File size: 16,320 Bytes
36fdbcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
import numpy as np
import torch
from typing import List
from torch import Tensor
from .utility import chance
from .utility import grid_coordinates
from .noise import perlin
def resize(
image : Tensor,
scale_factor : float or List[float] = None,
shape : List[int] = None,
nearest : bool = False) -> Tensor:
"""
Resize an image with the option of scaling and/or setting to a new shape.
Parameters:
-----------
image: torch.Tensor
An input tensor with shape (C, H, W[, D]) to resize.
scale_factor: float or List[float], optional
Multiplicative factor(s) for scaling the input tensor. If a float, then the same
scale factor is applied to all spatial dimensions. If a tuple, then the scaling
factor for each dimension should be provided.
shape: List[int], optional
Target shape of the output tensor.
nearest: bool, optional
If True, use nearest neighbor interpolation. Otherwise, use linear interpolation.
Returns:
--------
torch.Tensor:
The resized tensor with the shape specified by `shape` or scaled by `scale_factor`.
"""
ndim = image.ndim - 1
# scale the image if the scale factor is provided
if scale_factor is not None and scale_factor != 1:
# compute target shape based on the scale factor
target_shape = [int(s * scale_factor + 0.5) for s in image.shape[1:]]
# convert image to float32 if it's not already to enable interpolation
# if using nearest interpolation, save the original dtype to convert back later
reset_type = None
if not torch.is_floating_point(image):
if nearest:
reset_type = image.dtype
image = image.type(torch.float32)
# determine interpolation mode based on ndim and interpolation type
linear = 'trilinear' if image.ndim - 1 == 3 else 'bilinear'
mode = 'nearest' if nearest else linear
# apply interpolation to the image
if nearest:
image = torch.nn.functional.interpolate(image.unsqueeze(0), target_shape, mode=mode)
else:
image = torch.nn.functional.interpolate(image.unsqueeze(0), target_shape, mode=mode)
image = image.squeeze(0)
# convert image back to its original dtype if necessary
if reset_type is not None:
image = image.type(reset_type)
if shape is not None:
# compute padding for each spatial dimension
padding = []
baseshape = image.shape[1:]
for d in range(ndim):
diff = shape[d] - baseshape[d]
if diff > 0:
half = diff / 2
a, b = int(np.floor(half)), int(np.ceil(half))
padding.extend([a, b])
else:
padding.extend([0, 0])
# apply padding to the image
padding.reverse()
image = torch.nn.functional.pad(image, padding)
# compute slice to remove excess dimensions
slicing = [slice(0, image.shape[0])]
baseshape = image.shape[1:]
for d in range(ndim):
diff = baseshape[d] - shape[d]
if diff > 0:
half = diff / 2
a, b = int(np.floor(half)), int(np.ceil(half))
slicing.append(slice(a, baseshape[d] - b))
else:
slicing.append(slice(0, baseshape[d]))
# apply slice to remove excess dimensions
image = image[tuple(slicing)]
return image
def random_flip(dim : int, *args, prob : float = 0.5):
"""
Randomly flips an image (or set of images) along the given dimension.
Parameters
----------
dim : int
The dimension along which to flip. Note that the first dimension
is the channel dimension.
*args : torch.Tensor
The image(s) to flip.
prob : float
The probability of flipping the image(s).
Returns
-------
torch.Tensor or tuple[torch.Tensor]
The flipped image(s).
"""
result = tuple([arg.flip([dim]) for arg in args]) if chance(prob) else args
if len(args) == 1:
return result[0]
return result
def compose_affine(
ndim : int,
translation : Tensor = None,
rotation : Tensor = None,
scale : Tensor = None,
shear : Tensor = None,
degrees : bool = True,
device : torch.device = None) -> Tensor:
"""
Composes an affine matrix from a set of translation, rotation, scale,
and shear transform components.
Parameters
----------
ndim (int):
The number of dimensions of the affine matrix. Must be 2 or 3.
translation : Tensor, optional
The translation vector. Must be a vector of size `ndim`.
rotation : Tensor, optional
The rotation angles. Must be a scalar value for 2D affine matrices,
and a tensor of size 3 for 3D affine matrices.
scale : Tensor, optional
The scaling factor. Can be scalar or vector of size `ndim`.
shear : Tensor, optional
The shearing factor. Must be a scalar value for 2D affine matrices,
and a tensor of size 3 for 3D affine matrices.
degrees : bool, optional
Whether to interpret the rotation angles as degrees.
device : torch.device, optional
The device of the returned matrix.
Returns
-------
Tensor
The composed affine matrix, as a tensor of shape `(ndim + 1, ndim + 1)`.
"""
if ndim not in (2, 3):
raise ValueError(f'affine transform must be 2D or 3D, got ndim {ndim}')
# check translation
translation = torch.zeros(ndim) if translation is None else torch.as_tensor(translation)
if len(translation) != ndim:
raise ValueError(f'translation must be of shape ({ndim},)')
# check rotation angles
expected = 3 if ndim == 3 else 1
rotation = torch.zeros(expected) if rotation is None else torch.as_tensor(rotation)
if rotation.ndim == 0 and ndim == 3 or rotation.ndim != 0 and rotation.shape[0] != expected:
raise ValueError(f'rotation must be of shape ({expected},)')
# check scaling factor
scale = torch.ones(ndim) if scale is None else torch.as_tensor(scale)
if scale.ndim == 0:
scale = scale.repeat(ndim)
if scale.shape[0] != ndim:
raise ValueError(f'scale must be of size {ndim}')
# check shearing
expected = 3 if ndim == 3 else 1
shear = torch.zeros(expected) if shear is None else torch.as_tensor(shear)
if shear.ndim == 0:
shear = shear.view(1)
if shear.shape[0] != expected:
raise ValueError(f'shear must be of shape ({expected},)')
# start from translation
T = torch.eye(ndim + 1, dtype=torch.float64)
T[:ndim, -1] = translation
# rotation matrix
R = torch.eye(ndim + 1, dtype=torch.float64)
R[:ndim, :ndim] = angles_to_rotation_matrix(rotation, degrees=degrees)
# scaling
Z = torch.diag(torch.cat([scale, torch.ones(1, dtype=torch.float64)]))
# shear matrix
S = torch.eye(ndim + 1, dtype=torch.float64)
S[0][1] = shear[0]
if ndim == 3:
S[0][2] = shear[1]
S[1][2] = shear[2]
# compose component matrices
matrix = T @ R @ Z @ S
return torch.as_tensor(matrix, dtype=torch.float32, device=device)
def angles_to_rotation_matrix(
rotation : Tensor,
degrees : bool = True) -> Tensor:
"""
Compute a rotation matrix from the given rotation angles.
Parameters
----------
rotation : Tensor
A tensor containing the rotation angles. If `degrees` is True, the angles
are in degrees, otherwise they are in radians.
degrees : bool, optional
Whether to interpret the rotation angles as degrees.
Returns
-------
Tensor
The computed `(ndim + 1, ndim + 1)` rotation matrix.
"""
if degrees:
rotation = torch.deg2rad(rotation)
# scalar value allowed for 2D transforms
rotation = torch.as_tensor(rotation)
if rotation.ndim == 0:
rotation = rotation.view(1)
num_angles = len(rotation)
# build the matrix
if num_angles == 1:
c, s = torch.cos(rotation[0]), torch.sin(rotation[0])
matrix = torch.tensor([[c, -s], [s, c]], dtype=torch.float64)
elif num_angles == 3:
c, s = torch.cos(rotation[0]), torch.sin(rotation[0])
rx = torch.tensor([[1, 0, 0], [0, c, s], [0, -s, c]], dtype=torch.float64)
c, s = torch.cos(rotation[1]), torch.sin(rotation[1])
ry = torch.tensor([[c, 0, s], [0, 1, 0], [-s, 0, c]], dtype=torch.float64)
c, s = torch.cos(rotation[2]), torch.sin(rotation[2])
rz = torch.tensor([[c, s, 0], [-s, c, 0], [0, 0, 1]], dtype=torch.float64)
matrix = rx @ ry @ rz
else:
raise ValueError(f'expected 1 (2D) or 3 (3D) rotation angles, got {num_angles}')
return matrix.to(rotation.device)
def random_affine(
ndim: int,
max_translation: float = 0,
max_rotation: float = 0,
max_scaling: float = 1,
device: torch.device = None) -> Tensor:
"""
TODOC
"""
#
translation_range = sorted([-max_translation, max_translation])
translation = np.random.uniform(*translation_range, size=ndim)
#
rotation_range = sorted([-max_rotation, max_rotation])
rotation = np.random.uniform(*rotation_range, size=(1 if ndim == 2 else 3))
#
if max_scaling < 1:
raise ValueError('max scaling to random affine cannot be less than 1, '
'see function doc for more info')
inv = np.random.choice([-1, 1], size=ndim)
scale = np.random.uniform(1, max_scaling, size=ndim) ** inv
# compose from random paramters
aff = compose_affine(
ndim=ndim,
translation=translation,
rotation=rotation,
scale=scale,
device=device)
return aff
def affine_to_displacement_field(
affine : Tensor,
meshgrid : Tensor,
rotate_around_center : bool = True) -> Tensor:
"""
Convert an affine transformation matrix to a dense displacement field.
Parameters
----------
affine : Tensor
Affine transformation matrix.
meshgrid : Tensor
The meshgrid tensor of shape `(W, H[, D], N)`, where N is the spatial dimensionality.
rotate_around_center : bool, optional
If True, the rotation will be around the center of the image, otherwise around the origin.
Returns
-------
Tensor
The generated displacement field of shape `meshgrid.shape[:-1]`.
"""
ndim = meshgrid.shape[-1]
shape = meshgrid.shape[:-1]
# if rotate_around_center is enabled, adjust the meshgrid so that the rotation
# is around the center of the image instead of the origin
grid = meshgrid.clone() if rotate_around_center else meshgrid
if rotate_around_center:
for d in range(ndim):
grid[..., d] -= (shape[d] - 1) / 2
# convert the meshgrid to homogeneous coordinates by appending a column of ones
coords = grid.view(-1, ndim)
ones = torch.ones((coords.shape[-2], 1), device=meshgrid.device)
coords = torch.cat([coords, ones], dim=-1)
# apply the affine transformation to the coordinates to get the shift vector
shift = (affine @ coords.T)[:ndim].T
# reshape the shift vector to match the shape of the meshgrid and subtract
# the original meshgrid to get the displacement field
shift = shift.view(*shape, ndim) - grid
return shift
def integrate_displacement_field(
disp : Tensor,
steps : int,
meshgrid : Tensor = None) -> Tensor:
"""
TODOC
"""
if meshgrid is None:
meshgrid = grid_coordinates(disp.shape[:-1], device=disp.device)
if steps == 0:
return disp
disp = disp / (2 ** steps)
for _ in range(steps):
disp += spatial_transform(disp.movedim(-1, 0), disp, meshgrid=meshgrid).movedim(0, -1)
return disp
def random_displacement_field(
shape : List[int],
smoothing : float = 10,
magnitude : float = 10,
integrations : int = 0,
voxsize : float = 1,
meshgrid : Tensor = None,
device: torch.device = None) -> Tensor:
"""
TODOC
"""
smoothing = smoothing / voxsize
magnitude = magnitude / voxsize
ndim = len(shape)
disp = [perlin(shape, smoothing, magnitude, device=device) for i in range(ndim)]
disp = torch.stack(disp, dim=-1)
if integrations > 0:
disp = integrate_displacement_field(disp, integrations, meshgrid)
return disp
def displacement_field_to_coords(disp, meshgrid=None) -> Tensor:
"""
TODOC
"""
if meshgrid is None:
meshgrid = grid_coordinates(disp.shape[:-1], device=disp.device)
shape = disp.shape[:-1]
ndim = disp.shape[-1]
coords = (meshgrid + disp)
for d in range(ndim):
coords[..., d] *= 2 / (shape[d] - 1)
coords[..., d] -= 1
coords = coords.flip(-1)
return coords
def coords_to_displacement_field(coords, meshgrid=None) -> Tensor:
"""
TODOC
"""
if meshgrid is None:
meshgrid = grid_coordinates(coords.shape[:-1], device=coords.device)
raise NotImplementedError('coords_to_displacement_field is not yet implemented. '
'contact andrew if you get this... or implement it :)')
def spatial_transform(
image : Tensor,
trf : Tensor,
method : str = 'linear',
isdisp : bool = True,
meshgrid : Tensor = None,
rotate_around_center : bool = True) -> Tensor:
"""
TODOC
"""
if trf is None:
return image
if trf.ndim == 2:
if meshgrid is None:
meshgrid = grid_coordinates(image.shape[1:], device=image.device)
trf = torch.linalg.inv(trf)
trf = affine_to_displacement_field(trf, meshgrid,
rotate_around_center=rotate_around_center)
isdisp = True
#
if isdisp:
trf = displacement_field_to_coords(trf, meshgrid=meshgrid)
#
method = 'bilinear' if method == 'linear' else method
#
reset_type = None
if not torch.is_floating_point(image):
if method == 'nearest':
reset_type = image.dtype
image = image.type(torch.float32)
#
image = image.unsqueeze(0)
trf = trf.unsqueeze(0)
interped = torch.nn.functional.grid_sample(image, trf, align_corners=True, mode=method)
interped = interped.squeeze(0)
#
if reset_type is not None:
interped = interped.type(reset_type)
return interped
def random_transform(
shape : List[int],
affine_probability : float = 1.0,
max_translation : float = 5.0,
max_rotation : float = 5.0,
max_scaling : float = 1.1,
warp_probability : float = 1.0,
warp_integrations : int = 5,
warp_smoothing_range : List[int] = [10, 20],
warp_magnitude_range : List[int] = [1, 2],
voxsize : int = 1,
device : torch.device = None,
isdisp : bool = True,
) -> Tensor:
"""
TODOC
"""
ndim = len(shape)
trf = None
# generate a random affine
if chance(affine_probability):
# compute meshgrid
meshgrid = grid_coordinates(shape, device=device)
# scale max translation value so that it correctly corresponds to mm
max_translation = max_translation / voxsize
matrix = random_affine(
ndim=ndim,
max_translation=max_translation,
max_rotation=max_rotation,
max_scaling=max_scaling,
device=device)
trf = affine_to_displacement_field(matrix, meshgrid)
# generate a nonlinear transform
if chance(warp_probability):
disp = random_displacement_field(
shape=shape,
smoothing=np.random.uniform(*warp_smoothing_range),
magnitude=np.random.uniform(*warp_magnitude_range),
integrations=warp_integrations,
voxsize=voxsize,
device=device)
# merge with the affine transform if necessary
if trf is None:
trf = disp
else:
trf += spatial_transform(disp.movedim(-1, 0), trf, meshgrid=meshgrid).movedim(0, -1)
# convert to coordinates if specified
if trf is not None and not isdisp:
trf = displacement_field_to_coords(trf)
return trf
|