Datasets:

ArXiv:
File size: 12,930 Bytes
36fdbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import torch
import torch.nn.functional as F
import random
import numpy as np
from src.utils.util import _bbox_mask
from src.utils import scribble, boundary_selection
from .trainer_basic import Trainer_basic

class Trainer(Trainer_basic):
    def __init__(self, args, logger):
        super().__init__(args, logger)

    def forward(self, sam_model, image, label, iter_nums, train=False, return_each_iter=False):
        if return_each_iter:
            return_mask_total_iter = torch.zeros([iter_nums, 1, image.size(2), image.size(3), image.size(4)])

        image_embedding, feature_list = self.sam.image_encoder(image)
        self.click_points = []
        self.click_labels = []
        return_loss = 0
        prev_masks = torch.zeros_like(label, dtype=torch.float).to(label.device)
        for iter_num in range(iter_nums):
            loss = 0
            prev_masks_sigmoid = torch.sigmoid(prev_masks) if iter_num > 0 else prev_masks

            points_input, labels_input, box_input = self.get_points(prev_masks_sigmoid, label, train_mode=train)
            mask, dice_pred = self.iteration_forward(sam_model, feature_list, image_embedding, prev_masks,
                                                     points=[points_input, labels_input], boxes=box_input)

            # ========================================================
            if self.args.multiple_outputs:
                dice_pred_best, max_label_index = torch.max(dice_pred, dim=1)
                mask_list = [mask[i, max_label_index[i], :].unsqueeze(0) for i in range(mask.size(0))]
                mask_best = torch.stack(mask_list, dim=0)
            else:
                mask_best = mask

            # ========================================================
            if train:
                if self.args.multiple_outputs:
                    for i in range(mask.size(1)):
                        single_mask, single_dice = mask[:, i, :].unsqueeze(1), dice_pred[:, i]
                        loss += self.calculate_loss(single_mask, prev_masks, single_dice, label, labels_input, iter_num)
                else:
                    loss = self.calculate_loss(mask, prev_masks, dice_pred[:, 0], label, labels_input, iter_num)

                # ========================================================
                if self.args.refine:
                    if self.args.no_detach:
                        mask_refine, error_map = self.sam.mask_decoder.refine(image, mask_best,
                                                                              [self.click_points, self.click_labels],
                                                                              mask_best)
                    else:
                        mask_refine, error_map = self.sam.mask_decoder.refine(image, mask_best, [self.click_points, self.click_labels], mask_best.detach())
                    print('dice before refine {} and after {}'.format(
                        self.get_dice_score(torch.sigmoid(mask_best), label),
                        self.get_dice_score(torch.sigmoid(mask_refine), label)))

                    # ========================================================
                    loss += self.loss_segmentation(mask_refine, label) * 1

                    mask_best = mask_refine

            # ========================================================
            else:
                if self.args.refine:
                    if self.args.no_detach:
                        mask_refine, error_map = self.sam.mask_decoder.refine(image, mask_best,
                                                                              [self.click_points, self.click_labels],
                                                                              mask_best)
                    else:
                        mask_refine, error_map = self.sam.mask_decoder.refine(image, mask_best,
                                                                              [self.click_points, self.click_labels],
                                                                              mask_best.detach())
                    if iter_num == iter_nums - 1 or iter_num == 0:
                        self.logger.info('dice before refine {} and after {}, label 0: {}, label 1: {}'.format(
                            self.get_dice_score(torch.sigmoid(mask_best), label), self.get_dice_score(torch.sigmoid(mask_refine), label),
                            str(labels_input.numel() - torch.count_nonzero(labels_input)), str(torch.count_nonzero(labels_input)) ) )
                    mask_best = mask_refine
                loss = self.get_dice_score(torch.sigmoid(mask_best), label)

            return_loss += loss
            prev_masks = mask_best

            if return_each_iter:
                return_mask_total_iter[iter_num, :] = mask_best

        if return_each_iter:
            return return_loss / iter_nums, return_mask_total_iter
        else:
            return return_loss / iter_nums, prev_masks

    def get_points(self, prev_masks, label, train_mode=True):
        mode = 'train' if train_mode else 'validation'

        batch_points, batch_labels = self.get_next_point(prev_masks, label, mode=mode)

        points_co = torch.cat(batch_points, dim=0).to(self.args.device) # b x num_clicks x 3
        points_la = torch.cat(batch_labels, dim=0).to(self.args.device) # b x num_clicks x 1

        self.click_points.append(points_co)
        self.click_labels.append(points_la)

        points_input = points_co
        labels_input = points_la

        bbox_coords = _bbox_mask(label[:, 0, :], mode=mode, dynamic=self.args.dynamic_box).to(self.args.device) if self.args.use_box else None

        return points_input, labels_input, bbox_coords

    def get_next_point(self, prev_seg, label, mode='train'): # prev_seg --> probability
        batch_points = []
        batch_labels = []

        pred_masks = (prev_seg > 0.5)
        true_masks = (label > 0)
        fn_masks = torch.logical_and(true_masks, torch.logical_not(pred_masks))
        fp_masks = torch.logical_and(torch.logical_not(true_masks), pred_masks)

        to_point_mask = torch.logical_or(fn_masks, fp_masks)


        # do_scribble = random.random()
        # sample_method = random.choice(['line', 'center', 'default'])
        sample_method = 'center'
        scribble_types = {
            'line': 'LineScribble',
            'center': 'CenterlineScribble',
            'default': 'ContourScribble'
        }

        def create_scribble_mask(scribble_type, data):
            scribble_object = getattr(scribble, scribble_type)()
            scribble_mask = scribble_object.batch_scribble(data).permute(1, 2, 3, 0)
            return scribble_mask > 0


        points_list = [len(torch.argwhere(to_point_mask[i])) for i in range(to_point_mask.size(0))]
        points_min = min(points_list)
        num_clicks = self.args.num_clicks if mode == 'train' else self.args.num_clicks_validation
        click_size = points_min if num_clicks > points_min else num_clicks
        dynamic_size = random.randint(1, click_size) if self.args.dynamic and mode == 'train' else click_size
        print(f"num_clicks {num_clicks} points_length: {points_min} dynamic_size: {dynamic_size}")

        for i in range(label.shape[0]):
            bp_list, bl_list = [], []
            points = torch.argwhere(to_point_mask[i])

            point_index = np.random.choice(len(points), size=dynamic_size, replace=False)
            points_select = points[point_index] # each row tensor([0, x, y, z]), size --> num_clicks x 4

            for click_index in range(dynamic_size):
                point = points_select[click_index]
                if fn_masks[i, 0, point[1], point[2], point[3]]:
                    is_positive = True
                else:
                    is_positive = False

                bp = point[1:].clone().detach().reshape(1, 1, 3)
                bl = torch.tensor([int(is_positive), ]).reshape(1, 1)
                bp_list.append(bp)
                bl_list.append(bl)

            if self.args.use_scribble:
                fg, bg_orig = fn_masks[i].permute(3, 0, 1, 2).float(), fp_masks[i].permute(3, 0, 1, 2).float()

                # ====== with the purpose of efficiency only for first few epochs ======
                bbx = _bbox_mask(label[i, 0, :].unsqueeze(0))
                diff_ = 15
                i_min, i_max = bbx[:, :, 0], bbx[:, :, 3]
                j_min, j_max = bbx[:, :, 1], bbx[:, :, 4]
                k_min, k_max = bbx[:, :, 2], bbx[:, :, 5]
                if max(0, i_min - diff_) < min(i_max + diff_, 126):
                    i_min, i_max = max(0, i_min - diff_), min(i_max + diff_, 126)
                if max(0, j_min - diff_) < min(j_max + diff_, 126):
                    j_min, j_max = max(0, j_min - diff_), min(j_max + diff_, 126)
                if max(0, k_min - diff_) < min(k_max + diff_, 126):
                    k_min, k_max = max(0, k_min - diff_), min(k_max + diff_, 126)

                bg_mask = torch.zeros_like(bg_orig).permute(1, 2, 3, 0)
                bg_mask[:, i_min:i_max, j_min:j_max, k_min:k_max] = 1
                bg = bg_orig * bg_mask.permute(3, 0, 1, 2)
                print('filter out voxels: {}'.format(torch.count_nonzero(bg_orig) - torch.count_nonzero(bg)))

                scribble_type = scribble_types.get(sample_method, scribble_types['default'])
                scribble_mask_fg = create_scribble_mask(scribble_type, fg)

                limit_num = 500
                if torch.count_nonzero(scribble_mask_fg) >= limit_num + 50:
                    a = torch.argwhere(scribble_mask_fg).size(0) - limit_num
                    random_number = random.randint(0, a)
                    fg_coors = torch.argwhere(scribble_mask_fg)[:, 1:].unsqueeze(0)[:, random_number: random_number + limit_num, :] # for computation only
                else:
                    fg_coors = torch.argwhere(scribble_mask_fg)[:, 1:].unsqueeze(0)

                fg_coors_label = torch.ones(1, fg_coors.size(1))
                bp_list.append(fg_coors)
                bl_list.append(fg_coors_label)


                scribble_mask_bg = create_scribble_mask(scribble_type, bg)
                if torch.count_nonzero(scribble_mask_bg) >= limit_num + 50: # dynamic_size is 50
                    a = torch.argwhere(scribble_mask_bg).size(0) - limit_num
                    random_number = random.randint(0, a)
                    bg_coors = torch.argwhere(scribble_mask_bg)[:, 1:].unsqueeze(0)[:, random_number: random_number + limit_num, :]
                else:
                    bg_coors = torch.argwhere(scribble_mask_bg)[:, 1:].unsqueeze(0)

                bg_coors_label = torch.zeros(1, bg_coors.size(1))
                bp_list.append(bg_coors)
                bl_list.append(bg_coors_label)

            batch_points.append(torch.cat(bp_list, dim=1))
            batch_labels.append(torch.cat(bl_list, dim=1))

        # for scribble
        if self.args.use_scribble:
            smallest_n = min(tensor.size(1) for tensor in batch_labels)
            batch_points = [tensor[:, :smallest_n] if tensor.size(1) > smallest_n else tensor for tensor in batch_points]
            batch_labels = [tensor[:, :smallest_n] if tensor.size(1) > smallest_n else tensor for tensor in batch_labels]

        # # Check the shapes of the adjusted tensors
        # for i, tensor in enumerate(batch_points):
        #     print(f"Tensor {i + 1} shape: {tensor.shape}")

        print('First batch:   fn: {:.4f}, fp: {:.4f}, label 0: {}, label 1: {}'.format(
            torch.count_nonzero(fn_masks[0]) / torch.count_nonzero(true_masks[0]),
            torch.count_nonzero(fp_masks[0]) / torch.count_nonzero(true_masks[0]),
            str(batch_labels[0].numel() - torch.count_nonzero(batch_labels[0])),
            str(torch.count_nonzero(batch_labels[0]))
        )
        )
        print('--- ===================================== ---')
        print('--- above before model, below after model ---')
        print('--- ===================================== ---')
        return batch_points, batch_labels

    def iteration_forward(self, sam_model, features, image_embedding, prev_masks, points=None, boxes=None):
        prev_masks = F.interpolate(prev_masks, scale_factor=0.25)
        features = [features[i].to(self.args.device) for i in range(0, len(features))]

        new_point_embedding, new_image_embedding = sam_model.prompt_encoder(
            points=points,
            boxes=boxes,
            masks=prev_masks,
            image_embeddings=image_embedding.to(self.args.device)
        )

        mask, dice_pred = sam_model.mask_decoder(
            prompt_embeddings=new_point_embedding,  # (B, 2, 256)
            image_embeddings=new_image_embedding,  # (B, 256, 64, 64)
            feature_list=features,
        )
        return mask, dice_pred