|
|
from torch.utils.data import Dataset |
|
|
from torch.utils.data import DataLoader |
|
|
import torchio as tio |
|
|
import pickle |
|
|
import numpy as np |
|
|
import os |
|
|
import torch |
|
|
import SimpleITK as sitk |
|
|
from prefetch_generator import BackgroundGenerator |
|
|
from monai.transforms import ( |
|
|
Compose, |
|
|
RandCropByPosNegLabeld, |
|
|
ScaleIntensityRanged, |
|
|
NormalizeIntensityd, |
|
|
RandShiftIntensityd, |
|
|
RandZoomd, |
|
|
) |
|
|
import cc3d, math |
|
|
|
|
|
class Dataset_promise(Dataset): |
|
|
def __init__(self, data, data_dir, split='train', image_size=128, transform=None, pcc=False, args=None): |
|
|
self.args = args |
|
|
self.data = data |
|
|
self.paths = data_dir |
|
|
|
|
|
self._set_file_paths(self.paths, split) |
|
|
self._set_dataset_stat() |
|
|
|
|
|
self.image_size = (image_size, image_size, image_size) |
|
|
self.transform = transform |
|
|
self.threshold = 0 |
|
|
self.split = split |
|
|
self.pcc = pcc |
|
|
self.monai_transforms = self._get_transforms(split=split) |
|
|
|
|
|
self.cc = 1 |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.label_paths) |
|
|
|
|
|
def __getitem__(self, index): |
|
|
sitk_image = sitk.ReadImage(self.image_paths[index]) |
|
|
sitk_label = sitk.ReadImage(self.label_paths[index]) |
|
|
|
|
|
if sitk_image.GetOrigin() != sitk_label.GetOrigin(): |
|
|
sitk_image.SetOrigin(sitk_label.GetOrigin()) |
|
|
if sitk_image.GetDirection() != sitk_label.GetDirection(): |
|
|
sitk_image.SetDirection(sitk_label.GetDirection()) |
|
|
|
|
|
if sitk_image.GetSpacing() != sitk_label.GetSpacing(): |
|
|
sitk_label.SetSpacing(sitk_image.GetSpacing()) |
|
|
|
|
|
subject = tio.Subject( |
|
|
image=tio.ScalarImage.from_sitk(sitk_image), |
|
|
label=tio.LabelMap.from_sitk(sitk_label), |
|
|
) |
|
|
|
|
|
subject_save = tio.Subject( |
|
|
image=tio.ScalarImage.from_sitk(sitk_image), |
|
|
label=tio.LabelMap.from_sitk(sitk_label), |
|
|
) |
|
|
|
|
|
|
|
|
if self.data == 'lits': |
|
|
b = subject.label.data |
|
|
a = tio.CropOrPad._bbox_mask(b[0].cpu().numpy()) |
|
|
w, h, d = a[1][0] - a[0][0], a[1][1] - a[0][1], a[1][2] - a[0][2] |
|
|
w, h, d = max(w + 20, 128), max(h + 20, 128), max(d + 20, 128) |
|
|
crop_transform = tio.CropOrPad(mask_name='label', target_shape=(w, h, d)) |
|
|
subject = crop_transform(subject) |
|
|
subject_save = crop_transform(subject_save) |
|
|
|
|
|
|
|
|
|
|
|
if self.target_label != 0: |
|
|
subject = self._binary_label(subject) |
|
|
subject_save = self._binary_label(subject_save) |
|
|
|
|
|
if self.transform: |
|
|
try: |
|
|
subject = self.transform(subject) |
|
|
subject_save = self.transform(subject_save) |
|
|
except: |
|
|
print(self.image_paths[index]) |
|
|
|
|
|
if (self.pcc): |
|
|
subject = self._pcc(subject) |
|
|
|
|
|
|
|
|
if subject.label.data.sum() <= self.threshold: |
|
|
print(self.image_paths[index], 'label volume too small') |
|
|
if self.split == 'train': |
|
|
return self.__getitem__(np.random.randint(self.__len__())) |
|
|
|
|
|
else: |
|
|
if self.data == 'lits': |
|
|
return subject, self.image_paths[index] |
|
|
else: |
|
|
return subject.image.data.clone().detach(), subject.label.data.clone().detach(), self.image_paths[index] |
|
|
|
|
|
|
|
|
if self.split == "train": |
|
|
trans_dict = self.monai_transforms({"image": subject.image.data.clone().detach(), |
|
|
"label": subject.label.data.clone().detach()})[0] |
|
|
img_aug, seg_aug = trans_dict["image"], trans_dict["label"] |
|
|
return img_aug.float(), seg_aug.float(), self.image_paths[index] |
|
|
else: |
|
|
if self.data == 'lits': |
|
|
trans_dict = self.monai_transforms({"image": subject.image.data.clone().detach()}) |
|
|
subject.image.data = trans_dict["image"] |
|
|
return subject, self.image_paths[index], subject_save |
|
|
|
|
|
if self.data == 'kits': |
|
|
subject = self._separate_crop(subject) |
|
|
|
|
|
crop_transform = tio.CropOrPad(mask_name='label', target_shape=self.image_size) |
|
|
subject = crop_transform(subject) |
|
|
subject_save = crop_transform(subject_save) |
|
|
|
|
|
trans_dict = self.monai_transforms({"image": subject.image.data.clone().detach()}) |
|
|
img_aug = trans_dict["image"] |
|
|
return img_aug, subject.label.data.clone().detach(), self.image_paths[index], subject_save |
|
|
|
|
|
|
|
|
def _separate_crop(self, subject): |
|
|
label = subject.label.data |
|
|
labels_out, N = cc3d.connected_components(label[0].cpu().numpy(), return_N=True) |
|
|
crop_transform = tio.CropOrPad(mask_name='label', target_shape=self.image_size) |
|
|
mid_cut = 0 |
|
|
|
|
|
if N > 1: |
|
|
label_1, label_2 = torch.zeros_like(label), torch.zeros_like(label) |
|
|
|
|
|
|
|
|
mid_cut = math.ceil(label.size(1) / 2) |
|
|
label_1[0, 0: mid_cut, :], label_2[0, mid_cut: -1, :] = label[0, 0: mid_cut, :], label[0, mid_cut: -1, :] |
|
|
|
|
|
|
|
|
image_1, image_2 = subject.image.data, subject.image.data |
|
|
|
|
|
subject_1 = tio.Subject(image=tio.ScalarImage(tensor=image_1), label=tio.LabelMap(tensor=label_1)) |
|
|
subject_2 = tio.Subject(image=tio.ScalarImage(tensor=image_2), label=tio.LabelMap(tensor=label_2)) |
|
|
|
|
|
subject_1, subject_2 = crop_transform(subject_1), crop_transform(subject_2) |
|
|
|
|
|
|
|
|
|
|
|
if torch.unique(subject_2.label.data).size(0) == 1: |
|
|
subject.image.data, subject.label.data = subject_1.image.data, subject_1.label.data |
|
|
elif torch.unique(subject_1.label.data).size(0) == 1: |
|
|
subject.image.data, subject.label.data = subject_2.image.data, subject_2.label.data |
|
|
else: |
|
|
subject.image.data = torch.cat([subject_1.image.data, subject_2.image.data], dim=0) |
|
|
subject.label.data = torch.cat([subject_1.label.data, subject_2.label.data], dim=0) |
|
|
else: |
|
|
subject = crop_transform(subject) |
|
|
|
|
|
return subject |
|
|
|
|
|
def _set_file_paths(self, data_dir, split): |
|
|
self.image_paths = [] |
|
|
self.label_paths = [] |
|
|
split_file = "split.pkl" |
|
|
dataset_split = os.path.join(data_dir, split_file) |
|
|
if not os.path.exists(dataset_split): |
|
|
alt_dir = os.path.join(data_dir, "Task01_LITS17") |
|
|
alt_split = os.path.join(alt_dir, split_file) |
|
|
if os.path.exists(alt_split): |
|
|
data_dir = alt_dir |
|
|
dataset_split = alt_split |
|
|
if not os.path.exists(dataset_split): |
|
|
raise FileNotFoundError(f"split.pkl not found under {data_dir}") |
|
|
with open(dataset_split, "rb") as f: |
|
|
d = pickle.load(f)[0][split] |
|
|
self.image_paths = [os.path.join(data_dir, d[i][0].strip("/")) for i in list(d.keys())] |
|
|
self.label_paths = [os.path.join(data_dir, d[i][1].strip("/")) for i in list(d.keys())] |
|
|
|
|
|
def _set_dataset_stat(self): |
|
|
self.target_label = 0 |
|
|
if self.data == 'colon': |
|
|
self.intensity_range, self.global_mean, self.global_std = (-57, 175), 65.175035, 32.651197 |
|
|
|
|
|
elif self.data == 'pancreas': |
|
|
self.intensity_range, self.global_mean, self.global_std = (-39, 204), 68.45214, 63.422806 |
|
|
self.target_label = 2 |
|
|
|
|
|
elif self.data == 'lits': |
|
|
self.intensity_range, self.global_mean, self.global_std = (-48, 163), 60.057533, 40.198017 |
|
|
self.target_label = 2 |
|
|
|
|
|
elif self.data == 'kits': |
|
|
self.intensity_range, self.global_mean, self.global_std = (-54, 247), 59.53867, 55.457336 |
|
|
self.target_label = 2 |
|
|
|
|
|
|
|
|
def _get_transforms(self, split): |
|
|
if split == "train": |
|
|
transforms = Compose( |
|
|
[ |
|
|
ScaleIntensityRanged( |
|
|
keys=["image"], |
|
|
a_min=self.intensity_range[0], |
|
|
a_max=self.intensity_range[1], |
|
|
b_min=self.intensity_range[0], |
|
|
b_max=self.intensity_range[1], |
|
|
clip=True, |
|
|
), |
|
|
RandCropByPosNegLabeld( |
|
|
keys=["image", "label"], |
|
|
spatial_size=(128, 128, 128), |
|
|
label_key="label", |
|
|
pos=2, |
|
|
neg=0, |
|
|
num_samples=1, |
|
|
), |
|
|
RandShiftIntensityd(keys=["image"], offsets=20, prob=0.5), |
|
|
NormalizeIntensityd(keys=["image"], subtrahend=self.global_mean, divisor=self.global_std), |
|
|
|
|
|
RandZoomd(keys=["image", "label"], prob=0.8, min_zoom=0.85, max_zoom=1.25, |
|
|
mode=["trilinear", "nearest"]), |
|
|
]) |
|
|
else: |
|
|
transforms = Compose( |
|
|
[ |
|
|
ScaleIntensityRanged( |
|
|
keys=["image"], |
|
|
a_min=self.intensity_range[0], |
|
|
a_max=self.intensity_range[1], |
|
|
b_min=self.intensity_range[0], |
|
|
b_max=self.intensity_range[1], |
|
|
clip=True, |
|
|
), |
|
|
NormalizeIntensityd(keys=["image"], subtrahend=self.global_mean, divisor=self.global_std), |
|
|
] |
|
|
) |
|
|
return transforms |
|
|
|
|
|
def _binary_label(self, subject): |
|
|
label = subject.label.data |
|
|
label = (label == self.target_label) |
|
|
subject.label.data = label.float() |
|
|
return subject |
|
|
|
|
|
def _pcc(self, subject): |
|
|
print("using pcc setting") |
|
|
|
|
|
random_index = torch.argwhere(subject.label.data == 1) |
|
|
if (len(random_index) >= 1): |
|
|
random_index = random_index[np.random.randint(0, len(random_index))] |
|
|
|
|
|
crop_mask = torch.zeros_like(subject.label.data) |
|
|
|
|
|
crop_mask[random_index[0]][random_index[1]][random_index[2]][random_index[3]] = 1 |
|
|
subject.add_image(tio.LabelMap(tensor=crop_mask, affine=subject.label.affine), image_name="crop_mask") |
|
|
subject = tio.CropOrPad(mask_name='crop_mask', target_shape=self.image_size)(subject) |
|
|
|
|
|
return subject |
|
|
|
|
|
|
|
|
class Dataloader_promise(DataLoader): |
|
|
def __iter__(self): |
|
|
return BackgroundGenerator(super().__iter__()) |
|
|
|
|
|
|
|
|
|
|
|
|