from light_training.preprocessing.preprocessors.preprocessor_mri import MultiModalityPreprocessor import numpy as np import pickle import json data_filename = ["t2w.nii.gz", "t2f.nii.gz", "t1n.nii.gz", "t1c.nii.gz"] seg_filename = "seg.nii.gz" base_dir = "./data/raw_data/BraTS2023/" image_dir = "ASNR-MICCAI-BraTS2023-GLI-Challenge-TrainingData" def process_train(): preprocessor = MultiModalityPreprocessor(base_dir=base_dir, image_dir=image_dir, data_filenames=data_filename, seg_filename=seg_filename ) out_spacing = [1.0, 1.0, 1.0] output_dir = "./data/fullres/train/" preprocessor.run(output_spacing=out_spacing, output_dir=output_dir, all_labels=[1, 2, 3], ) def plan(): preprocessor = MultiModalityPreprocessor(base_dir=base_dir, image_dir=image_dir, data_filenames=data_filename, seg_filename=seg_filename ) preprocessor.run_plan() if __name__ == "__main__": plan() process_train()