Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +17 -0
- SegMamba/.DS_Store +0 -0
- SegMamba/.gitignore +160 -0
- SegMamba/0_inference.py +20 -0
- SegMamba/1_rename_mri_data.py +26 -0
- SegMamba/2_preprocessing_mri.py +45 -0
- SegMamba/3_train.py +168 -0
- SegMamba/4_predict.py +139 -0
- SegMamba/5_compute_metrics.py +84 -0
- SegMamba/README.md +132 -0
- SegMamba/causal-conv1d/.DS_Store +0 -0
- SegMamba/causal-conv1d/AUTHORS +1 -0
- SegMamba/causal-conv1d/LICENSE +29 -0
- SegMamba/causal-conv1d/README.md +1 -0
- SegMamba/causal-conv1d/build/lib.linux-x86_64-cpython-312/causal_conv1d/__init__.py +3 -0
- SegMamba/causal-conv1d/build/lib.linux-x86_64-cpython-312/causal_conv1d/causal_conv1d_interface.py +104 -0
- SegMamba/causal-conv1d/build/lib.linux-x86_64-cpython-312/causal_conv1d_cuda.cpython-312-x86_64-linux-gnu.so +3 -0
- SegMamba/causal-conv1d/build/temp.linux-x86_64-cpython-312/csrc/causal_conv1d.o +3 -0
- SegMamba/causal-conv1d/build/temp.linux-x86_64-cpython-312/csrc/causal_conv1d_bwd.o +3 -0
- SegMamba/causal-conv1d/build/temp.linux-x86_64-cpython-312/csrc/causal_conv1d_fwd.o +3 -0
- SegMamba/causal-conv1d/build/temp.linux-x86_64-cpython-312/csrc/causal_conv1d_update.o +3 -0
- SegMamba/causal-conv1d/causal_conv1d.egg-info/PKG-INFO +29 -0
- SegMamba/causal-conv1d/causal_conv1d.egg-info/SOURCES.txt +16 -0
- SegMamba/causal-conv1d/causal_conv1d.egg-info/dependency_links.txt +1 -0
- SegMamba/causal-conv1d/causal_conv1d.egg-info/requires.txt +3 -0
- SegMamba/causal-conv1d/causal_conv1d.egg-info/top_level.txt +2 -0
- SegMamba/causal-conv1d/causal_conv1d/__init__.py +3 -0
- SegMamba/causal-conv1d/causal_conv1d/causal_conv1d_interface.py +104 -0
- SegMamba/causal-conv1d/csrc/causal_conv1d.cpp +333 -0
- SegMamba/causal-conv1d/csrc/causal_conv1d.h +53 -0
- SegMamba/causal-conv1d/csrc/causal_conv1d_bwd.cu +525 -0
- SegMamba/causal-conv1d/csrc/causal_conv1d_common.h +64 -0
- SegMamba/causal-conv1d/csrc/causal_conv1d_fwd.cu +350 -0
- SegMamba/causal-conv1d/csrc/causal_conv1d_update.cu +96 -0
- SegMamba/causal-conv1d/csrc/static_switch.h +25 -0
- SegMamba/causal-conv1d/setup.py +264 -0
- SegMamba/causal-conv1d/tests/test_causal_conv1d.py +173 -0
- SegMamba/images/data_structure.jpg +3 -0
- SegMamba/images/method_figure.jpg +3 -0
- SegMamba/images/modules.jpg +3 -0
- SegMamba/images/segmamba_ablation.jpg +3 -0
- SegMamba/light_training/.DS_Store +0 -0
- SegMamba/light_training/augment/multi_processor.py +10 -0
- SegMamba/light_training/augment/train_augment.py +279 -0
- SegMamba/light_training/dataloading/__init__.py +0 -0
- SegMamba/light_training/dataloading/base_data_loader.py +213 -0
- SegMamba/light_training/dataloading/dataset.py +319 -0
- SegMamba/light_training/dataloading/dataset_sdm_edge.py +331 -0
- SegMamba/light_training/dataloading/get_train_val_test_datalist.py +36 -0
- SegMamba/light_training/dataloading/utils.py +25 -0
.gitattributes
CHANGED
|
@@ -57,3 +57,20 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 57 |
# Video files - compressed
|
| 58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
# Video files - compressed
|
| 58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
| 60 |
+
SegMamba/causal-conv1d/build/lib.linux-x86_64-cpython-312/causal_conv1d_cuda.cpython-312-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 61 |
+
SegMamba/causal-conv1d/build/temp.linux-x86_64-cpython-312/csrc/causal_conv1d.o filter=lfs diff=lfs merge=lfs -text
|
| 62 |
+
SegMamba/causal-conv1d/build/temp.linux-x86_64-cpython-312/csrc/causal_conv1d_bwd.o filter=lfs diff=lfs merge=lfs -text
|
| 63 |
+
SegMamba/causal-conv1d/build/temp.linux-x86_64-cpython-312/csrc/causal_conv1d_fwd.o filter=lfs diff=lfs merge=lfs -text
|
| 64 |
+
SegMamba/causal-conv1d/build/temp.linux-x86_64-cpython-312/csrc/causal_conv1d_update.o filter=lfs diff=lfs merge=lfs -text
|
| 65 |
+
SegMamba/mamba/build/lib.linux-x86_64-cpython-312/selective_scan_cuda.cpython-312-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 66 |
+
SegMamba/mamba/build/temp.linux-x86_64-cpython-312/.ninja_deps filter=lfs diff=lfs merge=lfs -text
|
| 67 |
+
SegMamba/mamba/build/temp.linux-x86_64-cpython-312/csrc/selective_scan/selective_scan.o filter=lfs diff=lfs merge=lfs -text
|
| 68 |
+
SegMamba/mamba/build/temp.linux-x86_64-cpython-312/csrc/selective_scan/selective_scan_bwd_bf16_complex.o filter=lfs diff=lfs merge=lfs -text
|
| 69 |
+
SegMamba/mamba/build/temp.linux-x86_64-cpython-312/csrc/selective_scan/selective_scan_bwd_bf16_real.o filter=lfs diff=lfs merge=lfs -text
|
| 70 |
+
SegMamba/mamba/build/temp.linux-x86_64-cpython-312/csrc/selective_scan/selective_scan_bwd_fp16_complex.o filter=lfs diff=lfs merge=lfs -text
|
| 71 |
+
SegMamba/mamba/build/temp.linux-x86_64-cpython-312/csrc/selective_scan/selective_scan_bwd_fp16_real.o filter=lfs diff=lfs merge=lfs -text
|
| 72 |
+
SegMamba/mamba/build/temp.linux-x86_64-cpython-312/csrc/selective_scan/selective_scan_bwd_fp32_complex.o filter=lfs diff=lfs merge=lfs -text
|
| 73 |
+
SegMamba/mamba/build/temp.linux-x86_64-cpython-312/csrc/selective_scan/selective_scan_bwd_fp32_real.o filter=lfs diff=lfs merge=lfs -text
|
| 74 |
+
SegMamba/mamba/build/temp.linux-x86_64-cpython-312/csrc/selective_scan/selective_scan_fwd_bf16.o filter=lfs diff=lfs merge=lfs -text
|
| 75 |
+
SegMamba/mamba/build/temp.linux-x86_64-cpython-312/csrc/selective_scan/selective_scan_fwd_fp16.o filter=lfs diff=lfs merge=lfs -text
|
| 76 |
+
SegMamba/mamba/build/temp.linux-x86_64-cpython-312/csrc/selective_scan/selective_scan_fwd_fp32.o filter=lfs diff=lfs merge=lfs -text
|
SegMamba/.DS_Store
ADDED
|
Binary file (8.2 kB). View file
|
|
|
SegMamba/.gitignore
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# C extensions
|
| 7 |
+
*.so
|
| 8 |
+
|
| 9 |
+
# Distribution / packaging
|
| 10 |
+
.Python
|
| 11 |
+
build/
|
| 12 |
+
develop-eggs/
|
| 13 |
+
dist/
|
| 14 |
+
downloads/
|
| 15 |
+
eggs/
|
| 16 |
+
.eggs/
|
| 17 |
+
lib/
|
| 18 |
+
lib64/
|
| 19 |
+
parts/
|
| 20 |
+
sdist/
|
| 21 |
+
var/
|
| 22 |
+
wheels/
|
| 23 |
+
share/python-wheels/
|
| 24 |
+
*.egg-info/
|
| 25 |
+
.installed.cfg
|
| 26 |
+
*.egg
|
| 27 |
+
MANIFEST
|
| 28 |
+
|
| 29 |
+
# PyInstaller
|
| 30 |
+
# Usually these files are written by a python script from a template
|
| 31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 32 |
+
*.manifest
|
| 33 |
+
*.spec
|
| 34 |
+
|
| 35 |
+
# Installer logs
|
| 36 |
+
pip-log.txt
|
| 37 |
+
pip-delete-this-directory.txt
|
| 38 |
+
|
| 39 |
+
# Unit test / coverage reports
|
| 40 |
+
htmlcov/
|
| 41 |
+
.tox/
|
| 42 |
+
.nox/
|
| 43 |
+
.coverage
|
| 44 |
+
.coverage.*
|
| 45 |
+
.cache
|
| 46 |
+
nosetests.xml
|
| 47 |
+
coverage.xml
|
| 48 |
+
*.cover
|
| 49 |
+
*.py,cover
|
| 50 |
+
.hypothesis/
|
| 51 |
+
.pytest_cache/
|
| 52 |
+
cover/
|
| 53 |
+
|
| 54 |
+
# Translations
|
| 55 |
+
*.mo
|
| 56 |
+
*.pot
|
| 57 |
+
|
| 58 |
+
# Django stuff:
|
| 59 |
+
*.log
|
| 60 |
+
local_settings.py
|
| 61 |
+
db.sqlite3
|
| 62 |
+
db.sqlite3-journal
|
| 63 |
+
|
| 64 |
+
# Flask stuff:
|
| 65 |
+
instance/
|
| 66 |
+
.webassets-cache
|
| 67 |
+
|
| 68 |
+
# Scrapy stuff:
|
| 69 |
+
.scrapy
|
| 70 |
+
|
| 71 |
+
# Sphinx documentation
|
| 72 |
+
docs/_build/
|
| 73 |
+
|
| 74 |
+
# PyBuilder
|
| 75 |
+
.pybuilder/
|
| 76 |
+
target/
|
| 77 |
+
|
| 78 |
+
# Jupyter Notebook
|
| 79 |
+
.ipynb_checkpoints
|
| 80 |
+
|
| 81 |
+
# IPython
|
| 82 |
+
profile_default/
|
| 83 |
+
ipython_config.py
|
| 84 |
+
|
| 85 |
+
# pyenv
|
| 86 |
+
# For a library or package, you might want to ignore these files since the code is
|
| 87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
| 88 |
+
# .python-version
|
| 89 |
+
|
| 90 |
+
# pipenv
|
| 91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 94 |
+
# install all needed dependencies.
|
| 95 |
+
#Pipfile.lock
|
| 96 |
+
|
| 97 |
+
# poetry
|
| 98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
| 99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 100 |
+
# commonly ignored for libraries.
|
| 101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
| 102 |
+
#poetry.lock
|
| 103 |
+
|
| 104 |
+
# pdm
|
| 105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
| 106 |
+
#pdm.lock
|
| 107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
| 108 |
+
# in version control.
|
| 109 |
+
# https://pdm.fming.dev/#use-with-ide
|
| 110 |
+
.pdm.toml
|
| 111 |
+
|
| 112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
| 113 |
+
__pypackages__/
|
| 114 |
+
|
| 115 |
+
# Celery stuff
|
| 116 |
+
celerybeat-schedule
|
| 117 |
+
celerybeat.pid
|
| 118 |
+
|
| 119 |
+
# SageMath parsed files
|
| 120 |
+
*.sage.py
|
| 121 |
+
|
| 122 |
+
# Environments
|
| 123 |
+
.env
|
| 124 |
+
.venv
|
| 125 |
+
env/
|
| 126 |
+
venv/
|
| 127 |
+
ENV/
|
| 128 |
+
env.bak/
|
| 129 |
+
venv.bak/
|
| 130 |
+
|
| 131 |
+
# Spyder project settings
|
| 132 |
+
.spyderproject
|
| 133 |
+
.spyproject
|
| 134 |
+
|
| 135 |
+
# Rope project settings
|
| 136 |
+
.ropeproject
|
| 137 |
+
|
| 138 |
+
# mkdocs documentation
|
| 139 |
+
/site
|
| 140 |
+
|
| 141 |
+
# mypy
|
| 142 |
+
.mypy_cache/
|
| 143 |
+
.dmypy.json
|
| 144 |
+
dmypy.json
|
| 145 |
+
|
| 146 |
+
# Pyre type checker
|
| 147 |
+
.pyre/
|
| 148 |
+
|
| 149 |
+
# pytype static type analyzer
|
| 150 |
+
.pytype/
|
| 151 |
+
|
| 152 |
+
# Cython debug symbols
|
| 153 |
+
cython_debug/
|
| 154 |
+
|
| 155 |
+
# PyCharm
|
| 156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
| 157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 160 |
+
#.idea/
|
SegMamba/0_inference.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from model_segmamba.segmamba import SegMamba
|
| 5 |
+
|
| 6 |
+
t1 = torch.rand(1, 4, 128, 128, 128).cuda()
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
model = SegMamba(in_chans=4,
|
| 10 |
+
out_chans=4,
|
| 11 |
+
depths=[2,2,2,2],
|
| 12 |
+
feat_size=[48, 96, 192, 384]).cuda()
|
| 13 |
+
|
| 14 |
+
out = model(t1)
|
| 15 |
+
|
| 16 |
+
print(out.shape)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
|
SegMamba/1_rename_mri_data.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
data_dir = "./data/raw_data/BraTS2023/ASNR-MICCAI-BraTS2023-GLI-Challenge-TrainingData/"
|
| 7 |
+
|
| 8 |
+
all_cases = os.listdir(data_dir)
|
| 9 |
+
|
| 10 |
+
for case_name in all_cases:
|
| 11 |
+
case_dir = os.path.join(data_dir, case_name)
|
| 12 |
+
|
| 13 |
+
for data_name in os.listdir(case_dir):
|
| 14 |
+
|
| 15 |
+
if "-" not in data_name:
|
| 16 |
+
continue
|
| 17 |
+
new_name = data_name.split("-")[-1]
|
| 18 |
+
|
| 19 |
+
new_path = os.path.join(case_dir, new_name)
|
| 20 |
+
|
| 21 |
+
old_path = os.path.join(case_dir, data_name)
|
| 22 |
+
|
| 23 |
+
os.rename(old_path, new_path)
|
| 24 |
+
|
| 25 |
+
print(f"{new_path} 命名成功")
|
| 26 |
+
|
SegMamba/2_preprocessing_mri.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from light_training.preprocessing.preprocessors.preprocessor_mri import MultiModalityPreprocessor
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pickle
|
| 5 |
+
import json
|
| 6 |
+
|
| 7 |
+
data_filename = ["t2w.nii.gz",
|
| 8 |
+
"t2f.nii.gz",
|
| 9 |
+
"t1n.nii.gz",
|
| 10 |
+
"t1c.nii.gz"]
|
| 11 |
+
seg_filename = "seg.nii.gz"
|
| 12 |
+
|
| 13 |
+
base_dir = "./data/raw_data/BraTS2023/"
|
| 14 |
+
image_dir = "ASNR-MICCAI-BraTS2023-GLI-Challenge-TrainingData"
|
| 15 |
+
|
| 16 |
+
def process_train():
|
| 17 |
+
preprocessor = MultiModalityPreprocessor(base_dir=base_dir,
|
| 18 |
+
image_dir=image_dir,
|
| 19 |
+
data_filenames=data_filename,
|
| 20 |
+
seg_filename=seg_filename
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
out_spacing = [1.0, 1.0, 1.0]
|
| 24 |
+
output_dir = "./data/fullres/train/"
|
| 25 |
+
|
| 26 |
+
preprocessor.run(output_spacing=out_spacing,
|
| 27 |
+
output_dir=output_dir,
|
| 28 |
+
all_labels=[1, 2, 3],
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
def plan():
|
| 32 |
+
preprocessor = MultiModalityPreprocessor(base_dir=base_dir,
|
| 33 |
+
image_dir=image_dir,
|
| 34 |
+
data_filenames=data_filename,
|
| 35 |
+
seg_filename=seg_filename
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
preprocessor.run_plan()
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
if __name__ == "__main__":
|
| 42 |
+
|
| 43 |
+
plan()
|
| 44 |
+
process_train()
|
| 45 |
+
|
SegMamba/3_train.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from light_training.dataloading.dataset import get_train_val_test_loader_from_train
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from monai.inferers import SlidingWindowInferer
|
| 6 |
+
from light_training.evaluation.metric import dice
|
| 7 |
+
from light_training.trainer import Trainer
|
| 8 |
+
from monai.utils import set_determinism
|
| 9 |
+
from light_training.utils.files_helper import save_new_model_and_delete_last
|
| 10 |
+
from monai.losses.dice import DiceLoss
|
| 11 |
+
set_determinism(123)
|
| 12 |
+
import os
|
| 13 |
+
|
| 14 |
+
data_dir = "./data/fullres/train"
|
| 15 |
+
logdir = f"./logs/segmamba"
|
| 16 |
+
|
| 17 |
+
model_save_path = os.path.join(logdir, "model")
|
| 18 |
+
# augmentation = "nomirror"
|
| 19 |
+
augmentation = True
|
| 20 |
+
|
| 21 |
+
env = "pytorch"
|
| 22 |
+
max_epoch = 1000
|
| 23 |
+
batch_size = 2
|
| 24 |
+
val_every = 2
|
| 25 |
+
num_gpus = 1
|
| 26 |
+
device = "cuda:0"
|
| 27 |
+
roi_size = [128, 128, 128]
|
| 28 |
+
|
| 29 |
+
def func(m, epochs):
|
| 30 |
+
return np.exp(-10*(1- m / epochs)**2)
|
| 31 |
+
|
| 32 |
+
class BraTSTrainer(Trainer):
|
| 33 |
+
def __init__(self, env_type, max_epochs, batch_size, device="cpu", val_every=1, num_gpus=1, logdir="./logs/", master_ip='localhost', master_port=17750, training_script="train.py"):
|
| 34 |
+
super().__init__(env_type, max_epochs, batch_size, device, val_every, num_gpus, logdir, master_ip, master_port, training_script)
|
| 35 |
+
self.window_infer = SlidingWindowInferer(roi_size=roi_size,
|
| 36 |
+
sw_batch_size=1,
|
| 37 |
+
overlap=0.5)
|
| 38 |
+
self.augmentation = augmentation
|
| 39 |
+
from model_segmamba.segmamba import SegMamba
|
| 40 |
+
|
| 41 |
+
self.model = SegMamba(in_chans=4,
|
| 42 |
+
out_chans=4,
|
| 43 |
+
depths=[2,2,2,2],
|
| 44 |
+
feat_size=[48, 96, 192, 384])
|
| 45 |
+
|
| 46 |
+
self.patch_size = roi_size
|
| 47 |
+
self.best_mean_dice = 0.0
|
| 48 |
+
self.ce = nn.CrossEntropyLoss()
|
| 49 |
+
self.mse = nn.MSELoss()
|
| 50 |
+
self.train_process = 18
|
| 51 |
+
self.optimizer = torch.optim.SGD(self.model.parameters(), lr=1e-2, weight_decay=3e-5,
|
| 52 |
+
momentum=0.99, nesterov=True)
|
| 53 |
+
|
| 54 |
+
self.scheduler_type = "poly"
|
| 55 |
+
self.cross = nn.CrossEntropyLoss()
|
| 56 |
+
|
| 57 |
+
def training_step(self, batch):
|
| 58 |
+
image, label = self.get_input(batch)
|
| 59 |
+
|
| 60 |
+
pred = self.model(image)
|
| 61 |
+
|
| 62 |
+
loss = self.cross(pred, label)
|
| 63 |
+
|
| 64 |
+
self.log("training_loss", loss, step=self.global_step)
|
| 65 |
+
|
| 66 |
+
return loss
|
| 67 |
+
|
| 68 |
+
def convert_labels(self, labels):
|
| 69 |
+
## TC, WT and ET
|
| 70 |
+
result = [(labels == 1) | (labels == 3), (labels == 1) | (labels == 3) | (labels == 2), labels == 3]
|
| 71 |
+
|
| 72 |
+
return torch.cat(result, dim=1).float()
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def get_input(self, batch):
|
| 76 |
+
image = batch["data"]
|
| 77 |
+
label = batch["seg"]
|
| 78 |
+
|
| 79 |
+
label = label[:, 0].long()
|
| 80 |
+
return image, label
|
| 81 |
+
|
| 82 |
+
def cal_metric(self, gt, pred, voxel_spacing=[1.0, 1.0, 1.0]):
|
| 83 |
+
if pred.sum() > 0 and gt.sum() > 0:
|
| 84 |
+
d = dice(pred, gt)
|
| 85 |
+
return np.array([d, 50])
|
| 86 |
+
|
| 87 |
+
elif gt.sum() == 0 and pred.sum() == 0:
|
| 88 |
+
return np.array([1.0, 50])
|
| 89 |
+
|
| 90 |
+
else:
|
| 91 |
+
return np.array([0.0, 50])
|
| 92 |
+
|
| 93 |
+
def validation_step(self, batch):
|
| 94 |
+
image, label = self.get_input(batch)
|
| 95 |
+
|
| 96 |
+
output = self.model(image)
|
| 97 |
+
|
| 98 |
+
output = output.argmax(dim=1)
|
| 99 |
+
|
| 100 |
+
output = output[:, None]
|
| 101 |
+
output = self.convert_labels(output)
|
| 102 |
+
|
| 103 |
+
label = label[:, None]
|
| 104 |
+
label = self.convert_labels(label)
|
| 105 |
+
|
| 106 |
+
output = output.cpu().numpy()
|
| 107 |
+
target = label.cpu().numpy()
|
| 108 |
+
|
| 109 |
+
dices = []
|
| 110 |
+
|
| 111 |
+
c = 3
|
| 112 |
+
for i in range(0, c):
|
| 113 |
+
pred_c = output[:, i]
|
| 114 |
+
target_c = target[:, i]
|
| 115 |
+
|
| 116 |
+
cal_dice, _ = self.cal_metric(target_c, pred_c)
|
| 117 |
+
dices.append(cal_dice)
|
| 118 |
+
|
| 119 |
+
return dices
|
| 120 |
+
|
| 121 |
+
def validation_end(self, val_outputs):
|
| 122 |
+
dices = val_outputs
|
| 123 |
+
|
| 124 |
+
tc, wt, et = dices[0].mean(), dices[1].mean(), dices[2].mean()
|
| 125 |
+
|
| 126 |
+
print(f"dices is {tc, wt, et}")
|
| 127 |
+
|
| 128 |
+
mean_dice = (tc + wt + et) / 3
|
| 129 |
+
|
| 130 |
+
self.log("tc", tc, step=self.epoch)
|
| 131 |
+
self.log("wt", wt, step=self.epoch)
|
| 132 |
+
self.log("et", et, step=self.epoch)
|
| 133 |
+
|
| 134 |
+
self.log("mean_dice", mean_dice, step=self.epoch)
|
| 135 |
+
|
| 136 |
+
if mean_dice > self.best_mean_dice:
|
| 137 |
+
self.best_mean_dice = mean_dice
|
| 138 |
+
save_new_model_and_delete_last(self.model,
|
| 139 |
+
os.path.join(model_save_path,
|
| 140 |
+
f"best_model_{mean_dice:.4f}.pt"),
|
| 141 |
+
delete_symbol="best_model")
|
| 142 |
+
|
| 143 |
+
save_new_model_and_delete_last(self.model,
|
| 144 |
+
os.path.join(model_save_path,
|
| 145 |
+
f"final_model_{mean_dice:.4f}.pt"),
|
| 146 |
+
delete_symbol="final_model")
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
if (self.epoch + 1) % 100 == 0:
|
| 150 |
+
torch.save(self.model.state_dict(), os.path.join(model_save_path, f"tmp_model_ep{self.epoch}_{mean_dice:.4f}.pt"))
|
| 151 |
+
|
| 152 |
+
print(f"mean_dice is {mean_dice}")
|
| 153 |
+
|
| 154 |
+
if __name__ == "__main__":
|
| 155 |
+
|
| 156 |
+
trainer = BraTSTrainer(env_type=env,
|
| 157 |
+
max_epochs=max_epoch,
|
| 158 |
+
batch_size=batch_size,
|
| 159 |
+
device=device,
|
| 160 |
+
logdir=logdir,
|
| 161 |
+
val_every=val_every,
|
| 162 |
+
num_gpus=num_gpus,
|
| 163 |
+
master_port=17759,
|
| 164 |
+
training_script=__file__)
|
| 165 |
+
|
| 166 |
+
train_ds, val_ds, test_ds = get_train_val_test_loader_from_train(data_dir)
|
| 167 |
+
|
| 168 |
+
trainer.train(train_dataset=train_ds, val_dataset=val_ds)
|
SegMamba/4_predict.py
ADDED
|
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from light_training.dataloading.dataset import get_train_val_test_loader_from_train
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from monai.inferers import SlidingWindowInferer
|
| 6 |
+
from light_training.evaluation.metric import dice
|
| 7 |
+
from light_training.trainer import Trainer
|
| 8 |
+
from monai.utils import set_determinism
|
| 9 |
+
from light_training.evaluation.metric import dice
|
| 10 |
+
set_determinism(123)
|
| 11 |
+
import os
|
| 12 |
+
from light_training.prediction import Predictor
|
| 13 |
+
|
| 14 |
+
data_dir = "./data/fullres/train"
|
| 15 |
+
env = "pytorch"
|
| 16 |
+
max_epoch = 1000
|
| 17 |
+
batch_size = 2
|
| 18 |
+
val_every = 2
|
| 19 |
+
num_gpus = 1
|
| 20 |
+
device = "cuda:0"
|
| 21 |
+
patch_size = [128, 128, 128]
|
| 22 |
+
|
| 23 |
+
class BraTSTrainer(Trainer):
|
| 24 |
+
def __init__(self, env_type, max_epochs, batch_size, device="cpu", val_every=1, num_gpus=1, logdir="./logs/", master_ip='localhost', master_port=17750, training_script="train.py"):
|
| 25 |
+
super().__init__(env_type, max_epochs, batch_size, device, val_every, num_gpus, logdir, master_ip, master_port, training_script)
|
| 26 |
+
|
| 27 |
+
self.patch_size = patch_size
|
| 28 |
+
self.augmentation = False
|
| 29 |
+
|
| 30 |
+
def convert_labels(self, labels):
|
| 31 |
+
## TC, WT and ET
|
| 32 |
+
result = [(labels == 1) | (labels == 3), (labels == 1) | (labels == 3) | (labels == 2), labels == 3]
|
| 33 |
+
|
| 34 |
+
return torch.cat(result, dim=1).float()
|
| 35 |
+
|
| 36 |
+
def get_input(self, batch):
|
| 37 |
+
image = batch["data"]
|
| 38 |
+
label = batch["seg"]
|
| 39 |
+
properties = batch["properties"]
|
| 40 |
+
label = self.convert_labels(label)
|
| 41 |
+
|
| 42 |
+
return image, label, properties
|
| 43 |
+
|
| 44 |
+
def define_model_segmamba(self):
|
| 45 |
+
from model_segmamba.segmamba import SegMamba
|
| 46 |
+
model = SegMamba(in_chans=4,
|
| 47 |
+
out_chans=4,
|
| 48 |
+
depths=[2,2,2,2],
|
| 49 |
+
feat_size=[48, 96, 192, 384])
|
| 50 |
+
|
| 51 |
+
model_path = "/home/xingzhaohu/dev/jiuding_code/brats23/logs/segmamba/model/final_model_0.9038.pt"
|
| 52 |
+
new_sd = self.filte_state_dict(torch.load(model_path, map_location="cpu"))
|
| 53 |
+
model.load_state_dict(new_sd)
|
| 54 |
+
model.eval()
|
| 55 |
+
window_infer = SlidingWindowInferer(roi_size=patch_size,
|
| 56 |
+
sw_batch_size=2,
|
| 57 |
+
overlap=0.5,
|
| 58 |
+
progress=True,
|
| 59 |
+
mode="gaussian")
|
| 60 |
+
|
| 61 |
+
predictor = Predictor(window_infer=window_infer,
|
| 62 |
+
mirror_axes=[0,1,2])
|
| 63 |
+
|
| 64 |
+
save_path = "./prediction_results/segmamba"
|
| 65 |
+
os.makedirs(save_path, exist_ok=True)
|
| 66 |
+
|
| 67 |
+
return model, predictor, save_path
|
| 68 |
+
|
| 69 |
+
def validation_step(self, batch):
|
| 70 |
+
image, label, properties = self.get_input(batch)
|
| 71 |
+
ddim = False
|
| 72 |
+
|
| 73 |
+
model, predictor, save_path = self.define_model_segmamba()
|
| 74 |
+
|
| 75 |
+
model_output = predictor.maybe_mirror_and_predict(image, model, device=device)
|
| 76 |
+
|
| 77 |
+
model_output = predictor.predict_raw_probability(model_output,
|
| 78 |
+
properties=properties)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
model_output = model_output.argmax(dim=0)[None]
|
| 82 |
+
model_output = self.convert_labels_dim0(model_output)
|
| 83 |
+
|
| 84 |
+
label = label[0]
|
| 85 |
+
c = 3
|
| 86 |
+
dices = []
|
| 87 |
+
for i in range(0, c):
|
| 88 |
+
output_i = model_output[i].cpu().numpy()
|
| 89 |
+
label_i = label[i].cpu().numpy()
|
| 90 |
+
d = dice(output_i, label_i)
|
| 91 |
+
dices.append(d)
|
| 92 |
+
|
| 93 |
+
print(dices)
|
| 94 |
+
|
| 95 |
+
model_output = predictor.predict_noncrop_probability(model_output, properties)
|
| 96 |
+
predictor.save_to_nii(model_output,
|
| 97 |
+
raw_spacing=[1,1,1],
|
| 98 |
+
case_name = properties['name'][0],
|
| 99 |
+
save_dir=save_path)
|
| 100 |
+
|
| 101 |
+
return 0
|
| 102 |
+
|
| 103 |
+
def convert_labels_dim0(self, labels):
|
| 104 |
+
## TC, WT and ET
|
| 105 |
+
result = [(labels == 1) | (labels == 3), (labels == 1) | (labels == 3) | (labels == 2), labels == 3]
|
| 106 |
+
|
| 107 |
+
return torch.cat(result, dim=0).float()
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def filte_state_dict(self, sd):
|
| 111 |
+
if "module" in sd :
|
| 112 |
+
sd = sd["module"]
|
| 113 |
+
new_sd = {}
|
| 114 |
+
for k, v in sd.items():
|
| 115 |
+
k = str(k)
|
| 116 |
+
new_k = k[7:] if k.startswith("module") else k
|
| 117 |
+
new_sd[new_k] = v
|
| 118 |
+
del sd
|
| 119 |
+
return new_sd
|
| 120 |
+
|
| 121 |
+
if __name__ == "__main__":
|
| 122 |
+
|
| 123 |
+
trainer = BraTSTrainer(env_type=env,
|
| 124 |
+
max_epochs=max_epoch,
|
| 125 |
+
batch_size=batch_size,
|
| 126 |
+
device=device,
|
| 127 |
+
logdir="",
|
| 128 |
+
val_every=val_every,
|
| 129 |
+
num_gpus=num_gpus,
|
| 130 |
+
master_port=17751,
|
| 131 |
+
training_script=__file__)
|
| 132 |
+
|
| 133 |
+
train_ds, val_ds, test_ds = get_train_val_test_loader_from_train(data_dir)
|
| 134 |
+
|
| 135 |
+
trainer.validation_single_gpu(test_ds)
|
| 136 |
+
|
| 137 |
+
# print(f"result is {v_mean}")
|
| 138 |
+
|
| 139 |
+
|
SegMamba/5_compute_metrics.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from light_training.dataloading.dataset import get_train_val_test_loader_from_train
|
| 2 |
+
from monai.utils import set_determinism
|
| 3 |
+
import torch
|
| 4 |
+
import os
|
| 5 |
+
import numpy as np
|
| 6 |
+
import SimpleITK as sitk
|
| 7 |
+
from medpy import metric
|
| 8 |
+
import argparse
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
|
| 11 |
+
import numpy as np
|
| 12 |
+
|
| 13 |
+
set_determinism(123)
|
| 14 |
+
|
| 15 |
+
parser = argparse.ArgumentParser()
|
| 16 |
+
|
| 17 |
+
parser.add_argument("--pred_name", required=True, type=str)
|
| 18 |
+
|
| 19 |
+
results_root = "prediction_results"
|
| 20 |
+
args = parser.parse_args()
|
| 21 |
+
|
| 22 |
+
pred_name = args.pred_name
|
| 23 |
+
|
| 24 |
+
def cal_metric(gt, pred, voxel_spacing):
|
| 25 |
+
if pred.sum() > 0 and gt.sum() > 0:
|
| 26 |
+
dice = metric.binary.dc(pred, gt)
|
| 27 |
+
hd95 = metric.binary.hd95(pred, gt, voxelspacing=voxel_spacing)
|
| 28 |
+
return np.array([dice, hd95])
|
| 29 |
+
else:
|
| 30 |
+
return np.array([0.0, 50])
|
| 31 |
+
|
| 32 |
+
def each_cases_metric(gt, pred, voxel_spacing):
|
| 33 |
+
classes_num = 3
|
| 34 |
+
class_wise_metric = np.zeros((classes_num, 2))
|
| 35 |
+
for cls in range(0, classes_num):
|
| 36 |
+
class_wise_metric[cls, ...] = cal_metric(pred[cls], gt[cls], voxel_spacing)
|
| 37 |
+
print(class_wise_metric)
|
| 38 |
+
return class_wise_metric
|
| 39 |
+
|
| 40 |
+
def convert_labels(labels):
|
| 41 |
+
## TC, WT and ET
|
| 42 |
+
labels = labels.unsqueeze(dim=0)
|
| 43 |
+
|
| 44 |
+
result = [(labels == 1) | (labels == 3), (labels == 1) | (labels == 3) | (labels == 2), labels == 3]
|
| 45 |
+
|
| 46 |
+
return torch.cat(result, dim=0).float()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
if __name__ == "__main__":
|
| 50 |
+
data_dir = "./data/fullres/train"
|
| 51 |
+
raw_data_dir = "./data/raw_data/BraTS2023/ASNR-MICCAI-BraTS2023-GLI-Challenge-TrainingData/"
|
| 52 |
+
train_ds, val_ds, test_ds = get_train_val_test_loader_from_train(data_dir)
|
| 53 |
+
print(len(test_ds))
|
| 54 |
+
all_results = np.zeros((250,3,2))
|
| 55 |
+
|
| 56 |
+
ind = 0
|
| 57 |
+
for batch in tqdm(test_ds, total=len(test_ds)):
|
| 58 |
+
properties = batch["properties"]
|
| 59 |
+
case_name = properties["name"]
|
| 60 |
+
gt_itk = os.path.join(raw_data_dir, case_name, f"seg.nii.gz")
|
| 61 |
+
voxel_spacing = [1, 1, 1]
|
| 62 |
+
gt_itk = sitk.ReadImage(gt_itk)
|
| 63 |
+
gt_array = sitk.GetArrayFromImage(gt_itk).astype(np.int32)
|
| 64 |
+
gt_array = torch.from_numpy(gt_array)
|
| 65 |
+
gt_array = convert_labels(gt_array).numpy()
|
| 66 |
+
pred_itk = sitk.ReadImage(f"./{results_root}/{pred_name}/{case_name}.nii.gz")
|
| 67 |
+
pred_array = sitk.GetArrayFromImage(pred_itk)
|
| 68 |
+
|
| 69 |
+
m = each_cases_metric(gt_array, pred_array, voxel_spacing)
|
| 70 |
+
|
| 71 |
+
all_results[ind, ...] = m
|
| 72 |
+
|
| 73 |
+
ind += 1
|
| 74 |
+
|
| 75 |
+
os.makedirs(f"./{results_root}/result_metrics/", exist_ok=True)
|
| 76 |
+
np.save(f"./{results_root}/result_metrics/{pred_name}.npy", all_results)
|
| 77 |
+
|
| 78 |
+
result = np.load(f"./{results_root}/result_metrics/{pred_name}.npy")
|
| 79 |
+
print(result.shape)
|
| 80 |
+
print(result.mean(axis=0))
|
| 81 |
+
print(result.std(axis=0))
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
SegMamba/README.md
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SegMamba
|
| 2 |
+
|
| 3 |
+
**Recent news: If you are interested in the research about vision language models, please refers to the latest work: https://github.com/MrGiovanni/RadGPT (ICCV2025)**
|
| 4 |
+
|
| 5 |
+
**Now we have open-sourced the pre-processing, training, inference, and metrics computation codes.**
|
| 6 |
+
|
| 7 |
+
SegMamba: Long-range Sequential Modeling Mamba For 3D Medical Image Segmentation
|
| 8 |
+
|
| 9 |
+
[https://arxiv.org/abs/2401.13560](https://arxiv.org/abs/2401.13560)
|
| 10 |
+
|
| 11 |
+

|
| 12 |
+
|
| 13 |
+

|
| 14 |
+
|
| 15 |
+
Our advantage in speed and memory.
|
| 16 |
+

|
| 17 |
+
|
| 18 |
+
## Contact
|
| 19 |
+
If you have any questions about our project, please feel free to contact us by email at zxing565@connect.hkust-gz.edu.cn or via WeChat at 18340097191. Furthermore, the data underlying this article will be shared on reasonable request to gaof57@mail.sysu.edu.cn.
|
| 20 |
+
|
| 21 |
+
## Environment install
|
| 22 |
+
Clone this repository and navigate to the root directory of the project.
|
| 23 |
+
|
| 24 |
+
```bash
|
| 25 |
+
git clone https://github.com/ge-xing/SegMamba.git
|
| 26 |
+
|
| 27 |
+
cd SegMamba
|
| 28 |
+
```
|
| 29 |
+
### Install causal-conv1d
|
| 30 |
+
|
| 31 |
+
```bash
|
| 32 |
+
cd causal-conv1d
|
| 33 |
+
|
| 34 |
+
python setup.py install
|
| 35 |
+
```
|
| 36 |
+
|
| 37 |
+
### Install mamba
|
| 38 |
+
|
| 39 |
+
```bash
|
| 40 |
+
cd mamba
|
| 41 |
+
|
| 42 |
+
python setup.py install
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
### Install monai
|
| 46 |
+
|
| 47 |
+
```bash
|
| 48 |
+
pip install monai
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
## Simple test
|
| 52 |
+
|
| 53 |
+
```bash
|
| 54 |
+
python 0_inference.py
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
## Preprocessing, training, testing, inference, and metrics computation
|
| 58 |
+
|
| 59 |
+
### Data downloading
|
| 60 |
+
|
| 61 |
+
Data is from [https://arxiv.org/abs/2305.17033](https://arxiv.org/abs/2305.17033)
|
| 62 |
+
|
| 63 |
+
Download from Baidu Disk [https://pan.baidu.com/s/1C0FUHdDtWNaYWLtDDP9TnA?pwd=ty22提取码ty22](https://pan.baidu.com/s/1C0FUHdDtWNaYWLtDDP9TnA?pwd=ty22)
|
| 64 |
+
|
| 65 |
+
Download from OneDrive [https://hkustgz-my.sharepoint.com/:f:/g/personal/zxing565_connect_hkust-gz_edu_cn/EqqaINbHRxREuIj0XGicY2EBv8hjwEFKgFOhF_Ub0mvENw?e=yTpE9B](https://hkustgz-my.sharepoint.com/:f:/g/personal/zxing565_connect_hkust-gz_edu_cn/EqqaINbHRxREuIj0XGicY2EBv8hjwEFKgFOhF_Ub0mvENw?e=yTpE9B)
|
| 66 |
+
|
| 67 |
+
### Preprocessing
|
| 68 |
+
In my setting, the data directory of BraTS2023 is : "./data/raw_data/BraTS2023/ASNR-MICCAI-BraTS2023-GLI-Challenge-TrainingData/"
|
| 69 |
+
|
| 70 |
+
First, we need to run the rename process.
|
| 71 |
+
|
| 72 |
+
```bash
|
| 73 |
+
python 1_rename_mri_data.py
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
+
Then, we need to run the pre-processing code to do resample, normalization, and crop processes.
|
| 77 |
+
|
| 78 |
+
```bash
|
| 79 |
+
python 2_preprocessing_mri.py
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
After pre-processing, the data structure will be in this format:
|
| 83 |
+
|
| 84 |
+

|
| 85 |
+
### Training
|
| 86 |
+
|
| 87 |
+
When the pre-processing process is done, we can train our model.
|
| 88 |
+
|
| 89 |
+
We mainly use the pre-processde data from last step: **data_dir = "./data/fullres/train"**
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
```bash
|
| 93 |
+
python 3_train.py
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
The training logs and checkpoints are saved in:
|
| 97 |
+
**logdir = f"./logs/segmamba"**
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
### Inference
|
| 103 |
+
|
| 104 |
+
When we have trained our models, we can inference all the data in testing set.
|
| 105 |
+
|
| 106 |
+
```bash
|
| 107 |
+
python 4_predict.py
|
| 108 |
+
```
|
| 109 |
+
|
| 110 |
+
When this process is done, the prediction cases will be put in this path:
|
| 111 |
+
**save_path = "./prediction_results/segmamba"**
|
| 112 |
+
|
| 113 |
+
### Metrics computation
|
| 114 |
+
We can obtain the Dice score and HD95 on each segmentation target (WT, TC, ET for BraTS2023 dataset) using this code:
|
| 115 |
+
|
| 116 |
+
```bash
|
| 117 |
+
python 5_compute_metrics.py --pred_name="segmamba"
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
## Acknowledgement
|
| 123 |
+
Many thanks for these repos for their great contribution!
|
| 124 |
+
|
| 125 |
+
[https://github.com/MIC-DKFZ/nnUNet](https://github.com/MIC-DKFZ/nnUNet)
|
| 126 |
+
|
| 127 |
+
[https://github.com/Project-MONAI/MONAI](https://github.com/Project-MONAI/MONAI)
|
| 128 |
+
|
| 129 |
+
[https://github.com/hustvl/Vim](https://github.com/hustvl/Vim)
|
| 130 |
+
|
| 131 |
+
[https://github.com/bowang-lab/U-Mamba](https://github.com/bowang-lab/U-Mamba)
|
| 132 |
+
|
SegMamba/causal-conv1d/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
SegMamba/causal-conv1d/AUTHORS
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Tri Dao, tri@tridao.me
|
SegMamba/causal-conv1d/LICENSE
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
BSD 3-Clause License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2022, the respective contributors, as shown by the AUTHORS file.
|
| 4 |
+
All rights reserved.
|
| 5 |
+
|
| 6 |
+
Redistribution and use in source and binary forms, with or without
|
| 7 |
+
modification, are permitted provided that the following conditions are met:
|
| 8 |
+
|
| 9 |
+
* Redistributions of source code must retain the above copyright notice, this
|
| 10 |
+
list of conditions and the following disclaimer.
|
| 11 |
+
|
| 12 |
+
* Redistributions in binary form must reproduce the above copyright notice,
|
| 13 |
+
this list of conditions and the following disclaimer in the documentation
|
| 14 |
+
and/or other materials provided with the distribution.
|
| 15 |
+
|
| 16 |
+
* Neither the name of the copyright holder nor the names of its
|
| 17 |
+
contributors may be used to endorse or promote products derived from
|
| 18 |
+
this software without specific prior written permission.
|
| 19 |
+
|
| 20 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
| 21 |
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| 22 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
| 23 |
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
| 24 |
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
| 25 |
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
| 26 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
| 27 |
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
| 28 |
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| 29 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
SegMamba/causal-conv1d/README.md
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
# Causal depthwise conv1d in CUDA with a PyTorch interface
|
SegMamba/causal-conv1d/build/lib.linux-x86_64-cpython-312/causal_conv1d/__init__.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__version__ = "1.0.0"
|
| 2 |
+
|
| 3 |
+
from causal_conv1d.causal_conv1d_interface import causal_conv1d_fn, causal_conv1d_update
|
SegMamba/causal-conv1d/build/lib.linux-x86_64-cpython-312/causal_conv1d/causal_conv1d_interface.py
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2023, Tri Dao.
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
import causal_conv1d_cuda
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class CausalConv1dFn(torch.autograd.Function):
|
| 11 |
+
@staticmethod
|
| 12 |
+
def forward(ctx, x, weight, bias=None, activation=None):
|
| 13 |
+
if activation not in [None, "silu", "swish"]:
|
| 14 |
+
raise NotImplementedError("activation must be None, silu, or swish")
|
| 15 |
+
if x.stride(2) != 1 and x.stride(1) != 1:
|
| 16 |
+
x = x.contiguous()
|
| 17 |
+
bias = bias.contiguous() if bias is not None else None
|
| 18 |
+
ctx.save_for_backward(x, weight, bias)
|
| 19 |
+
ctx.activation = activation in ["silu", "swish"]
|
| 20 |
+
out = causal_conv1d_cuda.causal_conv1d_fwd(x, weight, bias, ctx.activation)
|
| 21 |
+
return out
|
| 22 |
+
|
| 23 |
+
@staticmethod
|
| 24 |
+
def backward(ctx, dout):
|
| 25 |
+
x, weight, bias = ctx.saved_tensors
|
| 26 |
+
if dout.stride(2) != 1 and dout.stride(1) != 1:
|
| 27 |
+
dout = dout.contiguous()
|
| 28 |
+
# The kernel supports passing in a pre-allocated dx (e.g., in case we want to fuse the
|
| 29 |
+
# backward of conv1d with the backward of chunk).
|
| 30 |
+
# Here we just pass in None and dx will be allocated in the C++ code.
|
| 31 |
+
dx, dweight, dbias = causal_conv1d_cuda.causal_conv1d_bwd(
|
| 32 |
+
x, weight, bias, dout, None, ctx.activation
|
| 33 |
+
)
|
| 34 |
+
return dx, dweight, dbias if bias is not None else None, None
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def causal_conv1d_fn(x, weight, bias=None, activation=None):
|
| 38 |
+
"""
|
| 39 |
+
x: (batch, dim, seqlen)
|
| 40 |
+
weight: (dim, width)
|
| 41 |
+
bias: (dim,)
|
| 42 |
+
activation: either None or "silu" or "swish"
|
| 43 |
+
|
| 44 |
+
out: (batch, dim, seqlen)
|
| 45 |
+
"""
|
| 46 |
+
return CausalConv1dFn.apply(x, weight, bias, activation)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def causal_conv1d_ref(x, weight, bias=None, activation=None):
|
| 50 |
+
"""
|
| 51 |
+
x: (batch, dim, seqlen)
|
| 52 |
+
weight: (dim, width)
|
| 53 |
+
bias: (dim,)
|
| 54 |
+
|
| 55 |
+
out: (batch, dim, seqlen)
|
| 56 |
+
"""
|
| 57 |
+
if activation not in [None, "silu", "swish"]:
|
| 58 |
+
raise NotImplementedError("activation must be None, silu, or swish")
|
| 59 |
+
dtype_in = x.dtype
|
| 60 |
+
x = x.to(weight.dtype)
|
| 61 |
+
seqlen = x.shape[-1]
|
| 62 |
+
dim, width = weight.shape
|
| 63 |
+
out = F.conv1d(x, weight.unsqueeze(1), bias, padding=width - 1, groups=dim)
|
| 64 |
+
out = out[..., :seqlen]
|
| 65 |
+
return (out if activation is None else F.silu(out)).to(dtype=dtype_in)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def causal_conv1d_update(x, conv_state, weight, bias=None, activation=None):
|
| 69 |
+
"""
|
| 70 |
+
x: (batch, dim)
|
| 71 |
+
conv_state: (batch, dim, width)
|
| 72 |
+
weight: (dim, width)
|
| 73 |
+
bias: (dim,)
|
| 74 |
+
|
| 75 |
+
out: (batch, dim)
|
| 76 |
+
"""
|
| 77 |
+
if activation not in [None, "silu", "swish"]:
|
| 78 |
+
raise NotImplementedError("activation must be None, silu, or swish")
|
| 79 |
+
activation = activation in ["silu", "swish"]
|
| 80 |
+
return causal_conv1d_cuda.causal_conv1d_update(x, conv_state, weight, bias, activation)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def causal_conv1d_update_ref(x, conv_state, weight, bias=None, activation=None):
|
| 84 |
+
"""
|
| 85 |
+
x: (batch, dim)
|
| 86 |
+
conv_state: (batch, dim, width)
|
| 87 |
+
weight: (dim, width)
|
| 88 |
+
bias: (dim,)
|
| 89 |
+
|
| 90 |
+
out: (batch, dim)
|
| 91 |
+
"""
|
| 92 |
+
if activation not in [None, "silu", "swish"]:
|
| 93 |
+
raise NotImplementedError("activation must be None, silu, or swish")
|
| 94 |
+
dtype_in = x.dtype
|
| 95 |
+
batch, dim = x.shape
|
| 96 |
+
width = weight.shape[1]
|
| 97 |
+
assert conv_state.shape == (batch, dim, width)
|
| 98 |
+
assert weight.shape == (dim, width)
|
| 99 |
+
conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1)) # Update state (B D W)
|
| 100 |
+
conv_state[:, :, -1] = x
|
| 101 |
+
out = torch.sum(conv_state * weight, dim=-1) # (B D)
|
| 102 |
+
if bias is not None:
|
| 103 |
+
out += bias
|
| 104 |
+
return (out if activation is None else F.silu(out)).to(dtype=dtype_in)
|
SegMamba/causal-conv1d/build/lib.linux-x86_64-cpython-312/causal_conv1d_cuda.cpython-312-x86_64-linux-gnu.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dedd9d99881bf7f043ac14c79ad2b71fea8e93f166482597bfe5a3a09849b627
|
| 3 |
+
size 30227360
|
SegMamba/causal-conv1d/build/temp.linux-x86_64-cpython-312/csrc/causal_conv1d.o
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ef366a1da5c5f81e3aa761f5cd37bc90c046b17068b504191043faaa162230e5
|
| 3 |
+
size 377648
|
SegMamba/causal-conv1d/build/temp.linux-x86_64-cpython-312/csrc/causal_conv1d_bwd.o
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e581d37f9a1a942c98bdb8b2986540fab333e42092bcdf19e211c12fcc347bdb
|
| 3 |
+
size 22535976
|
SegMamba/causal-conv1d/build/temp.linux-x86_64-cpython-312/csrc/causal_conv1d_fwd.o
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a0f5650bf1e870dbbcaafaa14acbde28f03014ccaf73d8137ae5fa2967807af7
|
| 3 |
+
size 6723096
|
SegMamba/causal-conv1d/build/temp.linux-x86_64-cpython-312/csrc/causal_conv1d_update.o
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1391cc2ab0159135d0887ac6d659fa2ec85466bb6c5978722d55868054b12726
|
| 3 |
+
size 910152
|
SegMamba/causal-conv1d/causal_conv1d.egg-info/PKG-INFO
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Metadata-Version: 2.4
|
| 2 |
+
Name: causal_conv1d
|
| 3 |
+
Version: 1.0.0
|
| 4 |
+
Summary: Causal depthwise conv1d in CUDA, with a PyTorch interface
|
| 5 |
+
Home-page: https://github.com/Dao-AILab/causal-conv1d
|
| 6 |
+
Author: Tri Dao
|
| 7 |
+
Author-email: tri@tridao.me
|
| 8 |
+
Classifier: Programming Language :: Python :: 3
|
| 9 |
+
Classifier: License :: OSI Approved :: BSD License
|
| 10 |
+
Classifier: Operating System :: Unix
|
| 11 |
+
Requires-Python: >=3.7
|
| 12 |
+
Description-Content-Type: text/markdown
|
| 13 |
+
License-File: LICENSE
|
| 14 |
+
License-File: AUTHORS
|
| 15 |
+
Requires-Dist: torch
|
| 16 |
+
Requires-Dist: packaging
|
| 17 |
+
Requires-Dist: ninja
|
| 18 |
+
Dynamic: author
|
| 19 |
+
Dynamic: author-email
|
| 20 |
+
Dynamic: classifier
|
| 21 |
+
Dynamic: description
|
| 22 |
+
Dynamic: description-content-type
|
| 23 |
+
Dynamic: home-page
|
| 24 |
+
Dynamic: license-file
|
| 25 |
+
Dynamic: requires-dist
|
| 26 |
+
Dynamic: requires-python
|
| 27 |
+
Dynamic: summary
|
| 28 |
+
|
| 29 |
+
# Causal depthwise conv1d in CUDA with a PyTorch interface
|
SegMamba/causal-conv1d/causal_conv1d.egg-info/SOURCES.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
AUTHORS
|
| 2 |
+
LICENSE
|
| 3 |
+
README.md
|
| 4 |
+
setup.py
|
| 5 |
+
causal_conv1d/__init__.py
|
| 6 |
+
causal_conv1d/causal_conv1d_interface.py
|
| 7 |
+
causal_conv1d.egg-info/PKG-INFO
|
| 8 |
+
causal_conv1d.egg-info/SOURCES.txt
|
| 9 |
+
causal_conv1d.egg-info/dependency_links.txt
|
| 10 |
+
causal_conv1d.egg-info/requires.txt
|
| 11 |
+
causal_conv1d.egg-info/top_level.txt
|
| 12 |
+
csrc/causal_conv1d.cpp
|
| 13 |
+
csrc/causal_conv1d_bwd.cu
|
| 14 |
+
csrc/causal_conv1d_fwd.cu
|
| 15 |
+
csrc/causal_conv1d_update.cu
|
| 16 |
+
tests/test_causal_conv1d.py
|
SegMamba/causal-conv1d/causal_conv1d.egg-info/dependency_links.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
SegMamba/causal-conv1d/causal_conv1d.egg-info/requires.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
packaging
|
| 3 |
+
ninja
|
SegMamba/causal-conv1d/causal_conv1d.egg-info/top_level.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
causal_conv1d
|
| 2 |
+
causal_conv1d_cuda
|
SegMamba/causal-conv1d/causal_conv1d/__init__.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__version__ = "1.0.0"
|
| 2 |
+
|
| 3 |
+
from causal_conv1d.causal_conv1d_interface import causal_conv1d_fn, causal_conv1d_update
|
SegMamba/causal-conv1d/causal_conv1d/causal_conv1d_interface.py
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2023, Tri Dao.
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
import causal_conv1d_cuda
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class CausalConv1dFn(torch.autograd.Function):
|
| 11 |
+
@staticmethod
|
| 12 |
+
def forward(ctx, x, weight, bias=None, activation=None):
|
| 13 |
+
if activation not in [None, "silu", "swish"]:
|
| 14 |
+
raise NotImplementedError("activation must be None, silu, or swish")
|
| 15 |
+
if x.stride(2) != 1 and x.stride(1) != 1:
|
| 16 |
+
x = x.contiguous()
|
| 17 |
+
bias = bias.contiguous() if bias is not None else None
|
| 18 |
+
ctx.save_for_backward(x, weight, bias)
|
| 19 |
+
ctx.activation = activation in ["silu", "swish"]
|
| 20 |
+
out = causal_conv1d_cuda.causal_conv1d_fwd(x, weight, bias, ctx.activation)
|
| 21 |
+
return out
|
| 22 |
+
|
| 23 |
+
@staticmethod
|
| 24 |
+
def backward(ctx, dout):
|
| 25 |
+
x, weight, bias = ctx.saved_tensors
|
| 26 |
+
if dout.stride(2) != 1 and dout.stride(1) != 1:
|
| 27 |
+
dout = dout.contiguous()
|
| 28 |
+
# The kernel supports passing in a pre-allocated dx (e.g., in case we want to fuse the
|
| 29 |
+
# backward of conv1d with the backward of chunk).
|
| 30 |
+
# Here we just pass in None and dx will be allocated in the C++ code.
|
| 31 |
+
dx, dweight, dbias = causal_conv1d_cuda.causal_conv1d_bwd(
|
| 32 |
+
x, weight, bias, dout, None, ctx.activation
|
| 33 |
+
)
|
| 34 |
+
return dx, dweight, dbias if bias is not None else None, None
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def causal_conv1d_fn(x, weight, bias=None, activation=None):
|
| 38 |
+
"""
|
| 39 |
+
x: (batch, dim, seqlen)
|
| 40 |
+
weight: (dim, width)
|
| 41 |
+
bias: (dim,)
|
| 42 |
+
activation: either None or "silu" or "swish"
|
| 43 |
+
|
| 44 |
+
out: (batch, dim, seqlen)
|
| 45 |
+
"""
|
| 46 |
+
return CausalConv1dFn.apply(x, weight, bias, activation)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def causal_conv1d_ref(x, weight, bias=None, activation=None):
|
| 50 |
+
"""
|
| 51 |
+
x: (batch, dim, seqlen)
|
| 52 |
+
weight: (dim, width)
|
| 53 |
+
bias: (dim,)
|
| 54 |
+
|
| 55 |
+
out: (batch, dim, seqlen)
|
| 56 |
+
"""
|
| 57 |
+
if activation not in [None, "silu", "swish"]:
|
| 58 |
+
raise NotImplementedError("activation must be None, silu, or swish")
|
| 59 |
+
dtype_in = x.dtype
|
| 60 |
+
x = x.to(weight.dtype)
|
| 61 |
+
seqlen = x.shape[-1]
|
| 62 |
+
dim, width = weight.shape
|
| 63 |
+
out = F.conv1d(x, weight.unsqueeze(1), bias, padding=width - 1, groups=dim)
|
| 64 |
+
out = out[..., :seqlen]
|
| 65 |
+
return (out if activation is None else F.silu(out)).to(dtype=dtype_in)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def causal_conv1d_update(x, conv_state, weight, bias=None, activation=None):
|
| 69 |
+
"""
|
| 70 |
+
x: (batch, dim)
|
| 71 |
+
conv_state: (batch, dim, width)
|
| 72 |
+
weight: (dim, width)
|
| 73 |
+
bias: (dim,)
|
| 74 |
+
|
| 75 |
+
out: (batch, dim)
|
| 76 |
+
"""
|
| 77 |
+
if activation not in [None, "silu", "swish"]:
|
| 78 |
+
raise NotImplementedError("activation must be None, silu, or swish")
|
| 79 |
+
activation = activation in ["silu", "swish"]
|
| 80 |
+
return causal_conv1d_cuda.causal_conv1d_update(x, conv_state, weight, bias, activation)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def causal_conv1d_update_ref(x, conv_state, weight, bias=None, activation=None):
|
| 84 |
+
"""
|
| 85 |
+
x: (batch, dim)
|
| 86 |
+
conv_state: (batch, dim, width)
|
| 87 |
+
weight: (dim, width)
|
| 88 |
+
bias: (dim,)
|
| 89 |
+
|
| 90 |
+
out: (batch, dim)
|
| 91 |
+
"""
|
| 92 |
+
if activation not in [None, "silu", "swish"]:
|
| 93 |
+
raise NotImplementedError("activation must be None, silu, or swish")
|
| 94 |
+
dtype_in = x.dtype
|
| 95 |
+
batch, dim = x.shape
|
| 96 |
+
width = weight.shape[1]
|
| 97 |
+
assert conv_state.shape == (batch, dim, width)
|
| 98 |
+
assert weight.shape == (dim, width)
|
| 99 |
+
conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1)) # Update state (B D W)
|
| 100 |
+
conv_state[:, :, -1] = x
|
| 101 |
+
out = torch.sum(conv_state * weight, dim=-1) # (B D)
|
| 102 |
+
if bias is not None:
|
| 103 |
+
out += bias
|
| 104 |
+
return (out if activation is None else F.silu(out)).to(dtype=dtype_in)
|
SegMamba/causal-conv1d/csrc/causal_conv1d.cpp
ADDED
|
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/******************************************************************************
|
| 2 |
+
* Copyright (c) 2023, Tri Dao.
|
| 3 |
+
******************************************************************************/
|
| 4 |
+
|
| 5 |
+
#include <ATen/cuda/CUDAContext.h>
|
| 6 |
+
#include <c10/cuda/CUDAGuard.h>
|
| 7 |
+
#include <torch/extension.h>
|
| 8 |
+
#include <vector>
|
| 9 |
+
|
| 10 |
+
#include "causal_conv1d.h"
|
| 11 |
+
|
| 12 |
+
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
|
| 13 |
+
|
| 14 |
+
#define DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(ITYPE, NAME, ...) \
|
| 15 |
+
if (ITYPE == at::ScalarType::Half) { \
|
| 16 |
+
using input_t = at::Half; \
|
| 17 |
+
__VA_ARGS__(); \
|
| 18 |
+
} else if (ITYPE == at::ScalarType::BFloat16) { \
|
| 19 |
+
using input_t = at::BFloat16; \
|
| 20 |
+
__VA_ARGS__(); \
|
| 21 |
+
} else if (ITYPE == at::ScalarType::Float) { \
|
| 22 |
+
using input_t = float; \
|
| 23 |
+
__VA_ARGS__(); \
|
| 24 |
+
} else { \
|
| 25 |
+
AT_ERROR(#NAME, " not implemented for input type '", toString(ITYPE), "'"); \
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
#define DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(WTYPE, NAME, ...) \
|
| 29 |
+
if (WTYPE == at::ScalarType::Half) { \
|
| 30 |
+
using weight_t = at::Half; \
|
| 31 |
+
__VA_ARGS__(); \
|
| 32 |
+
} else if (WTYPE == at::ScalarType::BFloat16) { \
|
| 33 |
+
using weight_t = at::BFloat16; \
|
| 34 |
+
__VA_ARGS__(); \
|
| 35 |
+
} else if (WTYPE == at::ScalarType::Float) { \
|
| 36 |
+
using weight_t = float; \
|
| 37 |
+
__VA_ARGS__(); \
|
| 38 |
+
} else { \
|
| 39 |
+
AT_ERROR(#NAME, " not implemented for weight type '", toString(WTYPE), "'"); \
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
template<typename input_t, typename weight_t>
|
| 43 |
+
void causal_conv1d_fwd_cuda(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 44 |
+
template <typename input_t, typename weight_t>
|
| 45 |
+
void causal_conv1d_channellast_fwd_cuda(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 46 |
+
|
| 47 |
+
template<typename input_t, typename weight_t>
|
| 48 |
+
void causal_conv1d_bwd_cuda(ConvParamsBwd ¶ms, cudaStream_t stream);
|
| 49 |
+
template<typename input_t, typename weight_t>
|
| 50 |
+
void causal_conv1d_channellast_bwd_cuda(ConvParamsBwd ¶ms, cudaStream_t stream);
|
| 51 |
+
|
| 52 |
+
template<typename input_t, typename weight_t>
|
| 53 |
+
void causal_conv1d_update_cuda(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 54 |
+
|
| 55 |
+
void set_conv_params_fwd(ConvParamsBase ¶ms,
|
| 56 |
+
// sizes
|
| 57 |
+
const size_t batch,
|
| 58 |
+
const size_t dim,
|
| 59 |
+
const size_t seqlen,
|
| 60 |
+
const size_t width,
|
| 61 |
+
// device pointers
|
| 62 |
+
const at::Tensor x,
|
| 63 |
+
const at::Tensor weight,
|
| 64 |
+
const at::Tensor out,
|
| 65 |
+
void* bias_ptr,
|
| 66 |
+
bool silu_activation) {
|
| 67 |
+
|
| 68 |
+
// Reset the parameters
|
| 69 |
+
memset(¶ms, 0, sizeof(params));
|
| 70 |
+
|
| 71 |
+
params.batch = batch;
|
| 72 |
+
params.dim = dim;
|
| 73 |
+
params.seqlen = seqlen;
|
| 74 |
+
params.width = width;
|
| 75 |
+
|
| 76 |
+
params.silu_activation = silu_activation;
|
| 77 |
+
|
| 78 |
+
// Set the pointers and strides.
|
| 79 |
+
params.x_ptr = x.data_ptr();
|
| 80 |
+
params.weight_ptr = weight.data_ptr();
|
| 81 |
+
params.bias_ptr = bias_ptr;
|
| 82 |
+
params.out_ptr = out.data_ptr();
|
| 83 |
+
// All stride are in elements, not bytes.
|
| 84 |
+
params.x_batch_stride = x.stride(0);
|
| 85 |
+
params.x_c_stride = x.stride(1);
|
| 86 |
+
params.x_l_stride = x.stride(-1);
|
| 87 |
+
params.weight_c_stride = weight.stride(0);
|
| 88 |
+
params.weight_width_stride = weight.stride(1);
|
| 89 |
+
params.out_batch_stride = out.stride(0);
|
| 90 |
+
params.out_c_stride = out.stride(1);
|
| 91 |
+
params.out_l_stride = out.stride(-1);
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
void set_conv_params_bwd(ConvParamsBwd ¶ms,
|
| 96 |
+
// sizes
|
| 97 |
+
const size_t batch,
|
| 98 |
+
const size_t dim,
|
| 99 |
+
const size_t seqlen,
|
| 100 |
+
const size_t width,
|
| 101 |
+
// device pointers
|
| 102 |
+
const at::Tensor x,
|
| 103 |
+
const at::Tensor weight,
|
| 104 |
+
void* bias_ptr,
|
| 105 |
+
const at::Tensor dout,
|
| 106 |
+
const at::Tensor dx,
|
| 107 |
+
const at::Tensor dweight,
|
| 108 |
+
void* dbias_ptr,
|
| 109 |
+
bool silu_activation) {
|
| 110 |
+
// Pass in "dout" instead of "out", we're not gonna use "out" at all.
|
| 111 |
+
set_conv_params_fwd(params, batch, dim, seqlen, width,
|
| 112 |
+
x, weight, dout, bias_ptr, silu_activation);
|
| 113 |
+
|
| 114 |
+
// Set the pointers and strides.
|
| 115 |
+
params.dout_ptr = dout.data_ptr();
|
| 116 |
+
params.dx_ptr = dx.data_ptr();
|
| 117 |
+
params.dweight_ptr = dweight.data_ptr();
|
| 118 |
+
params.dbias_ptr = dbias_ptr;
|
| 119 |
+
// All stride are in elements, not bytes.
|
| 120 |
+
params.dout_batch_stride = dout.stride(0);
|
| 121 |
+
params.dout_c_stride = dout.stride(1);
|
| 122 |
+
params.dout_l_stride = dout.stride(2);
|
| 123 |
+
params.dweight_c_stride = dweight.stride(0);
|
| 124 |
+
params.dweight_width_stride = dweight.stride(1);
|
| 125 |
+
params.dx_batch_stride = dx.stride(0);
|
| 126 |
+
params.dx_c_stride = dx.stride(1);
|
| 127 |
+
params.dx_l_stride = dx.stride(2);
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
at::Tensor
|
| 131 |
+
causal_conv1d_fwd(const at::Tensor &x, const at::Tensor &weight,
|
| 132 |
+
const c10::optional<at::Tensor> &bias_,
|
| 133 |
+
bool silu_activation) {
|
| 134 |
+
auto input_type = x.scalar_type();
|
| 135 |
+
auto weight_type = weight.scalar_type();
|
| 136 |
+
TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
|
| 137 |
+
TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::Half || weight_type == at::ScalarType::BFloat16);
|
| 138 |
+
|
| 139 |
+
TORCH_CHECK(x.is_cuda());
|
| 140 |
+
TORCH_CHECK(weight.is_cuda());
|
| 141 |
+
|
| 142 |
+
const auto sizes = x.sizes();
|
| 143 |
+
const int batch_size = sizes[0];
|
| 144 |
+
const int dim = sizes[1];
|
| 145 |
+
const int seqlen = sizes[2];
|
| 146 |
+
const int width = weight.size(-1);
|
| 147 |
+
|
| 148 |
+
CHECK_SHAPE(x, batch_size, dim, seqlen);
|
| 149 |
+
CHECK_SHAPE(weight, dim, width);
|
| 150 |
+
|
| 151 |
+
TORCH_CHECK(x.stride(2) == 1 || x.stride(1) == 1);
|
| 152 |
+
const bool is_channel_last = x.stride(1) == 1 && x.stride(2) > 1;
|
| 153 |
+
|
| 154 |
+
if (is_channel_last) {
|
| 155 |
+
TORCH_CHECK(dim % 8 == 0, "causal_conv1d only supports channel dimension divisible by 8 for now");
|
| 156 |
+
}
|
| 157 |
+
TORCH_CHECK(width >= 2 && width <= 4, "causal_conv1d only supports width between 2 and 4");
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
if (bias_.has_value()) {
|
| 161 |
+
auto bias = bias_.value();
|
| 162 |
+
TORCH_CHECK(bias.scalar_type() == weight_type);
|
| 163 |
+
TORCH_CHECK(bias.is_cuda());
|
| 164 |
+
TORCH_CHECK(bias.stride(-1) == 1);
|
| 165 |
+
CHECK_SHAPE(bias, dim);
|
| 166 |
+
}
|
| 167 |
+
|
| 168 |
+
at::Tensor out = torch::empty_like(x);
|
| 169 |
+
|
| 170 |
+
ConvParamsBase params;
|
| 171 |
+
set_conv_params_fwd(params, batch_size, dim, seqlen, width, x, weight, out,
|
| 172 |
+
bias_.has_value() ? bias_.value().data_ptr() : nullptr,
|
| 173 |
+
silu_activation);
|
| 174 |
+
|
| 175 |
+
// Otherwise the kernel will be launched from cuda:0 device
|
| 176 |
+
// Cast to char to avoid compiler warning about narrowing
|
| 177 |
+
at::cuda::CUDAGuard device_guard{(char)x.get_device()};
|
| 178 |
+
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
| 179 |
+
DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_fwd", [&] {
|
| 180 |
+
DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(weight.scalar_type(), "causal_conv1d_fwd", [&] {
|
| 181 |
+
if (!is_channel_last) {
|
| 182 |
+
causal_conv1d_fwd_cuda<input_t, weight_t>(params, stream);
|
| 183 |
+
} else {
|
| 184 |
+
causal_conv1d_channellast_fwd_cuda<input_t, weight_t>(params, stream);
|
| 185 |
+
}
|
| 186 |
+
});
|
| 187 |
+
});
|
| 188 |
+
return out;
|
| 189 |
+
}
|
| 190 |
+
|
| 191 |
+
std::vector<at::Tensor>
|
| 192 |
+
causal_conv1d_bwd(const at::Tensor &x, const at::Tensor &weight,
|
| 193 |
+
const c10::optional<at::Tensor> &bias_,
|
| 194 |
+
at::Tensor &dout,
|
| 195 |
+
c10::optional<at::Tensor> &dx_,
|
| 196 |
+
bool silu_activation) {
|
| 197 |
+
auto input_type = x.scalar_type();
|
| 198 |
+
auto weight_type = weight.scalar_type();
|
| 199 |
+
TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
|
| 200 |
+
TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::Half || weight_type == at::ScalarType::BFloat16);
|
| 201 |
+
|
| 202 |
+
TORCH_CHECK(x.is_cuda());
|
| 203 |
+
TORCH_CHECK(weight.is_cuda());
|
| 204 |
+
TORCH_CHECK(dout.is_cuda());
|
| 205 |
+
|
| 206 |
+
const auto sizes = x.sizes();
|
| 207 |
+
const int batch_size = sizes[0];
|
| 208 |
+
const int dim = sizes[1];
|
| 209 |
+
const int seqlen = sizes[2];
|
| 210 |
+
const int width = weight.size(-1);
|
| 211 |
+
|
| 212 |
+
TORCH_CHECK(width >= 2 && width <= 4, "causal_conv1d only supports width between 2 and 4");
|
| 213 |
+
|
| 214 |
+
CHECK_SHAPE(x, batch_size, dim, seqlen);
|
| 215 |
+
CHECK_SHAPE(weight, dim, width);
|
| 216 |
+
CHECK_SHAPE(dout, batch_size, dim, seqlen);
|
| 217 |
+
|
| 218 |
+
TORCH_CHECK(x.stride(2) == 1 || x.stride(1) == 1);
|
| 219 |
+
const bool is_channel_last = x.stride(1) == 1 && x.stride(2) > 1;
|
| 220 |
+
if (!is_channel_last && dout.stride(2) != 1) { dout = dout.contiguous(); }
|
| 221 |
+
if (is_channel_last && dout.stride(1) != 1) { dout = dout.transpose(-1, -2).contiguous().transpose(-1, -2); }
|
| 222 |
+
|
| 223 |
+
if (bias_.has_value()) {
|
| 224 |
+
auto bias = bias_.value();
|
| 225 |
+
TORCH_CHECK(bias.scalar_type() == weight_type);
|
| 226 |
+
TORCH_CHECK(bias.is_cuda());
|
| 227 |
+
TORCH_CHECK(bias.stride(-1) == 1);
|
| 228 |
+
CHECK_SHAPE(bias, dim);
|
| 229 |
+
}
|
| 230 |
+
|
| 231 |
+
at::Tensor dx;
|
| 232 |
+
if (dx_.has_value()) {
|
| 233 |
+
dx = dx_.value();
|
| 234 |
+
TORCH_CHECK(dx.scalar_type() == input_type);
|
| 235 |
+
TORCH_CHECK(dx.is_cuda());
|
| 236 |
+
CHECK_SHAPE(dx, batch_size, dim, seqlen);
|
| 237 |
+
if (!is_channel_last) { TORCH_CHECK(dx.stride(2) == 1); }
|
| 238 |
+
if (is_channel_last) { TORCH_CHECK(dx.stride(1) == 1); }
|
| 239 |
+
} else {
|
| 240 |
+
dx = torch::empty_like(x);
|
| 241 |
+
}
|
| 242 |
+
|
| 243 |
+
// Otherwise the kernel will be launched from cuda:0 device
|
| 244 |
+
// Cast to char to avoid compiler warning about narrowing
|
| 245 |
+
at::cuda::CUDAGuard device_guard{(char)x.get_device()};
|
| 246 |
+
|
| 247 |
+
at::Tensor dweight = torch::zeros_like(weight, weight.options().dtype(at::kFloat));
|
| 248 |
+
at::Tensor dbias;
|
| 249 |
+
if (bias_.has_value()) { dbias = torch::zeros_like(bias_.value(), bias_.value().options().dtype(at::kFloat)); }
|
| 250 |
+
|
| 251 |
+
ConvParamsBwd params;
|
| 252 |
+
set_conv_params_bwd(params, batch_size, dim, seqlen, width,
|
| 253 |
+
x, weight, bias_.has_value() ? bias_.value().data_ptr() : nullptr,
|
| 254 |
+
dout, dx, dweight, bias_.has_value() ? dbias.data_ptr() : nullptr,
|
| 255 |
+
silu_activation);
|
| 256 |
+
|
| 257 |
+
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
| 258 |
+
DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_bwd", [&] {
|
| 259 |
+
DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(weight.scalar_type(), "causal_conv1d_bwd", [&] {
|
| 260 |
+
if (!is_channel_last) {
|
| 261 |
+
causal_conv1d_bwd_cuda<input_t, weight_t>(params, stream);
|
| 262 |
+
} else {
|
| 263 |
+
causal_conv1d_channellast_bwd_cuda<input_t, weight_t>(params, stream);
|
| 264 |
+
}
|
| 265 |
+
});
|
| 266 |
+
});
|
| 267 |
+
return {dx, dweight.to(weight.dtype()), bias_.has_value() ? dbias.to(bias_.value().dtype()) : dbias};
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
at::Tensor
|
| 271 |
+
causal_conv1d_update(const at::Tensor &x,
|
| 272 |
+
const at::Tensor &conv_state,
|
| 273 |
+
const at::Tensor &weight,
|
| 274 |
+
const c10::optional<at::Tensor> &bias_,
|
| 275 |
+
bool silu_activation) {
|
| 276 |
+
auto input_type = x.scalar_type();
|
| 277 |
+
auto weight_type = weight.scalar_type();
|
| 278 |
+
TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
|
| 279 |
+
TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::Half || weight_type == at::ScalarType::BFloat16);
|
| 280 |
+
TORCH_CHECK(conv_state.scalar_type() == input_type);
|
| 281 |
+
|
| 282 |
+
TORCH_CHECK(x.is_cuda());
|
| 283 |
+
TORCH_CHECK(conv_state.is_cuda());
|
| 284 |
+
TORCH_CHECK(weight.is_cuda());
|
| 285 |
+
|
| 286 |
+
const auto sizes = x.sizes();
|
| 287 |
+
const int batch_size = sizes[0];
|
| 288 |
+
const int dim = sizes[1];
|
| 289 |
+
const int width = weight.size(-1);
|
| 290 |
+
|
| 291 |
+
CHECK_SHAPE(x, batch_size, dim);
|
| 292 |
+
CHECK_SHAPE(conv_state, batch_size, dim, width);
|
| 293 |
+
CHECK_SHAPE(weight, dim, width);
|
| 294 |
+
|
| 295 |
+
TORCH_CHECK(width >= 2 && width <= 4, "causal_conv1d only supports width between 2 and 4");
|
| 296 |
+
|
| 297 |
+
if (bias_.has_value()) {
|
| 298 |
+
auto bias = bias_.value();
|
| 299 |
+
TORCH_CHECK(bias.scalar_type() == weight_type);
|
| 300 |
+
TORCH_CHECK(bias.is_cuda());
|
| 301 |
+
TORCH_CHECK(bias.stride(-1) == 1);
|
| 302 |
+
CHECK_SHAPE(bias, dim);
|
| 303 |
+
}
|
| 304 |
+
|
| 305 |
+
at::Tensor out = torch::empty_like(x);
|
| 306 |
+
|
| 307 |
+
ConvParamsBase params;
|
| 308 |
+
set_conv_params_fwd(params, batch_size, dim, /*seqlen=*/1, width, x, weight, out,
|
| 309 |
+
bias_.has_value() ? bias_.value().data_ptr() : nullptr,
|
| 310 |
+
silu_activation);
|
| 311 |
+
params.conv_state_ptr = conv_state.data_ptr();
|
| 312 |
+
// All stride are in elements, not bytes.
|
| 313 |
+
params.conv_state_batch_stride = conv_state.stride(0);
|
| 314 |
+
params.conv_state_c_stride = conv_state.stride(1);
|
| 315 |
+
params.conv_state_l_stride = conv_state.stride(2);
|
| 316 |
+
|
| 317 |
+
// Otherwise the kernel will be launched from cuda:0 device
|
| 318 |
+
// Cast to char to avoid compiler warning about narrowing
|
| 319 |
+
at::cuda::CUDAGuard device_guard{(char)x.get_device()};
|
| 320 |
+
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
| 321 |
+
DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_update", [&] {
|
| 322 |
+
DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(weight.scalar_type(), "causal_conv1d_update", [&] {
|
| 323 |
+
causal_conv1d_update_cuda<input_t, weight_t>(params, stream);
|
| 324 |
+
});
|
| 325 |
+
});
|
| 326 |
+
return out;
|
| 327 |
+
}
|
| 328 |
+
|
| 329 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
| 330 |
+
m.def("causal_conv1d_fwd", &causal_conv1d_fwd, "Causal conv1d forward");
|
| 331 |
+
m.def("causal_conv1d_bwd", &causal_conv1d_bwd, "Causal conv1d backward");
|
| 332 |
+
m.def("causal_conv1d_update", &causal_conv1d_update, "Causal conv1d update");
|
| 333 |
+
}
|
SegMamba/causal-conv1d/csrc/causal_conv1d.h
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/******************************************************************************
|
| 2 |
+
* Copyright (c) 2023, Tri Dao.
|
| 3 |
+
******************************************************************************/
|
| 4 |
+
|
| 5 |
+
#pragma once
|
| 6 |
+
|
| 7 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 8 |
+
|
| 9 |
+
struct ConvParamsBase {
|
| 10 |
+
using index_t = uint32_t;
|
| 11 |
+
|
| 12 |
+
int batch, dim, seqlen, width;
|
| 13 |
+
bool silu_activation;
|
| 14 |
+
|
| 15 |
+
index_t x_batch_stride;
|
| 16 |
+
index_t x_c_stride;
|
| 17 |
+
index_t x_l_stride;
|
| 18 |
+
index_t weight_c_stride;
|
| 19 |
+
index_t weight_width_stride;
|
| 20 |
+
index_t out_batch_stride;
|
| 21 |
+
index_t out_c_stride;
|
| 22 |
+
index_t out_l_stride;
|
| 23 |
+
|
| 24 |
+
index_t conv_state_batch_stride;
|
| 25 |
+
index_t conv_state_c_stride;
|
| 26 |
+
index_t conv_state_l_stride;
|
| 27 |
+
|
| 28 |
+
// Common data pointers.
|
| 29 |
+
void *__restrict__ x_ptr;
|
| 30 |
+
void *__restrict__ weight_ptr;
|
| 31 |
+
void *__restrict__ bias_ptr;
|
| 32 |
+
void *__restrict__ out_ptr;
|
| 33 |
+
|
| 34 |
+
void *__restrict__ conv_state_ptr;
|
| 35 |
+
};
|
| 36 |
+
|
| 37 |
+
struct ConvParamsBwd: public ConvParamsBase {
|
| 38 |
+
index_t dx_batch_stride;
|
| 39 |
+
index_t dx_c_stride;
|
| 40 |
+
index_t dx_l_stride;
|
| 41 |
+
index_t dweight_c_stride;
|
| 42 |
+
index_t dweight_width_stride;
|
| 43 |
+
index_t dout_batch_stride;
|
| 44 |
+
index_t dout_c_stride;
|
| 45 |
+
index_t dout_l_stride;
|
| 46 |
+
|
| 47 |
+
// Common data pointers.
|
| 48 |
+
void *__restrict__ dx_ptr;
|
| 49 |
+
void *__restrict__ dweight_ptr;
|
| 50 |
+
void *__restrict__ dbias_ptr;
|
| 51 |
+
void *__restrict__ dout_ptr;
|
| 52 |
+
};
|
| 53 |
+
|
SegMamba/causal-conv1d/csrc/causal_conv1d_bwd.cu
ADDED
|
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/******************************************************************************
|
| 2 |
+
* Copyright (c) 2023, Tri Dao.
|
| 3 |
+
******************************************************************************/
|
| 4 |
+
|
| 5 |
+
#include <c10/util/BFloat16.h>
|
| 6 |
+
#include <c10/util/Half.h>
|
| 7 |
+
#include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
|
| 8 |
+
|
| 9 |
+
#include <cub/block/block_load.cuh>
|
| 10 |
+
#include <cub/block/block_store.cuh>
|
| 11 |
+
#include <cub/block/block_reduce.cuh>
|
| 12 |
+
|
| 13 |
+
#include "causal_conv1d.h"
|
| 14 |
+
#include "causal_conv1d_common.h"
|
| 15 |
+
#include "static_switch.h"
|
| 16 |
+
|
| 17 |
+
template<int kNThreads_, int kWidth_, bool kSiluAct_, bool kIsVecLoad_, typename input_t_, typename weight_t_>
|
| 18 |
+
struct Causal_conv1d_bwd_kernel_traits {
|
| 19 |
+
using input_t = input_t_;
|
| 20 |
+
using weight_t = weight_t_;
|
| 21 |
+
static constexpr int kNThreads = kNThreads_;
|
| 22 |
+
static constexpr int kWidth = kWidth_;
|
| 23 |
+
static constexpr bool kSiluAct = kSiluAct_;
|
| 24 |
+
static constexpr int kNBytes = sizeof(input_t);
|
| 25 |
+
static_assert(kNBytes == 2 || kNBytes == 4);
|
| 26 |
+
static constexpr int kNElts = kNBytes == 4 ? 4 : 8;
|
| 27 |
+
static_assert(kWidth <= kNElts);
|
| 28 |
+
// It's possible that we need to do 2 rounds of exchange if input_t is 16 bits
|
| 29 |
+
// (since then we'd have 8 values of float, and each round we can exchange 4 floats).
|
| 30 |
+
static constexpr int kNExchangeRounds = sizeof(float) / sizeof(input_t);
|
| 31 |
+
static constexpr bool kIsVecLoad = kIsVecLoad_;
|
| 32 |
+
using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
|
| 33 |
+
using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNElts, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
|
| 34 |
+
using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, 1, cub::BLOCK_LOAD_DIRECT>;
|
| 35 |
+
using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNElts, cub::BLOCK_STORE_WARP_TRANSPOSE>;
|
| 36 |
+
using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, 1, cub::BLOCK_STORE_DIRECT>;
|
| 37 |
+
using BlockReduceFloatT = cub::BlockReduce<float, kNThreads>;
|
| 38 |
+
static constexpr int kSmemIOSize = kIsVecLoad
|
| 39 |
+
? 0
|
| 40 |
+
: std::max({sizeof(typename BlockLoadT::TempStorage), sizeof(typename BlockStoreT::TempStorage)});
|
| 41 |
+
static constexpr int kSmemExchangeSize = kNThreads * kNBytes * kNElts * (!kSiluAct ? 1 : kNExchangeRounds + 1);
|
| 42 |
+
static constexpr int kSmemSize = std::max({kSmemExchangeSize,
|
| 43 |
+
int(sizeof(typename BlockReduceFloatT::TempStorage))}) + (kIsVecLoad ? 0 : kSmemIOSize);
|
| 44 |
+
};
|
| 45 |
+
|
| 46 |
+
template<typename Ktraits>
|
| 47 |
+
__global__ __launch_bounds__(Ktraits::kNThreads)
|
| 48 |
+
void causal_conv1d_bwd_kernel(ConvParamsBwd params) {
|
| 49 |
+
constexpr int kWidth = Ktraits::kWidth;
|
| 50 |
+
constexpr int kNThreads = Ktraits::kNThreads;
|
| 51 |
+
constexpr bool kSiluAct = Ktraits::kSiluAct;
|
| 52 |
+
constexpr int kNElts = Ktraits::kNElts;
|
| 53 |
+
constexpr int kNExchangeRounds = Ktraits::kNExchangeRounds;
|
| 54 |
+
constexpr bool kIsVecLoad = Ktraits::kIsVecLoad;
|
| 55 |
+
using input_t = typename Ktraits::input_t;
|
| 56 |
+
using vec_t = typename Ktraits::vec_t;
|
| 57 |
+
using weight_t = typename Ktraits::weight_t;
|
| 58 |
+
|
| 59 |
+
// Shared memory.
|
| 60 |
+
extern __shared__ char smem_[];
|
| 61 |
+
auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
|
| 62 |
+
auto& smem_load_vec = reinterpret_cast<typename Ktraits::BlockLoadVecT::TempStorage&>(smem_);
|
| 63 |
+
auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
|
| 64 |
+
auto& smem_store_vec = reinterpret_cast<typename Ktraits::BlockStoreVecT::TempStorage&>(smem_);
|
| 65 |
+
vec_t *smem_exchange = reinterpret_cast<vec_t *>(smem_ + Ktraits::kSmemIOSize);
|
| 66 |
+
vec_t *smem_exchange_x = reinterpret_cast<vec_t *>(smem_ + Ktraits::kSmemIOSize) + kNThreads * kNExchangeRounds;
|
| 67 |
+
auto& smem_reduce_float = *reinterpret_cast<typename Ktraits::BlockReduceFloatT::TempStorage*>(smem_ + Ktraits::kSmemIOSize);
|
| 68 |
+
|
| 69 |
+
const int tidx = threadIdx.x;
|
| 70 |
+
const int batch_id = blockIdx.x;
|
| 71 |
+
const int dim_id = blockIdx.y;
|
| 72 |
+
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
|
| 73 |
+
+ dim_id * params.x_c_stride;
|
| 74 |
+
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr) + dim_id * params.weight_c_stride;
|
| 75 |
+
input_t *dout = reinterpret_cast<input_t *>(params.dout_ptr) + batch_id * params.dout_batch_stride
|
| 76 |
+
+ dim_id * params.dout_c_stride;
|
| 77 |
+
input_t *dx = reinterpret_cast<input_t *>(params.dx_ptr) + batch_id * params.dx_batch_stride
|
| 78 |
+
+ dim_id * params.dx_c_stride;
|
| 79 |
+
float *dweight = reinterpret_cast<float *>(params.dweight_ptr) + dim_id * params.dweight_c_stride;
|
| 80 |
+
float bias_val = params.bias_ptr == nullptr ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[dim_id]);
|
| 81 |
+
|
| 82 |
+
// Thread kNThreads - 1 will load the first elements of the next chunk so we initialize those to 0.
|
| 83 |
+
if (tidx == 0) {
|
| 84 |
+
if constexpr (!kSiluAct) {
|
| 85 |
+
input_t zeros[kNElts] = {0};
|
| 86 |
+
smem_exchange[0] = reinterpret_cast<vec_t *>(zeros)[0];
|
| 87 |
+
} else {
|
| 88 |
+
float zeros[kNElts] = {0};
|
| 89 |
+
#pragma unroll
|
| 90 |
+
for (int r = 0; r < kNExchangeRounds; ++r) {
|
| 91 |
+
smem_exchange[r * kNThreads] = reinterpret_cast<vec_t *>(zeros)[r];
|
| 92 |
+
}
|
| 93 |
+
}
|
| 94 |
+
}
|
| 95 |
+
|
| 96 |
+
float weight_vals[kWidth];
|
| 97 |
+
#pragma unroll
|
| 98 |
+
for (int i = 0; i < kWidth; ++i) { weight_vals[i] = weight[i * params.weight_width_stride]; }
|
| 99 |
+
|
| 100 |
+
float dweight_vals[kWidth] = {0};
|
| 101 |
+
float dbias_val = 0;
|
| 102 |
+
|
| 103 |
+
constexpr int kChunkSize = kNThreads * kNElts;
|
| 104 |
+
const int n_chunks = (params.seqlen + kChunkSize - 1) / kChunkSize;
|
| 105 |
+
x += (n_chunks - 1) * kChunkSize;
|
| 106 |
+
dout += (n_chunks - 1) * kChunkSize;
|
| 107 |
+
dx += (n_chunks - 1) * kChunkSize;
|
| 108 |
+
for (int chunk = n_chunks - 1; chunk >= 0; --chunk) {
|
| 109 |
+
input_t x_vals_load[2 * kNElts] = {0};
|
| 110 |
+
input_t dout_vals_load[2 * kNElts] = {0};
|
| 111 |
+
if constexpr(kIsVecLoad) {
|
| 112 |
+
Ktraits::BlockLoadVecT(smem_load_vec).Load(reinterpret_cast<vec_t*>(x), *reinterpret_cast<vec_t (*)[1]>(&x_vals_load[kNElts]), (params.seqlen - chunk * kChunkSize) / kNElts);
|
| 113 |
+
Ktraits::BlockLoadVecT(smem_load_vec).Load(reinterpret_cast<vec_t*>(dout), *reinterpret_cast<vec_t (*)[1]>(&dout_vals_load[0]), (params.seqlen - chunk * kChunkSize) / kNElts);
|
| 114 |
+
} else {
|
| 115 |
+
__syncthreads();
|
| 116 |
+
Ktraits::BlockLoadT(smem_load).Load(x, *reinterpret_cast<input_t (*)[kNElts]>(&x_vals_load[kNElts]), params.seqlen - chunk * kChunkSize);
|
| 117 |
+
__syncthreads();
|
| 118 |
+
Ktraits::BlockLoadT(smem_load).Load(dout, *reinterpret_cast<input_t (*)[kNElts]>(&dout_vals_load[0]), params.seqlen - chunk * kChunkSize);
|
| 119 |
+
}
|
| 120 |
+
float dout_vals[2 * kNElts], x_vals[2 * kNElts];
|
| 121 |
+
if constexpr (!kSiluAct) {
|
| 122 |
+
__syncthreads();
|
| 123 |
+
// Thread 0 don't write yet, so that thread kNThreads - 1 can read
|
| 124 |
+
// the first elements of the next chunk.
|
| 125 |
+
if (tidx > 0) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(dout_vals_load)[0]; }
|
| 126 |
+
__syncthreads();
|
| 127 |
+
reinterpret_cast<vec_t *>(dout_vals_load)[1] = smem_exchange[tidx < kNThreads - 1 ? tidx + 1 : 0];
|
| 128 |
+
__syncthreads();
|
| 129 |
+
// Now thread 0 can write the first elements of the current chunk.
|
| 130 |
+
if (tidx == 0) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(dout_vals_load)[0]; }
|
| 131 |
+
#pragma unroll
|
| 132 |
+
for (int i = 0; i < 2 * kNElts; ++i) {
|
| 133 |
+
dout_vals[i] = float(dout_vals_load[i]);
|
| 134 |
+
x_vals[i] = float(x_vals_load[i]);
|
| 135 |
+
}
|
| 136 |
+
} else {
|
| 137 |
+
if (tidx == 0 && chunk > 0) {
|
| 138 |
+
if constexpr(kIsVecLoad) {
|
| 139 |
+
reinterpret_cast<vec_t *>(x_vals_load)[0] = reinterpret_cast<vec_t *>(x)[-1];
|
| 140 |
+
} else {
|
| 141 |
+
#pragma unroll
|
| 142 |
+
for (int i = 0; i < kNElts; ++i) {
|
| 143 |
+
if (chunk * kChunkSize + i < params.seqlen) { x_vals_load[i] = x[-kNElts + i]; }
|
| 144 |
+
}
|
| 145 |
+
}
|
| 146 |
+
}
|
| 147 |
+
__syncthreads();
|
| 148 |
+
smem_exchange_x[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1];
|
| 149 |
+
__syncthreads();
|
| 150 |
+
if (tidx > 0) { reinterpret_cast<vec_t *>(x_vals_load)[0] = smem_exchange_x[tidx - 1]; }
|
| 151 |
+
#pragma unroll
|
| 152 |
+
for (int i = 0; i < 2 * kNElts; ++i) { x_vals[i] = float(x_vals_load[i]); }
|
| 153 |
+
// Recompute the output
|
| 154 |
+
#pragma unroll
|
| 155 |
+
for (int i = 0; i < kNElts; ++i) {
|
| 156 |
+
float out_val = bias_val;
|
| 157 |
+
#pragma unroll
|
| 158 |
+
for (int w = 0; w < kWidth; ++w) {
|
| 159 |
+
out_val += weight_vals[w] * x_vals[kNElts + i - (kWidth - w - 1)];
|
| 160 |
+
}
|
| 161 |
+
float out_sigmoid_val = 1.0f / (1.0f + expf(-out_val));
|
| 162 |
+
dout_vals[i] = float(dout_vals_load[i]) * out_sigmoid_val
|
| 163 |
+
* (1.0f + out_val * (1.0f - out_sigmoid_val));
|
| 164 |
+
}
|
| 165 |
+
// Exchange the dout_vals. It's possible that we need to do 2 rounds of exchange
|
| 166 |
+
// if input_t is 16 bits (since then we'd have 8 values of float)
|
| 167 |
+
__syncthreads();
|
| 168 |
+
// Thread 0 don't write yet, so that thread kNThreads - 1 can read
|
| 169 |
+
// the first elements of the next chunk.
|
| 170 |
+
if (tidx > 0) {
|
| 171 |
+
#pragma unroll
|
| 172 |
+
for (int r = 0; r < kNExchangeRounds; ++r) {
|
| 173 |
+
smem_exchange[r * kNThreads + tidx] = reinterpret_cast<vec_t *>(dout_vals)[r];
|
| 174 |
+
}
|
| 175 |
+
}
|
| 176 |
+
__syncthreads();
|
| 177 |
+
#pragma unroll
|
| 178 |
+
for (int r = 0; r < kNExchangeRounds; ++r) {
|
| 179 |
+
reinterpret_cast<vec_t *>(dout_vals)[kNExchangeRounds + r]
|
| 180 |
+
= smem_exchange[r * kNThreads + (tidx < kNThreads - 1 ? tidx + 1 : 0)];
|
| 181 |
+
}
|
| 182 |
+
__syncthreads();
|
| 183 |
+
// Now thread 0 can write the first elements of the current chunk.
|
| 184 |
+
if (tidx == 0) {
|
| 185 |
+
#pragma unroll
|
| 186 |
+
for (int r = 0; r < kNExchangeRounds; ++r) {
|
| 187 |
+
smem_exchange[r * kNThreads + tidx] = reinterpret_cast<vec_t *>(dout_vals)[r];
|
| 188 |
+
}
|
| 189 |
+
}
|
| 190 |
+
}
|
| 191 |
+
dout -= kChunkSize;
|
| 192 |
+
x -= kChunkSize;
|
| 193 |
+
|
| 194 |
+
#pragma unroll
|
| 195 |
+
for (int i = 0; i < kNElts; ++i) { dbias_val += dout_vals[i]; }
|
| 196 |
+
|
| 197 |
+
float dx_vals[kNElts] = {0};
|
| 198 |
+
#pragma unroll
|
| 199 |
+
for (int i = 0; i < kNElts; ++i) {
|
| 200 |
+
#pragma unroll
|
| 201 |
+
for (int w = 0; w < kWidth; ++w) {
|
| 202 |
+
dx_vals[i] += weight_vals[w] * dout_vals[i + kWidth - w - 1];
|
| 203 |
+
}
|
| 204 |
+
}
|
| 205 |
+
|
| 206 |
+
input_t dx_vals_store[kNElts];
|
| 207 |
+
#pragma unroll
|
| 208 |
+
for (int i = 0; i < kNElts; ++i) { dx_vals_store[i] = dx_vals[i]; }
|
| 209 |
+
if constexpr(kIsVecLoad) {
|
| 210 |
+
Ktraits::BlockStoreVecT(smem_store_vec).Store(reinterpret_cast<vec_t*>(dx), reinterpret_cast<vec_t (&)[1]>(dx_vals_store), (params.seqlen - chunk * kChunkSize) / kNElts);
|
| 211 |
+
} else {
|
| 212 |
+
Ktraits::BlockStoreT(smem_store).Store(dx, dx_vals_store, params.seqlen - chunk * kChunkSize);
|
| 213 |
+
}
|
| 214 |
+
dx -= kChunkSize;
|
| 215 |
+
|
| 216 |
+
#pragma unroll
|
| 217 |
+
for (int w = 0; w < kWidth; ++w) {
|
| 218 |
+
#pragma unroll
|
| 219 |
+
for (int i = 0; i < kNElts; ++i) {
|
| 220 |
+
dweight_vals[w] += x_vals[kNElts + i] * dout_vals[i + kWidth - w - 1];
|
| 221 |
+
}
|
| 222 |
+
}
|
| 223 |
+
}
|
| 224 |
+
|
| 225 |
+
#pragma unroll
|
| 226 |
+
for (int w = 0; w < kWidth; ++w) {
|
| 227 |
+
__syncthreads();
|
| 228 |
+
dweight_vals[w] = Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(dweight_vals[w]);
|
| 229 |
+
if (tidx == 0) {
|
| 230 |
+
atomicAdd(&reinterpret_cast<float *>(dweight)[w * params.dweight_width_stride], dweight_vals[w]);
|
| 231 |
+
}
|
| 232 |
+
}
|
| 233 |
+
if (params.bias_ptr != nullptr) {
|
| 234 |
+
__syncthreads();
|
| 235 |
+
dbias_val = Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(dbias_val);
|
| 236 |
+
if (tidx == 0) {
|
| 237 |
+
atomicAdd(&reinterpret_cast<float *>(params.dbias_ptr)[dim_id], dbias_val);
|
| 238 |
+
}
|
| 239 |
+
}
|
| 240 |
+
}
|
| 241 |
+
|
| 242 |
+
template<int kNThreads, int kWidth, typename input_t, typename weight_t>
|
| 243 |
+
void causal_conv1d_bwd_launch(ConvParamsBwd ¶ms, cudaStream_t stream) {
|
| 244 |
+
static constexpr int kNElts = sizeof(input_t) == 4 ? 4 : 8;
|
| 245 |
+
BOOL_SWITCH(params.seqlen % kNElts == 0, kIsVecLoad, [&] {
|
| 246 |
+
BOOL_SWITCH(params.silu_activation, kSiluAct, [&] {
|
| 247 |
+
using Ktraits = Causal_conv1d_bwd_kernel_traits<kNThreads, kWidth, kSiluAct, kIsVecLoad, input_t, weight_t>;
|
| 248 |
+
constexpr int kSmemSize = Ktraits::kSmemSize;
|
| 249 |
+
dim3 grid(params.batch, params.dim);
|
| 250 |
+
auto kernel = &causal_conv1d_bwd_kernel<Ktraits>;
|
| 251 |
+
if (kSmemSize >= 48 * 1024) {
|
| 252 |
+
C10_CUDA_CHECK(cudaFuncSetAttribute(
|
| 253 |
+
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
|
| 254 |
+
}
|
| 255 |
+
kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
|
| 256 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
| 257 |
+
});
|
| 258 |
+
});
|
| 259 |
+
}
|
| 260 |
+
|
| 261 |
+
template<typename input_t, typename weight_t>
|
| 262 |
+
void causal_conv1d_bwd_cuda(ConvParamsBwd ¶ms, cudaStream_t stream) {
|
| 263 |
+
if (params.width == 2) {
|
| 264 |
+
causal_conv1d_bwd_launch<128, 2, input_t, weight_t>(params, stream);
|
| 265 |
+
} else if (params.width == 3) {
|
| 266 |
+
causal_conv1d_bwd_launch<128, 3, input_t, weight_t>(params, stream);
|
| 267 |
+
} else if (params.width == 4) {
|
| 268 |
+
causal_conv1d_bwd_launch<128, 4, input_t, weight_t>(params, stream);
|
| 269 |
+
}
|
| 270 |
+
}
|
| 271 |
+
|
| 272 |
+
template<int kNThreads_, int kWidth_, int kChunkSizeL_, bool kSiluAct_, bool kIsVecLoad_, typename input_t_, typename weight_t_>
|
| 273 |
+
struct Causal_conv1d_channellast_bwd_kernel_traits {
|
| 274 |
+
// The cache line is 128 bytes, and we try to read 16 bytes per thread.
|
| 275 |
+
// So we have 8 threads per "row", so 32 or 64 elements in the channel dimension.
|
| 276 |
+
// That leaves 4 columns per warp, and so 16 columns per block (assuming each block has 128
|
| 277 |
+
// threads). Each each load is 16 x 32|64 elements in the L x C dimensions.
|
| 278 |
+
using input_t = input_t_;
|
| 279 |
+
using weight_t = weight_t_;
|
| 280 |
+
static constexpr bool kSiluAct = kSiluAct_;
|
| 281 |
+
static constexpr int kNThreads = kNThreads_;
|
| 282 |
+
static_assert(kNThreads % 32 == 0);
|
| 283 |
+
static constexpr int kNWarps = kNThreads / 32;
|
| 284 |
+
static constexpr int kWidth = kWidth_;
|
| 285 |
+
static constexpr int kChunkSizeL = kChunkSizeL_;
|
| 286 |
+
static constexpr int kNBytes = sizeof(input_t);
|
| 287 |
+
static_assert(kNBytes == 2 || kNBytes == 4);
|
| 288 |
+
static constexpr int kNElts = kNBytes == 4 ? 4 : 8;
|
| 289 |
+
static constexpr int kNEltsPerRow = 128 / kNBytes;
|
| 290 |
+
static constexpr int kNThreadsPerRow = kNEltsPerRow / kNElts; // Always 8 for now
|
| 291 |
+
static_assert(kNThreadsPerRow * kNBytes * kNElts == 128);
|
| 292 |
+
static constexpr int kNColsPerWarp = 32 / kNThreadsPerRow; // Always 4 for now
|
| 293 |
+
static_assert(kNColsPerWarp * kNThreadsPerRow == 32);
|
| 294 |
+
static constexpr int kNColsPerLoad = kNColsPerWarp * kNWarps;
|
| 295 |
+
static constexpr int kNLoads = kChunkSizeL / kNColsPerLoad;
|
| 296 |
+
static_assert(kNLoads * kNColsPerLoad == kChunkSizeL);
|
| 297 |
+
static constexpr bool kIsVecLoad = kIsVecLoad_;
|
| 298 |
+
using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
|
| 299 |
+
// using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
|
| 300 |
+
// using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>;
|
| 301 |
+
// static constexpr int kSmemSize = std::max({sizeof(typename BlockLoadT::TempStorage),
|
| 302 |
+
// sizeof(typename BlockStoreT::TempStorage)});
|
| 303 |
+
// static constexpr int kSmemSize = kChunkSizeL * kNEltsPerRow * kNBytes;
|
| 304 |
+
};
|
| 305 |
+
|
| 306 |
+
template<typename Ktraits>
|
| 307 |
+
__global__ __launch_bounds__(Ktraits::kNThreads)
|
| 308 |
+
void causal_conv1d_channellast_bwd_kernel(ConvParamsBwd params) {
|
| 309 |
+
constexpr int kWidth = Ktraits::kWidth;
|
| 310 |
+
constexpr int kNThreads = Ktraits::kNThreads;
|
| 311 |
+
constexpr bool kSiluAct = Ktraits::kSiluAct;
|
| 312 |
+
constexpr int kNElts = Ktraits::kNElts;
|
| 313 |
+
constexpr int kNWarp = Ktraits::kNWarps;
|
| 314 |
+
constexpr int kNThreadsPerC = Ktraits::kNThreadsPerRow;
|
| 315 |
+
constexpr int kLPerLoad = Ktraits::kNColsPerLoad;
|
| 316 |
+
constexpr int kChunkSizeL = Ktraits::kChunkSizeL;
|
| 317 |
+
constexpr int kChunkSizeC = Ktraits::kNEltsPerRow;
|
| 318 |
+
using input_t = typename Ktraits::input_t;
|
| 319 |
+
using vec_t = typename Ktraits::vec_t;
|
| 320 |
+
using weight_t = typename Ktraits::weight_t;
|
| 321 |
+
|
| 322 |
+
// Shared memory.
|
| 323 |
+
__shared__ input_t dout_smem[kChunkSizeL + kWidth - 1][kChunkSizeC + kNElts];
|
| 324 |
+
__shared__ input_t x_smem[kWidth - 1 + kChunkSizeL + kWidth - 1][kChunkSizeC + kNElts];
|
| 325 |
+
|
| 326 |
+
const int tid = threadIdx.x;
|
| 327 |
+
const int l_idx = tid / kNThreadsPerC;
|
| 328 |
+
const int c_idx = tid % kNThreadsPerC;
|
| 329 |
+
const int batch_id = blockIdx.x;
|
| 330 |
+
const int chunk_l_id = blockIdx.y;
|
| 331 |
+
const int chunk_c_id = blockIdx.z;
|
| 332 |
+
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
|
| 333 |
+
+ (chunk_l_id * kChunkSizeL + l_idx) * params.x_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
|
| 334 |
+
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr)
|
| 335 |
+
+ chunk_c_id * kChunkSizeC * params.weight_c_stride;
|
| 336 |
+
input_t *dout = reinterpret_cast<input_t *>(params.dout_ptr) + batch_id * params.dout_batch_stride
|
| 337 |
+
+ (chunk_l_id * kChunkSizeL + l_idx) * params.dout_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
|
| 338 |
+
input_t *dx = reinterpret_cast<input_t *>(params.dx_ptr) + batch_id * params.dx_batch_stride
|
| 339 |
+
+ (chunk_l_id * kChunkSizeL + l_idx) * params.dx_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
|
| 340 |
+
float *dweight = reinterpret_cast<float *>(params.dweight_ptr)
|
| 341 |
+
+ chunk_c_id * kChunkSizeC * params.dweight_c_stride;
|
| 342 |
+
|
| 343 |
+
#pragma unroll
|
| 344 |
+
for (int l = 0; l < Ktraits::kNLoads; ++l) {
|
| 345 |
+
input_t dout_vals_load[kNElts] = {0};
|
| 346 |
+
input_t x_vals_load[kNElts] = {0};
|
| 347 |
+
if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen
|
| 348 |
+
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
|
| 349 |
+
reinterpret_cast<vec_t *>(dout_vals_load)[0] = *reinterpret_cast<vec_t *>(dout + l * kLPerLoad * params.dout_l_stride);
|
| 350 |
+
reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x + l * kLPerLoad * params.x_l_stride);
|
| 351 |
+
}
|
| 352 |
+
reinterpret_cast<vec_t *>(dout_smem[l * kLPerLoad + l_idx])[c_idx] = reinterpret_cast<vec_t *>(dout_vals_load)[0];
|
| 353 |
+
reinterpret_cast<vec_t *>(x_smem[kWidth - 1 + l * kLPerLoad + l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0];
|
| 354 |
+
}
|
| 355 |
+
// Load the elements from the previous chunk or next chunk that are needed for convolution.
|
| 356 |
+
if (l_idx < kWidth - 1) {
|
| 357 |
+
input_t dout_vals_load[kNElts] = {0};
|
| 358 |
+
input_t x_vals_load[kNElts] = {0};
|
| 359 |
+
if ((chunk_l_id + 1) * kChunkSizeL + l_idx < params.seqlen
|
| 360 |
+
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
|
| 361 |
+
reinterpret_cast<vec_t *>(dout_vals_load)[0] = *reinterpret_cast<vec_t *>(dout + kChunkSizeL * params.dout_l_stride);
|
| 362 |
+
}
|
| 363 |
+
if (chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) >= 0
|
| 364 |
+
&& chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) < params.seqlen
|
| 365 |
+
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
|
| 366 |
+
reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x - (kWidth - 1) * params.x_l_stride);
|
| 367 |
+
}
|
| 368 |
+
reinterpret_cast<vec_t *>(dout_smem[kChunkSizeL + l_idx])[c_idx] = reinterpret_cast<vec_t *>(dout_vals_load)[0];
|
| 369 |
+
reinterpret_cast<vec_t *>(x_smem[l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0];
|
| 370 |
+
}
|
| 371 |
+
// Need to load (kWdith - 1) extra x's on the right to recompute the (kChunkSizeL + kWidth - 1) outputs
|
| 372 |
+
if constexpr (kSiluAct) {
|
| 373 |
+
if (l_idx < kWidth - 1) {
|
| 374 |
+
input_t x_vals_load[kNElts] = {0};
|
| 375 |
+
if ((chunk_l_id + 1) * kChunkSizeL + l_idx < params.seqlen
|
| 376 |
+
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
|
| 377 |
+
reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x + kChunkSizeL * params.x_l_stride);
|
| 378 |
+
}
|
| 379 |
+
reinterpret_cast<vec_t *>(x_smem[kWidth - 1 + kChunkSizeL + l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0];
|
| 380 |
+
}
|
| 381 |
+
}
|
| 382 |
+
|
| 383 |
+
__syncthreads();
|
| 384 |
+
|
| 385 |
+
constexpr int kLPerThread = std::min(kChunkSizeL * kChunkSizeC / kNThreads, kChunkSizeL);
|
| 386 |
+
static_assert(kLPerThread * kNThreads == kChunkSizeL * kChunkSizeC);
|
| 387 |
+
constexpr int kNThreadsPerRow = kChunkSizeL / kLPerThread;
|
| 388 |
+
static_assert(kNThreadsPerRow * kLPerThread == kChunkSizeL);
|
| 389 |
+
// kChunkSizeL, kLPerThread, kNThreadsPerRow should be powers of 2 for simplicity
|
| 390 |
+
static_assert((kChunkSizeL & (kChunkSizeL - 1)) == 0);
|
| 391 |
+
static_assert((kLPerThread & (kLPerThread - 1)) == 0);
|
| 392 |
+
static_assert((kNThreadsPerRow & (kNThreadsPerRow - 1)) == 0);
|
| 393 |
+
static_assert(kNThreadsPerRow <= 32);
|
| 394 |
+
|
| 395 |
+
const int row_idx = tid / kNThreadsPerRow;
|
| 396 |
+
const int col_idx = tid % kNThreadsPerRow;
|
| 397 |
+
|
| 398 |
+
float bias_val = params.bias_ptr == nullptr || chunk_c_id * kChunkSizeC + row_idx >= params.dim ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[chunk_c_id * kChunkSizeC + row_idx]);
|
| 399 |
+
float weight_vals[kWidth] = {0};
|
| 400 |
+
if (chunk_c_id * kChunkSizeC + row_idx < params.dim) {
|
| 401 |
+
#pragma unroll
|
| 402 |
+
for (int w = 0; w < kWidth; ++w) {
|
| 403 |
+
weight_vals[w] = weight[row_idx * params.weight_c_stride + w * params.weight_width_stride];
|
| 404 |
+
}
|
| 405 |
+
}
|
| 406 |
+
float dout_vals[kLPerThread + kWidth - 1];
|
| 407 |
+
float x_vals[kWidth - 1 + kLPerThread + kWidth - 1];
|
| 408 |
+
#pragma unroll
|
| 409 |
+
for (int i = 0; i < kWidth - 1 + kLPerThread; ++i) {
|
| 410 |
+
dout_vals[i] = float(dout_smem[col_idx * kLPerThread + i][row_idx]);
|
| 411 |
+
x_vals[i] = float(x_smem[col_idx * kLPerThread + i][row_idx]);
|
| 412 |
+
}
|
| 413 |
+
|
| 414 |
+
if constexpr (kSiluAct) { // Recompute the output
|
| 415 |
+
#pragma unroll
|
| 416 |
+
for (int i = kWidth - 1 + kLPerThread; i < kWidth - 1 + kLPerThread + kWidth - 1; ++i) {
|
| 417 |
+
x_vals[i] = float(x_smem[col_idx * kLPerThread + i][row_idx]);
|
| 418 |
+
}
|
| 419 |
+
#pragma unroll
|
| 420 |
+
for (int i = 0; i < kLPerThread + kWidth - 1; ++i) {
|
| 421 |
+
float out_val = bias_val;
|
| 422 |
+
#pragma unroll
|
| 423 |
+
for (int w = 0; w < kWidth; ++w) { out_val += weight_vals[w] * x_vals[i + w]; }
|
| 424 |
+
float out_val_sigmoid = 1.f / (1.f + expf(-out_val));
|
| 425 |
+
dout_vals[i] *= out_val_sigmoid * (1 + out_val * (1 - out_val_sigmoid));
|
| 426 |
+
}
|
| 427 |
+
}
|
| 428 |
+
|
| 429 |
+
float dweight_vals[kWidth] = {0};
|
| 430 |
+
SumOp<float> sum_op;
|
| 431 |
+
#pragma unroll
|
| 432 |
+
for (int w = 0; w < kWidth; ++w) {
|
| 433 |
+
#pragma unroll
|
| 434 |
+
for (int i = 0; i < kLPerThread; ++i) { dweight_vals[w] += x_vals[i + w] * dout_vals[i]; }
|
| 435 |
+
dweight_vals[w] = Allreduce<kNThreadsPerRow>::run(dweight_vals[w], sum_op);
|
| 436 |
+
if (col_idx == 0 && chunk_c_id * kChunkSizeC + row_idx < params.dim) {
|
| 437 |
+
atomicAdd(&reinterpret_cast<float *>(dweight)[row_idx * params.dweight_c_stride + w * params.dweight_width_stride], dweight_vals[w]);
|
| 438 |
+
}
|
| 439 |
+
}
|
| 440 |
+
|
| 441 |
+
if (params.bias_ptr != nullptr) {
|
| 442 |
+
float dbias_val = 0.f;
|
| 443 |
+
for (int i = 0; i < kLPerThread; ++i) { dbias_val += dout_vals[i]; }
|
| 444 |
+
dbias_val = Allreduce<kNThreadsPerRow>::run(dbias_val, sum_op);
|
| 445 |
+
if (col_idx == 0 && chunk_c_id * kChunkSizeC + row_idx < params.dim) {
|
| 446 |
+
atomicAdd(&reinterpret_cast<float *>(params.dbias_ptr)[chunk_c_id * kChunkSizeC + row_idx], dbias_val);
|
| 447 |
+
}
|
| 448 |
+
}
|
| 449 |
+
|
| 450 |
+
float dx_vals[kLPerThread] = {0};
|
| 451 |
+
#pragma unroll
|
| 452 |
+
for (int i = 0; i < kLPerThread; ++i) {
|
| 453 |
+
#pragma unroll
|
| 454 |
+
for (int w = 0; w < kWidth; ++w) { dx_vals[i] += weight_vals[kWidth - 1 - w] * dout_vals[i + w]; }
|
| 455 |
+
}
|
| 456 |
+
// Since kNThreadsPerRow is a power of 2 and <= 32, we only need syncwarp and not syncthreads.
|
| 457 |
+
__syncwarp();
|
| 458 |
+
#pragma unroll
|
| 459 |
+
for (int i = 0; i < kLPerThread; ++i) { x_smem[col_idx * kLPerThread + i][row_idx] = dx_vals[i]; }
|
| 460 |
+
__syncthreads();
|
| 461 |
+
|
| 462 |
+
#pragma unroll
|
| 463 |
+
for (int l = 0; l < Ktraits::kNLoads; ++l) {
|
| 464 |
+
input_t dx_vals_store[kNElts];
|
| 465 |
+
reinterpret_cast<vec_t *>(dx_vals_store)[0] = reinterpret_cast<vec_t *>(x_smem[l * kLPerLoad + l_idx])[c_idx];
|
| 466 |
+
if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen
|
| 467 |
+
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
|
| 468 |
+
*reinterpret_cast<vec_t *>(dx + l * kLPerLoad * params.dx_l_stride) = reinterpret_cast<vec_t *>(dx_vals_store)[0];
|
| 469 |
+
}
|
| 470 |
+
}
|
| 471 |
+
|
| 472 |
+
}
|
| 473 |
+
|
| 474 |
+
template<int kNThreads, int kWidth, typename input_t, typename weight_t>
|
| 475 |
+
void causal_conv1d_channellast_bwd_launch(ConvParamsBwd ¶ms, cudaStream_t stream) {
|
| 476 |
+
BOOL_SWITCH(params.silu_activation, kSiluAct, [&] {
|
| 477 |
+
using Ktraits = Causal_conv1d_channellast_bwd_kernel_traits<kNThreads, kWidth, 64, kSiluAct, true, input_t, weight_t>;
|
| 478 |
+
// constexpr int kSmemSize = Ktraits::kSmemSize;
|
| 479 |
+
constexpr int kChunkSizeL = Ktraits::kChunkSizeL;
|
| 480 |
+
constexpr int kChunkSizeC = Ktraits::kNEltsPerRow;
|
| 481 |
+
const int n_chunks_L = (params.seqlen + kChunkSizeL - 1) / kChunkSizeL;
|
| 482 |
+
const int n_chunks_C = (params.dim + kChunkSizeC - 1) / kChunkSizeC;
|
| 483 |
+
dim3 grid(params.batch, n_chunks_L, n_chunks_C);
|
| 484 |
+
dim3 block(Ktraits::kNThreads);
|
| 485 |
+
auto kernel = &causal_conv1d_channellast_bwd_kernel<Ktraits>;
|
| 486 |
+
// if (kSmemSize >= 48 * 1024) {
|
| 487 |
+
// C10_CUDA_CHECK(cudaFuncSetAttribute(
|
| 488 |
+
// kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
|
| 489 |
+
// }
|
| 490 |
+
// kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
|
| 491 |
+
kernel<<<grid, Ktraits::kNThreads, 0, stream>>>(params);
|
| 492 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
| 493 |
+
});
|
| 494 |
+
}
|
| 495 |
+
|
| 496 |
+
template<typename input_t, typename weight_t>
|
| 497 |
+
void causal_conv1d_channellast_bwd_cuda(ConvParamsBwd ¶ms, cudaStream_t stream) {
|
| 498 |
+
if (params.width == 2) {
|
| 499 |
+
causal_conv1d_channellast_bwd_launch<128, 2, input_t, weight_t>(params, stream);
|
| 500 |
+
} else if (params.width == 3) {
|
| 501 |
+
causal_conv1d_channellast_bwd_launch<128, 3, input_t, weight_t>(params, stream);
|
| 502 |
+
} else if (params.width == 4) {
|
| 503 |
+
causal_conv1d_channellast_bwd_launch<128, 4, input_t, weight_t>(params, stream);
|
| 504 |
+
}
|
| 505 |
+
}
|
| 506 |
+
|
| 507 |
+
template void causal_conv1d_bwd_cuda<float, float>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
| 508 |
+
template void causal_conv1d_bwd_cuda<at::Half, float>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
| 509 |
+
template void causal_conv1d_bwd_cuda<at::BFloat16, float>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
| 510 |
+
template void causal_conv1d_bwd_cuda<float, at::Half>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
| 511 |
+
template void causal_conv1d_bwd_cuda<at::Half, at::Half>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
| 512 |
+
template void causal_conv1d_bwd_cuda<at::BFloat16, at::Half>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
| 513 |
+
template void causal_conv1d_bwd_cuda<float, at::BFloat16>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
| 514 |
+
template void causal_conv1d_bwd_cuda<at::Half, at::BFloat16>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
| 515 |
+
template void causal_conv1d_bwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
| 516 |
+
|
| 517 |
+
template void causal_conv1d_channellast_bwd_cuda<float, float>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
| 518 |
+
template void causal_conv1d_channellast_bwd_cuda<at::Half, float>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
| 519 |
+
template void causal_conv1d_channellast_bwd_cuda<at::BFloat16, float>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
| 520 |
+
template void causal_conv1d_channellast_bwd_cuda<float, at::Half>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
| 521 |
+
template void causal_conv1d_channellast_bwd_cuda<at::Half, at::Half>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
| 522 |
+
template void causal_conv1d_channellast_bwd_cuda<at::BFloat16, at::Half>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
| 523 |
+
template void causal_conv1d_channellast_bwd_cuda<float, at::BFloat16>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
| 524 |
+
template void causal_conv1d_channellast_bwd_cuda<at::Half, at::BFloat16>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
| 525 |
+
template void causal_conv1d_channellast_bwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
SegMamba/causal-conv1d/csrc/causal_conv1d_common.h
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/******************************************************************************
|
| 2 |
+
* Copyright (c) 2023, Tri Dao.
|
| 3 |
+
******************************************************************************/
|
| 4 |
+
|
| 5 |
+
#pragma once
|
| 6 |
+
|
| 7 |
+
#include <cuda_bf16.h>
|
| 8 |
+
#include <cuda_fp16.h>
|
| 9 |
+
|
| 10 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 11 |
+
|
| 12 |
+
template<int BYTES> struct BytesToType {};
|
| 13 |
+
|
| 14 |
+
template<> struct BytesToType<16> {
|
| 15 |
+
using Type = uint4;
|
| 16 |
+
static_assert(sizeof(Type) == 16);
|
| 17 |
+
};
|
| 18 |
+
|
| 19 |
+
template<> struct BytesToType<8> {
|
| 20 |
+
using Type = uint64_t;
|
| 21 |
+
static_assert(sizeof(Type) == 8);
|
| 22 |
+
};
|
| 23 |
+
|
| 24 |
+
template<> struct BytesToType<4> {
|
| 25 |
+
using Type = uint32_t;
|
| 26 |
+
static_assert(sizeof(Type) == 4);
|
| 27 |
+
};
|
| 28 |
+
|
| 29 |
+
template<> struct BytesToType<2> {
|
| 30 |
+
using Type = uint16_t;
|
| 31 |
+
static_assert(sizeof(Type) == 2);
|
| 32 |
+
};
|
| 33 |
+
|
| 34 |
+
template<> struct BytesToType<1> {
|
| 35 |
+
using Type = uint8_t;
|
| 36 |
+
static_assert(sizeof(Type) == 1);
|
| 37 |
+
};
|
| 38 |
+
|
| 39 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 40 |
+
|
| 41 |
+
template<typename T>
|
| 42 |
+
struct SumOp {
|
| 43 |
+
__device__ inline T operator()(T const & x, T const & y) { return x + y; }
|
| 44 |
+
};
|
| 45 |
+
|
| 46 |
+
template<int THREADS>
|
| 47 |
+
struct Allreduce {
|
| 48 |
+
static_assert(THREADS == 32 || THREADS == 16 || THREADS == 8 || THREADS == 4);
|
| 49 |
+
template<typename T, typename Operator>
|
| 50 |
+
static __device__ inline T run(T x, Operator &op) {
|
| 51 |
+
constexpr int OFFSET = THREADS / 2;
|
| 52 |
+
x = op(x, __shfl_xor_sync(uint32_t(-1), x, OFFSET));
|
| 53 |
+
return Allreduce<OFFSET>::run(x, op);
|
| 54 |
+
}
|
| 55 |
+
};
|
| 56 |
+
|
| 57 |
+
template<>
|
| 58 |
+
struct Allreduce<2> {
|
| 59 |
+
template<typename T, typename Operator>
|
| 60 |
+
static __device__ inline T run(T x, Operator &op) {
|
| 61 |
+
x = op(x, __shfl_xor_sync(uint32_t(-1), x, 1));
|
| 62 |
+
return x;
|
| 63 |
+
}
|
| 64 |
+
};
|
SegMamba/causal-conv1d/csrc/causal_conv1d_fwd.cu
ADDED
|
@@ -0,0 +1,350 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/******************************************************************************
|
| 2 |
+
* Copyright (c) 2023, Tri Dao.
|
| 3 |
+
******************************************************************************/
|
| 4 |
+
|
| 5 |
+
#include <c10/util/BFloat16.h>
|
| 6 |
+
#include <c10/util/Half.h>
|
| 7 |
+
#include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
|
| 8 |
+
|
| 9 |
+
#include <cub/block/block_load.cuh>
|
| 10 |
+
#include <cub/block/block_store.cuh>
|
| 11 |
+
|
| 12 |
+
#include "causal_conv1d.h"
|
| 13 |
+
#include "causal_conv1d_common.h"
|
| 14 |
+
#include "static_switch.h"
|
| 15 |
+
|
| 16 |
+
template<int kNThreads_, int kWidth_, bool kIsVecLoad_, typename input_t_, typename weight_t_>
|
| 17 |
+
struct Causal_conv1d_fwd_kernel_traits {
|
| 18 |
+
using input_t = input_t_;
|
| 19 |
+
using weight_t = weight_t_;
|
| 20 |
+
static constexpr int kNThreads = kNThreads_;
|
| 21 |
+
static constexpr int kWidth = kWidth_;
|
| 22 |
+
static constexpr int kNBytes = sizeof(input_t);
|
| 23 |
+
static_assert(kNBytes == 2 || kNBytes == 4);
|
| 24 |
+
static constexpr int kNElts = kNBytes == 4 ? 4 : 8;
|
| 25 |
+
static_assert(kWidth <= kNElts);
|
| 26 |
+
static constexpr bool kIsVecLoad = kIsVecLoad_;
|
| 27 |
+
using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
|
| 28 |
+
using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNElts, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
|
| 29 |
+
using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, 1, cub::BLOCK_LOAD_DIRECT>;
|
| 30 |
+
using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNElts, cub::BLOCK_STORE_WARP_TRANSPOSE>;
|
| 31 |
+
using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, 1, cub::BLOCK_STORE_DIRECT>;
|
| 32 |
+
static constexpr int kSmemIOSize = kIsVecLoad
|
| 33 |
+
? 0
|
| 34 |
+
: std::max({sizeof(typename BlockLoadT::TempStorage), sizeof(typename BlockStoreT::TempStorage)});
|
| 35 |
+
static constexpr int kSmemExchangeSize = kNThreads * kNBytes * kNElts;
|
| 36 |
+
static constexpr int kSmemSize = kSmemIOSize + kSmemExchangeSize;
|
| 37 |
+
};
|
| 38 |
+
|
| 39 |
+
template<typename Ktraits>
|
| 40 |
+
__global__ __launch_bounds__(Ktraits::kNThreads)
|
| 41 |
+
void causal_conv1d_fwd_kernel(ConvParamsBase params) {
|
| 42 |
+
constexpr int kWidth = Ktraits::kWidth;
|
| 43 |
+
constexpr int kNThreads = Ktraits::kNThreads;
|
| 44 |
+
constexpr int kNElts = Ktraits::kNElts;
|
| 45 |
+
constexpr bool kIsVecLoad = Ktraits::kIsVecLoad;
|
| 46 |
+
using input_t = typename Ktraits::input_t;
|
| 47 |
+
using vec_t = typename Ktraits::vec_t;
|
| 48 |
+
using weight_t = typename Ktraits::weight_t;
|
| 49 |
+
|
| 50 |
+
// Shared memory.
|
| 51 |
+
extern __shared__ char smem_[];
|
| 52 |
+
auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
|
| 53 |
+
auto& smem_load_vec = reinterpret_cast<typename Ktraits::BlockLoadVecT::TempStorage&>(smem_);
|
| 54 |
+
auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
|
| 55 |
+
auto& smem_store_vec = reinterpret_cast<typename Ktraits::BlockStoreVecT::TempStorage&>(smem_);
|
| 56 |
+
vec_t *smem_exchange = reinterpret_cast<vec_t *>(smem_ + Ktraits::kSmemIOSize);
|
| 57 |
+
|
| 58 |
+
const int tidx = threadIdx.x;
|
| 59 |
+
const int batch_id = blockIdx.x;
|
| 60 |
+
const int channel_id = blockIdx.y;
|
| 61 |
+
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
|
| 62 |
+
+ channel_id * params.x_c_stride;
|
| 63 |
+
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr) + channel_id * params.weight_c_stride;
|
| 64 |
+
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
|
| 65 |
+
+ channel_id * params.out_c_stride;
|
| 66 |
+
float bias_val = params.bias_ptr == nullptr ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[channel_id]);
|
| 67 |
+
|
| 68 |
+
// Thread 0 will load the last elements of the previous chunk, so we initialize those to 0.
|
| 69 |
+
if (tidx == 0) {
|
| 70 |
+
input_t zeros[kNElts] = {0};
|
| 71 |
+
smem_exchange[kNThreads - 1] = reinterpret_cast<vec_t *>(zeros)[0];
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
float weight_vals[kWidth];
|
| 75 |
+
#pragma unroll
|
| 76 |
+
for (int i = 0; i < kWidth; ++i) { weight_vals[i] = float(weight[i * params.weight_width_stride]); }
|
| 77 |
+
|
| 78 |
+
constexpr int kChunkSize = kNThreads * kNElts;
|
| 79 |
+
const int n_chunks = (params.seqlen + kChunkSize - 1) / kChunkSize;
|
| 80 |
+
for (int chunk = 0; chunk < n_chunks; ++chunk) {
|
| 81 |
+
input_t x_vals_load[2 * kNElts] = {0};
|
| 82 |
+
if constexpr(kIsVecLoad) {
|
| 83 |
+
Ktraits::BlockLoadVecT(smem_load_vec).Load(reinterpret_cast<vec_t*>(x), *reinterpret_cast<vec_t (*)[1]>(&x_vals_load[kNElts]), (params.seqlen - chunk * kChunkSize) / kNElts);
|
| 84 |
+
} else {
|
| 85 |
+
__syncthreads();
|
| 86 |
+
Ktraits::BlockLoadT(smem_load).Load(x, *reinterpret_cast<input_t (*)[kNElts]>(&x_vals_load[kNElts]), params.seqlen - chunk * kChunkSize);
|
| 87 |
+
}
|
| 88 |
+
x += kChunkSize;
|
| 89 |
+
__syncthreads();
|
| 90 |
+
// Thread kNThreads - 1 don't write yet, so that thread 0 can read
|
| 91 |
+
// the last elements of the previous chunk.
|
| 92 |
+
if (tidx < kNThreads - 1) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1]; }
|
| 93 |
+
__syncthreads();
|
| 94 |
+
reinterpret_cast<vec_t *>(x_vals_load)[0] = smem_exchange[tidx > 0 ? tidx - 1 : kNThreads - 1];
|
| 95 |
+
__syncthreads();
|
| 96 |
+
// Now thread kNThreads - 1 can write the last elements of the current chunk.
|
| 97 |
+
if (tidx == kNThreads - 1) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1]; }
|
| 98 |
+
|
| 99 |
+
float x_vals[2 * kNElts];
|
| 100 |
+
#pragma unroll
|
| 101 |
+
for (int i = 0; i < 2 * kNElts; ++i) { x_vals[i] = float(x_vals_load[i]); }
|
| 102 |
+
|
| 103 |
+
float out_vals[kNElts];
|
| 104 |
+
#pragma unroll
|
| 105 |
+
for (int i = 0; i < kNElts; ++i) {
|
| 106 |
+
out_vals[i] = bias_val;
|
| 107 |
+
#pragma unroll
|
| 108 |
+
for (int w = 0; w < kWidth; ++w) {
|
| 109 |
+
out_vals[i] += weight_vals[w] * x_vals[kNElts + i - (kWidth - w - 1)];
|
| 110 |
+
}
|
| 111 |
+
}
|
| 112 |
+
|
| 113 |
+
if (params.silu_activation) {
|
| 114 |
+
#pragma unroll
|
| 115 |
+
for (int i = 0; i < kNElts; ++i) {
|
| 116 |
+
out_vals[i] = out_vals[i] / (1 + expf(-out_vals[i]));
|
| 117 |
+
}
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
input_t out_vals_store[kNElts];
|
| 121 |
+
#pragma unroll
|
| 122 |
+
for (int i = 0; i < kNElts; ++i) { out_vals_store[i] = out_vals[i]; }
|
| 123 |
+
if constexpr(kIsVecLoad) {
|
| 124 |
+
Ktraits::BlockStoreVecT(smem_store_vec).Store(reinterpret_cast<vec_t*>(out), reinterpret_cast<vec_t (&)[1]>(out_vals_store), (params.seqlen - chunk * kChunkSize) / kNElts);
|
| 125 |
+
} else {
|
| 126 |
+
Ktraits::BlockStoreT(smem_store).Store(out, out_vals_store, params.seqlen - chunk * kChunkSize);
|
| 127 |
+
}
|
| 128 |
+
out += kChunkSize;
|
| 129 |
+
}
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
template<int kNThreads, int kWidth, typename input_t, typename weight_t>
|
| 133 |
+
void causal_conv1d_fwd_launch(ConvParamsBase ¶ms, cudaStream_t stream) {
|
| 134 |
+
static constexpr int kNElts = sizeof(input_t) == 4 ? 4 : 8;
|
| 135 |
+
BOOL_SWITCH(params.seqlen % kNElts == 0, kIsVecLoad, [&] {
|
| 136 |
+
using Ktraits = Causal_conv1d_fwd_kernel_traits<kNThreads, kWidth, kIsVecLoad, input_t, weight_t>;
|
| 137 |
+
constexpr int kSmemSize = Ktraits::kSmemSize;
|
| 138 |
+
dim3 grid(params.batch, params.dim);
|
| 139 |
+
auto kernel = &causal_conv1d_fwd_kernel<Ktraits>;
|
| 140 |
+
if (kSmemSize >= 48 * 1024) {
|
| 141 |
+
C10_CUDA_CHECK(cudaFuncSetAttribute(
|
| 142 |
+
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
|
| 143 |
+
}
|
| 144 |
+
kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
|
| 145 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
| 146 |
+
});
|
| 147 |
+
}
|
| 148 |
+
|
| 149 |
+
template<typename input_t, typename weight_t>
|
| 150 |
+
void causal_conv1d_fwd_cuda(ConvParamsBase ¶ms, cudaStream_t stream) {
|
| 151 |
+
if (params.width == 2) {
|
| 152 |
+
causal_conv1d_fwd_launch<128, 2, input_t, weight_t>(params, stream);
|
| 153 |
+
} else if (params.width == 3) {
|
| 154 |
+
causal_conv1d_fwd_launch<128, 3, input_t, weight_t>(params, stream);
|
| 155 |
+
} else if (params.width == 4) {
|
| 156 |
+
causal_conv1d_fwd_launch<128, 4, input_t, weight_t>(params, stream);
|
| 157 |
+
}
|
| 158 |
+
}
|
| 159 |
+
|
| 160 |
+
template<int kNThreads_, int kWidth_, int kChunkSizeL_, bool kIsVecLoad_, typename input_t_, typename weight_t_>
|
| 161 |
+
struct Causal_conv1d_channellast_fwd_kernel_traits {
|
| 162 |
+
// The cache line is 128 bytes, and we try to read 16 bytes per thread.
|
| 163 |
+
// So we have 8 threads per "row", so 32 or 64 elements in the channel dimension.
|
| 164 |
+
// That leaves 4 columns per warp, and so 16 columns per block (assuming each block has 128
|
| 165 |
+
// threads). Each each load is 16 x 32|64 elements in the L x C dimensions.
|
| 166 |
+
using input_t = input_t_;
|
| 167 |
+
using weight_t = weight_t_;
|
| 168 |
+
static constexpr int kNThreads = kNThreads_;
|
| 169 |
+
static_assert(kNThreads % 32 == 0);
|
| 170 |
+
static constexpr int kNWarps = kNThreads / 32;
|
| 171 |
+
static constexpr int kWidth = kWidth_;
|
| 172 |
+
static constexpr int kChunkSizeL = kChunkSizeL_;
|
| 173 |
+
static constexpr int kNBytes = sizeof(input_t);
|
| 174 |
+
static_assert(kNBytes == 2 || kNBytes == 4);
|
| 175 |
+
static constexpr int kNElts = kNBytes == 4 ? 4 : 8;
|
| 176 |
+
static constexpr int kNEltsPerRow = 128 / kNBytes;
|
| 177 |
+
static constexpr int kNThreadsPerRow = kNEltsPerRow / kNElts; // Always 8 for now
|
| 178 |
+
static_assert(kNThreadsPerRow * kNBytes * kNElts == 128);
|
| 179 |
+
static constexpr int kNColsPerWarp = 32 / kNThreadsPerRow; // Always 4 for now
|
| 180 |
+
static_assert(kNColsPerWarp * kNThreadsPerRow == 32);
|
| 181 |
+
static constexpr int kNColsPerLoad = kNColsPerWarp * kNWarps;
|
| 182 |
+
static constexpr int kNLoads = kChunkSizeL / kNColsPerLoad;
|
| 183 |
+
static_assert(kNLoads * kNColsPerLoad == kChunkSizeL);
|
| 184 |
+
static constexpr bool kIsVecLoad = kIsVecLoad_;
|
| 185 |
+
using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
|
| 186 |
+
// using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
|
| 187 |
+
// using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>;
|
| 188 |
+
// static constexpr int kSmemSize = std::max({sizeof(typename BlockLoadT::TempStorage),
|
| 189 |
+
// sizeof(typename BlockStoreT::TempStorage)});
|
| 190 |
+
// static constexpr int kSmemSize = kChunkSizeL * kNEltsPerRow * kNBytes;
|
| 191 |
+
};
|
| 192 |
+
|
| 193 |
+
template<typename Ktraits>
|
| 194 |
+
__global__ __launch_bounds__(Ktraits::kNThreads)
|
| 195 |
+
void causal_conv1d_channellast_fwd_kernel(ConvParamsBase params) {
|
| 196 |
+
constexpr int kWidth = Ktraits::kWidth;
|
| 197 |
+
constexpr int kNThreads = Ktraits::kNThreads;
|
| 198 |
+
constexpr int kNElts = Ktraits::kNElts;
|
| 199 |
+
constexpr int kNWarp = Ktraits::kNWarps;
|
| 200 |
+
constexpr int kNThreadsPerC = Ktraits::kNThreadsPerRow;
|
| 201 |
+
constexpr int kLPerLoad = Ktraits::kNColsPerLoad;
|
| 202 |
+
constexpr int kChunkSizeL = Ktraits::kChunkSizeL;
|
| 203 |
+
constexpr int kChunkSizeC = Ktraits::kNEltsPerRow;
|
| 204 |
+
using input_t = typename Ktraits::input_t;
|
| 205 |
+
using vec_t = typename Ktraits::vec_t;
|
| 206 |
+
using weight_t = typename Ktraits::weight_t;
|
| 207 |
+
|
| 208 |
+
// Shared memory.
|
| 209 |
+
__shared__ input_t x_smem[kWidth - 1 + kChunkSizeL][kChunkSizeC + kNElts];
|
| 210 |
+
|
| 211 |
+
const int tid = threadIdx.x;
|
| 212 |
+
const int l_idx = tid / kNThreadsPerC;
|
| 213 |
+
const int c_idx = tid % kNThreadsPerC;
|
| 214 |
+
const int batch_id = blockIdx.x;
|
| 215 |
+
const int chunk_l_id = blockIdx.y;
|
| 216 |
+
const int chunk_c_id = blockIdx.z;
|
| 217 |
+
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
|
| 218 |
+
+ (chunk_l_id * kChunkSizeL + l_idx) * params.x_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
|
| 219 |
+
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr)
|
| 220 |
+
+ chunk_c_id * kChunkSizeC * params.weight_c_stride;
|
| 221 |
+
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
|
| 222 |
+
+ (chunk_l_id * kChunkSizeL + l_idx) * params.out_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
|
| 223 |
+
|
| 224 |
+
#pragma unroll
|
| 225 |
+
for (int l = 0; l < Ktraits::kNLoads; ++l) {
|
| 226 |
+
input_t x_vals_load[kNElts] = {0};
|
| 227 |
+
if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen
|
| 228 |
+
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
|
| 229 |
+
reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x + l * kLPerLoad * params.x_l_stride);
|
| 230 |
+
}
|
| 231 |
+
reinterpret_cast<vec_t *>(x_smem[kWidth - 1 + l * kLPerLoad + l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0];
|
| 232 |
+
}
|
| 233 |
+
// Load the elements from the previous chunk that are needed for convolution.
|
| 234 |
+
if (l_idx < kWidth - 1) {
|
| 235 |
+
input_t x_vals_load[kNElts] = {0};
|
| 236 |
+
if (chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) >= 0
|
| 237 |
+
&& chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) < params.seqlen
|
| 238 |
+
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
|
| 239 |
+
reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x - (kWidth - 1) * params.x_l_stride);
|
| 240 |
+
}
|
| 241 |
+
reinterpret_cast<vec_t *>(x_smem[l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0];
|
| 242 |
+
}
|
| 243 |
+
|
| 244 |
+
__syncthreads();
|
| 245 |
+
|
| 246 |
+
constexpr int kLPerThread = std::min(kChunkSizeL * kChunkSizeC / kNThreads, kChunkSizeL);
|
| 247 |
+
static_assert(kLPerThread * kNThreads == kChunkSizeL * kChunkSizeC);
|
| 248 |
+
constexpr int kNThreadsPerRow = kChunkSizeL / kLPerThread;
|
| 249 |
+
static_assert(kNThreadsPerRow * kLPerThread == kChunkSizeL);
|
| 250 |
+
// kChunkSizeL, kLPerThread, kNThreadsPerRow should be powers of 2 for simplicity
|
| 251 |
+
static_assert((kChunkSizeL & (kChunkSizeL - 1)) == 0);
|
| 252 |
+
static_assert((kLPerThread & (kLPerThread - 1)) == 0);
|
| 253 |
+
static_assert((kNThreadsPerRow & (kNThreadsPerRow - 1)) == 0);
|
| 254 |
+
static_assert(kNThreadsPerRow <= 32);
|
| 255 |
+
|
| 256 |
+
const int row_idx = tid / kNThreadsPerRow;
|
| 257 |
+
const int col_idx = tid % kNThreadsPerRow;
|
| 258 |
+
|
| 259 |
+
float bias_val = params.bias_ptr == nullptr || chunk_c_id * kChunkSizeC + row_idx >= params.dim ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[chunk_c_id * kChunkSizeC + row_idx]);
|
| 260 |
+
float weight_vals[kWidth] = {0};
|
| 261 |
+
if (chunk_c_id + kChunkSizeC + row_idx < params.dim) {
|
| 262 |
+
#pragma unroll
|
| 263 |
+
for (int w = 0; w < kWidth; ++w) {
|
| 264 |
+
weight_vals[w] = weight[row_idx * params.weight_c_stride + w * params.weight_width_stride];
|
| 265 |
+
}
|
| 266 |
+
}
|
| 267 |
+
float x_vals[kWidth - 1 + kLPerThread];
|
| 268 |
+
#pragma unroll
|
| 269 |
+
for (int i = 0; i < kWidth - 1 + kLPerThread; ++i) {
|
| 270 |
+
x_vals[i] = float(x_smem[col_idx * kLPerThread + i][row_idx]);
|
| 271 |
+
}
|
| 272 |
+
|
| 273 |
+
float out_vals[kLPerThread];
|
| 274 |
+
#pragma unroll
|
| 275 |
+
for (int i = 0; i < kLPerThread; ++i) {
|
| 276 |
+
out_vals[i] = bias_val;
|
| 277 |
+
#pragma unroll
|
| 278 |
+
for (int w = 0; w < kWidth; ++w) { out_vals[i] += weight_vals[w] * x_vals[i + w]; }
|
| 279 |
+
if (params.silu_activation) {out_vals[i] = out_vals[i] / (1 + expf(-out_vals[i])); }
|
| 280 |
+
}
|
| 281 |
+
|
| 282 |
+
// Since kNThreadsPerRow is a power of 2 and <= 32, we only need syncwarp and not syncthreads.
|
| 283 |
+
__syncwarp();
|
| 284 |
+
#pragma unroll
|
| 285 |
+
for (int i = 0; i < kLPerThread; ++i) { x_smem[col_idx * kLPerThread + i][row_idx] = out_vals[i]; }
|
| 286 |
+
__syncthreads();
|
| 287 |
+
|
| 288 |
+
#pragma unroll
|
| 289 |
+
for (int l = 0; l < Ktraits::kNLoads; ++l) {
|
| 290 |
+
input_t out_vals_store[kNElts];
|
| 291 |
+
reinterpret_cast<vec_t *>(out_vals_store)[0] = reinterpret_cast<vec_t *>(x_smem[l * kLPerLoad + l_idx])[c_idx];
|
| 292 |
+
if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen
|
| 293 |
+
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
|
| 294 |
+
*reinterpret_cast<vec_t *>(out + l * kLPerLoad * params.out_l_stride) = reinterpret_cast<vec_t *>(out_vals_store)[0];
|
| 295 |
+
}
|
| 296 |
+
}
|
| 297 |
+
|
| 298 |
+
}
|
| 299 |
+
|
| 300 |
+
template<int kNThreads, int kWidth, typename input_t, typename weight_t>
|
| 301 |
+
void causal_conv1d_channellast_fwd_launch(ConvParamsBase ¶ms, cudaStream_t stream) {
|
| 302 |
+
using Ktraits = Causal_conv1d_channellast_fwd_kernel_traits<kNThreads, kWidth, 64, true, input_t, weight_t>;
|
| 303 |
+
// constexpr int kSmemSize = Ktraits::kSmemSize;
|
| 304 |
+
constexpr int kChunkSizeL = Ktraits::kChunkSizeL;
|
| 305 |
+
constexpr int kChunkSizeC = Ktraits::kNEltsPerRow;
|
| 306 |
+
const int n_chunks_L = (params.seqlen + kChunkSizeL - 1) / kChunkSizeL;
|
| 307 |
+
const int n_chunks_C = (params.dim + kChunkSizeC - 1) / kChunkSizeC;
|
| 308 |
+
// printf("n_chunks_L: %d, n_chunks_C: %d\n", n_chunks_L, n_chunks_C);
|
| 309 |
+
dim3 grid(params.batch, n_chunks_L, n_chunks_C);
|
| 310 |
+
dim3 block(Ktraits::kNThreads);
|
| 311 |
+
auto kernel = &causal_conv1d_channellast_fwd_kernel<Ktraits>;
|
| 312 |
+
// if (kSmemSize >= 48 * 1024) {
|
| 313 |
+
// C10_CUDA_CHECK(cudaFuncSetAttribute(
|
| 314 |
+
// kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
|
| 315 |
+
// }
|
| 316 |
+
// kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
|
| 317 |
+
kernel<<<grid, Ktraits::kNThreads, 0, stream>>>(params);
|
| 318 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
| 319 |
+
}
|
| 320 |
+
|
| 321 |
+
template<typename input_t, typename weight_t>
|
| 322 |
+
void causal_conv1d_channellast_fwd_cuda(ConvParamsBase ¶ms, cudaStream_t stream) {
|
| 323 |
+
if (params.width == 2) {
|
| 324 |
+
causal_conv1d_channellast_fwd_launch<128, 2, input_t, weight_t>(params, stream);
|
| 325 |
+
} else if (params.width == 3) {
|
| 326 |
+
causal_conv1d_channellast_fwd_launch<128, 3, input_t, weight_t>(params, stream);
|
| 327 |
+
} else if (params.width == 4) {
|
| 328 |
+
causal_conv1d_channellast_fwd_launch<128, 4, input_t, weight_t>(params, stream);
|
| 329 |
+
}
|
| 330 |
+
}
|
| 331 |
+
|
| 332 |
+
template void causal_conv1d_fwd_cuda<float, float>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 333 |
+
template void causal_conv1d_fwd_cuda<at::Half, float>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 334 |
+
template void causal_conv1d_fwd_cuda<at::BFloat16, float>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 335 |
+
template void causal_conv1d_fwd_cuda<float, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 336 |
+
template void causal_conv1d_fwd_cuda<at::Half, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 337 |
+
template void causal_conv1d_fwd_cuda<at::BFloat16, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 338 |
+
template void causal_conv1d_fwd_cuda<float, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 339 |
+
template void causal_conv1d_fwd_cuda<at::Half, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 340 |
+
template void causal_conv1d_fwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 341 |
+
|
| 342 |
+
template void causal_conv1d_channellast_fwd_cuda<float, float>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 343 |
+
template void causal_conv1d_channellast_fwd_cuda<at::Half, float>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 344 |
+
template void causal_conv1d_channellast_fwd_cuda<at::BFloat16, float>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 345 |
+
template void causal_conv1d_channellast_fwd_cuda<float, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 346 |
+
template void causal_conv1d_channellast_fwd_cuda<at::Half, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 347 |
+
template void causal_conv1d_channellast_fwd_cuda<at::BFloat16, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 348 |
+
template void causal_conv1d_channellast_fwd_cuda<float, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 349 |
+
template void causal_conv1d_channellast_fwd_cuda<at::Half, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 350 |
+
template void causal_conv1d_channellast_fwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
|
SegMamba/causal-conv1d/csrc/causal_conv1d_update.cu
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/******************************************************************************
|
| 2 |
+
* Copyright (c) 2023, Tri Dao.
|
| 3 |
+
******************************************************************************/
|
| 4 |
+
|
| 5 |
+
#include <c10/util/BFloat16.h>
|
| 6 |
+
#include <c10/util/Half.h>
|
| 7 |
+
#include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
|
| 8 |
+
|
| 9 |
+
#include <cub/block/block_load.cuh>
|
| 10 |
+
#include <cub/block/block_store.cuh>
|
| 11 |
+
|
| 12 |
+
#include "causal_conv1d.h"
|
| 13 |
+
#include "causal_conv1d_common.h"
|
| 14 |
+
#include "static_switch.h"
|
| 15 |
+
|
| 16 |
+
template<int kNThreads_, int kWidth_, typename input_t_, typename weight_t_>
|
| 17 |
+
struct Causal_conv1d_update_kernel_traits {
|
| 18 |
+
using input_t = input_t_;
|
| 19 |
+
using weight_t = weight_t_;
|
| 20 |
+
static constexpr int kNThreads = kNThreads_;
|
| 21 |
+
static constexpr int kWidth = kWidth_;
|
| 22 |
+
static constexpr int kNBytes = sizeof(input_t);
|
| 23 |
+
static_assert(kNBytes == 2 || kNBytes == 4);
|
| 24 |
+
};
|
| 25 |
+
|
| 26 |
+
template<typename Ktraits>
|
| 27 |
+
__global__ __launch_bounds__(Ktraits::kNThreads)
|
| 28 |
+
void causal_conv1d_update_kernel(ConvParamsBase params) {
|
| 29 |
+
constexpr int kWidth = Ktraits::kWidth;
|
| 30 |
+
constexpr int kNThreads = Ktraits::kNThreads;
|
| 31 |
+
using input_t = typename Ktraits::input_t;
|
| 32 |
+
using weight_t = typename Ktraits::weight_t;
|
| 33 |
+
|
| 34 |
+
const int tidx = threadIdx.x;
|
| 35 |
+
const int batch_id = blockIdx.x;
|
| 36 |
+
const int channel_id = blockIdx.y * kNThreads + tidx;
|
| 37 |
+
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
|
| 38 |
+
+ channel_id * params.x_c_stride;
|
| 39 |
+
input_t *conv_state = reinterpret_cast<input_t *>(params.conv_state_ptr) + batch_id * params.conv_state_batch_stride
|
| 40 |
+
+ channel_id * params.conv_state_c_stride;
|
| 41 |
+
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr) + channel_id * params.weight_c_stride;
|
| 42 |
+
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
|
| 43 |
+
+ channel_id * params.out_c_stride;
|
| 44 |
+
float bias_val = params.bias_ptr == nullptr || channel_id >= params.dim ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[channel_id]);
|
| 45 |
+
|
| 46 |
+
float weight_vals[kWidth] = {0};
|
| 47 |
+
if (channel_id < params.dim) {
|
| 48 |
+
#pragma unroll
|
| 49 |
+
for (int i = 0; i < kWidth; ++i) { weight_vals[i] = float(weight[i * params.weight_width_stride]); }
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
float x_vals[kWidth] = {0};
|
| 53 |
+
if (channel_id < params.dim) {
|
| 54 |
+
#pragma unroll
|
| 55 |
+
for (int i = 0; i < kWidth - 1; ++i) { x_vals[i] = float(conv_state[(i + 1) * params.conv_state_l_stride]); }
|
| 56 |
+
x_vals[kWidth - 1] = float(x[0]);
|
| 57 |
+
#pragma unroll
|
| 58 |
+
for (int i = 0; i < kWidth; ++i) { conv_state[i * params.conv_state_l_stride] = input_t(x_vals[i]); }
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
float out_val = bias_val;
|
| 62 |
+
#pragma unroll
|
| 63 |
+
for (int i = 0; i < kWidth; ++i) { out_val += weight_vals[i] * x_vals[i]; }
|
| 64 |
+
if (params.silu_activation) { out_val = out_val / (1 + expf(-out_val)); }
|
| 65 |
+
if (channel_id < params.dim) { out[0] = input_t(out_val); }
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
template<int kNThreads, int kWidth, typename input_t, typename weight_t>
|
| 69 |
+
void causal_conv1d_update_launch(ConvParamsBase ¶ms, cudaStream_t stream) {
|
| 70 |
+
using Ktraits = Causal_conv1d_update_kernel_traits<kNThreads, kWidth, input_t, weight_t>;
|
| 71 |
+
dim3 grid(params.batch, (params.dim + kNThreads - 1) / kNThreads);
|
| 72 |
+
auto kernel = &causal_conv1d_update_kernel<Ktraits>;
|
| 73 |
+
kernel<<<grid, Ktraits::kNThreads, 0, stream>>>(params);
|
| 74 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
template<typename input_t, typename weight_t>
|
| 78 |
+
void causal_conv1d_update_cuda(ConvParamsBase ¶ms, cudaStream_t stream) {
|
| 79 |
+
if (params.width == 2) {
|
| 80 |
+
causal_conv1d_update_launch<64, 2, input_t, weight_t>(params, stream);
|
| 81 |
+
} else if (params.width == 3) {
|
| 82 |
+
causal_conv1d_update_launch<64, 3, input_t, weight_t>(params, stream);
|
| 83 |
+
} else if (params.width == 4) {
|
| 84 |
+
causal_conv1d_update_launch<64, 4, input_t, weight_t>(params, stream);
|
| 85 |
+
}
|
| 86 |
+
}
|
| 87 |
+
|
| 88 |
+
template void causal_conv1d_update_cuda<float, float>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 89 |
+
template void causal_conv1d_update_cuda<at::Half, float>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 90 |
+
template void causal_conv1d_update_cuda<at::BFloat16, float>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 91 |
+
template void causal_conv1d_update_cuda<float, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 92 |
+
template void causal_conv1d_update_cuda<at::Half, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 93 |
+
template void causal_conv1d_update_cuda<at::BFloat16, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 94 |
+
template void causal_conv1d_update_cuda<float, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 95 |
+
template void causal_conv1d_update_cuda<at::Half, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
|
| 96 |
+
template void causal_conv1d_update_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
|
SegMamba/causal-conv1d/csrc/static_switch.h
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Inspired by https://github.com/NVIDIA/DALI/blob/main/include/dali/core/static_switch.h
|
| 2 |
+
// and https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/Dispatch.h
|
| 3 |
+
|
| 4 |
+
#pragma once
|
| 5 |
+
|
| 6 |
+
/// @param COND - a boolean expression to switch by
|
| 7 |
+
/// @param CONST_NAME - a name given for the constexpr bool variable.
|
| 8 |
+
/// @param ... - code to execute for true and false
|
| 9 |
+
///
|
| 10 |
+
/// Usage:
|
| 11 |
+
/// ```
|
| 12 |
+
/// BOOL_SWITCH(flag, BoolConst, [&] {
|
| 13 |
+
/// some_function<BoolConst>(...);
|
| 14 |
+
/// });
|
| 15 |
+
/// ```
|
| 16 |
+
#define BOOL_SWITCH(COND, CONST_NAME, ...) \
|
| 17 |
+
[&] { \
|
| 18 |
+
if (COND) { \
|
| 19 |
+
static constexpr bool CONST_NAME = true; \
|
| 20 |
+
return __VA_ARGS__(); \
|
| 21 |
+
} else { \
|
| 22 |
+
static constexpr bool CONST_NAME = false; \
|
| 23 |
+
return __VA_ARGS__(); \
|
| 24 |
+
} \
|
| 25 |
+
}()
|
SegMamba/causal-conv1d/setup.py
ADDED
|
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2023, Tri Dao.
|
| 2 |
+
import sys
|
| 3 |
+
import warnings
|
| 4 |
+
import os
|
| 5 |
+
import re
|
| 6 |
+
import ast
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from packaging.version import parse, Version
|
| 9 |
+
import platform
|
| 10 |
+
|
| 11 |
+
from setuptools import setup, find_packages
|
| 12 |
+
import subprocess
|
| 13 |
+
|
| 14 |
+
import urllib.request
|
| 15 |
+
import urllib.error
|
| 16 |
+
from wheel.bdist_wheel import bdist_wheel as _bdist_wheel
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
from torch.utils.cpp_extension import (
|
| 20 |
+
BuildExtension,
|
| 21 |
+
CppExtension,
|
| 22 |
+
CUDAExtension,
|
| 23 |
+
CUDA_HOME,
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
with open("README.md", "r", encoding="utf-8") as fh:
|
| 28 |
+
long_description = fh.read()
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
# ninja build does not work unless include_dirs are abs path
|
| 32 |
+
this_dir = os.path.dirname(os.path.abspath(__file__))
|
| 33 |
+
|
| 34 |
+
PACKAGE_NAME = "causal_conv1d"
|
| 35 |
+
|
| 36 |
+
BASE_WHEEL_URL = "https://github.com/Dao-AILab/causal-conv1d/releases/download/{tag_name}/{wheel_name}"
|
| 37 |
+
|
| 38 |
+
# FORCE_BUILD: Force a fresh build locally, instead of attempting to find prebuilt wheels
|
| 39 |
+
# SKIP_CUDA_BUILD: Intended to allow CI to use a simple `python setup.py sdist` run to copy over raw files, without any cuda compilation
|
| 40 |
+
FORCE_BUILD = os.getenv("CAUSAL_CONV1D_FORCE_BUILD", "FALSE") == "TRUE"
|
| 41 |
+
SKIP_CUDA_BUILD = os.getenv("CAUSAL_CONV1D_SKIP_CUDA_BUILD", "FALSE") == "TRUE"
|
| 42 |
+
# For CI, we want the option to build with C++11 ABI since the nvcr images use C++11 ABI
|
| 43 |
+
FORCE_CXX11_ABI = os.getenv("CAUSAL_CONV1D_FORCE_CXX11_ABI", "FALSE") == "TRUE"
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def get_platform():
|
| 47 |
+
"""
|
| 48 |
+
Returns the platform name as used in wheel filenames.
|
| 49 |
+
"""
|
| 50 |
+
if sys.platform.startswith("linux"):
|
| 51 |
+
return "linux_x86_64"
|
| 52 |
+
elif sys.platform == "darwin":
|
| 53 |
+
mac_version = ".".join(platform.mac_ver()[0].split(".")[:2])
|
| 54 |
+
return f"macosx_{mac_version}_x86_64"
|
| 55 |
+
elif sys.platform == "win32":
|
| 56 |
+
return "win_amd64"
|
| 57 |
+
else:
|
| 58 |
+
raise ValueError("Unsupported platform: {}".format(sys.platform))
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_cuda_bare_metal_version(cuda_dir):
|
| 62 |
+
raw_output = subprocess.check_output(
|
| 63 |
+
[cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True
|
| 64 |
+
)
|
| 65 |
+
output = raw_output.split()
|
| 66 |
+
release_idx = output.index("release") + 1
|
| 67 |
+
bare_metal_version = parse(output[release_idx].split(",")[0])
|
| 68 |
+
|
| 69 |
+
return raw_output, bare_metal_version
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def check_if_cuda_home_none(global_option: str) -> None:
|
| 73 |
+
if CUDA_HOME is not None:
|
| 74 |
+
return
|
| 75 |
+
# warn instead of error because user could be downloading prebuilt wheels, so nvcc won't be necessary
|
| 76 |
+
# in that case.
|
| 77 |
+
warnings.warn(
|
| 78 |
+
f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? "
|
| 79 |
+
"If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
|
| 80 |
+
"only images whose names contain 'devel' will provide nvcc."
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def append_nvcc_threads(nvcc_extra_args):
|
| 85 |
+
return nvcc_extra_args + ["--threads", "4"]
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
cmdclass = {}
|
| 89 |
+
ext_modules = []
|
| 90 |
+
|
| 91 |
+
if not SKIP_CUDA_BUILD:
|
| 92 |
+
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
|
| 93 |
+
TORCH_MAJOR = int(torch.__version__.split(".")[0])
|
| 94 |
+
TORCH_MINOR = int(torch.__version__.split(".")[1])
|
| 95 |
+
|
| 96 |
+
check_if_cuda_home_none("causal_conv1d")
|
| 97 |
+
# Check, if CUDA11 is installed for compute capability 8.0
|
| 98 |
+
cc_flag = []
|
| 99 |
+
if CUDA_HOME is not None:
|
| 100 |
+
_, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
|
| 101 |
+
if bare_metal_version < Version("11.6"):
|
| 102 |
+
raise RuntimeError(
|
| 103 |
+
"causal_conv1d is only supported on CUDA 11.6 and above. "
|
| 104 |
+
"Note: make sure nvcc has a supported version by running nvcc -V."
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
cc_flag.append("-gencode")
|
| 108 |
+
cc_flag.append("arch=compute_70,code=sm_70")
|
| 109 |
+
cc_flag.append("-gencode")
|
| 110 |
+
cc_flag.append("arch=compute_80,code=sm_80")
|
| 111 |
+
if bare_metal_version >= Version("11.8"):
|
| 112 |
+
cc_flag.append("-gencode")
|
| 113 |
+
cc_flag.append("arch=compute_90,code=sm_90")
|
| 114 |
+
|
| 115 |
+
# HACK: The compiler flag -D_GLIBCXX_USE_CXX11_ABI is set to be the same as
|
| 116 |
+
# torch._C._GLIBCXX_USE_CXX11_ABI
|
| 117 |
+
# https://github.com/pytorch/pytorch/blob/8472c24e3b5b60150096486616d98b7bea01500b/torch/utils/cpp_extension.py#L920
|
| 118 |
+
if FORCE_CXX11_ABI:
|
| 119 |
+
torch._C._GLIBCXX_USE_CXX11_ABI = True
|
| 120 |
+
|
| 121 |
+
ext_modules.append(
|
| 122 |
+
CUDAExtension(
|
| 123 |
+
name="causal_conv1d_cuda",
|
| 124 |
+
sources=[
|
| 125 |
+
"csrc/causal_conv1d.cpp",
|
| 126 |
+
"csrc/causal_conv1d_fwd.cu",
|
| 127 |
+
"csrc/causal_conv1d_bwd.cu",
|
| 128 |
+
"csrc/causal_conv1d_update.cu",
|
| 129 |
+
],
|
| 130 |
+
extra_compile_args={
|
| 131 |
+
"cxx": ["-O3"],
|
| 132 |
+
"nvcc": append_nvcc_threads(
|
| 133 |
+
[
|
| 134 |
+
"-O3",
|
| 135 |
+
"-U__CUDA_NO_HALF_OPERATORS__",
|
| 136 |
+
"-U__CUDA_NO_HALF_CONVERSIONS__",
|
| 137 |
+
"-U__CUDA_NO_BFLOAT16_OPERATORS__",
|
| 138 |
+
"-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
|
| 139 |
+
"-U__CUDA_NO_BFLOAT162_OPERATORS__",
|
| 140 |
+
"-U__CUDA_NO_BFLOAT162_CONVERSIONS__",
|
| 141 |
+
"--expt-relaxed-constexpr",
|
| 142 |
+
"--expt-extended-lambda",
|
| 143 |
+
"--use_fast_math",
|
| 144 |
+
"--ptxas-options=-v",
|
| 145 |
+
"-lineinfo",
|
| 146 |
+
]
|
| 147 |
+
+ cc_flag
|
| 148 |
+
),
|
| 149 |
+
},
|
| 150 |
+
include_dirs=[this_dir],
|
| 151 |
+
)
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def get_package_version():
|
| 156 |
+
with open(Path(this_dir) / "causal_conv1d" / "__init__.py", "r") as f:
|
| 157 |
+
version_match = re.search(r"^__version__\s*=\s*(.*)$", f.read(), re.MULTILINE)
|
| 158 |
+
public_version = ast.literal_eval(version_match.group(1))
|
| 159 |
+
local_version = os.environ.get("CAUSAL_CONV1D_LOCAL_VERSION")
|
| 160 |
+
if local_version:
|
| 161 |
+
return f"{public_version}+{local_version}"
|
| 162 |
+
else:
|
| 163 |
+
return str(public_version)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def get_wheel_url():
|
| 167 |
+
# Determine the version numbers that will be used to determine the correct wheel
|
| 168 |
+
# We're using the CUDA version used to build torch, not the one currently installed
|
| 169 |
+
# _, cuda_version_raw = get_cuda_bare_metal_version(CUDA_HOME)
|
| 170 |
+
torch_cuda_version = parse(torch.version.cuda)
|
| 171 |
+
torch_version_raw = parse(torch.__version__)
|
| 172 |
+
# For CUDA 11, we only compile for CUDA 11.8, and for CUDA 12 we only compile for CUDA 12.2
|
| 173 |
+
# to save CI time. Minor versions should be compatible.
|
| 174 |
+
torch_cuda_version = parse("11.8") if torch_cuda_version.major == 11 else parse("12.2")
|
| 175 |
+
python_version = f"cp{sys.version_info.major}{sys.version_info.minor}"
|
| 176 |
+
platform_name = get_platform()
|
| 177 |
+
causal_conv1d_version = get_package_version()
|
| 178 |
+
# cuda_version = f"{cuda_version_raw.major}{cuda_version_raw.minor}"
|
| 179 |
+
cuda_version = f"{torch_cuda_version.major}{torch_cuda_version.minor}"
|
| 180 |
+
torch_version = f"{torch_version_raw.major}.{torch_version_raw.minor}"
|
| 181 |
+
cxx11_abi = str(torch._C._GLIBCXX_USE_CXX11_ABI).upper()
|
| 182 |
+
|
| 183 |
+
# Determine wheel URL based on CUDA version, torch version, python version and OS
|
| 184 |
+
wheel_filename = f"{PACKAGE_NAME}-{causal_conv1d_version}+cu{cuda_version}torch{torch_version}cxx11abi{cxx11_abi}-{python_version}-{python_version}-{platform_name}.whl"
|
| 185 |
+
wheel_url = BASE_WHEEL_URL.format(
|
| 186 |
+
tag_name=f"v{causal_conv1d_version}", wheel_name=wheel_filename
|
| 187 |
+
)
|
| 188 |
+
return wheel_url, wheel_filename
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
class CachedWheelsCommand(_bdist_wheel):
|
| 192 |
+
"""
|
| 193 |
+
The CachedWheelsCommand plugs into the default bdist wheel, which is ran by pip when it cannot
|
| 194 |
+
find an existing wheel (which is currently the case for all installs). We use
|
| 195 |
+
the environment parameters to detect whether there is already a pre-built version of a compatible
|
| 196 |
+
wheel available and short-circuits the standard full build pipeline.
|
| 197 |
+
"""
|
| 198 |
+
|
| 199 |
+
def run(self):
|
| 200 |
+
if FORCE_BUILD:
|
| 201 |
+
return super().run()
|
| 202 |
+
|
| 203 |
+
wheel_url, wheel_filename = get_wheel_url()
|
| 204 |
+
print("Guessing wheel URL: ", wheel_url)
|
| 205 |
+
try:
|
| 206 |
+
urllib.request.urlretrieve(wheel_url, wheel_filename)
|
| 207 |
+
|
| 208 |
+
# Make the archive
|
| 209 |
+
# Lifted from the root wheel processing command
|
| 210 |
+
# https://github.com/pypa/wheel/blob/cf71108ff9f6ffc36978069acb28824b44ae028e/src/wheel/bdist_wheel.py#LL381C9-L381C85
|
| 211 |
+
if not os.path.exists(self.dist_dir):
|
| 212 |
+
os.makedirs(self.dist_dir)
|
| 213 |
+
|
| 214 |
+
impl_tag, abi_tag, plat_tag = self.get_tag()
|
| 215 |
+
archive_basename = f"{self.wheel_dist_name}-{impl_tag}-{abi_tag}-{plat_tag}"
|
| 216 |
+
|
| 217 |
+
wheel_path = os.path.join(self.dist_dir, archive_basename + ".whl")
|
| 218 |
+
print("Raw wheel path", wheel_path)
|
| 219 |
+
os.rename(wheel_filename, wheel_path)
|
| 220 |
+
except urllib.error.HTTPError:
|
| 221 |
+
print("Precompiled wheel not found. Building from source...")
|
| 222 |
+
# If the wheel could not be downloaded, build from source
|
| 223 |
+
super().run()
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
setup(
|
| 227 |
+
name=PACKAGE_NAME,
|
| 228 |
+
version=get_package_version(),
|
| 229 |
+
packages=find_packages(
|
| 230 |
+
exclude=(
|
| 231 |
+
"build",
|
| 232 |
+
"csrc",
|
| 233 |
+
"include",
|
| 234 |
+
"tests",
|
| 235 |
+
"dist",
|
| 236 |
+
"docs",
|
| 237 |
+
"benchmarks",
|
| 238 |
+
"causal_conv1d.egg-info",
|
| 239 |
+
)
|
| 240 |
+
),
|
| 241 |
+
author="Tri Dao",
|
| 242 |
+
author_email="tri@tridao.me",
|
| 243 |
+
description="Causal depthwise conv1d in CUDA, with a PyTorch interface",
|
| 244 |
+
long_description=long_description,
|
| 245 |
+
long_description_content_type="text/markdown",
|
| 246 |
+
url="https://github.com/Dao-AILab/causal-conv1d",
|
| 247 |
+
classifiers=[
|
| 248 |
+
"Programming Language :: Python :: 3",
|
| 249 |
+
"License :: OSI Approved :: BSD License",
|
| 250 |
+
"Operating System :: Unix",
|
| 251 |
+
],
|
| 252 |
+
ext_modules=ext_modules,
|
| 253 |
+
cmdclass={"bdist_wheel": CachedWheelsCommand, "build_ext": BuildExtension}
|
| 254 |
+
if ext_modules
|
| 255 |
+
else {
|
| 256 |
+
"bdist_wheel": CachedWheelsCommand,
|
| 257 |
+
},
|
| 258 |
+
python_requires=">=3.7",
|
| 259 |
+
install_requires=[
|
| 260 |
+
"torch",
|
| 261 |
+
"packaging",
|
| 262 |
+
"ninja",
|
| 263 |
+
],
|
| 264 |
+
)
|
SegMamba/causal-conv1d/tests/test_causal_conv1d.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (C) 2023, Tri Dao.
|
| 2 |
+
|
| 3 |
+
import math
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import pytest
|
| 7 |
+
|
| 8 |
+
from einops import rearrange
|
| 9 |
+
|
| 10 |
+
from causal_conv1d.causal_conv1d_interface import causal_conv1d_fn, causal_conv1d_ref
|
| 11 |
+
from causal_conv1d.causal_conv1d_interface import causal_conv1d_update, causal_conv1d_update_ref
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
@pytest.mark.parametrize("channel_last", [False, True])
|
| 15 |
+
# @pytest.mark.parametrize('channel_last', [True])
|
| 16 |
+
@pytest.mark.parametrize("itype", [torch.float32, torch.float16, torch.bfloat16])
|
| 17 |
+
# @pytest.mark.parametrize('itype', [torch.float16])
|
| 18 |
+
@pytest.mark.parametrize("silu_activation", [False, True])
|
| 19 |
+
# @pytest.mark.parametrize('silu_activation', [True])
|
| 20 |
+
@pytest.mark.parametrize("has_bias", [False, True])
|
| 21 |
+
# @pytest.mark.parametrize('has_bias', [True])
|
| 22 |
+
@pytest.mark.parametrize("width", [2, 3, 4])
|
| 23 |
+
# @pytest.mark.parametrize('width', [2])
|
| 24 |
+
@pytest.mark.parametrize(
|
| 25 |
+
"seqlen", [8, 16, 32, 64, 128, 151, 256, 372, 512, 784, 1024, 1134, 2048, 4096]
|
| 26 |
+
)
|
| 27 |
+
# @pytest.mark.parametrize('seqlen', [8, 16, 32, 64, 128, 256, 512, 784, 1024, 2048, 4096])
|
| 28 |
+
# @pytest.mark.parametrize('seqlen', [128])
|
| 29 |
+
def test_causal_conv1d(seqlen, width, has_bias, silu_activation, itype, channel_last):
|
| 30 |
+
device = "cuda"
|
| 31 |
+
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
|
| 32 |
+
if itype == torch.bfloat16:
|
| 33 |
+
rtol, atol = 1e-2, 5e-2
|
| 34 |
+
rtolw, atolw = (1e-3, 1e-3)
|
| 35 |
+
# set seed
|
| 36 |
+
torch.random.manual_seed(0)
|
| 37 |
+
batch_size = 2
|
| 38 |
+
# batch_size = 1
|
| 39 |
+
dim = 4096 + 32 # Try dim not divisible by 64
|
| 40 |
+
# dim = 64
|
| 41 |
+
if not channel_last:
|
| 42 |
+
x = torch.randn(batch_size, 4096 + dim + 64, seqlen, device=device, dtype=itype)[:, 4096:4096 + dim, :].requires_grad_()
|
| 43 |
+
else:
|
| 44 |
+
x = rearrange(
|
| 45 |
+
torch.randn(batch_size, seqlen, 4096 + dim + 64, device=device, dtype=itype)[:, :, 4096:4096 + dim], "b s d -> b d s"
|
| 46 |
+
).requires_grad_()
|
| 47 |
+
weight = torch.randn(dim, width, device=device, dtype=torch.float32, requires_grad=True)
|
| 48 |
+
if has_bias:
|
| 49 |
+
bias = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True)
|
| 50 |
+
else:
|
| 51 |
+
bias = None
|
| 52 |
+
x_ref = x.detach().clone().requires_grad_()
|
| 53 |
+
weight_ref = weight.detach().clone().requires_grad_()
|
| 54 |
+
bias_ref = bias.detach().clone().requires_grad_() if bias is not None else None
|
| 55 |
+
activation = None if not silu_activation else "silu"
|
| 56 |
+
out = causal_conv1d_fn(x, weight, bias, activation=activation)
|
| 57 |
+
out_ref = causal_conv1d_ref(x_ref, weight_ref, bias_ref, activation=activation)
|
| 58 |
+
|
| 59 |
+
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
|
| 60 |
+
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
|
| 61 |
+
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
|
| 62 |
+
|
| 63 |
+
g = torch.randn_like(out)
|
| 64 |
+
out_ref.backward(g)
|
| 65 |
+
out.backward(g)
|
| 66 |
+
|
| 67 |
+
print(f"dx max diff: {(x.grad - x_ref.grad).abs().max().item()}")
|
| 68 |
+
print(f"dweight max diff: {(weight.grad - weight_ref.grad).abs().max().item()}")
|
| 69 |
+
if has_bias:
|
| 70 |
+
print(f"dbias max diff: {(bias.grad - bias_ref.grad).abs().max().item()}")
|
| 71 |
+
|
| 72 |
+
assert torch.allclose(x.grad, x_ref.grad.to(dtype=itype), rtol=rtol, atol=atol)
|
| 73 |
+
assert torch.allclose(weight.grad, weight_ref.grad, rtol=rtolw, atol=atolw)
|
| 74 |
+
if has_bias:
|
| 75 |
+
assert torch.allclose(bias.grad, bias_ref.grad, rtol=rtolw, atol=atolw)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
@pytest.mark.parametrize("itype", [torch.float32, torch.float16, torch.bfloat16])
|
| 79 |
+
# @pytest.mark.parametrize('itype', [torch.float16])
|
| 80 |
+
@pytest.mark.parametrize("silu_activation", [False, True])
|
| 81 |
+
# @pytest.mark.parametrize('silu_activation', [False])
|
| 82 |
+
@pytest.mark.parametrize("has_bias", [False, True])
|
| 83 |
+
# @pytest.mark.parametrize('has_bias', [True])
|
| 84 |
+
@pytest.mark.parametrize("width", [2, 3, 4])
|
| 85 |
+
# @pytest.mark.parametrize('width', [2])
|
| 86 |
+
@pytest.mark.parametrize("dim", [2048, 2048 + 16, 4096])
|
| 87 |
+
# @pytest.mark.parametrize("dim", [2048])
|
| 88 |
+
def test_causal_conv1d_update(dim, width, has_bias, silu_activation, itype):
|
| 89 |
+
device = "cuda"
|
| 90 |
+
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
|
| 91 |
+
if itype == torch.bfloat16:
|
| 92 |
+
rtol, atol = 1e-2, 5e-2
|
| 93 |
+
rtolw, atolw = (1e-3, 1e-3)
|
| 94 |
+
# set seed
|
| 95 |
+
torch.random.manual_seed(0)
|
| 96 |
+
batch_size = 2
|
| 97 |
+
# batch_size = 1
|
| 98 |
+
# dim = 64
|
| 99 |
+
x = torch.randn(batch_size, dim, device=device, dtype=itype)
|
| 100 |
+
conv_state = torch.randn(batch_size, dim, width, device=device, dtype=itype)
|
| 101 |
+
weight = torch.randn(dim, width, device=device, dtype=torch.float32, requires_grad=True)
|
| 102 |
+
if has_bias:
|
| 103 |
+
bias = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True)
|
| 104 |
+
else:
|
| 105 |
+
bias = None
|
| 106 |
+
conv_state_ref = conv_state.detach().clone()
|
| 107 |
+
activation = None if not silu_activation else "silu"
|
| 108 |
+
out = causal_conv1d_update(x, conv_state, weight, bias, activation=activation)
|
| 109 |
+
out_ref = causal_conv1d_update_ref(x, conv_state_ref, weight, bias, activation=activation)
|
| 110 |
+
|
| 111 |
+
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
|
| 112 |
+
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
|
| 113 |
+
assert torch.equal(conv_state, conv_state_ref)
|
| 114 |
+
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
# @pytest.mark.parametrize("channel_last", [False, True])
|
| 118 |
+
@pytest.mark.parametrize('channel_last', [True])
|
| 119 |
+
# @pytest.mark.parametrize("itype", [torch.float32, torch.float16, torch.bfloat16])
|
| 120 |
+
@pytest.mark.parametrize('itype', [torch.bfloat16])
|
| 121 |
+
# @pytest.mark.parametrize("silu_activation", [False, True])
|
| 122 |
+
@pytest.mark.parametrize('silu_activation', [True])
|
| 123 |
+
# @pytest.mark.parametrize("has_bias", [False, True])
|
| 124 |
+
@pytest.mark.parametrize('has_bias', [True])
|
| 125 |
+
# @pytest.mark.parametrize("width", [2, 3, 4])
|
| 126 |
+
@pytest.mark.parametrize('width', [4])
|
| 127 |
+
@pytest.mark.parametrize(
|
| 128 |
+
# "seqlen", [8, 16, 32, 64, 128, 151, 256, 372, 512, 784, 1024, 1134, 2048, 4096]
|
| 129 |
+
"seqlen", [2048]
|
| 130 |
+
)
|
| 131 |
+
# @pytest.mark.parametrize('seqlen', [8, 16, 32, 64, 128, 256, 512, 784, 1024, 2048, 4096])
|
| 132 |
+
# @pytest.mark.parametrize('seqlen', [128])
|
| 133 |
+
def test_causal_conv1d_race_condition(seqlen, width, has_bias, silu_activation, itype, channel_last):
|
| 134 |
+
device = "cuda"
|
| 135 |
+
# set seed
|
| 136 |
+
torch.random.manual_seed(0)
|
| 137 |
+
batch_size = 2
|
| 138 |
+
# batch_size = 1
|
| 139 |
+
dim = 4096 + 32 # Try dim not divisible by 64
|
| 140 |
+
# dim = 64
|
| 141 |
+
if not channel_last:
|
| 142 |
+
x = torch.randn(batch_size, 4096 + dim + 64, seqlen, device=device, dtype=itype)[:, 4096:4096 + dim, :].requires_grad_()
|
| 143 |
+
else:
|
| 144 |
+
x = rearrange(
|
| 145 |
+
torch.randn(batch_size, seqlen, 4096 + dim + 64, device=device, dtype=itype)[:, :, 4096:4096 + dim], "b s d -> b d s"
|
| 146 |
+
).requires_grad_()
|
| 147 |
+
weight = torch.randn(dim, width, device=device, dtype=torch.float32, requires_grad=True)
|
| 148 |
+
if has_bias:
|
| 149 |
+
bias = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True)
|
| 150 |
+
else:
|
| 151 |
+
bias = None
|
| 152 |
+
activation = None if not silu_activation else "silu"
|
| 153 |
+
out0 = causal_conv1d_fn(x, weight, bias, activation=activation)
|
| 154 |
+
g = torch.randn_like(out0)
|
| 155 |
+
dx0, dw0, db0 = torch.autograd.grad(out0, (x, weight, bias), g)
|
| 156 |
+
dw_atol = 1e-4
|
| 157 |
+
db_atol = 1e-4
|
| 158 |
+
|
| 159 |
+
for i in range(10000):
|
| 160 |
+
out = causal_conv1d_fn(x, weight, bias, activation=activation)
|
| 161 |
+
dx, dw, db = torch.autograd.grad(out, (x, weight, bias), g)
|
| 162 |
+
dw_equal = torch.allclose(dw, dw0, atol=dw_atol)
|
| 163 |
+
# if not dw_equal:
|
| 164 |
+
# breakpoint()
|
| 165 |
+
if has_bias:
|
| 166 |
+
db_equal = torch.allclose(db, db0, atol=db_atol)
|
| 167 |
+
# if not db_equal:
|
| 168 |
+
# breakpoint()
|
| 169 |
+
assert torch.equal(out, out0)
|
| 170 |
+
assert torch.equal(dx, dx0)
|
| 171 |
+
assert dw_equal
|
| 172 |
+
if has_bias:
|
| 173 |
+
assert dw_equal
|
SegMamba/images/data_structure.jpg
ADDED
|
Git LFS Details
|
SegMamba/images/method_figure.jpg
ADDED
|
Git LFS Details
|
SegMamba/images/modules.jpg
ADDED
|
Git LFS Details
|
SegMamba/images/segmamba_ablation.jpg
ADDED
|
Git LFS Details
|
SegMamba/light_training/.DS_Store
ADDED
|
Binary file (8.2 kB). View file
|
|
|
SegMamba/light_training/augment/multi_processor.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from batchgenerators.dataloading.nondet_multi_threaded_augmenter import NonDetMultiThreadedAugmenter
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class LimitedLenWrapper(NonDetMultiThreadedAugmenter):
|
| 5 |
+
def __init__(self, my_imaginary_length, *args, **kwargs):
|
| 6 |
+
super().__init__(*args, **kwargs)
|
| 7 |
+
self.len = my_imaginary_length
|
| 8 |
+
|
| 9 |
+
def __len__(self):
|
| 10 |
+
return self.len
|
SegMamba/light_training/augment/train_augment.py
ADDED
|
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import inspect
|
| 2 |
+
import multiprocessing
|
| 3 |
+
import os
|
| 4 |
+
import shutil
|
| 5 |
+
import sys
|
| 6 |
+
import warnings
|
| 7 |
+
from copy import deepcopy
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
from time import time, sleep
|
| 10 |
+
from typing import Union, Tuple, List
|
| 11 |
+
import numpy as np
|
| 12 |
+
import torch
|
| 13 |
+
from batchgenerators.dataloading.single_threaded_augmenter import SingleThreadedAugmenter
|
| 14 |
+
from batchgenerators.transforms.abstract_transforms import AbstractTransform, Compose
|
| 15 |
+
from batchgenerators.transforms.color_transforms import BrightnessMultiplicativeTransform, \
|
| 16 |
+
ContrastAugmentationTransform, GammaTransform
|
| 17 |
+
from batchgenerators.transforms.noise_transforms import GaussianNoiseTransform, GaussianBlurTransform
|
| 18 |
+
from batchgenerators.transforms.resample_transforms import SimulateLowResolutionTransform
|
| 19 |
+
from batchgenerators.transforms.spatial_transforms import SpatialTransform, MirrorTransform
|
| 20 |
+
from batchgenerators.transforms.utility_transforms import RemoveLabelTransform, RenameTransform, NumpyToTensor
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def get_train_transforms(patch_size, mirror_axes=None):
|
| 24 |
+
tr_transforms = []
|
| 25 |
+
patch_size_spatial = patch_size
|
| 26 |
+
ignore_axes = None
|
| 27 |
+
angle = (-30. / 360 * 2. * np.pi, 30. / 360 * 2. * np.pi)
|
| 28 |
+
|
| 29 |
+
tr_transforms.append(SpatialTransform(
|
| 30 |
+
patch_size_spatial, patch_center_dist_from_border=None,
|
| 31 |
+
do_elastic_deform=False, alpha=(0, 0), sigma=(0, 0),
|
| 32 |
+
do_rotation=True, angle_x=angle, angle_y=angle, angle_z=angle,
|
| 33 |
+
p_rot_per_axis=1, # todo experiment with this
|
| 34 |
+
do_scale=True, scale=(0.7, 1.4),
|
| 35 |
+
border_mode_data="constant", border_cval_data=0, order_data=3,
|
| 36 |
+
border_mode_seg="constant", border_cval_seg=-1, order_seg=1,
|
| 37 |
+
random_crop=False, # random cropping is part of our dataloaders
|
| 38 |
+
p_el_per_sample=0, p_scale_per_sample=0.2, p_rot_per_sample=0.2,
|
| 39 |
+
independent_scale_for_each_axis=False # todo experiment with this
|
| 40 |
+
))
|
| 41 |
+
|
| 42 |
+
tr_transforms.append(GaussianNoiseTransform(p_per_sample=0.1))
|
| 43 |
+
tr_transforms.append(GaussianBlurTransform((0.5, 1.), different_sigma_per_channel=True, p_per_sample=0.2,
|
| 44 |
+
p_per_channel=0.5))
|
| 45 |
+
tr_transforms.append(BrightnessMultiplicativeTransform(multiplier_range=(0.75, 1.25), p_per_sample=0.15))
|
| 46 |
+
tr_transforms.append(ContrastAugmentationTransform(p_per_sample=0.15))
|
| 47 |
+
tr_transforms.append(SimulateLowResolutionTransform(zoom_range=(0.5, 1), per_channel=True,
|
| 48 |
+
p_per_channel=0.5,
|
| 49 |
+
order_downsample=0, order_upsample=3, p_per_sample=0.25,
|
| 50 |
+
ignore_axes=ignore_axes))
|
| 51 |
+
tr_transforms.append(GammaTransform((0.7, 1.5), True, True, retain_stats=True, p_per_sample=0.1))
|
| 52 |
+
tr_transforms.append(GammaTransform((0.7, 1.5), False, True, retain_stats=True, p_per_sample=0.3))
|
| 53 |
+
|
| 54 |
+
if mirror_axes is not None and len(mirror_axes) > 0:
|
| 55 |
+
tr_transforms.append(MirrorTransform(mirror_axes))
|
| 56 |
+
|
| 57 |
+
tr_transforms.append(RemoveLabelTransform(-1, 0))
|
| 58 |
+
tr_transforms.append(NumpyToTensor(['data', 'seg'], 'float'))
|
| 59 |
+
|
| 60 |
+
tr_transforms = Compose(tr_transforms)
|
| 61 |
+
|
| 62 |
+
return tr_transforms
|
| 63 |
+
|
| 64 |
+
def get_train_transforms_nomirror(patch_size, mirror_axes=None):
|
| 65 |
+
tr_transforms = []
|
| 66 |
+
patch_size_spatial = patch_size
|
| 67 |
+
ignore_axes = None
|
| 68 |
+
angle = (-30. / 360 * 2. * np.pi, 30. / 360 * 2. * np.pi)
|
| 69 |
+
|
| 70 |
+
tr_transforms.append(SpatialTransform(
|
| 71 |
+
patch_size_spatial, patch_center_dist_from_border=None,
|
| 72 |
+
do_elastic_deform=False, alpha=(0, 0), sigma=(0, 0),
|
| 73 |
+
do_rotation=True, angle_x=angle, angle_y=angle, angle_z=angle,
|
| 74 |
+
p_rot_per_axis=1, # todo experiment with this
|
| 75 |
+
do_scale=True, scale=(0.7, 1.4),
|
| 76 |
+
border_mode_data="constant", border_cval_data=0, order_data=3,
|
| 77 |
+
border_mode_seg="constant", border_cval_seg=-1, order_seg=1,
|
| 78 |
+
random_crop=False, # random cropping is part of our dataloaders
|
| 79 |
+
p_el_per_sample=0, p_scale_per_sample=0.2, p_rot_per_sample=0.2,
|
| 80 |
+
independent_scale_for_each_axis=False # todo experiment with this
|
| 81 |
+
))
|
| 82 |
+
|
| 83 |
+
tr_transforms.append(GaussianNoiseTransform(p_per_sample=0.1))
|
| 84 |
+
tr_transforms.append(GaussianBlurTransform((0.5, 1.), different_sigma_per_channel=True, p_per_sample=0.2,
|
| 85 |
+
p_per_channel=0.5))
|
| 86 |
+
tr_transforms.append(BrightnessMultiplicativeTransform(multiplier_range=(0.75, 1.25), p_per_sample=0.15))
|
| 87 |
+
tr_transforms.append(ContrastAugmentationTransform(p_per_sample=0.15))
|
| 88 |
+
tr_transforms.append(SimulateLowResolutionTransform(zoom_range=(0.5, 1), per_channel=True,
|
| 89 |
+
p_per_channel=0.5,
|
| 90 |
+
order_downsample=0, order_upsample=3, p_per_sample=0.25,
|
| 91 |
+
ignore_axes=ignore_axes))
|
| 92 |
+
tr_transforms.append(GammaTransform((0.7, 1.5), True, True, retain_stats=True, p_per_sample=0.1))
|
| 93 |
+
tr_transforms.append(GammaTransform((0.7, 1.5), False, True, retain_stats=True, p_per_sample=0.3))
|
| 94 |
+
|
| 95 |
+
# if mirror_axes is not None and len(mirror_axes) > 0:
|
| 96 |
+
# tr_transforms.append(MirrorTransform(mirror_axes))
|
| 97 |
+
|
| 98 |
+
tr_transforms.append(RemoveLabelTransform(-1, 0))
|
| 99 |
+
tr_transforms.append(NumpyToTensor(['data', 'seg'], 'float'))
|
| 100 |
+
|
| 101 |
+
tr_transforms = Compose(tr_transforms)
|
| 102 |
+
|
| 103 |
+
return tr_transforms
|
| 104 |
+
|
| 105 |
+
def get_train_transforms_onlymirror(patch_size, mirror_axes=None):
|
| 106 |
+
tr_transforms = []
|
| 107 |
+
patch_size_spatial = patch_size
|
| 108 |
+
ignore_axes = None
|
| 109 |
+
angle = (-30. / 360 * 2. * np.pi, 30. / 360 * 2. * np.pi)
|
| 110 |
+
|
| 111 |
+
# tr_transforms.append(SpatialTransform(
|
| 112 |
+
# patch_size_spatial, patch_center_dist_from_border=None,
|
| 113 |
+
# do_elastic_deform=False, alpha=(0, 0), sigma=(0, 0),
|
| 114 |
+
# do_rotation=True, angle_x=angle, angle_y=angle, angle_z=angle,
|
| 115 |
+
# p_rot_per_axis=1, # todo experiment with this
|
| 116 |
+
# do_scale=True, scale=(0.7, 1.4),
|
| 117 |
+
# border_mode_data="constant", border_cval_data=0, order_data=3,
|
| 118 |
+
# border_mode_seg="constant", border_cval_seg=-1, order_seg=1,
|
| 119 |
+
# random_crop=False, # random cropping is part of our dataloaders
|
| 120 |
+
# p_el_per_sample=0, p_scale_per_sample=0.2, p_rot_per_sample=0.2,
|
| 121 |
+
# independent_scale_for_each_axis=False # todo experiment with this
|
| 122 |
+
# ))
|
| 123 |
+
|
| 124 |
+
tr_transforms.append(GaussianNoiseTransform(p_per_sample=0.1))
|
| 125 |
+
tr_transforms.append(GaussianBlurTransform((0.5, 1.), different_sigma_per_channel=True, p_per_sample=0.2,
|
| 126 |
+
p_per_channel=0.5))
|
| 127 |
+
tr_transforms.append(BrightnessMultiplicativeTransform(multiplier_range=(0.75, 1.25), p_per_sample=0.15))
|
| 128 |
+
tr_transforms.append(ContrastAugmentationTransform(p_per_sample=0.15))
|
| 129 |
+
tr_transforms.append(SimulateLowResolutionTransform(zoom_range=(0.5, 1), per_channel=True,
|
| 130 |
+
p_per_channel=0.5,
|
| 131 |
+
order_downsample=0, order_upsample=3, p_per_sample=0.25,
|
| 132 |
+
ignore_axes=ignore_axes))
|
| 133 |
+
tr_transforms.append(GammaTransform((0.7, 1.5), True, True, retain_stats=True, p_per_sample=0.1))
|
| 134 |
+
tr_transforms.append(GammaTransform((0.7, 1.5), False, True, retain_stats=True, p_per_sample=0.3))
|
| 135 |
+
|
| 136 |
+
if mirror_axes is not None and len(mirror_axes) > 0:
|
| 137 |
+
tr_transforms.append(MirrorTransform(mirror_axes))
|
| 138 |
+
|
| 139 |
+
tr_transforms.append(RemoveLabelTransform(-1, 0))
|
| 140 |
+
tr_transforms.append(NumpyToTensor(['data', 'seg'], 'float'))
|
| 141 |
+
|
| 142 |
+
tr_transforms = Compose(tr_transforms)
|
| 143 |
+
|
| 144 |
+
return tr_transforms
|
| 145 |
+
|
| 146 |
+
def get_train_transforms_onlyspatial(patch_size, mirror_axes=None):
|
| 147 |
+
tr_transforms = []
|
| 148 |
+
patch_size_spatial = patch_size
|
| 149 |
+
ignore_axes = None
|
| 150 |
+
angle = (-30. / 360 * 2. * np.pi, 30. / 360 * 2. * np.pi)
|
| 151 |
+
|
| 152 |
+
tr_transforms.append(SpatialTransform(
|
| 153 |
+
patch_size_spatial, patch_center_dist_from_border=None,
|
| 154 |
+
do_elastic_deform=False, alpha=(0, 0), sigma=(0, 0),
|
| 155 |
+
do_rotation=True, angle_x=angle, angle_y=angle, angle_z=angle,
|
| 156 |
+
p_rot_per_axis=1, # todo experiment with this
|
| 157 |
+
do_scale=True, scale=(0.7, 1.4),
|
| 158 |
+
border_mode_data="constant", border_cval_data=0, order_data=3,
|
| 159 |
+
border_mode_seg="constant", border_cval_seg=-1, order_seg=1,
|
| 160 |
+
random_crop=False, # random cropping is part of our dataloaders
|
| 161 |
+
p_el_per_sample=0, p_scale_per_sample=0.2, p_rot_per_sample=0.2,
|
| 162 |
+
independent_scale_for_each_axis=False # todo experiment with this
|
| 163 |
+
))
|
| 164 |
+
|
| 165 |
+
# tr_transforms.append(GaussianNoiseTransform(p_per_sample=0.1))
|
| 166 |
+
# tr_transforms.append(GaussianBlurTransform((0.5, 1.), different_sigma_per_channel=True, p_per_sample=0.2,
|
| 167 |
+
# p_per_channel=0.5))
|
| 168 |
+
# tr_transforms.append(BrightnessMultiplicativeTransform(multiplier_range=(0.75, 1.25), p_per_sample=0.15))
|
| 169 |
+
# tr_transforms.append(ContrastAugmentationTransform(p_per_sample=0.15))
|
| 170 |
+
# tr_transforms.append(SimulateLowResolutionTransform(zoom_range=(0.5, 1), per_channel=True,
|
| 171 |
+
# p_per_channel=0.5,
|
| 172 |
+
# order_downsample=0, order_upsample=3, p_per_sample=0.25,
|
| 173 |
+
# ignore_axes=ignore_axes))
|
| 174 |
+
# tr_transforms.append(GammaTransform((0.7, 1.5), True, True, retain_stats=True, p_per_sample=0.1))
|
| 175 |
+
# tr_transforms.append(GammaTransform((0.7, 1.5), False, True, retain_stats=True, p_per_sample=0.3))
|
| 176 |
+
|
| 177 |
+
if mirror_axes is not None and len(mirror_axes) > 0:
|
| 178 |
+
tr_transforms.append(MirrorTransform(mirror_axes))
|
| 179 |
+
|
| 180 |
+
tr_transforms.append(RemoveLabelTransform(-1, 0))
|
| 181 |
+
tr_transforms.append(NumpyToTensor(['data', 'seg'], 'float'))
|
| 182 |
+
|
| 183 |
+
tr_transforms = Compose(tr_transforms)
|
| 184 |
+
|
| 185 |
+
return tr_transforms
|
| 186 |
+
|
| 187 |
+
def get_train_transforms_noaug(patch_size, mirror_axes=None):
|
| 188 |
+
tr_transforms = []
|
| 189 |
+
# patch_size_spatial = patch_size
|
| 190 |
+
# ignore_axes = None
|
| 191 |
+
# angle = (-30. / 360 * 2. * np.pi, 30. / 360 * 2. * np.pi)
|
| 192 |
+
|
| 193 |
+
# tr_transforms.append(SpatialTransform(
|
| 194 |
+
# patch_size_spatial, patch_center_dist_from_border=None,
|
| 195 |
+
# do_elastic_deform=False, alpha=(0, 0), sigma=(0, 0),
|
| 196 |
+
# do_rotation=True, angle_x=angle, angle_y=angle, angle_z=angle,
|
| 197 |
+
# p_rot_per_axis=1, # todo experiment with this
|
| 198 |
+
# do_scale=True, scale=(0.7, 1.4),
|
| 199 |
+
# border_mode_data="constant", border_cval_data=0, order_data=3,
|
| 200 |
+
# border_mode_seg="constant", border_cval_seg=-1, order_seg=1,
|
| 201 |
+
# random_crop=False, # random cropping is part of our dataloaders
|
| 202 |
+
# p_el_per_sample=0, p_scale_per_sample=0.2, p_rot_per_sample=0.2,
|
| 203 |
+
# independent_scale_for_each_axis=False # todo experiment with this
|
| 204 |
+
# ))
|
| 205 |
+
|
| 206 |
+
# tr_transforms.append(GaussianNoiseTransform(p_per_sample=0.1))
|
| 207 |
+
# tr_transforms.append(GaussianBlurTransform((0.5, 1.), different_sigma_per_channel=True, p_per_sample=0.2,
|
| 208 |
+
# p_per_channel=0.5))
|
| 209 |
+
# tr_transforms.append(BrightnessMultiplicativeTransform(multiplier_range=(0.75, 1.25), p_per_sample=0.15))
|
| 210 |
+
# tr_transforms.append(ContrastAugmentationTransform(p_per_sample=0.15))
|
| 211 |
+
# tr_transforms.append(SimulateLowResolutionTransform(zoom_range=(0.5, 1), per_channel=True,
|
| 212 |
+
# p_per_channel=0.5,
|
| 213 |
+
# order_downsample=0, order_upsample=3, p_per_sample=0.25,
|
| 214 |
+
# ignore_axes=ignore_axes))
|
| 215 |
+
# tr_transforms.append(GammaTransform((0.7, 1.5), True, True, retain_stats=True, p_per_sample=0.1))
|
| 216 |
+
# tr_transforms.append(GammaTransform((0.7, 1.5), False, True, retain_stats=True, p_per_sample=0.3))
|
| 217 |
+
|
| 218 |
+
# if mirror_axes is not None and len(mirror_axes) > 0:
|
| 219 |
+
# tr_transforms.append(MirrorTransform(mirror_axes))
|
| 220 |
+
|
| 221 |
+
tr_transforms.append(RemoveLabelTransform(-1, 0))
|
| 222 |
+
tr_transforms.append(NumpyToTensor(['data', 'seg'], 'float'))
|
| 223 |
+
|
| 224 |
+
tr_transforms = Compose(tr_transforms)
|
| 225 |
+
|
| 226 |
+
return tr_transforms
|
| 227 |
+
|
| 228 |
+
def get_validation_transforms() -> AbstractTransform:
|
| 229 |
+
val_transforms = []
|
| 230 |
+
val_transforms.append(RemoveLabelTransform(-1, 0))
|
| 231 |
+
|
| 232 |
+
# val_transforms.append(RenameTransform('seg', 'target', True))
|
| 233 |
+
|
| 234 |
+
val_transforms.append(NumpyToTensor(['data', 'seg'], 'float'))
|
| 235 |
+
val_transforms = Compose(val_transforms)
|
| 236 |
+
return val_transforms
|
| 237 |
+
|
| 238 |
+
# import SimpleITK as sitk
|
| 239 |
+
# import matplotlib.pyplot as plt
|
| 240 |
+
|
| 241 |
+
# image = sitk.ReadImage("/Users/xingzhaohu/Documents/工作/code/medical_image_processing/SSL/BraTS20_Training_365/BraTS20_Training_365_flair.nii.gz")
|
| 242 |
+
# label = sitk.ReadImage("/Users/xingzhaohu/Documents/工作/code/medical_image_processing/SSL/BraTS20_Training_365/BraTS20_Training_365_seg.nii.gz")
|
| 243 |
+
|
| 244 |
+
# # image = sitk.ReadImage("./AIIB/image/AIIB23_171.nii.gz")
|
| 245 |
+
# # label = sitk.ReadImage("./AIIB/gt/AIIB23_171.nii.gz")
|
| 246 |
+
|
| 247 |
+
# image_arr = sitk.GetArrayFromImage(image)
|
| 248 |
+
# label_arr = sitk.GetArrayFromImage(label)
|
| 249 |
+
# intensityproperties = {}
|
| 250 |
+
|
| 251 |
+
# norm = RescaleTo01Normalization(intensityproperties=intensityproperties)
|
| 252 |
+
# image_arr = image_arr[0:128, 0:128, 0:128][None, None]
|
| 253 |
+
# label_arr = label_arr[0:128, 0:128, 0:128][None, None]
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
# image_arr = norm.run(image_arr, label_arr)
|
| 257 |
+
|
| 258 |
+
# print(image_arr.shape, label_arr.shape)
|
| 259 |
+
|
| 260 |
+
# tr_transforms = Compose(tr_transforms)
|
| 261 |
+
|
| 262 |
+
# trans_out = tr_transforms(data=image_arr, seg=label_arr)
|
| 263 |
+
|
| 264 |
+
# image_arr_aug = trans_out["data"]
|
| 265 |
+
# label_arr_aug = trans_out["seg"]
|
| 266 |
+
|
| 267 |
+
# print(image_arr_aug.shape, label_arr_aug.shape)
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
# for i in range(40, 128):
|
| 271 |
+
# plt.subplot(1, 4, 1)
|
| 272 |
+
# plt.imshow(image_arr[0, 0, i], cmap="gray")
|
| 273 |
+
# plt.subplot(1, 4, 2)
|
| 274 |
+
# plt.imshow(label_arr[0, 0, i], cmap="gray")
|
| 275 |
+
# plt.subplot(1, 4, 3)
|
| 276 |
+
# plt.imshow(image_arr_aug[0, 0, i], cmap="gray")
|
| 277 |
+
# plt.subplot(1, 4, 4)
|
| 278 |
+
# plt.imshow(label_arr_aug[0, 0, i], cmap="gray")
|
| 279 |
+
# plt.show()
|
SegMamba/light_training/dataloading/__init__.py
ADDED
|
File without changes
|
SegMamba/light_training/dataloading/base_data_loader.py
ADDED
|
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from typing import Union, Tuple
|
| 3 |
+
import time
|
| 4 |
+
|
| 5 |
+
class DataLoaderMultiProcess:
|
| 6 |
+
def __init__(self, dataset,
|
| 7 |
+
patch_size,
|
| 8 |
+
batch_size=2,
|
| 9 |
+
oversample_foreground_percent=0.33,
|
| 10 |
+
probabilistic_oversampling=False,
|
| 11 |
+
print_time=False):
|
| 12 |
+
pass
|
| 13 |
+
self.dataset = dataset
|
| 14 |
+
self.patch_size = patch_size
|
| 15 |
+
# self.annotated_classes_key = annotated_classes_key ## (1, 2, 3 ..)
|
| 16 |
+
self.batch_size = batch_size
|
| 17 |
+
self.keys = [i for i in range(len(dataset))]
|
| 18 |
+
self.thread_id = 0
|
| 19 |
+
self.oversample_foreground_percent = oversample_foreground_percent
|
| 20 |
+
self.need_to_pad = (np.array([0, 0, 0])).astype(int)
|
| 21 |
+
|
| 22 |
+
self.get_do_oversample = self._oversample_last_XX_percent if not probabilistic_oversampling \
|
| 23 |
+
else self._probabilistic_oversampling
|
| 24 |
+
self.data_shape = None
|
| 25 |
+
self.seg_shape = None
|
| 26 |
+
self.print_time = print_time
|
| 27 |
+
|
| 28 |
+
def determine_shapes(self):
|
| 29 |
+
# load one case
|
| 30 |
+
item = self.dataset.__getitem__(0)
|
| 31 |
+
data, seg, properties = item["data"], item["seg"], item["properties"]
|
| 32 |
+
num_color_channels = data.shape[0]
|
| 33 |
+
num_output_channels = seg.shape[0]
|
| 34 |
+
patch_size = self.patch_size
|
| 35 |
+
data_shape = (self.batch_size, num_color_channels, patch_size[0], patch_size[1], patch_size[2])
|
| 36 |
+
seg_shape = (self.batch_size, num_output_channels, patch_size[0], patch_size[1], patch_size[2])
|
| 37 |
+
return data_shape, seg_shape
|
| 38 |
+
|
| 39 |
+
def generate_train_batch(self):
|
| 40 |
+
|
| 41 |
+
selected_keys = np.random.choice(self.keys, self.batch_size, True, None)
|
| 42 |
+
if self.data_shape is None:
|
| 43 |
+
self.data_shape, self.seg_shape = self.determine_shapes()
|
| 44 |
+
|
| 45 |
+
data_all = np.zeros(self.data_shape, dtype=np.float32)
|
| 46 |
+
data_all_global = np.zeros(self.data_shape, dtype=np.float32)
|
| 47 |
+
seg_all_global = np.zeros(self.seg_shape, dtype=np.float32)
|
| 48 |
+
data_global = None
|
| 49 |
+
seg_global = None
|
| 50 |
+
seg_all = np.zeros(self.seg_shape, dtype=np.float32)
|
| 51 |
+
|
| 52 |
+
case_properties = []
|
| 53 |
+
|
| 54 |
+
index = 0
|
| 55 |
+
for j, key in enumerate(selected_keys):
|
| 56 |
+
|
| 57 |
+
force_fg = self.get_do_oversample(j)
|
| 58 |
+
s = time.time()
|
| 59 |
+
item = self.dataset.__getitem__(key)
|
| 60 |
+
e = time.time()
|
| 61 |
+
if self.print_time:
|
| 62 |
+
print(f"read single data time is {e - s}")
|
| 63 |
+
# print(f"read data time is {e - s}")
|
| 64 |
+
data, seg, properties = item["data"], item["seg"], item["properties"]
|
| 65 |
+
|
| 66 |
+
if "data_global" in item:
|
| 67 |
+
data_global = item["data_global"]
|
| 68 |
+
|
| 69 |
+
if "seg_global" in item:
|
| 70 |
+
seg_global = item["seg_global"]
|
| 71 |
+
|
| 72 |
+
case_properties.append(properties)
|
| 73 |
+
# If we are doing the cascade then the segmentation from the previous stage will already have been loaded by
|
| 74 |
+
# self._data.load_case(i) (see nnUNetDataset.load_case)
|
| 75 |
+
shape = data.shape[1:]
|
| 76 |
+
dim = len(shape)
|
| 77 |
+
|
| 78 |
+
s = time.time()
|
| 79 |
+
bbox_lbs, bbox_ubs = self.get_bbox(shape, force_fg, properties['class_locations'])
|
| 80 |
+
e = time.time()
|
| 81 |
+
if self.print_time:
|
| 82 |
+
print(f"get bbox time is {e - s}")
|
| 83 |
+
# whoever wrote this knew what he was doing (hint: it was me). We first crop the data to the region of the
|
| 84 |
+
# bbox that actually lies within the data. This will result in a smaller array which is then faster to pad.
|
| 85 |
+
# valid_bbox is just the coord that lied within the data cube. It will be padded to match the patch size
|
| 86 |
+
# later
|
| 87 |
+
valid_bbox_lbs = [max(0, bbox_lbs[i]) for i in range(dim)]
|
| 88 |
+
valid_bbox_ubs = [min(shape[i], bbox_ubs[i]) for i in range(dim)]
|
| 89 |
+
|
| 90 |
+
# At this point you might ask yourself why we would treat seg differently from seg_from_previous_stage.
|
| 91 |
+
# Why not just concatenate them here and forget about the if statements? Well that's because segneeds to
|
| 92 |
+
# be padded with -1 constant whereas seg_from_previous_stage needs to be padded with 0s (we could also
|
| 93 |
+
# remove label -1 in the data augmentation but this way it is less error prone)
|
| 94 |
+
this_slice = tuple([slice(0, data.shape[0])] + [slice(i, j) for i, j in zip(valid_bbox_lbs, valid_bbox_ubs)])
|
| 95 |
+
data = data[this_slice]
|
| 96 |
+
|
| 97 |
+
this_slice = tuple([slice(0, seg.shape[0])] + [slice(i, j) for i, j in zip(valid_bbox_lbs, valid_bbox_ubs)])
|
| 98 |
+
seg = seg[this_slice]
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
s = time.time()
|
| 102 |
+
padding = [(-min(0, bbox_lbs[i]), max(bbox_ubs[i] - shape[i], 0)) for i in range(dim)]
|
| 103 |
+
# print(f"box is {bbox_lbs, bbox_ubs}, padding is {padding}")
|
| 104 |
+
data_all[j] = np.pad(data, ((0, 0), *padding), 'constant', constant_values=0)
|
| 105 |
+
seg_all[j] = np.pad(seg, ((0, 0), *padding), 'constant', constant_values=0)
|
| 106 |
+
|
| 107 |
+
if data_global is not None :
|
| 108 |
+
data_all_global[j] = data_global
|
| 109 |
+
|
| 110 |
+
if seg_global is not None :
|
| 111 |
+
seg_all_global[j] = seg_global
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
e = time.time()
|
| 115 |
+
if self.print_time:
|
| 116 |
+
print(f"box is {bbox_lbs, bbox_ubs}, padding is {padding}")
|
| 117 |
+
print(f"setting data value time is {e - s}")
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
if data_global is None:
|
| 121 |
+
return {'data': data_all,
|
| 122 |
+
'seg': seg_all, 'properties': case_properties,
|
| 123 |
+
'keys': selected_keys}
|
| 124 |
+
|
| 125 |
+
return {'data': data_all, "data_global": data_all_global,
|
| 126 |
+
"seg_global": seg_all_global,
|
| 127 |
+
'seg': seg_all, 'properties': case_properties,
|
| 128 |
+
'keys': selected_keys}
|
| 129 |
+
|
| 130 |
+
def __next__(self):
|
| 131 |
+
|
| 132 |
+
return self.generate_train_batch()
|
| 133 |
+
|
| 134 |
+
def set_thread_id(self, thread_id):
|
| 135 |
+
self.thread_id = thread_id
|
| 136 |
+
|
| 137 |
+
def _oversample_last_XX_percent(self, sample_idx: int) -> bool:
|
| 138 |
+
"""
|
| 139 |
+
determines whether sample sample_idx in a minibatch needs to be guaranteed foreground
|
| 140 |
+
"""
|
| 141 |
+
return not sample_idx < round(self.batch_size * (1 - self.oversample_foreground_percent))
|
| 142 |
+
|
| 143 |
+
def _probabilistic_oversampling(self, sample_idx: int) -> bool:
|
| 144 |
+
# print('YEAH BOIIIIII')
|
| 145 |
+
return np.random.uniform() < self.oversample_foreground_percent
|
| 146 |
+
|
| 147 |
+
def get_bbox(self, data_shape: np.ndarray, force_fg: bool, class_locations: Union[dict, None],
|
| 148 |
+
overwrite_class: Union[int, Tuple[int, ...]] = None, verbose: bool = False):
|
| 149 |
+
# in dataloader 2d we need to select the slice prior to this and also modify the class_locations to only have
|
| 150 |
+
# locations for the given slice
|
| 151 |
+
need_to_pad = self.need_to_pad.copy()
|
| 152 |
+
dim = len(data_shape)
|
| 153 |
+
|
| 154 |
+
for d in range(dim):
|
| 155 |
+
# if case_all_data.shape + need_to_pad is still < patch size we need to pad more! We pad on both sides
|
| 156 |
+
# always
|
| 157 |
+
if need_to_pad[d] + data_shape[d] < self.patch_size[d]:
|
| 158 |
+
need_to_pad[d] = self.patch_size[d] - data_shape[d]
|
| 159 |
+
|
| 160 |
+
# we can now choose the bbox from -need_to_pad // 2 to shape - patch_size + need_to_pad // 2. Here we
|
| 161 |
+
# define what the upper and lower bound can be to then sample form them with np.random.randint
|
| 162 |
+
lbs = [- need_to_pad[i] // 2 for i in range(dim)]
|
| 163 |
+
ubs = [data_shape[i] + need_to_pad[i] // 2 + need_to_pad[i] % 2 - self.patch_size[i] for i in range(dim)]
|
| 164 |
+
|
| 165 |
+
# if not force_fg then we can just sample the bbox randomly from lb and ub. Else we need to make sure we get
|
| 166 |
+
# at least one of the foreground classes in the patch
|
| 167 |
+
if not force_fg:
|
| 168 |
+
bbox_lbs = [np.random.randint(lbs[i], ubs[i] + 1) for i in range(dim)]
|
| 169 |
+
# print('I want a random location')
|
| 170 |
+
else:
|
| 171 |
+
assert class_locations is not None, 'if force_fg is set class_locations cannot be None'
|
| 172 |
+
if overwrite_class is not None:
|
| 173 |
+
assert overwrite_class in class_locations.keys(), 'desired class ("overwrite_class") does not ' \
|
| 174 |
+
'have class_locations (missing key)'
|
| 175 |
+
# this saves us a np.unique. Preprocessing already did that for all cases. Neat.
|
| 176 |
+
# class_locations keys can also be tuple
|
| 177 |
+
eligible_classes_or_regions = [i for i in class_locations.keys() if len(class_locations[i]) > 0]
|
| 178 |
+
|
| 179 |
+
# if we have annotated_classes_key locations and other classes are present, remove the annotated_classes_key from the list
|
| 180 |
+
# strange formulation needed to circumvent
|
| 181 |
+
# ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
|
| 182 |
+
# tmp = [i == self.annotated_classes_key if isinstance(i, tuple) else False for i in eligible_classes_or_regions]
|
| 183 |
+
# if any(tmp):
|
| 184 |
+
# if len(eligible_classes_or_regions) > 1:
|
| 185 |
+
# eligible_classes_or_regions.pop(np.where(tmp)[0][0])
|
| 186 |
+
|
| 187 |
+
if len(eligible_classes_or_regions) == 0:
|
| 188 |
+
# this only happens if some image does not contain foreground voxels at all
|
| 189 |
+
selected_class = None
|
| 190 |
+
if verbose:
|
| 191 |
+
print('case does not contain any foreground classes')
|
| 192 |
+
else:
|
| 193 |
+
# I hate myself. Future me aint gonna be happy to read this
|
| 194 |
+
# 2022_11_25: had to read it today. Wasn't too bad
|
| 195 |
+
selected_class = eligible_classes_or_regions[np.random.choice(len(eligible_classes_or_regions))] if \
|
| 196 |
+
(overwrite_class is None or (overwrite_class not in eligible_classes_or_regions)) else overwrite_class
|
| 197 |
+
# print(f'I want to have foreground, selected class: {selected_class}')
|
| 198 |
+
|
| 199 |
+
voxels_of_that_class = class_locations[selected_class] if selected_class is not None else None
|
| 200 |
+
|
| 201 |
+
if voxels_of_that_class is not None and len(voxels_of_that_class) > 0:
|
| 202 |
+
selected_voxel = voxels_of_that_class[np.random.choice(len(voxels_of_that_class))]
|
| 203 |
+
# selected voxel is center voxel. Subtract half the patch size to get lower bbox voxel.
|
| 204 |
+
# Make sure it is within the bounds of lb and ub
|
| 205 |
+
# i + 1 because we have first dimension 0!
|
| 206 |
+
bbox_lbs = [max(lbs[i], selected_voxel[i + 1] - self.patch_size[i] // 2) for i in range(dim)]
|
| 207 |
+
else:
|
| 208 |
+
# If the image does not contain any foreground classes, we fall back to random cropping
|
| 209 |
+
bbox_lbs = [np.random.randint(lbs[i], ubs[i] + 1) for i in range(dim)]
|
| 210 |
+
|
| 211 |
+
bbox_ubs = [bbox_lbs[i] + self.patch_size[i] for i in range(dim)]
|
| 212 |
+
|
| 213 |
+
return bbox_lbs, bbox_ubs
|
SegMamba/light_training/dataloading/dataset.py
ADDED
|
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# Copyright 2020 - 2022 MONAI Consortium
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 7 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 8 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 9 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 10 |
+
# See the License for the specific language governing permissions and
|
| 11 |
+
# limitations under the License.
|
| 12 |
+
from sklearn.model_selection import KFold ## K折交叉验证
|
| 13 |
+
import pickle
|
| 14 |
+
import os
|
| 15 |
+
import json
|
| 16 |
+
import math
|
| 17 |
+
import numpy as np
|
| 18 |
+
import torch
|
| 19 |
+
from monai import transforms
|
| 20 |
+
import SimpleITK as sitk
|
| 21 |
+
from tqdm import tqdm
|
| 22 |
+
from torch.utils.data import Dataset
|
| 23 |
+
import glob
|
| 24 |
+
from light_training.dataloading.utils import unpack_dataset
|
| 25 |
+
import random
|
| 26 |
+
|
| 27 |
+
class MedicalDataset(Dataset):
|
| 28 |
+
def __init__(self, datalist, test=False) -> None:
|
| 29 |
+
super().__init__()
|
| 30 |
+
|
| 31 |
+
self.datalist = datalist
|
| 32 |
+
self.test = test
|
| 33 |
+
|
| 34 |
+
self.data_cached = []
|
| 35 |
+
for p in tqdm(self.datalist, total=len(self.datalist)):
|
| 36 |
+
info = self.load_pkl(p)
|
| 37 |
+
|
| 38 |
+
self.data_cached.append(info)
|
| 39 |
+
|
| 40 |
+
## unpacking
|
| 41 |
+
print(f"unpacking data ....")
|
| 42 |
+
# for
|
| 43 |
+
folder = []
|
| 44 |
+
for p in self.datalist:
|
| 45 |
+
f = os.path.dirname(p)
|
| 46 |
+
if f not in folder:
|
| 47 |
+
folder.append(f)
|
| 48 |
+
for f in folder:
|
| 49 |
+
unpack_dataset(f,
|
| 50 |
+
unpack_segmentation=True,
|
| 51 |
+
overwrite_existing=False,
|
| 52 |
+
num_processes=8)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
print(f"data length is {len(self.datalist)}")
|
| 56 |
+
|
| 57 |
+
def load_pkl(self, data_path):
|
| 58 |
+
pass
|
| 59 |
+
properties_path = f"{data_path[:-4]}.pkl"
|
| 60 |
+
df = open(properties_path, "rb")
|
| 61 |
+
info = pickle.load(df)
|
| 62 |
+
|
| 63 |
+
return info
|
| 64 |
+
|
| 65 |
+
def post(self, batch_data):
|
| 66 |
+
return batch_data
|
| 67 |
+
|
| 68 |
+
def read_data(self, data_path):
|
| 69 |
+
|
| 70 |
+
image_path = data_path.replace(".npz", ".npy")
|
| 71 |
+
seg_path = data_path.replace(".npz", "_seg.npy")
|
| 72 |
+
image_data = np.load(image_path, "r+")
|
| 73 |
+
|
| 74 |
+
seg_data = None
|
| 75 |
+
if not self.test:
|
| 76 |
+
seg_data = np.load(seg_path, "r+")
|
| 77 |
+
return image_data, seg_data
|
| 78 |
+
|
| 79 |
+
def __getitem__(self, i):
|
| 80 |
+
|
| 81 |
+
image, seg = self.read_data(self.datalist[i])
|
| 82 |
+
|
| 83 |
+
properties = self.data_cached[i]
|
| 84 |
+
|
| 85 |
+
if seg is None:
|
| 86 |
+
return {
|
| 87 |
+
"data": image,
|
| 88 |
+
"properties": properties
|
| 89 |
+
}
|
| 90 |
+
else :
|
| 91 |
+
return {
|
| 92 |
+
"data": image,
|
| 93 |
+
"seg": seg,
|
| 94 |
+
"properties": properties
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
def __len__(self):
|
| 98 |
+
return len(self.datalist)
|
| 99 |
+
|
| 100 |
+
def get_train_test_loader_from_test_list(data_dir, test_list):
|
| 101 |
+
all_paths = glob.glob(f"{data_dir}/*.npz")
|
| 102 |
+
|
| 103 |
+
test_datalist = []
|
| 104 |
+
train_datalist = []
|
| 105 |
+
|
| 106 |
+
test_list_1 = []
|
| 107 |
+
for t in test_list:
|
| 108 |
+
test_list_1.append(t.replace(".nii.gz", ""))
|
| 109 |
+
|
| 110 |
+
test_list = test_list_1
|
| 111 |
+
for p in all_paths:
|
| 112 |
+
p2 = p.split("/")[-1].split(".")[0]
|
| 113 |
+
if p2 in test_list:
|
| 114 |
+
test_datalist.append(p)
|
| 115 |
+
else :
|
| 116 |
+
train_datalist.append(p)
|
| 117 |
+
|
| 118 |
+
print(f"training data is {len(train_datalist)}")
|
| 119 |
+
print(f"test data is {len(test_datalist)}", test_datalist)
|
| 120 |
+
|
| 121 |
+
train_ds = MedicalDataset(train_datalist)
|
| 122 |
+
test_ds = MedicalDataset(test_datalist)
|
| 123 |
+
|
| 124 |
+
loader = [train_ds, test_ds]
|
| 125 |
+
|
| 126 |
+
return loader
|
| 127 |
+
|
| 128 |
+
def get_kfold_data(data_paths, n_splits, shuffle=False):
|
| 129 |
+
X = np.arange(len(data_paths))
|
| 130 |
+
kfold = KFold(n_splits=n_splits, shuffle=shuffle) ## kfold为KFolf类的一个对象
|
| 131 |
+
return_res = []
|
| 132 |
+
for a, b in kfold.split(X):
|
| 133 |
+
fold_train = []
|
| 134 |
+
fold_val = []
|
| 135 |
+
for i in a:
|
| 136 |
+
fold_train.append(data_paths[i])
|
| 137 |
+
for j in b:
|
| 138 |
+
fold_val.append(data_paths[j])
|
| 139 |
+
return_res.append({"train_data": fold_train, "val_data": fold_val})
|
| 140 |
+
|
| 141 |
+
return return_res
|
| 142 |
+
|
| 143 |
+
def get_kfold_loader(data_dir, fold=0, test_dir=None):
|
| 144 |
+
|
| 145 |
+
all_paths = glob.glob(f"{data_dir}/*.npz")
|
| 146 |
+
fold_data = get_kfold_data(all_paths, 5)[fold]
|
| 147 |
+
|
| 148 |
+
train_datalist = fold_data["train_data"]
|
| 149 |
+
val_datalist = fold_data["val_data"]
|
| 150 |
+
|
| 151 |
+
print(f"training data is {len(train_datalist)}")
|
| 152 |
+
print(f"validation data is {len(val_datalist)}")
|
| 153 |
+
train_ds = MedicalDataset(train_datalist)
|
| 154 |
+
|
| 155 |
+
val_ds = MedicalDataset(val_datalist)
|
| 156 |
+
|
| 157 |
+
if test_dir is not None:
|
| 158 |
+
test_paths = glob.glob(f"{test_dir}/*.npz")
|
| 159 |
+
test_ds = MedicalDataset(test_paths, test=True)
|
| 160 |
+
else:
|
| 161 |
+
test_ds = None
|
| 162 |
+
|
| 163 |
+
loader = [train_ds, val_ds, test_ds]
|
| 164 |
+
|
| 165 |
+
return loader
|
| 166 |
+
|
| 167 |
+
def get_all_training_loader(data_dir, fold=0, test_dir=None):
|
| 168 |
+
## train all labeled data
|
| 169 |
+
## fold denote the validation data in training data
|
| 170 |
+
all_paths = glob.glob(f"{data_dir}/*.npz")
|
| 171 |
+
fold_data = get_kfold_data(all_paths, 5)[fold]
|
| 172 |
+
|
| 173 |
+
train_datalist = all_paths
|
| 174 |
+
val_datalist = fold_data["val_data"]
|
| 175 |
+
|
| 176 |
+
print(f"training data is {len(train_datalist)}")
|
| 177 |
+
print(f"validation data is {len(val_datalist)}")
|
| 178 |
+
train_ds = MedicalDataset(train_datalist)
|
| 179 |
+
|
| 180 |
+
val_ds = MedicalDataset(val_datalist)
|
| 181 |
+
|
| 182 |
+
if test_dir is not None:
|
| 183 |
+
test_paths = glob.glob(f"{test_dir}/*.npz")
|
| 184 |
+
test_ds = MedicalDataset(test_paths, test=True)
|
| 185 |
+
else:
|
| 186 |
+
test_ds = None
|
| 187 |
+
|
| 188 |
+
loader = [train_ds, val_ds, test_ds]
|
| 189 |
+
|
| 190 |
+
return loader
|
| 191 |
+
|
| 192 |
+
def get_train_val_test_loader_seperate(train_dir, val_dir, test_dir=None):
|
| 193 |
+
train_datalist = glob.glob(f"{train_dir}/*.npz")
|
| 194 |
+
val_datalist = glob.glob(f"{val_dir}/*.npz")
|
| 195 |
+
|
| 196 |
+
print(f"training data is {len(train_datalist)}")
|
| 197 |
+
print(f"validation data is {len(val_datalist)}")
|
| 198 |
+
|
| 199 |
+
if test_dir is not None:
|
| 200 |
+
test_datalist = glob.glob(f"{test_dir}/*.npz")
|
| 201 |
+
print(f"test data is {len(test_datalist)}")
|
| 202 |
+
test_ds = MedicalDataset(test_datalist, test=True)
|
| 203 |
+
else :
|
| 204 |
+
test_ds = None
|
| 205 |
+
|
| 206 |
+
train_ds = MedicalDataset(train_datalist)
|
| 207 |
+
val_ds = MedicalDataset(val_datalist)
|
| 208 |
+
|
| 209 |
+
loader = [train_ds, val_ds, test_ds]
|
| 210 |
+
|
| 211 |
+
return loader
|
| 212 |
+
|
| 213 |
+
def get_train_val_test_loader_from_split_json(data_dir, split_json_file):
|
| 214 |
+
import json
|
| 215 |
+
|
| 216 |
+
with open(split_json_file, "r") as f:
|
| 217 |
+
|
| 218 |
+
datalist = json.loads(f.read())
|
| 219 |
+
|
| 220 |
+
train_datalist = datalist["train"]
|
| 221 |
+
val_datalist = datalist["validation"]
|
| 222 |
+
test_datalist = datalist["test"]
|
| 223 |
+
|
| 224 |
+
def add_pre(datalist):
|
| 225 |
+
for i in range(len(datalist)):
|
| 226 |
+
datalist[i] = os.path.join(data_dir, datalist[i])
|
| 227 |
+
|
| 228 |
+
add_pre(train_datalist)
|
| 229 |
+
add_pre(val_datalist)
|
| 230 |
+
add_pre(test_datalist)
|
| 231 |
+
print(f"training data is {len(train_datalist)}")
|
| 232 |
+
print(f"validation data is {len(val_datalist)}")
|
| 233 |
+
print(f"test data is {len(test_datalist)}", sorted(test_datalist))
|
| 234 |
+
|
| 235 |
+
train_ds = MedicalDataset(train_datalist)
|
| 236 |
+
val_ds = MedicalDataset(val_datalist)
|
| 237 |
+
test_ds = MedicalDataset(test_datalist)
|
| 238 |
+
|
| 239 |
+
loader = [train_ds, val_ds, test_ds]
|
| 240 |
+
|
| 241 |
+
return loader
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
def get_train_val_test_loader_from_train(data_dir, train_rate=0.7, val_rate=0.1, test_rate=0.2, seed=42):
|
| 245 |
+
## train all labeled data
|
| 246 |
+
## fold denote the validation data in training data
|
| 247 |
+
all_paths = glob.glob(f"{data_dir}/*.npz")
|
| 248 |
+
# fold_data = get_kfold_data(all_paths, 5)[fold]
|
| 249 |
+
|
| 250 |
+
train_number = int(len(all_paths) * train_rate)
|
| 251 |
+
val_number = int(len(all_paths) * val_rate)
|
| 252 |
+
test_number = int(len(all_paths) * test_rate)
|
| 253 |
+
random.seed(seed)
|
| 254 |
+
# random_state = random.random
|
| 255 |
+
random.shuffle(all_paths)
|
| 256 |
+
|
| 257 |
+
train_datalist = all_paths[:train_number]
|
| 258 |
+
val_datalist = all_paths[train_number: train_number + val_number]
|
| 259 |
+
test_datalist = all_paths[-test_number:]
|
| 260 |
+
|
| 261 |
+
print(f"training data is {len(train_datalist)}")
|
| 262 |
+
print(f"validation data is {len(val_datalist)}")
|
| 263 |
+
print(f"test data is {len(test_datalist)}", sorted(test_datalist))
|
| 264 |
+
|
| 265 |
+
train_ds = MedicalDataset(train_datalist)
|
| 266 |
+
val_ds = MedicalDataset(val_datalist)
|
| 267 |
+
test_ds = MedicalDataset(test_datalist)
|
| 268 |
+
|
| 269 |
+
loader = [train_ds, val_ds, test_ds]
|
| 270 |
+
|
| 271 |
+
return loader
|
| 272 |
+
|
| 273 |
+
def get_train_loader_from_train(data_dir):
|
| 274 |
+
## train all labeled data
|
| 275 |
+
## fold denote the validation data in training data
|
| 276 |
+
all_paths = glob.glob(f"{data_dir}/*.npz")
|
| 277 |
+
# fold_data = get_kfold_data(all_paths, 5)[fold]
|
| 278 |
+
|
| 279 |
+
train_ds = MedicalDataset(all_paths)
|
| 280 |
+
|
| 281 |
+
return train_ds
|
| 282 |
+
|
| 283 |
+
def get_test_loader_from_test(data_dir):
|
| 284 |
+
all_paths = glob.glob(f"{data_dir}/*.npz")
|
| 285 |
+
|
| 286 |
+
test_ds = MedicalDataset(all_paths)
|
| 287 |
+
|
| 288 |
+
return test_ds
|
| 289 |
+
|
| 290 |
+
def get_multi_dir_training_loader(data_dir, fold=0, test_dir=None):
|
| 291 |
+
## train all labeled data
|
| 292 |
+
## fold denote the validation data in training data
|
| 293 |
+
all_paths = []
|
| 294 |
+
for p in data_dir:
|
| 295 |
+
paths = glob.glob(f"{p}/*.npz")
|
| 296 |
+
for pp in paths:
|
| 297 |
+
all_paths.append(pp)
|
| 298 |
+
|
| 299 |
+
# print(all_paths)
|
| 300 |
+
fold_data = get_kfold_data(all_paths, 5)[fold]
|
| 301 |
+
|
| 302 |
+
train_datalist = all_paths
|
| 303 |
+
val_datalist = fold_data["val_data"]
|
| 304 |
+
|
| 305 |
+
print(f"training data is {len(train_datalist)}")
|
| 306 |
+
print(f"validation data is {len(val_datalist)}")
|
| 307 |
+
train_ds = MedicalDataset(train_datalist)
|
| 308 |
+
|
| 309 |
+
val_ds = MedicalDataset(val_datalist)
|
| 310 |
+
|
| 311 |
+
if test_dir is not None:
|
| 312 |
+
test_paths = glob.glob(f"{test_dir}/*.npz")
|
| 313 |
+
test_ds = MedicalDataset(test_paths, test=True)
|
| 314 |
+
else:
|
| 315 |
+
test_ds = None
|
| 316 |
+
|
| 317 |
+
loader = [train_ds, val_ds, test_ds]
|
| 318 |
+
|
| 319 |
+
return loader
|
SegMamba/light_training/dataloading/dataset_sdm_edge.py
ADDED
|
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# Copyright 2020 - 2022 MONAI Consortium
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 7 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 8 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 9 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 10 |
+
# See the License for the specific language governing permissions and
|
| 11 |
+
# limitations under the License.
|
| 12 |
+
from sklearn.model_selection import KFold ## K折交叉验证
|
| 13 |
+
import pickle
|
| 14 |
+
import os
|
| 15 |
+
import json
|
| 16 |
+
import math
|
| 17 |
+
import numpy as np
|
| 18 |
+
import torch
|
| 19 |
+
from monai import transforms
|
| 20 |
+
import SimpleITK as sitk
|
| 21 |
+
from tqdm import tqdm
|
| 22 |
+
from torch.utils.data import Dataset
|
| 23 |
+
import glob
|
| 24 |
+
from light_training.dataloading.utils import unpack_dataset
|
| 25 |
+
import random
|
| 26 |
+
import torch
|
| 27 |
+
import numpy as np
|
| 28 |
+
from scipy.ndimage import distance_transform_edt as distance
|
| 29 |
+
from skimage import segmentation as skimage_seg
|
| 30 |
+
from skimage.morphology import dilation, disk
|
| 31 |
+
import scipy.ndimage as ndimage
|
| 32 |
+
|
| 33 |
+
def get_edge_points(img):
|
| 34 |
+
"""
|
| 35 |
+
get edge points of a binary segmentation result
|
| 36 |
+
"""
|
| 37 |
+
dim = len(img.shape)
|
| 38 |
+
if (dim == 2):
|
| 39 |
+
strt = ndimage.generate_binary_structure(2, 1)
|
| 40 |
+
else:
|
| 41 |
+
strt = ndimage.generate_binary_structure(3, 1)
|
| 42 |
+
ero = ndimage.binary_erosion(img, strt)
|
| 43 |
+
edge = np.asarray(img, np.uint8) - np.asarray(ero, np.uint8)
|
| 44 |
+
return edge
|
| 45 |
+
|
| 46 |
+
def edge_3d(image_3d):
|
| 47 |
+
# image_3d = torch.from_numpy(image_3d)
|
| 48 |
+
return_edge = np.zeros_like(image_3d)
|
| 49 |
+
|
| 50 |
+
for i in range(image_3d.shape[0]):
|
| 51 |
+
for j in range(image_3d.shape[1]):
|
| 52 |
+
return_edge[i, j] = get_edge_points(image_3d[i, j])
|
| 53 |
+
|
| 54 |
+
return return_edge
|
| 55 |
+
|
| 56 |
+
def compute_sdf(img_gt, out_shape):
|
| 57 |
+
"""
|
| 58 |
+
compute the signed distance map of binary mask
|
| 59 |
+
input: segmentation, shape = (batch_size,c, x, y, z)
|
| 60 |
+
output: the Signed Distance Map (SDM)
|
| 61 |
+
sdf(x) = 0; x in segmentation boundary
|
| 62 |
+
-inf|x-y|; x in segmentation
|
| 63 |
+
+inf|x-y|; x out of segmentation
|
| 64 |
+
normalize sdf to [-1,1]
|
| 65 |
+
|
| 66 |
+
"""
|
| 67 |
+
|
| 68 |
+
img_gt = img_gt.astype(np.uint8)
|
| 69 |
+
normalized_sdf = np.zeros(out_shape)
|
| 70 |
+
|
| 71 |
+
for b in range(out_shape[0]): # batch size
|
| 72 |
+
for c in range(out_shape[1]):
|
| 73 |
+
posmask = img_gt[b, c].astype(np.bool_)
|
| 74 |
+
if posmask.any():
|
| 75 |
+
negmask = ~posmask
|
| 76 |
+
posdis = distance(posmask)
|
| 77 |
+
negdis = distance(negmask)
|
| 78 |
+
boundary = skimage_seg.find_boundaries(posmask, mode='inner').astype(np.uint8)
|
| 79 |
+
sdf = (negdis-np.min(negdis))/(np.max(negdis)-np.min(negdis)) - (posdis-np.min(posdis))/(np.max(posdis)-np.min(posdis))
|
| 80 |
+
sdf[boundary==1] = 0
|
| 81 |
+
normalized_sdf[b][c] = sdf
|
| 82 |
+
assert np.min(sdf) == -1.0, print(np.min(posdis), np.max(posdis), np.min(negdis), np.max(negdis))
|
| 83 |
+
assert np.max(sdf) == 1.0, print(np.min(posdis), np.min(negdis), np.max(posdis), np.max(negdis))
|
| 84 |
+
|
| 85 |
+
return normalized_sdf
|
| 86 |
+
|
| 87 |
+
def convert_labels(labels):
|
| 88 |
+
## TC, WT and ET
|
| 89 |
+
labels = labels[None, None]
|
| 90 |
+
result = [(labels == 1) | (labels == 3), (labels == 1) | (labels == 3) | (labels == 2), labels == 3]
|
| 91 |
+
|
| 92 |
+
return torch.cat(result, dim=1).float()
|
| 93 |
+
|
| 94 |
+
class MedicalDataset(Dataset):
|
| 95 |
+
def __init__(self, datalist, test=False) -> None:
|
| 96 |
+
super().__init__()
|
| 97 |
+
|
| 98 |
+
self.datalist = datalist
|
| 99 |
+
self.test = test
|
| 100 |
+
|
| 101 |
+
self.data_cached = []
|
| 102 |
+
for p in tqdm(self.datalist, total=len(self.datalist)):
|
| 103 |
+
info = self.load_pkl(p)
|
| 104 |
+
|
| 105 |
+
self.data_cached.append(info)
|
| 106 |
+
|
| 107 |
+
## unpacking
|
| 108 |
+
print(f"unpacking data ....")
|
| 109 |
+
# for
|
| 110 |
+
folder = []
|
| 111 |
+
for p in self.datalist:
|
| 112 |
+
f = os.path.dirname(p)
|
| 113 |
+
if f not in folder:
|
| 114 |
+
folder.append(f)
|
| 115 |
+
for f in folder:
|
| 116 |
+
unpack_dataset(f,
|
| 117 |
+
unpack_segmentation=True,
|
| 118 |
+
overwrite_existing=False,
|
| 119 |
+
num_processes=8)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
print(f"data length is {len(self.datalist)}")
|
| 123 |
+
|
| 124 |
+
def load_pkl(self, data_path):
|
| 125 |
+
pass
|
| 126 |
+
properties_path = f"{data_path[:-4]}.pkl"
|
| 127 |
+
df = open(properties_path, "rb")
|
| 128 |
+
info = pickle.load(df)
|
| 129 |
+
|
| 130 |
+
return info
|
| 131 |
+
|
| 132 |
+
def read_data(self, data_path):
|
| 133 |
+
|
| 134 |
+
image_path = data_path.replace(".npz", ".npy")
|
| 135 |
+
seg_path = data_path.replace(".npz", "_seg.npy")
|
| 136 |
+
image_data = np.load(image_path, "r")
|
| 137 |
+
|
| 138 |
+
seg_data = None
|
| 139 |
+
if not self.test:
|
| 140 |
+
seg_data = np.load(seg_path, "r")
|
| 141 |
+
return image_data, seg_data
|
| 142 |
+
|
| 143 |
+
# def post(self, batch_data):
|
| 144 |
+
# seg = convert_labels(batch_data["seg"]).numpy()
|
| 145 |
+
# seg_shape = seg.shape
|
| 146 |
+
# seg_edge = edge_3d(seg)
|
| 147 |
+
# seg_sdm = 1 - compute_sdf(seg, out_shape=seg_shape)
|
| 148 |
+
# seg_sdm = seg_sdm + seg_edge
|
| 149 |
+
|
| 150 |
+
# seg_edge = torch.from_numpy(seg_edge)
|
| 151 |
+
# seg_sdm = torch.from_numpy(seg_sdm)
|
| 152 |
+
|
| 153 |
+
# batch_data["seg_edge"] = seg_edge
|
| 154 |
+
# batch_data["seg_sdm"] = seg_sdm
|
| 155 |
+
|
| 156 |
+
# print(f"post!!!!!!!!!")
|
| 157 |
+
# return batch_data
|
| 158 |
+
|
| 159 |
+
def __getitem__(self, i):
|
| 160 |
+
|
| 161 |
+
image, seg = self.read_data(self.datalist[i])
|
| 162 |
+
|
| 163 |
+
properties = self.data_cached[i]
|
| 164 |
+
case_name = properties["name"]
|
| 165 |
+
|
| 166 |
+
if seg is not None:
|
| 167 |
+
sdm = np.load(os.path.join("./data/fullres/train_sdm/", f"{case_name}_seg_sdm.npy"), "r")
|
| 168 |
+
|
| 169 |
+
# print(seg.shape, sdm.shape)
|
| 170 |
+
sdm = sdm[0]
|
| 171 |
+
seg = np.concatenate([seg, sdm], axis=0)
|
| 172 |
+
|
| 173 |
+
# print(f"sdm sum is {sdm.sum()}")
|
| 174 |
+
if seg is None:
|
| 175 |
+
return {
|
| 176 |
+
"data": image,
|
| 177 |
+
"properties": properties
|
| 178 |
+
}
|
| 179 |
+
else :
|
| 180 |
+
return {
|
| 181 |
+
"data": image,
|
| 182 |
+
"seg": seg,
|
| 183 |
+
"properties": properties
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
def __len__(self):
|
| 187 |
+
return len(self.datalist)
|
| 188 |
+
|
| 189 |
+
def get_kfold_data(data_paths, n_splits, shuffle=False):
|
| 190 |
+
X = np.arange(len(data_paths))
|
| 191 |
+
kfold = KFold(n_splits=n_splits, shuffle=shuffle) ## kfold为KFolf类的一个对象
|
| 192 |
+
return_res = []
|
| 193 |
+
for a, b in kfold.split(X):
|
| 194 |
+
fold_train = []
|
| 195 |
+
fold_val = []
|
| 196 |
+
for i in a:
|
| 197 |
+
fold_train.append(data_paths[i])
|
| 198 |
+
for j in b:
|
| 199 |
+
fold_val.append(data_paths[j])
|
| 200 |
+
return_res.append({"train_data": fold_train, "val_data": fold_val})
|
| 201 |
+
|
| 202 |
+
return return_res
|
| 203 |
+
|
| 204 |
+
def get_kfold_loader(data_dir, fold=0, test_dir=None):
|
| 205 |
+
|
| 206 |
+
all_paths = glob.glob(f"{data_dir}/*.npz")
|
| 207 |
+
fold_data = get_kfold_data(all_paths, 5)[fold]
|
| 208 |
+
|
| 209 |
+
train_datalist = fold_data["train_data"]
|
| 210 |
+
val_datalist = fold_data["val_data"]
|
| 211 |
+
|
| 212 |
+
print(f"training data is {len(train_datalist)}")
|
| 213 |
+
print(f"validation data is {len(val_datalist)}")
|
| 214 |
+
train_ds = MedicalDataset(train_datalist)
|
| 215 |
+
|
| 216 |
+
val_ds = MedicalDataset(val_datalist)
|
| 217 |
+
|
| 218 |
+
if test_dir is not None:
|
| 219 |
+
test_paths = glob.glob(f"{test_dir}/*.npz")
|
| 220 |
+
test_ds = MedicalDataset(test_paths, test=True)
|
| 221 |
+
else:
|
| 222 |
+
test_ds = None
|
| 223 |
+
|
| 224 |
+
loader = [train_ds, val_ds, test_ds]
|
| 225 |
+
|
| 226 |
+
return loader
|
| 227 |
+
|
| 228 |
+
def get_all_training_loader(data_dir, fold=0, test_dir=None):
|
| 229 |
+
## train all labeled data
|
| 230 |
+
## fold denote the validation data in training data
|
| 231 |
+
all_paths = glob.glob(f"{data_dir}/*.npz")
|
| 232 |
+
fold_data = get_kfold_data(all_paths, 5)[fold]
|
| 233 |
+
|
| 234 |
+
train_datalist = all_paths
|
| 235 |
+
val_datalist = fold_data["val_data"]
|
| 236 |
+
|
| 237 |
+
print(f"training data is {len(train_datalist)}")
|
| 238 |
+
print(f"validation data is {len(val_datalist)}")
|
| 239 |
+
train_ds = MedicalDataset(train_datalist)
|
| 240 |
+
|
| 241 |
+
val_ds = MedicalDataset(val_datalist)
|
| 242 |
+
|
| 243 |
+
if test_dir is not None:
|
| 244 |
+
test_paths = glob.glob(f"{test_dir}/*.npz")
|
| 245 |
+
test_ds = MedicalDataset(test_paths, test=True)
|
| 246 |
+
else:
|
| 247 |
+
test_ds = None
|
| 248 |
+
|
| 249 |
+
loader = [train_ds, val_ds, test_ds]
|
| 250 |
+
|
| 251 |
+
return loader
|
| 252 |
+
|
| 253 |
+
def get_train_val_test_loader_seperate(train_dir, val_dir, test_dir=None):
|
| 254 |
+
train_datalist = glob.glob(f"{train_dir}/*.npz")
|
| 255 |
+
val_datalist = glob.glob(f"{val_dir}/*.npz")
|
| 256 |
+
|
| 257 |
+
print(f"training data is {len(train_datalist)}")
|
| 258 |
+
print(f"validation data is {len(val_datalist)}")
|
| 259 |
+
|
| 260 |
+
if test_dir is not None:
|
| 261 |
+
test_datalist = glob.glob(f"{test_dir}/*.npz")
|
| 262 |
+
print(f"test data is {len(test_datalist)}")
|
| 263 |
+
test_ds = MedicalDataset(test_datalist, test=True)
|
| 264 |
+
else :
|
| 265 |
+
test_ds = None
|
| 266 |
+
|
| 267 |
+
train_ds = MedicalDataset(train_datalist)
|
| 268 |
+
val_ds = MedicalDataset(val_datalist)
|
| 269 |
+
|
| 270 |
+
loader = [train_ds, val_ds, test_ds]
|
| 271 |
+
|
| 272 |
+
return loader
|
| 273 |
+
|
| 274 |
+
def get_train_val_test_loader_from_train(data_dir, train_rate=0.7, val_rate=0.1, test_rate=0.2):
|
| 275 |
+
## train all labeled data
|
| 276 |
+
## fold denote the validation data in training data
|
| 277 |
+
all_paths = glob.glob(f"{data_dir}/*.npz")
|
| 278 |
+
# fold_data = get_kfold_data(all_paths, 5)[fold]
|
| 279 |
+
|
| 280 |
+
train_number = int(len(all_paths) * train_rate)
|
| 281 |
+
val_number = int(len(all_paths) * val_rate)
|
| 282 |
+
test_number = int(len(all_paths) * test_rate)
|
| 283 |
+
|
| 284 |
+
random.shuffle(all_paths)
|
| 285 |
+
|
| 286 |
+
train_datalist = all_paths[:train_number]
|
| 287 |
+
val_datalist = all_paths[train_number: train_number + val_number]
|
| 288 |
+
test_datalist = all_paths[-test_number:]
|
| 289 |
+
|
| 290 |
+
print(f"training data is {len(train_datalist)}")
|
| 291 |
+
print(f"validation data is {len(val_datalist)}")
|
| 292 |
+
print(f"test data is {len(test_datalist)}")
|
| 293 |
+
|
| 294 |
+
train_ds = MedicalDataset(train_datalist)
|
| 295 |
+
val_ds = MedicalDataset(val_datalist)
|
| 296 |
+
test_ds = MedicalDataset(test_datalist)
|
| 297 |
+
|
| 298 |
+
loader = [train_ds, val_ds, test_ds]
|
| 299 |
+
|
| 300 |
+
return loader
|
| 301 |
+
|
| 302 |
+
def get_multi_dir_training_loader(data_dir, fold=0, test_dir=None):
|
| 303 |
+
## train all labeled data
|
| 304 |
+
## fold denote the validation data in training data
|
| 305 |
+
all_paths = []
|
| 306 |
+
for p in data_dir:
|
| 307 |
+
paths = glob.glob(f"{p}/*.npz")
|
| 308 |
+
for pp in paths:
|
| 309 |
+
all_paths.append(pp)
|
| 310 |
+
|
| 311 |
+
# print(all_paths)
|
| 312 |
+
fold_data = get_kfold_data(all_paths, 5)[fold]
|
| 313 |
+
|
| 314 |
+
train_datalist = all_paths
|
| 315 |
+
val_datalist = fold_data["val_data"]
|
| 316 |
+
|
| 317 |
+
print(f"training data is {len(train_datalist)}")
|
| 318 |
+
print(f"validation data is {len(val_datalist)}")
|
| 319 |
+
train_ds = MedicalDataset(train_datalist)
|
| 320 |
+
|
| 321 |
+
val_ds = MedicalDataset(val_datalist)
|
| 322 |
+
|
| 323 |
+
if test_dir is not None:
|
| 324 |
+
test_paths = glob.glob(f"{test_dir}/*.npz")
|
| 325 |
+
test_ds = MedicalDataset(test_paths, test=True)
|
| 326 |
+
else:
|
| 327 |
+
test_ds = None
|
| 328 |
+
|
| 329 |
+
loader = [train_ds, val_ds, test_ds]
|
| 330 |
+
|
| 331 |
+
return loader
|
SegMamba/light_training/dataloading/get_train_val_test_datalist.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import glob
|
| 3 |
+
import random
|
| 4 |
+
import json
|
| 5 |
+
|
| 6 |
+
def get_train_val_test_list_from_fulldata(data_dir, train_rate=0.7, val_rate=0.1, test_rate=0.2, seed=42):
|
| 7 |
+
all_paths = glob.glob(f"{data_dir}/*.npz")
|
| 8 |
+
|
| 9 |
+
## eliminate the pre
|
| 10 |
+
all_paths_save = []
|
| 11 |
+
for p in all_paths:
|
| 12 |
+
all_paths_save.append(p.split("/")[-1])
|
| 13 |
+
all_paths = all_paths_save
|
| 14 |
+
train_number = int(len(all_paths) * train_rate)
|
| 15 |
+
val_number = int(len(all_paths) * val_rate)
|
| 16 |
+
test_number = int(len(all_paths) * test_rate)
|
| 17 |
+
random.seed(seed)
|
| 18 |
+
random.shuffle(all_paths)
|
| 19 |
+
train_datalist = all_paths[:train_number]
|
| 20 |
+
val_datalist = all_paths[train_number: train_number + val_number]
|
| 21 |
+
test_datalist = all_paths[-test_number:]
|
| 22 |
+
|
| 23 |
+
print(f"training data is {len(train_datalist)}")
|
| 24 |
+
print(f"validation data is {len(val_datalist)}")
|
| 25 |
+
print(f"test data is {len(test_datalist)}", sorted(test_datalist))
|
| 26 |
+
|
| 27 |
+
datalist = {
|
| 28 |
+
"train": train_datalist,
|
| 29 |
+
"validation": val_datalist,
|
| 30 |
+
"test": test_datalist
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
datalist = json.dumps(datalist)
|
| 34 |
+
|
| 35 |
+
with open("./data_split.json", "w") as f:
|
| 36 |
+
f.write(datalist)
|
SegMamba/light_training/dataloading/utils.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import os
|
| 3 |
+
from batchgenerators.utilities.file_and_folder_operations import isfile, subfiles
|
| 4 |
+
import multiprocessing
|
| 5 |
+
|
| 6 |
+
def _convert_to_npy(npz_file: str, unpack_segmentation: bool = True, overwrite_existing: bool = False) -> None:
|
| 7 |
+
# try:
|
| 8 |
+
a = np.load(npz_file) # inexpensive, no compression is done here. This just reads metadata
|
| 9 |
+
if overwrite_existing or not isfile(npz_file[:-3] + "npy"):
|
| 10 |
+
np.save(npz_file[:-3] + "npy", a['data'])
|
| 11 |
+
|
| 12 |
+
if unpack_segmentation and (overwrite_existing or not isfile(npz_file[:-4] + "_seg.npy")):
|
| 13 |
+
np.save(npz_file[:-4] + "_seg.npy", a['seg'])
|
| 14 |
+
|
| 15 |
+
def unpack_dataset(folder: str, unpack_segmentation: bool = True, overwrite_existing: bool = False,
|
| 16 |
+
num_processes: int = 8):
|
| 17 |
+
"""
|
| 18 |
+
all npz files in this folder belong to the dataset, unpack them all
|
| 19 |
+
"""
|
| 20 |
+
with multiprocessing.get_context("spawn").Pool(num_processes) as p:
|
| 21 |
+
npz_files = subfiles(folder, True, None, ".npz", True)
|
| 22 |
+
p.starmap(_convert_to_npy, zip(npz_files,
|
| 23 |
+
[unpack_segmentation] * len(npz_files),
|
| 24 |
+
[overwrite_existing] * len(npz_files))
|
| 25 |
+
)
|