Datasets:

ArXiv:
PRISM / src /dataset /dataloader.py
emad2001's picture
Upload folder using huggingface_hub
36fdbcf verified
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import torchio as tio
import pickle
import numpy as np
import os
import torch
import SimpleITK as sitk
from prefetch_generator import BackgroundGenerator
from monai.transforms import (
Compose,
RandCropByPosNegLabeld,
ScaleIntensityRanged,
NormalizeIntensityd,
RandShiftIntensityd,
RandZoomd,
)
import cc3d, math
class Dataset_promise(Dataset):
def __init__(self, data, data_dir, split='train', image_size=128, transform=None, pcc=False, args=None):
self.args = args
self.data = data
self.paths = data_dir
self._set_file_paths(self.paths, split)
self._set_dataset_stat()
self.image_size = (image_size, image_size, image_size)
self.transform = transform
self.threshold = 0
self.split = split
self.pcc = pcc
self.monai_transforms = self._get_transforms(split=split)
self.cc = 1
def __len__(self):
return len(self.label_paths)
def __getitem__(self, index):
sitk_image = sitk.ReadImage(self.image_paths[index])
sitk_label = sitk.ReadImage(self.label_paths[index])
if sitk_image.GetOrigin() != sitk_label.GetOrigin():
sitk_image.SetOrigin(sitk_label.GetOrigin())
if sitk_image.GetDirection() != sitk_label.GetDirection():
sitk_image.SetDirection(sitk_label.GetDirection())
if sitk_image.GetSpacing() != sitk_label.GetSpacing():
sitk_label.SetSpacing(sitk_image.GetSpacing())
subject = tio.Subject(
image=tio.ScalarImage.from_sitk(sitk_image),
label=tio.LabelMap.from_sitk(sitk_label),
)
subject_save = tio.Subject(
image=tio.ScalarImage.from_sitk(sitk_image),
label=tio.LabelMap.from_sitk(sitk_label),
)
if self.data == 'lits':
b = subject.label.data
a = tio.CropOrPad._bbox_mask(b[0].cpu().numpy())
w, h, d = a[1][0] - a[0][0], a[1][1] - a[0][1], a[1][2] - a[0][2]
w, h, d = max(w + 20, 128), max(h + 20, 128), max(d + 20, 128)
crop_transform = tio.CropOrPad(mask_name='label', target_shape=(w, h, d))
subject = crop_transform(subject)
subject_save = crop_transform(subject_save)
if self.target_label != 0:
subject = self._binary_label(subject)
subject_save = self._binary_label(subject_save)
if self.transform:
try:
subject = self.transform(subject)
subject_save = self.transform(subject_save)
except:
print(self.image_paths[index])
if (self.pcc):
subject = self._pcc(subject)
if subject.label.data.sum() <= self.threshold:
print(self.image_paths[index], 'label volume too small')
if self.split == 'train':
return self.__getitem__(np.random.randint(self.__len__()))
#return self.__getitem__(0)
else:
if self.data == 'lits':
return subject, self.image_paths[index]
else:
return subject.image.data.clone().detach(), subject.label.data.clone().detach(), self.image_paths[index]
if self.split == "train":
trans_dict = self.monai_transforms({"image": subject.image.data.clone().detach(),
"label": subject.label.data.clone().detach()})[0]
img_aug, seg_aug = trans_dict["image"], trans_dict["label"]
return img_aug.float(), seg_aug.float(), self.image_paths[index]
else:
if self.data == 'lits':
trans_dict = self.monai_transforms({"image": subject.image.data.clone().detach()})
subject.image.data = trans_dict["image"]
return subject, self.image_paths[index], subject_save
if self.data == 'kits':
subject = self._separate_crop(subject)
crop_transform = tio.CropOrPad(mask_name='label', target_shape=self.image_size)
subject = crop_transform(subject)
subject_save = crop_transform(subject_save)
trans_dict = self.monai_transforms({"image": subject.image.data.clone().detach()})
img_aug = trans_dict["image"]
return img_aug, subject.label.data.clone().detach(), self.image_paths[index], subject_save
def _separate_crop(self, subject):
label = subject.label.data
labels_out, N = cc3d.connected_components(label[0].cpu().numpy(), return_N=True)
crop_transform = tio.CropOrPad(mask_name='label', target_shape=self.image_size)
mid_cut = 0
if N > 1:
label_1, label_2 = torch.zeros_like(label), torch.zeros_like(label)
# left, right
mid_cut = math.ceil(label.size(1) / 2)
label_1[0, 0: mid_cut, :], label_2[0, mid_cut: -1, :] = label[0, 0: mid_cut, :], label[0, mid_cut: -1, :] # left, right
image_1, image_2 = subject.image.data, subject.image.data
subject_1 = tio.Subject(image=tio.ScalarImage(tensor=image_1), label=tio.LabelMap(tensor=label_1))
subject_2 = tio.Subject(image=tio.ScalarImage(tensor=image_2), label=tio.LabelMap(tensor=label_2))
subject_1, subject_2 = crop_transform(subject_1), crop_transform(subject_2)
# found 2 connected components for some cases (e.g. case 289), use below to eliminate
# however, this will bring warnings, but it's okay
if torch.unique(subject_2.label.data).size(0) == 1:
subject.image.data, subject.label.data = subject_1.image.data, subject_1.label.data
elif torch.unique(subject_1.label.data).size(0) == 1:
subject.image.data, subject.label.data = subject_2.image.data, subject_2.label.data
else:
subject.image.data = torch.cat([subject_1.image.data, subject_2.image.data], dim=0)
subject.label.data = torch.cat([subject_1.label.data, subject_2.label.data], dim=0)
else:
subject = crop_transform(subject)
return subject
def _set_file_paths(self, data_dir, split):
self.image_paths = []
self.label_paths = []
split_file = "split.pkl"
dataset_split = os.path.join(data_dir, split_file)
if not os.path.exists(dataset_split):
alt_dir = os.path.join(data_dir, "Task01_LITS17")
alt_split = os.path.join(alt_dir, split_file)
if os.path.exists(alt_split):
data_dir = alt_dir
dataset_split = alt_split
if not os.path.exists(dataset_split):
raise FileNotFoundError(f"split.pkl not found under {data_dir}")
with open(dataset_split, "rb") as f:
d = pickle.load(f)[0][split]
self.image_paths = [os.path.join(data_dir, d[i][0].strip("/")) for i in list(d.keys())]
self.label_paths = [os.path.join(data_dir, d[i][1].strip("/")) for i in list(d.keys())]
def _set_dataset_stat(self):
self.target_label = 0
if self.data == 'colon':
self.intensity_range, self.global_mean, self.global_std = (-57, 175), 65.175035, 32.651197
elif self.data == 'pancreas':
self.intensity_range, self.global_mean, self.global_std = (-39, 204), 68.45214, 63.422806
self.target_label = 2
elif self.data == 'lits':
self.intensity_range, self.global_mean, self.global_std = (-48, 163), 60.057533, 40.198017
self.target_label = 2
elif self.data == 'kits':
self.intensity_range, self.global_mean, self.global_std = (-54, 247), 59.53867, 55.457336
self.target_label = 2
def _get_transforms(self, split):
if split == "train":
transforms = Compose(
[
ScaleIntensityRanged(
keys=["image"],
a_min=self.intensity_range[0],
a_max=self.intensity_range[1],
b_min=self.intensity_range[0],
b_max=self.intensity_range[1],
clip=True,
),
RandCropByPosNegLabeld(
keys=["image", "label"],
spatial_size=(128, 128, 128),
label_key="label",
pos=2,
neg=0,
num_samples=1,
),
RandShiftIntensityd(keys=["image"], offsets=20, prob=0.5),
NormalizeIntensityd(keys=["image"], subtrahend=self.global_mean, divisor=self.global_std),
RandZoomd(keys=["image", "label"], prob=0.8, min_zoom=0.85, max_zoom=1.25,
mode=["trilinear", "nearest"]),
])
else:
transforms = Compose(
[
ScaleIntensityRanged(
keys=["image"],
a_min=self.intensity_range[0],
a_max=self.intensity_range[1],
b_min=self.intensity_range[0],
b_max=self.intensity_range[1],
clip=True,
),
NormalizeIntensityd(keys=["image"], subtrahend=self.global_mean, divisor=self.global_std),
]
)
return transforms
def _binary_label(self, subject):
label = subject.label.data
label = (label == self.target_label)
subject.label.data = label.float()
return subject
def _pcc(self, subject):
print("using pcc setting")
# crop from random click point
random_index = torch.argwhere(subject.label.data == 1)
if (len(random_index) >= 1):
random_index = random_index[np.random.randint(0, len(random_index))]
# print(random_index)
crop_mask = torch.zeros_like(subject.label.data)
# print(crop_mask.shape)
crop_mask[random_index[0]][random_index[1]][random_index[2]][random_index[3]] = 1
subject.add_image(tio.LabelMap(tensor=crop_mask, affine=subject.label.affine), image_name="crop_mask")
subject = tio.CropOrPad(mask_name='crop_mask', target_shape=self.image_size)(subject)
return subject
class Dataloader_promise(DataLoader):
def __iter__(self):
return BackgroundGenerator(super().__iter__())