Create carb.py
Browse files- evaluation_data/carb/carb.py +386 -0
evaluation_data/carb/carb.py
ADDED
|
@@ -0,0 +1,386 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
Usage:
|
| 3 |
+
benchmark --gold=GOLD_OIE (--openiefive=OPENIE5 | --stanford=STANFORD_OIE | --ollie=OLLIE_OIE |--reverb=REVERB_OIE | --clausie=CLAUSIE_OIE | --openiefour=OPENIEFOUR_OIE | --props=PROPS_OIE | --tabbed=TABBED_OIE | --benchmarkGold=BENCHMARK_GOLD | --allennlp=ALLENNLP_OIE ) [--exactMatch | --predMatch | --lexicalMatch | --binaryMatch | --simpleMatch | --strictMatch] [--error-file=ERROR_FILE] [--binary]
|
| 4 |
+
|
| 5 |
+
Options:
|
| 6 |
+
--gold=GOLD_OIE The gold reference Open IE file (by default, it should be under ./oie_corpus/all.oie).
|
| 7 |
+
--benchmarkgold=GOLD_OIE The benchmark's gold reference.
|
| 8 |
+
# --out-OUTPUT_FILE The output file, into which the precision recall curve will be written.
|
| 9 |
+
--clausie=CLAUSIE_OIE Read ClausIE format from file CLAUSIE_OIE.
|
| 10 |
+
--ollie=OLLIE_OIE Read OLLIE format from file OLLIE_OIE.
|
| 11 |
+
--openiefour=OPENIEFOUR_OIE Read Open IE 4 format from file OPENIEFOUR_OIE.
|
| 12 |
+
--openiefive=OPENIE5 Read Open IE 5 format from file OPENIE5.
|
| 13 |
+
--props=PROPS_OIE Read PropS format from file PROPS_OIE
|
| 14 |
+
--reverb=REVERB_OIE Read ReVerb format from file REVERB_OIE
|
| 15 |
+
--stanford=STANFORD_OIE Read Stanford format from file STANFORD_OIE
|
| 16 |
+
--tabbed=TABBED_OIE Read simple tab format file, where each line consists of:
|
| 17 |
+
sent, prob, pred,arg1, arg2, ...
|
| 18 |
+
--exactmatch Use exact match when judging whether an extraction is correct.
|
| 19 |
+
'''
|
| 20 |
+
from __future__ import division
|
| 21 |
+
import docopt
|
| 22 |
+
import string
|
| 23 |
+
import numpy as np
|
| 24 |
+
from sklearn.metrics import precision_recall_curve
|
| 25 |
+
from sklearn.metrics import auc
|
| 26 |
+
import re
|
| 27 |
+
import logging
|
| 28 |
+
import pdb
|
| 29 |
+
import ipdb
|
| 30 |
+
from _collections import defaultdict
|
| 31 |
+
logging.basicConfig(level = logging.INFO)
|
| 32 |
+
|
| 33 |
+
from oie_readers.allennlpReader import AllennlpReader
|
| 34 |
+
from oie_readers.stanfordReader import StanfordReader
|
| 35 |
+
from oie_readers.ollieReader import OllieReader
|
| 36 |
+
from oie_readers.reVerbReader import ReVerbReader
|
| 37 |
+
from oie_readers.clausieReader import ClausieReader
|
| 38 |
+
from oie_readers.openieFourReader import OpenieFourReader
|
| 39 |
+
from oie_readers.openieFiveReader import OpenieFiveReader
|
| 40 |
+
from oie_readers.propsReader import PropSReader
|
| 41 |
+
from oie_readers.tabReader import TabReader
|
| 42 |
+
from oie_readers.benchmarkGoldReader import BenchmarkGoldReader
|
| 43 |
+
|
| 44 |
+
from oie_readers.goldReader import GoldReader
|
| 45 |
+
from matcher import Matcher
|
| 46 |
+
from operator import itemgetter
|
| 47 |
+
import pprint
|
| 48 |
+
from copy import copy
|
| 49 |
+
pp = pprint.PrettyPrinter(indent=4)
|
| 50 |
+
|
| 51 |
+
class Benchmark:
|
| 52 |
+
''' Compare the gold OIE dataset against a predicted equivalent '''
|
| 53 |
+
def __init__(self, gold_fn):
|
| 54 |
+
''' Load gold Open IE, this will serve to compare against using the compare function '''
|
| 55 |
+
gr = GoldReader()
|
| 56 |
+
gr.read(gold_fn)
|
| 57 |
+
self.gold = gr.oie
|
| 58 |
+
|
| 59 |
+
def compare(self, predicted, matchingFunc, output_fn=None, error_file=None, binary=False):
|
| 60 |
+
''' Compare gold against predicted using a specified matching function.
|
| 61 |
+
Outputs PR curve to output_fn '''
|
| 62 |
+
|
| 63 |
+
y_true = []
|
| 64 |
+
y_scores = []
|
| 65 |
+
errors = []
|
| 66 |
+
correct = 0
|
| 67 |
+
incorrect = 0
|
| 68 |
+
|
| 69 |
+
correctTotal = 0
|
| 70 |
+
unmatchedCount = 0
|
| 71 |
+
predicted = Benchmark.normalizeDict(predicted)
|
| 72 |
+
gold = Benchmark.normalizeDict(self.gold)
|
| 73 |
+
if binary:
|
| 74 |
+
predicted = Benchmark.binarize(predicted)
|
| 75 |
+
gold = Benchmark.binarize(gold)
|
| 76 |
+
#gold = self.gold
|
| 77 |
+
|
| 78 |
+
# taking all distinct values of confidences as thresholds
|
| 79 |
+
confidence_thresholds = set()
|
| 80 |
+
for sent in predicted:
|
| 81 |
+
for predicted_ex in predicted[sent]:
|
| 82 |
+
confidence_thresholds.add(predicted_ex.confidence)
|
| 83 |
+
|
| 84 |
+
confidence_thresholds = sorted(list(confidence_thresholds))
|
| 85 |
+
num_conf = len(confidence_thresholds)
|
| 86 |
+
|
| 87 |
+
results = {}
|
| 88 |
+
p = np.zeros(num_conf)
|
| 89 |
+
pl = np.zeros(num_conf)
|
| 90 |
+
r = np.zeros(num_conf)
|
| 91 |
+
rl = np.zeros(num_conf)
|
| 92 |
+
|
| 93 |
+
for sent, goldExtractions in gold.items():
|
| 94 |
+
|
| 95 |
+
if sent in predicted:
|
| 96 |
+
predictedExtractions = predicted[sent]
|
| 97 |
+
else:
|
| 98 |
+
predictedExtractions = []
|
| 99 |
+
|
| 100 |
+
scores = [[None for _ in predictedExtractions] for __ in goldExtractions]
|
| 101 |
+
|
| 102 |
+
# print("***Gold Extractions***")
|
| 103 |
+
# print("\n".join([goldExtractions[i].pred + ' ' + " ".join(goldExtractions[i].args) for i in range(len(goldExtractions))]))
|
| 104 |
+
# print("***Predicted Extractions***")
|
| 105 |
+
# print("\n".join([predictedExtractions[i].pred+ " ".join(predictedExtractions[i].args) for i in range(len(predictedExtractions))]))
|
| 106 |
+
|
| 107 |
+
for i, goldEx in enumerate(goldExtractions):
|
| 108 |
+
for j, predictedEx in enumerate(predictedExtractions):
|
| 109 |
+
score = matchingFunc(goldEx, predictedEx,ignoreStopwords = True,ignoreCase = True)
|
| 110 |
+
scores[i][j] = score
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
# OPTIMISED GLOBAL MATCH
|
| 114 |
+
sent_confidences = [extraction.confidence for extraction in predictedExtractions]
|
| 115 |
+
sent_confidences.sort()
|
| 116 |
+
prev_c = 0
|
| 117 |
+
for conf in sent_confidences:
|
| 118 |
+
c = confidence_thresholds.index(conf)
|
| 119 |
+
ext_indices = []
|
| 120 |
+
for ext_indx, extraction in enumerate(predictedExtractions):
|
| 121 |
+
if extraction.confidence >= conf:
|
| 122 |
+
ext_indices.append(ext_indx)
|
| 123 |
+
|
| 124 |
+
recall_numerator = 0
|
| 125 |
+
for i, row in enumerate(scores):
|
| 126 |
+
max_recall_row = max([row[ext_indx][1] for ext_indx in ext_indices ], default=0)
|
| 127 |
+
recall_numerator += max_recall_row
|
| 128 |
+
|
| 129 |
+
precision_numerator = 0
|
| 130 |
+
|
| 131 |
+
selected_rows = []
|
| 132 |
+
selected_cols = []
|
| 133 |
+
num_precision_matches = min(len(scores), len(ext_indices))
|
| 134 |
+
for t in range(num_precision_matches):
|
| 135 |
+
matched_row = -1
|
| 136 |
+
matched_col = -1
|
| 137 |
+
matched_precision = -1 # initialised to <0 so that it updates whenever precision is 0 as well
|
| 138 |
+
for i in range(len(scores)):
|
| 139 |
+
if i in selected_rows:
|
| 140 |
+
continue
|
| 141 |
+
for ext_indx in ext_indices:
|
| 142 |
+
if ext_indx in selected_cols:
|
| 143 |
+
continue
|
| 144 |
+
if scores[i][ext_indx][0] > matched_precision:
|
| 145 |
+
matched_precision = scores[i][ext_indx][0]
|
| 146 |
+
matched_row = i
|
| 147 |
+
matched_col = ext_indx
|
| 148 |
+
|
| 149 |
+
selected_rows.append(matched_row)
|
| 150 |
+
selected_cols.append(matched_col)
|
| 151 |
+
precision_numerator += scores[matched_row][matched_col][0]
|
| 152 |
+
|
| 153 |
+
p[prev_c:c+1] += precision_numerator
|
| 154 |
+
pl[prev_c:c+1] += len(ext_indices)
|
| 155 |
+
r[prev_c:c+1] += recall_numerator
|
| 156 |
+
rl[prev_c:c+1] += len(scores)
|
| 157 |
+
|
| 158 |
+
prev_c = c+1
|
| 159 |
+
|
| 160 |
+
# for indices beyond the maximum sentence confidence, len(scores) has to be added to the denominator of recall
|
| 161 |
+
rl[prev_c:] += len(scores)
|
| 162 |
+
|
| 163 |
+
prec_scores = [a/b if b>0 else 1 for a,b in zip(p,pl) ]
|
| 164 |
+
rec_scores = [a/b if b>0 else 0 for a,b in zip(r,rl)]
|
| 165 |
+
|
| 166 |
+
f1s = [Benchmark.f1(p,r) for p,r in zip(prec_scores, rec_scores)]
|
| 167 |
+
try:
|
| 168 |
+
optimal_idx = np.nanargmax(f1s)
|
| 169 |
+
optimal = (prec_scores[optimal_idx], rec_scores[optimal_idx], f1s[optimal_idx])
|
| 170 |
+
return np.round(optimal,3)
|
| 171 |
+
except ValueError:
|
| 172 |
+
# When there is no prediction
|
| 173 |
+
optimal = (0,0)
|
| 174 |
+
|
| 175 |
+
# In order to calculate auc, we need to add the point corresponding to precision=1 , recall=0 to the PR-curve
|
| 176 |
+
# temp_rec_scores = rec_scores.copy()
|
| 177 |
+
# temp_prec_scores = prec_scores.copy()
|
| 178 |
+
# temp_rec_scores.append(0)
|
| 179 |
+
# temp_prec_scores.append(1)
|
| 180 |
+
# # print("AUC: {}\t Optimal (precision, recall, F1): {}".format( np.round(auc(temp_rec_scores, temp_prec_scores),3), np.round(optimal,3) ))
|
| 181 |
+
#
|
| 182 |
+
# with open(output_fn, 'w') as fout:
|
| 183 |
+
# fout.write('{0}\t{1}\t{2}\n'.format("Precision", "Recall", "Confidence"))
|
| 184 |
+
# for cur_p, cur_r, cur_conf in sorted(zip(prec_scores, rec_scores, confidence_thresholds), key = lambda cur: cur[1]):
|
| 185 |
+
# fout.write('{0}\t{1}\t{2}\n'.format(cur_p, cur_r, cur_conf))
|
| 186 |
+
#
|
| 187 |
+
# if len(f1s)>0:
|
| 188 |
+
# return np.round(auc(temp_rec_scores, temp_prec_scores),3), np.round(optimal,3)
|
| 189 |
+
# else:
|
| 190 |
+
# # When there is no prediction
|
| 191 |
+
# return 0, (0,0,0)
|
| 192 |
+
|
| 193 |
+
@staticmethod
|
| 194 |
+
def binarize(extrs):
|
| 195 |
+
res = defaultdict(lambda: [])
|
| 196 |
+
for sent,extr in extrs.items():
|
| 197 |
+
for ex in extr:
|
| 198 |
+
#Add (a1, r, a2)
|
| 199 |
+
temp = copy(ex)
|
| 200 |
+
temp.args = ex.args[:2]
|
| 201 |
+
res[sent].append(temp)
|
| 202 |
+
|
| 203 |
+
if len(ex.args) <= 2:
|
| 204 |
+
continue
|
| 205 |
+
|
| 206 |
+
#Add (a1, r a2 , a3 ...)
|
| 207 |
+
for arg in ex.args[2:]:
|
| 208 |
+
temp.args = [ex.args[0]]
|
| 209 |
+
temp.pred = ex.pred + ' ' + ex.args[1]
|
| 210 |
+
words = arg.split()
|
| 211 |
+
|
| 212 |
+
#Add preposition of arg to rel
|
| 213 |
+
if words[0].lower() in Benchmark.PREPS:
|
| 214 |
+
temp.pred += ' ' + words[0]
|
| 215 |
+
words = words[1:]
|
| 216 |
+
temp.args.append(' '.join(words))
|
| 217 |
+
res[sent].append(temp)
|
| 218 |
+
|
| 219 |
+
return res
|
| 220 |
+
|
| 221 |
+
@staticmethod
|
| 222 |
+
def f1(prec, rec):
|
| 223 |
+
try:
|
| 224 |
+
return 2*prec*rec / (prec+rec)
|
| 225 |
+
except ZeroDivisionError:
|
| 226 |
+
return 0
|
| 227 |
+
|
| 228 |
+
@staticmethod
|
| 229 |
+
def aggregate_scores_greedily(scores):
|
| 230 |
+
# Greedy match: pick the prediction/gold match with the best f1 and exclude
|
| 231 |
+
# them both, until nothing left matches. Each input square is a [prec, rec]
|
| 232 |
+
# pair. Returns precision and recall as score-and-denominator pairs.
|
| 233 |
+
matches = []
|
| 234 |
+
while True:
|
| 235 |
+
max_s = 0
|
| 236 |
+
gold, pred = None, None
|
| 237 |
+
for i, gold_ss in enumerate(scores):
|
| 238 |
+
if i in [m[0] for m in matches]:
|
| 239 |
+
# Those are already taken rows
|
| 240 |
+
continue
|
| 241 |
+
for j, pred_s in enumerate(scores[i]):
|
| 242 |
+
if j in [m[1] for m in matches]:
|
| 243 |
+
# Those are used columns
|
| 244 |
+
continue
|
| 245 |
+
if pred_s and Benchmark.f1(*pred_s) > max_s:
|
| 246 |
+
max_s = Benchmark.f1(*pred_s)
|
| 247 |
+
gold = i
|
| 248 |
+
pred = j
|
| 249 |
+
if max_s == 0:
|
| 250 |
+
break
|
| 251 |
+
matches.append([gold, pred])
|
| 252 |
+
# Now that matches are determined, compute final scores.
|
| 253 |
+
prec_scores = [scores[i][j][0] for i,j in matches]
|
| 254 |
+
rec_scores = [scores[i][j][1] for i,j in matches]
|
| 255 |
+
total_prec = sum(prec_scores)
|
| 256 |
+
total_rec = sum(rec_scores)
|
| 257 |
+
scoring_metrics = {"precision" : [total_prec, len(scores[0])],
|
| 258 |
+
"recall" : [total_rec, len(scores)],
|
| 259 |
+
"precision_of_matches" : prec_scores,
|
| 260 |
+
"recall_of_matches" : rec_scores
|
| 261 |
+
}
|
| 262 |
+
return scoring_metrics
|
| 263 |
+
|
| 264 |
+
# Helper functions:
|
| 265 |
+
@staticmethod
|
| 266 |
+
def normalizeDict(d):
|
| 267 |
+
return dict([(Benchmark.normalizeKey(k), v) for k, v in d.items()])
|
| 268 |
+
|
| 269 |
+
@staticmethod
|
| 270 |
+
def normalizeKey(k):
|
| 271 |
+
# return Benchmark.removePunct(unicode(Benchmark.PTB_unescape(k.replace(' ','')), errors = 'ignore'))
|
| 272 |
+
return Benchmark.removePunct(str(Benchmark.PTB_unescape(k.replace(' ',''))))
|
| 273 |
+
|
| 274 |
+
@staticmethod
|
| 275 |
+
def PTB_escape(s):
|
| 276 |
+
for u, e in Benchmark.PTB_ESCAPES:
|
| 277 |
+
s = s.replace(u, e)
|
| 278 |
+
return s
|
| 279 |
+
|
| 280 |
+
@staticmethod
|
| 281 |
+
def PTB_unescape(s):
|
| 282 |
+
for u, e in Benchmark.PTB_ESCAPES:
|
| 283 |
+
s = s.replace(e, u)
|
| 284 |
+
return s
|
| 285 |
+
|
| 286 |
+
@staticmethod
|
| 287 |
+
def removePunct(s):
|
| 288 |
+
return Benchmark.regex.sub('', s)
|
| 289 |
+
|
| 290 |
+
# CONSTANTS
|
| 291 |
+
regex = re.compile('[%s]' % re.escape(string.punctuation))
|
| 292 |
+
|
| 293 |
+
# Penn treebank bracket escapes
|
| 294 |
+
# Taken from: https://github.com/nlplab/brat/blob/master/server/src/gtbtokenize.py
|
| 295 |
+
PTB_ESCAPES = [('(', '-LRB-'),
|
| 296 |
+
(')', '-RRB-'),
|
| 297 |
+
('[', '-LSB-'),
|
| 298 |
+
(']', '-RSB-'),
|
| 299 |
+
('{', '-LCB-'),
|
| 300 |
+
('}', '-RCB-'),]
|
| 301 |
+
|
| 302 |
+
PREPS = ['above','across','against','along','among','around','at','before','behind','below','beneath','beside','between','by','for','from','in','into','near','of','off','on','to','toward','under','upon','with','within']
|
| 303 |
+
|
| 304 |
+
def f_beta(precision, recall, beta = 1):
|
| 305 |
+
"""
|
| 306 |
+
Get F_beta score from precision and recall.
|
| 307 |
+
"""
|
| 308 |
+
beta = float(beta) # Make sure that results are in float
|
| 309 |
+
return (1 + pow(beta, 2)) * (precision * recall) / ((pow(beta, 2) * precision) + recall)
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
if __name__ == '__main__':
|
| 313 |
+
args = docopt.docopt(__doc__)
|
| 314 |
+
logging.debug(args)
|
| 315 |
+
|
| 316 |
+
if args['--allennlp']:
|
| 317 |
+
predicted = AllennlpReader()
|
| 318 |
+
predicted.read(args['--allennlp'])
|
| 319 |
+
|
| 320 |
+
if args['--stanford']:
|
| 321 |
+
predicted = StanfordReader()
|
| 322 |
+
predicted.read(args['--stanford'])
|
| 323 |
+
|
| 324 |
+
if args['--props']:
|
| 325 |
+
predicted = PropSReader()
|
| 326 |
+
predicted.read(args['--props'])
|
| 327 |
+
|
| 328 |
+
if args['--ollie']:
|
| 329 |
+
predicted = OllieReader()
|
| 330 |
+
predicted.read(args['--ollie'])
|
| 331 |
+
|
| 332 |
+
if args['--reverb']:
|
| 333 |
+
predicted = ReVerbReader()
|
| 334 |
+
predicted.read(args['--reverb'])
|
| 335 |
+
|
| 336 |
+
if args['--clausie']:
|
| 337 |
+
predicted = ClausieReader()
|
| 338 |
+
predicted.read(args['--clausie'])
|
| 339 |
+
|
| 340 |
+
if args['--openiefour']:
|
| 341 |
+
predicted = OpenieFourReader()
|
| 342 |
+
predicted.read(args['--openiefour'])
|
| 343 |
+
|
| 344 |
+
if args['--openiefive']:
|
| 345 |
+
predicted = OpenieFiveReader()
|
| 346 |
+
predicted.read(args['--openiefive'])
|
| 347 |
+
|
| 348 |
+
if args['--benchmarkGold']:
|
| 349 |
+
predicted = BenchmarkGoldReader()
|
| 350 |
+
predicted.read(args['--benchmarkGold'])
|
| 351 |
+
|
| 352 |
+
if args['--tabbed']:
|
| 353 |
+
predicted = TabReader()
|
| 354 |
+
predicted.read(args['--tabbed'])
|
| 355 |
+
|
| 356 |
+
if args['--binaryMatch']:
|
| 357 |
+
matchingFunc = Matcher.binary_tuple_match
|
| 358 |
+
|
| 359 |
+
elif args['--simpleMatch']:
|
| 360 |
+
matchingFunc = Matcher.simple_tuple_match
|
| 361 |
+
|
| 362 |
+
elif args['--exactMatch']:
|
| 363 |
+
matchingFunc = Matcher.argMatch
|
| 364 |
+
|
| 365 |
+
elif args['--predMatch']:
|
| 366 |
+
matchingFunc = Matcher.predMatch
|
| 367 |
+
|
| 368 |
+
elif args['--lexicalMatch']:
|
| 369 |
+
matchingFunc = Matcher.lexicalMatch
|
| 370 |
+
|
| 371 |
+
elif args['--strictMatch']:
|
| 372 |
+
matchingFunc = Matcher.tuple_match
|
| 373 |
+
|
| 374 |
+
else:
|
| 375 |
+
matchingFunc = Matcher.binary_linient_tuple_match
|
| 376 |
+
|
| 377 |
+
b = Benchmark(args['--gold'])
|
| 378 |
+
# out_filename = args['--out']
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
optimal_f1_point = b.compare(predicted = predicted.oie,
|
| 382 |
+
matchingFunc = matchingFunc,
|
| 383 |
+
error_file = args["--error-file"],
|
| 384 |
+
binary = args["--binary"])
|
| 385 |
+
|
| 386 |
+
print("Precision: {}, Recall: {}, F1-score: {}".format(optimal_f1_point[0], optimal_f1_point[1], optimal_f1_point[2]))
|