Datasets:

ArXiv:
File size: 5,286 Bytes
36fdbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import torch

from typing import List
from torch import Tensor


def gaussian_kernel(
    sigma: List[float],
    truncate: int = 3,
    device: torch.device = None) -> Tensor:
    """
    Generate a Gaussian kernel with the specified standard deviations.

    Parameters
    ----------
    sigma : List[float]
        A list of standard deviations for each dimension.
    truncate : int, optional
        The number of standard deviations to extend the kernel before truncating.
    device : torch.device, optional
        The device on which to create the kernel.

    Returns
    -------
    Tensor
        A kernel of shape `(2 * truncate * sigma + 1,) * ndim`.

    Notes
    -----
    The kernel is truncated when its values drop below `1e-5` of the maximum value.
    """
    ndim = len(sigma)

    # compute the radii of the kernel for each dimension
    radii = [int(truncate * s + 0.5) for s in sigma]

    # generate a range of indices for each dimension
    ranges = [torch.arange(-r, r + 1, device=device) for r in radii]

    # create a meshgrid of indices for all dimensions and determine shape of the kernel
    coords = torch.stack(torch.meshgrid(*ranges, indexing='ij'), dim=-1)
    kernel_shape = coords.shape[:-1]

    # convert the standard deviations to a tensor and compute the inverse squares
    sigma = torch.as_tensor(sigma, dtype=torch.float32, device=device)
    sigma2 = 1 / torch.clip(sigma, min=1e-5).pow(2)

    # reshape the coordinates and compute the pdf
    coords = coords.view(-1, ndim)
    pdf = torch.exp(-0.5 * (coords.pow(2) * sigma2).sum(-1)).view(kernel_shape)

    # normalize the kernel
    pdf /= pdf.sum()
    return pdf


def gaussian_kernel_1d(sigma, truncate: int = 3, device=None, dtype=None):
    """
    Generate a 1D Gaussian kernel with the specified standard deviations.

    Parameters
    ----------
    sigma : float
        A list of standard deviations for each dimension.
    truncate : int, optional
        The number of standard deviations to extend the kernel before truncating.
    device : torch.device, optional
        The device on which to create the kernel.
    dtype : torch.dtype | None, optional
        Data type of the returned kernel.

    Returns
    -------
    Tensor
        A kernel of shape `2 * truncate * sigma + 1`.

    Notes
    -----
    The kernel is truncated when its values drop below `1e-5` of the maximum value.
    """
    r = int(truncate * sigma + 0.5)
    x = torch.arange(-r, r + 1, device=device, dtype=dtype)
    sigma2 = 1 / torch.clip(torch.as_tensor(sigma), min=1e-5).pow(2)
    pdf = torch.exp(-0.5 * (x.pow(2) * sigma2))
    return pdf / pdf.sum()


def gaussian_blur(
    image: Tensor,
    sigma: List[float],
    batched: bool = False,
    truncate: int = 3) -> Tensor:
    """
    Apply Gaussian blurring to an image.

    Parameters
    ----------
    image : Tensor
        An input tensor of shape `(C, W, H[, D])` to blur. A batch dimension
        can be included by setting `batched` to `True`.
    sigma : float or List[float]
        Standard deviation(s) of the Gaussian filter along each dimension.
    batched : bool, optional
        Whether the input tensor includes a batch dimension.
    truncate : int, optional
        The number of standard deviations to extend the kernel before truncating.

    Returns
    -------
    Tensor
        The blurred tensor with the same shape as the input tensor.

    Notes
    -----
    The Gaussian filter is applied using convolution. The size of the filter kernel is
    determined by the standard deviation and the truncation factor.
    """
    ndim = image.ndim - (2 if batched else 1)

    # sanity check for common mistake
    if ndim == 4 and not batched:
        raise ValueError(f'gaussian blur input has {image.ndim} dims, '
                          'but batched option is False')

    # normalize sigmas
    if torch.as_tensor(sigma).ndim == 0:
        sigma = [sigma] * ndim
    if len(sigma) != ndim:
        raise ValueError(f'sigma must be {ndim}D, but got length {len(sigma)}')

    blurred = image if batched else image.unsqueeze(0)

    if all(s == sigma[0] for s in sigma):
        # Isotropic, can use the same vector in all directions cases. Since
        # creating the kernel is actually one of the most time intensive steps
        # this is an efficiency gain worth exploiting
        kernel_vec = gaussian_kernel_1d(
            sigma[0],
            truncate,
            device=blurred.device,
            dtype=blurred.dtype,
        )
        kernel_vecs = [kernel_vec] * ndim
    else:
        # Three different kernels, one for each direction
        kernel_vecs = [
            gaussian_kernel_1d(
                s,
                truncate,
                device=blurred.device,
                dtype=blurred.dtype,
            )
            for s in sigma
        ]

    for dim, kernel in enumerate(kernel_vecs):

        # apply the convolution
        slices = [None] * (ndim + 2)
        slices[dim + 2] = slice(None)
        kernel_dim = kernel[slices]
        conv = getattr(torch.nn.functional, f'conv{ndim}d')
        blurred = conv(blurred, kernel_dim, groups=image.shape[0], padding="same")

    if not batched:
        blurred = blurred.squeeze(0)

    return blurred