Datasets:

ArXiv:
File size: 15,339 Bytes
36fdbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
from abc import abstractmethod
import torch
import numpy as np
from torch.optim import AdamW, lr_scheduler
from src.config.config_setup import build_model, get_dataloader
from monai.losses import DiceCELoss, DiceLoss
import torch.nn as nn
from src.utils.util import save_checkpoint
import time
import os
import torch.distributed as dist
from torch.cuda import amp
import torchio as tio


class Trainer_basic(object):
    def __init__(self, args, logger):
        self.args = args
        self.logger = logger

        a = time.time()
        use_small = True if self.args.use_small_dataset else False
        self.train_data, self.val_data = get_dataloader(args, split='train', use_small=use_small), get_dataloader(args, split='val', use_small=use_small)
        if self.args.use_sam3d_turbo:
            self.sam = build_model(args, checkpoint='../src/ckpt/sam_med3d_turbo.pth')
        else:
            self.sam = build_model(args)
        if self.args.ddp:
            self.sam = self.sam.module

        self.best_dice, self.best_epoch, self.start_epoch = 0, 0, 0
        self.pooling_layer = nn.AvgPool3d((self.args.boundary_kernel_size, self.args.boundary_kernel_size, 1), stride=1,
                                     padding=(int((self.args.boundary_kernel_size - 1) / 2),
                                              int((self.args.boundary_kernel_size - 1) / 2),
                                              0)).cuda()

        self.setup()
        print('dataloaders are created, models are loaded, and others are set, spent {} for rank {}'
              .format(round(time.time() - a, 2), self.args.rank))


    def run(self):
        self.scaler = amp.GradScaler()
        for epoch_num in range(self.start_epoch, self.args.max_epoch):
            self.sam.train()
            if self.args.ddp:
                # dist.barrier() # set a barrier until all processes are at same point
                self.train_data.sampler.set_epoch(epoch_num)

            self.train(epoch_num)
            if self.args.ddp and self.args.rank == 0:
                print('doing validation on rank=0')
                current_mean_dice = self.validate(epoch_num) if self.args.data != 'lits' else self.validate_sliding_window(epoch_num)
            else:
                current_mean_dice = self.validate(epoch_num) if self.args.data != 'lits' else self.validate_sliding_window(epoch_num)
            # https://medium.com/codex/a-comprehensive-tutorial-to-pytorch-distributeddataparallel-1f4b42bb1b51
            # if self.args.ddp:
                # dist.barrier()
            self.save_model(current_mean_dice, epoch_num)

    @abstractmethod
    def forward(self, model, image, label, iter_nums, train, return_each_iter):
        pass

    def train(self, epoch_num):
        loss_summary = []
        for idx, (image, label, image_path) in enumerate(self.train_data):
            self.optimizer.zero_grad()

            # increase speed based on gradient accumulation
            # my_context = self.sam.no_sync if self.args.rank != -1 and idx % self.args.accumulation_steps != 0 else nullcontext
            # with my_context():
            image, label = image.to(self.args.device), label.to(self.args.device)
            with amp.autocast():
                loss, _ = self.forward(self.sam, image, label, iter_nums=self.args.iter_nums, train=True)

            loss_summary.append(loss.detach().cpu().numpy())

            self.scaler.scale(loss).backward()
            self.scaler.unscale_(self.optimizer)
            torch.nn.utils.clip_grad_norm_(self.sam.parameters(), 1.0)
            self.scaler.step(self.optimizer)
            self.scaler.update()

            print('epoch: {}/{}, iter: {}/{}'.format(epoch_num, self.args.max_epoch, idx, len(self.train_data))
                  + ": loss:" + str(round(loss_summary[-1].flatten()[0], 4))
                  + ": rank:" + str(self.args.rank))
            self.logger.info(
                'epoch: {}/{}, iter: {}/{}'.format(epoch_num, self.args.max_epoch, idx, len(self.train_data))
                + ": loss:" + str(round(loss_summary[-1].flatten()[0], 4))
                + ": rank:" + str(self.args.rank))
        print('current lr: {}'.format(self.optimizer.param_groups[0]["lr"]))
        # If the first iteration creates NaN gradients (e.g. due to a high scaling factor and thus gradient overflow),
        # the optimizer.step() will be skipped and you might get this warning.
        self.update_lr(epoch_num, warm_up=self.args.warm_up)
        self.logger.info("- Train metrics: " + str(np.mean(loss_summary)))

    def validate_sliding_window(self, epoch_num):
        self.sam.eval()
        with torch.no_grad():
            dice_list = []
            for idx, batch in enumerate(self.val_data):
                if isinstance(batch, (list, tuple)) and len(batch) >= 2:
                    subject_dict, image_path = batch[0], batch[1]
                else:
                    raise ValueError("Unexpected validation batch format for lits dataset")
                if subject_dict['label']['data'][0].sum() <= 0:
                    self.logger.info(image_path, 'label volume too small, and it has been skipped for validation')
                    continue
                mean_dice = 0
                subject = tio.Subject(image=tio.ScalarImage(tensor=subject_dict['image']['data'][0].float(), affine=subject_dict['image']['affine'][0]),
                                      label=tio.LabelMap(tensor=subject_dict['label']['data'][0].float(), affine=subject_dict['label']['affine'][0]))
                grid_sampler = tio.inference.GridSampler(subject, 128, 16)
                patch_loader = torch.utils.data.DataLoader(grid_sampler, batch_size=1)
                aggregator = tio.inference.GridAggregator(grid_sampler)

                masks_final = torch.zeros([self.args.iter_nums, len(patch_loader), 128, 128, 128])
                location_list = []
                for idx_patch, patches_batch in enumerate(patch_loader):
                    image, label = patches_batch['image'][tio.DATA].to(self.args.device), patches_batch['label'][tio.DATA].to(self.args.device)
                    locations = patches_batch[tio.LOCATION]

                    if torch.count_nonzero(label) == 0:
                        print('found empty patch')
                        masks = torch.zeros([self.args.iter_nums, 1, 128, 128, 128])
                    else:
                        _, masks = self.forward(self.sam, image, label, iter_nums=self.args.iter_nums, train=False, return_each_iter=True)
                        print(masks.shape)
                    masks_final[:, idx_patch, :] = masks.squeeze(1)
                    location_list.append(locations)

                mean_dice_sub_list = []
                for iter_num in range(self.args.iter_nums):
                    for l_i in range(0, len(location_list)):
                        location = location_list[l_i]
                        a = masks_final[iter_num, l_i, :].unsqueeze(0).unsqueeze(0)
                        mask = a
                        aggregator.add_batch(mask, location)
                    masks_iter_final = aggregator.get_output_tensor()
                    mean_dice_sub_list.append(self.get_dice_score(torch.sigmoid(masks_iter_final), subject.label.data))

                mean_dice_sub = np.mean(mean_dice_sub_list)
                mean_dice += mean_dice_sub
                dice_list.append(mean_dice)
                print(mean_dice_sub)
                self.logger.info(
                    'epoch: {}/{}, iter: {}/{}'.format(epoch_num, self.args.max_epoch, idx, len(self.val_data)) +
                    ' subject: ' + str(image_path) + ' mean dice over clicks:' + str(mean_dice) +
                    ' stich left and right side (total size): ' + str(label.size(1)))
            self.logger.info("- Val metrics mean dice: " + str(np.mean(dice_list)))
        return dice_list

    def validate(self, epoch_num):
        self.sam.eval()
        device = self.args.device
        with torch.no_grad():
            dice_list = []
            for idx, (image, label, image_path, _) in enumerate(self.val_data):
                mean_dice = 0
                image, label = image.to(device), label.to(device)
                #with amp.autocast():

                if self.args.data == 'kits' and image.size(1) > 1:
                    label_final, masks_final = torch.zeros([1, 1, int(image.size(2) * 2), image.size(3), image.size(4)]), torch.zeros([self.args.iter_nums, 1, int(image.size(2) * 2), image.size(3), image.size(4)])

                    for channel_num in range(image.size(1)):
                        _, masks = self.forward(self.sam, image[:, channel_num, :].unsqueeze(1), label[:, channel_num, :].unsqueeze(1), iter_nums=self.args.iter_nums, train=False, return_each_iter=True)
                        start_point, end_pont = 0 + channel_num * image.size(2), image.size(2) + channel_num * image.size(2)

                        masks_final[:, 0, start_point: end_pont, :] = masks[:, 0, :]
                        label_final[0, 0, start_point: end_pont, :] = label[0, channel_num, :]

                    mean_dice_sub_list = []
                    for iter_num in range(self.args.iter_nums):
                        mean_dice_sub_list.append(self.get_dice_score(torch.sigmoid(masks_final[iter_num]), label_final[0]))
                    mean_dice_sub = np.mean(mean_dice_sub_list)
                else:
                    mean_dice_sub, masks = self.forward(self.sam, image, label, iter_nums=self.args.iter_nums, train=False)

                mean_dice += mean_dice_sub
                dice_list.append(mean_dice)
                print(mean_dice_sub)
                self.logger.info(
                    'epoch: {}/{}, iter: {}/{}'.format(epoch_num, self.args.max_epoch, idx, len(self.val_data)) +
                    ' subject: ' + str(image_path) + ' mean dice over clicks:' + str(mean_dice) +
                    ' stich left and right side (total size): ' + str(label.size(1)))
            self.logger.info("- Val metrics mean dice: " + str(np.mean(dice_list)))
        return dice_list


    def calculate_loss(self, mask, prev_masks, pred_dice, label, labels_input, iter_num, inter=False):
        mask_probs, prev_masks_prob = torch.sigmoid(mask), torch.sigmoid(prev_masks)

        seg_edge = abs(label - self.pooling_layer(label))
        mask_edge = abs(mask_probs - self.pooling_layer(mask_probs))
        edge_number = torch.count_nonzero(mask_edge) + 1

        pred_dice_score_loss = 0
        for batch_index in range(mask.size(0)):
            target_dice = 1 - self.loss_validation(mask[batch_index].unsqueeze(0), label[batch_index].unsqueeze(0))[0,0,0,0,0]

            target_dice = torch.tensor([target_dice])[0].to(self.args.device)
            pred_dice_score_loss += self.loss_boundary(pred_dice[batch_index], target_dice) * 1

        loss = self.loss_segmentation(mask, label) + self.loss_boundary(mask_edge, seg_edge) * 10
        loss = loss + pred_dice_score_loss
        return loss

    def get_dice_score(self, prev_masks, label, batch=False):
        def compute_dice(mask_pred, mask_gt):
            mask_threshold = 0.5

            mask_pred = (mask_pred > mask_threshold)
            mask_gt = (mask_gt > 0)

            volume_sum = mask_gt.sum() + mask_pred.sum()
            if volume_sum == 0:
                return np.NaN
            volume_intersect = (mask_gt & mask_pred).sum()
            return 2 * volume_intersect / volume_sum

        pred_masks = (prev_masks > 0.5)
        true_masks = (label > 0)
        dice_list = []
        for i in range(true_masks.shape[0]):
            dice_list.append(compute_dice(pred_masks[i], true_masks[i]))
        if batch:
            return dice_list
        else:
            return (sum(dice_list) / len(dice_list)).item()

    def save_model(self, current_dice, epoch_num):
        is_best = False
        if np.mean(current_dice) > self.best_dice:
            self.best_dice = np.mean(current_dice)
            self.best_epoch = epoch_num
            is_best = True

        if not self.args.ddp or (self.args.ddp and self.args.rank == 0):
            save_checkpoint({"epoch": epoch_num + 1,
                             "best_val_loss": self.best_dice,
                             "model_state_dict": self.sam.state_dict(),
                             "optimizer": self.optimizer.state_dict(),
                             "lr_scheduler": self.lr_scheduler.state_dict(),
                             },
                            is_best=is_best,
                            checkpoint=self.args.save_dir)
        self.logger.info("- Val metrics best mean dice: {} at epoch {} " .format(self.best_dice, self.best_epoch))

    def setup(self):
        self.setup_loss()
        self.setup_optimizier()
        self.setup_scheduler()

        if self.args.resume:
            if self.args.ddp:
                dist.barrier()
            checkpoint = 'best.pth.tar' if self.args.resume_best else 'last.pth.tar'
            ckpt = torch.load(os.path.join(self.args.save_dir, checkpoint))

            self.start_epoch = ckpt["epoch"]
            self.best_epoch = self.start_epoch
            self.best_dice = ckpt["best_val_loss"]
            self.sam.load_state_dict(ckpt["model_state_dict"], strict=True)
            self.optimizer.load_state_dict(ckpt["optimizer"])
            #self.lr_scheduler.load_state_dict(ckpt['lr_scheduler'])lr_scheduler_regular
            self.lr_scheduler_regular.load_state_dict(ckpt['lr_scheduler'])


            self.logger.info(f"Resume training from epoch {self.start_epoch}!")
            del ckpt
            torch.cuda.empty_cache()

    def setup_loss(self):
        self.loss_boundary = nn.MSELoss()
        self.mse_none = nn.MSELoss(reduction='none')

        self.loss_segmentation = DiceCELoss(sigmoid=True, squared_pred=True, reduction='mean')
        self.loss_Dice = DiceLoss(sigmoid=True)
        self.loss_validation = DiceLoss(sigmoid=True, reduction='none')

        self.l1 = nn.L1Loss()
        self.inter_loss = DiceCELoss(sigmoid=True, squared_pred=True, reduction='mean')

    def setup_optimizier(self):
        self.optimizer = AdamW([
            {'params': self.sam.image_encoder.parameters()},
            {'params': self.sam.prompt_encoder.parameters()},
            {'params': self.sam.mask_decoder.parameters()},
        ], lr=self.args.lr)

    def setup_scheduler(self):
        if self.args.lr_scheduler == 'linear':
            self.lr_scheduler_regular = lr_scheduler.LinearLR(self.optimizer, start_factor=1.0, end_factor=0.01, total_iters=500)
        else:
            self.lr_scheduler_regular = lr_scheduler.ExponentialLR(self.optimizer, gamma=0.98)
        if self.args.warm_up:
            self.linear_warmup_scheduler = lr_scheduler.LinearLR(self.optimizer, start_factor=0.01, end_factor=1.0, total_iters=10)

    def update_lr(self, epoch, warmup_epoch=10, warm_up=False):
        if warm_up:
            if epoch < warmup_epoch:
                self.lr_scheduler = self.linear_warmup_scheduler
            else:
                self.lr_scheduler = self.lr_scheduler_regular
        else:
            self.lr_scheduler = self.lr_scheduler_regular
        self.lr_scheduler.step()