Search is not available for this dataset
age
int64 17
98
| job
class label 12
classes | marital
class label 4
classes | education
class label 8
classes | default
class label 3
classes | housing
class label 3
classes | loan
class label 3
classes | contact
class label 2
classes | month
class label 10
classes | day_of_week
class label 5
classes | duration
int64 0
4.92k
| campaign
int64 1
56
| pdays
int64 0
999
| previous
int64 0
7
| poutcome
class label 3
classes | emp.var.rate
float32 -3.4
1.4
| cons.price.idx
float32 92.2
94.8
| cons.conf.idx
float32 -50.8
-26.9
| euribor3m
float32 0.63
5.05
| nr.employed
float32 4.96k
5.23k
| y
class label 2
classes |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
56
| 3housemaid
| 1married
| 4basic.4y
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 261
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
57
| 7services
| 1married
| 7high.school
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 149
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
37
| 7services
| 1married
| 7high.school
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 226
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
40
| 0admin.
| 1married
| 5basic.6y
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 151
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
56
| 7services
| 1married
| 7high.school
| 0no
| 0no
| 1yes
| 1telephone
| 4may
| 0mon
| 307
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
45
| 7services
| 1married
| 6basic.9y
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 198
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
59
| 0admin.
| 1married
| 9professional.course
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 139
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
41
| 1blue-collar
| 1married
| 3unknown
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 217
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
24
| 9technician
| 2single
| 9professional.course
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 380
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
25
| 7services
| 2single
| 7high.school
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 50
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
41
| 1blue-collar
| 1married
| 3unknown
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 55
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
25
| 7services
| 2single
| 7high.school
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 222
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
29
| 1blue-collar
| 2single
| 7high.school
| 0no
| 0no
| 1yes
| 1telephone
| 4may
| 0mon
| 137
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
57
| 3housemaid
| 0divorced
| 4basic.4y
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 293
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
35
| 1blue-collar
| 1married
| 5basic.6y
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 146
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
54
| 5retired
| 1married
| 6basic.9y
| 2unknown
| 1yes
| 1yes
| 1telephone
| 4may
| 0mon
| 174
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
35
| 1blue-collar
| 1married
| 5basic.6y
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 312
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
46
| 1blue-collar
| 1married
| 5basic.6y
| 2unknown
| 1yes
| 1yes
| 1telephone
| 4may
| 0mon
| 440
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
50
| 1blue-collar
| 1married
| 6basic.9y
| 0no
| 1yes
| 1yes
| 1telephone
| 4may
| 0mon
| 353
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
39
| 4management
| 2single
| 6basic.9y
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 195
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
30
| 10unemployed
| 1married
| 7high.school
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 38
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
55
| 1blue-collar
| 1married
| 4basic.4y
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 262
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
55
| 5retired
| 2single
| 7high.school
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 342
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
41
| 9technician
| 2single
| 7high.school
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 181
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
37
| 0admin.
| 1married
| 7high.school
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 172
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
35
| 9technician
| 1married
| 10university.degree
| 0no
| 0no
| 1yes
| 1telephone
| 4may
| 0mon
| 99
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
59
| 9technician
| 1married
| 3unknown
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 93
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
39
| 6self-employed
| 1married
| 6basic.9y
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 233
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
54
| 9technician
| 2single
| 10university.degree
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 255
| 2
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
55
| 11unknown
| 1married
| 10university.degree
| 2unknown
| 2unknown
| 2unknown
| 1telephone
| 4may
| 0mon
| 362
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
46
| 0admin.
| 1married
| 3unknown
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 348
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
59
| 9technician
| 1married
| 3unknown
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 386
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
49
| 1blue-collar
| 1married
| 3unknown
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 73
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
54
| 4management
| 1married
| 4basic.4y
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 230
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
54
| 1blue-collar
| 0divorced
| 4basic.4y
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 208
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
55
| 11unknown
| 1married
| 4basic.4y
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 336
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
34
| 7services
| 1married
| 7high.school
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 365
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
52
| 9technician
| 1married
| 6basic.9y
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 1,666
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
41
| 0admin.
| 1married
| 10university.degree
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 577
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
56
| 9technician
| 1married
| 4basic.4y
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 137
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
58
| 4management
| 3unknown
| 10university.degree
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 366
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
32
| 2entrepreneur
| 1married
| 7high.school
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 314
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
38
| 0admin.
| 2single
| 9professional.course
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 160
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
57
| 0admin.
| 1married
| 10university.degree
| 0no
| 0no
| 1yes
| 1telephone
| 4may
| 0mon
| 212
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
44
| 0admin.
| 1married
| 10university.degree
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 188
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
42
| 9technician
| 2single
| 9professional.course
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 22
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
57
| 0admin.
| 1married
| 10university.degree
| 0no
| 1yes
| 1yes
| 1telephone
| 4may
| 0mon
| 616
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
40
| 1blue-collar
| 1married
| 6basic.9y
| 0no
| 0no
| 1yes
| 1telephone
| 4may
| 0mon
| 178
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
35
| 0admin.
| 1married
| 10university.degree
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 355
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
45
| 1blue-collar
| 1married
| 6basic.9y
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 225
| 2
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
54
| 0admin.
| 1married
| 7high.school
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 160
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
39
| 3housemaid
| 1married
| 4basic.4y
| 0no
| 0no
| 1yes
| 1telephone
| 4may
| 0mon
| 266
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
60
| 0admin.
| 1married
| 7high.school
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 253
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
53
| 0admin.
| 2single
| 9professional.course
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 179
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
55
| 1blue-collar
| 1married
| 4basic.4y
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 269
| 2
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
55
| 9technician
| 1married
| 9professional.course
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 135
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
50
| 4management
| 1married
| 10university.degree
| 2unknown
| 0no
| 1yes
| 1telephone
| 4may
| 0mon
| 161
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
45
| 7services
| 1married
| 7high.school
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 787
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
55
| 10unemployed
| 1married
| 9professional.course
| 2unknown
| 1yes
| 1yes
| 1telephone
| 4may
| 0mon
| 145
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
25
| 9technician
| 2single
| 10university.degree
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 174
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
47
| 2entrepreneur
| 1married
| 10university.degree
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 449
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
51
| 1blue-collar
| 1married
| 6basic.9y
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 812
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
42
| 1blue-collar
| 1married
| 5basic.6y
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 164
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
42
| 1blue-collar
| 1married
| 5basic.6y
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 366
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
48
| 0admin.
| 1married
| 7high.school
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 357
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
37
| 0admin.
| 1married
| 10university.degree
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 232
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
44
| 1blue-collar
| 2single
| 6basic.9y
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 91
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
33
| 0admin.
| 1married
| 3unknown
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 273
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
56
| 0admin.
| 1married
| 6basic.9y
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 158
| 2
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
44
| 1blue-collar
| 2single
| 4basic.4y
| 2unknown
| 1yes
| 1yes
| 1telephone
| 4may
| 0mon
| 177
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
41
| 4management
| 1married
| 5basic.6y
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 200
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
44
| 4management
| 0divorced
| 10university.degree
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 172
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
47
| 0admin.
| 1married
| 10university.degree
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 176
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
57
| 11unknown
| 1married
| 3unknown
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 211
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
37
| 0admin.
| 1married
| 10university.degree
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 214
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
41
| 1blue-collar
| 0divorced
| 4basic.4y
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 1,575
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 1yes
|
55
| 9technician
| 1married
| 10university.degree
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 349
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
33
| 7services
| 1married
| 7high.school
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 337
| 2
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
55
| 4management
| 1married
| 3unknown
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 272
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
42
| 1blue-collar
| 1married
| 6basic.9y
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 208
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
50
| 1blue-collar
| 1married
| 4basic.4y
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 193
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
51
| 1blue-collar
| 1married
| 4basic.4y
| 2unknown
| 2unknown
| 2unknown
| 1telephone
| 4may
| 0mon
| 212
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
38
| 0admin.
| 1married
| 7high.school
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 165
| 2
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
49
| 2entrepreneur
| 1married
| 10university.degree
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 1,042
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 1yes
|
38
| 9technician
| 2single
| 10university.degree
| 0no
| 0no
| 1yes
| 1telephone
| 4may
| 0mon
| 20
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
31
| 0admin.
| 0divorced
| 7high.school
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 246
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
41
| 4management
| 1married
| 5basic.6y
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 529
| 2
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
39
| 0admin.
| 1married
| 10university.degree
| 0no
| 1yes
| 1yes
| 1telephone
| 4may
| 0mon
| 192
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
49
| 9technician
| 1married
| 6basic.9y
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 1,467
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 1yes
|
34
| 0admin.
| 1married
| 7high.school
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 188
| 2
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
35
| 0admin.
| 1married
| 10university.degree
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 180
| 2
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
57
| 11unknown
| 1married
| 3unknown
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 48
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
60
| 0admin.
| 1married
| 3unknown
| 2unknown
| 0no
| 1yes
| 1telephone
| 4may
| 0mon
| 213
| 2
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
33
| 10unemployed
| 1married
| 6basic.9y
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 545
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
42
| 1blue-collar
| 1married
| 5basic.6y
| 0no
| 0no
| 1yes
| 1telephone
| 4may
| 0mon
| 583
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
45
| 7services
| 1married
| 9professional.course
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 221
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
42
| 4management
| 1married
| 10university.degree
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 426
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
53
| 0admin.
| 0divorced
| 10university.degree
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 287
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
37
| 9technician
| 2single
| 9professional.course
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 197
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
44
| 1blue-collar
| 1married
| 5basic.6y
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 257
| 1
| 999
| 0
| 4nonexistent
| 1.1
| 93.994003
| -36.400002
| 4.857
| 5,191
| 0no
|
End of preview. Expand
in Data Studio
Dataset Card for Bank Marketing (additional)
This dataset is a precise version of UCI Bank Marketing
We first created the default bank marketing dataset, as seen here. Then we further run the following Python script to create this additional portion.
# Define feature types
continuous_columns = ["age", "duration", "campaign", "pdays", "previous",
"emp.var.rate", "cons.price.idx", "cons.conf.idx",
"euribor3m", "nr.employed"]
categorical_columns = ["job", "marital", "education", "default", "housing", "loan",
"contact", "month", "day_of_week", "poutcome", "y"]
# Extract category mappings from the reference dataset (bank-additional)
category_mappings_additional = {col: reference_categories[col] for col in categorical_columns}
hf_features_additional = Features({
"age": Value("int64"),
"job": ClassLabel(names=category_mappings_additional["job"]),
"marital": ClassLabel(names=category_mappings_additional["marital"]),
"education": ClassLabel(names=category_mappings_additional["education"]),
"default": ClassLabel(names=category_mappings_additional["default"]),
"housing": ClassLabel(names=category_mappings_additional["housing"]),
"loan": ClassLabel(names=category_mappings_additional["loan"]),
"contact": ClassLabel(names=category_mappings_additional["contact"]),
"month": ClassLabel(names=category_mappings_additional["month"]),
"day_of_week": ClassLabel(names=category_mappings_additional["day_of_week"]),
"duration": Value("int64"),
"campaign": Value("int64"),
"pdays": Value("int64"),
"previous": Value("int64"),
"poutcome": ClassLabel(names=category_mappings_additional["poutcome"]),
"emp.var.rate": Value("float32"),
"cons.price.idx": Value("float32"),
"cons.conf.idx": Value("float32"),
"euribor3m": Value("float32"),
"nr.employed": Value("float32"),
"y": ClassLabel(names=category_mappings_additional["y"]) # Target column
})
# Convert pandas DataFrame to Hugging Face Dataset
hf_dataset_additional = Dataset.from_pandas(df_additional, features=hf_features_additional)
# Print dataset structure
print(hf_dataset_additional)
The printed output could look like
Dataset({
features: ['age', 'job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays', 'previous', 'poutcome', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed', 'y'],
num_rows: 41188
})
- Downloads last month
- 43