|
|
import numpy as np |
|
|
import torch |
|
|
|
|
|
from torch import Tensor |
|
|
from typing import List, Tuple |
|
|
|
|
|
from .utility import chance |
|
|
from .utility import quantile |
|
|
from .utility import grid_coordinates |
|
|
from .filter import gaussian_blur |
|
|
from .noise import perlin |
|
|
|
|
|
|
|
|
def image_augment( |
|
|
image: Tensor, |
|
|
mask: Tensor = None, |
|
|
voxsize: List[float] = 1.0, |
|
|
normalize: bool = True, |
|
|
normalize_min_quantile: float = None, |
|
|
normalize_max_scale: float = None, |
|
|
inversion_probability: float = 0.0, |
|
|
smoothing_probability: float = 0.0, |
|
|
smoothing_one_axis_probability: float = 0.5, |
|
|
smoothing_max_sigma: float = 2.0, |
|
|
bias_field_probability: float = 0.0, |
|
|
bias_field_max_magnitude: float = 0.5, |
|
|
bias_field_smoothing_range: Tuple[float, float] = [10, 30], |
|
|
background_noise_probability: float = 0.0, |
|
|
background_blob_probability: float = 0.0, |
|
|
background_roll_probability: float = 0.0, |
|
|
background_roll_max_strength: float = 0.5, |
|
|
added_noise_probability: float = 0.0, |
|
|
added_noise_max_sigma: float = 0.05, |
|
|
wave_artifact_probability: float = 0.0, |
|
|
wave_artifact_max_strength: float = 0.05, |
|
|
line_corruption_probability: float = 0.0, |
|
|
gamma_scaling_probability: float = 0.0, |
|
|
gamma_scaling_max: float = 0.8, |
|
|
resized_probability: float = 0.0, |
|
|
resized_one_axis_probability: float = 0.5, |
|
|
resized_max_voxsize: float = 2): |
|
|
""" |
|
|
Augment an image with a variety of random effects. |
|
|
|
|
|
Supports intensity smoothing, bias field simulation, background noise synthesis, |
|
|
a variety of corruptions, and resolution scaling. This function is designed to be |
|
|
used with a channeled image tensor, where the first dimension is the channel dimension. |
|
|
Augmentation is applies independently to across seperate channels. |
|
|
|
|
|
A boolean mask can be optionally provided. Any image signal outside of the mask is |
|
|
considered background and replaced by synthetic noise and/or other effects. |
|
|
|
|
|
Note that this function expects the image singals to be between 0 and 1, so it will |
|
|
min/max normalize the input by default. This can be disabled with the `normalize` |
|
|
parameter. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
image: Tensor |
|
|
An image tensor of shape `(channels, *shape)`. Can be 2D or 3D. |
|
|
mask: Tensor, optionals |
|
|
An mask tensor of shape `shape`. |
|
|
voxsize: float or List[float], optional |
|
|
The relative size of the voxel. This is used to appropriately scale |
|
|
spatial-based parameters. |
|
|
normalize: bool, optional |
|
|
If True, the image is min/max normalized before augmentation. Not necessary if the |
|
|
image intensities are already between 0 and 1. |
|
|
normalize_min_quantile: float, optional |
|
|
If provided, this quantile sets the minimum sample intensity for normalization scaling. |
|
|
If None, the normalization scale will not be less than the maximum image intensity. |
|
|
normalize_max_scale: float, optional |
|
|
If provided, this scale sets the maximum sample intensity for normalization scaling. |
|
|
It is a multiplicative factor, so 1.0 means the maximum intensity will not be scaled. |
|
|
inversion_probability: float, optional |
|
|
The probability of inverting the image intensities. |
|
|
smoothing_probability: float, optional |
|
|
The probability of applying a gaussian smoothing kernel. |
|
|
smoothing_one_axis_probability: float, optional |
|
|
The probability of applying the smoothing kernel to a single axis. This |
|
|
is a sub-probability of the `smoothing_probability`. |
|
|
smoothing_max_sigma: float, optional |
|
|
The maximum sigma for the smoothing kernel. |
|
|
bias_field_probability: float, optional |
|
|
The probability of simulating a bias field. |
|
|
bias_field_max_magnitude: float, optional |
|
|
The maximum possible magnitude of of the bias field. |
|
|
bias_field_smoothing_range: Tuple, optional |
|
|
The range of perlin noise smoothing to generate the bias field. |
|
|
background_noise_probability: float, optional |
|
|
The probability of synthesizing perline noise in the background. Otherwise, |
|
|
the background will be set to zero. |
|
|
background_blob_probability: float, optional |
|
|
The probability of adding random blobs of noise to the background. |
|
|
background_roll_probability: float, optional |
|
|
The probability of rolling the image around the background. |
|
|
background_roll_max_strength: float, optional |
|
|
The maximum scale for rolling the image around the background. |
|
|
added_noise_probability: float, optional |
|
|
The probability of adding random Gaussian noise across the entire image. |
|
|
added_noise_max_sigma: float, optional |
|
|
The maximum sigma for the added Gaussian noise. |
|
|
wave_artifact_probability: float, optional |
|
|
The probability of adding wave artifacts or grating effects to the image. |
|
|
wave_artifact_max_strength: float, optional |
|
|
The maximum strength (intensity) of added wave artifacts. |
|
|
line_corruption_probability: float, optional |
|
|
The probability of adding random line artifacts to the image, i.e. blocking out |
|
|
signal in a random slice. |
|
|
gamma_scaling_probability: float, optional |
|
|
The probability of scaling the image intensities with a gamma function. |
|
|
gamma_scaling_max: float, optional |
|
|
The maximum value for the gamma exponentiation. |
|
|
resized_probability: float, optional |
|
|
The probability of downsampling, then re-upsampling the image to synthesize |
|
|
low-resolution image resizing.e |
|
|
resized_one_axis_probability: float, optional |
|
|
The probability of resizing only one axis, to simulate thick-slice data. |
|
|
resized_max_voxsize: float, optional |
|
|
The maximum voxel size for the 'resized' downsampling step. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
Tensor |
|
|
The augmented image tensor of shape (channels, *shape). |
|
|
""" |
|
|
|
|
|
|
|
|
device = image.device |
|
|
shape = image.shape[1:] |
|
|
channels = image.shape[0] |
|
|
ndim = len(shape) |
|
|
|
|
|
|
|
|
voxsize = torch.as_tensor(voxsize, device=device) |
|
|
if voxsize.ndim == 0: |
|
|
voxsize = voxsize.repeat(ndim) |
|
|
|
|
|
|
|
|
image = image.clone() if torch.is_floating_point(image) else image.type(torch.float32) |
|
|
|
|
|
|
|
|
if mask is None: |
|
|
mask = image.sum(0) > 0 |
|
|
elif mask.ndim != (image.ndim - 1): |
|
|
raise ValueError(f'expected mask to have {ndim} dims, but got shape {mask.shape}') |
|
|
|
|
|
|
|
|
background = mask == 0 |
|
|
|
|
|
|
|
|
for channel in range(channels): |
|
|
|
|
|
|
|
|
cimg = image[channel] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if normalize: |
|
|
cimg -= cimg.min() |
|
|
|
|
|
|
|
|
methods = ['max'] |
|
|
if normalize_min_quantile is not None: |
|
|
methods.append('quantile') |
|
|
if normalize_max_scale is not None: |
|
|
methods.append('scale-up') |
|
|
method = np.random.choice(methods) |
|
|
|
|
|
if method == 'max': |
|
|
|
|
|
cimg /= cimg.max() |
|
|
elif method == 'quantile': |
|
|
|
|
|
q = np.random.uniform(normalize_min_quantile, 1.0) |
|
|
cimg /= quantile(cimg, q) |
|
|
cimg.clamp_(0, 1) |
|
|
elif method == 'scale-up': |
|
|
|
|
|
cimg /= np.random.uniform(1.0, normalize_max_scale) * cimg.max() |
|
|
else: |
|
|
raise ValueError(f'unknown normalization method: {method}') |
|
|
|
|
|
elif image.min() < 0 or image.max() > 1: |
|
|
raise ValueError('image intensities must be between 0 and 1') |
|
|
|
|
|
|
|
|
if chance(inversion_probability): |
|
|
cimg = 1 - cimg |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if chance(smoothing_probability): |
|
|
max_sigma = (smoothing_max_sigma / voxsize.min()).cpu().numpy() |
|
|
if chance(smoothing_one_axis_probability): |
|
|
|
|
|
sigma = np.zeros(ndim) |
|
|
sigma[np.random.randint(ndim)] = np.random.uniform(0, max_sigma) |
|
|
else: |
|
|
|
|
|
sigma = np.random.uniform(0, max_sigma, size=ndim) |
|
|
cimg = gaussian_blur(cimg.unsqueeze(0), sigma).squeeze(0) |
|
|
|
|
|
|
|
|
|
|
|
if chance(background_noise_probability): |
|
|
|
|
|
smoothing = torch.ceil(torch.tensor(np.random.uniform(1, 16)) / voxsize) |
|
|
bg_image = perlin(shape, smoothing, device=device) |
|
|
bg_image /= np.random.uniform(1, 10) |
|
|
bg_image += np.random.rand() |
|
|
else: |
|
|
|
|
|
bg_image = torch.zeros(shape, device=device) |
|
|
|
|
|
|
|
|
if chance(background_blob_probability): |
|
|
smoothing = torch.ceil(torch.tensor(np.random.uniform(32, 64)) / voxsize) |
|
|
noise = perlin(shape, smoothing, device=device) |
|
|
blobs = noise > np.random.uniform(-0.2, 0.2) |
|
|
bg_image[blobs] = np.random.rand() if chance(0.5) else noise[blobs] * np.random.rand() |
|
|
|
|
|
|
|
|
if chance(background_roll_probability): |
|
|
for i in range(np.random.randint(1, 4)): |
|
|
dims = tuple(np.random.permutation(ndim)[:np.random.choice((1, 2))]) |
|
|
shifts = [int(np.random.uniform(shape[d] / 4, shape[d] / 2)) for d in dims] |
|
|
shifts = tuple(np.asarray(shifts) * np.random.choice([-1, 1], size=len(shifts))) |
|
|
scale = np.random.randn() * background_roll_max_strength |
|
|
bg_image += scale * torch.roll(cimg, shifts, dims=dims) |
|
|
|
|
|
|
|
|
cimg[background] = bg_image[background].clip(0, 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if chance(bias_field_probability): |
|
|
smoothing = np.random.uniform(*bias_field_smoothing_range) |
|
|
magnitude = np.random.uniform(0, bias_field_max_magnitude) |
|
|
cimg *= random_bias_field(shape, smoothing, magnitude, voxsize=voxsize, device=device) |
|
|
|
|
|
|
|
|
if chance(line_corruption_probability): |
|
|
for i in range(np.random.randint(1, 4)): |
|
|
indices = [slice(0, s) for s in shape] |
|
|
axis = np.random.randint(ndim) |
|
|
indices[axis] = np.random.randint(shape[axis]) |
|
|
cimg[indices] = np.random.rand() |
|
|
|
|
|
|
|
|
if chance(added_noise_probability): |
|
|
std = np.random.uniform(0, added_noise_max_sigma) |
|
|
cimg += torch.normal(mean=0, std=std, size=shape, device=device) |
|
|
|
|
|
|
|
|
if chance(wave_artifact_probability): |
|
|
meshgrid = grid_coordinates(shape, device=device) |
|
|
if chance(0.5): |
|
|
wavelength = np.random.uniform(2, 8) |
|
|
grating = random_linear_wave(meshgrid, wavelength) |
|
|
cimg += grating * np.random.rand() * wave_artifact_max_strength |
|
|
else: |
|
|
wavelength = np.random.uniform(1, 2) |
|
|
grating = random_spherical_wave(meshgrid, wavelength) |
|
|
cimg += grating * np.random.rand() * wave_artifact_max_strength |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if chance(resized_probability): |
|
|
|
|
|
|
|
|
if torch.any(voxsize < resized_max_voxsize): |
|
|
|
|
|
if chance(resized_one_axis_probability): |
|
|
vsa = np.full(ndim, voxsize, dtype=np.float32) |
|
|
vsa[np.random.randint(ndim)] = np.random.uniform(voxsize.min().cpu(), resized_max_voxsize) |
|
|
scale = tuple(1 / vsa) |
|
|
else: |
|
|
scale = tuple(1 / np.random.uniform(voxsize, resized_max_voxsize)) |
|
|
|
|
|
|
|
|
linear = 'trilinear' if ndim == 3 else 'bilinear' |
|
|
ds = torch.nn.functional.interpolate(cimg.unsqueeze(0), scale_factor=scale, mode=linear, align_corners=True) |
|
|
cimg = torch.nn.functional.interpolate(ds, shape, mode=linear, align_corners=True).squeeze(0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cimg -= cimg.min() |
|
|
cimg /= cimg.max() |
|
|
|
|
|
|
|
|
|
|
|
if chance(gamma_scaling_probability): |
|
|
gamma = np.random.uniform(-gamma_scaling_max, gamma_scaling_max) |
|
|
cimg = cimg.pow(np.exp(gamma)) |
|
|
|
|
|
|
|
|
image[channel] = cimg |
|
|
|
|
|
return image |
|
|
|
|
|
|
|
|
def random_bias_field( |
|
|
shape : List[int], |
|
|
smoothing : float = 20, |
|
|
magnitude : float = 0.1, |
|
|
voxsize : float = 1, |
|
|
device: torch.device = None) -> Tensor: |
|
|
""" |
|
|
Generate a random bias field with perlin noise. The bias field |
|
|
is generated by exponentiating the noise. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
shape : List[int] |
|
|
Shape of the bias field. |
|
|
smoothing : float or List[float] |
|
|
The spatial smoothing sigma in voxel coordinates. If a |
|
|
single value is provided, it will be used for all dimensions. |
|
|
magnitude : float or List[float] |
|
|
The standard deviation of the noise across dimensions. If a single value is |
|
|
provided, it will be used for all dimensions. |
|
|
voxsize : float or List[float] |
|
|
The relative size of the voxel. This is used to appropriately scale |
|
|
the smoothing parameter. |
|
|
device : torch.device, optional |
|
|
The device to create the field on. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
Tensor |
|
|
Bias field image. |
|
|
""" |
|
|
return perlin(shape, smoothing / voxsize, magnitude, device=device).exp() |
|
|
|
|
|
|
|
|
def random_linear_wave(meshgrid : Tensor, wavelength : float) -> Tensor: |
|
|
""" |
|
|
Generate a random linear grating at an arbitrary angle. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
meshgrid : Tensor |
|
|
Meshgrid of the image with expected shape `(W, H[,D], N)`, |
|
|
where N is the image dimension. |
|
|
wavelength : float |
|
|
Wavelength of the wave in voxels. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
Tensor |
|
|
Random linear wave image. |
|
|
""" |
|
|
|
|
|
ndim = meshgrid.ndim - 1 |
|
|
angle = 0 if wavelength < 4 else np.random.uniform(0, np.pi) |
|
|
if ndim == 3: |
|
|
a, b = [meshgrid[..., d] for d in np.random.permutation(3)[:2]] |
|
|
elif ndim == 2: |
|
|
a, b = meshgrid[..., 0], meshgrid[..., 1] |
|
|
grating = torch.sin(2 * np.pi * (a * np.cos(angle) + b * np.sin(angle)) / wavelength) |
|
|
return grating |
|
|
|
|
|
|
|
|
def random_spherical_wave(meshgrid : Tensor, wavelength : float) -> Tensor: |
|
|
""" |
|
|
Generate a random spherical wave grating, with origin at any random point in the image. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
meshgrid : Tensor |
|
|
Meshgrid of the image with expected shape `(W, H[,D], N)`, |
|
|
where N is the image dimension. |
|
|
wavelength : float |
|
|
Wavelength of the wave in voxels. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
Tensor |
|
|
Random spherical wave image. |
|
|
""" |
|
|
|
|
|
|
|
|
ndim = meshgrid.ndim - 1 |
|
|
delta = [np.random.uniform(0, s) for s in meshgrid.shape[:-1]] |
|
|
if ndim == 3: |
|
|
x, y, z = [meshgrid[..., d] - delta[d] for d in range(ndim)] |
|
|
grating = torch.sin(torch.sqrt(x ** 2 + y ** 2 + z ** 2) * wavelength) |
|
|
elif ndim == 2: |
|
|
|
|
|
raise NotImplementedError('spherical waves not yet implemented for 2D images') |
|
|
return grating |
|
|
|
|
|
|
|
|
def random_cropping_mask(mask: Tensor) -> Tensor: |
|
|
""" |
|
|
Generate a random spatial cropping mask. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
mask : Tensor |
|
|
Boolean mask image. The output mask will crop the region |
|
|
represented by this mask along any axis. The resulting mask |
|
|
will not crop the input mask by any more than 1/3 of the mask |
|
|
width on either side. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
Tensor |
|
|
Cropping mask image. |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
shape = mask.shape[1:] |
|
|
ndim = len(shape) - 1 |
|
|
crop_mask = torch.zeros(shape, dtype=torch.bool, device=mask.device) |
|
|
nonzeros = mask.nonzero()[:, 1:] |
|
|
mincoord = nonzeros.min(0)[0].cpu() |
|
|
maxcoord = nonzeros.max(0)[0].cpu() + 1 |
|
|
bbox = tuple([slice(a, b) for a, b in zip(mincoord, maxcoord)]) |
|
|
for _ in range(np.random.randint(1, 3)): |
|
|
axis = np.random.randint(ndim) |
|
|
s = bbox[axis] |
|
|
|
|
|
displacement = int(np.random.uniform(0, (s.stop - s.start) / 3)) |
|
|
cropping = [slice(0, d) for d in shape] |
|
|
|
|
|
if chance(0.5): |
|
|
cropping[axis] = slice(0, s.start + displacement) |
|
|
else: |
|
|
cropping[axis] = slice(s.stop - displacement, shape[axis]) |
|
|
crop_mask[tuple(cropping)] = 1 |
|
|
return crop_mask.view(mask.shape) |
|
|
|