Datasets:

ArXiv:
File size: 26,054 Bytes
36fdbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
import logging
import os.path
import torch
from utils.util import setup_logger
from config.config_args import *
import numpy as np
from torch.backends import cudnn
from src.config.config_setup import build_model, get_dataloader
import time, random
import torch.nn.functional as F
from src.utils.util import _bbox_mask
from src.utils import scribble, boundary_selection
import torchio as tio
import surface_distance
from surface_distance import metrics

def init_seeds(seed=0, cuda_deterministic=True):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
    if cuda_deterministic:  # slower, more reproducible
        cudnn.deterministic = True
        cudnn.benchmark = False
    else:  # faster, less reproducible
        cudnn.deterministic = False
        cudnn.benchmark = True


class Tester(object):
    def __init__(self, args, logger, ckpt):
        self.args = args
        self.logger = logger

        self.val_data = get_dataloader(args, split='test')

        a = time.time()
        print('loading models and setting up')
        self.sam = build_model(args, checkpoint=ckpt)

        self.image_encoder = self.sam.image_encoder
        self.prompt_encoder = self.sam.prompt_encoder
        self.mask_decoder = self.sam.mask_decoder

        # self._load_pretrain_model(ckpt)

    def _load_pretrain_model(self, ckpt):
        model_dict = torch.load(ckpt, map_location=self.args.device)
        state_dict = model_dict
        self.sam.load_state_dict(state_dict['model_state_dict'])

    def validate(self, epoch_num):
        self.image_encoder.eval()
        self.prompt_encoder.eval()
        self.mask_decoder.eval()

        if self.args.data == 'lits':
            loss = self.validater_sliding_window(epoch_num)
        else:
            loss = self.validater(epoch_num)
        return loss


    def validater_sliding_window(self, epoch_num):
        with torch.no_grad():
            dice_summary, nsd_summary = [], []
            for idx, (subject_dict, image_path, subject_dict_save) in enumerate(self.val_data):
                if subject_dict['label']['data'][0].sum() <= 0:
                    self.logger.info(image_path, 'label volume too small, and it has been skipped for validation')
                    continue
                mean_dice = 0
                subject = tio.Subject(image=tio.ScalarImage(tensor=subject_dict['image']['data'][0].float(), affine=subject_dict['image']['affine'][0]),
                                      label=tio.LabelMap(tensor=subject_dict['label']['data'][0].float(), affine=subject_dict['label']['affine'][0]))
                grid_sampler = tio.inference.GridSampler(subject, 128, 16)
                patch_loader = torch.utils.data.DataLoader(grid_sampler, batch_size=1)
                aggregator = tio.inference.GridAggregator(grid_sampler, overlap_mode='average')


                for idx_patch, patches_batch in enumerate(patch_loader):
                    image, label = patches_batch['image'][tio.DATA].to(self.args.device), patches_batch['label'][tio.DATA].to(self.args.device)
                    print(torch.count_nonzero(label))
                    print('how many voxels')
                    locations = patches_batch[tio.LOCATION]

                    if torch.count_nonzero(label) == 0:
                        print('found empty patch')
                        masks = torch.zeros([1, 1, 128, 128, 128])
                    else:
                        # _, masks = self._interaction(self.sam, image, label, iter_nums=self.args.iter_nums, train=False, return_each_iter=True)
                        _, masks = self._interaction(self.sam, image, label, iter_nums=self.args.iter_nums, train=False)

                    aggregator.add_batch(masks, locations)
                masks_iter_final = aggregator.get_output_tensor()
                mean_dice_sub = self.get_dice_score(torch.sigmoid(masks_iter_final), subject.label.data)

                mean_dice += mean_dice_sub
                dice_summary.append(mean_dice)

                ssd = surface_distance.compute_surface_distances(
                    (subject.label.data == 1)[0].cpu().numpy(),
                    (torch.sigmoid(masks_iter_final) > 0.5)[0].cpu().numpy(),
                    spacing_mm=(1,1,1)
                )
                nsd = metrics.compute_surface_dice_at_tolerance(ssd, 5)

                nsd_summary.append(nsd)
                print(mean_dice_sub)

                if self.args.save_predictions:
                    save_test_dir = os.path.join(self.args.save_test_dir, 'prism_prediction', self.args.data, self.args.save_name, str(self.args.iter_nums))
                    if not os.path.exists(save_test_dir):
                        os.makedirs(save_test_dir)
                    a = torch.sigmoid(masks_iter_final) > 0.5
                    a = a[0].float().cpu().numpy()
                    import SimpleITK as sitk
                    prediction = sitk.GetImageFromArray(a)
                    if self.args.data == 'lits':
                        base_name = image_path[0].split('/')[-2] + '_' +image_path[0].split('/')[-1]
                    if self.args.refine_test:
                        pred_name = base_name.replace('.nii.gz', '._pred.nii.gz')
                    else:
                        pred_name = base_name.replace('.nii.gz', '._pred_no_refine.nii.gz')
                    save_path = os.path.join(save_test_dir, pred_name)
                    sitk.WriteImage(prediction, save_path)

                    if self.args.iter_nums == 1:
                        if self.args.refine_test:
                            image_name = base_name.replace('.nii.gz', '._image.nii.gz')
                        else:
                            image_name = base_name.replace('.nii.gz', '._image_no_refine.nii.gz')
                        b = subject_dict_save['image']['data'][0][0].float().cpu().numpy()
                        image_save = sitk.GetImageFromArray(b)
                        sitk.WriteImage(image_save, os.path.join(save_test_dir, image_name))

                        if self.args.refine_test:
                            label_name = base_name.replace('.nii.gz', '._label.nii.gz')
                        else:
                            label_name = base_name.replace('.nii.gz', '._label_no_refine.nii.gz')
                        c = subject_dict_save['label']['data'][0][0].float().cpu().numpy()
                        label_save = sitk.GetImageFromArray(c)
                        sitk.WriteImage(label_save, os.path.join(save_test_dir, label_name))



                self.logger.info(
                    'epoch: {}/{}, iter: {}/{}'.format(epoch_num, self.args.max_epoch, idx, len(self.val_data)) +
                    ' subject: ' + str(image_path) + ' mean nsd over clicks:' + str(nsd) + ' mean dice over clicks:' + str(mean_dice) +
                    ' stich left and right side (total size): ' + str(label.size(1)))
            self.logger.info("- Val metrics mean dice: " + str(np.mean(dice_summary)) + "- Val metrics nsd: " + str(np.mean(nsd_summary)))

            from scipy import stats
            data = dice_summary
            # Calculate mean
            mean = np.mean(data)
            # Calculate standard error of the mean (SEM)
            sem = stats.sem(data)
            # Determine the t-value for the 95% confidence interval
            # Degrees of freedom
            df = len(data) - 1
            # t-value for 95% CI
            t_value = stats.t.ppf(0.975, df)
            # Calculate the margin of error
            margin_of_error = sem * t_value
            # Calculate the 95% CI
            ci_lower = mean - margin_of_error
            ci_upper = mean + margin_of_error
            self.logger.info("- ci_lower dice: " + str(ci_lower) + "- ci_lower dice: " + str(ci_upper))

        return dice_summary

    def validater(self, epoch_num):
        device = self.args.device
        with torch.no_grad():
            loss_summary, nsd_summary = [], []
            # for idx, data in enumerate(val_data):
            # img, label = data['image'].to(device), data['label'].to(device)
            for idx, (image, label, image_path, subject_dict_save) in enumerate(self.val_data):

                image, label = image.to(device), label.to(device)

                if self.args.data == 'kits' and image.size(1) > 1:
                    label_final, masks_final = torch.zeros([1, 1, int(image.size(2) * 2), image.size(3), image.size(4)]), torch.zeros([self.args.iter_nums, 1, int(image.size(2) * 2), image.size(3), image.size(4)])

                    for channel_num in range(image.size(1)):
                        masks = self.interaction(self.sam, image[:, channel_num, :].unsqueeze(1), label[:, channel_num, :].unsqueeze(1))
                        start_point, end_pont = 0 + channel_num * image.size(2), image.size(2) + channel_num * image.size(2)

                        masks_final[:, 0, start_point: end_pont, :] = masks[:, 0, :]
                        label_final[0, 0, start_point: end_pont, :] = label[0, channel_num, :]

                    masks, label = masks_final, label_final
                else:
                    masks = self.interaction(self.sam, image, label)

                # masks = self.interaction(self.sam, image, label)

                dice = self.get_dice_score(torch.sigmoid(masks), label)
                loss_summary.append(dice)

                ssd = surface_distance.compute_surface_distances(
                    (label == 1)[0][0].cpu().numpy(),
                    (torch.sigmoid(masks) > 0.5)[0][0].cpu().numpy(),
                    spacing_mm=(1, 1, 1)
                )
                nsd = metrics.compute_surface_dice_at_tolerance(ssd, 5)

                nsd_summary.append(nsd)

                if self.args.save_predictions:
                    save_test_dir = os.path.join(self.args.save_test_dir, 'prism_prediction', self.args.data,
                                                 self.args.save_name, str(self.args.iter_nums))
                    if not os.path.exists(save_test_dir):
                        os.makedirs(save_test_dir)
                    a = torch.sigmoid(masks) > 0.5
                    a = a.float().cpu().numpy()
                    import SimpleITK as sitk
                    prediction = sitk.GetImageFromArray(a)
                    if self.args.data == 'colon':
                        base_name = image_path[0].split('/')[-1]
                    else:
                        base_name = image_path[0].split('/')[-2] + '_' + image_path[0].split('/')[-1]
                    if self.args.refine_test:
                        pred_name = base_name.replace('.nii.gz', '._pred.nii.gz')
                    else:
                        pred_name = base_name.replace('.nii.gz', '._pred_no_refine.nii.gz')
                    save_path = os.path.join(save_test_dir, pred_name)
                    sitk.WriteImage(prediction, save_path)

                    if self.args.iter_nums == 1:
                        if self.args.refine_test:
                            image_name = base_name.replace('.nii.gz', '._image.nii.gz')
                        else:
                            image_name = base_name.replace('.nii.gz', '._image_no_refine.nii.gz')
                        b = subject_dict_save['image']['data'][0][0].float().cpu().numpy()
                        image_save = sitk.GetImageFromArray(b)
                        sitk.WriteImage(image_save, os.path.join(save_test_dir, image_name))

                        if self.args.refine_test:
                            label_name = base_name.replace('.nii.gz', '._label.nii.gz')
                        else:
                            label_name = base_name.replace('.nii.gz', '._label_no_refine.nii.gz')
                        c = subject_dict_save['label']['data'][0][0].float().cpu().numpy()
                        label_save = sitk.GetImageFromArray(c)
                        sitk.WriteImage(label_save, os.path.join(save_test_dir, label_name))

                self.logger.info(
                    'epoch: {}/{}, iter: {}/{}'.format(epoch_num, self.args.max_epoch, idx, len(self.val_data)) +
                    ' subject: ' + str(image_path) + ' mean nsd over clicks:' + str(nsd) + ' mean dice over clicks:' + str(dice) +
                    ' stich left and right side (total size): ' + str(label.size(1)))

            self.logger.info("- Val metrics mean dice: " + str(np.mean(loss_summary)) + "- Val metrics nsd: " + str(np.mean(nsd_summary)))
            from scipy import stats
            data = loss_summary
            # Calculate mean
            mean = np.mean(data)
            # Calculate standard error of the mean (SEM)
            sem = stats.sem(data)
            # Determine the t-value for the 95% confidence interval
            # Degrees of freedom
            df = len(data) - 1
            # t-value for 95% CI
            t_value = stats.t.ppf(0.975, df)
            # Calculate the margin of error
            margin_of_error = sem * t_value
            # Calculate the 95% CI
            ci_lower = mean - margin_of_error
            ci_upper = mean + margin_of_error
            self.logger.info("- ci_lower dice: " + str(ci_lower) + "- ci_lower dice: " + str(ci_upper))

        return loss_summary

    def get_next_click3D_torch_2(self, prev_seg, gt_semantic_seg):

        mask_threshold = 0.5

        batch_points = []
        batch_labels = []
        # dice_list = []

        pred_masks = (prev_seg > mask_threshold)
        true_masks = (gt_semantic_seg > 0)
        fn_masks = torch.logical_and(true_masks, torch.logical_not(pred_masks))
        fp_masks = torch.logical_and(torch.logical_not(true_masks), pred_masks)
        print('fn: {}, fp: {}'.format(torch.count_nonzero(fn_masks) / torch.count_nonzero(true_masks),
                                      torch.count_nonzero(fp_masks) / torch.count_nonzero(true_masks)))
        to_point_mask = torch.logical_or(fn_masks, fp_masks)
        #to_point_mask = fn_masks
        for i in range(gt_semantic_seg.shape[0]):
            bp_list, bl_list = [], []
            points = torch.argwhere(to_point_mask[i])
            if self.args.num_clicks > len(points):
                click_size = len(points)
            else:
                click_size = self.args.num_clicks

            dynamic_size = random.randint(1, click_size) if self.args.dynamic else click_size

            point_index = np.random.choice(len(points), size=dynamic_size, replace=False)
            points_select = points[point_index]  # each row tensor([0, x, y, z]), size --> num_clicks x 4
            # point = points[np.random.randint(len(points))] # tensor([0, x, y, z])
            for click_index in range(dynamic_size):
                point = points_select[click_index]
                if fn_masks[i, 0, point[1], point[2], point[3]]:
                    is_positive = True
                else:
                    is_positive = False

                bp = point[1:].clone().detach().reshape(1, 1, 3)
                bl = torch.tensor([int(is_positive), ]).reshape(1, 1)
                bp_list.append(bp)
                bl_list.append(bl)

            if self.args.use_scribble:
                #sample_method = random.choice(['line', 'center', 'default'])
                sample_method = 'center'
                scribble_types = {
                    'line': 'LineScribble',
                    'center': 'CenterlineScribble',
                    'default': 'ContourScribble'
                }

                def create_scribble_mask(scribble_type, data):
                    scribble_object = getattr(scribble, scribble_type)()
                    scribble_mask = scribble_object.batch_scribble(data).permute(1, 2, 3, 0)
                    return scribble_mask > 0

                # fg = gt_semantic_seg[i].permute(3, 0, 1, 2).float()
                # bg = (torch.ones_like(pred_masks[i, :]).float() - gt_semantic_seg[i].float()).permute(3, 0, 1, 2)
                fg, bg = fn_masks[0].permute(3, 0, 1, 2).float(), fp_masks[0].permute(3, 0, 1, 2).float()

                scribble_type = scribble_types.get(sample_method, scribble_types['default'])

                scribble_mask_fg = create_scribble_mask(scribble_type, fg)
                #fg_coors = torch.argwhere(scribble_mask_fg)[:, 1:].unsqueeze(0)[:, 0: 100, :]  # for computation only
                fg_coors = torch.argwhere(scribble_mask_fg)[:, 1:].unsqueeze(0)
                if self.args.efficient_scribble:
                    fg_coors = fg_coors[:, 0: 10000, :]  # for computation only# for computation only
                fg_coors_label = torch.ones(1, fg_coors.size(1))
                bp_list.append(fg_coors)
                bl_list.append(fg_coors_label)
                # x,y,z = bp_list[-1][0, 99, 0], bp_list[-1][0, 99, 1], bp_list[-1][0, 99, 2]
                # print(gt_semantic_seg[i, 0, x,y,z])

                #if sample_method == 'default':
                if torch.count_nonzero(fp_masks) > 0:
                    scribble_mask_bg = create_scribble_mask(scribble_type, bg)
                    bg_coors = torch.argwhere(scribble_mask_bg)[:, 1:].unsqueeze(0)
                    if self.args.efficient_scribble:
                        bg_coors = bg_coors[:, 0: 10000, :]
                    bg_coors_label = torch.zeros(1, bg_coors.size(1))
                    bp_list.append(bg_coors)
                    bl_list.append(bg_coors_label)

            batch_points.append(torch.cat(bp_list, dim=1))
            batch_labels.append(torch.cat(bl_list, dim=1))

            smallest_n = min(tensor.size(1) for tensor in batch_labels)
            batch_points = [tensor[:, :smallest_n] if tensor.size(1) > smallest_n else tensor for tensor in
                            batch_points]
            batch_labels = [tensor[:, :smallest_n] if tensor.size(1) > smallest_n else tensor for tensor in
                            batch_labels]

            # Check the shapes of the adjusted tensors
            for i, tensor in enumerate(batch_points):
                print(f"Tensor {i + 1} shape: {tensor.shape}")


        return batch_points, batch_labels

    def get_points(self, prev_masks, label):
        batch_points, batch_labels = self.get_next_click3D_torch_2(prev_masks, label)

        points_co = torch.cat(batch_points, dim=0).to(self.args.device)
        points_la = torch.cat(batch_labels, dim=0).to(self.args.device)

        self.click_points.append(points_co)
        self.click_labels.append(points_la)

        points_input = points_co
        labels_input = points_la

        bbox_coords = _bbox_mask(label[:, 0, :]).to(self.args.device) if self.args.use_box else None
        return points_input, labels_input, bbox_coords


    def batch_forward(self, sam_model, features, image_embedding, image, prev_masks, points=None, boxes=None):
        prev_masks = F.interpolate(prev_masks, scale_factor=0.25)
        features = [features[i].to(self.args.device) for i in range(0, len(features))]

        # sparse_embeddings --> (B, 2, embed_dim) 2 represents concat of coordination and its label
        # dense_embeddings --> (B, embed_dim, W, H, D), whd values are customized
        new_point_embedding, new_image_embedding = sam_model.prompt_encoder(
            points=points,
            boxes=boxes,
            masks=prev_masks,
            image_embeddings=image_embedding.to(self.args.device)
        )

        mask, pred_dice = sam_model.mask_decoder(
            prompt_embeddings=new_point_embedding,  # (B, 2, 256)
            image_embeddings=new_image_embedding,  # (B, 256, 64, 64)
            feature_list=features,
        )

        return mask, pred_dice

    def interaction(self, sam_model, image, label):
        image_embedding, feature_list = self.sam.image_encoder(image)

        self.click_points = []
        self.click_labels = []
        prev_masks = torch.zeros_like(label).to(label.device)
        for iter_num in range(self.args.iter_nums):
            prev_masks_sigmoid = torch.sigmoid(prev_masks) if iter_num > 0 else prev_masks

            points_input, labels_input, bbox_input = self.get_points(prev_masks_sigmoid, label)
            mask, pred_dice = self.batch_forward(sam_model, feature_list, image_embedding, image, prev_masks, points=[points_input, labels_input], boxes=bbox_input)

            if self.args.multiple_outputs:
                pred_best_dice, pred_dice_max_index = torch.max(pred_dice, dim=1)
                mask_best = mask[:, pred_dice_max_index, :]
            else:
                mask_best, pred_best_dice = mask, pred_dice
            # FIXME refine or not
            if self.args.refine and self.args.refine_test:
                mask_refine, error_map = self.sam.mask_decoder.refine(image, mask_best, [self.click_points, self.click_labels], mask_best.detach())
                print('dice before refine {} and after {}'.format(
                    self.get_dice_score(torch.sigmoid(mask_best), label),
                    self.get_dice_score(torch.sigmoid(mask_refine), label))
                )
                mask_best = mask_refine

            prev_masks = mask_best
            dice = self.get_dice_score(torch.sigmoid(prev_masks).cpu().numpy(), label.cpu().numpy())
            print('---')
            print(f'Dice: {dice:.4f}, pred_dice: {pred_best_dice}, label: {labels_input}')

        return prev_masks



    def _interaction(self, sam_model, image, label, iter_nums, train=False, return_each_iter=False):
        if return_each_iter:
            return_mask_total_iter = torch.zeros([iter_nums, 1, image.size(2), image.size(3), image.size(4)])

        image_embedding, feature_list = self.sam.image_encoder(image)
        self.click_points = []
        self.click_labels = []
        return_loss = 0
        prev_masks = torch.zeros_like(label, dtype=torch.float).to(label.device)
        for iter_num in range(iter_nums):
            prev_masks_sigmoid = torch.sigmoid(prev_masks) if iter_num > 0 else prev_masks

            if self.args.init_learning and iter_num == 0:
                boundary, margin, content = boundary_selection.find_boundary_map(label)
                use_content = True
                for batch_index in range(label.size(0)):
                    if torch.count_nonzero(content[batch_index]) < self.args.num_clicks:
                        use_content = False
                if use_content:
                    label_sample = content
                else:
                    label_sample = label
            else:
                label_sample = label

            points_input, labels_input, box_input = self.get_points(prev_masks_sigmoid, label_sample, label)
            mask, dice_pred = self.batch_forward(sam_model, feature_list, image_embedding, image, prev_masks, points=[points_input, labels_input], boxes=box_input)

            # ========================================================
            if self.args.multiple_outputs:
                dice_pred_best, max_label_index = torch.max(dice_pred, dim=1)
                mask_list = [mask[i, max_label_index[i], :].unsqueeze(0) for i in range(mask.size(0))]
                mask_best = torch.stack(mask_list, dim=0)
            else:
                mask_best = mask

            # ========================================================

            if self.args.refine and self.args.refine_test:
                mask_refine, error_map = self.sam.mask_decoder.refine(image, mask_best, [self.click_points, self.click_labels], mask_best.detach())
                self.logger.info('dice before refine {} and after {}, label 0: {}, label 1: {}'.format(
                    self.get_dice_score(torch.sigmoid(mask_best), label), self.get_dice_score(torch.sigmoid(mask_refine), label),
                    str(labels_input.numel() - torch.count_nonzero(labels_input)), str(torch.count_nonzero(labels_input)) ) )
                mask_best = mask_refine  # FIXME refine or not

            loss = self.get_dice_score(torch.sigmoid(mask_best), label) # dice

            return_loss += loss
            prev_masks = mask_best

            if return_each_iter:
                return_mask_total_iter[iter_num, :] = mask_best
        if return_each_iter:
            print(return_mask_total_iter.shape)
            return return_loss / iter_nums, return_mask_total_iter
        else:
            return return_loss / iter_nums, prev_masks

    def get_dice_score(self, prev_masks, label):
        def compute_dice(mask_pred, mask_gt):
            mask_threshold = 0.5

            mask_pred = (mask_pred > mask_threshold)
            mask_gt = (mask_gt > 0)

            volume_sum = mask_gt.sum() + mask_pred.sum()
            if volume_sum == 0:
                return np.NaN
            volume_intersect = (mask_gt & mask_pred).sum()
            return 2 * volume_intersect / volume_sum

        pred_masks = (prev_masks > 0.5)
        true_masks = (label > 0)
        dice_list = []
        for i in range(true_masks.shape[0]):
            dice_list.append(compute_dice(pred_masks[i], true_masks[i]))
        return (sum(dice_list) / len(dice_list)).item()




def main():
    init_seeds()
    args = parser.parse_args()
    check_and_setup_parser(args)

    log_name = 'test_' + args.save_name
    setup_logger(logger_name=log_name, root=args.save_dir, screen=True, tofile=True)
    logger = logging.getLogger(log_name)
    logger.info(str(args))

    #ckpt = '/home/hao/Hao/3D_medical_foundation_model/src/implementation/log/colon/3DSAM/best.pth.tar'
    ckpt = os.path.join(args.save_dir, args.checkpoint + '.pth.tar')
    with torch.no_grad():
        tester = Tester(args, logger, ckpt)
        loss = tester.validate(epoch_num=0)

        print(loss)

    logger.info("- Test done")

if __name__ == "__main__":
    main()