Upload verify.py
Browse files- data/verifier/verify.py +517 -0
data/verifier/verify.py
ADDED
|
@@ -0,0 +1,517 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""Verifies the math answers in the dataset against the model outputs.
|
| 3 |
+
The dataset is a single row with the answer and predictions path is a jsonl file with single row of model output.
|
| 4 |
+
|
| 5 |
+
Example:
|
| 6 |
+
|
| 7 |
+
```
|
| 8 |
+
python notebooks/math_final_answer_verifier.py \
|
| 9 |
+
--dataset-path.jsonl \
|
| 10 |
+
--predictions-path model_output.json \
|
| 11 |
+
--prediction-column model_output
|
| 12 |
+
```
|
| 13 |
+
|
| 14 |
+
Supported input formats: ``.jsonl``/``.ndjson``, ``.json``, ``.csv``,
|
| 15 |
+
``.tsv`` and ``.parquet`` (requires pandas).
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
from __future__ import annotations
|
| 19 |
+
|
| 20 |
+
import argparse
|
| 21 |
+
import csv
|
| 22 |
+
import json
|
| 23 |
+
import math
|
| 24 |
+
import numbers
|
| 25 |
+
import re
|
| 26 |
+
import sys
|
| 27 |
+
import unicodedata
|
| 28 |
+
from dataclasses import dataclass
|
| 29 |
+
from pathlib import Path
|
| 30 |
+
from typing import Any, Iterable, Sequence
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
MODEL_OUTPUT_COL = "__model_output"
|
| 34 |
+
ROW_ID_COL = "__row_id"
|
| 35 |
+
|
| 36 |
+
# Regexes that help identify different final-answer formats.
|
| 37 |
+
BOXED_PATTERN = re.compile(r"\\boxed\s*\{([^}]*)\}")
|
| 38 |
+
HASH_PATTERN = re.compile(r"####\s*(.+)")
|
| 39 |
+
FINAL_ANSWER_PATTERNS = [
|
| 40 |
+
re.compile(r"(?i)final answer(?: is)?\s*[:=\-]?\s*(.+)"),
|
| 41 |
+
re.compile(r"(?i)final result(?: is)?\s*[:=\-]?\s*(.+)"),
|
| 42 |
+
re.compile(r"(?i)the answer is\s*(.+)"),
|
| 43 |
+
re.compile(r"(?i)answer(?: is)?\s*[:=\-]?\s*(.+)"),
|
| 44 |
+
re.compile(r"(?i)ans(?: is)?\s*[:=\-]?\s*(.+)"),
|
| 45 |
+
re.compile(r"(?i)result(?: is)?\s*[:=\-]?\s*(.+)"),
|
| 46 |
+
]
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
LATEX_TEXT_REPLACEMENTS = {
|
| 50 |
+
"\\leq": "<=",
|
| 51 |
+
"\\le": "<=",
|
| 52 |
+
"\\geq": ">=",
|
| 53 |
+
"\\ge": ">=",
|
| 54 |
+
"\\neq": "!=",
|
| 55 |
+
"\\times": "*",
|
| 56 |
+
"\\cdot": "*",
|
| 57 |
+
"\\div": "/",
|
| 58 |
+
"\\pm": "+-",
|
| 59 |
+
"\\pi": "pi",
|
| 60 |
+
"\\Pi": "pi",
|
| 61 |
+
"\\infty": "inf",
|
| 62 |
+
"\\sqrt": "sqrt",
|
| 63 |
+
"\\Gamma": "gamma",
|
| 64 |
+
"\\Omega": "omega",
|
| 65 |
+
"\\alpha": "alpha",
|
| 66 |
+
"\\beta": "beta",
|
| 67 |
+
"\\gamma": "gamma",
|
| 68 |
+
"\\delta": "delta",
|
| 69 |
+
"\\int": "integral",
|
| 70 |
+
"\\log": "log",
|
| 71 |
+
"\\ln": "ln",
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
SYMBOL_REPLACEMENTS = {
|
| 76 |
+
"−": "-",
|
| 77 |
+
"–": "-",
|
| 78 |
+
"—": "-",
|
| 79 |
+
"·": "*",
|
| 80 |
+
"×": "*",
|
| 81 |
+
"÷": "/",
|
| 82 |
+
"π": "pi",
|
| 83 |
+
"Π": "pi",
|
| 84 |
+
"∞": "inf",
|
| 85 |
+
"√": "sqrt",
|
| 86 |
+
"≤": "<=",
|
| 87 |
+
"≥": ">=",
|
| 88 |
+
"≠": "!=",
|
| 89 |
+
"∈": "in",
|
| 90 |
+
"∉": "notin",
|
| 91 |
+
"∪": "union",
|
| 92 |
+
"∩": "intersect",
|
| 93 |
+
"′": "'",
|
| 94 |
+
}
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
OUTPUT_KEYWORDS = {"final_answer", "answer", "prediction", "output", "result"}
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
@dataclass
|
| 101 |
+
class ComparisonResult:
|
| 102 |
+
is_match: bool
|
| 103 |
+
matched_candidate: str | None
|
| 104 |
+
match_type: str | None
|
| 105 |
+
normalized_gold: str | None
|
| 106 |
+
normalized_candidate: str | None
|
| 107 |
+
candidates: Sequence[str]
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def parse_args() -> argparse.Namespace:
|
| 111 |
+
parser = argparse.ArgumentParser(description="Verify math final answers against model outputs")
|
| 112 |
+
parser.add_argument("--dataset-path", required=True, help="Path to the JSONL/CSV/TSV/parquet dataset")
|
| 113 |
+
parser.add_argument("--predictions-path", required=True, help="Path to the predictions file")
|
| 114 |
+
parser.add_argument(
|
| 115 |
+
"--final-answer-column",
|
| 116 |
+
default="final_answer",
|
| 117 |
+
help="Name of the column that holds the ground-truth final answer",
|
| 118 |
+
)
|
| 119 |
+
parser.add_argument(
|
| 120 |
+
"--prediction-column",
|
| 121 |
+
default="model_output",
|
| 122 |
+
help="Name of the column that holds the model response",
|
| 123 |
+
)
|
| 124 |
+
parser.add_argument(
|
| 125 |
+
"--id-column",
|
| 126 |
+
default=None,
|
| 127 |
+
help="Optional column used to align dataset rows with predictions (defaults to row order)",
|
| 128 |
+
)
|
| 129 |
+
parser.add_argument(
|
| 130 |
+
"--dump-results",
|
| 131 |
+
default=None,
|
| 132 |
+
help="Optional path to write the per-row evaluation as JSONL",
|
| 133 |
+
)
|
| 134 |
+
parser.add_argument(
|
| 135 |
+
"--dump-mismatches",
|
| 136 |
+
default=None,
|
| 137 |
+
help="Optional path to write only the mismatched rows as JSONL",
|
| 138 |
+
)
|
| 139 |
+
return parser.parse_args()
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def load_records(path: Path) -> list[dict[str, Any]]:
|
| 143 |
+
if not path.exists():
|
| 144 |
+
raise FileNotFoundError(f"Missing file: {path}")
|
| 145 |
+
ext = path.suffix.lower()
|
| 146 |
+
if ext in {".jsonl", ".ndjson"}:
|
| 147 |
+
rows: list[dict[str, Any]] = []
|
| 148 |
+
with path.open(encoding="utf-8") as handle:
|
| 149 |
+
for line in handle:
|
| 150 |
+
line = line.strip()
|
| 151 |
+
if not line:
|
| 152 |
+
continue
|
| 153 |
+
obj = json.loads(line)
|
| 154 |
+
if isinstance(obj, dict):
|
| 155 |
+
rows.append(obj)
|
| 156 |
+
else:
|
| 157 |
+
rows.append({"value": obj})
|
| 158 |
+
return rows
|
| 159 |
+
if ext == ".json":
|
| 160 |
+
content = json.loads(path.read_text(encoding="utf-8"))
|
| 161 |
+
if isinstance(content, list):
|
| 162 |
+
return [dict(row) if isinstance(row, dict) else {"value": row} for row in content]
|
| 163 |
+
if isinstance(content, dict):
|
| 164 |
+
return [content]
|
| 165 |
+
raise ValueError(f"Unsupported JSON structure in {path}")
|
| 166 |
+
if ext in {".csv", ".tsv"}:
|
| 167 |
+
delimiter = "\t" if ext == ".tsv" else ","
|
| 168 |
+
with path.open(encoding="utf-8", newline="") as handle:
|
| 169 |
+
reader = csv.DictReader(handle, delimiter=delimiter)
|
| 170 |
+
return [dict(row) for row in reader]
|
| 171 |
+
if ext == ".parquet":
|
| 172 |
+
try:
|
| 173 |
+
import pandas as pd # type: ignore
|
| 174 |
+
except ImportError as exc: # pragma: no cover - optional dependency
|
| 175 |
+
raise ImportError("Reading parquet files requires pandas and pyarrow.") from exc
|
| 176 |
+
return pd.read_parquet(path).to_dict(orient="records")
|
| 177 |
+
raise ValueError(f"Unsupported file format: {path}")
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def align_tables(
|
| 181 |
+
dataset_rows: Sequence[dict[str, Any]],
|
| 182 |
+
prediction_rows: Sequence[dict[str, Any]],
|
| 183 |
+
*,
|
| 184 |
+
id_column: str | None,
|
| 185 |
+
prediction_column: str,
|
| 186 |
+
) -> tuple[list[dict[str, Any]], str]:
|
| 187 |
+
if not prediction_rows:
|
| 188 |
+
raise ValueError("Predictions file has no rows")
|
| 189 |
+
|
| 190 |
+
if not any(prediction_column in row for row in prediction_rows):
|
| 191 |
+
raise KeyError(f"Prediction column '{prediction_column}' not found in predictions")
|
| 192 |
+
|
| 193 |
+
key_column = ROW_ID_COL
|
| 194 |
+
|
| 195 |
+
if id_column:
|
| 196 |
+
missing_ids = [idx for idx, row in enumerate(dataset_rows) if row.get(id_column) is None]
|
| 197 |
+
if missing_ids:
|
| 198 |
+
raise KeyError(
|
| 199 |
+
f"Dataset rows missing '{id_column}' (first few indices: {missing_ids[:5]})"
|
| 200 |
+
)
|
| 201 |
+
prediction_index: dict[Any, dict[str, Any]] = {}
|
| 202 |
+
for pred in prediction_rows:
|
| 203 |
+
key = pred.get(id_column)
|
| 204 |
+
if key is None:
|
| 205 |
+
continue
|
| 206 |
+
prediction_index[key] = pred
|
| 207 |
+
|
| 208 |
+
aligned: list[dict[str, Any]] = []
|
| 209 |
+
missing = 0
|
| 210 |
+
for idx, row in enumerate(dataset_rows):
|
| 211 |
+
merged = dict(row)
|
| 212 |
+
merged[ROW_ID_COL] = idx
|
| 213 |
+
pred_row = prediction_index.get(row[id_column])
|
| 214 |
+
if pred_row is not None and prediction_column in pred_row:
|
| 215 |
+
merged[MODEL_OUTPUT_COL] = pred_row.get(prediction_column)
|
| 216 |
+
else:
|
| 217 |
+
merged[MODEL_OUTPUT_COL] = None
|
| 218 |
+
missing += 1
|
| 219 |
+
aligned.append(merged)
|
| 220 |
+
|
| 221 |
+
if missing:
|
| 222 |
+
print(
|
| 223 |
+
f"[warn] {missing} dataset rows did not have matching predictions by '{id_column}'",
|
| 224 |
+
file=sys.stderr,
|
| 225 |
+
)
|
| 226 |
+
return aligned, id_column
|
| 227 |
+
|
| 228 |
+
# Fall back to row order when an ID column is not provided.
|
| 229 |
+
align_len = min(len(dataset_rows), len(prediction_rows))
|
| 230 |
+
if align_len == 0:
|
| 231 |
+
raise ValueError("No overlapping rows between dataset and predictions")
|
| 232 |
+
if len(dataset_rows) != len(prediction_rows):
|
| 233 |
+
shorter = "predictions" if len(prediction_rows) < len(dataset_rows) else "dataset"
|
| 234 |
+
print(
|
| 235 |
+
f"[warn] {shorter} has fewer rows (evaluating on {align_len} aligned samples)",
|
| 236 |
+
file=sys.stderr,
|
| 237 |
+
)
|
| 238 |
+
trimmed: list[dict[str, Any]] = []
|
| 239 |
+
for idx in range(align_len):
|
| 240 |
+
merged = dict(dataset_rows[idx])
|
| 241 |
+
merged[ROW_ID_COL] = idx
|
| 242 |
+
merged[MODEL_OUTPUT_COL] = prediction_rows[idx].get(prediction_column)
|
| 243 |
+
trimmed.append(merged)
|
| 244 |
+
return trimmed, ROW_ID_COL
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def normalize_answer_text(value: Any) -> str | None:
|
| 248 |
+
if value is None:
|
| 249 |
+
return None
|
| 250 |
+
if isinstance(value, float) and math.isnan(value):
|
| 251 |
+
return None
|
| 252 |
+
text = str(value).strip()
|
| 253 |
+
if not text:
|
| 254 |
+
return None
|
| 255 |
+
|
| 256 |
+
text = unicodedata.normalize("NFKC", text)
|
| 257 |
+
text = strip_leading_label(text)
|
| 258 |
+
for src, dst in SYMBOL_REPLACEMENTS.items():
|
| 259 |
+
text = text.replace(src, dst)
|
| 260 |
+
for src, dst in LATEX_TEXT_REPLACEMENTS.items():
|
| 261 |
+
text = text.replace(src, dst)
|
| 262 |
+
|
| 263 |
+
text = re.sub(r"\\text\s*\{([^}]*)\}", r"\1", text)
|
| 264 |
+
text = re.sub(r"\\boxed\s*\{([^}]*)\}", r"\1", text)
|
| 265 |
+
text = text.replace("\\", "")
|
| 266 |
+
text = text.replace("{", "").replace("}", "")
|
| 267 |
+
text = text.replace("\r", "\n")
|
| 268 |
+
text = text.replace("\t", " ")
|
| 269 |
+
text = re.sub(r"\s+", " ", text).strip()
|
| 270 |
+
if not text:
|
| 271 |
+
return None
|
| 272 |
+
text = text.lower()
|
| 273 |
+
text = text.replace(" ", "")
|
| 274 |
+
return text
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
def strip_leading_label(text: str) -> str:
|
| 278 |
+
candidate = text
|
| 279 |
+
patterns = [
|
| 280 |
+
re.compile(r"(?i)^\s*(?:the\s+)?final\s+answer\s*(?:is)?\s*[:=\-]?\s*"),
|
| 281 |
+
re.compile(r"(?i)^\s*(?:the\s+)?answer\s*(?:is)?\s*[:=\-]?\s*"),
|
| 282 |
+
re.compile(r"(?i)^\s*ans\s*(?:is)?\s*[:=\-]?\s*"),
|
| 283 |
+
re.compile(r"(?i)^\s*(?:final\s+result|result)\s*(?:is)?\s*[:=\-]?\s*"),
|
| 284 |
+
]
|
| 285 |
+
for pattern in patterns:
|
| 286 |
+
stripped = pattern.sub("", candidate, count=1)
|
| 287 |
+
if stripped != candidate:
|
| 288 |
+
return stripped.strip()
|
| 289 |
+
return candidate
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
def extract_candidate_answers(value: Any) -> list[str]:
|
| 293 |
+
if value is None:
|
| 294 |
+
return []
|
| 295 |
+
if isinstance(value, (dict, list)):
|
| 296 |
+
text = json.dumps(value, ensure_ascii=False)
|
| 297 |
+
else:
|
| 298 |
+
text = str(value)
|
| 299 |
+
text = text.strip()
|
| 300 |
+
if not text:
|
| 301 |
+
return []
|
| 302 |
+
|
| 303 |
+
candidates: list[str] = []
|
| 304 |
+
|
| 305 |
+
candidates.extend(_maybe_extract_from_json(text))
|
| 306 |
+
|
| 307 |
+
boxed_matches = BOXED_PATTERN.findall(text)
|
| 308 |
+
for match in reversed(boxed_matches):
|
| 309 |
+
stripped = match.strip()
|
| 310 |
+
if stripped:
|
| 311 |
+
candidates.append(stripped)
|
| 312 |
+
|
| 313 |
+
hash_matches = HASH_PATTERN.findall(text)
|
| 314 |
+
if hash_matches:
|
| 315 |
+
candidates.append(hash_matches[-1].strip())
|
| 316 |
+
|
| 317 |
+
for pattern in FINAL_ANSWER_PATTERNS:
|
| 318 |
+
for match in pattern.finditer(text):
|
| 319 |
+
snippet = match.group(1).strip()
|
| 320 |
+
if snippet:
|
| 321 |
+
candidates.append(snippet)
|
| 322 |
+
|
| 323 |
+
equals_match = re.search(r"=\s*([^=\n]+)$", text)
|
| 324 |
+
if equals_match:
|
| 325 |
+
candidates.append(equals_match.group(1).strip())
|
| 326 |
+
|
| 327 |
+
lines = [ln.strip() for ln in text.splitlines() if ln.strip()]
|
| 328 |
+
if lines:
|
| 329 |
+
candidates.append(lines[-1])
|
| 330 |
+
|
| 331 |
+
candidates.append(text)
|
| 332 |
+
|
| 333 |
+
return _dedupe_preserving_order(candidates)
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
def _maybe_extract_from_json(text: str) -> list[str]:
|
| 337 |
+
stripped = text.strip()
|
| 338 |
+
if not stripped or stripped[0] not in "[{":
|
| 339 |
+
return []
|
| 340 |
+
try:
|
| 341 |
+
payload = json.loads(stripped)
|
| 342 |
+
except json.JSONDecodeError:
|
| 343 |
+
return []
|
| 344 |
+
|
| 345 |
+
values: list[str] = []
|
| 346 |
+
|
| 347 |
+
def _collect(obj: Any) -> None:
|
| 348 |
+
if isinstance(obj, dict):
|
| 349 |
+
for key, val in obj.items():
|
| 350 |
+
if isinstance(val, (str, int, float)) and key.lower() in OUTPUT_KEYWORDS:
|
| 351 |
+
values.append(str(val))
|
| 352 |
+
elif isinstance(val, (dict, list)):
|
| 353 |
+
_collect(val)
|
| 354 |
+
elif isinstance(obj, list):
|
| 355 |
+
for item in obj:
|
| 356 |
+
_collect(item)
|
| 357 |
+
|
| 358 |
+
_collect(payload)
|
| 359 |
+
return values
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
def _dedupe_preserving_order(items: Iterable[str]) -> list[str]:
|
| 363 |
+
seen: set[str] = set()
|
| 364 |
+
deduped: list[str] = []
|
| 365 |
+
for item in items:
|
| 366 |
+
if not item:
|
| 367 |
+
continue
|
| 368 |
+
if item in seen:
|
| 369 |
+
continue
|
| 370 |
+
seen.add(item)
|
| 371 |
+
deduped.append(item)
|
| 372 |
+
return deduped
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
def compare_answers(gold: str, prediction: str) -> ComparisonResult:
|
| 376 |
+
normalized_gold = normalize_answer_text(gold)
|
| 377 |
+
candidates = extract_candidate_answers(prediction)
|
| 378 |
+
if not normalized_gold:
|
| 379 |
+
return ComparisonResult(False, None, None, normalized_gold, None, candidates)
|
| 380 |
+
|
| 381 |
+
for candidate in candidates:
|
| 382 |
+
normalized_candidate = normalize_answer_text(candidate)
|
| 383 |
+
if not normalized_candidate:
|
| 384 |
+
continue
|
| 385 |
+
if normalized_candidate == normalized_gold:
|
| 386 |
+
return ComparisonResult(True, candidate.strip(), "exact", normalized_gold, normalized_candidate, candidates)
|
| 387 |
+
if normalized_gold in normalized_candidate:
|
| 388 |
+
return ComparisonResult(True, candidate.strip(), "substring_match", normalized_gold, normalized_candidate, candidates)
|
| 389 |
+
|
| 390 |
+
return ComparisonResult(False, None, None, normalized_gold, None, candidates)
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
def evaluate_rows(
|
| 394 |
+
records: Sequence[dict[str, Any]], *, final_answer_column: str, key_column: str
|
| 395 |
+
) -> list[dict[str, Any]]:
|
| 396 |
+
rows: list[dict[str, Any]] = []
|
| 397 |
+
for idx, row in enumerate(records):
|
| 398 |
+
gold = row.get(final_answer_column)
|
| 399 |
+
prediction = row.get(MODEL_OUTPUT_COL)
|
| 400 |
+
key = row.get(key_column, row.get(ROW_ID_COL, idx))
|
| 401 |
+
|
| 402 |
+
gold_text = str(gold)
|
| 403 |
+
has_prediction = not _is_missing(prediction)
|
| 404 |
+
|
| 405 |
+
if has_prediction:
|
| 406 |
+
comp = compare_answers(gold_text, str(prediction))
|
| 407 |
+
else:
|
| 408 |
+
comp = ComparisonResult(False, None, None, normalize_answer_text(gold_text), None, [])
|
| 409 |
+
|
| 410 |
+
key_value: Any = key
|
| 411 |
+
if isinstance(key_value, numbers.Integral):
|
| 412 |
+
key_value = int(key_value)
|
| 413 |
+
elif isinstance(key_value, numbers.Real) and float(key_value).is_integer():
|
| 414 |
+
key_value = int(key_value)
|
| 415 |
+
|
| 416 |
+
record = {
|
| 417 |
+
"row_key_column": key_column,
|
| 418 |
+
"row_key": key_value,
|
| 419 |
+
"final_answer": gold_text,
|
| 420 |
+
"model_output": str(prediction) if has_prediction else None,
|
| 421 |
+
"has_prediction": has_prediction,
|
| 422 |
+
"is_correct": has_prediction and comp.is_match,
|
| 423 |
+
"match_type": comp.match_type if has_prediction else None,
|
| 424 |
+
"matched_candidate": comp.matched_candidate,
|
| 425 |
+
"first_candidate": comp.candidates[0] if comp.candidates else None,
|
| 426 |
+
"candidate_count": len(comp.candidates),
|
| 427 |
+
"normalized_final_answer": comp.normalized_gold,
|
| 428 |
+
"normalized_candidate": comp.normalized_candidate,
|
| 429 |
+
}
|
| 430 |
+
|
| 431 |
+
if not has_prediction:
|
| 432 |
+
record["failure_reason"] = "no_prediction"
|
| 433 |
+
elif not comp.candidates:
|
| 434 |
+
record["failure_reason"] = "no_candidate"
|
| 435 |
+
elif not comp.is_match:
|
| 436 |
+
record["failure_reason"] = "mismatch"
|
| 437 |
+
else:
|
| 438 |
+
record["failure_reason"] = None
|
| 439 |
+
|
| 440 |
+
rows.append(record)
|
| 441 |
+
return rows
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
def _is_missing(value: Any) -> bool:
|
| 445 |
+
if value is None:
|
| 446 |
+
return True
|
| 447 |
+
if isinstance(value, float) and math.isnan(value):
|
| 448 |
+
return True
|
| 449 |
+
if isinstance(value, str) and not value.strip():
|
| 450 |
+
return True
|
| 451 |
+
return False
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
def write_jsonl(path: Path, rows: Sequence[dict[str, Any]]) -> None:
|
| 455 |
+
path.parent.mkdir(parents=True, exist_ok=True)
|
| 456 |
+
with path.open("w", encoding="utf-8") as handle:
|
| 457 |
+
for row in rows:
|
| 458 |
+
handle.write(json.dumps(row, ensure_ascii=False) + "\n")
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
def main() -> None:
|
| 462 |
+
args = parse_args()
|
| 463 |
+
dataset_rows = load_records(Path(args.dataset_path))
|
| 464 |
+
if not dataset_rows:
|
| 465 |
+
raise ValueError("Dataset file is empty")
|
| 466 |
+
if not any(args.final_answer_column in row for row in dataset_rows):
|
| 467 |
+
raise KeyError(
|
| 468 |
+
f"'{args.final_answer_column}' not found in dataset columns"
|
| 469 |
+
)
|
| 470 |
+
filtered_dataset = [
|
| 471 |
+
row for row in dataset_rows if not _is_missing(row.get(args.final_answer_column))
|
| 472 |
+
]
|
| 473 |
+
if not filtered_dataset:
|
| 474 |
+
raise ValueError("Dataset does not contain rows with non-empty final answers")
|
| 475 |
+
|
| 476 |
+
prediction_rows = load_records(Path(args.predictions_path))
|
| 477 |
+
aligned_rows, key_column = align_tables(
|
| 478 |
+
filtered_dataset,
|
| 479 |
+
prediction_rows,
|
| 480 |
+
id_column=args.id_column,
|
| 481 |
+
prediction_column=args.prediction_column,
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
evaluation_rows = evaluate_rows(aligned_rows, final_answer_column=args.final_answer_column, key_column=key_column)
|
| 485 |
+
|
| 486 |
+
total_rows = len(evaluation_rows)
|
| 487 |
+
with_prediction = sum(1 for row in evaluation_rows if row["has_prediction"])
|
| 488 |
+
matches = sum(1 for row in evaluation_rows if row["is_correct"])
|
| 489 |
+
no_candidate = sum(1 for row in evaluation_rows if row["failure_reason"] == "no_candidate")
|
| 490 |
+
no_prediction = sum(1 for row in evaluation_rows if row["failure_reason"] == "no_prediction")
|
| 491 |
+
|
| 492 |
+
accuracy = matches / with_prediction if with_prediction else 0.0
|
| 493 |
+
|
| 494 |
+
print(f"Evaluated rows: {total_rows}")
|
| 495 |
+
print(f"Rows with predictions: {with_prediction}")
|
| 496 |
+
print(f"Matches: {matches}")
|
| 497 |
+
print(f"Accuracy: {accuracy:.2%}")
|
| 498 |
+
if no_prediction:
|
| 499 |
+
print(f"Rows without predictions: {no_prediction}")
|
| 500 |
+
if no_candidate:
|
| 501 |
+
print(f"Rows where no final answer was extractable: {no_candidate}")
|
| 502 |
+
|
| 503 |
+
mismatches = [row for row in evaluation_rows if not row["is_correct"]]
|
| 504 |
+
|
| 505 |
+
if args.dump_results:
|
| 506 |
+
write_jsonl(Path(args.dump_results), evaluation_rows)
|
| 507 |
+
print(f"Wrote detailed results to {args.dump_results}")
|
| 508 |
+
if args.dump_mismatches:
|
| 509 |
+
write_jsonl(Path(args.dump_mismatches), mismatches)
|
| 510 |
+
print(f"Wrote mismatches to {args.dump_mismatches}")
|
| 511 |
+
|
| 512 |
+
reward = "pass" if total_rows and matches == total_rows else "fail"
|
| 513 |
+
print(f"Reward: {reward}")
|
| 514 |
+
|
| 515 |
+
|
| 516 |
+
if __name__ == "__main__":
|
| 517 |
+
main()
|