Search is not available for this dataset
age
int64 17
90
| workclass
class label 9
classes | fnlwgt
int64 12.3k
1.48M
| education
class label 16
classes | education-num
int64 1
16
| marital-status
class label 7
classes | occupation
class label 15
classes | relationship
class label 6
classes | race
class label 5
classes | sex
class label 2
classes | capital-gain
int64 0
100k
| capital-loss
int64 0
4.36k
| hours-per-week
int64 1
99
| native-country
class label 42
classes | income
class label 2
classes |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
39
| 7State-gov
| 77,516
| 9Bachelors
| 13
| 4Never-married
| 1Adm-clerical
| 1Not-in-family
| 4White
| 1Male
| 2,174
| 0
| 40
| 39United-States
| 0<=50K
|
50
| 6Self-emp-not-inc
| 83,311
| 9Bachelors
| 13
| 2Married-civ-spouse
| 4Exec-managerial
| 0Husband
| 4White
| 1Male
| 0
| 0
| 13
| 39United-States
| 0<=50K
|
38
| 4Private
| 215,646
| 11HS-grad
| 9
| 0Divorced
| 6Handlers-cleaners
| 1Not-in-family
| 4White
| 1Male
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
53
| 4Private
| 234,721
| 111th
| 7
| 2Married-civ-spouse
| 6Handlers-cleaners
| 0Husband
| 2Black
| 1Male
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
28
| 4Private
| 338,409
| 9Bachelors
| 13
| 2Married-civ-spouse
| 10Prof-specialty
| 5Wife
| 2Black
| 0Female
| 0
| 0
| 40
| 5Cuba
| 0<=50K
|
37
| 4Private
| 284,582
| 12Masters
| 14
| 2Married-civ-spouse
| 4Exec-managerial
| 5Wife
| 4White
| 0Female
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
49
| 4Private
| 160,187
| 69th
| 5
| 3Married-spouse-absent
| 8Other-service
| 1Not-in-family
| 2Black
| 0Female
| 0
| 0
| 16
| 23Jamaica
| 0<=50K
|
52
| 6Self-emp-not-inc
| 209,642
| 11HS-grad
| 9
| 2Married-civ-spouse
| 4Exec-managerial
| 0Husband
| 4White
| 1Male
| 0
| 0
| 45
| 39United-States
| 1>50K
|
31
| 4Private
| 45,781
| 12Masters
| 14
| 4Never-married
| 10Prof-specialty
| 1Not-in-family
| 4White
| 0Female
| 14,084
| 0
| 50
| 39United-States
| 1>50K
|
42
| 4Private
| 159,449
| 9Bachelors
| 13
| 2Married-civ-spouse
| 4Exec-managerial
| 0Husband
| 4White
| 1Male
| 5,178
| 0
| 40
| 39United-States
| 1>50K
|
37
| 4Private
| 280,464
| 15Some-college
| 10
| 2Married-civ-spouse
| 4Exec-managerial
| 0Husband
| 2Black
| 1Male
| 0
| 0
| 80
| 39United-States
| 1>50K
|
30
| 7State-gov
| 141,297
| 9Bachelors
| 13
| 2Married-civ-spouse
| 10Prof-specialty
| 0Husband
| 1Asian-Pac-Islander
| 1Male
| 0
| 0
| 40
| 19India
| 1>50K
|
23
| 4Private
| 122,272
| 9Bachelors
| 13
| 4Never-married
| 1Adm-clerical
| 3Own-child
| 4White
| 0Female
| 0
| 0
| 30
| 39United-States
| 0<=50K
|
32
| 4Private
| 205,019
| 7Assoc-acdm
| 12
| 4Never-married
| 12Sales
| 1Not-in-family
| 2Black
| 1Male
| 0
| 0
| 50
| 39United-States
| 0<=50K
|
40
| 4Private
| 121,772
| 8Assoc-voc
| 11
| 2Married-civ-spouse
| 3Craft-repair
| 0Husband
| 1Asian-Pac-Islander
| 1Male
| 0
| 0
| 40
| 0?
| 1>50K
|
34
| 4Private
| 245,487
| 57th-8th
| 4
| 2Married-civ-spouse
| 14Transport-moving
| 0Husband
| 0Amer-Indian-Eskimo
| 1Male
| 0
| 0
| 45
| 26Mexico
| 0<=50K
|
25
| 6Self-emp-not-inc
| 176,756
| 11HS-grad
| 9
| 4Never-married
| 5Farming-fishing
| 3Own-child
| 4White
| 1Male
| 0
| 0
| 35
| 39United-States
| 0<=50K
|
32
| 4Private
| 186,824
| 11HS-grad
| 9
| 4Never-married
| 7Machine-op-inspct
| 4Unmarried
| 4White
| 1Male
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
38
| 4Private
| 28,887
| 111th
| 7
| 2Married-civ-spouse
| 12Sales
| 0Husband
| 4White
| 1Male
| 0
| 0
| 50
| 39United-States
| 0<=50K
|
43
| 6Self-emp-not-inc
| 292,175
| 12Masters
| 14
| 0Divorced
| 4Exec-managerial
| 4Unmarried
| 4White
| 0Female
| 0
| 0
| 45
| 39United-States
| 1>50K
|
40
| 4Private
| 193,524
| 10Doctorate
| 16
| 2Married-civ-spouse
| 10Prof-specialty
| 0Husband
| 4White
| 1Male
| 0
| 0
| 60
| 39United-States
| 1>50K
|
54
| 4Private
| 302,146
| 11HS-grad
| 9
| 5Separated
| 8Other-service
| 4Unmarried
| 2Black
| 0Female
| 0
| 0
| 20
| 39United-States
| 0<=50K
|
35
| 1Federal-gov
| 76,845
| 69th
| 5
| 2Married-civ-spouse
| 5Farming-fishing
| 0Husband
| 2Black
| 1Male
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
43
| 4Private
| 117,037
| 111th
| 7
| 2Married-civ-spouse
| 14Transport-moving
| 0Husband
| 4White
| 1Male
| 0
| 2,042
| 40
| 39United-States
| 0<=50K
|
59
| 4Private
| 109,015
| 11HS-grad
| 9
| 0Divorced
| 13Tech-support
| 4Unmarried
| 4White
| 0Female
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
56
| 2Local-gov
| 216,851
| 9Bachelors
| 13
| 2Married-civ-spouse
| 13Tech-support
| 0Husband
| 4White
| 1Male
| 0
| 0
| 40
| 39United-States
| 1>50K
|
19
| 4Private
| 168,294
| 11HS-grad
| 9
| 4Never-married
| 3Craft-repair
| 3Own-child
| 4White
| 1Male
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
54
| 0?
| 180,211
| 15Some-college
| 10
| 2Married-civ-spouse
| 0?
| 0Husband
| 1Asian-Pac-Islander
| 1Male
| 0
| 0
| 60
| 35South
| 1>50K
|
39
| 4Private
| 367,260
| 11HS-grad
| 9
| 0Divorced
| 4Exec-managerial
| 1Not-in-family
| 4White
| 1Male
| 0
| 0
| 80
| 39United-States
| 0<=50K
|
49
| 4Private
| 193,366
| 11HS-grad
| 9
| 2Married-civ-spouse
| 3Craft-repair
| 0Husband
| 4White
| 1Male
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
23
| 2Local-gov
| 190,709
| 7Assoc-acdm
| 12
| 4Never-married
| 11Protective-serv
| 1Not-in-family
| 4White
| 1Male
| 0
| 0
| 52
| 39United-States
| 0<=50K
|
20
| 4Private
| 266,015
| 15Some-college
| 10
| 4Never-married
| 12Sales
| 3Own-child
| 2Black
| 1Male
| 0
| 0
| 44
| 39United-States
| 0<=50K
|
45
| 4Private
| 386,940
| 9Bachelors
| 13
| 0Divorced
| 4Exec-managerial
| 3Own-child
| 4White
| 1Male
| 0
| 1,408
| 40
| 39United-States
| 0<=50K
|
30
| 1Federal-gov
| 59,951
| 15Some-college
| 10
| 2Married-civ-spouse
| 1Adm-clerical
| 3Own-child
| 4White
| 1Male
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
22
| 7State-gov
| 311,512
| 15Some-college
| 10
| 2Married-civ-spouse
| 8Other-service
| 0Husband
| 2Black
| 1Male
| 0
| 0
| 15
| 39United-States
| 0<=50K
|
48
| 4Private
| 242,406
| 111th
| 7
| 4Never-married
| 7Machine-op-inspct
| 4Unmarried
| 4White
| 1Male
| 0
| 0
| 40
| 33Puerto-Rico
| 0<=50K
|
21
| 4Private
| 197,200
| 15Some-college
| 10
| 4Never-married
| 7Machine-op-inspct
| 3Own-child
| 4White
| 1Male
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
19
| 4Private
| 544,091
| 11HS-grad
| 9
| 1Married-AF-spouse
| 1Adm-clerical
| 5Wife
| 4White
| 0Female
| 0
| 0
| 25
| 39United-States
| 0<=50K
|
31
| 4Private
| 84,154
| 15Some-college
| 10
| 2Married-civ-spouse
| 12Sales
| 0Husband
| 4White
| 1Male
| 0
| 0
| 38
| 0?
| 1>50K
|
48
| 6Self-emp-not-inc
| 265,477
| 7Assoc-acdm
| 12
| 2Married-civ-spouse
| 10Prof-specialty
| 0Husband
| 4White
| 1Male
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
31
| 4Private
| 507,875
| 69th
| 5
| 2Married-civ-spouse
| 7Machine-op-inspct
| 0Husband
| 4White
| 1Male
| 0
| 0
| 43
| 39United-States
| 0<=50K
|
53
| 6Self-emp-not-inc
| 88,506
| 9Bachelors
| 13
| 2Married-civ-spouse
| 10Prof-specialty
| 0Husband
| 4White
| 1Male
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
24
| 4Private
| 172,987
| 9Bachelors
| 13
| 2Married-civ-spouse
| 13Tech-support
| 0Husband
| 4White
| 1Male
| 0
| 0
| 50
| 39United-States
| 0<=50K
|
49
| 4Private
| 94,638
| 11HS-grad
| 9
| 5Separated
| 1Adm-clerical
| 4Unmarried
| 4White
| 0Female
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
25
| 4Private
| 289,980
| 11HS-grad
| 9
| 4Never-married
| 6Handlers-cleaners
| 1Not-in-family
| 4White
| 1Male
| 0
| 0
| 35
| 39United-States
| 0<=50K
|
57
| 1Federal-gov
| 337,895
| 9Bachelors
| 13
| 2Married-civ-spouse
| 10Prof-specialty
| 0Husband
| 2Black
| 1Male
| 0
| 0
| 40
| 39United-States
| 1>50K
|
53
| 4Private
| 144,361
| 11HS-grad
| 9
| 2Married-civ-spouse
| 7Machine-op-inspct
| 0Husband
| 4White
| 1Male
| 0
| 0
| 38
| 39United-States
| 0<=50K
|
44
| 4Private
| 128,354
| 12Masters
| 14
| 0Divorced
| 4Exec-managerial
| 4Unmarried
| 4White
| 0Female
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
41
| 7State-gov
| 101,603
| 8Assoc-voc
| 11
| 2Married-civ-spouse
| 3Craft-repair
| 0Husband
| 4White
| 1Male
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
29
| 4Private
| 271,466
| 8Assoc-voc
| 11
| 4Never-married
| 10Prof-specialty
| 1Not-in-family
| 4White
| 1Male
| 0
| 0
| 43
| 39United-States
| 0<=50K
|
25
| 4Private
| 32,275
| 15Some-college
| 10
| 2Married-civ-spouse
| 4Exec-managerial
| 5Wife
| 3Other
| 0Female
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
18
| 4Private
| 226,956
| 11HS-grad
| 9
| 4Never-married
| 8Other-service
| 3Own-child
| 4White
| 0Female
| 0
| 0
| 30
| 0?
| 0<=50K
|
47
| 4Private
| 51,835
| 14Prof-school
| 15
| 2Married-civ-spouse
| 10Prof-specialty
| 5Wife
| 4White
| 0Female
| 0
| 1,902
| 60
| 16Honduras
| 1>50K
|
50
| 1Federal-gov
| 251,585
| 9Bachelors
| 13
| 0Divorced
| 4Exec-managerial
| 1Not-in-family
| 4White
| 1Male
| 0
| 0
| 55
| 39United-States
| 1>50K
|
47
| 5Self-emp-inc
| 109,832
| 11HS-grad
| 9
| 0Divorced
| 4Exec-managerial
| 1Not-in-family
| 4White
| 1Male
| 0
| 0
| 60
| 39United-States
| 0<=50K
|
43
| 4Private
| 237,993
| 15Some-college
| 10
| 2Married-civ-spouse
| 13Tech-support
| 0Husband
| 4White
| 1Male
| 0
| 0
| 40
| 39United-States
| 1>50K
|
46
| 4Private
| 216,666
| 45th-6th
| 3
| 2Married-civ-spouse
| 7Machine-op-inspct
| 0Husband
| 4White
| 1Male
| 0
| 0
| 40
| 26Mexico
| 0<=50K
|
35
| 4Private
| 56,352
| 8Assoc-voc
| 11
| 2Married-civ-spouse
| 8Other-service
| 0Husband
| 4White
| 1Male
| 0
| 0
| 40
| 33Puerto-Rico
| 0<=50K
|
41
| 4Private
| 147,372
| 11HS-grad
| 9
| 2Married-civ-spouse
| 1Adm-clerical
| 0Husband
| 4White
| 1Male
| 0
| 0
| 48
| 39United-States
| 0<=50K
|
30
| 4Private
| 188,146
| 11HS-grad
| 9
| 2Married-civ-spouse
| 7Machine-op-inspct
| 0Husband
| 4White
| 1Male
| 5,013
| 0
| 40
| 39United-States
| 0<=50K
|
30
| 4Private
| 59,496
| 9Bachelors
| 13
| 2Married-civ-spouse
| 12Sales
| 0Husband
| 4White
| 1Male
| 2,407
| 0
| 40
| 39United-States
| 0<=50K
|
32
| 0?
| 293,936
| 57th-8th
| 4
| 3Married-spouse-absent
| 0?
| 1Not-in-family
| 4White
| 1Male
| 0
| 0
| 40
| 0?
| 0<=50K
|
48
| 4Private
| 149,640
| 11HS-grad
| 9
| 2Married-civ-spouse
| 14Transport-moving
| 0Husband
| 4White
| 1Male
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
42
| 4Private
| 116,632
| 10Doctorate
| 16
| 2Married-civ-spouse
| 10Prof-specialty
| 0Husband
| 4White
| 1Male
| 0
| 0
| 45
| 39United-States
| 1>50K
|
29
| 4Private
| 105,598
| 15Some-college
| 10
| 0Divorced
| 13Tech-support
| 1Not-in-family
| 4White
| 1Male
| 0
| 0
| 58
| 39United-States
| 0<=50K
|
36
| 4Private
| 155,537
| 11HS-grad
| 9
| 2Married-civ-spouse
| 3Craft-repair
| 0Husband
| 4White
| 1Male
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
28
| 4Private
| 183,175
| 15Some-college
| 10
| 0Divorced
| 1Adm-clerical
| 1Not-in-family
| 4White
| 0Female
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
53
| 4Private
| 169,846
| 11HS-grad
| 9
| 2Married-civ-spouse
| 1Adm-clerical
| 5Wife
| 4White
| 0Female
| 0
| 0
| 40
| 39United-States
| 1>50K
|
49
| 5Self-emp-inc
| 191,681
| 15Some-college
| 10
| 2Married-civ-spouse
| 4Exec-managerial
| 0Husband
| 4White
| 1Male
| 0
| 0
| 50
| 39United-States
| 1>50K
|
25
| 0?
| 200,681
| 15Some-college
| 10
| 4Never-married
| 0?
| 3Own-child
| 4White
| 1Male
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
19
| 4Private
| 101,509
| 15Some-college
| 10
| 4Never-married
| 10Prof-specialty
| 3Own-child
| 4White
| 1Male
| 0
| 0
| 32
| 39United-States
| 0<=50K
|
31
| 4Private
| 309,974
| 9Bachelors
| 13
| 5Separated
| 12Sales
| 3Own-child
| 2Black
| 0Female
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
29
| 6Self-emp-not-inc
| 162,298
| 9Bachelors
| 13
| 2Married-civ-spouse
| 12Sales
| 0Husband
| 4White
| 1Male
| 0
| 0
| 70
| 39United-States
| 1>50K
|
23
| 4Private
| 211,678
| 15Some-college
| 10
| 4Never-married
| 7Machine-op-inspct
| 1Not-in-family
| 4White
| 1Male
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
79
| 4Private
| 124,744
| 15Some-college
| 10
| 2Married-civ-spouse
| 10Prof-specialty
| 2Other-relative
| 4White
| 1Male
| 0
| 0
| 20
| 39United-States
| 0<=50K
|
27
| 4Private
| 213,921
| 11HS-grad
| 9
| 4Never-married
| 8Other-service
| 3Own-child
| 4White
| 1Male
| 0
| 0
| 40
| 26Mexico
| 0<=50K
|
40
| 4Private
| 32,214
| 7Assoc-acdm
| 12
| 2Married-civ-spouse
| 1Adm-clerical
| 0Husband
| 4White
| 1Male
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
67
| 0?
| 212,759
| 010th
| 6
| 2Married-civ-spouse
| 0?
| 0Husband
| 4White
| 1Male
| 0
| 0
| 2
| 39United-States
| 0<=50K
|
18
| 4Private
| 309,634
| 111th
| 7
| 4Never-married
| 8Other-service
| 3Own-child
| 4White
| 0Female
| 0
| 0
| 22
| 39United-States
| 0<=50K
|
31
| 2Local-gov
| 125,927
| 57th-8th
| 4
| 2Married-civ-spouse
| 5Farming-fishing
| 0Husband
| 4White
| 1Male
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
18
| 4Private
| 446,839
| 11HS-grad
| 9
| 4Never-married
| 12Sales
| 1Not-in-family
| 4White
| 1Male
| 0
| 0
| 30
| 39United-States
| 0<=50K
|
52
| 4Private
| 276,515
| 9Bachelors
| 13
| 2Married-civ-spouse
| 8Other-service
| 0Husband
| 4White
| 1Male
| 0
| 0
| 40
| 5Cuba
| 0<=50K
|
46
| 4Private
| 51,618
| 11HS-grad
| 9
| 2Married-civ-spouse
| 8Other-service
| 5Wife
| 4White
| 0Female
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
59
| 4Private
| 159,937
| 11HS-grad
| 9
| 2Married-civ-spouse
| 12Sales
| 0Husband
| 4White
| 1Male
| 0
| 0
| 48
| 39United-States
| 0<=50K
|
44
| 4Private
| 343,591
| 11HS-grad
| 9
| 0Divorced
| 3Craft-repair
| 1Not-in-family
| 4White
| 0Female
| 14,344
| 0
| 40
| 39United-States
| 1>50K
|
53
| 4Private
| 346,253
| 11HS-grad
| 9
| 0Divorced
| 12Sales
| 3Own-child
| 4White
| 0Female
| 0
| 0
| 35
| 39United-States
| 0<=50K
|
49
| 2Local-gov
| 268,234
| 11HS-grad
| 9
| 2Married-civ-spouse
| 11Protective-serv
| 0Husband
| 4White
| 1Male
| 0
| 0
| 40
| 39United-States
| 1>50K
|
33
| 4Private
| 202,051
| 12Masters
| 14
| 2Married-civ-spouse
| 10Prof-specialty
| 0Husband
| 4White
| 1Male
| 0
| 0
| 50
| 39United-States
| 0<=50K
|
30
| 4Private
| 54,334
| 69th
| 5
| 4Never-married
| 12Sales
| 1Not-in-family
| 4White
| 1Male
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
43
| 1Federal-gov
| 410,867
| 10Doctorate
| 16
| 4Never-married
| 10Prof-specialty
| 1Not-in-family
| 4White
| 0Female
| 0
| 0
| 50
| 39United-States
| 1>50K
|
57
| 4Private
| 249,977
| 8Assoc-voc
| 11
| 2Married-civ-spouse
| 10Prof-specialty
| 0Husband
| 4White
| 1Male
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
37
| 4Private
| 286,730
| 15Some-college
| 10
| 0Divorced
| 3Craft-repair
| 4Unmarried
| 4White
| 0Female
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
28
| 4Private
| 212,563
| 15Some-college
| 10
| 0Divorced
| 7Machine-op-inspct
| 4Unmarried
| 2Black
| 0Female
| 0
| 0
| 25
| 39United-States
| 0<=50K
|
30
| 4Private
| 117,747
| 11HS-grad
| 9
| 2Married-civ-spouse
| 12Sales
| 5Wife
| 1Asian-Pac-Islander
| 0Female
| 0
| 1,573
| 35
| 0?
| 0<=50K
|
34
| 2Local-gov
| 226,296
| 9Bachelors
| 13
| 2Married-civ-spouse
| 11Protective-serv
| 0Husband
| 4White
| 1Male
| 0
| 0
| 40
| 39United-States
| 1>50K
|
29
| 2Local-gov
| 115,585
| 15Some-college
| 10
| 4Never-married
| 6Handlers-cleaners
| 1Not-in-family
| 4White
| 1Male
| 0
| 0
| 50
| 39United-States
| 0<=50K
|
48
| 6Self-emp-not-inc
| 191,277
| 10Doctorate
| 16
| 2Married-civ-spouse
| 10Prof-specialty
| 0Husband
| 4White
| 1Male
| 0
| 1,902
| 60
| 39United-States
| 1>50K
|
37
| 4Private
| 202,683
| 15Some-college
| 10
| 2Married-civ-spouse
| 12Sales
| 0Husband
| 4White
| 1Male
| 0
| 0
| 48
| 39United-States
| 1>50K
|
48
| 4Private
| 171,095
| 7Assoc-acdm
| 12
| 0Divorced
| 4Exec-managerial
| 4Unmarried
| 4White
| 0Female
| 0
| 0
| 40
| 9England
| 0<=50K
|
32
| 1Federal-gov
| 249,409
| 11HS-grad
| 9
| 4Never-married
| 8Other-service
| 3Own-child
| 2Black
| 1Male
| 0
| 0
| 40
| 39United-States
| 0<=50K
|
End of preview. Expand
in Data Studio
Dataset Card for Census Income (Adult)
This dataset is a precise version of Adult or Census Income. This dataset from UCI somehow happens to occupy two links, but we checked and confirm that they are identical.
We used the following python script to create this Hugging Face dataset.
import pandas as pd
from datasets import Dataset, DatasetDict, Features, Value, ClassLabel
# URLs
url1 = "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data"
url2 = "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test"
# Column names
columns = [
"age", "workclass", "fnlwgt", "education", "education-num", "marital-status",
"occupation", "relationship", "race", "sex", "capital-gain", "capital-loss",
"hours-per-week", "native-country", "income"
]
# Load datasets
df_train = pd.read_csv(url1, names=columns, skipinitialspace=True)
df_test = pd.read_csv(url2, names=columns, skipinitialspace=True, skiprows=1)
# Convert continuous columns to float
continuous_columns = ["age", "fnlwgt", "education-num", "capital-gain", "capital-loss", "hours-per-week"]
for col in continuous_columns:
df_train[col] = pd.to_numeric(df_train[col], errors='coerce')
df_test[col] = pd.to_numeric(df_test[col], errors='coerce')
df_test['income'] = df_test['income'].str.rstrip('.') # This is somewhat critical.
# Define categorical columns
categorical_columns = [
"workclass", "education", "marital-status", "occupation", "relationship",
"race", "sex", "native-country", "income"
]
# Dictionary to store category mappings
category_mappings = {}
for col in categorical_columns:
# Convert train column to category and extract categories
df_train[col] = df_train[col].astype("category")
category_mappings[col] = df_train[col].cat.categories.to_list() # Store category order
# Apply the same category mapping to test
df_test[col] = pd.Categorical(df_test[col], categories=category_mappings[col])
# Convert to integer codes
df_train[col] = df_train[col].cat.codes
df_test[col] = df_test[col].cat.codes
# Define Hugging Face dataset schema
hf_features = Features({
"age": Value("int64"),
"workclass": ClassLabel(names=category_mappings["workclass"]),
"fnlwgt": Value("int64"),
"education": ClassLabel(names=category_mappings["education"]),
"education-num": Value("int64"),
"marital-status": ClassLabel(names=category_mappings["marital-status"]),
"occupation": ClassLabel(names=category_mappings["occupation"]),
"relationship": ClassLabel(names=category_mappings["relationship"]),
"race": ClassLabel(names=category_mappings["race"]),
"sex": ClassLabel(names=category_mappings["sex"]),
"capital-gain": Value("int64"),
"capital-loss": Value("int64"),
"hours-per-week": Value("int64"),
"native-country": ClassLabel(names=category_mappings["native-country"]),
"income": ClassLabel(names=category_mappings["income"])
})
# Convert pandas DataFrame to Hugging Face Dataset
hf_train = Dataset.from_pandas(df_train, features=hf_features)
hf_test = Dataset.from_pandas(df_test, features=hf_features)
# Create a dataset dictionary
hf_dataset = DatasetDict({
"train": hf_train,
"test": hf_test
})
# Print dataset structure
print(hf_dataset)
The printed output could look like
DatasetDict({
train: Dataset({
features: ['age', 'workclass', 'fnlwgt', 'education', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'income'],
num_rows: 32561
})
test: Dataset({
features: ['age', 'workclass', 'fnlwgt', 'education', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'income'],
num_rows: 16281
})
})
- Downloads last month
- 18