File size: 3,276 Bytes
56c956f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
jupytext:
  formats: md:myst
  text_representation:
    extension: .md
    format_name: myst
    format_version: 0.13
    jupytext_version: 1.11.5
kernelspec:
  display_name: Python 3
  language: python
  name: python3
---

# The tutorial 6th 

Demonstrates how to determine solid solution structures using powder XRD.

## coding

> **1. Save your diffraction data to the root directory and rename the file to `intensity.csv`.**



```{code-cell}
# import PyXplore package
from PyXplore import WPEM
import pandas as pd
```

> **2. Parse your diffraction data (`2θ`, intensity) and perform background processing.**

```{code-cell}
intensity_csv = pd.read_csv(r'intensity.csv',header=None )
var = WPEM.BackgroundFit(intensity_csv,lowAngleRange=17,poly_n=13,bac_split=16,bac_num=300)
```
> **3. After running the code, a new folder named `ConvertedDocuments` will be created in the root directory. This folder contains the background information.**

> **Copy the two important files — `bac.csv` and `no_bac_intensity.csv` — from `ConvertedDocuments` into the root directory, as they are required for the next steps.**


> **4. After background subtraction, the next step is to parse the reference structure.**
>
> Save the reference `.cif` file in the root directory. For example, if the structure is Mn₂O₃, place a file named `Mn2O3.cif` in the root directory as the reference phase.
>
> If you are unsure of the reference phase, you must perform phase identification first. Please visit our website for assistance: [https://xqueryer.caobin.asia/](https://xqueryer.caobin.asia/)


```{code-cell}
latt, AtomCoordinates,des = WPEM.CIFpreprocess(filepath='Mn2O3.cif',two_theta_range=(15,75))
```



> **5. After running the code, a new folder named `output_xrd` will be created.**
>
> Inside this folder, locate the file named `xxxHKL.csv`, copy it to the root directory, and rename it to `peak0.csv`. This file will be used in the refinement step.


```{code-cell}
# The wavelength is set according to the actual light source
wavelength = [1.540593, 1.544414]
# The file name of non-background data (2theta-intensity data)
no_bac_intensity_file = "no_bac_intensity.csv" 
# The file name of raw/original data (2theta-intensity data)
original_file = "intensity.csv"  
# The file name of background data (2theta-intensity data)
bacground_file = "bac.csv"  


# Input the initial lattice constants {a, b, c, α, β, γ}, whose values need to be assumed at initialization.
Lattice_constants = [latt,]

# Execute the model

WPEM.XRDfit(
    wavelength, var, Lattice_constants,no_bac_intensity_file, original_file, bacground_file, 
    subset_number=11,low_bound=20,up_bound=70,bta = 0.85,iter_max = 5, asy_C = 0,InitializationEpoch=0, 
    )
```



> Copy the decomposed file `CrystalSystem0_WPEMout.csv` from the `WPEMFittingResults` folder to the root directory.

```{code-cell}
WPEM.SubstitutionalSearch(
    xrd_pattern='CrystalSystem0_WPEMout_2025.7.20_17.27.csv', cif_file='Mn2O3.cif',
    random_num=20, wavelength='CuKa',search_cap=5,SolventAtom = 'Mn3+', SoluteAtom= 'Ru2+',max_iter = 15,cal_extinction=True,
)
```


```{seealso}
After searching the solid solution configurations, the one that provides the best fit to the experimental PXRD data is selected.
```