cestwc commited on
Commit
9ddda2b
·
verified ·
1 Parent(s): 626b010

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -12
README.md CHANGED
@@ -644,26 +644,39 @@ We used the following python script to create this Hugging Face dataset.
644
 
645
  ```python
646
  # Load the dataset into a pandas DataFrame
647
-
648
  import pandas as pd
649
  df_compas = pd.read_csv("https://github.com/propublica/compas-analysis/raw/master/compas-scores-two-years.csv")
650
 
651
  from datasets import Dataset, DatasetDict, Features, Value, ClassLabel
652
 
653
  # Define continuous (numerical) and categorical columns
654
- categorical_columns = [
655
  "sex", "age_cat", "race", "c_charge_degree", "c_charge_desc", "is_recid",
656
  "r_charge_degree", "violent_recid", "is_violent_recid", "vr_charge_degree",
657
  "type_of_assessment", "score_text", "v_type_of_assessment", "v_score_text",
658
  "event", "two_year_recid"
659
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
660
 
661
- string_columns = [
662
- "name", "first", "last",
663
- "compas_screening_date", "dob", "c_jail_in", "c_jail_out", "c_offense_date",
664
- "c_arrest_date", "r_offense_date", "r_jail_in", "r_jail_out", "vr_offense_date",
665
- "screening_date", "v_screening_date", "start", "end", 'c_case_number', 'r_case_number', 'r_charge_desc'
666
- ]
667
 
668
  # Convert categorical columns to category type and store mappings
669
  category_mappings = {}
@@ -672,8 +685,7 @@ for col in categorical_columns:
672
 
673
  # Define Hugging Face dataset schema
674
  hf_features = Features({
675
- **{col: ClassLabel(names=category_mappings[col]) for col in categorical_columns},
676
- **{col: Value("string") for col in list(df_compas.columns) if col not in categorical_columns}
677
  })
678
 
679
  # Create a dataset dictionary
@@ -690,7 +702,7 @@ The printed output could look like
690
  ```
691
  DatasetDict({
692
  train: Dataset({
693
- features: ['sex', 'age_cat', 'race', 'c_charge_degree', 'c_charge_desc', 'is_recid', 'r_charge_degree', 'violent_recid', 'is_violent_recid', 'vr_charge_degree', 'type_of_assessment', 'score_text', 'v_type_of_assessment', 'v_score_text', 'event', 'two_year_recid', 'id', 'name', 'first', 'last', 'compas_screening_date', 'dob', 'age', 'juv_fel_count', 'decile_score', 'juv_misd_count', 'juv_other_count', 'priors_count', 'days_b_screening_arrest', 'c_jail_in', 'c_jail_out', 'c_case_number', 'c_offense_date', 'c_arrest_date', 'c_days_from_compas', 'r_case_number', 'r_days_from_arrest', 'r_offense_date', 'r_charge_desc', 'r_jail_in', 'r_jail_out', 'vr_case_number', 'vr_offense_date', 'vr_charge_desc', 'decile_score.1', 'screening_date', 'v_decile_score', 'v_screening_date', 'in_custody', 'out_custody', 'priors_count.1', 'start', 'end'],
694
  num_rows: 7214
695
  })
696
  })
 
644
 
645
  ```python
646
  # Load the dataset into a pandas DataFrame
 
647
  import pandas as pd
648
  df_compas = pd.read_csv("https://github.com/propublica/compas-analysis/raw/master/compas-scores-two-years.csv")
649
 
650
  from datasets import Dataset, DatasetDict, Features, Value, ClassLabel
651
 
652
  # Define continuous (numerical) and categorical columns
653
+ categorical_columns = {
654
  "sex", "age_cat", "race", "c_charge_degree", "c_charge_desc", "is_recid",
655
  "r_charge_degree", "violent_recid", "is_violent_recid", "vr_charge_degree",
656
  "type_of_assessment", "score_text", "v_type_of_assessment", "v_score_text",
657
  "event", "two_year_recid"
658
+ }
659
+
660
+ string_columns = {'c_case_number',
661
+ 'first',
662
+ 'last',
663
+ 'name',
664
+ 'r_case_number',
665
+ 'r_charge_desc',
666
+ 'violent_recid',
667
+ 'vr_case_number',
668
+ 'vr_charge_desc',
669
+ 'c_jail_in', 'c_jail_out'
670
+ }
671
+
672
+ date_columns = {'compas_screening_date',
673
+ 'c_offense_date',
674
+ 'c_arrest_date',
675
+ 'r_offense_date',
676
+ 'vr_offense_date',
677
+ 'screening_date',
678
+ 'v_screening_date','dob', 'r_jail_in', 'r_jail_out', 'in_custody', 'out_custody'}
679
 
 
 
 
 
 
 
680
 
681
  # Convert categorical columns to category type and store mappings
682
  category_mappings = {}
 
685
 
686
  # Define Hugging Face dataset schema
687
  hf_features = Features({
688
+ col: Value("date32") if col in date_columns else Value("string") if col in string_columns else ClassLabel(names=category_mappings[col]) if col in categorical_columns else Value("int64") for col in df_compas.columns
 
689
  })
690
 
691
  # Create a dataset dictionary
 
702
  ```
703
  DatasetDict({
704
  train: Dataset({
705
+ features: ['id', 'name', 'first', 'last', 'compas_screening_date', 'sex', 'dob', 'age', 'age_cat', 'race', 'juv_fel_count', 'decile_score', 'juv_misd_count', 'juv_other_count', 'priors_count', 'days_b_screening_arrest', 'c_jail_in', 'c_jail_out', 'c_case_number', 'c_offense_date', 'c_arrest_date', 'c_days_from_compas', 'c_charge_degree', 'c_charge_desc', 'is_recid', 'r_case_number', 'r_charge_degree', 'r_days_from_arrest', 'r_offense_date', 'r_charge_desc', 'r_jail_in', 'r_jail_out', 'violent_recid', 'is_violent_recid', 'vr_case_number', 'vr_charge_degree', 'vr_offense_date', 'vr_charge_desc', 'type_of_assessment', 'decile_score.1', 'score_text', 'screening_date', 'v_type_of_assessment', 'v_decile_score', 'v_score_text', 'v_screening_date', 'in_custody', 'out_custody', 'priors_count.1', 'start', 'end', 'event', 'two_year_recid'],
706
  num_rows: 7214
707
  })
708
  })