Datasets:
Tasks:
Tabular Regression
Modalities:
Text
Formats:
csv
Languages:
English
Size:
10K - 100K
DOI:
License:
dataset exploration usage scenario added
Browse files
README.md
CHANGED
|
@@ -127,6 +127,8 @@ it can be either rounded by the researchers to full years, or converted from mon
|
|
| 127 |
|
| 128 |
## Usage Guidelines
|
| 129 |
|
|
|
|
|
|
|
| 130 |
First install our nice [library](https://github.com/ComputationalAgingLab/ComputAge) for convenient operation with datasets and other tools for aging clock design:
|
| 131 |
|
| 132 |
`pip install computage`
|
|
@@ -158,6 +160,26 @@ bench = run_benchmark(models_config,
|
|
| 158 |
#upon completion, the results will be saved in the folder you specified
|
| 159 |
```
|
| 160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
## Additional Information
|
| 162 |
|
| 163 |
### Licensing Information
|
|
|
|
| 127 |
|
| 128 |
## Usage Guidelines
|
| 129 |
|
| 130 |
+
### Benchmark a new aging clock
|
| 131 |
+
|
| 132 |
First install our nice [library](https://github.com/ComputationalAgingLab/ComputAge) for convenient operation with datasets and other tools for aging clock design:
|
| 133 |
|
| 134 |
`pip install computage`
|
|
|
|
| 160 |
#upon completion, the results will be saved in the folder you specified
|
| 161 |
```
|
| 162 |
|
| 163 |
+
### Explore the dataset
|
| 164 |
+
|
| 165 |
+
In case you want just to explore our dataset locally, use the following commands for downloading.
|
| 166 |
+
```python
|
| 167 |
+
from huggingface_hub import snapshot_download
|
| 168 |
+
snapshot_download(
|
| 169 |
+
repo_id='computage/computage_bench',
|
| 170 |
+
repo_type="dataset",
|
| 171 |
+
local_dir='.')
|
| 172 |
+
```
|
| 173 |
+
Once downloaded, the dataset can be open with `pandas` (or any other `parquet` reader).
|
| 174 |
+
```python
|
| 175 |
+
import pandas as pd
|
| 176 |
+
#let's choose a study id, for example `GSE100264`
|
| 177 |
+
df = pd.read_parquet('data/computage_bench_data_GSE100264.parquet').T
|
| 178 |
+
#note we transpose data for more convenient perception
|
| 179 |
+
#Don't forget to explore metadata (which is common for all datasets):
|
| 180 |
+
meta = pd.read_csv('computage_bench_meta.tsv', sep='\t', index_col=0)
|
| 181 |
+
```
|
| 182 |
+
|
| 183 |
## Additional Information
|
| 184 |
|
| 185 |
### Licensing Information
|