Datasets:
add readme
Browse files
README.md
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
languages:
|
| 3 |
+
- en
|
| 4 |
+
multilinguality:
|
| 5 |
+
- monolingual
|
| 6 |
+
size_categories:
|
| 7 |
+
- 10K<n<100K
|
| 8 |
+
task_categories:
|
| 9 |
+
- conditional-text-generation
|
| 10 |
+
task_ids:
|
| 11 |
+
- summarization
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# GovReport dataset for summarization
|
| 15 |
+
|
| 16 |
+
Dataset for summarization of long documents.\
|
| 17 |
+
Adapted from this [repo](https://github.com/luyang-huang96/LongDocSum).\
|
| 18 |
+
Note that original data are pre-tokenized so this dataset returns " ".join(text).\
|
| 19 |
+
This dataset is compatible with the [`run_summarization.py`](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) script from Transformers if you add this line to the `summarization_name_mapping` variable:
|
| 20 |
+
```python
|
| 21 |
+
"ccdv/govreport-summarization": ("report", "summary")
|
| 22 |
+
```
|
| 23 |
+
|
| 24 |
+
### Data Fields
|
| 25 |
+
|
| 26 |
+
- `id`: paper id
|
| 27 |
+
- `report`: a string containing the body of the report
|
| 28 |
+
- `summary`: a string containing the summary of the report
|
| 29 |
+
|
| 30 |
+
### Data Splits
|
| 31 |
+
|
| 32 |
+
This dataset has 3 splits: _train_, _validation_, and _test_. \
|
| 33 |
+
Token counts with a RoBERTa tokenizer.
|
| 34 |
+
|
| 35 |
+
| Dataset Split | Number of Instances | Avg. tokens |
|
| 36 |
+
| ------------- | --------------------|:----------------------|
|
| 37 |
+
| Train | 17,517 | < 9,000 / < 500 |
|
| 38 |
+
| Validation | 973 | < 9,000 / < 500 |
|
| 39 |
+
| Test | 973 | < 9,000 / < 500 |
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
# Cite original article
|
| 43 |
+
```
|
| 44 |
+
@misc{huang2021efficient,
|
| 45 |
+
title={Efficient Attentions for Long Document Summarization},
|
| 46 |
+
author={Luyang Huang and Shuyang Cao and Nikolaus Parulian and Heng Ji and Lu Wang},
|
| 47 |
+
year={2021},
|
| 48 |
+
eprint={2104.02112},
|
| 49 |
+
archivePrefix={arXiv},
|
| 50 |
+
primaryClass={cs.CL}
|
| 51 |
+
}
|
| 52 |
+
```
|
| 53 |
+
|