File size: 25,468 Bytes
36fdbcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 |
from typing import Union, Tuple, List, Optional
import numpy as np
import torch
import kornia
import cv2
import src.voxynth.noise as v_noise
import src.voxynth.transform as v_transform
import os
# Prevent neurite from trying to load tensorflow
os.environ['NEURITE_BACKEND'] = 'pytorch'
def _thin_mask(mask_np: np.ndarray) -> np.ndarray:
if hasattr(cv2, "ximgproc") and hasattr(cv2.ximgproc, "thinning"):
return cv2.ximgproc.thinning(mask_np)
try:
from skimage.morphology import skeletonize
except Exception as exc:
raise AttributeError(
"cv2.ximgproc.thinning is unavailable and scikit-image is missing; "
"install opencv-contrib-python or scikit-image."
) from exc
return (skeletonize(mask_np.astype(bool)).astype(np.uint8) * 255)
# -----------------------------------------------------------------------------
# Parent class
# -----------------------------------------------------------------------------
class WarpScribble:
"""
Parent scribble class with shared functions for generating noise masks (useful for breaking up scribbles) and applying deformation fields (to warp scribbles)
"""
def __init__(self,
warp: bool = True,
warp_smoothing: Union[int, Tuple[int], List[int]] = (4, 16),
warp_magnitude: Union[int, Tuple[int], List[int]] = (1, 6),
mask_smoothing: Union[int, Tuple[int], List[int]] = (4, 16),
):
if isinstance(warp_smoothing, int):
warp_smoothing = [warp_smoothing, warp_smoothing]
if isinstance(warp_magnitude, int):
warp_magnitude = [warp_magnitude, warp_magnitude]
# Warp settings
self.warp = warp
self.warp_smoothing = list(warp_smoothing)
self.warp_magnitude = list(warp_magnitude)
# Noise mask settings
self.mask_smoothing = mask_smoothing
def noise_mask(self, shape: Union[Tuple[int], List[int]] = (8, 128, 128), device=None):
"""
Get a random binary mask by thresholding smoothed noise. The mask is used to break up the scribbles
"""
if isinstance(self.mask_smoothing, tuple):
get_smoothing = lambda: np.random.uniform(*self.mask_smoothing)
else:
get_smoothing = lambda: self.mask_smoothing
noise = torch.stack([
v_noise.perlin(shape=shape[-2:], smoothing=get_smoothing(), magnitude=1, device=device) for _ in
range(shape[0])
]) # shape: b x H x W
noise_mask = (noise > 0.0).int().unsqueeze(1)
return noise_mask # shaoe: b x 1 x H x W
def apply_warp(self, x: torch.Tensor):
"""
Warp a given mask x using a random deformation field
"""
if x.sum() > 0:
# warp scribbles using a deformation field
deformation_field = v_transform.random_transform(
shape=x.shape[-2:],
affine_probability=0.0,
warp_probability=1.0,
warp_integrations=0,
warp_smoothing_range=self.warp_smoothing,
warp_magnitude_range=self.warp_magnitude,
voxsize=1,
device=x.device,
isdisp=False
)
warped = v_transform.spatial_transform(x, trf=deformation_field, isdisp=False)
if warped.sum() == 0:
return x
else:
return (warped - warped.min()) / (warped.max() - warped.min())
else:
# Don't need to warp if mask is empty
return x
def batch_scribble(self, mask: torch.Tensor, n_scribbles: int = 1):
"""
Simulate scribbles for a batch of examples (mask).
"""
raise NotImplementedError
def __call__(self, mask: torch.Tensor, n_scribbles: int = 1) -> torch.Tensor:
"""
Args:
mask: (b,1,H,W) or (1,H,W) mask in [0,1] to sample scribbles from
Returns:
scribble_mask: (b,1,H,W) or (1,H,W) mask(s) of scribbles on [0,1]
"""
assert len(mask.shape) in [3, 4], f"mask must be b x 1 x h x w or 1 x h x w. currently {mask.shape}"
if len(mask.shape) == 3:
# shape: 1 x h x w
return self.batch_scribble(mask[None, ...], n_scribbles=n_scribbles)[0, ...]
else:
# shape: b x 1 x h x w
return self.batch_scribble(mask, n_scribbles=n_scribbles)
# -----------------------------------------------------------------------------
# Line Scribbles
# -----------------------------------------------------------------------------
class LineScribble(WarpScribble):
"""
Generates scribbles by
1) drawing lines connecting random points on the mask
2) warping with a random deformation field
3) then correcting any scribbles outside the mask
5) optionally, limiting the max area of scribbles to k pixels
"""
def __init__(self,
# Warp settings
warp: bool = True,
warp_smoothing: Union[int, Tuple[int], List[int]] = (4, 16),
warp_magnitude: Union[int, Tuple[int], List[int]] = (1, 6),
mask_smoothing: Union[int, Tuple[int], List[int]] = (4, 16),
# Line scribble settings
thickness: int = 1,
preserve_scribble: bool = True, # if True, prevents empty scribble masks from being returned
max_pixels: Optional[int] = None, # per "scribble"
max_pixels_smooth: Optional[int] = 42,
# Viz
show: bool = False
):
super().__init__(
warp=warp,
warp_smoothing=warp_smoothing,
warp_magnitude=warp_magnitude,
mask_smoothing=mask_smoothing,
)
self.thickness = thickness
self.preserve_scribble = preserve_scribble
self.max_pixels = max_pixels
self.max_pixels_smooth = max_pixels_smooth
self.show = show
def batch_scribble(self, mask: torch.Tensor, n_scribbles: int = 1) -> torch.Tensor:
"""
Args:
mask: (b,1,H,W) mask in [0,1] to sample scribbles from
n_scribbles: number of line scribbles to sample initially
Returns:
scribble_mask: (b,1,H,W) mask(s) of scribbles in [0,1]
"""
bs = mask.shape[0]
# Points to sample line endpoints from
points = torch.nonzero(mask[:, 0, ...])
def sample_lines(indices):
image = np.zeros(mask.shape[-2:] + (1,))
if len(indices) > 0:
# Sample points for each example in the batch
idx = np.random.randint(low=0, high=len(indices), size=2 * n_scribbles)
endpoints = points[indices, 1:][idx, 0, ...]
# Flip order of coordinates to be xy
endpoints = torch.flip(endpoints, dims=(1,)).cpu().numpy()
# Draw lines between the sample points
for i in range(n_scribbles):
image = cv2.line(image, tuple(endpoints[i * 2]), tuple(endpoints[i * 2 + 1]), color=1,
thickness=1)
return torch.from_numpy(image) # shape: H x W x 1
scribbles = torch.stack([
sample_lines(torch.argwhere(points[:, 0] == i)) for i in range(bs)
]).to(mask.device).moveaxis(-1, 1).float() # shape: b x 1 x H x W
if self.warp:
warped_scribbles = torch.stack(
[self.apply_warp(scribbles[b, ...]) for b in range(bs)]) # shape: b x 1 x H x W
else:
warped_scribbles = scribbles
# Remove lines outside the mask
corrected_warped_scribbles = mask * warped_scribbles
if self.preserve_scribble:
# If none of the scribble falls in the mask after warping, undo warping
idx = torch.where(torch.sum(corrected_warped_scribbles, dim=(1, 2, 3)) == 0)
corrected_warped_scribbles[idx] = mask[idx] * scribbles[idx]
if self.max_pixels is not None:
noise = torch.stack([
v_noise.perlin(shape=mask.shape[-2:], smoothing=self.max_pixels_smooth, magnitude=1,
device=mask.device) for _ in range(bs)
]).unsqueeze(1) # shape: b x 1 x H x W
# Shift all noise to be positive
if noise.min() < 0:
noise = noise - noise.min()
# Get the top k pixels
flat_mask = (noise * corrected_warped_scribbles).view(bs, -1)
vals, idx = flat_mask.topk(k=(self.max_pixels * n_scribbles), dim=1)
binary_mask = torch.zeros_like(flat_mask)
binary_mask.scatter_(dim=1, index=idx, src=torch.ones_like(flat_mask))
corrected_warped_scribbles = binary_mask.view(*mask.shape) * corrected_warped_scribbles
if self.show:
import neurite as ne
import matplotlib.pyplot as plt
from .plot import show_scribbles
if self.max_pixels is not None:
binary_mask = binary_mask.reshape(*mask.shape)
tensors = [mask, scribbles, warped_scribbles, noise, binary_mask, corrected_warped_scribbles, mask]
titles = ["Mask", "Lines", "Warped Lines", 'Smooth Noise', 'Top k Pixels', 'Corrected Scribbles',
'Corrected Scribbles']
else:
tensors = [mask, scribbles, warped_scribbles, corrected_warped_scribbles, mask]
titles = ["Mask", "Lines", "Warped Lines", 'Corrected Scribbles', 'Corrected Scribbles']
fig, axes = ne.plot.slices(
sum([[x[i, 0, ...].cpu() for x in tensors] for i in range(bs)], []),
sum([titles for _ in range(bs)], []),
show=False, grid=(bs, len(titles)), width=3 * len(titles), do_colorbars=False
)
if bs > 1:
for i in range(bs):
show_scribbles(corrected_warped_scribbles[i, 0, ...].cpu(), axes[i, -1])
else:
show_scribbles(corrected_warped_scribbles[0, 0, ...].cpu(), axes[-1])
plt.show()
return corrected_warped_scribbles # b x 1 x H x W
# -----------------------------------------------------------------------------
# Median Axis Scribble
# -----------------------------------------------------------------------------
class CenterlineScribble(WarpScribble):
"""
Generates scribbles by
1) skeletonizing the mask
2) chopping up with a random noise mask
3) warping with a random deformation field
4) then correcting any scribbles that fall outside the mask
5) optionally, limiting the max area of scribbles to k pixels
"""
def __init__(self,
# Warp settings
warp: bool = True,
warp_smoothing: Union[int, Tuple[int], List[int]] = (4, 16),
warp_magnitude: Union[int, Tuple[int], List[int]] = (1, 6),
mask_smoothing: Union[int, Tuple[int], List[int]] = (4, 16),
# Thickness of skeleton
dilate_kernel_size: Optional[int] = None,
preserve_scribble: bool = True, # if True, prevents empty scribble masks from being returned
max_pixels: Optional[int] = None, # per "scribble"
max_pixels_smooth: int = 42,
# Viz
show: bool = False
):
super().__init__(
warp=warp,
warp_smoothing=warp_smoothing,
warp_magnitude=warp_magnitude,
mask_smoothing=mask_smoothing,
)
self.dilate_kernel_size = dilate_kernel_size
self.preserve_scribble = preserve_scribble
self.max_pixels = max_pixels
self.max_pixels_smooth = max_pixels_smooth
self.show = show
def batch_scribble(self, mask: torch.Tensor, n_scribbles: Optional[int] = 1):
"""
Simulate scribbles for a batch of examples.
Args:
mask: (b,1,H,W) mask in [0,1] to sample scribbles from. torch.int32
n_scribbles: (int) only used when max_pixels is set as a multiplier for total area of the scribbles
currently, this argument does not control the number of components in the scribble mask
Returns:
scribble_mask: (b,1,H,W) mask(s) of scribbles in [0,1]
"""
assert len(mask.shape) == 4, f"mask must be b x 1 x h x w. currently {mask.shape}"
bs = mask.shape[0]
mask_w_border = 255 * mask.clone().moveaxis(1, -1)
mask_w_border[:, :, 0, :] = 0
mask_w_border[:, :, -1, :] = 0
mask_w_border[:, 0, :, :] = 0
mask_w_border[:, -1, :, :] = 0
# Skeletonize the mask
skeleton = torch.from_numpy(
np.stack([
_thin_mask(mask_w_border[i, ...].cpu().numpy().astype(np.uint8)) / 255 for i in range(bs)
])
).squeeze(-1).unsqueeze(1).to(mask.device).float() # shape: b x 1 x H x W
if self.dilate_kernel_size is not None:
# Dilate the boundary to make it thicker
#k = _as_single_val(self.dilate_kernel_size)
k = 3
if k > 0:
kernel = torch.ones((k, k), device=mask.device)
dilated_skeleton = kornia.morphology.dilation(skeleton, kernel=kernel, engine='convolution')
else:
dilated_skeleton = skeleton
noise_mask = self.noise_mask(shape=mask.shape, device=mask.device)
# Break up the boundary contours
scribbles = (dilated_skeleton * noise_mask) # shape: b x 1 x H x W
if self.preserve_scribble:
# If none of the scribbles fall in the random mask, keep the whole scribble
idx = torch.where(torch.sum(scribbles, dim=(1, 2, 3)) == 0)
scribbles[idx] = skeleton[idx]
if self.warp:
warped_scribbles = torch.stack([self.apply_warp(scribbles[b, ...]) for b in range(bs)])
else:
warped_scribbles = scribbles
corrected_warped_scribbles = mask * warped_scribbles # shape: b x 1 x H x W
if self.preserve_scribble:
# If none of the scribble falls in the mask after warping, remove the warping
idx = torch.where(torch.sum(corrected_warped_scribbles, dim=(1, 2, 3)) == 0)
corrected_warped_scribbles[idx] = mask[idx] * scribbles[idx]
if self.max_pixels is not None:
noise = torch.stack([
v_noise.perlin(shape=mask.shape[-2:], smoothing=self.max_pixels_smooth, magnitude=1,
device=mask.device) for _ in range(bs)
]).unsqueeze(1) # shape: b x 1 x H x W
# Shift all noise mask to be positive
if noise.min() < 0:
noise = noise - noise.min()
flat_mask = (noise * corrected_warped_scribbles).view(bs, -1)
vals, idx = flat_mask.topk(k=(self.max_pixels * n_scribbles), dim=1)
binary_mask = torch.zeros_like(flat_mask)
binary_mask.scatter_(dim=1, index=idx, src=torch.ones_like(flat_mask))
corrected_warped_scribbles = binary_mask.view(*mask.shape) * corrected_warped_scribbles
if self.show:
import neurite as ne
from .plot import show_scribbles
import matplotlib.pyplot as plt
tensors = [mask, skeleton]
titles = ["Input Mask", "Skeleton"]
if self.dilate_kernel_size is not None:
tensors.append(dilated_skeleton)
titles.append('Dilated Skeleton')
if self.max_pixels is not None:
tensors += [noise_mask, scribbles, warped_scribbles, noise, binary_mask.reshape(*mask.shape),
corrected_warped_scribbles, mask]
titles += ["Noise Mask", 'Broken Skeleton', 'Warped Scribbles', 'Smooth Noise', 'Top k Pixels',
'Corrected Scribbles', 'Corrected Scribbles']
else:
tensors += [noise_mask, scribbles, warped_scribbles, corrected_warped_scribbles, mask]
titles += ["Noise Mask", 'Broken Skeleton', 'Warped Scribbles', 'Corrected Scribbles',
'Corrected Scribbles']
fig, axes = ne.plot.slices(
sum([[x[i, ...].squeeze().cpu() for x in tensors] for i in range(bs)], []),
sum([titles for _ in range(bs)], []),
show=False, grid=(bs, len(titles)), width=3 * len(titles)
)
if bs > 1:
for i in range(bs):
show_scribbles(corrected_warped_scribbles[i, 0, ...].cpu(), axes[i, -1])
else:
show_scribbles(corrected_warped_scribbles[0, 0, ...].cpu(), axes[-1])
plt.show()
return corrected_warped_scribbles
# -----------------------------------------------------------------------------
# Contour Scribbles
# -----------------------------------------------------------------------------
class ContourScribble(WarpScribble):
"""
Generates scribbles by
1) blurring and thresholding the mask, then getting the contours
2) chopping up the contour scribbles with a random noise mask
3) warping with a random deformation field
4) then correcting any scribbles that fall outside the mask
5) optionally, limiting the max area of scribbles to k pixels
"""
def __init__(self,
# Warp settings
warp: bool = True,
warp_smoothing: Union[int, Tuple[int], List[int]] = (4, 16),
warp_magnitude: Union[int, Tuple[int], List[int]] = (1, 6),
mask_smoothing: Union[int, Tuple[int], List[int]] = (4, 16),
# Blur settings
blur_kernel_size: int = 33,
blur_sigma: Union[float, Tuple[float], List[float]] = (5.0, 20.0),
# Other settings
dilate_kernel_size: Optional[Union[int, Tuple[int]]] = None,
preserve_scribble: bool = True, # if True, prevents empty scribble masks from being returned
max_pixels: Optional[int] = None, # per "scribble"
max_pixels_smooth: Optional[int] = 42,
# Viz
show: bool = False
):
super().__init__(
warp=warp,
warp_smoothing=warp_smoothing,
warp_magnitude=warp_magnitude,
mask_smoothing=mask_smoothing,
)
# Blur settings
if isinstance(blur_sigma, float) or isinstance(blur_sigma, int):
blur_sigma = (blur_sigma, blur_sigma + 1e-7)
self.blur_fn = kornia.augmentation.RandomGaussianBlur(
kernel_size=(blur_kernel_size, blur_kernel_size), sigma=blur_sigma, p=1.
)
# Line thickness
self.dilate_kernel_size = dilate_kernel_size
# Corrections
self.preserve_scribble = preserve_scribble
self.max_pixels = max_pixels
self.max_pixels_smooth = max_pixels_smooth
# Viz
self.show = show
def batch_scribble(self, mask: torch.Tensor, n_scribbles: Optional[int] = 1):
"""
Args:
mask: (b,1,H,W) mask in [0,1] to sample scribbles from
n_scribbles: (int) only used when max_pixels is set as a multiplier for total area of the scribbles
currently, this argument does not control the number of components in the scribble mask
Returns:
scribble_mask: (b,1,H,W) mask(s) of scribbles in [0,1]
"""
assert len(mask.shape) == 4, f"mask must be b x 1 x h x w. currently {mask.shape}"
bs = mask.shape[0]
rev_mask = (1 - mask)
blur_mask = self.blur_fn(rev_mask)
corrected_blur_mask = torch.reshape(torch.maximum(blur_mask, rev_mask), (bs, -1))
# Randomly sample a threshold for each example
min_bs = corrected_blur_mask.min(1)[0].cpu().numpy()
binary_mask = (torch.reshape(mask, (bs, -1)) > 0) * corrected_blur_mask
max_bs = torch.reshape(binary_mask, (bs, -1)).max(1)[0].cpu().numpy()
thresh = torch.from_numpy(np.random.uniform(min_bs, max_bs, size=bs)).to(mask.device)
# Apply threshold
thresh = thresh[..., None].repeat(1, mask.shape[-2] * mask.shape[-1])
binary_blur_mask = (corrected_blur_mask <= thresh).view(mask.shape).float()
# Use filter to get contours
_, boundary = kornia.filters.canny(binary_blur_mask, hysteresis=False)
if self.dilate_kernel_size is not None:
# Dilate the boundary to make it thicker
#k = _as_single_val(self.dilate_kernel_size)
k = 0
if k > 0:
kernel = torch.ones((k, k), device=boundary.device)
dilated_boundary = kornia.morphology.dilation(boundary, kernel=kernel, engine='convolution')
else:
dilated_boundary = boundary
else:
dilated_boundary = boundary
# Get noise mask to break up the contours
noise_mask = self.noise_mask(shape=mask.shape, device=mask.device)
# Break up the boundary contours
scribbles = dilated_boundary * noise_mask # shape: b x 1 x H x W
if self.preserve_scribble:
# If none of the scribbles fall in the noise mask, keep the whole scribble
idx = torch.where(torch.sum(scribbles, dim=(1, 2, 3)) == 0)[0]
scribbles[idx, ...] = dilated_boundary[idx, ...]
if self.warp:
warped_scribbles = torch.stack([self.apply_warp(scribbles[b, ...]) for b in range(bs)])
else:
warped_scribbles = scribbles
# Remove scribbles that are outside the mask
corrected_warped_scribbles = mask * warped_scribbles
if self.preserve_scribble:
# If none of the scribble falls in the mask after warping, remove the warping
idx = torch.where(torch.sum(corrected_warped_scribbles, dim=(1, 2, 3)) == 0)[0]
corrected_warped_scribbles[idx, ...] = mask[idx, ...] * scribbles[idx, ...]
if self.max_pixels is not None:
noise = torch.stack([
v_noise.perlin(shape=mask.shape[-2:], smoothing=self.max_pixels_smooth, magnitude=1,
device=mask.device) for _ in range(bs)
]).unsqueeze(1) # shape: b x 1 x H x W
# Shift noise mask to be positive
if noise.min() < 0:
noise = noise - noise.min()
flat_mask = (noise * corrected_warped_scribbles).view(bs, -1)
vals, idx = flat_mask.topk(k=(self.max_pixels * n_scribbles), dim=1)
binary_mask = torch.zeros_like(flat_mask)
binary_mask.scatter_(dim=1, index=idx, src=torch.ones_like(flat_mask))
corrected_warped_scribbles = binary_mask.view(*mask.shape) * corrected_warped_scribbles
return corrected_warped_scribbles
if __name__ == '__main__':
import torch
import torch.distributed as dist
import numpy as np
import random
from torch.backends import cudnn
def init_seeds(seed=0, cuda_deterministic=True):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
if cuda_deterministic: # slower, more reproducible
cudnn.deterministic = True
cudnn.benchmark = False
else: # faster, less reproducible
cudnn.deterministic = False
cudnn.benchmark = True
import SimpleITK as sitk
import torchio as tio
init_seeds()
mask_path = '/home/hao/Hao/data/0SAM_data/Task10_colon/labelsTr/colon_001.nii.gz'
sitk_label = sitk.ReadImage(mask_path)
subject = tio.Subject(
image=tio.ScalarImage.from_sitk(sitk_label),
label=tio.LabelMap.from_sitk(sitk_label),
)
transforms_list = [
tio.Resample(1), ]
transforms_list.append(tio.CropOrPad(mask_name='label', target_shape=(128,64,96)))
transforms = tio.Compose(transforms_list)
subject = transforms(subject)
mask = subject.label.data.clone().detach()
# mask[:, :, :, 39] = 0
# mask[:, 68:72, 26:30, 39] = 1
# mask[mask > 0] = 0
# print(torch.unique(mask))
sitk_label_new = mask.squeeze(0)
result_image = sitk.GetImageFromArray(sitk_label_new)
sitk.WriteImage(result_image, './maskresult.nii.gz')
mask = mask.permute(3, 0, 1, 2)
#mask = (torch.ones_like(mask) - mask).permute(3, 0, 1, 2)
import time
a = time.time()
#CenterlineScribble
#LineScribble
ContourScribble_mask = LineScribble().batch_scribble(mask)
print(time.time() - a )
sitk_label_new = ContourScribble_mask.permute(1, 2, 3, 0).squeeze(0)
sitk_label_new[sitk_label_new > 0] = 1
result_image = sitk.GetImageFromArray(sitk_label_new)
sitk.WriteImage(result_image, './result.nii.gz')
print(1)
|