|
|
|
|
|
|
|
|
import pandas as pd |
|
|
import numpy as np |
|
|
import matplotlib.pyplot as plt |
|
|
from rdkit.Chem import AllChem |
|
|
from sklearn import model_selection, metrics |
|
|
import pyarrow as pa |
|
|
import shap |
|
|
|
|
|
import h2o |
|
|
from h2o.automl import H2OAutoML |
|
|
|
|
|
|
|
|
file_path = 'data/Prepared_Data.csv' |
|
|
ohe_df = pd.read_csv(file_path) |
|
|
print("OHE DF Shape: ", ohe_df.shape) |
|
|
|
|
|
|
|
|
X = ohe_df.drop(columns=["yield"]).values |
|
|
y = ohe_df["yield"].values |
|
|
|
|
|
|
|
|
print("Shapes of input and output arrays:") |
|
|
print("X size: ", X.shape, ", Y size: ", y.shape) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_X_train, X_test, _y_train, y_test = model_selection.train_test_split(X, y, test_size=0.3, random_state=0) |
|
|
X_train, X_valid, y_train, y_valid = model_selection.train_test_split( |
|
|
_X_train, _y_train, test_size=(0.1 / 0.7), shuffle=False |
|
|
) |
|
|
|
|
|
|
|
|
print("X_train size: ", X_train.shape, ", y_train size: ", y_train.shape) |
|
|
print("X_valid size: ", X_valid.shape, ", y_valid size: ", y_valid.shape) |
|
|
print("X_test size: ", X_test.shape, ", y_test size: ", y_test.shape) |
|
|
print("Is length of data frame equal to sum of split data set lengths?", |
|
|
len(ohe_df) == X_train.shape[0] + X_valid.shape[0] + X_test.shape[0]) |
|
|
|
|
|
print("X_train_Dataset", X_train[0:20]) |
|
|
print("Y_train_Dataset", y_train[0:20]) |
|
|
|
|
|
h2o.init(nthreads=-1) |
|
|
|
|
|
|
|
|
data_train_df = pd.DataFrame(X_train) |
|
|
data_train_df['yield'] = y_train |
|
|
|
|
|
print("Length Data Train", data_train_df.shape) |
|
|
|
|
|
|
|
|
data_train_df = data_train_df[0:250] |
|
|
|
|
|
|
|
|
h2o_data_train = h2o.H2OFrame(data_train_df) |
|
|
|
|
|
|
|
|
target = "yield" |
|
|
features = [col for col in h2o_data_train.columns if col != target] |
|
|
|
|
|
|
|
|
|
|
|
aml = H2OAutoML(max_models=8, exclude_algos=['StackedEnsemble']) |
|
|
aml.train(x= features, y= target, training_frame= h2o_data_train) |
|
|
|
|
|
|
|
|
lb = aml.leaderboard |
|
|
print(lb.head(rows=lb.nrows)) |
|
|
|
|
|
|
|
|
best_model = aml.leader |
|
|
|
|
|
|
|
|
background_frame = h2o_data_train[0:100] |
|
|
|
|
|
|
|
|
|
|
|
sample_data_train = h2o_data_train |
|
|
|
|
|
|
|
|
shap_values = best_model.predict_contributions(sample_data_train, background_frame=background_frame) |
|
|
|
|
|
|
|
|
shap_df = shap_values.as_data_frame(use_pandas=True, use_multi_thread=True) |
|
|
print("shap_df", shap_df[0:3]) |
|
|
|
|
|
|
|
|
if 'BiasTerm' in shap_df.columns: |
|
|
shap_df = shap_df.drop('BiasTerm', axis=1) |
|
|
|
|
|
print("Original SHAP DataFrame columns:", shap_df.columns) |
|
|
|
|
|
|
|
|
def consolidate_shap_columns(shap_df): |
|
|
|
|
|
shap_df.columns = shap_df.columns.str.replace(r'\.(True|False|Missing <math><mrow><mi>N</mi><mi>A</mi></mrow></math>)$', '', regex=True) |
|
|
|
|
|
shap_df = shap_df.loc[:, ~shap_df.columns.duplicated()] |
|
|
return shap_df |
|
|
|
|
|
|
|
|
shap_df = consolidate_shap_columns(shap_df) |
|
|
print("Cleaned SHAP Columns", shap_df.columns) |
|
|
|
|
|
|
|
|
df_train_pandas = h2o_data_train.as_data_frame(use_pandas=True, use_multi_thread=True) |
|
|
|
|
|
|
|
|
feature_columns = [col for col in df_train_pandas.columns if col != 'yield'] |
|
|
print("Feature columns", feature_columns) |
|
|
|
|
|
|
|
|
shap_df = shap_df[feature_columns] |
|
|
|
|
|
print("Original data columns:") |
|
|
print(df_train_pandas.columns) |
|
|
print("SHAP data columns:") |
|
|
print(shap_df.columns) |
|
|
|
|
|
|
|
|
df_train_pandas = df_train_pandas.drop(columns=["yield"]) |
|
|
|
|
|
|
|
|
assert list(shap_df.columns) == list(df_train_pandas.columns), "Feature columns do not match between SHAP values and data" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
shap.summary_plot(shap_df.values, df_train_pandas, plot_type="bar") |
|
|
|
|
|
|
|
|
shap.summary_plot(shap_df.values, df_train_pandas) |
|
|
|
|
|
|
|
|
plt.tight_layout() |
|
|
plt.show() |
|
|
plt.savefig("SHAP_Analysis_Summary.png") |
|
|
|
|
|
|
|
|
|
|
|
h2o_test = h2o.H2OFrame(pd.DataFrame(X_test, columns=ohe_df.drop(columns=["yield"]).columns)) |
|
|
|
|
|
|
|
|
model_with_history = None |
|
|
for model_id in aml.leaderboard.as_data_frame()['model_id']: |
|
|
model = h2o.get_model(model_id) |
|
|
if hasattr(model, 'scoring_history'): |
|
|
model_with_history = model |
|
|
break |
|
|
|
|
|
|
|
|
if model_with_history and hasattr(model_with_history, 'scoring_history'): |
|
|
scoring_history = model_with_history.scoring_history() |
|
|
else: |
|
|
print("No suitable model with scoring history found.") |
|
|
scoring_history = pd.DataFrame() |
|
|
|
|
|
|
|
|
preds_h2o = aml.leader.predict(h2o.H2OFrame(pd.DataFrame(X_test))).as_data_frame().values.flatten() |
|
|
|
|
|
|
|
|
r2 = metrics.r2_score(y_test, preds_h2o) |
|
|
rmse = np.sqrt(metrics.mean_squared_error(y_test, preds_h2o)) |
|
|
print(f"Test RMSE: {rmse}") |
|
|
print(fr"Test $R^2$: {r2}") |
|
|
|
|
|
|
|
|
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 12)) |
|
|
fig.suptitle("Buchwald-Hartwig AutoML Model Performance") |
|
|
|
|
|
if not scoring_history.empty: |
|
|
if 'training_rmse' in scoring_history.columns: |
|
|
ax1.plot(scoring_history['training_rmse'], 'b', label='Training RMSE') |
|
|
if 'validation_rmse' in scoring_history.columns: |
|
|
ax1.plot(scoring_history['validation_rmse'], 'g', label='Validation RMSE') |
|
|
else: |
|
|
ax1.text(0.5, 0.5, 'Scoring history unavailable', horizontalalignment='center', verticalalignment='center') |
|
|
|
|
|
ax1.legend() |
|
|
ax1.set_ylabel("RMSE") |
|
|
ax1.set_xlabel("Epoch/Tree Index") |
|
|
ax1.set_title(f"Loss Curves for {best_model.model_id}") |
|
|
|
|
|
|
|
|
ax2.scatter(y_test, preds_h2o, c='b', marker='o', label='Predictions') |
|
|
ax2.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], "r-", lw=2) |
|
|
ax2.set_ylabel("Predicted Yield") |
|
|
ax2.set_xlabel("Ground Truth Yield") |
|
|
ax2.set_title("Predictions vs Ground Truth") |
|
|
ax2.text(0.15, 0.9 * max(y_test), fr"Test RMSE: {round(rmse, 3)}", fontsize=12) |
|
|
ax2.text(0.15, 0.8 * max(y_test), fr"Test $R^2$: {round(r2, 3)}", fontsize=12) |
|
|
|
|
|
|
|
|
plt.show() |
|
|
plt.tight_layout() |
|
|
plt.savefig("B-H AutoML Model Performance.png") |
|
|
|
|
|
|