--- dataset_info: features: - name: age dtype: int64 - name: job dtype: class_label: names: '0': admin. '1': blue-collar '2': entrepreneur '3': housemaid '4': management '5': retired '6': self-employed '7': services '8': student '9': technician '10': unemployed '11': unknown - name: marital dtype: class_label: names: '0': divorced '1': married '2': single '3': unknown - name: education dtype: class_label: names: '0': primary '1': secondary '2': tertiary '3': unknown '4': basic.4y '5': basic.6y '6': basic.9y '7': high.school '8': illiterate '9': professional.course '10': university.degree - name: default dtype: class_label: names: '0': 'no' '1': 'yes' '2': unknown - name: housing dtype: class_label: names: '0': 'no' '1': 'yes' '2': unknown - name: loan dtype: class_label: names: '0': 'no' '1': 'yes' '2': unknown - name: contact dtype: class_label: names: '0': cellular '1': telephone '2': unknown - name: month dtype: class_label: names: '0': jan '1': feb '2': mar '3': apr '4': may '5': jun '6': jul '7': aug '8': sep '9': oct '10': nov '11': dec - name: day_of_week dtype: class_label: names: '0': mon '1': tue '2': wed '3': thu '4': fri - name: duration dtype: int64 - name: campaign dtype: int64 - name: pdays dtype: int64 - name: previous dtype: int64 - name: poutcome dtype: class_label: names: '0': failure '1': other '2': success '3': unknown '4': nonexistent - name: emp.var.rate dtype: float32 - name: cons.price.idx dtype: float32 - name: cons.conf.idx dtype: float32 - name: euribor3m dtype: float32 - name: nr.employed dtype: float32 - name: y dtype: class_label: names: '0': 'no' '1': 'yes' splits: - name: train num_bytes: 6095824 num_examples: 41188 download_size: 469576 dataset_size: 6095824 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for Bank Marketing (additional) This dataset is a precise version of [UCI Bank Marketing](https://archive.ics.uci.edu/dataset/222/bank+marketing) We first created the default bank marketing dataset, as seen [here](https://huggingface.co/datasets/cestwc/bank-marketing). Then we further run the following Python script to create this additional portion. ```python # Define feature types continuous_columns = ["age", "duration", "campaign", "pdays", "previous", "emp.var.rate", "cons.price.idx", "cons.conf.idx", "euribor3m", "nr.employed"] categorical_columns = ["job", "marital", "education", "default", "housing", "loan", "contact", "month", "day_of_week", "poutcome", "y"] # Extract category mappings from the reference dataset (bank-additional) category_mappings_additional = {col: reference_categories[col] for col in categorical_columns} hf_features_additional = Features({ "age": Value("int64"), "job": ClassLabel(names=category_mappings_additional["job"]), "marital": ClassLabel(names=category_mappings_additional["marital"]), "education": ClassLabel(names=category_mappings_additional["education"]), "default": ClassLabel(names=category_mappings_additional["default"]), "housing": ClassLabel(names=category_mappings_additional["housing"]), "loan": ClassLabel(names=category_mappings_additional["loan"]), "contact": ClassLabel(names=category_mappings_additional["contact"]), "month": ClassLabel(names=category_mappings_additional["month"]), "day_of_week": ClassLabel(names=category_mappings_additional["day_of_week"]), "duration": Value("int64"), "campaign": Value("int64"), "pdays": Value("int64"), "previous": Value("int64"), "poutcome": ClassLabel(names=category_mappings_additional["poutcome"]), "emp.var.rate": Value("float32"), "cons.price.idx": Value("float32"), "cons.conf.idx": Value("float32"), "euribor3m": Value("float32"), "nr.employed": Value("float32"), "y": ClassLabel(names=category_mappings_additional["y"]) # Target column }) # Convert pandas DataFrame to Hugging Face Dataset hf_dataset_additional = Dataset.from_pandas(df_additional, features=hf_features_additional) # Print dataset structure print(hf_dataset_additional) ``` The printed output could look like ``` Dataset({ features: ['age', 'job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays', 'previous', 'poutcome', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed', 'y'], num_rows: 41188 }) ```