Radiobutton(frame13,text=\"Secundario\", variable = side, value=2)\nrad_trafo2.place(x = 3*x_frame13/6, y = 30) \n\n#-------------------------------- FRAME 2 -------------------------------\nframe2 = LabelFrame(raiz, text=\"Resultados del procesamiento\",height= y_frame,width =x_frame,padx=5, labelanchor=N)\nframe2.config(cursor=\"star\")\nframe2.pack(expand = 'no', fill = 'both') \n\nx_frame21 = 350\nframe21 = LabelFrame(frame2, text=\"Detalle por etapa\",fg=\"red\",height= 100,width =x_frame21,padx=15)\nframe21.grid(column=0, row=0, padx=10, pady=10)\nlabel21 = Label(frame21, text = 'Seleccione la etapa que desea detallar')\nlabel21.grid(row=0,column=0,columnspan=3)\n\nbi=Button(frame21,text=\"Señales de entrada\",command=seniales_COMTRADE)#carga los archivos\nbi.grid(row=1,column=0)\nb2=Button(frame21,text=\"Submuestreo\",command=submuestreo_boton)\nb2.grid(row=1,column=1)\n#etapa de mostrar señal digitalizada\nb3=Button(frame21,text=\"Digitalizacion\",command=digitalizacion_boton)\nb3.grid(row=1,column=2)\n#etapa de ventaneo\nb3=Button(frame21,text=\"DFT\",command=DFT_boton)\nb3.grid(row=2,column=1)\n\n\n\nx_frame22 = 250\nframe22 = LabelFrame(frame2, text=\"Señal Procesada\",fg=\"red\",height= 100,width =x_frame22,padx=15)\nframe22.grid(column=1, row=0, padx=10, pady=10)\nlabel22 = Label(frame22, text = 'En este módulo se muestran las señales resultantes')\nlabel22.grid(row=0,column=0)\n\nb3=Button(frame22,text=\"Fasores\",command=fasores_boton)\nb3.grid(row=1,column=0)\n\nlabel_fas0 = Label(frame22, text = 'Los fasores resultantes en rms son:')\nlabel_fas0.grid_forget()\nlabel_fas1 = Label(frame22, text = 'Aqui se mostrara el fasor 1',fg=\"blue\")\nlabel_fas1.grid_forget()\nlabel_fas2 = Label(frame22, text = 'Aqui se mostrara el fasor 2',fg=\"red\")\nlabel_fas2.grid_forget()\nlabel_fas3 = Label(frame22, text = 'Aqui se mostrara el fasor 3',fg=\"green\")\nlabel_fas3.grid_forget()\nlabel_fas4 = Label(frame22, text = 'Aqui se mostrara el fasor 1',fg=\"blue\")\nlabel_fas4.grid_forget()\nlabel_fas5 = Label(frame22, text = 'Aqui se mostrara el fasor 2',fg=\"red\")\nlabel_fas5.grid_forget()\nlabel_fas6 = Label(frame22, text = 'Aqui se mostrara el fasor 3',fg=\"green\")\nlabel_fas6.grid_forget()\n\n\n\nbarchiv=Menu(bmenu,tearoff=0)\nbhelp=Menu(bmenu,tearoff=0)\nbarchiv.add_command(label=\"Abrir archivo \")#carga los archivos\nbarchiv.add_command(label=\"Guardar\")\nbmenu.add_cascade(label=\"Archivo\",menu=barchiv)\n#help\n\nbhelp.add_command(label=\"Descripción\")\nbmenu.add_cascade(label=\"Ayuda\",menu=bhelp)\n\n\n\nraiz.mainloop()\n\n\n", "sub_path": "TC2/app.py", "file_name": "app.py", "file_ext": "py", "file_size_in_byte": 23708, "program_lang": "python", "lang": "en", "doc_type": "code", "dataset": "code-starcoder2", "pt": "51", "api": [{"api_name": "pyComtrade.ComtradeRecord", "line_number": 20, "usage_type": "call"}, {"api_name": "tkinter.filedialog.askopenfilename", "line_number": 28, "usage_type": "call"}, {"api_name": "tkinter.filedialog", "line_number": 28, "usage_type": "name"}, {"api_name": "tkinter.filedialog.askopenfilename", "line_number": 38, "usage_type": "call"}, {"api_name": "tkinter.filedialog", "line_number": 38, "usage_type": "name"}, {"api_name": "numpy.int", "line_number": 98, "usage_type": "call"}, {"api_name": "numpy.int", "line_number": 99, "usage_type": "call"}, {"api_name": "numpy.arange", "line_number": 102, "usage_type": "call"}, {"api_name": "scipy.signal.resample", "line_number": 105, "usage_type": "call"}, {"api_name": "scipy.signal", "line_number": 105, "usage_type": "name"}, {"api_name": "numpy.linspace", "line_number": 106, "usage_type": "call"}, {"api_name": "numpy.max", "line_number": 116, "usage_type": "call"}, {"api_name": "numpy.min", "line_number": 116, "usage_type": "call"}, {"api_name": "numpy.round", "line_number": 117, "usage_type": "call"}, {"api_name": "numpy.int", "line_number": 128, "usage_type": "call"}, {"api_name": "numpy.arange", "line_number": 134, "usage_type": "call"}, {"api_name": "numpy.arange", "line_number": 139, "usage_type": "call"}, {"api_name": "numpy.cos", "line_number": 140, "usage_type": "call"}, {"api_name": "numpy.pi", "line_number": 140, "usage_type": "attribute"}, {"api_name": "numpy.sin", "line_number": 142, "usage_type": "call"}, {"api_name": "numpy.pi", "line_number": 142, "usage_type": "attribute"}, {"api_name": "numpy.sqrt", "line_number": 145, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 146, "usage_type": "call"}, {"api_name": "numpy.empty", "line_number": 161, "usage_type": "call"}, {"api_name": "numpy.empty", "line_number": 162, "usage_type": "call"}, {"api_name": "numpy.arange", "line_number": 171, "usage_type": "call"}, {"api_name": "numpy.arange", "line_number": 174, "usage_type": "call"}, {"api_name": "numpy.arange", "line_number": 178, "usage_type": "call"}, {"api_name": "numpy.int", "line_number": 183, "usage_type": "call"}, {"api_name": "numpy.empty", "line_number": 184, "usage_type": "call"}, {"api_name": "numpy.empty", "line_number": 185, "usage_type": "call"}, {"api_name": "numpy.empty", "line_number": 186, "usage_type": "call"}, {"api_name": "numpy.arange", "line_number": 187, "usage_type": "call"}, {"api_name": "numpy.empty", "line_number": 196, "usage_type": "call"}, {"api_name": "numpy.empty", "line_number": 197, "usage_type": "call"}, {"api_name": "numpy.arange", "line_number": 198, "usage_type": "call"}, {"api_name": "numpy.int", "line_number": 205, "usage_type": "call"}, {"api_name": "numpy.empty", "line_number": 206, "usage_type": "call"}, {"api_name": "numpy.empty", "line_number": 207, "usage_type": "call"}, {"api_name": "numpy.empty", "line_number": 208, "usage_type": "call"}, {"api_name": "numpy.empty", "line_number": 209, "usage_type": "call"}, {"api_name": "numpy.empty", "line_number": 210, "usage_type": "call"}, {"api_name": "numpy.empty", "line_number": 211, "usage_type": "call"}, {"api_name": "numpy.empty", "line_number": 212, "usage_type": "call"}, {"api_name": "numpy.empty", "line_number": 213, "usage_type": "call"}, {"api_name": "numpy.empty", "line_number": 214, "usage_type": "call"}, {"api_name": "numpy.arange", "line_number": 215, "usage_type": "call"}, {"api_name": "numpy.sqrt", "line_number": 218, "usage_type": "call"}, {"api_name": "numpy.power", "line_number": 218, "usage_type": "call"}, {"api_name": "numpy.pi", "line_number": 219, "usage_type": "attribute"}, {"api_name": "numpy.pi", "line_number": 221, "usage_type": "attribute"}, {"api_name": "numpy.arctan", "line_number": 224, "usage_type": "call"}, {"api_name": "numpy.pi", "line_number": 224, "usage_type": "attribute"}, {"api_name": "numpy.sqrt", "line_number": 227, "usage_type": "call"}, {"api_name": "numpy.power", "line_number": 227, "usage_type": "call"}, {"api_name": "numpy.pi", "line_number": 228, "usage_type": "attribute"}, {"api_name": "numpy.pi", "line_number": 230, "usage_type": "attribute"}, {"api_name": "numpy.arctan", "line_number": 233, "usage_type": "call"}, {"api_name": "numpy.pi", "line_number": 233, "usage_type": "attribute"}, {"api_name": "matplotlib.pyplot.subplots", "line_number": 237, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 237, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.show", "line_number": 255, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 255, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.subplots", "line_number": 259, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 259, "usage_type": "name"}, {"api_name": "numpy.arange", "line_number": 278, "usage_type": "call"}, {"api_name": "matplotlib.pyplot.show", "line_number": 287, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 287, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.subplots", "line_number": 291, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 291, "usage_type": "name"}, {"api_name": "numpy.arange", "line_number": 310, "usage_type": "call"}, {"api_name": "matplotlib.pyplot.show", "line_number": 320, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 320, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.subplots", "line_number": 324, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 324, "usage_type": "name"}, {"api_name": "numpy.arange", "line_number": 343, "usage_type": "call"}, {"api_name": "matplotlib.pyplot.show", "line_number": 353, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 353, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.subplots", "line_number": 356, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 356, "usage_type": "name"}, {"api_name": "numpy.arange", "line_number": 375, "usage_type": "call"}, {"api_name": "matplotlib.pyplot.show", "line_number": 384, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 384, "usage_type": "name"}, {"api_name": "matplotlib.pyplot.subplots", "line_number": 388, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 388, "usage_type": "name"}, {"api_name": "numpy.max", "line_number": 391, "usage_type": "call"}, {"api_name": "numpy.float", "line_number": 391, "usage_type": "call"}, {"api_name": "numpy.max", "line_number": 392, "usage_type": "call"}, {"api_name": "numpy.float", "line_number": 392, "usage_type": "call"}, {"api_name": "matplotlib.pyplot.show", "line_number": 412, "usage_type": "call"}, {"api_name": "matplotlib.pyplot", "line_number": 412, "usage_type": "name"}, {"api_name": "numpy.double", "line_number": 416, "usage_type": "call"}, {"api_name": "numpy.double", "line_number": 418, "usage_type": "call"}, {"api_name": "numpy.double", "line_number": 420, "usage_type": "call"}, {"api_name": "numpy.double", "line_number": 422, "usage_type": "call"}, {"api_name": "numpy.double", "line_number": 424, "usage_type": "call"}, {"api_name": "numpy.double", "line_number": 426, "usage_type": "call"}]}