Datasets:

ArXiv:
File size: 4,558 Bytes
36fdbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import logging
import os
import time
import torch
import shutil
import numpy as np
import nibabel as nib
import pandas
from typing import List, Tuple, Type, Union

def save_checkpoint(state, is_best, checkpoint):
    filepath_last = os.path.join(checkpoint, "last.pth.tar")
    filepath_best = os.path.join(checkpoint, "best.pth.tar")
    if not os.path.exists(checkpoint):
        print("Checkpoint Directory does not exist! Masking directory {}".format(checkpoint))
        os.mkdir(checkpoint)
    else:
        print("Checkpoint Directory exists!")
    torch.save(state, filepath_last)
    if is_best:
        if os.path.isfile(filepath_best):
            os.remove(filepath_best)
        shutil.copyfile(filepath_last, filepath_best)


def setup_logger(logger_name, root, level=logging.INFO, screen=False, tofile=False):
    """set up logger"""
    lg = logging.getLogger(logger_name)
    formatter = logging.Formatter("[%(asctime)s.%(msecs)03d] %(message)s", datefmt="%H:%M:%S")
    lg.setLevel(level)

    log_time = get_timestamp()
    if tofile:
        log_file = os.path.join(root, "{}_{}.log".format(logger_name, log_time))
        fh = logging.FileHandler(log_file, mode="w")
        fh.setFormatter(formatter)
        lg.addHandler(fh)
    if screen:
        sh = logging.StreamHandler()
        sh.setFormatter(formatter)
        lg.addHandler(sh)
    return lg, log_time


def get_timestamp():
    timestampTime = time.strftime("%H%M%S")
    timestampDate = time.strftime("%Y%m%d")
    return timestampDate + "-" + timestampTime



def save_csv(args, logger, patient_list,
             loss, loss_nsd,
             ):
    save_predict_dir = os.path.join(args.save_base_dir, 'csv_file')
    if not os.path.exists(save_predict_dir):
        os.makedirs(save_predict_dir)

    df_dict = {'patient': patient_list,
               'dice': loss,
               'nsd': loss_nsd,
               }

    df = pandas.DataFrame(df_dict)
    df.to_csv(os.path.join(save_predict_dir, 'prompt_' + str(args.num_prompts)
                           + '_' + str(args.save_name) + '.csv'), index=False)
    logger.info("- CSV saved")


def save_image(save_array, test_data, image_data, save_prediction_path):
    nib.save(nib.Nifti1Image(save_array[0, 0, :].permute(test_data.dataset.spatial_index).cpu().numpy(),
                             image_data.affine, image_data.header), save_prediction_path)


def _bbox_mask(mask_volume: torch.Tensor, diff=1, mode='train', dynamic=False, max_diff=10, return_extend=False) -> torch.Tensor:
    bbox_coords = []
    for volume in mask_volume:
        i_any = volume.any(dim=2).any(dim=1)
        j_any = volume.any(dim=2).any(dim=0)
        k_any = volume.any(dim=1).any(dim=0)

        i_min, i_max = torch.where(i_any)[0][[0, -1]]
        j_min, j_max = torch.where(j_any)[0][[0, -1]]
        k_min, k_max = torch.where(k_any)[0][[0, -1]]

        # i_max, j_max, k_max = i_max + diff, j_max + diff, k_max + diff
        # bb = torch.tensor([[i_min, j_min, k_min, i_max, j_max, k_max]])

        if dynamic and mode == 'train':
            # diff_ = np.random.choice(range(-max_diff, max_diff), size=6, replace=True)
            diff_ = np.random.choice(range(0, max_diff), size=6, replace=True)

            if max(0, i_min - diff_[0]) < min(i_max + diff_[1], 126):
                i_min, i_max = max(0, i_min - diff_[0]), min(i_max + diff_[1], 126)
            if max(0, j_min - diff_[2]) < min(j_max + diff_[3], 126):
                j_min, j_max = max(0, j_min - diff_[2]), min(j_max + diff_[3], 126)
            if max(0, k_min - diff_[4]) < min(k_max + diff_[5], 126):
                k_min, k_max = max(0, k_min - diff_[4]), min(k_max + diff_[5], 126)

        # delta_i = i_max - i_min + diff
        # delta_j = j_max - j_min + diff
        # delta_k = k_max - k_min + diff

        # diff_value = -5
        # i_min, i_max = max(0, i_min - diff_value), min(i_max + diff_value, 126)
        # j_min, j_max = max(0, j_min - diff_value), min(j_max + diff_value, 126)
        # k_min, k_max = max(0, k_min - diff_value), min(k_max + diff_value, 126)


        bb = torch.tensor([[i_min, j_min, k_min, i_max + 1, j_max + 1, k_max + 1]])
        # print(i_min, i_max + 1, j_min, j_max + 1, k_min, k_max + 1) # check dynamic box

        # bb = torch.tensor([[i_min, j_min, k_min, delta_i, delta_j, delta_k]])
        bbox_coords.append(bb)
        # print(torch.sum(volume), torch.sum(volume[i_min:i_max + 1, j_min:j_max + 1, k_min:k_max + 1]))
    bbox_coords = torch.stack(bbox_coords)
    return bbox_coords