|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
from torch import nn |
|
|
from .transformer import TwoWayTransformer3D |
|
|
from typing import Any, Optional, Tuple, Type |
|
|
|
|
|
class LayerNorm3d(nn.Module): |
|
|
def __init__(self, num_channels: int, eps: float = 1e-6) -> None: |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(num_channels)) |
|
|
self.bias = nn.Parameter(torch.zeros(num_channels)) |
|
|
self.eps = eps |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
u = x.mean(1, keepdim=True) |
|
|
s = (x - u).pow(2).mean(1, keepdim=True) |
|
|
x = (x - u) / torch.sqrt(s + self.eps) |
|
|
x = self.weight[:, None, None, None] * x + self.bias[:, None, None, None] |
|
|
return x |
|
|
|
|
|
|
|
|
class PromptEncoder3D(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
embed_dim: int, |
|
|
image_embedding_size: Tuple[int, int, int], |
|
|
input_image_size: Tuple[int, int, int], |
|
|
mask_in_chans: int, |
|
|
|
|
|
num_multiple_outputs: int = 3, |
|
|
activation: Type[nn.Module] = nn.GELU, |
|
|
multiple_outputs: bool = False, |
|
|
) -> None: |
|
|
""" |
|
|
Encodes prompts for input to SAM's mask decoder. |
|
|
|
|
|
Arguments: |
|
|
embed_dim (int): The prompts' embedding dimension |
|
|
image_embedding_size (tuple(int, int)): The spatial size of the |
|
|
image embedding, as (H, W). |
|
|
input_image_size (int): The padded size of the image as input |
|
|
to the image encoder, as (H, W). |
|
|
mask_in_chans (int): The number of hidden channels used for |
|
|
encoding input masks. |
|
|
activation (nn.Module): The activation to use when encoding |
|
|
input masks. |
|
|
""" |
|
|
super().__init__() |
|
|
self.embed_dim = embed_dim |
|
|
self.input_image_size = input_image_size |
|
|
self.image_embedding_size = image_embedding_size |
|
|
self.pe_layer = PositionEmbeddingRandom3D(embed_dim // 3) |
|
|
|
|
|
self.num_point_embeddings: int = 4 |
|
|
point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)] |
|
|
self.point_embeddings = nn.ModuleList(point_embeddings) |
|
|
self.not_a_point_embed = nn.Embedding(1, embed_dim) |
|
|
|
|
|
self.mask_input_size = (image_embedding_size[0], image_embedding_size[1], image_embedding_size[2]) |
|
|
self.mask_downscaling = nn.Sequential( |
|
|
nn.Conv3d(1, mask_in_chans // 4, kernel_size=2, stride=2), |
|
|
LayerNorm3d(mask_in_chans // 4), |
|
|
activation(), |
|
|
|
|
|
|
|
|
|
|
|
nn.Conv3d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), |
|
|
LayerNorm3d(mask_in_chans), |
|
|
activation(), |
|
|
nn.Conv3d(mask_in_chans, embed_dim, kernel_size=1), |
|
|
) |
|
|
|
|
|
self.no_mask_embed = nn.Embedding(1, embed_dim) |
|
|
|
|
|
self.transformer_dim = embed_dim |
|
|
self.transformer = TwoWayTransformer3D( |
|
|
depth=2, |
|
|
embedding_dim=self.transformer_dim, |
|
|
mlp_dim=2048, |
|
|
num_heads=8, |
|
|
) |
|
|
self.multiple_outputs = multiple_outputs |
|
|
|
|
|
self.mask_tokens = nn.Embedding(num_multiple_outputs + 1, embed_dim) |
|
|
self.iou_token = nn.Embedding(1, embed_dim) |
|
|
|
|
|
|
|
|
def forward( |
|
|
self, |
|
|
points: Optional[Tuple[torch.Tensor, torch.Tensor]], |
|
|
boxes: Optional[torch.Tensor], |
|
|
masks: Optional[torch.Tensor], |
|
|
image_embeddings: torch.Tensor, |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
Embeds different types of prompts, returning both sparse and dense |
|
|
embeddings. |
|
|
|
|
|
Arguments: |
|
|
points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates |
|
|
and labels to embed. |
|
|
boxes (torch.Tensor or none): boxes to embed |
|
|
masks (torch.Tensor or none): masks to embed |
|
|
|
|
|
Returns: |
|
|
torch.Tensor: sparse embeddings for the points and boxes, with shape |
|
|
BxNx(embed_dim), where N is determined by the number of input points |
|
|
and boxes. |
|
|
torch.Tensor: dense embeddings for the masks, in the shape |
|
|
Bx(embed_dim)x(embed_H)x(embed_W) |
|
|
""" |
|
|
bs = self._get_batch_size(points, boxes, masks) |
|
|
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device()) |
|
|
if points is not None: |
|
|
coords, labels = points |
|
|
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) |
|
|
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) |
|
|
if boxes is not None: |
|
|
box_embeddings = self._embed_boxes(boxes) |
|
|
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) |
|
|
|
|
|
if masks is not None: |
|
|
dense_embeddings = self._embed_masks(masks) |
|
|
else: |
|
|
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1, 1).expand( |
|
|
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1], self.image_embedding_size[2] |
|
|
) |
|
|
|
|
|
new_prompt_embeddings, new_image_embeddings = self._two_way_transformer( |
|
|
image_embeddings=image_embeddings, |
|
|
image_pe=self.get_dense_pe(), |
|
|
sparse_prompt_embeddings=sparse_embeddings, |
|
|
dense_prompt_embeddings=dense_embeddings, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
return new_prompt_embeddings, new_image_embeddings |
|
|
|
|
|
|
|
|
def _two_way_transformer( |
|
|
self, |
|
|
image_embeddings: torch.Tensor, |
|
|
image_pe: torch.Tensor, |
|
|
sparse_prompt_embeddings: torch.Tensor, |
|
|
dense_prompt_embeddings: torch.Tensor, |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Predicts masks. See 'forward' for more details.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0) |
|
|
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1) |
|
|
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) |
|
|
|
|
|
|
|
|
if image_embeddings.shape[0] != tokens.shape[0]: |
|
|
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) |
|
|
else: |
|
|
src = image_embeddings |
|
|
src = src + dense_prompt_embeddings |
|
|
b, c, x, y, z = src.shape |
|
|
if image_pe.shape[0] != tokens.shape[0]: |
|
|
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) |
|
|
else: |
|
|
pos_src = image_pe |
|
|
|
|
|
|
|
|
new_point_embedding, new_image_embedding = self.transformer(src, pos_src, tokens) |
|
|
return new_point_embedding, new_image_embedding.transpose(1, 2).view(b, c, x, y, z) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_dense_pe(self) -> torch.Tensor: |
|
|
""" |
|
|
Returns the positional encoding used to encode point prompts, |
|
|
applied to a dense set of points the shape of the image encoding. |
|
|
|
|
|
Returns: |
|
|
torch.Tensor: Positional encoding with shape |
|
|
1x(embed_dim)x(embedding_h)x(embedding_w) |
|
|
""" |
|
|
return self.pe_layer(self.image_embedding_size).unsqueeze(0) |
|
|
|
|
|
def _embed_points( |
|
|
self, |
|
|
points: torch.Tensor, |
|
|
labels: torch.Tensor, |
|
|
pad: bool, |
|
|
) -> torch.Tensor: |
|
|
"""Embeds point prompts.""" |
|
|
points = points + 0.5 |
|
|
if pad: |
|
|
padding_point = torch.zeros((points.shape[0], 1, 3), device=points.device) |
|
|
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) |
|
|
points = torch.cat([points, padding_point], dim=1) |
|
|
labels = torch.cat([labels, padding_label], dim=1) |
|
|
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size) |
|
|
point_embedding[labels == -1] = 0.0 |
|
|
point_embedding[labels == -1] += self.not_a_point_embed.weight |
|
|
point_embedding[labels == 0] += self.point_embeddings[0].weight |
|
|
point_embedding[labels == 1] += self.point_embeddings[1].weight |
|
|
return point_embedding |
|
|
|
|
|
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: |
|
|
"""Embeds box prompts.""" |
|
|
boxes = boxes + 0.5 |
|
|
coords = boxes.reshape(-1, 2, 3) |
|
|
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size) |
|
|
corner_embedding[:, 0, :] += self.point_embeddings[2].weight |
|
|
corner_embedding[:, 1, :] += self.point_embeddings[3].weight |
|
|
return corner_embedding |
|
|
|
|
|
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: |
|
|
"""Embeds mask inputs.""" |
|
|
mask_embedding = self.mask_downscaling(masks) |
|
|
return mask_embedding |
|
|
|
|
|
def _get_batch_size( |
|
|
self, |
|
|
points: Optional[Tuple[torch.Tensor, torch.Tensor]], |
|
|
boxes: Optional[torch.Tensor], |
|
|
masks: Optional[torch.Tensor], |
|
|
) -> int: |
|
|
""" |
|
|
Gets the batch size of the output given the batch size of the input prompts. |
|
|
""" |
|
|
if points is not None: |
|
|
return points[0].shape[0] |
|
|
elif boxes is not None: |
|
|
return boxes.shape[0] |
|
|
elif masks is not None: |
|
|
return masks.shape[0] |
|
|
else: |
|
|
return 1 |
|
|
|
|
|
def _get_device(self) -> torch.device: |
|
|
return self.point_embeddings[0].weight.device |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class PositionEmbeddingRandom3D(nn.Module): |
|
|
""" |
|
|
Positional encoding using random spatial frequencies. |
|
|
""" |
|
|
|
|
|
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: |
|
|
super().__init__() |
|
|
if scale is None or scale <= 0.0: |
|
|
scale = 1.0 |
|
|
self.register_buffer( |
|
|
"positional_encoding_gaussian_matrix", |
|
|
scale * torch.randn((3, num_pos_feats)), |
|
|
) |
|
|
|
|
|
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: |
|
|
"""Positionally encode points that are normalized to [0,1].""" |
|
|
|
|
|
coords = 2 * coords - 1 |
|
|
coords = coords @ self.positional_encoding_gaussian_matrix |
|
|
coords = 2 * np.pi * coords |
|
|
|
|
|
return torch.cat([torch.sin(coords), torch.cos(coords), torch.sin(coords)], dim=-1) |
|
|
|
|
|
def forward(self, size: Tuple[int, int, int]) -> torch.Tensor: |
|
|
"""Generate positional encoding for a grid of the specified size.""" |
|
|
x, y, z = size |
|
|
device: Any = self.positional_encoding_gaussian_matrix.device |
|
|
grid = torch.ones((x, y, z), device=device, dtype=torch.float32) |
|
|
y_embed = grid.cumsum(dim=0) - 0.5 |
|
|
x_embed = grid.cumsum(dim=1) - 0.5 |
|
|
z_embed = grid.cumsum(dim=2) - 0.5 |
|
|
y_embed = y_embed / y |
|
|
x_embed = x_embed / x |
|
|
z_embed = z_embed / z |
|
|
|
|
|
pe = self._pe_encoding(torch.stack([x_embed, y_embed, z_embed], dim=-1)) |
|
|
return pe.permute(3, 0, 1, 2) |
|
|
|
|
|
def forward_with_coords( |
|
|
self, coords_input: torch.Tensor, image_size: Tuple[int, int, int] |
|
|
) -> torch.Tensor: |
|
|
"""Positionally encode points that are not normalized to [0,1].""" |
|
|
coords = coords_input.clone() |
|
|
coords[:, :, 0] = coords[:, :, 0] / image_size[0] |
|
|
coords[:, :, 1] = coords[:, :, 1] / image_size[1] |
|
|
coords[:, :, 2] = coords[:, :, 2] / image_size[2] |
|
|
return self._pe_encoding(coords.to(torch.float)) |
|
|
|