LFM2-ColBERT-350M / huuli_server.py
bolorjinbat's picture
Add files using upload-large-folder tool
06e5009 verified
import os
import textwrap
from pylate import models, indexes, retrieve
from fastapi import FastAPI
from pydantic import BaseModel
import torch # debug дээр embedding-ийн shape харахад хэрэгтэй
# ========= Тохиргоо =========
MODEL_PATH = "/home/astgpu3/workspace/bolorjinbat/LFM2-ColBERT-350M"
DOCS_DIR = "/home/astgpu3/workspace/bolorjinbat/LFM2-ColBERT-350M/merged_huuli_docs"
INDEX_FOLDER = "mergedhuuli_index_docs"
INDEX_NAME = "mergedhuuli_index_v1"
CHUNK_CHARS = 800
# ===========================
def load_documents(folder_path=DOCS_DIR, chunk_chars=CHUNK_CHARS):
if not os.path.isdir(folder_path):
raise FileNotFoundError(f"Баримтын фолдер олдсонгүй: {os.path.abspath(folder_path)}")
docs, ids, doc_map = [], [], {}
file_count = 0
total_chunks = 0
print(f"[INIT] load_documents: folder={folder_path}, CHUNK_CHARS={chunk_chars}")
for fname in os.listdir(folder_path):
if not fname.endswith(".txt"):
continue
file_count += 1
full_path = os.path.join(folder_path, fname)
with open(full_path, "r", encoding="utf-8") as f:
raw_text = f.read().strip()
# Урт файлыг жижиг хэсгүүдэд хуваах
chunks = textwrap.wrap(raw_text, width=chunk_chars) or [raw_text]
print(f"[INIT] - Файл: {fname}, нийт урт={len(raw_text)} тэмдэгт, chunks={len(chunks)}")
for i, chunk in enumerate(chunks):
doc_id = f"{fname}__chunk_{i}"
ids.append(doc_id)
docs.append(chunk)
doc_map[doc_id] = chunk
total_chunks += 1
if file_count == 0:
raise RuntimeError(f"'{folder_path}' дотор .txt файл олдсонгүй.")
print(f"[INIT] Нийт {file_count} файл, {total_chunks} chunk ачааллаа.")
print(f"[INIT] Эхний 5 chunk ID: {ids[:5]}")
return ids, docs, doc_map
def build_index(doc_ids, doc_texts):
print("[INIT] [1] Модель ачаалж байна...")
model = models.ColBERT(model_name_or_path=MODEL_PATH)
if hasattr(model, "tokenizer") and getattr(model.tokenizer, "pad_token", None) is None:
model.tokenizer.pad_token = model.tokenizer.eos_token
print("[INIT] [2] PLAID индекс үүсгэж байна...")
index = indexes.PLAID(
index_folder=INDEX_FOLDER,
index_name=INDEX_NAME,
override=True, # анх удаа барих үед true байж болно
)
print("[INIT] [3] Баримтуудыг embedding болгож байна...")
doc_embeddings = model.encode(
doc_texts,
batch_size=16,
is_query=False,
show_progress_bar=True,
)
# Документ embedding-ийн хэлбэр/log
if isinstance(doc_embeddings, torch.Tensor):
print(f"[INIT] Документ embedding: torch.Tensor, shape={doc_embeddings.shape}")
# жишээ: (num_docs, num_tokens, dim) эсвэл (num_docs, dim)
if doc_embeddings.ndim == 3:
_, num_tokens, dim = doc_embeddings.shape
print(f"[INIT] -> num_tokens={num_tokens}, dim={dim}")
elif doc_embeddings.ndim == 2:
_, dim = doc_embeddings.shape
print(f"[INIT] -> dim={dim}")
elif isinstance(doc_embeddings, list):
print(f"[INIT] Документ embedding: list, len={len(doc_embeddings)}")
if len(doc_embeddings) > 0 and isinstance(doc_embeddings[0], torch.Tensor):
print(f"[INIT] -> Эхний embedding shape={doc_embeddings[0].shape}")
else:
print(f"[INIT] Документ embedding-ийн төрөл={type(doc_embeddings)}")
print("[INIT] [4] Индекс рүү бичиж байна...")
index.add_documents(
documents_ids=doc_ids,
documents_embeddings=doc_embeddings,
)
print("[INIT] Индекс барих дууслаа.")
return model, index
def query_index(model, index, q_text, topk=5):
# ---- Query-н pipeline log ----
print("\n[QUERY] ===============================")
print(f"[QUERY] Шинэ асуулт ирлээ: {q_text!r}")
print(f"[QUERY] Тэмдэгтийн урт: {len(q_text)}")
print(f"[QUERY] Тухайн query-г CHUNK хийхгүй, бүтнээр нь нэг текст гэж үзнэ.")
retriever = retrieve.ColBERT(index=index)
print("[QUERY] ColBERT-оор encoding хийж байна (is_query=True)...")
q_emb = model.encode(
[q_text],
batch_size=1,
is_query=True,
show_progress_bar=False,
)
# Embedding-ийн бүтэц/ хэмжээний log
if isinstance(q_emb, torch.Tensor):
print(f"[QUERY] Query embedding төрөл: torch.Tensor, shape={q_emb.shape}")
if q_emb.ndim == 3:
batch, num_tokens, dim = q_emb.shape
print(f"[QUERY] -> batch={batch}, num_tokens={num_tokens}, dim={dim}")
elif q_emb.ndim == 2:
batch, dim = q_emb.shape
print(f"[QUERY] -> batch={batch}, dim={dim}")
elif q_emb.ndim == 1:
dim = q_emb.shape[0]
print(f"[QUERY] -> dim={dim}")
elif isinstance(q_emb, list):
print(f"[QUERY] Query embedding төрөл: list, len={len(q_emb)}")
if len(q_emb) > 0 and isinstance(q_emb[0], torch.Tensor):
print(f"[QUERY] -> Эхний элемент shape={q_emb[0].shape}")
shape = q_emb[0].shape
if len(shape) == 2:
num_tokens, dim = shape
print(f"[QUERY] num_tokens={num_tokens}, dim={dim}")
else:
print(f"[QUERY] Query embedding төрөл: {type(q_emb)}")
print(f"[QUERY] PLAID индексээс topk={topk} хэсгийг авч байна (index='{INDEX_NAME}') ...")
results = retriever.retrieve(
queries_embeddings=q_emb,
k=topk,
)
hits = results[0]
print(f"[QUERY] Нийт олдсон hits={len(hits)}")
for rank, hit in enumerate(hits, start=1):
doc_id = hit.get("id")
score = hit.get("score")
print(f"[QUERY] -> Rank {rank}: id={doc_id}, score={score}")
print("[QUERY] ===============================\n")
return results
# ---------- FastAPI хэсэг ----------
app = FastAPI()
# Сервер асаах үед нэг удаа model, index, doc_map-аа бэлдээд санах ойд хадгална
print("[INIT] Баримтуудыг уншиж байна...")
DOC_IDS, DOC_TEXTS, DOC_MAP = load_documents(DOCS_DIR, CHUNK_CHARS)
print("[INIT] Индекс барьж байна (эсвэл дахин үүсгэж байна)...")
MODEL, INDEX = build_index(DOC_IDS, DOC_TEXTS)
class SearchRequest(BaseModel):
query: str
topk: int = 5
@app.post("/search")
def search(req: SearchRequest):
"""
POST /search
{
"query": "асуулгаа энд",
"topk": 5
}
"""
print("[API] /search дуудлаа")
print(f"[API] -> query={req.query!r}, topk={req.topk}")
results = query_index(MODEL, INDEX, req.query, topk=req.topk)
hits = []
for hit in results[0]:
doc_id = hit.get("id")
score = hit.get("score")
text = DOC_MAP.get(doc_id, "")
hits.append({
"id": doc_id,
"score": score,
"text_preview": text[:500],
})
print("[API] /search дууслаа, хэрэглэгч рүү JSON буцааж байна.\n")
return {"results": hits}